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Abstract 

Soil moisture and its distribution in space and time plays a decisive role in terrestrial water 

and energy cycles. It controls the partitioning of precipitation into infiltration and runoff as 

well as the partitioning of solar radiation into latent and sensible heat flux. Therefore it has a 

strong impact on numerous processes, e.g., controlling floods, crop yield, erosion, and climate 

processes. Soil moisture, and surface soil moisture in particular, is highly variable in space 

and time and its spatial and temporal patterns in an agricultural landscape are affected by 

multiple natural (precipitation, soil, etc.) and agricultural (soil management, fertilization etc.) 

parameters. Against this background, the current study investigates the spatial and temporal 

patterns of surface soil moisture in an agricultural landscape, to determine the dominant 

parameters and the underlying processes controlling these patterns. The study was conducted 

on different spatial scales, from the field scale to the whole catchment scale of the river Rur 

(2364 km2) in Western Germany, because observed patterns are intrinsically connected to the 

scale on which they are observed. For the investigation three different approaches were used: 

Analysis based on A) Field measurements, B) Radar remote sensing, and C) Ecohydrological 

modeling. Extensive field measurements were carried out in a small arable land and grassland 

test site, measuring surface soil moisture, plant parameters, meteorological parameters, and 

soil parameters. These measurements were used to analyze the small scale (field scale) 

patterns of surface soil moisture and for the validation of the two other methods. Since large 

scale investigations based on field measurements are generally not feasible, surface soil 

moisture maps from radar remote sensing and ecohydrological modeling were used to analyze 

large scale patterns of surface soil moisture and their scaling properties. 

Precipitation, vegetation patterns, topography and soil properties were found to be the 

dominant parameters for soil moisture patterns in an agriculturally used landscape. 

Precipitation can be assumed to be homogeneous on the small scale, but can be very 

heterogeneous on the large scale at the same time. Evapotranspiration causes high small scale 

variability, especially during the growing season. If analyzed on coarser resolutions, this small 

scale pattern is smoothed out. Topography is a source of small scale patterns only on wet 

surface soil moisture states, because of the lateral redistribution of water during or shortly 

after precipitation events. Soils have a major influence on the variability of surface soil 
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moisture on all scales, due to the large heterogeneity of soil properties within a given soil type 

(small scale) and between different soil types (large scale). Altogether, the variability of 

surface soil moisture increases with an increasing size of the investigation area and with an 

increasing resolution within the investigation area. During the course of the year surface soil 

moisture variability and its scaling properties are being influenced by different parameters 

with temporally varying intensities. During the growing season, at the time of high small scale 

variability of evapotranspiration, the variability of surface soil moisture is high and decreases 

much stronger with decreasing spatial resolution of the investigation, than during times 

outside the growing season. In the beginning and towards the end of the year (outside the 

growing season, when the soil is wet) the patterns and their scaling properties are mainly 

determined by soil properties. Precipitation events generally superimpose their large scale 

patterns for a short period of time and diminish the small scale variability induced by 

evapotranspiration.  

This thesis improves the knowledge about surface soil moisture patterns in agriculturally 

used areas and their underlying processes. The results of the scaling analysis indicate the 

potential to use vegetation and precipitation parameters for downscaling purposes. 

Understanding the subscale soil moisture heterogeneity is, for example, particularly relevant 

to better utilize coarse scale soil moisture data derived from SMOS (Soil Moisture and Ocean 

Salinity) or the upcoming SMAP (Soil Moisture Active Passive) satellite measurements. 
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Kurzzusammenfassung 

Bodenfeuchte und ihre räumliche und zeitliche Verteilung spielen eine entscheidende 

Rolle im terrestrischen Wasser- und Energiekreislauf. Sie kontrolliert die Aufteilung von 

Niederschlägen in Versickerung und Oberflächenabfluss und die Aufteilung von 

Sonnenenergie in latenten und fühlbaren Wärmestrom. Dies begründet den unmittelbaren 

Einfluss dieser Größe auf vielfältigste Prozesse, wie zum Beispiel auf Überflutungs- oder 

Erosionsereignisse, auf Erntemengen oder klimatisch wichtige Größen wie zum Beispiel die 

Lufttemperatur. Insbesondere die oberflächennahe Bodenfeuchte ist räumlich und zeitlich 

sehr variabel und ihre Muster werden auf landwirtschaftlich genutzten Flächen von einer 

Vielzahl natürlicher (z.B. Niederschlag, Bodeneigenschaften) und Bewirtschaftungsfaktoren 

(z.B. Bodenbearbeitung, Saattermine, Erntetermine) bestimmt. Vor diesem Hintergrund 

untersucht diese Studie die räumlichen und zeitlichen Muster der oberflächennahen 

Bodenfeuchte auf landwirtschaftlich genutzten Flächen und analysiert die wichtigsten 

Einflussfaktoren und zugrundeliegenden Prozesse, die diese Muster verursachen. Da ein 

beobachtetes Muster immer direkt mit der Skala, auf der diese Beobachtung gemacht wurde, 

verknüpft ist, wurde diese Studie auf verschiedenen räumlichen Skalen durchgeführt, die von 

der Feldskala bis hin zur Skala des Gesamteinzugsgebiets der Rur mit einer Größe von 

2364 km2 reicht. Für diese Arbeit wurden drei unterschiedliche methodische 

Herangehensweisen verwendet: Analysen basierend auf A) Feldmessungen, B) Radar-

Fernerkundung und C) ökohydrologischer Modellierung. In einem ackerbaulich genutzten 

Testgebiet und in einem Grünlandtestgebiet wurden umfangreiche Feldmessungen der 

Bodenfeuchte, von Pflanzenparametern, von meteorologischen Parametern und 

Bodenparametern durchgeführt. Diese wurden zur Analyse der oberflächennahen 

Bodenfeuchtemuster auf der kleinen Skala (Feldgröße) und zur Validierung der beiden 

weiteren Methoden verwendet. Da großflächige Untersuchungen auf der Basis von 

Feldmessungen nicht durchführbar sind, wurden für die Untersuchung der 

Bodenfeuchtemuster auf großen Skala und deren Skalierungseigenschaften 

Bodenfeuchtekarten genutzt, die aus der Radar-Fernerkundung abgeleitet wurden oder aus der 

ökohydrologischen Modellierung stammen.  
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Als Haupteinflussfaktoren für oberflächennahe Bodenfeuchtemuster in landwirtschaftlich 

genutzten Gebieten wurden Niederschlag, Landnutzung, Topographie und Boden ermittelt. 

Niederschlag kann zwar auf der kleinen Skala als homogen angenommen werden, aber 

gleichzeitig große Heterogenität auf der großen Skala zeigen. Evapotranspiration im 

Zusammenhang mit kleinräumigen Landnutzungsmustern verursacht kleinräumige 

Variabilität, vor allem in der Hauptwachstumsperiode der Pflanzen. Mit einer Verkleinerung 

der Auflösung der Untersuchung werden diese kleinräumigen Muster durch Mittelung 

geglättet. Topographie verursacht ebenfalls kleinräumige Muster der Bodenfeuchte unter 

feuchten Bedingungen, da Wasser aus Niederschlagsereignissen lateral in tieferliegende 

Gebiete abgeleitet wird und dort zu einem Anstieg der Versickerung führen kann. Böden 

haben einen sehr großen Einfluss auf die Variabilität der Bodenfeuchte auf allen Skalen, da 

die Heterogenität der hydraulischen Bodeneigenschaften innerhalb eines Bodentyps auf der 

kleinen Skala ebenso groß sein kann wie zwischen unterschiedlichen Bodentypen auf der 

großen Skala. Insgesamt nimmt die Variabilität der oberflächennahen Bodenfeuchte mit der 

Vergrößerung der Auflösung der Untersuchung und der Größe des Untersuchungsgebietes zu. 

Im Laufe eines Jahres verändern sich der Einfluss verschiedener Faktoren und deren Intensität 

auf die Muster und deren Skalierungsverhalten. Während der Hauptwachstumsperiode ist die 

durch die Evapotranspiration verursachte kleinräumige Variabilität sehr hoch, sinkt dann 

allerdings auch wesentlich schneller mit der Verringerung der Auflösung der Untersuchung 

als außerhalb der Hauptwachstumsperiode. In dieser Zeit, am Anfang und gegen Ende des 

Jahres, wenn der Boden feucht ist, bestimmen hauptsächlich Bodeneigenschaften das Muster 

und die Skalierung. Niederschlagsereignisse mit ihrem großskaligen Muster überlagern und 

dämpfen die durch die Evapotranspiration verursachte kleinskalige Heterogenität für einen 

kurzen Zeitraum.  

Insgesamt verbesserte diese Arbeit das Verständnis von oberflächennahen 

Bodenfeuchtemustern auf landwirtschaftlich genutzten Flächen und deren zugrundeliegenden 

Prozessen. Die Ergebnisse der Skalierungsanalyse zeigen das Potenzial von Vegetations- und 

Niederschlagsparametern zur Anwendung eines Downscaling-Verfahrens. Das Verständnis 

der subskaligen Heterogenität von oberflächennaher Bodenfeuchte ist von besonderem 

Interesse, um zum Beispiel großskalige aber gering aufgelöste Bodenfeuchtedaten aus SMOS 

(Soil Moisture and Ocean Salinity) oder den kommenden SMAP (Soil Moisture Active 

Passive) Satellitenmessungen besser nutzen zu können. 
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1. Introduction 

1.1.  The importance of soil moisture in the soil-plant-atmosphere system 

The water cycle is a key part of the global climate system. Water plays an important role 

in the Earth's energy budget, due to its high latent heat of fusion and vaporization. Only 

0.0012 % of the global water and 0.035 % of the global fresh water (excluding Antarctica) is 

stored in soils (Oki and Kanae, 2006). Despite its seemingly negligible quantity when 

compared to global water resources, soil moisture is a key variable in hydrology, 

meteorology, and agriculture.  

Soil moisture plays a central role in terrestrial water and energy cycles. Its distribution 

controls the partitioning of precipitation into infiltration and runoff (Western et al., 1999), 

hence it has a strong impact on the response of stream discharge to rainfall events, plays a 

significant role in producing floods (Kitanidis and Bras, 1980) and affects erosion processes 

from overland flow and the generation of gullies (Moore et al., 1988). Soil moisture controls 

the partitioning of incoming radiation into latent and sensible heat, due to its effects on 

evaporation and transpiration (Entekhabi and Rodriguez-Iturbe, 1994) and thus determines 

energy and mass fluxes in the soil-vegetation-atmosphere system.  

Moreover, soil moisture enables and modulates plant growth and hence has a major 

influence on crop yield and food production. Root zone soil moisture determines how much 

water is available to plants for photosynthesis, which is regulated by their stomatal 

conductance to water transfer. Through their roots, plants extract water from deeper soil 

layers and reduce percolation of precipitation to the groundwater. The fact, that 

evapotranspiration returns about 60 % of the land precipitation back to the atmosphere (Oki 

and Kanae, 2006) and most of the evapotranspiration takes place through the stomata of plants 

emphasizes the major importance of the feedback loop between soil moisture and plants in the 

terrestrial water and energy cycles. Because of the influence on the partitioning of incoming 

radiation into latent and sensible heat, soil moisture impacts on a variety of climate processes, 

in particular air temperature, boundary layer stability and in some instances precipitation 

(Seneviratne et al., 2010). 
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In addition, soil moisture plays a major role in the global carbon cycle (Falloon et al., 

2011), since microbiological activity and the decomposition of soil organic matter are 

controlled by temperature and moisture conditions. It is also of great socio-economic interest. 

Global population growth, rapid economic development and climate change intensify the 

demand of fresh water, e.g., for drinking, irrigation, and cooling (Arnell, 1999). 

Consequently, information about the spatial and temporal patterns of soil moisture is a 

very important parameter in weather forecast and global climate models, due to the improved 

representation of interactive land surface processes, in predicting extreme events like droughts 

or floods, erosion modeling, water resource management, and agricultural applications, e.g., 

determination of sowing dates, rational irrigation practices, cultural practices or selective 

application of pesticides. However, soil moisture and surface soil moisture in particular, is 

highly variable in space and time, impacted by the heterogeneity of soil properties, 

topography, land cover, and meteorological conditions. 

1.2. Scope and outline of this thesis 

This thesis was embedded within the framework of the Transregional Collaborative 

Research Center 32 (SFB/TR32) with the title “Patterns in Soil-Vegetation-Atmosphere 

Systems: Monitoring, Modelling, and Data Assimilation” funded by the German Research 

Foundation (DFG). This multidisciplinary project involves research groups in the field of 

geophysics, soil and plant science, hydrology and meteorology located at the Universities of 

Aachen, Bonn, and Cologne and the Research Centre Jülich. The project aims at extending the 

knowledge about the origins of and the interrelations between spatial and temporal patterns 

within the soil-vegetation-atmosphere system and their relation to energy and matter. The 

research area is the Rur catchment in Western Germany. The research of our subproject 

within the SFB/TR32 focuses on the subject of surface soil moisture, an essential quantity in 

the context of the overall research of the SFB/TR32 project. This dissertation thesis aims at 

answering the following main research questions:  

 What are the dominant parameters and underlying processes for spatial and temporal 

patterns of surface soil moisture in an agriculturally used landscape?  

 How does the spatial variability of surface soil moisture change from the field scale to 

the catchment scale? 
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 How do surface soil moisture patterns and their scaling behavior change during the 

course of the year? What parameters determine the patterns and their scaling behavior 

at different times? 

To address these main questions three different approaches were used: Analysis based on 

A) Field measurements, B) Radar remote sensing, and C) Ecohydrological modeling. 

Extensive spatially distributed field measurements of surface soil moisture in a grassland and 

an arable land test site were conducted. To analyze the patterns and dominant parameters at 

the small catchment scale an Empirical Orthogonal Function (EOF) and a correlation analysis 

were used (see chapter 3). The measurements were also used to validate an empirical soil 

moisture retrieval algorithm for Advanced Synthetic Aperture Radar (ASAR) remote sensing 

data. Retrieved soil moisture data and the field measurements served as a basis for the 

analysis of statistical properties of surface soil moisture from the field scale to the whole 

catchment scale in terms of the relationship between soil moisture variability and mean soil 

moisture (see chapter 4). To identify and assess the influence of the main parameters and 

processes leading to the scale dependent variability of surface soil moisture, a process based, 

dynamic ecohydrological model was deployed and validated. The use of this model accounted 

for the complex interactions and feedbacks between soil, plant, and atmosphere. An 

autocorrelation and scaling analysis of the surface soil moisture data from different model 

runs was used to investigate the varying impact of soil, precipitation and vegetation on the 

autocorrelation structure and scaling properties of surface soil moisture patterns during the 

course of the year (see chapter 5). 

 

This thesis is organized in the following manner:  

This introduction (Chapter 1) is followed by a general chapter (Chapter 2), with definitions of 

the variable of interest (2.1), an introduction of soil moisture measurement methods (2.2), a 

short introduction of soil moisture modeling in the context of ecohydrology (2.3) and an 

integrated overview of the research on patterns of soil moisture (2.4). Chapters 3 to5 contain 

three research papers corresponding to the research approaches:  

Chapter 3: Analysis of surface soil moisture patterns based on field measurements with the 

paper title: “Analysis of surface soil moisture patterns in agricultural landscapes using 

Empirical Orthogonal Functions”.  
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Chapter 4: Analysis of surface soil moisture patterns based on radar remote sensing with the 

paper title: “Variability of Surface Soil Moisture Observed from Multitemporal C-Band 

Synthetic Aperture Radar and Field Data”. 

Chapter 5: Analysis of surface soil moisture patterns based on ecohydrological modeling with 

the paper title: “Patterns and scaling properties of surface soil moisture in an agricultural 

landscape: An ecohydrological modeling study”. 

Chapter 6 summarizes the results and conclusions of this thesis regarding the small scale 

patterns (6.1), the large scale patterns (6.2), and the scaling properties (6.3) of surface soil 

moisture. Furthermore, in the general conclusions (6.4) the main research questions will be 

addressed and a short outlook is given (6.5). 
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2. Soil moisture 

2.1. Definition of soil moisture 

Soil is a three phase system, consisting of soil particles, soil water, and soil air. The water 

contained in the unsaturated soil is defined as soil moisture (Hillel, 1998). The amount of 

water in the soil can be expressed in relative terms (volumetric soil moisture [m3 m-3], 

gravimetric soil moisture [kg kg-1] or saturation ratio) and in absolute terms (water depth 

[mm] or mass [kg]). The value of soil moisture is considered with regard to a given soil 

volume. This is highly relevant, when comparing different soil moisture measurements or 

estimations, because the considered volumes range from the top few centimeters of the soil 

(e.g., from radar remote sensing) or a small volume (e.g., from Frequency Domain 

Reflectometry measurements) to discrete soil layers (e.g., from modeling) or an extremely 

large volume (e.g., from Gravity Recovery and Climate Experiment, GRACE). For the 

definition of root zone soil moisture and total soil moisture the relevant soil volume will vary 

as a function of space and time, depending on the rooting depth of plants and the water table 

depth, respectively. Two other important quantities in hydrology and agricultural applications 

are field capacity and permanent wilting point. Above field capacity, water cannot be held 

against gravity and drains towards the groundwater table, and below wilting point the water is 

strongly bound to the soil matrix and not accessible to plants. The binding of the soil moisture 

to the soil matrix is characterized by the soil moisture potential. Field capacity and permanent 

wilting point are typically defined as corresponding to suction heads of pF 1.8-2.5, with pF 

being the logarithm of the cm of water column suction, and pF 4.2, respectively. These are 

approximated values, and the wilting point is depending on the vegetation type.  

2.2. Soil moisture measurements 

There are multiple techniques that are used to measure soil moisture. However, a method 

to continuously measure the spatial patterns of soil moisture at larger scales is currently not 

available. The available measurement methods can be differentiated in direct (measurement of 

hydrological variable, e.g., rainfall depth) or indirect methods. Most soil moisture 

measurement techniques employ indirect measurements methods, utilizing the measurements 
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of features which are closely linked to soil moisture (e.g. frequency modulation of an emitted 

signal for FDR measurements or electromagnetic emissions for remote sensing). These 

measurements are then converted by a rating function to a soil moisture value (Grayson and 

Blöschl, 2000). These conversions can introduce additional measurement errors. In the 

following section different methods of soil moisture measurement are introduced, however 

this short outline is not intended to be exhaustive. 

The thermogravimetric method is a one of the few direct methods and determines the 

weight loss of a known volume of soil after oven drying at 105°C (Reynolds, 1970a). But it is 

a very time-consuming and destructive method, used for calibration and evaluation purposes. 

Time and Frequency Domain Reflectometry (TDR, FDR) are used most often to investigate 

soil moisture at the point scale (Navarro et al., 2006; Roth et al., 1992). These techniques are 

based on the change of an emitted electromagnetic wave along some wave guides inserted in 

the soil depending on the dielectric constant of the wet soil (see 2.2.1). The sensors are either 

used on fixed locations to monitor temporal dynamics or as portable probes to study spatially 

distributed soil moisture patterns. To enlarge the number of measurement locations while 

simultaneously retain the high temporal resolution of the measurements, wireless sensor 

networks have been developed (Bogena et al., 2007), but they cannot be applied to surface 

soil moisture investigations in an arable land test site, due to the cultivation practices and the 

high effort of installation and deinstallation.  

Geophysical methods like ground penetrating radar (GPR, Huisman et al., 2001), 

electromagnetic induction (EMI, Sheets and Hendrickx, 1995) or electric resistivity 

tomography (ERT, Kemna et al., 2002) make it possible to measure soil moisture in a less 

invasive or even noninvasive way on larger areas, but they rely on highly detailed information 

of subsurface properties and a site specific calibration. The GPR method uses the same 

principle as TDR, only it uses a non-guided electromagnetic wave, measured between a 

transmitter and a receiver. EMI measures the apparent electric conductivity of the soil, 

depending on the water content of the soil, with a magnetic field. ERT measures the bulk soil 

electric conductivity, related to the water content, between two or more electrodes inserted 

into the soil. Other ground based methods are utilizing the sensitivity of cosmic ray neutrons 

to water content changes to estimate surface soil moisture non-invasive for a spatial scale of 

300 m radius around the measurement device (Zreda et al., 2008) or using fibre optic cables 

(Sayde et al., 2010; Steele-Dunne et al., 2010) to estimate soil moisture along cables of over 

10 km length, using the dependence of soil thermal properties on soil moisture, but with a 

strongly invasive and very complex installation process.  



Soil moisture  7 
 

Remote sensing can be used to observe larger scale soil moisture patterns with different 

spatial and temporal resolutions. All remote sensing based approaches are indirect methods, 

measuring the color (at optical to mid-infrared wavelengths), parameters of the surface energy 

balance (e.g., temperature, at thermal infrared wavelengths) or dielectric properties (at 

microwave wavelengths) of the soil. For the retrieval of soil moisture the following 

microwave frequency bands are most important: L-band (wavelength 15 - 30 cm), C-band 

(3.8 - 7.5 cm) and X-band (2.5 - 3.8 cm). There are three types of remote sensing platforms, 

towers, aircrafts (airborne) and satellites (spaceborne), but for operational purposes 

spaceborne platforms are the prime choice, because of their global coverage and the regular 

nature of their overpasses (Wagner et al., 2007). Active radar systems measure the 

backscattering coefficient (reflectivity of the surface) of the emitted beam, whereas passive 

systems (Radiometers) measure the brightness temperature of the surface (product of 

emissivity and temperature). Active measurements are more sensitive to roughness and 

vegetation structure than passive measurements, but they provide a much better spatial 

resolution. Examples for Microwave radiometers (passive systems) are: Advanced Microwave 

Scanning Radiometer (AMSR-E) or Soil Moisture and Ocean Salinity (SMOS). Examples for 

Synthetic Aperture Radar (SAR, active systems) platforms are: RADARSAT-1, 

RADARSAT-2, ERS-1, ERS-2 and ENVISAT (all C-band) or JERS-1 and ALOS (L-band). 

SAR systems allow monitoring patterns at higher spatial and lower temporal resolutions, 

while passive systems allow assessing patterns at lower spatial and higher temporal 

resolutions (Wagner et al., 2007).  

In our study, we used FDR probes both for the spatial surface soil moisture measurements 

and the measurements of soil moisture time series on single locations. Moreover, we used 

data from the Advanced Synthetic Aperture Radar (ASAR) onboard the ENVIronmental 

SATellite (ENVISAT) launched by the European Space Agency (ESA). Therefore these 

techniques are described in the following sections 2.2.1 and 2.2.2. in more detail.  

The organization of measurements can be characterized by three scales (spacing, extent, 

and support) and has been termed “scale triplet” by Blöschl and Sivapalan (1995). The term 

scale refers to a characteristic length or time scale. Spacing refers to the distance (or time) 

between the measurements, extent to the overall coverage of the measurements (in time or 

space), and support to the averaging volume or area (or time) of a single measurement. For 

example, the FDR measurements in our grassland test site had 50 meter spacing (between the 

measurements), 1000 meter extent (length of the test site), and 0.1 meter support (area 

influencing or representing a single measurement). The measurements should be taken at a 
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scale that is able to resolve all variability of the processes that influences the soil moisture 

patterns. If the spacing is too large, small scale variability will not be captured. If the extend is 

too small, large scale variability will not be captured and if the support is to large, variability 

will be smoothed out (Grayson and Blöschl, 2000). Thus, ideally the process scale equals the 

measurement scale (equals the model scale).  

2.2.1. Frequency Domain Reflectometry 

Frequency Domain Reflectometry (FDR) measurements (Navarro et al., 2006) are used in 

this study as a standard for in situ soil moisture measurements. The FDR probes (Delta-T 

Devices Ltd., Cambridge, UK) consist of a waterproof casing for the electronics and four 

6 cm long parallel stainless steel rods (to be inserted into the soil) and a data logger. This 

system provides a quick and efficient method for measuring soil moisture patterns (with a 

handheld logging device) or soil moisture time series (with a stationary data logger). The soil 

moisture value is averaged over a sampling volume with about 6 cm in length (along the rods) 

and a diameter of approximately 10 cm. 

FDR is an indirect method and it is based on the change of the amplitude of an emitted 

100 MHz sinusoidal wave signal as a function of the soil dielectric constant, also known as 

permittivity or specific inductive capacity (Gaskin and Miller, 1996). The dielectric constant 

is a measure of how polarizable a material is, when subjected to an electric field and is 

measured usually in relation to the dielectric constant of free space (then called relative 

dielectric constant). The relative dielectric constant of soil consists of the relative dielectric 

properties of liquid water (approximately 80) and dry soil (2-5, depending on bulk density), 

and the volume fraction of each component involved. Thus, when the soil moisture content in 

the soil increases, the relative dielectric constant increases. However, the dielectric constant of 

moist soil is more complex than a simply weighted average of its components and the mixing 

model has many influencing factors (Jackson and Schmugge, 1989). A comprehensive 

overview over the topic complex dielectric constant is given by Von Hippel and Labounsky 

(1995). The most commonly used relationship to convert the dielectric constant to volumetric 

soil moisture is an empirical third order polynomial expression established by Topp et al. 

(1980). This conversion is almost independent from soil density, soil texture, soil salinity and 

soil temperatures (for temperatures between 10°C and 36°C) and has been used as a quasi-

standard method in various investigations.   
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2.2.2. Advanced Synthetic Aperture Radar 

The Advanced Synthetic Aperture Radar (ASAR) was launched as one of ten instruments 

onboard the ENVISAT-1 satellite by the European Space Agency (ESA) with a sun-

synchronous polar orbit in 2002. It is an active radar instrument, operating in C-band with a 

center frequency of 5.331 GHz (the corresponding wavelength is 5.62 cm) and can perform 

multiple acquisition modes. The penetration depth of the radar determines the sample volume 

and varies between half of the wavelength to the order of some tenths of the wavelength (in 

wet soil conditions). In our study wide swath images with a resolution of approximately 

150 m and a swath width (width the sensor can observe) of 400 km were used, because this 

mode is suitable for the derivation of large scale surface soil moisture patterns. The single 

scenes were acquired on the same orbit, hence the time lag between the different images 

equals the orbital repeat cycle of the satellite of 35 days. 

The derivation of surface soil moisture values from radar remote sensing is based on the 

sensitivity of the SAR backscatter intensity to the dielectric constant of the moist soil (see 

FDR measurements). But the backscatter signal at the C-band is also significantly influenced 

by vegetation and surface roughness, thus for the estimation of spatial soil moisture patterns, 

correction procedures for these two factors are required. Physically based backscatter models 

for the inversion of soil moisture from the radar data are only available for bare soil 

conditions and require either detailed independent soil data or additional radar data to isolate 

the effects of surface roughness and surface soil dielectric constant. This detailed additional 

data is often unavailable, particularly for larger areas. Empirical and semiempirical algorithms 

have shown their potential to derive soil moisture from single-frequency SAR data, but their 

applicability might be limited to the region where they are developed (Oh et al., 1992; 

Rombach and Mauser, 1997). If transferred to a different area, they must be validated again. 

An overview of the existing inversion approaches is given by Verhoest et al. (2008). 

2.3. Soil moisture modeling 

Soil moisture modeling in the context of ecohydrology can be characterized by two main 

types of concepts: i) empirical modeling concepts, with only a statistical or conceptual (high 

degree of abstraction) description of the processes and their underlying controlling factors and 

ii) process based dynamic modeling concepts, with a process based description of the physical 

processes and the capability of simulating nonlinear interactions. Process based dynamic 

models are suitable for climate change studies, the analysis of complex cause and effect 
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principles and have a high transferability to other areas. The transferability of models or 

modeling concepts from the point or small scale, where they are being developed and 

validated, to the larger or even global scales is another big challenge and a large source of 

uncertainty. Three examples of concepts for bridging this scale gap are effective parameters 

(Hansen et al., 2007), Geo-complexes (Ludwig et al., 2003), and hydrological response units 

(HRUs, Flügel, 1995). Due to the large variety of models and model concepts with various 

complexities of process descriptions at different scales, a short description of the concepts in 

the model we used in our investigation is given in the following section instead of a general 

overview over different models and concepts (for this, see Pitman, 2003; Sellers et al., 1997).  

The ecohydrological model used in this study is the DANUBIA simulation system. It is a 

component and raster based modeling tool designed for coupling models of different 

complexity and temporal resolution and consist of 17 components in its complete structure, 

representing natural as well as socio-economic processes (Barth et al., 2004; Barthel et al., 

2012). It was developed in the GLOWA-Danube Project to investigate the impacts of Global 

Change on the Upper Danube catchment in Southern Germany. For the current study in the 

northern part of the Rur catchment, only the ecohydrological components regarding plant 

growth, soil nitrogen transformation, hydrology, and energy balance were used. These 

components model fluxes of water, energy, nitrogen and carbon in the soil-vegetation-

atmosphere system using physically based process descriptions.  

The vertical water fluxes in the soil are modeled using a modified Eagleson approach 

(Eagleson, 1978). The modification particularly pertains to describing water fluxes in soil by a 

user defined number of soil layers. Percolation of the upper soil layer is interpreted as 

effective precipitation for the downward layer (Mauser and Bach, 2009). Volumetric soil 

moisture and matrix potential is calculated according to the one-dimensional, concentration 

dependent diffusivity equation (Philip, 1960). Eagleson (1978) presented an analytical 

solution of the Philips equation for simplified boundary conditions to model the key processes 

of soil water movement, namely infiltration, exfiltration, percolation and capillary rise. Most 

of the hydrological models use a numerical solution of the Richards' equation to describe soil 

water flow (e.g. HYDRUS, Šimůnek et al., 2008), but for our distributed soil moisture 

modeling at larger scales only an analytical algorithm like the Eagleson approach is practical. 

This analytical and physically based approach is computationally efficient and it avoids 

iterative solutions.  It has proven its applicability (Mauser and Bach, 2009; Schneider, 2003) 

and all necessary input data can be derived from soil texture, which is extensively available 

from soil maps. Moreover, the use of the Richards' equation may be not valid, when used with 
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larger grid sizes comparable to our study (Vogel and Ippisch, 2008) and can in some cases 

lead to loss of the physical basis. 

The crop growth model (Lenz-Wiedemann et al., 2010) simulates water, carbon, and 

nitrogen fluxes within the crops as well as the energy balance at leaf level. It models 

photosynthesis, respiration, soil layer-specific water and nitrogen uptake, dynamic allocation 

of carbon and nitrogen to four plant organs (root, stem, leaf, harvest organ), as well as 

phenological development and senescence. Resulting from the interplay of these processes, 

transpiration is a function of available energy, stomatal conductance (controlled by soil 

moisture and CO2), and leaf area (emerging from carbon and nitrogen dynamics). The water 

and nitrogen uptake is differentiated between the different soil layers based on the distribution 

of the plant roots. The main concepts and algorithms are adopted and extended from the 

models GECROS (Yin and van Laar, 2005) and CERES (Jones and Kiniry, 1986). The soil 

nitrogen transformation model (Klar et al., 2008) is based on algorithms from the CERES 

maize model (Jones and Kiniry, 1986) and models nitrogen transformation processes: 

Mineralization from two organic carbon pools (easily decomposable fresh organic matter and 

stable humus pool), immobilization, nitrification, denitrification, urea hydrolysis, and nitrate 

leaching. The iterative solution of the energy and mass balance is calculated based on the 

results exchanged between the soil component (including a soil temperature model from 

Muerth and Mauser, 2012) and the plant growth component. Meteorological input was 

derived from meteorological station data, using the method described by Mauser and Bach 

(2009).  

The full coupling of the different components as well as the dynamic plant growth 

component (in contrast to a prescribed vegetation) consider the manifold interactions and 

feedbacks between soil, plant, and atmosphere with regard to water and energy fluxes and 

their resulting effect on soil moisture and evapotranspiration. Thus, DANUBIA is a suitable 

model to investigate soil moisture patterns at larger scales in strongly managed agricultural 

areas. 

2.4. Patterns of surface soil moisture 

Many factors control the spatial patterns and temporal dynamics of surface soil moisture. 

Among these a distinction can be made between static and dynamic factors (Reynolds, 

1970b). Static factors are particularly topography (e.g., slope and aspect affect runoff, 

infiltration, and evapotranspiration) and soil properties (e.g., texture, porosity and organic 
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matter content affecting water holding capacity). Dynamic factors are meteorological 

conditions (e.g., precipitation, solar radiation, air temperature, wind speed, humidity), 

vegetation dynamics (e.g., influencing transpiration, evaporation from intercepted 

precipitation) and human management (e.g., irrigation). The influence of the different factors 

can vary significantly over time in the same landscape. Grayson et al. (1997) distinguish 

between two states: A) a wet state, denoted as non-locally controlled, which is dominated by 

lateral water movement through both surface and subsurface paths, with catchment terrain 

leading to organization of wet areas along drainage lines, and B) a dry state, denoted as 

locally controlled, dominated by vertical fluxes (e.g., evapotranspiration), with soil properties 

and only local terrain (areas of high convergence) influencing spatial patterns. But also 

precipitation as the main driver of surface soil moisture can occur at different scales in space 

and time. Convective precipitation can be characterized by small spatial extent, high 

intensities and short durations, with typical spatial scales of 1–10 km and typical temporal 

scales ranging from 1 minute to 1 hour. Whereas frontal weather systems tend to produce 

wide areas of relatively uniform rainfall with typical spatial scales of 100–1000 km and 

typical temporal scales of 1 day (Grayson and Blöschl, 2000). 

Autocorrelation length is often used to analyze the spatial structure of soil moisture fields 

and their driving parameters. For a small grassland catchment, Western and Grayson (1998) 

found shorter autocorrelation lengths on wet days, related to the smaller spatial scale of lateral 

redistribution, in contrast to longer autocorrelation lengths on dry dates, connected to the 

larger scale of evapotranspiration as the dominant driver. At the field scale (mainly on wheat 

fields) in a semi-arid climate, Green and Erskine (2004) found a spatial structure of surface 

soil moisture, but no clear connection of the autocorrelation length to dry or wet soil moisture 

conditions. Western et al. (2004) compared soil moisture autocorrelation lengths of soil 

moisture and terrain attributes, indicating the important role of topography at one test site and 

the variation of soil properties at other test sites. But these studies focused on small 

catchments, mostly with homogeneous vegetation, therefore the influence of the interacting 

factors topography, vegetation, soil, and precipitation on surface soil moisture patterns were 

not investigated. Other studies used Empirical Orthogonal Functions to analyze the variability 

of surface soil moisture and their driving factors over a large variety of scales, from the field 

scale for agricultural sites (Yoo and Kim, 2004) to small catchment scales (Perry and 

Niemann, 2007), and to regional scales (Jawson and Niemann, 2007). At the field and small 

catchment scale topography related factors were found to be most important for the spatial 

patterns, whereas soil texture was identified to be the most important factor on the regional 
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scale. This indicates that topographic characteristics influence soil moisture largely through 

lateral flows, which are not easily observed at larger scales. 

Many studies have analyzed the statistical properties of the spatial structure of soil 

moisture in terms of the relationship between soil moisture variability and mean soil moisture 

using point measurements (e.g., Famiglietti et al., 1998; Western et al., 1998), remotely 

sensed images (e.g., Kim and Barros, 2002; Rodriguez-Iturbe et al., 1995) and model 

generated maps (e.g., Manfreda et al., 2007; Peters-Lidard et al., 2001). Contrasting findings 

of the relationship have been reported. Some studies found an increase of spatial variability 

with decreasing mean soil moisture (e.g., Choi and Jacobs, 2011; Famiglietti et al., 1999), 

others found opposite trends (e.g., Famiglietti et al., 1998; Western and Grayson, 1998) or 

were unable to detect a trend (e.g., Charpentier and Groffman, 1992; Hawley et al., 1983). 

Teuling and Troch (2005) explained these contrasting findings by analyzing that both, soil 

properties and vegetation dynamics, can act to either create or destroy spatial variability. The 

main discriminating factor between both behaviors is a critical moisture content in the soil, 

defined by the transition between stressed and unstressed conditions for transpiration. 

Moreover, Rodriguez-Iturbe et al. (1995) and Manfreda et al. (2007) showed that spatial soil 

moisture variability is not only depending on mean soil moisture, but also varies with the 

spatial scale of the analysis following a power-law relationship. 

 



Analysis based on field measurement  14 
 

3. Analysis of surface soil moisture patterns based on field 

measurements  
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Abstract. Soil moisture is one of the fundamental variables
in hydrology, meteorology and agriculture. Nevertheless,
its spatio-temporal patterns in agriculturally used landscapes
that are affected by multiple natural (rainfall, soil, topog-
raphy etc.) and agronomic (fertilisation, soil management
etc.) factors are often not well known. The aim of this study
is to determine the dominant factors governing the spatio-
temporal patterns of surface soil moisture in a grassland and
an arable test site that are located within the Rur catchment in
Western Germany. Surface soil moisture (0–6 cm) was mea-
sured in an approx. 50×50 m grid during 14 and 17 measure-
ment campaigns (May 2007 to November 2008) in both test
sites. To analyse the spatio-temporal patterns of surface soil
moisture, an Empirical Orthogonal Function (EOF) analysis
was applied and the results were correlated with parameters
derived from topography, soil, vegetation and land manage-
ment to link the patterns to related factors and processes.
For the grassland test site, the analysis resulted in one sig-
nificant spatial structure (first EOF), which explained 57.5%
of the spatial variability connected to soil properties and to-
pography. The statistical weight of the first spatial EOF is
stronger on wet days. The highest temporal variability can
be found in locations with a high percentage of soil organic
carbon (SOC). For the arable test site, the analysis resulted
in two significant spatial structures, the first EOF, which ex-
plained 38.4% of the spatial variability, and showed a highly
significant correlation to soil properties, namely soil texture
and soil stone content. The second EOF, which explained
28.3% of the spatial variability, is linked to differences in
land management. The soil moisture in the arable test site
varied more strongly during dry and wet periods at locations

Correspondence to: W. Korres
(wolfgang.korres@uni-koeln.de)

with low porosity. The method applied is capable of iden-
tifying the dominant parameters controlling spatio-temporal
patterns of surface soil moisture without being affected by
single random processes, even in intensively managed agri-
cultural areas.

1 Introduction

Soil moisture is one of the fundamental variables in hydrol-
ogy, meteorology and agriculture as it plays a major role in
partitioning energy, water and matter fluxes at the bound-
ary between the atmosphere and the pedosphere. Its spatio-
temporal distribution influences the partitioning of precipita-
tion into infiltration and runoff (Western et al., 1999a) and it
partitions the incoming radiation into latent and sensible heat
due to the control of evaporation and transpiration. It has a
strong impact on the response of stream discharge to rainfall
events, it plays a significant role in producing floods (Kitani-
dis and Bras, 1980) and affects erosion from overland flow
and the generation of gullies (Moore et al., 1988). More dis-
charge and erosion have been observed in areas with high
soil moisture that are well connected to channels (Ntelekos
et al., 2006). The spatio-temporal variation of soil moisture
is also reflected in spatial patterns of plant growth and crop
yield (Jaynes et al., 2003). For example, crop yield is highly
sensitive to early season soil moisture conditions, especially
during seed germination (Green and Erskine, 2004).

Due to difficulties in measuring spatio-temporal patterns
of soil moisture at larger scales and owing to the impor-
tance of these patterns for many environmental processes,
great efforts were undertaken to derive spatially distributed
soil moisture maps from remote sensing and modelling (Op-
pelt et al., 1998; Owe and Van de Griend, 1998; Schneider,
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2003). Since surface soil moisture data is potentially avail-
able for large areas using remote sensing products (Koyama
et al., 2010), it is of great interest to analyse the driving pa-
rameters which explain these patterns. To build an adequate
model, all relevant processes that affect spatial and temporal
soil moisture variability must be identified and addressed. In
case of strong spatial variations in soil properties or a dom-
inance of vertical fluxes, such as evapotranspiration or infil-
tration, soil moisture patterns are controlled by local prop-
erties and processes (Grayson et al., 1997; Vachaud et al.,
1985). If soil moisture is horizontally redistributed by lat-
eral fluxes, non-local dependencies can play a decisive role
(Herbst and Diekkrüger, 2003). Both, locally and non-locally
controlled processes and their varying importance in time
are essential for the determination of soil moisture patterns.
Hawley (1983) determined that topography (relative eleva-
tion) is the most important driver of soil moisture in small
agricultural watersheds. Even in watersheds with little slope,
soil moisture values are consistently higher at the bottom of
the slope. Vegetation tends to override this topographic influ-
ence. The effect of soil texture on surface soil moisture ap-
pears to be larger under wet conditions; minor variations in
soil type seem to be insignificant. For all soil texture classes
(except sands), soil moisture variability is typically high in
a mid range between 18 and 23 Vol.-% (Vereecken et al.,
2007). On a 1.4 ha hillslope, Burt and Butcher (1985) de-
tected the development of saturated areas in downhill, low
slope and convergent locations, indicating lateral redistri-
bution of soil water via saturated flow above impermeable
bedrock. The correlation between Wetness Index (WI; Beven
and Kirkby, 1979) and soil moisture was generally better
during wet conditions (Burt and Butcher, 1985). However,
lateral water movement in unsaturated soils can also be ob-
served and may reach the same order of magnitude as the
vertical movement. This is caused by anisotropic permeabil-
ity due to different soil layers (Zaslavsky and Sinai, 1981;
Herbst et al., 2006). For the Tarrawarra grassland catchment
in south eastern Australia (Western et al., 1999a), the high-
est correlation between soil moisture and topographic char-
acteristics occurred for moderately wet conditions. This re-
lationship deteriorates for dry and very wet (near saturation)
conditions. The soil moisture autocorrelation calculated for
different dates generally showed longer correlation length on
dry dates, related to the larger spatial scale of evapotranspi-
ration as the dominant driver. The shorter correlation length
on wet days seems to be connected to the smaller spatial
scale of lateral redistribution (Western et al., 1998). Green
and Erskine (2004) found no clear correlation length of soil
moisture at the field scale for a semi-arid climate. Western
et al. (2004) compared soil moisture correlation lengths with
the spatial correlation of terrain attributes indicating the im-
portant role of topography at one site and the variation of
soil properties at other sites. Empirical Orthogonal Func-
tion (EOF) analysis can be used to identify the dominant
processes and essential parameters controlling soil moisture

patterns. Since introduced to the analysis of geophysical
fields by Lorenz (1956), EOF analysis has been widely ap-
plied for the analysis of the spatial and temporal variability
of large multidimensional datasets and has been commonly
used in meteorological studies. More recently it has also
been used to analyse soil moisture patterns at a large vari-
ety of scales, from the field scale for agricultural sites (Yoo
and Kim, 2004), to catchment scales (Perry and Niemann,
2007), and to regional scales (Jawson and Niemann, 2007;
Kim and Barros, 2002). The result of this analysis is a small
number of spatial structures (EOFs) that explain a high per-
centage of variation of the dataset and temporal varying co-
efficients (ECs), which modulate the influence of these spa-
tial structures in time. Utilizing correlation analyses, these
underlying (stable) patterns of soil moisture variations can
be connected to parameters derived from topography, soil,
vegetation, land management and meteorology. Our dataset
contains “snapshots” in time and the intention of our analysis
is not to analyse continuous soil moisture seasonality. The
main objectives of this study are to identify the dominant
parameters and underlying processes controlling the stable
spatial and temporal patterns of surface soil moisture under
different soil moisture states and to examine whether the ap-
plication of this method in agriculturally used areas, which
are affected by heterogeneous, land-use dependent manage-
ment procedures, also provides reasonable results.

2 Test sites

Field measurements were carried out in a grassland test
site in Rollesbroich and an arable test site in Selhausen,
both located west of Cologne, Germany. The grassland site
(50◦37′25′′ N/6◦18′16′′ E) covers an area of approximately
20 ha with nine fields of extensively used grassland (Fig. 1).
This test site is typical for the low mountain ranges of the
Eifel. Slopes range from 0 to 10◦, while altitude ranges from
474 to 518 m a.s.l. Mean annual air temperature and aver-
age annual precipitation measured at a meteorological sta-
tion 9 km west (altitude 505 m) of the test site are 7.7 ◦C
and 1033 mm, respectively. No pronounced seasonality in
precipitation can be found. The dominant soils are (gleyic)
Cambisol, Stagnosol and Cambisol-Stagnosol. The grass-
land vegetation is dominated by a ryegrass society, par-
ticularly perennial ryegrass (Lolium perenne) and smooth
meadow grass (Poa pratensis).

The arable site (50◦52′10′′ N/6◦27′4′′ E) covers an area
of approximately 34.3 ha and represents an intensively used
agricultural area, where crops are grown on gentle slopes (0–
4◦). The altitude ranges from 102 to 110 m a.s.l. A mean
annual air temperature of 9.8 ◦C and an average precipitation
of 690 mm with slightly higher values occurring in June and
July were measured at a meteorological station 4.5 km to the
north-west (altitude 90 m). Main soils are (gleyic) Cambisol
and (gleyic) Luvisol with a high amount of coarse alluvial

Hydrol. Earth Syst. Sci., 14, 751–764, 2010 www.hydrol-earth-syst-sci.net/14/751/2010/



W. Korres et al.: Analysis of surface soil moisture patterns 753

1
0

3

1
0

8
109

1
1

0

1
0
6

1
0
4

1
0
2

101

Field boundaries
1 m contour lines

(height a. s. l.)  

5 m contour lines

(height a. s. l.)

1
0

3
5

0
5

515

510

515

505

500

495
490

485

480
475

510

50˚37'25''N

Measuring points

F1

F2

F3

F4

F5

F6

F7

F8

F9

F5

F6

F4

F2

F1

F3

Field numberF8

1
0
5

1
0
7

Grassland ArableLand

50˚52'10''N
0 150 300

Meters

6˚18'16''E

6˚27'04''E

0 150 300

Meters

 

 

Fig. 1. Topography, field layout and measuring grid of the grassland (Rollesbroich) and the arable test site (Selhausen).

deposits on a former river terrace in the eastern part. The
land cover types during the measurement period were sugar
beet (beta vulgaris), wheat (triticum aestivum), rye (secale
cereale), oilseed radish (raphanus sativus oleiformes) and
fallow.

3 Field measurements

3.1 Grassland test site

Surface soil moisture measurements for the topsoil layer (0–
6 cm) were performed on an approx. 50×50 m grid (Fig. 1).
The measurement locations were slightly adjusted according
to local conditions such as field boundaries. While the aver-
age distance to the next measurement location was 50 m, the
minimum distance was 20 m and ranged up to 60 m. Mea-
surements were taken during 14 campaigns from May 2007
to November 2008 at 41 to 96 locations. To provide represen-
tative values, each measurement location is represented by
the average of six measurements carried out within a radius
of 10 cm. Soil moisture was measured with handheld FDR
probes (Delta-T Devices Ltd., Cambridge, UK). The probes
were calibrated individually in the laboratory using a mix-
ture of water and glass beads to provide well defined water

content and tested on soil samples from the test sites. Based
on these lab procedures, the FDR probes yield an absolute
accuracy of ±3 Vol.-% and a relative accuracy of ±1 Vol.-%
(Delta-T Devices Ltd., Cambridge, UK). To investigate the
influence of soil texture and soil organic carbon (SOC) on the
surface soil moisture, soil samples in three depths (0–10 cm,
10–30 cm and 30–60 cm) were taken at every sampling lo-
cation. Carbon content and soil texture were determined
using mid-infrared-spectroscopy (Bornemann et al., 2008).
The results from spectroscopy analysis were calibrated to
carbon content using samples analysed with a CN Elemen-
tar Analysator (Elementar, Germany). In addition, topsoil
(0–5 cm) porosity and soil organic matter (SOM) were mea-
sured at four locations in the northern part of the test site,
where very high surface soil moisture values (up to 75 Vol.-
%) were determined (especially field F2).

3.2 Arable test site

Similarly to the grassland test site, surface soil moisture
(<6 cm) was measured in the arable test site on a grid of ap-
prox. 50×50 m (Fig. 1). Again the locations were adjusted
according to local conditions and field boundaries. Measure-
ments were taken during 17 campaigns between May 2007
and November 2008 at 44 to 118 locations. Soil information
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was taken from a high resolution soil map (Bodenkarte
1:50 000, Geologischer Dienst, North-Rhine-Westphalia). A
terrace slope with an elevation difference of about 2–3 m cuts
through the test site. Soil translocation by tillage operations
at the edge of the terrace result in a high percentage of stones
at the surface in the vicinity of the terrace slope. The up-
per terrace plain has a high stone content, while the lower
plain generally shows a lower stone content. The stone cover
on the surface within a sample area of 0.4×0.4 m was vi-
sually estimated at each measuring location using a wooden
frame. On every location, three replicate measurements were
taken. Using previously measured data of the course fraction
of soil material, a relationship between the stone cover and
the coarse fraction of the top soil layer (0–30 cm) was estab-
lished by correlation analysis for two parallel transects with
8 measurement points. This analysis resulted in a Pearson
correlation coefficient of r=0.89. The stone cover analysis is
subsequently used in the pattern analysis. The ground based
data set was complemented by data on the tillage practice for
each field.

4 Methods

4.1 Empirical Orthogonal Functions analysis

Empirical Orthogonal Functions (EOF) analysis is one of the
best known data analysis techniques and a well established
method of multivariate data analysis (Jolliffe, 2002). The
EOF analysis, also known as principal component analysis,
decomposes the observed variability of a dataset into a set
of orthogonal spatial patterns (EOFs) and a set of time series
called expansion coefficients (ECs). While single soil mois-
ture patterns might be affected by random processes (e.g.
rainfall shortly before measuring), significant EOFs repre-
sent stable patterns of a dataset and are by definition not ran-
dom (definition of statistical significance in Sect. 4.2). The
existing degree of randomness of a single soil moisture pat-
tern is reflected by the associated EC, since the EC value
represents the proportion of the significant EOF pattern in
the soil moisture pattern of each date. In consequence, we
did not use single soil moisture patterns (which might be
random) but the EOF patterns for the subsequent correlation
analysis.

Measurements, taken at location xi(i = 1,...p) and at time
tj (j=1,. . . n), are arranged into a matrix D (n by p:n sam-
pling times and p sampling locations), in a so called S-mode.
Each row of the matrix represents the measurements at one
point in time at all locations and each column represents a
time series of measurements for a given location. To anal-
yse the spatial variability of the data, a matrix F is computed
from the matrix D by subtracting the average of each row of
the data matrix D (average soil moisture for a given observa-
tion time over all measurements locations). Analogously, to
analyse the temporal variability, the average of each column

is subtracted from matrixD (average soil moisture for a given
location for all measurements conducted at that location). In
the next step, the covariance matrix R (p by p) of the data
matrix F is calculated:

R= 1
N −1

FtF (1)

where the superscript t indicates a transposed matrix and N

is the number of observations.
R is diagonalized to find the eigenvectors and eigenvalues:

RC=C� (2)

where � (p by p) is a diagonal matrix containing the eigen-
values λi of R, and C (p by p) contains the eigenvectors ci

of R in the column vectors, corresponding to the eigenval-
ues λi . For more details on the procedure see Jolliffe (2002);
Hannachi (2007) or Preisendorfer (1988).

This procedure rotates the original coordinate axes in a
multidimensional space to align the data along a new set of
orthogonal axes in the direction of the largest variance. Thus,
the first axis or eigenvector is oriented in the direction that
explains the largest variance. The subsequent axes are con-
strained to be orthogonal to the axes computed before and
consecutively explain the largest part due to the remaining
covariance. The eigenvectors ci in the columns of the matrix
C are the EOFs. The EOFs represent patterns or standing
oscillations that are invariant in time. To analyse how the
EOFs evolve in time, the expansion coefficients (ECs) asso-
ciated with each EOF are calculated by projecting the matrix
F onto the matrix C:

A=FC (3)

where the matrix A contains the expansion coefficients ai in
the column vectors.

The EOF analysis produces p (p=sampling locations)
EOF/EC pairs, but only min (n,p) eigenvalues (n=sampling
times) are greater than zero and only a subset (usually a much
smaller set) of these positive eigenvalues are meaningful. In
general, the EOFs and ECs are rearranged in descending or-
der due to their eigenvalues, so that the first EOF (EOF1) is
associated with the largest eigenvalue. The fraction of vari-
ance explained (EV) by each EOF can be found by dividing
the associated λi by the sum of all eigenvalues (the trace of
�):

EVi = λi

p∑
i=1

λi

(4)

Following Björnsson and Venegas (1997) and Hannachi et
al. (2007), the EOFs and the ECs can be determined very
efficiently by singular value decomposition (SVD) without
computing the covariance matrix and solving the eigenvalue
problem. This decomposition by SVD provides a compact
representation, because it drops unnecessary zero singular
values (equivalent to zero eigenvalues).
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4.2 Selection of significant EOFs

After decomposition, the EOFs and ECs can be used to re-
construct the full variability of the dataset by selecting all
EOF/EC pairs. However, to approximate and compress a
dataset, only the first few EOF and EC pairs that explain the
largest fraction of variance are usually selected. This results
in a reduction of dimensionality. By truncating the system,
a “cleaner” version of the dataset is constructed, because
random noise contained in the higher order EOFs is elimi-
nated (Björnsson and Venegas, 1997; Preisendorfer, 1988).
In practice, this truncation is often achieved by selecting a
threshold for the overall explained variance (e.g. 80%) and
choosing the set of leading EOFs that cumulatively explain
at least this amount of variance. A prerequisite for the phys-
ical interpretation of single EOFs is that the EOFs are signif-
icantly different from each other. The linear combination of
two EOFs, which are not significantly different and therefore
degraded, may be based upon the same underlying physical
processes. Thus, any linear combination of patterns based on
degraded EOFs is as significant as each one of them (Han-
nachi et al., 2007).

To estimate the correct number of significant patterns
(EOFs) for the subsequent physical interpretation, two se-
lection rules are applied. One rule utilizes a measure of un-
certainty for the eigenvalues and is summarized by the rule
of thumb (North et al., 1982) defining the typical error (�)
of eigenvalues:

�(λi) ≈ λi

√
2
s

(5)

where s is the number of independent samples (or the number
of degrees of freedom).

The 95% confidence interval (CI95) for each eigenvalue is
then given by:

CI95 (λi) ≈ λi(1±
√

2
s
) (6)

The EOFs are considered to be significantly non degenerate
if the 95% confidence intervals of the neighbouring eigenval-
ues do not overlap.

An additional rule is to use Monte Carlo simulations
to estimate the uncertainties of the eigenvalues (Rule N;
Preisendorfer, 1988). The eigenvalues of the measured data
set have to be significantly higher than the eigenvalues of a
random dataset. To test this, one thousand realisations of nor-
mally distributed surrogate data sets with a zero mean and
a standard deviation of one in the dimension of the matrix
of the original dataset (n by p) are calculated and analysed
by the EOF analysis. From the results of these one thou-
sand realisations, the upper 95% confidence interval of the
eigenvalues is calculated and taken as the limit for the signif-
icance of the eigenvalues of the measured dataset. Another
calculation with randomized measured values instead of nor-
mally distributed surrogate data resulted in the same number

of significant EOFs and is not additionally presented here. In
this calculation, the positions of the elements of the real mea-
surement data matrix were randomized along one dimension.
For the spatial Monte Carlo-analysis, the positions of the el-
ements in every row (all measurements on every single date),
for the temporal Monte Carlo-analysis, the positions of the
elements in every column (all measurements at every single
point) were randomized.

Both selection rules were used in our data analysis to de-
termine the number of significant EOF/EC pairs. Both re-
quire knowledge of the number of independent samples (s).
In Eq. (6), the number of independent samples was used di-
rectly to estimate the errors of the eigenvalues and in the
Monte Carlo analysis, the dimensions of the surrogate data
matrix were changed from (n by p: n sampling times and p

sampling locations) to (n by s) for the spatial and to (s by p)
for the temporal analysis, resulting in a higher limit for the
first few EOFs to be considered significant. This number of
independent samples (or degrees of freedom) is calculated in
Sect. 5.2.

4.3 Secondary parameters and correlation analysis

The aim of the EOF analysis is to identify stable spatial and
temporal patterns in a set of surface soil moisture measure-
ments. To identify the dominant drivers governing the sur-
face soil moisture patterns, the EOFs were correlated with
secondary parameters derived from topographical, soil, vege-
tation, land management and meteorological data. The EOFs
may only be correlated with parameters that are invariant in
time. The temporal development of biomass may explain, to
some degree, the soil moisture patterns at a given day due to
growth, cutting or grazing for instance, but it does not pro-
vide a temporally invariant signal and is therefore not suit-
able to explain the EOF patterns. Accordingly, it is only use-
ful to correlate the EC time series with parameters which are
invariant in space. This condition can be assumed to be valid
for the parameter precipitation, because of the small size of
our test sites.

The parameters used in our correlation analysis are associ-
ated with parameters determining vertical/local (e.g. field ca-
pacity, soil texture, SOC etc.) and horizontal/non-local (e.g.
elevation, flow accumulation, curvature etc.) water flow. El-
evation, multiple flow accumulation (e.g. specific drainage
area), natural log of the multiple flow accumulation, slope,
slope−1, horizontal curvature, vertical curvature and Wetness
Index are computed from a 10 m DEM (Sci Lands, 2008)
with ArcGis 9.2 (ESRI, USA). Soil type data in the grass-
land test site was derived from the 1:5000 soil map (Geol-
ogischer Dienst, North-Rhine-Westphalia) and was particu-
larly used to delineate an gleyic area (Stagnosol; imperme-
able soil layer). Field capacity in the arable test site was
derived from the 1:50 000 soil map (Geologischer Dienst,
North-Rhine-Westphalia). The percent of surface stone cover
in the arable test site and the percent clay, silt, sand and SOC
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in the grassland test site were measured. Topographic param-
eters such as Wetness Index, Flow Accumulation, Slope and
Curvature were not computed for the arable test site, since
in this predominantly flat area, the flow path is affected by
features such as field boundaries and tillage tracks within the
field rather than the slope given in the DEM.

5 Results

5.1 Analysis of field measurements

Both test sites show a large range of different soil mois-
ture conditions (Figs. 2, 3), ranging from very dry condi-
tions (22.2 Vol.-% in the grassland test site, and 19.5 Vol.-
% in the arable test site) to very wet conditions (54.3 Vol.-
%, 32.5 Vol.-%, respectively). The soil moisture over
all measurements generally indicates higher average values
(46.5 Vol.-%) for the grassland site as compared to the arable
test site (26.6 Vol.-%) and a lower spatial variability (coeffi-
cient of variance (CV): 9.6% for grassland, 14.2% for arable
land). The average standard deviation of the soil moisture
over all days of measurement in the grassland test site was
4.5 Vol.-% (Min.: 3.2 Vol.-%, Max.: 5.8 Vol.-%,) and in the
arable test site, it was 3.8 Vol.-% (Min.: 2.3 Vol.-%, Max.:
6.3 Vol.-%). Due to the higher soil moisture status in the
grassland test site, the range of the average soil moisture in
the grassland test site (32.1 Vol.-%) exceeded the respective
range in the arable test site (13.1 Vol.-%). These differences
are due to the higher precipitation, the higher soil porosity
and the higher amount of soil organic carbon content (SOC)
in the topsoil of the grassland test site. Extremely high sur-
face soil moisture values were particularly measured in field
F2 in the grassland test site, which is located in the lowest
part of the test site. Due to the dense root network of the grass
cover, the amount of soil organic matter (SOM) in the top-
soil is higher than 8 Vol.-%. Hence low bulk densities (0.57
to 0.83 g cm−3) prevail, with smallest values measured in the
lower northern part of the test site with dominating gleyic
soils. Due to the high organic content in this area, the max-
imum porosity reached values of up to 70% in the topsoil.
In the arable test site, the maximum measured soil moisture
reached 40%. The length of the whiskers in Fig. 2 indicates
a large spatial variability of the surface soil moisture in the
grassland test site. The average range of the soil moisture val-
ues measured in the grassland test site is 25.3 Vol.-% (Min.:
14.3 Vol.-%, Max.: 36.1 Vol.-%) and 18.4 Vol.-% (Min.: 9.1
Vol.-%, Max.: 25.9 Vol.-%) in the arable test site. The mea-
surements of the 14 measurement campaigns in the grassland
test site and the 17 in the arable test site accumulate to a total
number of 17124 FDR-measurements. To avoid the imputa-
tion of missing values and to keep the results interpretable,
the EOF analysis was computed with a continuous data set
without missing data. Thus only 8 of the 14 measurement

days from the grassland test site and 10 of the 17 measuring
days from the arable test site were used for the subsequent
analysis.

5.2 Degrees of freedom

For the evaluation of spatial interdependencies between the
measurement locations, a spatial autocorrelation analysis
was performed, calculating Moran’s I statistic (Moran, 1950)
for a number of distance classes. This statistic calculates val-
ues between 1 (indicating perfect correlation) and −1 (per-
fect dispersion) between the different distant classes, a value
of 0 indicates a completely random pattern. A number of
25 distance classes, each containing 183 data pairs for each
day of measurement, were calculated for the grassland. For
the arable test site, 30 classes were computed. Over all mea-
surement campaigns, we determined an average autocorrela-
tion length of 117 m for the grassland test site and 123 m for
the arable test site. Hence, 16% (grassland) and 9% (arable
land) of all distance pairs are assumed to be autocorrelated.
The number of significant EOFs is sensitive to the number
of independent samples (degrees of freedom). Thus, to ac-
count for the influence of spatial autocorrelation on the eval-
uation of significant EOFs, the number of sampling locations
was reduced by these percentages of autocorrelated distance
pairs, resulting in 81 and 107 independent spatial sampling
locations for the grassland test site and the arable test site,
respectively. For the temporal analysis, dates of each mea-
surement campaign were considered to be independent, if
the time span between two measurement dates added up to
at least 20 days. This resulted in 6 and 8 degrees of freedom
for the calculation of significance in the time domain.

5.3 EOF-Analysis

The analysis of the spatial patterns in the grassland test
site yields a set of 8 EOF/EC pairs. EOFs calculated for
analysing spatial patterns are referred to as spatial EOFs.
Analogously, EOFs calculated to investigate temporal pat-
terns are referred to as temporal EOFs. The spatial EOF1 of
the grassland test site explains 57.5% of the spatial variance
of the dataset, while EOF2 explains only 10.2% (Fig. 4a).
The 95% confidence limit of the Monte Carlo simulation ex-
ceeds the explained variance of EOF2 to EOF8. Also, the
95% confidence interval of EOF1 does not overlap with the
neighbouring EOFs. As a result, the first EOF is significant.
The pattern of the spatial EOF1 (Fig. 5a) shows high posi-
tive values. This indicates higher than average soil moisture
values in the northern part (fields F1, F2 an F3), which is in
the valley section of the test site. Highest positive values can
be found in field F2. Minimum values with negative signs
are located in the central part of the test site (field F6). The
EOF values increase slightly towards the southern part. The
associated expansion coefficient (spatial EC1, Fig. 5b) shows
a maximum value on 29 April 2008 and a minimum value on
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Fig. 2. Box-Whisker-Plot for the grassland site of all days of surface
soil moisture measurements; the bottom and top of the box show the
lower and upper quartiles, the band near the middle of the box is the
median, the ends of the whiskers represent the measured minimum
and maximum surface soil moisture; the number to the right of each
box indicates the number of sampling locations for each date; data
sets without gaps (n=96) were used for the EOF analysis.

3 June 2008. This maximum EC1 values coincides with the
high average soil moisture values on these measuring dates,
while the low EC values indicate dry conditions.

The analysis of the spatial patterns in the arable test site
yields a set of 10 EOF/EC pairs. The spatial EOF1 ex-
plains 38.4% and EOF2 28.3% of the spatial variability of the
dataset (Fig. 6a). Only these first two EOFs satisfy the signif-
icance requirements, because the 95% confidence intervals
of their eigenvalues neither overlap with neighbouring confi-
dence intervals nor are their eigenvalues within the 95% con-
fidence interval of the eigenvalues of the Monte Carlo sim-
ulation. All eigenvalues and confidence limits can be con-
verted into EV-values (see Figs. 4a, b, and 6a, b) according
to Eq. (4). The spatial EOF1 (Fig. 7a) shows the lowest neg-
ative values in the eastern part of the test site and an irregular
and patchy pattern with higher values in the rest of the test
site. The EOF2 (Fig. 7b) shows a two peaked distribution
with high positive values on some fields contrasted by low
negative values on other fields with an abrupt change of the
EOF values typically at the field boundaries. The values of
the EC1 (Fig. 7c), which express the weight of the EOF1 on
the different dates, are positive on all dates and reach a max-
imum value on 27 July 2007 and a minimum value on 24
April 2008. The values of the EC2 (Fig. 7d) show a mini-
mum value with a negative sign on 19 September 2008 and
a maximum and positive value on 27 July 2007. Thus, the
influence of the EOF1 varies only gradually during the dates
of measurements, while the EOF2 reverses its influence in an
annual cycle.
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Fig. 3. Box-Whisker-Plot for the arable test site of all dates of mea-
surements; the bottom and top of the box show the lower and upper
quartiles, the band near the middle of the box is the median, the
ends of the whiskers represent the measured minimum and max-
imum surface soil moisture; the number to the right of each box
indicates the number of sampling locations for each date; data sets
without gaps (n=118) were used for the EOF analysis.

Both analyses, for the grassland and the arable test site, re-
sulted in only one significant temporal EOF/EC pair (Figs. 4b
and 6b). The temporal EOF1 of the grassland test site ex-
plains 92% of the temporal variance and all values are posi-
tive. It shows a pattern similar to the spatial EOF1. Smaller
and negative values occur in the northern part of the test site.
However, the pattern is more irregular and patchy (Fig. 8a) as
compared to the spatial EOF. The temporal EC1 has a max-
imum value on 27 May 2008 and a minimum value on 29
April 2008 (Fig. 8b). The temporal EOF1 of the arable test
site explains about 72.5% of the temporal anomalies of the
data set (Fig. 6b) and has all positive values with maximum
values in field F3 in the eastern part of the test site (Fig. 9a).
The associated EC1 has the highest positive value on 2 Oc-
tober 2007 and the lowest negative value on 10 September
2008 (Fig. 9b).

The interpretation of the results from spatial and temporal
EOF analyses requires the consideration of the sign of the
EOF values and the sign of the associated EC values, because
the soil moisture variability explained by this EOF/EC pair
(anomalies) is computed by multiplying EOF and EC.

5.4 Correlation analysis

The spatial patterns computed from the EOF analysis were
correlated with different parameters for the grassland (Ta-
ble 1) and the arable test sites (Table 2). These parame-
ters were derived from topography, soil, vegetation and land
management data and allow relating the patterns found in the
EOF analysis to the driving processes. Only significant cor-
relations of the EOF patterns with the parameters are pre-
sented here. The spatial patterns determined for the grassland
test site show the highest Pearson correlation coefficient with
elevation and the soil property gleyic/non gleyic. By distin-
guishing between gleyic and non gleyic soils, an ordinal scale
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Fig. 4. Variance spectrum of the spatial (a) and temporal (b) analysis in the grassland test site. Error bars indicate the 95% confidence
interval according to Eq. (6); the solid line represents the significance limit calculated by Monte Carlo simulation.

was defined for use in the correlation analysis. The highest
correlation for the temporal pattern was with SOC, percent-
age of sand in the topsoil (0–10 cm) and soil type. In the
arable test site, the first spatial pattern was highly correlated
with elevation and soil parameters, particularly the percent-
age of stone cover and field capacity (Table 2). The correla-
tions of the parameters with the temporal EOF1 pattern were
smaller but also highly significant. The second spatial pattern
(EOF2) cannot be correlated with any of the tested parame-
ters. The temporal course of the EC1 values of the spatial
analysis in both test sites shows a high correlation coeffi-
cient with the average soil moisture (r=0.73 for grassland,
r=−0.71 for arable land). The temporal course of the EC1
patterns for the temporal analysis shows a perfect correlation
to the mean soil moisture for both test sites (Table 3). The
different signs of the Pearson correlation coefficients are due
to the different signs of the EOF values. Several parameters
used to explain the EOFs are correlated (e.g. field capacity, %
sand, % silt and % clay) and point to the same hydrological
process.

6 Discussion

6.1 Spatial analysis

The analysis performed on the spatial variability in the grass-
land test site shows that the main soil moisture pattern (spa-
tial EOF1) is strongly related to soil properties and explains
about 57.5% of the spatial soil moisture variation. The highly
significant correlations with the soil property gleyic / non
gleyic (r=0.7), soil texture (e.g. % sand 0–10 cm: r=−0.42),
and SOC (r=0.47 for 0–10 cm and r=0.37 for 10–30 cm)
indicate a clear link to infiltration (locally controlled verti-
cal process). The impermeable Stagnosol layer resulted in
a higher amount of organic matter and also in a very high
porosity in the topsoil at these points. The pattern is also
linked to catchment topography. The correlations to pa-

Table 1. Pearson correlation coefficients between EOFs and topo-
graphic and soil parameters for the grassland test site; Curvature
H/V, % Clay 0–10 cm, 10–30 cm and % SOC 30–60 cm were addi-
tionally tested but not significant; EV is the variance explained by
the EOF.

Grassland spatial EOF1 temporal EOF1
(57.5% EV) (92% EV)

Elevation [m] −0.57(**) 0.27(**)
Flow Accumulation 0.32(**) −0.24(*)
ln (Flow Accumulation) 0.45(**) −0.23(*)
Slope [◦] 0.46(**) not significant
1/Slope [◦] −0.32(**) not significant
Wetness Index 0.34(**) not significant
Soil Parameter gleyic/ 0.70(**) −0.34(**)
non gleyic
Sand [%]
0–10 cm −0.42(**) 0.33(**)
10–30 cm −0.4(**) 0.27(**)
30–60 cm −0.4(**) 0.26(*)
Silt [%]
0–10 cm 0.41(**) −0.30(**)
10–30 cm 0.35(**) −0.22(*)
30–60 cm 0.41(**) −0.24(*)
Clay [%]
30–60 cm not significant 0.21(*)
SOC {%]
0–10 cm 0.47(**) −0.44(**)
10-30 cm 0.37(**) −0.25(*)

* Correlation is significant at the 0.05 level (2-tailed test).
** Correlation is significant at the 0.01 level (2-tailed test).

rameters such as elevation (r=−0.57), natural logarithm of
flow accumulation (r=0.45), slope (r=0.46) and Wetness In-
dex (r=0.34) indicate that the spatial pattern is related to
landscape position, which is affected by two processes: the
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Table 2. Pearson correlation coefficients between EOFs and topographic and soil parameters for the arable test site; EV is the variance
explained by the EOF.

Arable land spatial EOF1 spatial EOF2 temporal EOF1
(38.4% EV) (28.2% EV) (72% EV)

Elevation [m] −0.73(**) not significant 0.47(**)
Surface stone cover [%] −0.79(**) not significant 0.48(**)
Field capacity [%] 0.75(**) not significant −0.41(**)

** Correlation is significant at the 0.01 level (2-tailed test)

position within the landscape determines (i) the redistribu-
tion of water through surface runoff and subsurface drainage
and (ii) the amount of solar radiation received at this position,
which affects the amount of evapotranspiration.

Perry and Niemann (2007) applied an EOF analysis to the
widely studied soil moisture dataset of 459 locations at 13
campaigns from the 10.5 ha Tarrawarra grassland catchment
(Western and Grayson, 1998; Western et al., 1998, 2001,
1999a, b). The first EOF in their study explained 55% of
the spatial variability of soil moisture. Similar to our results,
a clear dependence on hillslope and valley topography was
determined which was most prominent during wet periods.
Our EOF analysis yielded one significant spatial EOF ex-
plaining 57.5% of the variance. Due to the smaller size of our
dataset, the spatial EOF2 (10% explained variance) is statisti-
cally degenerated, whereas the second EOF in the study done
by Perry and Niemann (2007) explained 9% of the spatial
variability and could be related to the exposition (or PSRI;
Potential Solar Radiation Index). Yoo and Kim (2004) inves-
tigated the characteristics of spatial and temporal variability
of soil moisture and the relative roles of various affecting
factors with the data of the SGP97 Little Washita field site
(Famiglietti et al., 1999). Their first EOF accounted for more
than 70% of the variability for interstorm periods and more
than 60% for the whole dataset. The most important factors
are topography related to a decreasing role after rainfall stops
and an increasing role of soil- and land-use-related factors.
Jawson and Niemann (2007) decomposed remotely sensed
soil moisture data from the SGP97 field campaign with an
EOF analysis and found a single pattern explaining 61% of
the observed spatial variability. The physical characteristic
most related to the EOF pattern seemed to be soil texture
(percent sand and percent clay). In contrast to the findings of
Yoo and Kim (2004), topographic characteristics were rela-
tively unimportant and even less relevant for dry conditions.
Jawson and Niemann (2007) attributed this to the fact that
topographic characteristics may influence soil moisture pat-
terns mainly through lateral flow. However, lateral flow was
not observed at the scale of this study.

In summary it can be stated that our findings are in agree-
ment with the previously mentioned studies that about 55%
to 70% of surface soil moisture variability can be explained

Table 3. Pearson correlation coefficients between ECs and the soil
moisture average from each measuring campaign.

Soil Moisture
Average [%]

Grassland spatial EC1 0.73(**)
Grassland temporal EC1 −1.00(**)

Arable land spatial EC1 −0.71(**)
Arable land spatial EC2 not significant
Arable land temporal EC1 1.00(**)

**Correlation is significant at the 0.01 level (2-tailed test).

by stable patterns and is correlated to soil parameters and to-
pography. On the other hand, our result for the grassland test
site indicates that 42.5% of the spatial variability changes in
time and can therefore not be explained by a stable spatial
pattern. This portion of the overall variance is mainly due
to differences in management (grazing, cutting and fertiliz-
ing) of the different fields. Also random noise due to mea-
surement errors contributed to the unexplained variance. In
the EOF analysis of spatial patterns, the impact of tempo-
rally variable factors, which do not affect the whole area uni-
formly, results in noise, decreases the amount of the variance
explained by the significant EOFs or decreases the number
of significant EOFs. In addition, a difficulty in interpret-
ing the results for the grassland test site is the not exactly
known location and functionality of old drainage pipes in
field F6. While the low values of field F6 might indicate that
the drainage tiles are still functioning, a clear relationship
with this effect cannot be established. The existence of func-
tioning drainage tiles should yield a stable spatial pattern.

The spatial EC1 is positively correlated with the average
soil moisture of the measuring days, meaning that EOF1 re-
flects more the structure of soil moisture during wet days
than during dry days. As expected, during wet periods, lat-
eral redistribution of water over longer distances is possible
and the effect of the impermeable soil layer of the soil type
(Stagnosol) on surface soil moisture is more pronounced.
This leads, in combination with the higher amount of organic
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matter and higher porosity in the topsoil of the Stagnosol area
of the test site, to very high topsoil moisture values (up to
75 Vol.-%). The impact of the Stagnosols decreases as the
soil dries with increasing evapotranspiration. Prior findings
of Perry and Niemann (2007), indicating a pronounced de-
crease of the weight of the spatial EOF1 pattern on very dry
and very wet conditions, cannot be confirmed by our dataset.
Potential causes of this discrepancy might be stronger sea-
sonality in the Tarrawarra catchment and the lack of dry con-
ditions during the measurements in our grassland test site.
Also, the first EOF in the Tarrawarra test site is primarily re-
lated to landscape position and the associated lateral redis-
tribution of water and subordinately to evapotranspiration,
while our first EOF is rather related to soil properties than
landscape position.

Most of the previous studies at a comparable spatial scale
to our study focussed on test sites with little management
impacts. Our study also investigated spatial anomalies in an
arable test site. Our results show, that the first spatial EOF
in the arable test site is still related to soil properties, namely
surface stone cover (r=−0.79) and field capacity (r=0.75)
and explains 38.4% of the variance. However, the second
EOF indicates effects originating from different seasonality
in tillage operations of the different fields. The spatial pat-
terns of the first EOF can be explained from the effects of an
old river terrace which crops out in the eastern part of the test
site approximately at an elevation of 107 m (see Fig. 1) and
causes a high amount of coarse alluvial deposits in the adja-
cent fields (F1/3/4), especially on field F3. Both parameters,
stone cover and field capacity, point at the importance of spa-
tial differences of soil properties in relation to soil moisture
dynamics. The highly significant correlation with elevation
(r=−0.73) must be seen as an artefact from the cross cor-
relation of the presence of outcrop of the old river terrace
and its position in the elevation gradient. The correlation be-
tween the spatial EC1 and the average soil moisture (r=0.71)
shows that the influence of the EOF1 pattern associated with
soil properties is more pronounced on dry dates. Due to the
lower porosity in the eastern part of the test site, soil moisture
decreases more rapidly after precipitation.

The spatial EOF2 shows no significant correlation with
any of the tested parameters. However, the variation of
the spatial EOF2 values is quite small within the individ-
ual fields (coefficient of variation (CV) between −5.2 and
0.6%) while it is pronounced between different fields (CV:
−43.5%), which indicates that the EOF2 pattern is domi-
nated by a different seasonality in tillage operations in dif-
ferent fields. The importance of tillage operations on soil
moisture can be shown for soil moisture dates with similar
patterns to the spatial EOF2 values (27 July 2007 between
the adjacent fields F5 and F6; 19 September 2008 between
the adjacent fields F1 and F2). On both dates, the wetter
field of the two was harvested while the drier field was also
ploughed the week before the measurements. Because of the
higher porosity after ploughing, soil moisture decreased in-
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Fig. 5. EOF1 (a) and EC1 (b) patterns of the spatial analysis in
the grassland test site; the triangles in (b) represent the average soil
moisture on the different days.

ducing a steep gradient at the field boundaries. The highest
positive and negative values of the spatial EC2 can be found
on days with low average soil moisture, when some field
were ploughed just before the measurements (27 July 2007,
16 September 2008 and 19 September 2008). Due to mul-
tiple vegetation periods being covered in our multi-annual
dataset, there is no spatial stability with regards to land man-
agement effects. This is reflected in the negative and positive
values of the spatial EC2 in our measurements, indicating a
reversing management pattern. Thus, we can identify the in-
fluence of the land management by tillage (i.e. the increase of
pore volume after ploughing and differences in evaporation)
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Fig. 6. Variance spectrum of the spatial (a) and temporal (b) analysis in the arable test site. Error bars indicate the 95% confidence interval
according to Eq. (6); the solid line represents the significance limit calculated by Monte Carlo simulation.
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Fig. 7. EOF1 (a), EOF2 (b), EC1 (c) and EC2 (d) patterns of the spatial analysis in the arable test site; the triangles in (c) and (d) represent
the average soil moisture on the different days.
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and different crop rotation or vegetation heights, resulting in
differences of transpiration. These results from the spatial
analysis show that it is possible to apply EOF analyses on
managed agricultural fields or regions. The structure of our
dataset with alternating management patterns in the two con-
secutive years of measurements allows to detect not only the
stable pattern (connected with soil parameters), but also the
non stable pattern of different land management options on
the different fields.

6.2 Temporal analysis

The temporal analysis identifies locations with large tempo-
ral variability. These locations are identified by high abso-
lute numbers in Fig. 8a. Both temporal EC1s have a perfect
correlation with the average soil moisture on the days of the
measurements, substantiating the control of these patterns by
wet and dry periods. The existence of only one dominant
mode of temporal variability in each test site, with all nega-
tive EOF1 values in the grassland test site and all positive
EOF1 values in the arable test site, indicates a consistent
reaction of the soil moisture values on dry and wet periods
in the same direction on each test site. Both test sites are
small enough to assume homogeneous precipitation across
the fields over the time of measurements. The comparatively
high value of explained variance (13.1%) of the temporal
EOF2 in the arable test site might indicate the influence of
land management. The temporal EOF1 in the grassland test
site explains 92% of the temporal variance. This is related to
soil properties (e.g. % SOC: r=−0.44; Soil Type: r=−0.34;
% Sand: r=0.33) and catchment topography (e.g. Elevation:
r=0.27). Therefore, the highest soil moisture variability dur-
ing dry and wet periods in the grassland test site is located in
its low-lying parts. Here also high SOC contents in the top-
soil can be found. These high topsoil SOC contents are asso-
ciated with areas where higher soil moisture content prevails
over longer time periods resulting from and indicated by the
Stagnosols. In the arable test site, the points with the high-
est temporal EOF1 values are correlated with surface stone
cover (r=0.48) and field capacity (r=−0.41), implying that
soil moisture varies more on locations with low porosity. At
these locations higher thermal conductivity and lower wa-
ter holding capacity, caused by higher content of the coarse
fraction in the soil, lead to a higher temporal variance of soil
moisture.

7 Conclusions

Empirical Orthogonal Function analysis was used to detect
the stable spatial and temporal patterns of surface soil mois-
ture. A subsequent correlation analysis was used to identify
the dominant parameters and underlying processes control-
ling the stable (significant) spatial and temporal patterns of
surface soil moisture under different soil moisture states. In
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Fig. 8. EOF1 (a) and EC1 (b) patterns of the temporal analysis in
the grassland test site; the triangles in (b) represent the average soil
moisture on the different days.

the grassland test site (Rollesbroich), one significant spatial
pattern, explaining 57.5% of the spatial soil moisture vari-
ability, was determined. This pattern is related to soil prop-
erties (soil type) and topography. Its dominance is largest
during or shortly after wet periods, because under wet condi-
tions, the lateral redistribution of water and the varying infil-
tration by different soil types becomes more important. An-
other significant spatial pattern accounting for the differences
in land management (grazing, cutting, fertilizing) could not
be identified for the grassland site. The highest soil moisture
variability was in the lower parts of the test site at locations
with a high percentage of SOC and influenced by the soil
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Fig. 9. EOF1 (a) and EC1 (b) patterns of the temporal analysis in
the arable test site; the triangles in (b) represent the average soil
moisture on the different days.

type in that area. In the arable test site (Selhausen), two sig-
nificant patterns controlling the major part of the spatial vari-
ability were determined. The first pattern (spatial EOF1), ac-
counting for 38.4% of the variance, is strongly related to soil
properties (surface stone cover and field capacity). The im-
pact of this pattern is more pronounced during dry periods,
indicating a compensating effect of precipitation. The sec-
ond pattern (spatial EOF2) explains 28.3% of the variance
and can be assigned to different land management patterns,
influencing soil properties and increased evaporation due to
tillage as well as transpiration, due to different crops and dif-
ferent dates of sowing and fertilization. More than 66% of
the spatial variability of surface soil moisture in the arable
test site can be explained by these two patterns associated
with soil properties and land management. The highest tem-
poral variability of soil moisture during the dry and wet peri-
ods can be found on locations with low porosity. The struc-

ture of our dataset with alternating management patterns in
the arable test site in two consecutive years of measurements
allows detecting not only the stable pattern (connected with
soil parameters), but also the non stable pattern of different
land management options on different fields.

In general, a combination of EOF and correlation analysis
provides an objective method to identify the dominant pa-
rameters controlling spatio-temporal patterns of surface soil
moisture, without being affected by single random processes.
This is even possible in intensively managed agricultural ar-
eas. Moreover, this combination has the capability to quan-
tify the proportion of influence of different parameters on soil
moisture patterns under different soil moisture states.
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Variability of Surface Soil Moisture 
Observed from Mul� temporal 
C-Band Synthe� c Aperture Radar 
and Field Data
The study aimed to analyze the spa� al variability of surface soil moisture at di� erent spa� al 
scales based on � eld measurements and remote sensing es� mates. Mul� temporal Envisat 
satellite Advanced Synthe� c Aperture Radar (ASAR) data were used to derive the surface 
soil moisture u� lizing an empirical C-band retrieval algorithm. Eight wide-swath (WS) 
images with a spa� al resolu� on of 150 m acquired between February and October 2008 
were used to determine the surface soil moisture contents. The accuracy of the surface 
soil moisture retrievals was evaluated by comparison with in situ measurements. This com-
parison yielded a root mean square error of 5% (v/v). Based on our in situ measurements as 
well as remote sensing results, the rela� onship of the coe�  cient of varia� on of the spa� al 
soil moisture pa� erns and the mean soil moisture was analyzed at di� erent spa� al scales 
ranging from the catchment scale to the � eld scale. Our results show that the coe�  cient of 
varia� on decreases at all scales with increasing soil moisture. The gain of this rela� onship 
decreases with scale, however, indica� ng that at a given soil moisture state, the spa� al vari-
a� on at the large scale of whole catchments is larger than at the � eld scale. Knowledge of 
the spa� al variability of the surface soil moisture is important to be� er understand energy 
exchange processes and water � uxes at the land surface as well as their scaling proper� es.

Abbrevia� ons: ASAR, Advanced Synthe� c Aperture Radar; SAR, synthe� c aperture radar; WS, wide swath.

Soil moisture and its distribu� on in space and time plays a critical role in the 
surface energy balance at the soil–atmosphere interface; it is a key variable infl uencing the 
partitioning of solar energy into latent and sensible heat fl ux as well as the partitioning of 
precipitation into runoff  and percolation. In situ measurements of soil moisture are time 
and cost intensive. Due to their large spatial variability, estimation of spatial patterns of 
soil moisture from fi eld measurements is rather diffi  cult and not feasible for large-scale 
analyses. Although hydrologic models have shown their capability to derive spatial soil 
moisture patterns, their application is a challenging task, requiring a multitude of input 
data (such as soil properties, i.e., hydraulic characteristics and permeability, along with 
meteorologic and climatologic data). Neither the full spatial variability of these environ-
mental parameters nor the full details of the processes are typically known, thus modeled 
spatial patterns tend to reduce spatial variability. Th erefore, as well as due to the need for 
independent validation, direct and repeatable soil moisture measurements covering large 
spatial scales obtained from remote sensing instruments is becoming increasingly necessary 
and now, with the advent of new sensor generations, feasible.

Th e sensitivity of the radar backscattering coeffi  cient (σ0) to soil moisture at low micro-
wave frequencies is well described in the literature (Boisvert et al., 1997; Loew et al., 2003; 
Quesney et al., 2000). Numerous research activities performed within the last three decades 
have demonstrated that sensors operating in the low-frequency portion of the microwave 
electromagnetic spectrum (especially the P and L bands) are suitable for measuring the 
surface moisture content. Th e penetration depth of the radar beam depends on soil charac-
teristics and moisture state. It is typically in the order of some tenths of the wavelength up to 
half a wavelength. While the combination of diff erent frequencies, polarizations, and inci-
dence angles provide best results (e.g., Dubois et al., 1995; Wang et al., 1997; Romshoo et al., 
2000), these data are today only available from airborne sensors. Th e P band is not available 
from current satellite sensors and full polarimetric space-borne L-band data are available 
only from PALSAR aboard the Advanced Land Observing Satellite (ALOS). Space-borne 
systems do not off er the repetition rate, spatial resolution, frequency, and polarimetric 

The rela� onship between the spa� al 
variability of surface soil moisture 
and the mean surface moisture con-
tent is inves� gated at di� erent scales 
(� eld to catchment scale) using in situ 
measurements and synthe� c aperture 
radar retrievals. We show that the 
spa� al variability strongly depends on 
scale as well as on soil moisture status.
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characteristics needed for continuous high-resolution soil moisture 
monitoring. Current and future satellite-based synthetic aper-
ture radar (SAR) systems such as ALOS-2 (Japanese Aerospace 
Exploration Agency), SENTINAL-1 (European Space Agency), 
DESDynI (NASA Jet Propulsion Laboratory), etc., are, and will 
be in the foreseeable future, limited to a single frequency band. 
Nonetheless, considerable eff ort has been successfully devoted to 
research on the retrieval of soil moisture from C-band data, which 
is operational today on Earth Observation platforms such as ERS-2, 
RADARSAT-1, ENVISAT, and RADARSAT-2. Besides being 
sensitive to soil moisture, however, the radar backscatter signal at 
the C-band (4–8 GHz) is signifi cantly infl uenced by vegetation 
and surface roughness. Th us the estimation of spatial soil moisture 
patterns with a suitable accuracy for many applications requires the 
use of correction procedures for vegetation and roughness eff ects 
(Calvet et al., 1995; Cognard et al., 1995; Le Hégarat-Mascle et al., 
2002; Baghdadi et al., 2002; Loew et al., 2006; Bryant et al., 2007).

For bare soils, the relationship between the SAR backscattering coef-
fi cient (σ0), surface roughness, and surface soil moisture has been 
well investigated (Autret et al., 1989; Calvet et al., 1995; Boisvert 
et al., 1997; Le Toan et al., 2002; Baghdadi et al., 2002). It is based 
on the large contrast of the dielectric constant (έ ) of dry soil (~3) 
and water (~80). Th e dielectric constant directly aff ects the back-
scatter intensity. Physically based backscatter models are available 
for bare soil conditions (Oh et al., 1992; Fung, 1994; Dubois et al., 
1995; Baghdadi and Zribi, 2006). In general, these scattering models 
calculate σ0 as a function of sensor confi guration and soil surface 
state, allowing the inversion of near-surface volumetric water con-
tent; however, these physically based models require either detailed 
knowledge of the spatial patterns of soil parameters (e.g., surface 
roughness) or multiple radar channels or polarizations to isolate the 
eff ects of the surface dielectric constant and surface roughness. A 
suitable parameterization of these models, especially for larger areas, 
is therefore oft en not possible (Romshoo et al., 2000; van Zyl and 
Kim, 2001). Empirical and semiempirical algorithms have shown 
their potential to derive soil moisture from single-frequency SAR 
data (Oh et al., 1992; Rombach and Mauser, 1997). Th eir appli-
cability might be limited to the region where they were developed, 
however, and thus must be validated if transferred to a diff erent area. 
A comprehensive overview of existing theoretical, semiempirical, and 
empirical inversion approaches was given by Verhoest et al. (2008).

A key issue with regard to soil moisture is to understand the spatial 
patterns at diff erent scales, the scaling behavior, and the processes 
that lead to spatial patterns. Several studies have investigated the 
spatial variability of soil moisture based on remotely sensed as well as 
ground-based measurements. Reynolds (1970) classifi ed the controls 
into static (e.g., topography and soil texture) or dynamic (e.g., rainfall 
and varying vegetation cover) parameters. Th e lower boundary of 
the wilting point and the upper boundary of soil saturation provide 
physical limits for variations in water content for a given soil tex-
ture. Th us, one can assume that the relationship between the spatial 

variance in soil moisture and the average moisture content shows a 
decrease in variance at low as well as at high soil moisture values.

Measurements provided by Famiglietti et al. (1998), for instance, 
support this assumption. They monitored time series of soil 
moisture along a 200-m hillslope transect and found that the 
magnitude of the spatial variability across the transect decreased 
with decreasing mean moisture values. Owe et al. (1982), as well 
as Albertson and Montaldo (2003), found the trend of variability 
to depend on the mean soil moisture state. Comparable fi ndings 
were also published by other groups (e.g., Bell et al., 1980; Western 
and Grayson, 1998; Choi and Jacobs, 2007). Nevertheless, stud-
ies with contradictory observations can be found. Hawley et al. 
(1983), as well as Charpentier and Groff man (1992), did not fi nd 
a relationship between mean soil moisture and soil moisture vari-
ability. Other researchers found increasing moisture variability 
with decreasing mean soil moisture (e.g., Famiglietti et al., 1999; 
Hupet and Vanclooster, 2002; Oldak et al., 2002). Th ese observa-
tions indicate that in a complex landscape, the spatial variability 
is a result of the interactions of many diff erent parameters and 
processes. Moreover, observations have been made that show that 
the dependency of the soil moisture variability on the mean soil 
moisture varies with spatial scale (Rodriguez-Iturbe et al., 1995; 
Crow and Wood, 1999). Teuling and Troch (2005) showed that 
both soil and vegetation controls can cause either the creation or 
destruction of spatial variance. Vereecken et al. (2007) conducted a 
re-examination of recent experimental work (e.g., Choi and Jacobs, 
2007; Choi et al., 2007) showing that the spatial variance increases 
when drying occurs from a very wet state. Spatial variability peaks 
at moisture values in the mid range between maximum and mini-
mum values and decreases accordingly with further drying.

Th e primary aim of the study was to analyze the spatial variability 
of surface soil moisture based on remote sensing and fi eld measure-
ments at diff erent spatial scales. To this end, we derived a time 
series of surface soil moisture patterns from ASAR data of the 
European Earth Observation satellite ENVISAT using an empiri-
cal soil moisture retrieval algorithm by Loew et al. (2006). Th e 
algorithm was validated with independent ground-truth measure-
ments. Based on these data, the dependence of spatial soil moisture 
variability on the soil moisture state was analyzed for diff erent spa-
tial scales ranging from the fi eld to the catchment scale.

 �Materials and Methods
Study Site
Th e research area of the SFB/TR32, namely the catchment of the 
River Rur, is located in the western part of Germany, covering 
a total area of 2364 km2 with about 10% belonging to Belgium 
(140 km2) and the Netherlands (100 km2). Th e area is divided 
into two major landscape units: (i) a fertile loess plain in the north 
dominated by agriculture, and (ii) a low mountain range in the 
south characterized by forest and grassland patches (Fig. 1).



www.VadoseZoneJournal.org | 1016

Field measurements were performed at two test sites within the 
catchment. Th e test site Rollesbroich (50°37́ 25˝ N, 6°18́ 16˝ E) rep-
resents typical grassland within the rolling topography of the Eifel. 
Th is test site is characterized by a mean elevation of ~510 m above 
sea level, slopes from 0 to 10° and mean annual precipitation of 
1200 mm. Th e dominant soils are Inceptisols, Alfi sols, and Aqualfs 
developed in silt loam, according to the U.S. Soil Taxonomy. Due to 
the dense root network of the grass cover, the amount of soil organic 
matter in the topsoil (<5 cm) is up to 8% (w/w) (Korres et al., 2009). 
Th us, low bulk densities (0.57–0.83 g cm−3) prevail. Th e test site 
Selhausen (50°52́ 10˝ N, 6°27́ 4˝ E) represents an intensively used 
agricultural area of the Belgium–Germany loess belt (subsequently 
referred to as fertile loess plain). Crops are grown on virtually fl at 
terrain (slopes 0–4°, mean elevation ~100 m above sea level, mean 
annual precipitation 705 mm). Th e major soils are Alfi sols and 
Inceptisols with a silt loam texture.

Ground-truth measurements were taken on 15 sampling fi elds at 
the two test sites. Th e measurements were performed on diff er-
ent land cover types (sugarbeet [Beta vulgaris L.], winter wheat 
[Triticum aestivum L.], and grassland vegetation dominated by a 
ryegrass society, particularly perennial ryegrass [Lolium perenne 
L.] and smooth meadow grass [Poa pratensis L.]). Th e size of the 
individual sampling fi elds varied between 2 and 10 ha. Th e surface 
soil moisture measurements were arranged in a grid with a sam-
pling point spacing of 30 to 60 m, with 12 to 24 points per fi eld. 
According to the length of the rods of the hand-held frequency 
domain refl ectometry probes (Th etaProbe ML2x, Delta-T Devices, 
Cambridge, UK), the measured surface soil moisture was an aver-
age value for the topmost 6 cm. To minimize sampling errors and 
to yield a representative value for each sampling location, each 
sampling location was represented by the mean of six individual 
measurements taken within a radius of 40 cm of the sampling 
location. Obvious measurement errors, which might occur for 
instance by incomplete contact with the substrate, were excluded 
from further analysis. At the grassland test site, distributed fi eld 
measurements were performed during Envisat overf lights on 
29 April, 3 June, and 16 September. At the arable land test site, 
distributed surface soil moisture measurements were performed 
during Envisat overfl ights on 29 April, 3 June, 8 July, 27 July, and 
16 September. In addition, we used measurements from six con-
tinuous soil moisture stations installed at the test sites. At these 
stations, soil water content was monitored with FDR probes 
installed at 10- and 30-cm depth for grassland, sugarbeet, and 
winter wheat. A transect along the slope at the Rollesbroich site 
was observed with a time domain refl ectometry (TDR) station 
(TDR-100/SDMX50, Campbell Scientifi c, Logan, UT).

Envisat Advanced Synthe� c Aperture Radar Data
Envisat ASAR operates at C-band with a center frequency of 
5.331 GHz and can perform multiple acquisition modes. The 
platform revolves around the Earth on a sun-synchronous polar 
orbit  with a nominal reference mean altitude of 800 km and 98.55° 

inclination. Th e SAR data used in the present study are eight WS 
images with a resolution of approximately 150 m and a swath width 
of 400 km. All images are from 2008, starting on 19 February and 
ending on 21 October. Because every scene was acquired on the 
same orbit, the time lag between the single-mode images equals the 
orbital repeat cycle of 35 d. An overview of the eight ASAR images 
used is given in Table 1. We used Level 1 ASAR wide-swath single-
look complex (ASA_WSS_1P) data, which represent single-look, 
complex, slant-range, digital images generated from Level 0 data. 

Table 1. Overview of the Advanced Synthetic Aperture Radar (ASAR) 
wide-swath, single-look (WSS), vertically co-polarized data acquired 
on descending orbits in 2008 used for this study.
Date Start time LIA near range† LIA far range‡ LIA mid range§

h —————————————  ° —————————————
19 Feb. 0959:09 28.8 30.5 27.1
25 Mar. 0959:10 28.7 30.4 27.0
29 Apr. 0959:07 28.8 30.5 27.1
3 June 0959:09 28.8 30.5 27.1
8 July 0958:49 28.9 30.6 27.2
12 Aug. 0959:10 28.8 30.5 27.1
16 Sept. 0958:45 28.8 30.5 27.1
21 Oct. 0959:08 28.9 30.6 27.2
† Th e local incidence angle (LIA) of the very eastern part of the catchment, 

which is closest to the sensor in range direction.
‡ Th e LIA of the very western part of the catchment, representing the location 

farthest from the sensor in range direction.
§ Th e LIA of the median of the catchment.

Fig. 1. River Rur catchment with the two major landscape units (gray 
shaded) and locations of the test sites for in situ soil moisture measure-
ments in Selhausen and Rollesbroich.
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All images were vertically co-polarized and were acquired on 
descending orbits.

Advanced Synthe� c Aperture 
Radar Data Processing
Th ere is no standard processing chain for SAR data. Principally, the 
processing depends on how the data were acquired (SAR system and 
acquisition mode). Additionally, the type of product that is envisaged 
determines how intermediate SAR products (i.e., terrain geocoded 
backscattering coeffi  cient data) will be further processed. All image pro-
cessing performed in this study used ENVI (ITT Visual Information 
Solutions, Boulder, CO) and the add-on module SARscape (sarmap, 
Purasca, Switzerland). Figure 2 outlines the image processing steps.

Aft er header analysis, full resolution extraction is performed to pro-
duce single-look complex (SLC) images. Wide-swath data must be 
multi-looked separately for each of its fi ve subswaths to produce the 
slant range intensity image with square resolution cells. Th e resolution 
of the WS SLC is 150 m. Auxiliary orbit and calibration information 
for each ASAR image are used to yield the most accurate multi-looked 
intensity images (Rosich and Meadows, 2004). Th e DORIS (Doppler 
Orbitography and Radiopositioning Integrated by Satellite) data 
provide precise orbital information for Envisat ASAR; two diff erent 
versions are available. We used the verifi ed orbits (VOR) because they 
provide the most precise location information; however, VOR data are 
not available until 1 mo aft er the actual satellite acquisition at the earli-
est. In addition, the most recent external calibration data (XCA) fi les 
were used to assure the best radiometric accuracy (ESA, 2007). Th ese 
ancillary ASAR data are also used in the following processing steps.

To render the application of a multitemporal speckle fi lter and to 
assure completely identical geometries, the multi-look images were 
subsequently co-registered. Th is step requires spatial registration 
to correct for relative translational shift  and rotational and scale 

diff erences. Co-registration can be described as the process of super-
imposing, in the slant range geometry, two or more SAR images 
having the same acquisition geometry (Meijering and Unser, 2004).

Speckle, a typical feature of SAR images, was reduced in a two-step 
approach. A fi rst step to reduce the speckle is inherently performed 
as part of the multi-looking procedure through averaging the range or 
azimuth resolution cells to produce the spatial resolution of the WS 
images. According to De Grandi et al. (1997), multitemporal speckle 
fi ltering should be applied whenever two or more images of the same 
scene taken at diff erent times are available. By exploiting the varying 
temporal correlation of speckle between images, this fi ltering process 
signifi cantly reduces the noise. Hence, we used a multitemporal De 
Grandi fi lter for despeckling of the images (De Grandi et al., 1997).

Aft er despeckling, the images were geocoded and radiometrically 
calibrated to σ0. Th e SAR images were orthorectifi ed using a high-
resolution (10-m) airborne laser scanner digital elevation model 
(Scilands, 2008). Local terrain slopes and aspects with respect to 
the incident wave result in signifi cant radiometric as well as geo-
metric distortions in the recorded backscatter amplitude (Meier 
et al., 1993). Also, the eff ects of variations in the scattering area 
must be accounted for (Ulander, 1996; Small et al., 2004). Th ese 
terrain eff ects were corrected, including an incidence angle correc-
tion, before calculating the surface soil moisture using SARscape.

 �  Empirical Soil Moisture 
Retrieval Model

Th e inversion approach for Envisat ASAR data was developed with 
the aim to provide soil moisture maps for mesoscale catchments 
in an operational manner. Th e algorithm is based on an empirical 
inversion scheme initially developed for C-band SAR data from 
the European Remote Sensing satellite mission (Rombach and 
Mauser, 1997). Th e approach calculates the real part of the complex 
dielectric constant έ  as a function of land use. Th us the algorithm 
requires a detailed land use map as well as additional soil texture 
information for the inversion of έ  to soil moisture by means of a 
dielectric mixing model. Th e model has proven its applicability in 
diff erent studies showing that surface soil moisture contents can be 
derived with a RMSE of 4 to 7% (v/v) and that it is also usable for 
mesoscale C-band SAR data (Schneider and Oppelt, 1998; Mauser, 
2000; Loew et al., 2003). An advantage of this empirical retrieval 
approach is that it requires very few model parameters to derive 
surface soil moisture values. Th e soil moisture retrieval model has 
been developed and validated for a range of land cover types, in par-
ticular cereal, root crops, bare soils, harvested fi elds, and grassland. 
Soil moisture is derived from the remotely measured backscatter in 
a two-step approach. First, έ  is derived from the SAR backscatter-
ing coeffi  cient σ0 and ancillary land use information. In a second 
step, the conversion of έ  to volumetric soil moisture (mv) contents 
is calculated on the basis of a soil texture map using the dielectric 
mixing model proposed by Hallikainen et al. (1985).

Fig. 2. Basic processing chain for Envisat satellite Advanced Synthetic 
Aperture Radar (ASAR) wide-swath, single-look complex (SLC) data, 
with input from external calibration (XCA) data and a digital elevation 
model (DEM) and output of the radar backscattering coeffi  cient (σ0).
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Th e measured backscattering coeffi  cient is converted to the relative 
dielectric constant by

[ ] [ ]20 0dB dBa b c�� = + � + �   [1]

where a, b, and c are empirical land-use-dependant model param-
eters, as shown in Table 2.

In contrast to the constant vegetation infl uence for the fi eld crops, 
a signifi cant impact of biomass on the backscattering coeffi  cient 
was observed for grassland (Rombach and Mauser, 1997). Th is 
fi nding was supported by Dubois et al. (1995), who observed sig-
nifi cant diff erences in backscatter intensities between grassland 
fi elds with the same soil moisture content attributable to varying 
amounts of biomass. Rombach and Mauser (1997) proposed the 
use of an attenuation factor Ω, which is related to the dry biomass 
of the grassland vegetation MDRY (kg/m2) as

DRYM�=���  [2]

where α and β are specifi c parameters, given in Table 2 for inten-
sively and extensively used grassland (Loew et al., 2006). It should be 
mentioned that the actual physical scattering mechanisms and atten-
uation properties due to interactions between aboveground biomass, 
thatch, and the underlying mineral soil constitutes a major problem 
for the estimation of soil moisture under grassland vegetation from 
C-band SAR (Martin et al., 1989; Saatchi et al., 1994; Wang et al., 
1997). Th e applicability of an empirical inversion algorithm to a dif-
ferent region and sensor system must be validated with independent 
measurements. In the present study, this validation was carried out 
on the basis of a large number of fi eld measurements.

Analysis of Soil Moisture Variability
To analyze the soil moisture variability at diff erent spatial scales, 
fi eld and remote sensing data with diff erent aggregation levels were 
used in a three-step approach: 

1. In a fi rst step, the ASAR soil moisture retrievals were analyzed 
at the scale of the entire Rur catchment and at the scales of 
the two major landscape units. At these scales, diff erences in 
soil moisture variability should result from variations in soil, 
topography (especially in the low mountain range area), land 
cover type, and potential variations in the spatial distribution 
of antecedent rainfall

2. In a next step, we analyzed 1.5- by 1.5-km boxes (10 by 10 pixels) 
of the ASAR-derived soil moisture (the number of boxes per 
image was 293). Th is analysis was restricted to the fertile loess 
plain because the eff ects of topography on rainfall, soil type, 
and soil moisture, as well as small-scale patterns in land cover 
type, should be reduced as far as possible. Th e mean soil mois-
ture and variance for the 1.5- by 1.5-km boxes were calculated 
by shift ing a nonoverlapping, moving, 10- by 10-pixel window 
over the ASAR images. Because not all of the pixels in the 
image (e.g., built-up areas, forests, and water) represent a soil 
moisture value, only those boxes that had at least 30% of the 

pixels classifi ed were included in the analysis. At this spatial 
scale, soil moisture diff erences should be dominated by diff er-
ences in land cover type, while diff erences due to varying soil 
texture should be small and homogenous antecedent rainfall is 
still a reasonable assumption.

3. For a fi eld-scale evaluation, the fi eld measurements at Selhausen 
were analyzed on the basis of individual fi elds (0.02–0.10 km2) 
to address the within-fi eld soil moisture variability because dif-
ferences in soil texture were small and homogenous antecedent 
rainfall per fi eld could be assumed.

At all spatial scales, the soil moisture variability was compared with 
the mean soil moisture content. To avoid interdependency between 
both statistical moments, coeffi  cients of variation instead of stan-
dard deviations were used to represent variability.

 �Results and Discussion
Soil Moisture Retrievals
Eight WS images were processed for 2008. As an example, Fig. 3 
shows the spatial patterns and frequency distribution of the soil 
moisture map for 25 March. Areas where the land cover did not 
allow the calculation of the surface soil moisture (e.g., built-up 
areas, forests, and water) remain unspecifi ed in the soil moisture 
maps. Th e soil moisture frequency distribution of the derived pat-
tern is shown in the histogram. Th e histogram shows a bimodal 
soil moisture distribution averaging 34.5% (v/v), with a range of 25 
to 47.5% (v/v); the fi rst and second peaks are centered at 31.5 and 
38% (v/v), respectively. While the soil moisture map shows quite 
similar soil moisture values within the major landscapes units, it 
can be seen that the low mountain range part is wetter than most 
areas of the fertile loess plain. Within a period of 2 d before the 
satellite overpass, the catchment received precipitation amounts 
ranging from 2.2 to 8.5 mm. Th e image covers 97% of the Rur 
catchment area. Th e southeastern part of the catchment (approxi-
mately 70 km2) is not covered due to missing land use information.

To evaluate the applicability and quality of the derived soil moisture 
inversion algorithm, we compared the surface soil moisture values cal-
culated from the ASAR data with in situ ground-truth measurements. 

Table 2. Land-use-dependent coeffi  cients for the inversion of the radar 
backscattering coeffi  cient (σ0) to the dielectric constant (έ ) using Eq. 
[1] and biomass correction coeffi  cients for Eq. [2] at an incidence angle 
of 23° (Loew et al., 2006).

Land use
Model parameters
a b C R2

Bare soil 34.20 4.42 0.15 0.90
Cereal 42.77 4.91 0.16 0.88
Harvested fi elds 45.71 5.87 0.20 0.81
Grassland 40.94 5.33 0.18 0.92
Root crops 42.05 4.42 0.15 0.84

Biomass correction a b

Meadow, extensive use 0.9765 0.7278
Meadow, intensive use 1.0350 0.5934
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Fig. 3. Envisat satellite Advanced Synthetic Aperture Radar (ASAR) derived soil moisture pattern of the River Rur catchment from 25 Mar. 2008.
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Th e soil moisture estimates were determined on a pixel-by-pixel basis 
from the space-borne microwave measurements in the C-band using 
the empirical algorithm discussed above. Because the coeffi  cients 
of these equations were based on previous research (Rombach and 
Mauser, 1997), ground-truth data and remote sensing estimates were 
independent of each other. Because ASAR WS pixels provide an aver-
age value for a 150- by 150-m surface, comparison of remote sensing 
and ground measurement was done on the basis of individual fi elds 
and for all available dates with ground-truth data.

Figure 4 shows the comparison of measured and retrieved soil mois-
ture values for all eight maps. Triangles indicate the average values 
measured for the diff erent fi elds. According to the individual size, 
each fi eld is represented by 10 to 24 measurement locations, each 
covered by six samples. In addition, measurements taken at our 
continuous-measurement sites are shown as circles. Because the 
continuous measurements represent only the given measurement 
location instead of an areal average, larger diff erences in the point 
measurements and the spatial mean covered by the remote sensing 
data may exist. Nevertheless, the measurements taken at the con-
tinuous-measurement sites match the values derived from remote 
sensing very well.

Comparison of the fi eld average ground-truth data with ASAR-
derived soil moisture values yielded a RMSE of 5% (v/v). While 
fi eld measurements and remote sensing estimates agreed well in 
the mid and low soil moisture range, at high soil moisture states 
the ASAR retrievals signifi cantly underestimated the fi eld mea-
surements. Very high soil moisture values in excess of 45% (v/v) 
were measured only under grassland, where the handheld probes 
integrated the wet thatch and the mineral soil parts. Th e thatch 
layer of the grass cover and the organic topsoil layer provided 
a large storage capacity for water, which exceeded the porosity 
of the mineral soils and thereby dominated the soil moisture 
measurement. Th e empirical inversion algorithm did not appro-
priately account for this eff ect. In addition, the soil texture map 
did not refl ect the large water retention characteristic of the 
organic upper layer of this land use–soil combination. For dry 
conditions, the soil moisture estimates for grassland as well as 
for arable land agreed well with the fi eld measurements. Th is 
indicates that for dry conditions, the measured water content of 
the soil is mainly determined by the properties of the mineral soil 
rather than the thatch layer.

Th e soil moisture conditions of the arable land of the loess plain 
were generally well represented by the ASAR estimates. Because 
the inversion algorithms were developed mainly for mineral soils, 
they performed well here. If fi eld-measured soil moisture values 
>45% (v/v) are excluded from the comparison and thereby the 
eff ect of the organic topsoil layer reduced, a RMSE of 4.3% (v/v) is 
achieved. Loew et al. (2006) pointed out that the empirical model 
is based on a limited set of observations, representing a span of 18 
and 45% (v/v) and thus might be less accurate beyond this range.

Nevertheless, one has to be aware of diff erent sources of uncer-
tainty in the estimation of surface soil moistures from ASAR data, 
which can arise from the following:

1. Image calibration errors, which range between 0.5 and 1.0 dB 
for the ASAR products (ESA, 2007). Insuffi  cient speckle reduc-
tion can add a stochastic component to σ0. Both error sources 
were assumed to be small because accurate ancillary data and 
state-of-the-art image processing were used.

2. Imprecise land use information and land use specifi c conversion, 
which can result in a false inversion of σ0 to έ .

3. Unknown or imprecise biomass information for grassland 
pixels. Spatial variability in biomass results in spatial variability 
of the attenuation factor. We used fi eld measurements to deter-
mine the biomass of the grassland. While these measurements 
provided accurate data for our sample fi elds, they might not be 
accurate everywhere in the catchment.

4. Unknown or imprecise soil texture information, which can 
result in a false conversion of έ  to volumetric soil moisture by 
means of dielectric mixing models.

Analysis of Soil Moisture Variability
Th e relationship between the mean soil moisture and the CV cal-
culated for the whole Rur watershed using all ASAR soil moisture 
images is shown in Fig. 5. Th e CV decreased linearly with increas-
ing mean soil moisture. A decreasing soil moisture variability with 
increasing soil moisture has been described in the literature (e.g., 
Famiglietti et al., 1999; Hupet and Vanclooster, 2002; Choi et 
al., 2007) and should be expected, particularly when areas with 
homogeneous soil textures approach saturation.

As described above, the watershed consists of two distinctively dif-
ferent regions: the fl at loess plain and the mountainous Eifel region. 
Land use and soil textures as well as their spatial variability are 

Fig. 4. Comparison between measured and Advanced Synthetic Aper-
ture Radar (ASAR) derived surface soil moisture. Field soil moisture 
values are averages from 10 to 24 individual measurement locations. 
Dashed lines indicate the ±5% (v/v) margins.
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signifi cantly diff erent in both regions. While in the Eifel region 
the topography results in large spatial heterogeneity, particularly 
with respect to soil texture, the loess plain exhibits more or less 
uniform soil textures but diff ers strongly with respect to diff erent 
types of arable land use. Th ese diff erences in landscape properties 
may result in a diff erent relationship between average soil mois-
ture and soil moisture variability. Consequently, we analyzed this 
relationship separately for both regions (Fig. 6).

Th e correlation for the loess plain (Fig. 6a) yielded a very strong nega-
tive relationship (R2 = 0.83) between the mean soil moisture and 
the spatial moisture variability as expressed by the CV. Th e slope of 
the relationship is very close to the slope for the whole catchment. In 
contrast, the relationship for the Eifel area does not show a clear trend 
(Fig. 6b). Even at high soil moisture levels, the spatial variability was 
high. While the soil texture in the loess plain is rather uniform, the 
soil textures in the Eifel vary considerably, from mineral soils saturat-
ing at moisture values between 45 and 50% (v/v) to organic soil or 
soils with an organic topsoil layer with surface soil moisture values in 
excess of 60% (v/v). Th us, even at or close to saturation, the Eifel soils 
showed large spatial variability. Moreover, the hilly topography of the 
Eifel also caused larger spatial variation in precipitation.

Figure 7 shows the relationship of the CV and the mean surface 
soil moisture based on 10- by 10-pixel boxes for the fertile loess 
plain. The different acquisition dates of the images are color 
coded to allow assessment of the variability with a given scene. 
Th e slope of the regression line in Fig. 7 is signifi cantly smaller 
than the respective slope for the whole area (Fig. 6a). While the 
soil moisture varied considerably within the 10 by 10 box for all 
soil moisture values, the decrease in the CV with increasing soil 
moisture described above is still obvious. In addition, the upper 
limit of the soil moisture variability decreased signifi cantly with 
increasing soil moisture and the lower limit of the soil moisture 
variability within the 10 by 10 boxes was considerably larger at 
lower soil moistures than at soil moistures in excess of 32% (v/v).

Figure 8 shows the relationship between the mean fi eld surface soil 
moisture measured during our fi eld campaigns and the CV within 
the individual fi elds. It can be seen that the CV decreased again with 
increasing mean soil moisture. For the soil moisture range from 15 
to 34% (v/v), the linear regression resulted in a coeffi  cient of deter-
mination of 0.59 and a slope of −0.0063 on the winter wheat fi elds, 
and a coeffi  cient of determination of 0.76 and a slope of −0.0065 
on the sugarbeet fi elds. At the fi eld scale, the slope of the regression 
line is signifi cantly smaller than the slope for the mesoscale (10- by 
10-pixel boxes) or the regional scale. Th us, while the level of spatial 
variation shows a comparable range of values at all spatial scales, the 
decrease in the soil moisture variability with increasing soil moisture 
was smaller at the local scale than at the large scale.

Choi and Jacobs (2007) also used an exponential fi t as an effi  cient 
way to explain soil moisture variability patterns as a function of mean 

Fig. 6. Relationship between Advanced Synthetic Aperture Radar 
(ASAR) derived soil moisture and the CV for (a) the fertile loess 
plain, and (b) the low mountain range region.

Fig. 5. Relationship between Advanced Synthetic Aperture Radar (ASAR) 
derived mean soil moisture and the CV for the entire River Rur catchment.
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soil moisture. An exponential fi t CV = Aexp(Bθ) between mean soil 
moisture and CV yields a tighter coeffi  cient of determination of 0.60 
with A = 0.521 and B = −0.059, and of 0.81 with A = 0.591 and B = 

−0.073 for the winter wheat and sugarbeet fi elds, respectively. Th e 
parameter A describes the relative variability range and B indicates the 
variability change as related to mean soil moisture. Hence, parameter 
A is related to the maximum relative variability while parameter B is 
related to the slope of the relative variability. Th e parameters A and B, 
as observed from our in situ fi eld measurements, are consistent with 
the observations of surface soil moisture variability from the Small 
Explorer (SMEX), as reported by Choi et al. (2007).

Th e negative correlations between soil moisture variability and mean 
soil moisture content found in our study are consistent with previous 
studies of Famiglietti et al. (1999), Hupet and Vanclooster (2002), 
and Choi and Jacobs (2007). Nonetheless, it should be noted that 
some studies also found positive relationships between the mean 
surface soil moisture content and the soil moisture variability 
(Famiglietti et al., 1998; Western and Grayson, 1998). Th ese studies 
postulated that variability peaked under wet conditions because soil 
heterogeneity would be maximized aft er precipitation events. While 
we concur that spatially heterogeneous precipitation, particularly 
when investigating large areas, results in increased heterogene-
ity if soil saturation is not reached, our fi ndings indicate that for 
areas with homogeneous soil textures, the soil moisture variability 
decreases with increasing soil moisture. In regions with large dif-
ferences in soil texture and thus soil porosity and maximum soil 
moisture values at saturation, however, this relationship might not 
hold and may result in a large soil moisture variability even at high 
soil moistures, as evidenced by the data for the Eifel. According to 
Famiglietti et al. (1998), the combined eff ects of soil texture, hyster-
esis eff ects, vegetation, topography, and sampling scale may lead to 
diff erent relationships between spatial variability and soil moisture.

Figure 9 provides a comprehensive overview of the relationship 
of spatial soil moisture variability and soil moisture values for 
diff erent spatial scales. As can be seen, the gain of the relation-
ship between soil moisture value and CV decreases with scale. 
Hence, at a given soil moisture level, we observed the highest vari-
ability at the scale of the entire Rur catchment and the smallest 
variability at the fi eld scale. We attribute this to the fact that the 
drivers of variations in surface soil moisture contents are much 
more variable at the larger scale. If we consider precipitation as 
the dominant driving process for spatial variance on days with 
high mean soil moisture values, the variability in surface soil water 
contents increases with increasing scale because the amounts of 
rainfall, with annual means of ~600 mm in the fertile loess plain 
and >1200 mm in the low mountain range, vary signifi cantly 
across the whole Rur catchment. At smaller scales, on the other 
hand, these fl uctuations in precipitation decrease and contribute 
only small amounts of variance. On days with dry conditions, i.e., 
low mean soil moisture values, variance is more likely driven by 
processes associated with evapotranspiration. Th us, soil moisture 

variability also increases with increasing scale due to the fact that 
spatial heterogeneities of factors like soil clay content, vegetation 
(including agricultural management), and topographic conditions 
become larger the larger the scale.

As microwave remote sensing using the C-band only provides 
information about the top surface layer of a soil volume, it is 
unclear if these relationships also hold for deeper soil layers. Th us, 
care should be taken in extrapolating statistics from surface mea-
surements (e.g., SAR) to the entire root zone. Choi and Jacobs 
(2007) found that surface soil moisture had the least negative rela-
tionship (slope closest to zero) between CV and mean soil moisture 
in comparison to deeper soil layers. According to them, these small 
variability patterns for the surface layer are aff ected by the high 

Fig. 7. Relationship between Advanced Synthetic Aperture Radar 
(ASAR) derived soil moisture and the CV for (a) the fertile loess plain 
pixels taking into account all dates and land cover classes.

Fig. 8. Relationship between fi eld mean soil moisture and the CV 
from in situ measurements at the Rollesbroich and Selhausen test sites.
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variation in mean soil moisture at the surface. Several other stud-
ies found less variability at deeper depths compared with surface 
soil moisture observations (Famiglietti et al., 1999; Hupet and 
Vanclooster, 2002; Albertson and Montaldo, 2003).

 �Conclusions
An empirical retrieval algorithm of surface soil moisture from Envisat 
ASAR data in the C-band was applied successfully within the Rur 
catchment. We validated the model to derive soil moisture values 
for a catchment in central Europe yielding a RMSE of 5.0% (v/v). 
Th e main advantage of the inversion scheme is that it requires very 
few parameters in comparison with other retrieval approaches. With 
regard to the operational use of any parameter inversion model for 
either optical or microwave remote sensing data, the availability of 
input parameters is of great importance. Th e highest deviations from 
in situ values of the derived soil moisture were recorded on wet mead-
ows and a mature sugarbeet fi eld. Th e model parameters could be 
further improved using empirical data measured under these condi-
tions; however, any improvement of the algorithm will rely on a better 
assessment of the vegetation infl uence on the C-band backscattering 
mechanisms, taking into account dynamic vegetation eff ects.

Th e variability of mean surface soil moisture was investigated at dif-
ferent scales using in situ measurements and eight ASAR-derived 
soil moisture patterns. By analyzing the relationships between the 
spatial variance and the mean soil moisture state at the scales of 
the entire catchment (~2400 km2), the two major landscape units 
(~1000 km2), boxes (2.25 km2), and individual fi elds (~0.1 km2), 
we found that the CVs decreased with decreasing sampling scale 
for all data sets. Th e diff erent slopes of the linear correlations, rang-
ing from −0.0063 at the fi eld scale to −0.022 at the catchment 
scale, indicate that small-scale and large-scale variances depend 
diff erently on mean soil moisture content.
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Abstract 

Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, 

and surface soil moisture in particular, is highly variable in space and time. Its spatial and 

temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, 

soil, topography, etc.) and agricultural (soil management, fertilization, etc.) factors, making it 

difficult to identify unequivocal cause and effect relationships between soil moisture and its 

driving variables. The goal of this study is to characterize and analyze the spatial and temporal 

patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape 

namely the northern part of Rur catchment (1100 km2) located in Western Germany and to 

determine the dominant factors and underlying processes controlling these patterns. A second 

goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate 

how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, 

process-based and spatially distributed ecohydrological model was used to analyze the key 

processes, their interactions and feedbacks. At first, the model was validated for two growing 

seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and 
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maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 Vol.-% and 

index of agreement values for the total aboveground biomass of 0.96 or higher and values 

ranging from 0.81 to 0.98 for green LAI. Large deviations of measured and modeled soil 

moisture can be explained by a change of the infiltration properties towards the end of the 

growing season, especially in maize fields. The validated model was used to generate daily 

surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial 

patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial 

scales depend mainly upon soil properties. Within the main growing season, larger scale 

patterns that are induced by soil properties are superimposed by the small scale land use 

pattern and the resulting small scale variability of evapotranspiration. However, this influence 

decreases at larger spatial scales. Most precipitation events cause temporarily higher surface 

soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the 

autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the 

spatial scale of the analysis fits a power law scaling function, with negative values of the 

scaling factor β, indicating a decrease in spatial variability with increasing spatial resolution. 

High evapotranspiration rates cause an increase in the small scale soil moisture variability, 

thus leading to large negative values of the scaling factor β. Utilizing a multiple regression 

analysis, we found that 53 % of the variance of the scaling factor β can be explained by an 

independent LAI parameter and by the antecedent precipitation. 

 

Keywords: Catchment hydrology; Soil moisture; Ecohydrological crop model; Pattern; Scale; 

Autocorrelation 

1. Introduction 

Soil moisture is a key variable in hydrology, meteorology and agriculture. Particularly 

surface soil moisture plays a critical role in partitioning precipitation into infiltration and 

runoff (Western et al., 1999b) and of solar energy into latent and sensible heat fluxes 

(Entekhabi and Rodriguez-Iturbe, 1994). Soil moisture, and surface soil moisture in particular, 

is highly variable in space and time. Many factors control its spatial patterns and temporal 

dynamics, such as topography, soil properties, aspect, land use, management, vegetation, 

precipitation, solar radiation and specific contributing area (Famiglietti et al., 1998; Hawley et 
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al., 1983; Hebrard et al., 2006; Korres et al., 2010; Rodriguez-Iturbe et al., 2006; Svetlitchnyi 

et al., 2003; Western et al., 1998; Western et al., 1999a). Reynolds (1970) distinguished 

between static (e.g., soil texture, topography) and dynamic (e.g., precipitation, vegetation) 

controlling factors. Many of these factors are interrelated and most of these factors vary 

spatially and/or temporally, making it difficult to identify unequivocal cause and effect 

relationships between soil moisture and its driving variables.   

In situ measurements of soil moisture are very time consuming and costly, particularly at 

larger scales. Therefore, great efforts were undertaken to derive spatially distributed soil 

moisture maps from remote sensing and/or modeling. Many studies have analyzed the spatial 

structure of soil moisture and their scaling properties using point measurements (e.g., 

Famiglietti et al., 1998; Western et al., 1998), remotely sensed images (e.g., Kim and Barros, 

2002; Koyama et al., 2010;  Rodriguez-Iturbe et al., 1995) and model generated maps (e.g., 

Manfreda et al., 2007; Peters-Lidard et al., 2001). Controversial findings of the relationship 

between soil moisture variability and mean soil moisture have been reported. Some studies 

found an increase of spatial variability with decreasing mean soil moisture (Choi and Jacobs, 

2011; Famiglietti et al., 1999; Koyama et al., 2010), others found opposite trends (Famiglietti 

et al., 1998; Western and Grayson, 1998) or were unable to detect a trend (Hawley et al., 

1983). Teuling and Troch (2005) showed that both, soil properties and vegetation dynamics, 

can act to either create or to destroy spatial variability. Rodriguez-Iturbe et al. (1995) and 

Manfreda et al. (2007) showed that soil moisture variability is not only depending on mean 

soil moisture, but also varies with the spatial scale of the analysis.  

Autocorrelation length is often used to analyze the spatial structure of soil moisture fields. 

For a small grassland catchment, Western et al. (1998) found shorter autocorrelation lengths 

on wet days, related to the smaller spatial scale of lateral redistribution, in contrast to longer 

autocorrelation lengths on dry dates, connected to the larger scale of evapotranspiration as the 

dominant driver. At the field scale (mainly on wheat fields) in a semi-arid climate, Green and 

Erskine (2004) found a spatial structure of surface soil moisture, but no clear connection of 

the autocorrelation length to dry or wet soil moisture conditions. Western et al. (2004) 

compared soil moisture autocorrelation lengths of soil moisture and terrain attributes, 

indicating the important role of topography at one test site and the variation of soil properties 

at other test sites. But these studies focused on small catchments, mostly with homogeneous 

vegetation, therefore the influence of the interacting factors topography, vegetation, soil and 

meteorology on soil moisture patterns were not investigated. 
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The main objective of this study is to characterize and analyze the spatial and temporal 

patterns of surface soil moisture in an intensively used agricultural landscape and to determine 

the dominant factors and underlying processes controlling these patterns. A second goal is to 

analyze the scaling behavior of soil moisture patterns in order to investigate how spatial scale 

affects the spatial patterns. This is of particular interest for downscaling or aggregation 

purposes in order to prevent systematic biases in modeled water and energy fluxes. To achieve 

these goals, a dynamically coupled, process-based and spatially distributed ecohydrological 

model was used to analyze the key processes, their interactions and feedbacks leading to 

spatial and temporal soil moisture patterns as well as to assess the impact of topography, soil, 

precipitation and vegetation on these patterns. This model includes a hydrological process 

model, a plant growth model and a nitrogen turnover model to generate a time series of soil 

moisture maps for agricultural areas. These maps were subsequently used to derive 

autocorrelation properties and scaling behavior. 

2. Materials and methods 

2.1. The DANUBIA simulation system 

The DANUBIA simulation system is a component and raster-based modeling tool 

designed for coupling models of different complexity and temporal resolution. The model 

framework controls the temporal course of the simulation as well as the dynamic exchange of 

data at runtime, thus enabling numerous dynamic feedback effects of the various model 

components. In its complete structure, DANUBIA consists of 17 components, representing 

natural as well as socio-economic processes (Barth et al., 2004; Barthel et al., 2012). For the 

current study, only the ecohydrological components regarding plant growth, soil nitrogen 

transformation, hydrology, and energy balance were used. These components model fluxes of 

water, nitrogen and carbon in the soil-vegetation-atmosphere system using physically-based 

process descriptions. The relevant processes are computed at hourly or daily time steps.  

A complete description of the model is beyond the scope of this paper and we refer to 

previous publications of the components involved, namely Mauser and Bach (2009), Klar et 

al. (2008), Lenz-Wiedemann et al. (2010) and Muerth and Mauser (2012). Thus, we limit our 

model description here to the fundamental background needed to understand the model setup.  
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2.1.1. Hydrology and energy balance component 

Vertical water fluxes are modeled using a modified Eagleson approach (Eagleson, 1978). 

The modification particularly pertains to describing water fluxes in soil by a user defined 

number of soil layers. Percolation of the upper soil layer is interpreted as effective 

precipitation for the downward layer. Here we used four soil layers (0-5, 5-20, 20-60, 60-

200 cm). The uppermost layer is needed to properly model the water available for evaporation 

from the soil surface. For other processes (e.g., transpiration, plant water uptake, nitrogen 

turnover and transfer) only three layers are distinguished. Thus, an aggregated top layer is 

used for these processes by calculating the weighted mean soil moisture of the 0-5 and the 

5-20 cm layer.  

Volumetric soil moisture and matrix potential is calculated according to the one-

dimensional, concentration dependent diffusivity equation (Philip, 1960). Eagleson (1978) 

presented an analytical solution of the Philips equation for simplified boundary conditions to 

model the key processes of soil water movement, namely infiltration, exfiltration, percolation 

and capillary rise. Each layer is assumed to have homogeneous soil characteristics, described 

by a set of parameters (e.g., thickness, soil texture, bulk density, organic matter content). 

Based on these soil parameters, hydraulic parameters are calculated using pedo-transfer 

functions (Brooks and Corey, 1966; Rawls and Brakensiek, 1985; Wösten et al., 1999). 

Evaporation from interception storage and from the uppermost soil layer is described by 

a Penman-Monteith approach. For further details, see Mauser and Bach (2009) and Klar et al. 

(2008). 

2.1.2. Plant growth component 

The crop growth model simulates water, carbon, and nitrogen fluxes within the crops as 

well as the energy balance at leaf level. It models photosynthesis, respiration, soil layer-

specific water and nitrogen uptake, dynamic allocation of carbon and nitrogen to four plant 

organs (root, stem, leaf, harvest organ), as well as phenological development and senescence. 

Resulting from the interplay of these processes, transpiration is a function of available energy, 

stomatal conductance (controlled by soil moisture and CO2), and leaf area (emerging from 

carbon and nitrogen dynamics). The main concepts and algorithms are adopted from the 

models GECROS (Yin and van Laar, 2005) and CERES (Jones and Kiniry, 1986) with 

extensions from Streck et al. (2003a; 2003b) for modeling phenological development. For 

further details, see Lenz-Wiedemann et al. (2010). 
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2.1.3. Soil nitrogen component 

The soil nitrogen transformation model (Klar et al., 2008) is based on algorithms from the 

CERES maize model (Jones and Kiniry, 1986). The modeled nitrogen transformation 

processes are mineralization from two organic carbon pools (easily decomposable fresh 

organic matter and stable humus pool), immobilization, nitrification, denitrification, urea 

hydrolysis, and nitrate leaching.  

2.2. Model validation 

Prior to using the model for the analysis of surface soil moisture patterns, the model was 

thoroughly validated. The model was parameterized using field measurements (e.g., soil 

texture), data from maps or literature. A site specific calibration of the model was not 

performed.  

2.2.1. Test site and field data 

Field measurements for model validation were carried out at the Selhausen test site 

(50°52’10’’N / 6° 27’4’’E, Fig. 1) located in the Rur catchment (Western Germany, see 

section 2.3.1) for winter wheat, sugar beet, and maize in the growing seasons 2007 / 2008 and 

2008 / 2009. The meteorological measurement station and all test fields are located within 

a 500 meter radius of each other. 

Continuous soil moisture measurements were taken in 10 cm depth at two different 

locations at each of the three test fields with FDR soil moisture stations (Delta-T Devices 

Ltd., Cambridge, UK). The two measurement locations on each field were 5 m apart. The 

absolute accuracy of measurements is ±3 Vol.-% with a relative accuracy of ±1 % 

(manufacturer specification, for probe calibration information see Korres et al., 2010). Layer 

specific soil properties (soil texture, bulk density) for three soil layers (0-30, 30-60, 60-90 cm) 

were measured according to the sieve-pipette method after DIN 19683-2 (1997) at 20 

locations on the winter wheat field in 2007. The measured soil is classified as silt loam with 

12 % clay, 71 % silt and 17 % sand for the upper soil layer (mean values from these 20 

measurements). The second layer yielded the following clay, silt and sand fractions: 17 %, 

68 %, 15 % and the lower soil layer 19 %, 66 %, 15 %. According to the digital soil map 

provided by the Geological Survey of North Rhine-Westphalia (scaled 1:50000), all 

measurement fields have the same soil texture. Thus, the measured mean values were used for 

all model validation runs with the exception of the maize 2008 field, since here the outcrop of 
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an old river terrace of the river Rhine leads to a high amount of gravel on this particular field. 

Therefore on this field, the layer specific coarse material content was estimated to 35, 15, and 

10 Vol.-%, respectively.  

Soil organic carbon and nitrogen (ammonium and nitrate) content was measured in the 

same depths at the start of each growing season on all fields to provide field specific initial 

values for the model. Organic carbon and total nitrogen content were determined with an 

elemental analyzer (CNS Elemetaranalysator Vario EL, Elementar Analysesysteme GmbH, 

Hanau, Germany), ammonium and nitrate with a reflectometer (RQflex plus Reflektrometer, 

Merk, Darmstadt, Germany).  

Organ specific fresh and dry biomass and nitrogen content, leaf area index (LAI), 

phenological stage, plant height and plant density were determined biweekly on up to 14 dates 

throughout the growing season. Organ specific biomass samples for stem, leaf, and the 

harvested organ were taken at three locations within each field. After drying of an organ-

specific representative aliquot for 24h at a temperature of 105 °C, average dry biomass was 

determined. LAI was measured using the LI-3000A Area Meter (LI-COR Bioscience, 

Lincoln, NE, USA).  

Hourly meteorological data (global radiation, precipitation, air temperature, wind speed, 

air pressure and humidity) were measured at an eddy covariance station (Campbell Scientific, 

Inc., Logan, USA) located within the winter wheat field. Short data gaps were filled with data 

from the meteorological tower at the Forschungszentrum Jülich (50°54’37’’N / 6°24’34’’E, 

distance to Selhausen test fields: 5.1 km). Cloud cover data was taken from the weather 

station Aachen (German National Weather Service, 50°47’58’’N / 6°1’30’’E, distance to 

Selhausen test fields: 31.1 km). Precipitation measurements were corrected according to 

Richter (1995). Due to the close proximity of all test fields to the meteorological station in the 

winter wheat field, these meteorological measurements were used in all validation runs. 

2.2.2. Model parameterization and model validation runs  

For model validation, the model was run in point mode (no spatial distribution) for each 

crop and year. Initial conditions and agricultural management were set as indicated in Table 1. 

Soil moisture at the beginning of the model period is assumed to be at field capacity. The 

model runs start at the first of October of the previous year to make sure that the modeled soil 

moisture is independent of the initial conditions. Soil parameters were set as described in 
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section 2.2.1. The plant growth model was parameterized according to Lenz-Wiedemann et al. 

(2010) except for parameters from the phenology model, which were adjusted to field 

observations of the first year (Table 1). 

Modeled surface soil moisture, biomass, and LAI were validated against field 

measurements using three evaluation criteria, the root mean squared error (RMSE), the mean 

absolute error (MAE) and the normalized measure “index of agreement” (Willmott, 1981). 

The IA is calculated as: 

ܣܫ ൌ 1 െ
∑ ሺெ೔ିை೔ሻమ
೙
೔సభ

∑ ሾ|ெ೔ିைത
೙
೔సభ |ା|ை೔ିைത|ሿ

         (1) 

where Mi and Oi are simulated and observed values, respectively. Ō is the mean of the 

observed values and n is the number of data points. A perfect fit between modeled and 

observed values would result in an IA value of 1. 

2.3. Patterns of surface soil moisture  

2.3.1. The Rur catchment 

The catchment of the river Rur is located in the western part of Germany, covering a total 

area of 2364 km2 with about 140 km2 belonging to Belgium and 100 km2 to the Netherlands 

(Fig. 1). The catchment is divided into two major landscape units. The southern part is a low 

mountain range with forest and grassland characterized by a rolling topography, a mean 

elevation of about 510 m above sea level, slopes up to 10° and a mean annual precipitation of 

about 1200 mm. Our study focuses on the northern part of the Rur catchment (1100 km2), 

since 46 % of the area is farmland. The area is located in the Belgium-Germany loess belt, 

where crops are grown on a virtually flat terrain (slopes less than 4°). The main crops are 

winter cereals (mainly winter wheat), sugar beet and maize. 
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Fig. 1. The Rur catchment with the land use map of 2009, separated into the fertile loess plain in the north and the low 
mountain range in the south. On the right side, soil texture maps of the top 20 cm of the investigation area are 
depicted. 

The fertile loess plain has a mean elevation of about 100 m above sea level and a mean 

annual precipitation of about 700 mm. The major soils are Haplic Luvisols and Cumulic 

Anthrosols near the drainage lines, both with silt loam textures. Soils with a loamy sand 

texture (Fimic Anthrosols and Dystric Cambisols) are located on the northern edge of the 

loess plain. Soils close to the Rur are Gleysols and Fluvisols with silty loam and loamy sand 

textures. Thus, this investigation area is particularly suitable to analyze the effects of 

vegetation and land use dynamics as well as agricultural management upon soil moisture 

patterns. 
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2.3.2. Distributed model runs for northern part of the Rur catchment 

Spatially distributed model runs for the year 2009 with a spatial resolution of 150 m were 

carried out to produce surface soil moisture data for the pattern analysis. Soil properties were 

derived from a digital soil map (scaled 1:50000, Geological Survey of North Rhine-

Westphalia) for each pixel and soil layer. Land use information (Fig. 1) was gathered from a 

multitemporal land use classification (Waldhoff, 2010). In the investigation area, 20299 pixels 

are classified as cropland (54 % winter cereals, parameterized as winter wheat, 41 % sugar 

beet, 5 % maize). For spatially distributed model runs, meteorological data from 19 stations of 

the German National Weather Service within or in direct proximity (< 20 km) to the Rur 

catchment were used to derive the necessary meteorological model input. The measurements 

were spatially interpolated using the method described by Mauser and Bach (2009). Prior to 

interpolation, precipitation data was corrected according to Richter (1995). Data on 

agricultural cultivation as recorded at the Selhausen test site for 2009 (Table 1) was applied 

throughout the investigation area.  

To analyze the respective impact of the spatial patterns of meteorological parameters, 

land use, and soil properties upon the surface soil moisture patterns, additional model runs 

were performed using homogeneous inputs for i) meteorology, using measurements at 

Selhausen for the whole investigation area, ii) land use, assuming all agricultural pixels to be 

winter wheat and iii) soil texture, using the soil texture of the validation model runs 

throughout the investigation area. 

2.3.3. Pattern analysis 

Modeled patterns of daily surface soil moisture on arable land were analyzed in terms of 

structure, scaling properties and their temporal variation. 

Structure analysis 

For the analysis of the structure of surface soil moisture patterns, a global spatial 

autocorrelation coefficient (SAC) was calculated for different step widths. At a step width 

of 1, each pixel is paired with its direct neighbors in all 8 directions (Fig. 2). Pairs with no 

data values (e.g., due to a non-agricultural land use class) were discarded. The SAC was then 

calculated as the Pearson correlation coefficient over values of all remaining pairs. For larger 

step widths, only pairs in the directions of the queen’s move in chess were used (Fig. 2). 

Values of SAC were only calculated for sets of pairs containing a minimum of 100 data pairs, 
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which was the case for all evaluated step widths up to 260. In addition to the analysis of daily 

soil moisture patterns, the SAC was calculated for spatially distributed soil properties (soil 

texture and soil hydraulic conductivity).  

 

Fig. 2. Exemplary illustration of the pairing for the spatial autocorrelation coefficient for two step widths. For step 
width 1, the center pixel in dark grey is paired with its direct neighbors (bold white arrows). For step width 2, the 
center pixel is again paired with pixels in all eight directions, but the distance from the center pixel is extended by one 
pixel (dashed black arrows). This is done for every pixel and up to a step width of 260. 

Scaling analysis 

Starting from the model’s spatial resolution of 150 m, which is referred to as grain size 1, 

the scaling behavior of surface soil moisture patterns was analyzed by aggregating the pixels 

to an increasingly coarser grain size of 2 (2 x 2 pixels), 3 (3 x 3 pixels), and so forth up to 

grain size 37. According to Qi and Wu (1996), aggregation starts in the upper left corner of 

the grid. Aggregated pixels were assigned the mean value of the original pixels. Aggregated 

pixels were discarded if the totaled area of winter wheat, sugar beet, and maize occupied less 

than 30 % of the pixel area.  

The scaling behavior of surface soil moisture can be quantified by the slope of a power 

law relationship computed from the spatial variance (Rodriguez-Iturbe et al., 1995): 

ఒߪ
ଶ ൌ ቀ ఒ

ఒబ
ቁ
ఉ
ఒబߪ
ଶ           (2) 

where λ0 is the reference scale, λ is the grain size, σ2 the soil moisture’s variance at scale λ, 

and β is the scaling factor of the scaling function. β was derived by least square fitting to pairs 

of λ and ߪఒ
ଶ from grain size 2 to 37, setting λ0 to grain size 1. A small value of β corresponds 

to a high spatial correlation in the data (a perfect correlation across all computed scales 
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provides a slope value of 0 while no correlation results in a value of -1 (Manfreda et al., 2007; 

Whittle, 1962).  

To further investigate the spatial patterns at different spatial scales, the SAC with a step 

width of 1 was calculated for grain sizes 2 to 37 (corresponding to a pixel size of 0.3 km x 0.3 

km to 5.55 km x 5.55 km). In both analyses, larger grain sizes were not analyzed because the 

number of valid pairs for the calculation of SAC was below 100.  

3. Results and discussion 

During the growing season, soil moisture dynamics is strongly influenced by the water 

uptake of the vegetation. In turn, water demand of the vegetation strongly depends upon 

vegetation type and development state. Thus it is important, that vegetation dynamics are 

adequately modeled regarding temporal dynamics as well as spatial patterns. Therefore prior 

to discussing the results of the model validation for surface soil moisture, we present the 

validation for the plant growth model.   

3.1. Model validation 

3.1.1. Biomass and LAI 

An overview about the temporal course of key plant parameters (biomass and LAI) for 

different crops and years is provided in Fig. 3. While the green LAI and the total biomass are 

of prime importance in the given context, the plant growth model also provides organ specific 

data for leaf, stem, root and grain. The latter parameters are summarized in Table 2.  
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Fig. 3. Green LAI and aboveground biomass (living leaf, stem and harvest organ dry biomass) for winter wheat, sugar 
beet and maize for the years (of harvest) 2008 and 2009. Measured values (field means) are depicted as dots, bars 
represent the span of the measurements and modeled values are displayed as lines. Field measurements of the sugar 
beet biomass in 2009 were not available. 

Fig. 3 shows a very good agreement of the measured and modeled dry matter biomass 

and LAI. Typically, the model results are within the range of the field measurements denoted 

by the vertical bars (Fig. 3). Moreover, the model results are very close to observed mean 

values, despite the large within-field variability especially in the case of the green LAI for 

sugar beet and winter wheat. The biomass buildup for winter wheat was slightly delayed in 

2008, while the LAI was modeled quite accurately. In the case of sugar beet, deviations of 

modeled and measured green LAI are evident from mid-July onwards in both years with 

a tendency to overestimate in 2008 and underestimate in 2009. Biomass was reproduced very 



16 
 

well in 2008. Validation data of dry biomass for sugar beet in 2009 were not available. The 

modeled biomass and LAI of maize agrees very well with the measurements.  

Table 2 provides an overview about the performance of the plant growth model. For all 

test fields, the index of agreement (IA) for the total aboveground biomass yields values of 

0.96 or higher, which indicate very good agreement between model and measurement. Green 

LAI is also modeled quite well with IA-values that range from 0.81 to 0.98. Moreover the 

results of the different organs are modeled well, providing evidence that not only the bulk 

model parameters, but also the processes leading to these results are modeled suitably well.  

Leaf area is a limiting factor for transpiration and carbon uptake. Both processes are 

directly coupled due to common stomatal conductance. The buildup of biomass in turn 

depends on carbon uptake. Therefore, model performance with respect to green LAI and 

biomass supports our confidence in the modeled transpiration amounts.  

Thus, we are confident that the model performance is sufficiently accurate to adequately 

simulate key impacts of plant growth dynamics upon the temporal course and spatial 

dynamics of soil moisture. 

3.1.2. Soil moisture: Detailed example 

A comparison of modeled and measured soil moisture is presented in Fig. 4 for the 

example of sugar beet 2008. Since the model was started on the first of October of the 

previous year, the model results are independent of the assumed initial soil moisture 

conditions. Due to tillage of the fields, the soil moisture probes were installed in mid-June. 

Thus no earlier measurements are available. To show the spatial variability of the soil 

moisture measurements, the measurements of both sampling locations per field are depicted in 

the figures (Fig. 4 and Fig. 5). The statistical indices cited in the text and in Table 3 refer to 

the average of these two measurements. 
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Fig. 4. Modeled and measured surface soil moisture (SSM) and soil moisture (SM) for the sugar beet field 2008. 

The modeled soil moisture in the uppermost layer (Fig. 4) shows distinct peaks related to 

precipitation events followed by characteristic decreases due to evapotranspiration from the 

soil surface and percolation into the next soil layer when modeled soil moisture exceeds field 

capacity (28.6 Vol.-%). The deeper soil layers show a damped temporal course of the soil 

moisture. In June, the sugar beet roots reach the lowest soil layer. This is when the modeled 

soil moisture in the deepest layer starts to decline. A significant recharge of the lowest soil 

layer was not modeled during the vegetation period. Thus precipitation during the vegetation 

period is entirely used for evapotranspiration and to a lesser degree for surface runoff.  

The model results for the uppermost soil layer agree very well with the measurements at 

both measurement locations, particularly until mid-July. Thereafter, the model overestimates 

soil moisture especially immediately after precipitation events but approximates observations 

in the drying phases. In contrast to the preceding precipitation events where infiltration was 

only slightly overestimated, in phase II the model simulates an infiltration which is more than 

twice as high as indicated by measured soil moisture particularly during the precipitation 

event on 26 July 2008. Starting with that event, modeled soil moisture deviates significantly 

from observations. During phase I, which we defined as the time prior 16 July 2008, the 

RMSE is 1.3 Vol.-%, thereafter (phase II) it increases to 2.0 Vol.-%, respectively (Table 3). 
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This change in model behavior can be attributed to a change in soil surface properties 

affecting the infiltration properties. Possible processes leading to the changes at the soil 

surface might be clogging of the pores by siltation or crust formation. However, these 

processes might have occurred particularly on loess soils as a result of the strong precipitation 

event on 10 July 2008 and the following drying period. The model is not calibrated and model 

parameters are derived from measured soil texture and pedo-transfer functions. It appears, that 

at the beginning of the year, this parameterization results in a suitable representation of the 

infiltration process, while the infiltration process appears to be retarded in the second half of 

the year. As the soil properties are derived from pedo-transfer functions, a change in surface 

properties is not represented by the model. To test the assumption of a change of the soil 

surface conditions, we ran the model for sugar beet 2008 assuming a reduced infiltration 

capacity of 1.8 mm h-1 instead of the original values between 6 and 8 mm h-1. This change 

resulted in an improvement of the RMSE from 2.0 Vol.-% to 1.7 Vol.-% for phase II, while 

the overall RMSE for the whole period improved from 1.8 Vol.-% to 1.6 Vol.-%. A similar 

effect can be observed for maize 2008 (starting on the same date) and maize 2009 after 6 July 

2009. For winter wheat, this effect was not observed (Fig. 5).  

3.1.3. Soil moisture: overview 

The modeled and measured course of surface soil moisture for all crops for 2008 and 

2009 is shown in Fig. 5. For sugar beet 2008 as well as for winter wheat 2008, measured 

values are reproduced well with RMSE values of 1.8 and 2.1 Vol.-%, respectively (compare 

Table 3 and Fig. 5). In the case of winter wheat 2009, RMSE is slightly higher with a value 

2.6 Vol.-% which is mainly due to overestimation after 27 June 2009. After establishment of 

canopy closure (LAI > 2) by sugar beet and maize, these differences decrease and the CV 

declines to values of around 14 % in mid-July. The second increase of the CV that starts in 

mid-August and peaks at 23 % in the beginning of October is again caused by the different 

phenological development of wheat and sugar beet / maize. In the case of maize 2008, the 

model slightly overestimates the measured soil moisture. This may be related to the very high 

percentage of coarse material in the soil of the maize field 2008 (outcrop of gravel from 

a former river terrace) causing also relatively low observed surface soil moisture between 

6 and 24 Vol.-% compared to the other validation examples. 
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Fig. 5. Modeled and measured surface soil moisture (SSM) for winter wheat, sugar beet and maize for the years (of 
harvest) 2008 and 2009. The dashed line indicates the change from phase I to phase II.   
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For both years, the modeled surface soil moisture and the measurements agree well 

during the first part of the year (phase I). After 16 July 2008 and after 9 July 2009 (beginning 

of phase II), model results for sugar beet and maize systematically deviate from the 

measurements: The amplitude of the modeled surface soil moisture is henceforth significantly 

larger than the observed data. As indicated above in the detailed example of the sugar beet 

2008, this behavior hints towards a change in soil surface properties for root crops. 

Calibrating the infiltration capacity for maize, comparable to the sugar beet 2008, the RMSE 

improved during phase II from 7.2 Vol.-% in 2008 to 3.3 Vol.-% and from 9.8 Vol.-% in 2009 

to 1.7 Vol.-% yielding an overall RMSE for the whole period of 3.2 Vol.-% in 2008 and 

2.1 Vol.-% in 2009. After harvesting of sugar beet and maize, which occurred in 2008 in early 

October, while sugar beet in 2009 was not harvested until 15 October 2009, the temporal 

course of the surface soil moisture is very similar in all crops. 

The RMSE between modeled and observed surface soil moisture for both years and all 

crops ranges from 1.8 to 7.8 Vol.-% (see Table 2). Considering only phase I for root crops, the 

RMSE shows values between 1.3 and 3.0 Vol.-% which indicates a) the good performance of 

the model and b) that obviously a change in infiltration conditions occurred for root crop 

fields and that this effect should be taken into account. As shown above, modeled surface soil 

moisture has a much lower RMSE at the beginning of the measurements. Therefore, it can be 

assumed that the RMSE for the whole year is lower than in the validation period. However, an 

appropriate model to account for the observed change in infiltration conditions is not 

available.  

All results presented above were derived using measured soil parameters from the test 

site Selhausen. For spatially distributed model runs, a digital soil map provided by the 

Geological Survey of North Rhine-Westphalia was used. The soil map provides generalized 

information of the soil texture, thus resulting in a larger uncertainty of the soil parameters as 

compared to the soil parameterization based on field measurements of the soil texture. Using 

data from the digital soil map instead of the measured soil data to estimate the model 

parameters for the test fields in Selhausen yielded an average RMSE of 5.5 Vol.-% and thus 

an increase by 2.1 Vol.-%. The maize 2008 field was disregarded in this analysis, since it is an 

exceptional case due to its high gravel content and since it is atypical for most of the 

agricultural area. In general, utilizing the model parameterization based upon the soil map 

resulted in an overestimation of the soil moisture. This is due to the higher percentage of 
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clay in the soil texture from the soil map, which results in higher field capacities by approx. 

5 Vol.-% as compared to the measured soil texture. 

The validation shows that the model simulates plant growth, plant water uptake, and 

surface soil moisture with sufficient accuracy and thus provides suitable base data for the 

analysis of surface soil moisture patterns. However, discrepancies between modeled and 

observed soil moisture, especially in phase II of the growing season should to be taken into 

account in further analyses, since these were not corrected in the spatially distributed model 

runs, since a model to account for these abrupt changes in infiltration properties is currently 

not available.  

3.2. Soil moisture patterns in the Rur catchment 

3.2.1. Model results 

Fig. 6 shows the temporal course of the spatial mean soil moisture along with the 

precipitation and evaporation for the investigation area for 2009. The mean surface soil 

moisture calculated from the 20299 pixels is highly responsive to precipitation events. The 

average spatial mean soil moisture during the main growing season (defined from DOY 103, 

when LAI of the winter wheat reaches 2, to DOY 288, when sugar beet is harvested) is 

26.4 Vol.-% (Min.: 21.0 Vol.-%, Max.: 32.6 Vol.-%) and 28.9 Vol.-% (Min.: 25.0 Vol.-%, 

Max.: 33.8 Vol.-%) for the rest of the year. The difference in the average soil moisture is 

mainly due to evapotranspiration. The spatial coefficient of variation (CV, Fig. 6) describes 

the (mean-) normalized variability of soil moisture and increases during the course of dry 

periods, while precipitation events lead to a reduction of the CV. Very low CV values are 

observed in winter and spring until the end of March and in late fall and winter with values 

around 12 %. A period of high CV starts in April with a peak (22 %) in the beginning of June, 

due to the strong spatial variability of water uptake related to the differences in phenological 

development of winter wheat and sugar beet / maize.  Wheat is harvested earlier (DOY 209), 

thus the differences in evapotranspiration of bare soil (harvested winter wheat) and the later 

harvested crops (DOY 262 for maize and DOY 288 for sugar beet) together with the low 

precipitation amounts result in an increase of the CV until the end of September. 
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Fig. 6. Spatial mean surface soil moisture, precipitation and evapotranspiration over all 20299 pixels of the 
investigation area of the year 2009. In addition, the coefficient of variation (CV) of surface soil moisture and the 
standard deviation (StD) of evapotranspiration is depicted with dotted lines. 

In general a highly significant negative exponential relationship between the CV and the 

mean surface soil moisture (msm) can be found (p-value: 0.01): 

CV = 97.495 e-0.069 msm            (R2 = 0.75)     (3) 

In agreement with findings of other studies (Choi and Jacobs, 2007; Choi and Jacobs, 

2011; Famiglietti et al., 1999; Koyama et al., 2010) the variability of surface soil moisture 

patterns increases with decreasing mean soil moisture. Some studies also found positive 

relationships between mean soil moisture and soil moisture variability. However, these 
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investigations were conducted on a hill slopes or at small catchments scale with homogeneous 

land use (grassland) and with significant slopes (Famiglietti et al., 1998; Western and 

Grayson, 1998). The combined effects of soil texture, vegetation, topography, and scale of 

analysis may lead to different relationships between spatial variability and mean soil moisture 

(Famiglietti et al., 1998). 

The average CV over time (CV separately calculated for the whole year time series of 

every pixel and then averaged over all pixels) is highest for the second layer (layer 1: 11.0 %, 

layer 2: 14.0 % and layer 3: 11.4 %) due to the replenishing effect of precipitation in the top 

soil layer and the larger thickness and water storage capacity of the bottom layer. The 

dependence of the temporal soil moisture upon precipitation events and soil layer depth 

becomes evident by calculating the temporal CV for a 10 days moving window. The highest 

short time temporal variability was found for the uppermost soil layer (CV: 5.7 %), while 

layer 2 provides a CV-value of 2.6 % and layer 3 1.0 %. 

The spatial distribution and variability of the modeled surface soil moisture is shown 

exemplarily for two days (Fig. 7): 29 January 2009 (DOY 29) and 21 August 2009 (DOY 

233). For reasons of comparability, the dates were chosen with the condition that no 

precipitation occurred in the whole catchment on five consecutive prior days. DOY 29 shows 

a slightly higher mean value of 27.4 Vol.-% as compared to 25.6 Vol.-% on DOY 233. Both 

maps show very dry areas in the sandy north-western part and very wet areas mostly in 

proximity to the river Rur. The high values are due to soils with high organic content or high 

clay content. The general soil moisture patterns are determined by the pattern of the soil 

texture, particularly on DOY 29 (compare Fig. 1). While large scale soil moisture patterns 

relating to the soil texture are still discernible in summer, strong small scale variability can 

also be observed. The large small scale variability in late August is due to small scale land use 

patterns and the related differences of evapotranspiration, which range from low values of 

bare soil (harvested winter wheat) to high values for late season other crops (sugar beet, 

maize). The spatial CV (13.1 % for DOY 29, 17.2 % for DOY 233) supports this visual 

impression. 
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Fig. 7. Spatial distribution of surface soil moisture (top 20 cm) in the investigation area on 29 January (DOY 29) and 
21 August 2009 (DOY 233). 

3.2.2. Spatial patterns 

The spatiotemporal patterns of surface soil moisture were analyzed using the spatial 

autocorrelation coefficient (SAC) for each day of 2009 at step widths (compare Fig. 2) 

ranging from 1 to 260 pixels (from 150 m distance to 39 km). In Fig. 8, SAC is shown as a 

color coded two-dimensional graph. The temporal change of autocorrelation is easily visible 

by tracing the same color code along the time axis. The step width at a certain value of SAC is 

the autocorrelation length. In order to relate the SAC of the surface soil moisture to 

influencing parameters, the SAC for soil texture and soil hydraulic conductivity (SHydCon), 

as well as time series of precipitation and evapotranspiration (mean and standard deviation) 

are presented. To separate the influences of land use, weather, and soil texture on surface soil 

moisture patterns, we conducted simulations of reduced complexity by respectively keeping 

one of these variables spatially homogeneous (Fig. 8 B, C, D).  
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Fig. 8. Spatial autocorrelation coefficient (SAC) of surface soil moisture for different step widths for four different model 
runs: A) the reference run which represents the full complexity of the investigation area, B) a uniform land use model 
run, with winter wheat occupying all 20299 pixels, C) a uniform meteorology model run using the measured 
meteorological values at Selhausen throughout the investigation area, and D) a uniform soil model run assuming the soil 
properties from the Selhausen test site for each pixel in the investigation area. The temporally constant SAC of soil 
hydraulic conductivity (SHydCon) and soil texture (the same for all model runs) is depicted above and the course of 
precipitation and evapotranspiration (spatial mean and standard deviation of the investigation area) to the right of the 
corresponding model run. 
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The spatial autocorrelation for soil moisture was computed for: A) the reference run 

which represents the full complexity of the investigation area, B) a uniform land use model 

run, with winter wheat occupying all 20299 pixels, C) a uniform meteorology model run using 

the measured meteorological values at Selhausen throughout the investigation area, and D) 

a uniform soil model run assuming the soil properties from the Selhausen test site for each 

pixel in the investigation area. In general, SAC declines with increasing step width (Fig. 8) 

but the course of this decline and therefore the autocorrelation length changes throughout the 

year. For the first and last quarter of the year, where fields are fallow, all simulations - except 

for the homogeneous soil simulation - show similar autocorrelation lengths, resembling 

autocorrelation lengths for soil clay content. This indicates the dominating pattern generating 

role of the soil in the given period. On the other hand, differences between the reduced 

complexity simulations and the full simulation are noticeable: The homogeneous land use 

simulation (Fig. 8 B) lacks periods of very low SAC values, the homogeneous meteorology 

simulation (Fig. 8 C) lacks distinctive spikes after precipitation events, and the homogeneous 

soil simulation (Fig. 8 D) shows higher SAC values. These differences are now examined in 

more detail. 

Considerable deviation between the full simulation (Fig. 8 A) and the homogeneous land 

use simulation (Fig. 8 B) starts around DOY 100 where SAC drops below 0.8 at a step width 

of 1. From this time on, significant evapotranspiration of winter wheat becomes noticeable, 

which in the full simulation increases spatial variability as the sugar beet and maize areas still 

lie fallow or are just planted. This also shows up in the standard deviation of 

evapotranspiration that is much smaller in the homogeneous land use simulation (Fig. 8 B). 

The spatial variability caused by differences in water uptake between the different crops is 

much larger than that resulting from weather or soil. After harvest of winter wheat on DOY 

209, ongoing evapotranspiration of maize and sugar beet contrasted by fallow winter wheat 

area causes the very low autocorrelation lengths. These conditions persist until the soil-like 

patterns reemerge after all crops are harvested on DOY 288. 

In contrast to the full simulation (Fig. 8 A), the homogeneous weather simulation 

(Fig. 8 C) does not show the short distinct increases of spatial autocorrelation after 

precipitation events. During these peaks, autocorrelation lengths rise beyond those for clay 

content. Without the spatial variability of precipitation, the soil is filled at similar rates of 

precipitation thus preserving or restoring the prevailing patterns induced by the soil. The large 

scale pattern of precipitation is superimposed on the otherwise prevailing patterns causing 
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increase of correlation lengths (compare Fig. 8 A, B). For some precipitation events, this 

increase is more pronounced, due to the changing spatial variability and amount of the 

precipitation and preceding soil moisture conditions. This effect is even stronger in the 

homogeneous land use simulation, where the pattern is not disturbed by the small scale spatial 

variability due to transpiration by different crops.  

The high autocorrelation lengths in the homogeneous soil simulation (Fig. 8 D) occur 

outside the main growing season. Due to the absence of a soil induced pattern and no 

significant spatial variability of evapotranspiration, soil moisture patterns are predominantly 

determined by precipitation patterns. When no precipitation occurs, soil moisture is 

determined by field capacity removing all large scale variability and thus causing very low 

autocorrelation lengths (e.g., Fig. 8 D at about DOY 30 and 355). During the growing season, 

the high spatial variability of surface soil moisture due to the heterogeneous 

evapotranspiration persists even during precipitation events preventing high autocorrelation 

lengths as noticed outside the growing season. Only two precipitation events within the 

growing season result in noticeable autocorrelation lengths. At that time, soil moisture is close 

to field capacity, which is spatially invariant in the homogeneous soil simulation. Therefore 

large scale precipitation patterns instead of small scale evapotranspiration patterns determine 

the soil moisture patterns. 

Model validation revealed an overestimation of surface soil moisture in the second phase 

of the growing season for sugar beet and especially for maize. The higher soil moisture makes 

sugar beet and maize pixels more similar to fallow pixels (former winter wheat pixels). 

It counteracts the small scale variability of surface soil moisture induced by differences 

between bare soil and the remaining crops at this time. Without the overestimation, the small 

scale differences between bare soil and sugar beet or maize were larger, leading to an 

increased degradation of the larger autocorrelation lengths. 

In summary, it can be stated that in the beginning of the year at times when the overall 

soil moisture is high, the surface soil moisture patterns depend upon the soil properties 

(spatial differences of field capacity). In the main growing season, the larger scale pattern 

induced by soil properties is diminished by the small scale land use pattern and the resulting 

small scale variability of evapotranspiration. Due to their high autocorrelation lengths, 

precipitation events enlarge soil moisture autocorrelation lengths for a short time even beyond 

the range induced by soil properties. The strength of this effect depends upon the variability 
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and precipitation amount of the events and upon preceding soil moisture conditions. After the 

growing season, the patterns are again mainly determined by the soil properties. 

3.2.3. Scaling  

Spatial patterns of surface soil moisture have been shown to depend upon patterns of the 

controlling factors weather, soil properties, and land use. Over the course of the year, the 

small scale pattern of land use and the large scale pattern of precipitation superimpose on 

patterns of soil properties as the predominant factor for soil moisture patterns. This has been 

shown for the spatial resolution of the model run (150 m). In order to analyze these 

dependencies on coarser spatial scales, model results were gradually aggregated to lower 

spatial resolutions (higher grain sizes) and the autocorrelation analysis (with step width 1) was 

repeated for each level of aggregation. In Fig. 9, results are presented in a way similar to the 

presentation of the pattern analysis. For grain size 1, the data equals the data for step width 1 

in Fig. 8. Starting from values around 0.75, SAC peaks at 0.84 at a grain size of 5 (Fig. 9 A). 

With increasing aggregation levels, SAC tends to decrease showing a course closely 

resembling that of soil texture. During most of the year, SAC drops below 0.6 at a grain size 

of 27. At several dates this course is interrupted by very short periods of elevated SAC 

(horizontal structures in Fig. 9 A). This can be assigned to precipitation events that also 

appeared in the pattern analysis. The large scale patterns of these events are superimposed on 

the soil patterns and cause higher autocorrelation even at high grain sizes. In the beginning of 

the growing season, SAC declines at low grain sizes (Fig. 9 A, after DOY 103). High spatial 

small scale variability of evapotranspiration strongly disturbs the prevailing patterns. The 

impact of the high spatial variability of evapotranspiration can be assessed by comparing the 

results to a homogeneous land use simulation (Fig. 9 B) where for example SAC at a grain 

size of 1 is reduced by a value of 0.3 at DOY 270. This difference decreases at higher grain 

sizes until it becomes less than 0.1 at a grain size of 9 and less than 0.05 at a grain size of 23. 

This behavior persists throughout the growing season and is interrupted by periods of strong 

rainfall, as described above.  
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Fig. 9. Spatial autocorrelation coefficient (SAC) of surface soil moisture for different grain sizes 
for two different model runs: A) the reference run which represents the full complexity of the 
investigation area, B) a uniform land use model run, with winter wheat occupying all 20299 pixels. 
The temporally static SAC of soil hydraulic conductivity (SHydCon) and soil texture (the same for 
all model runs) is depicted above and the temporal course of precipitation and evapotranspiration 
(spatial mean and standard deviation of the whole investigation area) to the right of the 
corresponding model run. 
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In summary, surface soil moisture pattern are determined by soil patterns across the 

analyzed scales. Land use patterns disturb these patterns in times of high evapotranspiration, 

but disturbance decreases with coarser spatial resolution. Precipitation typically results in 

large scale patterns that are superimposed upon other patterns at all scales for a short time. 

These scaling properties are in part a result of the specific field sizes and management 

structures in the northern part of the Rur catchment and might not apply to areas with 

a significantly different agricultural field structure. 

The scaling behavior of patterns is of importance when data are to be scaled down to finer 

resolutions. Downscaling can be accomplished for instance by relating the global spatial 

variance of surface soil moisture to the desired scale using a power law relationship 

(see 2.3.3). Fitting the power law function to grain sizes from 2 to 37 for each day of the year 

resulted in highly significant correlations with R2 between 0.94 and 0.99. The value of the 

scaling factor β varies between -0.17 and -0.62 in the course of the year (Fig. 10) representing 

the changing scaling behavior of surface soil moisture patterns, which in the analysis above 

was shown to depend on varying influences of weather, soil, and land use.  

 

Fig. 10. Scaling factor β of the scaling function for every day of year (DOY) in 2009. 

More negative values of β occur during periods of high small scale spatial variability. 

Large negative values denote a strong change of surface soil moisture variance with spatial 

scale, whereas less negative β-values indicate periods of little change of soil moisture 

variability with spatial scale. The annual course of β closely resembles the autocorrelation 

lengths found in the pattern analysis stressing a strong relationship between autocorrelation 

and scaling behavior of spatial variance as described by Whittle (1962). Outside the growing 

period, β-values found in the current study range from -0.17 to -0.31. This is similar to values 
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found by Rodriguez-Iturbe et al. (1995) and Manfreda et al. (2007). The computed β-values 

for temporal invariant soil parameters (e.g., -0.23 for clay content, -0.21 for sand content, all 

with R2 > 0.91) suggests a controlling effect of the soil parameters on the scaling behavior 

particularly outside of the growing season. However within the growing season, the β-values 

are well below this range, indicating the strong impact of vegetation dynamics upon the 

scaling properties of surface soil moisture. As shown above, these low values are caused by 

the land use pattern and the resulting heterogeneous evapotranspiration particularly towards 

the end of the growing season. Large precipitation events reset the β-values to values around 

or even smaller than -0.25.  

To be useable for downscaling, the value of β for a particular day has to be derivable 

from external variables. A linear equation was fitted to the time series of β and spatial mean 

surface soil moisture (msm, Vol.-%) resulting in the following highly significant (p-value: 

0.01) relationship: 

β = 0.0158 msm - 0.7486      (R2 = 0.24)     (4) 

The low R2 value indicates only a weak tendency to less negative values of β at higher 

mean surface soil moisture, thus showing a limited usability in practical downscaling 

approaches. Comparable to our study, Manfreda et al. (2007) detected only weak trends over 

short time periods between mean surface soil moisture values and β, due to the highly variable 

influence of precipitation and evapotranspiration. A significant influence of drying and 

wetting cycles as in the study of Manfreda et al. (2007) could not be detected.  

In order to better understand the main factors determining and predicting the scaling 

factor β we analyzed its dependency upon different independent variables. We found that 

both, the area averaged precipitation cumulated over the previous 20 days (sumPrecip, in mm) 

and a parameter (devLAI) which expresses the spatial variability of the LAI, yield significant 

correlations to the β-value. devLAI is the deviation of the LAI from the mean LAI of the 

investigation area. To calculate devLAI, we used the results of the validation model run from 

our test fields for the different crops. The mean LAI of the investigation area was calculated 

as area weighted average over the different crops. The area weights are taken from the land 

use classification. Equally, the deviation from the mean (devLAI) was calculated as an area 

weighted average. This procedure makes sure, that devLAI can be derived scale 

independently from generally available independent data. A linear regression analysis 

provided highly significant (p-value: 0.01) relationships between sumPrecip and β (R2 = 0.19) 
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and devLAI and β (R2 = 0.38). These results show that the plant related parameter (devLAI) 

has more predictive power for the scaling parameter β over the whole year than the mean soil 

moisture state. This indicates once again the importance of the plant controlled water fluxes to 

explain the soil moisture patterns. Combining these two parameters yields a highly significant 

(p-value: 0.01), multiple linear relationship: 

β = 0.02 sumPrecip - 0.032 devLAI - 0.351    (R2 = 0.53)    (5) 

Thus 53 % of the variance of the scaling factor β can be attributed to the spatial 

variability of the LAI and to the antecedent precipitation. A multiple regression analysis using 

devLAI and msm results in an R2 value of 0.44. 

4. Conclusions 

A dynamically coupled, process-based and spatially distributed ecohydrological model 

was used to analyze the key processes, their interactions and feedbacks leading to spatial and 

temporal soil moisture patterns as well as to assess the impact of soil, precipitation, and 

vegetation on these patterns. Because of the strong influence of vegetation water uptake 

during the growing season in an agricultural landscape, the plant growth model was validated 

during two growing seasons for the three main crops in the investigation area: Winter wheat, 

sugar beet, and maize. The index of agreement for the total aboveground biomass yields 

values of 0.96 or higher and values ranging from 0.81 to 0.98 for green LAI supporting our 

confidence to adequately simulate the key impacts of plant growth dynamics upon the 

temporal course and spatial dynamics of soil moisture. The validation of surface soil moisture 

yields RMSE values that range from 1.8 to 7.8 Vol.-% for both years and all crops. However, 

a change in soil infiltration, which was clearly discernible in the field measurements, lead to 

significantly larger RMSE values for root crops at the end of the growing season. Considering 

only the first phase of the measurements for root crops, the RMSE shows values between 

1.3 and 3.0 Vol.-%. Possible processes leading to the observed changes in soil infiltration 

might be clogging of the pores by siltation or crust formation. The validation shows that the 

model simulates plant growth, plant water uptake, and surface soil moisture with suitable 

accuracy and thus can provide a suitable base data for the analysis of surface soil moisture 

patterns and their scaling properties in the northern part of the Rur catchment. 
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In the northern part of the Rur catchment, the average spatial mean soil moisture during 

the main growing season is, as expected, lower (26.4 Vol.-%) as compared to 28.9 Vol.-% 

outside the main growing season of 2009. These differences are mainly due to 

evapotranspiration. A highly significant negative exponential relationship between the 

coefficient of variation and the mean surface soil moisture was found, meaning that the 

variability of surface soil moisture patterns increases with decreasing mean soil moisture. This 

indicates that evapotranspiration causes not only lower mean soil moisture but also increases 

spatial variability in our investigation area. 

To analyze the patterns of surface soil moisture and their scaling properties, an 

autocorrelation analysis was conducted. At the beginning and the end of the year when the 

overall soil moisture is high, surface soil moisture patterns depend mainly on the soil 

properties (field capacity). This behavior was confirmed for all investigated scales with grain 

sizes between 1 and 37 (corresponding to pixel sizes from 0.15 km x 0.15 km to 

5.55 km x 5.55 km). During the main growing season, the patterns resulting from soil 

properties were modified by the small scale land use pattern and the resulting small scale 

variability of evapotranspiration. With increasing spatial scales, land use related impacts 

decrease due to averaging of the small scale evapotranspiration variability. Due to their high 

autocorrelation lengths, precipitation events increase soil moisture autocorrelation at all 

spatial scales and even beyond the autocorrelation lengths resulting from the soil properties. 

The strength of this effect depends on the variability and amount of the precipitation and upon 

the preceding soil moisture conditions. Scaling properties found in this study depend further 

on the specific field sizes and management structures in the northern part of the Rur 

catchment. While the particular scaling properties may not apply to areas with a significantly 

different agricultural structure, the general finding of field size dominated spatial soil moisture 

patterns during the main growing period should also apply to other regions. The scale of our 

investigation was chosen to account for the small scale variability of surface soil moisture 

caused by heterogeneous land use. 

Fitting the daily spatial variance of surface soil moisture to scale for grain sizes between 

2 and 37 using a power law relationship yields daily values of the scaling factor β 

between -0.17 and -0.62. Large negative values of β occur during periods of high small scale 

spatial variability and denote a strong decrease of surface soil moisture variability with 

increasing scale, while less negative β-values indicate periods of reduced scale dependence. 

Large negative β-values occur mainly during dry periods in summer, which indicate again the 
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influence of small scale variability of evapotranspiration during the growing season. 53 % of 

the variance of the scaling factor β can be explained by an independent LAI parameter to 

account for the small scale variability of plant controlled water fluxes and a precipitation 

parameter to account for the temporal variability of the precipitation. This indicates a potential 

to assess the subscale surface soil moisture heterogeneity from coarse scale data. 

Understanding the subscale soil moisture heterogeneity is, for example, particularly relevant 

to better utilize coarse scale soil moisture data derived from SMOS or SMAP satellite 

measurements. 
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6. Summary of results and conclusions 

In this thesis spatial patterns and temporal dynamics of surface soil moisture, their 

controlling parameters and underlying processes were investigated on different scales. The 

investigation area was the catchment of the river Rur (2364 km2), which can be separated in a 

low mountain range in the southern part with mostly forest and grassland (~1300 km2), and an 

intensively agriculturally used northern part (~1100 km2), where predominantly crops are 

grown on a virtually flat area. Our small grassland test site with 9 test fields was established 

within the southern part, our arable land test site with 6 test fields was located within the 

northern part of the Rur catchment.  

The spatial organization of the investigation can be characterized by three scales (spacing, 

extent and support, see also section 2.2. Spacing refers to the distance between single 

measurements, extent to the overall size of the investigation area and support to the resolution 

of the investigation. The investigation was conducted on varying spatial scales: 

I) Small scale (extent): Extensive field measurements (soil moisture campaigns, long-

term soil moisture stations, plant measurements, soil measurements and 

meteorological stations) were conducted in the grassland test site (~0.4 km x 1.1 km) 

and the arable land test site (~0.9 km x 1.2 km). The soil moisture data was used to 

investigate spatial and temporal variability of surface soil moisture at the field scale 

within small catchments. This measurement data was also used to validate the other 

methods used in this thesis (radar remote sensing and ecohydrological modeling).  

II) Large scale (extent): Estimation of surface soil moisture patterns at the scale of the 

whole Rur catchment from field measurements is generally not feasible. Thus, we 

derived spatially distributed soil moisture maps from radar remote sensing and 

ecohydrological modeling, both with support of 150 meters. The spatial variability of 

surface soil moisture and the underlying processes were analyzed with respect to their 

scaling properties:  
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 Estimated surface soil moisture from radar remote sensing data was analyzed 

regarding a varying spatial extent.  

 Estimated surface soil moisture from spatially distributed model runs was 

analyzed with regard to a varying support.  

6.1. Small scale surface soil moisture patterns 

The basis for the investigation of small scale surface soil moisture patterns were spatially 

distributed field measurements conducted within our grassland (slopes from 0 to 10°) and 

arable land test site (slopes from 0 to 4°). Distributed soil moisture measurements of the top 

soil layer (top 6 cm) were performed with a spacing of approximately 50 meters on 

14 campaigns for the grassland and 17 campaigns for the arable land test site. To analyze the 

spatial and temporal patterns from the distributed soil moisture measurements, an Empirical 

Orthogonal Function (EOF) analysis was applied.  

The analysis in the grassland test site resulted in one significant EOF (spatial pattern, 

remaining stable over time), explaining 57.5 % of the spatial soil moisture variability in whole 

dataset. This EOF was related to soil properties and topography. Its dominance was largest 

during or shortly after wet periods, because under wet conditions, the lateral redistribution of 

water and the varying infiltration by different soil types became more important. Another 

significant EOF accounting for the differences in land management (grazing, cutting, 

fertilizing) could not be identified for the grassland site. The highest temporal soil moisture 

variability was found in the lower parts of the grassland test site. These locations with a high 

soil organic carbon content were associated with areas where higher soil moisture content 

prevailed over longer time periods resulted from and indicated by the soil type. 

At the arable land test site, two significant EOFs controlling the major part of the spatial 

variability were determined. The first EOF, accounting for 38.4 % of the variability, was 

strongly related to soil properties and pointed to the importance of spatial differences in soil 

porosity in relation to soil moisture dynamics. The impact of this pattern was more 

pronounced during dry periods, indicating a compensating effect of precipitation. The second 

EOF explained 28.3 % of the variance and could be assigned to land management patterns, 

influencing soil properties and increased evaporation due to tillage as well as transpiration, 

due to different crops and different dates of sowing and fertilization. More than 66 % of the 

spatial variability of surface soil moisture at the arable test site was explained by these two 
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EOFs. The highest temporal variability of soil moisture was found at locations with low 

porosity. At these locations higher thermal conductivity and lower water holding capacity, 

caused by higher content of the coarse fraction in the soil, led to a higher temporal variance of 

soil moisture. The structure of our dataset with alternating management patterns at the arable 

test site in two consecutive years of measurements allowed for detecting not only the stable 

pattern (connected with soil parameters), but also the non-stable pattern of different land 

management on different fields. 

Both test sites were small enough to assume homogeneous precipitation conditions for all 

measuring locations, but while the surface soil moisture variability increases with increasing 

soil moisture conditions in the grassland test site, a reversed relationship was found in the 

arable land test site. Hence, the wet state on the grassland test site was non-locally controlled, 

with catchment terrain leading to pattern (e.g., by lateral redistribution of water), whereas the 

wet state on the arable land was locally controlled, with mainly vertical fluxes leading to the 

pattern (see section 2.4).  

The identification of management as one main factor controlling surface soil moisture 

patterns had implications for the analysis on larger scales. We used a spatial support of 150 m 

in the large scale analysis, to account for the land use and management induced small scale 

variability. 

6.2. Large scale surface soil moisture patterns 

Spatially distributed soil moisture maps were derived from radar remote sensing and 

ecohydrological modeling. Data from the field measurements were used to validate the 

DANUBIA model and soil moisture estimates from the empirical retrieval algorithm for the 

Advanced Synthetic Aperture Radar (ASAR) onboard the ENVISAT satellite.  

6.2.1. Validation of methods 

The dynamically coupled, process based and spatially distributed ecohydrological model 

DANUBIA was used and validated in the northern part of the Rur catchment. The model 

study focused on the northern part of the Rur catchment, since 46 % of the area is arable land. 

Water uptake from the vegetation strongly influences soil moisture dynamics during the 

growing season. In turn, water demand of the vegetation strongly depends on vegetation type 

and development state. Thus, it is important to adequately model the vegetation dynamics. 

Therefore the plant growth model was validated during two growing seasons for the three 
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main crops in the investigation area: Winter wheat, sugar beet, and maize. The index of 

agreement for the total aboveground biomass yielded values of 0.96 or higher and values 

ranging from 0.81 to 0.98 for green LAI supporting our confidence to adequately simulate the 

key effects of plant growth dynamics upon the temporal course and spatial dynamics of soil 

moisture. The validation of surface soil moisture yielded RMSE values that range from 1.8 to 

7.8 Vol.-% for both years and all crops and an average RMSE of 3.4 Vol.-%. However, a 

change in soil infiltration, which was clearly discernible in the field measurements, lead to 

significantly larger RMSE values for maize and sugar beet at the end of the growing season. 

Considering only the first phase of the measurements for these crops, the RMSE showed 

values between 1.3 and 3.0 Vol.-%. Possible processes leading to the observed changes in soil 

infiltration might be clogging of the pores by siltation or crust formation. 

The validation of ASAR derived soil moisture values for bare soil, cereal, harvested 

fields, grassland and root crops yielded an overall RMSE of 5.0 Vol.-%. Very high soil 

moisture values, exceeding 45 Vol.-%, were measured under grassland, where the thatch layer 

of the grass cover and the organic topsoil layer provided a porosity exceeding the porosity of 

mineral soils. The empirical retrieval algorithm did not appropriately account for this effect. 

By excluding soil moisture values above 45 Vol.-% the overall RMSE value diminished to 

4.3 Vol.-%. 

6.2.2. Large scale patterns 

We analyzed the statistical properties of the surface soil moisture patterns in terms of the 

relationship between soil moisture variability and mean soil moisture. Using the data from all 

eight ASAR soil moisture images from the whole Rur catchment, a linear relationship 

between the spatial coefficient of variation (CV) and the mean soil moisture was found. The 

relationship showed decreasing soil moisture variability with increasing mean soil moisture 

values. When investigating this relationship separately for the northern part and the southern 

part of the Rur catchment, the relationship in the northern part was close to that of the whole 

catchment, while in contrast the relationship for the southern area showed high variability 

even at high soil moisture means. While the soil texture in the northern part was rather 

uniform, the soil textures in the southern part varied considerably from mineral soils 

saturating at moisture values between 45 and 50 Vol.-% to organic soil or soils with an 

organic top soil layer with surface soil moisture values in excess of 60 Vol.-%. Thus, even at 

or close to saturation, the soils in the southern part showed large spatial variability. Moreover, 

the hilly topography of the southern part also caused larger spatial variations of precipitation 
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and more heterogeneity due to lateral redistribution of water on the soil surface or subsurface. 

A similar behavior of the relationship between variability and mean value was found using the 

daily surface soil moisture maps of the northern part of the Rur catchment calculated by the 

DANUBIA model. Here we found a negative exponential relationship, leading to slightly 

lower CV values at a given mean value than calculated from the ASAR data. For example, for 

the mean value of 30 Vol.-%, the relationship derived from the model data results in a CV of 

12.3 %, and from the remote sensing data in a CV of 17.7 %. These differences could be 

explained by additional variability induced by the grassland in the northern part of the Rur 

catchment, which is included in the ASAR data, but not in the model and by differences in the 

soil volume for the soil moisture estimation between the two methods. Furthermore, the 

relationships are derived from different years with different land use classifications. 

Moreover, modeled spatial patterns tend to reduce the spatial variability of the natural system, 

because the full detail of all processes involved cannot be implemented in a model and models 

are simplifications by definition. Also the input data for the model (e.g., soil map, 

precipitation data) cannot include the full heterogeneity of the natural system. 

An advantage of using the DANUBIA model for the analysis of spatial surface soil 

moisture patterns on large scales is the higher temporal resolution of the data (daily soil 

moisture maps), compared to radar remote sensing with one image every 35 days. The higher 

temporal resolution of the data enables the potential to analyze the main processes leading to 

soil moisture dynamics during the course of the year. To investigate the influence of the 

single factors land use, precipitation and soil on surface soil moisture patterns, we performed, 

besides a model run with the full complexity, several additional model runs, holding one of 

these factors spatially constant. The generated maps from these four model runs served as a 

basis for autocorrelation analyses of the spatial patterns. With these analyses, we could 

distinguish between three different major factors influencing the soil moisture patterns in the 

northern part of the Rur catchment: 1) precipitation events with large autocorrelation lengths, 

2) soil properties with medium autocorrelation lengths, and 3) land use patterns with small 

autocorrelation lengths. At the beginning and the end of the year when the overall soil 

moisture is high, surface soil moisture patterns depended mainly on the soil properties (field 

capacity). During the main growing season in the spring and summer, the patterns resulting 

from soil properties were modified by the small scale land use pattern and the resulting small 

scale variability of evapotranspiration. Due to their high autocorrelation lengths, precipitation 

events increased soil moisture autocorrelation even beyond the autocorrelation lengths 
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resulting from the soil properties. The strength of this effect depends on the variability and 

amount of the precipitation and upon the preceding soil moisture conditions.  

6.3. Scaling properties of surface soil moisture patterns 

Scaling properties of surface soil moisture patterns were analyzed regarding the influence 

of the extent on the relationship between soil moisture variability and mean soil moisture. 

This was done on the basis of ASAR soil moisture maps and field measurements. The 

relationship was calculated for the whole Rur catchment, for the northern part of the Rur 

catchment, for 1.5 km x 1.5 km boxes (non-overlapping 10 x 10 pixels moving box) within 

the northern part of the Rur catchment and for the field scale (winter wheat and sugar beet). 

At all scales (extent) the variability of soil moisture decreased with increasing mean soil 

moisture, but the slope of this linear relationship decreases with decreasing extent. Hence, at a 

given mean soil moisture level, we observed the highest variability on the scale of the entire 

Rur catchment and the smallest variability on the field scale. This can be attributed to the fact 

that the controlling factors of surface soil moisture variability are much more variable on the 

large scale. Precipitation as the dominant driver for soil moisture was much more 

heterogeneous on the catchment scale with annual mean values between 600 mm in the 

northern part and over 1200 mm in the southern part of the Rur catchment, than on individual 

fields or small catchments, where it could be assumed to be homogeneous. But also the 

heterogeneities of influencing factors like soil, vegetation and topography became generally 

larger at larger scales (larger extent). 

The scaling properties in terms of the variation of the support were investigated by 

aggregating the results of the DANUBIA model runs to spatial resolutions from 

0.3 km x 0.3 km up to 5.55 km x 5.55 km. Surface soil moisture patterns are determined by 

soil patterns across the analyzed scales. Land use patterns disturb these patterns in times of 

high evapotranspiration, but disturbance decreased with coarser spatial resolution. 

Precipitation typically results in large scale patterns that are superimposed upon other patterns 

at all scales for a short time. The scaling behavior (regarding the support) of patterns is of 

importance when data must be scaled down to finer resolutions. A power law relationship 

could be used for downscaling purposes. Fitting the daily spatial variance of surface soil 

moisture to spatial resolutions from 0.3 km x 0.3 km up to 5.55 km x 5.55 km yielded daily 

values of the scaling factor β. High negative values of β occurred during periods of high small 

scale spatial variability and denoted a strong decrease of surface soil moisture variability with 

increasing support, while lower negative β-values indicate periods of reduced scale 
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dependence. High negative β-values occurred mainly during dry periods in summer, which 

again indicates the influence of small scale variability of evapotranspiration during the 

growing season. To be suitable for downscaling, the temporal course of the scaling factor β 

has to be derivable from independent parameters. 53 % of the variance of β could be 

explained by an independent LAI parameter to account for the small scale variability of plant 

controlled water fluxes and a precipitation parameter to account for the temporal variability of 

the precipitation. This indicated a potential to estimate the subscale surface soil moisture 

heterogeneity from coarse scale data. The derived scaling properties resulted partly from the 

specific field sizes and management structures in the northern part of the Rur catchment and 

might not apply to areas with a significantly different agricultural field structure. 

6.4. General conclusions  

This thesis improves the knowledge about surface soil moisture patterns in agriculturally 

used areas, namely the river Rur catchment. The northern part of the Rur catchment was of 

special interest, due to the strong influence of agricultural management (e.g., dates of planting 

and harvesting for different crops). The fact, that different patterns with their underlying 

processes are encountered at different temporal or spatial scales intrinsically connects the two 

terms of pattern and scale. Therefore the identification of different processes and the 

importance of these processes for surface soil moisture patterns had to be considered in the 

context of the scale. The following three paragraphs summarize the conclusions with respect 

to the research questions: 

 Precipitation, vegetation patterns, topography and soil properties are the dominant 

factors for soil moisture patterns in an agriculturally used landscape. Precipitation can 

be assumed to be homogeneous at the small scale, having a uniformly raising effect on 

surface soil moisture for the time of the event, but can be very heterogeneous on the 

large scale at the same time. Vegetation patterns influence soil moisture patterns by 

controlling evapotranspiration. Especially during the growing season large differences 

in evapotranspiration on neighboring fields could be identified, causing high small 

scale variability. This small scale pattern smoothes out with coarser resolutions of the 

investigation. Topography is a source of small scale patterns on wet surface soil 

moisture states, due to the lateral redistribution of water during or shortly after 

precipitation events. Soils have a major influence on the variability of surface soil 

moisture on all scales, due to the large heterogeneity of soil properties within a given 
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soil type (small scale) and between different soil types (large scale). These varying 

soil properties led to large spatial differences in the hydraulic behavior of a soil (e.g., 

infiltration or water holding capacity). 

 These influencing factors and their underlying processes control the variability of 

surface soil moisture patterns in our investigation. Based on the scale analysis of the 

radar remote sensing data (scale: extent) and the model data (scale: support) we come 

to the conclusion, that the variability of surface soil moisture increases with an 

increasing size of the investigation area (extent) and an increasing resolution within 

the investigation area (support).  

 In the course of the year surface soil moisture patterns and their scaling properties 

depend on different varying factors. Two main periods with different general patterns 

and scaling behavior can be distinguished. A) In the beginning and towards the end of 

the year (outside the growing season) the patterns and their scaling properties are 

mainly determined by soil properties. B) During the growing season these patterns are 

superimposed by the small scale land use pattern and the resulting small scale 

variability of evapotranspiration. At this time of high small scale variability of 

evapotranspiration, the variability of surface soil moisture decreases much stronger 

with increasing spatial scale (support) than during times outside the growing season. 

During the whole year precipitation events superimpose their large scale patterns for a 

short period of time and diminish the small scale variability induced by 

evapotranspiration. 

6.5. Outlook 

The comprehensive analysis of surface soil moisture patterns in an agricultural landscape 

and the understanding of the different influencing factors on different scales at different times 

upon these patterns are of great importance within the SFB/TR32 project, because soil 

moisture is one of the key components in the soil-vegetation-atmosphere system. The 

improved knowledge could be used to access the subscale surface soil moisture heterogeneity 

from coarse scale data, derived for example from SMOS (Soil Moisture and Ocean Salinity) 

or SMAP (Soil Moisture Active Passive) satellite measurements. Our analysis showed the 

importance of small scale land use patterns and the usability of vegetation (e.g., leaf area 

index) and meteorological parameters for downscaling purposes. The combined analysis of 
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radar remote sensing and modeling provide an opportunity to improve the parameterization of 

surface soil properties. Outside the growing season soil moisture patterns are mainly 

determined by soil properties. Hence, the analysis of systematic and stable differences 

between estimates from remote sensing and modeling can be utilized to identify heterogeneity 

of soil parameters, which is not differentiated in soil maps. The assimilation of remote sensing 

data could potentially be used to improve the precision of surface soil moisture estimates from 

the model. This will depend on the accuracy of the data sets and the temporal resolution of the 

remote sensing data. The daily distributed data produced by the DANUBIA model (e.g., 

biomass) will be used for biomass correction in radar remote sensing retrieval algorithms for 

soil moisture and can be used as input data for models operating on larger scales and for 

model comparisons within the SFB/TR32 project. Plans are to implement a forest and a 

grassland model into the DANUBIA model, to extend the coverage within the Rur catchment. 
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