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Abstract 

Recent molecular phylogenetic analyses of picoeukaryotic (< 3 µm) 18S rDNA 

environmental sequences revealed a deep branching lineage formally described as 

‘picobiliphytes’ with unknown affinity to other eukaryotes. Until now, no cultured 

representatives existed to enable further investigation regarding the biodiversity 

and morphology of this newly erected clade. This work, reports on a newly-

discovered, free-living eukaryotic protist Picomonas judraskeda gen. et sp. nov., 

from European marine coastal habitats which has a ‘picobiliphyte’ 18S rDNA 

signature. Its morphological and ultra-structural characters clearly show that it 

contains, neither chlorophyll nor phycobilin autofluorescence, both of which are 

main attributes of ‘picobiliphytes’. The phycobilin was assumed to have been 

derived from a secondary endosymbiont; and the host of the ‘picobiliphytes’ was 

postulated to be a sister to cryptophytes/ katablepharids. The isolate Picomonas is 

slightly elongated and 2.5-5 µm in length with two unequal flagella. It exhibits 

unique cell movements (jump, drag, and skedaddle mode of locomotion). Light and 

electron microscopic studies reveal that the cells are naked, the flagella not 

covered by hairs or scales and that a plastid is lacking. The cells thus are 

heterotrophic, although their food source could not be determined and food 

vacuoles containing bacteria are never observed. The cells harbor several unique 

compartments that do not match those of any other known eukaryotes. This 

uniqueness is corroborated by phylogenetic analyses of the complete nuclear 

ribosomal operon placed them into a new phylum ‘Picozoa’. 
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Deutsche Kurzzusammenfassung 

Molekulare phylogenetische Analysen von 18S rDNA Umwelt-Sequenzen 

wiesen auf eine neue Gruppe von Picoplanktern unbekannter Affinität zu anderen 

Eukaryoten. Vor einigen Jahren wurde diese Organismengruppe formal als 

„Picobiliphyta“' beschrieben. Eine Kultur dieser Organismen war bisher jedoch 

nicht möglich, sodass keine weitergehenden Untersuchungen in Bezug auf die 

Biodiversität und Morphologie dieser Organismengruppe möglich waren. In der 

hier vorgelegten Arbeit wurde nun erstmals eine Kultur etabliert angelegt und die 

Morphologie einer Gattung detailliert untersucht. Die Gattung hat den Namen, 

Picomonas judraskeda Gen. et sp. nov. Erhalten. Sie kommt an den europäischen 

Atlantikküste vor und besitzt eine typische ‘picobiliphyte‘ 18S rDNA Signatur . 

Licht- und elektronenmikroskopische Untersuchunge zeigen deutlich, sowie 

Untersuchungen der zellulären Autofluoreszenz zeigen eindeuting, dass sie weder 

Chlorophyll, Phycobiline oder einen Plastiden besitzt. Damit konnten wichtige 

frühere Befunde zu den "Picobiliphyta 'nicht bestätigt werden und Picomonoas 

judraskeda ist daher keine Alge mit sekundären Endosymbionten 

(Schwestergruppe zu den Cryptophyten und Katablephariden) sondern ein 

heterotropher Organismus.  

Zellen von Picomonas sind etwas länglich, ca. 2-5 µm lang und besitzen zwei 

ungleiche Geißeln. Die Zellen zeigen einzigartige Fortbewegungen. Licht- und 

elektronenmikroskopische Untersuchungen zeigen, dass die Zellen nackt sind,und 

die Geißeln nicht durch Haare oder Schuppen bedeckt sind. Ein Plastid fehlt. Die 

Zellen sind somit heterotroph, obwohl leider ihre Nahrungsquelle bisher nicht 

bestimmt werden konnte. Nahrungsvakuolen mit Bakterien wurden bisher nicht 

beobachtet. Die Zellen besitzen mehrere einzigartige Membran-umhüllte 

Kompartimente, die nicht mit von anderen Eukaryoten bekannt sind. Diese 

Einzigartigkeit wird durch phylogenetische Analysen des vollständigen nuklearen 

ribosomalen Operons bestätigt. Daher wurden die Gattung Picomonas in einen 

neuen Stamm Picozoa eingeordnet. 
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1 Introduction 

Phytoplankton (marine and fresh water) plays a pivotal role in many 

biogeochemical processes and provides amenities and services that are essential to 

mankind’s existence, including food production, remediation of waste and 

regulation of aspects of the climate in the biosphere (W. K. W. Li 1994; Pace 1997). 

All major oceans and seas are dominated numerically by microscopic protists and 

phototrophic prokaryotes and contribute to biomass, primary production and 

respiration in the ecosystem (Li 1994; Stockner & Antia 1986; Biegala et al. 2003). 

Recent studies revealed that relatively-small, ecologically important but less-

known, heterotrophic protists also contributed to the ecosystem, by sustaining the 

carbon cycle through respiration, grazing on phytoplankton, and being preyed on 

by larger zooplankton (Fuhrman & McManus 1984; Jeong et al. 2008). 

Major groups of nano- and micro-plankton often can be identified 

microscopically and very little is known about pico-sized plankton (< 3 µm), and 

their morphological features are largely uncharacterized. These, however, equally 

dominate the biomass and are distributed widely in many coastal and fresh water 

ecosystems, in the oligotrophic and mesotrophic regions (Biegala et al. 2003; Not et 

al. 2007b; Medlin et al. 2006; Massana et al. 2004). Because of the poor 

morphological characterization of picoplankton, molecular analysis is warranted to 

highlight any biodiversity of this component in aquatic environments. The 

biodiversity of picoeukaryotes at the species level has only ever been demonstrated 

by molecular techniques such as polymerase chain reaction (PCR), single strand 

confirmation polymorphism (SSCP), environmental 18S rDNA clonal libraries and 

flow cytometry of the unculturable cells (Medlin et al. 2006). Analyses of clonal 

libraries in phylogenetic trees often highlights many novel diversity among the 

species level and many new higher-order taxa exist (Giovannoni et al., 1988; 

Amann et al., 1990; Díez et al., 2001; Moon-Van Der Staay et al., 2001; Not et al., 

2002; Not et al., 2007b; Biegala et al., 2003; Massana et al., 2004; Medlin et al., 

2006). Taxon-specific (phylum, division, class, or genus) rDNA oligonucleotide 

probes coupled with flow cytometry have also proven as a useful methods in recent 

estimates of the abundance of nano- or picoeukaryotes in the ecosystem (Simon et 

al., 1995, 2000; Not et al., 2002; Biegala et al., 2003; Sekar et al., 2004; Not et al., 

2007a).  

Up on, investigating the diversity of picoplankton from coastlines of Europe 

the North Atlantic and Arctic Oceans, several novel groups are discovered (Romari 

et al .2004; Medlin et al. 2006). One of them is putatively algal; termed Rosko 

Group II, which has shown an incredible diversity from environmental 18S rDNA 

phylogenetic analyses (Romari & Vaulot 2004; Medlin et al. 2006). This new group 

of ‘algae’ formed three distinct clades and two oligonucleotide probes (picobili-

probes -PicoBI01/PicoBI02) are obtained for FISH analysis. These probes are 

applied to 3 µm filtered field samples and positive signals are thought to be 

unicellular, slightly oblong (approximately 2-6 µm) and to contain one plastid (the 

pigments of which are not removed by the alcohol dehydration during FISH, 
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therefore signalling the presence of phycobilins). The DAPI stained body in the 

plastid is also suggested the presence of a nucleomorph, retained from a secondary 

endocytobiosis, as in cryptophytes (Fig. 1.1, Not et al. 2007a). Molecular 

phylogenetic analyses of these cells have revealed that the organism previously 

termed ‘picobiliphyte’ was sister to cryptophytes and katablepharids thus 

apparently supporting the data from FISH (Not et al., 2007a). The authors also 

examined 3 µm filtered field samples by using molecular probes coupled to 

Fluorescent Activated Cell Sorting (FACS) against their orange fluorescence 

(phycoerythrin), 48 to 61% of the sorted cells were positive to Picobili-probes, 

suggesting that the cell exhibited phycobilin-like pigments. 

In addition to Not et al. 2007, the ‘trophic’ nature of ‘picobiliphytes’ are 

confirmed by Cuvelier et al. 2008, by applying ‘biliphyte-specific probes’ on 

samples, obtained from Atlantic subtropical regions (Sargasso Sea and the Florida 

Current, (Cuvelier et al. 2008)). However, unlike results from the initial 

publication on these organisms, they could not detect a nucleomorph, either 

visually, or by targeted primers. Furthermore, the results of cell size indicated that 

‘picobiliphytes’ are nanoplanktonic.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Phylogenetic tree illustrating the position of the novel ‘picobiliphytes’ relative to other 

major eukaryotes (Not et al., 2007a). Although the tree topology has shown that ‘picobiliphytes’ are a 

sister group to Cryptophyta and katablepharids, no bootstrap support from maximum 

parsimony/neighbor-joining are observed. The methods used in this study are Mr Bayes /maximum 

parsimony/neighbor-joining. PICOBI01 and PICOBI02 are ‘picobiliphyte’ probes used for FISH. 

(Insert) ‘Picobiliphytes’ targeted by the probe PICOBI02 in FISH (specific for picobilipyte clade 2). 

The DAPI-stained nucleus (nuc) in blue; green fluorescence for probe-specific labelling of the small 

subunit rRNA in the cytoplasm (cyto), and the red autofluorescence indicates the phycobilin protein-

containing organelle (PBPorg).         
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1.1 Are ‘picobiliphytes’ heterotrophic? 

The presence of phycobilin-like autofluorescence is strongly questioned by 

Kim et al. 2011, and the orange fluorescence is not detected on ‘Picobiliphytes’ by 

FISH. This in turn led to the speculation that ‘picobiliphytes’/ ‘biliphytes’ are most 

likely not obligate photoautotrophs but rather facultative mixotrophs or 

phagotrophs, and that the occasional, transient detection of orange fluorescence 

merely represents ingested prey (Kim et al. 2011). In addition, a recent study by 

Single-cell Amplified Genome (SAG) analysis (using Lysotracker on marine 

heterotrophic protists) on three individual cells of ‘picobiliphytes’ has not shown 

any plastidal genes in their genome database (Heywood et al. 2011; Yoon et al. 

2011).  

1.2 Quantitative assessment of picoeukaryotes by different approaches 

Molecular techniques can result in data that overstate the true degree of 

biodiversity; current understanding of marine eukaryotic biodiversity may be 

significantly skewed by PCR biases, by the occurrence of multiple copies of rDNA 

genes within a single cell, and by the persistence of DNA in extracellular material 

(Jürgens & Massana 2008). Investigation of biodiversity by targeting 18S rRNA 

rather than by 18S rDNA library construction, promises to minimize DNA biases 

and thereby offer new perspectives of understanding the diversity and function of 

picoeukaryotes (Not et al. 2009). Alternative approaches has focused on 

constructing clone libraries of individual cells, by flow cytometry by virtue of 

autofluorescence (chlorophyll/plastids) and using taxon-specific oligonucleotide 

probes in FISH (Veldhuis & Kraay 2000; Not et al. 2002; Biegala et al. 2003; Fuller 

et al. 2006; Lepère et al. 2009) has increased the diversity quantitatively. 

Metagenomics, environmental PCR-based fingerprinting (Vigil et al. 2009) and 

Quantitative real time PCR (qPCR; Zhu et al. 2005) are other methods used to 

determine the diversity among the picoeukaryotic community. 

The genome sequencing of an individual cell (SAG) by flow cytometry allows 

the better possibility of analysing microbial communities, populations and 

biodiversity (Stepanauskas & M. E. Sieracki 2007; Woyke et al. 2009). However, 

this approach has its limitations for it could not be used for targeting heterotrophic 

cells in flow cytometry with respect to their optical properties. Thus, applying 

fluorescent markers like Lysotracker (which stains food vacuoles) or Mitotracker 

(for mitochondrial staining) are proved to work efficiently for sorting heterotrophic 

protists (Bassøe et al. 2003; Pendergrass et al. 2004; Heywood et al. 2011) and 

enhanced the resolution of heterotrophy diversity, significantly from the library of 

single amplified genomes (SAGs) over that from environmental libraries of the 18S 

rRNA gene, from the same coastal region (Heywood et al. 2011). Such libraries of 

SAGs, but not clonal libraries, also contained several recently-discovered, 

uncultured groups, including ‘picobiliphytes’. The genome analysis of three 

individual ‘picobiliphyte’ has now been highlighted the true trophic interaction of 

picobiliphytes (Yoon et al. 2011). 
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Thus, not only the diversity and abundance of ‘picobiliphytes’/’biliphytes’ 

cannot be inferred based on clone libraries but also the morphological or functional 

attributes (FISH) that the cell posses comes under scrutiny (Not et al., 2007a; 

Cuvelier et al., 2008; Heywood et al., 2011; Kim et al., 2011; Yoon et al., 2011). 

However, the identification, distribution and abundance of novel eukaryotic 

groups, from environmental sequences are informative to insight for sampling at 

appropriate sites and/or times and also enhance the prospect of establishing clonal 

culture. 

1.3 Abundance and Diversity of ‘picobiliphytes’ 

‘Picobiliphytes’ are eurytopic organisms, widely distributed in the biosphere. 

The abundance of these sequences varies depending on the ecophysiological 

nature, and methods applied. Temporal and spatial distribution of ‘picobiliphyte’ 

sequence data reveal that ‘biliphytes’ / ‘picobiliphytes’ are distributed from the 

Arctic Ocean to the Sargasso Sea and the Mediterranean coast. These sequences 

are also found in other oceanic environments such as the South-East Pacific Ocean 

(F. Le Gall et al. 2008), South China Sea (L. Li et al. 2008) and the Indian Ocean 

(Ramon Massana et al. 2011) indicating the widespread distribution of these 

organisms in the world’s oceans. The diversity of ‘picobiliphytes’ varies from 4 to 

89 m in depth vertically and from 5 to 30 OC, which is about 1.6 to 28 % of the total 

picoeukaryotic community (observed from environmental clone libraries) in all 

oceanic locations (Not et al., 2007a; Cuvelier et al., 2008; Li et al., 2008; Not et al., 

2009; Heywood et al., 2011). The diversity at species level may altered by using 

taxon-specific primers for clonal libraries; it shows apparently higher than 

analyses of 18S rDNA libraries (Liu et al. 2009). Culture independent studies also 

indicated that ‘picobiliphyte’ sequences are not obtained / detected in fresh water 

until now (Kim et al. 2011). Although, the diversity and abundance of 

‘picobiliphytes' are well known now the biggest constraint remains to date; that no 

cultural representative for this group exists, nor have any idea of the structural 

identity (ultrastructure) of such an organism available. 

1.4 Culturing picoplankton 

Picoplankton often grows very slowly and little is known of their nutrient 

requirements (D Vaulot et al. 2004). Most of the oligotrophic regions on earth have 

a better chance of providing cultures of picoplankton relative to other trophic state 

environments. Live cells can be sorted against autofluorescence into various 

culture media, including preconditioned media (Surek & Melkonian 2004; D 

Vaulot et al. 2004; F. Le Gall et al. 2008). The isolation of clonal cultures by micro-

pipetting can be impractical because of the extremely small dimensions of the cell 

and its optical properties, but also most of the time the growth requirements are 

unknown. An alternative approach can be possible to use fluorescent probe-aided 

cell sorting to isolate relatively small, under-studied heterotrophic protists and 

bring them into culture in the presence of filtered (unautoclaved) natural sea 

water. 
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1.5 Phylogenetic analyses 

By combining phylogenetic trees with ultra-structural and biochemical 

analyses, at least six super groups of distinct eukaryotes i.e., Opisthokonta, 

Amoebozoa, Plantae, Rhizaria, Chromalveolata and Excavata are proposed 

(Cavalier-Smith 2004; Adl et al. 2005). However, the increasing number of 

biodiversity studies using different environmental samples cast doubt on the 

monophyly of current eukaryotic super groups (Parfrey et al. 2006). The newly-

erected taxon, Hacrobia, which includes haptophytes, cryptophytes, telonemids, 

katablepharids, centrohelids, Palpitomonas and possibly ‘biliphytes’ 

(‘picobiliphytes’), has not yet been clearly assigned to any of the super groups 

(Okamoto et al. 2009; Yabuki et al. 2010). The hacrobian taxa, however, are 

morphologically distinguished and phylogenetically long-branched; sharing a 

common second transitional region at the distal basal plate in one of the flagella, 

thus, placing them into a likely monophylum (Yabuki et al. 2012). 

1.6 Aims of this study 

In this study, the morphology of a new eukaryotic class, previously only 

reported (albeit speculatively) by environmental sequences, is characterized. A 

clonal culture is established by using fluorescent probes (Mitotracker) coupled with 

fluorescence-activated cell sorting. The established culture is used to characterize 

the ‘picobiliphytes’ at light and electron microscopic levels. Environmental clone 

libraries are made with taxon-specific primers in order to obtain better diversity in 

Helgoland Time Series Site. The complete nuclear ribosomal operon of 

‘picobiliphytes’ is used for finding the significance and phylogenetic occurrence of 

its initial discovery. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals  

Chemicals were obtained from the following companies:  

Biomol (Hamburg, D), Difco (Hamburg, D), Duchefa (Haarlem, NL), Eurobio (Les 

Ulis Cedex, F), Fluka AG (Buchs, CH), Merck (Darmstadt, D), Roche (Mannheim, 

D), Roth (Karlsruhe, D), Fisher Scientific GmbH (Schwerte, D), Chromatographie 

Service GmbH (Langerwehe, D) and Sigma-Aldrich (Deisenhofen, D). Research 

grade purity was used for all purposes.  

 

2.1.2 Membrane filters 

Isopore membrane filters (10, 5, 3, 2, 0.2 m) Millipore 

Glass microfibre Filter 
Whatman 

Nucleopore Tracketch (0.2m) 

VaccuCap60 PALL corporation 

Mixed cellulose ester membrane filter (0.8, 0.4, 0.2, 

0.1 m) 
Schleicher&schuell 

 

2.1.3 Enzymes  

Enzymes for molecular biology were obtained from the companies:  

Invitrogen (Karlsruhe, D), MBI Fermentas (St. Leon-Rot, D), Promega (Mannheim, 

D), Qiagen (Hilden, D), Roche (Mannheim, D) and Sigma (Deisenhofen, D).  

 

2.1.4 Kits  

The following Kits were used according to the manufacturer’s protocols:  

DNeasy Plant Mini Kit (Qiagen)  

Big Dye®Terminator Cycle Sequencing Kit v3.1 (Applied Biosystems, Foster City, USA)  

CompactPrep Plasmid Midi (Qiagen GmbH, Hilden, D)  

QIAquick Gel Extraction Kit (Qiagen GmbH, Hilden, D)  

 

2.1.5 Antibiotics  

The following antibiotics are used in this experiment. Stock solutions are 

prepared according to the manufacturer instructions. The final concentration been 

used as low as possible in enriched ‘picobiliphyte’ flasks to inhibit only the bacte-

rial growth. 

Antibiotic  stock solution  Final conc. for 10ml of samples 

Ampicillin  50 mg/mL  in water  50 µg/ml 

Carbenicillin  50 mg/mL  in water  50 µg/ml 
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Kanamycin  50 mg/mL  in water  50 µg/ml 

Tetracyclin 25mg/mL In water 25 µg/ml 

Chloramphenicol  15 mg/mL  in ethanol  15 µg/ml 

    

2.1.6 Bacterial strain 

Genotype of JM109 

F’ (traD36, proAB+ lacIq, (lacZ)M15) endA1 recA1 hsdR17(rk-, mk+) mcrA 

supE44 - yrA96 relA1 (lacproAB)thi-1 

 

2.1.7 Software  

 Acrobat Reader Version 9.0  

Adobe  

 Photoshop Version CS4  

 Adobe Illustrator CS4 

 SeqMan II  

DNA-Star Inc 
 Edit Seq  

 Sequence Detection Software v1.4  Applied Biosystems   

 AlignIR V2.0 
Licor 

 Blender V. 2.63 
http://www.blender.org/ 
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2.2 Methods 

2.2.1 Sample collection, culturing and Isolation 

2.2.1.1 Sample collection in Helgoland 

The Helgoland time series station (Helgoland roads) is located at 54o 

11.3’N, 7o54.0’E in the central German bight of the North Sea. North Sea surface 

water (depth, 5 –to 8-m) was collected early morning (6-7 am) from Helgoland 

roads (Helgoland reede) from July 2007 to October 2007. The samples were 

immediately fractionated with different filters and final fractionation was done 

with 3 µm membrane filter which is ideal for Picoeukaryotes (L K Medlin et al. 

2006).  

Helgoland sea water was serially filtered with 10, 5 and 3 µm isopore 

membrane filters (Millipore). The 3 µm filtered sea water was used for three 

different purposes: Firstly, 50 ml of sea water was directly transferred into 50 ml 

culture flask (Falcon) allowing the growth of ‘picobiliphytes’, secondly, 200 ml of 

sea water further filtered on 25 mm polycarbonate membrane (Millipore), 

washed with modified saline ethanol (22 ml of 100% ethanol, 5 ml of deionized 

water, 3 ml of 25X SET (3.75 M NaCl, 25 mM EDTA, 0.5 M Tris–HCl and pH 7.8) 

for one hour to fix the cells before storing at -80°C for FISH analysis and finally, 

500 ml of sea water was filtered on 0.2 µm filter and further used for genomic DNA 

extraction by 3% CTAB method (J. J. Doyle & J. L. Doyle 1990). However, the 

3%CTAB method for DNA isolation did not yield enough DNA; a modified protocol 

from DNAeasy method (Qiagen) was necessary for DNA isolations from the 

environmental samples (see below 2.2.2.1.2). DNA was quantified by Nanodrop 

(ND1000 spectrophotometer, NanoDrop) and 100ng of DNA was used to check the 

presence of ‘picobiliphytes’ with taxon specific forward primers (PICOBI01F and 

PICOBI02F) with 18S eukaryotic reverse primer. 

2.2.1.2 Enrichment and clonal culturing of Pico cells 

Fractionated sea water (3 µm) was enriched with various culture media (see 

below 2.2.7) with minimal nutrients (diluted to 1:50) for photosynthetic eukaryotes 

(Surek & Melkonian 2004; D Vaulot et al. 2004; F. Le Gall et al. 2008). For 

Heterotrophic protists, the sea water was fractionated with 10 µm membrane filter 

and passed through a second 2 µm membrane filter. 100 ml of fractionated sea 

water was split into two 50ml falcon tubes and centrifuged at 4000g for 10 min; 

the supernatant was filtered using a 0.2µm filter. Both the pellet and membrane 

filter remnants were transferred into culture flask with 0.2µm Filter Sterilised Sea 

Water (FSSW). 

2.2.1.3 Primary culture - a methodical approach 

In this study, two different strategies were applied to obtain an enrichment 

of ‘picobiliphyte’ cell. The first approach was a direct enrichment of 3 µm filtered 

sea water with addition of minimal nutrients including; Keller (Keller et al. 1987), 
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Drebes (Drebes & Schulz 1989), GP5% (Loeblich & Smith 1968) and IMR (Eppley 

et al. 1970) media (1:50dillution) and allowed the cells to grow in a 50 ml tissue-

culture flasks. The second approach was based on cell sorting, and targeted 

specific populations (orange fluorescence (FL2), also chlorophyll fluorescence 

(FL3)) by its optical properties. Cells were sorted into 96 well/24 well plates (Surek 

& Melkonian 2004; D Vaulot et al. 2004; F. Le Gall et al. 2008) and were incubated 

at 15°C. Enriched cultures were examined several times by utilizing FACS and 

microscopy observations followed by molecular methods such as using taxon 

specific PCR primers and FISH probes (Veldhuis and Kraay, 2000; Not et al., 2002; 

Biegala et al., 2003; Fuller et al., 2006; Not et al., 2007a).  

2.2.1.4 Heterotrophic cell culture 

Samples from 2 µm filtered sea water, from the Helgoland Time Series Site 

were initially maintained in FSSW and tested by PCR with specific primers 

(PicoPCR) for the presence of ‘picobiliphytes’. Such PCR positive flasks were 

duplicated in FSSW and were maintained by regular transfer into fresh FSSW for 

every 2 weeks with periodic check for PCR positive cells. These were later 

transferred into minimal nutrient media and were checked only by PicoPCR and 

not by light microscopy, since the overgrowth of contaminants (eukaryotic and 

bacterial) was hindering the identification of ‘picobiliphytes’. 

2.2.2 Molecular approach  

2.2.2.1 Isolation of genomic DNA 

2.2.2.1.1 gDNA extraction from membrane filters – 3%CTAB method 

Picoplanktons were retained on 0.2 µm filter from 500 ml of 3 µm pre-

filtered Sea water. The filter was dried at room temperature and folded before 

inserting into a 15 ml screw cap tube. 700 µl of 3%CTAB solution was added 

incubated at 60°C for 2 min with intermediate vortexing. 300 µl of TE or 1XSET 

was added to the tube and vortexed it again. The aqueous solution was transferred 

to 1.5 ml tube. The sample was centrifuged at 12000 rpm for 1min (to remove cell 

debris). The liquid was transferred into new 1.5ml tube and 0.6 volume of 

isopropanol was added and incubated at RT for 10 min. The sample was 

centrifuged at 12000 rpm for 15 mins. The pellet was washed with 600 µl of 80% 

ethanol by centrifuging it at 12000 rpm for 2 min. The supernatant was decanted 

and the pellet was air dried. Pellet was re-suspended with 20 l of TE buffer. 

2.2.2.1.2 gDNA extraction from membrane filters –DNAeasy method 

Genomic DNA was isolated from 0.2 m filter (also for cultures) by using 

Qiagen- DNAeasy Plant Mini kit protocol according to the manufacturer’s 

instructions with few modifications. For each filter, 700 µl of AP1 buffer was added 

and incubated at 65°C for 5min. 200 µl of AP2 was added and incubated on ice for 

5min. Samples were centrifuged at 10000 rpm for 15min. The supernatant was 

transferred into the column followed manufacturer’s instructions. Alternatively, 

(when the cells were few) after centrifugation, the supernatant was transferred 

into 1.5 ml tube and 0.6 % of Isopropanol was added followed CTAB method. 
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2.2.2.2 Polymerase chain reaction-PCR 

For environmental samples, 100ng of genomic DNA, 200 M dNTPS, 2-5 

picomoles of forward and reverse primers and 1U of DreamTaq DNA polymerase 

(Fermentas) were used in a 20 l PCR reaction volume. The PCR run was carried 

out in two different thermocyclers a Primus 96plus (MWG Biotech, Ebersberg, 

Germany) and a T personal (Biometra) under following conditions.  

PCR condition: 

Initial denaturation -  95 °C for 5 min. 

Denaturation  -  95 °C for 30 sec 

Annealing  -  50-58 °C ** for 30sec 

Extension  -  72 °C for 1min 30sec 

The cycle was repeated for 35times* 

Final extension 72 °C for 5min 

Store   10 °C forever  
 

 *a) in case for re-amplification, both primary and secondary amplification 30cycles were 

carried out and b) for PicoPCR specific primers were used from both end (PicoBi01F & ITS1R), and 

37cycles were performed. 

 ** All PCR experiments were carried out with 55OC, except for environmental PCR with 

rDNA primers at 50°C 

 

PCR products were checked by running on a 1% Biozym LE agarose gel 

containing ethidium bromide (1 l of 1% EtBr solution for 50ml of 1% agarose gel). 

For direct cell PCR (cell PCR) from cultures, 100 l of enriched cultures were 

added to PCR tubes and centrifuged to pellet down cells at 8000 rpm for 10 min. 

PCR mixture with enzyme (20 l) was added directly to the PCR tube and 

amplified with mentioned above conditions. 1l of primary amplicons were used for 

reamplification as shown in Fig. 2.1 & 2.2 PicoPCR is same as cell PCR, differ 

from two a) ‘picobiliphytes’-specific primers (PicoBI01F/ITS1R) were used as 

primers b) amplification cycles were increased to 37. 

 

 

 

Figure 2.1: PicoBI01F and Eukaryotic 18S reverse (BR) are used for primary amplification and 

internal eukaryotic reverse (1055R) used for reamplification.  

 

 

 

Figure 2.2: ITS region was identified for Picobiliphytes and ITS1R (Specific for Picobiliphytes- 

Clade I&II) was used as reverse primer for primary amplification 

 

For colony PCR, the individual colonies were picked by toothpick and 

patched on LB agar+ ampicillin plate and remaining cells were directly dipped into 

PCR mixers in PCR tubes with an increased initial denaturation step (95°C for 

7min) to lyse the cells. 

 

  

E1F PicoBI01F 1055R BR 
648bp 654bp 537bp 

  

E1F PicoBI01F 1055R BR PITS1R 
648bp 654bp 630bp 
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2.2.2.3 Cloning and plasmid preparation 

PCR products were purified by microspin G-25 columns (Amersham 

Biosciences) and checked on the gel. The purified PCR products were ligated into 

pGEMTeasy vector (Promega) at 12 oC overnight. 2 l of ligated product was 

added into 40 µl of Escherichia coli strain JM109 (Promega) chemical competent 

cells and kept on ice for 5mins. A heat shock was given at 42 oC for 45 seconds and 

500 µl of SOC was added immediately after the heat shock. The cells were allowed 

to grow for 45 min at 37 oC and 100 µl of cells were spread on LBagar+ ampicillin 

(100 µg/ml) and 70 µg/ml X-GAL and 80 mM of IPTG for Blue/White screening. 

The plates were incubated at 37 oC overnight. White colonies were picked for 

inoculation and/or colony PCR.  

A PCR positive from the colony PCR were inoculated into LB medium and 

supplemented with 50 µg/ml ampicillin and incubated for overnight. Plasmids 

were isolated using QIAprep spin miniprep kit (Qiagen). The plasmids were 

quantified on agarose gel and further taken forward for sequencing. 

2.2.2.4 DNA sequencing 

For confirming PCR products, 10 to 25 ng amplicons of DNA (For Plasmid 

DNA, 100 to 200 ng) were taken directly for sequencing with BigDye Terminator 

v3.1. The products were sequenced by the sequencing service facility at the 

University of Cologne (Cologne centre for Genomics) and at the Alfred Wegener 

Institute for Polar and Marine Research (AWI, Bremerhaven). 

2.2.2.5 Sequencing reaction 

 The DNA samples were added into 8 well PCR strip and dried at 50 oC. The 

following reaction was setup - 

 5Xsequencing buffer  1.6 µl 

 Primers   1.6 pm 

BDT v3.1   1 µl 

ddH2O up to 10 µl 

Cycle sequencing reactions were performed in Primus96 plus thermocycler with 

following conditions 

 Initial denaturation   94 oC for 2mins 

  35cycles: 

  Denaturation   94 oC for 20secs 

  Annealing   50 oC for 30secs 

  Extension  60 oC for 2mins 

  Final extension 60 oC for 6mins 

2.2.3 Fluorescence Activated Cell Sorting (FACS) 

Filtered sea water (3 µm) was taken for cell sorting. The cells were sorted 

using autofluorescence phycoerythrin (PE) in FL2 (orange fluorescence) against 

chlorophylls in FL3 (red fluorescence). The sorted cells (single cells or more cells at 
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times) were collected in 96 well plate for identifying ‘picobiliphytes’ (Not et al., 

2007a). Heterotrophic protists were sorted by using Mitotracker Green FM (M7514 

Invitrogen); a green fluorescent dye that stains mitochondria in live cells. A stock 

solution was prepared in DMSO as per manufacturer’s instruction. 20 nM of 

working concentration was added to 10 ml of sample and incubated at 15oC in 

dark for 15-20 min. The stained samples were immediately sorted under blue laser 

at 488nm in FACSvantageSE (University of Cologne). The cells which emitted 

high green fluorescence (FL1) were sorted against side scatters (SSC). Second 

window was also used to monitor the Green fluorescence (FL1) against orange 

fluorescence (FL2). Two types of cell sorting were performed: target cells sorted 

directly into PCR tubes for PCR amplification, single cell sorting was performed 

and collected into 96 well and 24 well plates and incubated at 15 oC. Samples from 

96/24 well were checked for ‘picobiliphytes’ by PCR with specific primers.  

2.2.3.1 Tyramide signal amplification – Fluorescence In-Situ 

Hybridisation (TSA-FISH) 

2.2.3.1.1 Probe labelling and design 

Picobiliphyte probes PICOBI01, PICOBI02, Picoclade2D and Picoclade1G 

were designed for TSA-FISH Chemscan analysis earlier by (Not et al. 2007a). 

CHLO02 probe which was used for chlorophyta (Simon et al. 2000) also used in 

this study as a positive control. All the probes were labelled with horseradish 

peroxide (HRP) at the 5’ end and were obtained from Linda Medlin Lab (AWI, 

Bremerhaven).  

TSA-FISH experiment was carried out for cells which were sorted by FACS 

with red (chlorophyll) and orange (PE) fluorescence. FISH was also carried out for 

field samples collected from Helgoland; pre-processed membranes were placed on 

the manifold. Both experiments were conducted as per methods mentioned by 

Kerstin Toebe (Tobe et al. 2006) where 20% formamide was added in the 

hybridization buffer. Hybridisation was carried with 50 µl of hybridisation buffer 

containing 1ng/µl of probe at 37 oC for both experiments. For TSA reaction 100µl 

(1:50) of fluorescein tyramide (TSA-direct Kit, Perkin Elmer, USA) was added. 

Hybridization Buffer 

5X SET 

0.1 %( v/v) Nonidet P40 (Sigma) 

20 % formamide 

2 % blocking reagent 

Probe preparation 

50 ng of each probe (PICOBI01, PICOBI02, Picoclade2D and Picoclade1G) 

was mixed with 46 l of HB. 

Substrate solution 

Mix 1volume of 40% dextran sulphate (in water) with volume of 

amplification diluents and 1/50 volume of tyramide solution (Fluorescein labelled). 
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2.2.3.1.2 TSA-FISH on glass slide 

1ml of cells was fixed with 100 l of 16% PFA for 4hrs at 4 oC in a 1.5ml 

centrifuge tube which was previously treated with Dichlorodimethylsilan (Fluka). 

Cells were centrifuged at 8000g for 5min at RT. Pellet was re-suspended with 2X 

PBS buffer and transferred on to a glass slide which was treated with Poly-L- 

lysine (Sigma) and allowed to settle on the slide for 30minto 1hour. Dehydration 

step was followed by adding modified saline ethanol and washed again with 

1xSET. Probes (5 ng/µl final conc.) were then added to hybridization buffer and 

incubated at 37 oC for 2 hrs. TSA-reaction was followed as mentioned by Tobe et 

al., 2006. 

2.2.3.1.3 Solid phase cytometry analyses 

A ChemScan RDI (chemunx) was used for solid phase cytometric (SPC) 

analyses. A blue green laser at a 488nm wavelength from argon lamp was used to 

do an overlapping scan on the TSA-FISH filter membrane to detect the FITC 

fluorescence. Methods were followed as mentioned by Tobe et al., 2006. The 

software generated a comparison output before and after discrimination step was 

applied (called as scan map). These scan map results were validated by 

epifluorescence microscope (Nikon, Eclipse E800) by placing on the motorized 

stage. The images were captured with CCD-1300CB camera Vosskuehler, 

Germany.  

2.2.4 Microscopy 

2.2.4.1 Light microscopy 

Cells were regularly sub-cultured into 50 ml tissue culture flask (Falcon) 

and observed on Inverted light microscope (Olympus CK40) and images were 

taken by Olympus U-CMAD3 camera. A video to capture the motility of cell by was 

recorded using a Panasonic SDR-H80.  

2.2.4.2 Fluorescence microscopy 

Samples from FACS cell sorting (autofluorescence, Mitotracker® Red 

CMXRos and Mitotracker® Green fluorescence) were fixed with 1.25 % 

glutaraldehyde (GA) and observed under Nikon, Eclipse E800 microscope. For 

excitation maxima the CMXRos is 579 and emission was at 599nm which were 

visualised with TRITC filter, and Green FM (excited at 490 and emitted at 516 

nm) was visualised with GFP filter under the microscope. A DAPI stained nuclear 

body was observed under DAPI filter (Excitation at 340-380 and emission at 435-

485 nm).  

 Fluorescein fluoropore was used for TSA- FISH reaction and cells were 

observed under same FITC filter (Fluorescein has absorption maximum at 494 nm 

and emission maximum at 521 nm). Images were captured by CCD camera and 

images were analysed using Metamorph software tool Version 6.3r4. The 

colourless fluorescence images were later superimposed in Adobe Photoshop and 

artificial fluorescence were induced by following stepwise protocol. 
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i) All the required images were imported into Adobe, and image mode was set 

to RGB colour. (Set foreground and back ground in Black by adjusting 

R=0;B=0;G=0) 

ii) Image was selected by using ‘ctrl+A’ option, and the unwanted two 

channels were removed by delete option in the channel windows. Example for 

DAPI image, Green and Red channels were deleted and Blue channel was 

retained. Images were superimposed with another image and transparency set to 

screen mode. Note (a. all images were adjusted with bright/contrast before 

applying RGB mode, b. Background was set to layer 0 by double clicking the image 

in adjustment panel) 

2.2.4.3 Scanning Electron microscopy 

Cells were fixed with 1% Para-formaldehyde (PFA) and 1.25% of 

Glutaraldehyde (GA) in enriched media for 30 min. on ice. Fixed cells were directly 

placed on glass slide coated with Poly L-lysine and allowed to settle for 30 min at 

RT. To avoid the damage and contraction of the cell, they were slowly replaced 

with firstly; 0.1 µm sterile sea water, and subsequently 100%, 50% and 25% SSW 

with water then dehydration step was followed as in Martin-Cereceda et al., 2009. 

In the last step a critical point to be noted was that the drying was done with 

liquid CO2. Scanning images were taken in QuantaTM 250FEG imager. 

2.2.4.4 Transmission Electron microscopy  

2.2.4.4.1 Fixation and Embedding 

The fixation and embedding was slightly modified for the heterotrophic 

cells from Geimer and Melkonian, 2004; Buchmann and Becker, 2009. 10ml of 

healthy grown cells (approx. 10days old cells) were fixed with mixture of 200µl of 

16%PFA, 50µl of 25%GA and 50µl of OSO4 and kept on ice for 30 min. The cells 

were transferred into 1.5 ml centrifuge tubes which was pre-coated with 

Dichlorodimethylsilan then pelleted at 4000g for 10 min. The supernatant was 

carefully decanted and step was repeated until a visible pellet was seen. The cell 

pellet was re-suspended and pelleted twice with 500µl of 0.1µm filtered SSW. 50 µl 

of 50% BSA added and carefully re-suspended and centrifuged at 4000g for 10 min. 

The supernatant of BSA was cautiously removed with pipette, without disturb the 

pellet. 50 µl of 1.25% GA in SSW was added to fix the pellet on ice for 30 min. The 

fixed pellet was carefully transferred to new 1.5ml centrifuge tube for dehydration 

(To remove pellet, the centrifuge tube was placed upside down and the tip was cut 

with razor vertically into two halves). Initially the flake was saturated with 100% 

SSW and 50% SSW in 15% ethanol, 25% SSW in 22.5% ethanol, followed by 30%, 

50%, and 70% for 15mins each on ice. Subsequently, the flakes were dehydrated 

with 70%, 90% and 100% (twice) ethanol for 15mins each at -20 oC. Before resin 

embedding, the flakes were treated with EtOH: Propylenoxide (1:1), 

Prophyleneoxide and Propylenoxide: Epon (1:1) for 30min at -20 oC. Propylenoxide 

was evaporated under the hood for O/N. The pellet was transferred into fresh epon 

and incubated for 8 hrs. The samples were place on rubber mold and baked 

overnight at 65 oC for hardening the epon block. 
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2.2.4.4.2 Microtome sectioning and staining of Ultra-thin sections 

The epon block was trimmed with a razor blade to get closer to the pellet 

and the block was fixed with block holder which was then mounted on microtome 

arm (Leica EM UC7). A glass knife was used to trim and section to form a 

trapezoid with 90o angle and to make the bases at 75o and 105o angle to create 

heights to obtain isosceles trapezoid. 100 nm, 60 nm thin sections were made using 

diamond knife (DiATOME 45o, Leica). Sections were collected on pioloform of the 

slot grid; air dried and place on the rubber mat for further analyses. 

For staining the sections, the grids were placed on a rubber grid holder, 

covered with a drop of uranyl acetate (UAC) and incubated for 10 min. in dark at 

RT. The grids were washed twice with ddH2O. Grids were placed on a petridish 

with NaOH flakes. Drop of lead citrate (PbC) added to the grids and incubated for 

3.5 min. Grids were then washed with NaOH (5 mN) solution and finally washed 

with ddH2O. The grids were air dried and stored in grid holder until further 

analysis. Observation and documentation: Samples were observed under a 

transmission electron microscope (Philips CM10); images were taken by Gatan 

ORIUS TEM CCD camera. Images were analysed by Gatan Digital Micrograph 

software. 

 

2.2.5 3D construction of Picomonas 

3D reconstruction of EM serial sections was achieved by freely available 

software IMOD 4.1.10 (Kremer et al. 1996) programme from 

http://bio3d.colorado.edu/imod/. IMOD is supported by cygwin (Cygwin 1.7.1) 

(http://www.cygwin.com/), a collection of tools which look like a Linux environment 

on Windows. The serial sections from EM were initially aligned (all the sections 

were placed in one file) with Adobe Photoshop (CS4), with transform tool (ctrl+t) 

option. Once the alignment was completed the layers were exported as ‘tif’ files in 

</usr/local> directory in Windows. All the ‘*.tif’ files were then converted into 

newname.mrc file. MIDAS (alignment tool in IMOD) was run for the newname.mrc 

file to check the alignment once again. Once the alignment was established, the 

sections were visualised in 3dmod programme. Each contour was drawn manually 

for each section and all the contours were viewed in model view.  

The Z-scale value was assigned by calculating the 200 nm scale bar in 

Photoshop (image magnification is 19000X and pixel value is 2400X2400) is equal 

to 3.25 cm. In Photoshop, 28.346 pixels is equal to 1cm. so, 2.17 nm of the scale bar 

gives 1pixel.  

That is 1pixel = ({200/3.25}28.346). If the thickness of the each section is 60 nm, it 

will be divided by 2.17 and gives a Z scale value as 27.65pixels. 

Finally, the 3D construction was exported as ‘*.tif’ images, which can be used as 

image or can be used as movie. The final 3-D animation was constructed by 

Blender software version 2.63 (http://www.blender.org/). 

 

 

http://bio3d.colorado.edu/imod/
http://www.cygwin.com/
http://www.blender.org/
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2.2.6 Phylogenetic analyses 

2.2.6.1 Full length sequences of Picomonas 

The Picomonas full length rDNA operon was obtained by primer walking 

method, using different primer combinations, and re-amplification was carried out 

with picobiliphyte-specific primers. Overlapping primers were designed to identify 

the full length operon. The primers which were used in this study are listed in 

section 2.2.8. The detailed full length sequencing for this cell is given in appendix 

6.10. The full length ribosomal sequence of Picomonas cell and other nine new 

environmental sequences have been deposited with the accession number (acc no 

JX988758 for culture isolate and acc no JX988759- JX988767 for the 

environmental sequences) in Genbank. Full length 18S and 28S rDNA sequences 

were used for search of other ‘picobiliphyte’ sequences by BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). New sequences (environmental) were 

downloaded from the Genbank Database. These sequences from ‘picobiliphytes’ 

were added to the existing aligned data set, which covers the most eukaryotic 

groups, consisted the complete nuclear SSU and LSU sequences (kindly provided 

by Dr. Birger Marin and Nicole Sausen). The ‘picobiliphytes’ sequences were pre-

aligned with ‘muscle’ in Seaview 4.2 and manually aligned for secondary 

structures with existing aligned sequences 

(http://pbil.univlyon1.fr/software/seaview.html). Total three dataset was produced 

for the following analyses; 1. dataset1 contained all eukaryotic complete full length 

ribosomal sequences (104 taxa with 4,461 aligned character), 2. dataset2 all 

eukaryotic 18S SSU sequences along with ‘picobiliphyte’ sequences (185 taxa, 1598 

characters) and 3. dataset3 with ‘picobiliphyte’ SSU sequences (85 taxa, 1775 

characters).  

 

1. Detection of the phylogenetic position of ‘picobiliphytes’ inside of eukaryotes 

2. Checked the environmental ‘picobiliphyte’ sequences biased with others. (not 

shown) 

3. Analysed the diversity of the ‘picobiliphytes’ using the 18S rDNA sequences.  

 

2.2.6.2 Phylogenetic analysis methods 

For each alignment a maximum likelihood (ML) tree topology was analysed 

using the programme RAxML v 7.0.3 (Stamatakis 2006), (chosen the best topology 

from 20 replicates). For each analysis, ML 1000 bootstrap replicates with RAxML 

were calculated. For dataset-1, which covered the whole eukaryotes rDNA operon 

also neighbor joining (NJ), and maximum parsimony (MP) bootstrap values were 

calculated by PAUP (4.0b10). The GTR + I + Γ evolution model was chosen for ML 

and NJ analysis. For NJ analysis the model parameters were calculated by 

Modeltest (v3.7). Also, Bayesian analyses were performed over 5,500,000 

generations sampling from two runs with four Markov chain Monte Carlo (MCMC) 

chains (one cold, four heated chains), and 500,000 generations were removed as 

burn-in. Branches with bootstrap values below 50% and Bayesian posterior 

probabilities below 0.95% were considered not supported.  

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://pbil.univlyon1.fr/software/seaview.html
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2.2.7 Media for culturing Picoplanktons 

K Medium  (Keller et al. 1987)  

950ml filtered sea water add: 

Quantity Compound Stock solution 

1ml NaNO3 75.0g/L 

1ml NH4Cl 2.68g /L 

1ml  NaH2PO4 5g/L 

1ml Na2SiO3.9H2O 30g/L 

1ml H2Seo3 1.29mg/L 

1ml Tris base pH7.2 121.1g/L 

1ml K trace Metal soln  

0.5ml  f/2 Vitamin soln  

   

Make up to 1L  

   

K trace Metal soln_ 1Liter  

Quantity Compound Stock solution 

41.6g  Na2EDTA.2H2O  

3.15g  FeCl3.6H2O  

1.0ml  Na2MoO4.2H2O 6.3g/L  

1.0ml  ZnSO4.7H2O 22.0g/L 

1.0ml  CoCl2.6H2O 10.g/L 

1.0ml  MnCl2.4H2O 180g/L 

0.5ml CuSO4.5H2O 9.8g/L 

Heat to Dissolve  

   

f/2 vitamin soln  

Quantity Compound Stock solution 

1.0ml Vitamin B12 1g/L 

10.0ml Biotin 0.1g/L 

200.omg Thiamine HCl  

   

Make up to 1Liter  
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Drebes (Drebes & Schulz 1989) 

Substance 

Final conc in 

micro Molar  stock solution 

vol for 1L 

culture medium  

MnCl2X4H2O 10 0.999g/50ml 100µl  

NaNO3 50 2.125g/50ml 100µl  

Na2HPO4X12H2O 3 0.538g/50ml  100µl  

Na2O3Si x 9H2O 35 5.000g/500ml 1ml  

Fe-EDTA(Na-salt) 35 2.500g/500ml 1ml  

Vitamin 

(Asp12vita-

stock)  1ml  

     

Add all the substances into 0.2µm sterile sea water and filter sterile with 

0.1um filter 

 

G.P5 modified (Loeblich & Smith 1968) 

Ingredients conc Volume/L 

KNO3 10% 1ml 

K2HPO4.3H2O 0.51g/100ml 2ml 

Trace metals Asp12 1ml 

PII metals wess 1ml 

Soil extract  1ml 

Vitamins Asp12 1ml 

add into 0.2µm filter sterilized SW and filtered with 0.1µm filter 

 

 

 

2.2.8 Primers and probes 

The detailed list of primers and probes used for construction of nuclear 

rRNA operon, diversity studies and for in-situ hybridisation experiments were 

given below. 
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Primers Sequence  Author 

PICOBI01F* CGG ATT TTG GCA TCA CGC Not et.al 2007a 

PICOBI02F* ACG GTT TGA CGG GCA TAT Not et.al 2007a 

PICOBI01R GCG TGA TGC CAA AAT CCG Not et.al 2007a 

PICOBI02R ATA TGC CCG TCA AAC CGT Not et.al 2007a 

P01ITS1F CCA CGT GAA CAT TGA GAT G In this study 

P01ITS2F CAG CGT AGC GTG GTA GTA In this study 

P01ITS2FII GTC GCT CCA AGA GCA GAG In this study 

P01ITS1R CAT CTC AAT GTT CAC GTG G In this study 

P01ITS2R TAC TAC CAC GCT ACG CTG In this study 

P01ITS2RII CTC TGC TCT TGG AGC GAC In this study 

1055F* AGT GGT GGT GGT GCA TGG CCG T In this study 

1055R  ACG GCC ATG CAC CAC CAC CAC T Elwood 1985; Karsten2006  

1F  AAC CTG GTT GAT CCT GCC AGT A Medlin 1988 without polylinker 

BR  CCCGGGATCCAAGCTTGATCCTTCTGCAGGTTCACCTAC (Marin et al. 2003) with poly linker 

28S_PicoB20R ACA ACC TGA CTC GCC AAG ATG TC In this study 

28S_PicoG4For TAC CAC TAC TCG TTG TCT CG In this study 

28S_Eu_G2rev ACT AGA GTC AAG CTC AAC AGG In this study 

28S_PicoD15F CTT CCT AAC CGA GCG TGG In this study 

28S_PicoD21F CAT CAG GGC AAA TGC GAT G In this study 

L52R TTT CTT TTC CTC CGC T In this study 

28S 2933 rev CAC GAC GGT CTA AAC CCA GCT GCT CAC GTT CCC Marin 2012 

28S_1433 rev AAT ATT TGC TAC TAC CAC CAA GAT C Marin 2012 (Courtesy: Birger Marin) 

28S 336 forw GAG ACC GAT AGC GAA CAA GTA C Marin 2012 

28S 3356 rev GGC T(GT)A ATC TCA G(CT)(AG) GAT CG Marin 2012 

Gamp627F TGG TCA ACT CGG CTC TTT CT In this study 

Gpac586F AAG CTC GTA TTG GAT CTC GG In this study 

   Probes Sequence  Author 

PicoBI01_FITC FITC-GCG TGA TGC CAA AAT CCG Not et.al 2007a with modifier 

Goni01_FITC FITC-GAA CCG CAG TCC TAT TCC In this study 

PicoBI01_TexRed RED-GCG TGA TGC CAA AAT CCG Not et.al 2007a with modifier 

PicoBI01_BioTEG BITEG-GCG TGA ZGC CAA AAT CCG BDT Not et.al 2007a with modifier 

Goni01_BioTEG BITEG-GAA CCG CAG ZCC TAT TCC BDT In this study 

EUK1209R_BioTEG BITEG-GGG CAZ CAC AGA CCT G BDT Giovannoni et al. 1988 

EUB338_BioTEG BITEG-GCT GCC ZCC CGT AGG AGT BDT Amann et al. 1990 
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3 Results 

3.1 Identification of a ‘picobiliphyte’ population on the Helgoland sampling site  

To establish the clonal cultures of formally described a putative novel algal 

class (‘picobiliphytes’ by Not et al., 2007a), Sea water is collected from open surface 

(5 meter depth) during the months of July – October 2007. The field samples are 

subsequently fractionated after sample collection (see M & M sect. 2.2.1.1) and the 

genomic DNA has been extracted for PCR analysis. PCR is performed to amplify 

the 18S ribosomal DNA from the genomic DNA, by using common eukaryotic 18S 

forward primer (Eu1AF3) and with equimolar concentration of picobiliphyte-

specific reverse primers (PicoBi01R is designed to amplify clade I and II, and 

PicoBi02R for clade III according to Not et al. 2007a). The PCR product is yielded 

two fragments with size range of 645 bp (Eu1AF3+ PicoBi01R) and 685 bp 

(Eu1AF3+PicoBi02R). A plasmid DNA (He000427.214) containing ‘picobiliphyte’ 

sequence for clade II is used as positive control (Not et al., 2007a). 

 

 

 

Figure 3.1: PCR product amplified from (a) Samples from 3 µm filter membrane and (b) Samples 

from 0.2 µm filter membrane. 1-6 corresponds to field samples from Pico070720 (Pico/yy/mm/dd), 

Pico070723, Pico070724, Pico070725, Pico070726, and Pico070727 respectively. M- 1Kb ladder-plus, 

+ve plasmid DNA He000427.214 (band is not bright), -ve negative control. (Arrow =500 bp). 

  

1a    1b   2a   2b    3a    3b  M   +ve 4a   4b    5a   5b   6a   6b    M    -ve
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Figure 3.1 shows predominantly, the existence of ‘picobiliphytes’ on samples 

that are from 0.2 µm filter membrane compared to samples from 3 µm filter 

membrane. The amplified product is further sequenced to confirm the presence of 

picobiliphyte-specific sequences. BlastN analysis is performed comparing the 

obtained sequence data against nr (NCBI) database thus, finding similar 

environmental sequences (Not et al., 2007a)  

 

3.2 Abundance of ‘picobiliphyte’ sequences from Helgoland roads (Reede) 

Genomic DNA extracted from < 3 µm filtered sea water samples between 

July to October 2007 are shown the abundance of ‘picobiliphytes’ sequences 

throughout the period. They are detected in water ranging from 12 to 16 0C during 

the sample collection period in the Helgoland time series station. Among 55-day 

sample collection, pico-positive sequences are detected in 43 days, which is 78% of 

overall sampling in Helgoland (appendix 6.1). This indicates that cells are 

distributed during this period (except beginning and end of August and end of 

October). ‘Picobiliphytes’ are found in summer supporting with previous data 

shown (Not et al., 2007a), from samples collected in fall and winter (Fig. 3.2) thus 

indicating the possible existence throughout the year. 
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Figure 3.2: PCR results with picobiliphyte-specific primers from environmental samples from 16th 

July to 31st October 2007 (Numbered 1-55, detailed sampling see appendix, 6.1) has shown that 

‘picobiliphytes’ are abundant throughout summer to early winter in Helgoland. Markers for sample 

Lane 1-12 1kb ladder; rest λ digest with HindIII/EcoRI 

  

1     2    3     4    5     6   7      8  M 13   14  15  16  17  18 19 20 m1

9   10  11  12  +ve -ve M 
21 22  23  24  25 +ve –ve m1 

26 27  28 29 m1

30 31 32 33 34 35 36 37 +ve M1  

38 39 40 41 42 43 44 45   -ve M1   

46 47 48 49 50 51 52 53 +ve M1 

54 55  +   -ve M1 
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3.3  ‘Picobiliphytes’ from enriched cultures 

The < 3 µm fractionated environmental samples are grown in different 

marine media such as K (Keller), IMR, GP5, Drebes (1 ml of media and 50 ml of 

fractionated sea water) and incubated at 15 °C to enrich ‘picobiliphytes’. 

‘Picobiliphytes’ are identified by a PCR-based method (see appendix 6.2) and 

sorted against orange fluorescence (phycoerythrin) from the enriched flasks. 

Positive ‘picobiliphyte’ sample flasks are re-transferred into new flasks (20% 

inoculum), and the remaining are sorted and allowed to grow in 96 well plates 

(one, two and ten cells per individual wells).  

TSA- FISH is carried out for sorted cells and enriched cells, with taxon-

specific probes (PicoBi01R and PicoBi02R). Micromonas pusilla M0947 is used as 

a positive control for Chlorophyta probe (Chl02) in all experiments (data not 

shown). Results are indicated that green fluorescence for probe specificity and 

DAPI nuclear body, and without autofluorescence (phycobilin) as shown previously 

by Not et al. 2007a. A cell out of 50 cells (Fig. 3.3) is found with green fluorescence 

and DAPI nuclear staining, indicating that cells can be heterotrophic in nature.  

 

 

Figure 3.3: Cell with green fluorescence (probe specificity- arrow) and DAPI nuclear body (dotted 

arrow) is observed but no (orange) autofluorescence are detected. Arrow head- nuclear stained non-

specific cell. Bar- 5 µm.  

  

Pico070725IMR
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3.4 Subsequent sample collection for ‘picobiliphyte’ culturing  

Sample collection is repeated again from Helgoland roads (Reede) in the 

summer of 2008 and immediately filtered with 10 µm and 2 µm membrane filters 

respectively (thus, series of filtration is avoided from the previous approach). In 

order to confirm the presence of ‘picobiliphytes’ on the day of collection, gDNA is 

extracted and PCR is performed with picobiliphyte-specific primers. Subsequently 

2 µm membrane filtered field samples are divided into three parts of 500 ml and 

two 50 ml. The 500 ml is used for genomic DNA extraction and followed by PCR 

confirmation. All the samples (Pico080825-29) are shown positive to pico-specific 

PCR. Simultaneously, the first part of 50 ml is used for cell enrichment. The 

second aliquot of 50 ml (2 µm fractionated field samples) is centrifuged at 4000g 

for 10 min. at 15 OC; the pellet is re-suspended with 10 ml of 0.1 µm filter 

sterilized sea water (FSSW, flask-F1). The supernatant is filtered on 0.2 µm filter 

membrane and this filter membrane as a whole is placed into a flask containing 10 

ml of FSSW (flask-F2). Both flasks are incubated at 15 OC for a week. In order to 

confirm the presence of ‘picobiliphytes’ in these cultures, gDNA has been isolated 

and primer specific PCR is performed (Fig. 3.4). Three samples are shown positive 

to ‘picobiliphytes’ (Pico080827, Pico080828, Pico080829) in both pellet and 

membrane filtered samples.  

 

    4000g pellte 

Flask-1 (F1) 

0.2m 

Flask-2 (F2) 

Pico080825 - - 

Pico080826 - - 

Pico080827 + + 

Pico080828 + + 

Pico080829 + + 

Figure 3.4: PCR results showed positive to field samples which are collected in August 2008. 

Samples (F1 & F2) are tested with pico-specific PCR after a week incubation at 15°C. Among 5 field 

samples three are shown positive to ‘picobiliphytes’.  

Enriched samples from Pico080827, Pico080828, and Pico080829 

(membrane and pellet) are tested with PicoBi01F/02F and eukaryotic reverse 

primer BR and reamplification is done for individual clade-specific forward primer 

(PicoBi01F/ PicoBi02F) and 1055R to check the diversity among the clades (I, II & 

III), as shown in fig. 3.5.   
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Figure 3.5: A. PCR confirmation for Pico080827, Pico080828, and Pico080829 with clade-specific 

primers showed amplification for clade I&II (PicoBI01F) and B. no amplification for Clade III 

(PicoBI02F) of ‘picobiliphytes’. M. Flask F1 P. Flask F2. (100bp marker M, arrow = 650bp). 

 

The PCR product (Fig. 3.6) indicated that cells belonging to clade I & II are 

enriched in the flasks (1 & 2). However, no PCR amplification is observed for 

sample Pico080827 in both pellet and membrane. Subsequently, the positive 

cultures Pico080828 and Pico080829 are transferred to new FSSW (20% inoculum) 

and allowed to grow for a week at 15 OC. PCR is conducted for those samples; 

results are shown that the cells are actively growing in Pico080829, although no 

amplification is observed in Pico080828. 

 

Figure 3.6 Diversity is checked for the positive samples with PicoBi01F and PicoBi02F. No PCR 

amplification has been observed from Pico080828; amplification from Pico080829 for PicoBi01F 

clearly indicates that the cells belong to Clade I & II (Not et al., 2007a). M. Flask F1, P. Flask F2, 

100bp marker; arrow 500bp. 

  

27M    27P    28M     28P    29M     29P     +ve    M

27M  27P     28M    28P    29M     29P     +ve    M 

PicoBI01F/1055R

PicoBI02F/1055R

A

B

Pico080828

M P              M                  P

Pico080829

1F       2F      1F     2F   1F      2F      1F     2F      M
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3.5 Enrichment but no growth of ‘picobiliphytes’ 

Cells (Pico080829) are regularly transferred in every two weeks into new 

FSSW, and the presence of ‘picobiliphytes’ all the time is checked by PCR regard-

less of its growth. The cells are easily amplified by cellPCR method (100 µl of cells 

pelleted in PCR tubes, and PCR mix added to it), thus, the extraction of genomic 

DNA is excluded each time. The PCR products are sporadically sequenced to en-

sure the results concurred with ‘picobiliphytes’. Cells from the old flasks decreased 

numerically prolonged periods of incubation (more than four weeks), suggesting 

that these cells could be a heterotrophic in nature, contradictory to ‘picobiliphytes’ 

sensu (Not et al., 2007a).  

Culturing of cells for prolonged growth is attempted by regular inoculations 

in different enrichment media (1:50 dilution of K and Drebes media) and incubated 

at 15 °C. Other marine media like, artificial sea water (ASW), f/2, ESM, L1 and 

PE; sterilized either by autoclave or filter sterilization are also tried in parallel. 

‘Picobiliphytes’ are unable to grow in autoclaved media but they could grow in K 

and Drebes media which are prepared in FSSW. The presence of ‘picobiliphytes’ in 

these media are tested with pico-specific primers. Fig. 3.7 has clearly shown the 

specificity for picobiliphytes. 

 

Figure3.7: FSSW and enriched cells showed positive to Pico080829 consistently. M. Flask F1, P-

Flask F2, 1, 2 and 3 are different cultures. D. Drebes K. Keller. Arrow indicates 500bp 

 

The enriched samples could not be differentiated from other contaminants 

when observed under the microscope. These are sorted in FACS against autofluo-

rescence (Fig. 3.8) and cells have not shown any fluorescence. Thus, neither cul-

ture, nor FACS data has shown the presence of any photosynthetic organelles. 

Hence, it is believed that the cells are truly heterotrophic in nature. Most of the 

contaminants in the flasks are heterotrophic as well and could not be differenti-

ated from each other. Many other contaminants like Pteridomonas sp. and Te-

lonema sp. are removed either by serial dilution or filtration (2 µm membrane fil-

ter). However, the two prominent contaminants Goniomonas sp. are dominated in 

the media. 

M1     P1     M2     P2     M3     P3     M D-I     D-II       K-I      K-II   M
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Figure 3.8: Cell sorting performed for Pico080829 positive samples from two different flasks, no 

autofluorescence is detected by FACS despite cells are showing PCR positive to ‘picobiliphytes’. KII, 

sample from keller medium. Cytogram A) with forward scatters (FSC) and side scatters (SSC); B) 

Chlorophyll filter (Red fluorescence) and phycoerythrin auto fluorescence 

 

3.5.1 Use of PicoBI01F and ITS1R for identifying ‘picobiliphytes’ 

‘Picobiliphytes’ has shown difficulty to distinguish from other eukaryotic 

contaminants, since the morphology could not been differentiated, hence the PCR 

based approach (cell PCR) is applied for most of the identification procedures. 

However, two-step amplifications (amplify with PicoBI01F and Euk BR, followed 

by PicoBI01F and 1055R) are required to enhance the PCR product specificity by 

this approach. Hence, to improve the specificity of PCR identification the Pico ITS 

primers are newly designed (appendix 6.3). Using Pico ITS primers are become 

more reliable than the two-step amplification performed. Henceforth, two pico-

biliphyte specific primers (PicoBi01F/ PicoITS1R) are used for amplification (Pi-

coPCR) at an annealing temperature of 50 °C for 37 cycles. The amplified 1.2kb is 

further confirmed by sequencing.  

 

 
Figure 3.9: Positive cells from flasks (1-4) are checked with two specific primers PicoBi01F/ 

PicoITS1R with 37cycles. Arrow indicates 1.2kb from ‘picobiliphytes’. M- 1kb ladder  

A B

M       1        2        3      4
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3.5.2 Microscopy 

Though, the ‘picobiliphyte’ cells are not able to observe by both light and 

fluorescence microscope; the positive signals are observed in the mixed culture, 

indicated the higher magnification for closer examination is warranted. To 

overcome the problem, scanning electron microscopic (SEM) study has performed 

for the whole-cell population, which has revealed a unique protist (arrow head, 

Fig. 3.10), with two unequal long flagellum. This could not be detected earlier by 

light microscope.  

 

 

 

Figure 3.10: SEM image showed ‘picobiliphyte’ with contaminants. Arrow head - ‘picobiliphyte’; 

Closed arrow-Goniomonas sp1; Open arrow - Goniomonas sp2 and Diamond arrow - bacteria. Scale 

bar 10 µm 
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3.5.3 Isolation of Picoeukaryotic cells 

3.5.3.1 Targeting Heterotrophic fractions in FACS 

The enriched non-photosynthetic cells are targeted at the heterotrophic 

region in FACS by applying only forward scatter (FSC) and side scatter (SSC) 

window. Region R1 (Fig. 3.11) is set to target all possible heterotrophic cells for 

sorting in 96 well plates (one cell per well). The result is shown that only four wells 

have had Goniomonas cultures; however, ‘picobiliphyte’ cells are not detected 

either visually or by PicoPCR.  

 

Figure 3.11: Cytograms show FACS cell sorting for ‘picobiliphyte’ enriched samples. Region R1 is set 

for sorting as shown in 1. Cytograms 2 & 3 clearly shown that the cells are non-pigmented (FL3- for 

chlorophyll fraction and FL2 for phycoerythrin fraction). 

 

3.5.3.2 Percoll gradient separation 

The PicoPCR positive enriched cultures are added into a Percoll gradient to 

separate the cells according to their buoyant density. After the centrifugation 100 

µl of cells from each fraction is used for PicoPCR for confirmation. With the results 

that are shown in fig. 3. 12a indicates that ‘picobiliphytes’ are able to separate at 

20% and 40% Percoll fraction. The PicoPCR results to the corresponding gradients 

(20% and 40%) are further confirmed by sequencing. The remaining samples are 

transferred into 24-well plate and observed a unique type of cell (not seen in 

cultures before) exhibited a characteristic movement (jump and drag, see 3. 18b). 

However, the cells could not grow any further (24 well plate) due to the increasing 

bacterial contamination and/or sensitivity to Percoll itself (endotoxins). 

Nevertheless, the enrichments are also contaminated with a few Goniomonas sp. 

possibly by cross contamination from one gradient into another. 

  

1 2 3

R1
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Figure 3.12a: Reamplification of cells obtained from all the fractions from Percoll gradients and 

positive bands are observed in 20 and 40% fractions (white arrow). BF: Before centrifugation, AF: 

after centrifugation of the sample. Note that non-specific amplification from 10 % percoll fraction 

(mostly because of bacteria). M 1kb ladder 

 

3.5.3.3 Antibiotic treatments 

Previous studies suggest that bacterial growth inhibit the ‘picobiliphytes’ 

cell growth, irrespective of the growth of Goniomonas sp. Hence, cell growth has 

been maintained under low nutrient media. A set of experiments are carried out as 

an alternative to inhibit the prokaryotic population (thus, reducing the 

Goniomonas population) by applying wide spectrum of antibiotics. Many different 

types of bacterial metabolic inhibitors, e.g. peptidoglycan inhibitors (ampicillin and 

carbenicillin), ribosomal 30S small subunit inhibitors (kanamycin and 

tetracycline), and 50S large subunit inhibitors (chloramphenicol) are used into the 

enriched sample flasks. PCR has been performed (Fig. 3. 12b) for all samples and 

resulted that the cell wall inhibitor (ampicillin) has reduced the bacterial growth 

drastically and thus Goniomonas populations to an extent. However, the growth of 

‘picobiliphytes’ is not affected by the presence of ampicillin (25 µg/ml final conc.), 

that proved their growth was independent to bacterial population. 

 

Figure 3.12b: PCR amplification of ‘picobiliphytes’ treated with different bacterial antibiotics. Lane 

1-5 are samples treated antibiotics ampicillin (25 µg/ml), carbenicillin (50 µg/ml), Chloramphenicol 

(15 µg/ml), Kanamycin (50 µg/ml) and Tetracycline (25 µg/ml). Lane 6. Cells treated with mixture of 

carbenicillin, kanamycin and Tetracyclin. M. 1Kb ladder; arrow. 1kb ladder. 

  

M           1           2           3          4          5         6        +ve
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3.5.3.4 Mitotracker as a fluorescent marker 

Many attempts such as serial dilution, filtration, Percoll gradient and cell 

sorting are made to isolate ‘picobiliphytes’ and become unsuccessful. In FACS 

sorting for heterotrophic fractions failed to isolate ‘picobiliphytes,’ though, 

Goniomonas sp. are successfully achieved. To increase the possibility of isolating 

only ‘picobiliphytes,’ fluorescent markers (mitochondrial staining markers) are 

added to the cultures and Goniomonas sp is used as positive control (for methods, 

see 1.2.4.2). Mitotracker stained Goniomonas cells are retained the fluorescence 

very well (Mitotracker® Red CMXRos, Invitrogen) even after aldehyde fixation and 

detergent washing steps (Fig. 3.13).  

 

Figure 3.13: Mitotracker Red stained cell for Goniomonas sp1 and G.sp2, showing the retained dye 

after the fixation and detergent wash. Red fluorescence- Mitochondrion stained with Mitotracker Red. 

Blue – DAPI stained nuclear body. 

 

3.5.3.5 Isolation of Goniomonas sp - using Mitotracker GreenFM 

Mitotracker Green FM is used for cell sorting for two reasons. Firstly, the 

GreenFM has the excitation at 490 nm and emission at 516 nm, suits for FACS 

sorting (Argon laser- 488 nm). Secondly, the GreenFM fluorescence dye is not well 

retained in the mitochondria and diffuses quickly thus not affecting the viability of 

the sorted cells. The cell viability test is conducted for such stained Goniomonas 

sp. and observed under the fluorescence microscope (Nikon EclipseE8000). Later, 

cells are sorted in the FACS against the green fluorescence (FL1) together with 

forward scatter (FSC); single cells are collected in 96 well plates and kept at 15 OC. 

Two kinds of G. species are sorted successfully (Fig. 3. 14A) by this approach and 

cell growth has not been affected, indicates that Mitotracker GreenFM does not 

inhibit growth of the cell. Thus, mitochondrial staining could be the ideal method 

for isolating heterotrophic protists from the mixed population. The same procedure 

is applied to isolate ‘picobiliphytes’ from the enriched cultures. 

 

G.spp2 DIC G.spp2 FL

G.spp1 DIC G.spp1 FL
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Figure 3.14: Cell sorting using Mitotracker GreenFM. A. Heterotrophic cells (Goniomonas sp1 and 

Goniomonas sp2) are isolated on micro-titre plate. Pictures are taken from cells which are grown in 

the well. Mitotracker did not inhibit the cell growth. Scale bar 5 µm. B. PCR product from G. sp1 and 

G. sp2. Lane 1- negative control with picobiliphyte-specific primers (PicoPCR), lane 2 - Goniomonas 

specific primers (G.amphinema primers) and lane 3 - Goniomonas specific primers (G.pacifica 

primers). Gonimonas sp1, showed PCR amplification for both primers. M- 1Kb ladder, arrow- 1kb.  

The two types of isolates are PCR amplified and sequenced (Fig. 3. 14B); 

Goniomonas sp1 (two sub equal flagellates) is shown the affinity to Goniomonas 

aff. amphinema, and Goniomonas sp2 (two unequal flagella) to Goniomonas sp. 

SH1. 

 

3.5.3.6 Isolation of ‘picobiliphytes’ using Mitotracker GreenFM 

‘Picobiliphytes’ enriched cultures (PicoPCR positives) are used for cell 

sorting as mentioned in 3.5.3.5 with Mitotracker GreenFM (50 nM) and sorted 

against Green fluorescence (FL1) and forward scatter (FSC) window, and also with 

FL1 and orange fluorescence (FL2). Cells are initially sorted at different regions in 

cytogram and confirmed that region-R1 is positive to ‘picobiliphytes’ (Fig. 3. 15a, 

see appendix 6.5). Although, Mitotracker Green FM has emission maxima at 516 

nm (FL1), its emission spectrum is widely distributed up to 560 nm. Hence, the 

fluorescence is also detected by orange filter (FL2, 545 nm) in 488 argon ion laser. 

The PCR results have shown (Fig. 3. 15b) that ‘picobiliphytes’ are predominantly 

grouped under region R1. For isolation of ‘picobiliphytes,’ the cells are sorted from 

‘Region R1’ and individual cells are collected into 96 and 24 well plates (one cell at 

a time) containing 500 µl of K1:10 with 0.1µm filter sterilized sea water. Plates are 

then incubated at 15 OC for two weeks and monitored at regular intervals.  

G.spp2

G.spp1

G. spp1 G. spp2

1           2          3 1            2            3

MA B
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Figure 3.15a: Cytograms of Mitotracker GreenFM treated ‘picobiliphytes’ enriched cultures; Region 

R1 is set for sorting the ‘picobiliphytes’ into 24 well plate containing 500 µl of K1:10 in 0.1 µm filter 

sterilized sea water. A) High green fluorescence cells (shown in red) sorted against FL1 and forward 

scatter. B) Depicts the Mitotracker GreenFM has long emission wavelength detected in orange 

fluorescence filter (FL2) in FACS. 

 

 

Figure 3.15b: PCR products from cell sorted on Region R1. S. 500cell sorted from R1 region, US. 

Unsorted cells used as a positive control. Sample 1- Cell from K1:10 medium and Sample 2 Cells from 

K1/4 medium. M- Ikb ladder plus, Arrow 500bp. Note: Sample 2 unsorted lane showed a non-specific 

amplification; it appears when the cultures are highly contaminated with bacteria. 

The four wells out of 24 wells has shown a unique flagellates without 

contaminations (for eg. Goniomonas sp.), other few samples are contaminated with 

both 'picobiliphytes' and Goniomonas sp2. Samples from these wells are taken for 

PicoPCR (PicoBi01F & ITS1R) at 37 cycles. Amplicons from these samples are 

shown in fig. 3.16. The clonal culture of ‘picobiliphytes’ has grown slowly compared 

to the mixed population; hence, the PCR product obtained is also low in 

concentration in those particular samples. 

R1R1 A B
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Figure 3.16: PCR confirmation for sorted cells by using Mitotracker GreenFM cell sorting. Lane 1-4 

samples with both Goniomonas sp2 and ‘picobiliphytes’. Lane 5-8 show positive to ‘picobiliphytes’ 

clonal culture. The PCR product is 1.2kb. M- 1 kb ladder; Arrow- 1kb 

 

3.5.3.7 Enrichment of ‘picobiliphytes’ 

Clonal cells are initially inoculated in K 1:10 medium with FSSW in a 

tissue culture flask. To test the axenic nature of the cells, samples are tested by 

PCR with 18S universal primers, Goniomonas-specific primers and ‘picobiliphyte’-

specific primers (Fig. 3. 17a). These cultures are often retransferred into fresh 

media and monitored at regular intervals.  

 

Figure 3.17a: PCR product from two ‘picobiliphyte’ clonal cultures (Pico cell 1&2). Lane 1&4 are 

amplified with Universal 18S primers (1F/BR), 2&5 with Goniomonas specific primers 

(Gamp627F/BR) and 3&6 with picobiliphyte specific primers (PicoBI01F/ITS1R). M-1kb ladder. 

The clonal culture of ‘picobiliphytes’ resorted in FACS to test for its 

autofluorescence if any, but the results has shown neither FL2 nor FL3 filters 

could detect any autofluorescence, which suggested that these cells are non 

photosynthetic (Fig. 3. 17b). On the other hand, the rDNA 18S sequence of these 

culture has clearly revealed high sequence similarity to photosynthetic 

‘picobiliphytes’ as in Not et al. 2007a (appendix 6.4). To avoid the confusion further 

to call the non-photosynthetic ‘picobiliphytes’, these cells are renamed as 

‘Picomonas sp.’ (see below for species descriptions).  

Pico cell 1

18S Gamp Pico

Pico cell 2

18S Gamp Pico

1kb

1             2              3             4             5              6            M
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Figure 3.17b: Cytogram of clonal culture of Picomonas sp. A) Picomonas cells are scattered in FSC 

and SSC window (cells are lower in concentration). B) No autofluorescence are observed in FL2 

(phycoerythrin) and FL3 (chlorophyll) filters for the same cells. 

 

3.6 Microscopic results 

3.6.1 Light microscopy 

The growth rate of Picomonas is unstable, unpredictable and their nutrient 

requirement is unknown, hence the cells are maintained under low nutrient com-

position. Presence of bacteria, in sterile filtered natural sea water (0.1 µm filter 

sterilized) and low nutrient composition (Soil extracts, K 1:10) are found to be an 

optimal condition for maintaining these cells. Live cell images (Fig.3.18a) has 

shown that live cells are very fragile and sensitive to any kind of protuberance, so 

they could collapse easily. In clonal culture, the swimming behavior of the cells is 

unique: the cells generally are found to be immobile or stagnant most of the time, 

floating in the water column. During movement, they ‘jumped’ a short distance 

(approximately 3-5 µm) into the anterior direction, immediately followed by a 

slower drag movement to the opposite (posterior) direction. Movement of such cells 

lasted for about 2 s, in which the cells traveled a distance approximately four times 

its cell length. This jump/drag-cycle is observed for two to five times after which 

the cells suddenly ‘shot’ away (a behavior termed skedaddle here) with rapid speed 

in the posterior direction covering a distance of approximately 50 µm before they 

became immotile again, until the next jump/drag cycle is observed (Fig. 3.18b). 

During resting periods of the cell, the posterior flagellum (PF) was held closely 

adjacent to the ventral cell surface curving around the posterior end of the cell, 

often visible under the microscope and mostly immotile, while the anterior flagel-

lum extended from the cell surface revealing an undulatory wave pattern. The be-

havior of the flagella during the jump/drag/skedaddle cycle was not studied in de-

tail but apparently involved flagellar re-orientation and rapid undulatory move-

ments of one or both flagella. The ‘jump/drag and skedaddle’ like movement are 

considered as novel feature of this heterotrophic cell, hence the species been provi-
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sionally named as Picomonas ‘judraskeda’ (derived from ‘ju’ (jump), ‘dra’ (drag) and 

‘skeda’ (skedaddle). 

 

 

Figure 3.18a: Microscopic observation (phase contrast) of three different Picomonas cells. Images 

are taken from live cells, the anterior flagellum (AF) is not seen visibly whereas the posterior 

flagellum (PF) is often forms crooked-finger like appearance around the cell during stagnation. The 

Picomonas cell size is < 5 µm. AP, Anterior part; PP, Posterior part. Scale bar 20 µm. 

 

 

Figure 3.18b: Cellular movement of Picomonas cell. 1- The first movement of the cell, jump to a 

short distance; followed by a drag to the opposite direction for a short distance (2) and run 

(skedaddle) vigorously before reaching to next destination (3). A & B: Direction of skedaddle 

movement of the cell showed in white dotted arrow. (A & B are cell movement of two individual cells 

captured in a video graph and frames are superimposed)  

  

A 

B 

AP 
PP 

1 

1 

2 

2 

2 

3 

3 

3 

PF 

AP 

AP 

PP 

PP AP 

PP 
PF 

PF 

PF 



44 Results 
 

3.6.2 Cell division 

Cells divide by simple division; however, notably, at the final stage of cell 

division, two daughter cells detached by a force, which likely is the fast movement 

(skedaddling) of cell. Both daughter cells repel each other into opposite direction, 

move away from one location to other and continue their growth as described in 

3.6.1 (Fig. 3.18C). 

 

 

Figure 3.18c: Cell division of Picomonas- two daughter cells are detached from each other by a force 

and skedaddled from the location, A-C preparation for cell division, D- zero time point where two 

daughter cells detached from each other 

 

3.6.3 Chemically fixed cells 

Picomonas cells are fixed with 1.25 % glutaraldehyde for 30 min and 100 µl 

aliquot are placed on a poly L lysine coated glass-slide. Cells at higher magnifica-

tion are shown that they are slightly elongated and comprising with two hemi-

spherical parts, namely anterior part (AP) and posterior part (PP) (see Fig. 3.19). 

Cell sizes 2.5-5 µm in long. Each cell displayed two heterodynamic flagella of un-

equal length. Both flagella are inserted laterally at the anterior part defining the 

ventral surface of the cell. The anterior flagellum (AF) is longer (~12-14 µm) and 

orients parallel to cell axis and runs towards to cell’s anterior end. The posterior 

flagellum (PF) is shorter (~8-9 µm) and orients towards the posterior part (often 

curves at around the posterior end and extends to the dorsal surface of the cell 

[Fig. 3.18a]). 
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Figure 3.19: Light microscopy of Picomonas at higher magnification (100X). Cells are separated into 

two parts; the anterior part (AP) and posterior part (PP). Each cell contains two flagella with unequal 

length; the long flagellum is anterior flagellum (AF); the short flagellum is posterior flagellum (PF) 

Scale bar-5 µm. 

 

3.6.4 Fluorescence images 

Mitotracker® Red CMXRos (50 nM/ml final conc.) is added to Picomonas as 

described in section 1.2.4.2 and incubated at 15 °C for 20mins in dark chamber and 

fixed with 1.25% glutaraldehyde. These fixed cells are placed on a glass slide (Poly-

L-lysine coated). DAPI is used as a counter stain. The fluorescence images (Fig. 

3.20) are superimposed with light microscopic images. A discrete red fluorescence 

is observed for mitochondrion at the centre of the cell body, and DAPI stained 

nuclear body is in the anterior part. No autofluorescence is detected from any of 

these cells, confirming the absence of plastids. Both Red Mitotracker and DAPI 

fluorescence are always observed at the anterior part of the cell (no single cell 

observed with fluorescence at the posterior end), demonstrating that these 

organelles accommodate together at the anterior part. 
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Figure 3.20: Fluorescence microscopy of Picomonas; cells are stained with mitochondrial (Mito-

tracker Red CMXRos) and nuclear (DAPI) staining. The cells with red fluorescence show Mitochon-

drion (M) and blue fluorescence for nucleus (N). Both Mitochondrion and Nucleus are found in the 

anterior part of the cell. No other autofluorescence is observed from the cell. AF, anterior flagellum; 

PF, posterior flagellum. Arrow head, bacterium. Scale bar 5 µm. 

3.6.5 Scanning electron microscopy 

Two flagella are inserted without any invagination on the ventral surface 

(Fig. 3.21). No flagellar appendages (mastigoneme or non-tubular hairs) are 

observed at the surface of both flagella. The flagella may shed at the transitional 

region; when they shed, a conspicuous flagellar stub (transitional region-tr2 from 

AF and PF, see below) remain attached to the flagellar base of the flagellum (tr2 in 

PF shown in Fig. 3.22 A&B). Flagellar bases are displaced anti clockwise if the 

cells are viewed from ventral (refer to Fig. 3.30). The flagellar bases form an angle 

of 120-140º (n=5). When viewed from the ventral side, the anterior flagellum 

projects towards the cell’s left, its base forming an angle of about 40º to the 

anterio-posterior cell axis. The posterior flagellum deviates only slightly (~10-20º) 

from this axis projecting towards the cell’s right and extending to the cell’s 

posterior. A lobe that extends from the base of the posterior flagellum towards 

posterior part is observed in SEM indicated the possible feeding apparatus (arrow 

heads, Fig. 3.22 A&B).   

M

N

AF

PF

AF
PF

M

N

Ph FL



Results 47 
 

 

R
esu

lts | 4
7 

 

Figure 3.21: SEM images show the flagella insertion at the ventral surface on the anterior part 

without mastigonemes. AF, anterior flagellum; PF, posterior flagellum; ac, acronema; AP, anterior 

part; PP, posterior part; Cl, cleft. Scale bar 5 µm. 

 

Figure 3.22: A) SEM images - Picomonas with flagellar stub (FS) in the posterior flagellum (PF) 

after shed. The length of the stub is about 300 nm from the flat ventral surface. A lobe-like structure 

from ventral posterior surface (arrow heads) is a cytostome extends from the base of the proximal 

flagellum to posterior end. B) Whole cell mount image - Picomonas shows two distinct cell bodies 

(AP, anterior part and PP, posterior part) distinguished by a deep cleft (Cl). The arrow head shows 

the membranous protrusion at posterior end.  

AF

PF

AF

PF

Left View Right View

S AP

PP

AP

PP

ac

A B

ac

200nm

AF

PF
AF

S

AP

PP

A B

FS
FS



48 Results 
 

3.6.6 Transmission electron microscopy 

An overview of a longitudinal median section from a series of a Picomonas 

cell (section in the flagellar plane) is shown in fig. 3.23. [Left and right defined as if 

seen from the cell’s interior. Ventral side is where flagella inserted, dorsal opposite 

side. Anterior side is that facing forward when the cell swims, posterior is the op-

posite side to this. In a dorsal view, the left side is on the left, and the right is on 

the right (opposite in ventral view)]. The ultrastructure of Picomonas cells reveal 

many unique structural components, and not observed in any other eukaryotes. In 

general, all cell constituents, as expected for flagellates, occupied defined positions 

in the cell. Major metabolic active components are observed at the anterior part 

(AP) of the cell, a hemisphere nucleus; flagellar apparatus; Golgi body; a single 

mitochondrion; rER; free ribosomes and peroxisome like micro bodies. The 

microbodies (perhaps peroxisomes) are single membrane-bound compartments 

present at the dorsal side in the anterior part. Each cell comprised more than one 

microbody, which are spherical (approximately 600 nm in diameter) in shape (Fig. 

3.23, 3.24).  

The volume inside the cell at the anterior part (AP) is constant. Con-

trastingly, a highly variable and functionally uncharacterized, single membranous 

substances (digestive sac, cytostome like structure and numerous single membrane 

bodies) are observed at the posterior part (PP) (Fig. 3.23-25).  

Two longitudinal sections from a series of another Picomonas cell starting 

at the ventral side (view seen from, where flagella emerged) to the dorsal is shown 

in Fig. 3.24. Ventral view of the section depicted all organelles except flagellar ap-

paratus and peroxisome. Two peroxisome-like micro bodies are visible near the 

dorsal end of the section (~660nm away from the ventral to dorsal).  

In addition in order to understand the complete architectural arrangement 

of organelles in Picomonas, series of ultrathin sections (45, 60 and 100 nm respec-

tively) are obtained from each cell. Overall, six cells are observed completely (ob-

served minimum 25 to 65 sections according to the thickness) using TEM, of which 

complete structural characteristic of one single cell is shown fig. 3.25, depicting the 

non-sequential sections (60nm) of Picomonas from left to right; detailed view and 

description for each organelle are presented below (Second, non-sequential serial 

section of a cell from ventral to dorsal has also shown in appendix 6.6).  
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Figure 3.23: Longitudinal TEM section through a ‘picobiliphyte’ cell seen from the cell’s left side. N, 

Nucleus; NE, Nuclear envelope; PM, Plasma membrane; rER, rough endoplasmic reticulum; G, Golgi 

body; M, Mitochondrion with tubular cristae; AF/ PF (anterior-/posterior flagellum); AP/PP (anterior 

/posterior part of the cell); bb, basal body with electron dense lumen; P, posterior digestive body; SMB 

single membrane body; MB, microbody (‘peroxisome’); ‘cl’, a membrane-bound vacuolar cisterna 

(‘cleft’) separates the anterior part from posterior part; tr1,tr2, proximal and distal septa of the 

flagellar transitional region. Scale bar 1 µm. 
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Figure 3.24: Longitudinal non-sequential serial section of Picomonas from ventral to dorsal (60 nm sections). A, Golgi, Mitochondrion and digestive sac located ventrally 

B, Ventral view into the dorsal part of the cell microbodies preferentially located dorsally. A cleft (Cl) and peroxisome like microbodies (MB) visible at dorsal end of the 

section. Curved line, cell’s left; dotted curved line, cell’s right. N, Nucleus; NE, Nuclear envelope; PM, Plasma membrane; rER, rough endoplasmic reticulum; G, Golgi 

body; M, Mitochondrion; P, posterior digestive body; ‘cy’, cytoplasm; MB, microbody (‘peroxisome’); ‘cl’, cleft’. Scale bar 200nm.   
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Figure 3.25: Electron micrographs of non-sequential longitudinal serial sections through a Picomonas cell from its left to right surface. A complete reconstruction of the 

cell shows the absence of a plastid and exhibits unique features. Numbers in the upper left corner correspond to discontinuous 60 nm sections from a series of 35 serial 

sections; N, Nucleus; NE, Nuclear envelope; PM, Plasma membrane; rER, rough endoplasmic reticulum; G, Golgi body; M, Mitochondrion; P, posterior digestive body; 

MB, microbody; vc, Vacuolar cisterna; AF/ PF (anterior-/posterior flagellum); AP/PP (anterior /posterior part of the cell); Ab/Pb (anterior/posterior basal body); Scale bar 

200nm. Scale bar 1 µm. 
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3.6.6.1 Detailed analysis of structural compartments of Picomonas 

judraskeda 

3.6.6.2 Nucleus 

The nucleus is hemispherical (N) and occupies a large part of the anterior 

part of the cell, closely appressed to the anterior plasma membrane, (Fig. 3.23- 

3.26) and not located centrally in the cell. Approximately, 60% of the nuclear enve-

lope surface (Fig. 3.24, 3.25) is associated to p membrane. The presence of a large 

nucleus distinguishes the anterior part (AP) from posterior part (PP) of the cell. A 

reticulate distribution of a dense fibrous chromatin matrix covered with the double 

layered nuclear envelope is observed within the nucleus; however, a discrete nu-

cleolus is not observed. 

A well-developed endoplasmic reticulum (ER) is recognized in the cell with 

ribosomes (rER) attached to it; however, smooth ER is conspicuous. The rER is con-

tinuous with the nuclear envelope, and extends to the inner surface of the anterior 

part of the cell. Free ribosomes are recognized as well in the anterior part of the 

cell. Ribosomes (free or ER-bound) and ER are absent in the posterior part thus it 

is limited to the anterior part (Fig. 3.23- 3.26) 

 

 

 

 

Figure 3.26: Close up view of nucleus (N) with nuclear envelope (NE). Nuclues is appressed with 

plasma membrane (PM, arrow head), rough endoplasmic reticulum (rER) and microbody (MB). Scale 

bar 200 nm. 
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3.6.6.3 Mitochondrion 

 A cup-shaped, single mitochondrion is observed with tubular cristae which is 

located ventrally and extended to the central axis of the cell. This is the second 

largest organelle observed in the cell; it covers partially with the nucleus (N) on top 

and extends to the posterior digestive sac (P) at the bottom. A ventral view showed 

that the mitochondrion is slightly elongated from left to right (see Fig. 3.24). Apart 

from the nucleus, anterior part (AP) is occupied by two major compartments, 

including A) mitochondrion at the ventral and B) large microbodies at the dorsal 

part (Fig. 3.23, 3.25). The mitochondrion displays two additional highly distinctive 

structural differentiations:  

(1) There are two membrane-bound inclusions with electron-dense, granular 

contents located at specific positions inside the mitochondrion (edsm1, edsm2, Fig. 

3.27). The first (edsm1) is located at the high back end of the mitochondrion, 

positioned within the inter-membrane space which is thereby dilated (Fig. 3.27). 

Appropriately sectioned, this inclusion appeared to be located in the matrix 

enclosed by a single membrane (the inner envelope membrane). Because the edsm1 

could be followed through 7 serial sections (a cell longitudinally sectioned from left 

to right in Fig. 3.25), the shape of this inclusion could be cylindrical (diameter 150-

200 nm, length minimum 400 nm). The second (edsm2) is located in the ventral, 

left part of the mitochondrion and is enclosed by two membranes (Fig. 3.27). The 

edsm2 is a tubular invagination of the cytoplasm into the mitochondrial matrix. 

This inclusion also has contact with the mitochondrial envelope.  

 

Figure 3.27: Closer view of mitochondrion with two electron dense fibrous material (edsm1; edsm2). 

The edsm1 enclosed with intermembrane space (arrow). The edsm2 is enclosed with double mem-

brane. ‘Mitovilli’ are shown in arrow heads. M, Mitochondrion; N, nucleus; G, Golgi body; Cl, cleft; P, 

posterior digestive sac. Scale bar 100 nm 
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(2) The lower side of the mitochondrion adjacent to the posterior part of the 

cell (the bottom of the seating area) displayed another highly unusual specializa-

tion. Over an area of ~ 1x0.6 µm (Fig. 3.28), regularly-spaced projections extend 

from the outer mitochondrial envelope membrane towards the posterior part (PP) 

for 50-60 nm (n= 30) after which they terminate in an electron dense granular area 

that is in contact with the membrane of a large vacuole (the posterior digestive 

body, P). These projections, termed here “mitovilli,” (approx. 300 mitovilli per mito-

chondrion) are about 20 nm wide (narrower near their base) and are spaced at 40 

nm (Fig. 3.28). 

 

Figure 3.28: Closer view of mitochondrion outer membrane projections ‘mitovilli’ (arrow heads). The 

mitochondrion double membrane is visible throughout its surface. Upward arrow shows the narrow 

end of the outer membrane which presumably in contact with electron dense material at the posterior 

realm. White arrow indicates edsm2. The space between mitovilli and the posterior digestion body (P) 

filled with electron dense particles. M, Mitochondrion. Scale bar 50 nm 
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3.6.6.4 Golgi apparatus 

A single Golgi body with Golgi vesicles (together forming the Golgi appara-

tus [GA]) are clearly observed in-between the mitochondrion, the nucleus, and the 

flagellar apparatus at the ventral side of the cell (Fig. 3.29, 3.30). It contains a se-

ries of five to six cisternae; the ‘cis’ face of the Golgi stacks is recognized near to the 

ER, possibly attached with nuclear envelope (see appendix 6.7), while ‘trans’ face is 

oriented towards the basal bodies. The whole Golgi complex is characteristically 

positioned in a groove of the mitochondrion facing ventrally. 

 

 

Figure 3.29: The Golgi apparatus. Golgi body with surrounding GA vesicles is located in the Ventral 

region and placed in the groove of mitochondrion, the cis face attached to the nucleus and the trans 

face with flagellar apparatus. Red arrow, cartwheel-like structure; black arrow, electron dense lumen 

of the bb; white arrow, the space between the two electron dense lumen; M, Mitochondrion; N, Nucle-

us; AF, anterior flagellum; bb, bsasl body; tr1, transitional region1. Scale bar 200nm 
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3.6.6.5 Basal body and basal apparatus 

The Picomonas basal bodies (bb) are positioned between Golgi complex and 

mitochondrion at the ventral side of the cell and are connected by a proximal 

connection fiber (pcf). Except for a single proximal connecting fiber both basal 

bodies were not interconnected by fibrous structures (Fig. 3.30, 1&2). The two 

basal bodies are displaced against each other by about one basal body diameter, in 

that the anterior basal body is located more ventrally than the posterior basal 

body. Each basal body possesses a basal plate (Fig. 3.32, 1A and appendix 6.8), a 

less electron-dense material at the proximal end (Fig. 3.29 white arrow), 

microtubular triplets with heavy electron dense materials in the lumen (Fig. 3.29 

black arrow), a fibrous material between the two electron dense regions (white 

arrow) and a pair of microtubular roots at the proximal end. A prominent electron 

dense fibrous material, (Fig. 3.32, bb1, bb2) is observed within the lumen of both 

basal bodies over a distance of 200 nm (Fig. 3.29 white to dotted arrow). The length 

of each basal body extends of approx. 300nm (Fig.3.29, red dotted arrow). 

Interestingly, the same length has been observed between the tr1 and tr2 

transition plates. 

The central pair of microtubules starts quite distantly from the tr1 plate 

and extends through the distal septum of tr2 towards the axonemal tip. 

Surprisingly, a second transition region (tr2) is observed in this cell, act as a region 

flagellar shedding (Fig. 3.33). The distance between, at the start of the central 

microtubules and tr2 (inner surface) is observed with electron dense material (Fig. 

3.32, Pic. 2 & 3 with curly bracket) in and around axoneme. At the tip of tr2, the 

plasma membrane constricts and the presence of a central pair of microtubules is 

unsure. Interestingly, the central pair of microtubules originate near the tr1 and 

extend through the tr2 (Fig. 3.32). 

 

Figure 3.30: 1 & 2, two continuous sections of flagellar basal bodies (bb). Basal bodies (bb) located at 

the ventral side of the cell and the proximal end is connected by a proximal connection fiber (pcf, ar-

row). Two transitional regions are observed from both basal bodies (tr1-black arrow, tr2- white ar-

row). Both basal bodies (Ab, Pb) filled with electron dense fibrous material; double sided arrow show 

cartwheel-like structure of bb. N, nucleus; G, Golgi apparatus; M, mitochondrion; Ab, anterior basal 

body; Pb, posterior basal body. Scale bar 100 nm. 3,  flagellar bases (AF and PF) imbricated clockwise, 

when viewed from cell’s left. Scale bar 5 µm.  
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Figure 3.31: A) Longitudinal section of Picomonas flagellar system. Two transitional septa (plates) 

are observed in each flagellum as proximal (tr1-black arrow) and distal plate (tr2-white arrow). The 

distance between basal plate to tr1 and tr1 to tr2 are almost equal and the length is approximately 

300 nm. B) Transverse section of flagellum at different positions; tr1, proximal transitional plate 

connected with basal body; tr2, distal transitional plate, and ax transverse section of axoneme. 

Triangle indicates the proximal end of tr1. Scale bar 100nm. 

 

3.6.6.6 Transition plate 

Transverse sections (60 nm) of the flagellar basal apparatus are composed of 

nine microtubular triplets with a connection between A and C microtubules (Fig. 

3.32 C-E). Both basal bodies form a cylindrical lumen with approximately 300 nm 

in length and 220 nm in diameter. The lumen of the bb is filled with electron dense 

material. At the proximal end of the basal body, a basal plate is observed (Fig. 3.32 

A, appendix 6.8) which is associated with microtubular roots & proximal 

connecting fibre (Fig. 3.30 and 3.31, red arrow). In Fig. 3.32 B, the pro-basal body 

(arrow) in attached with one of the triplets of the basal body. 

The doublet and triplet region is observed near the distal end of the basal 

body in Fig. 3.32 F. The transverse section in Fig. 3.32 G-L comprises the region 

between tr1 & tr2. The central pair of microtubules starts from Fig 3.32 I, which is 

about 100 nm away from the tr1 septum. In Figure 3.32 G to K, the plasma 

membrane is observed quite distantly from nine doublets, and the diameter of the 

cylindrical column is measured about 300 nm. Interestingly, the plasma membrane 

at figure 3.32 L&M is appressed with doublets of axoneme. In Fig. 3.32 L, the 

plasma membrane is confined at lower half than to the upper half (black arrow), 

and also varies by diameter of the axoneme. The diameter of axoneme in picture G 

is about 280 nm whereas L is about 220 nm when measured. The exact function of 

tr2 apart from shedding is unclear (Fig. 3.33). A regular (9x2) +2 pattern is 

observed as shown in Fig. 32 M, which extends to form the axoneme. 

A

Bax
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Figure 3.32: 1A-M. Electron micrograph shows sequential transverse section (60nm) of axoneme 

from proximal to distal. A Basal plate, B Cartwheel-like structure presumed (see also appendix 6.8) 

where 9 triplets and pro-basal body starts. C-E- electron dense matrix in the lumen, F tr1, and a 

possible distal connecting fibre (double arrow), G & H- 9x2 microtubules without central pair of 

microtubules, L tr2 lower side the plasma membrane is appressed but on top PM is distanced (black 

arrow head), M- 9x2 +2 arrangement of the axoneme. Fig. 3.32 2 & 3, G-K distance between tr1 and 

tr2, consisting microtubules surrounded by numerous proteins (dotted bracket) showing a wider 

plasma membrane around the microtubules; 2- Longitudinal section of the axoneme, letters refer to 

levels in the cross section A-M, 3- closer view of tr1 and tr2, electron dense material between 

axoneme and plasma membrane in tr1. Curly arrow shows electron dense material between central 

microtubular roots and axoneme. Scale bar 100 nm.  
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Figure 3.33: Electron micrograph of flagellar shedding. Both anterior (AF) and posterior flagella (PF) 

shed at the distal transitional region (tr2), make a flagellar stub remain attached.  

Both transverse plates (tr1 & tr1) appeared to be structurally identical, 

however, in our fixation, the distal transverse plate (tr2) constricted the flagellum 

and axoneme (Fig. 3.33). At this site the flagellum is believed to be shed because 

often flagellar stumps observed attached with cell body. In TEM, it clearly shows 

that the flagellum is terminating at tr2 (Fig. 3.33).  

 

3.6.6.7 Probasal body  

During interphase, the basal bodies generally do not appear to be associated 

with probasal bodies, but in one cell (likely in preparation for cell division), 

probasal bodies are observed; associated with each basal body (Fig. 3.34A (Ppb, 

Apb) at 90O angle, the distal end is attached with plasma membrane. Both probasal 

bodies extended from their parental basal bodies at right angles, and interestingly 

were oriented towards the same side, closely associated with the ventral surface of 

the cell (Fig. 3.34A, B) 
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Figure 3.34: Basal apparatus and probasal body. A. Electron micrograph shows continous section of 

Picomonas from ventral to dorsal. Each probsal body is originated from coreesponding basal body at 

90O angle, the distal end is attached with plasma membrane. B. 3D- animation of basalbody with 

probasalbody. C. Animation of the model of axoneme, basalbody with flagellar roots. AF/ PF (anterior-

/posterior flagellum); tr1,tr2 (distal [tr2] and proximal [tr1] flagellar transitional regions); Ab/Pb 

(anterior-/posterior basalbody); Apb/PpB (anterior/posterior pro basalbody); pcf (proximal connecting 

fiber); Ar1/ Ar2 (Anterior root 1 and 2); Pr1/Pr2 (posterior root 1/ posterior broader root 2); G (Golgi 

body); N (nucleus); M (Mitochondrion); cy (cytostome). Numbers at the top right indicate the serial 

section. Scale bar: 200 nm.   
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3.6.6.8 Microtubular flagellar root system 

Serial sections revealed the presence of four microtubular flagellar roots, two 

associated with each basal body; roots originate from anterior basal body is named 

as Ar1, Ar2, the basal as Pr1, Pr2 (Fig. 3.35; see 3D model in Fig. 3.34 C). The Ar1 

consists of two microtubules and runs towards the cell’s anterior left (Fig. 3.34 A, 

section 5). It accompanies the nuclear envelope and terminates before reaching the 

anterior end of the cell (Fig. 3.34C). The Ar2 also consists of two microtubules, runs 

beneath the ventral cell surface to the cell’s posterior passing the mitochondrion 

and entering the posterior part (PP) of the cell, terminates near to the anterior end 

of the cytostome (Fig. 3.34C). The Pr1 originates at the left surface of the posterior 

basal body near its proximal end (Fig. 3.34), consists of two microtubules, runs 

posteriorly, along the ventral surface of the cell, and enters the posterior part (PP) 

of the cell where it terminates near the left side wall of the cytostome (Fig. 3.35). 

The Pr2 is a broad root consisting of 6 microtubules (Fig. 3.35 B-D) originates the 

right surface of the posterior basal body. It runs close to the ventral surface of the 

cell towards the cell’s posterior, then traverses the vacuolar cisterna (Fig. 3.35 C), 

and terminates near the anterior end of the cytostome near its right side wall (Fig 

3.34 C). A few additional cytoplasmic microtubules (CMT in Fig. 3.35 A, section 53) 

originate at an angle of about 45º from the proximal region of the Pr1, to extend to 

the cell’s left. All three posteriorly oriented roots (Ar2, Pr1 and Pr2) run parallel to 

each other into the posterior part (PP) of the cell, spaced 0.5 µm. The Ar2 seems to 

terminate before the other roots. At this position, electron dense ribbons associated 

with the plasma membrane extend from the Pr1 and Pr2 and continue alongside 

the left (from Pr1) and right (from Pr2) side wall of the cytostome to the cell’s 

posterior end (Fig 3.34; 3.35). 

 

 

 

 

Figure 3.35: Flagellar apparatus. A. Longitidinal section of Picomonas from ventral to dorsal 

(sections are oblique from anterior part). Anterior flagellum (AF) and posterior flagellum (PF). The 

anterior flagellum locates close to the ventral surface followed more interiorly by the posterior 

flagellum. The basal bodies of both flagella are connected by a proximal connecting fiber (pcf) and 

exhibit two transitional regions (the proximal is termed ‘tr1’ and the distal ‘tr2’). B, C. Consecutive 

serial cross sections and two serial longitudinal sections of the anterior flagellum. Serial sections of B 

correspond to C, denoted in B_a-j at the left lower end. a. The axoneme with 9outer doublet and 2 

central pair microtubules. b. The distal trasitional region (tr2) is involved in flagellar shedding (* 

indicates electron dense material near outer doublets). f. the central pair of microtubules orginate. h. 

the transitional region 1 (tr1), C-tubules added (arrowhead indicates a microtubulular triplet and 

arrow indicates a microtubular doublet. i,j. cross sections through basal body with microtubular 

triplets arranged in the clockwise direction, the basal body lumen is filled with electron dense 

material. AF/ PF (anterior-/posterior flagellum); tr1, tr2 (distal [tr2] and proximal [tr1] flagellar 

transitional regions); Ab/Pb (anterior-/posterior basal body); pcf (proximal connecting fiber); G (Golgi 

body); N (nucleus); Pr2 (posterior microtubular flagellar root 2). Numbers at the top right indicate the 

serial section. Scale bar: 100 nm.           
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3.6.6.9 Cleft  

A membrane-bound vacuolar cisterna (vc) (Fig. 3.25-[18; 22; 26], 3.36) forms 

a ‘cleft’ separates the two hemispheres (the anterior part and the posterior part). 

The size of the cleft is not constant, varies among cells. The transverse section of 

the cell at the juncture (between the two hemispheres) is shown in Fig. 3. 36A. In 

spite of, searching for a food vacuole in all of 52 cells analysed, no typical food vac-

uoles are found in Picomonas. Furthermore, serial thin sections of the cleft do not 

show any ingested prey or remnants of bacteria; however, some osmiophilic spheri-

cal structures (Fig. 3.37) are observed. Bacteria are seen often close to the sec-

tioned cells and sometimes appeared as attached to the plasma membrane but nev-

er inside the cells. 

 

 

Figure 3.36: Electron micrograph of non sequential cross section of Picomonas cell, view from 

anterior to posterior A. Transverse section of a cell in the juncture between anterior and posterior 

hemisphere revealing mitochondrion (M) and cross section of ‘mitovilli’ (black arrow) at the ventral 

side, and vacuolar membrane cisternae (vc) and vesicles (SMB) at the dorsal part. B. Transverse 

section from posterior to anterior direction. The entire volume consists of single membrane bound 

vesicles (SMB), Feeding basket (non-active feeding stage, arrow heads) observed at the ventral (V) 

and ‘vc’ at the dorsal side (D). M, mitochondrion, V- Ventral, D dorsal, L left, R, right side view of the 

cell. Scale bar 200 nm. 
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Figure 3.37: Consecutive sections of cleft (perhaps a digestive vacuole or lysosome?). The vacuolar 

cisterna separates anterior part (AP) from posterior part (PP) at the dorsal side. No digested prey or 

any remnant inside the vacuole; nevertheless some osmiophilic membrane-bound substances are often 

observed (arrows). M, Mitochondrion; MB, microbody; vc, vascuolar cistern; SMB small membrane 

bound vesicles. Scale bar 200 nm 

 

 

3.6.6.10 Posterior part 

The posterior part varies in size, and comprises of a large single membrane 

posterior digestive sac (P), putative feeding apparatus (F) and membrane vesicles 

(SMBs). The posterior digestive body is recognized as a major organelle located at 

the ventral surface (Fig. 3.38, 3.23, 3.24), occupies up to half the volume of poste-

rior part (~ 1 µm), its depth (from ventral to dorsal) 600-700 nm and its 

height 400-500 nm. The membrane surface of this vacuole is often highly 

irregular with invaginations (Fig 3.38). Sometimes these invaginations con-

tain vesicles (Fig 3. 38 arrow). The contents of this vacuole consist of irregu-

lar, fluffy material of medium electron density and numerous vesicles of var-

ious sizes with electron-translucent contents. Though, the anterior part of the 

posterior digestive sac (P) is situated in a close proximity near ‘mitovilli’, there no 

apparent association with Mitochondrion. However, more electron dense particles 

are always observed between the mitovilli and the digestive sac. The rest of the 

posterior part is filled with numerous vesicles (Single membrane body (SMB, 

Fig.3.37B). 
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Figure 3.38: Longitudinal section of posterior part. Single vesicles and multi-vesicular bodies (arrow 

head) are observed. The ‘mitovilli’ (arrow) are adjacent to the posterior digestive body (P), however, no 

apparent association between these two. P, posterior digestive sac; F, feeding apparatus; mv- 

‘mitovilli’. Scale bar 200 nm 

 

3.6.6.11 Cytostome like structure  

The second conspicuous structure in the posterior part (PP) of the cell is the 

cytostome/feeding basket that together comprise the feeding apparatus (F, Fig. 

3.40). The feeding apparatus is located ventro- posterior to the posterior digestive 

body (P) and consists of a basket of about 50-60 parallel running fibers (Fig. 3.39A-

C (black arrow); diameter of a single fiber: 15 nm, 30 nm repeat structure from one 

fiber to the next) of varying lengths that extend perpendicular to the anterio-

posterior cell axis, from the ventral surface where they are attached to the plasma 

membrane for up to 1.2 µm enclosing the cytostome, towards the dorsal region 

where they terminate (Figs 3.41; 3.42). In addition to these major fibers, there is a 

fine network of very thin fibers that interconnect adjacent fibers irregularly (Fig. 

3.41B). The basket is open towards the anterior and dorsal regions of the posterior 

part (PP), but closed towards the posterior end of the cell (Figs 3.40; 3.41; 3.42) 

where it sometimes extends into a short tail-like projection of the cell (Figs 3.39; 

3.40 B; 3.41B). Towards the dorsal end, the feeding basket gradually widens (up to 

500 nm at its dorsal end).  

The slit-like cytostome (‘cy’, Fig. 3. 39 red arrow head) is formed where the 

‘side walls’ of the basket fibers connect to the plasma membrane on the ventral 

surface (the fibers are anchored in electron-dense ribbons at the plasma 

membrane; Fig. 3.42, sections 13, 15-18; white arrow head) and extends in the 

anterior-posterior direction for a length of about 1 µm, its width being on average 

150 nm (n=10). In serial sections of some cells it was observed that the anterior-

most part of the feeding basket bisected the overlying posterior digestive body (Fig. 

3.41, section 11). In these cells (non-feeding stage), the feeding basket appeared to 

contain mostly small vesicles and multivesicular bodies (Fig. 3.41). In other cells, 

P

M
edsm2
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possibly during active feeding, the feeding basket contained a single, large vacuole 

that extended well beyond the basket into the dorsal region of the posterior part 

(PP) to reach the dorsal plasma membrane (Fig. 3.42, sections 15-18; the length of 

this vacuole could be up to 1.2 µm). This vacuole contained irregular-shaped, fluffy 

material of medium electron density (very rarely a vesicle was seen within this 

vacuole; Fig. 3.40, section 7). This vacuole is named as the “food vacuole (FV).” The 

food vacuole extended ventrally into the narrow parts of the basket (Fig. 3.42, 

sections 16-18), where it was sometimes observed to be associated with smaller 

vesicles (Fig. 3.42, section 17). The anterior end of the cytostome (and thus the 

feeding basket at the plasma membrane) is linked to the posterior ends of two 

microtubular flagellar roots (Pr1, Pr2, see below for description of the flagellar 

apparatus; Fig. 3.41, section 2, 3.42, sections 1, 3; Fig. 3.24C) through the two 

electron-dense ribbons attached to the plasma membrane that mediate this 

connection.  

 

 

Fig 3.39: Closer view of the cytostome-like structure. Two rows of fibre like structure (left and right 

fibre) at the ventral surface extends from ventral to dorsal longitudinally, below the digestive sac (P), 

and proximal end of the fibre is connected with roots (triangles). A, B, C three sequential sections 

through the basket near the cytostome. It shows approx. 60 rows of fibers arranged in parallel 

(arrows heads depict fibers in the right margin of the basket). Scale bar 100 nm 
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Figure 3.40: Feeding apparatus in Cross section. A. Longitudinal sections of a Picomonas cell 

from ventral to dorsal with the feeding apparatus in cross section. Sections 2 to section 7 depict a 

recently formed food vacuole inside the ‘basket’ of the feeding apparatus. B. An SEM image of 

Picomonas visualizing the left side of the cell. Note that the posterior flagellum has been shed at the 

tr2; white triangles indicate the cytostome region of the feeding apparatus. AF/ PF (anterior-

/posterior flagellum); G (Golgi body); LF/RF (left and right row of fibers of the basket); M 

(mitochondrion); MB (microbody); N (nucleus); P (posterior digestive body); Ar2 (anterior 

microtubular flagellar root 2); Pr1 (posterior microtubular flagellar root 1); Pr2 (posterior 

microtubular flagellar root 2); FV, (food vacuole); vc (vacuolar cisterna); cy (cytostome); F, feeding 

basket. Numbers at the top right indicate the serial section. Scale bar: 200nm; except Fig. 3.40 A, 

section 2 (100nm). 
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Figure 3.41: Feeding apparatus in longitudinal section. A. Cross sections through of Picomonas 

from anterior to posterior; sections begin in the central part of the cell, posterior to the basal bodies. 

Cell, in the non-feeding mode, without a food vacuole within the basket. B. 3D model of the feeding 

apparatus with rows of fibers in parallel arrangement (white arrows) forming a basket (arrangement 

of the cell as in Fig. 3.40A). Note that the fibers are interconnected by thin filaments. The basket is 

open towards the top and right (i.e. towards the anterior and dorsal direction of the cell respectively), 

while it is closed at the bottom (the posterior end of the cell). On the left side of the basket 

(representing the cell’s ventral surface) the fibers are attached to the plasma membrane thus forming 

the narrow, slit-like cytostome. Scale bar: 1 µm 

 

 

 

Figure 3.42: Feeding apparatus in longitudinal section. A. Cell during active feeding with a 

large food vacuole within the basket (black triangles); the food vacuole contains irregularly-shaped, 

‘fuzzy’ material, presumably taken up by endocytosis through the cytostome (white triangles). Two 

rows of fibers representing the left (LF) and right (RF) margins of the basket accompany the food 

vacuole. Scale bar: 1 µm 

  



Results 69 
  

 

R
esu

lts | 6
9 

3.7 Phylogenetic analyses 

3.7.1 Phylogenetic analyses of Picomonas complete nuclear DNA operon 

Phylogenetic tree is constructed for complete ribosomal nuclear operon to 

understand the phylogenetic position of established Picomonas culture (complete 

nuclear operon of Picomonas judraskeda, see appendix 6.10) with available eu-

karyotic taxa (Fig. 3.41). All sequences in the data set are either from the same 

species or from the same cell. In addition to Picomonas sequence, three environ-

mental ‘picobiliphytes’ sequences are used in this study; in particular, two of them 

(MS584-5 and MS584-11) are obtained from single cell amplified genome database 

(SAG) from Yoon et al. 2011. Full length sequence is obtained by a contigs-

assembly from SAG database of MS584-5 and MS584-11 (Yoon et al. 2011). The 

near full length third sequence is obtained from Genbank by concatenating 

HM595055 and HM595056 sequences (these two have an overlap at the variable 

region of the large sub unit, without any differences) (Kim et al. 2011). The tree 

has shown an independent eukaryotic clade (Picozoa) for Picomonas along with 

other three ‘picobiliphyte’ environmental sequences with maximally supported at 

branch node (Bold branch) by all methods and forms a mono phylum. Tree topology 

is portrayed that phylum Picozoa has no support assemblage for its close associ-

ate's glaucophytes, cryptophytes and katablepharids (Fig. 3.43). Nevertheless, they 

have shown a weak affinity towards photosynthetic glaucophytes with a little sup-

port from Bayesian probability. The alignment includes 100 other eukaryotic 

nrRNA data set from Genbank, except the ones which are marked with ‘*’ (unpub-

lished data). The data set included Opisthokonta, Chromalveolata, Plantae, Apuso-

zoa, Hacrobia, and Rhizaria; though long branching Amoebozoa and Euglenophy-

ceae are not included in this analysis. 

 

 

 

 

 

 

 

 

Figure 3.43: Maximum Likelihood phylogenetic tree of 104 eukaryotic taxon samples using complete 

nuclear encoded SSU, 5.8S and LSU sequences, with 4461 aligned characters for comparisons. Four 

full-length ‘picobiliphyte’ sequences are grouped under new phylum Picozoa. Published sequences are 

denoted with accession number, taxon name, followed by strain designation. Unpublished sequences 

are marked by *. Support values at the branch length are bootstrap partitions from RAxML, ML, 

neighbor joining, with maximum parsimony and Bayesian posterior probability. Maximal supported 

branches by all methods are marked in Bold (=100/100/100/1.0). Branch separating opistokonts are 

defined as out group. Scale bar denotes 10% substitution per site.    
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3.7.2 Diversity of ‘picobiliphytes’ in marine environment 

The complete nuclear operon of the phylogenetic tree suggests that phylum 

Picozoa forms an independent phylogenetic position as a mono phylum. To assess 

the biodiversity of ‘picobiliphytes’, at first, all environmental 18S ‘picobiliphytes’ 

sequences (data set-3) are used for the tree construction. To ensure the sequence 

specificity to ‘picobiliphytes’, tree is primarily constructed with all other eukaryotic 

18S rDNA sequences (Not et al. 2007a; Cuvelier et al. 2008; Heywood et al. 2011; 

Yoon et al. 2011) includes data set-1 and yielded data set-2. It resulted that all the 

‘picobiliphyte’ sequences form an independent group with existing eukaryotic taxa 

(data not shown). Sequences from this monophyletic group are taken for the 

diversity study. Since Picobiliphytes are long branched without prominent support 

for sister relationship to other eukaryotes groups, an unrooted tree is generated. 

The sequence of the clonal culture in this study is mentioned as Picomonas sp. in 

these trees. New sequences obtained in this study from taxon specific clone 

libraries are highlighted in grey in Fig. 3.43. The tree also contained partial 

‘picobiliphyte’ SSU 18S sequences. 

Three possible outcomes are found from this phylogenetic analysis; Sequences 

obtained from the Helgoland Time Series Station (in this study) are largely 

grouped together with one sequence in Roscoff ASTAN (Acc.no. DQ222877. 1; clone: 

RA000907.54), and another sequence from the North Atlantic, forms a 

monophyletic subclade of the Picozoa (PZ2). 

Picomonas sequence along with one environmental sequence from Helgoland 

form an independent clade PZ3 and they are grouped together with Roscoff ASTAN 

sequence (Acc.no. DQ222878. 1; clone: RA001219. 38).  

 

The third sequence of tree (Pico. Clade3 ENV) largely supports to clade probe2/ 

BP2 and forms an independent new clade (PZ11). The formally described clades 

(Not et al., 2007a; Cuvelier et al., 2008; Kim et al., 2011; Yoon et al., 2011) are 

plotted on this tree (Fig. 3.44) for better understanding of the biodiversity. Not et 

al., (2007a) described that the ‘picobiliphytes’ constitute three clades; clade I & II 

shown designated as Probe1, and clade III as Probe2. Cuvelier et al., (2008) showed 

more diversity among ‘picobiliphyte’ clades by increasing the environmental 

sequences and suggested that the ‘biliphyte’ (BP) sequences comprised more 

possible independent clades with major clades BP1, 2 & 3, which include sub clades 

(BP2.1, 2.2 and 3.1, 3.2 &3.3) are marked in green. However, in this study of one of 

the ‘biliphyte’ sequences (Acc.no: EU368024; clone: FS14I060-30) from a 

monophyletic group BP1, diverged and formed a para phyletic group with BP3 

(shown as BP1A and BP1B). Of three ‘picobiliphyte’ sequences from single-cell 

amplified genome from Yoon et al., (2011) are shown in dotted line, filled with pink, 

yellow and green colours for MS584-5, MS584-11 and MS584-22 respectively. Two 

sequences (Acc. No: DQ060527.2 & HQ156841. 1) are highly diverged and strongly 

supported at the base node and forms a monophyletic sub clade PZ8. Another 

sequence from Helgoland environmental sample (Pico.Clade3 ENV) forms 

independent branch with strong support at the basal node (BP2=Probe2). Thus, the 
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tree with increasing number of sequences resulted in a prediction of at least eight 

new sub clades with formally existing clades from this analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.44: Unrooted ‘picobiliphyte’ tree based on the 18S rDNA. Randomized accelerated 

maximum likelihood (RAxML) phylogeny for 86 ‘picobiliphytes’ taxa (85 are from environmental 

sequencing and 1 from my clonal culture) with 1775 aligned characters are used in this study. The 

length of the branch is equal to the number of substitution; the scale bar indicates 2% substitution 

per site. The tree topology was calculated by RAxML maximum likelihood. Bold branches show 100% 

bootstrap support. The discontinuous branch (//) has been shortened to 50% of the branch length. PZ- 

Picozoa clade, BP- ‘biliphytes’ clade (Cuvelier et al. 2008), Probe 1&2 ‘picobiliphytes’ clade (Not et al., 

2007a), coloured rectangle boxes- Single Amplified Genome sequence (Yoon et al. 2011).    
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4 Discussion 

4.1 ‘Picobiliphyta’: A cell with enormous mystery 

Plankton, both micro- and nano-plankton are easily visible under a light 

microscope, providing a wealth of features that are mostly adequate to identify the 

taxa to which they belong. However, little is known about the morphological and 

functional characteristics of the very small cells (< 3 µm) which comprise the 

picoplankters, a fraction that dominates the biomass of the biosphere (Pace 1997; 

L K Medlin et al. 2006). This lack of knowledge is rooted in our general inability to 

culture these organisms. The biodiversity and abundance of picoplankton have 

been mainly monitored using a molecular approach (18S rRNA clonal libraries), 

but this cannot reflect the true diversity because of PCR biases (Stepanauskas & 

M. E. Sieracki 2007; Heywood et al. 2011) and other artefacts such as FISH. 

However, molecular analyses have aided the identification of new protists from 

environmental samples by allowing successful phylogenetic analyses. This has 

revealed an inordinate diversity among these organisms, thus many new taxa have 

been discovered with increasing list of awkwardly long branched 

independent/associated lineages (Giovannoni et al., 1988; Amann et al., 1990; Díez 

et al., 2001; Not et al., 2002; Not et al., 2007b; Biegala et al., 2003; Massana et al., 

2004; Lovejoy et al., 2006; Medlin et al., 2006). Sequences from three different 

coastal areas (in the North Atlantic, on the European coast and in the Arctic 

Ocean) indicated a distinct independent lineage comprising three clades, which 

collectively had a weak association with algae possessing secondary endosymbiont, 

such as cryptophytes (Hoef-Emden & Melkonian 2003; Novarino 2003; Medlin et 

al. 2006) and katablepharids (colorless flagellates (Inouye & Noriko Okamoto 

2005; Noriko Okamoto et al. 2009). These sequences led to synthesis two 

oligonucleotide probes (Not et al., 2007a), which are used to identify organisms 

belonging to this new clade (from here on referred to as ‘picobiliphytes’), and are 

applied to samples on 0.2 m membrane filters following 3 µm prefiltered sea 

water (TSA-FISH, (Not et al., 2007a)). Cells with positive signals has been 

observed as unicellular, and contained one or two plastids, the pigments of which 

are not completely removed by alcohol dehydration steps of FISH (Such 

pigmentations are only found when phycobilins are present). A single DAPI 

stained body was observed in the plastid, (in general the plastid DNA was not so 

condensed) showing that the cells have a reduced nucleus, termed the 

nucleomorph, similar to that of cryptophytes (Not et al. 2007a). Fig. 4.1 shows a 

schematic representation of ‘picobiliphytes’.  
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Figure 4.1: Schematic representation of the structure of ‘picobiliphytes’ according to Not et al., 

2007a The green fluorescence represents FISH by taxon specific probes(PICOBI01/PICOBI02), the 

orange fluorescence highlights phycobilin in the plastids and the DAPI stains the nucleus (N) and 

reduced nucleomorph in the plastid/s. 

  

Since the publication of Not et al., 2007a, speculation was rife about the 

size and structure of the ‘picobiliphytes’. The first observations suggested that the 

cells do harbor plastids (orange fluorescence observed by FISH), but they are 

bigger than pico-sized, and hence termed ‘biliphytes’ (Cuvelier et al. 2008). 

Although the authors showed no FISH images in their study, they recorded 

‘biliphyte’ cells are ranging from 3.5 ±0.9 x 3.0 ±0.9 µm (±SD, n = 45), for probe 

BP2 and 4.1±1.0 x 3.5± 0.8 µm (±SD, n = 60), for probe BP1. However, it is hard to 

estimate the cell size with fluorescence images (fluorescence signals from 

membrane filters) and thus that the dimensions provided are purely speculative 

with no further substantial experimental confirmation.  

On the contrary, Kim et al. has suggested that ‘biliphytes’ are not an 

obligate photoautotrophs but rather facultative mixotrophs or phagotrophs, with 

any transient detection of orange fluorescence representing ingested prey (e.g., the 

cyanobacterium Synechococcus). The highly punctate phycobilin-like (orange) 

fluorescence as reported previously (Not et al., 2007a; Cuvelier et al., 2008) was 

not detected with the hybridized (referring to cells allowed to interact with the 

fluorochrome) cells. The ‘biliphytes’ and rappemonads are initially thought to be 

the same but that rappemonads are not ‘biliphytes’ (Kim et al. 2011). 

The single-cell amplification of various heterotrophic protists by FACS from 

the Gulf of Maine is indicated that ‘picobiliphytes’ consisted of a significant 

fraction in the environment. However, the optical properties of these cells 

intimated that the absence of phototrophic pigments; therefore, suggests the 

possibility of a heterotrophic lifestyle (Heywood et al. 2011). Recently, the whole 

genome amplification for single cell amplified genome (SAG) analysis for three 

individual cells of ‘picobiliphytes’ also has not shown any evidence of plastid genes 

(Yoon et al. 2011) in their genomes. Despite their observation that ‘picobiliphytes’ 

are coexisted with single-stranded DNA viruses and bacteria, the DNA of which is 

Orange auto -

fluorescence- Plastid
N

rRNA probe (FISH)

Nucleomorph
<3µm
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found in their genome data, hypothesised that ‘picobiliphytes’ may once have been 

photosynthetic (derived from plastid-containing ancestors) as has been suggested 

for ciliates (Reyes-Prieto et al. 2008) and telonemids (Okamoto et al. 2009). 

The plethora of controversies and speculations around the ‘picobiliphytes’ 

make it highly desirable to resolve the trophic status of these protists. Thus, only 

by isolating and studying the features (both morphological and functional) of such 

a cell, the true relationship of its position in the ecosystem can be revealed. 

4.2 Abundance and diversity of ‘picobiliphytes’  

The reported, abundance of ‘picobiliphytes’ has not only varied with 

ecophysiological conditions and distributions in the ecosystem, but also has been 

influenced by the methods are used. Of a total picoeukaryotic cell count in the 

English Channel, 1.6 % are determined as being ‘picobiliphytes’ (Not et al., 2007a). 

In two coastal regions of the Atlantic Ocean (Sargasso Sea & Florida current) the 

‘biliphytes’ are estimated to contribute, about 28±6 % of total phytoplankton 

population in the eddy-influenced surface waters (Cuvelier et al. 2008). However, 

the representation of ‘picobiliphyte’ abundances are biased with the methods are 

being applied, for e.g. 18S rDNA clonal library (2.9% ‘picobiliphytes’), which was 

much less compared to the 18S rRNA clonal library (12.8%) from the same 

Mediterranean Sea water sampling site (Not et al. 2009; L. Li et al. 2008). Then 

again, the ‘picobiliphyte’ sequences obtained by SAG are much higher and efficient 

than all PCR based approach (17%), as the samples from the same site did not 

show any ‘picobiliphytes’ sequences in 18S rDNA clonal library (Heywood et al. 

2011). Recurrent sampling for ‘picobiliphytes’ during this study (July to October 

2007) in Helgoland sampling Site by sing taxon-specific primers 

(PicoBI01F/PicoBI02F), shown that ‘picobiliphytes’ are frequently encountered at 

higher level (67% occurrence of total sampling period as PCR positives found 

elsewhere).  

 

4.3 Molecular approach: an advantage or disadvantage? 

Culture-independent 18S rDNA clonal libraries have been considered as a 

useful tool for conducting surveys of the microbial population in the biosphere. 

Whenever, the diversity of plankton community has been investigated using this 

method, a high degree of new sequences appears (Giovannoni et al., 1988; Amann 

et al., 1990; Díez et al., 2001; Not et al., 2002; Biegala et al., 2003; Massana et al., 

2004; Medlin et al., 2006; Not et al., 2007b). However, this application is 

significantly skewed by PCR biases by either the high number of copies of the 

rDNA operon or the persistence of DNA in extracellular materials. Thus, 

alternative methods have been introduced to resolve the better diversity (Not et al. 

2009), metagenomics and Single cell Amplified Genome sequences (SAG) (Not et 

al. 2009; Heywood et al. 2011; Yoon et al. 2011). These methods, alone or in 

combination can resolve new plankton groups and biodiversity, their resilience and 
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have also inform the choice of designing taxon-specific probes (rDNA probes). 

Using these taxon-specific probes, aiding to increase the spectrum of diversity 

among the specific taxa (phylum, division, class, or genus), and intimating their 

functional and morphological features by FISH (Simon et al. 1995; Simon et al. 

2000; Not et al. 2002; Biegala et al. 2003; Not et al. 2007a; Kim et al. 2011). 

Although, these techniques are often considered the gold standard for identifying 

new taxa, they may mislead researchers. At least where in the study of 

‘picobiliphytes’, which at first considered as putative photosynthetic secondary 

endosymbionts (Not et al. 2007a; Cuvelier et al. 2008), now uncovered as 

heterotrophic (Kim et al. 2011; Heywood et al. 2011; Yoon et al. 2011).  

 

4.4 Flow cytometry: as an approach for protists 

In early 1980s, analytical flow cytometry (AFC) was applied for the first time 

to phytoplankton cells from sea water. Since then, the application of AFC has 

increased dramatically to isolate a cell from both marine and fresh water, and 

subsequently, it has been successfully used to sort the phytoplankton (micro and 

nano-plankton) and to establish axenic cultures (Veldhuis & Kraay 2000; Gasol & 

Giorgio 2000; Sensen et al. 1993). AFC has recently been recognized as an 

important tool for enumeration of picoplankton communities by using their optical 

properties (Fuller et al. 2006; F. Le Gall et al. 2008; Surek & Melkonian 2004). The 

use of taxon-specific probes (FISH with rDNA probes) combined with flow 

cytometry  has enhanced population studies and also enabled the visualization of 

cells (R. I. Amann et al. 1992; Sekar et al. 2004; Not et al. 2002; Biegala et al. 

2003). These methods (Flow cytometry using autofluorescence and FISH) are 

although limited to photosynthetic protists, more recently a novel technique has 

been used in flow cytometry, enabled the way for sorting of heterotrophic protists 

too. In this approach, heterotrophic eukaryotic cells are stained with molecular 

markers (Lysotracker - green fluorescence, which stains the food vacuoles) and 

single cells are sorted against green fluorescence (FL1), and side scatters (SSC) 

(Heywood et al. 2011). Although, photosynthetic cells can also be stained with 

Lysotracker (due to the presence of a food vacuole), they are easily eliminated by 

use of their other optical properties in Flow cytometry. Still, the viability of cells 

sorted by using such markers is unknown. Alternatively, Mitotracker GreenFM 

(Molecular marker, Invitrogen) has also been used to sort not only heterotrophic 

cells for molecular analysis, but also given the possibility of obtain a clonal culture 

from it (though, the growth is solely depends on the nutrient requirements of the 

sorted individual cells). This can be broadly used as a novel approach for sorting 

uncultivable heterotroph and establishing successful clonal cultures. 
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4.5 The elusive clonal culture 

Fractionated Sea water from Helgoland is enriched by using various culture 

media. PCR-based identification of enriched cultures has showed only 36 % as 

positive for ‘picobiliphytes’ using the PCR approach, but no phycobilin-like 

autofluorescence either by FACS or FISH are ever detected for the enriched 

(appendix 6.2). Serial sub-culturing of these PCR-positive enrichments showed a 

reduction in the percentage of ‘picobiliphytes’ to the overall plankton. Has any of 

these enriched cultures harboured any plastids, as suggested in previous studies 

(Not et al., 2007a; Cuvelier et al., 2008), they would have been successfully sorted 

by FACS (phycobilin) after enrichment, and their growth would have been steadied 

in the presence of phototropic medium provided. The results from culturing 

experiments clearly showed the continuous fall of cell growth over a period of time. 

Taken together, these results clearly show that ‘picobiliphytes’ are not autotrophic 

as reported earlier, but are heterotrophic in nature. 

4.5.1 Heterotrophic cell culture 

Heterotrophic protists can be isolated either by serial dilution or by 

capillary pipetting methods (Klaveness et al. 2005). Culturing heterotrophic cell is 

not as easy as in the case for autotrophs, they predominantly dependent on other 

cells (two members culturing) for grazing. Most of the contaminants in 

picobiliphyte’ enriched culture are removed by serial dilution, except two 

Goniomonas species (Goniomonas sp1, & sp2), which are consistently persistent. 

Many trails are made to eliminate these contaminants; however they were 

extremely sturdy in comparison to ‘picobiliphytes’ or in other hand ‘picobiliphytes’ 

sequences were not detected in the absence of Goinomonas species. This led to a 

hypothetical conclusion that; there may be an interaction at cellular level or 

symbiotic relationship between ‘picobiliphytes’ and Goniomonas. In general, the 

phagotrophic heterotrophs show high specificity in their feeding preferences. Some 

feed on algae (eukaryotrophs) for example Telonema antraticum feeds on 

Rhodomonas sp (Klaveness et al. 2005); Katablepharis japonica and Leucocryptos 

marina feed on the haptophyte Chrysochromulina sp. (N Okamoto 2005), while 

others feed on bacteria (bacteriotrophs) example Goniomonas sp. (Martin-Cereceda 

et al. 2009) and Palpitomonas bilix (Yabuki et al. 2010). To determine the cellular 

or symbiotic interaction between ‘picobiliphytes’ and Goniomonas, FACS-based 

heterotrophic cell sorting (one cell/well in a 96well plate) has been applie; cells are 

sorted with forward scatter (FSC) and side scatter (SSC) window. Despite 

successful isolation of these two contaminats (Goniomonas species), neither 

‘picobiliphyte’ cells nor ‘picobiliphyte’ sequences are not detected in any of these 

resultant isolates, concluded no such organismal interaction of ‘picobiliphytes’ with 

Goniomonas species. 

The second possibility is that can ‘picobiliphytes’ grow by feeding on a 

particulate organic matter from the medium with the presence of Goniomonas. In 

order to obtain enriched growth of ‘picobiliphytes', nutrient content has been 

increased by adding soil extract, leaf extract, rice, wheat and double strength of K 
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medium, etc., thus increasing organic source. Under these conditions, the 

Goniomonas growth was vigorous, though the ‘picobiliphytes’ are unable to grow. 

This resulted that ‘picobiliphytes’ are dependent on specific organic matter, which 

could possibly available only in the marine ecosystem, for example marine viruses. 

The identification of ‘picobiliphytes’ has become impossible and isolation has also 

become impractical, despite of constant sub culturing with fresh FSSW, until they 

were observed by scanning electron microscope. The PicoPCR-positive enriched 

cultures are subjected for complete scanning in SEM and a unique anisokont 

biflagellate are observed that differed from Goniomonas (Fig. 3.11). They found in 

very low abundance (approx. 1 in 500 other cells) in SEM and that probably 

accounted for the fact that they are not detected by the light microscope.  

To establish the clonal cultures of these unique biflagellate, two alternate 

approaches are performed to the sample; First with Percoll density gradient 

centrifugation, which has been successfully used for cell fractionation and 

organelle isolation in mixed cultures (Putzer et al. 1991; Cho et al. 2002). During 

in this experiment, unique flagellates are observed in 20 % and 40 % Percoll 

gradient fraction (Fig. 3. 12b) and these were later confirmed by PicoPCR and 

sequencing. Although, these fractions yielded high numbers of expected flagellates, 

their subsequent growth development in culture was further inhibited by faster-

growing bacterial and Goniomonas populations or by an endotoxin from Percoll. 

Goniomonas cells are mainly recovered from the 60 % Percoll fraction, indicating 

that the ‘picobiliphytes’ have a less buoyant density than Goniomonas but higher 

than bacteria (Fig. 3.12b). Second approach was by using antibiotics' (β-lactam 

peptidoglycan inhibitors; i.e. Ampicillin and Carbenicillin), to inhibit the marine 

bacterial growth (Ferris & Hirsch 1991). This method is employed to restrict the 

Goniomonas growth by restricting bacterial population, and ensure the growth of 

‘picobiliphytes’ does not get affected. As expected, the ‘picobiliphytes’ are grown 

under these condition while Goniomonas population declined (Fig. 3. 12c). 

However, using antibiotics may cause mutations thus not recommended for 

isolation, which may leads to physiological variations of the wild type, the method 

was dropped for isolating ‘picobiliphytes’. 

4.5.2 Fluorescence markers 

The use of molecular fluorescence markers to target the specific organelles in 

a cell for sorting picoplankton, in particular, to non-photosynthetic eukaryotes has 

not been reported until recently. Lysotracker a green fluorescence marker has 

been used for staining the food vacuole and are sorted marine heterotrophic 

protists successfully. In these studies, Lysotracker-stained cells are sorted with 

green fluorescence (FL1) and SSC, and the isolates are sequenced using single-cell 

amplified genome analysis (SAG) (Heywood et al. 2011; Yoon et al. 2011). 

However, the viability of such sorted cells in the presence of fluorescent markers 

has not been investigated so far. 

Mitotracker Red CMXRos / GreenFM, (Invitrogen, Pendergrass et al. 2004) is 

similar type of molecular marker specifically stains the mitochondrion of all 

eukaryotic cells. The advantage of using Green FM against Mitotracker Red 
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CMXRos is that the GreenFM fluoresces only when it binds to the mitochondrial 

membrane and no longer retained in the cell which can easily be used for cell 

sorting with Argon laser under blue excitation (488nm). Goniomonas sp. has been 

used as a model species and Mitotracker Green FM has been applied for sorting 

and to test their viability, the cells were intact as evidenced by their morphology 

and motility (Fig. 3.14). 

Similarly, ‘picobiliphytes’ have also been sorted by using Mitotracker Green 

FM into 96 and 24 well plates. The results has shown that ‘picobiliphytes’ grew 

faster in the presence of Goniomonas than they did in clonal culture, but as 

mentioned earlier; bacteria are ultimately out-competed the ‘picobiliphytes’ in 

clonal samples. Both samples are tested positive for ‘picobiliphytes’ using PicoPCR, 

and the establishment of an exclusive clonal culture has proven by using universal 

eukaryotic 18S rDNA primers and sequencing (appendix 6.4). Subcultures of these 

cultures are performed every two weeks to maintain them successfully. However, 

the growth has not been uniform across all conditions (e.g. growth was not 

consistent in triplicates). 

Without further knowledge of the feeding behaviour of ‘picobiliphytes’, the 

cells are maintained as liquid clonal cultures and that is only possible by frequent 

transfer using filtered sea water with soil extract. 

 

4.6 Microscopic studies 

4.6.1 Light microscopy 

The ‘picobiliphyte’ cells (referred to a new genus, ‘Picomonas’), as seen using 

phase contrast optics, are slightly elongated with two hemispherical extremities, 

and possess two unequal flagella. The use of Mitotracker and DAPI staining of 

Picomonas failed to show either plastid-encoded autofluorescence or a 

nucleomorph as reported by Not et al. 2007a; Cuvelier et al. 2008. The combination 

of fluorescent staining is shown that the nucleus and mitochondrion are both found 

in the anterior hemisphere which could be a functional character in identification 

of this organism. 

4.6.2 Electron Microscopy  

Electron microscopy studies are used to investigate the Picomonas at the 

ultrastructural level. The scanning electron microscope is shown that the two 

unequal flagella are inserted on a flat surface of the mid-ventral side of the cell. 

This is unlike other Hacrobian, where the cells most commonly have an 

invagination (groove or pocket), and the flagella are inserted on its edge (Okamoto 

et al. 2009; Yabuki et al. 2010; Heywood 1988). However, heliozoan has a distinct 

axopodium extending from the centrosome without clear cell invaginations (Yabuki 

et al. 2012). The flagella are naked, with no flagellar appendages (mastigoneme or 

non-tubular hairs), which could be considered as a common characteristic of 
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katablepharids (Okamoto et al. 2009), even though, there is no shared 

morphological synapomorphy. During flagella shedding, conspicuous flagellar 

protrusions remain attached to the cell, which is one of the uncommon findings in 

this cell. Each flagellum has two evident transition plates (tr1 & tr2) and flagella 

shed at the level of the more distal tr2. The transverse section of tr2 is more 

constricted than tr1. A recent study focused on the flagellar apparatus among all 

‘Hacrobian’ super-group covered two possible transition regions, on at least one of 

the two flagellar basal bodies (Yabuki et al. 2012). It is certain that Palpitomonas 

(Yabuki et al. 2010), katablepharids (Okamoto 2005), cryptophytes (Oakley & 

Dodge 1976; Hibberd David J. 1979) and Goniomonas (see appendix 6.8) all display 

two transition regions in their flagella, with constriction being restricted at the 

second transition plate (tr2). The Two transition plates are also found in 

Haptophyta (Yoshida et al. 2006), telonemids (Klaveness et al. 2005; Shalchian-

Tabrizi et al. 2006) and Heliozoa (Cavalier-Smith 1993), but the proximal one is 

inconspicuous and distal might have simplified its transition zone, which is thus 

likely a common ancestral feature for all Hacrobians (Yabuki et al. 2012), and that 

possibly includes Picomonas within Hacrobia super-group. However, the 

ultrastructural features of Picomonas show little resemblance to other 

Hacrobian,thus it is very likely independent to other members of Hacrobian. In 

comparison with cryptophytes, Picomonas are never observed with any membrane 

invagination, ventral furrow, and periplasts-like structures which are 

characteristic features for cryptomonads (Novarino 2003; Martin-Cereceda et al. 

2009).  

4.6.3 Ultra-structural character of Picomonas 

The Ultrastructure of Picomonas was analysed in detail by serial ultra-thin 

sections exploring the distinctive features of the cell. Three dimensional recon-

structions of Picomonas cells illustrated in Fig. 4.2 and Fig. 6.9. That ventral side 

is where flagella inserted, dorsal opposite to this. Anterior region is forward facing 

when the cell swims –direction of anterior (longer) flagellum, posterior side is that 

contains vacuoles. The Left and right as defined– view from dorsal, the left side is 

on the left, and the right is on the right (opposite to ventral).  
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Figure 4.2: 3D model system of Picomonas sp. The left view depict all cell components, the ventral 

view shows all cellular organelles and the arrangement of the basal bodies and the dorsal view with 

nucleus, and microbodies. AF, Anterior flagellum, PF posterior flagellum, N nucleus, G Golgi body, M 

Mitochondrion, vc vaculor cisternae, P posterior digestive part, SMB single membrane vesicles, MB 

microbody. Ar1&2 and Pr1&2 the flagellar roots arise from anterior and posterior basal body 

respectively. 

 

In general, all the cell constituents, as expected for flagellates, occupy de-

fined positions in the cell (the only variable feature was the size and content of the 

posterior-digestive body (P), and the size and number of the microbodies). A single 

Golgi stack was located inside a groove sandwiched between the nucleus, mito-

chondrion and flagellar basal bodies. Numerous GA vesicles are observed around 

the Golgi and near the plasma membrane. Two basal bodies (bb) located on the 

ventral side, formed an angle exceeding 90° relative to one another and are con-

nected by a proximal connecting fibre. Two transitional septa (plates) in each fla-

gellum is observed, a proximal septum (named tr1) marking the distal end of the 

basal body where the flagellum emerges from the cell. Interestingly, the central 

pair of microtubules extended through the distal septum and terminated shortly 

before reaching the proximal septum, which was not clearly observed among other 

described hacrobian representatives (Oakley & Dodge 1976; Hibberd David J. 

1979; Noriko Okamoto & Inouye 2005; Noriko Okamoto et al. 2009; Yabuki et al. 

2010; Yabuki et al. 2012). The hacrobian genera are, however, morphologically 

distinct and phylogenetically long-branched, but now are considered as one group 

with one common feature, the distal septum (tr2). The presence of a prominent, 

fibrous electron-dense matrix in the lumen of both basal bodies is the other dis-

tinctive component of Picomonas and not observed in other eukaryotes as so con-

densed.  
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In Picomonas four (non rhizostyle-like) microtubular flagellar roots (two as-

sociated with each basal body) are observed. In addition, two more non-

microtubular flagellar roots are observed in the microtubular organization centre 

(MTOC) associated with the posterior basal body. These roots run all the way 

along the ventral surface in the cell and into the posterior part, where they curve 

towards the dorsal side and terminate near to a complex apparatus that is remi-

niscent of a cytostome or the base of an axopodium.  

 

4.7 Novel features of the cell 

Picomonas can be characterized microscopically by the presence of certain 

special features; 

1. A peroxisome-like microbody: Each cell contains more than one putative 

microbody (Fig. 3.24B) located at the dorsal side of the anterior part, extending 

from the posterior edge of the nucleus to the cleft ‘cl’. These specialized structures 

surrounded by a single membrane may well be vesicles with containing a muci-

laginous substance, or the content may be granular and further investigation is 

required to determine their function.  

2. The posterior part: The posterior part (PP) of the Picomonas cell consists of 

a digestive sac (P), ‘Single-membrane bodies (SMB)’ and ‘a cytostome (cy, see be-

low)’. These components are thought to be involved in particulate food intake, and 

break down and are collectively termed, the posterior part. The ‘P’ is variable in 

size, sometimes occupying more than half the volume of the digestive body, and 

contains single and double-membrane bounded substances, which at present are 

functionally uncharacterized. The SMB vesicles are thought to be involved in food 

(prey, detritus or particulate organic matters) transport or membrane recycling. 

The SF present in the posterior end of the digestive body contains the putative 

ingestion apparatus (Fig. 3.39, and 4.3).  

3. The cleft (cl): This is a membrane-bound vacuolar cisterna that separates 

the two hemispheres (the anterior part (AP) and the posterior part (PP)). It con-

tains osmiophilic substances. Despite of an intensive search, no typical food vacu-

oles nor did any ingested bacteria or remnants found. Although bacteria are often 

encountered close to the sectioned cells and even at times attached to the plasma 

membrane, they are never found inside the cells.  

4.8 Feeding behavior and Food Sources 

Whereas the heterotrophic nature of the Picozoa is now beyond doubt, their 

mode of feeding remains essentially unknown. Kim et al. (2011) speculated that 

phycoerythrin fluorescence in Picozoa may have been the result of phagotrophic 

feeding of Picozoa on cyanobacteria, e.g. Synechococcus sp., whereas Yoon et al. 

(2011) discussed the possibility that the reported plastid and nucleomorph (Not, et 

al. 2007a) may have “come from a kleptoplastid or cryptophyte alga captured as 

food” by Picozoa. In their study on single-cell amplified genomes of three individual 
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cells of Picozoa isolated from seawater Yoon et al. (2011) discovered high 

abundances of specific single-stranded and double-stranded DNA viruses as well 

as DNA from marine bacteria of the Bacteriodetes, Proteobacteria, and Firmicutes 

groups. Furthermore, the three cells differed with respect to the associated viruses 

and bacteria. The authors concluded that they had studied “complex biotic 

interactions among previously uncharacterized marine microorganisms”, and 

regarding one cell, a “virus infection captured in-situ”, although they did not rule 

out passive attachment of viral and bacterial DNA to the surface of the cells. In 

conclusion, Yoon et al. suggested that Picozoa might feed on Proteobacteria, 

Bacteriodetes and large DNA viruses (Yoon et al. 2011). 

Do our electron microscope observations shed light on the feeding behavior 

and the likely food source of the Picozoa? One of the most unusual structural 

features of P. judraskeda is the subdivision of the cell into two parts, an anterior 

part housing almost all cell constituents and a posterior part, containing a 

digestive system including the feeding apparatus. Interestingly both parts are 

separated by a large vacuolar cisterna that leaves larger spaces only for 

interaction of the posterior digestive body with the single mitochondrion and for 

passage of three microtubular flagellar roots that presumably position the 

cytostome (see Results). We serially sectioned 52 cells, but never encountered an 

intact or recognizable bacterium within the putative food vacuole inside the 

feeding apparatus, in the posterior digestive body or in any other part of the cell. 

Because we fixed a growing culture, we would expect to encounter bacteria, if they 

were a suitable food source for P. judraskeda. Although we cannot exclude the 

possibility that a specific bacterium, that was not present in our bacterized 

culture, could serve as a selective food item for P. judraskeda, there are other 

reasons to believe that P. judraskeda does not, and in fact cannot, feed on bacteria 

(feeding of P. judraskeda on Synechococcus sp. can be excluded, because we never 

encountered chlorophyll/phycoerythrin autofluorescence in sorted cells that were 

shown to yield ‘picobiliphyte’-specific DNA after PCR amplification with the 

respective primers). We apparently fixed cells for electron microscopy at different 

stages in the feeding cycle as evidenced by the presence or absence of a food 

vacuole within the feeding basket (see Results). We measured the width of the 

cytostome (the region marked by the attachment of the fibers of the feeding basket 

to the plasma membrane) at these different stages in the feeding cycle and found 

that it did not change, always being around 150 nm. We conclude that the slit-like 

cytostome is a rigid structure that cannot take up particles that are larger than its 

width, thus excluding bacteria. This conforms with the peculiar motile behavior of 

the cells, which is very unlike that of e.g. bacterivorous nanoflagellates (W. K. W. 

Li 1990; Matz et al. 2002). We propose that P. judraskeda feeds on particles 

smaller than 150 nm that are taken up by a fluid phase, bulk flow mechanism. 

This generates a single food vacuole of enormous size (it can be estimated that the 

membrane area of a large food vacuole corresponds to about 30-40% of the total 

plasma membrane surface of the posterior part of the cell) arguing for rapid 

membrane turnover.  
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At present, we can only speculate about the force(s) that initiate the fluid 

phase flow mechanism. The close association of the posterior flagellum with the 

cytostome slit (see Results) may indicate that flagellar motility (perhaps during 

the drag movement) could be involved. Regarding the possible food source, we note 

that the contents are irregular aggregates of ‘fuzzy’ material that resemble <120 

nm marine colloids, which are dispersed widely in seawater (Erken et al. 2012) 

and may contain lipopolysaccharide material of bacterial membranes (Wells & 

Goldberg 1991). The Picozoa may thus be specially adapted to exploit < 120 nm 

marine colloids as a food source. The ‘skedaddle’ movement could then be 

envisaged not primarily as a phobic response to escape predators, but rather as a 

mechanism to explore new food resources once grazing at a specific location has 

depleted resources. The abundance and spatial distribution of marine colloids may 

also explain the relatively low number of Picozoa that we observed in our culture 

of P. judraskeda (30-40 cells/ml) as well as reported in natural samples using FISH 

(55 cells/ml in Not et al. 2007a and up to 300 cells/ml in Cuvelier et al. 2008). This 

also suggests that filter-sterilized seawater (0.1 µm filters) could have been the 

major source of most of the colloidal food particles necessary to support growth of 

P. judraskeda, although a contribution by the bacterial population is also likely. 

We assume that the unusual structures observed in the mitochondrion (mitovilli 

and electron dense inclusions in the intermembrane space) may also be involved in 

the processing of specific, perhaps mostly lipidic molecules derived from small 

colloidal food particles. The two prominent microbodies could be involved in the 

degradation of fatty acids derived from such lipidic molecules.  

Could Picozoa perhaps feed on viruses as well as suggested by Yoon et al. 

(2011)? Viruses constitute the most abundant group of nucleic acid-containing 

particles in the ocean and up to 108 virus particles per ml have been recorded in 

productive coastal surface waters (Wakeham 2003). Although filtration of natural 

seawater through 0.1 µm filters would likely exclude the larger size class of marine 

viruses, the smaller size class (30-60 nm), which is 4- to 10-fold more abundant, 

would easily pass through a 0.1 µm filter (Suttle 2005). If we assume that P. 

judraskeda feeds on < 150 nm particles by a fluid-phase bulk flow mechanisms, 

then it is likely that small viruses, such as circular single-stranded DNA viruses 

(Nanoviridae, Circoviridae; (Dominique Marie et al. 1999)) would be taken up as 

well. This might explain their prevalence in the single-cell genome amplification of 

Picozoa (Yoon et al. 2011), although virus particles or DNA attached to the surface 

of a cell or even co-sorted with such a cell (given the high number of viral particles 

present in seawater, a sorted droplet of on average 10 picoliters (Rosario et al. 

2012), could still contain one or two co-sorted virus particles) should not be 

dismissed. Although we did not recognize viral particles inside food vacuoles of P. 

judraskeda, we do not exclude the possibility that Picozoa take up small size-class 

viruses during feeding. Whether these are digested as proposed by Yoon et al. 

(2011) or exocytosed unaltered during the feeding cycle needs further 

investigation. We note, however, that the large vacuolar cisterna separating the 

anterior from the posterior part of the cell would be ideally positioned to prevent 

access of endocytosed viral particles to the cell’s nucleus.  
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4.9 Evidence for the new phylum 

Phylogenetic analyses of, 18S rDNA sequences (Not et al. 2007a; Cuvelier et 

al. 2008; Yoon et al. 2011) and of the complete nuclear-encoded rDNA operon ((Kim 

et al. 2011) & this project) indicate that the ‘picobiliphytes /Picomonas’ are highly 

distinctive and phylogenetically deep-branched eukaryotes, with a weak affinity to 

eukaryotic super-group, ‘Hacrobia’. However, morphological and ultra-structural 

evidence shows that they are sufficiently novel to warrant the establishment of a 

new phylum for these abundant eukaryotic picoplankters. 

4.9.1 Justification for a new phylum –Picozoa 

The heterotrophic protist Picomonas judraskeda gen. nov., sp. nov., described 

here as a member of a new protist phylum, the Picozoa, has apparently not yet 

been studied before; the living cell and its morphology by light and electron 

microscopy were unknown. Gene sequences obtained from environmental clone 

libraries, however, previously identified a unique pico- or nanoplanktonic 

eukaryotic lineage that has broad thermal and geographic distribution and became 

known under the names ‘picobiliphytes’ (Not, et al. 2007a) or ‘biliphytes’ (Cuvelier 

et al. 2008). Originally envisaged as a novel photosynthetic lineage with affinities 

to katablepharids/cryptophytes (Not, et al. 2007a, Cuvelier et al. 2008), recent 

whole-genome shotgun sequence data of three ‘(pico)biliphyte’ cells sorted by FACS 

from an environmental sample, did not find any evidence of plastid DNA or of 

nuclear-encoded plastid-targeted genes in these genomes, and concluded that 

‘(pico)biliphytes’ were likely heterotrophic (Yoon et al. 2011). All previous 

phylogenetic studies using environmental sequence comparisons, however, agreed 

that these organisms comprise a genetically unique and diverse novel eukaryotic 

group to be delineated at a high taxon level. In the recently proposed revised 

classification of eukaryotes, ‘(pico)biliphytes’ have been placed into “Incertae sedis 

Eukaryota” (Adl et al. 2012) and denoted as “Poorly characterized, known only 

from environmental samples, and no species or genera described.” We established 

a single cell-derived culture of a ‘(pico)biliphyte’ and characterized it by light and 

electron microscopy. Our results support the conclusion of Yoon et al. (2011) that 

these organisms are heterotrophic because no plastids were found. In addition, we 

revealed a set of highly unusual behavioral and structural features of the cells that 

to the best of our knowledge have not yet been reported for any other eukaryotic 

cell. Among these features we list: (1) flagellate cells exhibit a stereotypic pattern 

of motility consisting of three phases, “jump, drag and skedaddle,” (2) each cell is 

separated into two parts of almost equal size, an anterior part containing the 

compartments/organelles typical of a eukaryotic cell, and a posterior part that 

consists exclusively of vacuoles/vesicles and the feeding apparatus. (3) A single, 

large vacuolar cisterna physically “seals” both parts of the cell except for a 

specialized region in which regular projections of the outer mitochondrial envelope, 

termed “mitovilli,” mediate direct contact between both cell parts. (4) a feeding 

apparatus consisting of a large basket of fibers that terminate at the ventral cell 

surface thereby defining the boundaries of a long, slit-like cytostome, which allows 

formation of a large food vacuole containing only particles of less than 150 nm in 
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size, (5) finally, three of the four microtubular flagellar roots enter the posterior 

part of the cell, being closely spaced, and terminate near the anterior end of the 

cytostome. 

 

All these characteristics of Picomonas are sufficient to place this heterotrophic 

protist into a new phylum, as depicted below 

Phylum- Picozoa 

Class-Picomondea 

  Order- Picomonadida 

   Family- Picomonadidae 

    Genus- Picomonas 

     Species- judraskeda (provisional name) 

Etymology: “Pico” (retained the name from “pico”biliphyte) + “monas” (wanderer) 

refers to pico-sized single cell organism. 

“ju” (jumping) + “dra” (dragging) + “skeda” (skedaddle movement) refers to the 

swimming behaviour of the cell 

The classical taxonomical description of Picomonas judraskeda (under the 

International Commission on Zoological Nomenclature -ICZN) has been formally 

introduced in the original manuscript “Seenivasan et al. 2012, Picomonas 

judraskeda gen. et sp. nov.: the first identified member of the Picozoa phylum nov., 

a widespread group of picoeukaryotes, formerly known as ‘picobiliphytes’ PLoS 

ONE (in press).” 

The hunt for ‘picobiliphyta’ are rather yielded unexpected results in our 

findings, these ‘picobiliphyta’ are neither ‘bili’ nor ‘phyta’ and only marginally ‘pico’ 

considering their high vacuolation properties. Albeit with so much controversy 

around picobiliphyta, a new phylum named with prefix “Pico” (starved cells are 

considered) and added “zoa” for its heterotrophic nature hence, a novel name for 

the phylum, the Picozoa, was created. 
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4.10 Conclusion 

During the last decade, culture-independent molecular surveys based on 

rDNA clone libraries, phylogenetic analyses, and fluorescence in-situ hybridization 

have revealed numerous novel, high-ranking picoeukaryotic (< 3 µm) lineages in 

the oceans. This new knowledge is rapidly altering our understanding of marine 

microbial food webs, and the biogeochemical significance of marine protists (M. 

Sieracki et al. 2005). Although culture-independent techniques have been essential 

for the discovery of picoeukaryotic biodiversity, for an understanding of the biology 

of the organisms involved, they should be complemented by studies of the 

respective organisms in culture. Here, we provided evidence that a genetically 

diverse and apparently widespread group of picoeukaryotes in the world’s oceans, 

hitherto known as ‘picobiliphytes’ or ‘biliphytes’, and here formally described as 

Picozoa phylum nov., display highly unusual structural and behavioral 

characteristics that match their isolated position in the eukaryotic phylogenetic 

tree. Based on, the characteristics described for Picomonas judraskeda gen. nov., 

sp. nov., we conclude that Picozoa are heterotrophic and feed on small (< 150 nm) 

particles by a novel fluid-phase, bulk flow uptake mechanism. Further studies on 

other members of the Picozoa are needed to substantiate this conclusion. We 

strongly recommend that more effort should be made to cultivate the vast 

‘uncultured’ diversity of eukaryotic microbes in the sea. 
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6 Appendix 

6.1 Sample collection in Helgoland time series station (Helgoland reede) 

Field sample are collected in Helgoland time series site from July-October 

2007 which shown in table 5.1. The samples are fractionated with series of 

membrane filters and 3 µm filtered sea water are filtered on 0.2 µm filter for 

genomic DNA extraction. Genomic DNA from these filed samples was used for 

PCR in search of ‘picobiliphytes’. Table 6.2 shows the number of ‘picobiliphyte’ 

positives for environmental sample in Helgoland station. 

Field samples from July 2007 to October 2007 

1.  Pico070716  29.  Pico070910 

2.  Pico070717 30.  Pico070912 

3.  Pico070718 31.  Pico070914 

4.  Pico070719 32.  Pico070917 

5.  Pico070731 33.  Pico070919 

6.  Pico070801 34.  Pico070921 

7.  Pico070802 35.  Pico070924 

8.  Pico070803 36.  Pico070927 

9.  Pico070806 37.  Pico071001 

10. Pico070807 38.  Pico071002 

11. Pico070808 39.  Pico071004 

12. Pico070809 40.  Pico071005 

13. Pico070814 41.  Pico071008 

14. Pico070815 42.  Pico071009 

15. Pico070816 43.  Pico071010 

16. Pico070817 44.  Pico071011 

17. Pico070820 45.  Pico071012 

18. Pico070821 46.  Pico071017 

19. Pico070822 47.  Pico071019 

20. Pico070823 48.  Pico071022 

21.  Pico070824 49.  Pico071023 

22.  Pico070827 50.  Pico071024 

23.  Pico070828 51.  Pico071025 

24.  Pico070829 52.  Pico071026 

25.  Pico070830 53.  Pico071029 

26.  Pico070903 54.  Pico071030 

27.  Pico070905 55.  Pico071031 

28.  Pico070907 M- 1kb ladder 

  M1- l/HindIII/EcoRI  

Table 6.1: Total sample collection at Helgoland time series station between July to October 2007 
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Slno Sample ID 

PCR 

positive Slno 

Sample 

ID 

PCR 

positive 

1 Pico070710 + 23 Pico070823 + 

2 Pico070711 + 24 Pico070829 + 

3 Pico070716 + 25 Pico070910 + 

4 Pico070717 + 26 Pico070912 + 

5 Pico070718 + 27 Pico070914 + 

6 Pico070719 + 28 Pico070919 + 

7 Pico070720 + 29 Pico070927 + 

8 Pico070723 + 30 Pico071001 + 

9 Pico070724 + 31 Pico071002 + 

10 Pico070725 + 32 Pico071004 + 

11 Pico070726 + 33 Pico071005 + 

12 Pico070727 + 34 Pico071008 + 

13 Pico070806 + 35 Pico071009 + 

14 Pico070807 + 36 Pico071010 + 

15 Pico070808 + 37 Pico071011 + 

16 Pico070809 + 38 Pico071012 + 

17 Pico070813 + 39 Pico071023 + 

18 Pico070814 + 40 Pico071024 + 

19 Pico070815 + 41 Pico071025 + 

20 Pico070816 + 42 Pico071026 + 

21 Pico070817 + 43 Pico071030 + 

22 Pico070821 +    

Table 6.2: PCR positive samples for ‘picobiliphytes’ in the environment samples, out of 55 filed 

collection 43 samples showed positive to Taxon specific primers (PicoBI01R and PicoBI02R) indicated 

‘picobiliphytes’ are widely distributed during summer and fall. 
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6.2 ‘Picobiliphytes’ from enriched cultures 

 ‘Picobiliphyte’ cells are searched in enriched cultures from K (Keller et al. 

1987), GP5 (Loeblich & Smith 1968), IMR (Eppley et al. 1970), Drebes (Drebes & 

Schulz 1989) by ‘picobiliphyte’ specific PCR. Not, all showed ‘picobiliphyte’ positive 

to PCR amplification with specific primers. Table 6.3 shows the number of positive 

samples for different enriched flasks and different collection time. Results showed 

that ‘picobiliphyte’ are present in all media which was used. The positive flask are 

used for further analysis like cell sorting, TSA-FISH.  

 

Table 6.3: Taxon specific primers applied to search for ‘picobiliphytes’ form enriched samples; and 

the result showed, about 36% of the samples are turned Positives. These positive samples are used in 

FACS and in search of phycoerythrin autofluorescence (FL2)  

Slno Sample ID PCR positive

Culture positives with picoprimers

K GP5 IMR Drebes
1 Pico070710 +
2 Pico070711 + +
3 Pico070716 + + + +
4 Pico070717 + + + +
5 Pico070718 + + +
6 Pico070719 +
7 Pico070720 + +
8 Pico070723 + +
9 Pico070724 +

10 Pico070725 +
11 Pico070726 +
12 Pico070727 +
13 Pico070806 + +
14 Pico070807 + + +
15 Pico070808 + +
16 Pico070809 + + + +
17 Pico070813 + +
18 Pico070814 + + + +
19 Pico070815 + + + + +
20 Pico070816 + +
21 Pico070817 + +
22 Pico070821 + +
23 Pico070823 + + +
24 Pico070829 +
25 Pico070910 +
26 Pico070912 +
27 Pico070914 + +
28 Pico070919 + + +
29 Pico070927 + + +
30 Pico071001 + + +
31 Pico071002 + +
32 Pico071004 + + +
33 Pico071005 + +
34 Pico071008 + +
35 Pico071009 + + +
36 Pico071010 + + + + +
37 Pico071011 +
38 Pico071012 + + + + +
39 Pico071023 + +
40 Pico071024 + +
41 Pico071025 + + +
42 Pico071026 + + +
43 Pico071030 + + + +
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‘Picobiliphyte’ positive flasks are re-transferred into new medium and the 

remains are used for cell sorting targeting its orange autofluorescence (Phycobilin 

contain Phycoerythrin) as mentioned by Not et al. 2007a. Cells are in 96 well 

plates for further enrichment, and also sorted directly into PCR tube for 

‘picobiliphyte’ specific PCR amplification (many regions are used in FACS for 

sorting to understand the region where ‘picobiliphytes’ will be grouped). However 

the data showed that not only ‘picobiliphytes’ are grown further in flasks but also 

failed show their autofluorescence in FACS. TSA-FISH experiments for both on 

membrane filter (cells on 0.2 µm membrane filter) and the sorted cells are 

inconclusive. In addition, high orange fluorescence or phycoerythrin (PE) 

containing cells (Fig. 6.1A & B) are failed to amplify with ‘picobiliphyte’ specific 

primers, indicated that ‘picobiliphytes’ may not be having photosynthetic 

organelles. 

 

Figure 6.1: Positive samples from enriched culture are subjected to cell sorting against all possible 

fields as shown in the cytograms like Forward scatters (FSC), Side scatters (SSC), chlorophyll (FL3) 

and Phycoerythrin (PE) /Phycobilin (FL2). However, the results showed that ‘picobiliphytes’ never 

observed in PE fractions (A, B), in addition, the cell sorted from other regions are also failed to show 

‘picobiliphytes’ in PCR (C). 
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Figure 6.2: TSA-FISH reaction for cells filtered on 0.2m membrane with taxon specific probes 

(PicoBI01 and PicoBI02). Few cells showed green fluorescence for probes, however, neither DAPI 

nuclear body nor orange autofluorescence (phycobilin) observed on these cells.  

 

6.3 Specificity of ‘picobiliphytes’ 

In order to understand the ‘picobiliphyte’ specificity, the ITS region was am-

plified from environmental samples with PicoBi01F (clade I & II, Not et al. 2007a) 

and 28S large subunit primer L52R. The 2.5kb amplified PCR product was cloned 

into pGEM-TEasy vector. Positive clones are then sequenced and non-redundant 

sequences are used for alignment. In addition ‘picobiliphyte’ specific ITS primers 

(PicoITS1F/1R, PicoITS1FII/1RII and PicoITS2F/2R) are designed to enhance the 

specific ‘picobiliphyte’ sequences from environmental samples. 

 

 
Figure 6.3a: Schematic diagram of primers (PicoBi01F/L52R) used for construction of Taxon specific 

clonal library construction. 

  

Sequence alignments for ITS region and ‘picobiliphyte’ specific ITS primers 

are shown below.  

Pico070725IMR Pico070815GP5

ITS 2RITS 2RII
PicoBI01F 18S BR

18S ITS1 5.8S ITS2 28S 

L52R
ITS 1R
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Pico2F-L52R_ITS_ENV**    CCCACGTGAACACAACTCTGTTCTATGTATT---------AC---GTGCTGCCTCGGCTTCGGTCGGGGCGGGCGTGCAGAGTTGTGGGCNGGCTGA--A 

Cl#11_Pico01_ITS_ENV    CCCACGTGAACATTGAGATGTTTCCAGCATTCATCAATATCTACCCCTTTGAACAAACC-C-AACTGATTGTAGATTGAGTGCTCTGTGT-GTCAGC--- 

cl#7Pico01_ITS_ENV    GCCACGTGAACATTGAGATGTTTCCCACATTCATCAATTTCTACGCCAAAGTGCCAACCATGAACTGATTGTAGATTGAGTGCAAAGTGTGCATTGGATG 

Cl#12_Pico01_ITS_ENV    CCCACGTGAACATTGAGATGTTTCTCACATTCATCAATTTCTACGCCAAAGTGCCAACCATGAACTGATTGTAGATTGAGTGCAAAGTGTGCATTGGATG 

Cl#9_Pico01_ITS_ENV    CCCACGTGAACATTGAGATGTTTCTCACATTCATCAATTTCTACGCCAAAGTGCCAACCATGAACTGATTGTAGATTGAGTGCAAAGTGTGCATTGGATG 

Cl#8_Pico01_ITS_ENV    TCCACGTGAACATTGAGATGTTTCTCACATTCATCAATTTCTACGCCAAAGTGCCAACCATGAACTGATTGTAGATTGAGTGTAAAGTGTGCATTGGATG 

Cl#10_Pico01_ITS_ENV    CCCACGTGAACATTGAGATGTTTCTCACATTCATCAATTTCTACGCCACAGTGCCAACCATGAGCTGATTGTAGATTGAGTGCAAAGTGTGCATTGGATG 

Cl#18aRl_Pico01_ITS_ENV   CCCACGTGAACATTGAGATGTTTCTCACATTCATCAATTTCTACGCCACAGTGCCAACCATGAACTGATTGTAGATTGAGTGCAAAGTGTGCATTGGATG 

Cl#14_Pico01_ITS_ENV    CCCACGTGAACATTGAGATGTTTTCCACATTACTCAATTTCTACTCCATTGATCGAAACAT-GACTGATTGTAGAT--------------GCT--GGA-- 

Pico_ITS-primers    -CCACGTGAACATTGAGATG-------------------------------------------------------------------------------- 

                    PicoITS1F/1R 

 

 

Pico2F-L52R_ITS_ENV**    GCAGGATT----------CGAGCGTGTCAC-AGCCCCTCGCG------------------GCTGTGTGGCTCCAGGAGCAGAGGCGACAGACTTGGGTGT 

Cl#11_Pico01_ITS_ENV    GCAGGACTGCGAGCCGTC--AGAGCCGTCCTCATCT------------GATGAGGTCGAT-CTCTGTCGCTCCAAGAGCAGAGTTGGCCCGCTTGGCGAC 

cl#7Pico01_ITS_ENV    GCAGGATTGCGAGCCGTCCGAGTGCATTGCTTGTCTCTCGTTTAACAACTTGAGATTGGTGCTCTGTCGCTCCAAGAGCAGAGTTGGCCCGCTTGGCGAC 

Cl#12_Pico01_ITS_ENV    GTAGGATTGCGAGCCGTCCGAGTGCATTGATTGTCTCTCGTTTAACAGCTAGAGATGTGTGCTCTGTCGCTCCAAGAGCAGAGTTGGCCCGCTTGGCGAC 

Cl#9_Pico01_ITS_ENV    GCAGGATTGCGAGCCGTCCGAGTGCATTGATTGTCTCTCGTTTAACAACTAGAGATGTGTGCTCTGTCGCTCCAAGAGCAGAGTTGGCCCGCTTGGCGAC 

Cl#8_Pico01_ITS_ENV    GCAGGATTGCGAGCCGTCCGAGTGCATTGATTGTCTCTCGTTTAACAACTAGAGATGTGTGCTCTGTCGCTCCAAGAGCAGAGTTGGCCCGCTTGGCGAC 

Cl#10_Pico01_ITS_ENV    GCAGGATTGCGAGCCGTCCGAGTGCATTGATTGTCTCTCGTTTAACAACTAGAGATGTGTGCTCTGTCGCTCCAAGAGCAGAGTTGGCCCGCTTGGCGAC 

Cl#18aRl_Pico01_ITS_ENV   GCAGGATTGCGAGCCGTCCGAGTGCATTGATTGTCTCTCGTTTAACAACTTGAGATTGGTGCTCTGTCGCTCCAAGAGCAGAGTTGGCCCGCTTGGCGAC 

Cl#14_Pico01_ITS_ENV    GCAGGATTGCGAGCCGTC--AGAGCTTTGGTTGTTT------------CGTGCAACCGATGCTGTGTCGCTCCAAGAGCAGAGTTGGCCCGCTTGGCGAC 

Pico_ITS-primers    -----------------------------------------------------------------GTCGCTCCAAGAGCAGAG----------------- 

              Pico2FII/RII  

 

 

Pico2F-L52R_ITS_ENV**    ACT--CCAAAC-ACTTGCACCAGGAGCAGCGTGGTAGTAGGGTTC----------GCCCTTCCGATCGCTGACTCTGAGGTCGGGTGGCAAGTCTTTGCC 

Cl#11_Pico01_ITS_ENV    ACATCTCAAACTGTCTGTACCCAGCGTAGCGTGGTAGTAGGGTGCTC---GTGCATCCCTTCCGATCGCTGTCGCTGT-GTGCCTGTAGGCGGGTGT-TG 

cl#7Pico01_ITS_ENV    ACA--TCAAACTGTCTGTGCCCAGCGTAGCGTGGTAGTAGGGTGCTTTAGCAGCATCCCTTCCGATCGCTGTCGTTGTTGTGCCGATTGGCAGGTGTCTG 

Cl#12_Pico01_ITS_ENV    ACA--TCAAACTGTCTGTGCCCAGCGTAGCGTGGTAGTAGGGTGCTTTAGCAGCATCCCTTCCGATCGCTGTCGCTGTTGTGCCGATTGGCAGGTGTCTG 

Cl#9_Pico01_ITS_ENV    ACA--TCAAACTGTCTGTGCCCAGCGTAGCGTGGTAGTAGGGTGCTTTAGCAGCATCCCTTCCGATCGCTGTCGCTGTTGTGCCGATTGGCAGGTGTCTG 

Cl#8_Pico01_ITS_ENV    ACA--TCAAACTGTCTGTGCCCAGCGTAGCGTGGTAGTAGGGTGCTTTAGCAGCATCCCTTCCGATCGCTGTCGCTGTTGTGCCGATTGGCAGGTGTCTG 

Cl#10_Pico01_ITS_ENV    ACA--TCAAACTGTCTGTGCCCAGCGTAGCGTGGTAGTAGGGTGCTTTAGCAGCATCCCTTCCGATCGCTGTCGCTGTTGTGCCGATTGGCAGGTGTCTG 

Cl#18aRl_Pico01_ITS_ENV   ACA--TCAAACTGTCTGTGCCCAGCGTAGCGTGGTAGTAGGGTGCTTTAGCAGCATCCCTTCCGATCGCTGTCGCTGTTGTGCCGATTGGCAGGTGTCTG 

Cl#14_Pico01_ITS_ENV    ACA--TAAGACTGTCTGTGCCCAGCGTAGCGTGGTAGTAGGGTGCTTGATGTGCATCCCTTCCGATCGCTGTCGCTGTCGTGCCGATTGGCAGGTGTCTG 

Pico_ITS-primers    ---------------------CAGCGTAGCGTGGTAGTA------------------------------------------------------------- 

        PicoITS2F/R 

 

 

 

Figure 6.3b: Sequence alignment for ITS regions from environmental samples. Pico specific ITS primers are marked in yellow shase. ** Environmental sequence from ITS 

region of Pico2F-L52R (probe2). Other sequences are environmental sequence obtained from clonal library in this study. 
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6.4 Sequence comparison of Picomonas clonal culture 

Chromatogram for three Picomonas clonal cultures (2, 3 & 4) established show clean peaks for nucleotides, from common eukaryot-

ic 18S rDNA primers and sequence of these cultures showed high similarities with ‘picobiliphyte’ environmental sequences (Not et al., 

2007a). The chromatogram 1 shows contamination from two membrane culture (Picomonas and Goniomonas sp2). 

 

Figure 6.4: Comparisons of chromatogram of three Picomonas clonal cultures (2-4) with one contaminant (1) (Picomonas+ Goniomonas sp2) using eukaryotic primers. 

Sequences are searched for similarities in Genbank showed to uncultured photoeukaryotic clone RA001219.38 (Not et al., 2007a) which was grouped with 

‘picobiliphytes’ clade I. 

1

2
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6.5 FACS cell sorting using Mitotracker GreenFM 

Molecular / fluorescent probe Mitotracker Green FM was used for ‘picobiliphyte’ 

positive cultures and cell are sorted in different regions. Initially the cells are collected 

in PCR tube which contained 10 µl of 1X PCR buffer. The cell numbers are different for 

sorting, depending on their population in each region (region R2, R6 and R7 sorted with 

500 cells, and for R1, R3, R4, R5, R8 and R9 approximately 200 cells are sorted), are 

sorted for PicoPCR (Fig. 6.5a). However, reamplification was needed to amplify the 

fragments (PicoBI1F/1005R). This experiment was repeated and results are reproduced 

(Fig. 6.5b).  

 

Figure 6.5a: Region R1 to R9 was used for sorting into PCR tubes; PCR results shown to corresponding 

regions. ‘Picobiliphyte’ cells are sorted in Region R1 and R5. (Note. Region R1 is same as R5 in FSC and FL1 

window). FSC, forward scatter; SSC, side scatter; FL1, green fluorescence; FL2 orange fluorescence. M- 1kb 

ladder, arrow positive PCR product ~650bp. 

R1

R7       R2       R3        R5       R4       R6        R1       R8      R9       +ve       M
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Figure 6.5b: Region R1, R5, R8 and R9 are sorted again for the second batch of ‘picobiliphytes’ positive 

cultures and PCR was performed as mentioned earlier. The gel image was clearly shown Region R1 and R5 

positives to ‘picobiliphytes’. FSC, forward scatter; SSC, side scatter; FL1, green fluorescence; FL2 orange 

fluorescence. M- 1kb ladder, arrow positive PCR product ~650bp. 
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6.6 Picomonas cell view form ventral to dorsal 

 

 

Figure 6.6: Non sequential sections of Picomonas cell sectioned from ventral to dorsal has shown a complete organelle arrangement of a single cell. Numbers indi-

cate section numbers. 100nm sections; Bar 1um. 

2 3 4 5 9

12 17 19 22 24
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6.7 Golgi apparatus 

Longitudinal section of Golgi clearly showed they are located at the ventral 

surface of the cell. Golgi apparatus was observed with six cisternae stack, where 

two stacks, (‘cis’) facing to the nucleus (attached with nuclear envelope) and others 

(‘trans’) are facing towards the basal bodies (Fig.6.7). 

 

Figure 6.7: Electron micrograph shows consecutive longitudinal sections of Picomonas. The two 

cisternae, ‘cis’ face of Golgi is connected with nuclear envelope and the other cisternae, ‘trans’ face is 

observed near basal body of two flagella. Dotted white arrow, basal plate. Scale bar 200nm 

6.8 The Cross section of basal apparatus 

Longitudinal serial sections of another Picomonas cell show the flagella 

located at the ventral surface and located in between nucleus, Golgi and 

Mitochondrion. Though, the basal plate (Fig. 6.8 pict5) is clearly visible, could not 

detect any cartwheel-like structure at the proximal end of the basal body. However 

it is observed as less electron dense matrix (red arrow Fig. 3.29) at the proximal 

end only next to basal plate. Figure 6.8 shows the cross section of the anterior 

flagellum and longitudinal section of the posterior flagellum with two transition 

plates. 
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Figure 6.8: Electro micrograph shows sequential sections (100nm) of Picomonas at the ventral sur-

face (1-12). The basal plate of the anterior flagellum is observed in picture 5 (white dotted arrow), the 

anterior microtubular roots are observed in picture 7 (white arrow), whereas posterior microtubular 

flagellar roots are seen picture 11 (black arrow), and two flagellar transition region (tr1, tr2) of the 

posterior flagellum are visible in picture 11. M mitochondrion, N nucleus, bb1 anterior basal body, 

bb2 posterior basal body. Scale bar 200nm. 
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6.9 Three dimensional reconstruction of Picomonas 

 

 

  

Figure 6.9: Three dimensional reconstruction of Picomonas by IMOD from serial sections, 1, 2 &3 

are ventral views of a single cell, with plasma membrane (pm), without pm and without flagella, 

respectively. 4 & 5 are views of the left side and dorsal side of the cell respectively, AF anterior 

flagellum, PF posterior flagellum, M. mitochondrion, G. Golgi complex, P. peroxisome like structures, 

mv mitovilli (mitochondrial appendages), SF- striated fibre, SMB single-membrane body (vesicles) , cl 

cleft and ds digestive sac, Pd- Posterior part (boxed area). 
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6.10 Full length nuclear operon of Picomonas sp 

Construction of full length ribosomal operon is as follows. 100l of Pico cells 

are pelleted and amplified with Eu1F and L52R primers. One l of PCR product 

was reamplified with PicoBI01F and L52R. The product was cloned and sequenced 

with PicoBI01F, 1055F/R, BR, L52R. To extend further large subunit (LSU), next 

round of PCR amplification was performed with P01TS1F and LSU1433 primer 

and the PCR product was reamplified using P01ITS2FII with LSU1433. This 

product was cloned into pGEMTeasy vector and clones are sequenced with the 

following primers P01ITS2FII, L336F and LSU1433R. This aided to design two 

internal specific primers (PiLSU-D15F, PiLSU-D21F) for ‘picobiliphyte’. Large 

subunit was further amplified with PiLSU-D15F and LSU2933R followed by 

reamplification and sequencing with PiLSU-D21F and LSU2933R. The 3’ end of 

the LSU operon was amplified and sequenced with newly designed 28S_PicoG4For 

primer and common eukaryotic LSU3356 reverse primer. All the chromatogram 

was aligned with ‘DNA star’ software using Megalign programme to construct the 

full length operon. Thus, a total of 5.8 kb was constructed from the Picomonas and 

used for the Phylogenetic analyses. 

 

 

Figure 6.10A: Full length nuclear encoded ribosomal operon constructed by primer walking; total of 

5.8 kb was obtained later used for Phylogenetic analyses.  

  

18S ITS1 5.8S ITS2 28S 
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Full length sequence of Picomonas complete nuclear ribosomal operon 

5’TTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGATTAAGCCATGCATGTCTAAGTATAAGCACCTTATACTGTGAAACTGCGAATGGCTCATTAAATCAGTTATCG

TTTATTTGATGATCTCTTGCTACTTGGATACCCGTGGTAATTCTAGAGCTAATACATGCGACAACACCCGACTTCTGGAAGGGTGGTATTTATTAGATAAAAAACCTAC

TCGCTTCGGCGATCCTTCGGTGATTCATAATAACTTTTCGAAGTGCATGACCTTGTGTCGGCGCTGGTTCATTCAAATTTCTGCCCTATCAACTTTCGATGGTAGGATAG

AGGCCTACCATGGTGGTAACGGGTAACGGAGAATTAGGGTTCGATTCCGGAGAGGGAGCCTGAGAGACGGCTACCACATCCAAGGAAGGCAGCAGGCGCGCAAAT

TACCCAATCCTGACACAGGGAGGTAGTGACAAAAAATACCAATACAGGGCATTACATGTCTTGTAATTGGAATGAGAACAATTTAAATCCCTTATCGAGGATCCATTG

GAGGGCAAGTCTGGTGCCAGCAGCCGCGGTAATTCCAGCTCCAATAGCGTATATTAAAGTTGTTGCAGTTAAAAAGCTCGTAGTCGGATTTTGGCATCACGCCGTACT

GTCTGCCGATTGGTATGCACGGTTTGGCGGGTGCTTCCTTCCGGAGGCTCGTTCCCTCCTTAACTGAAGGGTTCGTTGGTTCCGGTTCTTTTACTTTGAGAAAATTAGA

GTGTTCAAAGCAGGCCTATGCTCTGAATAGGTTAGCATGGAATAATAGAATAGGACTTTGGTTCTATTTTGTTGGTTTCTAGGACCGAAGTAATGATTAATAGGGACA

GTTGGGGGCATTCATATTCCATTGTCAGAGGTGAAATTCTTGGATTAACGGAAGATGAACTTCTGCGAAAGCATCTGCCAAGGATGTTTTCATTGATCAAGAACGAAA

GTTAGGGGATCGAAGACGATCAGATACCGTCGTAGTCTTAACCATAAACTATGCCGACTAGGGATGTGGAGGTGTTAACTTTGTACGACCCTCCATGCACCTTATGAG

AAATCAAAGTCTATGGGTTCCGGGGGGAGTATGGTCGCAAGGCTGAAACTTAAAGGAATTGACGGAAGGGCACCACCAGGAGTGGAGCCTGCGGCTTAATTTGACT

CAACACGGGAAAACTTACCAGGTCCAGACATAGTTAGGATTGACAGATTGAGAGCTCTTTCTTGATTCTATGGGTGGTGGTGCATGGCCGTTCTTAGTTGGTGGAGT

GATTTGTCTGGTTAATTCCGATAACGAACGAGACCTTAACCTGCTAAATAGTAGTCCGATGATTTCTTCATCGTGTCGACTTCTTAGAGGGACTATCGGTGTCTAACCG

ATGGAAGTTTGAGGCAATAACAGGTCTGTGATGCCCTTAGATGTTCTGGGCCGCACGCGCGCTACACTGATGAATTCAACGAGTTTTCCACCTTGACCGAGAGGTCCG

GGAAATCTTTTCAACTTTCATCGTGCTGGGGATAGATTATTGCAATTATTAATCTTGAACGAGGAATTCCTAGTAAGCGCGAGTCATCAGCTCGCGTTGATTACGTCCC

TGCCCTTTGTACACACCGCCCGTCGCTACTACCGATTGAGCATTAGGGTGAAATCTTCGGACCGTGGCATACTTCTGGCCTAGCCAGTCTTTGTCCGTGGGAGGTCGCT

TAAATCCTGATGCTTAGAGGAAGTAAAAGTCGTAACAAGGTTTCCGTAGGTGAACCTGCGGAAGGATCATTACCACATTTCGTCCAGTGGCTCTTTCCCGCCTCGTGC

GGGTTGGTCTGCTGGCGATATTCCACCCCACGTGAACATTGAGATGTTTCCAGCATTCATCAATATCTCACCCCTTTGAACAAACCCAACTGATTGTAGATTGAGTGCT

CAGTGTGTCAGCGCCTTTGCTTACGCGCGGCGCTTACGCATAAAGCCTCAAGACCACATAACCCAACCAAAACTCCTAACGATGGATATCTTGGTTCTCGCAACGATG

AAGAACGCAGCGAAATGCGATACGCAGTGCGAATTGCAGAATTCAGTGAATCATCAGAACTTTGAACGCATATTGCGCTCTGAGGTATTCCTCAGAGCATGTTTGTCT

CAGTGGCATCTCCCCCTCTCCCCCTGCGGGTTGTCTTCCCCTCGTGGAAGCAGCTCGGTAGGGCGGCAGGACTGCGAGCCGTCAGAGGTGTCCTCATCTGATGAGGT

GGATCTCTGTCGCTCCAAGAGCAGAGTTGGCCCGCTTGGCGACACATCTCAAACTGTCTGTGCcCAGCGTAGCGTGGTAGTAGGGTGCCTCGCGCATCCCTTCCGATC

GCTGTCGCTGTgTGCACTGTAGGCGGGTGTTGTCATTTGAAGAGCGGTGTTTCCGGCTAGGTCGCATGGCCTCGGTGTTCCTGTGTCGCGAGCCAGTCTCGTGTGCGG

GTTGGATCGAGTGCTGTAACGTTCACTATCTTGCCCTGAGATCAAGCAAGGCTACCCGCTGAATTTAAGCATATAACTAAGCGGAGGAAAAGAAACTAACAAGGATT

CCCCTAGTAAGGGCGACTGAAGCGGGAAGAGCTCAAGCCTAGAATCTGCATGTTTCGCATGCCGAATTGTAGTCTATCGAGTTGTCGTTCTCCGGCGGCGCAGGTAT

AAGTCTTTTGGAACAAGGCATCATAGAGGGTGAGAATCCCGTTTGTGACTTGCGTGCGTCCGGTCTTGTATCGACATCTTGGCGAGTCAGGTTGTTCGAGATTGCAGC

CTAAAATGGGTGGTAAATTTCATCTAAAGCTAAATATAGGCGAGAGACCGATAGCGAACAAGTACCGTGAGGGAAAGATGCAAAGAACTTTGAAAAGAGAGTTAAA

AAGTGCTTGAAATTGTTAGGAGGGAAGCGGATCGAACCAGTGTTGCGCAGTAAGGACCGGAGGCCTGGCGCTTCCATACGTCTTGCTGCGCATGCCAGCATCAGTC

GTTCGGCAGTATAAAGCGGATTCTGACCAGTTTCCTGTGCTGCTGCTGATAAGACTGAGGAGTTCGACGGGCGCTTTATGCGTTACTGTGTCTTTCAGTGCTCACCATT

TCTGGGACTACATGTAGTGCCGGTTTTGTCTGGGCGCTCTGGCTGCAGTTTTCTGCCCGTCGGCGATGTTGGCAAAATGCTTCGCTCCGGCCCGTCTTGAAACACGGA

CCAAGGAGTCTAACATGTGTGCGAGTATTGTGGTGGCAAACCATGGTGCGCAATGAAAGTAAAAGGGTGGGTGCACCGCCGACCGACCATGATCTTCTGTGAAAGG

TTTGAGTAAGAGCATGCCTGTTGGGACCCGAAAGATGGTGAACTATGCCTGAGTAGGGTGAAGCCAGAGGAAACTCTGGTGGAGGCTCGTAGCGATACTGACGTGC

AAATCGTTCGTCAAACTTGGGTATAGGGGCGAAAGACTAATCGAACTATCTAGTAGCTGGTTCCCTCCGAAGTTTCCCTCAGGATAGCTGGAGCTCAATGAGTTTTAT

CAGGTAAAGCGAATGATTAGAGGCATTGGGGTTGTAACAACCTCGACCTATTCTCAAACTTTAAATGGGTAAGATGCCTTCGCTTCCTAACCGAGCGTGGGCGTGCA

ATCGGAGCTCTTAGTGGGCCATTTTTGGTAAGCAGAACTGGCGATGCGGGATGAACCGAAAGCCGAGTTAAAGTGCCGGACTGCACGCTCATTCCAGATACCACAAA

AGGTGTTGATTCATACTGACAGCAGGACGGTGGTCATGGAAGTCGAAATCCGCTAAGGAGTGTGTAACAACTCACCTGCCGAATGAATTAGCCCTGAAAATGGATG

GCGCTCAAGCGTGCGACTCATACTCGGCCATCAGGGCAAATGCGATGCCCTGATGAGTAGGAGGGCGTGGGGCTCGTGAAGCAGCCCGCGGCGTGAGCCGGGGTG

aAACGTGCTCTAGTGCAGATCTTGGTGGTAGTAGCAAATATTCAAATGAGAACTTTGAAGACTGAAGTGGAGAAAGGTTCCATGTGAACAGCACTTGGACATGGGTT

AGTCGGTCCTAAGCGATAGGGAAACTCCGTTTTAAAGACGCCTTTTTTGGCGTCATAGCGCGAAAGGGAATCGGGTTAATATTCCCGAACGGGGATGTGGGTAATGT

GTGGTAACACAACAGAACGCGGAGACGTCGGCGGGAGCCCTGGGAAGAGTTCTCTTTTCTTTTTAACTGCCTCTTACCCTGGAATCAGATTACCTGGAGATAGGGTTA

CACGGCAGGGAAAGCACCTTACGTCTTGAGGTGTCCGGTGCGCTCTCGACGGCCCTTGAAAATCCGCGGGACAGGATTATCATCACGCCCCGCCGTACTCATAACCG

CATCAGGTCTCCAAGGTGAACAGCCTCTAGTCGATAGAACAATGTAGGTAAGGGAAGTCGGCAAAATAGATCCGTAACTTCGGGAAAAGGATTGGCTCTAAGGGTT

GGGTCTAGGGGTCTGCGGCAAGAAGCCGGAGGCTGTGTGCGGACTAGCGGCGGCCTTCACGGGCTGCTGTCGGACCGCGTACGGCCGAAACGCGGACGGCCGCA

GAACGCTTCACGGCTTTCCCTAGGCAATGAACAACCGACTTAGAACTGGTACGGACAAGGGGAATCCGACTGTTTAATTAAAACAAAGCATTGCGATGGCCGCAACC

GGTGTTGACGCAATGTGATTTCTGCCCAGTGCTCTGAATGTCAAAGTGAAGAAATTCAACCAAGCGCGGGTAAACGGCGGGAGTAACTATGACTCTCTTAAGGTAGC

CAAATGCCTCGTCATCTAATTAGTGACGCGCATGAATGGATTAACGAGATTCCCACTGTCCCTATCTACTATCTAGCGAAACCACAGCCAAGGGAACGGGCTTGGAAT

AATCAGCGGGGAAAGAAGACCCTGTTGAGCTTGACTCTAGTCTGACTTTGTGAAATGAGCTTCGGGGTGTAGCATAAGTGGGAGCTCCGGCGCCAATGAAATACCAC

TACTCGTTGTCTCGTTTTACTTATTCCATGATGTAGAAGCGGTCTCTGACCTCCTTCTAGCATTAAGCACTGCGATCTAAGTGGAAGACATTGTCAGGTGGGGAGTTTG

GCTGGGGCGGCACATCTGTTAAACAATAACGCAGGTGTCCTAAGATGAGCTCAATGAGAACAGAAATCTCATGTGGAACAAAAGGGTAAAAGCTCATTTGATTTTGA

TTTTCAGTACGAATACAAACTGCGAAAGCATGGCCTATCGATCCTTTAGCCTTTAGAAATTTTAAGCTAGAGGTGTCAGAAAAGTTACCACAGGGATAACTGGCTTGT

GGCAGCCAAGCGTTCATAGCGACGTTGCTTTTTGATCCTTCGATGTCGGCTCTTCCTATCATTGTGACGCAGAAGTCACCAAGTGTCGGATTGTTCACCCGCCAATAGG

GAACGTGAGCTGGGTTTAGACCGTCGTGAGACAGGTTAGTTTTATCCTACTGATGAAGTGTTATCGCAATAGTAATTCAACTTAGTACGAGAGGAACCGTTGATTCAC

ATACTTGGTATTTTCACTTAGCTGAACAGCTAATGGTGAGAAGCTATCATGTGTAGGATTACGGCTGAACGCCTCTAAGCCGGAATCCATGCTAGATCGCGATGATTA

TTACCGCTCTCTCTATCACATGCGCAACAATAGGCTTCGGCCCAACGCCATACTGATTTCAATCGAAATATTGAGAGCGATAAATCCTCTGCAGACGACTTAGCAGGG

AACAGAGTACTGTAAGGAGTAGAGTAGCCTTGTTGCTAC3 

Figure 6.10B: Full length sequence of Picomonas sp complete ribosomal nuclear operon (5.8kb) 
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6.11 Ultrastructure of Goniomonas flagellar transition region 

 

Goniomonads, heterotrophic biflagellate with unique features; include a dis-

tinctive swimming behaviour (gliding), and the absence of a plastid and 

nucleomorph (Novarino 2003; Martin-Cereceda et al. 2009). The molecular phylo-

genetic studies suggested that goniomonads could have diverged before the acqui-

sition of the complex plastid of photosynthetic cryptomonads (Hoef-Emden et al. 

2002).  Despite a wealth of ultra-structural studies on cryptomonads, Goniomonas 

taxonomic features are not fully understood (Novarino 2003; Martin-Cereceda et 

al. 2009). Although, morphologically, both cryptophytes and goniomonads share 

many common features (Novarino 2003), the ultrastructure of goniomonads are not 

well studied, in particular the flagellar transition region. The structure of the 

transition region is one of characteristic feature in newly erected super group 

‘Hacrobia’ which includes cryptomonads, katablepharids, telonemids, and 

palpitomonas (Yabuki et al. 2010 & 2011). The longitudinal section of Goniomonas 

clearly showed two transitional zones at the base of the flagellum. A distinct con-

striction of the flagellar membrane from the cell surface (proximal transitional 

region (tr1)) to that the level the central pair of microtubules terminates (second 

transitional region (tr2)) as seen in cryptophytes (Moestrup & Sengco 

2001)(Hibberd David J. 1979) (Fig. 6.11). Thus, indicating that Goniomonas and 

cryptophytes are shared common flagellar transition features with other groups in 

Hacrobia. 
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Figure 6.11: Electron micrograph shown longitudinal section of Goniomonas sp. tr1, transition re-

gion 1 (proximal end, white arrow head; tr2, constricted distal transitional region; bb basal body of 

flagella (1&2); r microtubular roots; ej, ejectosomes. B Longitudinal section of Goniomonas sp. 

tr1

tr2

bb1

bb2

r

ej

A B
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7 Abbreviations 

7.1 A1: General 

 

% Percent 

°C Temperature (in Grad Celsius) 

µ micro- 

bd distilled twice 

Acc.no. Accession number 

bp base pairs 

BSA bovine serum albumin 

C carbon 

c Concentration 

ca. circa 

cDNA copy DNA 

Cell PCR PCR directly on pelleted cells 

DAPI 4'-6-diamidino-2-phenylindole 

dATP 2-Desoxyadenosintriphosphate 

DIC Differential interference contrast 

DMF Dimethylformamide 

DMSO Dimethylsulfoxide 

DNA Desoxyribonucleic acid 

dNTP 2-Desoxynucleoside triphosphate 

DTT 1,4-Dithiothreitol 

E. coli Escherichia coli 

EDTA Ethylendiamine tetra acetate 

ER Endoplasmic reticulum 

FISH Fluorescent InSitu Hybridisation 

FSSW 0.1µ Filter Sterilzed sea water 

g Gram 

GFP Green fluorescent protein 

Glc Glucose 

HEPES N-2-Hyroxythylpiperazin-N'-2-ethansulfonic acid 

HPLC-H2O pure water 

IPTG Isopropyl- -D-thiogalactopyranoside 

kb kilo base 

kDa kilo Dalton 

K Keller medium 

L Litre 

LM Light microscopy 

LB Luria/Bertani medium 

M Molar (mol/l) 
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m milli- 

ML Maximum Likelihood 

MP Maximum Parsimony 

MeOH Methanol 

min Minutes 

mRNA messenger RNA 

n nano 

N nitrogen 

NJ Neighbour Joining 

nm nanometer 

OD Optical density 

p Pico 

PCR polymerase-chain reaction 

Pico PCR PCR with ‘picobiliphyte’ primers (PicoBI01F/ITSR) 

RNA Ribonucleic acid 

rpm rounds per minute 

rRNA ribosomal RNA 

RT Room temperature 

RT-PCR Reverse Transcription Polymerase Chain Reaction 

SDS sodium dodecylsulfate 

SEM Scaning Electron Microscopy 

Ta annealing temperature 

TAE Tris acetate EDTA 

Taq DNA polymerase (from Thermophilus aquaticus) 

TBE Tris borate EDTA 

Tris Tris-(hydroxymethyl)-aminomethane 

TEM Transmission Electron Microscopy 

Trp Tryptophan 

TSA-FISH Tyramide Signal Amplification -FISH 

Tyr Tyrosine 

UV ultraviolet 

w/v Weight per volume 

X-Gal 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside 

  
7.2 A2: Cellular organelle abbreviations 

‘ds’ Digestive sac 

A Anterior part 

AF Anterior Flagellum 

bb Basal body 

cl Cleft 

Cy Cytoplasm 

edsm Electron dense membrane 

G Golgi complex 
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M Mitochondrion 

mv Mitovilli 

N Nucleus 

NE Nuclear Envelope 

P Posterior part 

p Peroxisome/ microbody 

pbb Probasalbody 

pcf proximal connecting fiber 

PF Posterior Flagellum 

Pm Plasma membrane 

r Flagellar roots 

rER rough Endoplasmic Reticulum 

SF Striated Fiber 

SMB Single Membrane Body 

tr1 Transition region 1 

tr2 Transition region 2 
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