Ternäre Silicide der schweren Erdalkali-Elemente mit Palladium und Platin

Inaugural-Dissertation

zur

Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln

vorgelegt von

Heike Astrid Fischer

aus Solingen

Köln 2000

Berichterstatter : Prof. Dr. Walter Jung

Prof. Dr. Gerd Meyer

Tag der mündlichen Prüfung: 14. Dezember 2000

Die experimentellen Untersuchungen zu der vorliegenden Arbeit wurden in der Zeit von Dezember 1996 bis September 2000 im Institut für Anorganische Chemie der Universität zu Köln unter der Leitung von Prof. Dr. Walter Jung durchgeführt.

Herrn Prof. Dr. Walter Jung danke ich herzlich für die Anregung und Anleitung zu dieser Arbeit.

Herrn Prof. Dr. Gerd Meyer danke ich herzlich für die großzügige Förderung dieser Arbeit.

Für Jörg und meine Mutter

Alles vermag ich durch den, der mich stark macht – Christus.

Die Bibel, aus Philipper 4

Abstract

The present work describes phase analytical investigations in the systems Ba-Pd-Si, Ba-Pt-Si, Sr-Pt-Si, Ca-Pd-Si and Ca-Pt-Si, respectively.

For that purpose the elements were filled in tantalum or boron nitride crucibles in different molar ratios under inert conditions. The crucibles were sealed in steel ampoules and the reactions were carried out in quartzglass tubes under argon atmosphere at temperatures ranging from 1100 to 1390 °C.

Following that route six new compounds were obtained and structurally characterized based on single crystal data. Furthermore, the crystal structures of three compounds, which had previously only been characterized with powder diffration methods, were determined.

The silicides **SrPtSi**, **BaPtSi** and **BaPdSi** adopt the LaIrSi type of structure. The crystal structures contain a threedimensional network build from linked Pt/Si helices with the alkaline earth metals occupying empty voids in the network.

The compounds $CaPt_2Si_2$ and $SrPt_2Si_2$ crystallize with the $CaBe_2Ge_2$ type of structure, a ternary variant of the $BaAl_4$ type. In the crystal structure, layers from $PtSi_4$ and $SiPt_4$ tetrahedra, respectively, are alternating with the alkaline earth atoms. The tetrahedra layers are linked with each other by additional Pt-Si bonds leading to interpenetrating channels with hexagonal habit. These channels incorporate the alkaline earth atoms.

 ${\bf BaPt_2Si_2}$ crystallizes with a structure which can be grasped as a monoclinic body centered variant of the ${\bf CaRh_2B_2}$ type of structure. The structure contains a threedimensional network of Pt and Si atoms forming channels which are crossing each other. In these channels the barium atoms are arranged to build Zig-Zag chains. The Pt/Si network may be either described based on PtSi_{4/4} or based on SiPt_{4/4} tetrahedra. The tetrahedra are connected to chains via common edges and the chains are orientated parallel to form layers. Futher linkage of the chains with the crossing chains of neighbouring sheets leads to the threedimensional network. Again the connection occurs via edges.

The structures of the orthorhombic compounds $BaPd_3Si_2$ and $SrPt_3Si_2$ are closely related to each other and show similarities to the $LuNi_2B_2C$ type of structure. In both structures strongly distorted $PdSi_4$ and $PtSi_4$ tetrahedra, respectively, are edge connected to layers which are linked via additional platinum atoms to a threedimensional network.

 $\mathbf{SrPd_3Si_2}$ adopts $\mathrm{ErRh_3Si_2}$ type of structure an orthorhombic body centered variant of the $\mathrm{CeCo_3B_2}$ structure. Distorted trigonal $\mathrm{SiPd_6}$ prisms form a network containing channels with a hexagonal habit. The strontium atoms in these channels are arranged in form of Zig-Zag chains.

Inhaltsübersicht

Im Rahmen dieser Arbeit wurden phasenanalytische Untersuchungen in den Dreistoffsystemen Ba-Pd-Si, Ba-Pt-Si, Sr-Pd-Si, Sr-Pt-Si, Ca-Pd-Si und Ca-Pt-Si durchgeführt.

Dazu wurden die Elemente in verschiedenen Zusammensetzungen unter Inertbedingungen in Tantal- oder Bornitrid-Tiegeln in Stahlampullen eingeschweißt, die unter Argon in Quarzglasrohren bei Temperaturen zwischen 1100 °C und 1390 °C getempert wurden.

Dabei wurden sechs neue Verbindungen dargestellt und an Einkristallen strukturell aufgeklärt. Außerdem wurden an drei Verbindungen, die zwar bereits bekannt waren, aber nur mit Pulvermethoden charakterisiert worden waren, Strukturbestimmungen an Einkristallen durchgeführt.

Die Verbindungen **SrPtSi**, **BaPtSi** und **BaPdSi** kristallisieren im LaIrSi-Typ und zeigen eine Raumnetzstruktur aus miteinander verknüpften Platinmetall-Silicium-Helices, in deren Lücken die Erdalkalimetall-Atome eingelagert sind.

Die Verbindungen **CaPt₂Si₂** und **SrPt₂Si₂** bilden den tetragonalen CaBe₂Ge₂-Typ, eine ternäre Variante des BaAl₄-Typs, aus. Platin und Silicium bilden Schichten aus PtSi₄- bzw. SiPt₄-Tetraedern, die mit Calcium- bzw. Strontium-Atomen abwechseln. Die Tetraederschichten sind durch Pt-Si-Bindungen zu einem dreidimensionalen Raumnetz verbunden, das sich kreuzende sechseckige Kanäle enthält, in denen sich die Erdalkalimetall-Atome befinden.

BaPt₂Si₂ kristallisiert in einer neuen, monoklin innenzentrierten Variante des CaRh₂B₂-Typs. Die Struktur enthält ein Pt/Si-Raumnetz mit einander kreuzenden Kanälen, in denen die Barium-Atome Zick-Zack-Ketten bilden. Das Pt/Si-Raumnetz läßt sich sowohl über PtSi_{4/4}- als auch über SiPt_{4/4}- Tetraeder beschreiben. Die Tetraeder sind über Kanten miteinander verknüpft, zunächst zu in Schichten angeordneten, parallelen, aber voneinander isolierten Ketten. Die einander kreuzenden Ketten benachbarter Schichten sind dann wieder über gemeinsame Tetraederkanten zum Raumnetz verknüpft.

Die Verbindungen **BaPd**₃Si₂ und **SrPt**₃Si₂ kristallisieren orthorhombisch in zwei eng verwandten Strukturen, die enge Beziehungen zum LuNi₂B₂C-Typ aufweisen. In diesen Strukturen treten Schichten stark verzerrter, kantenverknüpfter PdSi₄- bzw. PtSi₄- Tetraeder auf, die über zusätzliche Platinmetall-Atome zu einem Raumnetz vernüpft sind. **SrPd**₃Si₂ bildet eine orthorhombisch-innenzentrierte Verzerrungsvariante des CeCo₃B₂- Typs, den ErRh₃Si₂-Typ aus. Verzerrt trigonale SiPd₆-Prismen bauen ein Gerüst auf, das Kanäle mit sechseckigem Querschnitt enthält, in denen die Strontium-Atome Zick-Zack- Ketten bilden.

INHALTSVERZEICHNIS

1	EINLEI	ITUNG	1
2	PRÄPA	ARATIVE METHODEN	4
	2.1 Aus	gangsstoffe	4
	2.2 Dar	stellung der Präparate	4
3	ANALY	YSENMETHODEN	5
	3.1 Rön	ntgenographische Methoden	5
		4X	
		htemessung und Bestimmung der Zellbesetzung	
	3.4 Mes	ssung des spezifischen elektrischen Widerstandes	7
	3.5 Rec	henmethoden	8
	3.5.1	Verwendete Programme	8
	3.5.2	Aufarbeitung der Diffraktometerdaten und Rechenmethoden	9
4	PHASE	ENANALYTISCHE UNTERSUCHUNGEN	11
	4.1 Pha	senanalyse in den Systemen Ba-Pd-Si und Ba-Pt-Si	11
	4.2 Pha	senanalyse in den Systemen Sr-Pd-Si und Sr-Pt-Si	15
	4.3 Pha	senanalyse in den Systemen Ca-Pd-Si und Ca-Pt-Si	17
5	VERBI	NDUNGEN DER ZUSAMMENSETZUNG AMSi	19
	5.1 Die	Verbindungen SrPtSi, BaPtSi und BaPdSi	19
	5.1.1	Darstellung und Eigenschaften	19
	5.1.2	Strukturbestimmung	20
	5.1.3	Strukturbeschreibung und Diskussion	28
6	VERBI	NDUNGEN DER ZUSAMMENSETZUNG AM ₂ Si ₂	30
	6.1 Die	Verbindungen CaPt ₂ Si ₂ und SrPt ₂ Si ₂	30
	6.1.1	Darstellung und Eigenschaften	30
	6.1.2	Strukturbestimmung	32
		Strukturbeschreibung und Diskussion	
	6.2 Die	Verbindung BaPt ₂ Si ₂	
	6.2.1	Darstellung und Eigenschaften	
	6.2.2	Strukturbestimmung	
	6.2.3	Strukturbeschreibung und Diskussion	
	6.2.4	Messung des spezifischen elektrischen Widerstandes	54

7 VER	BINDUNGEN DER ZUSAMMENSETZUNG AM ₃ Si ₂	55
7.1	Die Verbindung BaPd₃Si₂	55
7.1	.1 Darstellung und Eigenschaften	55
7.1	.2 Strukturbestimmung	56
7.1	.3 Strukturbeschreibung und Diskussion	63
7.2 [Die Verbindung SrPt ₃ Si ₂	67
7.2	.1 Darstellung und Eigenschaften	67
7.2	.2 Strukturbestimmung	67
7.2	.3 Strukturbeschreibung und Diskussion	72
7.2	.4 Vergleich von BaPd ₃ Si ₂ und SrPt ₃ Si ₂	74
Die V	erbindung SrPd ₃ Si ₂	79
7.2	.5 Darstellung und Eigenschaften	
	.6 Strukturbestimmung	
7.2	.7 Strukturbeschreibung und Diskussion	86
8 BIN	DUNGSLÄNGE-BINDUNGSSTÄRKE-BEZIEHUNG	91
9 VO	LUMENKONTRAKTION BEI DER BILDUNG DER VERBINDUNGEN AUS	DENI
	MENTEN	
LLL	WILINI LIN	······ 94
10 EIN	ORDNUNG DER VERBINDUNGEN IN IHREN STRUKTURCHEMISCHEN	1
ZU	SAMMENHANG	96
10.1	Verbindungen der Zusammensetzung AMSi	96
10.2	Verbindungen der Zusammensetzung AM ₂ Si ₂	
10.3	Verbindungen der Zusammensetzung AM ₃ Si ₂	
11 7 11	SAMMENFASSUNG	
11 20	SAIVIIVIE III ASSO II G	101
12 AN	HANG	105
12.1	Pulverdaten	105
12.2	Messwerte des spezifischen elektrischen Widerstandes	
12.3	Werte für spezielle Temperaturfaktoren bei Tieftemperaturmessungen	
13 HT	ERATUR	

Einleitung 1

1 Einleitung

Diese Arbeit beschäftigt sich mit ternären Barium-, Strontium- und Calciumsiliciden der Übergangsmetalle Platin und Palladium. Sie fügt sich in eine breit angelegte Untersuchung über ternäre Übergangsmetallsilicide mit Alkali-, Erdalkali- und Seltenerdmetallen ein.

Schuster [1] wendete das Zintl-Klemm-Konzept [2] [3], dessen heutiges Verständnis auf **Schäfer** [4] zurückgeht, auf ternäre intermetallische Verbindungen ABX (mit A = Element der 1.-3. Hauptgruppe, B = Nebengruppenmetall, X = Element der 4.-6. Hauptgruppe) an. Dabei besteht die Vorstellung, daß das elektropositive Donoratom (A-Komponente) Elektronen an eine anionische Teilstruktur abgibt, die sich aus den Komponenten B und X zu $(BX)_n^{\delta}$ zusammensetzt und in deren Lücken die A-Atome sitzen.

Ternäre Alkalimetallsilicide wurden von **Schuster** und Mitarbeitern untersucht. Zu den beschriebenen Verbindungen gehören unter anderen: KPd₄Si₄, KPt₄Si₄, NaPd₃Si₂, NaPd₄Si₄ und RbPt₄Si₄ [5].

Der Arbeitskreis **Parthé** befaßte sich mit Seltenerd-Übergangsmetallsiliciden. Sein Beitrag zum "Handbook of the Physics and Chemistry of Rare Earths" [6] gibt einen umfassenden Einblick in diese Systeme, wobei verwandte Boride, Germanide, Gallide und Aluminide berücksichtigt wurden. Die beschriebenen Verbindungen unterteilen die Autoren in drei Klassen (mit R = Seltenerdmetall, T = Übergangsmetall, M = Element der 3. und 4. Hauptgruppe):

- 1. Stöchiometrische Verbindungen der Zusammensetzung R_xT_yM_z mit eigenen, von binären Phasen verschiedenen Kristallstrukturen.
- 2. Verbindungen der Form $R_x(T_yM_z)$, die eine Phasenbreite aufweisen, wobei das Verhältnis von T zu M variiert.
- 3. Verbindungen R_xT_yM_z, deren Struktur sich von binären Phasen ableiten läßt. Etwa die Hälfte der vorgestellten Verbindungen lassen sich dieser Klasse zuordnen.

1982 dokumentierten **Parthé** und Mitarbeiter [7] Untersuchungen über Seltenerd-Übergangsmetallsilicide, -germanide und - gallide mit dem Formeltyp ABX. Sie ordneten etwa 100 verschiedene Verbindungen sechs Strukturtypen zu.

1. Silicide mit A = Sc, Zr, Hf, B = Ru, Rh, Pd, Os und Germanide mit A = Sc, B = Ru, Rh, Pd, Os kristallisieren im hexagonalen ZrNiAl-Typ [8], der sich von der Fe₂P-Struktur ableitet.

Einleitung 2

2. YNiSi, ARhSi (mit A = Er, Y, Sc), ScPdSi, AlrSi (mit A = Gd, Er, Y, Sc), und APtSi (mit A = Tb, Dy, Ho, Er, Tm, Lu, Y, Sc) kristallisieren in einer Variante der PbCl₂-Struktur, im orthorhombischen TiNiSi-Typ [9].

- 3. Die Verbindungen APtSi (mit A = La, Ce, Pr, Nd, Sm, Gd), LaIrGe und LaPtGe lassen sich der vom ThSi₂-Typ abgeleiteten tetragonalen LaPtSi-Struktur [10] zuordnen.
- 4. APtSi (mit A = Ca, Sr, Ba, Eu) und APdSi (mit A = Sr, Ba, Eu) findet man im kubischen LalrSi-Typ [11], der sich von der SrSi₂-Struktur ableitet.
- 5. Die Verbindungen AFeSi (mit A = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Yb) und ACoSi (mit A = La, Ce, Pr, Nd, Sm) kristallisieren in der von Fe₂As abgeleiteten tetragonalen PbFCl-Struktur [12].
- 6. Ausschließlich Germanide finden sich in der sechsten Strukturklasse. Die Verbindungen $A(Pd_{0.5}Ge_{0.5})_2$ (mit A = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Y) bilden den $CeCu_2$ -Typ [13] aus.

Im Arbeitskreis **Evers** wurden Erdalkali-Übergangsmetallsilicide des Formeltyps ABX untersucht. Die Verbindungen der Reihen APtSi [14] und APdSi [15] (jeweils mit A = Ca, Sr, Ba, Eu) kristallisieren mit einer Ausnahme alle im kubischen LaIrSi-Typ. CaPdSi tritt in der Schichtstruktur des monoklinen EuNiGe [16] auf, die in enger topologischer Beziehung zu der kubischen LaIrSi-Struktur mit einem dreidimensionalen Ir/Si-Netz steht.

Verbindungen mit dem Formeltyp AB_2X_2 treten hauptsächlich in Ordnungsvarianten des $BaAl_4$ -Typs [17] auf. Dazu gehören die tetragonalen Strukturen von $ThCr_2Si_2$ [18], $CaBe_2Ge_2$ [19] und $BaNiSi_3$ [20] sowie die orthorhombischen Strukturen von $BaNi_2Si_2$ [21] und $U_2Co_3Si_5$ [22].

Palenzona, **Cirafici** und **Canepa** [23] untersuchten die Verbindungen APd₂Si₂. Als A-Komponente wurden alle Seltenerdmetalle, Calcium und Strontium eingesetzt. Alle Verbindungen kristallisieren im ThCr₂Si₂-Typ.

Die Verbindungen APt_2Si_2 (mit A = La, Nd, Eu, Gd, Dy, Er, Tm, Lu, Sr) wurden von **Mayer** und **Yetor** [24] beschrieben. Auch sie kristallisieren im $ThCr_2Si_2$ -Typ.

Der Arbeitskreis **Jung** beschäftigt sich unter anderem mit Erdalkali-Übergangsmetallsiliciden.

Die bisherigen Untersuchungen ergaben, daß die Verbindungen SrRu₂Si₂, SrOs₂Si₂, BaRu₂Si₂ und BaOs₂Si₂ [25] in der CaRh₂B₂-Struktur [26] kristallisieren, während CaRu₂Si₂ und CaOs₂Si₂ [25] dem ThCr₂Si₂-Typ zuzuordnen sind.

Einleitung 3

Arbeiten in den Systemen Erdalkalimetall-Iridium-Silicium ergaben für den Formeltyp AB₂X₂, daß Calr₂Si₂ [27] im ThCr₂Si₂-Typ, Srlr₂Si₂ [26] im CaRh₂B₂-Typ und Balr₂Si₂ [28] in einem neuen monoklinen Strukturtyp auftreten.

In den Systemen Erdalkalimetall-Rhodium-Silicium zeigten entsprechende Untersuchungen, daß CaRh₂Si₂ [29] und SrRh₂Si₂ [30] im ThCr₂Si₂-Typ kristallisieren, während BaRh₂Si₂ [29] im Balr₂Si₂-Typ kristallisiert.

Außerdem wurden phasenanalytische Untersuchungen in den Systemen (Mg, Sc, Eu)-(Pt, Pd, Ir, Rh, Os)-Si [31] durchgeführt.

Das Ziel dieser Arbeit war die Darstellung ternärer Verbindungen in den Systemen (Ca, Sr, Ba)-(Pt,Pd)-Si. Von besonderem strukturchemischen Interesse waren dabei die Darstellung und die strukturelle Aufklärung der letzten noch unbekannten AB₂X₂-Verbindungen CaPt₂Si₂, BaPt₂Si₂ und BaPd₂Si₂.

2 Präparative Methoden

2.1 Ausgangsstoffe

Zur Darstellung der Präparate wurden folgende Ausgangsstoffe verwendet:

Element	Beschaffenheit	Reinheit(Gew.%) lt. Hersteller	Hersteller
Calcium	Granulat	99.0	Ventron, Karlsruhe
Strontium	Stangen	99.0	Ventron, Karlsruhe
Barium	Stangen	99.5	Ventron, Karlsruhe
Palladium	Pulver	99.9	Degussa, Hanau
Platin	Pulver	99.9	Degussa, Hanau
Silicium	Brocken	m8N	Johnson Mathey
			GmbH Alfa Products,
			Karlsruhe

Die Erdalkalimetalle wurden nach Reinigung durch Destillation im Hochvakuum nach der Methode von Brauer [32] unter Argon aufbewahrt. Die Silicium-Brocken wurden in einer Borcarbid-Reibschale zu feinem Pulver zerrieben. Platin und Palladium konnten unbehandelt eingesetzt werden.

2.2 Darstellung der Präparate

Zur Darstellung der Präparate in den Systemen (Ca, Sr, Ba)-(Pt, Pd)-Si wurden in einer Argon-Glove-Box (Fa. M. Braun) die Erdalkalimetalle eingewogen. Die anderen Elemente wurden im gewünschten Atommassenverhältnis an der Luft eingewogen, innig vermengt und unter Argon dem vorgelegten Erdalkalimetall hinzugefügt. Die Wägegenauigkeit betrug dabei ± 0.5 mg. Die Gesamteinwaagen lagen jeweils zwischen 300 und 700 mg.

Die Umsetzungen erfolgten in Bornitrid-Tiegeln (Durchmesser: 5 mm, Länge: 15 mm, Wandstärke: 0,5 mm) oder in Tantal-Tiegeln (Durchmesser: 8 mm, Länge: 40-55 mm, Wandstärke: 1 mm). Die Bornitrid-Tiegel wurden unter Argon im Lichtbogen in Tantal-Ampullen (Tantal-Tiegel mit aufgeschweißtem Tantal-Deckel), die Tantal-Tiegel in

Edelstahl-Ampullen eingeschweißt. Die Edelstahlampullen wurden aus nahtlos gezogenem V4A-Stahlrohren (Werkstoff Nr. 4571) hergestellt. Ihre Länge betrug ca. 80 mm, der Durchmesser 10 mm und die Wandstärke 1.5 mm.

Die Ampullen wurden zur Reaktion in Argon-begasten Quarzglasrohren in schrägstehende, elektrisch beheizbare Röhrenöfen eingeführt. Zur Messung und Regelung der Temperatur dienten Pt/Pt-Rh-Thermoelemente in Verbindung mit Reglern der Firma WEST. Mit einem Ofensteuerungsprogramm von Weltzer [33] war es möglich, genaue Aufheiz- und Abkühlraten, sowie Temperzeiten einzuhalten.

Für die Umsetzung der Präparate wurde im allgemeinen eine Aufheizgeschwindigkeit von 100°C/h, eine Temperzeit von 60 Stunden bei 1100-1200 °C und eine Abkühlgeschwindigkeit von 20-50 °C/h gewählt. Durch die relativ niedrige Abkühlgeschwindigkeit sollte dabei die Bildung von gut geordneten Einkristallen gefördert werden.

3 Analysenmethoden

3.1 Röntgenographische Methoden

Zur röntgenographischen Charakterisierung und zur Phasenanalyse wurden von allen Präparaten Debye-Scherrer-Pulveraufnahmen (Kameraradius 28.65 mm, Cu_{K α 1}-Strahlung, λ = 154.18 pm, Ni-Filter) und Guinier-Pulveraufnahmen (Cu_{K α 1}-Strahlung) angefertigt . Von Kristalliten wurden zur Überprüfung der Kristallqualität und der möglichen Charakterisierung Drehkristallaufnahmen mit einer Debye-Scherrer-Kamera angefertigt. Zur Untersuchung von Einkristallen stand ein Buerger-Präzessions-Goniometer der Firma HUBER (Mo_{K α} -Strahlung, λ = 71.069 pm) zur Verfügung. Die Reflexintensitäten wurden mit einem IPDS (image plate diffraction system, Mo_{K α} -Strahlung, λ = 71.069 pm) der Firma Stoe gemessen.

Alle Präparate, aus denen Kristalle isoliert und mit Einkristallmethoden untersucht wurden, sind durch Pulverdiffraktometer-Aufnahmen (Fa. Huber, Typ G645, asymmetrische Guinier-Geometrie, $Cu_{K\alpha_1}$ -Strahlung, $\lambda=154.18$ pm, Flächenträger) sowie Transmissionsdiffraktometer Stadi P (Fa. Stoe, $Cu_{K\alpha_1}$ -Strahlung, $\lambda=154.18$ pm, Flächenträger oder Kapillare, modifizierte Debye-Scherrer-Geometrie) charakterisiert

worden. Diffraktogramme, die zur Bestimmung der Gitterkonstanten herangezogen werden sollten, wurden mit Silicium (a=543.0737(1)~pm) als internem Standard gemessen.

3.2 *EDAX*

Das EDAX-Verfahren bedient sich der Röntgenfluoreszenz zur Bestimmung der Zusammensetzung von Festkörpern. Dabei sind bereits sehr kleine Probenmengen ausreichend, z.B. ein Einkristall wie er für die Röntgenstrukturanalyse verwendet wird.

Das Verfahren beruht darauf, daß die kernnahen Elektronen durch den Elektronenstrahl eines Rasterelektronenmikroskopes angeregt werden, worauf dann die für jedes Element charakteristische Röntgenstrahlung emittiert wird und mit Standards verglichen werden kann. Durch die gemessenen Wellenlängen werden die Elemente bestimmt, während die Strahlungsintensitäten Aufschluß über die quantitative Zusammensetzung der Probe geben.

Die Messungen sind sowohl von der Art der Matrix als auch von der Beschaffenheit der Kristalloberfläche und der Schichtdicke der Probe abhängig. Der Fehler, der durch die Schichtdicke verursacht wird, kann durch eine automatische Rechner-Routine näherungsweise korrigiert werden. Um den von der Oberflächenbeschaffenheit abhängigen Fehler möglichst klein zu halten, ist es vorteilhaft, Kristalle mit einer glatten Oberfläche auszuwählen, um die Absorptionseffekte zu minimieren. Zur Berücksichtigung der Matrix-Abhängigkeit sollte gegen einen chemisch ähnlichen Standard gemessen werden. Der Meßfehler liegt dennoch zwischen 3% und 10%.

Die für diese Arbeit erstellten Messungen wurden mit einem Gerät des II. Physikalischen Instituts der Universität zu Köln (ECON IV PV 9900-26) mit geräteinternen Standards durchgeführt.

3.3 Dichtemessung und Bestimmung der Zellbesetzung

Zur Dichtebestimmung muß die zu messende Probe in röntgenreiner Form vorliegen.

Die Dichtemessung erfolgt mit einem Pyknometer, dessen Volumen zunächst durch eine Eichmessung mit bidestilliertem Wasser bestimmt wird. Als Sperrflüssigkeit wird Monobrombenzol verwendet.

Danach ergibt sich die pyknometrische Dichte $D_{4,Subs\, {\rm tan}\, z}^{25}$ aus folgender Beziehung:

$$D_{4,Subs \tan z}^{25} = \frac{D_{4,Sperrflüssigkeit}^{25} \times Einwaage}{Masse \ der \ verdrängten \ Sperrflüssigkeit}$$

Mit Hilfe der pyknometrischen Dichte läßt sich die Zellbesetzung und die röntgenographische Dichte bestimmen.

Die Zellbesetzung beschreibt die Zahl Z der Formeleinheiten pro Volumen der Elementarzelle, wobei gilt:

$$Z = \frac{D_{4,Subs \tan z}^{25} \times V_{EZ} \times N_A}{M}$$

V_{EZ}: Volumen der Elementarzelle (cm³)

 N_A : Avogadro-Konstante (6.022 × 10²³ mol⁻¹)

M: Molmasse (g/mol)

Die Gleichung zur Berechnung der röntgenographischen Dichte $D_{röntg}$ beinhaltet die idealisierte, ganzzahlige Zellbesetzung Z:

$$D_{r\ddot{o}ntg} = \frac{Z \times M}{V_{EZ} \times N_A}$$

3.4 Messung des spezifischen elektrischen Widerstandes

Die Temperaturabhängigkeit des spezifischen elektrischen Widerstandes der Verbindung wurde nach der 4-Punkt-Gleichstrommethode zwischen Raumtemperatur und 4,2 K

gemessen. Als Kühlmittel wurde flüssiges Helium verwendet. Meßapparatur und – methode wurden von Mirgel [34] beschrieben. Dazu wurden Pulverpreßlinge (14×4×1mm³) hergestellt und zur Verringerung von Übergangswiderständen sowie zur Erhöhung der mechanischen Stabilität 24 Stunden bei der Herstellungstemperatur des jeweiligen Präparates unter Argon auf einem Tantal-Plättchen in einer Tantal-Ampulle gesintert.

3.5 Rechenmethoden

3.5.1 Verwendete Programme

SHELX-S 97 [35]	Kristallstrukturlösung mit direkten Methoden und Patterson-Synthese	
SHELX-L 97 [36]	Kristallstrukturlösung und –verfeinerung, Differenz-Fourier- Synthese mit F²-Werten, least-squares-Methode	
DIAMOND 1.1 [37]	Erstellung von Strukturabbildungen	
LAZY-PULVERIX [38]	Berechnung eines Pulverdiagramms aus den Strukturdaten einer Verbindung	
STOE VISUAL X-POW [39]	Programmpaket zur Auswertung röntgenographischer Pulverdiffraktogramme	
Win XPOW [40]	Programmpaket zur Auswertung röntgenographischer Pulverdiffraktogramme	
X-RED [41]	Datenreduktion von IPDS-Datensätzen	
X-SHAPE [42]	Optimierung der Kristallgestalt für die numerische Absorptionskorrektur	
XCAD4 [43]	Untergrund- und LP-Korrektur von CAD4- Diffraktometerdaten sowie Vorbereitung der Daten zur Weiterverarbeitung mit dem Programm X-RED	
OFEN E [44]	Programm zur Steuerung von West-Reglern	

3.5.2 Aufarbeitung der Diffraktometerdaten und Rechenmethoden

Die IPDS-Daten beinhalteten einen für die Programme SHELX-S 97 [35] und SHELX-L 97 [36] lesbaren hkl-File mit den Intensitäten der Reflexe und einen abs-File, der die systematischen Auslöschungen der untersuchten Daten enthielt. Die CAD4-Daten wurden zunächst mit dem Programm XCAD4 [43] bearbeitet, um einen für das Programm X-RED [41] lesbaren hkl-File zu erhalten. Die Optmierung der Kristallgestalt erfolgte mit dem Programm X-SHAPE [42], die Absorptionskorrektur wurde mit dem Programm X-RED [40] durchgeführt. Die absorptionskorrigierten Daten wurden mit dem Programm SHELX-S 97 [35] zu einem Satz symmetrieäquivalenter Strukturamplituden zusammengefaßt. Das Maß für die Qualität der Rechnung sind die verschiedenen R-Werte.

Der innere R-Wert R_i ist ein Maß für die gemittelte Streuung der Intensitäten symmetrieäquivalenter Reflexe für die entsprechende Laue-Klasse:

$$R_i = \frac{\sum \left| I_j - I \right|}{\sum I_j}$$

I_i ≡ beobachtete Intensität

I

≡ über die jeweils symmetrieäquivalenten Reflexe gemittelte Intensität

Die Strukturbestimmung erfolgte mit Direkten Methoden oder Patterson-Synthese im Programm SHELX-S 97 [35].

Die Strukturrechnung und Verfeinerung nach F²-Werten durch Verfeinerungszyklen nach der Gaußschen Methode der kleinsten Fehlerquadrate mit dem Programm SHELX-L 97 [36] beinhaltet weiterhin die Differenzfouriersynthese zur Lokalisierung leichterer Atome, sowie die Verfeinerung der Lageparameter und der isotropen und anisotropen Temperaturfaktoren. Der isotrope und anisotrope Temperaturfaktor T_i und T_a sind definiert als:

$$\begin{split} T_i &= \exp \left\{ -8\pi^2 \, U \, sin^2 \vartheta / \lambda^2 \, \right\} \\ T_a &= \exp \left\{ -2\pi^2 \, (h^2 a^{*2} U_{11} + + 2hka^* b^* U_{12} + + 2klb^* c^* U_{23}) \, \right\} \end{split}$$

Die Extinktion kann durch an F_{calc} -Werten angebrachten Korrekturfaktors ϵ verfeinert werden, wobei folgende Beziehung gilt:

$$F_{calc}(korr) = \frac{F_{calc}}{(1 + \varepsilon \bullet F_{calc}^2 \bullet \lambda^3 / \sin 2\theta)^{1/4}}$$

Die Übereinstimmungsfaktoren der Strukturbestimmung R1 und wR2 sind wie folgt definiert:

$$wR2 = \sqrt{\frac{\sum_{hkl} w(F_{obs}^2 - F_{calc}^2)^2}{\sum_{hkl} w \bullet F_{obs}^2}}$$

 $\begin{array}{lll} w & \equiv & \mbox{Wichtungsfaktor, } w = 1/\sigma^2(F_{obs}) \\ \sigma(\ F_{obs}) & \equiv & \mbox{Standardabweichung von } F_{obs} \\ F_{obs} & \equiv & \mbox{beobachtete Strukturamplitude} \\ F_{calc} & \equiv & \mbox{berechnete Strukturamplitude} \end{array}$

$$R1 = \frac{\sum_{hkl} \left\| F_{obs} \right| - \left| F_{calc} \right\|}{\sum_{hkl} \left| F_{obs} \right|}$$

und der "Goodness of Fit" definiert sich nach:

$$GooF = \frac{\sum_{hkl} \left[w \cdot (F_{obs}^2 - F_{calc}^2)^2 \right]}{n - p}$$

 $n \equiv Zahl der Reflexe$ $p \equiv Zahl der Parameter$

Bei der Verfeinerung von Zwillingskristallen wird der absolute Strukturparameter x angegeben, der wie folgt definiert wird:

$$F_{calc}^{2}(Zwilling) = x \bullet F_{calc}^{2}(Individuum1) + (1-x) \bullet F_{calc}^{2}(Individuum2)$$

4 Phasenanalytische Untersuchungen

Bei den mit röntgenographischen Methoden durchgeführten phasenanalytischen Untersuchungen in den Systemen Ba-Pd-Si, Ba-Pt-Si, Sr-Pd-Si, Sr-Pt-Si, Ca-Pd-Si und Ca-Pt-Si konnte die Existenz einer großen Zahl von Phasen nachgewiesen werden. Um Einkristalle der zunächst mit Pulveraufnahmen identifizierten neuen Phasen zu erhalten, wurde die Temperaturführung vielfältig variiert. Trotzdem gelang die Darstellung von Einkristallen zur Strukturanalyse in vielen Fällen nicht. Solche zwar als neue Phasen identifizierte, strukturell aber nicht aufgeklärte Verbindungen sind in den nachfolgenden Tabellen mit Großbuchstaben (z.B. BAPDSI-A bis BAPDSI-F) bezeichnet. In einigen Fällen war es auch nicht möglich, strukturell aufgeklärte Verbindungen röntgenrein zu erhalten. So entstehen bei der Einwaagezusammensetzung BaPd₃Si₂ bei 1100 °C neben BaPd₃Si₂ auch die Phasen BAPDSI-E und BAPDSI-I. Bei Erhöhung der Reaktionstemperatur auf 1150 °C und 1350 °C entstehen die Phasen BAPDSI-A bzw. BAPDSI-F. Der Grund liegt möglicherweise in den sehr hohen, zur Einstellung des Gleichgewichts nötigen Temperaturen.

Als Tiegelmaterial wurde bevorzugt Tantal verwendet, da es bei hohen Temperaturen bis zu etwa 1200 °C nicht mit den eingewogenen Elementen reagiert und nur selten auskristallisiert. Die Verwendung von Bornitrid als Tiegelmaterial war nicht immer unproblematisch, da das Material sehr spröde ist. Bei hohen Temperaturen zersetzt sich der Tiegel, so daß ein BN-Elementen-Gemenge entstand. Ein einziger Ansatz mit der Einwaagezusammensetzung BaPd₃Si₂ bei 1390 °C ist gut verlaufen, aber selbst dabei blieb es nicht aus, daß das Barium mit dem Bor des Tiegels zu BaB₆-Kristallen reagierte.

4.1 Phasenanalyse in den Systemen Ba-Pd-Si und Ba-Pt-Si

Die zur Phasenanalyse in den Systemen Barium-Palladium-Silicium und Barium-Platin-Silicium durchgeführten Versuche sind in den Tabellen 1 und 2 zuammengestellt. Die Präparate wurden nach der in Kapitel 2.2 beschriebenen Methode dargestellt.

Aus den Röntgenpulverdiagrammen (Kapitel 12) kann auf die Existenz von 13 ternären Phasen im System Ba-Pd-Si und 4 ternären Phasen im System Ba-Pt-Si geschlossen werden.

Bei den Verbindungen BaPdSi und BaPtSi handelt es sich um bereits bekannte Phasen, die von J. Evers, G.Oehlinger, K. Polborn und B. Sendlinger [15] bzw. J. Evers und G. Oehlinger [14] beschrieben worden sind. Sie bilden den LalrSi-Typ aus. Von den Verbindungen BaPd₃Si₂ und BaPd_{0.4}Si_{1.6} konnten in einer vorangegangenen Arbeit [45]

Einkristalle dargestellt werden. $BaPd_3Si_2$ bildet eine neue, stark verzerrte, aufgefüllte Variante des $ThCr_2Si_2$ -Typs aus, während $BaPd_{0.4}Si_{1.6}$ als ternäre Substitutionsvariante von $BaSi_2$ im AlB_2 -Typ [46] kristallisiert.

Außerdem wurden in beiden Systemen Phasen dargestellt, für deren Röntgenreflexe keine Zuordnung bei Vergleich mit bekannten binären und ternären Verbindungen möglich war und für die kein Einkristall zur Strukturaufklärung gefunden werden konnte.

Tabelle 1 : Umsetzungen im System Barium-Palladium-Silicium

Einwaage	Reaktionsbedingungen*)	röntgenographisch
		identifizierte Produkte
BaPd ₂ Si ₂	100°C/h; 1000°C, 48h; 50°C/h	BaPdSi
Ba ₃ Pd ₂ Si ₂	100°C/h; 1150°C, 48h; 50°C/h	BaPdSi
Ba ₂ Pd ₂ Si	100°C/h; 1150°C, 60h; 50°C/h	BaPdSi
Ba ₄ PdSi ₄	100°C/h; 1150°C, 60h; 50°C/h	BaPdSi
BaPdSi ₂	100°C/h; 1150°C, 60h; 50°C/h	BaPd _{0.4} Si _{1.6}
Ba ₂ PdSi ₃	100°C/h; 1000°C, 42h; 50°C/h	BaPd _{0.4} Si _{1.6}
BaPd ₂ Si ₂	100°C/h; 1000°C, 60h; 50°C/h	BaPd ₃ Si ₂
BaPd ₂ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	BaPd ₃ Si ₂
BaPd ₂ Si ₂	100°C/h; 1200°C, 60h; 50°C/h	BaPd ₃ Si ₂
BaPd ₂ Si ₃	100°C/h; 1150°C, 60h; 50°C/h	BaPd ₃ Si ₂
BaPd ₂ Si ₃	100°C/h; 1200°C, 60h; 50°C/h	BaPd ₃ Si ₂
BaPd ₃ Si ₂	100°C/h; 1100°C, 60h; 50°C/h	BaPd ₃ Si ₂
BaPd₃Si	100°C/h; 1150°C, 60h; 50°C/h	BAPDSI-A
BaPd ₃ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	BAPDSI-A
Ba ₃ Pd ₃ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	BAPDSI-A
BaPdSi	100°C/h; 1150°C, 60h; 50°C/h	BAPDSI-B
BaPd ₃ Si	100°C/h; 1150°C, 60h; 50°C/h	BAPDSI-C
Ba ₂ PdSi ₂	100°C/h; 1000°C, 42h; 50°C/h	BAPDSI-C
Ba ₂ PdSi ₄	100°C/h; 1150°C, 60h; 50°C/h	BAPDSI-C
Ba ₃ Pd ₃ Si	100°C/h; 1150°C, 60h; 50°C/h	BAPDSI-C
BaPd ₂ Si ₂	100°C/h; 1100°C, 48h; 50°C/h	BAPDSI-D
BaPd ₃ Si ₂	100°C/h; 1100°C, 60h; 50°C/h	BAPDSI-E, Pd ₂ Si

Fortsetzung von Tabelle 1: Umsetzungen im System Ba-Pd-Si

BaPd ₃ Si ₂	Silitrohrofen, 1350°C, 1Tag	BAPDSI-F
BaPd ₂ Si ₃	Silitrohrofen, 1350°C, 1Tag;	BAPDSI-G
	Korund-Tiegel/Mo-Ampulle	
BaPd ₂ Si ₃	100°C/h; 1100°C, 60h; 50°C/h	BAPDSI-H
	Silitrohrofen, 1350°C, 1Tag	
	200°C/h; 1200°C, 54h; 50°C/h	
BaPd ₃ Si ₂	100°C/h; 1100°C, 60h;	BAPDSI-I
	10°C/h;	
	1125°C, 10h; 1100°C, 1°C/h;	
	25°/h	
BaPd ₂ Si ₂	PdSi im Lichbogen; BN-Tiegel	BAPDSI-J, BN, BaB ₆
	Silitrohrofen, 1390°C, 1Tag	

^{*)} Wenn keine Angaben bezüglich des Tiegelmaterials gemacht wurden, handelte es sich immer um Tantal

Tabelle 2: Umsetzungen im System Barium-Platin-Silicium

Einwaage	Reaktionsbedingungen	röntgeographisch
		identifizierte Produkte
BaPtSi	100°C/h; 1150°C, 60h; 50°C/h	BaPtSi
Ba ₃ Pt ₂ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	BaPtSi
Ba ₃ Pt ₃ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	BaPtSi
Ba ₂ Pt ₂ Si	100°C/h; 1150°C, 60h; 50°C/h	BaPtSi
BaPt ₂ Si ₂	100°C/h; 1250°C, 60h; 50°C/h	BaPtSi
BaPt ₂ Si ₂	100°C/h; 1100°C, 60h; 50°C/h	BaPtSi
BaPt ₃ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	BaPtSi
Ba ₂ PtSi ₂	200°C/h; 1000°C, 48h; 50°C/h	BaPtSi
Ba ₂ PtSi ₃	200°C/h; 1000°C, 48h; 50°C/h	BaPtSi
Ba ₄ PtSi ₄	100°C/h; 1150°C, 60h; 50°C/h	BaPtSi
BaPt ₆ Si ₄	100°C/h; 1100°C, 60h; 50°C/h	BaPtSi, BaPt ₂ Si ₂
BaPt ₂ Si ₂	100°C/h; 1200°C, 60h; 50°C/h	BaPt ₂ Si ₂
BaPtSi ₂	100°C/h; 1150°C, 60h; 50°C/h	BAPTSI-A
BaPt ₂ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	BAPTSI-A
BaPt ₂ Si ₂	100°C/h; 1200°C, 60h; 50°C/h	BAPTSI-A, BaPt ₂ Si ₂
BaPt ₂ Si ₂	100°C/h; 1250°C, 60h; 50°C/h	BAPTSI-B, BaPt ₂ Si ₂

4.2 Phasenanalyse in den Systemen Sr-Pd-Si und Sr-Pt-Si

Die zur Phasenanalyse in den Systemen Strontium-Palladium-Silicium und Strontium-Platin-Silicium durchgeführten Versuche sind in den Tabellen 3 und 4 zuammengestellt. Die Präparate wurden nach der in Kapitel 2.2 beschriebenen Methode dargestellt.

Aus den Röntgenpulverdiagrammen (Kapitel 12) kann auf die Existenz von 6 ternären Phasen im System Sr-Pd-Si und 5 ternären Phasen im System Sr-Pt-Si geschlossen werden.

Bei den Verbindungen SrPdSi und SrPtSi handelt es sich um bereits bekannte Phasen, die von J. Evers, G.Oehlinger, K. Polborn und B. Sendlinger [15] bzw. J. Evers und G. Oehlinger [14] beschrieben worden sind, wobei nur SrPdSi auch als Einkristall erhalten werden konnte. Sie bilden den kubischen LaIrSi-Typ aus. Palenzona, Cirafici und Canepa [23] stellten die Verbindung SrPd₂Si₂ dar, die im ThCr₂Si₂-Typ kristallisiert. Die Verbindung SrPt₂Si₂ bildet den CaBe₂Ge₂-Typ, eine Besetzungsvariante des ThCr₂Si₂-Typs, aus. SrPt₃Si₂ kristallisiert in einer neuen, orthorhombischen Struktur, die eine Variante der BaPd₃Si₂-Struktur mit verdoppelter a-Gitterkonstante darstellt. SrPd₃Si₂ kristallisiert im orthorhombischen ErRh₃Si₂-Typ [47].

Außerdem wurden in beiden Systemen Phasen dargestellt, für deren Reflexe keine Zuordnung bei Vergleich mit bekannten binären und ternären Verbindungen möglich war und für die kein Einkristall zur Strukturaufklärung gefunden werden konnte.

Tabelle 3: Umsetzungen im System Sr-Pd-Si

Einwaage	Reaktionsbedingungen	röntgenographisch
		identifizierte Produkte
Sr ₃ Pd ₂ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	SrPdSi
SrPd ₂ Si	100°C/h; 1150°C, 60h; 50°C/h	SrPdSi
Sr ₂ PdSi ₂	100°C/h; 1150°C, 60h; 50°C/h	SrPdSi
SrPd ₃ Si ₆	100°C/h; 1150°C, 60h; 50°C/h	SrPd ₂ Si ₂ , Si
SrPd ₃ Si ₃	100°C/h; 1150°C, 60h; 50°C/h	SrPd ₃ Si ₂
SrPd ₃ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	SRPDSI-A
SrPd ₂ Si ₃	100°C/h; 1150°C, 60h; 50°C/h	SRPDSI-B
SrPd ₂ Si ₄	100°C/h; 1150°C, 60h; 50°C/h	SRPDSI-C
SrPd ₃ Si ₂	100°C/h; 1200°C, 60h; 50°C/h	SRPDSI-C

Tabelle 4: Umsetzungen im System Sr-Pt-Si

Einwaage	Reaktionsbedingungen	röntgenographisch
		identifizierte Produkte
Sr ₃ Pt ₂ Si ₂	100°C/h; 1200°C, 60h; 50°C/h	SrPtSi
Sr ₂ Pt ₂ Si	100°C/h; 1150°C, 60h; 50°C/h	SrPtSi
Sr ₂ PtSi ₂	100°C/h; 1150°C, 60h; 50°C/h	SrPtSi
SrPt ₂ Si	100°C/h; 1150°C, 60h; 50°C/h	SrPtSi
SrPt ₃ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	SrPt ₃ Si ₂
SrPt ₂ Si ₃	100°C/h; 1150°C, 60h; 50°C/h	SRPTSI-A
SrPt ₂ Si ₄	100°C/h; 1150°C, 60h; 50°C/h	SRPTSI-A
SrPt₃Si	100°C/h; 1150°C, 60h; 50°C/h	SRPTSI-B
SrPt ₃ Si ₃	100°C/h; 1150°C, 60h; 50°C/h	SRPTSI-C
SrPt ₃ Si ₆	100°C/h; 1150°C, 60h; 50°C/h	SRPTSI-C

4.3 Phasenanalyse in den Systemen Ca-Pd-Si und Ca-Pt-Si

Die zur Phasenanalyse in den Systemen Calcium-Palladium-Silicium und Calcium-Platin-Silicium durchgeführten Versuche sind in den Tabellen 5 und 6 zuammengestellt. Die Präparate wurden nach der in Kapitel 2.2 beschriebenen Methode dargestellt.

Aus den Röntgenpulverdiagrammen (Kapitel 12) kann auf die Existenz von 6 ternären Phasen im System Ca-Pd-Si und 5 ternären Phasen im System Ca-Pt-Si geschlossen werden.

Bei der Verbindung CaPdSi handelt es sich um eine Phase, die von J. Evers, G. Oehlinger, K. Polborn und B. Sendlinger [15] dargestellt wurde. Sie bildet den monoklinen EuNiGe-Typ [16] aus. Im Rahmen dieser phasenanalytischen Untersuchungen konnte CaPdSi nicht dargestellt werden. Die Verbindung CaPtSi kristallisiert im kubischen LaIrSi-Typ. Palenzona, Cirafici und Canepa [23] stellten die Verbindung CaPd₂Si₂ dar, die im ThCr₂Si₂-Typ kristallisiert. Die Verbindung CaPt₂Si₂ bildet den CaBe₂Ge₂-Typ, eine Besetzungsvariante des ThCr₂Si₂-Typs, aus.

Außerdem wurden in beiden Systemen Phasen dargestellt, für deren Reflexe keine Zuordnung bei Vergleich mit bekannten binären und ternären Verbindungen möglich war und für die kein Einkristall zur Strukturaufklärung gefunden werden konnte.

Tabelle 5: Umsetzungen im System Ca-Pd-Si

Einwaage	Reaktionsbedingungen	röntgenographisch
		identifizierte Produkte
CaPd ₂ Si ₃	100°C/h; 1150°C, 60h; 50°C/h	CaPd ₂ Si ₂
CaPd ₃ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	CaPd ₂ Si ₂
CaPd ₃ Si ₃	100°C/h; 1150°C, 60h; 50°C/h	CaPd ₂ Si ₂
CaPd ₃ Si ₆	100°C/h; 1150°C, 60h; 50°C/h	CaPd ₂ Si ₂
CaPd ₂ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	CAPDSI-A
CaPd ₃ Si ₂	100°C/h; 1200°C, 60h; 50°C/h	CAPDSI-A, Pd ₂ Si
CaPd ₃ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	CAPDSI-B
CaPd ₃ Si ₂	100°C/h; 1100°C, 60h; 50°C/h	CAPDSI-B
Ca ₃ Pd ₂ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	CAPDSI-C
Ca ₂ PdSi ₂	100°C/h; 1150°C, 60h; 50°C/h	CAPDSI-D
CaPd ₂ Si	100°C/h; 1150°C, 60h; 50°C/h	CAPDSI-E, CaPd ₂ Si ₂

Tabelle 6 : Umsetzungen im System Ca-Pt-Si

Einwaage	Reaktionsbedingungen	röntgenographisch
		identifizierte Produkte
Ca ₃ Pt ₂ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	CaPtSi
Ca ₂ PtSi ₂	100°C/h; 1150°C, 60h; 50°C/h	CaPtSi, CaSi ₂
CaPt ₂ Si ₂	100°C/h; 1100°C, 60h; 50°C/h	CaPt ₂ Si ₂
CaPt ₂ Si ₂	erst PtSi, dann CaPt ₂ Si ₂ im	CaPt ₂ Si ₂ , Pt ₁₂ Si ₅
	Lichtbogen,	Pt ₂ Si, Pt ₂ Si ₃
CaPt ₂ Si ₂	PtSi im Lichtbogen, Silitrohrofen;	CaPt ₂ Si ₂ ,
	1400°C, 1Tag; BN-Tiegel	Pt ₂ Si, Pt ₂ Si ₃
CaPt ₂ Si ₃	100°C/h; 1200°C, 60h; 50°C/h	CaPt ₂ Si ₂
CaPt ₂ Si ₄	100°C/h; 1150°C, 60h; 50°C/h	CaPt ₂ Si ₂
CaPt ₃ Si ₂	100°C/h; 1150°C, 60h; 50°C/h	CaPt ₂ Si ₂ ,
		Pt ₂ Si, Pt ₂ Si ₃
CaPt ₃ Si ₃	100°C/h; 1150°C, 60h; 50°C/h	CaPt ₂ Si ₂ , Pt ₂ Si ₃
CaPt₃Si ₆	100°C/h; 1150°C, 60h; 50°C/h	CaPt ₂ Si ₂
CaPt ₂ Si ₂	100°C/h; 1200°C, 60h; 50°C/h	CAPTSI-A,
		Pt ₁₂ Si ₅ , CaSi ₂
CaPt ₂ Si ₃	100°C/h; 1150°C, 60h; 50°C/h	CAPTSI-B
CaPt ₂ Si	100°C/h; 1150°C, 60h; 50°C/h	CAPTSI-C

5 Verbindungen der Zusammensetzung AMSi

Alle ternären Silicide der Zusammensetzung AMSi mit A = Ca, Sr, Ba und M = Pd, Pt sind von Evers und Oehlinger 1986 [14] und 1991 [15] bereits dargestellt worden. Allerdings konnten nur von CaPtSi, CaPdSi und SrPdSi Einkristalle isoliert werden. CaPdSi kristallisiert monoklin im EuNiGe–Typ [16]. SrPdSi und CaPtSi bilden den kubischen LaIrSi–Typ [11] aus. SrPtSi, BaPtSi und BaPdSi wurden mit Pulvermethoden untersucht. Sie sind danach ebenfalls isotyp zu LaIrSi. Bei den jetzt durchgeführten Untersuchungen entstanden auch Einkristalle der drei letztgenannten Verbindungen. Die damit durchgeführten Strukturbestimmungen werden im folgenden beschrieben.

5.1 Die Verbindungen SrPtSi, BaPtSi und BaPdSi

5.1.1 Darstellung und Eigenschaften

Ein Einkristall der Verbindung SrPtSi wurde einem Präparat der Zusammensetzung $Sr_3Pt_2Si_2$ entnommen. Es wurde mit 100 °C/h auf 1200 °C aufgeheizt, dort 60 Stunden getempert und mit 50 °C/h auf Raumtemperatur abgekühlt.

Die EDAX-Untersuchung ergab ein Mol-Verhältnis der Elemente Sr:Pt:Si von 1:1,43:2,04.

SrPtSi ist eine grausilbrig glänzende Verbindung, die luft- und feuchtigkeitsstabil, aber in Königswasser löslich ist.

Ein Einkristall der Verbindung BaPtSi wurde aus einem Präparat der Einwaage MgBaPtSi isoliert. Es wurde mit 100 °C/h auf 725 °C aufgeheizt, dort 5 Stunden getempert, mit 100 °C/h auf 1200 °C aufgeheizt, dort 60 Stunden getempert und mit 20 °C/h auf Raumtemperatur abgekühlt.

Die EDAX-Untersuchung ergab ein Mol-Verhältnis der Elemente Ba:Pt:Si von 1:1,54:1,05. BaPtSi ist eine grausilbrig glänzende Verbindung, die luft- und feuchtigkeitsstabil und in Königswasser löslich ist.

Aus einem Präparat mit der Einwaagezusammensetzung Ba₂PdSi₂ wurde ein Einkristall isoliert, für den die Strukturbestimmung die Zusammensetzung BaPdSi ergab. Die Umsetzung der Elemente erfolgte in einem Tantaltiegel, der unter Argonatmosphäre in

eine Stahlampulle eingeschmolzen und in ein mit Argon begastes Quarzrohr eingebracht wurde. Die Ampulle wurde mit 200 °C/h auf 1000 °C aufgeheizt, dort 48 Stunden gehalten und mit 50 °C/h abgekühlt.

In der röntgenfluoreszensanalytischen Untersuchung wurde das Mol-Verhältnis von Ba:Pd:Si mit 1:0,80:1,34 bestimmt.

5.1.2 Strukturbestimmung

An Einkristallen von SrPtSi, BaPtSi und BaPdSi wurden auf dem IPDS die Intensitäten der Röntgenreflexe gemessen.

Die Zellbestimmungen ergaben jeweils ein kubisches Kristallsystem mit a=649.86 pm für SrPtSi, a=662.40 pm für BaPtSi und a=669.2 pm für BaPdSi. Anhand der Datensätze (R_i [m $\overline{3}$ / m $\overline{3}$ m] : SrPtSi [0.1612/0.4182], BaPtSi [0.1287/0.3784], BaPd_{0.79}Si_{1.21} [0.0945/0.0957]) konnte jeweils die Laue-Klasse m $\overline{3}$ m ausgeschlossen werden. Mit den speziellen Auslöschungsbedingungen für (h00) ist h \neq 2n ergab sich somit das Beugungssymbol m $\overline{3}$ P2₁--, dem die Raumgruppe P2₁3 (Nr. 198) zugeordnet ist.

Gitterkonstanten und Symmetrie zeigten, daß die Kristalle den von Evers et al. an Pulverpräparaten untersuchten Verbindungen SrPtSi, BaPtSi und BaPdSi zuzuordnen waren. Aufgrund der Isotypie zum LaIrSi-Typ konnten die Strukturen in der Raumgruppe P2₁3 in wenigen Zyklen verfeinert werden.

Bei der Verfeinerung der Struktur des Bariumpalladiumsilicids ergaben sich zunächst Mischpuktlagen der im LalrSi-Typ von Ir und Si besetzten Punktlagen mit Pd und Si. Da beide Punktlagen dasselbe Besetzungsverhältnis von Pd:Si=0.393:0.606 aufwiesen, lag der Verdacht nahe, daß es sich hier um einen Zwillings-Kristall handelt. Als Zwillingssymmetrieelement war eine zweizählige Achse entlang der Flächendiagonale zu nehmen. Die Verfeinerung der Daten auf der Grundlage dieses Zwillingsmodells konvergierte in wenigen Schritten.

Die Ergebnisse der Zellbestimmungen und die kristallographischen Daten, die Atomkoordinaten, die anisotropen Temperaturkoeffizienten und die Atomabstände sind in den Tabellen 7 bis 21 zusammengestellt.

Tabelle 7: Kristallographische Daten und Strukturverfeinerung von SrPtSi

Formel SrPtSi

Formelgewicht 310.80 g/mol Meßtemperatur 293(2) K

Wellenlänge 71.073 pm (Graphit-Monochromator)

Kristallsystem kubisch

Raumgruppe P2₁3 (Nr.198)

Strukturtyp LalrSi

Gitterkonstante (IPDS) a = 649.86(9) pmGitterkonstante (Pulverdiffraktometer) a = 648.53(1) pmZellvolumen $274.45(7) \cdot 10^6 \text{ pm}^3$

Z 4

berechnete Dichte 7.522 g/cm³
Absorptionskoeffizient 70.411 mm⁻¹

F(000) 520

Kristalldimensionen 0.1 x 0.1 x 0.1 mm³

Absorptionskorrektur numerisch,

nach Kristallgestaltoptimierung [42]

Theta-Bereich 4.44° bis 28.06°

hkl-Bereich $-8 \le h \le 8, -8 \le k \le 8, -8 \le l \le 8$

gemessene Reflexe / symmetrieunabh. 2577 / 228 Innerer R-Wert (R_i) 0.1003

Verfeinerungsmethode Full-matrix least-squares an F²

Daten / Parameter 228 / 10
Goodness-of-fit für F² 1.282

R-Werte [I>2sigma(I)] $R_1 = 0.0457, wR_2 = 0.1288$ R-Werte (gesamt) $R_1 = 0.0458, wR_2 = 0.1288$

max./min. Restelektronendichten 2.48 / -4.51 ·10⁶ e⁻pm⁻³

Tabelle 8: Lageparameter und äquivalent-isotrope Temperaturfaktoren [pm²] für SrPtSi.

	Wyckoff	x	y	Z	U _{eq} *	
Sr	4a	0.1314(3)	Х	Х	47(7)	
Pt	4a	0.4121(1)	Х	X	33(5)	
Si	4a	0.8418(8)	X	X	45(16)	

^{*)} $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33}) [48]$

Tabelle 9: Anisotrope Temperaturfaktoren [pm²] für SrPtSi. Der anisotrope Temperaturfaktor-Exponent hat die Form:

-2
$$\pi^2$$
 [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

	U ₁₁	$U_{\scriptscriptstyle 22}$	U_{33}	U_{23}	U ₁₃	U ₁₂
Sr	47(7)	U ₁₁	U ₁₁	-5(6)	U_{23}	U_{23}
Pt	33(5)	U_{11}	U_{11}	-4(2)	$U_{\scriptscriptstyle 23}$	$U_{\scriptscriptstyle 23}$
Si	45(16)	U_{11}	U_{11}	8(17)	U_{23}	$U_{\scriptscriptstyle{23}}$

Tabelle 10: Abstände [pm] und Winkel [°] für SrPtSi

∠ Pt-Si-Pt 119,01(8)

∠ Si-Pt-Si 118,45(3)

Tabelle 11: Kristallographische Daten und Strukturverfeinerung von BaPtSi

Formel BaPtSi Formelgewicht 360.07 g/mol Meßtemperatur 293(2) K Wellenlänge 71.073 pm (Graphit-Monochromator) Kristallsystem kubisch Raumgruppe P2₁3 (Nr.198) Strukturtyp LalrSi Gitterkonstante (CAD4) a = 662.40(2) pmGitterkonstante (Pulverdiffraktometer) a = 663.90(3) pmZellvolumen $290.64(7) \cdot 10^6 \,\mathrm{pm}^3$ Z 4 berechnete Dichte 8.239 g/cm³ 61.601 mm⁻¹ Absorptionskoeffizient F(000) 592 Kristalldimensionen $0.1 \times 0.1 \times 0.1 \text{ mm}^3$ Absorptionskorrektur numerisch, nach Kristallgestaltoptimierung [42] 4.35° bis 34.95° Theta-Bereich hkl-Bereich $-10 \le h \le 10, -10 \le k \le 10, -10 \le l \le 10$ 5106 / 436 gemessene Reflexe / symmetrieunabh. Innerer R-Wert (R_i) 0.0915 Full-matrix least-squares an F² Verfeinerungsmethode Daten / Parameter 436 / 11 Goodness-of-fit für F² 1.276 R-Werte [I>2sigma(I)] $R_1 = 0.0246$, $wR_2 = 0.0684$ R-Werte (gesamt) $R_1 = 0.0254$, $wR_2 = 0.0688$ Absoluter Strukturparameter -0.01(2)Extinktionskoeffizient 0.0184(13)

 $2.81 / -1.50 \cdot 10^{6} e^{-pm^{-3}}$

max./min. Restelektronendichten

Tabelle 12: Lageparameter und äquivalent-isotrope Temperaturfaktoren [pm²]
für BaPtSi.	

	Wyckoff	Х	у	Z	$U_{\mathrm{eq}}^{}st$	
Ba	4a	0.1146(1)	х	X	13(1)	
Pt	4a	0.8434(1)	Х	X	11(1)	
Si	4a	0.4034(4)	Х	X	12(1)	

^{*)} $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33}) [48]$

Tabelle 13: Anisotrope Temperaturfaktoren [pm²] für BaPtSi. Der anisotrope Temperaturfaktor-Exponent hat die Form:

-2
$$\pi^2$$
 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

	U ₁₁	U_{22}	U_{33}	U_{23}	U ₁₃	U ₁₂	
Ва	13(1)	U ₁₁	U ₁₁	0(1)	$U_{\scriptscriptstyle 23}$	$U_{\scriptscriptstyle{23}}$	
Pt	11(1)	U_{11}	U_{11}	0(1)	$U_{\scriptscriptstyle{23}}$	$U_{\scriptscriptstyle{23}}$	
Si	12(1)	U_{11}	U_{11}	0(1)	U_{23}	U_{23}	

Tabelle 14: Abstände [pm] und Winkel [°] für BaPtSi

Tabelle 15: Kristallographische Daten und Strukturverfeinerung für BaPdSi

Formel	BaPdSi
Formelgewicht	271.83gmol ⁻¹
Meßtemperatur (1980)	293(2) K
Wellenlänge	71.073 pm (Graphit Monochromator)
Kristallsystem	kubisch
Raumgruppe	P2 ₁ 3 (Nr. 198)
Strukturtyp	LalrSi
Gitterkonstante (IPDS)	a = 669.2(3) pm
Gitterkonstante (Pulverdiffraktometer)	a = 666.6(1) pm
Zellvolumen	299.7(2) ·10 ⁶ pm ³
Z	4
berechnete Dichte	6.024 g/cm ³
Absorptionskoeffizient	19.110 mm ⁻¹
F(000)	464
Kristalldimensionen	$0.2 \times 0.2 \times 0.2 \text{ mm}^3$
Absorptionskorrektur	numerisch,
	nach Kristallgestaltoptimierung [42]
Theta-Bereich	4.31° bis 27.97°
hkl-Bereich	$-8 \le h \le 8$, $-8 \le k \le 8$, $-8 \le l \le 8$
gemessene Reflexe / symmetrieunabh.	3611 / 252
Innerer R-Wert (R _i)	0.0685
Verfeinerungsmethode	Full-matrix least-squares an F ²
Zwillingsmodell:	
Daten / Parameter	252 / 11
Goodness-of-fit für F ²	1.345
R-Werte [I>2sigma(I)]	R1 = 0.0547, wR2 = 0.1380
R-Werte (gesamt)	R1 = 0.0627, wR2 = 0.1479
Modell einer Pd/Si-Statistik:	
Daten / Parameter	252 / 12
Goodness-of-fit für F ²	1.315
R-Werte [I>2sigma(I)]	R1 = 0.0306, $wR2 = 0.0537$
R-Werte (gesamt)	R1 = 0.0365, $wR2 = 0.0547$
max./min. Restelektronendichten	$6.16 / -2.07 e^{-} pm^{-3} \cdot 10^{6}$

Tabelle 16: Lageparamet	er und	äquivalent-isotrope	Temperaturfaktoren	[pm²]	für
BaPdSi (Zwillingsmodell).					

	Wyckoff	X	у	Z	$U_{eq}^{} *$
Ra	42	0.1248(2)	V	V	126(6)
Ba Pd	4a 4a	0.1248(3) 0.8488(5)	X X	X X	126(6) 259(12)
Si	4a	0.4108(13)	X	X	0(20)

^{*)} $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33}) [48]$

Tabelle 17: Anisotrope Temperaturfaktoren (pm²) für BaPdSi (Zwillingsmodell). Der anisotrope Temperaturfaktor-Exponent hat die Form:

-2
$$\pi^2$$
 [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

	U ₁₁	$U_{\scriptscriptstyle 22}$	U_{33}	U_{23}	U ₁₃	U_{12}	
Ва	126(6)	U ₁₁	U ₁₁	8(5)	$U_{\scriptscriptstyle 23}$	U_{23}	
Pd	259(12)	U_{11}	U_{11}	-18(13)	$U_{\scriptscriptstyle 23}$	U_{23}	
Si	0(20)	U_{11}	U_{11}	23(29)	U_{23}	U_{23}	

Tabelle 18: Abstände [pm] und Winkel [°] für BaPdSi (Zwillingsmodell)

Ba – Pd 1× 320.0(7) 3× 351.0(5)	Pd − Si 3× 240.4(2)	Si − Pd 3× 240.4(2)
3× 383.3(4)	$- Ba 1 \times 320.0(7)$	– Ba 1× 315.5(15)
	$3 \times 351.0(5)$	3× 343.0(11)
– Si 1× 315.5 (15)	$3 \times 383.3(4)$	$3 \times 386.7(3)$
3× 343.0(11)		
3× 386.7(3)		
- Ba 6× 409.8(2)		
	∠ Pd-Si-Pd 118,3(2)	∠ Si-Pd-Si 119,53(6)

Tabelle 19:	Lageparameter und	l äquivalent-isotrope	Temperaturfaktoren	[pm²] für
BaPdSi (stat	tistisches Modell).			

	Wyckoff	Х	У	Z	Besetzungsfaktor	$U_{eq}^{}*$
Ba	4a	0.1252(1)	X	X	1	156(2)
Pd1	4a	0.4045(2)	X	X	0.393(3)	129(7)
Si1	4a	= x Pd1	X	X	0.606(3)	$=U_{eq} Pd1$
Pd2	4a	0.8454(2)	X	X	0.393(3)	136(7)
Si2	4a	= x Pd2	X	X	0.606(3)	$=$ U $_{eq}$ Pd2

^{*)} $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33}) [48]$

Tabelle 20: Anisotrope Temperaturfaktoren [pm²] für BaPdSi (statistisches Modell). Der anisotrope Temperaturfaktor-Exponent hat die Form:

-2
$$\pi^2$$
 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

_	• •		12 -				
	U ₁₁	U ₂₂	U ₃₃	U_{23}	U ₁₃	U ₁₂	
Ba	156(7)	U_{11}	U_{11}	10(2)	U_{23}	$U_{\scriptscriptstyle 23}$	
Pd1/Si1	129(7)	U_{11}	U_{11}	8(4)	$U_{\scriptscriptstyle 23}$	$U_{\scriptscriptstyle 23}$	
Pd2/Si2	136(7)	U_{11}	U ₁₁	11(4)	U_{23}	$U_{\scriptscriptstyle{23}}$	

Tabelle 21: Abstände [pm] und Winkel [°] für BaPdSi (statistisches Modell)

Ba – Pd1/Si1	1× 323.8(3) 3× 348.2(2)	Pd1/Si1	– Pd2/Si2	3× 239.9(1)
	3× 384.5(2)		– Ba	1× 323.8(3) 3× 348.2(2)
– Pd2/Si2	1× 324.3(3)			3× 384.5(2)
	3× 348.2(2) 3× 384.3(2)	Pd2/Si2	– Pd1/Si1	3× 239.9(1)
– Ba	6× 409.8(2)		– Ba	1× 324.3(3)
				$3 \times 348.2(2)$
				3× 384.3(2)

∠ Pd1/Si1-Pd2/Si2-Pd1/Si1 119,09(2) ∠ Pd2/Si2-Pd1/Si1-PD2/Si2 119,11(2)

5.1.3 Strukturbeschreibung und Diskussion

Für den von der SrSi₂-Struktur abgeleiteten LaIrSi-Typ [11], ist ein von Übergangsmetall und Silicium gebildetes 3D3C-Netz (3-dimensional-3-connected) charakteristisch. Die Struktur ist am Beispiel von SrPtSi in Abb. 1 als Projektion dargestellt.

So wie das Übergangsmetall (hier Pt) von Silicium, ist Silicium dreifach nahezu planar vom Übergangsmetall umgeben. Von den drei Bindungen, die von jedem dieser Atome ausgehen, sind zwei so orientiert, daß sich entlang der 2₁-Achsen Pt/Si- Helices ausbilden (Abb. 2). Die dritte Bindung der Si- bzw. Pt-Atome verbindet die Schrauben untereinander, so daß ein 3-dimensionales Raumnetz aus senkrecht aufeinanderstehenden, entlang der Achsen verlaufenden Helices entsteht (Abb. 1).

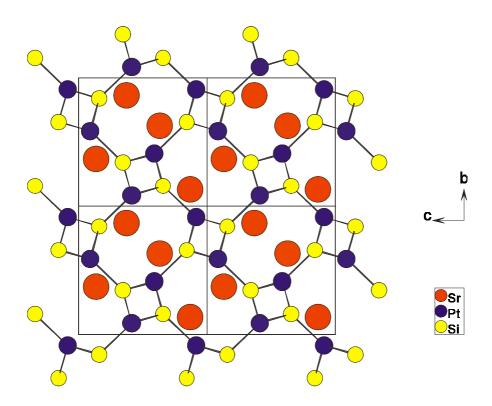


Abb. 1: Kristallstruktur von SrPtSi, Projektion in Richtung [100]

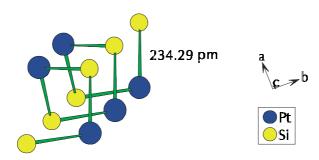


Abb. 2: Pt-Si-Helix in der Struktur von SrPtSi

In der Struktur von SrPtSi ist Strontium von jeweils 7 Platin-, 7 Silicium- und 6 weiteren Strontium-Atomen umgeben (Koordinationszahl = 7+7+6).

Die Atomabstände in SrPtSi sind von besonderem Interesse. Die Pt-Si-Abstände sind mit 234,3 pm bemerkenswert kurz. Sie sind kürzer als der metallische Einfachbindungsabstand von 246,8 pm (Pauling [49]) und entsprechen eher dem Abstand zweier Silicium-Atome (234,6 pm nach Pauling [49]). Vergleichbar kurze Übergangsmetall-Silicium-Abstände zwischen 230 und 232 pm haben aber auch Parthé und Klepp für LalrSi [11], sowie Evers und Oehlinger für CaPtSi [14] und SrPdSi [15] gefunden. Außerdem sind die Sr-Si-Abstände (326 pm) größer als die Sr-Pt-Abstände (316 pm, siehe Tabelle 10). Auch dies entspricht den Ergebnissen für LalrSi, CaPtSi und SrPdSi. Es läßt sich eine , wenn auch nur geringe, Differenz zwischen den Winkeln Pt-Si-Pt (119,01°) und Si-Pt-Si (118,45°) beobachten.

6 Verbindungen der Zusammensetzung AM₂Si₂

Die Verbindungen der Zusammensetzung APd₂Si₂ mit A=Ca,Sr,Ba sind von Palenzona, Cirafici und Canepa [23] untersucht worden. Die Autoren haben CaPd₂Si₂ und SrPd₂Si₂ mit Röntgenpulvermethoden charakterisiert und als isotyp zu ThCr₂Si₂ beschrieben.

Auch SrPt₂Si₂ ist nach Pulverdiffraktometeruntersuchungen von Mayer und Yetor [24] isotyp zu ThCr₂Si₂, wobei die Punktlagen 4d und 4e von Pt und Si gemeinsam besetzt sein sollen.

Die Verbindungen CaPt₂Si₂, BaPt₂Si₂ und BaPd₂Si₂ sind bisher nicht beschrieben worden. Ihre Darstellung wurde deshalb im Rahmen dieser Arbeit versucht. Die Synthese gelang bei CaPt₂Si₂ und BaPt₂Si₂ nicht jedoch bei BaPd₂Si₂. Außerdem konnte ein Einkristall der Verbindung SrPt₂Si₂ erhalten werden. Seine Untersuchung zeigte, daß nicht der ThCr₂Si₂-Typ sondern der CaBe₂Ge₂-Typ vorliegt.

6.1 Die Verbindungen CaPt₂Si₂ und SrPt₂Si₂

6.1.1 Darstellung und Eigenschaften

Die Verbindung CaPt₂Si₂ wurde durch Umsetzung der Elemente in dem der Formel entsprechenden Verhältnis in einem in eine Stahlampulle unter Argonatmosphäre eingeschweißten Tantaltiegel erhalten (1150 °C über 60 Stunden, Aufheizrate 100 °C/h, Abkühlgeschwindigkeit 50 °C/h). Das Präparat wurde dreimal homogenisiert und jeweils unter gleichen Bedingungen wieder eingesetzt. Trotzdem konnte das Pulver nicht röntgenrein erhalten werden. CaPt₂Si₂ ist luft- und feuchtigkeitsstabil und nur in Königswasser löslich.

Ein Einkristall der Verbindung $CaPt_2Si_2$ konnte aus einem Präparat isoliert werden, das 60 Stunden bei 1200 °C getempert wurde (mit gleichen Aufheiz- und Abkühlgeschwindigkeiten wie das Pulver).

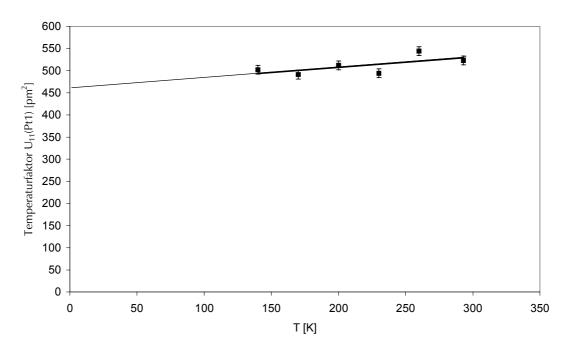
Eine EDAX-Untersuchung des silbrig glänzenden Kristalls ergab eine Elementzusammensetzung von Ca: Pt: Si von 1: 2,11: 3,06.

Ergebnisse über Verbindungen der Zusammensetzung APt_2Si_2 (mit A = La, Nd, Eu, Gd, Dy, Er, Tm, Lu und Sr) wurden 1977 von Mayer und Yetor [24] veröffentlicht. Die

Verbindungen wurden dargestellt, indem die A-Metalle und Silicium in Platinfolie eingefaltet, in Korundtiegel eingebracht und in einem Induktionsofen umgesetzt wurden. Dabei entstanden jedoch nur Kristallpulver, keine Einkristalle.

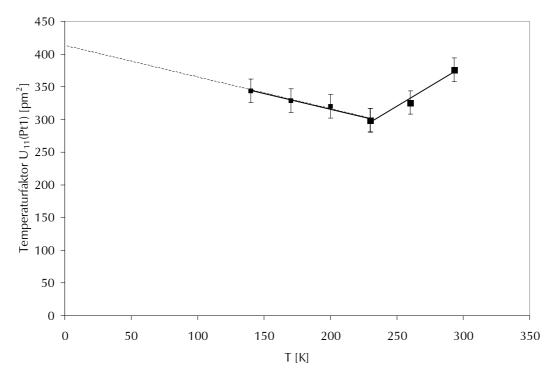
Im Rahmen der vorliegenden Arbeit konnte nun ein Einkristall der Verbindung $SrPt_2Si_2$ aus einem Präparat der Einwaage $SrPt_2Si_4$ isoliert werden. Die Umsetzung erfolgte in einem in eine Stahlampulle eingeschweißten Tantaltiegel. Nach dem Aufheizen mit 100 °C/h wurde 60 Stunden bei 1150 °C gehalten und anschließend mit 50 °C/h abgekühlt. Die röntgenfluoreszenzanalytische Untersuchung des Kristalls ergab eine Zusammensetzung von $Sr: Pt: Si \ von \ 1:0,86:1,15.$

6.1.2 Strukturbestimmung


Einkristalle der Verbindungen CaPt₂Si₂ und SrPt₂Si₂ wurden auf dem IPDS vermessen.

Die Zellbestimmungen ergaben für beide Kristalle ein tetragonal primitives Kristallsystem. Anhand der Datensätze konnte die Laue-Klasse 4/mmm ermittelt werden. Mit den Auslöschungsregeln hk0 nur mit h+k=2n und 0k0 nur für k=2n vorhanden, ergab sich für beide Verbindungen das Beugungssymbol 4/mmm Pn— dem nur die Raumgruppe P4/nmm (Nr. 129) zugeordnet ist.

Aufgrund der Symmetrie und der Gitterkonstanten konnte vermutet werden, daß beide Verbindungen im CaBe₂Ge₂-Typ [19] kristallisieren. Dieser Strukturvorschlag ließ sich in der Raumgruppe P4/nmm (Nr. 129) in wenigen Schritten verfeinern.


Allerdings zeigen sich zu hohe Temperaturfaktoren U_{11} und U_{22} für Pt1 und U_{11} , U_{22} und U_{33} für Si2 in $CaPt_2Si_2$, sowie U_{11} und U_{22} für Si1 in $SrPt_2Si_2$ (Tab. 24 und 28). Die Abstände dieser Atome zu anderen liegen jedoch alle im Bereich der metallischen Einfachbindungsabstände. Deshalb ist mit festen Bindungen zu rechnen und besonders starke thermische Auslenkungen sind nicht zu erwarten. Um möglicherweise zwischen einem dynamischen Effekt und Fehlordnung zu unterscheidenzu können, wurden Tieftemperaturmessungen bei 260 K, 230 K, 200 K, 170 K und 140 K für diese Kristalle durchgeführt.

Die Ergebnisse für $CaPt_2Si_2$ sind in Abbildung 3 dargestellt. Dabei ist ein Trend erkennbar. Die Temperatufaktoren $U_{11}=U_{22}$ von Pt1 sinken nur geringfügig mit der Temperatur. Bei einer reinen Temperaturbewegung sollte die extrapolierte Gerade annähernd durch den Nullpunkt gehen. Da dies bei weitem nicht der Fall ist, muß mit einer Lagefehlordnung gerechnet werden.

<u>Abb. 3</u>: Der Temperaturfaktor U₁₁ von Pt1 in der Verbindung CaPt₂Si₂ bei verschiedenen Temperaturen (IPDS-Einkristallmessungen)

In der Darstellung der Ergebnisse für SrPt₂Si₂ (Abb. 4) zeigt sich zwischen 300 und 230 K ein Absinken des Temperatufaktors von Pt1 mit fallender Temperatur bei der Messung bis 230 K. Dann steigt der Temperaturfaktor bei weiter sinkender Temperatur jedoch wieder an. Auch dieses Verhalten zeigt, daß der hohe Temperaturfaktor von Pt1 nicht durch Temperaturbewegung zu erklären ist.

<u>Abb. 4</u>: Der Temperaturfaktor U₁₁ von Pt1 in der Verbindung SrPt₂Si₂ bei verschiedenen Temperaturen (IPDS-Einkristallmessungen)

Da der Temperaturverlauf des U₁₁-Wertes beider Verbindungen nicht für eine reine thermische Auslenkung spricht, wurde die Lage der Pt1-Atome als Splitpunktlage beschrieben. Die Ergebnisse der Zellbestimmungen und die kristallographischen Daten, die Atomkoordinaten, die anisotropen Temperaturkoeffizienten und die Atomabstände sind in den Tabellen 22 bis 37 zusammengestellt.

Tabelle 22: Kristallographische Daten und Strukturverfeinerung von CaPt₂Si₂

Formel	CaPt ₂ Si ₂
Formelgewicht	486.44 g/mol
Meßtemperatur	293(2) K
Wellenlänge	71.073 pm (Graphit-Monochromator)
Kristallsystem	tetragonal
Raumgruppe	P4/nmm (Nr. 129)
Strukturtyp	$CaBe_2Ge_2$
Gitterkonstanten (IPDS)	a = 419.93(8) pm
	c = 992.0(3) pm
Gitterkonstanten (Pulverdiffraktometer)	a = 419.11(8) pm
	c = 990.6(10) pm
Achsenverhältnis c/a	2.36
Zellvolumen	174.93(7) ·10 ⁶ pm ³
Z	2
berechnete Dichte	9.235 g/cm ³
Absorptionskoeffizient	81.758 mm ⁻¹
F(000)	408
Kristalldimensionen	$0.1 \times 0.1 \times 0.1 \text{ mm}^3$
Absorptionskorrektur	numerisch,
	nach Kristallgestaltoptimierung [42]
Theta-Bereich	4.11° bis 28.07°
hkl-Bereich	$-5 \le h \le 5, -5 \le k \le 5, -13 \le l \le 12$
gemessene Reflexe / symmetrieunabh.	1631 / 160
Innerer R-Wert (R _i)	0.1029
Verfeinerungsmethode	Full-matrix least-squares an F ²
Daten / Parameter	160 / 14
Goodness-of-fit für F ²	1.118
R-Werte [I>2sigma(I)]	R1 = 0.0391, $wR2 = 0.0984$
R-Werte (gesamt)	R1 = 0.0476, $wR2 = 0.1014$
max./min. Restelektronendichten	$3.58 / -2.58 \cdot 10^6 \mathrm{e}^{\text{-}} \mathrm{pm}^{\text{-}3}$

Tabelle 23 : Lageparameter	und äquivalent-isotrope	Temperaturfaktoren	[pm ²] für
CaPt ₂ Si ₂ .			

	Wyckoff	Х	у	Z	U _{eq} *	
Ca	2c	1/4	1/4	0.7465(8)	281(14)	
Pt1	2a	3/4	1/4	0	437(6)	
Pt2	2c	1/4	1/4	0.3723(2)	302(5)	
Si1	2b	3/4	1/4	1/2	228(20)	
Si2	2c	1/4	1/4	0.1288(15)	394(27)	

^{*)} $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33}) [48]$

Tabelle 24 : Anisotrope Temperaturfaktoren [pm²] für CaPt₂Si₂. Der anisotrope Temperaturfaktor-Exponent hat die Form: -2 π^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

U ₁₁	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
261(20)	U_{11}	320(32)	0	0	0
523(8)	U_{11}	265(8)	0	0	0
243(6)	U_{11}	418(8)	0	0	0
242(30)	U_{11}	203(37)	0	0	0
348(38)	U ₁₁	484(64)	0	0	0
	261(20) 523(8) 243(6) 242(30)	261(20) U ₁₁ 523(8) U ₁₁ 243(6) U ₁₁ 242(30) U ₁₁	261(20) U ₁₁ 320(32) 523(8) U ₁₁ 265(8) 243(6) U ₁₁ 418(8) 242(30) U ₁₁ 203(37)	261(20) U ₁₁ 320(32) 0 523(8) U ₁₁ 265(8) 0 243(6) U ₁₁ 418(8) 0 242(30) U ₁₁ 203(37) 0	261(20) U ₁₁ 320(32) 0 0 523(8) U ₁₁ 265(8) 0 0 243(6) U ₁₁ 418(8) 0 0 242(30) U ₁₁ 203(37) 0 0

Tabelle 25 : Abstände [pm] für CaPt₂Si₂

Ca - Si2 4× 321.8(6)	Pt1 - Si2 4× 245.5(8)	Si1 - Pt2 4× 245.2(1)
- Si1 4× 322.3(6)	- Pt1 4× 296.94(6)	- Si1 4× 296.9(6)
- Si2 1× 378.7(6)	- Ca 4× 327.6(7)	- Ca 4× 322.3(6)
 Pt2 4× 319.5(3) Pt1 1x 327.6(6) Pt2 1× 371.2(6) Ca 4x 419.9(7) 	Pt2 - Si2 1× 242.0(14) - Si1 4× 245.2(1) - Ca 4× 319.5(3) 1× 371.3(9)	Si2 - Pt2 1× 242.0(14) - Pt1 4× 245.5(8) - Ca 4× 321.8(6) 1× 378.7(6)

Tabelle 26: Kristallographische Daten und Strukturverfeinerung für CaPt₂Si₂ mit Pt1 auf einer Splitpunktlage

Innerer R-Wert (R _i)	0.1156
Goodness-of-fit für F ²	1.332
R-Werte [I>2sigma(I)]	R1 = 0.0507, wR2 = 0.1210
R-Werte (gesamt)	R1 = 0.0594, wR2 = 0.1238
max./min. Restelektronendichten	$3.65 / -3.46 \cdot 10^6 \mathrm{e}^{-}\mathrm{pm}^{-3}$

Tabelle 27: Lageparameter und äquivalent-isotrope Temperaturfaktoren [pm²] für CaPt₂Si₂. mit Pt1 auf der Splitpunktlage 8j mit Populationsparameter 0.125

	Wyckoff	Х	у	Z	U _{eq} *	
Ca	2c	1/4	1/4	0.7466(9)	263(17)	
Pt1	8j	0.6944(9)	1/4	-0.0014(9)	211(9)	
Pt2	2c	1/4	1/4	0.3723(2)	288(6)	
Si1	2b	3/4	1/4	1/2	217(24)	
Si2	2c	1/4	1/4	0.1290(18)	372(32)	

^{*)} $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33}) [48]$

Tabelle 28 : Anisotrope Temperaturfaktoren [pm²] für CaPt₂Si₂ mit Pt1 auf einer Splitpunktlage. Der anisotrope Temperaturfaktor-Exponent hat die Form: -2 π^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

	U ₁₁	U_{22}	U ₃₃	U_{23}	U ₁₃	U_{12}
Ca	262(24)	U ₁₁	265(41)	0	0	0
Pt1	211(9)	isotrop				
Pt2	254(7)	U_{11}	357(10)	0	0	0
Si1	259(37)	U_{11}	133(47)	0	0	0
Si2	348(45)	U_{11}	419(79)	0	0	0

Tabelle 29 : Abstände [pm] für CaPt₂Si₂ mit Pt1 auf einer Splitpunktlage

Ca $- Si2 \ 4 \times 321.6(8)$	Pt1 – Pt1 2x 33.1(6)	Si1 – Pt2 $4 \times 245.2(1)$
$- Si1 \times 322.4(8)$	- Pt1 1x 46.7(8)	$- Si1 4 \times 296.9(6)$
$- Si2 1 \times 379.4(6)$	$- Si2 1 \times 227(1)$	$- Ca 4 \times 322.4(8)$
	- Si2 2x 246(1)	
– Pt1 1x 312(1)	– Si2 1x 266(1)	Si2 – Pt1 $1 \times 227(1)$
$- Pt2 4 \times 319.5(4)$	$- Pt1 2 \times 263.9(6)$	$- Pt2 1 \times 241(1)$
$- Pt2 1 \times 371(1)$	1x 266.0(5)	– Pt1 2x 246(1)
	1x 296.95(6)	$- Pt1 1 \times 266(1)$
– Ca 4x 419.9(7)	$- Ca 4 \times 312(1)$	$- \text{Ca } 4 \times 321.6(8)$
		$1 \times 379.4(6)$
	Pt2 – Si2 $1 \times 241(1)$	
	$- Si1 4 \times 245.2(1)$	
	$- Ca 4 \times 319.5(4)$	
	1× 371(1)	

Tabelle 30: Kristallographische Daten und Strukturverfeinerung von SrPt₂Si₂

Formel	SrPt ₂ Si ₂
Formelgewicht	533.98 g/mol
Meßtemperatur	293(2) K
Wellenlänge	71.073 pm (Graphit-Monochromator)
Kristallsystem	tetragonal
Raumgruppe	P4/nmm (Nr. 129)
Strukturtyp	$CaBe_2Ge_2$
Gitterkonstanten (IPDS)	a = 429.14(7) pm
	c = 990.4(2) pm
Gitterkonstanten (Pulverdiffraktometer)	a = 429.15(11) pm
	c = 989.8(3) pm
Zellvolumen	$182.39(6) \cdot 10^6 \text{pm}^3$
Achsenverhältnis c/a	2.31
Z	2
berechnete Dichte	9.723 g/cm ³
Absorptionskoeffizient	91.475 mm ⁻¹
F(000)	444
Kristalldimensionen	0.06 x 0.03 x 0.04 mm ³
Absorptionskorrektur	numerisch,
	nach Kristallgestaltoptimierung [42]
Theta-Bereich	4.12° bis 26.00°
hkl-Bereich	$-5 \le h \le 5, -4 \le k \le 5, -12 \le l \le 13$
gemessene Reflexe / symmetrieunabh	1425 / 139
Innerer R-Wert (R _i)	0.1220
Verfeinerungsmethode	Full-matrix least-squares an F ²
Daten / Parameter	139 / 15
Goodness-of-fit für F ²	1.213
R-Werte [I>2sigma(I)]	R1 = 0.0514, $wR2 = 0.1396$
R-Werte (gesamt)	R1 = 0.0544, $wR2 = 0.1431$
Extinktionskoeffizient	0.014(4)
max./min. Restelektronendichten	$2.73 / -4.69 \cdot 10^{6} \mathrm{e}^{-}\mathrm{pm}^{-3}$

Tabelle 31: Lageparameter und äquivalent-isotrope Temperaturfaktoren [pm²] für SrPt₂Si₂.

	Wyckoff	Х	у	Z	U _{eq} *	
Sr	2c	1/4	1/4	0.7461(4)	186(13)	
Pt1	2a	3/4	1/4	0	323(11)	
Pt2	2c	1/4	1/4	0.3783(2)	181(10)	
Si1	2b	3/4	1/4	1/2	194(32)	
Si2	2c	1/4	1/4	0.1299(14)	224(36)	

^{*)} $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33}) [48]$

Tabelle 32 : Anisotrope Temperaturfaktoren [pm²] für SrPt₂Si₂. Der anisotrope Temperaturfaktor-Exponent hat die Form: -2 π^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b* U_{12}]

	U ₁₁	U_{22}	U_{33}	U_{23}	U ₁₃	U ₁₂	
Sr	199(17)	U ₁₁	161(23)	0	0	0	
Pt1	376(13)	U_{11}	216(14)	0	0	0	
Pt2	196(11)	U_{11}	153(12)	0	0	0	
Si1	208(49)	U_{11}	167(63)	0	0	0	
Si2	221(51)	U_{11}	229(75)	0	0	0	

Tabelle 33 : Abstände [pm] für SrPt₂Si₂

Tabelle 34: Kristallographische Daten und Strukturverfeinerung für SrPt₂Si₂ mit Pt1 auf einer Splitpunktlage

Innerer R-Wert (R _i)	0.1220
Goodness-of-fit für F ²	1.242
R-Werte [I>2sigma(I)]	R1 = 0.0522, $wR2 = 0.1418$
R-Werte (gesamt)	R1 = 0.0553, $wR2 = 0.1458$
max./min. Restelektronendichten	$2.74 / -4.49 \cdot 10^{6} \mathrm{e}^{-}\mathrm{pm}^{-3}$

Tabelle 35 : Lageparameter und äquivalent-isotrope Temperaturfaktoren [pm²] für SrPt₂Si₂. mit Pt1 auf der Splitpunktlage 8j mit Populationsparameter 0.125

	Wyckoff	Х	у	Z	U _{eq} *	
Sr	2c	1/4	1/4	0.7461(4)	184(13)	
Pt1	8j	0.7109(19)	1/4	0.0000(24)	221(14)	
Pt2	2c	1/4	1/4	0.3783(2)	180(10)	
Si1	2b	3/4	1/4	1/2	195(33)	
Si2	2c	1/4	1/4	0.1299(15)	222(36)	
512	2C	'/4	'/4	0.1299(15)	222(30)	

^{*)} $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33}) [48]$

Tabelle 36 : Anisotrope Temperaturfaktoren [pm²] für SrPt₂Si₂ mit Pt1 auf einer Splitpunktlage. Der anisotrope Temperaturfaktor-Exponent hat die Form:

-2 π^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

	U ₁₁	U_{22}	U_{33}	U_{23}	U ₁₃	U_{12}
Sr	197(17)	$U_{\scriptscriptstyle 11}$	162(24)	0	0	0
Pt1	221(14)	isotrop	, ,			
Pt2	194(27)	U ₁₁	153(13)	0	0	0
Si1	208(50)	U_{11}	170(66)	0	0	0
Si2	219(53)	U ₁₁	231(77)	0	0	0

Tabelle 37 : Abstände [pm] für SrPt₂Si₂ mit Pt1 auf einer Splitpunktlage

c C'4 4 224 7(2)	Did 0 00(4)	C'4 D:0 4 046 4(4)
Sr – Si1 $4 \times 324.7(3)$	Pt1 – Pt1 2x 23(1)	Si1 – Pt2 4× 246.1(1)
$- Si2 4 \times 327.4(6)$	- Pt1 1x 33(2)	$- Si1 4 \times 303.5(6)$
$- Si2 1 \times 380.1(2)$	$- Si2 1 \times 236(2)$	$- Sr 4 \times 324.7(6)$
	- Si2 2x 251(1)	
– Pt1 1x 319(2)	- Si2 1x 265(2)	Si2 – Pt1 1× 236()
$- Pt2 4 \times 327.5(2)$	$- Pt1 2 \times 280(1)$	$- Pt2 1 \times 246(2)$
$- Pt2 1 \times 371(1)$	2x 303.5(5)	– Pt1 2x 251(1)
	$- Sr 4 \times 312(1)$	$- Pt1 1 \times 265(2)$
-Sr 4x 429.1(7)		$- Sr 4 \times 327.4(6)$
	Pt2 – Si2 $1 \times 246(2)$	1× 380.1(2)
	$- Si1 4 \times 246.1(1)$	
	$- Sr 4 \times 327.5(2)$	
	1× 371(1)	

6.1.3 Strukturbeschreibung und Diskussion

CaPt₂Si₂ und SrPt₂Si₂ kristallisieren im CaBe₂Ge₂–Typ (Abb. 5), einer Besetzungsvariante des BaAl₄–Typs. Sie sind damit auch isotyp zu CaPt₂Ga₂ und SrPt₂Ga₂, die von K. Dascoulidou-Gritner [50] bzw. D. Langen [51] beschrieben wurden.

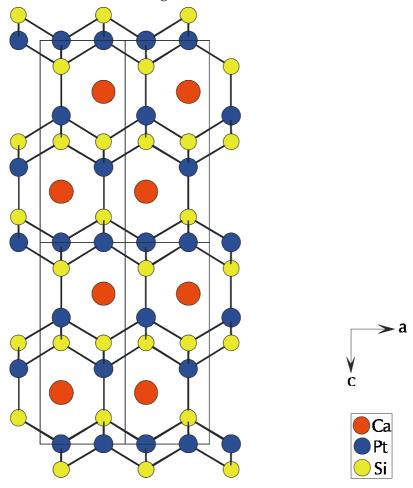


Abb. 5: Kristallstruktur von CaPt₂Si₂ mit Blick in Richtung [010]

In der CaPt₂Si₂-Struktur wechseln in c-Richtung 2 verschiedene Schichten kantenverknüpfter Tetraeder aus Pt- und Si-Atomen einander ab. Sie sind durch Pt-Si-Bindungen zu einem dreidimensionalen Raumnetz verbunden. In der einen Schicht liegt Silicium (Si1) tetraedrisch von Platin (Pt2) umgeben vor, das wiederum verzerrt quadratisch pyramidal von vier Si1-Atomen und einem Si2-Atom umgeben wird. In der zweiten Pt/Si-Schicht liegt Platin (Pt1) tetraedrisch von Silicium (Si2) umgeben vor. Die Silicium-Atome sind hier verzerrt quadratisch pyramidal von vier Pt1-Atomen und einem Pt2-Atom umgeben. Damit wird ein Si- (hier Si2) und ein Pt-Atom (hier Pt2) 5-bindig.

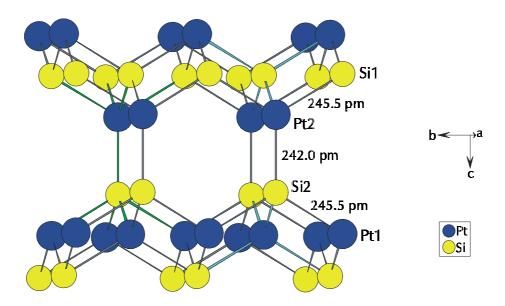
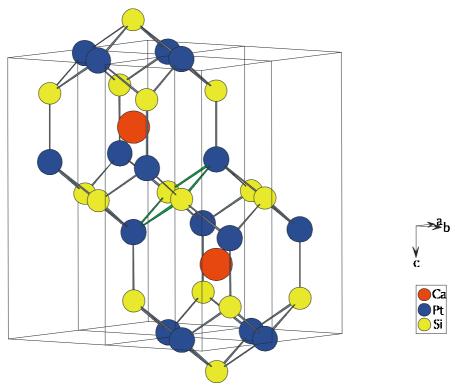



Abb. 6: Verknüpfung der Tetraederschichten am Beispiel von CaPt₂Si₂

Die Schichten aus kantenverknüpften Pt1Si2₄-, bzw. Si1Pt2₄- Tetraedern sind durch Pt2-Si2-Bindungen verknüpft (Abb. 6). Diese Bindungen sind mit 242 pm in CaPt₂Si₂ und 246 pm in SrPt₂Si₂ kürzer als die Bindungen in den Tetraedern (245,2 und 245,5 pm für CaPt₂Si₂ und 246,1 und 250,2 pm für SrPt₂Si₂) und auch kürzer als die Summe der metallischen Einfachbindungsradien (246.8 pm [49]).

In das Pt/Si-Gerüst werden die Erdalkaliatome in einander kreuzende, entlang [100] und [010] verlaufende, sechseckige Kanäle eingelagert (Abb. 5). Calcium- bzw. Strontium-Atome sind von 9 Platin- und 9 Silicium- Atomen umgeben. Die daraus gebildeten Polyeder sind in Richtung [100] und [010] miteinander flächenverknüpft (Abb. 7). Die engere Umgebung der Erdalkalimetall-Atome kann als quadratisches Prisma beschrieben werden, dessen Basisflächen zum einen von Platin-, zum anderen von Silicium-Atomen gebildet werden. Ein zweites, etwas elongierteres quadratisches Prisma umgibt die Erdalkalimetall-Atome um etwa 45° verdreht zum ersten Prisma.

<u>Abb. 7</u>: Flächenverknüpfte Pt/Si-Polyeder am Beispiel von CaPt₂Si₂

6.2 Die Verbindung BaPt₂Si₂

6.2.1 Darstellung und Eigenschaften

 $BaPt_2Si_2$ wurde durch Umsetzung eines der Formel entsprechenden Elementgemenges dargestellt. Die Reaktion erfolgte bei 1200 °C über 60 Stunden (Aufheizrate 100 °C/h, Abkühlgeschwindigkeit 50 °C/h) in einem Tantaltiegel. Dieser wurde unter Argon in eine Stahlampulle eingeschmolzen, die anschließend in ein mit Argon gefülltes Quarzrohr eingebracht wurde. Um die Verbindung röntgenrein zu erhalten, mußte das Präparat dreimal homogenisiert und unter gleichen Bedingungen wieder eingesetzt werden.

Die Verbindung fiel dabei als graues Pulver an. Sie wird von konzentrierter Salzsäure nicht angegriffen, von Königswasser jedoch zersetzt. Für die Strukturbestimmung konnte ein Einkristall isoliert werden, für den die EDAX eim Molverhältnis Ba:Pt:Si = 1:3,12:2,21 ergab.

6.2.2 Strukturbestimmung

Ein aus dem Präparat BaPt₂Si₂ isolierter Einkristall wurde auf dem CAD4 vermessen.

Zellbestimmung ergab ein monoklin innenzentriertes Translationsgitter Tab. 30). (Gitterkonstanten Anhand des Datensatzes konnten Auslöschungsbedingungen hkl nur mit h+k+l=2n und h0l nur für h,l=2n ermittelt werden. Das daraus resultierende Beugungssymbol ist 2/m I1a1. Die möglichen Raumgruppen sind damit Ia (Nr. 9) und I2/a (Nr. 15).

Die Strukturlösung gelang in der Raumgruppe I2/a (Nr. 15). Die Darstellung der Struktur in Standardaufstellung C2/c erwies sich als nicht sinnvoll, da der Winkel β dann mit 131,94 ° angegeben werden muß.

Die Ergebnisse der Zellbestimmungen und die kristallographischen Daten sowie die pyknometrisch bestimmte Dichte, die Atomkoordinaten, die anisotropen Temperaturkoeffizienten und die Atomabstände sind in den Tabellen 38 bis 41 zusammengestellt.

Tabelle 38: Kristallographische Daten und Strukturverfeinerung für BaPt₂Si₂

Formel	BaPt ₂ Si ₂
Formelgewicht	583.70 g/mol
Meßtemperatur	293(2) K
Wellenlänge	71.073 pm (Graphit-Monochromator)
Kristallsystem	monoklin
Raumgruppe	I2/a (Nr. 15)
Gitterkonstanten (CAD4)	a = 772.3(2) pm
	$b = 683.79(8) \text{ pm}$ $\beta = 93.81(10)^{\circ}$
	c = 802.2 (1) pm
Gitterkonstanten (Pulverdiffraktometer)	a = 772.7 (2) pm
	$b = 684.5 (2) \text{ pm}$ $\beta = 93.82(14)^{\circ}$
	c = 802.3 (1) pm
Zellvolumen	422.7 (1) · 10 ⁶ pm ³
Z	4
berechnete Dichte	9.172 g/cm ³
pykn. best. Dichte	8.919 g/cm³
Absorptionskoeffizient	75.578 mm ⁻¹
F(000)	960
Kristalldimensionen	$0.1 \times 0.1 \times 0.1 \text{ mm}^3$
Absorptionskorrektur	numerisch,
	nach Kristallgestaltoptimierung [42]
Theta-Bereich	3.92° bis 39.93°
hkl-Bereich	$-13 \le h \le 13, \ 0 \le k \le 12, \ -14 \le l \le 14$
gemessene Reflexe / symmetrieunabh.	2614 / 1310
Innerer R-Wert (R _i)	0.0850
Verfeinerungsmethode	Full-matrix least-squares an F ²
Daten / Parameter	1310 / 25
Goodness-of-fit für F ²	0.999
R-Werte $[I>2\sigma(I)]$	R1 = 0.0414, $wR2 = 0.0694$
R-Werte (gesamt)	R1 = 0.0529, $wR2 = 0.0723$
Extinktionskoeffizient	0.00320(15)
max./min. Restelektronendichten	11.16 (5 pm von Pt)/ $-10.44 \cdot 10^6 \mathrm{e}^{-}$ pm ⁻³

Tabelle 39	: Lageparameter	und	äquivalent-isotrope	Temperaturfaktoren	[pm ²]	für
BaPt ₂ Si ₂ .						

	Wyckoff	X	У	Z	U _{eq} *	
Ва	4e	1/4	0.3816(1)	0	71(1)	
Pt	8f	0.9097(1)	0.0989(1)	0.1194(1)	45(1)	
Si	8f	0.1103(2)	0.8414(3)	0.1780(2)	50(3)	

^{*)} $U_{eq} = 1/3 [U_{22} + 1/\sin^2\!\beta (U_{11} + U_{33} + 2U_{13}\cos\!\beta)] [48]$

Tabelle 40: Anisotrope Temperaturfaktoren [pm²] für BaPt₂Si₂. Der anisotrope Temperaturfaktor-Exponent hat die Form: -2 π^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

	U ₁₁	U_{22}	U_{33}	U_{23}	U ₁₃	U_{12}
Ва	52(2)	75(2)	85(2)	0	-9(2)	0
Pt	38(1)	53(1)	44(1)	-6(1)	15(1)	12(1)
Si	41(7)	59(6)	50(6)	13(6)	-9(5)	6(7)

Tabelle 41: Abstände [pm] für BaPt₂Si₂

Ba – Si	$2 \times 332.5(2)$	Pt – Si	$1 \times 233.4(2)$	Si – Pt	$1 \times 233.4(2)$
	$2 \times 340.3(3)$		$1 \times 237.1(2)$		$1 \times 237.1(2)$
	$2 \times 364.6(2)$		$1 \times 241.6(2)$		1× 241.6(2)
	$2 \times 393.0(2)$		$1 \times 242.5(2)$		1× 242.5(2)
	2× 412.9(6)				
		– Pt	$1 \times 279.3(2)$	– Si	1× 268.7(4)
– Pt	2× 344.9(1)		1× 302.1(3)	– Si	1× 369.3(3)
	2× 361.6(9)		2× 409.1(6)		1×388.9(3)
	2× 368.1(2)		2× 419.9(2)	– Si	2× 402.3(3)
	$2 \times 386.06(8)$				
	2× 389.6(4)	– Ba	1× 344.9(1)	– Ba	1×332.5(2)
			$1 \times 361.6(9)$		1× 340.3(3)
– Ba	2× 418.7(2)		1× 368.1(2)		1× 364.6(2)
	2× 439.6(6)		1× 386.06(8)		1×393.0(2)
			$1 \times 389.6(4)$		$1 \times 412.9(2)$

6.2.3 Strukturbeschreibung und Diskussion

BaPt₂Si₂ kristallisiert monoklin in der Raumgruppe I2/a (Nr. 15) in einer neuen Struktur. Diese besteht aus einem Raumnetz kanten- und eckenverknüpfter Pt-Si-Tetraeder, in dessen Lücken die Barium-Atome eingelagert sind (Abb. 8 und 9).

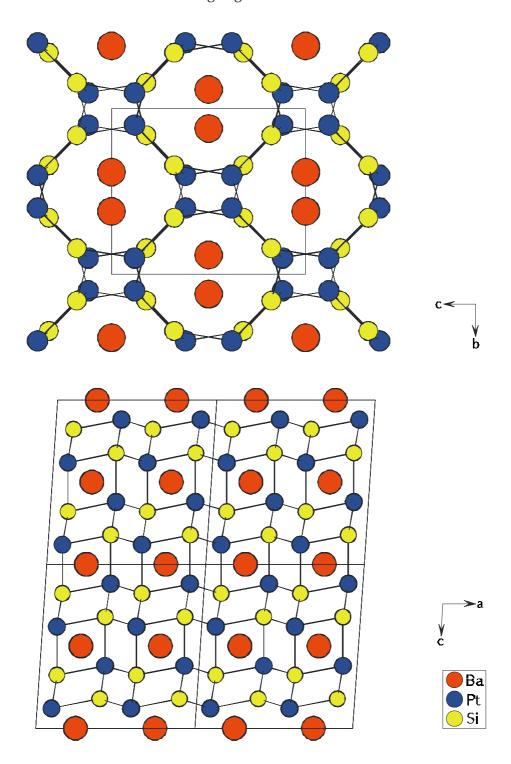


Abb. 8: Struktur von BaPt₂Si₂, Blick in Richtung [100] (oben) und [010] (unten)

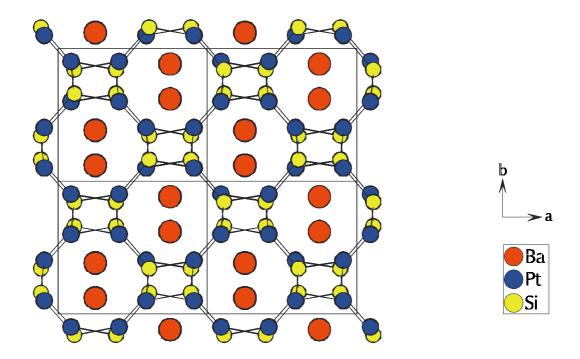


Abb. 9: Struktur von BaPt₂Si₂, Blick in Richtung [001]

Die Pt-Atome sind verzerrt tetraedrisch von Si-Atomen umgeben, und die Si-Atome sind verzerrt tetraedrisch von Pt-Atomen umgeben. Sowohl die $PtSi_4$ - als auch die $SiPt_4$ - Tetraeder, sind untereinander über gemeinsame Ketten verknüpft. Die zentralen Platin-Atome weisen abwechselnd Abstände von 393 und 279 pm und die zentralen Silicium-Atome abwechselnd Abstände von 389 und 269 pm auf.

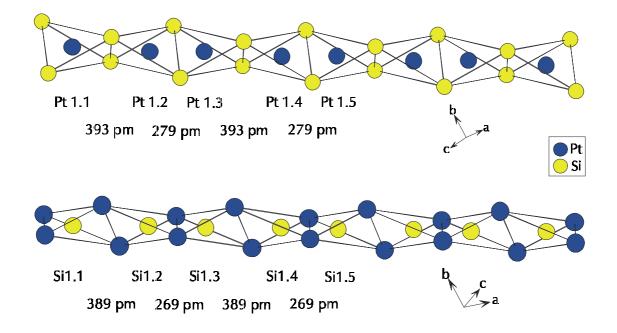
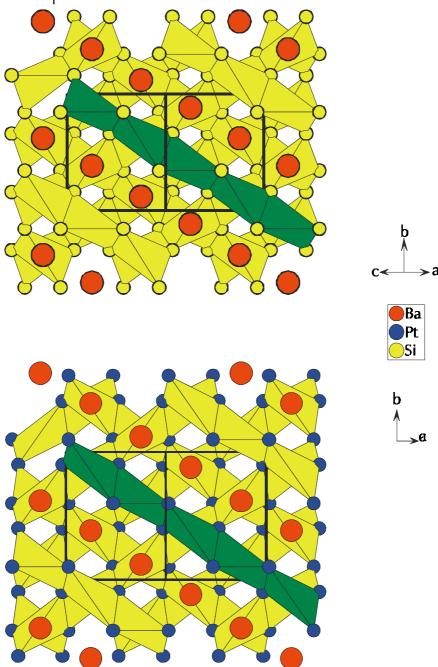



Abb. 10: Ketten kantenverknüpfter PtSi₄- und SiPt₄-Tetraeder

Die PtSi₄-Tetraederketten liegen in der Ebene (101) parallel zueinander und isoliert voneinander vor (Abb. 11). Entlang [101] sind die Tetraederketten in aufeinanderfolgenden Schichten jeweils um ca. 60° gegeneinander verdreht. Die sich kreuzenden Ketten benachbarter Schichten sind über gemeinsame Tetraederkanten miteinander verknüpft. Daraus ergibt sich ein dreidimensionaler Strukturverband, der entlang [100] und [001] einander kreuzende Kanäle aufweist. Die Struktur läßt sich nicht nur durch PtSi₄-Tetraederketten parallel (101), sondern in analoger Weise auch durch SiPt₄-Tetraederketten parallel (-101) beschreiben, die gleich den PtSi₄-Tetraederketten miteinander verknüpft sind.

<u>Abb. 11</u>: Darstellung der Struktur anhand sich kreuzender Tetraederketten oben: PtSi₄-Tetraederketten parallel (101); unten: SiPt₄-Tetraederketten parallel (-101)

Die Barium-Atome bilden in den Kanälen Zick-Zack-Ketten. Dabei ist jedes Barium-Atom tetraedrisch mit Abständen von 419 und 440 pm von 4 weiteren Ba-Atomen umgeben, jeweils zwei aus der [100]- und aus der [001]-Kette. Die vollständige Umgebung der Barium-Atome besteht zusätzlich zu den 4 Barium-Atomen aus je 10 Pt- und Si-Atomen (Abb. 12).

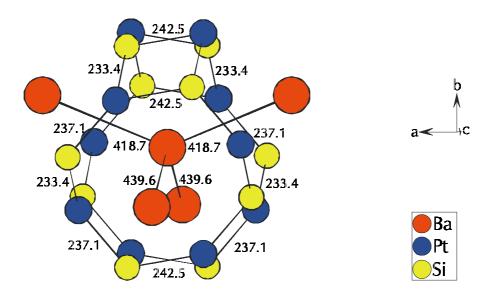


Abb. 12: Umgebung der Barium-Atome, Blick annähernd in [001]-Richtung

Die vollständige Umgebung der Silicium-Atome besteht neben den 4 tetraederbildenden Platin-Atomen im Abstand von 233 bis 242 pm, aus 2 Barium-Atomen im Abstand von 332 und 340 pm, die zusammen mit den Platin-Atomen ein stark verzerrtes trigonales Prisma bilden, und aus einem weiteren Silicium-Atom, das über einer Pt-Pt-Kante in einem Abstand von 268 pm koordiniert ist. Die so entstandenen, stark verzerrten Prismen aus 4 Platin- und 2 Barium-Atomen sind untereinander kantenverknüpft (Abb. 13).

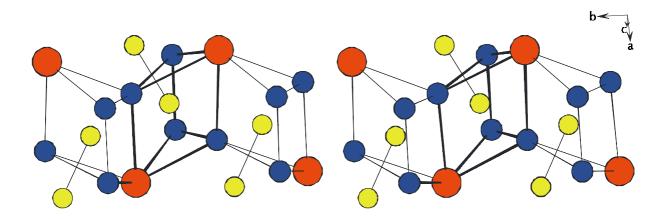
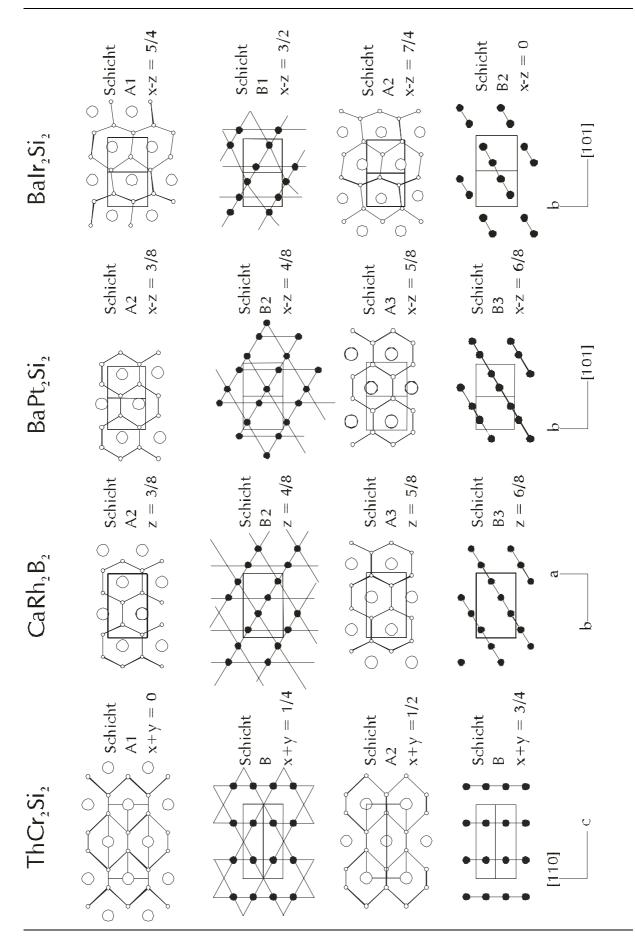
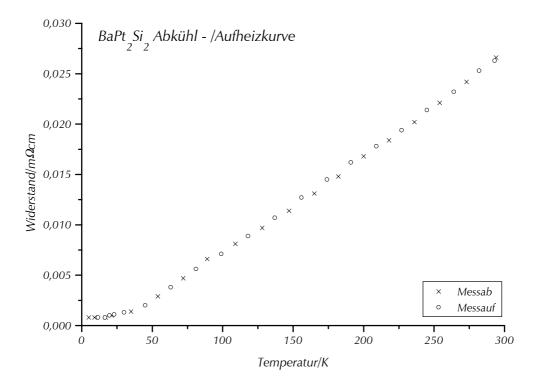



Abb. 13: Umgebung der Silicium-Atome in Stereozeichnung

Die BaPt₂Si₂-Struktur ist eine Verzerrungsvariante der orthorhombischen CaRh₂B₂-Struktur (Fddd, Nr.70) [26], die sich sowohl auf den CeCo₃B₂- [52]als auch auf den ThCr₂Si₂-Typ [18] zurückführen läßt. Sie bildet einen Übergang zur Balr₂Si₂-Struktur (P2₁/c, Nr. 14) [25]. Ein Vergleich der Strukturtypen anhand einzelner unabhängiger Schichten zeigt die strukturelle Verwandtschaft dieser verschiedenen Strukturtypen auf (Abb. 14). Zum Vergleich sind einige Schichten der ThCr₂Si₂-Struktur parallel zur (110)-Ebene, der CaRh₂B₂-Struktur parallel zur (001)–Ebene, der Balr₂Si₂-Struktur sowie der BaPt₂Si₂-Struktur parallel zur (101)-Ebene dargestellt. Die aus Erdalkali-Atom und Silicium bzw. Bor aufgebauten Schichten sind mit A, die Platinmetall–Schichten sind mit B bezeichnet. Im ThCr₂Si₂-Typ liegen aus Silicium gebildete Sechsecke vor, die von Thorium zentriert sind. Für die Chrom-Atome liegt nur eine Schichtart B vor, da Chrom-Ketten in Richtung [110] parallel übereinander liegen, während aufeinanderfolgende Schichten mit den Platinmetall-Ketten in den anderen Strukturtypen jeweils um ca. 60° gegeneinander verdreht sind. Die A-Schicht des CaRh₂B₂-Typs besteht aus nahezu regelmäßigen, von Bor gebildeten Sechsecken, in deren Zentren sich die Calcium-Atome befinden. Im BaPt₂Si₂-Typ liegen in der gleichen Schicht von Silicium gebildete Sechsecke vor, die nicht mehr so regelmäßig sind wie die im CaRh₂B₂-Typ und dessen Barium-Atome auch nicht mehr zentrisch, sondern etwas aus dem Zentrum ausgelenkt in den Sechsecken liegen. Das Silicium-Netz im Balr₂Si₂-Typ liegt in noch wesentlich unregelmäßigeren, wiederum von Barium-Atomen zentrierten Sechsecken vor. Die Schicht B enthält parallele Ketten aus Übergangsmetall-Atomen. Da sich der CaRh₂B₂-Typ und seine Verzerrungsvarianten auch vom CeCo₃B₂-Typ ableiten lassen, ist in Abb. 14 als Strukturmotiv der Schicht B ein 3636-Kagomé-Netz angedeutet, in dem die Platinmetall-Atome nur ²/₃ der Positionen besetzen. Im CeCo₃B₂-Typ ist dieses Kagomé–Netz vollständig von Cobalt-Atomen besetzt. Auch in der Schicht B läßt sich beobachten, daß die Verzerrung der Strukturmotive vom CaRh₂B₂-Typ über den BaPt₂Si₂-Typ bis zum Balr₂Si₂-Typ zunimmt. Während im CaRh₂B₂ die Rhodium–Atome äquidistant in parallelen Ketten vorliegen, erkennt man im BaPt₂Si₂ eine Verzerrung in der Kette der Platin-Atome. Die Abstände der Platin-Atome betragen abwechselnd 393 und 279 pm. Im Balr₂Si₂ wird das Kagomé–Netz durch die Bildung von Vierergruppen innerhalb der Iridium–Ketten mit Abständen von ...•-291-•-290-•-291-•-403-•... pm weiter verzerrt. Es ergeben sich durch Verdrehung und Verschiebung der Schichten trotz aller


Unterschiede gleiche Stapelfolgen für alle drei Strukturen: A1-B1-A2-B2-A3-B3-A4-B4....

 $\underline{Abb.\ 14} : Atomschichten\ in\ den\ Strukturen\ Th Cr_2Si_2,\ CaRh_2B_2,\ BaPt_2Si_2\ und\ Balr_2Si_2$

6.2.4 Messung des spezifischen elektrischen Widerstandes

Die Temperaturabhängigkeit des spezifischen elektrischen Widerstandes der Verbindung $BaPt_2Si_2$ wurde nach der 4-Punkt-Gleichstrommethode zwischen Raumtemperatur und 4,2 K gemessen. Dazu wurden Pulverpreßlinge (14 × 4 × 1 mm³) hergestellt und zur Verringerung von Übergangswiderständen sowie zur Erhöhung der mechanischen Stabilität 24 Stunden bei 1000 °C unter Argon gesintert. Der Kurvenverlauf ist in Abb. 15 wiedergegeben. Er entspricht dem eines metallischen Leiters.

<u>Abb. 15</u>: Temperaturabhängigkeit des spezifischen elektrischen Widerstandes von $BaPt_2Si_2$

7 Verbindungen der Zusammensetzung AM₃Si₂

Die Verbindung BaPd₃Si₂ konnte schon im Rahmen der Diplomarbeit [45] dargestellt werden. Ihre Struktur wurde dort in der azentrischen Raumgruppe Pna2₁ (Nr. 33) beschrieben. Erneute Rechnungen zeigten nun, daß die Struktur in der zentrosymmetrischen Raumgruppe Pnma (Nr. 62) gelöst werden kann. Die Untersuchung eines zweiten Kristalls aus einem anderen Präparat bestätigten die zentrosymmetrische Lösung der Struktur.

Die Verbindung SrPt₃Si₂ bildet eine Überstruktur des BaPd₃Si₂–Typs aus. Sie ist ebenfalls in der Raumgruppe Pnma (Nr. 62) zu beschreiben, besitzt aber im Vergleich zu BaPd₃Si₂ eine verdoppelte a-Gitterkonstante.

7.1 Die Verbindung BaPd₃Si₂

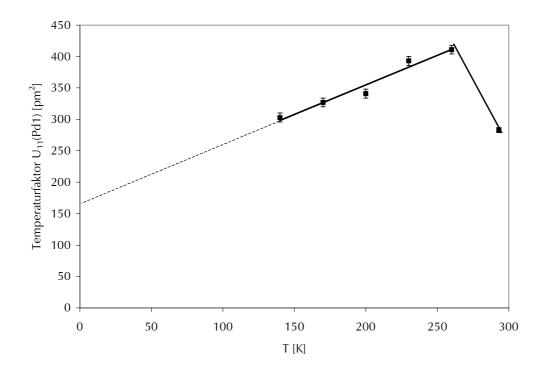
7.1.1 Darstellung und Eigenschaften

BaPd₃Si₂ wurde durch Umsetzung eines der Formel entsprechenden Elementgemenges dargestellt. Die Reaktion erfolgte bei 1150 °C über 60 Stunden im Tantaltiegel, der unter Argon in eine Stahlampulle eingeschmolzen wurde. Die Stahlampulle wurde anschließend in ein mit Argon gefülltes Quarzrohr eingebracht. Das Elementgemenge wurde nach der ersten Umsetzung noch dreimal in einer Reibschale homogenisiert und danach jeweils bei 1100 °C 60 Stunden getempert. Die Aufheizrate betrug jedesmal 100 °C/h, die Abkühlgeschwindigkeit 50 °C/h. Trotzdem konnte die Verbindung nicht völlig röntgenrein erhalten werden. Das Pulverdiagramm weist stets noch wenige Fremdreflexe auf (Kap. 12). Das Präparat fiel als graues Pulver an. Die Verbindung wird von konzentrierter Salzsäure nicht angegriffen, von Königswasser jedoch zersetzt.

Im Rahmen der Versuche, zu einem röntgenreinen Präparat zu gelangen, wurde auch eine Serie von Präparaten mit unterschiedlichem Bariumgehalt hergestellt ($Ba_xPd_3Si_2$ mit x = 0.25, 0.5, 0.75, 0.9, 1). Die Pulverdiffraktometer-Aufnahmen führten zu folgenden Gitterkonstanten:

Einwaage	a [pm]	b [pm]	c [pm]
Ba _{0.25} Pd ₃ Si ₂	569,7(6)	1126,7(9)	713,1(4)
Ba _{0.5} Pd ₃ Si ₂	569,4(3)	1124,8(3)	713,4(3)
Ba _{0.75} Pd ₃ Si ₂	569,5(3)	1123,6(6)	713,8(4)
Ba _{0.9} Pd ₃ Si ₂	569,9(4)	1124,7(9)	713,8(6)
BaPd ₃ Si ₂	569,43(9)	1122,2(2)	712,57(9)

Systematische Veränderungen der Gitterkonstanten mit dem Barium-Gehalt sind nicht erkennbar. In den Pulverdiffraktogrammen treten mit Abnahme des Bariumgehaltes die Reflexe von $BaPd_3Si_2$ mit immer geringerer Intensität auf. Neben den Reflexen von $BaPd_3Si_2$ fanden sich für die Präparate mit x=0.9 und 0.75 Reflexe der Verbindung PdSi und für x=0.5 und 0.25 Reflexe der Verbindung Pd_2Si . Daraus ergibt sich, daß $BaPd_3Si_2$ bezüglich des Bariumgehaltes keine große Phasenbreite besitzt.


Für die Strukturbestimmung konnte ein Einkristall isoliert werden, der röntgenfluoreszenzanalytisch untersucht wurde und danach die Zusammensetzung Ba . Pd . Si = 1 : 2.48 : 1.4 aufweist.

7.1.2 Strukturbestimmung

Der aus dem Präparat $BaPd_3Si_2$ isolierte Einkristall wurden auf dem IPDS vermessen. Die Zellbestimmung ergab ein orthorhombisches Kristallsystem. Anhand des erhaltenen Datensatzes konnte die Laue-Klasse mmm mit folgenden Auslöschungsbedingungen ermittelt werden: Reflexe 0kl nur mit k+l=2n und Reflexe k+l=2n und Reflexe k+l=2n und Reflexe k+l=2n vorhanden. Das zugehörige Beugungssymbol ist mmmPna-, dem zwei Raumgruppen zugeordnet werden können: die azentrische Raumgruppe k+l=2n und die zentrosymmetrische Raumgruppe k+l=2n und Reflexe k+l=2n und Reflex

Für Pd1 ergab sich ein auffallend hoher thermischer Auslenkungsparameter U_{11} von 283 pm². Die Abstände dieser Atome zu anderen liegen jedoch alle im Bereich der metallischen Einfachbindungsabstände. Deshalb ist mit starken Bindungen zu rechnen, die thermische Auslenkung, in Richtung der Bindungen nicht erwarten lassen. Es tritt für Pd1 jedoch senkrecht zu den schichtenverbrückenden Bindungen mit Silicium ein größerer Temperaturfaktor auf. Daraufhin wurden Tieftemperaturmessungen bei 260 K, 230 K, 200 K, 170 K und 140 K für diesen Kristall durchgeführt. Der U_{11} -Wert des Pd1

steigt von Raumtemperatur zu 260 K an und fällt dann stetig mit den Temperaturen der Messungen ab. Die extrapolierte Ausgleichsgerade verläuft nicht durch den Nullpunkt.

<u>Abb. 16</u>: Der Temperaturfaktor U₁₁(Pd1) der Verbindung BaPd₃Si₂ bei verschiedenen Temperaturen (IPDS-Einkristallmessungen)

Da der Temperaturverlauf des U₁₁-Wertes nicht für eine reine thermische Auslenkung spricht, wurde die Lage des Pd1-Atoms als Splitpunktlage beschrieben. Darauf wird in Kapitel 7.2.4 im Zusammenhang mit der SrPt₃Si₂-Struktur näher eingegangen.

Die Ergebnisse der Zellbestimmungen und die kristallographischen Daten sind in Tabelle 42, die Atomkoordinaten in Tabelle 43, die anisotropen Temperaturkoeffizienten in Tabelle 44 und die Atomabstände in Tabelle 45 zusammengestellt.

Die kristallographischen Daten, Atomkoordinaten, anisotropen Temperaturkoeffizienten und Atomabstände unter Berücksichtigung der Splitpunktlage sind in den Tabellen 46-49 zusammengestellt.

Tabelle 42: Kristallographische Daten und Strukturverfeinerung für BaPd₃Si₂

Formel $BaPd_3Si_2$ Formelgewicht 512.72 g/mol Meßtemperatur 293(2) K

Wellenlänge 71.073 pm (Graphit-Monochromator)

 $\begin{tabular}{ll} Kristallsystem & orthorhombisch \\ Raumgruppe & Pnma (Nr. 62) \\ Gitterkonstanten (IPDS) & a = 569.68(6) pm \end{tabular}$

b = 1124.5(2) pmc = 713.65(7) pm

Gitterkonstanten (Pulverdiffraktometer) a = 569.43(9) pm

b = 1122.3(2) pm c = 712.57(9) pm $457.18(9) \cdot 10^6 \text{ pm}^3$

Z 4

Zellvolumen

berechnete Dichte 7.449 g/cm³
Absorptionskoeffizient 20.430 mm⁻¹

F(000) 888

Kristalldimensionen $0.03 \times 0.1 \times 0.1 \text{ mm}^3$

Absorptionskorrektur numerisch,

nach Kristallgestaltoptimierung [42]

Theta-Bereich 3.38° bis 28.11°

hkl-Bereich $0 \le h \le 7$, $-14 \le k \le 14$, $0 \le l \le 8$

gemessene Reflexe / symmetrieunabh. 1057 / 558 Innerer R-Wert (R_i) 0.0194

Verfeinerungsmethode Full-matrix least-squares an F²

Daten / Parameter 558 / 32Goodness-of-fit für F^2 1.143

R-Werte [I>2sigma(I)] R1 = 0.0187, wR2 = 0.0471 R-Werte (gesamt) R1 = 0.0237, wR2 = 0.0477

Extinktionskoeffizient 0.0060(4)

max./min. Restelektronendichten $1.23 / -2.03 \cdot 10^6 \,\mathrm{e}^{-}\mathrm{pm}^{-3}$

Tabelle 43: Lageparameter und äquivalent-isotrope Temperaturfaktoren [pm²] für BaPd₃Si₂.

	Wyckoff	Х	у	Z	U _{eq} *
Ва	4c	0.8060(1)	0.7500	0.5769(1)	99(2)
Pd1	4c	0.1930(1)	0.2500	0.8715(1)	150(2)
Pd2	8d	0.0056(1)	0.0208(1)	0.7036(1)	66(2)
Si	8d	0.1868(3)	0.4387(1)	0.0130(2)	74(3)

^{*)} $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33}) [48]$

Tabelle 44: Anisotrope Temperaturfaktoren [pm²] für BaPd₃Si₂. Der anisotrope Temperaturfaktor-Exponent hat die Form: -2 π^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}]

	U ₁₁	U_{22}	U_{33}	U_{23}	U ₁₃	U_{12}
Ва	101(2)	96(2)	100(3)	0	6(2)	0
Pd1	283(4)	87(3)	81(4)	0	-11(3)	0
Pd2	56(2)	106(3)	36(3)	-1(1)	0	3(2)
Si	82(6)	92(7)	48(9)	-4(6)	-2(6)	-2(6)

Tabelle 45: Abstände [pm] und Winkel [°] für $BaPd_3Si_2$

Ba − Si	$2 \times 354.8(2)$	Pd1	– Si	$2 \times 235.0(2)$	Si	– Pd1	$1 \times 235.0(2)$
	$2 \times 361.4(2)$					- Pd2	$1 \times 240.3(2)$
	$2 \times 361.5(2)$		– Pd2	$2 \times 303.66(7)$			$1 \times 242.8(2)$
	$2 \times 362.3(2)$			$2 \times 317.86(7)$			$1 \times 247.9(2)$
	2x 471.5(2)						$1 \times 248.0(2)$
			– Ba	1× 319.8(1)			
– Pd1	$1 \times 319.8(1)$			1× 319.96(9)		– Si	$1 \times 254.3(3)$
	$1 \times 319.96(9)$			1× 320.9(1)			
	$1 \times 320.9(1)$			$1 \times 393.7(2)$		– Ba	$2 \times 354.8(2)$
– Pd2	2× 337.34(6)						2× 361.4(2)
	2× 343.59(7)	Pd2	– Si	1× 240.3(2)			2× 361.5(2)
– Pd2	2×382.8(2)			1× 242.8(2)			2× 362.3(2)
– Pd1	$1 \times 393.7(2)$			$1 \times 247.9(2)$			
– Pd2	2×411.0(3)			1× 248.0(2)			
– Ba	2× 377.1(2)		– Pd2	2× 292.45(4)			
				$1 \times 294.35(4)$			
			– Pd1	$1 \times 303.66(7)$			
				1× 317.86(7)			
			– Ba	2× 337.34(6)			
				2× 343.59(7)			
				2× 382.8(2)			
				2× 411.0(3)			

∠ Si–Pd1–Si 129,04°

Tabelle 46: Kristallographische Daten und Strukturverfeinerung für BaPd₃Si₂ mit Pd1 auf einer Splitpunktlage

Innerer R-Wert (R _i)	0.0720
Goodness-of-fit für F ²	1.146
R-Werte [I>2sigma(I)]	R1 = 0.0464, $wR2 = 0.1147$
R-Werte (gesamt)	R1 = 0.0521, wR2 = 0.1212
Extinktionskoeffizient	0.009(1)
max./min. Restelektronendichten	4.10 / -4.15 ·10 ⁶ e ⁻ pm ⁻³

Tabelle 47: Lageparameter und äquivalent-isotrope Temperaturfaktoren [pm²] für BaPd₃Si₂. mit Pd1 auf einer Splitpunktlage

	Wyckoff	х	у	Z	Besetzungsfaktor	$U_{\mathrm{eq}}^{}st$
Ва	4c	0.8060(1)	0.7500	0.5769(1)	0.5000	92(3)
Pd1A	4c	0.1716(60)	0.2500	0.8745(26)	0.23(5)	84(18)
Pd1B	4c	0.2210(73)	0.2500	0.8672(36)	0.27(5)	47(26)
Pd2	8d	0.0056(1)	0.0208(1)	0.7036(1)	1.0000	61(3)
Si	8d	0.1868(3)	0.4387(1)	0.0130(2)	1.0000	68(5)

^{*)} $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33}) [48]$

Tabelle 48: Anisotrope Temperaturfaktoren [pm²] für BaPd₃Si₂ mit Pd1 auf einer Splitpunktlage. Der anisotrope Temperaturfaktor-Exponent hat die Form:

-2
$$\pi^2$$
 [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

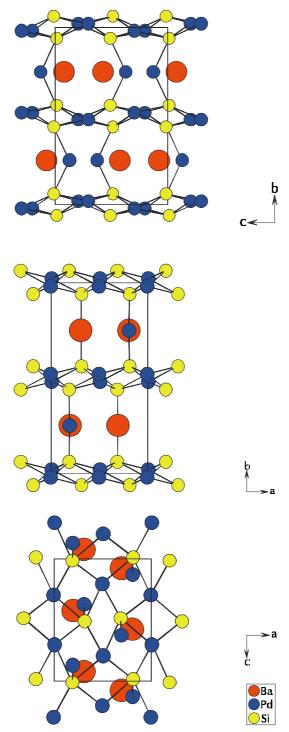
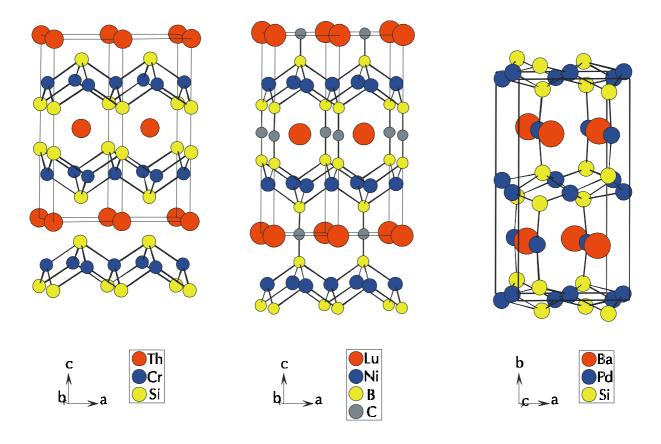

	U ₁₁	U_{22}	U_{33}	U_{23}	U ₁₃	U_{12}	
Ва	66(5)	110(5)	102(6)	0	48(24)	0	
Pd1A	116(15)	isotrop					
Pd1B	76(13)	isotrop					
Pd2	15(5)	123(5)	45(6)	-3(2)	0(2)	4(2)	
Si	46(10)	103(12)	57(15)	-3(9)	-4(7)	-6(7)	

Tabelle 49: Abstände [pm] und Winkel [°] für $BaPd_3Si_2$ mit Pd1 auf einer Splitpunktlage

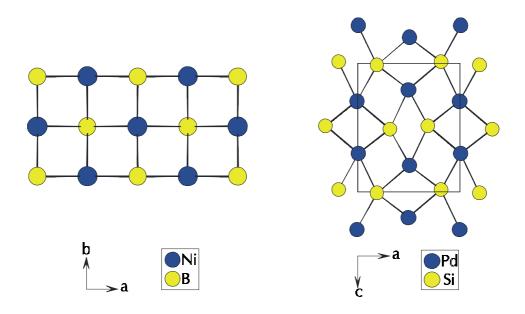
Ba – Si	$2 \times 354.8(2)$	Pd2 – Si	$1 \times 240.1(3)$	Si – Pd1A	$1 \times 234.4(8)$
	$2 \times 361.4(3)$		$1 \times 243.0(3)$	– Pd1B	$1 \times 237(1)$
	$2 \times 361.5(3)$		$1 \times 247.6(3)$	– Pd2	$1 \times 240.1(3)$
	$2 \times 362.3(3)$		$1 \times 248.2(3)$		$1 \times 243.0(3)$
	2x 471.7(2)				$1 \times 247.6(3)$
		– Pd2	$2 \times 292.47(5)$		$1 \times 248.2(3)$
– Pd1/	$4.1 \times 308(3)$		$1 \times 294.3(2)$		
– Pd1E	3 1× 308(4)	– Pd1A	1× 300(1)	– Si	$1 \times 254.1(5)$
	$1 \times 317(3)$	– Pd1B	$2 \times 309(2)$		
– Pd1/	$1 \times 322(2)$	– Pd1A	$1 \times 325(2)$	– Ba	$2 \times 354.8(2)$
	$1 \times 331(3)$				$2 \times 361.4(3)$
– Pd11	$3 \times 335(4)$	– Ba	$2 \times 337.34(9)$		$2 \times 361.5(3)$
– Pd2	$2 \times 337.34(9)$		$2 \times 343.5(1)$		$2 \times 362.3(2)$
	2× 343.5 (1)		$2 \times 382.8(2)$		
– Pd2	$2 \times 382.8(2)$		$2 \times 411.0(3)$		
– Pd1/	$4.1 \times 391(2)$				
– Pd11	$3 \times 397(3)$				
– Pd2	2× 411.1(3)	Pd1A – Si	$2 \times 234.4(8)$	Pd1B – S	$i \ 2 \times 237(1)$
– Ba	$2 \times 377.1(2)$	– Pd1B	$2 \times 28.6(2)$	– Pd1.	A $2 \times 28.6(2)$
		– Pd2	$2 \times 300(1)$	– Pd2	$4 \times 309(2)$
			$2 \times 325(2)$		
		– Ba	$1 \times 308(3)$	– Ba	$1 \times 308(4)$
			$1 \times 322(2)$		$1 \times 317(3)$
			$1 \times 331(3)$		1× 331(3)
			1× 391(2)		$1 \times 397(3)$
		∠ Si–Pd1A–S	Si 129,8°	∠ Si–Pd1B-	-Si 126,9°

7.1.3 Strukturbeschreibung und Diskussion

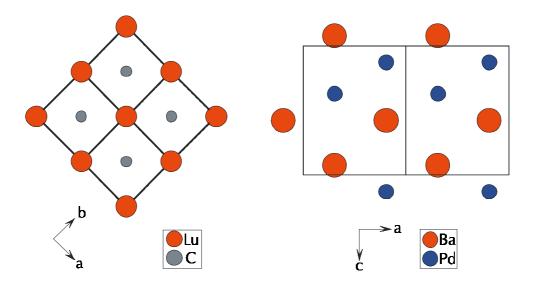
BaPd₃Si₂ kristallisiert in einer neuen, orthorhombischen Struktur in der Raumgruppe Pnma (Nr. 62) (Abb. 17).


<u>Abb. 17</u>: Projektion der Struktur von $BaPd_3Si_2$ in den Richtungen [100] (oben), [010] (Mitte) und [001] (unten)

In dieser Struktur treten senkrecht zu [010] Schichten aus stark verzerrten, kantenverknüpften PdSi₄-Tetraedern auf. Die Si-Pd2-Abstände liegen mit 240 bis 248 pm im Bereich des metallischen Einfachbindungsabstandes von 246 pm. Die Si-Pd2-Tetraederschichten sind miteinander über eine Si-Pd1-Si-Brücke verknüpft, die einen Winkel von 129,04° am Pd1-Atom und mit 235 pm den kürzesten Pd-Si-Abstand der Struktur aufweist. Dadurch wird ein dreidimensionales Raumnetz ausgebildet. Für Silicium ergibt sich eine verzerrt quadratisch pyramidale Umgebung aus Palladium-Atomen. Über die Pyramidenspitze (Pd1) sind jeweils zwei Pyramiden eckenverknüpft. In die Lücken dieses Raumnetzes lagert sich Barium ein, das mit Pd1 in einer Ebene liegt. In Abbildung 18 sind Ausschnitte aus den Strukturen von ThCr₂Si₂, LuNi₂B₂C und BaPd₃Si₂ gezeigt. Der Vergleich verdeutlicht die Verwandtschaft der Strukturen. In der


BaPd₃Si₂ gezeigt. Der Vergleich verdeutlicht die Verwandtschaft der Strukturen. In der ThCr₂Si₂-Struktur erkennt man Schichten aus kantenvernüpften CrSi₄-Tetraedern, die mit Thorium-Schichten abwechseln. Im ThCr₂Si₂ und anderen in diesem Typ kristallisierenden ternären Siliciden liegt jedoch kein ausgespochener Schichtcharakter vor, da die Si-Si-Abstände zwischen den Tetraederschichten im Bereich des metallischen Einfachbindungsabstandes liegen, so daß der Zusammenhalt zwischen den Schichten gewährleistet ist. Bei sehr großen A-Atomen, die die Schichten weit auseinanderdrücken würden, weichen die ternären Silicide in andere Strukturen wie den CaRh₂B₂–, den BaPt₂Si₂- oder den Balr₂Si₂-Typ aus. In der BaPd₃Si₂-Struktur wird die Ausbildung einer ThCr₂Si₂-Grundstruktur trotz Anwesenheit der großen Barium-Atome durch die vernetzende Wirkung der Pd1-Atome ermöglicht.

Verbindungen, die im aufgefülltem ThCr₂Si₂-Typ kristallisieren, sind von Cava et al. [53] untersucht worden. LuNi₂B₂C [53] kristallisiert wie ThCr₂Si₂ tetragonal in der Raumgruppe I4/mmm. In dieser Verbindung liegen Schichten aus kantenvernüpften NiB₄-Tetraedern vor, die über B-C-B-Brücken ein dreidimensionales Netzwerk ausbilden. Hier werden die Lücken in der Lutetium-Schicht nicht mit Übergangsmetall-Atomen, sondern mit Kohlenstoff aufgefüllt (Abb. 19 und 20).


Die BaPd₃Si₂-Struktur kann somit als aufgefüllter, stark verzerrter ThCr₂Si₂-Typ aufgefaßt werden. Hier werden die Pd-Si-Tetraederschichten über Pd1 vernetzt und damit die Barium-Schicht mit Pd1 aufgefüllt.

<u>Abb. 18</u>: Vergleich der Strukturen von $ThCr_2Si_2$ (links), $LuNi_2B_2C$ (Mitte) und $BaPd_3Si_2$ (rechts)

<u>Abb. 19:</u> Vergleich der Ni-B-Schicht in der Struktur von $LuNi_2B_2C$ (links) und der Pd-Si-Schicht in der Struktur von $BaPd_3Si_2$ (rechts)

<u>Abb. 20:</u> Vergleich der Lu-C-Schicht in der Struktur von Lu Ni_2B_2C (links) und der Ba-Pd-Schicht in der Struktur von Ba Pd_3Si_2 (rechts)

7.2 Die Verbindung SrPt₃Si₂

7.2.1 Darstellung und Eigenschaften

Zur Darstellung von SrPt₃Si₂ wurde ein der Formel entsprechendes Elementgemenge 60 Stunden auf 1150 °C erhitzt (Aufheizrate 100 °C/h, Abkühlgeschwindigkeit 50 °C/h). Als Tiegelmaterial wurde Korund verwendet. Der Tiegel wurde unter Argon-Atmosphäre in eine Stahlampulle eingeschweißt, die in ein mit Argon begastes Quarzglasrohr eingebracht wurde. Die Verbindung fiel als graues Pulver an, konnte jedoch auch nach viermaligem Homogenisieren und erneutem Einsetzen nicht röntgenrein erhalten werden. Die Verbindung ist feuchtigkeits- und luftstabil, nicht in Salzsäure jedoch in Königswasser löslich. Die EDAX-Untersuchung des Einkristalls ergab ein Mol-Verhältnis Sr:Pt:Si von 1:1,37:1,14.

7.2.2 Strukturbestimmung

Aus einem Präparat der Einwaagezusammensetzung SrPt₃Si₂ konnte ein Einkristall isoliert werden. Die Reflexintensitäten wurden auf dem IPDS gemessen. Die Zellbestimmung ergab ein orthorhombisches Kristallsystem. Anhand des erhaltenen Datensatzes konnte die Laue-Klasse mmm mit den folgenden Auslöschungsbedingungen ermittelt werden: Reflexe 0kl nur mit k+l = 2n und Reflexe h0l nur mit h = 2n vorhanden. Das zugehörige Beugungssymbol ist mmmP-nb, dem zwei Raumgruppen zugeordnet werden können: die azentrische Raumgruppe P2₁nb (Nr. 33) und die zentrosymmetrische Raumgruppe Pmnb (Nr. 62). Die Struktur ließ sich in der zentrosymmetrischen Raumgruppe lösen, wobei für die Strukturlösung der Datensatz in die Standardaufstellung Pnma transformiert wurde.

Die Ergebnisse der Zellbestimmungen und die kristallographischen Daten, die Atomkoordinaten, die anisotropen Temperaturkoeffizienten und die Atomabstände sind in den Tabellen 50 bis 53 zusammengestellt.

Tabelle 50: Kristallographische Daten und Strukturverfeinerung für SrPt₃Si₂

Formel $SrPt_3Si_2$

Formelgewicht 729.07 g/mol Meßtemperatur 293(2) K

Wellenlänge 71.073 pm (Graphit-Monochromator)

Kristallsystem orthorhombisch
Raumgruppe Pnma (Nr. 62)

Gitterkonstanten (IPDS) a = 1140.77(8) pm

b = 1136.0(1) pm c = 696.6(2) pma = 1141.3(2) pm

Gitterkonstanten (Pulverdiffraktometer) a = 1141.3(2) pm

b = 1135.3(1) pm c = 696.05(3) pm $902.7(3) \cdot 10^6 \text{ pm}^3$

Zellvolumen 902.7(3) ·10⁶ Z 8

berechnete Dichte 10.729 g/cm³
Absorptionskoeffizient 104.77 mm⁻¹

F(000) 2400

Kristalldimensionen $0.03 \times 0.03 \times 0.02 \text{ mm}^3$

Absorptionskorrektur numerisch,

nach Kristallgestaltoptimierung [42]

Theta-Bereich 3.43° bis 28.13°

hkl-Bereich $-15 \le h \le 15, -13 \le k \le 14, -9 \le l \le 8$

gemessene Reflexe / symmetieunabh. 8121 / 1099Innerer R-Wert (R_i) 0.1157

Verfeinerungsmethode Full-matrix least-squares an F²

Daten / Parameter 1099 / 62 Goodness-of-fit für F² 0.945

R-Werte [I>2sigma(I)] R1 = 0.0396, wR2 = 0.0800R-Werte (gesamt) R1 = 0.0683, wR2 = 0.0858

Extinktionskoeffizient 0.00084(6)

max./min. Restelektronendichten $4.50 / -4.27 \cdot 10^6 \,\mathrm{e}^{-}\mathrm{pm}^{-3}$

Tabelle 51: Lageparameter und äquivalent-isotrope Temperaturfaktoren [pm 2] für SrPt $_3$ Si $_2$

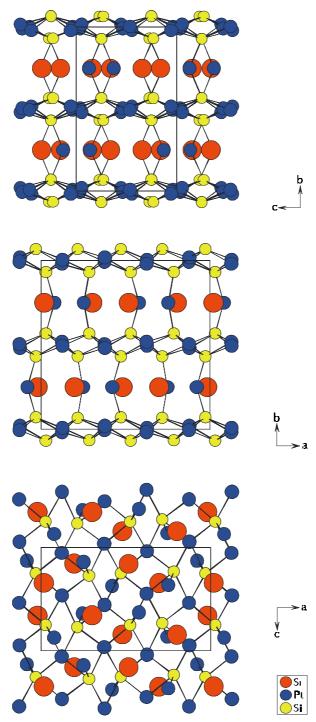
	Wyckoff	x	У	Z	$U_{eq}^{}*$
Sr1	4c	0.6978(3)	1/4	0.3433(4)	122(6)
Sr2	4c	0.9815(2)	1/4	0.6576(5)	124(6)
Pt1	8d	0.8760(1)	0.4809(1)	0.9453(1)	92(2)
Pt2	8d	0.6256(1)	0.4936(1)	0.0356(1)	93(3)
Pt3	4c	0.9205(1)	1/4	0.1292(2)	98(3)
Pt4	4c	0.7467(1)	1/4	0.8616(2)	107(3)
Si1	8d	0.9714(5)	0.4310(6)	0.2507(8)	73(12)
Si2	8d	0.7150(5)	0.4329(6)	0.7306(9)	96(13)

^{*)} $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33}) [48]$

Tabelle 52: Anisotrope Temperaturfaktoren [pm²] für SrPt₃Si₂. Der anisotrope Temperaturfaktor-Exponent hat die Form: -2 π^2 [h^2 a^{*2} U_{11} + ... + 2 h k a^* b* U_{12}]

	U ₁₁	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Sr1	132(14)	64(16)	172(15)	0	-2(11)	0
Sr2	79(13)	76(17)	217(16)	0	-12(11)	0
Pt1	96(4)	76(5)	103(4)	8(3)	1(3)	-7(3)
Pt2	95(4)	79(5)	105(4)	-2(3)	-6(3)	-11(3)
Pt3	114(6)	48(7)	132(6)	0	-11(4)	0
Pt4	119(6)	61(7)	141(6)	0	-16(4)	0
Si1	100(26)	59(37)	61(28)	17(21)	-24(18)	3(20)
Si2	106(28)	19(36)	163(31)	18(22)	41(22)	-18(21)

Tabelle 53: Abstände [pm] und Winkel [°] für $SrPt_3Si_2$

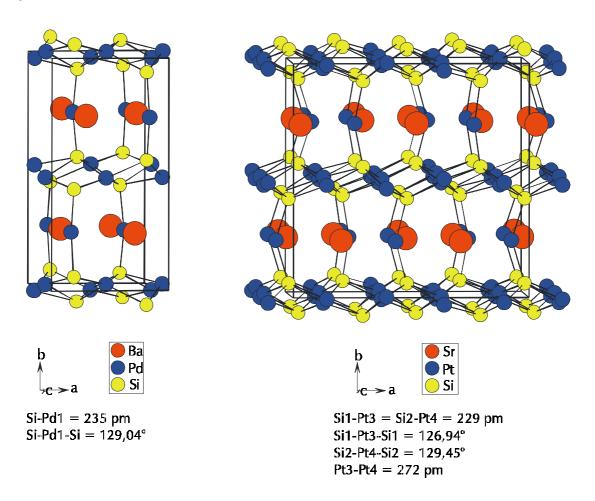

Sr1	– Si1	$2 \times 336.5(7)$	Sr2	– Si2	$2 \times 346.7(6)$
	– Si2	$2 \times 341.1(7)$		– Si1	$2 \times 350.3(6)$
	– Si1	$2 \times 379.3(2)$		– Si2	$2 \times 371.8(7)$
	– Si2	$2 \times 381.8(7)$		– Si1	$2 \times 371.9(7)$
		2x 475.1(4)		– Si1	2x 461.6(4)
	– Pt3	$1 \times 294.6(3)$		- Pt4	$1 \times 302.7(3)$
		$1 \times 316.9(3)$			$1 \times 303.3(3)$
	– Pt1	$2 \times 324.9(1)$		- Pt2	$2 \times 327.1(2)$
	- Pt4	$1 \times 340.2(4)$		– Pt3	$1 \times 335.8(4)$
	– Pt2	$2 \times 359.6(2)$		– Pt2	$2 \times 348.9(2)$
	– Pt4	$1 \times 365.3(4)$		– Pt1	2× 351.4(2)
	– Pt2	$2 \times 378.5(2)$		– Pt3	$1 \times 374.6(4)$
	– Pt1	2x 432.4(4)		– Pt1	2x 443.1(4)
	- Sr2	$1 \times 390.7(2)$		- Sr1	$1 \times 390.7(2)$
		$1 \times 426.3(3)$			$1 \times 426.3(3)$
		1x 427.4(3)			1x 427.4(3)
Pt1	– Si1	$1 \times 242.8(6)$	Pt2	– Si1	1× 241.2(6)
	- Si2	1x 243.1(6)		- Si2	1x 241.8(6)
		$1 \times 244.6(6)$		– Si1	$1 \times 242.9(6)$
	– Si1	1x 245.6(5)		- Si2	1x 245.5(6)
	– Pt2	1x 286.9(1)		– Pt1	1x 286.9(1)
		1x 292.8(1)			1x 292.8(1)
	– Pt1	1x 296.1(2)		– Pt2	1x 291.3(2)
	– Pt3	1x 296.3(1)		– Pt4	1x 332.2(1)
	– Pt4	1x 306.3(1)			
	– Sr1	2× 324.9(1)		- Sr2	2× 327.1(2)
	- Sr2	2× 351.4(2)			2× 348.9(2)
	- Sr1	2x 432.4(4)		- Sr1	2x 359.6(2)
	- Sr2	2x 443.1(4)			2x 378.5(2)

Fortsetzung von Tabelle 53: Abstände und Winkel für $\mathrm{SrPt_3Si_2}$

Pt3	– Si1	2× 229.8(6)	Pt4	– Si2	2× 229.8(6)
	– Pt4	1× 272.2(2)		– Pt3	1× 272.2(2)
	– Pt1	2× 296.3(1)		– Pt1	2× 306.3(1)
				– Pt2	2× 332.2(1)
	- Sr1	$1 \times 294.6(3)$		– Sr2	$1 \times 302.7(3)$
		$1 \times 316.9(3)$			$1 \times 303.3(3)$
	- Sr2	$1 \times 335.8(4)$		– Sr1	$1 \times 340.2(4)$
		$1 \times 374.6(4)$			$1 \times 365.3(4)$
Si1	– Si2	$2 \times 263.3(8)$	Si2	– Si1	$2 \times 263.3(8)$
	– Pt3	$1 \times 229.8(6)$		– Pt4	$1 \times 229.8(6)$
	– Pt2	$1 \times 241.2(6)$		– Pt2	$1 \times 241.8(6)$
	– Pt1	$1 \times 242.8(6)$		– Pt1	$1 \times 243.1(6)$
	– Pt2	$1 \times 242.9(6)$			$1 \times 244.6(6)$
	– Pt1	$1 \times 245.6(5)$		– Pt2	$1 \times 245.5(6)$
	- Sr1	$1 \times 336.5(7)$		– Sr1	$1 \times 341.1(7)$
	- Sr2	$1 \times 350.3(6)$		– Sr2	$1 \times 346.7(6)$
	- Sr2	$1 \times 371.9(7)$			$1 \times 371.8(7)$
	- Sr1	$1 \times 379.3(2)$		– Sr1	1× 381.8(7)
∠ Si´	1–Pd3–:	Si1 126,94°	∠ Si2	_Pd4_9	Si2 129,45°

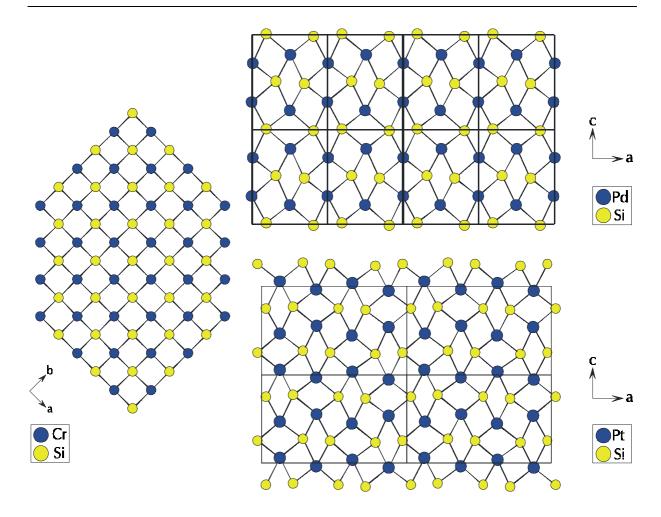
7.2.3 Strukturbeschreibung und Diskussion

SrPt₃Si₂ kristallisiert in einer Variante der orthorhombischen BaPd₃Si₂-Struktur in der Raumgruppe Pnma (Nr. 62). Die Verbindung SrPt₃Si₂ unterscheidet sich durch eine Verdopplung der a-Gitterkonstante von BaPd₃Si₂, die durch eine Ausordnung der schichtenverbindenden Platin-Atome hervorgerufen wird (Abb. 21).

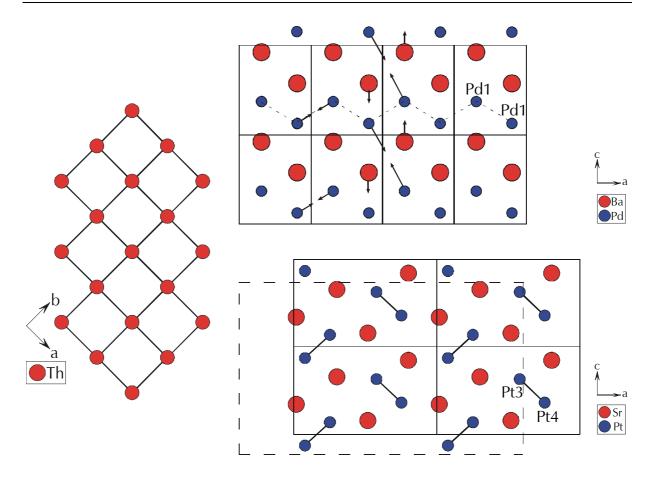

<u>Abb. 21</u>: Projektion der Struktur von SrPt₃Si₂ in den Richtungen [100] (oben), [010] (Mitte) und [001] (unten)

In der SrPt₃Si₂-Struktur treten Schichten stark verzerrter, kantenverknüpfter PtSi₄-Tetraeder senkrecht zu [010] auf. Die Si-Pt-Abstände in den Tetraederschichten liegen mit 241 bis 246 pm im Bereich des metallischen Einfachbindungsabstandes von 246 pm. Die Si-Pt-Tetraederschichten sind miteinander über Si1-Pt3-Si1- und Si2-Pt4-Si2-Brücken verknüpft und bilden so ein dreidimensionales Raumnetz aus. Die Si1-Pt3-Si1-Brücke weist einen Winkel von 126,94° auf, die Si2-Pt4-Si2-Brücke einen Winkel von 129,45°. Die Abstände der verbrückenden Silicium- und Platin-Atome (Si1-Pt3 und Si2-Pt4) sind mit 229,8 pm die kürzesten Pt-Si-Abstände der Struktur. Für Silicium ergibt sich dadurch eine verzerrt quadratisch pyramidale Umgebung aus Platin-Atomen, wobei über die Pyramidenspitzen (Pt3 und Pt4) jeweils zwei Pyramiden eckenverknüpft sind. In die Lücken dieses Raumnetzes lagert sich Strontium ein, das mit Pt3 und Pt4 in einer Ebene liegt.

SrPt₃Si₂ zeigt in vergleichbarer Weise Verwandtschaft zum ThCr₂Si₂-Typ [18] und zur LuNi₂B₂C-Struktur [53] wie BaPd₃Si₂. Auch die SrPt₃Si₂-Struktur kann als aufgefüllter, stark verzerrter ThCr₂Si₂-Typ aufgefaßt werden. Hier werden die Pt-Si-Tetraederschichten über Pt3 und Pt4 vernetzt und damit die Strontium-Schicht mit Pt3 und Pt4 aufgefüllt.


7.2.4 Vergleich von BaPd₃Si₂ und SrPt₃Si₂

Die Strukturen von BaPd₃Si₂ und SrPt₃Si₂ sind einander sehr ähnlich. SrPt₃Si₂ besitzt jedoch eine verdoppelte a-Gitterkonstante, was eine Verdopplung aller Punktlagen zur Folge hat.


<u>Abb. 22</u>: Vergleichende Darstellung der Strukturen BaPd₃Si₂ (links) und SrPt₃Si₂ (rechts), Blick in annähernd [001]

In Abbildung 22 sind die beiden Strukturen zum Vergleich nebeneinandergestellt. In y=0 und y= $\frac{1}{2}$ liegen Schichten aus stark verzerrten kantenverknüpften PdSi_{4/4}- bzw. PtSi_{4/4}- Tetraedern, die den Cr/Si-Schichten des ThCr₂Si₂-Typs entsprechen. Ausschnitte daraus sind in Abbildung 23 isoliert dargestellt und mit der Cr/Si-Schicht des ThCr₂Si₂-Typs verglichen. Eine alternative Beschreibung des Aufbaus dieser Schichten geht von $M_{4/4}$ Si-Pyramiden aus, deren Si-Spitzen abwechselnd in Richtung [010] und [0-10] weisen. Die $M_{4/4}$ -Basisflächen sind in der ThCr₂Si₂-Struktur Quadrate, in den hier betrachteten Pd-und Pt-Verbindungen unregelmäßige Vierecke (Abb. 23).

<u>Abb.23</u>: $MSi_{4/4}$ -Tetraederschichten (M=Pd, Pt) in den Stukturen von $BaPd_3Si_2$ (oben) und $SrPt_3Si_2$ (unten), $CrSi_{4/4}$ -Tetraederschicht in der $ThCr_2Si_2$ -Struktur (links)

Von den Si-Atomen der Pyramidenspitzen aus erfolgt in allen drei Strukturen die Vernetzung zwischen den Schichten und zwar in der $ThCr_2Si_2$ -Struktur über direkte Si-Si-Kontakte, in $BaPd_3Si_2$ und $SrPt_3Si_2$ über zusätzliche Pd- bzw. Pt-Atome, die zusammen mit den Atomen des Erdalkalimetalls Schichten in y=1/4 und y=3/4 bilden. In diesen Schichten liegt der Hauptunterschied zwischen $BaPd_3Si_2$ und $SrPt_3Si_2$. Sie sind in Abbildung 24 miteinander und mit der Th-Schicht der $ThCr_2Si_2$ -Struktur verglichen.

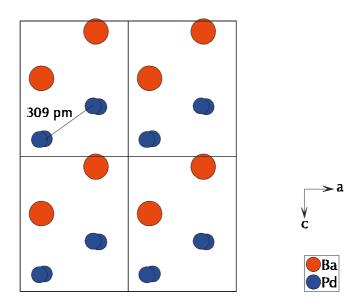
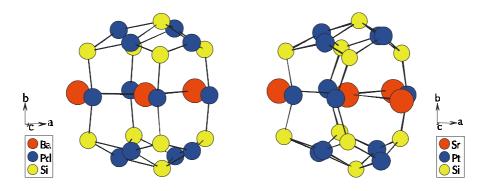
<u>Abb. 24</u>: Th-Schicht in Th Cr_2Si_2 (links) und Ba-Pd- bzw. Sr-Pt-Schicht (in $y\sim 1/4$) in BaPd₃Si₂ (oben) und SrPt₃Si₂ (unten), Abstände: Pd1-Pd1=333 pm, Pt3-Pt4=272 pm

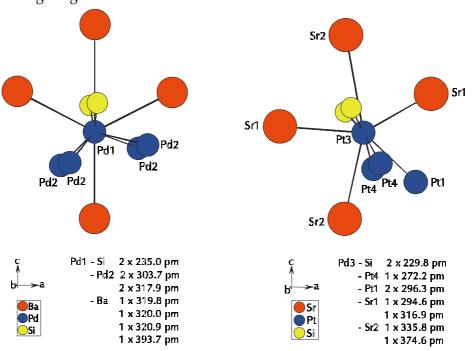
Man erkennt, daß die Anordnung der Erdalkalimetall-Atome gegenüber dem quadratischen 4⁴-Netz der ThCr₂Si₂-Struktur erheblich verzerrt ist. Die zusätzlichen Platinmetall-Atome bilden in der BaPd₃Si₂-Struktur Zick-Zack-Ketten (in Abb. 24 gestrichelt angedeutet) mit großen Pd-Pd-Abständen von 333 pm, die auf keine starke Bindung hindeuten. Beim Übergang zur SrPt₃Si₂-Struktur erfolgt eine Verschiebung der Atome entsprechend den in der Zeichnung der Barium-Verbindung angedeuteten Pfeilen. Sie führt zu Pt₂-Paaren mit einem Pt-Pt-Abstand von 272 pm, der etwa dem Abstand im Platinmetall entspricht (274.6 pm bei Koordinationszahl 12).

Die Bildung von Pt_2 -Paaren in der Verbindung $SrPt_3Si_2$ wird durch den im Vergleich zum Barium-Atom kleineren Radius des Strontium-Atomes ermöglicht. Das Strontium-Atom drückt die Tetraederschichten in y=0 und y=1/2 weniger stark auseinander als das Barium. Dadurch können die Bindungen der Si1-Pt3-Si1- bzw. der Si2-Pt4-Si2-Brücke mit 229 pm wesentlich kürzer werden als die Bindungen in der Si-Pd1-Si-Brücke des $BaPd_3Si_2$ (235 pm). Außerdem kann zumindest ein Winkel dieser Brücken kleiner werden als der der Brücke im $BaPd_3Si_2$ (Abb. 22). Daraus entsteht Auslenkung bzw. Verzerrung

des Gerüstes mit kleineren Lücken für die Strontium-Atome und eine starke Pt3-Pt4-Bindung in der Sr-Pt-Schicht.

Die Ausordnung der schichtenverbindenden Pt-Atome in SrPt₃Si₂ zu Paaren führt dazu, daß der in BaPd₃Si₂ für Pd1 beobachtete hohe Temperaturfaktor U₁₁ von 283 pm² in der Verbindung SrPt₃Si₂ bei Pt3 und Pt4 nicht mehr auftritt. Das legt die Vermutung nahe, daß in der Verbindung BaPd₃Si₂ auch eine entsprechende Ausordnung der schichtenverbindenden Palladium-Atome angedeutet sein könnte. Der Abstand zwischen den Atomen der Splitpunktlage (Pd1A und Pd1B) beträgt aber nur 28.6(2) pm. Damit ist die Verschiebung der Atome so gering, daß in der IPDS-Messung keine auf eine Verdopplung der a-Gitterkonstante hinweisenden Überstrukturreflexe sichtbar waren. Außerdem führt diese geringe Verschiebung nur zu einem kürzesten Pd1A-Pd1B-Abstand von 309 pm, der noch keiner festen Bindung entspricht (Abb. 25).


Abb. 25: Ba-Pd-Schicht in BaPd₃Si₂ mit Pd1 auf einer Splitpunktlage

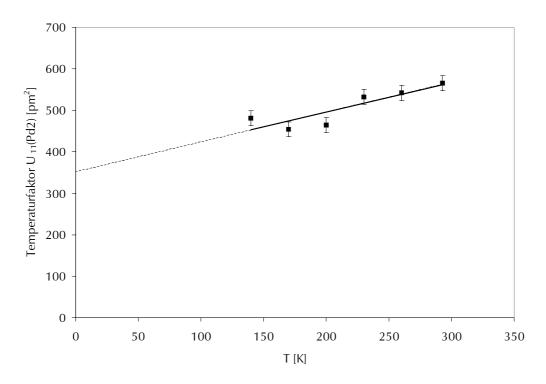
Anhand der Umgebung von Erdalkali- und Platinmetall-Atomen lassen sich weitere Unterschiede erkennen. Barium besitzt nur zwei weitere Barium-Atome im Abstand von 377 pm und ein drittes Barium-Atom im Abstand von 547 pm in seiner Umgebung, während Sr1 von drei Sr2-Atomen und Sr2 von drei Sr1-Atomen im Abstand von 390, 426 und 427 pm umgeben ist (Abb. 26).

<u>Abb. 26</u>: Umgebung der Erdalkalimetall-Atome in den Verbindungen BaPd₃Si₂ (links) und SrPt₃Si₂ (rechts)

Die schichtenverbindenden Platinmetall-Atome (Abb. 27) sind in beiden Verbindungen von den vier Erdalkalimetall-Atomen senkrecht zu [010] planar umgeben und von jeweils zwei Silicium-Atomen senkrecht zu dieser Ebene. Sie unterscheiden sich jedoch signifikant in Bezug auf ihre Platinmetall-Nachbarn. Palladium (Pd1) in BaPd₃Si₂ wird von vier Palladium-Atomen (Pd2) aus den Tetraederschichten koordiniert, von denen zwei einen Abstand von 304 pm und zwei einen Abstand von 318 pm zu Pd1 aufweisen. Die Platin-Atome (Pt3, Pt4) in SrPt₃Si₂ sind in einem Bereich bis 320 pm nur von zwei Platin-Atomen aus den Tetraederschichten koordiniert (Pt3-Pt1 296 pm, Pt4-Pt1 306 pm). Zusätzlich tritt aber ein Platin-Atom der eigenen Schicht im Abstand von 272 pm als Nachbar auf. Wie oben ausgeführt, ist dieser Abstand so kurz, daß man von einer starken Pt3-Pt4-Bindung ausgehen kann.

<u>Abb. 27</u>: Umgebung der Platinmetall-Atome in den Verbindungen BaPd₃Si₂ (links) und SrPt₃Si₂ (rechts)

Die Verbindung SrPd₃Si₂


7.2.5 Darstellung und Eigenschaften

 $SrPd_3Si_2$ wurde durch Umsetzung eines der Formel entsprechenden Elementgemenges dargestellt. Die Reaktion erfolgte bei 1200 °C über 60 Stunden im Tantaltiegel, der unter Argon in eine Stahlampulle eingeschmolzen wurde. Die Stahlampulle befand sich in einem mit Argon gefüllten Quarzrohr. Die Aufheizrate betrug 100 °C/h, die Abkühlgeschwindigkeit 50 °C/h. Das Präparat fiel dabei als graues Pulver mit silbrig kristallinen Anteilen an. Für die Strukturbestimmung konnte ein Einkristall isoliert werden. Die röntgenfluoreszenzanalytische Untersuchung ergab eine Elementzusammensetzung von Sr:Pd:Si=1:1,06:0,83.

7.2.6 Strukturbestimmung

Der aus dem Präparat $SrPd_3Si_2$ isolierte Einkristall wurden auf dem IPDS vermessen. Die Zellbestimmung ergab ein orthorhombisches Kristallsystem. Anhand des erhaltenen Datensatzes konnte die Laue-Klasse mmm mit den folgenden Auslöschungsbedingungen ermittelt werden. Für $SrPd_3Si_2$ sind die Reflexe hkl nur mit h+k+l=2n, die Reflexe 0kl nur mit k,l=2n, die Reflexe h0l nur mit h+l=2n und die Reflexe hk0 nur mit h+k=2n vorhanden. Das zugehörige Beugungssymbol ist mmml(bc)--, dem zwei mögliche Raumgruppen zugeordnet werden können: die azentrische Raumgruppe Ibm2 (Nr. 46) und die zentrosymmetrische Raumgruppe lösen, wobei für die Struktur ließ sich in der zentrosymmetrischen Raumgruppe lösen, wobei für die Strukturlösung der Datensatz in die Standardaufstellung Imma transformiert wurde.

Die Strukturlösung wurde durch die schlechte Qualität des Kristalls, dessen geringe Größe und die daraus resultierenden schwachen Reflexe beeinträchtigt. Die hohen Temperaturfaktoren U₁₁ für Pd2 und U₂₂ für Si könnten darauf zurückzuführen sein. Tieftemperatur-Einkristallmessungen bei 260 K, 230 K, 200 K, 170 K und 140 K (Abb. 28) zeigten einen Abfall des Temperarufaktors U₁₁(Pd2) mit der Temperatur, allerdings sollte die extrapolierte Gerade annähernd durch den Nullpunkt gehen. Da dies nicht der Fall ist, mußte mit einer Fehlordnung gerechnet werden.

<u>Abb. 28</u>: Temperaturfaktoren U₁₁(Pd2) der Verbindung SrPd₃Si₂ bei verschiedenen Temperaturen (IPDS-Einkristallmessungen)

In einer gesonderten Rechnung wurde die Lage des Pd1-Atoms als Splitpunktlage beschrieben.

Die Ergebnisse der Zellbestimmungen und die kristallographischen Daten sind in Tabelle 54, die Atomkoordinaten in Tabelle 55, die anisotropen Temperaturkoeffizienten in Tabelle 56 und die Atomabstände in Tabelle 57 zusammengestellt.

Die kristallographischen Daten, Atomkoordinaten, anisotropen Temperaturkoeffizienten und Atomabstände mit Pd2 auf einer Splitpunktlage sind in den Tabellen 58-61 zusammengestellt.

Tabelle 54: Kristallographische Daten und Strukturverfeinerung für SrPd₃Si₂

Formel SrPd₃Si₂

Formelgewicht 463.00 g/mol Meßtemperatur 293(2) K

Wellenlänge 71.073 pm (Graphit-Monochromator)

Kristallsystem orthorhombisch
Raumgruppe Imma (Nr. 74)

Strukturtyp ErRh₃Si₂

Gitterkonstanten (IPDS) a = 719.15(19) pm

b = 1015.4(3) pmc = 580.00(12) pm

Gitterkonstanten (Pulverdiffraktometer) a = 714.2(3) pm

b = 1012.7(4) pmc = 576.2(3) pm

Zellvolumen $423.52(18) \cdot 10^6 \,\mathrm{pm}^3$

Z 4

berechnete Dichte 7.261 g/cm³
Absorptionskoeffizient 25.406 mm⁻¹

F(000) 816

Kristalldimensionen 0.03 x 0.03 x 0.02 mm³

Absorptionskorrektur numerisch,

nach Kristallgestaltoptimierung [42]

Theta-Bereich 4.01° bis 28.06°

hkl-Bereich $-13 \le h \le 13, -9 \le k \le 9, -7 \le l \le 6$

gemessene Reflexe / symmetieunabh. 1811 / 294 Innerer R-Wert (R_i) 0.0829

Verfeinerungsmethode Full-matrix least-squares an F²

Daten / Parameter 294 / 20 Goodness-of-fit für F^2 1.201

R-Werte [I>2sigma(I)] R1 = 0.0405, wR2 = 0.1091R-Werte (gesamt) R1 = 0.0502, wR2 = 0.1218

max./min. Restelektronendichten $2.42 / -2.29 \cdot 10^6 e^{-}pm^{-3}$

Tabelle 55: Lageparameter und äquivalent-isotrope Temperaturfaktoren [pm²] für SrPd₃Si₂.

	Wyckoff	X	У	Z	$U_{eq}^{}*$
Sr	4e	0	1/4	0.7154(3)	172(5)
Pd1	8f	0.2941(2)	0	0	150(4)
Pd2	4c	1/4	1/4	1/4	287(6)
Si	8h	0	0.0790(4)	0.1875(6)	170(9)

^{*)} $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33}) [48]$

Tabelle 56: Anisotrope Temperaturfaktoren [pm²] für SrPd₃Si₂. Der anisotrope Temperaturfaktor-Exponent hat die Form: -2 π^2 [h² a*² U₁₁ + ... + 2 h k a* b* U₁₂]

	U ₁₁	U_{22}	U_{33}	$U_{\scriptscriptstyle 23}$	U ₁₃	U_{12}
Sr	224(12)	175(10)	119(8)	0	0	0
Pd1	201(7)	149(6)	100(6)	-11(3)	0	0
Pd2	566(14)	125(9)	170(8)	0	-129(8)	0
Si	103(19)	311(25)	95(16)	3(15)	0	0

Tabelle 57: Abstände [pm] und Winkel [°] für SrPd₃Si₂

Sr – Si	$2 \times 324.3(4)$	Pd1	– Si	$2 \times 247.4(3)$	Si	– Pd1	$2 \times 247.4(3)$
	$2 \times 338.8(4)$			$2 \times 251.0(3)$			$2 \times 251.0(2)$
	$2 \times 352.0(4)$					- Pd2	$2 \times 252.6(3)$
			– Pd2	2× 294.05(6)			
– Pd1	4× 319.3(1)		– Pd1	$1 \times 296.2(3)$		– Si	$1 \times 270.3(8)$
– Pd2	$2 \times 324.3(2)$			$2 \times 296.85(8)$			
– Pd2	$2 \times 358.4(2)$					– Sr	$1 \times 324.3(4)$
– Pd1	4× 369.4(2)		– Sr	2× 319.3(1)			$1 \times 338.8(4)$
				2× 369.4(1)			$1 \times 352.0(4)$
– Sr	$2 \times 361.8(2)$						
		Pd2	– Si	4× 252.6(3)			
			– Pd1	4× 294.05(6)			
				2363 (8)			
			– Sr	2×324.3(2)			
				2× 358.4(2)			
∠ Sr-Pd2-S	r 180°	∠ Si-I	Pd2-Si 1	80°			

Tabelle 58: Kristallographische Daten und Strukturverfeinerung für SrPd₃Si₂ mit Pd2 auf einer Splitpunktlage

Innerer R-Wert (R _i)	0.0829
Goodness-of-fit für F ²	1.186
R-Werte [I>2sigma(I)]	R1 = 0.0404, $wR2 = 0.1070$
R-Werte (gesamt)	R1 = 0.0499, $wR2 = 0.1209$
max./min. Restelektronendichten	$2.52 / -2.26 \cdot 10^{6} \mathrm{e^{-}pm^{-3}}$

Tabelle 59: Lageparameter und äquivalent-isotrope Temperaturfaktoren [pm²] für SrPd₃Si₂. mit Pd2 auf einer Splitpunktlage

	Wyckoff	х	У	Z	$U_{eq}^{}*$
Sr	4e	0	1/4	0.7154(3)	173(5)
Pd1	8f	0.2940(2)	0	0	152(4)
Pd2	8i	0.2248(13)	1/4	0.2519(29)	160(16)
Si	8h	0	0.0790(4)	0.1874(6)	175(9)

^{*)} $U_{eq} = 1/3 (U_{11} + U_{22} + U_{33}) [48]$

Tabelle 60: Anisotrope Temperaturfaktoren [pm²] für SrPd₃Si₂ mit Pd2 auf einer Splitpunktlage. Der anisotrope Temperaturfaktor-Exponent hat die Form:

-2
$$\pi^2$$
 [$h^2 a^{*2} U_{11} + ... + 2 h k a^* b^* U_{12}$]

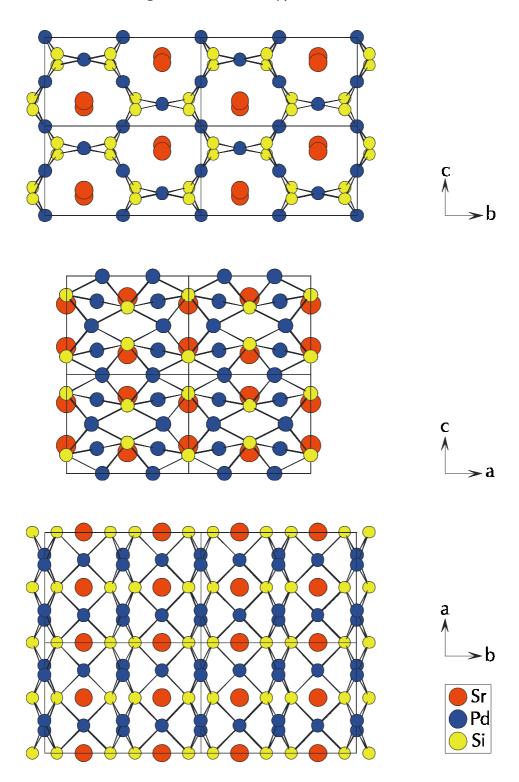
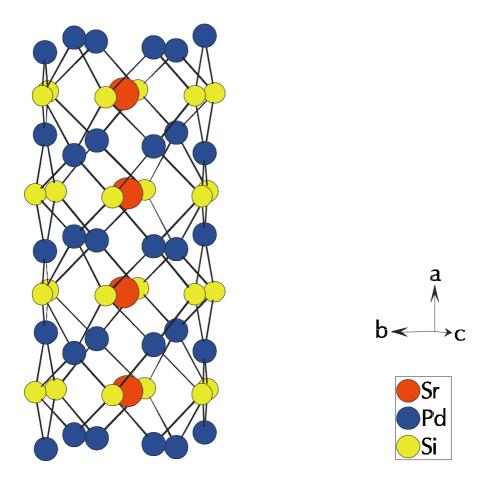

	U ₁₁	U ₂₂	U_{33}	U_{23}	U ₁₃	U ₁₂
Sr	221(11)	178(10)	121(8)	0	0	0
Pd1	204(7)	152(7)	103(6)	-11(3)	0	0
Pd2	178(51)	131(9)	174(9)	0	152(38)	0
Si	119(19)	311(25)	97(16)	4(14)	0	0

Tabelle 61: Abstände [pm] und Winkel [°] für $SrPd_3Si_2$ mit Pd2 auf einer Splitpunktlage

Sr – Si $2 \times 324.2(4)$	Pd1 – Si	$2 \times 247.5(3)$	Si	– Pd2	$1 \times 240.1(9)$
$2 \times 338.8(4)$		$2 \times 250.9(2)$		– Pd1	$2 \times 247.5(3)$
2× 352.0(4)					$2 \times 250.9(2)$
	– Pd2	$1 \times 292.1(8)$		– Pd2	$1 \times 265.6(9)$
$- Pd2 2 \times 313(1)$		$1 \times 297.1(8)$			
$-Pd1 4 \times 319.4(1)$	– Pd1	$1 \times 296.3(3)$		– Si	$1 \times 270.2(8)$
$- Pd2 2 \times 335(2)$		2× 296.82(8)			
$-Pd1 4 \times 369.3(2)$				– Sr	$1 \times 324.3(4)$
	– Sr	2× 319.4(1)			1× 338.8(4)
$- Sr 2 \times 361.8(2)$		2× 369.3(2)			$1 \times 352.0(4)$
	Pd2 – Si	$2 \times 240.1(9)$			
		2x 265.6(9)			
	- Pd2	$1 \times 36(2)$			
	– Pd1	$2 \times 292.1(8)$			
		2x 297.1(8)			
	– Sr	2× 313(1)			
		$2 \times 335(2)$			
∠ Sr-Pd2-Sr 174,9°	∠ Si-Pd2-Si	174,1°			


7.2.7 Strukturbeschreibung und Diskussion

Die Verbindung $SrPd_3Si_2$ kristallisiert orthorhombisch-innenzentriert im $ErRh_3Si_2$ -Typ [47], einer Überstruktur des hexagonalen $CeCo_3B_2$ -Typs [52] (Abb. 29).

<u>Abb. 29</u>: Projektion der Struktur von $SrPd_3Si_2$ in den Richtungen [100] (oben), [010] (Mitte) und [001] (unten)

Die Struktur von SrPd₃Si₂ ist durch ein Pd/Si-Raumnetz charakterisiert, in dem Kanäle mit verzerrt hexagonalem Querschnitt auftreten (Abb. 30). Diese verlaufen in Richtung der a-Achse und sind mit anderen hexagonalen Kanälen allseits flächenverknüpft. In den Kanälen befinden sich Sr-Sr-Zick-Zack-Ketten.

<u>Abb. 30</u>: Darstellung eines Kanals mit verzerrt hexagonalem Querschnitt in der Struktur von SrPd₃Si₂

Jedes Strontium-Atom wird von 12 Palladium-Atomen verzerrt hexagonal-prismatisch koordiniert. Die sechs Seitenflächen des Prismas werden von Silicium-Atomen überkappt (Abb. 30). Die Strontium-Atome liegen dabei in einer Ebene mit den Silicium-Atomen. Über die verzerrt hexagonalen Basisflächen des Prismas werden die Prismen entlang [100] zu Kanälen fächenverknüpft.

Silicium ist in dieser Struktur verzerrt trigonal prismatisch von vier Pd1- und zwei Pd2-Atomen koordiniert. Alle Seitenflächen des trigonalen Prismas sind von je einem Strontium-Atom überkappt (Abb. 31).

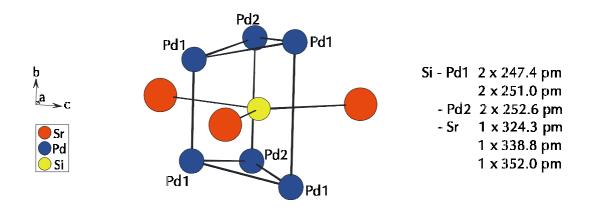


Abb. 31: Umgebung der Silicium-Atome in der Verbindung SrPd₃Si₂

Alle Prismen sind mit anderen SiPd₆-Prismen über die Dreiecksflächen zu einem Strang in Richtung [100] flächenverknüpft und über die Seitenkanten mit anderen Prismen zu verzerrt hexagonalen Kanälen kantenverknüpft.

Pd2 ist von vier Silicium- und vier Pd1-Atomen jeweils in der Ebene rechteckig umgeben. Pd2 wird ebenfalls von vier Strontium-Atomen koordiniert, die aber kein Rechteck sondern eine Raute um Pd2 aufspannen, da immer die einander gegenüber liegenden Strontium-Atome gleiche Abstände zu Pd2 haben. Die drei Ebenen um Pd2 bilden ein verzerrtes Ikosaeder aus (Abb. 32).

Pd1 wird wie Pd2 von je vier Silicium- und Strontium-Atomen umgeben, die jedoch flache verzerrte Tetraeder ausbilden. Außerdem wird es von zwei Pd2- und drei Pd1-Atomen verzerrt pyramidal koordiniert (Abb. 32).

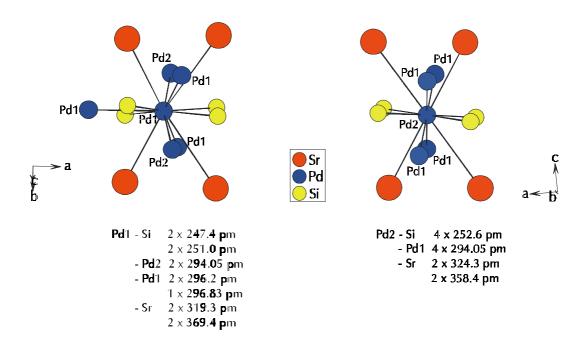


Abb. 32: Umgebung der Palladium-Atome in der Verbindung SrPd₃Si₂

Die Pd(2)Si₄- und Pd(1)Si₄-Einheiten sind jeweils in Richtung [100] miteinander zu Ketten kantenverknüpft. Die Kantenverknüpfung in der (011)-Ebene bildet aus vier Pd(1)Si₄- und zwei Pd(1)Si₄-Einheiten die Kanäle.

Formal läßt sich die $CeCo_3B_2$ - und damit die $SrPd_3Si_2$ -Struktur aus zwei einander abwechselnden Schichten aufbauen, obwohl durch die Pd-Si-Abstände, die in der ganzen Struktur im Bereich kovalenter Bindungen liegen, eine Raumnetzstruktur vorliegt (Abb. 33). Schicht A1 (z=0) besteht aus einem Netz verzerrter kantenverknüpfter Sechsecke, die ein aus der Mitte ausgelenktes Strontium-Atom enthalten. In Schicht B ($z=\frac{1}{4}$ und $z=\frac{3}{4}$) bilden die Palladium-Atome ein aus Dreiecken und Sechsecken aufgebautes verzerrtes 3636-Kagomé-Netz. Die darauf folgende Schicht A2 ($z=\frac{1}{2}$) zeigt das gleiche Motiv wie Schicht A1, allerdings in [010] um 180° gedreht.

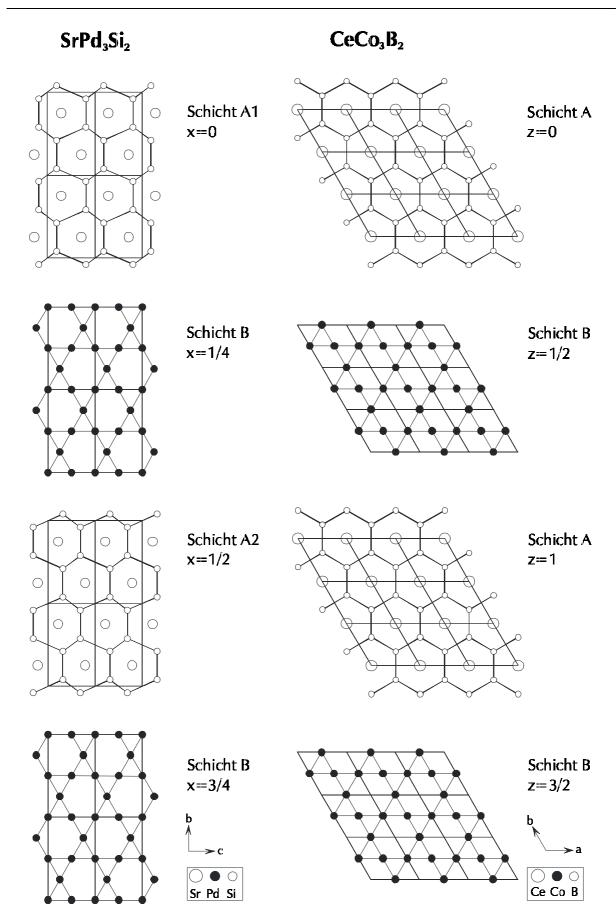


Abb. 33: Formale Zerlegung der SrPd₃Si₂- und der CeCo₃B₂-Struktur in Schichten

8 Bindungslänge-Bindungsstärke-Beziehung

Pauling leitete aus experimentellen Atomabständen und Annahmen über die metallische Wertigkeit den metallischen Einfachbindungsradius ab. Für die in dieser Arbeit benutzten Elemente gibt er die folgenden Werte für den metallischen Einfachbindungsradius R1 (in pm) an [49]:

Element	Ca	Sr	Ва	Pd	Pt	Si
R_{i}	173.6	191.4	198.1	128.3	129.5	117.3
Wertigkeit	2	2	2	6	6	2.56 (4)*

*) Falls Si kein Metallorbital verwendet, ist die Wertigkeit 4

Auf der Grundlage dieser Werte können aus den durch Röntgenstrukturanalyse ermittelten interatomaren Abständen der Verbindungen Rückschlüsse auf die Bindungsstärke gezogen werden.

Die von Pauling aufgestellte, empirische Beziehung hat sich vor allem bei intermetallischen Verbindungen bewährt.

$$d_n = d_1 - F \times \log n$$

n: Bindungsgradzahl, Zahl der Elektronenpaare pro Bindung

d_n: Atomabstand bei Bindungsgradzahl n

d₁: metallischer Einfachbindungsabstand

F: empirischer Faktor,

= 60 pm für metallische Bindungen

= 70 pm für Bindungsgradzahl n > 1

Pauling weist darauf hin, daß die Werte interpretiert werden müssen, da im Festkörper immer mit Stauchung oder Dehnung von Bindungen zu rechnen ist. Dadurch können die Werte so stark beeinflußt werden, daß die Ergebnisse für die metallische Wertigkeit deutlich von den tabellierten Werten abweichen. Die Bindungsgradsummen der in dieser Arbeit dargestellten Verbindungen sind in Tabelle 62 zusammengestellt. Dabei fallen die zu hoch bestimmten Bindungsgradsummen der A-Komponente auf. Da die Erdalkali-Atome einen Teil ihrer Valenzelektronen an das Platinmetall-Silicium-Gerüst abgeben, verkleinert sich der Radius der A-Komponente und der von Pauling bestimmte Radius müßte zu kleineren Werten hin korrigiert werden. Um den Einfluß der A-Komponente

auf die Bindungsgradsummen abschätzen zu können, sind in Tabelle 62 die Bindungsgradsummen für die Platinmetall- und Silicium-Atome mit und ohne A-Komponente angegeben. In allen Verbindungen mit Ausnahme von BaPt₂Si₂ sind für die Platinmetalle bei Vernachlässigung der A-Komponente zu niedrige Bindungsgradsummen ermittelt worden. Daraus kann abgeleitet werden, daß der Einfluß der A-Komponente auf die Platinmetalle nicht zu vernachlässigen ist. Die Werte für die Bindungsgradsummen von Silicium sind fast immer größer 4. Der größte Beitrag wird dabei von den oft sehr geringen Abständen der Silicium-Atome zu den Platinmetall-Atomen geleistet. Wegen der hohen Elektronegativität des Siliciums kommt eine Erklärung des Phänomens mit einer Atomverkleinerung durch Elektronenabgabe hier nicht in Bertracht. Eher ist eine Erhöhung der metallischen Wertigkeit über den Wert 4 hinaus denkbar, die durch eine Beteiligung von d-Niveaus des Siliciums an der Bindung erklärt werden könnte.

Tabelle 62: Bindungsgradsummen nach Pauling

Verbindung	Element	Bindungsgradsumme	Bindungsgradsumme (ohne A-Komp.)		
SrPtSi	Sr	9.19	-		
	Pt	8.44	4.85		
	Si	6.67	4.85		
BaPtSi	Ва	10.54	-		
	Pt	8.27	4.28		
	Si	6.72	4.28		
BaPdSi	Ва	8.57	-		
Zwillingsmodell	Pd	6.45	3.66		
	Si	5.88	3.66		
BaPdSi	Ва	7.86	-		
statist. Modell	Pd1	7.24	4.51		
	Pd2	7.22	4.51		
	Si1	4.74	2.96		
	Si2	4.73	2.96		
CaPt ₂ Si ₂	Ca	5.30	-		
	Pt1	6.70	5.14		
	Pt2	7.66	5.46		
	Si1	5.82	4.62		
	Si2	3.51	2.25		
SrPt ₂ Si ₂	Sr	10.40	-		
	Pt1	7.00	4.23		
	Pt2	8.44	5.14		
	Si1	6.56	4.39		
	Si2	6.60	4.55		
BaPt ₂ Si ₂	Ва	5.87	-		
	Pt	7.38	6.18		
	Si	6.94	5.81		
SrPd ₃ Si ₂	Sr	13.37	-		
	Pd1	7.06	4.73		
	Pd2	6.14	4.01		
	Si	6.33	5.28		
SrPt ₃ Si ₂	Sr1	9.61	-		
	Sr2	9.90	-		
	Pt1	8.09	5.71		
	Pt2	8.61	5.68		
	Pt3	9.55	4.92		
	Pt4	9.40	4.89		
	Si1	7.90	7.20		
	Si2	7.76	7.09		
BaPd ₃ Si ₂	Ва	12.45	-		
	Pd1	7.40	3.52		
	Pd2	7.82	5.16		
	Si	7.59	6.14		

9 Volumenkontraktion bei der Bildung der Verbindungen aus den Elementen

In den in dieser Arbeit vorgestellten Verbindungen treten zu den Erdalkali-Atomen teilweise sehr kurze Abstände auf. Die zu hohen Bindungsgradsummen deuten darauf hin, daß die A-Komponenten einen Teil ihrer Valenzelektronen abgeben und dadurch ihren Atomradius verkleinern.

Das Atomvolumen wird stark vom Bindungszustand beeinflußt. Biltz [54] versuchte über das Volumeninkrement Rückschlüsse auf den Zustand der Atome zu ziehen und zeigte, daß das Molvolumen von Feststoffen sich in guter Näherung als Summe von Volumeninkrementen beschreiben läßt. Biltz berechnete die Volumeninkremente der einzelnen Elemente durch Mittelung aus den gemessenen Räumen vieler Verbindungen. Die Volumeninkremente sind nicht experimentell zugänglich, sondern nur die Molvolumina. Da die Volumeninkremente auf 0 Kelvin extrapoliert sind, müssen auch die Molvolumina der Verbindungen auf diese Temperatur bezogen werden. Biltz nimmt für den Übergang von Raumtemperatur auf 0 Kelvin eine Volumenkontraktion von 0.5% an. Damit ergibt sich das Molvolumen nach

$$V_{Mol} = 1/Z \times \{V_{EZ} \times N_A \times (1-0.005)\}$$

V_{Mol}: Molvolumen der Verbindung [cm³]

 V_{EZ} : Volumen der Elementarzelle [10^6 pm^3]

Z : Zahl der Formeleinheiten pro Elementarzelle

 N_A : Avogadro-Konstante [6.022 \times 10²³ mol⁻¹]

Im Allgemeinen wird in ternären Verbindungen AM_mX_n mit stark elektropositiven Elementen A davon ausgegangen, daß vor allem das Volumeninkrement der A-Komponente der Volumenkontraktion unterliegt. Damit ergibt sich das berechnete Volumeninkrement der A-Komponente näherungsweise aus der Differenz des Molvolumens und der Summe der Volumeninkremente der M- und X-Metalle nach Biltz.

Biltz gibt für die in dieser Arbeit verwendeten Elemente folgende Volumeninkremente an:

Element	Ca	Sr	Ва	Pd	Pt	Si
Volumeninkrement [cm³/mol]	18.5	23.5	29.5	8.79	9.04	12.03

In den in dieser Arbeit vorgestellten Verbindungen zeigen sich teilweise sehr kurze Platinmetall-Silicium-Abstände, so daß man davon ausgehen kann, daß die Volumenkontraktion auch auf die Verringerung des Molvolumens von Silicium zurückzuführen ist.

Tabelle 63 : Volumenkontraktion bei der Bildung der Verbindungen aus den Elementen

Verbindung	V _{EZ}	Formel-	Molvolum	ΣV_{Mol}	Differenz der	berechnete V_{Mol}	V _{Mol} [cm³] der A-
	[10 ⁶ pm ³]	einheiten	en	der Elemente	Molvolumina	[cm³] der A-	Komponente
		pro EZ	V _{Mol} [cm ³]	[cm³]	ΔV_{Mol} [%]	Komponente	nach Biltz
SrPtSi	274.45	4	41.11	44.57	-7.8	20.04	23.5
BaPtSi	290.764	4	43.57	50.57	-13.8	13.01	29.5
BaPdSi	299.70	4	44.89	51.00	-12.0	23.39	29.5
CaPt ₂ Si ₂	174.93	2	52.41	60.64	-13.6	10.27	18.5
SrPt ₂ Si ₂	182.39	2	54.64	65.64	-16.8	12.50	23.5
BaPt ₂ Si ₂	422.71	4	63.32	71.64	-11.6	21.18	29.5
SrPd ₃ Si ₂	423.52	4	63.44	73.93	-14.2	22.50	23.5
SrPt ₃ Si ₂	902.70	8	67.61	74.68	-9.5	16.43	23.5
BaPd ₃ Si ₂	457.18	4	68.48	79.93	-14.3	18.05	29.5

Dennoch wurde hier zur Abschätzung des Molvolumens für die Erdalkali-Elemente die Volumenkontraktion des Siliciums vernachlässigt. Es muß aber damit gerechnet werden, daß die in Tabelle 63 angegebenen Werte zu klein sind. Alle Verbindungen zeigen Volumenkontraktion. Die für die Erdalkali-Elemente abgeschätzten Volumeninkremente sind alle deutlich kleiner als die von Biltz angegebenen Werte. Das deutet darauf hin, daß die Erdalkali-Elemente durch positive Polarisierung ihren Radius stark verkleinert haben.

10 Einordnung der Verbindungen in ihren strukturchemischen Zusammenhang

10.1 Verbindungen der Zusammensetzung AMSi

Für M=Pd, Pt sind nun fast alle Verbindung des Formeltyps AMSi mit A=Mg, Ca, Sr, Ba bekannt. Lediglich MgPdSi konnte noch nicht dargestellt werden. In den Systemen mit M=Ru, Os, Rh, Ir sind dagegen nur wenige Verbindungen dargestellt worden, nämlich CaRuSi [25], MgRhSi [30], MgIrSi, SrIrSi [beide 27] und BaIrSi [55].

Die Verbindungen MgMSi mit M=Rh[30], Ir[27], Pt[31] kristallisieren alle orthorhombisch in der Raumgruppe Pnma in der vom PbCl₂-Typ [56] abgeleiteten TiNiSi-Struktur [9]. CaRuSi [25] kristallisiert tetragonal in einer Ordnungsvariante der Cu₂Sb-Struktur [57] im PbFCl-Typ [58]. Für SrIrSi [27] und BaIrSi [55] wurde der BaPdP-Typ [59] (orthorhombisch, Cmca) gefunden.

Die Pd- und Pt-Verbindungen der Zusammensetzung AMSi mit den schwereren Erdalkalimetallen sind von Evers und Oehlinger 1986 [14] und 1991 [15] beschrieben worden. Die Autoren konnten von CaPtSi, CaPdSi und SrPdSi Einkristalle isolieren. CaPdSi kristallisiert als einzige Verbindung in dieser Reihe monoklin in der Raumgruppe P2₁/n im EuNiGe–Typ [16]. SrPdSi und CaPtSi bilden den kubischen LalrSi–Typ [11] aus und kristallisieren in der Raumgruppe P2₁3. SrPtSi, BaPtSi und BaPdSi wurden von Evers und Oehlinger [14] mit Pulvermethoden untersucht. Sie sind ebenfalls isotyp zu LalrSi. Im Rahmen dieser Arbeit konnten von diesen Verbindungen Einkristalle isoliert und mit Röntgenmethoden untersucht werden.

Tabelle 64 : Übersicht über die bisher dargestellten Erdalkali-Platinmetallsilicide des Formeltyps AMSi

A\M	Ru	Rh	Pd
Mg		MgRhSi (Pnma, TiNiSi)	
Ca	CaRuSi (P4/nmm, PbFCl)		CaPdSi (P2₁/n, EuNiGe)
Sr			SrPdSi (P2 ₁ 3, LaIrSi)
Ва			BaPdSi (P2₁3, LaIrSi)
A\M	Os	lr	Pt
Mg		MgIrSi (Pnma, TiNiSi)	MgPtSi (Pnma, TiNiSi)
Ca			CaPtSi (P2₁3, LaIrSi)
Sr		SrIrSi (Cmca, BaPdP)	SrPtSi (P2₁3, LaIrSi)
Ва		BalrSi (Cmca, BaPdP-	BaPtSi (P2 ₁ 3, LaIrSi)
		Überstruktur)	

Da sich die metallischen Radien der Platinmetalle (r_M) nur wenig voneinander unterscheiden, ergeben sich auch sehr ähnliche Radienverhältnisse r_A/r_M für die einzelnen Erdalkalimetalle. Bei einem dominierenden Einfluß des Radienverhältnisses auf die Struktur wären deshalb jeweils isotype Verbindungen zu erwarten. Beobachtet wird das jedoch nur für die drei Magnesium-Verbindungen. Bei den anderen Verbindungen, von denen für jedes der schweren Erdalkalimetalle drei bekannt sind, findet man dagegen verschiedene Strukturtypen, nämlich drei bei den Calcium- und jeweils zwei bei den Strontium- und Barium-Verbindungen.

10.2 Verbindungen der Zusammensetzung AM₂Si₂

Uber Erdalkali-Platinmetall-Verbindungen der Zusammensetzung AM₂Si₂ (mit A=Ca, Sr, Ba und M=Ru [25], Os [25], Rh [30], Ir [27], Pd [23], Pt [24]) lagen zu Beginn dieser Arbeit bereits umfangreiche Untersuchungen vor. Dabei hatte sich gezeigt, daß mit A=Mg [31] offenbar keine derartigen Verbindungen gebildet werden. Von den schwereren Erdalkalimetallen Calcium, Strontium und Barium dagegen waren fast alle Vertreter bekannt. Es fehlten lediglich BaPd₂Si₂, BaPt₂Si₂ und CaPt₂Si₂, und die Strukturen von CaPd₂Si₂, SrPd₂Si₂ und SrPt₂Si₂ waren nur aufgrund von Pulveraufnahmen zugeordnet worden. In dieser Arbeit konnte nun BaPt₂Si₂ synthetisiert und an Einkristallen aufgeklärt werden. Dagegen schlugen alle Versuche fehl, eine Verbindung BaPd₂Si₂ herzustellen. Es gelang aber, von SrPt₂Si₂ Einkristalle zu erhalten. Ihre Untersuchung führte zu einer Korrektur der in der Literatur für diese Verbindung angegebenen Struktur (s. Kap. 6). Somit sind jetzt mit Ausnahme von BaPd₂Si₂ alle ternären Platinmetallsilicide der schweren Erdalkalimetalle bekannt. Bis auf CaPd₂Si₂ und SrPd₂Si₂ wurden ihre Strukturen an Einkristallen bestimmt. Sie sind in Tabelle 65 zusammengestellt, wobei die einzelnen Strukturtypen farblich gegeneinander abgesetzt sind.

Insgesamt treten 5 Strukturtypen auf, die sich in zwei Gruppen gliedern. Zur ersten Gruppe gehören der ThCr₂Si₂- und der CaBe₂Ge₂-Typ, beides Varianten der BaAl₄-Struktur. Die zweite Gruppe wird vom CaRh₂B₂-Typ und seinen Verzerrungsvarianten, dem Balr₂Si₂- und dem BaPt₂Si₂-Typ gebildet. Wie Yarmolyuk [60] gezeigt hat, läßt sich auch der CaRh₂B₂-Typ formal mit der BaAl₄-Struktur in Zusammenhang bringen, allerdings sind die Topologien der beiden Typen völlig verschieden.

Tabelle 65 : Zusammenstellung der Erdalkali-Platinmetallsilicide des Formeltyps AM_2Si_2

CaRu ₂ Si ₂	CaRh ₂ Si ₂	CaPd ₂ Si ₂
CaOs ₂ Si ₂	Calr ₂ Si ₂	CaPt ₂ Si ₂
SrRu ₂ Si ₂	SrRh ₂ Si ₂	SrPd ₂ Si ₂
SrOs ₂ Si ₂	Srlr ₂ Si ₂	SrPt ₂ Si ₂
BaRu ₂ Si ₂	BaRh ₂ Si ₂	
BaOs ₂ Si ₂	Balr ₂ Si ₂	BaPt ₂ Si ₂

Strukturtypen: ThCr₂Si₂-Typ, I4/mmm [18]; CaBe₂Ge₂-Typ, P4/nmm [19]; CaRh₂B₂-Typ Fddd [26]; BaIr₂Si₂-Typ, P2₁/c [27]; BaPt₂Si₂-Typ, I2/a

Stellt man die Verbindungen wie in Tabelle 65 so zusammen, daß bei einer Anordnung der Platinmetalle wie im Periodensystem die Calcium-, Strontium- und Barium-Verbindungen blockweise untereinander stehen, so verläuft eine Trennlinie zwischen der BaAl₄- und der CaRh₂B₂-Gruppe von links oben nach rechts unten. Alle Calcium-Verbindungen bilden eine BaAl₄-Variante und zwar vorwiegend den ThCr₂Si₂-Typ aus. Bei den Strontium-Verbindungen findet man zu gleichen Teilen den BaAl₄- und den CaRh₂B₂-Typ, wobei die Trennlinie zwischen der Rhodium- und der Iridium-Verbindung verläuft. Für einen Mischkristall SrRhIrSi₂ findet man bei hohen Temperaturen (>1350 °C) den orthorhombischen CaRh₂B₂-Typ, bei tieferen Temperaturen den ThCr₂Si₂-Typ [61]. Dies ist ungewöhnlich, da der Übergang von einer Hoch- in eine Tieftemperaturphase im allgemeinen mit einer Symmetrieerniedrigung verbunden ist. Eine Deutung dafür wird weiter unten gegeben.

Bei den Barium-Verbindungen tritt die BaAl₄-Struktur nicht mehr auf. Sie kristallisieren entweder im unverzerrten CaRh₂B₂-Typ (Ru- und Os-Verbindungen) oder in dessen Verzerrungsvarianten (Rh-,Ir- und Pt-Verbindung). Es ist auffällig, daß für die hypothetische Verbindung BaPd₂Si₂ nach dem Verlauf der Grenzlinie in Tabelle 65 alle 5 beobachteten Strukturtypen in Frage kommen. Möglicherweise existiert die Verbindung deshalb nicht, weil keine dieser Strukturen wirklich geeignet ist und Konkurrenzphasen wie BaPd₃Si₂ deshalb energetisch bevorzugt sind.

Die gefundene Strukturtypen-Verteilung kann zum Teil durch ein einfaches geometrisches Bild erklärt werden.

In allen diesen Verbindungen bilden die Platinmetalle und das Silicium ein anionisches, kovalent gebundenes Teilgitter aus, in das die Erdalkalimetall-Atome einlagert sind. In den BaAl₄-Typen bilden Platinmetall und Silicium Tetraederschichten aus, die im Falle des ThCr₂Si₂-Typs durch Si-Si-Bindungen (Si₂-Hanteln), im Falle des CaBe₂Ge₂-Typs durch

Platinmetall-Silicium-Bindungen miteinander verbunden sind. Zwischen den Tetraederschichten liegt jeweils eine Schicht aus A-Atomen. Werden die Schichten durch größere A-Atome wie Strontium oder Barium so stark auseinandergedrückt, daß die Si-Sibzw. Platinmetall-Silicium-Bindungen zu groß für feste Bindungen werden, so weichen die Verbindungen in Strukturen aus, in denen die A-Atome in Kanäle eines dreidimensional vernetzten Platinmetall-Silicium-Tetraedergerüstes eingelagert sind. Damit bilden ternäre Platinmetallsilicide mit großen A-Atomen bevorzugt den CaRh₂B₂-Typ oder seine monoklinen Verzerrungsvarianten, den BaPt₂Si₂- oder BaIr₂Si₂-Typ aus. Dieses Bild erklärt auch, warum bei der Verbindung SrRhIrSi₂ als Hochtemperaturphase der orthorhombische CaRh₂B₂-Typ und nicht wie von der Symmetrie her zu erwarten, der tetragonale und damit höhersymmetrische ThCr₂Si₂-Typ auftritt. Bei hohen Temperaturen wächst der Raumbedarf der Atome mit den höchsten thermischen Auslenkungsparametern- und das sind hier die A-Atome- besonders stark. Damit wird die bei größeren A-Atomen bevorzugte CaRh₂B₂-Struktur stabiler als die ThCr₂Si₂-Struktur.

10.3 Verbindungen der Zusammensetzung AM₃Si₂

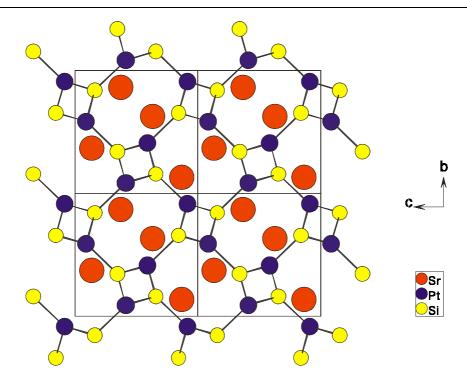
Bisher sind nur wenige Platinmetallsilicide vom Formeltyp AM₃Si₂ bekannt. Außer den in dieser Arbeit behandelten Verbindungen SrPd₃Si₂, BaPd₃Si₂ und SrPt₃Si₂ werden in der Dissertation von H. Ploss [30] noch CaRh₃Si₂, SrRh₃Si₂ und BaRh₃Si₂ beschrieben. Sie bilden Überstrukturen des CeCo₃B₂-Typs [52] aus, die allerdings nicht aufgeklärt werden konnten. Die Strukturbestimmungen gelangen nur für die Subzellen, in denen Rhodium und Silicium jeweils Splitpunktlagen einnehmen.

Die Verbindung SrPd₃Si₂ kristallisiert orthorhombisch-innenzentriert in der Raumgruppe Imma im ErRh₃Si₂-Typ [47], einer Überstruktur zur hexagonalen CeCo₃B₂-Struktur.

Sie schließt sich damit ebenso wie die oben genannten Rhodium-Verbindungen den entsprechenden Seltenerd-Platinmetallsiliciden an, die ebenfalls Überstrukturen oder Verzerrungsvarianten des CeCo₃B₂-Typs ausbilden. Chevalier, Cole, Lejay und Etourneau [52] fanden, daß die Verbindungen ARh₃Si₂ (mit A=Y, La, Nd, Sm, Gd, Tb, Dy, Ho, Er) im CeCo₃B₂-Typ kristallisieren. Cenzual, Chabot und Parthé berichten [47], daß neben ErRh₃Si₂ auch die Rhodiumsilicide mit A=Y, La, und Nd den neuen ErRh₃Si₂-Typ ausbilden. Die Verbindung LaRu₃Si₂ [62] kristallisiert hexagonal in der Raumgruppe P6₃/m, in einer Verzerrungsvariante der CeCo₃B₂-Struktur. In dieser Struktur wechseln sich La-Si-Schichten, in denen das Lanthan hexagonal von Silicium umgeben ist, mit Ruthenium-Schichten ab, die verzerrte Sechsecke ausbilden.

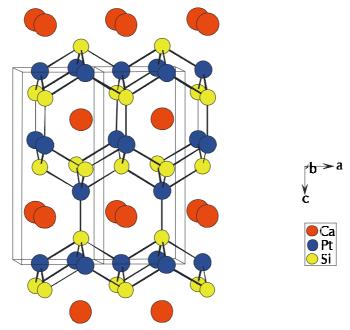
Überraschenderweise bildet die Verbindung BaPd₃Si₂ einen neuen Strukturtyp aus, den man als stark verzerrten aufgefüllten ThCr₂Si₂-Typ beschreiben kann. BaPd₃Si₂ kristallisiert orthorhombisch in der Raumgruppe Pnma. In dieser Struktur werden die Pd-Si-Schichten durch verbindende Palladium-Atome zusammengehalten, so daß sogar ein großes A-Atom wie Barium sich in diese Struktur einlagern kann (vergl. Kap.10.2).

Die Verbindung SrPt₃Si₂ kristallisiert ebenfalls orthorhombisch in der Raumgruppe Pnma, weist jedoch im Vergleich zum BaPd₃Si₂ eine verdoppelte a-Gitterkonstante auf und kann als Überstruktur zur BaPd₃Si₂-Struktur aufgefaßt werden.

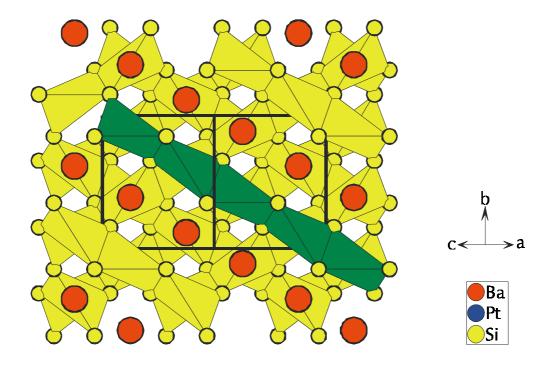

11 Zusammenfassung

Mit dem Ziel neue ternäre Silicide darzustellen, wurden in den Systemen Ca-Pd-Si, Ca-Pt-Si, Sr-Pd-Si, Sr-Pt-Si, Ba-Pd-Si und Ba-Pt-Si phasenanalytische Untersuchungen durchgeführt.

Folgende Verbindungen wurden mit Röntgen-Einkristallmethoden strukturell aufgeklärt:

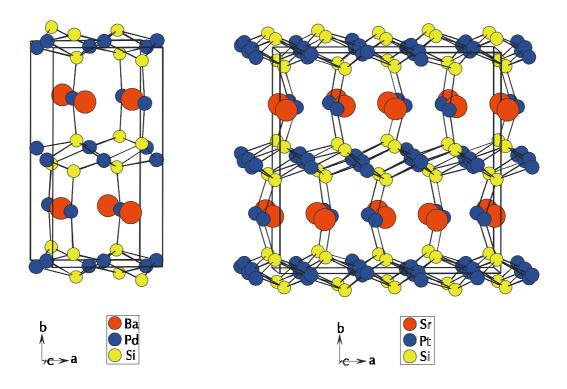

Verbindung	Symmetrie	a [pm]	b [pm]	c [pm]
	Raumgruppe		β [°]	
SrPtSi ⁾	kubisch	648.53		
	P2 ₁ 3			
BaPtSi ⁾	kubisch	663.90		
	P2 ₁ 3			
BaPdSi	kubisch	666.63		
	P2 ₁ 3			
CaPt ₂ Si ₂	tetragonal	419.11		990.6
	P4/nmm			
SrPt ₂ Si ₂	tetragonal	429.15		989.8
	P4/nmm			
BaPt ₂ Si ₂	monoklin	772.71	684.54	802.31
	I2/a		93.82°	
BaPd ₃ Si ₂	orthorhombisch	569.43	1122.25	712.57
	Pnma			
SrPt ₃ Si ₂	orthorhombisch	1141.34	1135.40	696.05
	Pnma			
SrPd ₃ Si ₂	orthorhombisch	719.15	1015.4	580.00
	lmma			

SrPtSi, BaPtSi und BaPdSi kristallisieren in LaIrSi-Typ. Die beiden Platin-Verbindungen waren zuvor bereits beschrieben, aber nur mit Röntgen-Pulvermethoden charakterisiert worden [14]. So wie die Übergangsmetall-Atome (hier Pd und Pt) von Silicium, sind die Silicium-Atome dreifach nahezu planar vom Übergangsmetall umgeben. Die Lücken dieses 3C3D (3-connected-3-dimensional)-Raumnetzes werden von den Erdalkalimetall-Atomen gefüllt.

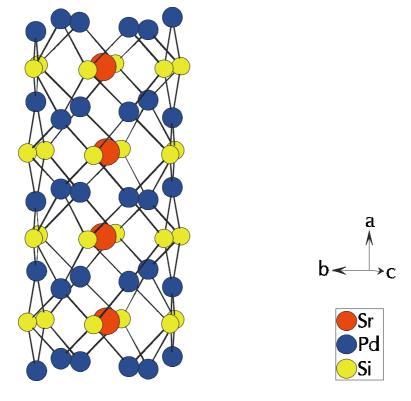

Kristallstruktur von SrPtSi, Projektion in Richtung [100]

Die isotypen Verbindungen CaPt₂Si₂ und SrPt₂Si₂ bilden den CaBe₂Ge₂-Typ, eine Besetzungsvariante des BaAl₄-Typs, aus. Hier wechseln sich Schichten aus PtSi₄- und SiPt₄- Tetraedern mit Calcium- bzw. Strontium-Schichten ab. Die Tetraederschichten sind durch Pt-Si-Bindungen zu einem dreidimensionalen Raumnetz verbunden, das einander kreuzende Kanäle mit sechseckigem Querschnitt enthält. Auch über SrPt₂Si₂ ist in der Literatur bereits berichtet worden. Aufgrund von Röntgen-Pulveraufnahmen wurde die Struktur aber fälschlicherweise als ThCr₂Si₂-Typ mit statistischer Pt/Si-Verteilung beschrieben [24].

Kristallstruktur von CaPt₂Si₂, Projektion annähernd in Richtung [010]


BaPt₂Si₂ kristallisiert in einer neuen, monoklin innenzentrierten Variante der CaRh₂B₂-Struktur, die einen Übergang zur Balr₂Si₂-Struktur bildet. Sie besteht aus einem Raumnetz kantenverknüpfter Tetraeder, wobei die Beschreibung sowohl durch PtSi_{4/4}- als auch durch SiPt_{4/4}-Tetraeder erfolgen kann. Die Tetraeder sind zu Ketten verknüpft, die in ihrer Schicht parallel zueinander, aber voneinander isoliert angeordnet sind. Die sich kreuzenden Ketten benachbarter Schichten sind über gemeinsame Tetraederkanten miteinander verknüpft. Daraus ergibt sich ein dreidimensionales Raumnetz, das einander kreuzende Kanäle enthält, in denen die Barium-Atome Zick-Zack-Ketten bilden.

Struktur von BaPt₂Si₂, hervorgehoben sind die PtSi₄-Tetraederketten, Projektion entlang [101]


Für die Verbindung BaPt₂Si₂ wurde an einem gesinterten Pulverpreßling der spezifische Widerstand zwischen 4 K und Raumtemperatur gemessen. Die Verbindung zeigt gute metallische Leitfähigkeit.

Die Verbindungen BaPd₃Si₂ und SrPt₃Si₂ kristallisieren in neuen, orthorhombischen Strukturen. Sie weisen enge Beziehungen zur LuNi₂B₂C-Struktur auf, die wiederum als aufgefüllter ThCr₂Si₂-Typ aufgefaßt werden kann. Bei SrPt₃Si₂ ist die a-Gitterkonstante verdoppelt. In den Strukturen treten Schichten stark verzerrter, kantenverknüpfter PdSi_{4/4}-bzw. PtSi_{4/4}- Tetraeder senkrecht zu [010] auf. Für Silicium ergibt sich eine verzerrt quadratisch pyramidale Umgebung aus Palladium- bzw. Platin- Atomen, wobei jeweils zwei Pyramiden über ihre Spitzen miteinander verknüpft sind. In die Lücken dieses Raumnetzes lagert sich Barium bzw. Strontium ein.

Darstellung der Strukturen von BaPd₃Si₂ und SrPt₃Si₂, Blick in annähernd [001]

Die Verbindung SrPd₃Si₂ kristallisiert orthorhombisch-innenzentriert im ErRh₃Si₂-Typ, einer Verzerrungsvariante der hexagonalen CeCo₃B₂-Struktur. Verzerrt trigonale Pd₆Si-Prismen bauen ein Gerüst auf, das Kanäle mit sechseckigem Querschnitt enthält. In diesen Kanälen befinden sich Sr-Sr-Zickzack-Ketten.

Darstellung eines Kanals mit verzerrt hexagonalem Querschnitt in SrPd₃Si₂

12 Anhang

12.1 Pulverdaten

Die Daten aller zum Vergleich herangezogenen binären Randphasen wurden Pearson's Handbook of Crystallographic Data for Intermetallic Phases [63] entnommen. (FR bedeutet Fremdreflex)

Tabelle 66 : Pulverdiffraktometerdaten der Verbindung BaPdSi kubisch, a=666.63(12) pm

Н	K	L	$2\theta_{ m obs}$	l _{obs}	$2\theta_{\text{calc}}$	l _{calc}
1	1	0			18.736	100.000
FR			21.613	4.36		
1	1	1	23.140	8.38	22.999	16.023
2	0	0			26.618	0.540
FR			29.411	6.46		
FR			29.709	8.63		
1	2	0			29.828	0.000
2	1	0	30.004	89.21	29.828	10.214
FR			30.528	16.25		
FR			30.927	7.90		
FR			31.931	9.88		
FR			32.466	4.50		
2	1	1	32.948	76.07	32.752	47.249
FR			34.794	6.57		
FR			36.148	5.52		
FR			36.959	4.06		
2	2	0			37.998	1.472
2	2	1	40.626	12.39	40.400	14.838
3	1	0	42.929	42.929	42.690	8.953
1	3	0			42.690	15.979
3	1	1	45.138	8.87	44.884	1.749
2	2	2			46.996	18.184
3	2	0	49.305	10.73	49.039	7.539
2	3	0			49.039	1.993
2	3	1	51.307	27.53	51.020	17.163

3	2	1			51.020	11.131
4	0	0	55.104	19.21	54.826	7.294
4	1	0	56.983	4.56	56.663	5.615
3	2	2			56.663	3.864
1	4	0			56.663	4.812
3	3	0			58.462	0.964
4	1	1			58.462	5.027
3	3	1	60.548	5.55	60.227	4.990
2	4	0			61.961	0.045
4	2	0			61.961	0.045
4	2	1	64.019	10.06	63.668	1.149
2	4	1			63.668	0.155
3	3	2	65.710	5.32	65.350	1.326
4	2	2			68.648	0.568
5	0	0			70.270	absent
3	4	0	70.660	3.55	70.270	2.474
4	3	0			70.270	1.483
1	5	0			71.875	0.242
5	1	0			71.875	0.878
3	4	1	72.305	4.26	71.875	3.996
4	3	1			71.875	3.850
5	1	1	73.870	5.05	73.465	5.440
3	3	3			73.465	3.070
2	5	0			76.608	3.494
4	3	2			76.608	2.070
3	4	2			76.608	0.809
5	2	0			76.608	1.970
FR			77.022	11.29		
2	5	1			78.164	0.745
5	2	1	78.613	5.95	78.164	1.545
4	4	0	81.705	4.71	81.250	2.527
5	2	2			82.783	0.646
4	4	1			82.783	3.621
4	3	3			84.311	0.398
3	5	0			84.311	1.035
5	3	0			84.311	2.339
3	5	1			85.835	0.466
5	3	1			85.835	0.466

4	4	2	87.356	2.606
6	0	0	87.356	0.105
1	6	0	88.875	0.000
6	1	0	88.875	0.097

Tabelle 67 : Pulverdiffraktometerdaten der Verbindung $BaPd_{0.4}Si_{1.6}$ hexagonal, a=420.65(3) pm, c=493.64(5) pm

Н	K	L	$2\theta_{ m obs}$	l _{obs}	$2\theta_{\text{calc}}$	l _{calc}
0	0	1			17.990	39.762
1	0	0	24.465	21.02	24.460	66.236
1	0	1	30.528	96.24	30.531	100.000
FR			31.920	2.80		
0	0	2	36.421	12.03	36.445	11.198
1	1	0	43.043	29.41	43.051	19.077
1	0	2	44.358	9.07	44.383	21.068
1	1	1			47.011	14.123
2	0	0			50.134	6.714
2	0	1	53.671	17.02	53.693	14.350
0	0	3			55.946	1.209
1	1	2	57.609	21.48	57.644	12.503
1	0	3	61.905	9.97	61.951	8.031
2	0	2	63.503	2.92	63.549	5.207
2	1	0			68.177	3.887
2	1	1	71.114	12.11	71.164	8.992
1	1	3			73.099	2.420
0	0	4			77.424	0.610
2	0	3	78.324	5.55	78.406	3.013
3	0	0	78.829	3.74	78.916	1.694
2	1	2			79.853	4.059
3	0	1			81.758	1.542
1	0	4			82.647	1.773
FR			90.086	4.62		
FR			92.842	4.36		
FR			93.793	6.24		
FR			95.058	9.99		

Tabelle 68 : Pulverdiffraktometerdaten der Verbindung $BaPd_3Si_2$ orthorhombisch, a=569.43(9) pm, b=1122.25(19), c=712.57(9) pm

Н	K	L	$2\theta_{ m obs}$	l _{obs}	$2\theta_{\text{calc}}$	l _{calc}
0	1	1	14.706	26.11	14.689	13.508
0	2	0			15.748	1.543
1	0	1	19.948	16.67	19.926	8.910
1	1	1			21.448	1.725
0	0	2			24.934	3.175
1	2	1			25.499	3.732
0	3	1	26.903	9.72	26.844	4.942
1	0	2	29.577	82.50	29.515	43.582
0	2	2	29.645	100.00	29.628	51.347
1	1	2	30.643	14.72	30.589	7.385
1	3	1	31.224	23.89	31.166	15.498
2	0	0			31.380	0.021
0	4	0	31.866	99.72	31.805	94.023
2	1	0	32.423	37.50	32.398	27.811
1	2	2	33.675	87.22	33.624	78.293
2	0	1			33.857	0.438
2	1	1			34.810	0.483
2	2	0	35.328	93.89	35.294	100.000
2	2	1			37.543	0.018
1	4	1			37.816	5.668
1	3	2	38.286	21.94	38.208	19.098
0	1	3			38.657	3.812
2	3	0	39.749	16.67	39.711	6.520
2	0	2	40.527	72.50	40.489	40.347
0	4	2			40.831	4.090
1	0	3	41.131	25.00	41.086	12.842
2	1	2			41.310	3.321
2	3	1	41.803	18.38	41.757	8.658
1	1	3	41.949	11.39	41.898	4.756
0	5	1	42.173	18.75	42.090	9.398
2	2	2	43.755	31.94	43.698	20.305
1	4	2	44.013	40.56	43.939	32.177
1	2	3	44.331	46.94	44.260	37.261
0	3	3			45.103	0.116

						0.010
1	5	1			45.128	0.242
2	4	0			45.285	0.083
2	4	1			47.134	0.365
2	3	2			47.463	0.134
1	3	3	48.068	17.50	47.990	12.743
0	6	0			48.535	2.393
3	0	1			49.639	1.791
2	0	3			49.908	0.962
3	1	1			50.341	0.152
1	5	2			50.534	0.010
2	1	3			50.607	0.585
0	0	4			51.158	0.024
2	5	0			51.748	10.200
2	4	2	52.457	49.44	52.383	22.268
3	2	1			52.406	9.591
2	2	3			52.664	0.244
1	4	3			52.874	6.263
1	6	1			52.966	1.009
2	5	1			53.429	6.546
1	0	4			53.799	2.038
0	2	4	53.969	29.44	53.868	17.814
1	1	4			54.463	1.731
3	0	2			54.711	2.524
0	6	2			55.322	11.660
3	1	2	55.429	37.22	55.368	15.259
3	3	1			55.727	0.905
2	3	3			55.974	3.430
0	5	3			56.242	4.852
1	2	4			56.422	4.836
3	2	2			57.306	2.984
1	6	2	57.946	17.50	57.833	14.355
2	5	2			58.270	2.033
1	5	3			58.727	0.508
0	7	1			58.878	3.533
2	6	0	59.033	26.67	58.943	22.172
1	3	4			59.592	0.371
3	4	1			60.169	0.116
2	4	3			60.405	0.732

3	3	2			60.447	6.350
2	6	1			60.489	0.007
2	0	4			61.255	4.034
1	7	1			61.295	1.135
0	4	4			61.508	0.900
2	1	4			61.866	2.032
3	0	3	62.614	11.11	62.536	5.567
3	1	3			63.141	0.414
2	2	4			63.681	0.856
1	4	4			63.867	3.397
3	4	2			64.688	3.174
3	2	3			64.935	0.639
2	6	2			64.995	0.611
1	6	3			65.425	4.804
4	0	0			65.485	4.089
3	5	1			65.607	0.016
1	7	2			65.770	7.287
2	5	3			65.832	0.228
0	1	5			65.915	3.936
4	1	0			66.075	6.822
0	8	0			66.459	5.071
2	3	4			66.643	4.584
2	7	0			66.803	1.804
4	0	1			66.944	0.113
4	1	1			67.527	0.173
1	0	5			67.610	4.424
4	2	0			67.828	3.683
3	3	3			67.869	0.733
1	1	5			68.191	0.513
2	7	1	68.366	10.00	68.248	6.899
1	5	4			69.145	5.319
4	2	1			69.262	0.297
1	2	5			69.918	9.604
3	5	2	70.027	31.94	69.935	12.594
1	8	1			70.152	0.946
0	3	5			70.548	2.611
2	4	4			70.685	7.246
4	3	0			70.703	3.184

0	7	3	70.704	0.364
4	0	2	71.233	3.090
4	1	2	71.800	1.761
3	4	3	71.878	9.793
3	6	1	<i>7</i> 1.955	0.509
4	3	1	72.111	1.279
0	8	2	72.170	0.618
2	6	3	72.171	0.311
2	7	2	72.501	0.277
3	0	4	72.658	0.071
1	3	5	72.756	0.086
1	7	3	72.909	2.641
0	6	4	73.181	2.978
3	1	4	73.220	0.815
4	2	2	73.490	6.780
2	0	5	74.264	1.385
1	8	2	74.358	7.823
4	4	0	74.646	4.460
2	1	5	74.822	3.365
3	2	4	74.898	1.177
2	8	0	75.337	0.095
1	6	4	75.358	1.399
2	5	4	75.741	0.551
4	4	1	76.026	0.087
3	6	2	76.122	1.315
4	3	2	76.275	0.036
2	2	5	76.487	1.602
1	4	5	76.659	5.675
2	8	1	76.713	0.068
3	5	3	76.904	0.201
0	9	1	77.493	3.442
3	3	4	77.665	6.143
4	0	3	78.158	0.336
4	1	3	78.706	0.164
3	7	1	79.178	0.252
2	3	5	79.237	1.643
2	7	3	79.386	3.687
0	5	5	79.464	2.481

4	5	0	79.612	4.905
1	9	1	79.631	0.555
4	4	2	80.121	3.334
4	2	3	80.347	0.960
0	0	6	80.726	0.024
2	8	2	80.797	1.582
4	5	1	80.966	2.373
1	8	3	81.192	0.113
3	4	4	81.493	0.203
1	5	5	81.588	0.777
2	6	4	81.774	0.086
1	7	4	82.485	1.975
1	0	6	82.843	0.787
0	2	6	82.899	2.593
3	6	3	82.915	0.867
2	4	5	83.047	1.607
4	3	3	83.064	0.230
3	7	2	83.231	1.099
1	1	6	83.384	0.520
1	9	2	83.679	0.145
2	9	0	84.629	1.590
3	0	5	84.930	6.514
4	5	2	85.002	2.626
1	2	6	85.006	0.249
3	1	5	85.470	0.127
4	6	0	85.579	0.974
2	9	1	85.969	4.094
3	5	4	86.361	0.263
5	0	1	86.415	0.341
0	10	0	86.471	1.703
4	4	3	86.843	0.385
4	6	1	86.916	0.061
5	1	1	86.954	0.002
3	2	5	87.086	6.582
3	8	1	87.306	0.548
2	8	3	87.511	0.160
1	6	5	87.532	4.271
4	0	4	87.586	0.312

	2		07.700	0.607
1	3	6	87.700	0.627
2	5	5	87.903	3.207
4	1	4	88.124	1.652
0	9	3	88.272	2.076
0	8	4	88.477	1.759
5	2	1	88.568	0.175
2	7	4	88.792	1.814
2	0	6	89.147	0.499
0	4	6	89.369	0.365
2	1	6	89.685	0.445
4	2	4	89.738	1.326
3	3	5	89.776	0.017
1	10	1	89.903	0.048
3	7	3	89.923	0.183
2	9	2	89.978	0.058

Tabelle 69: Pulverdiffraktometerdaten der Phase BAPDSI-A

$2 \theta_{obs}$	l _{obs}
21.237	15.92
25.330	6.39
26.142	44.92
28.356	11.35
29.125	25.27
29.705	65.65
30.498	71.60
30.825	41.74
31.134	25.92
31.906	14.72
33.474	7.78
33.837	19.05
35.163	52.32
36.521	33.38
37.124	27.75
37.638	11.30
38.605	100.00
39.207	12.03

40.307	12.31
	28.72
41.087	
41.669	34.89
42.727	10.81
43.246	17.61
44.021	10.96
46.139	10.23
46.587	7.74
47.829	9.60
48.927	11.45
50.637	21.58
51.189	9.16
52.045	14.45
53.748	17.99
54.111	10.65
54.579	12.85
56.501	10.14
60.538	12.39
63.434	9.93
64.166	7.03
64.872	8.19
67.098	20.92
67.975	18.86
70.588	7.62
71.971	9.43
72.793	14.34
74.157	12.01
75.506	7.80
87.363	8.12
88.897	8.99
97.825	14.74
37.023	1 1./ T

Tabelle 70 : Pulverdiffraktometerdaten der Phase BAPDSI-B

2 θ _{obs}	l _{obs}
21.313	68.41
21.501	78.79
25.356	12.27

26.150	46.58
28.376	14.92
28.869	24.37
29.171	37.60
29.663	100.00
30.176	22.11
30.500	81.52
30.831	41.96
32.637	27.60
35.115	68.41
35.662	35.85
37.033	21.42
37.676	40.34
38.646	21.23
40.289	22.82
40.704	33.18
41.068	61.87
41.687	50.67
42.728	17.35
43.252	26.76
44.736	45.66
47.857	16.28
48.916	26.16
51.154	23.29
52.027	21.10
53.748	29.53
54.127	20.77
54.589	17.29
56.498	20.30
58.851	19.15
67.956	34.62
68.694	18.43
70.333	16.36
71.985	17.72
74.308	20.89

Tabelle 71: Pulverdiffraktometerdaten der Phase BAPDSI-C

$2 \theta_{obs}$	l _{obs}
10.049	7.39
11.823	5.21
13.439	6.18
13.808	5.94
15.314	12.31
15.579	7.31
15.866	11.39
16.274	14.16
16.724	14.24
17.935	17.45
18.350	22.18
18.753	19.71
19.160	21.46
19.444	20.13
20.155	22.38
21.438	100.00
23.603	18.22
24.927	6.23
25.397	5.65
26.157	8.04
32.364	8.25
32.954	7.11
37.365	7.23
37.637	6.23
38.590	8.84
42.826	10.61
43.620	30.01
44.174	11.19
50.986	14.04
57.072	9.84
61.678	8.00
65.948	6.92
67.077	5.52
70.446	7.02
74.457	8.87
P	

Tabelle 72: Pulverdiffraktometerdaten der Phase BAPDSI-D

2 θ obs I obs 14.757 12.76 20.024 7.15 24.415 15.59 25.045 5.24 26.156 6.57 26.909 4.84 27.556 4.91 29.698 97.93 30.527 98.86 31.152 30.72
20.024 7.15 24.415 15.59 25.045 5.24 26.156 6.57 26.909 4.84 27.556 4.91 29.698 97.93 30.527 98.86
24.415 15.59 25.045 5.24 26.156 6.57 26.909 4.84 27.556 4.91 29.698 97.93 30.527 98.86
25.045 5.24 26.156 6.57 26.909 4.84 27.556 4.91 29.698 97.93 30.527 98.86
26.156 6.57 26.909 4.84 27.556 4.91 29.698 97.93 30.527 98.86
26.909 4.84 27.556 4.91 29.698 97.93 30.527 98.86
27.556 4.91 29.698 97.93 30.527 98.86
29.698 97.93 30.527 98.86
30.527 98.86
31.152 30.72
1 50., 2
31.883 100.00
32.510 7.80
33.753 28.56
35.101 18.07
35.382 26.96
36.423 12.25
37.122 5.88
38.809 5.45
40.646 53.30
41.253 13.51
42.198 15.30
42.941 23.47
44.093 13.32
44.422 20.93
52.530 11.45
53.576 15.40
54.072 20.07
54.571 7.92
55.451 18.22
57.623 14.46
62.066 6.66
62.739 6.38
63.438 5.07
66.159 10.33
70.170 6.61
70.948 11.24

72.098	6.89
85.237	5.88
88.885	7.14
97.852	9.68

Tabelle 73: Pulverdiffraktometerdaten der Phase BAPDSI-E

2 θ _{obs}	l _{obs}	
21.293	59.87	
24.106	63.45	
24.610	30.41	
25.366	15.52	
26.156	65.47	
28.374	25.93	
28.498	38.20	
28.840	27.34	
29.683	100.00	
30.161	39.71	
30.510	71.13	
30.821	67.59	
31.401	40.16	
31.680	27.02	
31.932	59.28	
33.442	29.85	
34.334	25.83	
34.710	26.90	
35.631	11.12	
37.056	27.10	
37.645	22.03	
38.216	88.85	Pd ₂ Si
39.311	50.00	
40.290	18.57	
41.616	23.81	Pd ₂ Si
42.212	17.27	
42.686	32.99	
43.261	31.78	
44.119	15.30	
45.030	19.33	

47.797	17.04	
48.582	15.27	Pd_2Si
48.871	18.26	
52.029	30.23	
53.704	35.00	
54.097	22.36	
56.464	19.84	
59.252	12.71	
63.445	13.03	
64.146	15.13	
71.943	15.91	

Tabelle 74 : Pulverdiffraktometerdaten der Phase BAPDSI-F

$2 \theta_{obs}$	l _{obs}
20.432	3.74
21.256	4.24
26.162	9.17
28.411	2.62
28.928	8.85
29.632	8.10
30.551	4.06
30.871	6.81
34.029	3.36
35.624	14.25
36.575	6.80
37.195	100.00
38.742	25.57
39.201	15.49
40.075	10.31
41.359	10.83
42.845	2.66
43.247	4.86
45.078	8.07
46.537	32.05
47.835	3.82
50.725	2.87
52.069	6.61

53.711	4.15
55.064	2.23
59.984	11.68
60.795	9.73
64.108	3.40
64.918	14.92
65.082	22.94
67.935	4.06
70.559	2.07
71.771	13.62
75.480	4.73
78.575	2.65
82.541	2.76
84.388	3.32
87.186	4.20

Tabelle 75: Pulverdiffraktometerdaten der Phase BAPDSI-G

$2 \theta_{obs}$	l _{obs}
17.196	15.34
19.227	5.18
21.098	11.25
22.070	18.64
26.187	10.04
28.382	13.50
28.823	51.90
29.895	10.14
30.299	9.24
30.529	8.96
31.172	25.42
32.388	100.00
33.342	62.20
33.820	33.80
34.678	11.01
38.898	8.96
41.122	19.49
47.198	4.40
48.146	11.10

49.258	8.55
49.836	10.14
51.453	6.60
52.061	4.89
53.055	13.81
53.942	25.34
54.636	28.20
59.152	4.32
59.630	20.93
60.656	9.64
62.227	8.59
66.047	7.73
70.054	8.17
71.737	5.24
84.449	5.41

Tabelle 76: Pulverdiffraktometerdaten der Phase BAPDSI-H

$2 \theta_{obs}$	l _{obs}
16.699	9.36
20.589	7.34
21.079	25.90
22.144	13.58
25.033	10.03
26.127	23.11
27.955	33.68
28.328	12.37
28.792	26.88
29.209	14.94
29.742	100.00
30.518	35.05
30.695	85.37
31.905	26.29
32.499	97.61
32.975	26.83
33.371	32.71
33.557	87.22
34.120	36.29

34.874	9.82
35.165	16.76
35.710	7.22
36.753	7.81
37.041	25.78
38.330	19.43
39.432	13.43
40.538	17.80
40.728	20.22
41.906	39.50
42.416	34.77
42.752	10.91
43.374	11.42
44.652	8.19
44.989	16.00
45.799	17.86
47.218	5.47
48.682	28.67
50.110	11.06
51.012	7.14
52.064	9.41
52699	10.22
53.323	22.45
54.560	21.13
59.564	31.47
64.248	13.40
66.111	11.56
68.028	7.91
70.628	12.70
71.854	11.36
78.061	10.14
78.746	49.08
82.447	7.32
83.993	8.16

Tabelle 77: Pulverdiffraktometerdaten der Phase BAPDSI-I

2 θ obs I obs 17.151 15.38 17.414 13.63 19.675 11.11 21.049 22.48 22.058 20.12 26.169 16.03 28.386 28.84 28.792 47.37 29.726 21.90 30.262 13.92 30.527 13.64 30.841 19.46 31.171 18.88 32.360 98.35 33.326 100.00 33.819 48.12 34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28		aktorreterati
17.41413.6319.67511.1121.04922.4822.05820.1226.16916.0328.38628.8428.79247.3729.72621.9030.26213.9230.52713.6430.84119.4631.17118.8832.36098.3533.326100.0033.81948.1234.65216.0937.0658.8038.88611.0941.12023.6247.2266.7147.85814.7949.21913.7849.8058.6751.4348.2053.06012.0053.90937.7054.60225.4259.1228.7360.5907.2861.6486.1362.22414.5366.02510.3970.0547.8584.4277.35	$2 \theta_{obs}$	l _{obs}
19.675 11.11 21.049 22.48 22.058 20.12 26.169 16.03 28.386 28.84 28.792 47.37 29.726 21.90 30.262 13.92 30.527 13.64 30.841 19.46 31.171 18.88 32.360 98.35 33.326 100.00 33.819 48.12 34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35 </td <td>17.151</td> <td>15.38</td>	17.151	15.38
21.049 22.48 22.058 20.12 26.169 16.03 28.386 28.84 28.792 47.37 29.726 21.90 30.262 13.92 30.527 13.64 30.841 19.46 31.171 18.88 32.360 98.35 33.326 100.00 33.819 48.12 34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	17.414	13.63
22.058 20.12 26.169 16.03 28.386 28.84 28.792 47.37 29.726 21.90 30.262 13.92 30.527 13.64 30.841 19.46 31.171 18.88 32.360 98.35 33.326 100.00 33.819 48.12 34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	19.675	11.11
26.169 16.03 28.386 28.84 28.792 47.37 29.726 21.90 30.262 13.92 30.527 13.64 30.841 19.46 31.171 18.88 32.360 98.35 33.326 100.00 33.819 48.12 34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	21.049	22.48
28.386 28.84 28.792 47.37 29.726 21.90 30.262 13.92 30.527 13.64 30.841 19.46 31.171 18.88 32.360 98.35 33.326 100.00 33.819 48.12 34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	22.058	20.12
28.792 47.37 29.726 21.90 30.262 13.92 30.527 13.64 30.841 19.46 31.171 18.88 32.360 98.35 33.326 100.00 33.819 48.12 34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	26.169	16.03
29.726 21.90 30.262 13.92 30.527 13.64 30.841 19.46 31.171 18.88 32.360 98.35 33.326 100.00 33.819 48.12 34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	28.386	28.84
30.262 13.92 30.527 13.64 30.841 19.46 31.171 18.88 32.360 98.35 33.326 100.00 33.819 48.12 34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	28.792	47.37
30.527 13.64 30.841 19.46 31.171 18.88 32.360 98.35 33.326 100.00 33.819 48.12 34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	29.726	21.90
30.841 19.46 31.171 18.88 32.360 98.35 33.326 100.00 33.819 48.12 34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	30.262	13.92
31.171 18.88 32.360 98.35 33.326 100.00 33.819 48.12 34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	30.527	13.64
32.360 98.35 33.326 100.00 33.819 48.12 34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	30.841	19.46
33.326 100.00 33.819 48.12 34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	31.171	18.88
33.819 48.12 34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	32.360	98.35
34.652 16.09 37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	33.326	100.00
37.065 8.80 38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	33.819	48.12
38.886 11.09 41.120 23.62 47.226 6.71 47.858 14.79 49.219 13.78 49.805 8.67 51.434 8.20 53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	34.652	16.09
41.12023.6247.2266.7147.85814.7949.21913.7849.8058.6751.4348.2053.06012.0053.90937.7054.60225.4259.1228.7360.5907.2861.6486.1362.22414.5366.02510.3970.0547.8584.4277.35	37.065	8.80
47.2266.7147.85814.7949.21913.7849.8058.6751.4348.2053.06012.0053.90937.7054.60225.4259.1228.7360.5907.2861.6486.1362.22414.5366.02510.3970.0547.8584.4277.35	38.886	11.09
47.85814.7949.21913.7849.8058.6751.4348.2053.06012.0053.90937.7054.60225.4259.1228.7360.5907.2861.6486.1362.22414.5366.02510.3970.0547.8584.4277.35	41.120	23.62
49.21913.7849.8058.6751.4348.2053.06012.0053.90937.7054.60225.4259.1228.7360.5907.2861.6486.1362.22414.5366.02510.3970.0547.8584.4277.35	47.226	6.71
49.8058.6751.4348.2053.06012.0053.90937.7054.60225.4259.1228.7360.5907.2861.6486.1362.22414.5366.02510.3970.0547.8584.4277.35	47.858	14.79
51.4348.2053.06012.0053.90937.7054.60225.4259.1228.7360.5907.2861.6486.1362.22414.5366.02510.3970.0547.8584.4277.35	49.219	13.78
53.060 12.00 53.909 37.70 54.602 25.42 59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	49.805	8.67
53.90937.7054.60225.4259.1228.7360.5907.2861.6486.1362.22414.5366.02510.3970.0547.8584.4277.35	51.434	8.20
54.60225.4259.1228.7360.5907.2861.6486.1362.22414.5366.02510.3970.0547.8584.4277.35	53.060	12.00
59.122 8.73 60.590 7.28 61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	53.909	37.70
60.5907.2861.6486.1362.22414.5366.02510.3970.0547.8584.4277.35	54.602	25.42
61.648 6.13 62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	59.122	8.73
62.224 14.53 66.025 10.39 70.054 7.85 84.427 7.35	60.590	7.28
66.02510.3970.0547.8584.4277.35	61.648	6.13
70.054 7.85 84.427 7.35	62.224	14.53
84.427 7.35	66.025	10.39
	70.054	7.85
87.221 6.35	84.427	7.35
	87.221	6.35

Tabelle 78: Pulverdiffraktometerdaten der Phase BAPDSI-J

2 θ _{obs}	l _{obs}	
21.504	42.67	
26.169	13.23	
27.401	5.96	
28.402	12.11	
29.758	45.69	
30.117	65.79	
30.544	29.90	
31.040	100.00	
32.923	19.31	
34.198	9.64	
35.285	8.89	
36.489	24.65	
37.071	14.43	
38.082	53.44	
41.391	17.21	
42.363	11.42	
42.739	15.26	
43.293	10.04	BN
43.754	30.80	
45.137	11.02	
48.338	20.49	
48.988	6.66	
49.887	9.41	
52.072	7.12	
53.815	8.01	
54.632	18.86	
55.199	22.83	
62.559	7.68	
64.671	11.49	
68.844	6.37	

Tabelle 79 : Pulverdiffraktometerdaten der Verbindung BaPtSi kubisch, a=663.90(3) pm

Н	K	L	$2\theta_{ m obs}$	l _{obs}	$2\theta_{\rm calc}$	l _{calc}
1	0	0			13.356	
FR			15.5136	4.69		
1	1	0	18.8688	13.04	18.931	8.135
1	1	1	23.1843	27.40	23.240	25.102
FR			24.5085	6.29		
2	0	0	26.8265	3.18	26.898	2.781
2	1	0	30.0761	100.00	30.144	00.000
1	2	0			30.144	1.759
2	1	1	33.0263	99.10	33.100	90.158
2	2	0			38.406	1.313
2	2	1	40.7460	15.40	40.836	11.244
3	0	0			40.836	
3	1	0			43.152	1.359
1	3	0	43.0582	15.41	43.152	9.822
3	1	1	45.2715	20.29	45.373	13.887
2	2	2			47.511	0.882
3	2	0			49.579	4.569
2	3	0	49.4697	17.24	49.579	7.308
2	3	1	51.4721	74.08	51.585	36.827
3	2	1			51.585	18.590
4	0	0	55.3194	19.48	55.441	15.660
3	2	2			57.302	4.402
1	4	0	57.1730	19.09	57.302	4.819
4	1	0			57.302	3.631
3	3	0			59.125	0.127
4	1	1			59.125	0.937
3	3	1	60.7793	19.32	60.914	13.025
4	2	0			62.673	0.199
2	4	0			62.673	0.199
2	4	1			64.404	1.932
4	2	1	64.2600	26.58	64.404	15.379
3	3	2	65.9615	7.82	66.110	4.797
4	2	2	69.2985	12.48	69.458	7.329
3	4	0	70.9444	7.38	71.105	4.699
5	0	0			71.105	

4	3	0			71.105	0.053
1	5	0	72.5716	13.15	72.735	1.590
5	1	0			72.735	0.583
3	4	1			72.735	1.742
4	3	1			72.735	4.143
3	3	3	74.1798	15.34	74.351	5.783
5	1	1			74.351	4.168
2	5	0	77.3676	28.85	77.546	8.227
3	4	2			77.546	4.264
4	3	2			77.546	0.668
5	2	0			77.546	4.993
2	5	1			79.128	1.783
5	2	1	78.9415	10.94	79.128	5.402
4	4	0	82.0779	12.26	82.269	7.250
5	2	2			83.830	0.892
4	4	1	83.6324	6.66	83.830	3.172
4	3	3			85.387	0.219
3	5	0			85.387	0.756
5	3	0	85.1888	6.83	85.387	2.789
3	5	1			86.940	0.127
5	3	1			86.940	0.127
4	4	2	88.2784	3.84	88.491	2.038
6	0	0			88.491	0.592

Tabelle 80 : Pulverdiffraktometerdaten der Verbindung BaPt $_2$ Si $_2$ monoklin, a=772.71(16) pm, b=684.54(18) pm, c=802.31(14) pm, β =93.82(14) $^\circ$

		•	•			
Н	K	L	$2\theta_{ m obs}$	I_{obs}	$2\theta_{\text{calc}}$	$I_{\rm calc}$
0	1	1	17.029	50.5	17.040	36.255
1	1	0	17.310	12.8	17.324	6.859
0	0	2	22.191	19.0	22.193	7.738
2	0	0			23.065	0.627
0	2	0	26.012	8.2	26.041	4.001
-1	1	2			27.667	1.410
-2	1	1			28.204	0.836
1	1	2	28.894	45.5	28.903	35.888

2	1	1	29.404	69.9	29.420	66.099
-1	2	1	30.370	100.0	30.398	100.000
1	2	1			30.972	7.108
-2	0	2	31.094	40.6	31.107	40.684
2	0	2	33.298	6.6	33.306	5.037
0	2	2			34.473	0.428
2	2	0			35.061	0.423
0	1	3	36.098	58.3	36.106	32.392
3	1	0	37.345	46.0	37.368	35.084
FR			37.836	6.5		
FR			40.231	13.7		
-2	2	2	40.973	6.5	41.003	3.931
0	3	1			41.144	0.133
1	3	0			41.272	1.926
-2	1	3	41.967	16.0	41.984	9.247
-3	1	2			42.608	0.970
2	2	2	42.733	6.9	42.758	3.033
-1	2	3	43.966	19.0	43.989	8.967
2	1	3	44.538	14.1	44.549	9.630
-3	2	1	44.912	6.5	44.947	3.309
3	1	2	45.125	29.1	45.144	1.346
1	2	3			45.240	11.782
0	0	4			45.278	5.417
3	2	1	46.146	9.8	46.178	3.815
-1	3	2	46.909	13.7	46.951	6.271
4	0	0			47.138	2.052
-2	3	1			47.295	1.647
1	3	2	47.708	30.4	47.748	22.516
-1	1	4	48.036	11.5	48.047	3.297
2	3	1			48.087	2.637
1	1	4	49.596	30.5	49.603	10.077
-4	1	1			49.717	21.329
-2	0	4	49.883	15.3	49.896	10.185
3	0	3			50.917	absent
-4	0	2	51.171	5.0	51.200	0.876
4	1	1			51.236	1.342
0	3	3	52.742	7.5	52.779	4.733
2	0	4			52.895	1.973

0	2	4			52.976	1.173
0	4	0	53.502	16.3	53.565	11.626
3	3	0	53.673	22.5	53.722	23.230
4	0	2	54.126	11.6	54.147	9.109
4	2	0			54.640	0.199
-3	2	3	54.871	23.9	54.905	19.374
-1	4	1	56.022	9.1	56.085	6.440
1	4	1			56.437	0.366
-2	2	4			57.136	0.249
-2	3	3			57.297	0.199
-3	3	2			57.794	0.575
-3	1	4	58.032	22.3	58.056	2.260
3	2	3			58.068	10.905
-4	2	2			58.326	0.980
0	4	2			58.679	1.356
-4	1	3			58.745	1.381
2	4	0			59.071	0.015
0	1	5	59.221	14.0	59.230	8.420
2	3	3			59.362	1.370
3	3	2			59.849	2.224
2	2	4			59.884	0.365
4	2	2			61.041	0.615
5	1	0			61.641	0.118
3	1	4	62.097	7.9	62.112	0.826
-1	3	4	62.752	6.9	62.259	4.341
4	1	3			62.774	3.965
-2	1	5			62.792	1.259
-2	4	2	63.185	14.1	63.249	8.989
1	3	4	63.540	17.3	63.575	7.974
-4	3	1			63.672	2.486
2	4	2			64.554	0.814
-1	2	5	64.622	7.6	64.643	1.318
-5	1	2			64.756	3.855
-4	0	4			64.862	3.308
4	3	1			64.972	0.880
-1	4	3			65.487	0.812
2	1	5			66.040	1.225
-3	4	1			66.222	0.462

1	2	5			66.254	1.304
1	4	3			66.449	1.740
-5	2	1			66.852	0.022
3	4	1			67.179	1.615
5	1	2			67.954	0.515
5	2	1	68.391	16.3	68.436	8.264
0	5	1			69.698	1.295
1	5	0			69.788	0.104
4	0	4	69.922	9.4	69.940	5.150
0	0	6			70.534	0.297
-3	3	4	70.923	5.2	70.971	3.423
-4	2	4			71.139	0.306
-4	3	3			71.591	0.148
0	3	5			72.028	0.763
-1	1	6	72.336	5.6	72.349	3.790
0	4	4			72.688	1.426
-3	2	5	72.873	7.1	72.907	6.588
-2	0	6			73.502	0.941
6	0	0	73.662	9.5	73.708	6.330
-1	5	2			73.947	0.904
4	4	0			74.089	0.441
1	1	6	74.175	5.3	74.184	0.561
-2	5	1			74.209	0.027
5	3	0			74.220	0.005
-5	2	3			74.306	1.677
-3	4	3			74.314	0.958
1	5	2			74.556	0.113
3	3	4	74.611	13.8	74.651	2.554
2	5	1			74.817	9.822
4	3	3			75.259	0.321
-2	3	5			75.275	0.231
-6	1	1			75.406	0.409
-4	1	5			75.939	1.196
4	2	4	75.995	6.0	76.026	0.325
-2	4	4			76.227	4.664
-6	0	2			76.283	0.141
0	2	6			76.601	0.056
-5	1	4			76.716	2.128

3	4	3	76.973	11.9	77.035	0.488
-5	3	2			77.090	7.675
2	0	6			77.136	5.428
6	1	1			77.215	0.995
-4	4	2			77.261	0.243
3	2	5	77.429	7.1	77.453	6.384
2	3	5	78.250	6.8	78.285	0.043
0	5	3			78.533	4.378
2	4	4			78.628	1.322
5	2	3	78.784	6.3	78.824	5.005
3	5	0			79.303	0.460
-2	2	6	79.459	7.9	79.487	0.201
4	4	2			79.653	4.897
6	2	0			79.688	0.513
6	0	2			79.876	0.750
-3	1	6	79.953	4.5	79.979	0.570
5	3	2			80.078	2.209
4	1	5			81.911	0.275
-6	2	2	82.145	8.1	82.207	0.015
-6	1	3			82.272	4.890
-2	5	3			82.288	2.218
5	1	4			82.673	0.218
-3	5	2	82.618	4.0	82.711	0.152
-1	4	5			82.895	1.951
2	2	6			83.044	0.542
2	5	3	83.974	4.5	84.058	2.654
-1	3	6			84.251	6.722
1	4	5			84.369	0.035
3	5	2			84.480	0.017
-5	4	1			84.920	0.406
0	6	0			85.049	1.439
3	1	6			85.297	0.074
-4	0	6	85.676	4.6	85.708	3.040
6	2	2			85.742	0.188
1	3	6			86.015	0.863
0	1	7			86.153	0.126
5	4	1			86.389	2.351
-1	5	4			86.595	0.041

-1	6	1			87.114	3.440
-6	3	1			87.196	0.045
-6	0	4			87.389	1.448
1	6	1			87.407	0.389
6	1	3			87.567	1.773
-4	3	5	87.654	9.2	87.713	0.034
1	5	4			87.768	0.430
-4	5	1			87.855	7.608
-5	3	4	88.400	6.3	88.468	2.312
-2	1	7			88.685	6.050
-4	4	4			88.928	2.592
6	3	1			88.954	0.010
4	5	1			89.027	0.213
0	6	2			89.300	0.254
2	6	0			89.636	0.254

Tabelle 81: Pulverdiffraktometerdaten der Phase BAPTSI-A

$2 \theta_{obs}$	l _{obs}	
15.175	2.23	
16.873	14.09	BaPt ₂ Si ₂
20.894	3.04	
21.724	14.08	
22.049	4.61	
23.073	4.90	
25.823	2.47	
28.761	17.87	BaPt ₂ Si ₂
29.230	26.00	BaPt ₂ Si ₂
30.202	29.31	BaPt ₂ Si ₂
30.410	11.02	
30.788	41.13	BaPt ₂ Si ₂
31.912	27.90	
32.891	21.68	
33.430	5.91	
34.448	3.88	
35.429	4.14	
35.923	12.37	BaPt ₂ Si ₂
37.191	85.13	BaPt ₂ Si ₂

38.805	3.49	
40.801	11.42	
41.801	13.48	
42.558	55.98	
42.903	11.51	
43.024	10.99	
43.484	44.12	
44.421	16.49	
44.685	6.43	
45.095	26.41	
45.450	63.14	
45.569	32.67	
46.714	5.94	
46.938	26.38	
47.511	15.96	
47.831	4.49	
48.007	5.04	
48.501	15.78	
48.722	18.88	
48.848	11.44	
49.510	50.31	
49.828	10.84	
50.540	13.02	
50.660	11.22	
51.010	8.36	
51.328	24.71	
51.462	13.91	
52.222	5.57	
52.555	7.03	
52.714	21.71	
53.287	15.41	
53.441	16.37	
53.597	7.48	
53.945	13.51	
54.074	8.08	
54.677	28.75	
54.823	16.75	
55.147	3.29	

55.802 6.37 55.944 4.64 57.024 4.61 57.221 5.79 57.850 17.85 57.981 10.69 59.068 15.63 60.629 7.91 60.791 4.71 61.130 11.89 61.320 10.44 62.069 26.48 62.232 12.86 62.441 6.73 62.558 8.02 62.990 7.07 63.336 15.16 63.471 11.81 64.173 12.92 64.346 14.25 64.653 13.50 64.851 6.95 65.259 5.72 65.456 3.89 65.825 8.97 66.013 7.40 66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 6.57 68.391 15.10 69.150 4.46			
57.024 4.61 57.221 5.79 57.850 17.85 57.981 10.69 59.068 15.63 60.629 7.91 60.791 4.71 61.130 11.89 61.320 10.44 62.069 26.48 62.232 12.86 62.441 6.73 62.558 8.02 62.990 7.07 63.336 15.16 63.471 11.81 64.173 12.92 64.346 14.25 64.653 13.50 64.851 6.95 65.259 5.72 65.456 3.89 65.825 8.97 66.013 7.40 66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 66.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 <tr< td=""><td>55.802</td><td>6.37</td><td></td></tr<>	55.802	6.37	
57.2215.7957.85017.8557.98110.6959.06815.6360.6297.9160.7914.7161.13011.8961.32010.4462.06926.4862.23212.8662.4416.7362.5588.0262.9907.0763.33615.1663.47111.8164.17312.9264.34614.2564.65313.5064.8516.9565.2595.7265.4563.8965.8258.9766.0137.4066.2567.6666.4374.7966.8716.4067.0614.1168.19726.5768.39115.1069.1504.4669.3623.4469.7003.3670.6628.7570.78610.99	55.944	4.64	
57.850 17.85 57.981 10.69 59.068 15.63 60.629 7.91 60.791 4.71 61.130 11.89 61.320 10.44 62.069 26.48 62.232 12.86 62.441 6.73 62.558 8.02 62.990 7.07 63.336 15.16 63.471 11.81 64.173 12.92 64.346 14.25 64.653 13.50 64.851 6.95 65.259 5.72 65.456 3.89 65.825 8.97 66.013 7.40 66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.786 10.99	57.024	4.61	
57.98110.6959.06815.6360.6297.9160.7914.7161.13011.8961.32010.4462.06926.4862.23212.8662.4416.7362.5588.0262.9907.0763.33615.1663.47111.8164.17312.9264.34614.2564.65313.5064.8516.9565.2595.7265.4563.8965.8258.9766.0137.4066.2567.6666.4374.7966.8716.4067.0614.1168.19726.5768.39115.1069.1504.4669.3623.4469.7003.3670.6628.7570.78610.99	57.221	5.79	
59.068 15.63 60.629 7.91 60.791 4.71 61.130 11.89 61.320 10.44 62.069 26.48 62.232 12.86 62.441 6.73 62.558 8.02 62.990 7.07 63.336 15.16 63.471 11.81 64.173 12.92 64.346 14.25 64.653 13.50 64.851 6.95 65.259 5.72 65.456 3.89 65.825 8.97 66.013 7.40 66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.786 10.99	57.850	17.85	
60.629 7.91 60.791 4.71 61.130 11.89 61.320 10.44 62.069 26.48 62.232 12.86 62.441 6.73 62.558 8.02 62.990 7.07 63.336 15.16 63.471 11.81 64.173 12.92 64.346 14.25 64.653 13.50 64.851 6.95 65.259 5.72 65.456 3.89 65.825 8.97 66.013 7.40 66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	57.981	10.69	
60.7914.7161.13011.8961.32010.4462.06926.4862.23212.8662.4416.7362.5588.0262.9907.0763.33615.1663.47111.8164.17312.9264.34614.2564.65313.5064.8516.9565.2595.7265.4563.8965.8258.9766.0137.4066.2567.6666.4374.7966.8716.4067.0614.1168.19726.5768.39115.1069.1504.4669.3623.4469.7003.3670.6628.7570.78610.99	59.068	15.63	
61.13011.8961.32010.4462.06926.4862.23212.8662.4416.7362.5588.0262.9907.0763.33615.1663.47111.8164.17312.9264.34614.2564.65313.5064.8516.9565.2595.7265.4563.8965.8258.9766.0137.4066.2567.6666.4374.7966.8716.4067.0614.1168.19726.5768.39115.1069.1504.4669.3623.4469.7003.3670.6628.7570.78610.99	60.629	7.91	
61.32010.4462.06926.4862.23212.8662.4416.7362.5588.0262.9907.0763.33615.1663.47111.8164.17312.9264.34614.2564.65313.5064.8516.9565.2595.7265.4563.8965.8258.9766.0137.4066.2567.6666.4374.7966.8716.4067.0614.1168.19726.5768.39115.1069.1504.4669.3623.4469.7003.3670.6628.7570.78610.99	60.791	4.71	
62.069 26.48 62.232 12.86 62.441 6.73 62.558 8.02 62.990 7.07 63.336 15.16 63.471 11.81 64.173 12.92 64.346 14.25 64.653 13.50 64.851 6.95 65.259 5.72 65.456 3.89 65.825 8.97 66.013 7.40 66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	61.130	11.89	
62.232 12.86 62.441 6.73 62.558 8.02 62.990 7.07 63.336 15.16 63.471 11.81 64.173 12.92 64.346 14.25 64.653 13.50 64.851 6.95 65.259 5.72 65.456 3.89 65.825 8.97 66.013 7.40 66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	61.320	10.44	
62.441 6.73 62.558 8.02 62.990 7.07 63.336 15.16 63.471 11.81 64.173 12.92 64.346 14.25 64.653 13.50 64.851 6.95 65.259 5.72 65.456 3.89 65.825 8.97 66.013 7.40 66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	62.069	26.48	
62.5588.0262.9907.0763.33615.1663.47111.8164.17312.9264.34614.2564.65313.5064.8516.9565.2595.7265.4563.8965.8258.9766.0137.4066.2567.6666.4374.7966.8716.4067.0614.1168.19726.5768.39115.1069.1504.4669.3623.4469.7003.3670.6628.7570.78610.99	62.232	12.86	
62.990 7.07 63.336 15.16 63.471 11.81 64.173 12.92 64.346 14.25 64.653 13.50 64.851 6.95 65.259 5.72 65.456 3.89 65.825 8.97 66.013 7.40 66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	62.441	6.73	
63.336 15.16 63.471 11.81 64.173 12.92 64.346 14.25 64.653 13.50 64.851 6.95 65.259 5.72 65.456 3.89 65.825 8.97 66.013 7.40 66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	62.558	8.02	
63.47111.8164.17312.9264.34614.2564.65313.5064.8516.9565.2595.7265.4563.8965.8258.9766.0137.4066.2567.6666.4374.7966.8716.4067.0614.1168.19726.5768.39115.1069.1504.4669.3623.4469.7003.3670.6628.7570.78610.99	62.990	7.07	
64.17312.9264.34614.2564.65313.5064.8516.9565.2595.7265.4563.8965.8258.9766.0137.4066.2567.6666.4374.7966.8716.4067.0614.1168.19726.5768.39115.1069.1504.4669.3623.4469.7003.3670.6628.7570.78610.99	63.336	15.16	
64.34614.2564.65313.5064.8516.9565.2595.7265.4563.8965.8258.9766.0137.4066.2567.6666.4374.7966.8716.4067.0614.1168.19726.5768.39115.1069.1504.4669.3623.4469.7003.3670.6628.7570.78610.99	63.471	11.81	
64.653 13.50 64.851 6.95 65.259 5.72 65.456 3.89 65.825 8.97 66.013 7.40 66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	64.173	12.92	
64.8516.9565.2595.7265.4563.8965.8258.9766.0137.4066.2567.6666.4374.7966.8716.4067.0614.1168.19726.5768.39115.1069.1504.4669.3623.4469.7003.3670.6628.7570.78610.99	64.346	14.25	
65.259 5.72 65.456 3.89 65.825 8.97 66.013 7.40 66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	64.653	13.50	
65.456 3.89 65.825 8.97 66.013 7.40 66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	64.851	6.95	
65.825 8.97 66.013 7.40 66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	65.259	5.72	
66.013 7.40 66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	65.456	3.89	
66.256 7.66 66.437 4.79 66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	65.825	8.97	
66.437 4.79 66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	66.013	7.40	
66.871 6.40 67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	66.256	7.66	
67.061 4.11 68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	66.437	4.79	
68.197 26.57 68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	66.871	6.40	
68.391 15.10 69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	67.061	4.11	
69.150 4.46 69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	68.197	26.57	
69.362 3.44 69.700 3.36 70.662 8.75 70.786 10.99	68.391	15.10	
69.7003.3670.6628.7570.78610.99	69.150	4.46	
70.662 8.75 70.786 10.99	69.362	3.44	
70.786 10.99	69.700	3.36	
	70.662	8.75	
70.074	70.786	10.99	
/0.9/1 4.64	70.971	4.64	

71.270	1.77	
71.530	2.22	
72.149	5.20	
72.427	8.87	
72.664	19.40	
72.893	10.99	
73.499	100.00	
73.706	56.67	
74.036	15.60	
74.274	13.61	
74.496	46.51	
74.702	34.17	
75.091	13.17	
75.307	6.95	
75.941	9.65	
76.145	5.31	
76.495	3.93	
76.837	9.47	
76.969	8.45	
77.199	14.19	
77.436	7.33	
78.207	5.70	
78.802	6.87	
79.403	9.40	
79.822	35.79	
80.060	18.02	
80.326	21.70	
80.562	9.38	
81.953	13.40	
82.170	7.70	
83.175	6.04	
83.472	14.44	
83.740	12.40	
83.987	11.88	
84.224	4.71	
85.492	6.39	
85.769	4.14	
86.071	7.74	

86.269	7.55	
86.532	4.19	
86.742	9.47	
87.014	5.57	
87.431	5.41	
87.982	5.50	
88.254	10.54	
88.468	20.34	
88.662	17.83	
88.928	8.60	
89.694	9.14	
89.911	8.00	

Tabelle 82 : Pulverdiffraktometerdaten der Phase BAPTSI-B

$2 \theta_{obs}$	l _{obs}	
16.910	3.03	BaPt ₂ Si ₂
23.038	1.58	
25.955	1.80	
28.776	6.66	BaPt ₂ Si ₂
29.271	18.75	BaPt ₂ Si ₂
29.983	3.43	
30.261	8.48	BaPt ₂ Si ₂
30.669	3.19	
30.839	6.22	BaPt ₂ Si ₂
30.938	4.53	
32.941	2.98	
33.190	2.02	
35.950	3.22	BaPt ₂ Si ₂
37.236	8.37	BaPt ₂ Si ₂
40.773	1.74	
41.834	3.03	
42.517	4.94	
42.722	6.04	
43.513	100.00	
44.416	10.76	
45.120	6.35	
47.101	3.37	

47.57118.4649.56011.3750.64922.0452.7052.2653.3558.4353.5049.7053.9385.4454.80415.2454.9576.9355.8291.6157.92015.0659.2282.2562.0102.2162.6033.6363.3936.3264.5813.4966.1153.8766.2503.4368.1991.9368.3762.0969.7171.2872.6702.6274.06911.2274.53424.2774.69221.5377.2954.3778.5431.9679.3764.7182.0323.0582.3262.0982.8141.9184.0205.6384.2652.7384.7551.8085.4812.1585.7451.5887.5523.8888.4913.25			
50.649 22.04 52.705 2.26 53.355 8.43 53.504 9.70 53.938 5.44 54.804 15.24 54.957 6.93 55.829 1.61 57.920 15.06 59.228 2.25 62.010 2.21 62.603 3.63 63.393 6.32 64.581 3.49 66.115 3.87 66.250 3.43 68.199 1.93 68.376 2.09 69.717 1.28 72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.755 1.80 85.481 2.15 85.745 1.58	47.571	18.46	
52.705 2.26 53.355 8.43 53.504 9.70 53.938 5.44 54.804 15.24 54.957 6.93 55.829 1.61 57.920 15.06 59.228 2.25 62.010 2.21 62.603 3.63 63.393 6.32 64.581 3.49 66.115 3.87 66.250 3.43 68.199 1.93 68.376 2.09 69.717 1.28 72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88 <th>49.560</th> <td>11.37</td> <td></td>	49.560	11.37	
53.355 8.43 53.504 9.70 53.938 5.44 54.804 15.24 54.957 6.93 55.829 1.61 57.920 15.06 59.228 2.25 62.010 2.21 62.603 3.63 63.393 6.32 64.581 3.49 66.115 3.87 66.250 3.43 68.199 1.93 68.376 2.09 69.717 1.28 72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	50.649	22.04	
53.504 9.70 53.938 5.44 54.804 15.24 54.957 6.93 55.829 1.61 57.920 15.06 59.228 2.25 62.010 2.21 62.603 3.63 63.393 6.32 64.581 3.49 66.15 3.87 66.250 3.43 68.199 1.93 68.376 2.09 69.717 1.28 72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.745 1.58 87.552 3.88	52.705	2.26	
53.938 5.44 54.804 15.24 54.957 6.93 55.829 1.61 57.920 15.06 59.228 2.25 62.010 2.21 62.603 3.63 63.393 6.32 64.581 3.49 66.115 3.87 66.250 3.43 68.199 1.93 68.376 2.09 69.717 1.28 72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	53.355	8.43	
54.804 15.24 54.957 6.93 55.829 1.61 57.920 15.06 59.228 2.25 62.010 2.21 62.603 3.63 63.393 6.32 64.581 3.49 66.115 3.87 66.250 3.43 68.199 1.93 68.376 2.09 69.717 1.28 72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	53.504	9.70	
54.957 6.93 55.829 1.61 57.920 15.06 59.228 2.25 62.010 2.21 62.603 3.63 63.393 6.32 64.581 3.49 66.115 3.87 66.250 3.43 68.199 1.93 68.376 2.09 69.717 1.28 72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.745 1.58 87.552 3.88	53.938	5.44	
55.829 1.61 57.920 15.06 59.228 2.25 62.010 2.21 62.603 3.63 63.393 6.32 64.581 3.49 66.115 3.87 66.250 3.43 68.199 1.93 68.376 2.09 69.717 1.28 72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	54.804	15.24	
57.92015.0659.2282.2562.0102.2162.6033.6363.3936.3264.5813.4966.1153.8766.2503.4368.1991.9368.3762.0969.7171.2872.6702.6274.06911.2274.53424.2774.69221.5377.2954.3778.5431.9679.3764.7182.0323.0582.3262.0982.8141.9184.0205.6384.2652.7384.7551.8085.4812.1585.7451.5887.5523.88	54.957	6.93	
59.228 2.25 62.010 2.21 62.603 3.63 63.393 6.32 64.581 3.49 66.115 3.87 66.250 3.43 68.199 1.93 68.376 2.09 69.717 1.28 72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	55.829	1.61	
62.0102.2162.6033.6363.3936.3264.5813.4966.1153.8766.2503.4368.1991.9368.3762.0969.7171.2872.6702.6274.06911.2274.53424.2774.69221.5377.2954.3778.5431.9679.3764.7182.0323.0582.3262.0982.8141.9184.0205.6384.2652.7384.7551.8085.7451.5887.5523.88	57.920	15.06	
62.603 3.63 63.393 6.32 64.581 3.49 66.115 3.87 66.250 3.43 68.199 1.93 68.376 2.09 69.717 1.28 72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.745 1.58 87.552 3.88	59.228	2.25	
63.393 6.32 64.581 3.49 66.115 3.87 66.250 3.43 68.199 1.93 68.376 2.09 69.717 1.28 72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	62.010	2.21	
64.5813.4966.1153.8766.2503.4368.1991.9368.3762.0969.7171.2872.6702.6274.06911.2274.53424.2774.69221.5377.2954.3778.5431.9679.3764.7182.0323.0582.3262.0982.8141.9184.0205.6384.2652.7384.7551.8085.4812.1585.7451.5887.5523.88	62.603	3.63	
66.115 3.87 66.250 3.43 68.199 1.93 68.376 2.09 69.717 1.28 72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	63.393	6.32	
66.2503.4368.1991.9368.3762.0969.7171.2872.6702.6274.06911.2274.53424.2774.69221.5377.2954.3778.5431.9679.3764.7182.0323.0582.3262.0982.8141.9184.0205.6384.2652.7384.7551.8085.4812.1585.7451.5887.5523.88	64.581	3.49	
68.199 1.93 68.376 2.09 69.717 1.28 72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	66.115	3.87	
68.376 2.09 69.717 1.28 72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	66.250	3.43	
69.717 1.28 72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	68.199	1.93	
72.670 2.62 74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	68.376	2.09	
74.069 11.22 74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	69.717	1.28	
74.534 24.27 74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	72.670	2.62	
74.692 21.53 77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	74.069	11.22	
77.295 4.37 78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	74.534	24.27	
78.543 1.96 79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	74.692	21.53	
79.376 4.71 82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	77.295	4.37	
82.032 3.05 82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	78.543	1.96	
82.326 2.09 82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	79.376	4.71	
82.814 1.91 84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	82.032	3.05	
84.020 5.63 84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	82.326	2.09	
84.265 2.73 84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	82.814	1.91	
84.755 1.80 85.481 2.15 85.745 1.58 87.552 3.88	84.020	5.63	
85.481 2.15 85.745 1.58 87.552 3.88	84.265	2.73	
85.745 1.58 87.552 3.88	84.755	1.80	
87.552 3.88	85.481	2.15	
	85.745	1.58	
88.491 3.25	87.552	3.88	
	88.491	3.25	

Tabelle 83 : Pulverdiffraktometerdaten der Phase $SrPd_3Si_2$ orthorhombisch, a=714.2(3) pm, b=1012.7(4) pm, c=576.2(3) pm

Н	K	L	$2\theta_{ m obs}$	l _{obs}	$2\theta_{calc}$	l _{calc}
0	2	0	17.4482	10.62	17.454	7.349
0	1	1	17.7585	12.51	17.596	11.231
1	0	1	19.8586	11.51	19.648	9.669
FR			21.4648	8.72		
2	0	0	24.9453	8.03	24.740	20.257
FR			25.1518	9.66		
1	2	1	26.5647	6.49	26.397	2.647
FR			29.4409	18.23		
2	2	0			30.438	19.217
2	1	1	30.7264	52.09	30.523	57.308
0	3	1			30.556	1.088
0	0	2			30.808	0.037
FR			32.4358	14.31		
1	1	2			34.469	4.720
FR			35.2341	26.00		
0	4	0	35.4507	30.18	35.329	53.125
0	2	2	35.8008	100.00	35.625	100.000
FR			36.6264	6.12		
FR			37.0078	6.94		
FR			38.8129	24.10		
2	3	1	39.9030	32.75	39.705	58.742
2	0	2			39.905	20.172
FR			40.3644	11.62		
3	0	1			40.694	12.838
1	4	1	40.8533	14.18	40.745	7.153
FR			41.2792	13.68		
FR			42.1138	5.11		
1	3	2			42.916	0.014
2	4	0	43.8429	18.51	43.610	19.491
2	2	2	44.1806	29.14	43.857	40.723
3	2	1	44.8854	18.01	44.588	26.417
FR			45.1423	19.58		
0	5	1			47.392	0.734
0	4	2			47.567	0.895

0	1	3			47.856	0.541
1	0	3			48.734	0.988
3	1	2			50.144	1.541
4	0	0	51.0987	4.61	50.738	13.963
FR			51.6471	5.81		
1	2	3	52.5547	7.83	52.156	8.738
4	2	0			54.068	0.634
4	1	1			54.121	0.638
0	6	0			54.152	0.064
2	5	1			54.184	8.878
FR			54.2746	7.60		
2	4	2	54.6208	9.77	54.342	8.474
2	1	3	54.9016	12.42	54.605	9.388
0	3	3			54.626	0.020
3	4	1			54.967	6.658
3	3	2			56.716	0.007
1	5	2			56.757	1.263
1	6	1			58.169	1.224
4	3	1			60.397	0.465
2	6	0			60.406	7.374
FR			60.4351	5.83		
4	0	2			60.544	1.934
FR			60.7729	7.00		
2	3	3			60.848	9.460
FR			61.1170	4.40		
3	0	3			61.576	3.322
1	4	3			61.615	0.058
4	4	0			63.340	7.782
4	2	2			63.531	14.570
FR			63.5952	15.17		
0	6	2	63.9131	19.04	63.607	21.865
0	0	4			64.179	7.755
3	2	3			64.536	1.423
1	1	4			66.352	1.794
0	7	1			66.376	0.084
0	5	3			66.749	0.162
5	0	1			66.979	4.416
0	2	4			67.075	0.453

3	5	2			68.615	0.700
2	6	2			69.345	4.645
5	2	1			69.816	5.908
3	6	1			69.888	4.350
2	0	4			69.893	4.371
FR			70.2334	8.36		
1	3	4			71.999	0.011
2	7	1			72.004	4.082
4	4	2			72.086	0.527
4	1	3			72.311	0.197
2	5	3			72.364	3.447
2	2	4			72.678	3.414
3	4	3			73.032	8.474
FR			73.5185	4.40		
5	1	2			74.114	0.461
1	7	2			74.219	0.363
0	8	0			74.730	4.584
0	4	4			75.439	9.353
1	6	3			75.806	0.482
FR			75.8287	9.57		
4	6	0			77.379	1.238
3	1	4			77.435	1.143
4	3	3			77.773	0.006
5	4	1			78.059	7.465
1	8	1			78.162	1.106
5	3	2			79.534	0.003
6	0	0			79.983	0.166
2	8	0			80.120	3.125
2	4	4			80.815	5.657
6	2	0			82.652	0.168
6	1	1			82.695	2.419
3	3	4			82.793	0.007
1	5	4			82.827	1.134
0	8	2			82.978	0.338
0	7	3			83.193	0.044
5	0	3			83.751	2.498
0	1	5			83.883	0.080
1	0	5			84.541	0.357

3	7	2			84.929	0.257
4	6	2			85.561	9.478
FR			86.0678	7.90		
4	0	4			86.076	2.940
5	2	3			86.399	8.788
3	6	3			86.467	2.622
1	2	5			87.186	0.210
6	3	1			87.990	4.894
4	7	1			88.075	0.045
6	0	2			88.119	0.010
0	9	1			88.142	0.117
2	8	2			88.254	2.122
4	5	3			88.417	0.104
2	7	3			88.468	2.114
4	2	4			88.717	0.197
3	8	1			88.764	1.558
0	6	4			88.785	0.273
2	1	5			89.153	1.791
0	3	5			89.170	0.227

Tabelle 84: Pulverdiffraktometerdaten der Phase SRPDSI-A

$2 \theta_{obs}$	l _{obs}
14.951	3.73
15.641	12.18
16.881	26.75
21.400	6.87
21.654	14.79
25.637	14.36
26.810	9.97
27.059	5.52
27.541	6.59
27.969	10.41
30.179	29.99
30.837	19.94
31.206	7.99
31.558	100.00
32.450	4.74

34.304	7.73
34.699	10.62
35.004	10.97
35.298	43.01
35.978	11.06
37.702	13.80
37.922	7.06
38.378	8.36
38.554	16.24
41.026	55.80
41.835	8.42
42.086	12.05
44.137	41.02
45.157	14.99
46.666	3.96
47.434	11.43
47.828	11.82
48.510	5.75
50.762	7.43
52.597	12.34
55.287	8.95
56.718	7.27
58.596	16.57
61.057	3.31
63.315	4.07
63.864	10.62
64.973	4.96
65.714	7.07
67.787	6.93
67.971	7.70
69.567	8.64
69.973	4.47
71.849	12.56
72.882	5.12
73.868	5.15
74.606	4.50
76.763	5.32
78.350	6.35

80.361	5.49
80.911	7.62
88.939	3.63
89.467	5.94

Tabelle 85: Pulverdiffraktometerdaten der Phase SRPDSI-B

2 θ _{obs}	l _{obs}
11.555	44.07
17.722	5.18
20.063	6.55
21.258	4.42
21.300	4.68
22.061	6.62
22.141	4.71
23.774	5.01
24.450	3.49
24.596	3.66
25.444	3.45
25.905	15.92
26.706	3.60
27.225	26.23
27.534	10.36
28.445	3.16
29.043	5.80
29.349	15.17
29.686	10.87
30.098	5.86
30.267	15.16
30.801	9.06
31.126	40.51
31.574	67.73
31.769	53.30
31.938	100.00
33.749	5.37
33.830	4.50
33.966	3.43
34.285	3.43

34.570	6.22
35.093	26.59
35.854	12.38
36.559	12.03
36.677	18.66
37.040	18.66
37.531	8.80
37.997	8.24
38.429	18.04
38.547	25.68
38.733	18.21
38.882	35.97
39.141	19.59
39.728	49.66
40.664	28.88
41.185	4.09
41.808	14.86
42.133	20.17
42.457	23.53
43.323	24.48
43.575	6.52
43.675	7.10
43.807	12.69
44.013	9.74
44.124	11.63
44.277	9.65
44.927	12.99
45.759	5.83
45.820	4.91
47.423	4.14
48.425	6.05
48.884	5.45
48.936	4.62
49.772	9.60
50.630	5.31
51.105	7.18
51.149	6.92
51.950	5.88

51.988	5.86
52.580	14.05
53.587	4.37
54.598	8.23
54.671	8.93
54.740	7.99
54.988	6.92
55.045	7.66
55.908	4.33
56.306	6.94
56.562	10.56
58.263	8.89
58.929	6.97
58.992	6.21
60.100	6.94
60.240	6.59
60.321	6.63
60.812	10.03
61.586	10.32
62.269	5.80
63.450	4.82
65.188	5.62
65.245	5.44
65.332	5.73
65.408	5.21
65.661	5.15
65.877	5.86
66.017	7.31
67.101	6.18
67.168	5.98
68.003	9.04
68.632	13.62
72.090	6.48
72.180	5.22
72.722	6.81
72.809	6.81
72.870	7.16
72.997	6.39

73.352	7.01
78.779	6.14
85.801	3.50
86.951	3.49
87.008	3.56

Tabelle 86: Pulverdiffraktometerdaten der Phase SRPDSI-C

$2~\theta_{obs}$	l _{obs}
14.895	4.31
17.703	5.79
17.818	11.86
22.751	9.62
23.134	4.51
24.228	63.16
26.833	8.04
27.544	28.10
28.477	33.83
29.714	5.26
30.990	58.32
32.027	13.69
34.205	100.00
34.776	46.37
35.078	15.94
42.402	23.15
42.799	16.13
45.702	6.70
46.305	7.75
46.632	5.88
47.331	53.86
47.557	6.85
50.202	6.57
50.611	5.29
50.866	17.59
51.263	7.37
55.571	18.16
55.996	7.72
56.139	9.89

61.403	6.59
61.574	18.33
61.927	9.16
63.805	5.99
67.840	5.24
67.984	4.89
68.045	4.89
68.242	5.03
70.395	5.92
72.205	4.91
72.517	5.49
76.401	6.22
80.998	8.88
87.394	4.34

Tabelle 87 : Pulverdiffraktometerdaten der Verbindung SrPtSi kubisch, a=648.53(1) pm

Н	K	L	$2\theta_{ m obs}$	l _{obs}	$2\theta_{\text{calc}}$	l _{calc}
1	1	0	19.3392	32.62	19.300	27.649
1	1	1	23.7438	40.13	23.695	33.686
2	0	0	27.4880	10.04	27.427	8.295
1	2	0	30.8034	100.00	30.740	100.000
2	1	0			30.740	0.087
2	1	1	33.8261	88.53	33.757	80.866
2	2	0	39.2473	5.07	39.177	2.438
2	2	1	41.7499	20.43	41.660	15.368
3	1	0	44.1228	16.99	44.028	13.933
1	3	0			44.028	0.332
3	1	1	46.3999	12.61	46.299	10.217
2	2	2	48.5956	2.79	48.486	2.082
3	2	0			50.602	1.782
2	3	0	50.7127	10.89	50.602	6.135
3	2	1	52.7709	55.10	52.656	30.600
2	3	1			52.656	11.010
4	0	0	56.7302	10.94	56.606	8.404
1	4	0	58.6437	18.59	58.514	5.141
4	1	0			58.514	3.451

3	2	2			58.514	4.104
4	1	1	60.5199	3.00	60.383	1.512
3	3	0			60.383	0.120
3	3	1	62.3564	13.21	62.219	8.220
4	2	0	64.1725	1.07	64.024	0.261
2	4	0			64.024	0.261
2	4	1	65.9549	13.18	65.802	6.911
4	2	1			65.802	1.380
3	3	2	67.7115	2.37	67.555	1.320
4	2	2	71.1620	6.71	70.998	3.867
3	4	0			72.693	0.060
4	3	0	72.8638	5.71	72.693	3.259
1	5	0			74.372	0.293
3	4	1	74.5532	10.56	74.372	3.370
5	1	0			74.372	0.963
4	3	1			74.372	0.902
3	3	3	76.2316	11.51	76.037	3.214
5	1	1			76.037	2.277
5	2	0	79.5284	13.86	79.333	3.737
3	4	2			79.333	0.312
2	5	0			79.333	2.240
4	3	2			79.333	1.296
2	5	1	81.1725	4.58	80.968	2.135
5	2	1			80.968	0.352
4	4	0	84.4266	4.12	84.215	1.879
5	2	2			85.831	0.535
4	4	1	86.0488	4.00	85.831	1.315
4	3	3			87.444	0.096
3	5	0	87.6692	3.17	87.444	1.190
5	3	0			87.444	0.074
3	5	1			89.055	0.018
5	3	1			89.055	0.018

Tabelle 88 : Pulverdiffraktometerdaten der Verbindung $SrPt_2Si_2$ tetragonal, a=429.15(11) pm, c=989.8(3) pm

Н	K	L	$2\theta_{\rm obs}$	l _{obs}	$2\theta_{\text{calc}}$	l _{calc}
0	0	1	8.908	12.32	8.922	19.792
FR			14.899	4.05		
FR			16.797	3.83		
FR			17.734	5.30		
FR			17.894	21.77		
0	0	2			17.898	23.141
FR			18.041	5.20		
FR			21.001	5.17		
FR			21.132	6.58		
FR			21.244	6.36		
FR			21.334	7.28		
FR			21.385	8.53		
FR			21.486	6.13		
FR			21.587	7.25		
FR			21.713	4.52		
1	0	1	22.586	18.45	22.562	0.000
FR			25.532	4.86		
FR			25.580	4.80		
FR			26.747	4.65		
0	0	3	26.991	30.54	26.986	45.847
FR			27.203	4.15		
1	0	2	27.508	45.19	27.481	0.000
FR			27.707	6.41		
FR			27.922	4.01		
1	1	0			29.411	0.000
FR			29.480	6.08		
FR			30.139	7.08		
FR			30.232	3.84		
1	1	1	30.821	93.79	30.793	0.000
FR			31.204	6.35		
FR			31.305	4.74		
FR			31.404	9.51		
FR			31.473	10.91		
FR			32.392	5.41		
FR			34.037	4.99		

1	0	3	34.288	100.00	34.241	0.000
1	1	2	34.683	90.66	34.641	0.000
FR			34.890	12.64		
FR			35.063	5.70		
FR			35.183	4.99		
FR			35.271	4.55		
0	0	4			36.252	2.015
FR			38.537	4.94		
1	1	3			40.338	0.000
FR			40.804	4.75		
FR			40.938	7.51		
FR			41.760	4.86		
2	0	0	42.137	40.86	42.077	100.000
1	0	4			42.099	0.000
FR			42.458	4.94		
FR			42.556	4.46		
FR			42.612	4.15		
2	0	1			43.101	1.208
0	0	5	45.830	6.79	45.770	8.873
2	0	2	46.054	3.84	46.064	6.368
FR			46.123	6.09		
FR			47.149	4.31		
1	1	4			47.348	0.000
FR			47.425	30.04		
FR			47.771	4.03		
2	1	1			48.264	0.000
FR			48.384	5.20		
FR			50.539	4.46		
2	0	3	50.792	34.61	50.702	29.813
1	0	5			50.721	0.000
2	1	2	51.074	13.44	50.993	0.000
2	1	3			55.325	0.000
1	1	5	55.432	22.55	55.343	0.000
0	0	6	55.594	7.36	55.635	1.649
2	0	4			56.724	1.562
1	0	6			59.999	0.000
FR			60.083	10.84		
2	2	0	61.012	6.84	61.021	30.479

2	1	4			61.038	0.000
FR			61.128	8.83		
FR			61.223	6.72		
2	2	1			61.811	0.222
2	0	5	63.987	12.33	63.910	11.681
FR			64.049	10.46		
2	2	2			64.145	1.910
1	1	6	64.279	12.44	64.178	0.000
FR			64.417	4.52		
3	0	1			65.924	0.000
FR			66.037	5.98		
0	0	7			65.972	0.023
2	2	3	67.915	6.24	67.939	11.157
2	1	5			67.954	0.000
3	0	2	68.077	22.87	68.182	0.000
FR			68.280	7.94		
FR			69.148	8.89		
3	1	0			69.169	0.000
FR			69.292	4.96		
FR			69.535	4.00		
3	1	1			69.909	0.000
1	0	7			69.956	0.000
FR			70.025	7.01		
FR			70.134	6.18		
FR			71.817	6.27		
3	0	3			71.871	0.000
FR			71.897	4.89		
3	1	2			72.109	0.000
2	0	6	72.031	19.65	72.139	2.596
FR			72.264	20.65		
FR			72.441	4.80		
2	2	4			73.087	0.523
1	1	7	73.846	4.09	73.841	0.000
FR			73.956	8.36		
3	1	3			75.716	0.000
2	1	6			75.980	0.000
FR			76.144	5.95		
3	0	4			76.911	0.000

0	0	8			76.956	7.036
2	2	5			79.512	5.695
FR			79.660	7.45		
3	1	4	80.674	4.31	80.675	0.000
1	0	8			80.720	0.000
FR			80.762	6.40		
FR			80.824	6.42		
FR			80.883	6.69		
FR			80.956	4.52		
3	2	1			81.362	0.000
2	0	7			81.407	0.105
3	0	5			83.247	0.000
3	2	2			83.460	0.000
FR			83.553	3.90		
FR			83.624	3.81		
1	1	8			84.444	0.000
2	1	7			85.125	0.000
3	2	3			86.939	0.000
3	1	5			86.953	0.000
FR			87.003	4.22		
FR			87.118	7.10		
2	2	6			87.195	1.379
0	0	9			88.852	0.108

Tabelle 89 : Pulverdiffraktometerdaten der Verbindung $SrPt_3Si_2$ orthorhombisch, a=1141.34(18) pm, b=1135.40(12), c=696.05(17) pm

Н	K	L	$2\theta_{ m obs}$	I_{obs}	$2\theta_{calc}$	l _{calc}
1	0	1	14.907	16.70	14.889	3.913
0	1	1			14.906	0.250
2	0	0			15.523	1.455
0	2	0	15.605	37.90	15.588	24.473
1	1	1	16.844	54.82	16.818	31.611
2	1	0	17.407	25.91	17.383	10.982
2	0	1	20.134	13.49	20.104	4.037
2	1	1	21.628	33.40	21.585	11.357

1	2	1			21.621	5.175
2	2	0			22.068	1.583
2	2	1			25.540	23.261
0	0	2	25.588	54.60	25.554	16.750
3	0	1			26.687	0.709
1	0	2			26.740	7.941
0	3	1			26.775	0.131
3	1	1			27.837	1.367
1	1	2			27.888	22.195
1	3	1	27.934	35.33	27.912	0.114
2	3	0			28.266	0.182
2	0	2			30.037	0.038
0	2	2	30.118	73.66	30.072	61.904
FR			30.825	10.71		
3	2	1			31.053	2.206
2	1	2			31.074	0.217
2	3	1			31.096	0.215
1	2	2	31.162	13.92	31.099	4.230
4	0	0			31.340	13.482
0	4	0	31.519	83.73	31.475	100.000
4	1	0			32.339	14.924
FR			32.407	24.41		
4	0	1			33.938	2.167
2	2	2			34.012	0.080
FR			34.277	6.21		
FR			34.682	7.71		
4	1	1			34.871	10.624
3	0	2	34.966	39.61	34.905	13.918
1	4	1			34.986	0.425
4	2	0	35.251	86.72	35.183	77.809 1
2	4	0			35.275	0.483
3	1	2			35.815	0.273
3	3	1			35.835	2.117
1	3	2	35.929	35.97	35.875	23.015
4	2	1			37.547	4.024
2	4	1	37.657	8.14	37.633	3.323
3	2	2			38.434	39.116
2	3	2	38.513	53.10	38.470	0.528

4	3	0			39.526	3.620
1	0	3			39.576	1.318
0	1	3	39.628	6.42	39.583	0.001
1	1	3			40.396	1.423
FR			40.524	4.93		
4	0	2			40.863	39.298
0	4	2	40.970	57.82	40.971	15.914
5	0	1			41.620	0.677
4	1	2			41.662	1.101
4	3	1			41.679	10.185
3	4	1			41.726	0.102
1	4	2	41.769	19.49	41.761	4.819
0	5	1			41.785	0.240
2	0	3			41.976	15.520
5	1	1			42.407	2.064
3	3	2			42.494	0.566
1	5	1	42.617	15.85	42.563	11.580
2	1	3			42.758	0.887
1	2	3			42.778	0.019
2	5	0	42.870	5.35	42.808	3.534
4	2	2			43.988	38.772
2	4	2	44.086	49.04	44.064	0.054
5	2	1			44.701	1.315
2	5	1			44.832	3.131
4	4	0			45.012	12.666
2	2	3	45.127	63.81	45.038	44.060
3	0	3			45.747	2.365
0	3	3	45.860	5.57	45.802	0.664
3	1	3			46.478	0.030
1	3	3	46.625	7.49	46.527	4.754
4	4	1			46.960	1.900
5	0	2			47.608	0.043
4	3	2			47.661	0.025
3	4	2			47.703	13.683
6	0	0	47.803	14.56	47.801	1.423
0	6	0			48.014	0.007
5	1	2			48.317	0.119
5	3	1			48.333	7.006

3	5	1			48.427	3.855
1	5	2	48.467	12.63	48.458	1.867
6	1	0			48.508	0.108
3	2	3			48.621	0.162
2	3	3			48.650	4.421
6	0	1			49.665	2.191
6	1	1			50.353	0.000
5	2	2			50.401	0.318
2	5	2			50.520	0.796
1	6	1			50.552	1.412
6	2	0			50.585	2.636
4	0	3			50.655	0.431
2	6	0	50.737	6.21	50.767	0.151
4	1	3			51.333	1.135
4	5	0			51.376	5.108
1	4	3	51.480	7.28	51.417	1.445
3	3	3			52.043	0.224
6	2	1			52.376	8.079
4	4	2			52.473	26.772
0	0	4			52.504	0.062
2	6	1	52.582	35.12	52.553	4.757
5	4	1			53.099	0.457
4	5	1			53.148	2.096
1	0	4			53.160	0.021
4	2	3			53.330	0.785
2	4	3			53.395	10.600
FR			53.499	14.56		
5	3	2			53.741	0.132
1	1	4			53.815	1.142
3	5	2			53.828	1.065
6	3	0			53.917	0.145
6	0	2			54.978	0.008
2	0	4			55.094	0.149
0	2	4			55.115	20.558
0	6	2	55.243	40.04	55.171	15.759
6	1	2			55.619	0.005
6	3	1			55.633	0.223
2	1	4			55.734	0.862

1	2	4			55.750	1.472
3	6	1			55.776	1.075
1	6	2	55.897	6.21	55.805	0.978
FR			56.117	31.05		
5	0	3			56.501	0.674
4	3	3			56.549	2.699
3	4	3			56.585	2.448
0	5	3	56.688	7.71	56.633	0.306
5	1	3			57.131	2.509
1	5	3			57.256	0.002
6	2	2			57.513	0.009
2	2	4			57.626	0.181
2	6	2			57.679	0.008
7	0	1			58.082	1.010
5	4	2			58.192	0.003
3	0	4			58.222	0.727
4	5	2			58.239	0.740
0	7	1			58.335	0.114
6	4	0			58.360	1.804
4	6	0	58.566	21.63	58.463	19.964
7	1	1			58.700	3.395
5	5	1			58.824	0.016
3	1	4	58.842	5.14	58.839	0.034
1	3	4			58.880	0.005
1	7	1			58.947	0.720
5	2	3			58.993	0.178
2	5	3			59.101	0.081
2	7	0			59.140	0.072
6	4	1			59.992	0.472
4	6	1			60.093	0.937
7	2	1			60.533	0.762
6	3	2			60.585	0.214
3	2	4			60.669	0.402
2	3	4			60.694	0.634
3	6	2			60.721	8.475
2	7	1			60.759	0.230
4	4	3	60.842	12.63	60.866	0.500
5	3	3			62.020	0.789

3	5	3			62.100	0.439
4	0	4			62.432	3.035
0	4	4	62.603	4.93	62.511	0.761
7	0	2			62.913	0.641
4	1	4			63.025	2.081
1	4	4			63.099	0.250
6	0	3			63.153	3.881
FR			63.289	5.57		
7	1	2			63.503	1.871
7	3	1			63.516	0.419
5	5	2			63.621	0.566
3	3	4			63.649	0.408
3	7	1			63.712	2.161
1	7	2			63.738	6.768
6	1	3			63.742	0.083
6	5	0			63.780	0.482
1	6	3			63.913	0.033
6	4	2			64.738	0.000
4	2	4			64.785	0.283
4	6	2			64.835	5.948
2	4	4	64.972	7.71	64.843	0.126
7	2	2			65.256	0.131
6	5	1			65.332	0.011
5	6	1			65.385	0.816
8	0	0			65.394	5.241
2	7	2			65.474	0.483
6	2	3			65.492	7.524
2	6	3	65.647	14.99	65.646	9.273
0	8	0	65.791	19.06	65.702	8.420
8	1	0			65.972	0.038
5	4	3			66.122	1.257
4	5	3			66.165	0.021
4	7	0			66.202	1.338
8	0	1			66.926	0.319
8	1	1			67.497	3.544
7	4	1			67.569	1.509
5	0	4			67.621	0.025
4	3	4			67.664	3.692

8	2	0			67.691	7.589
3	4	4			67.697	0.914
1	0	5			67.698	1.055
0	1	5			67.703	0.000
4	7	1			67.725	3.001
1	8	1	67.865	17.99	67.796	0.016
2	8	0			67.976	0.075
7	3	2			68.125	0.675
5	1	4			68.190	0.086
1	1	5			68.266	0.708
1	5	4			68.303	2.426
3	7	2			68.314	0.652
6	3	3			68.355	0.001
3	6	3			68.483	0.043
8	2	1	69.132	6.64	69.198	0.671
2	0	5			69.382	7.717
2	8	1	69.546	9.64	69.479	0.534
6	5	2			69.879	0.190
5	2	4			69.882	0.008
5	6	2			69.931	0.018
2	1	5			69.944	0.127
1	2	5			69.958	0.038
2	5	4			69.981	0.500
6	6	0			70.082	0.920
8	3	0			70.512	0.152
7	0	3			70.545	0.396
0	7	3			70.773	0.549
7	1	3			71.103	2.412
5	5	3			71.214	2.630
1	7	3			71.326	2.449
8	0	2	71.435	5.14	71.425	5.087
6	6	1			71.566	0.666
4	4	4			71.599	5.948
2	2	5	71.638	9.07	71.618	9.862
0	8	2	71.787	18.42	71.721	3.227
8	1	2			71.979	0.221
8	3	1			71.991	2.622
7	4	2			72.049	0.721

3	0	5			72.150	0.101
0	3	5			72.190	0.136
4	7	2			72.201	0.073
3	8	1			72.245	0.055
1	8	2			72.270	0.650
6	4	3			72.273	7.479
4	6	3	72.442	7.92	72.365	0.340
7	5	1	7 2 . 1 1 2	,	72.614	4.651
5	3	4			72.664	1.556
3	1	5			72.702	0.030
5	7	1			72.724	4.685
3	5	4			72.738	0.717
1	3	5			72.739	0.299
7	2	3	72.875	10.28	72.766	2.327
2	7	3			72.972	0.583
8	2	2			73.634	10.065
6	0	4			73.715	1.170
0	6	4	73.849	11.78	73.879	5.460
2	8	2			73.908	0.012
FR			74.016	7.07		
6	1	4			74.263	0.005
3	2	5			74.351	0.831
2	3	5			74.373	0.977
8	4	0			74.381	6.624
1	6	4			74.422	0.128
4	8	0	74.573	7.49	74.599	2.404
7	3	3			75.505	3.674
3	7	3	75.708	4.93	75.686	0.582
8	4	1			75.831	0.499
6	2	4			75.899	1.764
6	6	2			75.946	0.003
4	0	5			75.954	0.314
2	6	4			76.043	0.130
4	8	1			76.048	0.540
9	0	1			76.297	0.021
8	3	2	76.375	14.35	76.362	0.135
5	4	4			76.491	0.018
4	1	5			76.497	2.355

4	5	4			76.532	0.878
1	4	5			76.564	1.543
3	8	2			76.610	4.711
0	9	1			76.662	0.100
9	1	1	76.761	8.78	76.838	0.031
7	5	2			76.971	2.121
3	3	5			77.069	0.106
5	7	2			77.079	0.475
6	5	3			77.190	0.078
1	9	1			77.199	4.409
6	7	0			77.225	0.286
5	6	3			77.240	0.002
2	9	0	77.349	7.28	77.369	1.101
4	2	5			78.117	0.556
2	4	5			78.171	11.499
FR			78.353	12.21		
9	2	1			78.456	0.122
7	6	1			78.600	0.203
6	3	4			78.600	0.001
6	7	1			78.658	0.020
8	0	3			78.681	0.122
3	6	4			78.721	0.283
2	9	1			78.801	0.011
8	1	3			79.218	1.111
8	5	0			79.252	0.079
7	4	3			79.285	0.363
4	7	3			79.432	2.245
1	8	3			79.499	0.667
8	4	2			80.129	6.748
4	8	2	80.346	6.42	80.343	4.549
9	0	2			80.588	0.698
8	5	1			80.675	2.734
7	0	4			80.684	0.002
5	0	5			80.757	0.792
4	3	5			80.797	0.645
8	2	3			80.823	0.269
3	4	5			80.828	0.227
5	8	1			80.849	0.008

0	5	5			80.868	0.122
2	8	3			81.089	1.454
9	1	2			81.122	0.005
9	3	1			81.133	0.287
7	1	4			81.218	0.007
5	1	5			81.290	0.443
5	5	4			81.325	0.248
1	5	5			81.397	0.540
1	7	4			81.431	0.459
3	9	1			81.453	2.162
1	9	2			81.477	0.129
6	4	4			82.340	1.601
4	6	4			82.429	0.671
9	2	2			82.718	0.600
7	2	4			82.814	0.285
7	6	2			82.860	0.170
5	2	5			82.886	0.102
6	7	2			82.917	0.314
2	5	5			82.979	0.020
2	7	4			83.013	0.244
2	9	2			83.059	0.380
6	6	3			83.075	5.769
0	0	6	83.276	5.35	83.131	0.030
8	3	3			83.482	0.154
1	0	6			83.657	0.247
3	8	3			83.725	1.034
4	9	0			83.728	0.624
7	5	3			84.078	0.737
5	7	3			84.184	0.042
1	1	6			84.187	1.110
4	4	5			84.516	0.521
9	4	1			84.850	0.108
8	5	2			84.913	0.402
10	0	0			84.946	0.002
5	8	2			85.085	0.035
8	6	0			85.105	3.386
4	9	1			85.136	0.505
6	8	0			85.228	0.721

2	0	6	85.232	0.055
0	2	6	85.250	1.669
9	3	2	85.367	0.327
0	10	0	85.387	0.052
7	3	4	85.463	0.513
10	1	0	85.475	0.078
7	7	1	85.520	0.027
5	3	5	85.534	0.285
3	5	5	85.604	0.009
3	7	4	85.639	1.120
3	9	2	85.684	0.657
2	1	6	85.761	0.021
1	2	6	85.774	0.030
10	0	1	86.352	0.590
8	6	1	86.510	0.364
6	0	5	86.542	7.010
6	8	1	86.633	0.018
10	1	1	86.879	0.666
10	2	0	87.059	0.011
6	1	5	87.070	0.012
6	5	4	87.104	0.006
5	6	4	87.152	0.005
8	4	3	87.183	0.170
1	6	5	87.223	0.021
1	10	1	87.314	0.883
2	2	6	87.344	0.035
4	8	3	87.394	0.196
2	10	0	87.481	0.044
9	0	3	87.636	0.001
3	0	6	87.850	1.269
0	9	3	87.992	0.229
9	1	3	88.163	0.001
3	1	6	88.377	0.032
1	3	6	88.412	0.105
10	2	1	88.461	0.008
1	9	3	88.514	0.031
8	0	4	88.563	0.635
6	2	5	88.651	7.748

2	6	5			88.792	5.651
0	8	4			88.844	0.844
2	10	1	88.939	11.35	88.883	0.691
9	4	2			89.060	0.969
8	1	4			89.090	0.112
7	4	4			89.155	0.004
5	4	5			89.227	0.984
4	5	5			89.266	3.196
4	7	4			89.300	1.299
4	9	2			89.346	0.000
1	8	4			89.366	0.512
9	5	1	89.512	4.93	89.599	0.573
10	3	0			89.695	0.429
7	7	2			89.728	0.051
9	2	3			89.744	0.414
5	9	1			89.844	0.290
7	6	3			89.884	2.072
6	7	3			89.942	0.022
3	2	6			89.958	2.279
2	3	6			89.980	0.074

Tabelle 90 : Pulverdiffraktometerdaten der Phase SRPTSI-A

$2 \theta_{obs}$	l _{obs}
17.660	7.42
17.842	3.23
22.724	12.10
22.847	5.40
24.204	28.28
26.932	9.70
27.532	100.00
29.683	10.99
30.833	8.85
31.030	31.39
31.992	12.58
34.156	72.88
34.775	25.85
34.990	9.93

35.101	8.85
37.627	3.16
42.344	12.58
42.799	20.78
44.759	3.37
45.503	21.94
46.617	3.94
47.131	6.72
47.291	10.52
50.173	4.12
50.519	10.10
50.867	10.74
51.287	19.87
55.558	20.84
56.028	5.57
61.303	3.91
61.462	3.55
63.600	4.87
63.754	5.81
63.837	5.59
63.966	3.72
68.008	8.14
70.394	14.54
72.502	3.71
72.630	3.27
72.778	3.85
72.876	3.55
76.641	5.54
80.963	6.95

Tabelle 91: Pulverdiffraktometerdaten der Phase SRPTSI-B

$2 \theta_{obs}$	l _{obs}
11.5094	5.97
16.6553	7.66
17.8267	22.61
18.2751	25.32

19.0833	27.85
21.2860	11.38
21.8111	58.22
24.1462	8.99
24.5626	9.44
28.5857	6.16
30.1449	36.70
31.5581	10.25
31.8710	5.80
33.0549	86.92
33.7741	14.38
34.6257	4.89
35.9084	18.86
36.2055	45.47
36.6864	5.62
37.0005	15.72
37.4426	82.26
37.8806	24.41
38.4259	24.58
38.6349	13.98
38.9790	100.00
39.7118	34.49
40.6618	60.73
41.3811	4.03
41.9961	9.68
43.3517	24.15
43.7556	32.80
43.9564	67.62
44.4415	61.03
46.5818	37.21
48.3839	12.29
49.2814	10.41
49.6262	16.03
49.9748	4.89
50.3697	9.49
50.9356	5.00
52.5649	7.36
54.3874	5.26

54.97224.7156.334212.7557.533930.8158.000915.0059.01377.0460.841218.2261.53797.7362.62156.8564.03916.4064.65026.3464.90976.7165.39775.0766.665315.8168.69878.8069.37076.2570.12836.1670.71707.7171.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.3387.38405.45	54.6230	7.79
57.533930.8158.000915.0059.01377.0460.841218.2261.53797.7362.62156.8564.03916.4064.65026.3464.90976.7165.39775.0766.665315.8168.69878.8069.37076.2570.12836.1670.71707.7171.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	54.9722	4.71
58.0009 15.00 59.0137 7.04 60.8412 18.22 61.5379 7.73 62.6215 6.85 64.0391 6.40 64.6502 6.34 64.9097 6.71 65.3977 5.07 66.6653 15.81 68.6987 8.80 69.3707 6.25 70.1283 6.16 70.7170 7.71 71.0439 17.04 73.2483 6.32 74.9288 4.16 76.3464 15.53 76.9210 5.62 77.9540 5.14 79.2300 5.10 81.0354 17.15 82.8545 5.38 83.5985 29.38 85.2013 7.02 86.4789 6.33	56.3342	12.75
59.01377.0460.841218.2261.53797.7362.62156.8564.03916.4064.65026.3464.90976.7165.39775.0766.665315.8168.69878.8069.37076.2570.12836.1670.71707.7171.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	57.5339	30.81
60.841218.2261.53797.7362.62156.8564.03916.4064.65026.3464.90976.7165.39775.0766.665315.8168.69878.8069.37076.2570.12836.1670.71707.7171.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	58.0009	15.00
61.53797.7362.62156.8564.03916.4064.65026.3464.90976.7165.39775.0766.665315.8168.69878.8069.37076.2570.12836.1670.71707.7171.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	59.0137	7.04
62.62156.8564.03916.4064.65026.3464.90976.7165.39775.0766.665315.8168.69878.8069.37076.2570.12836.1670.71707.7171.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	60.8412	18.22
64.03916.4064.65026.3464.90976.7165.39775.0766.665315.8168.69878.8069.37076.2570.12836.1670.71707.7171.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	61.5379	7.73
64.65026.3464.90976.7165.39775.0766.665315.8168.69878.8069.37076.2570.12836.1670.71707.7171.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	62.6215	6.85
64.90976.7165.39775.0766.665315.8168.69878.8069.37076.2570.12836.1670.71707.7171.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	64.0391	6.40
65.39775.0766.665315.8168.69878.8069.37076.2570.12836.1670.71707.7171.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	64.6502	6.34
66.665315.8168.69878.8069.37076.2570.12836.1670.71707.7171.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	64.9097	6.71
68.69878.8069.37076.2570.12836.1670.71707.7171.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	65.3977	5.07
69.37076.2570.12836.1670.71707.7171.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	66.6653	15.81
70.12836.1670.71707.7171.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	68.6987	8.80
70.71707.7171.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	69.3707	6.25
71.043917.0473.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	70.1283	6.16
73.24836.3274.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	70.7170	7.71
74.92884.1676.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	71.0439	17.04
76.346415.5376.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	73.2483	6.32
76.92105.6277.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	74.9288	4.16
77.95405.1479.23005.1081.035417.1582.85455.3883.598529.3885.20137.0286.47896.33	76.3464	15.53
79.2300 5.10 81.0354 17.15 82.8545 5.38 83.5985 29.38 85.2013 7.02 86.4789 6.33	76.9210	5.62
81.0354 17.15 82.8545 5.38 83.5985 29.38 85.2013 7.02 86.4789 6.33	77.9540	5.14
82.8545 5.38 83.5985 29.38 85.2013 7.02 86.4789 6.33	79.2300	5.10
83.5985 29.38 85.2013 7.02 86.4789 6.33	81.0354	17.15
85.20137.0286.47896.33	82.8545	5.38
86.4789 6.33	83.5985	29.38
	85.2013	7.02
87.3840 5.45	86.4789	6.33
	87.3840	5.45

Tabelle 92: Pulverdiffraktometerdaten der Phase SRPTSI-C

$2 \theta_{obs}$	l _{obs}
14.9978	40.52
17.9011	6.49
20.9987	7.23
21.3661	29.41
22.2571	4.82
22.6599	5.61
24.4362	9.18
25.4333	34.33
26.9432	6.23
27.5353	17.20
28.8431	4.70
29.2881	15.98
30.3670	6.97
30.8316	100.00
31.6575	7.15
34.0476	17.69
34.2620	21.61
34.8121	45.48
36.6426	11.63
36.9376	5.36
37.6382	24.66
38.5426	5.37
38.8600	5.86
40.1273	22.74
40.5566	18.36
41.2247	7.30
41.9627	23.50
42.2773	17.42
43.7010	16.83
44.7762	14.16
46.2149	15.32
46.9774	16.47
47.4191	8.84
49.1936	35.91
50.8020	8.39
51.1185	4.02

55.3934	6.93
55.6581	41.10
58.5266	15.18
59.6994	5.38
60.7704	18.84
61.3044	5.09
61.5894	10.97
61.8794	10.99
63.3241	16.84
64.1263	5.35
65.1185	6.45
65.4230	9.07
66.0717	28.74
67.8496	16.99
68.0905	4.56
69.3591	9.65
69.9550	8.31
70.1965	20.60
70.7097	4.29
71.7858	5.09
72.4966	6.03
75.8700	6.73
78.5905	5.89
80.1762	17.45
80.8892	5.63
83.4376	8.97
84.4905	13.69
89.6356	9.94

Tabelle 93: Pulverdiffraktometerdaten der Phase CAPDSI-A

2 θ _{obs}	l _{obs}	
33.3725	21.82	
36.4638	24.04	
38.1616	100.00	Pd_2Si
40.0516	4.97	
50.2123	15.56	

59.5890	15.91	
66.6911	15.02	
71.8652	15.01	
72.9583	11.41	
81.5631	3.51	

Tabelle 94 : Pulverdiffraktometerdaten der Phase CAPDSI-B

$2 \theta_{obs}$	l _{obs}
18.1388	71.94
19.8987	8.57
21.3383	9.65
24.2860	4.51
24.5907	4.38
27.0729	12.36
29.9873	3.94
30.4444	18.67
30.7162	37.42
31.6252	5.56
33.1807	3.30
34.6815	10.99
35.2681	5.00
36.6650	32.42
38.3004	9.41
40.0866	23.61
40.4470	86.76
41.5424	6.94
42.0382	6.42
44.6661	100.00
46.4725	15.98
49.9369	16.80
54.1542	3.43
55.7514	16.28
61.1908	3.17
62.3129	7.46
63.9782	10.77
65.9881	14.31

66.3501	3.68
66.8507	3.62
69.1443	3.45
69.7274	7.23
71.6055	7.43
73.6068	3.87
74.5186	10.23
77.9995	5.30
78.5256	9.23
82.3000	8.75
83.1607	7.38
87.1671	5.95

Tabelle 95: Pulverdiffraktometerdaten der Phase CAPDSI-C

$2 \theta_{obs}$	l _{obs}
13.3122	10.28
15.8209	26.53
19.5083	18.47
20.6810	7.14
21.3139	7.72
21.5896	6.03
22.2663	5.72
24.9834	10.33
25.9953	6.72
26.8333	14.22
27.3074	8.03
29.9460	5.53
30.0708	7.50
32.6628	4.97
33.8164	8.53
34.1182	7.12
34.5382	8.03
35.0619	26.39
35.6564	7.28
36.4324	4.39
36.7505	9.39
37.9333	4.89

38.1909	4.39
38.7835	5.83
39.2545	100.00
39.6055	38.44
40.5051	15.03
41.0851	7.36
41.3496	5.75
46.7870	7.86
62.0225	6.17
62.3577	6.25
66.1341	7.11
67.1055	4.28
72.8924	4.31
73.1668	5.06
77.5423	4.89

Tabelle 96: Pulverdiffraktometerdaten der Phase CAPDSI-D

$2 \theta_{obs}$	l _{obs}
8.3765	29.02
12.4453	20.86
16.8373	6.95
17.3608	6.70
18.8234	6.69
21.1039	19.04
21.6203	28.55
21.9297	14.07
23.5020	12.36
24.5771	6.01
26.9358	5.45
27.7243	4.88
30.3922	16.20
32.9403	100.00
33.2677	7.66
33.6840	19.66
33.8590	10.17
33.9967	8.27
35.0868	10.90

36.4123	6.97
36.7955	4.68
37.8929	6.08
38.2209	6.23
39.1309	22.43
39.7364	4.31
40.3246	13.16
40.5303	8.58
40.7218	9.44
41.0931	17.27
42.7372	6.95
42.9755	9.76
43.7852	7.44
44.0372	50.23
48.5554	6.96
49.3226	10.21
56.0634	18.31
58.6131	6.27
58.9204	7.49
59.4530	4.42
60.7664	5.46
63.2087	20.95
63.8153	4.16
65.5223	4.89
72.3616	5.07
73.8775	12.71
80.9309	6.41
88.7780	4.95

Tabelle 97: Pulverdiffraktometerdaten der Phase CAPDSI-E

$2 \theta_{obs}$	l _{obs}	
18.1945	36.57	CaPd ₂ Si ₂
19.7864	21.88	
20.7895	47.47	
21.3803	10.43	
26.6840	7.52	
27.1917	15.82	

27.3040	12.60	
28.5047	6.07	
32.9601	12.04	
33.6484	16.19	
34.4140	8.51	
35.0463	21.46	
35.4339	31.56	CaPd ₂ Si ₂
35.8023	39.73	
36.8715	25.99	CaPd ₂ Si ₂
37.5486	10.55	
38.4244	17.13	
38.6719	22.02	
39.1802	11.98	
39.3565	15.24	
39.7036	32.47	
39.8906	53.30	
40.2614	18.87	
40.9096	68.80	
42.3108	39.96	
43.1861	100.00	
43.4602	9.15	
44.1910	6.36	
45.1150	19.82	
47.6121	5.11	
48.0114	12.71	
48.1771	10.32	CaPd ₂ Si ₂
52.0223	42.89	
55.0606	3.96	
56.0731	6.37	
56.2566	33.79	
61.2205	4.52	
61.7191	4.59	
64.0657	9.99	
65.5409	6.32	
65.7284	10.54	
67.0781	9.10	
70.5970	6.59	
71.2951	7.42	
-		

72.1321	14.50	
72.4916	8.88	
74.9548	18.34	
76.6387	4.48	
78.3339	4.94	
82.4624	4.93	
85.2390	4.52	
85.5213	5.95	

Tabelle 98 : Pulverdiffraktometerdaten der Verbindung $CaPt_2Si_2$ tetragonal, a=419.11(8) pm, c=990.6(10) pm

Н	K	L	$2\theta_{\rm obs}$	l _{obs}	$2\theta_{\text{calc}}$	l _{calc}
FR			8.468	3.8		
0	0	1			8.907	22.587
0	0	2	17.751	35.2	17.869	66.354
FR			20.847	5.2		
FR			21.262	8.9		
1	0	0			21.140	
FR			21.476	7.3		
1	0	1	23.032	52.4	22.980	0.000
0	0	3			26.942	65.657
FR			27.057	25.9		
1	0	2	27.922	63.6	27.814	0.000
FR			29.109	12.9		
1	1	0	30.276	2.4	30.071	0.000
1	1	1	31.599	100.0	31.422	0.000
1	0	3	34.682	30.9	34.496	0.000
FR			34.919	7.9		
1	1	2	35.425	30.9	35.198	0.000
0	0	4	36.383	3.2	36.191	1.250
FR			40.567	4.7		
1	1	3			40.811	0.000
FR			41.064	2.4		
1	0	4			42.290	0.000
2	0	0	43.346	20.9	43.045	100.000
2	0	1	44.150	3.6	44.048	0.537

083 489 00
00
00
00
00
146
00
18
00
00
90
30
00
00
998
05
00
172
69
74
00
00
344
00
00
00
00
84
00
00
00
23
00
87
00
00
00

2	2	5			80.785	5.493
FR			81.219	3.0		
2	0	7			81.958	0.116
3	1	4			82.295	0.000
FR			82.802	28.7		
3	2	0			82.811	
3	2	1			83.507	0.000
1	1	8			84.629	0.000
3	0	5			84.673	0.000
3	2	2			85.589	0.000
2	1	7	86.040	11.9	85.836	0.000
2	2	6			88.425	2.540
3	1	5			88.536	0.000
0	0	9			88.671	0.128
FR			88.964	5.0		
3	2	3			89.049	0.000

Tabelle 99 : Pulverdiffraktometerdaten der Phase CAPTSI-A

$2 \theta_{obs}$	l _{obs}	
10.6935	7.38	
16.3790	12.78	
21.4765	24.68	
22.3566	16.15	
22.5995	8.99	
27.1242	19.49	
30.7126	33.22	
31.3603	16.51	
34.9907	100.00	$Pt_{12}Si_5$
35.4568	9.39	
36.1282	8.01	
37.6482	7.03	
40.6180	7.35	
41.3491	5.28	
43.8409	5.10	
44.2074	20.81	CaSi ₂ ,
		$Pt_{12}Si_5$
45.2505	5.18	

45.6103	11.60	
47.1155	25.14	
47.9105	15.24	
49.6700	28.10	
51.0477	5.39	
52.6553	7.05	
54.7968	5.19	
64.3129	5.23	
67.2157	14.87	
68.3204	9.18	
68.6197	7.21	
68.9420	5.28	
69.3376	5.33	
70.2463	4.07	
73.2371	7.23	
75.3172	7.75	
83.4721	4.53	
85.6746	6.97	

Tabelle 100 : Pulverdiffraktometerdaten der Phase CAPTSI-B

$2 \theta_{obs}$	l _{obs}
18.0393	17.20
20.2157	16.21
21.4006	8.57
22.9263	100.00
23.2258	11.80
24.4505	6.10
24.7942	5.75
27.8683	5.62
28.4832	9.87
29.8709	39.83
31.6386	6.49
32.7683	14.16
34.6024	63.80
35.1377	47.37
39.2356	12.50
41.0457	11.22

41.7276	4.76
42.8082	41.22
43.4035	7.75
43.8692	8.00
44.6117	21.89
46.7760	16.56
47.3297	6.60
47.8479	67.53
49.0537	29.10
51.1544	22.48
52.3263	8.42
56.1618	50.69
56.4552	7.04
57.4162	7.18
62.0751	8.50
63.4275	10.88
64.7540	11.45
67.0814	4.65
68.7975	27.47
70.4430	7.19
72.9922	7.86
73.4080	8.44
73.8722	4.62
74.5479	6.36
76.4025	13.18
81.9493	12.70
82.8739	7.95
84.2244	4.35
84.5180	5.47
85.2084	3.99
86.0983	5.98
88.4463	6.55

Tabelle 101: Pulverdiffraktometerdaten der Phase CAPTSI-C

$2 \theta_{obs}$	l _{obs}
13.6137	7.28
15.6753	14.71
18.5187	5.20
20.4011	19.35
20.8152	25.57
22.5065	18.30
23.6441	18.94
27.3409	9.85
27.5714	5.61
28.4940	31.32
29.7329	63.88
35.0101	6.54
35.6575	100.00
36.4229	10.67
39.6357	31.21
41.4266	17.05
42.3213	10.29
42.7402	14.99
47.6949	35.02
47.9862	7.17
48.2689	7.00
49.8311	15.02
50.4283	19.36
57.3587	8.76
68.1413	17.99
70.2325	11.68
71.6016	6.02
73.5983	10.83
75.6044	21.52
13.6137	7.28
15.6753	14.71
18.5187	5.20
20.4011	19.35
20.8152	25.57
22.5065	18.30
23.6441	18.94

27.3409	9.85
27.5714	5.61
28.4940	31.32
29.7329	63.88
35.0101	6.54
35.6575	100.00
36.4229	10.67
39.6357	31.21
41.4266	17.05
42.3213	10.29
42.7402	14.99
47.6949	35.02
47.9862	7.17
48.2689	7.00
49.8311	15.02
50.4283	19.36
57.3587	8.76
68.1413	17.99
70.2325	11.68
71.6016	6.02
73.5983	10.83
75.6044	21.52

12.2 Messwerte des spezifischen elektrischen Widerstandes

Tabelle 102 : Widerstandswerte für BaPt₂Si₂

Temperatur	spez.	Temperatur	spez.
[K]	Widerstand	[K]	Widerstand
(abkühlen)	[m Ω cm]	(aufheizen)	[m Ω cm]
294	0,0266	11,5	0,0008
273	0,0242	16,5	0,0008
254	0,0221	19,7	0,001
236	0,0202	23	0,0011
218	0,0184	30	0,0013
200	0,0168	45	0,002
182	0,0148	63	0,0038
165	0,0131	81	0,0056
147	0,0114	99	0,0071
128	0,0097	118	0,0089
109	0,0081	137	0,0107
89	0,0066	156	0,0127
72	0,0047	174	0,0145
54	0,0029	191	0,0162
35	0,0014	209	0,0178
21,3	0,001	227	0,0194
17	0,0008	245	0,0214
9	0,0008	264	0,0232
5	0,0008	282	0,0253

12.3 Werte für spezielle Temperaturfaktoren bei Tieftemperaturmessungen

Tabelle 103 : Temperaturfaktor U₁₁=U₂₂(Pt1) in der Verbindung CaPt₂Si₂

T[K]	$U_{11} = U_{22}(Pt1) [pm^2]$
293	523(8)
260	544(10)
230	494(7)
200	512(8)
170	491(8)
140	502(8)

Tabelle 104 : Temperaturfaktor $U_{11} = U_{22}(Pt1)$ in der Verbindung $SrPt_2Si_2$

T[K]	$U_{11} = U_{22}(Pt1) [pm^2]$
293	376(13)
260	326(15)
230	299(14)
200	320(14)
170	329(13)
140	344(15)

Tabelle 105 : Temperaturfaktor U₁₁(Pd1) in der Verbindung BaPd₃Si₂

T[K]	U ₁₁ (Pd1) [pm ²]
293	283(4)
260	411(7)
230	393(7)
200	341(7)
170	327(7)
140	303(7)

Tabelle 106 : Temperaturfaktor $U_{11}(Pd2)$ in der Verbindung $SrPd_3Si_2$

T[K]	U ₁₁ (Pd2) [pm ²]
293	566(14)
260	542(17)
230	532(18)
200	464(15)
170	454(13)
140	481(18)

13 Literatur

- [1] H.-U. Schuster, Nova Acta Leopoldina, **1985**, Nr. 264, Bd. 59, 199.
- [2] E. Zintl, Angew. Chem., **1935**, 52, 1.
- [3] W. Klemm, E. Busmann, Z. anorg. allg. Chem., **1963**, 319, 297.
- [4] H. Schäfer, B. Eisenmann, W. Müller, Angew. Chem., 1973, 85, 742.
- [5] W. Thronberens, H.-D. Sinnen, H.-U. Schuster, J. Less-Common Met., 1980, 76, 99.
- [6] E. Parthé, B. Chabot, K. A. Gschneider, jr., L. Eyring, "Handbook on the Physics and Chemistry of Rare Earths", Vol. 6, 184ff., North-Holland Physics Publishing, Amsterdam, New York, Oxford, Tokyo.
- [7] E. Hovestrydt, N. Engel, K. Klepp, B. Chabot, E. Parthé, J. Less-Common Met., 1982, 85, 247.
- [8] P. I. Kripyakevich, V. I. Markiv, E. V. Melnik, *Dopov. Akad. Nauk Ukraine R.S.R.*, **1967**, Ser. *A* (8), 750.
- [9] C. B. Shoemaker, D. P. Shoemaker, *Acta Cryst.*, **1965**, *18*, 900.
- [10] K. Klepp, E. Parthé, Acta Cryst., 1982, B 38, 1105.
- [11] K. Klepp, E. Parthé, Acta Cryst., **1982**, B 38, 1541.
- [12] O. I. Bodak, E. I. Gladyshevskii, *Inorg. Mater.*, **1970**, 6, 1037.
- [13] A. C. Larson, D. T. Cromer, Acta Cryst., **1961**, *14*, 73.
- [14] J. Evers, G. Oehlinger, J. Solid State Chem., **1986**, 62, 133.
- [15] J. Evers, G. Oehlinger, J. Solid State Chem., 1991, 91, 250.
- [16] B. D. Oniskovets, V. K. Bel´skii, V. K. Perscharski, O. I. Bodak, *Kristallografiya*, **1987**, 32, 888.

- [17] K. R. Andress, E. Alberti, Z. Metallkunde, **1935**, 27, 126.
- [18] Z. Ban, M. Sikirica, Acta Cryst., 1965, 18, 594.
- [19] B. Eisenmann, N. May, W. Müller, H. Schäfer, Z. Naturforschung., 1972, 27b, 1155.
- [20] W. Dörrscheidt, H. Schäfer, J. Less-Common Met., 1978, 58, 209.
- [21] W. Dörrscheidt, H. Schäfer, Z. Naturforschung, 1980, 35b, 297.
- [22] L. G. Akselrud, Y. P. Yarmolyuk, E. I. Gladyshevskii, Sov. Phys. Cryst., 1977, 22, 492.
- [23] A. Palenzona, S. Cirafici, F. Canepa, J. Less-Common Met., 1987, 135, 185.
- [24] I. Mayer, P. D. Yetor, J. Less Common Met., 1977, 55, 171.
- [25] F. Dießenbacher, Dissertation, Köln (1993).
- [26] B. Schmidt, W. Jung, Z. Naturforschung, **1978**, 33b, 1430.
- [27] S. Schoolaert, Dissertation, Köln (1995).
- [28] S. Schoolaert, Diplomarbeit, Köln (1990).
- [29] H. Ploss, Diplomarbeit, Köln (1992).
- [30] H. Ploss, Dissertation, Köln (1996).
- [31] P. Lorenz, Dissertation, Köln (1999).
- [32] G. Brauer, "Handbuch der Präparativen Anorg. Chemie", 1960, F. Enke-Verlag, Stuttgart, 816.
- [33] M. Weltzer, Basic-Programm, Köln (1988).
- [34] R. Mirgel, Dissertation, Köln (1986).
- [35] G. M. Sheldrick, SHELX-S 97, Universität Göttingen (1997).

- [36] G. M. Sheldrick, SHELX-L 97, Universität Göttingen (1997).
- [37] Diamond Visuelles Informationssystem für Kristallstrukturen, Prof. Dr. G. Bergerhoff, Gerhard-Domagk-Str.1, 53121 Bonn.
- [38] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Cryst., 1973, 10, 73.
- [39] VISUAL X-POW, Stoe Powder Diffraction Software Version 3.08, Stoe & Cie GmbH, Darmstadt (1997).
- [40] Win X-POW, Stoe Powder Diffraction Software Version 1.04, Stoe & Cie GmbH, Darmstadt (1999).
- [41] X-RED 1.08a, Stoe & Cie GmbH, Darmstadt (1996).
- [42] X-SHAPE 1.02, Stoe & Cie GmbH, Darmstadt (1997).
- [43] XCAD4, K. Harms, Universität Marburg.
- [44] A. Czybulka, OFEN E, Köln (1990), unveröffentlicht.
- [45] H. Fischer, Diplomarbeit, Köln (1996).
- [46] G. Will, Acta Cryst., **1967**, 23, 1071-1079.
- [47] K. Cenzual, B. Chabot, E. Parthé, ActaCryst., 1988, C44, 221-226.
- [48] R. X. Fischer, E. Tillmanns, Acta Cryst., **1988**, C44, 775.
- [49] L. Pauling, "Die Natur der chemischen Bindung", 1973, 3. Aufl. Verl. Chemie, Weinheim, Kap. 7 und 11.
- [50] K. Dascoulidou-Gritner, Dissertation, Köln (1993).
- [51] D. Langen, Dissertation, Köln (1997).
- [52] B. Chevalier, A. Cole, P. Lejay, J. Etourneau, *Mater. Res. Bull.*, **1981**, *16*, 1067-1075.

[53] R. J. Cava, B. Batlogg, T. Siegrist, J. J. Krajewski, W. F. Peck, S. Carter, R. J. Felder, H. Takagi, R. M. Fleming, R. B. van Dover, L. W. Rupp, *Physica*, **1994**, *C* 226, 170.

- [54] W. Biltz, "Raumchemie der festen Stoff", 1934, Verlag von Leopold Voss, Leipzig.
- [55] W. Jung, Universität zu Köln, unveröffentlicht.
- [56] Brakken, Harang, Z. Kristallographie, 1928, 68, 128.
- [57] M. Elander, G. Haegg, A. Westgren, Arkiv foer Kemi, Mineralogie och Geologie, 1935, 12B, 1-6.
- [58] W. Nieuwekamp, J. M. Bijvoet, Z. Kristallographie, 1932, 81, 469-473.
- [59] D. Johrendt, Dissertation, Köln (1993).
- [60] Y. P. Yarmolyuk, Kristallografiya, 1986, 31, 400.
- [61] W. Jung, Universität zu Köln, unveröffentlicht.
- [62] J. M. Vandenberg, H. Bratz, Mater. Res. Bull., 1980, 15, 1493-1498.
- [63] P. Villars, L. D. Calvert, "Pearson's Handbook of Crystallographic Data for Intermetallic Phases", Second Edition 1991, Vol. 1-4, ASM International, Materials Park, OH 44073.

Ich versichere, daß ich die von mir vorgelegte Arbeit selbständig angefertigt, die benutzten Quellen und Hilfsmittel vollständig angegeben und die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen, die anderen Werken im Wortlaut oder dem Sinn nach entnommen sind, in jedem Einzelfall als Entlehnung kenntlich gemacht habe; daß diese Dissertation noch keiner anderen Fakultät zur Prüfung vorgelegen hat, daß sie noch nicht veröffentlicht worden ist, sowie, daß ich eine solche Veröffentlichung vor Abschluß des Promotionsverfahrens nicht vornehmen werde. Die Bestimmungen dieser Promotionsordnung sind mir bekannt. Die von mir vorgelegte Dissertation ist von Prof. Dr. W. Jung betreut worden.

Es sind keine Teilpublikationen veröffentlicht worden.

Danksagung

Herrn Prof. Dr. Walter Jung danke ich für die Betreuung dieser Arbeit und die anregenden Diskussionen.

Herrn Prof. Dr. Gerd Meyer danke ich für die finanzielle Unterstützung während der Promotionszeit und für die Übernahme des Koreferates.

Herrn René Borowski vom 2. Physikalischen Institut der Universität und Herrn Prof. Dr. Walter Jung danke ich für die Anfertigung der Rötgenfluoreszenzanalysen.

Horst Schumacher danke ich für die vielen unschätzbaren Tipps für das praktische Arbeiten, die Dichte- und Leitfähigkeitsmessungen, sowie seine Beharrlichkeit und Geduld bei unzähligen Pulverdiffraktometermessungen in Rekordzeit.

Ingrid Müller gilt mein Dank für viele IPDS-Messungen an viel zu schwachen und immer "etwas anderen" Kristallen.

Wicky danke ich für viele IPDS-Messungen und seine Ideen zu den "etwas anderen" Kristallen sowie viele anregende Diskussionen und sein Interesse daran, was aus jedem Kristall geworden ist.

Claudi Wickleder danke ich für so einige Mut-mach-Gespräche.

Vielen Dank für die gute Zeit in Labor 109a, die zuerst unter dem Motto "Allein unter Männern" stand, geht an Martin Schwunck, Gerd Zelesny, Juan Aiscar, Dirk Stellfeldt und ganz besonders Morten Soyke, der mich in die große Welt des "unnützen Wissens" eingeführt hat und unverzichtbar für die gute Laboratmosphäre war. Vielen Dank auch an Claudia Bromant, mit der die Invertierung des Labors begann und die die erste Unterstützung im Männerlabor war. Vervollständigt wurde die Frauenpower des Labors mit Monika Giesselbach, Gabi Derenthal und Wassiliki Nika. Danke!

Ungenannt ist bisher Dirk Hinz, der die ganze Zeit beständiger Ratgeber in unverständlichen und komplizierten Computerangelegenheiten und Fragen aller Art war. Außerdem hat er meine Launen und gnadenlose Ehrlichkeit, die oft in Form bissiger Bemerkungen auf ihn herabregneten, mit bewundernswerter Geduld und viel Humor

ertragen. Unvergessen bleiben auch unsere Kaffeestunden, die durch seine Initiative kaum traurig (ohne Kuchen) verliefen. Vielen Dank für so viel persönliche Unterstützung.

Den Mit-Assistenten Dirk Göbbels, Mimoza Almenaj, Norbert Böhmer, Ina Göhhausen und Sven Gruppe danke ich für die gute, unkomplizierte und fröhliche Zusammenarbeit während der Erstsemesterpraktika.

Den Studenten der Wintersemester 1995/96 bis Wintersemester 2000/01 danke ich dafür, daß sie mir meinen Assistenten-Job im Biltz-Praktikum, den Übungs- und Vollanalysen meistens sehr angenehm und auf keinen Fall langweilig gestaltet haben und ich viel bei ihnen lernen konnte (Überraschung!).

Meinen F-Praktikanten Judith Schlarmann (SS 1996), Svena Lüdke, Holger Flemig und Dominik Lange (WS 1997/98), die einen Teil der Versuche zur Darstellung der Verbindungen im Rahmen ihres anorganisch-chemischen Praktikums für Fortgeschrittene durchgeführt haben, danke ich für ihre fleißige, erfolgreiche und freundschaftliche Zusammenarbeit.

Ich habe vielen Menschen zu danken, die mich außerhalb der Uni begleitet haben und deren Freundschaft mir sehr wichtig ist:

Silke und Klaus, Ingrid und Thomas, Thorsten und Biggi, Matthias und Anja, Carsten und Claudia, Ralf und Doro, Gunda und Uwe, Judith und Roland, Claudia, Elke, Ute, Agneta, Magda, Birgit und Steffi.

Detlev und Sabine mit Tim, Tom, Anna, Nena und Phil danke ich dafür, daß sie mich in ihre Familie hineingenommen haben und daß meine Welt immer wieder in Ordnung kam, wenn die Kinder mich in ihre mitgenommen hatten.

Meiner Mutter danke ich für ihr Vertauen in mich, für ihre unverzichtbare Unterstützung, dafür, daß sie für mich da ist.

Jörg ist immer da mit seiner Freundschaft und Liebe.

Lebenslauf

Persönliche Daten

Name Heike Astrid Fischer geb. Schmenn

Geboren 25.9.1966 in Solingen Familienstand verheiratet mit Jörg Fischer

Schulbildung

1973-1974	Grundschule Erholungsstr., Solingen	
1974-1977	Grundschule Flamerscheid, Leichlingen	
1977-1979	Hauptschule Am Hammer, Leichlingen	
1979-1983	Gerhart-Hauptmann-Aufbaurealschule, Solingen	
1983-1986	August-Dicke-Gymnasium, Solingen	
	Abschluß der allgemeinen Hochschulreife	

Ausbildung

1986-1988 Berufs- und Berufsfachschule für Metalltechnik und Chemie,

Düsseldorf

Abschluß als Chemisch technische Assistentin

Hochschulbildung

Okt. 1988 Beginn des Chemiestudiums an der Univer	sität zu Köln
---	---------------

Okt. 1993 Diplom-Chemiker – Vorprüfung Feb. 1996 Diplom-Chemiker – Hauptprüfung

Feb.-Dez.1996 Diplomarbeit

Leitung: Prof. Dr. W. Jung

Dez.1996-Dez.2000 Dissertation

Leitung: Prof. Dr. W. Jung

seit Okt.1999 Stipendiatin des Graduiertenkollegs "Azentrische Kristalle"

Meine akademischen Lehrer waren die Damen und Herren Professoren und Dozenten:

Adam, Bohatý, Budzikiewicz, Czybulka, Düssel, Ermer, Féher, Glinka, Griesbeck, Hahn, Halbritter, Hohlneicher, Hummel, Ilgenfritz, Jung, Klug, Kruck, Meuser, Mewis, Meyer, Mühlberg, Naumann, Nimtz, Paetz gen. Schieck, Plewe, Schmickler, Schneider, Schuster, Steymans, Swodenk, Taraz, Vogel, Wasgestian, Woermann