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Chapter 1

Introduction

Road carriage accounts for an integral part of freight transportation within the European

Union. In fact, it is the dominant mode of inner-EU transports: Eurostat (2011a) reports

a total volume of 1,690 billion tonne-kilometers (tkm) for the 27 member states in the

year 2009, of which around 70 percent are contributed by vehicles registered in Germany,

Spain, Poland, France, Italy, and the United Kingdom. Compared to 359 billion tonne-

kilometers by rail and 130 billion tonne-kilometers by inland waterways the road share of

inland freight transport is 77.6 percent. Air freight is less important for inner-EU trans-

ports, amounting to only 12.3 million tonnes compared to 15,123 million tonnes of road

freight; yet, the average value of one tonne of air cargo is usually much higher than in

other modes of transport. Between European airports a significant amount of freight de-

clared as air cargo is actually transported on the ground by so-called road feeder services

today.

For the years 1995 to 2008 the European Commission (2010) reports an average annual in-

crease of freight transport (in tkm) within the EU-27 countries of 2.3 percent. In Eurostat

(2011b) this growth is explained by the “rapid increase in global trade [...] and the deep-

ening integration of the enlarged EU, alongside a range of economic practices (including

the concentration of production in fewer sites to reap economies of scale, delocalisation,

and just-in-time deliveries)”. The growth of freight transport over the years is shown in

figure 1.1(a) for the individual transportation modes: road carriage accounts for most of

the growth, with its share rising from 67.4 to 72.5 percent. Note that the recent global

economic and financial crisis had a heavy impact on the logistics sector as well, and the

decline is already evident in the year 2008.
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Figure 1.1: EU-27 road transportation by transportation modes (European Commission,
2010).

Road transportation does not only refer to freight but also to passenger transport: figure

1.1(b) displays the growth of passenger transportation modes for the years 1995 to 2008,

measured in passenger-kilometers (pkm). In 2008 public transport on the road by buses

and coaches accounted for 8.4 percent of passenger transportation.

Route planning The logistics sector is well-known to be a market with small profit

margins for competitors; cost is usually the major decision factor for a customer choos-

ing a carrier. On the side of trucking companies this cost pressure requires an efficient

planning of operations to increase resource utilization and reduce empty mileage, thereby

reducing variable costs such as fuel and toll costs on the one hand, and also fixed costs re-

lated to the company’s resources such as drivers’ wages and acquisition and maintenance

costs of the vehicle fleet on the other hand. At the same time companies need to maintain

the quality of service promised to their customers which is, first of all, punctuality and

reliability.

Route planning is the operational task of a trucking company to create tours and sched-

ules for vehicles and drivers to accomplish its customers’ transportation-related demands.

The aim is to determine a minimum cost plan which complies with agreed services and ob-

serves legal restrictions and other side-constraints. Unfortunately, feasible and especially

cost-optimal plans can hardly be generated manually in real-world scenarios. To cite an

example, a major German supermarket chain operates a fleet of 2,300 vehicles located

at 28 distribution centers; replenishing the stores involves the planning of more than 100

2



1. INTRODUCTION

tours per day for some distribution centers (DVZ, 2011b). Such complex scenarios require

the use of information and communication technology, supported by operations research

methods.

Operations research methods Hillier and Lieberman (1980) describe operations re-

search (OR) as a “scientific approach to decision making” which is “applied to problems

that concern how to conduct and coordinate the operations or activities within an orga-

nization” and which employs techniques from multiple disciplines such as mathematics,

statistics, economics, business administration, electronic computing, engineering, and be-

havioral sciences. Applying the OR approach to a specific planning problem typically

includes the construction of a mathematical model abstracting the essential elements

of the problem, the development of systematic procedures to obtain solutions, and the

determination of (preferably) optimal solutions, which indicate the best possible course

of action. According to Hillier and Lieberman (1980), being concerned with practical

management OR “must also provide positive, understandable conclusions to the decision

maker(s)”.

The generation of transportation plans is a classical application of OR methods. The most

common model formulation for route planning is the vehicle routing problem (VRP). In-

troduced more than fifty years ago it is one of the most intensively studied problems in the

field of OR today. Its basic variant considers a set of geographically dispersed customers,

each having a certain demand, who are served by a fleet of vehicles located at one depot.

Minimizing the total distance traveled the customers are partitioned into a set of clusters

assigned to one vehicle each, and within each cluster the shortest tour starting and ending

at the depot is determined. Constraints such as vehicle capacity or maximal tour length

restrain the possibilities of routing.

Many solution methods have been designed for VRPs over time: exact solution methods,

which always generate the optimal solution of a problem, and heuristic approaches, which

waive the guarantee of optimality and aim at producing high-quality solutions within a

short time instead. Often, due to unacceptably long and inconsistent running times ex-

act methods are not applicable in real-world contexts which involve the solution of large,

complex VRPs and which only allow a short time to generate a plan and make a decision.

Consequently, heuristics such as neighborhood search methods are common practice in

route planning.

3
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To provide the best possible support for decision makers and to generate high-quality

transportation plans good routing software must be tailored to the specific planning prob-

lems and business rules of a trucking company or a certain industrial sector. For instance,

the distribution of groceries to supermarkets involves time windows for delivery, different

replenishment frequencies for stores of different sizes, refrigerated trucks to maintain the

cold chain for certain products, and changes of demand at short notice, e.g. in the case

of weather changes (DVZ, 2011a). In an OR-based approach such specific requirements

affect both the model formulation and the solution method embedded into a planning

system. If business rules are not modeled adequately, solutions and recommendations

generated by optimization are suboptimal or even cannot be translated into feasible real-

world operations.

Design of a VRP framework Software vendors and consultancies offering individual

decision support software for the road transportation sector are faced with the task of

designing and implementing solution methods for the specific vehicle routing scenarios

of their customers. Here, previously developed methods for similar VRPs can often be

reused to a certain degree. Many successful neighborhood search methods in the literature

developed for vehicle routing problems share a good deal of their ideas and differ only

rather slightly in few problem-specific aspects. This observation provided motivation to

develop a software framework to facilitate the reuse of design ideas and code. Providing a

reusable set of classes for neighborhoods search heuristics, the purpose of this framework

is to accelerate the process of developing high-quality solution methods for the wide class

of real-world rich vehicle routing problems. Yet, the focus is not only on the reuse of code,

but also on defining the structure of a unified solution approach and implicitly providing

a guideline for development.

In the remainder of the introduction to this thesis we give further motivation for the

topic in section 1.1 by characterizing planning problems that occur in road transporta-

tion. Then, we present a brief overview of components and features of common decision

support systems for road transportation in section 1.2. Section 1.3 clarifies certain aspects

regarding the purpose of our framework. Finally, section 1.4 presents a summary of the

main contributions of this thesis and section 1.5 sketches the outline.
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1.1. Planning Problems in Road Transportation

1.1 Planning Problems in Road Transportation

Problems related to route planning arise in a diverse field of economic sectors and busi-

nesses. To name a few examples, consider the distribution of consumer products, e.g.

supermarket chains replenishing their stores from central distribution centers, the coordi-

nation of service crews, the routing and scheduling of buses in public transportation, or

operations in emergency services. Fulfilling requests for transportation efficiently is the

core of the business of shippers and carriers in freight logistics. Companies outside the lo-

gistics sector have parts of their supply chains managed by third-party logistics providers,

or they maintain their own networks for the transportation of goods or persons. Here, we

present some typical planning problems in the field of road transportation and classify

them according to the three classical levels of decision-making:

• Strategic planning has a deep impact on the operations and the success of a

company; it aims at long time horizons and often involves large capital investments.

This is the case for decisions concerning the design of a transportation network, for

instance the decision at which location to open a new hub to improve services in

a certain region or whether to close an existing hub. Planning resources typically

affects the dimension and the composition of the vehicle fleet, the number of drivers

employed, or the distribution of vehicles and drivers over multiple hubs. In this

context questions might arise how to dimension resources to maintain a certain

service level and to which degree to cope with (seasonal) demand fluctuations by

falling back on subcontractors.

• Tactical planning aims at allocating the existing resources of a company effec-

tively and efficiently over a medium-term horizon rather than on a day-to-day level.

Consider, for example, the design of service/delivery areas assigned to the same

vehicle/personnel or the creation of weekly master plans. Potentially, there is some

degree of freedom in choosing customers’ delivery days or delivery rhythms, which

can help to level out strong daily fluctuations in resource utilization.

• Operational planning deals with short-term problems, most notably the dis-

patching for the current day or the next days, dealing with the concrete routing

and scheduling of vehicles and drivers. Often, the related decisions involve dynamic

changes to the transportation plan and require short reaction times: incoming trans-

portation requests must be compatible with the current schedule, or requests must

be declined when not profitable. The rerouting of vehicles may be necessary on

occasions such as cancellations or changes in the traffic situation.
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Modeling these scenarios, the heart of most problems is some variation of a VRP, although

a common VRP does not directly address questions such as which fleet to maintain or

where to open a new hub. Even if the specific decision to be made is not formulated within

the VRP itself, its solution using OR methods can provide valuable decision support nev-

ertheless, for example within a simulation study or by answering what-if questions. In

the location planning case such a what-if question can be, “to which extent can the total

variable delivery costs be reduced if a new hub is opened at a certain location?” Generat-

ing and solving multiple VRP instances reflecting different hub locations gives an insight

into the consequences of potential scenarios. A monte carlo simulation can help when

dealing with uncertainties, for example when dimensioning the fleet: randomly generat-

ing a significant number of instances from given assumptions (distributions) concerning

the number of future transportation requests at certain points in time, solving these in-

stances, and aggregating the results helps to estimate a fleet size which allows to maintain

a specific service level.

1.2 Decision Support for Road Transportation

According to a study of the German-speaking market by Drexl (2011) 50 software ven-

dors are currently offering commercial products including VRP algorithms to support

organizations in route planning. Another recent survey of routing software is given by

Partyka and Hall (2010) who evaluate 22 products by 12 North American and 4 European

vendors. Routing software is used in a diverse set of industries, and products are often

specialized for one sector, e.g. courier services, service fleets, or emergency services.

Route planning systems essentially belong to the class of decision support systems (DSS),

which Scott Morton (1971) defines as “interactive computer-based systems which help

decision makers utilize data and models to solve unstructured problems”. As explained

by Keen and Scott Morton (1978) the central characteristic of a DSS is that it can be

applied to “decisions in which there is sufficient structure for computer and analytic aids

to be of value but where managers’ judgment is essential”, which implies that decisions

are prepared in a process of manager/machine interaction, improving the effectiveness of

decision making rather than its efficiency. For managers a DSS serves as a “supportive

tool, under their own control, which does not attempt to automate the decision process,

predefine objectives, or impose solutions”. Sprague and Carlson (1982) define the main

components of a typical decision support system as dialog, data, and models, known as

the DDM paradigm. In brief, modern routing software has the following basic features in

terms of the DDM paradigm:
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Figure 1.2: Example of a road transportation DSS user interface.

• Dialog component: The user interface displays the current status of routing and

scheduling, usually including a digital map view of the tours and stops and a Gantt

chart illustrating the activities of the company’s resources – vehicles and drivers

– on a timeline. Tours generated by the internal algorithms can be modified by

drag&drop editing, which is an essential aspect of manager/machine interaction.

Plans and reports can be prepared in a tabular form, e.g. for communication pur-

poses. See figure 1.2 for the user interface of a DSS which addresses specific planning

problems arising in road feeder services described in Derigs et al. (2011b). Here, ac-

tivities of vehicles and drivers such as regular trips, empty trips, or breaks are

indicated on a timeline using bars of different colors.

• Data component: Besides maintaining information on customers, transportation

requests, vehicle fleet, drivers etc. routing software today can usually access several

rich data sources: detailed historical traffic data combined with real-time traffic

information helps to forecast travel times for different times of the day, vehicle

positions can easily be tracked via the global positioning system (GPS), and road

databases providing comprehensive street attributes (for instance accessibility for

the transport of hazardous goods) are used to determine the best paths through

road networks.
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• Model component: Proprietary algorithms, mostly heuristic methods, are used

to solve the underlying VRPs that represent planning problems. A crucial feature

with respect to dispatching is real-time optimization and rerouting, enabled by the

availability of real-time data. Computation times must be appropriately short:

according to Partyka and Hall (2010) most software vendors state running times

ranging between one and five minutes for an average-sized problem (50 routes, 1000

stops, two-hour hard time windows). A special situation in this context is the quick

scheduling of a new stop while the requesting customer is still on the phone.

Partyka and Hall (2010) point out that optimization (the model component) is actually

only one aspect of successful routing software and similarly, Drexl (2011) lists modules for

telematics, statistics, and geographic information systems (GIS) as separate components

alongside DDM. Telematics features are closely related to fleet management functions and

include GPS-enabled real-time tracking, navigation, and communication with drivers. In-

tegration with planning software allows tour information to be transferred to the driver,

and feedback on vehicle position and trip status (e.g. estimated time of arrival) is trans-

mitted in return to update route planning. GIS provide all information related to digital

maps, which refers to both the data and the dialog component of the DSS; for exam-

ple, GIS provide the road database and translate address information into coordinates

(geocoding).

Packaged software for route planning usually focuses on the operational planning level

and offers a basic functionality which aims at fulfilling the needs for a wide range of

applications. Typical business rules and planning options of advanced products include

customer time windows or opening hours, prioritization of orders, consideration of vehicle

capacities and equipment, driving time regulations, multi-depot planning, and support for

both full truckload (FTL) and less-than truckload (LTL) planning. According to Drexl

(2011) all software vendors offer additional customization of their products.

1.3 Metaheuristic VRP Framework

To clarify the designated purpose and role of our framework in helping to develop cus-

tomized route planning software we address the questions, what a framework actually is,

for which types of problems our framework is designed, for which it is not designed, and

which type of user it targets.

8
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The framework approach Voss and Woodruff (2002) classify optimization software

libraries, which are “intended to make it relatively easy and cost effective to incorpo-

rate advanced planning methods in application-specific software systems”, into callable

packages, numerical libraries, and component libraries :

• Callable packages typically include a “black box” solver with a classical functional

interface that allows to set up a model and feed it into the solver. Certain solver

parameters can be manipulated by the user.

• Numerical libraries provide mathematical optimization methods on a lower level of

abstraction, dealing with vectors and matrices rather than with “speaking” model

elements.

• Component libraries provide algorithmic components, usually at source code level

and following the object-oriented programming (OOP) paradigm, and mechanisms

to manipulate and combine these algorithms or parts of them. While class libraries

offer collections of adaptable classes that can be reused flexibly to develop custom

algorithms integrated into other software systems, frameworks “impose a broader

structure on the whole system”.

There is often no clear distinction between class libraries and frameworks. As a possi-

ble definition Voss and Woodruff (2002) state that a framework is “a set of classes that

embody an abstract design for solutions to a family of related problems [...], and thus

provides us with abstract applications in a particular domain, which may be tailored for

individual applications.” Defining a “reference application architecture (“skeleton”), pro-

viding not only reusable software elements but also some type of reuse of architecture and

design patterns”, frameworks may simplify software development considerably.

In our case of a metaheuristic framework for the solution of rich vehicle routing problems

this idea of a reference architecture is realized through a set of predefined metaheuristics

for the standard VRP. Serving as unified solution methods, their algorithmic principles

form design patterns which are reused for different VRP variants. Customization of these

methods is required only for the specific aspects of the rich VRP under consideration.

Focus on vehicle routing problems Our framework aims at facilitating the develop-

ment of solution methods to solve vehicle routing problems. There are two other particular

problem classes which are relevant to route planning but which receive slightly less atten-

tion than VRPs: pickup and delivery problems (PDP) and arc routing problems (ARP).

PDPs involve transportation requests with a pickup of goods at a certain location and

9



1. INTRODUCTION

their delivery at another location. This is a common scenario in courier services. We do

not support PDPs explicitly since we consider the routing of such location pairs, with

both locations being assigned to the same tour and the pickup preceding the delivery,

as a structural difference to the VRP class, which is more profound than a mere set of

additional constraints and affects solution methods to a large extent. Yet, we believe that

a PDP framework can be designed in a very similar way to our VRP framework presented

in this thesis. ARPs are defined on arcs instead of nodes, i.e. they model the service of

street segments instead of customers, speaking in practical applications. Here, we do not

consider ARPs either.

Users The potential user of this framework must not be confused with an end-user of

a decision support system or the like. Users in our context have profound knowledge in

OR combined with software development skills to design and implement VRP algorithms.

To use the framework properly it is important for users to know which algorithms are

provided, how they work conceptionally, and which options they offer to be modified or

extended. Users must understand some classes and methods they get in touch with di-

rectly, but they do not require complete knowledge of all implementation details of the

framework.

1.4 Main Contributions

The thesis centers on the development of a metaheuristic framework to solve rich VRPs.

Demonstrating the use of the framework we also contribute to the research in the rich VRP

area by creating and evaluating new solution algorithms which have not been investigated

before. We consider the following three aspects to be the main contributions of this thesis.

A flexible metaheuristic VRP framework The prime contribution of the thesis

is the conception and design of a framework for the development of heuristic solution

methods for rich VRPs. We assume that such a framework is of particular interest for

vendors of customized vehicle routing software offering optimization which is tailored to

the specific planning scenarios of their customers.

The framework aims at facilitating and accelerating the development process on two levels:

first, it introduces a structure and standardization of development by providing a set of

base heuristics together with a set of options for specific adaptations and modifications.
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Second, it allows the reuse of solver code to a high degree, enforcing that only problem-

specific aspects need to be reimplemented for a new VRP solver. Instead of proposing

new general algorithmic concepts the focus of the thesis is on structuring neighborhood

search techniques in a way to improve flexibility and customizability. The metaheuristic

concepts upon which the framework is based are among the most widely used techniques

in routing software according to the survey of Drexl (2011).

New solution methods for five rich VRPs The framework provides five different

neighborhood search heuristics, two of them based on local search, one based on large

neighborhood search, and two hybrid approaches combining the search methods. We cus-

tomize these heuristics for a set of five rich VRPs, each of which has its own characteristic

that makes it difficult to be solved: the vehicle routing problem with time windows

(VRPTW), the vehicle routing problem with compartments (VRPC), the split delivery

vehicle routing problem (SDVRP), the periodic vehicle routing problem (PVRP), and the

truck and trailer routing problem (TTRP). A few heuristic/problem combinations have

already been proposed and evaluated in similar ways in the literature by other authors,

but several applications have not been examined, yet. Especially hybrid solution meth-

ods combining local search and large neighborhood search as well as applications of the

so-called attribute based hill climber are still relatively rare in the literature.

Structured computational evaluations Alongside with enriching the “portfolio” of

solution approaches for the five rich VRPs under consideration we present new numer-

ical results. As noted above, a few of the heuristic/problem combinations presented in

this thesis have already been examined in the literature in similar ways. Yet, solution

methods by different authors often cannot be compared easily since despite using similar

techniques they incorporate their own individual aspects. Also, due to different program-

ming languages, implementation skills, and testing environments it is difficult to judge

running times. We present computational results for several different problems, which

allow conclusions on the general behavior of heuristic methods since all heuristics share

the same code basis and we apply a structured, consistent testing scheme. Our results

include a few improvements of best known solutions for testing instances listed in the

literature, which help the research community to judge the quality of solutions in a field

where exact solution approaches generating optimal solutions are rare.
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1.5 Outline

Being divided into three main parts, the thesis is structured to provide background in-

formation on the relevant scientific fields to the reader first, then to present the concepts

and the design of the proposed metaheuristic framework in detail, and finally to report on

a set of heuristics developed for a selection of rich VRPs using the framework, including

computational results.

Part I: Vehicle Routing Problems and Solution Procedures The first part serves

as an introduction into the field of VRPs and metaheuristic solution methods to solve these

problems.

Section 2 starts with defining the standard VRP, which is the basic, classical variant of

the VRP class. Many real-world extensions have been reported in the literature over

time, and we present an overview of these rich VRPs to give an idea of the diversity of

problems. A selection of five problems, used for defining framework requirements in part

II and for evaluation in part III, is covered in more detail.

Metaheuristics are the most common and widely-used solution methods to solve VRPs;

some of these specific methods define the foundation of our framework. In section 3 we

convey a broad understanding, going into detail with those techniques which are part of

our framework. Brief attention is also given to other well-known metaheuristic methods.

Part II: Metaheuristic Framework The second part is dedicated to the concepts

and the design of our metaheuristic VRP framework.

Section 4 starts with a review of publications dealing with aspects such as flexibility and

reusability of VRP solvers. In our opinion there is a certain shortage in this field, and

we formulate requirements for a flexible VRP framework which motivate our own choices

regarding framework concept and design.

Section 5 presents the main concepts and the architecture of our framework. On a pseu-

docode level we describe five heuristics for the standard VRP provided by the framework,

and we define mechanisms to adapt these heuristics to the specifics of rich VRPs.
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The most relevant classes we have designed for our framework implementation are covered

in section 6. Data structure classes to represent a VRP solution and algorithmic classes

which are designed for adaptability are especially relevant. Having used the Microsoft

.NET framework for our implementation we also provide a list of special techniques ap-

plied.

Part III: Customizing The last part demonstrates the use of the framework for de-

veloping problem-specific solutions methods, and computational results are presented to

show the effectiveness and efficiency of these methods.

Section 7 exemplifies specific modifications of the standard VRP heuristics for five rich

VRPs: adaptations refer to data structures and neighborhood search methods. This sec-

tion can serve as a source of inspiration to the reader when designing algorithms for new,

so far unstudied VRPs based on our framework.

Section 8 summarizes the computational results obtained for the rich VRP heuristics. Af-

ter determining a standard parametrization of the framework we fine-tune our heuristics

for each individual problem and compare the results with state-of-the-art solvers of the

literature. Special attention is given to the overall robustness of heuristics, which is an

important aspect for practical application.

Section 9 finally gives a critical review of our work and especially discusses whether the

requirements defined are met by our framework. We also give some ideas for further re-

search.
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Chapter 2

Rich Vehicle Routing Problems

The vehicle routing problem is one of the most intensively studied problems in the field

of operations research. More than fifty years ago Dantzig and Ramser (1959) introduced

the “truck dispatching problem” to find the optimal routing of a fleet of gasoline deliv-

ery trucks to supply a certain number of service stations from a terminal. Since then,

a vast number of books and articles on problem variants and solution approaches has

been published. For instance, a classical bibliography on routing problems is presented

by Laporte and Osman (1995), and Golden et al. (2008) report on recent developments

in the VRP area. A survey of the most important contributions of exact mathematical

programming algorithms and metaheuristics for the VRP is provided by Laporte (2009).

In this chapter we present an overview of well-known vehicle routing problems from the

literature, putting the emphasis on problem variants that we specifically address later in

this thesis. After introducing the standard vehicle routing problem in section 2.1, which

is the essence of all VRPs, section 2.2 covers extensions and modifications that reflect

real-world aspects, referred to as rich vehicle routing problems : delivery time windows

in section 2.2.1, vehicles with compartments for heterogeneous products in section 2.2.2,

splitting of deliveries in section 2.2.3, periodic delivery schedules in section 2.2.4, and

vehicle fleets with separate trucks and trailers in section 2.2.5. Section 2.2.6 completes

the chapter by briefly stating some additional well-known VRP variants.

2.1 The Standard VRP

The vehicle routing problem is a generalization of the well-known traveling salesman prob-

lem (TSP), which formalizes the problem to find the shortest tour through a given set

of customers (or cities or other types of locations) visiting each customer exactly once.
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The VRP introduces customer demands and a homogeneous fleet of vehicles located at a

depot, each having the same fixed capacity. Here, the problem is to partition the set of

customers into clusters, which are served by the same vehicle, and to determine a TSP

tour within each cluster of customers which starts and ends at the depot. Within each

cluster the total demand of customers must not exceed the vehicle capacity, and the ob-

jective of the VRP is to minimize the total distance traveled by the vehicles. A maximum

number of disposable vehicles can be given a priori, or alternatively, a hierarchical ob-

jective is to minimize the number of vehicles as the primary objective and to minimize

distance as the secondary objective. Sometimes an additional constraint demands that a

tour may not exceed a given maximal length or duration.

The term “vehicle routing problem” often refers to a class of related problems rather than

to a specific problem. The basic problem variant of the VRP class is the so-called classical

or standard VRP. The standard VRP is defined on a graph G = (N,A), where N is the

set of nodes/locations and A = {(i, j) : i, j ∈ N, i 6= j} is the set of arcs/routes between

these locations. The set of locations contains the depot d and the customers Nc = N\ {d}.

A cost value cij is associated with each arc (i, j) ∈ A, as well as a travel time tij. The fleet

of identical vehicles V , each having a capacity Q, is located at the depot. Each customer

i ∈ Nc has a non-negative demand qi, which has to be served by a vehicle requiring a ser-

vice time si. A maximum allowed travel duration T , identical for all tours, is given as well.

The standard VRP is also referred to as the capacitated vehicle routing problem (CVRP).

Unlike the case of exact solution approaches, explicit mathematical problem formulations

are not usually required when dealing with heuristics, which incorporate models only

implicitly in their implementations. Only for the purpose of clarification do we present

a mathematical problem formulation of the standard VRP in the following; other VRP

variants covered in the remainder of this chapter are presented verbally.

Introducing decision variables

bijv =







1 if vehicle v ∈ V travels from location i ∈ N to j ∈ N

0 otherwise

uiv = position number of location i ∈ N within the tour of vehicle v ∈ V

xiv =







1 if customer i ∈ Nc is served by vehicle v ∈ V

0 otherwise
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the standard VRP can be formulated as the following integer program:

min
∑

i,j∈N

∑

v∈V

cij · bijv (2.1)

subject to
∑

j∈Nc

bdjv ≤ 1 v ∈ V (2.2)

∑

i∈N

bikv −
∑

j∈N

bkjv = 0 k ∈ N, v ∈ V (2.3)

uiv − ujv + |N | · bijv ≤ |N | − 1 i ∈ N, j ∈ Nc, v ∈ V (2.4)

udv = 1 v ∈ V (2.5)
∑

i∈Nc

qi · xiv ≤ Q v ∈ V (2.6)

∑

i,j∈N

tij · bijv +
∑

i∈Nc

si · xiv ≤ T v ∈ V (2.7)

∑

v∈V

xiv = 1 i ∈ Nc (2.8)

xjv −
∑

i∈N

bijv ≤ 0 j ∈ Nc, v ∈ V (2.9)

bijv ∈ {0, 1} i, j ∈ N, v ∈ V (2.10)

uiv ∈ {1, . . . , |N |} i ∈ N, v ∈ V (2.11)

xiv ∈ {0, 1} i ∈ Nc, v ∈ V (2.12)

Objective (2.1) minimizes the total cost. Constraint (2.2) ensures that each vehicle v

departs at most once from the depot, and (2.3) ensures that each arrival of vehicle v at

location k is accompanied by a departure of v from k. These two constraints together

impose that, if a vehicle is used, the tour must always start and end at the depot. Subtour

elimination constraint (2.4) prevents circle tours, i.e. tours that do not depart from the

depot, by specifying that the position of customer j is higher than the position of location i

if vehicle v travels from i to j. Since there are many potential numberings for the same

tour constraint (2.5) eliminates duplicate solutions by forcing the depot to be at position 1.

Constraint (2.6) states that the capacity of vehicle v must not be exceeded by the demands

of customers served, and (2.7) defines the maximum travel duration of the vehicle. (2.8)

ensures that each customer i is assigned to exactly one vehicle. Constraint (2.9) imposes

that a vehicle v must actually visit customer j during its tour if j is assigned to the

vehicle. Finally, (2.10)-(2.12) define the decision variables.
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2.2 Extensions of the VRP

In the following we present a selection of rich vehicle routing problems, which are much

more complex than the standard VRP and reflect practical, real-world aspects. While

we go into detail with those problem variants first that are relevant in the remainder of

this thesis, we give a list of other well-known problems at the end of this section. The

diversity of practical problems in this area underlines the importance of flexible VRP

solution methods.

2.2.1 Vehicle Routing Problem with Time Windows

The most prominent and widely studied rich VRP in the literature is the vehicle routing

problem with time windows (VRPTW). It addresses the common situation that the ser-

vice of customers is associated with time intervals. For example, customers may only be

served during their business hours, consumer products such as groceries must be delivered

before the opening hours of a shop, or short intervals for home deliveries are arranged

with private customers to reduce waiting times and improve satisfaction.

In the VRPTW the service of a customer i ∈ Nc has to start during a time window [ei, li].

A vehicle may arrive at the location earlier than ei – then there is a waiting time until

the service can begin, which is usually not penalized – but it is not permitted to arrive

later than li. The duration of service at the customer is denoted with si. Travel time

values tij are often assumed to be identical to the cost values cij in the literature. In

the majority of publications on the VRPTW a lexicographic objective is considered: the

primary objective is to minimize the number of tours, and the secondary objective is to

minimize the total tour distance.

Bräysy and Gendreau (2005a,b) presented an extensive survey on heuristic methods for

the VRPTW, and an often cited, classical VRPTW publication is Solomon (1987). Time

window constraints are sometimes combined with other rich vehicle routing problems;

see, for example, Derigs and Vogel (2009) for the open vehicle routing problem with time

windows or Cordeau et al. (2001) for the periodic vehicle routing problem with time win-

dows.

2.2.2 Vehicle Routing Problem with Compartments

In the standard VRP all goods demanded by customers are considered to be homogeneous

in the sense that they can be transported together without any issues. However, in some
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industries goods are inhomogeneous, and in order to allow the transport of such goods

together on the same vehicle and save transportation costs hereby, vehicles with distinct

compartments for different products are useful. In some applications the compartment

setup of a vehicle may be configurable, i.e. the volume of flexible compartments can be

adjusted by separators. Other scenarios consider fixed compartments that cannot be con-

figured.

Most practical applications are reported for fuel distribution. Brown and Graves (1981),

for instance, deal with the case of the distribution of light petroleum products by a major

US oil corporation where vehicles, consisting of trucks and trailers, have between one and

six tanks for different fuel types; Cornillier et al. (2008) present a heuristic for a multi-

period petrol station replenishment problem, and Jetlund and Karimi (2004) cover related

problems concerning the routing and scheduling of chemical tankers with compartments.

The most recent heuristics consider a special problem type that dedicates every (fixed)

compartment to one product: El Fallahi et al. (2008) present a memetic algorithm and

a tabu search heuristic, and Muyldermans and Pang (2010) analyze the improvement of

using multiple compartments over single compartments in waste collection, applying a

guided local search algorithm.

In Derigs et al. (2011a) we have introduced the vehicle routing problem with compart-

ments (VRPC), which is a rather general problem formulation that covers very different

applications. In fuel scenarios each compartment can carry any fuel type, but evidently

different products must not be mixed within one compartment. Transportation for food

retailing involves frozen and dry goods which need special equipment for fresh delivery.

Typical vehicles have two compartments, one served by a refrigerator and one for dry

goods.

Formally, customers in the VRPC have demands for multiple inhomogeneous products P .

A customer i ∈ Nc may place several orders o ∈ Oi, each referring to one single product

po ∈ P with a quantity qo. Vehicles are still homogeneous, as in the standard VRP, but

now each vehicle has the same set of compartments C. In addition to the total vehicle

capacity Q each compartment c has an individual capacity Qc, with Q ≤
∑

c∈C Qc. The

relation between Q and Qc indicates whether the compartment setup is configurable or

not: if Q <
∑

c∈C Qc, the compartments are flexible, and goods loaded into one compart-

ment affect the remaining capacity available for other compartments. If Q =
∑

c∈C Qc,

the compartments are fixed. The relation Ipp ⊆ P × P defines incompatibilities between

products, i.e. (p1, p2) ∈ Ipp implies that products p1 and p2 must not be transported to-
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gether in the same compartment. Incompatibilities between products and compartments

are expressed by the relation Ipc ⊆ P × C, where (p, c) ∈ Ipc indicates that product p

must not be transported in compartment c.

The VRPC routes orders instead of customers, i.e. the objective is to find an assignment of

orders to compartments within vehicles and to determine order tours such that all vehicle

capacities and compartment capacities are respected, the incompatibility relations are not

violated, and the total cost of the tours is minimized. Note that we allow a customer to

place multiple orders for the same product and that the orders of a single customer may

be served by multiple vehicles. However, a single order may not be split up further as in

the split delivery vehicle routing problem presented in the following section.

2.2.3 Split Delivery Vehicle Routing Problem

In most vehicle routing problems each customer has to be visited exactly once. Relaxing

this assumption and allowing customers to be visited by more than one vehicle may yield

savings in the total distance traveled and in the number of vehicles required. This was first

analyzed empirically by Dror and Trudeau (1989) who introduce the split delivery vehicle

routing problem (SDVRP). Here, each delivery can be an arbitrary fraction of the total

demand of a customer, as long as the total demand of each customer is served completely

over all deliveries. Dror and Trudeau (1989) also show that, if the triangle inequality

holds for the distances, an optimal solution exists where no pair of tours contain more

than one customer with a split delivery in common; hence, the number of splits required

to improve single-visit solutions is quite moderate. Archetti et al. (2006) demonstrate

that cost savings of up to 50 percent can be realized by split deliveries.

While heuristic solution approaches for the SDVRP are presented by Archetti et al.

(2008), Chen et al. (2007), and Derigs et al. (2010), presentations of real-life applications

with split deliveries are still relatively rare in the literature. For example, Mullaseril et al.

(1997) describe a feed distribution problem encountered on a cattle ranch in Arizona, and

Sierksma and Tijssen (1998) deal with the problem to determine a helicopter flight sched-

ule for crew exchanges on off-shore platform locations in the North Sea.

Gulczynski et al. (2010) propose a variant with minimum delivery amounts, which is mo-

tivated by the observation that it is usually undesirable for customers to be delivered too

often since this means interruption and distraction from their primary activities. Also

for the distributor multiple deliveries often involve additional paperwork etc. and should
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thus be avoided. To overcome this issue the SDVRP-MDA defines a minimum amount

for each customer that a partial delivery must not go below.

2.2.4 Periodic Vehicle Routing Problem

The standard VRP is a single-period problem, i.e. a transportation plan is constructed for

one period only – a single day for example. But often customers need to be served several

times during a certain period of time, for example during a week. If the days of delivery

are fixed in advance for each customer, multiple independent daily VRPs can be solved

including the customers that need to be served on the respective days. Yet, sometimes

there is some flexibility with respect to the exact day(s) that a customer is served. In

particular, demands can be periodical in the sense that a customer requires service every

two days or every three days, but the commitment to specific days is left open.

Beltrami and Bodin (1974) describe and solve a routing problem for municipal waste col-

lection where some sites need to be served three times a week (either on Monday, Wednes-

day, and Friday or on Tuesday, Thursday, and Saturday) and some sites on each day of

the week. Other applications of the so-called periodic vehicle routing problem (PVRP)

have, for example, been reported for grocery distribution. The PVRP extends the stan-

dard VRP to a planning horizon of t days. Each customer i ∈ Nc requires a fixed number

of visits – the service frequency fi – and Ci defines the set of allowable combinations

of visit days for the customer. For example, those customers from the waste collection

application described by Beltrami and Bodin (1974) that need to be served three times

a week but not on consecutive days are defined by fi = 3 and Ci = {{1, 3, 5}, {2, 4, 6}}.

Now, the PVRP involves the selection of a visit combination for each customer and at

the same time, based upon the choices made, to solve the resulting VRP for each day of

the planning period. As an additional constraint the number of tours per day is limited

to m vehicles in common problem formulations from the literature.

An important algorithmic contribution for the PVRP is the tabu search algorithm of

Cordeau et al. (1997), which can also be used to solve the periodic TSP and the multi-

depot VRP, and a current state-of-the-art algorithm is the variation of variable neighbor-

hood search by Hemmelmayr et al. (2009). New results of a sophisticated hybrid genetic

algorithm are presented by Vidal et al. (2011).
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2.2.5 Truck and Trailer Routing Problem

In many real-world road transportation scenarios trailers are used to increase the capacity

of a vehicle. The vehicle fleet consists of truck units and trailer units, which can be un-

coupled and recoupled again at the depot as well as during a tour. Yet, some customers

may not be accessible with a long truck-trailer combination and can only be visited by the

truck alone, while the trailer is left at a parking place. For example, customers may be lo-

cated in city centers or in mountain areas that a large vehicle is not allowed to access or is

not able to be maneuvered within safely. Gerdessen (1996) describe an application arising

in the distribution of dairy products by the Dutch dairy industry. Here, many customers

are located in crowded cities, and using a truck-trailer combination is much more time

consuming than serving the customers with the truck only. The trailer is therefore parked

outside the city. Another scenario described by Gerdessen (1996) is the distribution of

compound animal feed, where farmers can be reached by narrow roads and small bridges

only, not accessible by large vehicles.

Chao (2002) introduce the truck and trailer routing problem (TTRP), denoting a truck

that is pulling a trailer, a complete vehicle; vehicle customers are reachable either by a

complete vehicle or by a truck alone, and truck customers are only reachable by a truck

alone. Three types of tours1 are differentiated:

• A pure truck tour contains vehicle customers and/or truck customers served by a

truck alone.

• A pure vehicle tour contains only vehicle customers served by a complete vehicle

without uncoupling the trailer at any time during the tour.

• A complete vehicle tour consists of a main tour traveled by a complete vehicle and

one or more subtours traveled by the truck alone. A subtour starts with uncoupling

the two vehicle units after serving a customer, leaving the trailer at a parking place

at or near this customer’s location, while the truck continues the tour alone. The

subtour ends with returning to the trailer and recoupling the units again. During

the un- or recoupling it is possible to reload freight from the truck to the trailer or

vice versa.

Figure 2.1 exemplifies the three types of tours in a TTRP solution:2 a pure vehicle tour

departs to the left of the central depot; a pure truck tour departs to the right. A complete

1Chao (2002) uses the term “route” instead of “tour”.
2Figure adapted from Lin et al. (2009).
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Vehicle customer 

Truck customer 

Vehicle customer / subtour root 

Complete vehicle / main tour 

Truck only / subtour 

Figure 2.1: Tour types in the TTRP.

vehicle tour is below the depot, consisting of a main tour with two subtours. Customer

locations used to uncouple and park the trailer are denoted as subtour roots. It is also

allowed that a customer serves as the root of multiple subtours (not displayed in the

figure). For a pure truck tour the depot is the subtour root.

The vehicle fleet consists of mk trucks and ml trailers (mk ≥ ml). Trucks have a capacity

of Qk each, trailers have a capacity of Ql, which implies that a complete vehicle has a total

capacity of Qk+Ql. The total demand associated with the customers of a pure truck tour

or a subtour may not exceed Qk. Yet, since reloading freight between trucks and trailers

during a tour is allowed, the total demand of all subtours of a complete vehicle tour may

exceed the capacity of the truck nevertheless. In any case the total demand within a pure

vehicle tour or a complete vehicle tour may not exceed Qk +Ql.

The most important contributions of algorithms for the TTRP are based on neighbor-

hood search: Chao (2002) and Scheuerer (2006) present tabu search approaches, and

Lin et al. (2009) propose a simulated annealing heuristic. The current state-of-the-art

solution method by Villegas et al. (2011) is a hybrid metaheuristic combining multiple

techniques.

In its most simple form the TTRP does neither involve different traveling costs of tours

served by a complete vehicle or by a truck alone nor cost of parking a trailer. Also, the

numbers of trucks and trailers are not restricted, any truck is able to pull any trailer,

and a trailer can be parked at any (vehicle) customer. Drexl (2007) presents the vehicle

routing problem with trailers and transshipments (VRPTT), which is a very complex

generalization of the TTRP motivated by a real-world scenario as well as a branch-and-
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cut algorithm to solve small instances. Among several other characteristics such as time

windows the VRPTT introduces the following characteristics:

• Trucks and trailers can be either collection vehicles or support vehicles. Collection

vehicles are used to collect the supplies of customers, while support vehicles are used

as “mobile depots” that cannot visit customers.

• A trailer may be pulled by different trucks during the course of its tour, i.e. there

is no fixed assignment of trucks and trailers.

• Using the equipment (presence) of a collection truck, load may be transferred from

any vehicle to any other vehicle during a tour.

• Intermediate locations can be used either for parking (parking locations) or for load

transfer (transshipment locations). The collected supply is delivered to unloading

stations.

2.2.6 Other Rich VRPs

Beside the problems presented in the previous sections the VRP literature covers a mul-

titude of additional real-world variants of the vehicle routing problem. Without claiming

that our selection is complete we give an overview of other well-known rich VRPs in the

following.

Schrage (1981) points out the characteristic of a tour to be open or closed: while a closed

tour implies that a vehicle finally returns to its starting location, it does not return in an

open tour. This slight variant of the standard VRP, named open vehicle routing problem

(OVRP) by Sariklis and Powell (2000), reflects the use of external couriers or subcon-

tractors instead of private vehicles. For tours conducted by subcontractors the remaining

part after leaving the last customer does not have to be planned since the drivers return

“home”, which incurs no further cost for the company. On a higher management level a

related problem may be to determine a proper mix of own and hired vehicles for which

closed and open tours need to be planned, respectively. In two recent publications on the

OVRP Li et al. (2007) develop a record-to-record travel algorithm and Derigs and Reuter

(2009) present an attribute based hill climber heuristic.

The vehicle routing problem with backhauls (VRPB) considers delivery (linehaul) cus-

tomers to which goods are delivered as well as pickup (backhaul) customers from which

goods are brought back to the depot. Both types of customers can be served within the
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same tour, but due to potential loading/unloading issues it may be necessary to serve

all linehaul customers before any backhaul customer is visited. If this constraint does

not apply, i.e. if linehaul and backhaul customers may be mixed within a tour, special

attention has to be paid observing the vehicle capacity since the load fluctuates during

the tour. Vehicle routing problem with pickups and deliveries (VRPPD) is another name

for this variant. Ropke and Pisinger (2006b) present a unified heuristic to solve multiple

problems of the VRPB class. A further generalization involves requests to pickup goods

at one location and deliver them to another location. Associated pickups and deliveries

must be scheduled within the same tour, and obviously a pickup location must be visited

before the respective delivery location. The most prominent problem of that class is the

pickup and delivery problem with time windows (PDPTW).

While the standard VRP only has a simple numerical capacity constraint it is necessary

in certain scenarios to determine the actual arrangement of goods within a vehicle dur-

ing route planning. The capacitated vehicle routing problem with two-dimensional loading

constraints (2L-CVRP), see for example Zachariadis et al. (2009), considers customer de-

mands as two-dimensional, rectangular, weighted items. The basic 2L-CVRP determines

a feasible plan to load such items into the vehicle, and its “sequential” variant addition-

ally ensures, depending on the visit sequence of customers within the tour, that every

item delivered to a customer can be unloaded without having to reposition other items

inside the vehicle. A three-dimensional version of the problem, the 3L-CVRP, is pre-

sented by Gendreau et al. (2006). The multi-pile vehicle routing problem (MP-VRP), see

Doerner et al. (2007), considers the loading of items into piles and enforces feasible un-

loading sequences as well.

Further time constraints to be considered in vehicle routing and driver scheduling are

imposed by the restrictive rules on driving times and rest periods from EC Regulation

No. 561/2006 and by the rules on working times from Directive 2002/15/EC. These rules

and their implications for route planning are explained in Kopfer et al. (2007). It is espe-

cially important to consider breaks and rest periods explicitly during route planning when

deliveries are associated with time window constraints, or when tour durations exceed a

usual working day.

In the multi-depot vehicle routing problem (MDVRP) the vehicle fleet is distributed over

multiple depots, see for example Cordeau et al. (1997). Each tour has to start and end at

the same depot, and customers may be served by vehicles starting from any depot. The

vehicle routing problem with multiple use of vehicles (VRPM), see Taillard et al. (1996)

27



2. RICH VEHICLE ROUTING PROBLEMS

for instance, allows to schedule multiple tours for a single vehicle during the planning

period. Vehicles return to the depot between two tours.

The fleet size and mix vehicle routing problem (FSMVRP) relaxes the assumption of a

homogeneous fleet, see Golden et al. (1984). Instead, multiple types of vehicles with dif-

ferent capacities and acquisition costs are available, and the problem is to determine the

optimal dimension and vehicle type mix of the fleet, minimizing both fixed vehicle costs

and variable routing costs. Potentially, different driving speeds or traveling costs of vehi-

cles can be considered. Related problems considering an existing fleet of limited size are

commonly denoted as heterogeneous vehicle routing problems (HVRP), see Baldacci et al.

(2008) for an overview. Nag et al. (1988) present the site-dependent vehicle routing prob-

lem in which certain customers can only be served by a subset of the vehicle fleet. For

instance, accessibility of customers may depend on the vehicle size, or specific facilities

such as cooling devices may be required for some customers.

Real-world planning scenarios are often characterized by dynamics of information, which

has led to the consideration of dynamic vehicle routing problems (DVRP), see Psaraftis

(1995). Here, the information which is relevant for routing decisions is not known com-

pletely in advance but is revealed (or updated) over time to the decision maker, when

vehicles have already started their tours, or when it is not possible to revise decisions al-

ready made. Such dynamic information can, for example, be the arrivals of new customer

orders at any time.

Another type of dynamics is considered in the time-dependent vehicle routing problem

(TDVRP), see Malandraki and Daskin (1992), which assumes travel times to be depen-

dent on the distance between locations and also the time of day. Travel times can vary

to a great extent during rush hours in urban environments or due to changing weather

conditions, for instance. If variations of travel times are known in advance, the TDVRP is

a static problem in the sense of information revelation. If online information on changes

of travel time forecasts is available, for example considering traffic congestion due to ac-

cidents, the problem is again a dynamic one.

Most rich VRPs in the literature concentrate on specific, individual aspects only, while

real-world scenarios often combine multiple aspects of several such problems. For example,

Derigs et al. (2011b) present a real-world VRP arising in the air cargo road feeder service

business that combines the VRPM, a heterogeneous vehicle fleet, and rules on driving

times and rest periods. Here, transportation tasks of a given timetable are combined into
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trips, respecting the rules of EC Regulation No. 561/2006 and Directive 2002/15/EC.

These trips, which start and end at the hub, are aggregated into so-called multiple-trips

that are operated by the same tractor. Each trip needs to be assigned to a compatible

trailer as well. The primary objective is to minimize the number of required tractors,

i.e. the number of multiple-trips. Caramia and Guerriero (2010) describe a milk collec-

tion problem for an Italian dairy company collecting raw milk from farmers, which is

a combined TTRP/VRPC. Trucks and trailers are used, but farms are often small and

inaccessible by complete vehicles so that they can only be visited by the truck alone. At

the same time vehicles have multiple compartments for different milk types that cannot

be mixed.
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Chapter 3

Metaheuristic Solution Methods

Although the development of exact solution methods has made significant progress over

the last years, heuristic approaches are still dominant in the vehicle routing literature.

Heuristics aim at producing high-quality solutions within a short time; waiving the guar-

antee to obtain the optimal solution of a problem they usually neither allow to measure the

quality of a solution, i.e. the deviation from the unknown optimum, nor to specify a min-

imum quality to be obtained in advance. Exact methods provide such quality measures,

but since vehicle routing problems are NP-hard combinatorial optimization problems only

rather small instances can practically be solved to optimality. Laporte (2009) states that

current state-of-the-art methods are able to solve standard VRP instances of up to ap-

proximately 100 customers. Consistency and robustness is also a problem since instance

properties such as tightness of time windows may influence running times dramatically.

Pisinger and Ropke (2007) report that a 1,000 customer VRPTW instance could be solved

to optimality (by other authors), but still unsolved instances with only 50 customers ex-

ist. In some planning scenarios these limitations may not apply and exact methods can

be used, but usually one has to resort to heuristic methods. Especially in real-time dis-

patching or within interactive decision support systems heuristic methods are preferable

in general.

This chapter presents an overview of metaheuristic solution methods for the VRP, but its

main purpose is to describe the techniques upon which our framework is based. Meta-

heuristics are usually improvement methods, i.e. they are started from a given solution.

Generating such an initial solution is the purpose of construction heuristics, which we

briefly review first in section 3.1. According to Laporte (2009) metaheuristic principles

for the VRP can broadly be classified into local search, population search and learning

mechanisms. The concept of local search, which most successful VRP heuristics incor-
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porate at least partly and which is also the basis of our framework, is to define a neigh-

borhood topology in the space of feasible solutions and to improve a given solution by

iteratively moving from one neighbor solution to another. This general concept, referred

to as neighborhood search, is introduced in section 3.2. Section 3.3 presents several pop-

ular metaheuristic controls to guide the search, and the terms local search (section 3.4)

and large neighborhood search (section 3.5) refer to two different types of neighborhood

topologies. Population search and learning mechanisms are not of specific interest in the

context of our framework; we give brief attention to them in section 3.3.5.

3.1 Construction Heuristics

The purpose of a construction heuristic is to generate a feasible initial solution of accept-

able quality in a rather short time for an improvement method such as local search or

large neighborhood search. The two most prominent methods for the VRP are the savings

method by Clarke and Wright (1964) and the sweep method by Gillett and Miller (1974)

– two classical VRP heuristics which have been used a long time before the emergence of

metaheuristics.

The savings method starts with a solution containing one deadhead tour (d, i, d) for each

customer i ∈ Nc. Tours are merged sequentially: calculating savings sij = cid + cdj − cij

for any two tours ending with customer i and starting with customer j, the two tours

with the highest saving are appended in each iteration, provided that the capacity is not

exceeded. The procedure terminates when no tours can be appended any more. Often,

the resulting tours are improved as individual TSPs in a post-optimization step.

The sweep method is applicable when polar coordinates are given for the customers or

can be calculated. This is the case when customers are distributed on a plane and charac-

terized by x- and y-coordinates in a Cartesian coordinate system, or if they are specified

by latitudes and longitudes in a geographic coordinate system. The angle of 0 is assigned

to one customer, and the angles of the remaining customer locations around the depot

(or another specific location) are calculated from this 0-angle customer. Customers are

inserted sequentially into an empty solution with increasing polar angles: each customer is

appended to the last tour of the solution if this is feasible; otherwise a new tour is opened.

As a variation, customers can be inserted at the cheapest position within the tour. When

all customers have been inserted the resulting tours can be post-optimized as TSPs as well.
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Another straightforward construction method within a large neighborhood search heuris-

tic is the use of an insertion heuristic to insert all customers into an empty solution. See

section 3.5 for details.

3.2 Neighborhood Search

Neighborhood search is a generic principle of improvement heuristics to solve hard com-

binatorial optimization problems such as VRPs. A combinatorial optimization problem

can formally be represented as a triple (E,F , cost), where

• E is a set of ground-elements, the arcs of a graph for instance,

• F ⊆ 2E is the set of feasible subsets/solutions, and

• cost(S) is the value of a subset/solution S ∈ F .

The optimization problem is to find the feasible solution of minimal value, i.e. to determine

min {cost(S) | S ∈ F} .

The idea of neighborhood search is to improve a given (feasible) solution by a sequence of

modifications. Formally, it is based on the specification of a problem-specific neighborhood

structure on F : for every solution S ∈ F a subset N(S) ⊆ F specifies the neighbors of

S. Starting from an initial solution S0 ∈ F , the process of the search is described by a

sequence S0, S1, S2, . . . of solutions with Si ∈ N(Si−1), i = 1, 2, . . .. The transition from

a solution Si−1 to Si is also called a move. The result of the procedure, for which some

termination criterion must be defined, is the best solution contained in that sequence.

The simple outline of neighborhood search is displayed in algorithm 3.1. Here, func-

tions SelectNeighbor and AcceptNeighbor abstract from the so-called metaheuris-

tic control that guides the search process through the solution space:

• SelectNeighbor(S,N) selects a solution S ′ from the neighborhood N(S) of the

current solution S ∈ F , and

• AcceptNeighbor(S ′, S) decides whether solution S is replaced by solution S ′ or

not, based on ∆ = cost(S ′)− cost(S) and, potentially, further criteria.
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Algorithm 3.1 Neighborhood search

1: function NeighborhoodSearch(initial solution S, neighborhood N)
2: Sbest := S
3: repeat

4: S ′ := SelectNeighbor(S,N)
5: if cost(S ′) < cost(Sbest) then
6: Sbest := S ′

7: end if

8: if AcceptNeighbor(S ′, S) then
9: S := S ′

10: end if

11: until stop criterion fulfilled
12: return Sbest

13: end function

The general neighborhood search concept was introduced under the name local search

(LS); it is traditionally designed to investigate a huge number of small modifications

of the current solution per iteration and then to perform the most improving modifica-

tion/move. For the steepest descent (SD) strategy the SelectNeighbor function selects

the best solution S ′ within the neighborhood of S, with cost(S ′) = minS∗∈N(S) cost(S
∗).

An alternative strategy is to select the first improving solution found when evaluating

the neighborhood. In both cases a solution S ′ is only accepted by AcceptNeighbor if

cost(S ′) < cost(S); if no such solution exists in the current neighborhood, the procedure

stops.

Performing only improving moves until no further improvement is possible involves the

danger that the search gets “trapped in a local optimum” which may be significantly

worse than the global optimum of the problem. Metaheuristic controls, which allow to

perform deteriorating moves and to escape from such local optima, are presented in the

next section.

3.3 Metaheuristic Controls

The term metaheuristic is commonly used for a variety of heuristic solution methods.

Voss et al. (1999) define a metaheuristic as

“an iterative master process that guides and modifies the operations of

subordinate heuristics to efficiently produce high-quality solutions. It may

34



3.3. Metaheuristic Controls

manipulate a complete (or incomplete) single solution or a collection of so-

lutions at each iteration. The subordinate heuristics may be high (or low)

level procedures, or a simple local search, or just a construction method. The

family of meta-heuristics includes, but is not limited to, adaptive memory pro-

cedures, tabu search, ant systems, greedy randomized adaptive search, vari-

able neighborhood search, evolutionary methods, genetic algorithms, scatter

search, neural networks, simulated annealing, and their hybrids.”

In the context of solution methods based on neighborhood search the major purpose of a

metaheuristic or metaheuristic control is to guide the search and prevent termination in a

(bad) local optimum. Unlike steepest descent a metaheuristic control provides a strategy

to perform non-improving moves on certain occasions to be able to escape from such

local optima. The two most prominent principles of metaheuristic controls are annealing

techniques and tabu search:

• Annealing techniques (sections 3.3.1 and 3.3.2) refrain from the idea of selecting the

best neighbor in each iteration. Instead, random moves are performed, provided

that the current solution is not deteriorated “too much” by non-improving moves.

The term “annealing” refers to the characteristic that non-improving moves are

prohibited gradually while the search proceeds. For all annealing techniques one

or more parameters have to be defined which control the speed of the annealing

process.

• Tabu search methods (sections 3.3.3 and 3.3.4) in each iteration move to the best

neighbor, which potentially is not improving, and in order to prevent cycling they

declare certain solutions as “tabu”.

For a solution method the choices of the problem-specific neighborhood structure and the

domain-independent metaheuristic control are partly interrelated. Metaheuristics such as

steepest descent or tabu search which evaluate the complete neighborhood of a solution

require a neighborhood structure that allows the neighbors of a solution to be enumerated

explicitly. This applies to the classical local search neighborhoods for VRPs described in

section 3.4. Yet, a neighborhood may also be defined implicitly: in large neighborhood

search, see section 3.5, a single neighbor is obtained by applying a certain algorithm to

the current solution. Such neighborhoods can be combined with annealing techniques

more suitably.
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3.3.1 Simulated Annealing

Simulated annealing (SA), see Kirkpatrick et al. (1983), which is the classical and most

prominent metaheuristic, uses a random number generator to decide on the acceptance

of non-improving moves. A random neighbor S ′ of the current solution S is selected in

each iteration of the search. If the move is improving, i.e. if ∆ := cost(S ′)− cost(S) < 0,

it is accepted; otherwise it is performed with probability e−
∆

T ∈ [0, 1), controlled by a

temperature parameter T . By decreasing T according to a specified cooling rate c the

probability of accepting such uphill moves gradually decreases during the search; finally,

the procedure converges to a descent method. Usually, the temperature is adjusted by

setting T := T · c every L iterations. Johnson et al. (1989) recommend setting L to a

multiple of the expected neighborhood size.

3.3.2 Deterministic Annealing

Threshold accepting (TA), the great deluge algorithm (GDA), and record-to-record travel

(RRT), variants of simulated annealing, are referred to as deterministic annealing meth-

ods because they define non-random acceptance criteria.1 As SA, all three controls select

random neighbors that are accepted if the move is improving. The extent to which non-

improving moves are accepted is lowered during the search; but unlike SA, the decision

on acceptance is not random.

TA, see Dueck and Scheuer (1990), accepts a neighbor if the cost increase compared to the

current solution does not exceed a certain threshold value. This threshold is decreased

gradually during the course of the search. GDA, see Dueck (1993), defines a so-called

waterlevel which represents the maximum cost that an acceptable solution may have and

which is decreased each time a solution is accepted. RRT, see Dueck (1993), uses the cost

of the best solution found so far during the search – the record – to define acceptability:

here, solutions are accepted which are not worse than the current record by a certain

relative deviation.

3.3.3 Tabu Search

Tabu search (TS), proposed by Glover (1989, 1990), always scans entire neighborhoods in

each iteration and moves to the best neighbor even if it does not lead to an improvement.

1Note that a heuristic based on a deterministic annealing control is still not a deterministic algorithm
since neighbor selection remains random.
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This corresponds to the “steepest descent – mildest ascent” principle and is the central

difference to all annealing methods. An approach to avoid cycling is to forbid solutions

which have already been visited. For this purpose solutions possessing certain attributes

of recently visited solutions are temporarily declared tabu for a number of iterations, un-

less their cost is below a so-called aspiration level.

A tabu search strategy for a VRP can be, for example, that after moving a customer

from one tour to another, moving this customer back to its former tour is forbidden for

a number of iterations unless the move results in a new best solution. The tabu search

idea leaves many degrees of freedom for the actual implementation. In the next section

we present one specific TS-variant: the attribute based hill climber.

3.3.4 Attribute Based Hill Climber

Whittley and Smith (2004) present the attribute based hill climber (ABHC) heuristic as

a parameter-free variant of tabu search. ABHC uses a generic concept for specifying

non-tabu neighbors, which has to be specialized for every problem domain: assume a set

A of attributes over the set F of feasible solutions, and let A(S) ⊂ A denote the set of

attributes that a specific solution S possesses. In a vehicle routing problem A may be

chosen to represent the arcs between any two locations. In this case a solution possesses

an attribute a ∈ A if the two associated locations are visited immediately one after the

other in a tour.

During the search an attribute memory is maintained which stores for every attribute a

the objective value of the best solution S∗ visited so far with a ∈ A(S∗). Another solution

is acceptable if it would be the best solution visited so far for at least one attribute that it

contains, i.e. if at least one attribute is improved in the memory. The procedure stops when

no acceptable neighbors exist, but it can be restarted by resetting the attribute memory,

see Derigs and Kaiser (2007). After specifying the attributes ABHC is parameter-free

and, except for some tie-breaking, completely deterministic.

3.3.5 Other Metaheuristic Strategies

Several other metaheuristics and enhancements of local search have been proposed in

the literature over time. To conclude this section on metaheuristic solution methods we

briefly state some additional well-known techniques. In chapter 8 we compare our own

numerical results with those of current state-of-the-art methods from the literature; some
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of these reference methods are based on metaheuristics presented in the following.

Mladenović and Hansen (1997) propose variable neighborhood search (VNS) that incor-

porates the use of multiple neighborhoods and systematic changes between them. Neigh-

borhoods are given in a predefined order k = 1, . . . , kmax. Starting with k = 1 a random

neighbor x′ of the initial solution x is selected from neighborhood k. This random step is

also called “shaking”. Then, a local search phase is started from x′, terminating at a local

optimum x′′. If x′′ is better than x, x is replaced and the search continues with shaking

using neighborhood k = 1; otherwise a shaking step is applied to the old x with k := k+1.

The shaking neighborhoods are usually ordered with increasing size or “distance”. The

local search phase neighborhoods do not necessarily correspond to the shaking neighbor-

hoods; a single neighborhood may be used or multiple neighborhoods with systematic

changes as well.

As VNS, guided local search (GLS), see Voudouris and Tsang (1999), incorporates sequen-

tial local search phases but modifies the objective function of a problem before starting

a local search phase by adding penalty terms for certain solution features. Whenever a

local optimum (according to the augmented objective function) is reached, these penalties

are updated for the purpose of leaving the local optimum in the next phase and avoiding

solution features which are unlikely part of good solutions.

Some approaches allow visiting infeasible solutions and penalize constraint violations in

the objective function to guide the search towards repairing these violations. Penalty mul-

tipliers are adjusted dynamically depending on whether the currently examined solutions

are infeasible or not; if constraints are violated, the respective multipliers are increased,

and vice versa. Examples of such VRP heuristics are the well-known “taburoute” heuris-

tic by Gendreau et al. (1994) and the solution approaches of Cordeau et al. (1997) and

Hemmelmayr et al. (2009) for the PVRP.

To reduce the computational complexity of tabu search Toth and Vigo (2003) introduce

the granularity principle. It is motivated by the idea that long, costly arcs seldom belong

to good solutions and can thus be removed from the network without loss of solution

quality. Hereby, the number of arc exchanges to be evaluated per iteration is reduced. A

granularity threshold needs to be selected to specify the minimum length of arcs to be

excluded; this threshold can be adjusted dynamically when the search gets stuck. Appar-

ently, the granularity principle can be combined with any local search based heuristic.
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While the metaheuristic strategies described up to this point have the purpose to con-

trol a pure neighborhood search, the term “metaheuristic” is also used for several other

algorithmic concepts. Taillard et al. (2001) propose a unified presentation of a range of

methods under the name of adaptive memory programming (AMP). These methods in-

clude genetic algorithms, scatter search, ant colony optimization, and also tabu search.

Genetic algorithms improve solutions by simulating the evolutionary process of reproduc-

tion by recombination and mutation of genetic representations (“genotypes”). Scatter

search has not been very successful to solve VRPs; ant colony optimization, in contrast,

is a biology-inspired learning method and a current trend in the VRP literature. The

general AMP concept incorporates a memory which holds solutions (“populations”) or

characteristics of solutions encountered during the search, a mechanism to generate new

solutions from this memory, and a local search procedure to improve such solutions. Meta-

heuristics which combine evolutionary concepts with neighborhood search are sometimes

denoted as memetic algorithms. The AGES method by Mester and Bräysy (2005) is a

hybrid algorithm of this class which has attracted a great deal of attention. In general,

hybridizing multiple solution paradigms is a current trend in the field of VRP heuristics,

combining the positive effects of single methods and reducing their respective shortcom-

ings. Besides memetic algorithms, combinations of metaheuristics and mathematical pro-

gramming methods are gaining attention under the term matheuristics, see for instance

Maniezzo et al. (2010).

3.4 Local Search Neighborhoods

Traditional neighborhood search for the VRP is based on operators which apply small

modifications to a solution involving exchanges of edges/arcs. Specific exchanges can be

made within one tour (intra-tour moves) or between multiple tours (inter-tour moves).

This section illustrates the most common moves or neighborhoods from the VRP litera-

ture; since their use is rather intuitive we refrain from giving formal definitions.

Figure 3.1 shows a selection of intra-tour moves, originating from common TSP heuristics.

The most widely used intra-tour moves belong to the class of so-called k-opt methods, see

Lin and Kernighan (1973). A k-opt move replaces a set of k edges of a tour by another

set of k edges. The number of potential reconnections of tour segments rises dramatically

with increasing values of k – exploring neighborhoods with k > 4 becomes practically in-

feasible due to the computational effort. For VRPs, 2-opt is the most common move, see

figure 3.1(a). The exchange of two edges corresponds to the reversal of a subsequence of

customers within the tour. A restricted variant of 3-opt is the or-opt operator, proposed
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(a) 2-opt

    

(b) Or-opt

    

(c) RelocateI

    

(d) ExchangeI

Figure 3.1: Local search intra-tour moves.

by Or (1976), which relocates a subsequence of usually up to three customers within a

tour by replacing three edges as displayed in figure 3.1(b). Contrary to 2-opt the orien-

tation of the subsequence remains unchanged.

Relocate and exchange are two simple operators which transfer a customer to a different

position in the solution or swap two customers, respectively. Figures 3.1(c) and 3.1(d)

show them being applied as intra-tour moves within a single tour. We denote these intra-

tour applications as relocateI and exchangeI . The two operators are even more common

as inter-tour moves (Savelsbergh, 1992), as displayed in figures 3.2(a) and 3.2(b).

(a) Relocate (b) Exchange

(c) 2-opt* (d) Cross

Figure 3.2: Local search inter-tour moves.

Inter-tour exchanges affect multiple tours, usually two of them. Osman (1993) formally

defines the so-called λ-interchange which selects up to λ (not necessarily consecutive)
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customers from two tours, respectively, and swaps them. Relocate and exchange are

covered by this definition being (1, 0)-, (0, 1)- and (1, 1)-interchanges. The generalized in-

sertion procedure (GENI) proposed by Gendreau et al. (1992) is an extension of relocate

which allows a customer to be inserted between two other customers that are currently

not directly connected in their tour. Assume a customer i and a sequence of customers

j, j+1, . . . , k− 1, k, k+1 in the same or in another tour. i can be inserted between j and

k resulting in a sequence j, i, k, j + 1, . . . , k − 1, k + 1.

The next operator displayed in table 3.2 is 2-opt*, the inter-tour variant of 2-opt, which

is commonly attributed to Potvin and Rousseau (1995) but was already described by

Savelsbergh (1992). As shown in figure 3.2(c) two edges from two different tours are

removed and the segments are reconnected. In other words it swaps the rear segments of

the tours.

The powerful cross operator described by Taillard et al. (1997) is a generalization of the

exchange move that transfers sequences of customers instead of single customers only.

Figure 3.2(d) gives an example move. The maximum length of a sequence is usually re-

stricted to three due to the huge number of potential exchanges. The cross neighborhood

covers relocate, exchange, 2-opt* and the inter-tour variant of or-opt as well.

The characteristic of a move to preserve the orientation of customer sequences or not is

interesting when constraints on visiting sequences apply: in the VRPTW, for instance,

2-opt moves are likely to fail except when time windows are not very tight. Orientation

also matters in asymmetric VRPs, for example considering detailed city street networks

and different travel durations between two locations depending on the direction of the trip.

Some special cases of the presented moves change the number of tours in a solution. Re-

locate, 2-opt*, and cross can be used to integrate a tour into another one completely by

moving customers into one direction only. Conversely, customers can be extracted to open

a new tour. This case may seem to contradict the intuition of distance minimization since

opening a new tour is usually associated with a high increase of distance at first. But a

new tour can help during the course of the search if a problem is tightly constrained and

only few feasible moves can be performed at all, adding further “space” for customers.

Also consider the example of the small SDVRP instance given in figure 3.3: assuming a

vehicle capacity of 15 the total demand of 30 can be served in two tours having a total

distance of 7. However, by adding a third tour and joining the formerly split deliveries
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we can obtain a solution with a total distance of only 6.

q = 10

1
1.5 1.5

q = 10

1

q = 10q = 10                    

1 1
q = 10q = 10                    

1 1

Figure 3.3: Tour distance vs. number of tours with split deliveries.

The traditional VRP neighborhoods can be evaluated rather efficiently for the standard

VRP since changes of tour distance, duration, and vehicle load can generally be calcu-

lated in constant time. Only for operators such as or-opt or cross is it important to

restrict the neighborhood size by setting appropriate sequence length limits. However,

additional feasibility checks for certain rich VRPs may be a computational bottleneck

and slow down the search. This can be especially critical when using the attribute based

hill climber which evaluates a very large number of moves before making any step forward.

3.5 Large Neighborhood Search

The huge number of publications in the VRP literature underlines that the local search

principle is suited very well for the solution of vehicle routing problems. Its tendency

to get trapped in a bad local optimum can be tackled by proper use of metaheuristic

controls. Still, relying on very small, “local” moves can be associated with a few issues,

especially when dealing with tightly constrained rich VRPs:

• If many constraints are involved in a VRP, small changes to a given feasible solution

often result in infeasibilities, and the number of allowed moves can actually be rather

small. Consider, for instance, a VRPTW instance with very tight time windows and

only little flexibility in the routing. In a typical feasible solution the tours are packed

densely with few slack times that are required for shifting customers between tours.

• According to Schrimpf et al. (2000) complex problems are often “discontinuous”.

This describes the effect that moving from one solution to another one which is

very different from the first solution but of similar quality may require a sequence

of steps visiting intermediate solutions of much lower quality. For example, having
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solution space 
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Figure 3.4: Alternation between intensification and diversification in neighborhood search.

customers distributed in clusters over the map, i.e. small distances within certain

groups of customers and rather large distances between the groups, any small change

to the assignment of customers to tours can (temporarily) lead to a much higher

total distance.

• The strength of LS is intensification of the search, i.e. it is able to examine the solu-

tions in a particular region of the solution space carefully. However, a good search

combines intensification with diversification, which is the ability to access many

different areas of the solution space. LS does not provide methods to reach distant

areas other than by a long sequence of independent moves; as pointed out above

this can be difficult, and also the proper use of a metaheuristic control may not be

guaranteed to help. Figure 3.4 sketches in an idealized way how by alternation of

diversification and intensification the solution space is explored thoroughly: when

the search does not yield any more improvements in the current area of the solution

space a diversification step is required to enter another region or basin of attraction,

which is a term referring to a set of solutions from which a (steepest descent) local

search process converges to the same local optimum. The diversification step (or

phase) is followed by another intensification phase.

Consequently, ruin-and-recreate is introduced by Schrimpf et al. (2000) – a new neigh-

borhood concept that ruins or disintegrates a large fraction of a solution and then tries to

restore the solution as best as possible in each iteration of the search. The authors apply
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this concept to the VRPTW (amongst others): here, the ruining step is done by remov-

ing customers from their tours by different strategies, thereby not serving them any more

temporarily, and recreating is done by reinserting the customers into the solution with a

cheapest insertion heuristic. In the large neighborhood search (LNS) heuristic proposed

by Shaw (1998a,b) the ruin step is based on the random selection of customers which are

“similar” with respect to their distances, and the recreate step is done with constraint

programming techniques.

The ruin-and-recreate concept helps to overcome the issues of LS stated above. If a large

part of a solution is destroyed, there is a lot of freedom in creating a new solution and

a very high number of neighbor solutions. It becomes easier to find solutions which are

a) feasible and b) not much worse than the current solution. Another common approach

to overcome the problem of moving across tight constraints is allowing to visit infeasible

solutions, see section 3.3.5. Schrimpf et al. (2000) argue that their approach is favorable

over relaxation techniques since at any time during the search a completely feasible solu-

tion is available.

Figure 3.5: Steps of a large neighborhood search move.

Large neighborhood search was popularized later by Ropke and Pisinger (2006a) and

Pisinger and Ropke (2007), who describe LNS as a generic heuristic based on domain-

independent principles for destruction and repairing and then use LNS to solve the

PDPTW and several VRP variants. With a problem-specific removal heuristic LNS re-

moves a significant number q of customers from the solution which are then reinserted
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by a problem-specific insertion heuristic. An incomplete solution is obtained in the inter-

mediate step which is feasible with the only exception that not all customers are served.

q, which controls the neighborhood size, is selected randomly in each iteration within

certain bounds. This process is illustrated in figure 3.5. Diversification of the search is

enforced by randomization and by using multiple removal and insertion heuristics with

different strategies. Note that since the neighborhood is defined algorithmically it cannot

be enumerated in a similar way as a local search neighborhood, and thus, LNS is com-

bined with annealing techniques rather than with steepest descent or tabu search methods.

Now, we present an overview of common removal and insertion heuristics for VRPs; most

of them are presented by Ropke and Pisinger (2006a) and Pisinger and Ropke (2007). In

the following we use U ⊂ Nc to denote the customers which are currently not served in a

solution.

• Random removal (Ropke and Pisinger, 2006a) simply removes q randomly selected

customers from the solution.

• Worst removal (Ropke and Pisinger, 2006a) removes customers that seem to be

“misplaced” at their current positions, which is measured by the cost decrease asso-

ciated with their removals, hoping that better positions in the solution can be found

later. Customers are selected and removed sequentially and independently until q

of them have been removed. The selection is randomized: for each removal a ran-

dom number y ∈ [0, 1) is drawn first, and r = yβ
WR

· |Nc\U |, with a randomization

parameter βWR, determines the customer to be removed, which is the one that is

associated with the r-th highest decrease of cost.

• Shaw removal (Shaw, 1998a) relies on a relatedness or similarity measure R(i, j)

between two customers i and j which has to be defined depending on the specific

problem. This measure can, for instance, incorporate distance, demand, and time

window information. The procedure starts with selecting and removing one random

pivot customer and after that, q − 1 further customers are removed sequentially.

Selection is random but biased towards customers which are similar to the customers

already removed.2 The idea of removing a set of similar customers is that such

customers can be shuffled around more easily than unrelated customers.

• Cluster removal (Ropke and Pisinger, 2006b) removes complete clusters of cus-

tomers from tours, i.e. disjoint subsets with small distances between the customers.

2The same randomized selection mechanism is applied as in worst removal with a randomization
parameter βSR.
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Other than shaw removal it aims at removing large chunks of related customers from

just a few tours instead of removing customers from many tours. A random tour

is selected first, and then Kruskal’s algorithm is used to partition the customers of

the tour into two clusters. One of these clusters is chosen at random, and all of its

customers are removed. The process repeats until q customers have been removed.

• Neighbor graph removal and Request graph removal (Ropke and Pisinger, 2006b)

are both based on historical information collected during the search. Neighbor

graph removal stores for each arc the cost of the best solution encountered so far

containing that arc.3 Based on these values customers that seem to be misplaced in

the current solution are preferred for removals. Request graph removal is a variant

of shaw removal which counts for any two customers the number of times they have

been served within the same tour in the recently encountered best solutions, using

this information to define the relatedness measure.

• Basic greedy insertion (Ropke and Pisinger, 2006a) follows the cheapest insertion

principle. For a customer i ∈ U and a vehicle/tour v ∈ V let ci,v be the increase of

cost if i is inserted into v at the cheapest feasible position or ∞ if no such position

exists in v. Then, in each iteration of the insertion heuristic customer i′ is inserted

into tour v′ at the cheapest feasible position with ci′,v′ = min { ci,v | i ∈ U, v ∈ V }.

• Regret insertion (Ropke and Pisinger, 2006a) addresses the tendency of the greedy

heuristic to postpone the insertion of “difficult” customers which can finally be

inserted only under relatively high cost increases. For i ∈ U and k ∈ {1, ..., |V |} let

vi,k ∈ V be the vehicle/tour into which customer i can be inserted with the k-th

lowest increase of cost, i.e. ci,vi,k ≤ ci,vi,k′∀k < k′. Then, for k ≥ 2 the regret is

defined as

regretki :=
k

∑

j=2

(

ci,vi,j − ci,vi,1
)

which measures the disadvantage of not inserting i into the currently best suited

tour but to a less suitable one. Large values of k yield a high degree of foresight. In

each step regret-k insertion inserts customer i ∈ U having the highest regret value

regretki .

3This corresponds to the information held by the ABHC memory.
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Chapter 4

Framework Requirements

In the introduction to this thesis we have pointed out the relevance of flexible approaches

for the development of heuristic rich VRP solution methods which enable and facilitate the

incorporation of real-world requirements. The rareness of such approaches has motivated

the development of our own metaheuristic VRP framework. Before presenting its concepts

and design in chapters 5 and 6 we review a selection of contributions in section 4.1 that

point into similar directions but which are associated with certain drawbacks or have

not been demonstrated to be compatible with many real-world requirements, yet. Then,

in section 4.2 we discuss a set of essential attributes of a VRP framework providing

valuable assistance. Finally, in section 4.3 we summarize some general characteristics of

rich VRPs that a framework needs to address; this leads to the definition of a feature list

of adaptation requirements.

4.1 Existing VRP Frameworks and Libraries

Although probably thousands of contributions have been published in the field of vehicle

routing problems, articles addressing aspects such as the reusability, customization, or

flexibility of VRP solvers are surprisingly rare despite the practical relevance. Most pub-

lications in the classical OR literature concentrate on new algorithmic ideas, new problem

variants, or they present applications of existing algorithms to problems when such com-

binations have not been studied before. From the fact that groups of authors often focus

their research on their own “pet heuristics”, which they repeatedly apply in multiple

contexts, one can suspect that authors indeed use self-written libraries or frameworks for

that purpose. But generally no information on the implementation process of a solution

method is given in a publication, and it is not unlikely either that development follows

a copy-paste-and-modify fashion: starting with an existing implementation for a another
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problem the code is modified for the new problem wherever necessary. Before defining

our requirements for a VRP framework we review a selection of contributions which are

related to the neglected reusability topic.

Voss and Woodruff (2002) report on a selection of reusable metaheuristic optimization

libraries which provide generic implementations of solution methods, running on abstract

solution types and neighborhood structures that the user has to implement for a specific

problem. HotFrame is a framework containing adaptable components for different meta-

heuristics and an architecture for the collaboration between these generic components and

problem-specific concepts. It is implemented in C++ and follows an object-oriented de-

sign consistently. EasyLocal++ is another well-known C++ class library for local search

based heuristics. Further frameworks presented by Voss and Woodruff (2002) are based

on evolutionary/genetic algorithms and constraint programming. Such generic frame-

works or libraries can provide a good basis for developing solution methods; yet, they

leave problem-specific aspects completely to their users, who have to implement solution

representations and neighborhood structures by themselves.

A library of VRP local search heuristics by Groër et al. (2010) is freely available under an

open source license. Implemented in C++ it provides several methods for construction

and improvement, including seven different neighborhoods and several metaheuristic con-

trols. Many details of the search can be configured via parameter settings. The authors

claim that additional constraints can be incorporated into the standard VRP heuristics

by modifying the evaluation methods associated with each neighborhood. Yet, the library

is not specifically designed to adapt heuristics to other VRP variants flexibly.

Derigs and Döhmer (2008) discuss the relevance of flexible modeling tools and heuristics

in DSS development projects. On the one hand, real-world problems cannot usually be

represented by standard models for which good algorithms and empirical computational

studies are already available. On the other hand, the relevant aspects of a problem are

not often formulated completely and correctly in the initial requirement phase but evolve

during the development process. Hence, it is important to be able to generate a sequence

of system prototypes including models and solvers, which can be criticized by the problem

owner. In this context the authors demonstrate the use of their GIST-framework (greedy

indirect search technique) for solving rich constrained combinatorial optimization prob-

lems. Indirect search separates problem-specific domain knowledge from general procedu-

ral problem solving knowledge and is suited for rapid prototyping and handling complex

constraints flexibly. It applies metaheuristics to an auxiliary search space of simple, non-
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problem-specific representations such as permutations, and a decoder maps such solutions

to solutions of the original problem. The decoder incorporates decision rules to gener-

ate solutions based on greedy principles (e.g. cheapest insertion) as well as a constraint

checker and covers all problem-specific aspects, which can be modified rather easily, here.

Indirect search overcomes the difficulty of a direct search implementation (which is used

in our framework) to enforce feasible solutions by describing feasibility-preserving moves;

this task can be very complicated in the case that many complex constraints are given for

a problem. Within the VRP area the GIST-framework has been applied to the PDPTW

and another real-world pickup and delivery problem so far. It would be interesting to see

whether the concept can be used for other complex VRP variants producing good results

as well.

The lack of unifying modeling and solution approaches for VRP applications which are

both efficient and general is also stated by Irnich (2008). He presents a sophisticated

framework combining a giant-tour representation, resource-constrained paths, and se-

quential search to accelerate neighborhood enumeration and feasibility checking of moves.

A single giant-tour represents the complete solution, containing route-start and route-

end nodes to separate the individual tours. It is considered as a resource-constrained path

which covers both individual tour constraints and inter-tour constraints. Compatibility

relations between the route-start and route-end nodes cover vehicle and depot characteris-

tics. This representation can be embedded into a local search based method, enabling the

separation of constraint modeling and the actual search procedures. The focus of this in-

teresting approach is clearly on computational efficiency rather than on user-friendliness.

Irnich (2008) claims that the modeling techniques can be used for many rich VRPs,

including time windows, multiple depots, pickup-and-delivery problems, compartment

constraints, heterogeneous fleets, and periodic VRPs. Solutions are not presented, but

experiments on the computational efficiency for a selection of problems are conducted

instead.

Generalization / specialization relationships between problem variants provide rather an

easy way to cover multiple VRPs with a single solver. Pisinger and Ropke (2007) design

the rich pickup and delivery problem with time windows (RPDPTW) which is a rich model

formulation similar to the PDPTW that additionally features precedence constraints be-

tween locations and inhomogeneous vehicles. An adaptive large neighborhood search

heuristic developed for the RPDPTW can be used for other problems “out-of-the-box” as

long as these problems can be transformed into the RPDPTW. The authors demonstrate

transformations for the VRPTW, the CVRP, the MDVRP, the site-dependent VRP, and
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Figure 4.1: Solving multiple VRPs with a rich PDPTW formulation and solver, adapted
from Ropke and Pisinger (2006b).

the OVRP and obtain results of high quality. Figure 4.1 depicts the instance level trans-

formation process: for example, an MDVRP instance is transformed into an equivalent

RPDPTW instance, solved, and finally the RPDPTW solution is interpreted as a solution

for the original MDVRP instance. Similarly, Cordeau et al. (1997) present a tabu search

heuristic for both the PVRP and the MDVRP, which capitalizes on the observation that

the MDVRP can be formulated as a special case of the PVRP by associating depots with

days. Evidently, the degree of flexibility in such an approach is limited by the generality

of the underlying problem formulation. A rich formulation such as the RPDPTW may

cover a variety of practical applications; when further specific requirements arise, the for-

mulation and the solver need to be enriched accordingly, yet.

Galić et al. (2006) present the interpreted programming language Mars together with an

interactive graphical tool to simplify the process of developing algorithms for practical

VRPs. Besides typical data types, control structures, and mathematical functions this

language provides vehicle routing specific data structures, e.g. for customers, vehicles, and

tours, and functions to handle these data structures, e.g. to modify tours. Having these

components at hand a developer shall be able to focus on the conceptional development

of a specific VRP algorithm. The authors evaluate solver implementations based on Mars

for the CVRP and the VRPTW. Aiming at rapid prototyping of complex real-world VRPs

Carić et al. (2008) present a modeling and optimization framework which provides a li-

brary of common VRP algorithms written in another scripting language based on Mars,

accompanied by a graphical user interface. An example algorithm is given for the TSP,

results are presented for the VRPTW. The question remains whether the two approaches

are suitable for more complicated VRPs as well.
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4.2 Essential Framework Attributes

Cordeau et al. (2002) define four criteria which are widely considered as essential for good

VRP heuristics: accuracy, speed, simplicity, and flexibility. We believe that these criteria

are reasonable requirements to a VRP software framework in a similar way, yet with a

slightly different focus. While in the literature on VRP heuristics the focus is mostly on

the two quantitative attributes, accuracy and speed, we put a stronger emphasis on the

two qualitative attributes, simplicity and flexibility, in the context of a framework.

Flexibility Cordeau et al. (2002) claim that “a good VRP heuristic should be flexible

enough to accommodate the various side constraints encountered in a majority of real-

life applications”. It is, indeed, a central requirement that the framework enables the

development of solution methods addressing as many real-world planning problems as

possible which can be attributed to the class of vehicle routing problems. Since require-

ments from real life are manifold and certainly many “undiscovered” problems have not

yet found their way into the literature it would certainly be overconfident to claim that a

framework should support any thinkable VRP. A sensible guideline is that the framework

should not make too many assumptions concerning the VRP variants to be solved but in-

stead give a developer enough flexibility to realize profound adaptations to the underlying

heuristic methods.

Simplicity According to Cordeau et al. (2002) simplicity refers to the characteristic to

which extent the basic principle of a heuristic is easy to be understood and coded, and

whether it does not contain too many (obscure) parameters which have to be configured.

This requirement certainly applies to the underlying solution methods of a framework as

well: the user must be able to understand how these methods basically work since without

that knowledge he or she will not be able to make the necessary adjustments correctly.

For this purpose it is helpful to build the framework upon methods which are well-known

and accepted in the literature.

Simplicity and flexibility are, in a sense, contradictory requirements: the maximum flexi-

bility comes with handing out the complete source code to the user, giving the possibility

to modify or rewrite every component of a solution method. Rather overwhelming than

assisting, this requires the user to have a deep understanding of the implementation de-

tails of the framework. Instead, to guide and to structure the development a framework

should restrict the possibilities for customization and offer only a few punctual, yet pow-

erful means to “intervene” into a solution method for problem-specific adaptations. These
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points of intervention, properly revealed to the user, serve as a kind of checklist for the

adaptation process. In any case the effort of additional implementation should be as small

as possible and restricted to the very specific aspects of a rich VRP.

Accuracy and speed The quality of the solutions generated by a framework-based

heuristic for a specific VRP is determined by the design of the framework itself only

partly. It is reasonable to choose as foundation a solution method which has already been

applied successfully to multiple VRPs, assuming that it can perform just as well on other

VRP variants. Still, designing and implementing a successful problem-specific adaptation

is a complex task that can require a lot of experience on the part of the user. Some VRP

variants are more difficult to solve than others; while it is sufficient in some cases to simply

forbid a set of moves that violate a certain constraint, new neighborhoods may need to

be designed in other cases to explore all parts of the new solution space. Unfortunately,

there is usually no possibility to judge the quality of heuristic VRP solutions by other

means than by comparison with reference solutions from other methods; optimal solutions

or bounds are seldom available, which is a problem when dealing with custom real-world

VRPs. Similarly, the speed of a heuristic depends partly on the underlying framework

implementation and partly on the efficient coding of adaptations by the user.

4.3 Adaptation Requirements

Balancing flexibility and simplicity, the design of a VRP framework is a compromise

between exposing all details of a VRP heuristic to allow any kind of modification on

the one hand, and hiding parts of its components to reduce complexity and guide the

development process on the other hand. Obviously, generic elements such as metaheuristic

controls can be hidden completely from the user, while the actual moves of a neighborhood

search are VRP-specific and may require customization. Based on the selection of rich

VRPs presented in section 2.2 a set of general characteristic aspects can be identified in

which real-world VRPs may extend the standard VRP and which a framework needs to

address, consequently.

Solution structure and decisions We assume that all types of VRPs basically share

the same structure of a solution: a VRP solution is constituted by a set of tours, and

each tour is a sequence of customers visited. This defines the scope of problems we ex-

pect to be supported by a VRP framework, implying that especially arc routing problems

are not considered. The standard VRP assumption that every customer is visited ex-

actly once is not considered as an integral property of a VRP solution. Multiple visits
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of one customer are allowed, for instance, in the SDVRP and in the TTRP, even within

the same tour; other scenarios are thinkable that consider visits as optional. Hence, so-

lution structures and heuristics must support a variable number of visits of each customer.

A rich VRP may incorporate more decisions than the pure clustering of the customers

and routing of the vehicles. Additional decisions may arise on different, not always clearly

distinguishable levels, for instance

• on a visit-level the decision which amount to serve to a customer during a specific

visit when deliveries may be split, or whether to decouple the vehicle units and park

the trailer at a certain location or not,

• on a tour-level the arrangement of goods within the vehicle when specific loading

constraints apply, and

• on a solution-level the decision which periodic delivery pattern to assign to a cus-

tomer or which number of units of which vehicle type to use in fleet size and mix

problems.

Consequently, data structures which represent a solution potentially need to incorporate

additional information on these three levels, and new moves need to be designed or existing

moves need to be adapted to examine new decision alternatives.

Constraints Usually, vehicle routing scenarios from the real world impose various con-

straints to be respected. Similar to additional decisions they can arise on multiple levels,

for instance

• on a sequence-level considering the time window requirements which are related to

the actual routing of customers within a tour, or serving the delivery customers

before the pickup customers in backhaul scenarios,

• on a tour-level the compatibility of a product with a certain vehicle compartment,

and

• on a solution-level the obligation that under split deliveries all customers are served

completely considering all tours.

Additional constraints narrow the feasible solution space compared to the standard VRP,

and if a solution approach is not specifically designed to temporarily visit and repair

infeasible solutions, these constraints need to be checked during neighborhood evaluation

to prohibit the transition from a feasible to an infeasible solution.
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Objective function The objective in most VRPs is to minimize cost which is equal

to the sum of all distances associated with the arcs of the solution. Yet, the objective

function may have additional components such as non-delivery costs or fixed vehicle costs

that need to be considered in all neighborhood evaluations. And in some VRP variants

not the cost or distance is the primary objective but the number of tours in the solution.

To conclude this section, the most important possibilities for adaptations to a VRP heuris-

tic that a framework needs to offer are

• with respect to the solution algorithms

– incorporating additional checks and alternative cost calculations into prede-

fined neighborhood evaluations and

– adding new moves,

• with respect to the data structures

– enriching the solution representation with further information on the visit-,

tour- and solution-level and

– a variable number of visits of a customer.
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Chapter 5

Concepts of the Metaheuristic

Framework

The purpose of our metaheuristic VRP framework is to enable an easy, rapid, and struc-

tured development of neighborhood search algorithms for the manifold variants of vehicle

routing problems arising in real-world transportation scenarios. Its basic idea is to provide

• a complete, ready-to-use solver suite for the standard VRP,

• which offers several mechanisms to be adapted or extended according to the specifics

of complex rich VRPs.

The solver suite provides well-known neighborhood search techniques which have already

been applied successfully to many VRP variants. In fact, there is a vast amount of pub-

lications in this area, and comparing LS- and LNS-based algorithms for different VRPs

it becomes evident that algorithmic designs are usually very similar. It is also our own

experience that an implementation for one VRP can be reused for another VRP to some

degree and that often not “too many” modifications are required to transfer a good heuris-

tic for one problem into a good heuristic for another problem. Our decision to build a

VRP framework upon adaptable standard VRP heuristics stems from this experience.

Our presentation of the framework is divided into two major parts: in this chapter we

assume a conceptual view which describes the behavior of the embedded heuristics ab-

stracting from any aspects of implementation. Briefly sketching the architecture of our

framework in section 5.1, the following sections cover its components in more details:

sections 5.2 and 5.3 define the heuristics of the solver suite, and section 5.4 explains how

these heuristics can be adapted to other VRPs. Afterwards, chapter 6 deals with the class

design and several technical aspects of our implementation.
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5.1 Architecture

Figure 5.1 sketches the architecture of the framework and its role within customized

algorithms for specific VRPs. In this section we give an overview of the concepts and

components.

Metaheuristic

VRP framework
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Figure 5.1: Framework architecture.

Data structures and algorithmic components The VRP framework provides stan-

dard implementations of the components of several neighborhood search approaches. The

underlying data structures, especially those for solution representation, are covered in

chapter 6. The algorithmic components comprise construction heuristics, metaheuristic

controls, and neighborhoods – traditional local search neighborhoods as well as removal

and insertion heuristics for large neighborhood search:

Construction Metaheuristic LS LNS

heuristics controls neighborhoods subheuristics

Savings SD Relocate Random removal

Sweep ABHC Exchange Worst removal

Regret insertion RRT 2-opt* Shaw removal

RelocateI Greedy insertion

2-opt Regret insertion
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Base heuristics The implemented algorithmic components and data structures are put

together to a set of standard solution methods, the so-called base heuristics : ready-to-use

algorithms for the standard VRP that serve as blueprints for problem-specific heuristics.

Three base heuristics are implemented:

• LS-ABHC: An attribute based hill climber heuristic with traditional local search

neighborhoods

• LS-RRT: A record-to-record travel heuristic with traditional local search neighbor-

hoods

• LNS-RRT: A record-to-record travel heuristic with large neighborhood search moves

All three improvement heuristics, for which we present pseudocodes in section 5.2, can be

combined with any of the construction heuristics implemented.

Hybrid methods In addition to the base heuristics that concentrate on a single neigh-

borhood paradigm, respectively, a set of hybrid methods is defined to combine local search

with large neighborhood search in the search process:

• HYBRID-ABHC: An attribute based hill climber heuristic with traditional local

search neighborhoods and large neighborhood search moves

• HYBRID-RRT: A record-to-record travel heuristic with traditional local search

neighborhoods and large neighborhood search moves

As the base heuristics these methods are implemented as ready-to-use algorithms for the

standard VRP, and we present pseudocodes in section 5.3.

Adaptation layer Generally, modifying a VRP solver implementation for another VRP

involves

• modifications of the solution algorithm and, as a consequence,

• modifications of the underlying data structures, in particular the solution represen-

tation.

In section 4.3 we deduced specific requirements for such modifications from analyzing a

selection of rich VRPs from the literature. We denote the whole set of possibilities and

means for adaptation as the adaptation layer of the framework. This abstract term covers

diverse aspects such as the parts of data structures and algorithmic components which
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are exposed to the user, an object-oriented design to create custom data structures by in-

heritance, schemes for user-defined functions to perform additional checks, and interfaces

for the definition of new neighborhoods.

Hiding most implementation details from the user, the adaptation layer is connected

with the data structures and algorithmic components only – not with the heuristics – as

displayed in figure 5.1. This implies that adaptations, e.g. of a move, are propagated to all

derived base heuristics and hybrid methods using this move, not requiring any additional

modification of a specific heuristic. Section 5.4 explains the adaptation layer in terms of

the algorithmic components provided; other aspects, rather related to the class design,

are covered in chapter 6.

User-defined adaptations The code for a specific VRP written by the user is con-

nected to the heuristics via the adaptation layer. User code and framework altogether

form a set of solution algorithms for this specific VRP. Examples of adaptations are pre-

sented in detail in the last part of this thesis.

5.2 Base Heuristics

This section describes the three base heuristics LS-ABHC, LS-RRT, and LNS-RRT. Fol-

lowing common practice all three heuristics are designed rather straightforward. For the

underlying concepts we refer to chapter 3.

5.2.1 The LS-ABHC Heuristic

Starting from a given initial solution the trajectory of an attribute based hill climber

heuristic through the solution space is determined by the set of solution attributes A,

which is defined over the set F of feasible solutions, and the set of neighborhoods N

evaluated. In our implementation A contains all directed arcs between the locations

of the problem, i.e. A := {(u, v) : u, v ∈ N}, and by default we use all neighborhoods

N := {relocate, exchange, 2-opt*, relocateI , 2-opt}. While scanning these neighborhoods,

the following moves are evaluated:

• Relocate: Every customer is moved to every other position in the solution, including

the move to a new, empty tour.

• Exchange: Every customer is exchanged with every other customer.
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• 2-opt*: Every subsequence of customers of every tour ending at the depot is ex-

changed with every such subsequence of every other tour, considering also empty

subsequences, subsequences comprising the complete tour, and moves of subse-

quences to a new, empty tour.

• RelocateI : Every customer is moved to every other position within its current tour.

• 2-opt: Every subsequence of customers of every tour is reversed.

Algorithm 5.1 The LS-ABHC heuristic

1: function LS-ABHC(initial solution S, attributes A, neighborhoods N )
2: amem[a] := cost(S) ∀a ∈ A(S)
3: amem[a] := ∞ ∀a /∈ A(S)
4: Sbest := S
5: repeat

6: S ′ := null, cost(S ′) = ∞ ⊲ Evaluate neighborhood
7: for all S∗ ∈ N(S), N ∈ N do

8: if cost(S∗) < cost(S ′) and ∃a ∈ A(S∗) : cost(S∗) < amem[a] then
9: S ′ := S∗

10: end if

11: end for

12: if S ′ 6= null then ⊲ Apply move and update memory
13: S := S ′

14: amem[a] := min{amem[a], cost(S ′)} ∀a ∈ A(S ′)
15: if cost(S ′) < cost(Sbest) then
16: Sbest := S ′

17: end if

18: else ⊲ Reset memory
19: amem[a] := cost(S) ∀a ∈ A(S)
20: amem[a] := ∞ ∀a /∈ A(S)
21: end if

22: until stop criterion fulfilled
23: return Sbest

24: end function

Algorithm 5.1 outlines the proceeding of LS-ABHC, which is completely generic since A

and N hide all problem-specific aspects. Before starting the search from an initial solution

S the attribute memory amem, which stores for every attribute a ∈ A the objective value

of the best solution visited so far containing this attribute, is initialized with solution S

(lines 2-3). Sbest records the best solution found during the search. In each iteration all

neighborhoods are scanned completely for the best feasible and acceptable neighbor S ′

of the current solution S (lines 6-11). A solution S∗ is acceptable if it contains at least
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one attribute that has not yet occurred in a solution visited at least as good as S∗. The

acceptance check is implemented efficiently as described by Whittley and Smith (2004).

After moving to the best acceptable neighbor S ′ the attribute memory is updated (line

14). If, instead, no acceptable neighbor exists, the procedure is restarted by resetting

amem with the current solution (lines 19-20). LS-ABHC terminates when a given time

or iteration limit is reached.

5.2.2 The LS-RRT Heuristic

Record-to-record travel is designed to select neighbors randomly. Depending on the spe-

cific neighborhood there is some degree of freedom how this random selection is actually

done. In the exchange neighborhood, for example, an intuitive selection scheme would

be to simply select two random customers for an exchange. When generating such com-

pletely random moves, only a single move is evaluated per iteration; the search process

makes a lot of iterations, but usually the vast majority of evaluated moves is discarded

due to infeasibility or insufficient quality. Instead, we use the selection scheme proposed

by Bent and Van Hentenryck (2004) that steers towards high quality neighbors. Here,

the selection of a random customer i ∈ Nc determines a subset of a neighborhood. Such

a subset N(S, i) of a neighborhood N(S) contains all neighbors of S that can be reached

by a move involving customer i, which implies that for the five VRP neighborhoods the

following moves are evaluated:

• Relocate: Customer i is moved to every other position in the solution, including the

move to a new, empty tour.

• Exchange: Customer i is exchanged with every other customer.

• 2-opt*: The sequence of customers starting with customer i and ending at the

depot is exchanged with every such subsequence of every other tour, considering

also empty subsequences, subsequences comprising the complete tour, and moves of

subsequences to a new, empty tour.

• RelocateI : Customer i is moved to every other position within its current tour.

• 2-opt: Every subsequence of customers starting or ending with customer i within

its current tour is reversed.

The LS-RRT heuristic is displayed in algorithm 5.2. For a random neighborhood N and

a random customer i the feasible solutions of the respective subneighborhood are sorted

by ascending objective values (lines 4-5). An aspiration criterion is defined to select the
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Algorithm 5.2 The LS-RRT heuristic

1: function LS-RRT(initial solution S, deviation δ, randomization β, neighborhoods
N )

2: Sbest := S
3: repeat

4: select neighborhood N ∈ N and customer i randomly
5: array N ′ := 〈S∗ ∈ N(S, i)〉 with k < l ⇒ cost(N ′[k]) ≤ cost(N ′[l])
6: if cost(N ′[0]) < cost(Sbest) then
7: Sbest := N ′[0]
8: S := N ′[0]
9: else

10: select r ∈ [0, 1) randomly
11: S ′ := N ′[⌊rβ · |N ′|⌋]
12: if cost(S ′) < cost(Sbest) · (1 + δ) then
13: S := S ′

14: end if

15: end if

16: until stop criterion fulfilled
17: return Sbest

18: end function

best move if this leads to a new best solution (line 6). If this is not the case, a random

neighbor is selected: depending on the choice of a randomization parameter β the selection

is steered towards good neighbors (lines 10-11). For high values of β the best neighbors

are assigned a high probability. The selected neighbor is accepted if it is not worse than

the best solution found so far by the allowed deviation δ (line 12). LS-RRT terminates

when a given time or iteration limit is reached.

5.2.3 The LNS-RRT Heuristic

The large neighborhood search heuristic of our framework uses a set of removal heuristics

R := {random removal, worst removal, shaw removal} and a set of insertion heuristics

I := {greedy insertion, regret-2 insertion, regret-3 insertion, regret-4 insertion}. Shaw

removal is problem-specific; for the standard VRP the relatedness measure R(i, j) of two

customers i, j ∈ Nc is defined as follows: let cmax be the maximal distance between any

two customers and qmax the maximal difference of demand between any two customers.

Then, with weight parameters ϕ, ψ ≥ 0 the relatedness is

R(i, j) := ϕ ·
cij
cmax

+ ψ ·
|qi − qj|

qmax

.
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Algorithm 5.3 The LNS-RRT heuristic

1: function LNS-RRT(initial solution S, deviation δ, removal percentage r, removal
heuristics R, insertion heuristics I)

2: Sbest := S
3: repeat

4: select subheuristics R ∈ R and I ∈ I randomly
5: select q ∈ {4, ...,min{60, r · |Nc|}} randomly
6: S ′ := S
7: remove q customers from S ′ using R
8: reinsert removed customers into S ′ using I
9: apply 2-opt steepest descent to modified tours

10: if cost(S ′) < cost(Sbest) · (1 + δ) then
11: S := S ′

12: end if

13: if cost(S ′) < cost(Sbest) then
14: Sbest := S ′

15: end if

16: until stop criterion fulfilled
17: return Sbest

18: end function

LNS-RRT is outlined in algorithm 5.3: at the beginning of each iteration one removal

heuristic and one insertion heuristic is selected randomly1 as well as the number q of

customers to be removed (lines 4 and 5). As recommended by Pisinger and Ropke (2007)

the maximum value that q may assume depends on a removal percentage parameter r

and an absolute upper bound preventing the overburden of the simple insertion heuristics

solving large instances. The lower bound is set to 4 as proposed in Ropke and Pisinger

(2006a). Then, the two selected subheuristics are applied to the current solution. After

removing and reinserting the customers we perform a post-optimization step by applying

2-opt steepest descent to all modified tours (lines 6-9). As in the LS-RRT counterpart

the resulting solution is accepted if it is not worse than the best solution found so far by

deviation δ. LNS-RRT terminates when a given time or iteration limit is reached.

A variant of LNS-RRT implements a vehicle minimization procedure for VRPs that con-

sider the number of tours as the primary objective, proposed by Pisinger and Ropke

(2007). In this two-phase approach vehicles are minimized using LNS-RRT in the first

phase, while any improvement heuristic can be used to minimize the total tour length

in the second phase. At the beginning of the first phase one tour is selected randomly

1Ropke and Pisinger (2006a) introduce a learning mechanism to guide the selection of subheuristics
under the name adaptive large neighborhood search; such a mechanism is not used within our framework
currently but could be implemented easily.
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and removed from the solution, which means that its customers are not served any more.

Then, removal and insertion operations are performed as usual, until finally a solution is

found with all customers being assigned to the remaining tours. Removing another tour

the process continues. At a certain point the first phase is terminated, and the second

phase for distance minimization starts from the last feasible solution having the minimal

number of vehicles; by default, phases are switched when half of the total running time

or number of iterations has elapsed.

5.3 Hybrid Methods

In section 3.5 we have pointed out that a good neighborhood search incorporates both

intensification and diversification. In addition to the base heuristics our framework pro-

vides two ready-to-use algorithms which mix local search moves for the intensification

part and large neighborhood search moves for the diversification part. In previous studies

(Bartodziej et al., 2009; Derigs et al., 2011a) we have already experienced that combined

LS/LNS methods easily improve the individual methods. The first hybrid method is

based on the attribute based hill climber, the second method uses record-to-record travel

as the metaheuristic control, and both methods are generic, i.e. they do not require any

individual problem-specific adaptations.

Instead of combining LS and LNS in a purposeful way and addressing their specific fea-

tures both HYBRID-ABHC and HYBRID-RRT are naive in the sense that they decide

randomly which type of neighborhood to use in each iteration of the search. Setting a

probability parameter the selection is biased towards either LS or LNS. Here, one has to

keep in mind the different computational efforts per LS iteration in the context of different

metaheuristic controls: while LS-ABHC puts significant effort into one iteration and the

search process is characterized by a sequence of rather few but high quality moves, a lot

of iterations elapse in LS-RRT, but most moves are discarded due to a lack of quality.

Different numbers of iterations are required to obtain similar improvements of solution

quality.

5.3.1 The HYBRID-ABHC Heuristic

Combining LNS moves with the ABHC control is inconsistent with the steepest descent

– mildest ascent idea of tabu search since LNS does not scan complete neighborhoods to
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Algorithm 5.4 The HYBRID-ABHC heuristic

1: function HYBRID-ABHC(initial solution S, balance pLS)
2: initialize memory amem as in LS-ABHC
3: repeat

4: select r ∈ [0, 1) randomly
5: if r < pLS then

6: select best acceptable neighbor S ′ as in LS-ABHC
7: if S ′ 6= null then
8: S := S ′

9: update amem as in LS-ABHC
10: else

11: reset amem as in LS-ABHC
12: end if

13: else

14: generate neighbor S ′ as in LNS-RRT
15: if cost(S ′) < cost(S) and S ′ acceptable according to amem then

16: S := S ′

17: update amem as in LS-ABHC
18: end if

19: end if

20: update best solution if necessary
21: until stop criterion fulfilled
22: return best solution found
23: end function

find the best solutions within but generates only one (random) neighbor per iteration.

Ignoring this conceptual mismatch algorithm 5.4 sketches the HYBRID-ABHC heuristic

of our framework. After initializing the attribute memory in the same way as it is done

in LS-ABHC the neighborhood search is a sequence of LS and LNS moves, deciding ran-

domly in each iteration between LS (with probability pLS) and LNS (with probability

1− pLS). If a move is accepted, the memory is updated accordingly.

If LS is selected, all neighborhoods are scanned completely for the best acceptable solution,

as in LS-ABHC. If such a solution exists, the search goes on to that solution; otherwise

the memory is reset. If LNS is selected instead, a neighbor is generated by applying a

removal heuristic and an insertion heuristic, as in LNS-RRT. This solution is accepted

if a) costs decrease and b) the solution is acceptable according to the memory. Note

that b) is the same criterion that applies to LS moves, i.e. a solution S ′ is acceptable if

∃a ∈ A(S ′), cost(S ′) < amem[a]. Yet, unlike the acceptance check for LS moves described

by Whittley and Smith (2004), which considers the sets of entering and leaving attributes

beforehand, the attributes of the LNS-generated neighbor are enumerated explicitly to
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check whether one attribute value has improved. Since LNS moves lead to distant solutions

condition b) is fulfilled very often and hardly imposes a restriction on the quality of a

move. Consequently, we introduce a) as a mandatory condition to prevent the search

from accepting too many bad solutions. Still, we keep condition b) for LNS moves since

demanding a) and b) produced slightly better results in some preliminary tests than a)

alone.

5.3.2 The HYBRID-RRT Heuristic

While HYBRID-ABHC is slightly unconventional, RRT can be combined perfectly with

the two neighborhood concepts. HYBRID-RRT, as shown in algorithm 5.5, determines

randomly whether to perform LS or LNS in an iteration. An LS neighbor is selected

from a subneighborhood in the same way as it is done in LS-RRT, and an LNS neighbor

is generated as in LNS-RRT. In both cases the selected neighbor is accepted if it is not

worse than the best solution found so far by deviation δ.

Algorithm 5.5 The HYBRID-RRT heuristic

1: function HYBRID-RRT(initial solution S, deviation δ, balance pLS)
2: repeat

3: select r ∈ [0, 1) randomly
4: if r < pLS then

5: select neighbor S ′ as in LS-RRT
6: else

7: generate neighbor S ′ as in LNS-RRT
8: end if

9: if cost(S ′) is acceptable according to deviation δ then

10: S := S ′

11: end if

12: update best solution if necessary
13: until stop criterion fulfilled
14: return best solution found
15: end function

5.4 Algorithm Adaptation

While the base heuristics and hybrid methods described in the previous sections are

problem-independent, VRP-related aspects are covered within the algorithmic compo-

nents of the framework. Adapting construction heuristics, LS neighborhoods, and LNS

subheuristics to specific VRPs follows two main principles:
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Rich VRP post-processing
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Figure 5.2: Steps of a rich VRP operation.

1. Separation of standard VRP operations / code and specific VRP operations / code:

The standard VRP heuristics are never modified directly. Their codes are (or can be)

hidden from the user and remain untouched. Instead, new specific VRP operations

can be implemented separately and “injected” into the given procedures.

2. Separation of evaluation and application:

During the search process a solution is never modified “blindly”, i.e. without evalu-

ating feasibility and quality of an operation beforehand. Evaluation and application

of a move are independent tasks, and adaptations may be required separately on

these two levels.

Figure 5.2 visualizes an adapted operation under these two principles of separation. Eval-

uation proceeds as follows:

1. Predefined standard VRP evaluation

• The capacity constraints are checked first, and if the move is not a feasible

standard VRP move, it is rejected.

• If the move is feasible, the increase of solution cost ∆ is calculated according

to the distances associated with the arcs exchanged.

• Within an ABHC heuristic the entering arc attributes Ae and leaving arc at-

tributes Al are determined simultaneously with cost calculation.

2. User-defined post-evaluation for a rich VRP
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• The user can define additional sequence-, tour-, or solution-level checks; if the

move, which is feasible for the standard VRP, now turns out to be infeasible,

it is rejected.

• The properties of a move in the standard VRP case, ∆, Ae, and Al, may

have to be overridden when a different behavior is assumed. Problem-specific

properties ∆̄, Āe, and Āl need to be determined if other or additional arc

exchanges are involved, for instance. ∆ also needs to be overridden in the case

of an alternative cost function; Ae and Al require modifications when using an

attribute concept other than directed arcs.

The application of an adapted move to the solution follows a similar principle:

1. Predefined standard VRP application

The solution is modified according to standard VRP behavior first, which includes

arc exchanges and updating of some internal variables to keep track of the current

distances, loads etc.

2. User-defined post-processing for a rich VRP

Post-processing steps may involve simple updates of redundant cache variables for

speeding up feasibility checks, additional arc exchanges, the addition or removal of

customer visits, or setting specific decision variables associated with a rich VRP.

The post-processing can even start with undoing the complete standard VRP move

first before performing the actual modifications.

Potentially, certain decisions are made during post-evaluation which have an influence on

the post-processing later on; or certain information is gathered during the check which

is required for post-processing but rather time-consuming to be generated for a second

time. For such purposes the user is enabled to pass some problem-specific information Φ

from the post-evaluation step to the post-processing step, as displayed in figure 5.2.

In the following sections we present the functions that can be implemented by the user

to inject problem-specific code for checks and post-processing into the standard VRP

heuristics. This is done for every construction heuristic (section 5.4.1), LS neighborhood

(section 5.4.2), and LNS operation (section 5.4.3). The pseudocodes contain the follow-

ing additional symbols: tours(S) denotes the set of tours of a solution S, customers(t)

denotes the set of customer visits during a tour t, and locations(t) contains customers(t)
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plus the depot. Φt and Φs represent extra problem-specific information to be passed from

checks to post-processing, referring to tour-level and sequence-level information, respec-

tively.

5.4.1 Construction Heuristics

Three construction heuristics are implemented in the framework: the savings heuristic,

the sweep heuristic, and an insertion-based heuristic that uses regret insertion to construct

an initial solution from scratch by inserting all customers into an empty solution. For the

latter heuristic we refer to the adaptation of LNS operations presented in section 5.4.3.

Savings Heuristic

The savings heuristic, see algorithm 5.6, first creates a solution containing one separate

tour (d→ i→ d) for each customer i ∈ Nc. Then, in the process of repeatedly connecting

tours function CheckMerge is used to evaluate the merging of any two tours t1 and

t2. By default, CheckMerge checks the capacity constraint and calculates the cost

increase ∆ (the negative savings value). A user-defined CheckMerge function may

check additional constraints, calculate a different saving, and return some problem-specific

information Φ to be used later on during the merging. At the end of an iteration tours tbest1

and tbest2 associated with the highest saving are connected by the user-definable function

Merge. When no feasible merge exists any more, each tour is improved with 2-opt

steepest descent.

Algorithm 5.6 User-definable functions in savings heuristic

1: function Savings(customers Nc)
2: S := solution with one tour for each customer i ∈ Nc

3: repeat

4: ∆best := ∞, tbest1 , tbest2 ,Φbest := null
5: for all t1, t2 ∈ tours(S), t1 6= t2 do

6: (∆,Φ) := CheckMerge(t1, t2)
7: if ∆ < ∆best then

8: (∆best, tbest1 , tbest2 ,Φbest) := (∆, t1, t2,Φ)
9: end if

10: end for

11: Merge(tbest1 , tbest2 , Φbest)
12: until no feasible merge exists
13: apply 2-opt steepest descent to tours(S)
14: return S
15: end function
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Sweep Heuristic

Initializing the sweep heuristic, see algorithm 5.7, all customers c ∈ Nc are sorted by their

polar angles θc around the depot and appended to solution S, which initially contains only

one empty tour, in the resulting sequence. Function AppendCustomer, as implemented

for the standard VRP, inserts a customer at the end of the most recently opened tour if the

capacity of the vehicle is not exceeded; otherwise a new tour is added for that customer.

The user can implement a modified AppendCustomer function to check additional

constraints, for instance. When all customers have been inserted into the solution, each

tour is improved with 2-opt steepest descent.

Algorithm 5.7 User-definable functions in sweep heuristic

1: function Sweep(customers Nc)
2: array C ′ := 〈c ∈ Nc〉, with i < j ⇒ θC′[i] ≤ θC′[j]

3: S := solution with one empty tour
4: for i ∈ 0..|C ′| − 1 do

5: AppendCustomer(C ′[i], S)
6: end for

7: apply 2-opt steepest descent to tours(S)
8: return S
9: end function

5.4.2 Local Search Neighborhoods

Generally, multiple user-definable functions are available to check tour-level constraints

and sequence-level constraints separately during the exploration of the built-in inter-tour

neighborhoods, while intra-tour neighborhoods only provide a single checking function.

In addition, a post-processing function can be defined for every neighborhood to finish a

move. We can explain all relevant aspects of neighborhood adaptation using the example

of the relocate neighborhood; hence we provide the details for relocate first and then state

the specifics of the remaining neighborhoods rather briefly.

Relocate

Exploring the relocate neighborhood (algorithm 5.8) the CheckRelocateBetween-

Tours(t1, t2) function checks for any two tours t1 and t2 whether a relocation of a cus-

tomer from tour t1 to tour t2 is generally allowed. Here, t2 may also be a new, empty tour.

If no constraints are violated on this level, the procedure iterates over all customers c of
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t1 and checks whether c would exceed the capacity of t2 in a relocation or not. Check-

RelocateIntoTour(c, t2) can check additional tour-level constraints afterwards and

return some information Φt. Iterating over all positions i within tour t2, cost increase ∆

and attribute exchanges Ae and Al of relocating c behind i are determined according to

standard VRP behavior. CheckRelocate(c, i,Φt), potentially making use of Φt, can

finally check additional sequence-level constraints and adjust cost and attribute informa-

tion on the move if necessary: the function returns modified move properties ∆̄, Āe, and

Āl and, again, some additional problem-specific information Φs.

Algorithm 5.8 User-definable functions in relocate

1: function Relocate(solution S)
2: for all t1, t2 ∈ tours(S), t1 6= t2 do

3: CheckRelocateBetweenTours(t1,t2)
4: for all c ∈ customers(t1) do
5: check capacity
6: Φt := CheckRelocateIntoTour(c,t2)
7: for all i ∈ locations(t2) do
8: determine ∆, Ae, and Al

9: (∆̄, Āe, Āl,Φs) := CheckRelocate(c,i,Φt)
10: check acceptability of (∆̄, Āe, Āl)
11: store move (c, i, ∆̄,Φt,Φs)
12: end for

13: end for

14: end for

15: end function

If the neighborhood is explored within an ABHC heuristic, the acceptability of a feasi-

ble move is checked considering ∆̄, Āe, Āl, and the current state of the ABHC memory;

and if a better acceptable move has already been found during the current iteration, it

is discarded. Within RRT any feasible move is a candidate for being selected by the

metaheuristic control, and all information, including Φt and Φs, is stored for potential

application later on.

A relocate move that is actually selected by the metaheuristic control is applied to the

current solution according to standard VRP behavior first, and a post-processing function

is called immediately after that: RelocatePostprocessing(c, i, j,Φt,Φs) finishes the

relocation of a customer c from position j to position i, using information Φt and Φs

generated during the checks.
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Exchange

During the exploration of the exchange neighborhood (algorithm A.1 in the appendix)

CheckExchangeBetweenTours(t1, t2) checks for any two tours t1 and t2 whether

an exchange of customers is generally allowed. If this is the case, all exchanges of cus-

tomers c1 and c2 between the tours are evaluated: if the capacity check passes for both

tours, CheckExchange(c1, c2) may consider further constraints, modify ∆, Ae, and Al

and return some additional information Φs. After an exchange post-processing function

ExchangePostprocessing(c1, c2,Φ
s) is called.

2-opt*

Exploring the 2-opt* neighborhood (algorithm A.2 in the appendix) CheckTwoOpt-

StarBetweenTours(t1, t2) checks for any two tours t1 and t2 whether exchanges of

customer sequences are generally allowed. Here, t2 may also refer to a new, empty tour.

For all combinations of locations c1 and c2 the procedure evaluates the exchange of se-

quences beginning immediately after c1/c2 and ending at the depot, respectively. The

capacity constraints are checked first, and then CheckTwoOptStar(c1, c2) may check

further problem-specific constraints, modify ∆, Ae, and Al and return some additional

information Φs. Function TwoOptStarPostprocessing(c1, c2,Φ
s) can be defined by

the user for post-processing.

RelocateI

The relocateI neighborhood (algorithm A.3 in the appendix) considers any move of a

customer c to another position i within the same tour. Since it is an intra-tour neigh-

borhood tour-level checks such as capacity checks are not required. ∆, Ae, and Al are

determined for the standard VRP case first, then CheckRelocateI(c, i) may modify

these properties, check problem-specific sequence-level constraints, and return some ad-

ditional information Φs. Function RelocateIPostprocessing(c, i, j,Φs) is called after

the relocation of customer c from position j to position i for completing the move.

2-opt

A 2-opt move removes two arcs from a tour and reconnects the remaining tour parts,

which is equivalent to the reversal of a customer sequence. Hence, exploring the 2-opt

neighborhood (algorithm A.4 in the appendix) involves evaluating any reversal of customer

sequences from a customer c1 to a customer c2 within a tour t. Again, no tour-level

checks are required. CheckTwoOpt(c1, c2) may consider problem-specific sequence-level
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constraints, modify the previously generated information on cost ∆ and attribute changes

Ae/Al of the move, and return some additional information Φs. The post-processing

function TwoOptPostprocessing(c1, c2,Φ
s) is called at the end of the move.

5.4.3 Large Neighborhood Search Operations

Adapting an LS-based heuristic for a specific VRP requires the implementation of sepa-

rate checking and post-processing functions for every neighborhood used, which can be

rather time-consuming. The subheuristics of LNS are all based on just two single oper-

ations: the removal of a customer and the reinsertion of a customer. Consequently, no

major adaptations are required except for these basic operations.2

Removal Operation

The three removal heuristics of the framework take into account whether it is feasible to

remove a customer from its current tour or not, and the worst removal subheuristic also

considers the associated change of cost. The (trivial) evaluation procedure of a removal is

shown in algorithm 5.9: after calculating the cost increase ∆ – actually a decrease of cost

in the standard VRP case if the triangle inequality holds – function CheckRemoval(c)

can assess feasibility concerning problem-specific constraints, alter ∆, and return some ad-

ditional information Φs on the removal. After a removal is performed the post-processing

function RemovalPostprocessing(c,Φs) is called.

Algorithm 5.9 User-definable functions in LNS removals

1: function EvaluateRemoval(customer c)
2: determine ∆
3: (∆̄,Φs) := CheckRemoval(c)
4: end function

Insertion Operation

Insertion heuristics determine the best positions to insert unassigned customers; algo-

rithm 5.10 displays the process of finding the best feasible position for a customer c in a

tour t. After checking the capacity of t the function CheckInsertionIntoTour(c, t)

determines whether c can be inserted into t with respect to problem-specific tour-level

2Individual subheuristics used within LNS may be designed for specific VRPs. Among the sub-
heuristics implemented in our framework only shaw removal requires customization: the definition of the
relatedness measure.
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constraints. Some additional information Φt may be generated during this check. Then,

for each potential insertion position i the regular cost increase ∆ is calculated first, and

a problem-specific check is performed by method CheckInsertion(c, i,Φt), which may

alter ∆ and return more information Φs. The cheapest feasible insertion position is stored

and function InsertionPostprocessing(c, i,Φt,Φs) is called for post-processing after

the actual insertion.

Algorithm 5.10 User-definable functions in LNS insertions

1: function EvaluateInsertions(customer c, tour t)
2: check capacity
3: Φt := CheckInsertionIntoTour(c,t)
4: for all i ∈ locations(t) do
5: determine ∆
6: (∆̄,Φs) := CheckInsertion(c,i,Φt)
7: store insertion (c, i, ∆̄,Φt,Φs)
8: end for

9: end function
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Chapter 6

Design of the Metaheuristic

Framework

The design of our framework follows the guidelines of object-oriented programming (OOP).

According to the principles of separation of concerns, information hiding, and encapsu-

lation different aspects of the algorithms such as solution representation, metaheuristic

controls, neighborhood evaluation, and application of moves are implemented in separate

classes in such a way that changes concerning one component of the algorithm do not

force changes in other components. For example, the solution representation is encapsu-

lated in a set of classes allowing access through public methods. Neighborhood-related

components call these methods to apply moves to a solution, but they do not need to

know the details of internal operations on data structure level. Similarly, encapsulating

the logic of moves within separate neighborhood classes, neighborhoods can be added or

modified flexibly.

We have implemented the framework in the C# programming language, based on the

Microsoft .NET framework. Without a doubt any other modern object-oriented language

can be used to implement the framework in a similar and appropriate way; .NET tech-

niques, which are actually used rarely, may be substituted by alternative programming

language features.

The main challenge considering the design is handling the cooperation between the two

sides of a framework-based VRP heuristic: the data structures, algorithmic components,

and solvers provided by the framework on the one side, and all user-defined adaptations

on the other side. Now, we briefly list some techniques which are specifically used to

realize the adaptation layer of the framework:
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• Inheritance is used for the definition of problem-specific data structures. The frame-

work provides base classes for the standard VRP, e.g. for the solution representation,

which can be reused by deriving subclasses for a rich VRP. These subclasses are en-

riched with additional fields for specific information, or additional methods. Some

methods of the base classes are marked as virtual methods, which means that their

behavior can or must be reimplemented within a derived class by overriding.

• Polymorphism allows derived classes to be used in different contexts. Due to the

strict separation of standard VRP code and specific VRP code the built-in heuristics

on the framework-side do not know the new classes defined for a specific VRP.

However, they can treat objects instantiated from these specific subclasses as objects

of the standard VRP base classes and perform operations according to standard

VRP behavior. Conversely, objects passed to the checking and post-processing

functions on the user-side must be casted to the respective derived classes to access

the additional information for a specific VRP.

• Reflection is a .NET technique to determine information about loaded assemblies

and the types defined within, such as classes, at run time. It also involves late

binding which allows loading a type at run time that is not known at compile time

and then creating and using an instance of it. Here, reflection enables methods on

the framework-side to create instances of user-defined data structures.

• Abstract classes and interfaces serve as blueprints for new algorithmic components

extending a heuristic, new neighborhoods for instance. Abstract methods as well

as interface methods or properties demand a certain behavior that a new, derived

neighborhood class needs to fulfill.

• Delegates in the .NET framework are types to define the signature of a method; del-

egate objects are used to reference and call a method, hence they are comparable to

function pointers in the C programming language. Here, they provide the templates

for user-definable checking and post-processing functions. They enable methods on

the framework-side to invoke such user-defined functions which are not known at

compile time.

This chapter presents the most important classes of our framework implementation. “Most

important” in this context refers to the classes that a user gets in touch with when

adapting heuristics and embedding them into a DSS; these classes represent the adaptation

layer introduced in section 5.1. At first, section 6.1 covers the classes for problem instances

and solutions. Algorithmic component classes are presented in section 6.2. Finally, see

section 6.3 for the single class used to encapsulate the complete solver suite.
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6.1 Data Structure Classes

Representations for problem instances and their solutions are the most important data

structures within the implementation of a VRP heuristic. While instance classes are usu-

ally simple and straightforward, solution classes must not be a computational bottleneck

of the search process and need to allow efficient access and modifications of the tours,

instead. Figure 6.1 shows a graphical overview of the classes presented in this section.

Clone() : TourLocation

Id : int

Location : Location

Tour : Tour

PrevTourLocation : TourLocation

NextTourLocation : TourLocation

Amount : int

ArcAttrId : int

TourLocation

Insert(in loc : TourLocation, in pos : TourLocation)

Remove(in loc : TourLocation)

Clone() : Tour

Id : int

Solution : Solution

Source : TourLocation

Sink : TourLocation

Load : int

Distance : int

IsEmpty : bool

Tour

Init(in data : Data)

Init(in data : Data, in sol : SlimSolution)

ToSlimSolution() : SlimSolution

CreateTourLocation(in loc : Location) : TourLocation

AddTourLocation(in loc : TourLocation)

RemoveTourLocation(in loc : TourLocation)

CreateTour() : Tour

AddEmptyTour()

RemoveEmptyTour(in tour : Tour)

Clone() : Solution

Data : Data

Cost : int

TourLocations : List<TourLocation>

Tours : List<Tour>

UnassignedDeliveries : List<TourLocation>

InsertionProvider : InsertionProvider

RemovalProvider : RemovalProvider

Solution

Solver-internal solution representation

Id : int

CoordX : double

CoordY : double

Demand : int

Location

Load(in file : string)

OrigDistance(in i : int, in j : int) : double

Distance(in i : int, in j : int) : int

SetOpenTours()

FileName : string

Locations : List<Location>

Capacity : int

MaxVehicles : int

Data

Problem instance

Tours : List<List<int>>

Cost : double

SlimSolution

Check(in data : Data, in solution : SlimSolution, out cost : double, out error : string) : bool

SlimSolutionCheck

Slim solution representation

Figure 6.1: Data structure classes.

6.1.1 Problem Instance Classes

The Data class and the Location class together hold all information of a standard VRP

instance. While Data represents an instance as a whole, Location covers the specific
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information attributed to a depot or customer. If a specific VRP involves more problem

information than the standard VRP, new classes can be derived to provide the additional

data.

The Data Class

Data provides a loading method to read a standard VRP instance from a text file which

has to comply with a certain format commonly used in the VRP literature. In a derived

Data class this method is usually overridden with a new method reading additional in-

formation and expecting a modified file format.

The class holds the vehicle capacity, the maximum number of vehicles1, the set of loca-

tions, and the distances between them. By convention, the first location given is always

considered to represent the depot. The distance matrix is provided twice: Data calcu-

lates the “original” floating-point Euclidian distances from the given coordinates, but for

the purpose of computational efficiency it also provides rounded integer distances between

the locations, which are obtained by multiplication with a factor (1000, by default) and

rounding. In our implementation all distance/cost calculations are based on these integer

distances.

Any VRP instance can easily be converted to its counterpart with open tours (see section

2.2.6) by setting the distances of all arcs ending at the depot to zero. For this purpose

Data provides a method that can be overridden if further problem-specific adjustments

are necessary for open tours.

Note that in the following tables listing the properties and methods of classes we mark

those items with a * which can or must be overridden for a specific VRP (virtual proper-

ties or methods).

Data

Property/Method Description

FileName Instance file name.

Locations List of all locations: depot first, followed by customers.

Capacity Vehicle capacity.

MaxVehicles Maximum number of vehicles.

1Note that the constraint for a maximum number of vehicles is ignored in our current implementation
since in the most frequently used standard VRP instances this number is often set to a very high value.
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Data (continued)

Property/Method Description

*Load(file) Read instance from file.

OrigDistance(i,j) Floating-point Euclidian distance between locations i and j.

Distance(i,j) Rounded integer distance between locations i and j.

*SetOpenTours() Adjust distance matrix for open tours.

The Location Class

Location provides all information about a customer or the depot – the coordinates of

the location and the demand. Every location is assigned a zero-based identifying number,

corresponding to its position within the list of all locations in Data. The demand and

the ID of the depot are both set to zero.

Location

Property/Method Description

ID Zero-based ID.

CoordX X-coordinate of location.

CoordY Y-coordinate of location.

Demand Customer demand.

6.1.2 Solution Classes

The framework provides two types of solution representations. One representation sup-

ports efficient operations on a solution to be used by the heuristics, while the other

representation is designed for communication between the heuristics and the embedding

system, e.g. a DSS. The latter representation, implemented in class SlimSolution, is

a simple string-based representation; the solver-internal representation with classes So-

lution, Tour, and TourLocation is based on doubly-linked lists and is much more

complex. Figure 6.2 sketches the use of the two formats for a solver which is embedded

into another system. An initial solution in the “slim” format is provided by the DSS,

imported into the solver and converted to the internal format. The search is started from

this solution, and when it terminates, the best solution found is finally exported into the

slim format again and, potentially, interpreted and displayed to the DSS user.
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Tour 1: 4 3 7 1 2

Tour 2: 5 8 6

Cost: 75.00

Solver

4 3 1 27

5 8 6

Tour 1

Tour 2
Export

Import

Tour 1: 8 1 6 3

Tour 2: 2 4 5

Tour 3: 7

Cost: 100.00

Initial solution

Best solution

8 1 36

2 4 5

Tour 1

Tour 2

7Tour 3

Cost: 100000

Cost: 75000

S
e

a
rch

Figure 6.2: Interplay of solution representations.

All four classes can be enriched with more information by deriving new classes for a spe-

cific VRP. In the following we briefly give a few information on the slim format and then

cover the solver-internal classes in detail.

The SlimSolution and SlimSolutionCheck Classes

SlimSolution holds a list of the tours, where each tour is simply represented by a list

of customer IDs. In addition, it stores the solution cost value.

Especially during the development phase it is a good strategy to implement a procedure

for feasibility checks and cost calculation, which is based on the slim format and is com-

pletely independent of the solver. Called at the end of the search it is useful to discover

potential errors in the solver-internal checking mechanisms, and it also provides a cost

value which is more accurate than the cost values calculated by the solver using rounded

integer distances. The SlimSolutionCheck class provides methods to check the in-

tegrity and the feasibility of a SlimSolution for a given instance. New checks can be

added by deriving a problem-specific class.

The TourLocation Class

TourLocation represents the visit of a location during a tour; this also includes depar-

tures from and returns to the depot. Every non-depot visit is assigned a zero-based ID

which corresponds to its position within the list of visit objects maintained by the So-

lution class (see below). A delivery amount is associated with each visit, which equals
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the customer’s demand by default but which may be different in a specific VRP. For all

solver-internal solution classes a cloning method is provided to create copies of solution

objects on certain occasions during the search process. These methods may need to be

overridden in derived classes to incorporate problem-specific information during cloning.

Beside the ID mentioned above another special identifier is defined for each visit: the

ArcAttrId property is used within ABHC heuristics to associate visits with nodes and

arcs (arc attributes). By default, ArcAttrId corresponds to the ID of the associated

Location, so that ArcAttrIds of different TourLocations are different as well (ex-

cept for depot visits). Yet, to associate different, independent visits with the same node

in the graph, their ArcAttrId properties must be set to the same number. Then, if

for two pairs of TourLocations (v1, v2) and (w1, w2) the ArcAttrIds of v1/w1 and of

v2/w2 are identical, respectively, the connecting arcs v1 → v2 and w1 → w2 are considered

identical as well and refer to the same solution attribute.2

TourLocation

Property/Method Description

ID Zero-based ID.

Location Associated Location of problem instance.

Tour Tour which the visit is assigned to.

PrevTourLocation Previous TourLocation within the tour.

NextTourLocation Next TourLocation within the tour.

*Amount Amount of goods delivered to the customer.

*ArcAttrId ID to associate visits with ABHC arc attributes.

*Clone() Create a copy of the TourLocation object.

The Tour Class

Tour stores a tour of a solution as a doubly-linked list of the TourLocations visited,

including nodes for the depot at the beginning and at the end of the list. Every tour is

assigned a zero-based ID which corresponds to its position within the list of tour objects

maintained by the Solution class (see below). Properties for the current vehicle load

and the total distance traveled are maintained consistently by the methods of inserting

customers and removing customers.

2An application of the ArcAttrId property is explained in section 7.2 for our VRPC adaptation.
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Tour

Property/Method Description

ID Zero-based ID.

Solution Solution which the tour belongs to.

Source TourLocation node for the departure from the depot.

Sink TourLocation node for the return to the depot.

Load Load of the vehicle conducting the tour.

Distance Distance of the tour.

IsEmpty Indicates whether the tour is empty.

Insert(loc,pos) Insert TourLocation loc into the tour behind node pos.

Remove(loc) Remove TourLocation loc from the tour.

*Clone() Create a copy of the Tour object.

The Solution Class

Solution manages the sets of tours and customer visits which are part of a solution.

It provides methods to add new, empty tours (Tour objects) to the solution and, con-

versely, to remove empty tours from the solution again. Similarly, it provides methods

to add and remove TourLocation objects: this feature is not used by standard VRP

heuristics since every customer is visited exactly once and the set of visit objects always

remains unchanged. Yet, for rich VRPs allowing to visit customers multiple times it

can be necessary to change the number of visits dynamically during the search. Factory

methods are used to create new Tour and TourLocation objects. If new classes are

derived for a specific VRP, these factory methods need to be overridden to create objects

of the derived classes, respectively.3

Customers may (temporarily) not be assigned to a tour, for example during the course of

an LNS iteration. The Solution class provides a separate list to access the associated

visit objects directly. Each solution is also associated with caches for feasible insertion and

removal operations, the so-called InsertionProvider and RemovalProvider (see be-

low). Finally, import and export methods allow the conversion between the Solution

format and the SlimSolution format.

3The factory method pattern is an OOP design pattern to solve the problem of creating objects without
knowing the exact class. Here, it allows to create objects of user-defined Tour and TourLocation

classes within methods which are defined on the framework-side.
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Solution

Property/Method Description

Data Corresponding problem Data.

Cost Solution cost, i.e. total distance traveled.

TourLocations List of TourLocations, without depot nodes.

Tours List of Tours.

UnassignedDeliveries List of TourLocations currently not assigned to

a tour.

InsertionProvider InsertionProvider cache.

RemovalProvider RemovalProvider cache.

*Init(data) Initialize an empty solution for Data.

*Init(data,sol) Import a SlimSolution sol for Data.

*ToSlimSolution() Export the solution to a SlimSolution.

*CreateTourLocation(loc) Create a new TourLocation object for Loca-

tion loc (factory method).

*AddTourLocation(loc) Add a TourLocation loc to the solution.

*RemoveTourLocation(loc) Remove a TourLocation loc from the solution.

*CreateTour() Create a new Tour object (factory method).

AddEmptyTour() Add a new, empty tour to the solution (using Cre-

ateTour).

*RemoveEmptyTour(tour) Remove an empty Tour from the solution.

*Clone() Create a copy of the Solution object.

6.2 Relevant Algorithmic Component Classes

As stated in section 5.1 the algorithmic components of our framework include construction

heuristics, metaheuristic controls, LS neighborhoods, and LNS subheuristics. This section

presents the main classes which implement these components and which the framework

user comes into contact with; figure 6.3 displays an overview of the classes.

• Construction heuristic classes are presented in section 6.2.1. Overriding certain

methods of these classes the user can add checks and potentially modify the behavior

of the heuristics.

• Metaheuristic controls are not addressed here; since they are generic and never need

to be adapted to a specific VRP, their implementation is hidden from the user. The

only aspects which are relevant in this context are related to the ABHC: in section

6.2.2 we explain how problem-specific ABHC attributes can be defined.
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• We present two interfaces for the implementation of new LS neighborhoods in section

6.2.3. The built-in neighborhoods are not modified by the user directly but through

the definition of checking and post-processing functions; we give examples of these

functions as well.

• In section 6.2.4 we describe classes which are relevant for the implementation of

LNS subheuristics.

Init(in data : Data, in sol : Solution)

Run()

CanMergeTours(in i : Tour, in j : Tour, out info : object) : bool

MergeTours(in i : Tour, in j : Tour, in info : object)

InitialSolution : Solution

SavingsConstruction

Init(in data : Data, in sol : Solution)

Run()

AppendCustomer(in loc : TourLocation)

InitialSolution : Solution

SweepConstruction

Construction heuristics

GetSteepestMove(in sol : Solution) : IMove

GetABHCMove(in sol : Solution, in amem : ABHCMemory) : IMove

GetRandomMoves(in sol : Solution) : List<IMove>

INeighbourhood

Perform()

CostIncrease : int

IMove

Local search neighborhoods

Init(in data : Data)

Restart()

Update(in sol : Solution)

GetAttributes(in sol : Solution) : List<int>

Accept(in entering : List<int>, in leaving : List<int>, in oldCost : int, in newCost : int) : bool

Accept(in sol : Solution) : bool

Attributes : int[][]

ABHCMemory

ABHC memory

Perform()

Customer : TourLocation

Tour : Tour

PrevTourLocation : TourLocation

CostIncrease : int

TourExtraInfo : object

PositionExtraInfo : object

Insertion

Perform()

Customer : TourLocation

Tour : Tour

PrevTourLocation : TourLocation

CostDecrease : int

ExtraInfo : object

Removal

CheckInsertion(in loc : TourLocation, in tour : Tour) : Insertion

InsertionProvider

CheckRemoval(in loc : TourLocation) : Insertion

RemovalProvider

Perform(in sol : Solution, in maxNewTours : int)

InsertionHeuristic

Perform(in sol : Solution, in numCustomers : int)

RemovalHeuristic

Large neighborhood search subheuristics

Figure 6.3: Algorithmic component classes.
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6.2.1 Construction Heuristic Classes

SavingsConstruction and SweepConstruction are the two construction heuristic

classes provided by the framework. Both heuristics are started from an “empty” solution

not containing any tour, which needs to be passed to an initialization method, respectively.

Note that the framework also allows to use the regret insertion heuristic of LNS for

construction; we refer to section 6.2.4 describing the LNS classes.

The SavingsConstruction Class

The implementation of the savings heuristic is mainly based on a checking method and a

merging method. Starting from the empty solution the heuristic first creates an individ-

ual tour for each customer, then continues merging tours: method CanMergeTours is

used to determine whether two tours can be appended feasibly and to calculate the cost

savings. Method MergeTours actually merges two tours. To adapt the savings heuris-

tic these two methods can be overridden in a derived SavingsConstruction class. As

described in section 5.4.1 the checking method may generate some problem-specific infor-

mation which is used later on when appending the tours.

SavingsConstruction

Property/Method Description

InitialSolution Constructed initial Solution.

Init(data,sol) Initialize with Data and empty Solution sol.

Run() Start the savings heuristic.

*CanMergeTours(i,j) Determine whether Tours i and j can be merged,

return the savings value and, potentially, some addi-

tional problem-specific information Φ.

*MergeTours(i,j,Φ) Merge Tours i and j, potentially using additional

problem-specific information Φ.

The SweepConstruction Class

The implementation of the sweep heuristic uses one single method to handle the addition

of a customer to the tours of a temporary solution. Starting from the empty solution the

sequence of customers reflecting their angles is generated first; then the solution is filled

customer by customer, repeatedly calling the AppendCustomer method. By default,

this method inserts a customer at the end of the last tour if the capacity is not exceeded,
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or opens a new tour otherwise. It can be overridden in a derived SweepConstruction

class for a specific VRP.

SweepConstruction

Property/Method Description

InitialSolution Constructed initial Solution.

Init(data,sol) Initialize with Data and empty Solution sol.

Run() Start the sweep heuristic.

*AppendCustomer(loc) Insert TourLocation loc at the end of the last tour

or open a new tour.

6.2.2 Metaheuristic Classes

As explained above, the handling of ABHC attributes is the only aspect related to meta-

heuristics covered in this section.

The ABHCMemory Class

ABHCMemory encapsulates the attribute memory, which is an array that holds for each

attribute the cost value of the best solution visited so far containing this attribute. It pro-

vides methods for the acceptance check and for updating the memory when a solution has

been accepted. Internally, it maintains a list of the currently “worst” attributes, which

is required for the efficient acceptance check described by Whittley and Smith (2004).

Actually, two acceptance checks are provided: the regular, efficient check just mentioned

is used for moves before being applied to the solution. Based on the entering and leaving

attributes Ae/Al and on the change of solution cost ∆ involved it is used for LS moves

during LS-ABHC and HYBRID-ABHC. The second check is used for moves after being

applied to a solution, which is the case for the LNS moves of HYBRID-ABHC.

Solution attributes for the ABHC are represented by integer numbers. The attributes re-

ferring to directed arcs between the locations in N , considered for the standard VRP, are

mapped to numbers 0, . . . , |N |2 − 1, and an auxiliary function is provided by the frame-

work which simply calculates the number representing the arc from location i to location

j by i · |N |+ j (with i and j being the zero-based locations IDs). If an alternative set of

attributes shall be defined for a specific VRP, these new attributes have to be mapped to

a sequence of numbers starting with |N |2. In this case a new ABHCMemory class must
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be derived which overrides the initialization method to allocate a memory array with the

proper dimension. Method GetAttributes, which retrieves the list of all attributes of

a solution and which is used for the second acceptance check, needs to return the new

attributes as well. Finally, the new attributes must be considered within the evaluation

methods of all LS neighborhoods used, see section 6.2.3.

ABHCMemory

Property/Method Description

Attributes Array holding the attribute memory amem.

*Init(data) Initialize attribute memory for Data.

Restart() Reset the attribute memory.

Update(sol) Update the attribute memory with Solution sol.

*GetAttributes(sol) Return a list of all attributes of Solution sol.

Accept(Ae,Al,c,c′) Determine whether a move can be accepted which involves

entering attributes Ae and leaving attributes Al, and which

changes the solution cost from c to c′.

Accept(sol) Determine whether Solution sol can be accepted.

6.2.3 Local Search Neighborhood Classes

The separation into evaluation and application pointed out in section 5.4 is reflected in the

design of the neighborhood-related classes. For the traditional LS-based neighborhoods

the interface INeighborhood demands the implementation of (up to) three evaluation

methods which return IMove objects representing feasible moves. Via the IMove inter-

face a metaheuristic control can query the associated change of solution cost and trigger

the application of the move. For each custom neighborhood two classes need to be imple-

mented according to these interfaces.

The INeighborhood Interface

INeighborhood demands three methods to explore the neighborhood of a solution, cov-

ering feasibility checks and cost calculations. Each method is designed for one specific

metaheuristic control: GetSteepestMove is used during steepest descent and has the

purpose to scan the complete neighborhood of the current solution and return the best

feasible move. Similarly, GetABHCMove is called by ABHC heuristics to obtain the

best feasible and acceptable move. An ABHCMemory object is passed to this method
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as a parameter, so that the method can query whether a move is acceptable or not. For

RRT, finally, GetRandomMoves has the purpose to select a random subset of the

neighborhood and return all feasible moves within. The mechanism of selecting a specific

subset of neighbors is left to the user for a custom neighborhood.

INeighborhood

Method Description

GetSteepestMove(sol) Return the best feasible move applicable to solution

sol.

GetABHCMove(sol,amem) Return the best feasible move applicable to solution

sol which is acceptable based on the current state

of the ABHCMemory amem.

GetRandomMoves(sol) Return a list of feasible, random moves applicable

to solution sol.

The IMove Interface

An IMove object represents a feasible move and holds all the logic and information re-

quired to modify the solution – such information can be the customers, positions, or tours

involved, or the problem-specific information Φ for the post-processing step in the case of

the five predefined neighborhoods. The change of solution cost is provided as well, and

the move can be triggered by calling a specific method.

IMove

Property/Method Description

CostIncrease Increase of solution cost.

Perform() Apply the move to the current solution.

Checking and Post-processing Functions

Interfaces INeighborhood and IMove are relevant for the implementation of new LS

neighborhoods; to adapt the predefined neighborhoods of the framework we now explain

the interaction between checking and post-processing functions by taking the example of

the relocate neighborhood. The four functions, which can optionally be implemented by

the user, are presented in the notation of the C# programming language.
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delegate bool CheckRelocateBetweenTours(

Tour tour1, Tour tour2)

CheckRelocateBetweenTours returns true if customers from a tour1 can generally be

relocated to a tour2; otherwise it returns false. If a derived Tour class is used, the two

tour parameters have to be casted to this specific class to access the new properties and

methods when implementing the function.

delegate bool CheckRelocateIntoTour(

TourLocation customer, Tour tour,

out object relocateIntoTourExtraInfo)

CheckRelocateIntoTour returns true if a customer can generally be relocated into a

tour, otherwise false. As the tour parameter, the customer parameter has to be casted

if a derived TourLocation class is used. If the check is successful, it may pass some

information to the next check and/or to the post-processing function. For that purpose

any data – simply a number or an object of a complex user-defined class – can be assigned

to the relocateIntoTourExtraInfo output parameter.

delegate bool CheckRelocate(

TourLocation customer, TourLocation insertAfterLocation,

object relocateIntoTourExtraInfo,

ref int costIncrease,

List<int> enteringAttributes, List<int> leavingAttributes,

out object relocateAfterLocationExtraInfo)

CheckRelocate returns true if a customer can be relocated behind a location referred to

as insertAfterLocation, otherwise false. The information generated by the preceding

checking function, relocateIntoTourExtraInfo, may be used by casting the parameter

from object to the appropriate type. Before calling CheckRelocate the standard VRP

heuristics calculate the changes of solution cost and ABHC attributes; these are passed as

parameters costIncrease, enteringAttributes, and leavingAttributes and may be

changed to problem-specific values. Here, attributes need to be coded as integer numbers

as described in section 6.2.2. If the check is successful, information for post-processing

can be assigned to relocateAfterLocationExtraInfo.

delegate void RelocatePostprocessing(

TourLocation customer, TourLocation prevLocationInOldTour,

object relocateIntoTourExtraInfo,

object relocateAfterLocationExtraInfo)
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Finally, RelocatePostprocessing is called after the customer has been moved to its

new position. Parameter prevLocationInOldTour references its former position, and the

information generated by the checking functions is passed as well.4

6.2.4 Large Neighborhood Search Classes

Two classes, InsertionProvider and RemovalProvider, evaluate insertion and re-

moval operations for LNS and, respectively, return Insertion and Removal objects

representing these operations. The user comes into contact with these four classes only

when implementing new insertion or removal heuristics from scratch: abstract classes In-

sertionHeuristic and RemovalHeuristic, from which subheuristics can be derived,

are provided for that purpose.

The checking and post-processing functions for LNS, introduced in section 5.4.3, are im-

plemented in a similar way to the respective functions of LS, except that they do not

consider attribute exchanges for ABHC heuristics. We refer to the examples given for the

relocate neighborhood in the previous section.

The InsertionProvider and RemovalProvider Classes

InsertionProvider and RemovalProvider encapsulate the evaluation of insertion

and removal operations, respectively. The InsertionProvider class provides a method

CheckInsertion(loc,tour), which evaluates all possibilities of inserting a TourLoca-

tion loc into a Tour, calling problem-specific checking functions in this process, and

returns an Insertion object representing the best feasible insertion. Similarly, the Re-

movalProvider class has a method CheckRemoval(loc) to evaluate the removal of

TourLocation loc from its current tour. To avoid unnecessary recomputations both

classes hold a cache for operations that are still valid even after several iterations of the

search. In general, all evaluations associated with a certain tour are valid as long as the

tour is not modified. A set of invalidation methods is defined to discard cached operations

after a tour has been modified; since this is a rather technical issue we do not go into

details here.

4Note that no information is passed from the first of the three checking function since we did not find
a reasonable application. Yet, the framework could easily be extended accordingly if necessary.
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The Insertion and Removal Classes

Besides the change of solution cost Insertion and Removal objects hold all information

required to perform an operation, which includes the customer involved, the position that

the operation take place at, and problem-specific information generated by the checking

functions. A specific method triggers the operation as well as the problem-specific post-

processing.

Insertion

Property/Method Description

Customer TourLocation to be inserted.

Tour Tour of the insertion.

PrevTourLocation TourLocation after which the customer is inserted.

CostIncrease Increase of solution cost.

TourExtraInfo Additional information generated by the tour-level checking

function.

PositionExtraInfo Additional information generated by the sequence-level

checking function.

Perform() Apply the insertion operation.

Removal

Property/Method Description

Customer TourLocation to be removed.

Tour Tour of the removal.

PrevTourLocation Predecessor of the customer before the removal.

CostDecrease Decrease of solution cost.

ExtraInfo Additional information generated by the checking function.

Perform() Apply the removal operation.

The InsertionHeuristic and RemovalHeuristic Classes

Problem-specific subheuristics are derived from abstract classes InsertionHeuristic

and RemovalHeuristic. In both cases only one single method needs to be imple-

mented, which runs the subheuristic, making use of the insertion- and removal-related

classes described above.
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An insertion heuristic can use the UnassignedDeliveries property of a Solution to

access the customers that have to be reinserted. It is allowed to add new tours to the

solution if no feasible insertions exist for customers otherwise, except when the primary

objective of the VRP is minimizing the number of tours: in this case the insertion heuris-

tic may only open as many tours as have been closed before by the removal heuristic,

specified by a parameter.

InsertionHeuristic

Method Description

*Perform(sol, m) Reinsert all unassigned customers of Solution sol, allowing

to open up to m new tours.

A removal heuristic selects a given number of customers and removes them from the so-

lution. They are added to the UnassignedDeliveries list automatically.

RemovalHeuristic

Method Description

*Perform(sol, n) Remove n customers from Solution sol.

6.3 Solver Configuration Classes

The interplay of the various components of the framework is mainly hidden from the

user by the RichVRPSolver class, which allows easy access to the VRP heuristics and

provides possibilities for configuration on two levels:

• For configurations related to the type of the specific VRP to be solved the Rich-

VRPSolver class offers a range of options, especially to specify which user-defined

classes and checking/post-processing functions to be used.

• Further options to select a heuristic or to set numerical parameters are bundled in

a separate Parameters class.

The Parameters Class

The Parameters class holds a simple collection of diverse options to control the neigh-

borhood search. An object of this class is passed to the solver
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• to select the construction method and the base heuristic or hybrid method to be

used,

• to choose which number of iterations to spend minimizing the number of vehicles,

• to switch on/off individual neighborhoods or subheuristics, and

• to set several numerical parameters.

The RichVRPSolver Class

All interaction with the VRP heuristics is done through properties and methods of the

RichVRPSolver class. After creating an instance, the sequence of solver interactions

is

1. configuring the solver via properties of the RichVRPSolver object and further

Parameters options,

2. initializing the solver for a certain problem instance and, optionally, passing an

initial solution,

3. starting the solver for a certain running time or number of iterations, and finally

4. querying the best solution found.

The last steps are straightforward and require no further explanation. To configure the

solver for a rich VRP the following options are available:

• Four properties allow specifying the user-defined classes to be used, derived from

Solution, SavingsConstruction, SweepConstruction, and ABHCMem-

ory.

• Custom neighborhoods to be used in addition to the predefined ones can be speci-

fied by passing lists with INeighborhood, RemovalHeuristic, and Insertion-

Heuristic objects. Furthermore, it is possible to redefine the relatedness measure

for shaw removal.5

• Problem-specific checking and post-processing functions are passed to the solver

by delegates. The set of functions available is presented in section 5.4. A further

problem-specific function RepairSolution can be defined to apply some post-

processing to the initial solution – for some VRPs it can be difficult to even generate

5The class ShawRelatednessProvider, which we do not describe here, simply contains a method
to calculate the similarity values for any two locations of the problem instance.
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a feasible solution, and when savings or sweep fail in this respect, infeasibilities must

be repaired before the improvement phase of the search is started.

• A set of five further parameters configures the built-in neighborhoods. Capacity

checks can be disabled separately for inter-tour neighborhoods and LNS insertions;

this is useful if for some reason the user-defined functions shall handle the checks, or

to relax the capacity constraint completely. Another parameter is used to indicate

whether new tours may be opened during the search. This applies to LNS insertions,

relocate, and 2-opt* and should be disallowed when vehicle minimization is the

primary objective of the problem.

RichVRPSolver

Property/Method Description

Data Data of problem instance to be solved.

Parameters Parameters for optimization run.

BestSolution Best Solution found during optimization

run.

CurrentSolution Last accepted Solution of optimization run.

SolutionType Problem-specific Solution class.

SavingsConstructionType Problem-specific SavingsConstruction

class.

SweepConstructionType Problem-specific SweepConstruction

class.

ABHCMemoryType Problem-specific ABHCMemory class.

AddLSNeighborhoods Additional LS neighborhoods.

AddLNSRemovalHeuristics Additional removal heuristics.

AddLNSInsertionHeuristics Additional insertion heuristics.

ShawRelatednessProvider Relatedness measure for shaw removal.

CheckRelocateBetweenTours

CheckRelocateIntoTour

CheckRelocate

CheckExchangeBetweenTours

CheckExchange

CheckTwoOptStarBetweenTours See section 5.4.

CheckTwoOptStar

CheckRelocateI

CheckTwoOpt
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RichVRPSolver (continued)

Property/Method Description

CheckInsertionIntoTour

CheckInsertion

CheckRemoval

RelocatePostprocessing

ExchangePostprocessing

TwoOptStarPostprocessing

RelocateIPostprocessing See section 5.4.

TwoOptPostprocessing

InsertionPostprocessing

RemovalPostprocessing

RepairSolution Function repairing the initial solution.

RelocateCheckCapacities Indicates whether capacities are checked for

relocate.

ExchangeCheckCapacities Indicates whether capacities are checked for

exchange.

TwoOptStarCheckCapacities Indicates whether capacities are checked for

2-opt*.

InsertionCheckCapacities Indicates whether capacities are checked for

LNS insertions.

AllowNewTour Indicates whether new tours may be opened

during relocate, 2-opt*, and insertion heuris-

tics.

Init(data,sol) Initialize the solver for problem instance

Data and, optionally, initial Solution sol.

Run(maxiter,maxsec) Run the solver for up to maxiter iterations

and maxsec seconds.
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Chapter 7

Adaptation to Rich VRPs

The final part of the thesis demonstrates the application of our metaheuristic framework

to design and implement customized heuristics by examining five different rich VRPs.

Together with chapter 8, which presents detailed numerical results and shows that the

heuristics based on our framework can compete with current state-of-the-art methods

from the literature, this chapter validates our choices regarding framework concepts and

design. In a structured way we explain specific adaptations concerning data structures,

construction heuristics, and neighborhoods that can serve as a source of inspiration to the

reader who is dealing with a custom problem himself. We also discuss potential drawbacks

of our adaptations and make suggestions for further improvements.

Proceeding with increasing complexity section 7.1 first treats the definition of simple

problem-specific checking functions, here for time windows checks using the example of

the VRPTW. The VRPC, covered in section 7.2, requires additional checks as well, but

here the differentiation between customers and orders adds up to the complexity. Being

a very simple VRP variant conceptionally, the SDVRP demands heuristics to deal with

variable numbers of customer visits. Section 7.3 demonstrates how neighborhoods can

be modified for that purpose. The PVRP involves an additional type of decision besides

clustering and routing, which is the selection of visit combinations. In section 7.4 we

explain how visit combinations are addressed specifically in a new neighborhood but also

in modifications of predefined moves. Finally, the TTRP introduces a new tour concept

that requires a complex set of adaptations to construction heuristics and neighborhoods

covered in detail in section 7.5. We conclude this chapter by briefly suggesting adaptations

for other prominent VRPs in section 7.6 that we have not examined explicitly for this

thesis.
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7.1 Vehicle Routing Problem with Time Windows

The VRPTW introduces intervals for the beginning of service at customer locations. Con-

verting a standard VRP heuristic into a VRPTW heuristic is a relatively easy task since

the solution space of a VRPTW instance is included completely in the solution space of

the corresponding VRP instance, so that neighborhoods and subheuristics can be reused

merely by forbidding moves which violate time window constraints. The hierarchical ob-

jective of the VRPTW can be tackled by a two-phase approach based on the generic

vehicle minimization procedure of LNS-RRT described in section 5.2.3, minimizing the

number of tours first and total distance second.

Time window checks To speed up the evaluation of moves it is crucial to imple-

ment time window checks efficiently. Commonly, slack times are calculated for the

customers of a tour, measuring to which degree the service can be preponed or post-

poned while still allowing timely arrivals at other customers. As for example described

in Campbell and Savelsbergh (2004) we maintain for every customer i the earliest feasi-

ble delivery time ẽi with respect to the services of previous customers within its tour as

well as the latest feasible delivery time l̃i considering services of subsequent customers.

To check whether a customer j can be inserted between two customers i − 1 and i we

calculate ẽj := max{ej, ẽi−1 + si−1 + ti−1,j} and l̃j := min{lj , l̃i − tj,i − sj}, and if ẽj ≤ l̃j,

the insertion of customer j is feasible. This technique allows to perform time window

checks efficiently in O(1) for relocate moves, exchange moves, for insertions, and also in

a similar way for 2-opt* moves, comparing the ẽ and l̃ values of the customers to be

connected. After any modification of a tour at position i the slack times are updated by

setting ẽk := max{ek, ẽk−1 + sk−1 + tk−1,k} for k ≥ i and l̃k := min{lk, l̃k+1 − tk,k+1 − sk}

for k ≤ i− 1.

Obviously, a custom TourLocation class must be derived for the VRPTW to store the

slack times. The checks are implemented within functions CheckRelocate, Check-

Exchange, CheckTwoOptStar, and CheckInsertion, and slack times are updated

by their post-processing counterparts. Intra-tour moves are more complicated to check

since they modify a tour at multiple positions: in functions CheckRelocateI and

CheckTwoOpt arrival and departure times are calculated by stepping through the new

sequence of customers completely to determine whether time window constraints are re-

spected by a move.
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The efficient checking technique is used within the savings and sweep construction heuris-

tics as well. Here, we additionally modify the sweep method to allow a customer to be

inserted into any position within an existing tour: customers often cannot be appended

at the end of a tour in the VRPTW since the sequence of insertions derived from the

customer coordinates usually does not reflect the chronological relations.

Shaw relatedness measure Finally, we add time window information to the related-

ness measure R(i, j) of shaw removal defined in section 5.2.3: let

wi,j :=

∣

∣

∣

∣

li − ei
2

−
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∣

∣

∣

measure the difference between the time windows of customers i and j, and let wmax be

the maximum over all these values. Then, the relatedness is defined as

R(i, j) := ϕ ·
cij
cmax

+ ψ ·
|qi − qj|

qmax

+ χ ·
wij

wmax

with a weight parameter χ.

7.2 Vehicle Routing Problem with Compartments

In the VRPC customers have demands for multiple, inhomogeneous products; an order

refers to the demand of a customer for a certain product. The orders of one customer

may be served by multiple vehicles, but unlike the SDVRP each order must be served

completely by a single vehicle. Vehicles are equipped with separate compartments, and

loading orders into these compartments is restricted by capacities and compatibility con-

straints.

By interpreting orders as individual customers a VRP heuristic can be reused easily for

the VRPC. An artificial order-customer has the same coordinates as the original customer

placing the order, and its demand equals the amount of the original order; an additional

flag indicates the associated product type. Neighborhoods and subheuristics, now consid-

ering orders implicitly, do not require any adjustments besides checks for compartment

capacities and compatibilities. Note that the routing of orders leads to a dramatic increase

of problem size when many different products are considered: for |P | product types the

number of orders is up to |Nc| · |P |.
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A potential drawback of this straightforward approach is that ignoring the information

which orders belong to the same customer can make it more difficult to determine a good

routing. Obviously, the orders of one customer are favorably served in sequence, i.e. during

a single visit to the customer, yet in the solution process such sequences are only enforced

by zero distances between the orders but not by problem-specific knowledge. Without

further adaptation of the moves it is possible to generate tours that visit a customer mul-

tiple times. Another potential issue is that one-point moves such as relocate and exchange

can only transfer single orders at once. Moving all orders of a customer together requires

multiple moves of individual orders, often involving deteriorating intermediate solutions

that are rejected by the metaheuristic control. Here, the design of customer-based vari-

ants of these order-based moves may be beneficial. This problem does not apply to the

2-opt* and 2-opt neighborhoods that preserve sequences of orders.

Solution representation The information which order to load into which compartment

is an integral part of the solution representation: the TourLocation class is extended

by a property maintaining the compartment co ∈ C that an order o is currently assigned

to. To speed up the checks described below the Tour class additionally holds the current

compartment loads and also the number of orders of each product type currently assigned

to a certain compartment. These values need to be updated by post-processing methods

whenever assignments of orders to compartments change.

Local search and large neighborhood search Obviously, all intra-tour moves for

the standard VRP are valid for the VRPC without modification since changes to the

routing within a tour do not affect the assignments of orders to compartments. This is

different in inter-tour neighborhoods:

• Evaluating relocate moves and LNS insertions a feasible compartment has to be

determined for the order o considered, i.e. a compartment with sufficient remaining

capacity which is compatible with o and which does not contain any orders incom-

patible with o. Obviously, a move or an insertion is rejected if no compartment of

the respective vehicle is feasible. If multiple feasible compartments exist, we prefer

selecting a compartment which already contains another order of the same product

type. The additional checks are implemented within methods CheckRelocate-

IntoTour and CheckInsertionIntoTour, and the selected compartment is

saved in Φt for post-processing.
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• For exchange moves we perform a similar check for the two respective orders in

CheckExchange.

• In the check for 2-opt*, implemented in CheckTwoOptStar, feasible compart-

ments are determined for sequences of transferred orders by a simple procedure: we

start with the first order of such a sequence, determine and hold the compartment

assignment, then determine a compartment for the next order, and so on.

The same checking mechanisms are applied to the savings and sweep construction meth-

ods. Note that since we never consider the reorganizing of orders already assigned to a

vehicle we might reject moves even though a feasible assignment of orders to compart-

ments exists. In the scenarios tested this was not an issue, but with complex compatibility

constraints a more sophisticated method of finding compartment assignments might be

valuable.

ABHC attributes A somewhat technical issue is related to the solution attributes de-

fined for ABHC heuristics that need to reflect arcs between real customer visits and not

between orders: if a solution has no improving neighbors, the effect of considering arcs

between orders (order-customers) is that many moves with a cost change of ∆ = 0 are

performed which simply exchange orders of the same customer, not changing the actual

routing at all. Instead of proceeding to a deteriorating solution the search stalls at the –

virtually – same solution for a long time. To define customer-arcs instead of order-arcs

the ArcAttrId properties of TourLocation objects of orders placed by the same cus-

tomer have to be set to identical values, respectively.

Shaw relatedness measure Finally, we extend the relatedness measure R(i, j) for

shaw removal defined in section 5.2.3 by adding product type information: we define

pij :=







1 if pi 6= pj

0 otherwise

indicating whether two orders i and j refer to the same product or not and an additional

weight parameter ω. Then, the relatedness is measured by

R(i, j) := ϕ ·
cij
cmax

+ ψ ·
|qi − qj|

qmax

+ ω · pij.
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7.3 Split Delivery Vehicle Routing Problem

When allowing split deliveries customers may be served by multiple vehicles. Obviously,

a standard VRP heuristic generates feasible SDVRP solutions under the condition that

no customer demand exceeds the vehicle capacity. Yet, to capitalize on the potentials

of split deliveries neighborhoods need to be designed which split up deliveries on certain

occasions to serve a customer by multiple vehicles and, conversely, there must be the

possibility of rejoining split deliveries again.

Solution representation In the solution representation each delivery to a customer

is represented by a TourLocation object with an additional property to specify the

associated amount of goods. To speed up some computations we keep track of the current

deliveries of each customer by maintaining specific lists in the Solution class. These

lists need to be updated accordingly after splitting or joining deliveries.

Sweep heuristic A modification of the savings method to support split deliveries did

not appear promising to us, hence we only adapted the sweep method in a very straight-

forward way: the AppendCustomer method splits a customer’s demand if it exceeds

the remaining vehicle capacity of the current open tour. In this case a delivery with the

maximum feasible amount is appended to the current tour, and the remaining demand

is served in a second visit at the beginning of a new tour. The modified sweep heuristic

generates an initial solution having the minimum feasible number of tours in which in all

tours except for the last tour the capacities are exhausted completely.

Local search and large neighborhood search Standard VRP intra-tour moves do

not require any special treatment since splitting and joining does not make sense, here.

With respect to inter-tour moves and LNS insertions we make two kinds of modifications:

• Instead of designing new, specific neighborhoods to split up customers’ deliveries

we incorporate all splitting functionality into the relocate move and LNS insertions.

Both operations rely on a complex splitting procedure, which is the central element

of our SDVRP adaptation.

• Once deliveries have been split up, certain moves can result in tours that visit a

customer multiple times. This may not be strictly prohibited, but obviously it is

suboptimal. Rejoining deliveries must be considered in such situations.
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Figure 7.1: Inter-tour moves with joins of split deliveries.

Figure 7.1 demonstrates the application of joins in inter-tour moves.1 Evaluation methods

need to check whether customers are served twice in a tour after a regular move. In such

cases the reduction of total distance caused by a join is calculated, and post-processing

methods finally update delivery amounts and remove obsolete deliveries.

The relocate move is modified in such a way that it can shift the amount associated with

a delivery to a delivery of the same customer in another tour completely. Figure 7.1(a)

shows an example of a customer being served in two tours with an amount of 10, respec-

tively. Moving its upper tour delivery to the lower tour is simply done by increasing the

delivery amount in the lower tour and removing the obsolete delivery in the upper tour,

thereby reducing the number of deliveries to that customer by one. LNS insertions are

modified in a similar way.

If one or even both customers involved in an exchange move are served in both tours, see

figure 7.1(b), the deliveries are joined. The position of the joined delivery within a tour

is the same position the customer has been served before (and not the former position of

the other delivery involved in the exchange). If after a standard 2-opt* move a customer

is served twice in the same tour, these deliveries are joined as displayed in figure 7.1(c).

1For a clearer presentation the tours of figure 7.1 are depicted as linked lists of nodes including the
depot twice as a source node and a sink node. Deliveries of the same customer are indicated by bold
border lines.
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For easier implementation the join always takes place in the rear part of the tour, i.e.

the redundant delivery is removed from the front part of the tour, shifting its associated

amount to the rear part.

Ejection procedure To split up deliveries on certain occasions we have presented a

complex modification of the relocate move in Derigs et al. (2010), which is motivated by

the concept of embedded neighborhood structures and ejection chains described by Glover

(1991). Here, a complex compound move is generated from a sequence of single steps.

The term ejection in the VRP context refers to the removal of a customer from its cur-

rent tour and reinsertion into another tour for the purpose of “making room” for another

customer. Standard relocate moves are often infeasible in the SDVRP since tours usually

have a very high load factor, and little free capacity is available to transfer deliveries from

one tour to another. (Recall that the sweep heuristic generates initial solutions in which

most vehicles are fully loaded.)

Our ejection procedure for relocate moves and LNS insertions incorporates the splitting

and moving of deliveries and the shifting of demand between deliveries to free up sufficient

capacity in the destination tour of a move: in CheckRelocateIntoTour it handles

the case that the relocation of a delivery d into a tour t fails due to the lack of remaining

capacity, and in CheckInsertionIntoTour it is used when an insertion turns out to be

infeasible for the same reason. In algorithm 7.1 custd denotes the customer of delivery d,

and amntd denotes the shipping amount; rc(t) gives the current remaining capacity of

tour t. A sequence of steps is conducted until the vehicle of tour t finally has enough

capacity left to serve delivery d. In this process the goal is to keep the cost increase of

transferring load to other tours as low as possible.

• First, we try to join the delivery of a customer in t with a delivery of the same cus-

tomer in another tour (case 1). Given that all distances obey the triangle inequality

this results in a cost decrease since the customer can be skipped during the course

of tour t.

• Then, we shift as much of the amount of a delivery in t as possible to a delivery of

the same customer in another tour (case 2). This does not affect costs.

• If this still does not result in sufficient free capacity, we relocate a complete delivery

of tour t to another tour and insert it at the position resulting in the lowest cost

increase (case 3). Here, we distinguish two subcases. Case 3a: the shortage of
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Algorithm 7.1 Ejection procedure for split deliveries

1: function EjectDeliveries(delivery d, tour t)
2: while rc(t) < amntd do

3: if ∃ delivery e on tour t, delivery ẽ on tour t̃ 6= t :
4: custe = custẽ, rc(t̃) ≥ amnte then ⊲ case 1 (join)
5: amntẽ := amntẽ + amnte
6: remove e from t
7: else if ∃ delivery e on tour t, delivery ẽ on tour t̃ 6= t :
8: custe = custẽ, rc(t̃) > 0 then ⊲ case 2 (shift)
9: amnte := amnte − rc(t̃)

10: amntẽ := amntẽ + rc(t̃)
11: else if ∃ delivery e on tour t, tour t̃ 6= t :
12: rc(t̃) ≥ amnte ≥ amntd − rc(t) then ⊲ case 3 (relocate)
13: relocate e from t to cheapest position of t̃
14: else if ∃ delivery e on tour t, tour t̃ 6= t :
15: rc(t̃) ≥ amnte then
16: relocate e from t to cheapest position of t̃
17: else if ∃ delivery e on tour t, tour t̃ 6= t :
18: amnte > rc(t̃) ≥ amntd − rc(t) then ⊲ case 4 (split)
19: amnte := amnte − rc(t̃)
20: insert new delivery ẽ with custẽ := custe and
21: amntẽ := rc(t̃) into t̃ at cheapest position
22: else if ∃ delivery e on tour t, tour t̃ 6= t : rc(t̃) > 0 then

23: amnte := amnte − rc(t̃)
24: insert new delivery ẽ with custẽ := custe and
25: amntẽ := rc(t̃) into t̃ at cheapest position
26: end if

27: end while

28: end function

capacity can be eliminated completely. Case 3b: tour t still does not have enough

free capacity after moving the delivery. Obviously, we prefer a relocation of case 3a.

• Finally, we split a delivery of tour t and insert one part into another tour at the

position resulting in the lowest cost increase (case 4). We can distinguish two

subcases 4a and 4b comparable to cases 3a and 3b, and again we prefer case 4a.

Case 4 results in an increase of cost since the sequence of customers in t remains

unchanged, but a new visit is added to another tour.

Note that since the demand of each customer in the destination tour t can be split up to

an arbitrary number of deliveries on other tours it is always possible to free up sufficient

capacity. The implementation of this ejection procedure within the functions provided

by our framework is a little involved: during the tour-level checks CheckRelocate-
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IntoTour and CheckInsertionIntoTour all ejection steps are performed on a tem-

porary solution representation. The solution modifications are memorized in Φt, and the

sequence-level checks CheckRelocate and CheckInsertion have to consider that

some insertion positions are not valid any more when deliveries are ejected. The ejection

steps are actually performed by the post-processing functions.

ABHC attributes For ABHC heuristics the ejection procedure also has to maintain

the arc attribute changes involved with ejection steps. In addition, we introduce a further

set of attributes Asplit := {i : i ∈ Nc} besides arc attributes which indicate whether a

customer i is currently served by multiple vehicles or not. Consequently, the checking

methods of all inter-tour moves monitor whether such split attributes enter or leave the

solution.

7.4 Periodic Vehicle Routing Problem

The PVRP incorporates multiple types of decisions: first, a visit combination or sched-

ule is selected for each customer to fix the day(s) of the planning period on which the

customer is served. Afterwards, a vehicle routing problem is solved for each day, based

on the schedule selections made before. Obviously, in a typical neighborhood search ap-

proach these two subproblems are not solved sequentially; instead, the search process

makes changes to routings and schedule selections in an intertwined fashion.

Due to the fleet size constraint generating feasible solutions for the PVRP is not a triv-

ial task. The approaches of Cordeau et al. (1997) and Hemmelmayr et al. (2009) allow

violations of capacities and tour durations to be able to respect the fleet size. By pe-

nalizing such violations the search is driven towards completely feasible solutions in the

improvement phase. Our PVRP heuristics do not allow infeasible solutions and hence

rely on the ability of the construction heuristics to generate solutions already respecting

all constraints. For that purpose an essential part of our PVRP adaptation is a repair

strategy to convert solutions using too many vehicles into feasible solutions. It does not

guarantee to restore feasibility in every case, but at least on our test bed (see chapter

8.2.5) it allows to obtain a feasible solution for every problem instance.

Solution representation We interpret the set of t daily VRPs as one large VRP com-

prising the tours of all days. Here, the sequence of tours within the solution representation
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does not necessarily reflect the planning periods: the first tour of a solution may be a

Thursday tour, followed by a Monday tour, and so on. fi visits of a customer i are added

to the VRP according to its service frequency. Classes Tour and TourLocation are

extended by properties that indicate which tour belongs to which daily VRP and which

customer visit is due on which day of the planning period. The day flags of visits need to

be adjusted when a new visit combination is selected for a customer. In the Solution

class we maintain specific lists to access the tours of a certain day and the visits of a

certain customer directly. Obviously, the solution also holds the information which visit

combinations are currently selected for the customers.

Savings heuristic In our adapted savings heuristic visit combinations are selected dur-

ing the course of the merging process. Initially, when all customer visits are still assigned

to an individual tour, no visit combination is selected for any customer, and no tour is

assigned to a specific day, yet. Then, whenever two tours are connected, visit combina-

tions are fixed for every customer served within, and the tours are assigned to days if this

has not been done already. All such assignments of days and schedules remain unchanged

during construction.

A set of rules is defined in the CheckMerge function to specify under which conditions

tours may be connected – tours and customer visits must be compatible with respect to

their associated days. Concatenating two tours t1 and t2 the following rules apply; note

that if a tour is not assigned to a specific day, this implies that it has not been merged,

yet, and that it contains exactly one customer, for which a visit combination has not been

selected either.

1. If neither t1 nor t2 is assigned to a specific day, the tours can be merged if visit

combinations for the two customers contained can be selected having one day in

common.

2. If t1 is already assigned to a day and t2 is not, the tours can be merged if a visit

combination can be selected for the customer of t2 involving that particular day.

3. If both t1 and t2 are assigned to a specific day, the tours can be merged only if they

are assigned to the same day.

Obviously, t1 and t2 may not be merged if they contain visits of the same customer or

if the connected tour would exceed the vehicle capacity. During a merge operation the

PVRP-specific Merge function sets the days and visit combinations accordingly. When a
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visit combination is selected for a customer all tours that serve this customer are assigned

to the days of the selected schedule implicitly.

Sweep heuristic Contrary to the standard VRP case our adapted sweep heuristic con-

siders multiple open tours for appending customers – one for each day of the planning

period. Starting from an empty solution no visit combinations are selected, yet. A visit

combination is fixed for a customer at the moment that its visits are inserted into the

solution: the InsertCustomer function calculates the total insertion cost of every visit

combination of the considered customer, i.e. the total increase of distance of appending

the customer’s visits to the current tours of the associated days, respectively, or opening

new day tours when capacities are exceeded. The schedule involving the smallest cost in-

crease is selected for the customer, and all visits are appended to the respective day tours.

Repair heuristic Our adaptations of the savings and the sweep heuristic do not con-

sider the fleet size constraint of the PVRP, so that generated solutions may have too many

tours on one or multiple days of the planning period. Since the improvement methods

of our framework do not provide mechanisms to handle infeasibilities we design a simple

repair method to convert infeasible initial solutions into feasible ones. The RepairSo-

lution function for the PVRP sequentially tries to repair every day violating the fleet

size constraint by transferring customers away from an associated tour by two means:

1. All deliveries of a tour are removed and reinserted into the solution using regret

insertion. The deliveries can be inserted into other tours of the same day, and

customers with a service frequency of one can also be transferred to other days

by switching their schedules. (See our adaptation of large neighborhood search

below.) New tours may be opened on other days in this process, given that the fleet

constraint is not violated further.

2. If not all deliveries of the tour can be reinserted, the repair heuristic evaluates

alternative visit combinations for the remaining customers, say for a customer c.

When moving the deliveries of c to other days via a schedule change the fleet size

constraint may not be violated further. Such a repair step is actually a move of the

switch-visit-combination neighborhood described below.

If these two steps fail transferring all customers away from the tour, all changes made to

the solution are revoked and another tour is tried instead. Yet, if a tour can be saved
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completely, the repair heuristic removes another tour or continues with the next infeasible

day if the vehicle limit is now respected.

Local search The relocateI and 2-opt intra-tour moves are feasible for the PVRP with-

out modification. Inter-tour moves are, in general, only feasible if they are applied to tours

of the same day. In addition, relocate and 2-opt* moves opening new tours are only fea-

sible if they do not violate the fleet size limit. Yet, we allow relocate and exchange moves

between tours of different days when customers with a visit frequency of one are involved.

Such deliveries can simply be transferred to other days if their visit combinations can be

switched simultaneously with the move, which is checked in functions CheckRelocate-

IntoTour and CheckExchange.

Switch-visit-combination neighborhood Our most important LS adaptation for the

PVRP is the switch-visit-combination neighborhood that changes schedule assignments.

Selecting a new visit combination for a customer all of its deliveries must be removed

from their current tours and reinserted into tours associated with the days of the new

visit combination, obeying capacities and the fleet size limit. All potential tours are

scanned for the best insertion positions, and opening new tours is considered as well.

Within an ABHC heuristic we select the best acceptable switch over all customers in

each iteration, and in an RRT iteration we select one customer with at least two allowed

schedules randomly and then evaluate all switches.

ABHC attributes We introduce an additional set of attributes Avisit := {(i, v) : i ∈

Nc, v ∈ Ci}, indicating whether visit combination v is selected for customer i.

Large neighborhood search In our LNS adaptation the visit combination of a cus-

tomer can be changed when all of its deliveries are removed at once by a removal heuristic.

Then, its schedule is considered variable and may be switched during reinsertion. If, oth-

erwise, the schedule is still fixed, a delivery can only be inserted to the same day as before.

We define the possibilities of inserting a delivery d of a customer c into a tour t in the

CheckInsertionIntoTour function as follows, provided that the capacity is respected:

1. The visit combination of c is variable

If c has a visit combination containing the day of t, selecting that schedule allows a

feasible insertion. Otherwise inserting d into t is infeasible.
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2. The visit combination of c is fixed

Inserting d into t is only feasible for equal associated days.

Reinserting the first delivery of a customer fixes the schedule immediately: the post-

processing step assigns all deliveries to the respective days, so that the remaining unas-

signed deliveries can only be reinserted to these days.

With insertion costs being calculated for individual deliveries only, visit combinations

cannot be changed as systematically and purposefully as in the switch-visit-combination

neighborhood of LS. The built-in insertion heuristics of the framework may select a bad

visit combination for a customer when insertion costs are low for one delivery, ignoring

that costs are high for the other ones. Consequently, a potential improvement of our LNS

adaptation is the design of a custom insertion heuristic that considers multiple unassigned

deliveries of a customer simultaneously. Specific removal heuristics could be useful as well

which remove all deliveries of customers together on purpose to enable schedule switches.

7.5 Truck and Trailer Routing Problem

The subtour concept of the TTRP reflects new types of decisions besides clustering and

routing, which include the decision whether to use a trailer on a tour or not and the

decision whether to park a trailer at a customer location and pick it up again later on

during the tour. The formulation of the TTRP is motivated by the existence of so-called

truck customers that can only be served by the truck alone; in contrast, vehicle customers

can also be served when the trailer is present. A tour conducted by a truck alone is called

a pure truck tour. A tour conducted by a complete vehicle, i.e. a truck pulling a trailer, is

called a pure vehicle tour if the trailer is not uncoupled at any time during the tour; oth-

erwise it is denoted a complete vehicle tour, consisting of a main tour and one or several

subtours. New types of constraints enforce that certain customers (truck customers) are

not served during certain segments of a tour (main tours) and that the demands served

within certain segments (subtours) do not exceed a certain limit. The numbers of trucks

and trailers used are restricted as well. We have introduced the concepts of the TTRP in

detail in section 2.2.5; in this section we present our manifold adaptations to this complex

variant of the VRP.
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7.5.1 Solution Representation

The modeling of subtours by means of the solution representation provided by the frame-

work has a major impact on the behavior of move operations. Figure 7.2 displays two

alternative representations for a simple example tour: a main tour representation and a

truck tour representation.
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Figure 7.2: Alternative TTRP solution representations.

Main tour representation The Tour data structure of the framework is used to

cover main tour customers only, while subtours must be maintained in some user-defined

data structure, see figure 7.2(b). Subtour objects, which hold the sequences of customers

and current loads and which are referenced from their respective root customers, are “in-

visible” to the built-in heuristics, so that predefined moves are applied to main tours only.

Subtours are tied to their roots in the sense that, for instance, relocating a subtour root

customer relocates its attached subtours as well. Such moves preserve the integrity of

solutions, yet new specific neighborhoods need to be designed for the purpose of manip-

ulating subtours or changing the assignments of customers to main tours or subtours.

Truck tour representation The Tour representation of the framework covers the

exact sequence of locations visited by the truck, see figure 7.2(c). For the return to a root

customer at the end of a subtour a closing root node with a delivery amount of 0 is added
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to the tour. Subtours can optionally be identified by having the customers of a subtour

point to a user-defined subtour object, holding the current load and potentially more in-

formation. The predefined moves and subheuristics are evaluated for complete tours: the

2-opt neighborhood, for example, includes reversals of customer sequences even within

subtours. Yet, certain moves have to be forbidden or adapted since they destroy the

integrity of a solution – consider the relocation of an opening root node to another tour

without any treatment of its closing counterpart.

We have implemented a truck tour representation to avoid the necessity of designing any

specific subtour neighborhoods, which has the consequence that some special cases have

to be considered for the built-in moves instead. A new Subtour class holds the current

load of a subtour, and a derived TourLocation class allows customers of the same

subtour to point to the same Subtour object.

7.5.2 Construction Heuristics

The TTRP formulation includes limits on the numbers of trucks and trailers used. As in

our PVRP adaptation we ignore these limits within the construction heuristics and design

a simple repair heuristic to restore feasibility instead. Again, producing feasible solutions

is crucial since our improvement heuristics do not handle infeasibilities.

Savings heuristic Initially, we interpret the individual tours of truck customers as pure

truck tours and individual tours of vehicle customers as pure vehicle tours. For combining

two tours t1 and t2 the following rules are applied in CheckMerge and Merge:

1. Two pure truck tours may be combined to a larger pure truck tour if the truck

capacity is not exceeded.

2. Two complete (or pure) vehicle tours may be combined to a larger complete (or

pure) vehicle tour if the complete vehicle capacity is not exceeded.

3. If t1 is a pure truck tour and t2 is a complete (or pure) vehicle tour, t1 is attached

to the first customer of t2 as a subtour, provided that the complete vehicle capacity

is not exceeded. Vice versa, t2 is attached to the last customer of t1.

Sweep heuristic The AppendCustomer function defines the following rules for ap-

pending a customer c to a tour t. In any case a new tour is opened if the capacity of the

complete vehicle is exceeded.
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1. c is a truck customer:

(a) If t is empty, it is converted into a pure truck tour for c.

(b) If t is a pure truck tour, c is appended to t. If the truck capacity is exceeded

hereby, a new pure truck tour is opened for c.

(c) Otherwise, if t is a complete (or pure) vehicle tour:

i. If the last customer of t is a subtour root and the truck capacity is not

exceeded, c is appended to that subtour.

ii. Otherwise, a new subtour containing c is attached to the last customer of

t.

2. c is a vehicle customer:

(a) If t is empty, it is converted into a pure vehicle tour for c.

(b) If t is a pure truck tour, t is converted into a complete vehicle tour with c being

the subtour root for the remaining customers of t.

(c) Otherwise, c is appended to the complete (or pure) vehicle tour t.

Repair heuristic If a solution generated by the savings or sweep heuristic uses more

trucks and/or trailers than allowed, the repair heuristic tries to rearrange customers into a

smaller number of tours. In the first step the number of trailers is reduced, if necessary, by

transforming pure or complete vehicle tours into pure truck tours. We allow the number

of trucks to be increased in this step, even exceeding the truck limit, to guarantee that

the solution complies with the trailer limit in the end.

1. First, pure vehicle tours are converted into one or multiple pure truck tours, respec-

tively. If possible, this is done first for tours for which the capacity of a single truck

is sufficient. Otherwise, pure vehicle tours need to be split into multiple pure truck

tours.

2. When all pure vehicle tours have been transformed and the trailer limit is still

exceeded we continue with complete vehicle tours. The subtour customers of a

complete vehicle tour are transferred to a new pure truck tour in the sequence of

their visits in the original tour. If a single truck cannot serve all subtour customers,

more tours are opened. After that, the remaining pure vehicle tour is converted as

described above.
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(a) Removing a subtour root which is the
only customer within its main tour

    

(b) Removing a subtour root which is not the
only customer within its main tour

    

(c) Inserting a truck customer by opening a
new subtour

(d) Inserting a vehicle customer by convert-
ing a pure truck tour into a complete vehicle
tour

Figure 7.3: Special removal and insertion operations in the TTRP.

Finally, when the solution is feasible with respect to the trailer limit we repeatedly try to

remove tours completely and reinsert the customers into the remaining tours using regret

insertion until the truck limit is respected as well. Here, we consider all types of tours but

try to remove those pure truck tours first which have been generated during the previous

trailer saving step.

7.5.3 Large Neighborhood Search

Our adaptations of LNS to the TTRP combine modifications of removal and insertion

operations and the design of a new, specific removal heuristic. Figure 7.3 displays four

special cases of operations.

Removal operations Removing a customer c from its current tour is straightforward

except for the case that c is a subtour root. The following cases are defined in the

CheckRemoval and RemovalPostprocessing functions:

1. c is a subtour root:

(a) c is the only customer within its main tour:

If c is the root of a single subtour, the tour becomes a pure truck tour with

the depot as the root, see figure 7.3(a). c is not removed if multiple subtours

depart from it.
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(b) c is not the only customer within its main tour:

The departing subtour is transferred to the predecessor of c within the main

tour or to the successor, depending on the change of cost. If c is the root

of multiple subtours, all subtours are transferred to the same customer for

simplicity, see figure 7.3(b).

2. c is not a subtour root:

c can be removed without further restructuring, except that a subtour is closed if c

is its only customer.

Insertion operations Evaluating the insertion of a customer c into a tour t behind a

customer i (or the depot) the following cases are considered in functionsCheckInsertion

and InsertionPostprocessing. In any case the capacities of the truck and/or the

complete vehicle have to be checked, and vehicle limits must not be violated when opening

a new tour or using an additional trailer.

1. c is a truck customer:

(a) t is an empty tour:

t becomes a pure truck tour containing c.

(b) The position of insertion is within a pure truck tour or a subtour:

c can be inserted without further restructuring.

(c) The position of insertion is within a main tour:

A new subtour is opened for c with i being the subtour root, see figure 7.3(c).

2. c is a vehicle customer:

(a) t is an empty tour:

t becomes a pure vehicle tour containing c.

(b) t is a pure truck tour:

c can be inserted without further restructuring if the truck capacity is not

exceeded. Otherwise c is inserted as a subtour root, converting the pure truck

tour into a complete vehicle tour, see figure 7.3(d).

(c) t is a pure or complete vehicle tour:

c can be inserted without further restructuring.

The implementation of some of these special cases is comparably involved and often incor-

porates the addition or removal of root nodes. Post-processing is demonstrated in figure
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Figure 7.4: Post-processing steps for removing a subtour root.

7.4 for the case of removing a subtour root which is not the only customer of its main

tour – the same case as already displayed in figure 7.3(b). Customer 2 is visited three

times during the course of the tour since two subtours depart from it. The predefined

operation for the standard VRP removes its first opening root node only – after that, the

tour representation is invalid since the first subtour is now attached to customer 1, but

the closing root nodes of the subtours still refer to customer 2. Post-processing has to

be implemented in such a way that all closing root nodes are replaced with new nodes

referring to customer 1 to restore integrity of the tour.

Subtour removal An additional removal heuristic enforces the rebuilding of subtours

from scratch by removing a set of subtours from one area of the solution. Removing sub-

tours completely (and not a few subtour customers only) improves the chance that new

subtours are created with new root customers, potentially in other tours than before.

Algorithm 7.2 shows the procedure of subtour removal which removes (at least) q subtour

customers from a solution S, given that so many customers are currently served in sub-

tours. Set P maintains the subtours of the solution which have not yet been selected for

removal during the course of the procedure, and set R holds the customers selected to be

removed on the other hand. In this context i ∈ p denotes a customer of a subtour p ∈ P ,

and |p| is the number of customers within the subtour. After selecting a random subtour

as a seed (lines 3-4) further subtours are selected iteratively; since complete subtours are

removed |R| may exceed q in the end. In each iteration the selection of a subtour is biased
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towards such subtours which are near the subtours already selected. For each unselected

subtour p ∈ P the average distance (traveling cost) from its customers to the customers

in R is calculated as

d̄p :=

∑

i∈p,j∈R cij

|R| · |p|

and based on these distance values a subtour p′ is selected using the same randomized

selection mechanism as in LS-RRT, controlled by a randomization parameter βSTR (lines

7-11).

Algorithm 7.2 Subtour removal

1: function SubtourRemoval(solution S, q ∈ N, randomization βSTR)
2: P := subtours of S
3: select subtour p ∈ P randomly, P := P\{p}
4: R := customers of p
5: while |R| < q do

6: d̄p := average distance between customers in R and p, ∀p ∈ P
7: array P ′ := 〈p ∈ P 〉, with k < l ⇒ d̄P ′[k] ≤ d̄P ′[l]

8: select r ∈ [0, 1) randomly
9: p′ := P ′[⌊rβ

STR

· |P ′|⌋]
10: R := R ∪ customers of p′

11: P := P\{p′}
12: end while

13: remove customers R from S
14: end function

7.5.4 Local Search

Our adaptations of LS include modifications of the five built-in neighborhoods as well as

the implementation of two specific TTRP-neighborhoods.

Relocate A relocate move is essentially a combined removal and reinsertion; hence our

modified relocate is based on the same special operations as LNS.

Exchange Generally, exchanging customers between main tours and exchanging cus-

tomers between subtours is uncritical; only exchanges between different tour types or

rather exchanges involving different customer types require some considerations. In par-

ticular, we address the following special cases in CheckExchange; note that multiple

of these cases can occur within one move.
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Figure 7.5: Special exchange moves in the TTRP.

1. A vehicle customer c is exchanged with the single customer of a subtour:

The subtour is closed, and c is inserted into the main tour instead, see figure 7.5(a).

2. A subtour root c1 is exchanged with a customer c2 :

(a) c2 is a vehicle customer:

The subtours of c1 are reattached to c2 after the exchange, see figure 7.5(b).

This case does also apply to the exchange of two subtour roots.

(b) c2 is a truck customer:

The exchange is not feasible since truck customers cannot serve as a subtour

root.

3. A truck customer c1 (in a subtour) is exchanged with a customer c2 in a main tour

which is not a subtour root:

A new subtour is opened for c1 with the predecessor of c2 being the subtour root,

see figure 7.5(c).

Figure 7.5(d) gives an example of multiple special cases in one move: here, a main tour

(vehicle) customer is exchanged with the single (truck) customer of a subtour. In the one

tour the subtour is closed, and in the other tour a new subtour is opened for the truck

customer.
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2-opt* Function CheckTwoOptStarBetweenTours forbids exchanges between a

complete (or pure) vehicle tour and a pure truck tour, and functionCheckTwoOptStar

ensures that complete vehicle tours are not split up in the middle of a subtour.

RelocateI The removal and insertion operations defined for LNS are reused for relocateI

in a similar way. In addition, function CheckRelocateI prevents that a subtour root

customer is moved into its own subtour, and unlike usual intra-tour moves we need to

check a capacity constraint: the truck capacity must not be exceeded when a customer is

moved into a subtour.

2-opt Reversing customer sequences between two main tour customers is allowed, even

when subtours are conducted in between, as well as reversing sequences within a subtour

or a pure truck tour. Moves that disrupt subtours are obviously forbidden in Check-

TwoOpt.

Relocate-subtour neighborhood The solution process may form a set of good sub-

tours which could, however, depart more suitably from other customers. Obviously, a

subtour can be transferred by means of a sequence of relocate moves, yet this often in-

volves deteriorating intermediate moves. Enabling the transfer of complete subtours the

relocate-subtour neighborhood considers

• selecting an alternative root customer for a subtour, potentially within another main

tour, and at the same time

• selecting another customer within the subtour which is visited first.

The only constraint to be checked is the capacity of the complete vehicle when transfer-

ring to another main tour. In a special case of the move the root customer remains the

same, but another customer of the subtour is visited first, and in another special case the

subtour is attached to the depot, i.e. it is converted to a pure truck tour, or vice versa.

The relocate-subtour neighborhood is an extension of the sub-tour root-refining step by

Chao (2002), which is designed as an intra-tour move. Figure 7.6 shows the relocation of

a subtour from one main tour to another with simultaneously selecting another starting

customer. Within ABHC heuristics the neighborhood is evaluated by choosing for every

subtour of the solution every potential root customer and every potential starting cus-

tomer. In RRT we evaluate all such moves for a randomly selected subtour.
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Figure 7.6: Relocate-subtour neighborhood.

Switch-vehicle-type neighborhood The switch-vehicle-type neighborhood, denoted

as change of service vehicle type in Lin et al. (2009), changes the visit of a customer from

a complete vehicle visit to a truck-only visit and vice versa. The following cases are

distinguished for a vehicle customer c:

  
  

  
  

(a) Moving a main tour customer to a new
subtour

(b) Converting a pure truck tour customer
into a subtour root in a complete vehicle tour

  

  

  

  

(c) Moving a subtour customer to the main
tour and splitting the subtour

Figure 7.7: Switch-vehicle-type neighborhood.

1. Customer c is served in a main tour:

A new subtour is opened for c with its predecessor being the subtour root, see figure

7.7(a). This switch is not defined for the first customer of a main tour and for

subtour root customers.

2. Customer c is served in a pure truck tour:

The pure truck tour is converted into a complete vehicle tour with c being the

subtour root for the remaining customers, see figure 7.7(b). We have implemented

this switch for the first and the last customer of a tour only.

124



7.6. Other Rich VRPs

3. Customer c is served in a subtour of a complete vehicle tour:

c is moved to the main tour and depending on the position of c the subtour is

potentially split into two subtours hereby. In this case the part preceding c remains

attached to the former root customer c′, while the part succeeding c is reattached

to c as the new root, see figure 7.7(c). If more subtours attached to c′ are conducted

subsequently, they are reattached to c as well.

Note that only the first of the three cases is defined for the opposite direction as well, and

that no capacity checks are required for any of the cases. Within an ABHC heuristic we

evaluate the switches of all vehicle customers, and in RRT we evaluate all switches within

a randomly selected tour.

ABHC attributes For ABHC heuristics we introduce an additional set of attributes

Asubtour := {(i) : i ∈ Nc is a vehicle customer} indicating whether a vehicle customer is

served within a subtour or not.

7.6 Other Rich VRPs

The five rich VRPs treated in this chapter cover a broad range of adaptation requirements

arising from practical scenarios. Now, we briefly describe basic ideas how our framework

can be used to develop heuristics for a selection of other prominent VRPs listed in section

2.2.6. In fact, we believe that it is not too difficult in most cases to implement heuristics

that generate acceptable feasible solutions for a problem. Still, to obtain high-quality

results the design of specific moves or other algorithmic ideas may be required.

As discussed in section 4.1 generalization/specialization relationships between problem

variants provide an easy way to solve new VRPs using existing solvers. For instance, the

OVRP and other VRP variants with open tours can be solved by “closed-tour heuristics”

through simply modifying the distance matrix of a problem instance. Setting the distances

of all arcs ending at the depot to zero the search is driven towards good open tours. The

SetOpenTours method of our Data class is provided exactly for this purpose. Sim-

ilarly, Cordeau et al. (1997) solve the MDVRP using a PVRP heuristic by associating

depots with days. The same should be possible as well with our PVRP heuristics pre-

sented in section 7.4.

Generally, if the solution spaces of instances of a specific VRP are included in the solu-

tion spaces of corresponding standard VRP instances, only additional checks have to be
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implemented – the design of specific neighborhoods that address new decision variables

and access new regions of the solution space is not required. This applies to the VRPTW,

the VRPC, and also several other rich VRPs:

• VRPB variants impose different kinds of sequence-level constraints considering the

positions of linehaul and backhaul customers within a tour. In cases that one group

of customers must be served completely before any customer of the other group is

visited this precedence must be preserved by every intra-tour and inter-tour move,

which involves rather easy checks. If, instead, linehaul and backhaul customers may

be mixed during a tour, the load fluctuations must be calculated explicitly to prevent

violations of the vehicle capacity. The same kind of check applies to PDPs, but as

we explained in section 1.3 this problem class requires implementing a complete set

of new moves that handle associated pickups and deliveries simultaneously.

• The effort required to respect two-dimensional or three-dimensional loading con-

straints varies strongly with the nature of these constraints. In the non-sequential

variants of the 2L-CVRP and the 3L-CVRP the loading/unloading sequence of

goods is not important, so that checks need to determine a feasible loading plan on

the tour-level, independent of the routing. The general proceeding can be compared

to the VRPC, yet the actual problem of determining a feasible loading plan can

be much more difficult and time-consuming. Here, specific (external) procedures

are used to solve two- or three dimensional bin packing problems. In the sequen-

tial variants of the two VRPs mentioned these checks depend on the sequence that

customers are visited. A main challenge is how to conduct checks efficiently.

• Constraints on driving times and rest periods are usually accompanied by time win-

dow constraints for visits. The following sequence-level check guarantees feasible

solutions: stepping through the complete sequence(s) of customers generated by a

move, breaks and rest periods are scheduled whenever forced by some rule or when

sufficient waiting time is available. If the vehicle arrives too late at a location, the

move is declared infeasible. (A naive, inefficient time window check for the VRPTW

would be implemented in a similar way.) Yet, this comparably simple approach po-

tentially declares many moves infeasible although tours could be conducted feasibly,

in fact. The rules of EC Regulation No. 561/2006 offer several possibilities of tak-

ing breaks beforehand, extending driving times, and reducing rest durations under

certain conditions, so that the real challenge in solving VRPs with driving times is

the design of a checking procedure that finds a feasible schedule of breaks and rest

periods whenever one exists, and which is efficient at the same time.
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• Adaptations required for the FSMVRP and the HVRP depend on the specific as-

pects in which a vehicle fleet is heterogeneous. Tour-level checks of inter-tour moves

may need to consider the individual capacities of vehicles or prevent assignments

of customers to incompatible vehicles. In other scenarios the user-definable check-

ing functions may need to recalculate the costs of certain moves. For example, if

acquisition costs of vehicles are relevant, the costs of moves opening new tours (on

previously unused vehicles) or closing tours must be increased/decreased by these

fixed costs. If different traveling costs of vehicles are involved, the costs of inter-tour

moves must be adjusted in particular.

One rich VRP requiring more specific adaptations is the VRPM that allows the scheduling

of multiple tours for a single vehicle during the planning period. First of all, the solution

representation has to be modified for the specific tour structure to separate the different

tours assigned to a vehicle in a suitable way. There are two general types of solution

approaches in the literature: the most common approach is the decomposition of the

VRPM into the subproblems of generating individual tours and of assigning these tours

to vehicles. The first subproblem is usually solved by common VRP methods, so that

our heuristics can be reused in this case. For the second subproblem specific bin packing

heuristics aggregate the tours generated, obeying constraints such as the duration of

a working day. Probably, our framework requires some minor modifications for such a

decomposition approach, for example providing additional user-definable functions for the

coordination between the two solution steps. Alternatively, the VRPM can be solved using

a neighborhood search method that considers both subproblems simultaneously. Here, the

predefined moves must be modified to distinguish the different tours of a vehicle, provide

the possibility of changing the times that a vehicle returns to the depot, etc. Specific

moves that exchange complete tours between vehicles could be beneficial as well.
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Chapter 8

Computational Results

In chapter 7 we have demonstrated the flexibility of our framework concept and design to

develop rich VRP heuristics by describing its usage for five specific VRPs. In this chapter

we concentrate on the quantifiable quality measures accuracy and speed, and we evaluate

our implementations of the framework and of the adaptations on problem instances from

the literature. Dealing with metaheuristics the outcome of the solution process depends

on the proper setting of parameters to a certain degree. Consequently, evaluation starts

with the determination of suitable parameter values for the different solution methods

before the overall quality of the results can be assessed.

Determination of a standard parametrization As a first step we fine-tune a selec-

tion of important parameters on instances for the standard VRP. All heuristics except for

LS-ABHC can be configured by numerical parameters, which may have a mild or a strong

influence on the solution quality, respectively. Evaluating multiple parameter configura-

tions we can already draw conclusions on general characteristics of the heuristics. The

best parameter values are adopted as the standard parametrization of the framework.

Tests with standard parametrization Using the standard parametrization the rich

VRP adaptations are tested on sets of problem instances which are commonly used as

benchmark instances in the literature and for which other authors have published reference

solutions. We compare the solutions generated by our methods against the currently best

known solutions (BKS) from the literature. These tests serve as a kind of feasibility study

that indicates whether good and reliable results can already be obtained consistently

without putting massive efforts into parameter tuning for a specific VRP or a specific set

of instances.
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Tests with problem-specific parametrization Finally, parameters are fine-tuned

individually for each of the five rich VRPs, and the new results are compared against

those based on standard parametrization. Here, we get an insight into the robustness of

the heuristics – in particular an answer to the question to which degree individual tuning

is promising or even crucial. To assess whether our heuristics are competitive consider-

ing accuracy and speed we select one current state-of-the-art method published by other

authors for each problem and compare our best configuration, respectively, to their results.

Our testing platform for all experiments is an Intel Xeon E5430 2.66 GHz PC with eight

cores and operating system Microsoft Windows 7. All computation times listed in this

chapter are obtained conducting four test runs in parallel; yet, the individual heuristics

are not accelerated by any means of parallelization. We refrain from using all eight cores

at the same time since we have found that increasing the number of parallel testing runs

increases running times for a given number of iterations significantly compared to the

times of sequential runs. With only four parallel processes the impact was moderate. As

mentioned before we used the C# programming language based on the Microsoft .NET

framework 3.5 for our implementation.

As it is commonly done in such experiments we conduct test runs with fixed numbers of

iterations instead of fixed running times. Larger (or more difficult) instances generally

require longer running times to be solved adequately than smaller instances; since the

computational effort per iteration increases with the size of the instance a fixed num-

ber of iterations gives the larger instances more running time than the smaller instances.

Note that in all tests we use both the savings method and the sweep method to gener-

ate initial solutions and select the solution with lower cost to start the improvement phase.

In section 8.1 we start determining the standard parametrization of the framework. Then,

we present the final results for each problem in section 8.2 based on standard parametriza-

tion and problem-specific parametrization. Finally, section 8.3 summarizes our findings

and compares the five heuristics giving attention to the overall solution quality and ro-

bustness.

8.1 Standard Parametrization

Our tests for the standard VRP are based on a set of 19 widely-used instances generated

by Christofides et al. (1979) and Golden et al. (1998), which are sometimes referred to

as “CMT” and “GWKC” instances according to the authors’ names. Instance sizes vary
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between 50 and 483 customers, and the BKS values are published in various articles; we

obtained the current values from Ropke (2011) as reference solutions. Details on the se-

lected instances are given later in table 8.3 where we present the final results of our best

configuration.

For the initial tuning we solve each instance three times under each evaluated parameter

configuration, calculate the average total distance (TD)1 obtained for each instance, and

then select the best configurations according to the average deviations from the BKS.

Whenever two separate parameters calibrate a heuristic, say p1 and p2, we evaluate differ-

ent values for p1 first, holding p2 fixed to a sensible value, and then fix the best p1 value

while varying p2. Now, we present our findings of parameter calibration for all heuristics,

obviously except for the parameter-free LS-ABHC. During all tests some minor param-

eters are set to fixed values without any tuning: randomization parameters βWR = 3,

βSR = 6, and βSTR = 3 as well as shaw relatedness weights ϕ = 9, ψ = 2, χ = 3, and

ω = 2.

LS-RRT The calibration runs for LS-RRT are conducted with 10,000,000 iterations

each, during which we evaluate different deviations δ and randomization parameters β.

δ = 0.002 yields the best results in these tests, trying more than ten different values

between 0.0001 and 0.1 and holding β fixed. Fixing this setting β = 6 turns out to be

best among four values between 3 and 15 afterwards. This combination is assumed as our

standard parametrization for LS-RRT.

LNS-RRT 100,000 iterations per run are conducted to calibrate LNS-RRT, varying

settings for the removal percentage parameter r and, again, the deviation δ. Among five

different removal percentages between 10% and 40% we fix r = 30% first and then choose

δ = 0.0025 to complete the standard parametrization for LNS-RRT, trying values for δ

from the same range as for LS-RRT.

Figure 8.1 shows the development of solution quality over time for a selection of parameter

values tested for LS-RRT and LNS-RRT. The graphs display the sum of distances / costs

over all instances at a given point in time, averaged over all replications. Some first

conclusions on the two base heuristics can be drawn from the previous tests:

1Note that we use “TD” and “cost” synonymously during this evaluation.
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Figure 8.1: Parameter settings of LS-RRT and LNS-RRT.

• Regarding the progress of the curves in figure 8.1 it is a good sign that there are

hardly any major overlappings among the curves of a parameter in the sense that

one value yields goods results quickly but is outperformed by another setting after

a longer running time. Consequently, settings do not have to be chosen depending

on the running time.

• Evidently, the deviation δ of LS-RRT (note the scaling of figure 8.1(a)) is the most

sensitive parameter among those tested; in particular, it is much more sensitive

compared to δ in LNS-RRT. While a bad value for δ within the range tested leads

to an average deviation from the BKS of 8.43% in LNS-RRT, the worst average

deviation is 28.60% within the same range of δ in LS-RRT. The fact that this

disastrous solution quality is yielded by δ = 0.1 (not displayed in figure 8.1) can

be explained by the assumption that the randomized selection scheme of LS-RRT

produces much more very bad moves than LNS-RRT does, so that it is specifically
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up to the metaheuristic control to discard a lot of these moves. The randomization

parameter β also plays a role in controlling how many bad moves are proposed

during the search, but its influence is rather small compared to δ.

• The impact of parameter settings on the success of LNS-RRT is not that remarkable.

Deviation δ has a certain influence, and removal percentage r must not be set

too low, limiting the power of LNS. Anyway, the influence of r on larger problem

instances is restricted by capping the number of removed customers to 100, see

section 5.2.3.

The specific parameter of the two hybrid methods is pLS, i.e. the proportion between LS

and LNS moves during the search process. For its calibration we change the testing pro-

cedure and set a fixed running time of 1,200 seconds per run instead of a fixed number

of iterations. In fact, for a fixed number of total iterations the variation of pLS has a

significant influence on the total computational effort since the times spent within an LS

iteration and within an LNS iteration can differ dramatically. By fixing running times

instead we make different parameter settings comparable fairly.

HYBRID-ABHC The percentage pLS of local search moves is set to multiple values

between 10% and 90% with incremental steps of 10%. It turns out that an even proportion

between the neighborhood concepts produces the best results, and pLS = 0.5 is selected

as the standard parametrization.

Using this setting we try a small variation of HYBRID-ABHC: instead of applying the

acceptance criterion of the ABHC to LNS moves as given in algorithm 5.4 we now accept

any improving move. This, however, increases the average deviation from the BKS from

1.20% to 1.25%, indicating that the slight increase of iterations due to the omission of the

time-consuming check has no positive effect.

HYBRID-RRT The range of suitable pLS values for HYBRID-RRT is very different

from the range for HYBRID-ABHC since an LS-RRT move has a much smaller computa-

tional effort that an LNS-RRT move. In other words, many LS moves need to be evaluated

and performed to yield the progress of a single LNS move, and for a “good mixture” of

the neighborhood concepts pLS must be set to a rather high value. Fixing deviation δ a

setting of pLS = 0.9925 turns out to be best among several values between 0.9 and 0.9999.
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Figure 8.2: Parameter settings of HYBRID-ABHC and HYBRID-RRT.

Afterwards, with a fixed number of iterations (15,000,000) the best deviation is δ = 0.005.

We draw the following conclusions concerning HYBRID-ABHC and HYBRID-RRT, for

which figure 8.2 displays the development of solution quality for some parameter values:

• The exact proportion between the types of moves is not a crucial setting: neither

HYBRID-ABHC not HYBRID-RRT are very sensitive to the setting of pLS. Among

the wide ranges of values tested the resulting average deviations only vary between

1.20% and 1.52%, and 1.39% and 1.61%, respectively. We can state that switching

from the parameter-free LS-ABHC to HYBRID-ABHC does not add much instabil-

ity concerning parameter settings.

• The deviation δ of HYBRID-RRT is a much less sensitive parameter than it is for

LS-RRT; its variation yields deviations from the BKS between 0.72% and 6.48%.

Evidently, the incorporation of LNS moves adds stability in this respect.
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8.2 Final Results

As explained at the beginning of this chapter we evaluate our standard VRP heuristics

and their adaptations to rich VRPs under two parametrizations each. First, every heuris-

tic is run on every problem using its standard parametrization determined in the previous

section; then, we determine a specific parametrization for every heuristic/problem com-

bination and compare the improved results against the standard parametrization and

against state-of-the-art methods of the literature. We start listing the detailed results for

the standard VRP in section 8.2.1 and then present all results for the VRPTW in section

8.2.2, for the VRPC in section 8.2.3, for the SDVRP in section 8.2.4, for the PVRP in

section 8.2.5, and for the TTRP in section 8.2.6.

The tests are conducted with multiple numbers of iterations to examine how the solu-

tion quality depends on the running time and how much computational effort needs to

be invested to obtain results of an appropriate quality. We define four iteration limit

scenarios, see table 8.1, that lead to comparable (wall clock) running times among the

heuristics in the standard VRP case on our testing platform. Due to randomization the

test runs of every heuristic/problem/parametrization combination (except for LS-ABHC)

are performed five times.

• Short : The purpose of the first scenario is to determine which solution quality

can be obtained within short running times. In many practical scenarios there

is not much computation time available when decisions have to be made quickly.

Working with a DSS short response times to user actions are desirable for efficient

and effective man/machine interaction. Here, solvers are required that can produce

good solutions in a very short time.

• Long : In other real-world planning scenarios, e.g. dealing with strategic or tactical

questions, running time is not critical. An important problem could even be solved

overnight, but in this case the solutions must be of very high quality. For the long

running time scenario we allow ten times the number of iterations as in the first

scenario or twenty times the number if running times turn out to be comparably

short on the data set used for a specific VRP (Long* ). The purpose is to assess the

best solution quality a heuristic can yield, rather independent of running times and

– potentially – inefficient implementations.

• Medium: To examine the development of solution quality over time a third scenario

with medium running times is added.
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Short Medium Long Long*

LS-ABHC 10,000 50,000 100,000 200,000
LS-RRT 7,500,000 37,500,000 75,000,000 150,000,000
LNS-RRT 10,000 50,000 100,000 200,000
HYBRID-ABHC 10,000 50,000 100,000 200,000
HYBRID-RRT 1,500,000 7,500,000 15,000,000 30,000,000

Running time (min) ≈ 2 ≈ 10 ≈ 20 ≈ 40

Table 8.1: Iteration limit scenarios.

Allowing a reasonably fair comparison with results published by other authors, taking

into account both solution quality and running time, we report adjusted running times to

compensate different testing platforms. The use of the factors maintained by Dongarra

(2011) is usually given as a recommendation for this purpose; but actually this approach,

which indicates the floating-point performance (in Mflop/s) of computer systems in solving

dense systems of linear equations, is not applied very often in the VRP literature. The

list of systems given by Dongarra (2011) focuses on workstations and server systems, and

it is often not easy to find adequate numbers for consumer PCs, which are used rather

often for testing. Alternatively, a Java version of the benchmark2 can be started easily

via web browser and is accompanied by a survey of users’ performance indicators3. We

use these numbers, keeping in mind that they only allow a rough comparison of system

performances for several reasons:

• The Java applet benchmark performs a very quick test (< 1 second on our system),

which is probably not very accurate. Multiple sequential executions on the same

computer yield different performance numbers.

• The performance numbers for similar computers posted by different users have a

wide range, and their reliability is questionable. Probably, the operating system and

the Java runtime environment have a major influence on the indicated performance.

• In general, the underlying benchmark is inappropriate to represent VRP heuristics

due to its focus on solving systems of linear equations; in particular, it measures

floating-point operations, while VRP heuristics, including our own implementation,

often use integer numbers.

A widely-used benchmark specification for integer performance is SPECint, maintained

by the Standard Performance Evaluation Corporation (SPEC)4. The current version of

2http://www.netlib.org/benchmark/linpackjava/
3http://www.netlib.org/benchmark/linpackjava/timings list.html
4http://www.spec.org/
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the test suite is CPU2006, with CINT2006 containing 12 separate benchmarks to test

the integer performance of a system. SPECint is a single-CPU benchmark, i.e. even on

multi-processor or multi-core systems only a single core is used. The overall score of a

system is the running time ratio compared to a certain reference machine. The SPEC

maintains a list of performance measures, in particular a base and a peak value: the base

scenario imposes rather strict rules on C/C++ compiler flag optimization, while the peak

scenario allows full compiler optimization.

When comparing our results against the results of other authors we calculate modified

running times of our own heuristics to mimic the performance on the others’ testing

environments. For our environment we assume a “Dongarra performance” of 533 Mflop/s,

calculated as the average value over multiple benchmark executions. Whenever multiple

performance numbers are given for other authors’ CPUs in the survey referenced above

we calculate the average as well. The CINT2006 base score of our system is 21.4.

8.2.1 Standard VRP

Table 8.2 summarizes the final results for the standard VRP on an aggregated level. For

each of the five heuristics and each running time scenario we report four numbers of

relative deviations from the BKS:

• The best of five deviations are calculated for the best solutions obtained during the

five replications conducted per instance. Formally, let D be the set of instances,

κ = 5 the number of replications, cdk the solution cost obtained for an instance d in

the k-th test run, c∗d := mink∈{1,...,κ} cdk the best solution found for instance d, and

cbksd the BKS cost for instance d. We state the average deviation over all instances

1

|D|
·
∑

d∈D

(

c∗d
cbksd

− 1

)

as well as the maximum deviation among all instances

max
d∈D

(

c∗d
cbksd

− 1

)

.

• For the average of five deviations we calculate the average cost obtained for an

instance over the five replications instead of using the best solutions. Hence, in the

formulas given above we replace c∗d with cavgd := 1
κ
·
∑κ

k=1 cdk.

137



8. COMPUTATIONAL RESULTS

 19600

 19800

 20000

 20200

 20400

 0  500  1000  1500  2000

T
D

Running time (sec)

LS−ABHC
LS−RRT

LNS−RRT
HYBRID−ABHC

HYBRID−RRT

Figure 8.3: Convergence of solution quality for the standard VRP.

To improve readability we put the average deviations over all instances and all replica-

tions, respectively, in bold letters since we consider this indicator to represent the overall

quality of a heuristic best. Finally, we state the average running time of a heuristic over

all instances and replications under a given number of iterations. Note that the actual

running time for a single instance can differ dramatically from the average since the set

of instances has a wide range of problem sizes.

Figure 8.3 visualizes the development of solution quality over time: the curves show the

total tour distance over all problem instances after a certain running time, averaged over

all replications. From these TD convergences and from the deviation numbers of table

8.2 we learn the following about the behavior of the five heuristics solving the standard

VRP:

• Evidently, the hybrid methods outperform the base heuristics. Recall that this

improvement is yielded by merely combining the two neighborhood concepts in

one unified search process, not adding any further intelligence in terms of specific

hybridization strategies.

• Given an appropriate parameter configuration HYBRID-RRT yields quick improve-

ments and produces the best solutions among all heuristics within any running

time. HYBRID-ABHC converges more slowly and does not seem to catch up with

HYBRID-RRT even with more time available.

• LS-ABHC performs only slightly worse than HYBRID-ABHC. In contrast to the two

other base heuristics, which seem to get stuck after a certain time, it has the ability

to explore the solution space thoroughly when longer running times are allowed.
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LS-ABHC LS-RRT LNS-RRT

10K 50K 100K 7.5M 37.5M 75M 10K 50K 100K

Best Avg. dev. (%) 2.55 1.53 1.28 2.02 1.75 1.71 2.87 1.98 1.76
of five Max. dev. (%) 4.88 3.51 3.20 4.24 3.81 3.75 6.98 4.87 4.43

Average Avg. dev. (%) - - - 2.49 2.25 2.14 3.14 2.30 2.02

of five Max. dev. (%) - - - 5.09 5.07 5.02 7.12 5.32 4.67

Avg. time (s) 121.12 576.81 1137.86 119.02 581.77 1147.92 114.51 567.63 1131.78

HYBRID-ABHC HYBRID-RRT

10K 50K 100K 1.5M 7.5M 15M

Best Avg. dev. (%) 2.15 1.27 0.82 1.26 0.63 0.51
of five Max. dev. (%) 4.79 2.98 2.08 2.77 1.47 1.29

Average Avg. dev. (%) 2.54 1.53 1.12 1.67 0.92 0.77

of five Max. dev. (%) 5.07 3.53 2.47 3.14 1.71 1.44

Avg. time (s) 101.09 482.19 960.18 116.81 569.68 1134.52

Table 8.2: Aggregated results for the standard VRP.
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Finally, we compare our best heuristic, HYBRID-RRT, against the “AGES” heuristic

presented by Mester and Bräysy (2007), which is widely recognized as one of the best

methods for the standard VRP. Combining evolution strategies with guided local search

and large neighborhood search the authors present results of two configurations, “best”

and “fast”, which focus on solution quality and computation time, respectively. We se-

lect “best” for this comparison, yet note that “fast” still produces very good results with

incredibly short running times.

The general format of table 8.3 is also used for the remaining rich VRPs later on in this

chapter. Here, the rows indicate the CMT and GWKC instances without tour length

constraints on which we conduct our tests.

• For each instance we first state the name5, the number of customers, and the BKS

cost obtained from Ropke (2011).

• The following group of columns holds the costs and the computation times given by

Mester and Bräysy (2007) for a single solution run as well as the deviations from

the BKS.

• The average results from the 1,500,000 iterations scenario of HYBRID-RRT are dis-

played in the next group of columns, including column time∗ for scaled computation

times: Mester and Bräysy (2007) obtained their results on a Pentium IV 2.8 GHz

for which we assume a Dongarra (2011) factor of 238 Mflop/s and a CINT2006 base

score of 9.31, leading to a factor of 2.27 to multiply our own running times with.

The adjusted running times are similar to the running times of Mester and Bräysy

(2007) on average, allowing a rather fair comparison between the solution methods.

• Finally, we present the best of five results of long running times to demonstrate the

solution quality that can be obtained by our heuristic in the best case. Note that in

the last column we still give average running times instead of the total computation

times required for five replications.

• In the bottom rows of table 8.3 we add several aggregations, stating total tour

distances and running times as well as average and maximum deviations and running

times over all instances.

Evidently, our best heuristic cannot compete with the elaborate AGES method, which

converges to the BKS with an average gap of 0.15% only, compared to 1.67% of our method

5Since different names for standard VRP instances are commonly used in the literature we specify two
alternative notations.
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Mester and Bräysy (2007) HYBRID-RRT HYBRID-RRT
Instance BKS Single run 1.5M, Avg. of five 15M, Best of five Avg.

Name |Nc| TD TD dev (%) time (s) TD dev (%) time (s) time* (s) TD dev (%) time (s)

E051-05e CMT-1 50 524.61 524.61 0.00 0.20 524.61 0.00 10.97 24.90 524.61 0.00 106.61
E076-10e CMT-2 75 835.26 835.26 0.00 5.50 839.72 0.53 15.52 35.22 838.60 0.40 150.76
E101-08e CMT-3 100 826.14 826.14 0.00 1.00 828.27 0.26 31.72 71.98 827.39 0.15 312.79
E101-10c CMT-12 100 819.56 819.56 0.00 0.20 819.56 0.00 36.11 81.94 819.56 0.00 356.50
E121-07c CMT-11 120 1042.11 1042.11 0.00 1.10 1042.29 0.02 35.88 81.41 1042.12 0.00 355.36
E151-12c CMT-4 150 1028.42 1028.42 0.00 10.20 1045.20 1.63 54.48 123.61 1029.79 0.13 520.88
E200-17c CMT-5 199 1291.29 1291.29 0.00 2160.00 1323.24 2.47 72.87 165.34 1293.59 0.18 718.33
E241-22k GWKC-17 240 707.76 707.79 0.00 30.20 713.46 0.81 104.42 236.94 709.09 0.19 1033.79
E253-27k GWKC-13 252 857.19 859.11 0.22 400.00 872.34 1.77 103.63 235.14 863.71 0.76 1027.97
E256-14k GWKC-09 255 580.48 583.39 0.50 360.20 595.49 2.59 104.41 236.91 582.54 0.35 1014.64
E301-28k GWKC-18 300 995.39 998.73 0.34 150.60 1017.04 2.18 138.78 314.91 1003.26 0.79 1319.53
E321-30k GWKC-14 320 1080.55 1081.31 0.07 48.50 1096.20 1.45 142.26 322.79 1086.72 0.57 1392.43
E324-16k GWKC-10 323 738.73 741.56 0.38 75.00 754.99 2.20 146.36 332.09 744.18 0.74 1395.63
E361-33k GWKC-19 360 1366.14 1366.86 0.05 23.30 1397.82 2.32 172.82 392.14 1375.62 0.69 1703.38
E397-34k GWKC-15 396 1340.24 1345.23 0.37 27.60 1369.01 2.15 182.62 414.37 1350.22 0.74 1737.02
E400-18k GWKC-11 399 914.75 918.45 0.40 440.80 938.76 2.62 192.20 436.11 921.81 0.77 1860.78
E421-41k GWKC-20 420 1819.99 1820.09 0.01 230.00 1877.19 3.14 203.74 462.29 1843.42 1.29 1977.08
E481-38k GWKC-16 480 1616.33 1622.69 0.39 800.10 1659.21 2.65 231.25 524.71 1633.48 1.06 2228.71
E484-19k GWKC-12 483 1106.33 1107.19 0.08 647.70 1139.52 3.00 239.39 543.18 1116.21 0.89 2343.68

Total 19491.27 19519.79 5412.20 19853.91 2219.43 5035.99 19605.93 21555.87
Average 0.15 284.85 1.67 116.81 265.05 0.51 1134.52
Max 0.50 2160.00 3.14 239.39 543.18 1.29 2343.68

Table 8.3: Comparison with a state-of-the-art method for the standard VRP.
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under similar (average) running times. Even with more iterations we can improve the gap

only to 0.51%, which can still be appropriate in practical applications, yet. Interestingly,

our running times clearly increase with the instance size, while Mester and Bräysy (2007)

use a stopping criterion that triggers when improvements are made no more and that

leads to greatly varying running times.

8.2.2 Vehicle Routing Problem with Time Windows

We evaluate our VRPTW adaptations on the classical and well-known data set of Solomon

(1987) that contains fifty-six 100-customer instances with different characteristics of time

windows (narrow / wide) and customer distribution (clustered / random / mixed). For

this data set and for other large-scale instances the BKS are maintained by SINTEF

(2011). The hierarchical objective of the VRPTW involves difficulties concerning the in-

terpretation of results since the intuition that smaller numbers of tours in solutions are

associated with smaller total tour distances automatically is not always correct. In fact,

increasing the number of allowed tours can enable shorter routings in some cases. This

effect makes parameter tuning a bit complicated: a small total distance of a solution can

result from a) a good parameter setting or b) the heuristic having failed to minimize tours

properly.

All of our test runs for the VRPTW combine two separate phases: the first phase is

always the vehicle minimization procedure of LNS-RRT, and the best feasible solution

found during that phase is used as an initial solution for one of the five regular heuristics

for distance minimization. During initial tuning for the first phase we selected a devia-

tion δ = 0.001 for LNS-RRT, and it appeared helpful to shuffle around more customers

per iteration than during distance minimization, so that we set a removal percentage of

r = 0.6 instead of r = 0.3. Our experience is that during the second phase the number

of tours can hardly be reduced further, so that we optimized parameters for this phase

with respect to the distance objective only. Selecting δ = 0.0075 for LS-RRT, δ = 0.04

for LNS-RRT, and pLS = 0.9925, δ = 0.03 for HYBRID-RRT we could yield measurable

but not dramatic improvements (except for LS-RRT). For HYBRID-ABHC the standard

parametrization is already appropriate.

In all tests we split up the computational effort evenly between the phases: for example,

the short running time scenarios of LS-ABHC, LNS-RRT, and HYBRID-ABHC combine

5,000 iterations per phase. The equivalent scenario of LS-RRT spends 5,000 iterations

in the first phase and 3,750,000 iterations in the second phase, and in HYBRID-RRT
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Short Medium Long

LS-ABHC 411.4 407.8 407.0
LS-RRT 412.0 408.6 406.8
LNS-RRT 412.4 408.6 407.0
HYBRID-ABHC 411.4 407.4 406.8
HYBRID-RRT 411.8 409.4 407.0

Table 8.4: Aggregated results for the VRPTW: number of vehicles.

the split is 5,000 / 750,000 iterations. The checking effort for time window constraints is

marginal, so that due to the short running times we double the number of iterations of

the long running time scenarios as shown in table 8.1.

Table 8.4 first shows the average total number of vehicles (NV) over all instances ob-

tained for each heuristic and running time scenario. There is no significant difference

among the heuristics – the variations are rather related to the randomness of the vehicle

minimization procedure. Next, table 8.5 gives an overview of the aggregated results con-

cerning total distances of the five heuristics under standard parametrization and under

VRPTW-specific parametrization. Note that, exceptionally, we present average results

for LS-ABHC, which is not deterministic in this case due to the randomized first phase.

Whenever improving parameter settings cannot be determined for a heuristic we indicate

the missing deviations by “-*”; the average deviations that indicate the overall quality of

a heuristic are printed in bold letters. Figure 8.4 displays the convergences of total tour

distance. The results of LS-ABHC, HYBRID-ABHC, and HYBRID-RRT are of similar

good quality; taking into account both objectives HYBRID-ABHC is the best heuristic

on average. With respect to absolute tour distances LNS-RRT is rather weak, as can be

seen in figure 8.4, yet the relative deviations from the BKS are much better than those of

LS-RRT.

Many concepts of VRP heuristics have been applied to the VRPTW, so that there is

a great variety of solution approaches in the literature. The ALNS heuristic presented

by Pisinger and Ropke (2007), from which we adopted many elements for our own LNS

implementation, currently is one of the best heuristics to minimize the number of vehicles

in the time window case. Table 8.6 compares results under short running times: in this

comparison we present our results generated by HYBRID-RRT, which are slightly worse

than those of HYBRID-ABHC on average but better considering the best solutions over
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LS-ABHC LS-RRT LNS-RRT

10K 50K 200K 7.5M 37.5M 150M 10K 50K 200K

Standard Best Avg. dev. (%) 0.55 0.36 0.31 2.69 2.93 3.07 1.31 0.87 0.70
parametrization of five Max. dev. (%) 5.98 4.37 3.71 11.87 11.58 13.52 13.62 10.01 4.74

Average Avg. dev. (%) 1.07 0.77 0.64 5.43 5.79 5.68 2.81 2.50 2.74
of five Max. dev. (%) 6.94 6.17 6.37 17.45 19.73 17.93 17.32 13.09 15.37

Improved Best Avg. dev. (%) - - - 1.48 1.23 1.36 1.01 0.68 0.40
parametrization of five Max. dev. (%) - - - 8.63 7.10 9.24 10.01 10.51 3.75

Average Avg. dev. (%) - - - 2.09 2.57 2.63 2.03 1.90 1.54

of five Max. dev. (%) - - - 12.39 9.81 11.81 16.88 12.81 10.43

Avg. time (s) 44.03 218.14 872.87 49.15 244.39 978.51 49.13 243.50 978.80

HYBRID-ABHC HYBRID-RRT

10K 50K 200K 1.5M 7.5M 30M

Standard Best Avg. dev. (%) 0.43 0.22 0.10 0.86 0.58 0.53
parametrization of five Max. dev. (%) 5.35 2.73 2.40 7.22 4.86 4.46

Average Avg. dev. (%) 0.91 0.51 0.26 1.45 1.52 1.29
of five Max. dev. (%) 5.49 4.49 3.88 10.75 7.34 5.62

Improved Best Avg. dev. (%) -* -* -* 0.31 0.30 0.35
parametrization of five Max. dev. (%) -* -* -* 2.74 2.48 3.59

Average Avg. dev. (%) -* -* -* 0.71 0.50 0.71

of five Max. dev. (%) -* -* -* 3.75 4.76 5.50

Avg. time (s) 35.79 178.00 710.00 35.51 175.17 704.92

Table 8.5: Aggregated results for the VRPTW: total distance.
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Figure 8.4: Convergence of solution quality for the VRPTW: total distance.

all replications.6 Our running times are multiplied with 2.22 to allow a fair comparison

with their times obtained on a Pentium IV 3.0 GHz for which we assume a Dongarra

(2011) factor of 242 Mflop/s and a CINT2006 base score of 9.55.

Evidently, a particular strength of the ALNS heuristic is the ability to generate solu-

tions with a small number of tours quickly. Although having implemented basically the

same vehicle minimization procedure our solutions have considerably more tours (411.8

compared to 407.5 on average), yet with slightly smaller distances overall. A possible

explanation is that we omitted some of the features, most notably the adaptive weights

adjustment and some removal heuristics. Nevertheless, the results produced with longer

running times indicate that our heuristics can generate very high quality solutions as

well: the best solutions within five replications of HYBRID-RRT have the same numbers

of vehicles as the BKS, and the average relative gap of total distance is only 0.35 percent.

8.2.3 Vehicle Routing Problem with Compartments

The VRPC formulation introduced in Derigs et al. (2011a) is more complex than most

other compartment-related VRP variants in the literature. A large set of testing instances

has been designed specifically for this variant, yet due to the lack of reference solutions

by other authors we conduct our tests on artificial instances generated by El Fallahi et al.

(2008) and Muyldermans and Pang (2010), who transform several well-known standard

VRP instances. These instances (23 instances without tour length constraints) incorporate

6The detailed results of the ALNS heuristic of Pisinger and Ropke (2007) are obtained from
Pisinger and Ropke (2005).
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Pisinger and Ropke (2007) HYBRID-RRT HYBRID-RRT
Instance BKS 25K, Avg. of ten 1.5M, Avg. of five 30M, Best of five Avg.

Name |Nc| NV TD NV dev TD dev time NV dev TD dev time time* NV dev TD dev time
(%) (s) (%) (s) (s) (%) (s)

c101 100 10 828.94 10.0 0.0 828.94 0.00 29 10.0 0.0 828.94 0.00 23.99 53.30 10 0 828.94 0.00 477.24
c102 100 10 828.94 10.0 0.0 828.94 0.00 59 10.0 0.0 828.94 0.00 24.37 54.14 10 0 828.94 0.00 483.69
c103 100 10 828.06 10.0 0.0 828.06 0.00 65 10.0 0.0 828.06 0.00 25.53 56.72 10 0 828.06 0.00 511.57
c104 100 10 824.78 10.0 0.0 824.78 0.00 69 10.0 0.0 824.78 0.00 26.86 59.67 10 0 824.78 0.00 534.43
c105 100 10 828.94 10.0 0.0 828.94 0.00 31 10.0 0.0 828.94 0.00 24.59 54.62 10 0 828.94 0.00 489.79
c106 100 10 828.94 10.0 0.0 828.94 0.00 32 10.0 0.0 828.94 0.00 25.16 55.90 10 0 828.94 0.00 496.89
c107 100 10 828.94 10.0 0.0 828.94 0.00 32 10.0 0.0 828.94 0.00 26.10 57.98 10 0 828.94 0.00 515.28
c108 100 10 828.94 10.0 0.0 828.94 0.00 61 10.0 0.0 828.94 0.00 26.07 57.91 10 0 828.94 0.00 517.65
c109 100 10 828.94 10.0 0.0 828.94 0.00 64 10.0 0.0 828.94 0.00 26.89 59.74 10 0 828.94 0.00 531.50
c201 100 3 591.56 3.0 0.0 591.56 0.00 78 3.0 0.0 591.56 0.00 37.72 83.80 3 0 591.56 0.00 738.96
c202 100 3 591.56 3.0 0.0 591.56 0.00 88 3.0 0.0 591.56 0.00 37.66 83.66 3 0 591.56 0.00 746.34
c203 100 3 591.17 3.0 0.0 591.17 0.00 96 3.0 0.0 591.17 0.00 38.36 85.23 3 0 591.17 0.00 764.70
c204 100 3 590.60 3.0 0.0 590.60 0.00 102 3.0 0.0 590.60 0.00 41.68 92.60 3 0 590.60 0.00 830.73
c205 100 3 588.88 3.0 0.0 588.88 0.00 81 3.0 0.0 588.88 0.00 41.06 91.23 3 0 588.88 0.00 816.91
c206 100 3 588.49 3.0 0.0 588.49 0.00 83 3.0 0.0 588.49 0.00 41.65 92.54 3 0 588.49 0.00 832.75
c207 100 3 588.29 3.0 0.0 588.29 0.00 84 3.0 0.0 588.29 0.00 43.53 96.70 3 0 588.29 0.00 860.12
c208 100 3 588.32 3.0 0.0 588.32 0.00 85 3.0 0.0 588.32 0.00 42.88 95.27 3 0 588.32 0.00 854.51
r101 100 19 1645.79 19.0 0.0 1650.86 0.31 55 19.0 0.0 1671.14 1.54 29.71 66.00 19 0 1658.91 0.80 583.55
r102 100 17 1486.12 17.0 0.0 1486.89 0.05 62 17.0 0.0 1509.30 1.56 30.80 68.44 17 0 1496.41 0.69 605.42
r103 100 13 1292.68 13.0 0.0 1294.89 0.17 64 13.0 0.0 1314.88 1.72 28.63 63.61 13 0 1298.66 0.46 557.50
r104 100 9 1007.24 9.8 0.8 987.85 -1.93 61 10.0 1.0 995.25 -1.19 26.64 59.19 9 0 1007.31 0.01 512.19
r105 100 14 1377.11 14.0 0.0 1378.77 0.12 56 14.0 0.0 1387.98 0.79 27.53 61.16 14 0 1377.11 0.00 534.88
r106 100 12 1251.98 12.0 0.0 1258.40 0.51 61 12.0 0.0 1271.58 1.57 27.48 61.06 12 0 1259.20 0.58 533.66
r107 100 10 1104.66 10.0 0.0 1118.18 1.22 52 10.0 0.0 1125.68 1.90 26.05 57.88 10 0 1109.92 0.48 509.19
r108 100 9 960.88 9.0 0.0 969.37 0.88 40 9.2 0.2 970.19 0.97 25.81 57.35 9 0 964.81 0.41 497.80
r109 100 11 1194.73 11.1 0.1 1213.09 1.54 47 12.0 1.0 1164.65 -2.52 26.99 59.96 11 0 1198.72 0.33 516.55
r110 100 10 1118.59 10.0 0.0 1149.56 2.77 41 11.0 1.0 1089.48 -2.60 26.68 59.27 10 0 1119.02 0.04 509.63
r111 100 10 1096.72 10.0 0.0 1112.14 1.41 46 10.0 0.0 1123.16 2.41 26.11 58.00 10 0 1097.23 0.05 512.20
r112 100 9 982.14 9.5 0.5 983.16 0.10 58 9.8 0.8 974.92 -0.74 26.31 58.45 9 0 991.52 0.96 509.64
r201 100 4 1252.37 4.0 0.0 1253.23 0.07 133 4.0 0.0 1252.89 0.04 35.50 78.86 4 0 1252.37 0.00 705.81
r202 100 3 1191.70 3.0 0.0 1229.81 3.20 96 3.0 0.0 1199.13 0.62 40.99 91.06 3 0 1195.99 0.36 852.80
r203 100 3 939.50 3.0 0.0 944.64 0.55 164 3.0 0.0 954.90 1.64 45.44 100.94 3 0 943.52 0.43 898.97
r204 100 2 825.52 2.0 0.0 841.48 1.93 182 2.2 0.2 836.14 1.29 65.21 144.87 2 0 832.06 0.79 1366.17
r205 100 3 994.42 3.0 0.0 1018.90 2.46 97 3.0 0.0 1013.62 1.93 46.81 104.00 3 0 994.43 0.00 918.72
r206 100 3 906.14 3.0 0.0 923.91 1.96 192 3.0 0.0 934.50 3.13 47.85 106.30 3 0 906.97 0.09 944.61
r207 100 2 890.61 2.0 0.0 928.28 4.23 180 2.2 0.2 901.30 1.20 58.75 130.52 2 0 914.18 2.65 1265.17
r208 100 2 726.75 2.0 0.0 736.12 1.29 185 2.0 0.0 731.36 0.64 71.70 159.29 2 0 726.82 0.01 1412.71
r209 100 3 909.16 3.0 0.0 926.72 1.93 101 3.0 0.0 921.11 1.31 47.83 106.25 3 0 909.31 0.02 924.12
r210 100 3 939.34 3.0 0.0 955.02 1.67 112 3.0 0.0 959.10 2.10 46.42 103.14 3 0 948.65 0.99 915.77
r211 100 2 885.71 2.3 0.3 889.99 0.48 216 2.2 0.2 895.33 1.09 54.02 120.02 2 0 903.19 1.97 1144.70
rc101 100 14 1696.94 14.2 0.2 1688.35 -0.51 53 14.4 0.4 1679.40 -1.03 27.10 60.21 14 0 1697.43 0.03 525.75
rc102 100 12 1554.75 12.1 0.1 1547.04 -0.50 56 12.4 0.4 1543.40 -0.73 26.12 58.02 12 0 1557.22 0.16 503.93
rc103 100 11 1261.67 11.0 0.0 1270.78 0.72 58 11.0 0.0 1285.11 1.86 25.42 56.46 11 0 1265.85 0.33 496.94
rc104 100 10 1135.48 10.0 0.0 1135.80 0.03 60 10.0 0.0 1155.67 1.78 24.67 54.80 10 0 1138.13 0.23 483.25
rc105 100 13 1629.44 13.0 0.0 1640.18 0.66 54 13.2 0.2 1627.10 -0.14 26.30 58.42 13 0 1631.80 0.14 513.38
rc106 100 11 1424.73 11.5 0.5 1413.07 -0.82 49 12.0 1.0 1393.16 -2.22 25.41 56.46 11 0 1432.12 0.52 492.21
rc107 100 11 1230.48 11.0 0.0 1232.48 0.16 56 11.0 0.0 1245.77 1.24 24.46 54.34 11 0 1230.54 0.01 478.29
rc108 100 10 1139.82 10.0 0.0 1167.55 2.43 41 10.0 0.0 1160.37 1.80 24.22 53.81 10 0 1139.82 0.00 469.94
rc201 100 4 1406.91 4.0 0.0 1417.80 0.77 83 4.0 0.0 1414.13 0.51 35.90 79.75 4 0 1406.94 0.00 698.97
rc202 100 3 1365.65 3.0 0.0 1405.16 2.89 96 3.2 0.2 1356.13 -0.70 39.64 88.06 3 0 1414.71 3.59 828.03
rc203 100 3 1049.62 3.0 0.0 1075.51 2.47 100 3.0 0.0 1079.88 2.88 44.97 99.91 3 0 1058.33 0.83 911.49
rc204 100 3 798.41 3.0 0.0 818.00 2.45 228 3.0 0.0 823.42 3.13 48.28 107.25 3 0 798.61 0.02 921.40
rc205 100 4 1297.19 4.0 0.0 1318.01 1.61 134 4.0 0.0 1310.30 1.01 36.01 80.00 4 0 1297.65 0.04 712.87
rc206 100 3 1146.32 3.0 0.0 1155.91 0.84 87 3.0 0.0 1183.88 3.28 44.20 98.21 3 0 1146.32 0.00 858.62
rc207 100 3 1061.14 3.0 0.0 1095.29 3.22 96 3.0 0.0 1091.60 2.87 44.39 98.62 3 0 1079.19 1.70 892.50
rc208 100 3 828.14 3.0 0.0 834.83 0.81 109 3.0 0.0 859.21 3.75 48.13 106.93 3 0 828.71 0.07 953.27

Total 405 57180.84 407.5 57641.31 4800 411.8 57580.37 1988.55 4417.89 405 57403.94 39475.64
Average 0.0 0.79 85.71 0.1 0.71 35.51 78.89 0 0.35 704.92
Max 0.8 4.23 228 1.0 3.75 71.70 159.29 0 3.59 1412.71

Table 8.6: Comparison with a state-of-the-art method for the VRPTW.
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Figure 8.5: Convergence of solution quality for the VRPC.

two products, two fixed-size compartments per vehicle, and each product is compatible

with one compartment exclusively. In the transformation the original demand of each

customer is split into two orders of equal amounts, one order of each product type, and

vehicles have the same total capacities as in the original instances with two compartments

of half the total capacity each. A solution for the original VRP is always feasible for the

associated VRPC and, conversely, the optimal VRPC solutions correspond to their opti-

mal VRP counterparts. For the following analysis we take the BKS values for standard

VRP instances from Ropke (2011) or, if not listed, from Toth and Vigo (2002).7

Initial tests yield an improved VRPC-specific parametrization of δ = 0.003 for LS-RRT

and pLS = 0.9975, δ = 0.007 for HYBRID-RRT; for LNS-RRT and HYBRID-ABHC the

standard settings perform best. Table 8.7 compares the aggregated results for the five

heuristics under standard parametrization and improved parametrization; figure 8.5 dis-

plays the development of solution quality for the two parametrizations. Note that in

table 8.7 it appears that the optimized parametrization of HYBRID-RRT is worse than

its standard parametrization; however, the higher value of pLS (0.9975 instead of 0.995)

leads to shorter total running times for the same numbers of iterations, and the curves of

figure 8.5 confirm that the heuristic performs slightly better with the new settings.

Evidently, running times increase significantly compared to the standard VRP, which is

due to double instance sizes (each customer is translated to two individual orders) and

only partly an effect of the additional checking effort for compartment constraints. The

7For instances E076-07u and E076-08s we could not find appropriate solution values based on floating-
point distances, so that we have to resort to the best solutions obtained with exact solution methods,
which usually assume rounded or truncated distances.
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LS-ABHC LS-RRT LNS-RRT

10K 50K 100K 7.5M 37.5M 75M 10K 50K 100K

Standard Best Avg. dev. (%) 2.90 2.01 1.71 3.67 3.28 3.34 3.43 2.74 2.59
parametrization of five Max. dev. (%) 6.58 5.76 3.92 6.89 7.49 7.49 7.84 6.76 6.66

Average Avg. dev. (%) - - - 4.08 3.66 3.63 3.93 3.24 3.06

of five Max. dev. (%) - - - 7.31 7.49 7.49 8.43 6.97 6.84

Improved Best Avg. dev. (%) - - - 3.19 2.45 2.33 -* -* -*
parametrization of five Max. dev. (%) - - - 5.98 5.71 5.61 -* -* -*

Average Avg. dev. (%) - - - 3.62 2.99 2.76 -* -* -*
of five Max. dev. (%) - - - 6.99 5.84 5.80 -* -* -*

Avg. time (s) 544.79 2544.23 5132.54 377.85 1770.17 3560.82 176.38 850.20 1691.09

HYBRID-ABHC HYBRID-RRT

10K 50K 100K 1.5M 7.5M 15M

Standard Best Avg. dev. (%) 2.45 1.66 1.27 2.41 1.61 1.35
parametrization of five Max. dev. (%) 5.94 4.22 3.40 5.62 4.53 3.90

Average Avg. dev. (%) 2.86 2.02 1.61 2.85 2.01 1.77
of five Max. dev. (%) 6.36 5.01 3.83 6.08 4.64 4.18

Improved Best Avg. dev. (%) -* -* -* 2.70 1.79 1.51
parametrization of five Max. dev. (%) -* -* -* 7.88 5.09 4.63

Average Avg. dev. (%) -* -* -* 3.21 2.25 1.96

of five Max. dev. (%) -* -* -* 8.40 5.50 5.36

Avg. time (s) 370.48 1735.45 3472.92 163.60 764.44 1504.96

Table 8.7: Aggregated results for the VRPC.
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increase is most apparent for LS-ABHC in which the neighborhood size depends quadrat-

ically on the number of orders; in contrast, the cap on the number of orders to be removed

in LNS (at most 100 orders) limits the additional computational effort, so that running

times increase mildly.

The adapted LS-ABHC, HYBRID-ABHC, and HYBRID-RRT heuristics clearly produce

the best results for the VRPC with deviations from the BKS between 1% and 2% in the

running time scenarios tested. Probably, further improvements can still be obtained with

longer running times. The convergences of solution quality of the two hybrid methods are

almost identical under standard settings; HYBRID-RRT is slightly favorable after tuning.

LS-RRT and LNS-RRT alone perform rather weak; some improvement of LS-RRT can be

obtained by tuning.

In table 8.8 we compare our HYBRID-RRT heuristic against the guided local search

heuristic by Muyldermans and Pang (2010), which currently is one of the best VRPC

heuristics in the literature.89 To compare our running times fairly with those given by

the authors for a Pentium M740 1.73 GHz we multiply our times with 2.47; this mul-

tiplier results from assuming a Dongarra (2011) factor of 221 Mflop/s and a CINT2006

base score of 8.45 for their machine. Actually, the CINT2006 score of the M740 CPU is

not available to us, thus we simply scale the score of the Pentium M750 1.86 GHz CPU

according to the clock rate.

Muyldermans and Pang (2010) conduct experiments with multiple numbers of iterations;

table 8.8 shows their results obtained with 1,200,000 iterations. Then, in the following

columns we state our average HYBRID-RRT results with 1,500,000 iterations. Evidently,

our heuristic does not yield an equal quality in this comparison: a deviation of 3.59%

on average compared to 2.86% with only slightly smaller (scaled) running times. But as

already seen above better results are possible with more time available: table 8.8 also lists

the best solutions obtained from five replications of 15,000,000 iterations each, resulting

in an average deviation of 1.70%. We put on record that HYBRID-RRT can produce

good results but is not very fast.

8In Derigs et al. (2011a) we present a high-quality heuristic for the VRPC that generates even better
solutions than the ones given by Muyldermans and Pang (2010), yet since it uses the same concepts as
our framework-based heuristics a comparison of results would not yield as much insight as the comparison
with the method of Muyldermans and Pang (2010).

9For the comparison we leave out four instances from our calibration data set for which
Muyldermans and Pang (2010) do not present results: E072-04f, E076-07u, E076-08s, and E135-07f.
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Muyldermans and Pang (2010) HYBRID-RRT HYBRID-RRT
Instance BKS 1.2M 1.5M, Avg. of five 15M, Best of five Avg.

Name |Nc| TD TD dev (%) time (s) TD dev (%) time (s) time* (s) TD dev (%) time (s)

E051-05e 50 524.61 524.61 0.00 538.20 524.61 0.00 23.43 64.28 524.61 0.00 232.06
E076-10e 75 835.26 837.40 0.26 516.60 845.24 1.19 30.55 83.82 838.60 0.40 299.99
E101-08e 100 826.14 829.84 0.45 564.60 829.22 0.37 79.85 219.08 827.39 0.15 774.97
E101-10c 100 819.56 819.56 0.00 558.60 819.56 0.00 90.88 249.33 819.56 0.00 896.48
E121-07c 120 1042.11 1048.67 0.63 499.80 1043.06 0.09 66.75 183.12 1042.12 0.00 654.99
E151-12c 150 1028.42 1040.18 1.14 606.60 1050.18 2.12 101.52 278.52 1039.96 1.12 1064.24
E200-17c 199 1291.29 1313.96 1.76 612.00 1339.92 3.77 115.40 316.61 1308.84 1.36 913.50
E241-22k 240 707.76 719.71 1.69 658.20 729.28 3.04 141.83 389.10 715.30 1.07 1373.77
E253-27k 252 857.19 885.03 3.25 605.40 883.77 3.10 147.80 405.49 866.39 1.07 1290.44
E256-14k 255 580.48 605.65 4.34 783.60 608.57 4.84 154.12 422.82 594.24 2.37 1467.24
E301-28k 300 995.39 1036.22 4.10 702.00 1046.30 5.11 214.96 589.75 1028.04 3.28 2037.35
E321-30k 320 1080.55 1125.75 4.18 619.20 1114.12 3.11 198.92 545.72 1096.43 1.47 1810.79
E324-16k 323 738.73 770.98 4.37 848.40 779.47 5.52 221.37 607.34 752.17 1.82 2039.12
E361-33k 360 1366.14 1404.58 2.81 738.00 1440.56 5.45 245.06 672.31 1406.12 2.93 2338.00
E397-34k 396 1340.24 1405.56 4.87 646.80 1397.79 4.29 263.30 722.36 1366.07 1.93 2280.46
E400-18k 399 914.75 965.56 5.55 940.20 972.11 6.27 302.99 831.25 936.80 2.41 2741.42
E421-41k 420 1819.99 1897.76 4.27 808.80 1927.73 5.92 320.12 878.23 1904.32 4.63 2952.73
E481-38k 480 1616.33 1691.45 4.65 681.00 1707.92 5.67 346.30 950.07 1659.14 2.65 3056.45
E484-19k 483 1106.33 1173.37 6.06 1087.80 1199.23 8.40 398.07 1092.09 1147.22 3.70 3533.36

Total 19491.27 20095.84 13015.80 20258.65 3463.22 9501.28 19873.34 31757.36
Average 2.86 685.04 3.59 182.27 500.07 1.70 1671.44
Max 6.06 1087.80 8.40 398.07 1092.09 4.63 3533.36

Table 8.8: Comparison with a state-of-the-art method for the VRPC.
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(a) SDVRP solution (b) VRP solution

Figure 8.6: Solutions with and without split deliveries.

8.2.4 Split Delivery Vehicle Routing Problem

Our test bed for the SDVRP is a data set of 36 instances by Archetti et al. (2008). These

instances are derived from a set of basic instances, ranging between 50 and 199 customers,

by varying the proportions between customer demands and vehicle capacities: each cus-

tomer’s demand is chosen from an interval [α · Q, γ · Q] with lower- and upper-bound

parameters α and γ.10 Complexity rises with increasing values for α and γ since the

potential of cost savings by splits increases when only a very small number of customers

can be served together completely by one vehicle. Figure 8.6 illustrates the split/non-split

cases for instance “p01” with α = 10% and γ = 90%. In the SDVRP solution displayed

in figure 8.6(a) (26 tours, distance 1488.58) several customers are served by two vehi-

cles, while the VRP solution in figure 8.6(b) (31 tours, distance 1678.51) has several tours

containing a single customer only and some long arcs connecting the remaining customers.

The only construction heuristic we use in our SDVRP tests is the sweep method, which

always generates a set of tours with minimum cardinality. In fact, the initial solutions

generated by the savings heuristic tend to have smaller distances than the sweep solu-

tions, but the relatively high number of tours appears to be unfavorable during the sub-

sequent improvement phase and takes too long to be reduced. Only for problem instance

“p11 00” this strategy turns out to be inappropriate: the savings heuristic generates a

solution which is already very close to the BKS; the sweep solution, however, is much

worse, and the gap to the BKS often is still greater than 10% in the end. For the purpose

of consistency we adhere to the sweep method nevertheless.

10The original data set of Archetti et al. (2008) actually comprises 42 instances, yet we omitted all
instances based on instance “p10” since they are identical to the “p05” instances.
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Figure 8.7: Convergence of solution quality for the SDVRP.

We cut down iterations to prevent running times from exploding, dividing the numbers of

allowed iterations by 10 and also limiting running time to three hours per instance. Hav-

ing determined an SDVRP-specific parametrization of δ = 0.0008 for LNS-RRT, pLS = 0.6

for HYBRID-ABHC, and pLS = 0.999, δ = 0.0015 for HYBRID-RRT we compare the ag-

gregated results for the five heuristics in table 8.9. For LS-RRT we could not find a better

δ than the standard value, and in general the gain by parameter tuning is rather small.

Only for HYBRID-RRT the improvement over the standard settings is significant, which

becomes evident comparing the quality convergences in figure 8.7(a) and figure 8.7(b).

The complex ejection procedure presented in section 7.3 has its greatest impact on run-

ning times within LS-ABHC, where it is used excessively during every iteration of the

search to evaluate relocate moves. Its influence is milder within LS-RRT and, especially,

LNS-RRT. All five heuristics are able to generate solutions with an overall deviation from

the BKS of 1% or better. HYBRID-ABHC generates the best solutions among the config-

urations tested, yet requires much longer running times than HYBRID-RRT that yields

very good solutions quickly. Figure 8.7(b) demonstrates the good convergence of LS-RRT

and HYBRID-RRT, which indicates that our adaptation of the relocate operator is very

powerful but must be used more carefully than within an ABHC heuristic. LNS-RRT

alone appears to perform not as well, yet it becomes clear again that LNS moves improve

LS-only approaches significantly.11

11Note that LNS-RRT is inferior considering absolute distances as displayed in figure 8.7 but performs
quite well according to the deviations stated in table 8.9. This discrepancy is explained by the observa-
tion that LNS moves handle the critical instance “p11 00” better than LS moves do, avoiding extreme
deviations occurring for this instance.
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LS-ABHC LS-RRT LNS-RRT

1K 5K 10K 750K 3.75M 7.5M 1K 5K 10K

Standard Best Avg. dev. (%) 2.26 1.41 1.05 1.09 0.87 0.95 1.96 0.90 0.61
parametrization of five Max. dev. (%) 13.82 13.76 12.66 13.80 13.75 13.88 4.15 2.96 2.96

Average Avg. dev. (%) - - - 1.67 1.37 1.57 2.70 1.29 1.02
of five Max. dev. (%) - - - 13.98 13.85 14.07 8.80 3.33 3.39

Improved Best Avg. dev. (%) - - - -* -* -* 1.80 0.76 0.44
parametrization of five Max. dev. (%) - - - -* -* -* 3.69 2.58 2.78

Average Avg. dev. (%) - - - -* -* -* 2.57 1.32 0.88

of five Max. dev. (%) - - - -* -* -* 10.57 4.49 3.06

Avg. time (s) 874.64 3176.39 4705.17 469.58 2243.40 3880.63 285.29 1255.60 2140.98

HYBRID-ABHC HYBRID-RRT

1K 5K 10K 150K 750K 1.5M

Standard Best Avg. dev. (%) 1.34 0.47 0.33 1.77 1.19 1.06
parametrization of five Max. dev. (%) 10.80 2.40 2.35 4.93 4.02 3.79

Average Avg. dev. (%) 1.93 1.01 0.64 2.36 1.60 1.38
of five Max. dev. (%) 13.10 4.33 2.57 6.65 4.20 4.11

Improved Best Avg. dev. (%) 1.54 0.45 0.22 1.22 0.53 0.30
parametrization of five Max. dev. (%) 13.49 2.42 2.28 13.71 3.11 2.42

Average Avg. dev. (%) 2.04 1.01 0.60 1.80 1.17 0.98

of five Max. dev. (%) 13.85 6.26 2.52 14.13 7.77 9.73

Avg. time (s) 677.69 2644.24 3968.64 144.70 684.33 1349.56

Table 8.9: Aggregated results for the SDVRP.
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In a previous study (Derigs et al., 2010) we already presented results of several LS-based

heuristics for the SDVRP, including an ABHC heuristic that performed best. According

to a recent survey by Archetti and Speranza (2011) this method is still among the state-

of-the-art methods for the SDVRP. A few other approaches have been proposed in the

meanwhile, yet there is some shortage of comparable numerical results since heuristics were

often tested on similarly generated but actually different sets of instances. In this evalu-

ation we compare our HYBRID-RRT heuristic against the matheuristic of Archetti et al.

(2008), which is a good SDVRP method, though beaten by our former ABHC method,

and for which we are confident to dispose of exactly the same data set for testing.12

Table 8.10 presents a detailed comparison against the results of Archetti et al. (2008).

The instance names indicate the basic instance and, behind the underscore, parameters

α and γ in percent. The best solutions known so far are given in Derigs et al. (2010).

Unfortunately, Archetti et al. (2008) do not state their testing environment, so that we

are not able to scale our own computation times for a fair comparison. A second com-

plicating aspect is that the only solution values given in their publication stem from an

unknown number of tests of multiple configurations. Behind these reference solutions we

present the average results of HYBRID-RRT with short running times first, and then

the best results of five replications with longer running times. Evidently, HYBRID-RRT

produces better solutions within short times, generates several new best solutions for the

benchmark instances, and can be considered as a state-of-the-art method for the SDVRP

consequently.

8.2.5 Periodic Vehicle Routing Problem

Our heuristics for the PVRP are evaluated on a widely-used set of 32 instances contributed

by multiple authors. Most instances contain between 50 and 200 customers with differ-

ent service frequencies; the largest instance in the set has 417 customers. The planning

horizon usually spans over four, five, or six days. More detailed instance characteristics

are presented in Hemmelmayr et al. (2009). Recent publications consider a new set of ten

testing instances in addition, yet due to tour duration constraints we cannot solve these

instances.

12We do not compare HYBRID-RRT with our previously developed ABHC heuristic for the same reason
we did not consider our previously developed VRPC heuristics in section 8.2.3: since the underlying
concepts are similar a comparison of results does not yield very much insight.
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Archetti et al. (2008) HYBRID-RRT HYBRID-RRT
Instance BKS Best of multiple tests 150K, Avg. of five 1.5M, Best of five Avg.

Name |Nc| TD TD dev (%) time (s) TD dev (%) time (s) TD dev (%) time (s)

p01 50 524.61 527.68 0.58 97.00 524.67 0.01 7.20 524.61 0.00 68.41
p01 1030 50 758.20 758.20 0.00 256.00 792.88 4.57 9.73 776.56 2.42 92.24
p01 1050 50 1007.51 1021.02 1.34 866.00 1030.22 2.25 15.17 1018.84 1.12 147.37
p01 1090 50 1488.58 1497.28 0.58 2939.00 1508.53 1.34 31.02 1496.45 0.53 312.81
p01 3070 50 1487.81 1502.00 0.95 1684.00 1507.16 1.30 28.92 1491.52 0.25 267.31
p01 7090 50 2160.66 2166.80 0.28 834.00 2184.72 1.11 60.85 2171.13 0.48 605.64
p02 75 823.89 853.61 3.61 52.00 842.70 2.28 14.31 831.98 0.98 139.65
p02 1030 75 1116.75 1122.91 0.55 161.00 1142.47 2.30 17.10 1124.99 0.74 166.31
p02 1050 75 1504.74 1548.54 2.91 646.00 1532.99 1.88 29.23 1510.06 0.35 300.76
p02 1090 75 2318.53 2337.81 0.83 361.00 2335.49 0.73 64.49 2319.16 0.03 682.56
p02 3070 75 2228.69 2263.12 1.54 2551.00 2262.80 1.53 61.66 2243.60 0.67 572.75
p02 7090 75 3234.64 3250.39 0.49 1872.00 3258.85 0.75 123.29 3239.12 0.14 1226.76
p03 100 826.14 840.12 1.69 51.00 850.09 2.90 15.42 827.39 0.15 144.54
p03 1030 100 1472.53 1505.46 2.24 159.00 1507.01 2.34 26.17 1483.54 0.75 247.75
p03 1050 100 2018.94 2024.58 0.28 201.00 2042.97 1.19 51.51 2010.08 -0.44 527.25
p03 1090 100 3116.61 3136.29 0.63 620.00 3129.28 0.41 119.52 3116.48 0.00 1176.72
p03 3070 100 3002.64 3055.51 1.76 1605.00 3037.77 1.17 105.20 3006.16 0.12 1093.73
p03 7090 100 4411.32 4452.56 0.93 2433.00 4427.36 0.36 237.71 4409.87 -0.03 2151.97
p04 150 1028.42 1055.08 2.59 298.00 1074.46 4.48 31.91 1050.29 2.13 307.81
p04 1030 150 2037.00 2093.28 2.76 1152.00 2068.06 1.52 65.20 2048.62 0.57 620.90
p04 1050 150 2901.62 2977.00 2.60 517.00 2902.57 0.03 120.49 2884.43 -0.59 1052.32
p04 1090 150 4581.32 4659.90 1.72 592.00 4624.09 0.93 280.14 4583.06 0.04 2544.07
p04 3070 150 4374.56 4465.47 2.08 251.00 4411.25 0.84 239.44 4367.97 -0.15 2384.57
p04 7090 150 6462.78 6462.78 0.00 2460.00 6501.58 0.60 558.45 6442.79 -0.31 4916.92
p05 199 1296.66 1338.36 3.22 297.00 1330.74 2.63 56.55 1308.87 0.94 535.65
p05 1030 199 2528.82 2582.62 2.13 567.00 2549.28 0.81 103.48 2513.76 -0.60 877.09
p05 1050 199 3548.31 3594.00 1.29 1138.00 3576.07 0.78 160.04 3536.12 -0.34 1319.62
p05 1090 199 5669.26 5710.21 0.72 806.00 5651.45 -0.31 424.39 5588.19 -1.43 4053.89
p05 3070 199 5487.55 5549.77 1.13 1702.00 5526.45 0.71 390.95 5464.72 -0.42 3527.04
p05 7090 199 8297.71 8355.45 0.70 656.00 8388.10 1.09 969.83 8284.08 -0.16 9015.23
p11 120 1042.12 1056.96 1.42 262.00 1189.32 14.13 24.56 1048.77 0.64 238.19
p11 1030 120 2907.39 3017.92 3.80 585.00 2952.67 1.56 40.33 2925.05 0.61 378.51
p11 1050 120 4261.74 4476.38 5.04 365.00 4299.97 0.90 67.39 4239.41 -0.52 653.46
p11 1090 120 6881.04 7117.24 3.43 4882.00 7014.91 1.95 169.52 6919.07 0.55 1630.55
p11 3070 120 6658.52 7126.84 7.03 7147.00 6791.03 1.99 143.70 6717.61 0.89 1399.01
p11 7090 120 10233.37 10429.75 1.92 3948.00 10402.17 1.65 344.44 10287.47 0.53 3204.89

Total 113700.96 115932.88 45013.00 115172.15 5209.32 113811.85 48584.23
Average 1.80 1250.36 1.80 144.70 0.30 1349.56
Max 7.03 7147.00 14.13 969.83 2.42 9015.23

Table 8.10: Comparison with a state-of-the-art method for the SDVRP.155
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Figure 8.8: Convergence of solution quality for the PVRP.

During initial tests we fixed a PVRP-specific parametrization of δ = 0.007 for LS-RRT,

δ = 0.008 for LNS-RRT, pLS = 0.6 for HYBRID-ABHC, and pLS = 0.9925, δ = 0.01 for

HYBRID-RRT, and based on these settings table 8.11 compares the aggregated results

for the five heuristics. Since running times are comparably short on the data set used

we double the number of iterations in the third scenario of each heuristic. Figure 8.8

displays the convergences of total distances.13 Our best heuristics produce solutions with

deviations from the BKS between one and two percent on average. Evidently, LS-ABHC

proceeds very slowly since it conducts an expensive evaluation of moves for all days in

each iteration but finally applies only a move for a single day. In contrast, our adaptation

of LNS performs rather well: LNS-RRT is not much worse than HYBRID-RRT regarding

the deviations from the BKS, and as can be seen in figure 8.8 both heuristics are on the

same level in terms of absolute tour distances. HYBRID-ABHC is a bit slow but can fi-

nally catch up with HYBRID-RRT within the running time tested and produces the best

results in the end (in terms of deviation). The standard parametrization can be improved

by parameter tuning only little, except for LS-RRT, which cannot compete with the best

heuristics, however.

The current (published) state-of-the-art method for the PVRP is the VNS based heuristic

of Hemmelmayr et al. (2009). Recently, Vidal et al. (2011) presented a technical report on

a sophisticated hybrid genetic algorithm for the PVRP (and the multi-depot VRP) com-

bining evolutionary search, local search, and population diversity management schemes

along with many new best solutions. Their average results over ten runs are presented

13Note that the graphs of figure 8.8 start at about 100 seconds. This is due to the expensive construction
of an initial solution for 417-customer instance “v-p13”: for technical reasons the graphs are plotted from
that point in time when solutions have been generated for all instances in the set.
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LS-ABHC LS-RRT LNS-RRT

10K 50K 200K 7.5M 37.5M 150M 10K 50K 200K

Standard Best Avg. dev. (%) 4.69 3.19 2.24 3.66 3.47 3.30 2.07 1.65 1.18
parametrization of five Max. dev. (%) 15.33 13.14 10.13 9.31 9.31 7.33 5.83 5.99 5.83

Average Avg. dev. (%) - - - 4.52 4.46 4.21 2.77 2.28 1.83
of five Max. dev. (%) - - - 10.63 10.85 10.93 6.86 6.97 5.83

Improved Best Avg. dev. (%) - - - 2.42 1.96 1.77 1.96 1.42 1.22
parametrization of five Max. dev. (%) - - - 13.66 10.58 8.31 6.45 5.83 5.83

Average Avg. dev. (%) - - - 3.04 2.56 2.35 2.54 1.95 1.55

of five Max. dev. (%) - - - 14.24 10.93 8.48 6.62 5.98 5.83

Avg. time (s) 67.12 298.93 1112.47 77.84 358.07 1382.35 36.27 156.44 604.24

HYBRID-ABHC HYBRID-RRT

10K 50K 200K 1.5M 7.5M 30M

Standard Best Avg. dev. (%) 2.48 1.67 0.82 1.62 1.10 0.99
parametrization of five Max. dev. (%) 8.96 6.32 4.44 7.11 5.83 5.83

Average Avg. dev. (%) 3.20 2.25 1.30 2.19 1.62 1.37
of five Max. dev. (%) 9.79 7.31 4.86 8.04 5.84 5.83

Improved Best Avg. dev. (%) 2.59 1.60 0.75 1.49 1.15 1.01
parametrization of five Max. dev. (%) 8.06 5.83 4.41 5.88 5.50 5.87

Average Avg. dev. (%) 3.26 2.12 1.21 1.97 1.46 1.27

of five Max. dev. (%) 9.34 7.57 4.56 5.98 5.81 5.89

Avg. time (s) 57.04 254.84 960.02 60.25 273.03 1068.71

Table 8.11: Aggregated results for the PVRP.157
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in table 8.12 and compared with HYBRID-RRT under short running times and with

HYBRID-ABHC under long running times. The authors conduct their tests on an AMD

Opteron 2.4 GHz but scale computations times to mimic a Pentium IV 3.0 GHz, so that

we multiply our own running times with 2.22, which results from assuming a Dongarra

(2011) factor of 242 Mflop/s and a CINT2006 base score of 9.55 for their “virtual” ma-

chine. Evidently, our heuristics cannot compete with the elaborate method of Vidal et al.

(2011) that generates solutions with an average deviation from the BKS of 0.31 percent

with average running times of around four minutes. HYBRID-RRT yields a deviation

of 1.97 percent on average with slightly shorter running times, but even our best results

during longer runs obtained with HYBRID-ABHC stagnate at 0.75 percent. Note that

the heuristic of Hemmelmayr et al. (2009) produces solutions with an average deviation of

1.60 percent within 147.66 seconds on a PC with 3.2 GHz, which is a quality comparable

to the results of our framework-based heuristics, so that we can state that our heuristics

are still among the best methods for the PVRP.

8.2.6 Truck and Trailer Routing Problem

We evaluate our heuristics for the TTRP on a set of 21 instances generated by Chao (2002).

These instances are derived from seven CMT problems for the standard VRP having be-

tween 50 and 199 customers by specifying 25%, 50%, and 75% of the customers as truck

customers, respectively. In table 8.14 we use instance names indicating the basic CMT

problem and the truck customer percentage, separated by an underscore. Villegas et al.

(2011) present the BKS for these instances; a few solutions are contributed by the authors

themselves, while most of the rest were generated for the first time by the SA heuristic

of Lin et al. (2009). Note that for a fair comparison it is important to consider the fleet

size constraint of the TTRP; allowing to use indefinite numbers of trucks and trailers we

could generate solutions with tour distances around 1.2 percent shorter than the solutions

presented in the following.

After initial tuning we use a TTRP-specific parametrization of δ = 0.012 for LS-RRT,

δ = 0.011 for LNS-RRT, and pLS = 0.9925, δ = 0.025 for HYBRID-RRT; we could not

improve the settings of HYBRID-ABHC. Table 8.13 compares the aggregated results for

the five heuristics under standard parametrization and improved parametrization. The

instance sizes of the data set are rather small, but nevertheless the short running times

indicate that the increase of computational effort of our complex neighborhood adapta-

tions is moderate; especially for LNS moves the effort per iteration is small. Since solution

times are so short we double the number of iterations in the third scenario of each heuris-
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Vidal et al. (2011) HYBRID-RRT HYBRID-ABHC
Instance BKS Avg. of ten 1.5M, Avg. of five 200K, Best of five Avg.

Name |Nc| TD TD dev (%) time (s) TD dev (%) time (s) time* (s) TD dev (%) time (s)

v-p01 50 524.61 524.61 0.00 13.20 524.61 0.00 11.07 24.59 524.61 0.00 99.82
v-p02 50 1322.87 1322.87 0.00 26.40 1341.97 1.44 19.76 43.89 1324.10 0.09 285.65
v-p03 50 524.61 524.61 0.00 10.80 524.61 0.00 11.58 25.74 524.61 0.00 113.39
v-p04 75 835.26 836.59 0.16 63.00 841.31 0.72 15.95 35.43 835.26 0.00 158.47
v-p05 75 2024.96 2033.72 0.43 136.20 2060.61 1.76 32.19 71.52 2039.89 0.74 457.53
v-p06 75 835.26 842.48 0.86 53.40 843.26 0.96 18.90 41.99 835.26 0.00 214.96
v-p07 100 826.14 827.02 0.11 52.80 827.75 0.19 31.58 70.16 826.14 0.00 451.86
v-p08 100 2022.47 2022.85 0.02 152.40 2066.16 2.16 54.45 120.96 2038.56 0.80 963.25
v-p09 100 826.14 826.94 0.10 60.60 828.25 0.26 35.19 78.19 826.14 0.00 513.48
v-p10 100 1593.43 1605.22 0.74 108.00 1649.03 3.49 46.76 103.88 1604.52 0.70 770.11
v-p11 139 770.89 775.84 0.64 276.00 801.16 3.93 68.20 151.52 780.14 1.20 1000.43
v-p12 163 1186.47 1195.29 0.74 320.40 1257.41 5.98 79.18 175.90 1238.75 4.41 1167.37
v-p13 417 3492.89 3599.86 3.06 2400.00 3660.95 4.81 333.36 740.61 3506.45 0.39 3801.04
v-p14 20 954.81 954.81 0.00 4.80 954.81 0.00 9.31 20.69 954.81 0.00 73.42
v-p15 38 1862.63 1862.63 0.00 10.20 1862.63 0.00 16.80 37.33 1862.63 0.00 222.04
v-p16 56 2875.24 2875.24 0.00 19.20 2875.24 0.00 26.56 59.00 2875.24 0.00 464.46
v-p17 40 1597.75 1597.75 0.00 16.20 1636.12 2.40 12.31 27.36 1611.07 0.83 138.56
v-p18 76 3131.09 3131.09 0.00 53.40 3215.44 2.69 41.89 93.06 3151.93 0.67 611.76
v-p19 112 4834.34 4834.50 0.00 135.60 4846.49 0.25 73.13 162.48 4846.49 0.25 1740.35
v-p20 184 8367.40 8367.40 0.00 240.60 8367.40 0.00 171.00 379.90 8367.40 0.00 4423.02
v-p21 60 2170.61 2170.61 0.00 54.00 2182.78 0.56 22.49 49.97 2184.33 0.63 297.58
v-p22 114 4193.95 4194.23 0.01 256.20 4320.96 3.03 67.09 149.05 4269.03 1.79 1242.44
v-p23 168 6420.71 6434.10 0.21 257.40 6801.11 5.92 150.91 335.28 6620.50 3.11 3373.05
v-p24 51 3687.46 3687.46 0.00 19.20 3734.50 1.28 18.08 40.18 3687.46 0.00 238.62
v-p25 51 3777.15 3777.15 0.00 35.40 3781.57 0.12 19.78 43.95 3777.15 0.00 285.99
v-p26 51 3795.32 3795.32 0.00 19.80 3795.95 0.02 17.70 39.32 3795.32 0.00 314.38
v-p27 102 21833.87 21885.70 0.24 211.20 22716.99 4.04 53.10 117.98 21963.83 0.60 758.55
v-p28 102 22242.51 22272.60 0.14 280.20 22671.10 1.93 54.45 120.97 22354.26 0.50 786.84
v-p29 102 22543.75 22564.05 0.09 231.60 23201.20 2.92 54.12 120.24 22593.09 0.22 780.16
v-p30 153 73875.19 74534.38 0.89 599.40 77393.14 4.76 118.94 264.24 76453.06 3.49 1643.22
v-p31 153 76001.57 76686.65 0.90 600.00 79023.84 3.98 121.49 269.90 77425.50 1.87 1740.34
v-p32 153 77598.00 78168.82 0.74 600.00 80371.31 3.57 120.68 268.12 78958.70 1.75 1588.67

Total 358549.35 360732.39 7317.60 370979.66 1928.02 4283.40 364656.25 30720.79
Average 0.31 228.68 1.97 60.25 133.86 0.75 960.02
Max 3.06 2400.00 5.98 333.36 740.61 4.41 4423.02

Table 8.12: Comparison with a state-of-the-art method for the PVRP.159
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Figure 8.9: Convergence of solution quality for the TTRP.

tic. Figure 8.9 shows the convergences of solution quality over time.

Evidently, all heuristics except for LS-RRT can produce solutions within a gap of one

percent or less above the BKS. LNS-RRT performs remarkably well and again, the hy-

brid methods are the best, most notably HYBRID-ABHC in its standard configuration.

HYBRID-RRT can compete with HYBRID-ABHC under improved settings during shorter

running times. In general, the influence of parameter calibration is rather moderate for

all heuristics except for the inferior LS-RRT.

We compare HYBRID-ABHC with the current state-of-the-art TTRP method which is

the recently published hybrid metaheuristic of Villegas et al. (2011) that combines differ-

ent concepts such as the greedy randomized adaptive search procedure (GRASP), VNS, and

path relinking. The authors obtain their best results using a configuration GRASP/VNS

with evolutionary path relinking, and we state their average cost values from ten repli-

cations in table 8.14. The next group of columns lists the average results of HYBRID-

ABHC with 100,000 iterations (not listed in table 8.13); evidently, HYBRID-ABHC can

yield the same solution quality within slightly shorter running times on average. Note

that Villegas et al. (2011) run their tests on the same CPU as we do, so that computation

times can be compared directly. Finally, the best results of five replications of 200,000

iterations each turn out to be very close to the BKS and include four new best solutions.

We conclude that our adapted heuristics, especially HYBRID-ABHC, are competitive

concerning both solution time and quality or even slightly better than the current state-

of-the-art methods for the TTRP.
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LS-ABHC LS-RRT LNS-RRT

10K 50K 200K 7.5M 37.5M 150M 10K 50K 200K

Standard Best Avg. dev. (%) 4.84 2.63 1.06 9.16 8.85 8.96 1.93 1.41 1.36
parametrization of five Max. dev. (%) 12.38 12.02 3.37 21.06 21.06 21.06 4.78 3.47 3.76

Average Avg. dev. (%) - - - 10.50 10.13 10.19 3.10 2.43 2.14
of five Max. dev. (%) - - - 24.42 22.17 21.38 6.57 5.40 4.23

Improved Best Avg. dev. (%) - - - 5.05 4.28 4.25 1.74 1.10 0.79
parametrization of five Max. dev. (%) - - - 14.40 14.06 13.47 5.55 4.33 2.99

Average Avg. dev. (%) - - - 6.19 5.46 5.26 2.85 1.84 1.33

of five Max. dev. (%) - - - 15.93 15.93 15.07 7.93 4.82 3.55

Avg. time (s) 101.03 497.29 2045.80 85.30 415.67 1622.29 32.94 161.43 643.40

HYBRID-ABHC HYBRID-RRT

10K 50K 200K 1.5M 7.5M 30M

Standard Best Avg. dev. (%) 1.72 0.71 0.14 1.68 1.14 1.12
parametrization of five Max. dev. (%) 5.01 2.81 1.13 3.73 2.94 2.81

Average Avg. dev. (%) 2.76 1.20 0.49 2.41 1.84 1.68
of five Max. dev. (%) 8.15 3.59 1.67 4.85 4.24 3.57

Improved Best Avg. dev. (%) -* -* -* 1.23 0.83 0.52
parametrization of five Max. dev. (%) -* -* -* 4.12 3.48 1.66

Average Avg. dev. (%) -* -* -* 1.96 1.16 0.77

of five Max. dev. (%) -* -* -* 4.53 3.96 3.14

Avg. time (s) 68.06 332.64 1339.21 75.89 368.67 1453.84

Table 8.13: Aggregated results for the TTRP.161
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Villegas et al. (2011) HYBRID-ABHC HYBRID-ABHC
Instance BKS Avg. of ten 100K, Avg. of five 200K, Best of five Avg.

Name |Nc| TD TD dev (%) time (s) TD dev (%) time (s) TD dev (%) time (s)

CMT1 25 50 564.68 565.99 0.23 70.20 564.81 0.02 103.87 564.68 0.00 206.21
CMT1 50 50 611.53 614.23 0.44 77.40 612.44 0.15 114.79 611.53 0.00 229.68
CMT1 75 50 618.04 618.04 0.00 63.00 618.04 0.00 114.42 618.04 0.00 227.64
CMT2 25 75 798.53 803.51 0.62 161.40 804.49 0.75 199.76 799.34 0.10 399.70
CMT2 50 75 839.62 841.63 0.24 169.20 839.62 0.00 218.12 839.62 0.00 433.33
CMT2 75 75 930.64 961.47 3.31 173.40 945.36 1.58 224.12 940.69 1.08 444.44
CMT3 25 100 830.48 830.48 0.00 363.00 830.48 0.00 460.24 830.48 0.00 930.20
CMT3 50 100 872.56 876.21 0.42 417.60 876.45 0.45 490.70 871.98 -0.07 999.06
CMT3 75 100 912.02 918.45 0.71 502.80 926.14 1.55 473.17 922.36 1.13 944.93
CMT4 25 150 1039.07 1050.11 1.06 1130.40 1046.58 0.72 851.15 1040.46 0.13 1833.16
CMT4 50 150 1093.37 1100.95 0.69 1272.00 1102.07 0.80 1042.95 1093.89 0.05 2171.29
CMT4 75 150 1152.32 1158.88 0.57 1546.80 1170.32 1.56 1082.40 1154.82 0.22 2171.94
CMT5 25 199 1287.18 1305.83 1.45 2636.40 1319.07 2.48 1681.80 1289.20 0.16 3274.64
CMT5 50 199 1339.36 1354.04 1.10 2734.20 1352.50 0.98 1707.98 1341.25 0.14 3427.71
CMT5 75 199 1420.72 1437.52 1.18 3589.80 1452.25 2.22 1834.77 1423.55 0.20 3728.35
CMT11 25 120 1002.49 1003.07 0.06 883.80 1026.59 2.40 582.68 1001.48 -0.10 1158.57
CMT11 50 120 1026.20 1042.61 1.60 790.20 1031.81 0.55 629.41 1026.20 0.00 1252.41
CMT11 75 120 1098.15 1118.63 1.86 761.40 1098.46 0.03 667.54 1098.15 0.00 1323.42
CMT12 25 100 813.30 819.81 0.80 312.60 819.43 0.75 417.63 812.69 -0.08 836.99
CMT12 50 100 848.93 860.12 1.32 337.20 848.20 -0.09 493.06 848.12 -0.10 997.35
CMT12 75 100 909.06 909.06 0.00 378.60 909.25 0.02 567.25 909.06 0.00 1132.30

Total 20008.25 20190.64 18371.40 20194.36 13957.79 20037.59 28123.31
Average 0.84 874.83 0.81 664.66 0.14 1339.21
Max 3.31 3589.80 2.48 1834.77 1.13 3728.35

Table 8.14: Comparison with a state-of-the-art method for the TTRP.
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Figure 8.10: Overall solution qualities and computation times.

8.3 Summary

Completing our numerical evaluations we finally compare the five heuristics with respect

to their overall solution quality, and we also address aspects of stability and robustness,

which are important quality measures in practical application as well. First, figure 8.10

gives an overview of the average deviations from the BKS of each VRP obtained during

the longest running time scenarios under problem-specific parametrization, respectively,

and in addition it plots the average deviations and running times over all problems in

order to rank solution quality in relation to computational effort. This presentation con-

firms our findings from the previous sections: heuristics combining LS and LNS perform

significantly better than methods applying only one of the two neighborhood paradigms.

Overall, we consider HYBRID-RRT as the winner of this comparison with respect to

both quality and time. Slightly better solutions are obtained with HYBRID-ABHC, yet

requiring significantly more computational effort. The observation that the ABHC control

enables a thorough exploration of the solution space when long running times are avail-

able applies to LS-ABHC as well. LNS-RRT is a rather fast heuristic, and the solutions

generated are not too bad either; in contrast, the use of LS-RRT is not recommendable.

The robustness of a heuristic refers to multiple criteria and levels; most notably, we can

assess whether a heuristic yields stable and reliable results over

• multiple problem variants,

• multiple parameter settings,
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• multiple instances of a problem variant, and

• multiple runs on the same problem instance.

Figure 8.10 visualizes that for a given heuristic the variability of solution quality over

different problem variants is moderate in the sense that there are only few cases in which

a heuristic performs exceptionally good or bad on one problem compared to its average

performance. As a consequence, we expect (in particular) our hybrid methods to perform

also well when adapted to new problems.

With respect to parameter settings we have already experienced in section 8.1 during

initial tuning that the deviation parameter δ of RRT heuristics must be tuned carefully.

Section 8.2 confirmed the impression that LS-RRT and also HYBRID-RRT are not very

robust, yielding exceptionally bad results for certain settings. The incorporation of LNS

moves generally adds stability to the search, yet the exact proportion between LS and

LNS moves is not particularly important.

In the same context figure 8.11 analyzes the impact of parameter tuning on the success

of the individual heuristics (except for the parameter-free LS-ABHC). For each heuristic

and each VRP we present the decrease of the average deviation from the respective BKS

obtained by tuning in percentage points. Generally, one must be careful concluding from

unsuccessful tuning on one particular problem to the fact that a heuristic is exceptionally

stable – the standard parametrization of the framework could “accidentally” be very suit-

able for that problem. Yet, the overall picture confirms that LS-RRT is very sensitive to

parameter settings, while HYBRID-ABHC is a very robust heuristic that hardly requires

tuning of its main parameter. Figure 8.11 also displays the increase or decrease of running

time due to tuning in percent: most notably, the average running time of HYBRID-RRT

is shorter by around 15 percent compared to standard settings, which reflects the modified

balances of LS and LNS moves. The impact of tuning appears rather moderate for this

heuristic at first, but assuming that solution quality still improves with longer running

times the impact is much higher, in fact, as we have already experienced in the previous

section.

Developing VRP heuristics one sometimes makes the experience that a heuristic produces

good results overall but fails (or performs significantly worse) on a small, particular set of

problem instances. Instances may have very special (and rare) characteristics that hinder

the solution process in a certain way, and such issues often cannot be identified easily. A

similar problem is related to bad or unsuitable initial solutions: a construction heuristic
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Figure 8.11: Impact of parameter tuning.

predetermines a solution structure, e.g. a specific clustering, that an improvement heuris-

tic may have difficulties to overcome. Here, a heuristic is robust if its outcome does not

depend too much on the initial solution of the search. In this context we take a look at

the worst results, in terms of deviation from the BKS, that our five heuristics produced

among the instances of the six VRP data sets, respectively: for every heuristic and every

problem figure 8.12 compares the average deviations (in strong colors) and the maximum

deviations14 (in pale colors). In addition, we plot the averages over all VRP variants,

respectively. Clearly, LS-RRT has the most difficulties producing reliable results for all

instances of a data set, yielding deviations of more than ten percent for three of the six

VRPs in the worst case. HYBRID-ABHC, in contrast, is very robust, yielding deviations

of less than five percent in the worst case. The observation that the ABHC concept and

the power of LNS moves contribute to robustness is underlined by the fact that HYBRID-

RRT does not turn out to be significantly more robust than LS-ABHC and LNS-RRT are.

Finally, we examine how the solution quality of a heuristic varies among multiple runs

on a single problem instance. In practical applications there is often time for a single

solution run only, so that major fluctuations in quality are not desirable. For this purpose

we measure the variability of results for a given problem instance by the coefficient of

variation (CV) of tour distances obtained over all replications conducted. Figure 8.13

presents the average CVs over all instances tested for a problem class. We consider the

interpretation of distance variability as a little problematical in the case of the VRPTW,

14The deviations are calculated for the average cost over five replications of each instance, as defined
in section 8.2.1.
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Figure 8.12: Average and maximum deviations within data sets.

since the distance is influenced by the success of the (randomized) vehicle minimization

procedure, as discussed in section 8.2.2. Hence, figure 8.13 shows the average CVs over

all problems denoted by “Avg. CV”, but also over all problems except for the VRPTW

denoted by “Avg. CV*”. Ignoring the VRPTW, variability does not appear to differ

dramatically among the heuristics in general, yet LNS moves seem to have a positive

influence on stability, and the hybrid methods are most stable again.

As a general recommendation on the procedure of developing a solution method based on

our framework to be embedded into a specific DSS we propose the following steps:

1. For most problems the quickest way to create a runnable heuristic for DSS proto-

typing is adapting the algorithmic components required for LNS-RRT first, i.e. a

construction heuristic and the two basic, yet powerful operations for removal and

reinsertion. Producing acceptable results with moderate running times and without

too much parameter tuning the LNS-RRT heuristic is a good foundation for the

first experiments with a new VRP variant.

2. Then, to obtain high-quality results the implementation of LS moves is mandatory.

Often, code written for LNS operations can be reused to a certain degree. Since

HYBRID-ABHC hardly requires parameter tuning it is the hybrid method of choice

in this development phase.

3. Finally, when all adaptations are completed and when also real-world data is avail-

able it is worth a try to switch to HYBRID-RRT and tune parameters on a set of
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Figure 8.13: Variability of tour distance over multiple runs.

representative problem instances to obtain a high-quality heuristic tailored to the

customer’s typical planning scenario.
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Chapter 9

Conclusion

Small profit margins and cost pressure in the road transportation business require an

efficient planning of operations on the part of trucking companies. Complicating aspects

such as legal restrictions, specific customer requirements, or the necessity of responding

quickly to unforeseen events disqualify manual planning entirely, and even off-the-shelf

route planning software can be inappropriate for setting up both feasible and cost-effective

transportation plans in a certain business context. Vendors of sophisticated, customized

decision support systems that provide support on different planning levels are confronted

with the task of tailoring embedded vehicle routing algorithms to the specific demands

and business rules of their clients. For such purposes we proposed the concept and de-

sign of a flexible metaheuristic framework to facilitate and accelerate the development

of solution methods for a wide range of rich vehicle routing problems arising in diverse

industries. After a brief summary of this thesis we discuss our work critically in section

9.1 and point to a few potential starting points for further research in section 9.2.

Part I provided an introduction into the field of VRPs and metaheuristic solution meth-

ods. Our framework is based on solution methods for the standard VRP and consequently,

we started chapter 2 with defining this basic variant of the VRP class. Then, we pre-

sented an overview of real-world extensions to the VRP – the class of rich VRPs. Partly,

this overview served as an illustration of the relevance of flexible and adaptable solution

approaches, but it also served as the foundation of our requirements analysis in the second

part of the thesis. In chapter 3 we introduced common metaheuristics from the literature

and explained those local search and large neighborhood search techniques in detail upon

which our framework is based.
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Part II was dedicated to the framework itself. Reviewing existing publications on VRP

frameworks in chapter 4 we first documented that there is a lack of flexible approaches

that explicitly address the solution of wide ranges of VRPs. We formulated requirements

for a good framework, including the four attributes flexibility, simplicity, accuracy, and

speed, as well as characteristics of rich VRPs that it should be able to take account of.

Aiming to meet these requirements we presented the architecture and main concepts of our

framework in chapter 5, mainly on a pseudocode level: we defined the five implemented

standard VRP heuristics and the mechanisms available for adapting these heuristics to

rich VRPs. The central aspect is the separation of standard VRP operations and specific

VRP operations by user-definable checking and post-processing functions. Chapter 6 first

covered some technical aspects referring to our choice of the Microsoft .NET framework as

the foundation of our implementation; afterwards we summarized our framework design

and especially presented its most relevant classes.

Part III finally dealt with the evaluation of our framework, mainly regarding flexibil-

ity, accuracy, and speed, by developing customized metaheuristics for five rich VRPs. In

chapter 7 we explained in detail which modifications of data structures and neighborhoods

are required to adapt the built-in heuristics to the VRPTW, the VRPC, the SDVRP, the

PVRP, and the TTRP. We have chosen this broad range of VRPs with diverse characteris-

tics to demonstrate that our framework can be used flexibly for many scenarios. Chapter

8 presented computational results for the heuristics developed; first, we determined a

standard parametrization for the framework, then we tuned every heuristic individually

for each problem. Comparing our own results with state-of-the-art solvers of the litera-

ture we verified the good solution quality that can be obtained from heuristics based on

our framework approach. Finally, we summarized our results and made some additional

remarks on aspects of robustness and stability.

9.1 Critical Review

In section 4.2 we interpreted the four attributes flexibility, simplicity, accuracy, and speed

defined by Cordeau et al. (2002) for VRP heuristics as important attributes of a good

VRP framework, putting a stronger emphasis on flexibility and simplicity. We believe

that the framework developed for this thesis complies with all four attributes.

Flexibility Our framework provides a good basis for the development of metaheuristics

to solve VRPs with diverse characteristics, as we demonstrated in chapter 7. Giving the
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user freedom to extend the solution representation and to incorporate custom operations

into several stages of the solution process, for instance implementing checks for solution-,

tour-, or sequence-level constraints, the framework is flexible enough to account for a

broad range of real-world requirements. Yet, it is conceivable that for some problems

not covered in this thesis a few minor changes or extensions to the framework could be

required.

Simplicity Simplicity is a very vague criterion and difficult to measure. The framework

has been designed upon well-known neighborhood search techniques which are among the

most common methods to solve VRPs. This is helpful in the first place since a lot of

knowledge and experience is available in the literature on how to apply these techniques

to rich VRPs. The actual effort required for a specific adaptation greatly depends on the

problem under consideration. Since the intellectual complexity can hardly be quantified

we resort to the amount of code as an auxiliary measure. These are the numbers of lines

of code of our VRP-specific implementations:

VRP variant lines of code

Standard VRP (framework) 2,671

VRPTW 332

VRPC 481

SDVRP 714

PVRP 714

TTRP 1,556

Evidently, adaptation is rather easy when only new constraints have to be checked and

certain moves have to be forbidden, which is the case for the VRPTW and also the VRPC.

With complicating aspects such as new decision variables or a new tour structure the effort

can increase dramatically. Note that we put a lot of effort into our TTRP heuristics, which

is evident from the huge amount of lines of code; yet, this does not necessarily mean that

results of similar quality could not have been obtained with less effort. Also consider that

for all problems we applied both local search and large neighborhood search. However, to

obtain a runnable heuristic producing acceptable solution quality it is sufficient to adapt

a single base heuristic as a start. For instance, to create an LS-based heuristic for the

PVRP it is almost sufficient to add a neighborhood for switching visit combinations, as

described in section 7.4. In contrast, time window checks required for the VRPTW can

be incorporated very quickly into the insertion mechanisms of the LNS approach.

Accuracy and speed In chapter 8 our customized heuristics turned out to be very

competitive against state-of-the-art methods presented in the literature. On some prob-
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lems, most notably the SDVRP and the TTRP, our hybrid methods performed better

than the reference methods with respect to both solution quality and computational ef-

fort, and we could generate some new best solutions for widely-used problem instances as

well. On other problems they were beaten by highly sophisticated and quick algorithms

but still produced good results. We observed that combining LS and LNS techniques eas-

ily improves solution quality and stability of the search. In particular, HYBRID-ABHC is

a heuristic generating high-quality solutions that is very robust and that can be applied

out-of-the-box without much parameter tuning. HYBRID-RRT, if calibrated well, can

often produce even better results with less computational effort.

Even though the use of the framework worked out well for the five rich VRPs considered,

there is no guarantee that high-quality heuristics can be derived for every other VRP. The

adaptation to a complicated problem can demand a lot of experience and creativity from

the user – as seen in the case of the TTRP the effort required can be very high. Still,

we conclude that our framework provides a feasible and pragmatic approach to deal with

real-world requirements in solving VRPs. Small disadvantages concerning solution quality

and computation times in comparison with – sometimes very elaborate and specialized

– reference methods are compensated by the increase of flexibility and productivity in

practical development processes. In general, we consider a solid heuristic tailored to the

customer’s planning scenario and observing all relevant problem-specific aspects more

valuable than a heuristic performing better on an inappropriate problem formulation by

a few percent.

9.2 Future Research

Evidently, work on the subject can be continued almost indefinitely by evaluating even

more VRP variants. Since the present framework cannot be used for road transportation

scenarios corresponding to pickup and delivery problems or arc routing problems it could

be interesting as well to translate its concepts into new frameworks targeting these two

problem classes.

Despite the good results obtained for the five selected rich VRPs the performance of

the built-in heuristics for the standard VRP indicates that there is still some room for

improvement. One starting point for additional research could be the coordination of

LS and LNS within the hybrid methods. Those methods are successful despite mixing

the two neighborhood concepts in a random, naive way only. Combining LS and LNS

more intelligently it could be possible to take advantage of their respective strengths –
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intensification and diversification – even better. A source of inspiration might be variable

neighborhood search, which is a technique that combines different types of moves in a

purposeful way.

It could be a promising approach to enrich the neighborhood search methods of the

framework with evolutionary or population-based concepts which have attracted a great

deal of attention over the last few years. The effort of converting conventional VRP

heuristics into memetic algorithms appears to be moderate since the additional operations

related with the management of populations can probably be realized rather generically

on the framework-level. Finally, complexity-reducing techniques for the solution of large-

scale VRPs are useful to improve running times. The granularity principle introduced

by Toth and Vigo (2003), for instance, which dynamically hides costly arcs from the

network and thereby controls the neighborhood size, could easily be incorporated into the

framework and used generically for all VRPs.
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Appendix A

Pseudocodes

In section 5.4.2 we explained how the predefined LS neighborhoods can be adapted by

user-definable checking and post-processing functions, and we presented a pseudocode

showing the exploration of the relocate neighborhood that covers all relevant aspects

of the remaining neighborhoods as well. For the sake of completeness we present the

respective codes of the

• exchange neighborhood in algorithm A.1, the

• 2-opt* neighborhood in algorithm A.2, the

• relocateI neighborhood in algorithm A.3, and the

• 2-opt neighborhood in algorithm A.4.

Algorithm A.1 User-definable functions in exchange

1: function Exchange(solution S)
2: for all t1, t2 ∈ tours(S), t1 6= t2 do

3: CheckExchangeBetweenTours(t1,t2)
4: for all c1 ∈ customers(t1), c2 ∈ customers(t2) do
5: check capacities
6: determine ∆, Ae, and Al

7: (∆̄, Āe, Āl,Φs) := CheckExchange(c1,c2)
8: check acceptability of (∆̄, Āe, Āl)
9: store move (c1, c2, ∆̄,Φ

s)
10: end for

11: end for

12: end function

175



A. PSEUDOCODES

Algorithm A.2 User-definable functions in 2-opt*

1: function TwoOptStar(solution S)
2: for all t1, t2 ∈ tours(S), t1 6= t2 do

3: CheckTwoOptStarBetweenTours(t1,t2)
4: for all c1 ∈ locations(t1), c2 ∈ locations(t2) do
5: check capacities
6: determine ∆, Ae, and Al

7: (∆̄, Āe, Āl,Φs) := CheckTwoOptStar(c1,c2)
8: check acceptability of (∆̄, Āe, Āl)
9: store move (c1, c2, ∆̄,Φ

s)
10: end for

11: end for

12: end function

Algorithm A.3 User-definable functions in relocateI

1: function RelocateI(solution S)
2: for all t ∈ tours(S), c ∈ customers(t) do
3: for all i ∈ locations(t), i 6= c, i 6= predecessor of c do
4: determine ∆, Ae, and Al

5: (∆̄, Āe, Āl,Φs) := CheckRelocateI(c,i)
6: check acceptability of (∆̄, Āe, Āl)
7: store move (c, i, ∆̄,Φs)
8: end for

9: end for

10: end function

Algorithm A.4 User-definable functions in 2-opt

1: function TwoOpt(solution S)
2: for all t ∈ tours(S) do
3: for all c1, c2 ∈ customers(t), c1 6= c2 do

4: determine ∆, Ae, and Al

5: (∆̄, Āe, Āl,Φs) := CheckTwoOpt(c1,c2)
6: check acceptability of (∆̄, Āe, Āl)
7: store move (c1, c2, ∆̄,Φ

s)
8: end for

9: end for

10: end function
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Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers and

Operations Research, 24(11):1097–1100.

182



REFERENCES

Mullaseril, P. A., Dror, M., and Leung, J. (1997). Split-delivery routeing heuristics in

livestock feed distribution. Journal of the Operational Research Society, 48(2):107–116.

Muyldermans, L. and Pang, G. (2010). On the benefits of co-collection: Experiments

with a multi-compartment vehicle routing algorithm. European Journal of Operational

Research, 206(1):93–103.

Nag, B., Golden, B., and Assad, A. (1988). Vehicle routing with site dependencies. In

Golden, B. and Assad, A., editors, Vehicle Routing: Methods and Studies, pages 149–

159. North-Holland, Amsterdam.

Or, I. (1976). Traveling salesman-type combinatorial problems and their relation to the

logistics of blood banking. PhD thesis, Department of Industrial Engineering and

Management Sciences, Northwestern University.

Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for

the vehicle routing problem. Annals of Operations Research, 41(4):421–451.

Partyka, J. and Hall, R. (2010). On the road to connectivity. OR/MS Today, 37(1):42–49.

Pisinger, D. and Ropke, S. (2005). A general heuristic for vehicle routing problems.

Technical Report 05/01, DIKU, University of Copenhagen.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing problems.

Computers and Operations Research, 34(8):2403–2435.

Potvin, J.-Y. and Rousseau, J.-M. (1995). An exchange heuristic for routing problems

with time windows. Journal of the Operational Research Society, 46(12):1433–1446.

Psaraftis, H. N. (1995). Dynamic vehicle routing: Status and prospects. Annals of

Operations Research, 61:143–164.

Ropke, S. (2011). Heuristic solutions for the CVRP. http://www.diku.dk/~sropke/

(last accessed January 19, 2011).

Ropke, S. and Pisinger, D. (2006a). An adaptive large neighborhood search heuristic for

the pickup and delivery problem with time windows. Transportation Science, 40(4):455–

472.

Ropke, S. and Pisinger, D. (2006b). A unified heuristic for a large class of vehicle routing

problems with backhauls. European Journal of Operational Research, 171(3):750–775.

183

http://www.diku.dk/~sropke/


REFERENCES

Sariklis, D. and Powell, S. (2000). A heuristic method for the open vehicle routing problem.

Journal of the Operational Research Society, 51(5):564–573.

Savelsbergh, M. (1992). The vehicle routing problem with time windows: Minimizing

route duration. ORSA Journal on Computing, 4:146–154.

Scheuerer, S. (2006). A tabu search heuristic for the truck and trailer routing problem.

Computers and Operations Research, 33:894–909.

Schrage, L. (1981). Formulation and structure of more complex/realistic routing and

scheduling problems. Networks, 11(2):229–232.

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., and Dueck, G. (2000). Record break-

ing optimization results using the ruin and recreate principle. Journal of Computational

Physics, 159:139–171.

Scott Morton, M. S., editor (1971). Management Decision Systems: Computer Based

Support for Decision Making. Division of Research, Graduate School of Business Ad-

ministration, Harvard University, Boston.

Shaw, P. (1998a). A new local search algorithm providing high quality solutions to vehicle

routing problems. Technical report, APES group.

Shaw, P. (1998b). Using constraint programming and local search methods to solve vehicle

routing problems. Proceedings CP-98 (Fourth International Conference on Principles

and Practice of Constraint Programming).

Sierksma, G. and Tijssen, G. A. (1998). Routing helicopters for crew exchanges on off-

shore locations. Annals of Operations Research, 76:261–286.

SINTEF (2011). Transportation optimization portal of SINTEF applied mathematics.

http://www.sintef.no/projectweb/top/ (last accessed August 12, 2011).

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with

time window constraints. Operations Research, 35:254–265.

Sprague, R. H. and Carlson, E. D., editors (1982). Building Effective Decision Support

Systems. Prentice-Hall, Englewood Cliffs, NJ.

Taillard, E. D., Badeau, P., Gendreau, M., Guertin, F., and Potvin, J.-Y. (1997). A tabu

search heuristic for the vehicle routing problem with soft time windows. Transportation

Science, 31(2):170–186.

184

http://www.sintef.no/projectweb/top/


REFERENCES

Taillard, E. D., Gambardella, L. M., Gendreau, M., and Potvin, J.-Y. (2001). Adap-

tive memory programming: A unified view of metaheuristics. European Journal of

Operational Research, 135(1):1–16.

Taillard, E. D., Laporte, G., and Gendreau, M. (1996). Vehicle routeing with multiple

use of vehicles. Journal of the Operational Research Society, 47(8):1065–1070.

Toth, P. and Vigo, D. (2002). The Vehicle Routing Problem. SIAM.

Toth, P. and Vigo, D. (2003). The granular tabu search and its application to the vehicle-

routing problem. Journal on Computing, 15:333–346.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and Rei, W. (2011). A hybrid

genetic algorithm for multi-depot and periodic vehicle routing problems. Technical

Report, CIRRELT-2011-05, University of Montreal.

Villegas, J. G., Prins, C., Prodhon, C., Medaglia, A. L., and Velasco, N. (2011). A GRASP

with evolutionary path relinking for the truck and trailer routing problem. Computers

and Operations Research, 38(9):1319–1334.

Voss, S., Osman, I. H., and Roucairol, C., editors (1999). Meta-Heuristics: Advances

and Trends in Local Search Paradigms for Optimization. Kluwer Academic Publishers,

Norwell, MA, USA.

Voss, S. and Woodruff, D., editors (2002). Optimization Software Class Libraries. Kluwer

Academic Publishers, Boston, MA, USA.

Voudouris, C. and Tsang, E. (1999). Guided local search and its application to the

traveling salesman problem. European Journal of Operational Research, 113(2):469–

499.

Whittley, I. M. and Smith, G. D. (2004). The attribute based hill climber. Journal of

Mathematical Modelling and Algorithms, 3(2):167–178.

Zachariadis, E. E., Tarantilis, C. D., and Kiranoudis, C. T. (2009). A guided tabu search

for the vehicle routing problem with two-dimensional loading constraints. European

Journal of Operational Research, 195(3):729–743.

185


	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations and Symbols
	Introduction
	Planning Problems in Road Transportation
	Decision Support for Road Transportation
	Metaheuristic VRP Framework
	Main Contributions
	Outline

	I Vehicle Routing Problems and Solution Procedures
	Rich Vehicle Routing Problems
	The Standard VRP
	Extensions of the VRP
	Vehicle Routing Problem with Time Windows
	Vehicle Routing Problem with Compartments
	Split Delivery Vehicle Routing Problem
	Periodic Vehicle Routing Problem
	Truck and Trailer Routing Problem
	Other Rich VRPs


	Metaheuristic Solution Methods
	Construction Heuristics
	Neighborhood Search
	Metaheuristic Controls
	Simulated Annealing
	Deterministic Annealing
	Tabu Search
	Attribute Based Hill Climber
	Other Metaheuristic Strategies

	Local Search Neighborhoods
	Large Neighborhood Search


	II Metaheuristic Framework
	Framework Requirements
	Existing VRP Frameworks and Libraries
	Essential Framework Attributes
	Adaptation Requirements

	Concepts of the Metaheuristic Framework
	Architecture
	Base Heuristics
	The LS-ABHC Heuristic
	The LS-RRT Heuristic
	The LNS-RRT Heuristic

	Hybrid Methods
	The HYBRID-ABHC Heuristic
	The HYBRID-RRT Heuristic

	Algorithm Adaptation
	Construction Heuristics
	Local Search Neighborhoods
	Large Neighborhood Search Operations


	Design of the Metaheuristic Framework
	Data Structure Classes
	Problem Instance Classes
	Solution Classes

	Relevant Algorithmic Component Classes
	Construction Heuristic Classes
	Metaheuristic Classes
	Local Search Neighborhood Classes
	Large Neighborhood Search Classes

	Solver Configuration Classes


	III Customizing
	Adaptation to Rich VRPs
	Vehicle Routing Problem with Time Windows
	Vehicle Routing Problem with Compartments
	Split Delivery Vehicle Routing Problem
	Periodic Vehicle Routing Problem
	Truck and Trailer Routing Problem
	Solution Representation
	Construction Heuristics
	Large Neighborhood Search
	Local Search

	Other Rich VRPs

	Computational Results
	Standard Parametrization
	Final Results
	Standard VRP
	Vehicle Routing Problem with Time Windows
	Vehicle Routing Problem with Compartments
	Split Delivery Vehicle Routing Problem
	Periodic Vehicle Routing Problem
	Truck and Trailer Routing Problem

	Summary

	Conclusion
	Critical Review
	Future Research

	Pseudocodes
	References


