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Abstract 
 

The global environment changes at an unprecedented speed, posing novel threats and challenges 

for many plant and animal species. Populations in the wild will have to adapt to these new 

environments. Adaptation requires phenotypic variation that affects fitness, much of which is 

controlled by complex polygenic backgrounds. The aim of the present thesis is to investigate the 

polygenic basis of adaptation, using as study model the outcrossing and perennial plant species 

Arabidopsis lyrata ssp petraea. I focused the analysis on two A. lyrata populations originating 

from constrasted environments in the core and edge of the species distribution range in Europe.  

I first asked whether there is maintenance of adaptive dynamics and genetic diversity in the range 

edge population. During range expansion, edge populations are expected to face increased genetic 

drift, which in turn can alter and potentially compromise adaptive dynamics, preventing the 

removal of deleterious mutations and slowing down adaptation. I documented a sharp decline in 

effective population size in the range-edge population and observed that non-synonymous variants 

segregate at higher frequencies. A 4.9% excess of derived non-synonymous variants per individual 

was detected, suggesting an increase of the genomic burden of deleterious mutations in the range-

edge population. We predicted, however, that most of these variants have a small effect on fitness. 

Consistent with this prediction, the range-edge population was not impaired in its growth and 

survival measured in a common garden experiment. Genomic footprints indicative of selective 

sweeps were broader in the Northern population but not less frequent, indicating that the smaller 

population had maintained its ability to adapt.  

Adaptation at the level of transcript regulation is believed to make a significant contribution to 

complex trait adaptation in natural populations. From an evolutionary perspective, it is of great 

importance to identify the part of a phenotypes’ genetic variance, that can be directly inherited to 

the next generation (additive variance) and thus directly contribute to adaptation. In fact, the global 

gene expression as documented by a complex set of crosses between populations, revealed 

substantial additive variance, distributed all over the genome. Yet, dominance variance, which 

results from allelic interactions within or between loci, forms the most significant part of the 

genetic variance in gene expression. I could show that dominance variance is related to gene 

structural properties, such as length, number of exons and number of transcription factor binding 
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sites, as well as to the degree of gene co-regulation. On the contrary, additive variance was 

independent of such signals. Additionally, I could identify that transcript with less genetic variance 

at the transcript level exhibit stronger constraints at the amino-acid level, indicating that purifying 

selection acts at both amino-acid and transcript levels. By contrast, transcripts with highest additive 

variance tended to evolve under relaxed selection.  

The genetic basis of gene expression can be further investigated, by identifying the trans- and cis-

regulatory effects. A small number of trans effect variants were identified controlling gene 

expression variation. I only detected significant associations for about 1% of the expressed 

transcripts, indicating that expression variation in most transcripts has a polygenic basis. 

Interestingly, these also showed higher levels of additive variance than transcripts whose variation 

showed a significant association. In addition, we found that transcript with a detectable cis-acting 

variant tended to show higher additive variance.  

Altogether, these studies show that despite a dramatic bottleneck and a mild expansion load, 

adaptive mutations were present in sufficient number to maintain adaptive dynamics at the range-

edge of the strictly outcrossing species Arabidopsis lyrata ssp. petraea. However, although we 

find evidence that gene expression variation contributes to the evolutionary potential of these 

populations, we also observe that a significant fraction of genetic variation is not directly available 

for selection. 
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Zusammenfassung 
 

Die globale Umwelt verändert sich in einem beispiellosen Tempo und stellt viele Pflanzen- und 

Tierarten vor neue Bedrohungen und Herausforderungen. Die Populationen in der freien Natur 

müssen sich an diese neuen Umgebungen anpassen. Die Anpassung erfordert phänotypische 

Variationen, die sich auf die Fitness auswirken und zu einem großen Teil durch komplexe 

polygene Hintergründe gesteuert werden. Das Ziel der vorliegenden Arbeit ist es, die polygene 

Grundlage der Anpassung zu untersuchen, wobei als Studienmodell die auskreuzende und 

mehrjährige Pflanzenart Arabidopsis lyrata ssp petraea verwendet wird. Ich konzentrierte die 

Analyse auf zwei A. lyrata-Populationen, die aus kontrastreichen Umgebungen im Kern und Rand 

des Verbreitungsgebietes der Art in Europa stammen.  

Ich fragte zunächst, ob die Anpassungsdynamik und genetische Vielfalt in der Population am 

Rande des Verbreitungsgebiets erhalten bleibt. Während der Ausdehnung des Verbreitungsgebiets 

ist zu erwarten, dass die Populationen am Rande des Verbreitungsgebiets einer verstärkten 

genetischen Drift ausgesetzt sind, die wiederum die Anpassungsdynamik verändern und 

möglicherweise beeinträchtigen kann, wodurch die Beseitigung schädlicher Mutationen verhindert 

und die Anpassung verlangsamt wird. Ich dokumentierte einen starken Rückgang der effektiven 

Populationsgröße in der Randpopulation und beobachtete, dass sich nicht-synonyme Varianten bei 

höheren Frequenzen segregieren. Es wurde ein Überschuss von 4,9% an abgeleiteten nicht-

synonymen Varianten pro Individuum festgestellt, was auf eine Zunahme der genomischen 

Belastung durch schädliche Mutationen in der Range-Randpopulation hindeutet. Wir sagten 

jedoch voraus, dass die meisten dieser Varianten einen geringen Einfluss auf die Fitness haben. In 

Übereinstimmung mit dieser Vorhersage wurde die Population der Range-Redge-Population in 

ihrem Wachstum und Überleben, gemessen in einem gemeinsamen Gartenexperiment, nicht 

beeinträchtigt. Genomische Fußabdrücke, die auf selektive Sweeps hindeuteten, waren in der 

nördlichen Population breiter, aber nicht weniger häufig, was darauf hindeutet, dass die kleinere 

Population ihre Anpassungsfähigkeit erhalten hatte.  

Man geht davon aus, dass die Anpassung auf der Ebene der Transkriptionsregulation einen 

bedeutenden Beitrag zur komplexen Anpassung von Merkmalen in natürlichen Populationen 

leistet. Aus evolutionärer Sicht ist es von großer Bedeutung, den Teil der genetischen Varianz 



7 
 

eines Phänotyps zu identifizieren, der direkt an die nächste Generation vererbt werden kann 

(additive Varianz) und somit direkt zur Anpassung beiträgt. Tatsächlich zeigt die globale 

Genexpression, wie sie durch einen komplexen Satz von Kreuzungen zwischen Populationen 

dokumentiert ist, eine beträchtliche additive Varianz, die über das gesamte Genom verteilt ist. 

Dennoch bildet die Dominanzvarianz, die aus allelischen Interaktionen innerhalb oder zwischen 

Loci resultiert, den bedeutendsten Teil der genetischen Varianz in der Genexpression. Ich konnte 

zeigen, dass die Dominanzvarianz mit genstrukturellen Eigenschaften, wie Länge, Anzahl der 

Exons und Anzahl der Bindungsstellen des Transkriptionsfaktors, sowie mit dem Grad der Gen-

Koregulation zusammenhängt. Im Gegenteil, die additive Varianz war unabhängig von solchen 

Signalen. Zusätzlich konnte ich feststellen, dass Transkripte mit geringerer genetischer Varianz 

auf der Transkriptebene stärkere Einschränkungen auf der Aminosäureebene aufweisen, was 

darauf hindeutet, dass die reinigende Selektion sowohl auf der Aminosäure- als auch auf der 

Transkriptebene wirkt. Im Gegensatz dazu neigten Transkripte mit der höchsten additiven Varianz 

dazu, sich unter entspannter Selektion zu entwickeln.  

Die genetische Basis der Genexpression kann weiter untersucht werden, indem die trans- und cis-

regulierenden Effekte identifiziert werden. Es wurde eine kleine Anzahl von Varianten des trans-

Effekts identifiziert, die die Genexpressionsvariation kontrollieren. Ich konnte nur bei etwa 1% 

der exprimierten Transkripte signifikante Assoziationen feststellen, was darauf hindeutet, dass die 

Expressionsvariation in den meisten Transkripten eine polygene Basis hat. Interessanterweise 

zeigten diese auch höhere Niveaus additiver Varianz als Transkripte, deren Variation eine 

signifikante Assoziation zeigte. Darüber hinaus fanden wir heraus, dass Transkripte mit einer 

nachweisbaren cis-wirkenden Variante tendenziell eine höhere additive Varianz aufwiesen.  

Insgesamt zeigen diese Studien, dass trotz eines dramatischen Engpasses und einer milden 

Expansionsbelastung adaptive Mutationen in ausreichender Zahl vorhanden waren, um die 

adaptive Dynamik an der Verbreitungsgrenze der streng auskreuzenden Art Arabidopsis lyrata ssp. 

petraea aufrechtzuerhalten. Obwohl wir jedoch Hinweise darauf finden, dass die 

Genexpressionsvariation zum evolutionären Potenzial dieser Populationen beiträgt, stellen wir 

auch fest, dass ein signifikanter Anteil der genetischen Variation nicht direkt für die Selektion zur 

Verfügung steht.  
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1.Introduction 

 

Global climate change is a reality that proceeds fast. Extended periods of high temperature and net 

declines in soil moisture are expected in many regions (IPCC, 2013). These changes will impact 

the distributions and survival of species, which will have to respond to the fast shifting 

environment, or they have to face extinction. Five percent of all species predicted to go extinct due 

to increasing temperatures (IPBES 2019). One possible scenario is that the species will have to 

shift their range distribution, in line (Waldvogel et al. 2020). The impact of such range shifts can 

be studied by investigating the impact of the postglacial colonization events.  

1.1 Genetic load accumulated during range expansions interferes with adaptive dynamics 

Range expansion events, such as the postglacial colonization of Northern Europe and Scandinavia 

from Southern refugia, have had wide influence on the distribution of genetic diversity within 

species (Hewitt 2000). Through its impact on multiple population genetic processes, range 

expansion has cascading effects on adaptive dynamics (Excoffier et al. 2009). Indeed, it increases 

drift (Hallatschek et al. 2007), and leads to both a progressive loss of genetic diversity and 

increased levels of population differentiation along the expansion route (Austerlitz et al. 1997; 

Corre and Kremer 1998; Muller et al. 2008; Excoffier et al. 2009; Slatkin and Excoffier 2012). As 

a consequence, fitness is expected to decrease at the front of the expanding range, causing what is 

known as the expansion load. The majority of those mutations remain at low frequencies or are 

lost, but some quickly fix, a phenomenon sometimes termed allele surfing (Klopfstein et al. 2006; 

Peischl et al. 2013). Although non-synonymous and potentially deleterious mutations are more 

likely to fix in bottlenecked populations, where the removal of new deleterious mutations is less 

efficient, it takes some evolutionary time until a significant load accumulates (Lohmueller 2014; 

Simons et al. 2014; Balick et al. 2015; Do et al. 2015). 

Expansion load can interfere with adaptive dynamics. Locally adapted populations that move out 

of their core range are expected to evolve towards new adaptive peaks (Colautti and Barrett 2013; 

Savolainen et al. 2013; Wos and Willi 2018). In a population carrying an expansion load, larger 

adaptive steps might be required to establish a novel range edge, resulting in a slowdown of 

expansion, especially when dispersal is limiting (Henry et al. 2015). Theoretical studies report 
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complex interactions among parameters such as the strength and heterogeneity of selection, the 

rate of expansion, as well as the architecture of traits under selection. Expansion rate and adaptive 

requirements to the newly colonized environments can jointly modulate the fitness decrease 

observed at the range edge (Gilbert et al. 2017; Gilbert et al. 2018). However, to the best of our 

knowledge, these predictions remain practically untested in natural populations. 

The speed of range expansion can also be limited by species interactions, if these are necessary for 

reproductive success and survival (Louthan et al. 2015). Many flowering plants rely on insects for 

pollination and thus fertility (Gibbs 2014). As species expand their range, efficient pollinators can 

become rare, and a shift towards selfing may help restore reproductive assurance and avoid Allee 

effects (Jain 1976; Morgan et al. 2005; Gascoigne et al. 2009). Transitions to selfing or mixed- 

mating systems have often been associated with range expansion (Baker 1995; Goodwillie et al. 

2005; Levin 2010; Cheptou 2012; Laenen et al. 2018). However, mating system shifts can 

compromise adaptive processes by exposing populations to inbreeding depression and loss of 

genetic diversity as they face stress at the margin of their ecological niche (Baker 1995; Slatkin 

1995; Ingvarsson 2002; Barrett 2003; Glémin and Ronfort 2013). Yet, increases in the selfing rate 

can also contribute to the purging of deleterious mutations (Pujol et al. 2009; Glémin and Ronfort 

2013; Hadfield et al. 2017; Roessler et al. 2019) and promote the emergence of high fitness 

individuals at the front range of expansion (Klopfstein et al. 2006). In fact, selfing species generally 

show the greatest overall range size (Grossenbacher et al. 2015). In this context, plant species that 

have maintained a strictly outcrossing mating system across their expanded distribution range are 

particularly intriguing.  

1.2 Complex adaptive dynamics required: example of coordinating flowering time and 

dormancy in plant populations 
Adaptation is a complex process which occurs via selection on fitness traits and can lead to eco-

logical specialization and speciation (Kawecki and Ebert 2004). It is complex because fitness re-

sults from the inter-dependent action of multiple phenotypes, each controlled by different genetic 

architecture, I illustrate this with the example of flowering time and dormancy, whose contribution 

to local adaptation cannot be understood in isolation. These two traits have been well studied in 

the model plant species Arabidopsis thaliana.  
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Local adaptation of A. thaliana populations has been documented throughout its range, despite a 

history of pervasive gene flow (Fournier-Level et al. 2011; Hancock et al. 2011; Ågren and 

Schemske 2012; Savolainen et al. 2013; Weigel and Nordborg 2015; Svardal et al. 2017). Field 

experiments and correlation analyses with climate parameters identified numerous genomic re-

gions associated with local climatic conditions (Hancock et al. 2011; Lasky et al. 2014). Among 

them, SNPs associating with fitness differences in the field were also over-represented (Hancock 

et al. 2011), while alleles associating with fruit production are more frequent in populations closer 

to field sites where the selective advantage was expressed (Fournier-Level et al. 2011). Therefore, 

it is clear that much of the variation found in this species has played a role in optimizing plant 

performance to local environmental conditions.  

Flowering time is one of the developmental traits underpinning adaptation in A. thaliana. Variation 

in flowering time follows climatic clines, both at the regional and species levels (Mendez-Vigo et 

al. 2011; Montesinos-Navarro et al. 2011; Debieu et al. 2013; Li et al. 2014; Sasaki et al. 2015). 

Warmer climates appear to favor earlier flowering time, a pattern that has been documented for a 

great number of species (Austen et al. 2017; Whittaker and Dean 2017). Strong selection for early 

flowering has been detected in Italy, where as selection for this trait is weaker in Sweden (Ågren 

et al. 2017). Population genetics studies also uncovered signatures of natural selection on genes 

controlling flowering time (Corre 2005; Toomajian et al. 2006). Finally, the analysis of co-varia-

tion between environmental and phenotypic variance consolidated evidence for the adaptive dis-

tribution of this trait (Heerwaarden et al. 2015).  

The adaptive relevance of variants which modulate flowering time must be examined in the con-

text of variation for the timing of germination. Much of the flowering time variation measured in 

the lab, does not manifest as variation in flowering phenology in the field (Wilczek et al. 2009; 

Brachi et al. 2010; Hu et al. 2017). Rather, flowering time in the field is tightly dependent on the 

prevailing environmental conditions during seedling establishment, and hence on another devel-

opmental trait: the timing of germination (Donohue 2002; Wilczek et al. 2009). Both field exper-

iments and theoretical models integrating seed and flowering phenology have shown that seed 

dormancy is often decisive for controlling the life cycle across environments (Chiang et al. 2013; 

Burghardt et al. 2015).   
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There is indeed consistent support for the adaptive relevance of traits determining the timing of 

germination. Seed dormancy has a strong fitness advantage before the hot season but can impair 

fitness if it delays plant growth before winter (Donohue 2002; Donohue et al. 2005; Chiang et al. 

2013). Population genetics analysis of seed dormancy and its major QTL DOG1 supported the 

adaptive importance of strong dormancy in Southern regions, to escape dry and hot summers, 

whereas weaker dormancy was reported in Norway, where the season is shorter (Kronholm et al. 

2012; Kerdaffrec et al. 2016; Postma and Ågren 2016). 

Since flowering time determines the maternal environment the seeds experience during their mat-

uration, it also impacts life history traits expressed by the next generation (Chiang et al. 2013; He 

et al. 2014; Morrison and Linder 2014; Kerdaffrec et al. 2016). Light, temperature, nutrient avail-

ability, and water status have all been identified as significant environmental factors influencing 

the maternal inheritance of seed dormancy (Footitt et al. 2013; He et al. 2014; Morrison and Linder 

2014; Kerdaffrec et al. 2016). Germination can also be distributed over more than one seasonal 

window. For example, maintaining a spring germinating cohort is important for the maintenance 

of populations exposed to low winter temperature (Picó 2012; Akiyama and Ågren 2014). Fur-

thermore, later flowering can lead to late seed dispersal, which can result in overwintering at the 

seed stage (Hu et al. 2017). 

A first consequence of increased climatic unpredictability is that ecological shifts towards 

increasingly ruderal strategies will be promoted. The study of flowering time variation in A. 

thaliana has demonstrated that species are not limited in the number of mutations that can promote 

accelerated flowering (Mendez-Vigo et al. 2011; Sanchez-Bermejo et al. 2012; Hepworth and 

Dean 2015; Whittaker and Dean 2017). As a matter of fact, earlier flowering seems to be globally 

under selection (Munguía-Rosas et al. 2011). Flowering time and seed dormancy are therefore 

jointly subject to fluctuating seasonal selective forces. They can evolve as a syndrome, defining 

distinct life history strategies that have diversified across environments (Chiang et al. 2013; 

Vidigal et al. 2016). An analysis of seed dormancy and flowering time co-variation revealed that 

the optimization of the two traits probably depends on latitudinal differences in climate. Late 

flowering (i.e. vernalization requirement) and strong dormancy are more frequent in regions where 

summer drought is typically more severe, whereas late flowering in Northern latitudes co-varies 

negatively with dormancy (Debieu et al. 2013). Co-variance between flowering time and 
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dormancy is also detected at much smaller scale, along steep altitudinal gradients (Vidigal et al. 

2016). Normally, diverse life-history trait combinations can allow comparable population growth 

rates in field conditions (Taylor et al. 2017). In some years, however, early winter frost can wipe 

out genotypes expressing inadequate life histories (Hu et al. 2017). Minimum winter temperature 

and precipitation, in fact, were also the main climatic factors that acted as selective pressures on 

flowering time and their underpinning genes in a set of Iberian A.thaliana genotypes (Mendez-

Vigo et al. 2011). This suggests that extreme deviations from seasonal climatic averages may be 

important in determining allelic combinations of genetic variants which contribute to the 

adjustment of development to optimize growth in different environments throughout the species 

range.  

Thus, as illustrated by the variation and co-variation of flowering time and dormancy, life history 

traits are intertwined in their effect on fitness and in their genetic basis. Understanding adaptation 

therefore cannot be advanced by focusing on single trait but would benefit from a more complete 

view of the relationship between phenotypes, environment and genetics. 

1.3 Gene expression variation provides insight on the selection potential of traits with 

polygenic background  

It is not possible to study all phenotypes but studying the expression level of all genes may provide 

a first approximation of the extent of population variation that is available for adaptation. Gene 

expression evolution has a critical role in adaptation, as expression evolution can shape the 

function of genetic mechanisms (Romero et al. 2012). To date, some studies have demonstrated 

that within population differences in gene expression is not random but the result of selection 

acting on natural quantitative variance (Oleksiak et al. 2002) and that gene expression does not 

evolve according to strictly neutral models (Rifkin et al. 2005).  

In many of these studies, however, our understanding of the potential role of gene expression for 

adaptation is limited by the missing information on the heritability of this variation. Determining 

the evolutionary potential of gene expression variance requires establishing the relative importance 

of heredity versus the environment, which is directly described by the broad sense heritability. 

Furthermore, we can use the narrow sense heritability, which is the extent to which transmitted 

genes affect the phenotypes, in order to further understand the evolutionary impact of the genetic 

background on gene expression, without having to identify the genes in direct control of its 
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variance (Falconer and Mackay 1996; Lynch and Walsh 1998). Heritability of gene expression 

variance has been studied in a number of species, including in humans (Price et al. 2011), yeast 

(Liu et al. 2020), mice (Cui et al. 2006), fish (Leder et al. 2015; He et al. 2017) and plants (Stupar 

et al. 2007; Groen et al. 2020), all of which indicate that gene expression has substantial narrow 

sense and broad sense heritability.  

Quantifying the narrow and broad sense heritability is crucial to understand how evolution and 

adaptation proceeds in the populations. Indeed, according to Fisher’s fundamental theorem of 

natural selection, selection on a specific phenotype will act on the additive variance, and thus the 

transmitted alleles controlling it, resulting in a progressive decreasing of the narrow sense 

heritability present in the adapted population (Mousseau and Roff 1987; Orr 2009). This, however, 

is the case only for traits with simple genetic architecture, because selection will lead to the fixation 

of the few advantageous alleles within a population and thus the additive variance drops (Hill et 

al. 2008). On the contrary, when genetic drift is the primary force affecting the allele frequencies, 

additive variance can increase (Crnokrak and Roff 1995; Hill et al. 2008), creating a complicated 

balance between selection and stochastic demographic events. Moreover, the difference between 

the narrow sense and broad sense heritability, which represents all the genic and allelic interaction 

within and between loci (dominance variance), should not be neglected. For instance, in 

sticklebacks, the narrow sense heritability of gene expression is high, despite high levels of 

dominance. This could be attributed to signatures of directional selection within differentially 

expressed genes (Leder et al. 2015). In A. thaliana, non-heritable expression manifested as hybrid 

heterosis can have a strong effect on complex traits (Vasseur et al. 2019). Therefore, the type of 

genetic variance has important implication both for the adaptive potential of a population and for 

its history of adaptation. Yet, few studies have investigated the genomic and evolutionary factors 

that influences level of additive and dominance variance present in natural populations.  

Studying gene expression variance can give insights on the amount of heritable genetic factors 

shaped by selection, but it can also provide insight on the molecular functions that are targeted by 

selection. The initial adaptation of complex traits towards a new fitness optimum will often happen 

by the quick fixation of a few loci (Orr 2009). However, on a molecular level, natural selection as 

adaptation to a slowly changing environment can rely on mutations of small effect (Collins and 

Meaux 2009; Yeaman 2015). Small effect mutations can have a cumulative effect on the 
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phenotype, even if each separately explains only a small part of the phenotypic variance (Falke et 

al. 2013). The omnigenic model proposes that almost all expressed genes affect a specific 

phenotype. Each phenotype is controlled by a set of core genes, which have a direct effect on the 

phenotypic variance, as well as by the peripheral genes that control the phenotype via direct effect 

on the core genes (Boyle et al. 2017; Liu et al. 2019). Thus, incorporating the mutations with small 

effect can significantly improve our ability to detect natural selection on phenotypic traits (Berg 

and Coop 2014). 

Using gene expression, we can study how small effect mutations are distributed in the genome by 

analyzing cis regulatory mutations controlling gene expression. Cis regulatory variants are in 

linkage with the expressed transcript, so that they can be easily identified by genome wide allele-

specific expression differences in hybrid heterozygotes (de Meaux 2006; He et al. 2012; He et al. 

2016; Steige et al. 2017). Their large numbers allows investigating the genomic and evolutionary 

properties that associate with their distribution (Fay and Wittkopp 2008; He et al. 2016; de Meaux 

2018). Cis acting regulatory changes tend to accumulate within species at adaptive traits (Erwin 

and Davidson 2009). They can contribute to reshape polygenic molecular functions even in closely 

related species. For instance, cis acting regulatory changes have contributed to adaptation to heavy 

metal substrate in Arabidopsis halleri in contrast to its close relative Arabidopsis thaliana (He et 

al. 2016). Also, floral adaptations and mating system shift between Capsella grandiflora and 

Capsella rubella are supported by cis acting regulatory changes (Steige et al. 2015). Therefore, 

measuring natural selection by cis acting changes can lead to better understanding of phenotypic 

evolution, especially when combined with population genetics (Emerson and Li 2010).  

Gene expression variance is encoded both by cis- and trans-regulatory changes, but the role of this 

variation may be different. Cis regulatory changes could be influenced by adaptive polygenic 

selection (Fraser et al. 2011) but also preferentially fixed due to weaker pleiotropic effects  

compared to trans- regulatory changes (Prud’homme et al. 2007). Different mutation rates and 

dominance allelic interactions of cis and trans regulators might also affect the proportion that each 

of them contributes to intra- and inter-specific diversity, with, for example, cis acting alleles being 

more often under positive selection in Drosophila melanogaster (Lemos et al. 2008). Alternatively, 

their mutational variance over time is small, due to the fact that most mutations affecting gene 

expression are deleterious with negative fitness impact (Gilad et al. 2006). Cis-regulatory variants 
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can accelerate the response to negative selection through exposing deleterious mutations (Erwin 

and Davidson 2009). In C. grandiflora, the cis regulatory expression was mainly deleterious and 

in low frequencies, providing evidence for purifying selection acting on genetic variation within 

population (Josephs et al. 2015), even though genes with trans effect are also under stronger 

negative selection (Josephs et al. 2020). Thus, it is clear that gene expression can provide insight 

in the selection dynamics of polygenic traits and complex traits, but that it is also necessary to 

study the role of cis- and trans- acting changes, because their contribution to adaptation may differ.  

1.4 Arabidopsis lyrata as a study system to investigate the polygenic basis of selection 

Arabidopsis thaliana is the model system for plant research. Despite the wealth of genetic and 

phenotypic information that the community has gained via projects such as the 1001 genomes 

(1001 Genomes Consortium 2016), the species has a few limitations for studying in depth the 

impact of selection and adaptation. A. thaliana, is an annual selfing species, which has experienced 

strong bottlenecks (Durvasula et al. 2017; Svardal et al. 2017), increased genetic drift (Weigel and 

Nordborg 2015; Svardal et al. 2017) and exhibits population structure along clines (Zou et al. 

2017). Those two factors are often cofounded with selection signals and can mislead studies of 

adaptation. For these reasons, I have used for this study, A.thaliana’s outcrossing and perennial 

relative, Arabidopsis lyrata (Clauss and Koch 2006). 

Populations in A. lyrata can be exposed to very different local conditions. The European sub-

species Arabidopsis lyrata ssp. lyrata has expanded its range Northwards after the last glaciation 

(Clauss and Koch 2006; Schierup et al. 2006; Koch 2019). Its patchy populations are found from 

Central Europe to the North of Scandinavia (Hoffmann 2005). Northern populations in A. l. ssp. 

petraea show a strong reduction in diversity (Wright et al. 2003; Muller et al. 2008; Ross-Ibarra 

et al. 2008; Pyhäjärvi et al. 2012; Mattila et al. 2017). Yet, there is evidence that A. l. ssp. petraea 

populations at the Northern range edge are locally adapted. Reciprocal transplant studies between 

the Northern and Central European populations showed that Northern populations have the highest 

survival rate in their location of origin consistent with signals of local adaptation (Leinonen et al. 

2009). Major developmental traits such as flowering time, as well as the response to abiotic stress 

factors, seem to have been targets of natural selection (Sandring et al. 2007; Toivainen et al. 2014; 

Mattila et al. 2016; Davey et al. 2018; Hämälä and Savolainen 2018). Reciprocal transplant 

experiments across four sites in Europe, as well as between populations of different altitude in 
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Norway, indicated that populations at the range margins were locally adapted (Hämälä and 

Savolainen 2018). Furthermore, allele specific expression differences have been detected in 

interspecies hybrids as well as between populations (He et al. 2012; He et al. 2016; Videvall et al. 

2016). 

The European subspecies of A. lyrata has maintained outcrossing, via well documented 

mechanism. A. lyrata ssp. lyrata enforces self-incompatibility (SI) via the multiallelic S-locus 

specific to the Brassicaceae family (Bateman 1955; Kusaba et al. 2001). Phylogenetic and genomic 

analyses of the S-locus have shown that strong negative frequency-dependent selection caused 

early diversification of the S-locus within the family and a high degree of sharing of S-allele 

lineages across species (Dwyer et al. 1991; Vekemans et al. 2014). The loss of SI, however, 

evolved repeatedly in the family (Tsuchimatsu et al. 2012; Vekemans et al. 2014; Durvasula et al. 

2017). In fact, some populations of the closely related North American subspecies A. l. ssp. lyrata, 

lost obligate outcrossing at their range margin (Mable et al. 2005; Griffin and Willi 2014; Willi et 

al. 2018). This transition to selfing has been recently associated with a sharp decrease in average 

population fitness (Willi et al. 2018). In the sub-species A. l. ssp. petraea, instead, SI appears to 

have been maintained, presumably due to the inbreeding depression, which has been demonstrated 

using forced selfing (Kärkkäinen et al. 1999; Sletvold et al. 2013).  

Therefore, A. lyrata ssp. petraea is a good model system to study the effects of range expansion 

and the subsequent adaptation on the genetic basis of complex traits between outcrossing plant 

populations.  
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1.5 Aims of the study 
The main goal of the present thesis is to investigate the signatures of polygenic selection in the 

outcrossing plant species A. lyrata ssp petraea. Towards that end, I contrasted two populations 

representative of the species’ European distribution, and specifically I compared a range -edge 

population contrasted to a range core population. In order to explore the main research question, 

the project was organized in the following three investigational chapters: 

Chapter 1: Is there detectable genetic diversity and adaptive evolution in the range edge 

population?  

Range expansions have been documented to impact both the level of genetic diversity and therefore 

the efficacy of selection, especially in range edge populations. To gain insight into the combined 

effects of demographic history and selection, I compared the two populations to ask i) can we 

document a decreased efficacy of negative selection and an increase of genetic load in the range 

edge population? Furthermore, ii) does the range – edge population show a decrease in S -alleles, 

which is related to mating shift? iii) Is there impaired growth in the range edge population 

indicative of genetic load? And finally, iv) can I detect a slowdown of adaptive dynamics in the 

range edge population? 

Chapter 2: What is the adaptive potential of gene expression variation? 

Gene expression variation can provide insight on the impact of small effect mutations, and thus 

polygenic selection, within the species, as well as the potential to respond to selection. I generated 

between population hybrids and obtained their transcriptome in order to investigate the following 

questions: i) how much of the gene expression variation is heritable? ii) Is the relative importance 

of the non-heritable gene expression variance random? and if it is not random what are the factors 

that influence the amount and genomic distribution of heritable and non-heritable variance?  

Chapter 3: What is the genetic basis of gene expression variation? 

Divergence in the trans and cis regulatory elements between populations originating from different 

environments, accumulates in functions important for local adaptation. I used the transcriptome 

dataset generated for Chapter 2, to further ask the questions: i) how complex is the genetic basis 

of gene expression? ii) is there connection of the genetic basis with signals of adaptation? iii) do 

they accumulate in specific functions? and iii) do they associate with heritability? 
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2. Material and Methods 
 

2.1 Chapter 1: Genetic Diversity and adaptive evolution in a range-edge population 

2.1.1 Plant Material, Sequencing and Data Preparation 
Genomic sequences of A. l. ssp. petraea populations of 22 individuals originating from 

Spiterstulen in Norway (SP; 61.41N, 8.25E), 17 individuals originating from Plech in Germany 

(PL; 49.65N, 11.45E) and a scattered sample of 7 individuals from Austria (AUS; 47.54N, 15.58E; 

47.55N, 15.59E; 47.58N, 16.9E) were used in the analysis. Lab generated seeds of SP plants and 

field collected seeds of PL were grown in greenhouse conditions. I sequenced 11 unrelated PL and 

10 unrelated SP individuals. The rest of the sequences were obtained from previously published 

data. I obtained 6 PL sequences and 5 sequences of field collected SP individuals from Mattila et 

al. (2017) and 7 sequences of field collected SP from Hämälä and Savolainen (2018). The seven 

sequences of diploid AUS individuals were provided by Marburger et al. (2019). In total, 22 SP, 

17 PL and 7 AUS whole genome sequences were included in the analysis. All the genome 

sequences are available online (see section Data Availability).  

Read quality was checked with FastQC and the last two bases of the sequences were removed with 

cutadapt v1.14 (Martin 2011). Reads were mapped against the reference genome of Arabidopsis 

lyrata (Hu et al. 2011) Ensembl v1.0 with bwa mem, options -M (Li and Durbin 2009). Only the 

reads mapped against the main eight chromosomes were kept in the analysis. Samtools v1.5 (Li et 

al. 2009) was used for quality filtering (view -f 3 -q30 -F 264) and remove of PCR duplicates 

(rmdup). Indels were realigned with Genome Analysis Toolkit (McKenna et al. 2010) version 

nightly-2017-12-11-1.  

Single nucleotide polymorphisms (SNPs) were called with samtools mpileup, with options -E -q 

30, and bcftools call (Li et al. 2009) with options -p 0.01. Since repeat regions align poorly, they 

were flagged using the script generate_masked_ranges.py 

(https://gist.github.com/danielecook/cfaa5c359d99bcad3200 ) and subsequently were removed 

with bedtools subtract, v2.25.0 (Quinlan and Hall 2010). Sites where all individuals are 

heterozygous for one population likely result from excessive paralogous mapping and thus were 

removed with a custom python script. Indels and sites that had more than two alleles, coverage 

less than 10, genotype quality less than 20 or quality less than 30 were filtered out with VCFtools 

https://gist.github.com/danielecook/cfaa5c359d99bcad3200
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v0.1.5 (Danecek et al. 2011). Also, the sites that had more than 80% of the individual data missing 

were removed. In the end, 1,878,003 SNPs were used for the downstream analysis, and the mean 

depth of the individuals ranged from 11.7 to 40.6 (Table 1). 

Table 1: Mean depth of each sample in the filtered dataset. 

Sample Name Average Depth 

Spiterstulen (SP) 

SP 70535 18.39 

SP 70536 16.47 

SP 70537 15.41 

SP 70538 15.74 

SP 70540 16.59 

SP 70541 16.67 

SP 70542 16.42 

SP 70543 17.78 

SP 70544 16.90 

SP 70545 15.32 

SP 154 18.34 

SP 164 34.48 

SP 1 24.03 

SP 21 23.98 

SP 2 21.36 

SP 3 29.51 

SP 4 32.75 

SP 5 26.98 

SP 6 12.43 

SP 76 35.27 

SP 7 22.62 
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Plech (PL)  

PL 1a 29.54 

PL 2a 14.03 

PL 3a 24.9 

PL 4a 30.66 

PL 5a 15.02 

PL 6a 27.20 

PL 7a 29.38 

PL 8a 20.84 

PL 9a 20.96 

PL 10 22.95 

PL 80936 27.22 

PL S2 31.48 

PL S4 30.59 

PL S5 36.41 

PL S6 38.32 

PL S7 34.99 

PL S8 40.61 

Austria (AUS) 

AUS PEQ6 11.70 

AUS PEQ9 12.17 

AUS PER11 10.22 

AUS PER8 18.76 

AUS VLH2 14.67 

AUS VLH5 22.88 

AUS VLH6 21.58 
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2.1.2 Analysis of population structure 
Genetic diversity and differentiation along the chromosomes were calculated with PopGenome 

package (Pfeifer et al. 2014) in the R environment v3.4.4 (R Core Team 2018). Specifically, I 

calculated pairwise nucleotide fixation index (FST), nucleotide diversity between (dxy) and within 

population (π) in 10kb non-overlapping windows for each chromosome with functions F_ST.stats, 

diversity.stats.between and diversity.stats.within, respectively (Hudson and Wayne 1992; 

Wakeley 1996). In order to avoid biased FST estimates (Cruickshank and Hahn 2014), the windows 

that had FST values above 0.8, dxy and π values below 0.001 in at least one population dyad, were 

removed from the analysis. Tajima’s D was calculated with the function neutrality.stats of 

PopGenome. The linkage disequilibrium for the field collected SP and PL individuals was 

calculated along the genome with the default functions of PopLDdecay (Zhang et al. 2018) and 

the values were plotted in R. 

Principal component analysis (PCA) of the genomic data was conducted with adegenet package 

(Jombart 2008) using a dataset including only every 300th SNP to reduce computational load. This 

reduced dataset of 233,075 SNPs was also used to calculate SNP based FIS for each population 

with Hierfstat (Goudet 2005) package function basic.stats (Alexander et al. 2009; Goudet and 

Jombart 2015). The FIS value of each gene was estimated based on the median FIS value of its 

SNPs, for SP and PL.  

For the admixture analysis (Alexander et al. 2009) bed files were generated with PLINK (Purcell 

et al. 2007), which were then analyzed for clusters K=1 till K=5, with 10 iterations of cross-

validation each. The clusters were normalized across runs using CLUMPAK (Kopelman et al. 

2015) and subsequently they were plotted in R.  

2.1.3 Demography simulations 
To study the demographic history of these populations, my collaborator Dr. T. Hämälä and I 

conducted site frequency spectra (SFS) based coalescent simulations with fastsimcoal2 v2.6.0.3 

(Excoffier et al. 2013). Folded 3D SFS, comprising of SP, PL and AUS individuals, was estimated 

from 4-fold sites with ANGSD v0.917 (Korneliussen et al. 2014), using the same filtering steps as 

with variant calls. First models with all possible divergence orders were considered, and 

subsequently compared models with five different migration scenarios, guided by previous work 

on the SP and PL populations (Mattila et al. 2017; Hämälä and Savolainen 2018): no migration, 

current migration between PL and AUS, historic migration between PL and AUS, and historic 
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migration between all three populations. Each model was repeated 50 times and the ones with the 

highest likelihoods were used for model selection was based on Akaike information criterion (AIC) 

scores. Confidence intervals were estimated by fitting the supported model to 100 nonparametric 

bootstrap SFS. We used these models to define effective populations sizes (Ne), divergence times 

(T) and migration rates (m). To evaluate how the estimated demography influences measures of 

positive selection, we used the Ne, T and m parameters in combination with recombination rate 

estimates derived from an A. lyrata linkage map (Hämälä et al. 2017) to generate 10,000 10 kb 

fragments with ms (Hudson 2002). These data were then used to define neutral expectations for 

analysis of positive selection. 

2.1.4 Estimating the distribution of fitness effects  
For analyzing the strength of selection, vcf files were first re-filtered for each population 

separately, as described in the section “data preparation”. This was done to retain positions that 

only needed to be removed in one population. Sites with data for more than 80% of the individuals 

were randomly down sampled so that each position had the same number of alleles. Because the 

SP and PL populations differed in the number of individuals sampled, individuals in the SP 

population were further randomly down sampled at each position to give the same number of 

alleles in both populations.  

With the help of my collaborators, Dr. K.A. Steige and Dr. E. Koch, we implemented a modified 

version of the program fit∂a∂i (Kim et al. 2017) to estimate the distribution of fitness effects. This 

extension to the ∂a∂i program (Gutenkunst et al. 2009), which infers demographic history as well 

as selection based on genomic data, allows us to specify the demographic model when inferring 

selection. Because we only fit the DFE to variation in PL and SP, we first fit a simplified 

demographic model for these populations only using ∂a∂i (Figure 1a-b). The simplified 

demographic model was inferred by maximizing the composite likelihood of the folded SFS at 4-

fold degenerate sites in PL and SP using the “L-BFGS-B” method and basinhopping algorithm 

implemented in scipy. These models provided a good fit of the predicted neutral SFS to the data 

(Figure 1c-d). They were compatible with the complex 3-population model, but assumed a larger 

ancestral population size to account for migration from AUS. This model also indicated that the 

increase in population size following the last bottleneck may have been underestimated in SP. The 

estimated 4-fold population scaled mutation rate theta reached 24,000 for PL. It was multiplied by 

2.76 to get the 0-fold mutation rate, i.e. the non-synonymous mutation rate for PL. In all instances, 
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the theta used for the SP population had to be constrained to thetaPL*0.74, to account for the 

difference in number of retained sites after all filters differed between the populations.  

 

Figure 1: Simplified and re-fit demographic model used to assess the gamma distribution of the distribution 

of fitness effects fit∂a∂I for (a) PL and (b) SP. The simplified model in PL is a step wise population change 

and in PL shows a strong bottleneck following population expansion. (c) and (d) show the site frequency 

spectrum for synonymous sites. The solid line shows the data, the dashed line the estimate based on the 

model. 

 

The 0-fold SFS and the demographic model were then used to fit the DFE by estimating the shape 

and scale parameter of a gamma distribution of selection coefficients. We used both a multinomial 

model (without using the population scaled mutation rate, theta) and a Poisson model (including 

theta) to estimate the DFE. The primary difference between these models is that the multinomial 

model only fits the DFE for variation sufficiently weakly selected to be observed in the sample. 
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The reason for this is that the multinomial model only fits the proportions of alleles observed at 

different frequencies (the “shape” of the SFS) and does not consider the decrease in per-site 

reduction in variation compared to 4-fold sites. Strongly deleterious variation will largely be absent 

from our moderate sample size and therefore does not affect the shape of the SFS. In practice we 

found that the gamma DFE fit using the multinomial method converged on a point mass at a single 

selection coefficient. After the DFE for observed variation was fit using the multinomial approach, 

we also estimated the fraction of strongly deleterious mutations by examining the ratio of the 

observed SFS to that under the multinomial DFE using the theta calculated for 0-fold sites. This 

ratio gives an estimate of the fraction of mutations that are sufficiently weakly selected to be 

observed in the sample. 

Although fit∂a∂i includes a function for finding the maximum likelihood values for DFE 

parameters, we had to implement a different function because we were fitting the parameters to 

the composite likelihood of the SFS in both populations. We calculated the likelihood using 

corresponding ∂a∂i functions and determined maximum likelihood parameters using Sequential 

Least Squares Programming as implemented in scipy.  

The DFE describes the distribution of fitness effects of new mutations arising in a population, and 

as such is independent of the demographic history. It was therefore assumed to be the same in both 

populations. To predict properties of genetic variation in the two populations, we calculated the 

distribution of selection coefficients for variants in each count of the SFS. For this, we first 

calculated the expected SFS for each selection coefficient using ∂a∂i functions. Then, we 

calculated the expected distribution of s using the python function gamma.cdf with the shape and 

scale parameter calculated for the joint estimate of the DFE under the Poisson model. Finally, we 

inferred the distribution of selection coefficients in each count of the SFS by applying Bayes’ rule.  

2.1.5 Genomic burden estimates  
We estimated the difference in burden between the populations by first calculating the expected 

joint SFS for PL and SP under the selection coefficient fit by the multinomial model, using the 

theta value for PL as power for calling SNPs was higher in this population. For each entry in the 

SFS we then calculated the difference in the expected count between PL and SP, weighted by their 

frequency in the sample to account for their probability of being present in an individual genome. 

Crucially, we also counted alleles that were fixed in one population but not the other. The 
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cumulative difference over all frequencies gives the overall expected difference in the derived 

allele burden.  

Additionally, I used the number of derived non-synonymous mutations per individual to quantify 

the population’s genomic burden (Simons and Sella 2016). We used SNPeff (Cingolani et al. 2012) 

to annotate synonymous and non-synonymous sites, as well as sites with different level of high 

putative impact on the protein, whose ancestral state inference was done comparing to A.thaliana 

and C.rubella. For this, Dr. KA. Steige generated pairwise alignments with LASTZ v1.04 (Harris 

2007), (astz 32 --ambiguous=n –notransition –step=25 –nogapped) and combined them in a 

multiple alignment file for the four species, which was generated using mugsy v1r2.3 (Angiuoli 

and Salzberg 2011) with default settings. To infer ancestral state genomic information of each SNP 

of the A. lyrata was combined with base information of A. thaliana and C. rubella using custom 

perl scripts. Ancestral state of the SNPs was inferred using the program est-sfs v2.03 (Keightley 

and Jackson 2018) using the Jukes-Cantor model. At probabilities between 1 – 0.9 the major allele 

was assumed to be ancestral and at probabilities between 0.1 and 0 the minor allele was assumed 

to be ancestral. 4-fold and 0-fold positions were identified using the NewAnnotateRef.py script 

(https://github.com/fabbyrob/science/blob/master/pileup_analyzers/NewAnnotateRef.py) and 

uSFS were extracted for these positions using custom R scripts. 

Then I counted the respective numbers of synonymous and non-synonymous sites per individual, 

with weight of +1 for each instance of homozygous state of the derived allele and as +0.5 for the 

heterozygous sites (See Appendix). I divided the counts by the total number of genotyped sites, in 

order to correct for differences in genome mapping between the individuals. The genomic load of 

each population was calculated as the mean of the weighted number of non-synonymous sites of 

individual samples. The synonymous sites were used to confirm the robustness of the analysis, as 

they are expected to not differ among the populations. The confidence intervals for each 

population, were estimated by bootstrapping with replacement of 1Mbp windows to simulate each 

time a whole genome (207 1Mb regions). Significance of the mean load difference between SP 

and PL was estimated following Simon and Sella (2016). Briefly, I bootstrapped 16 1Mbp-

windows of the genome with replacement and selected two random samples from the union of the 

two populations to create two groups of size equal to the original populations. This generated a 

random distribution of expected variance in the mean derived mutation counts. I used the quantile 

https://github.com/fabbyrob/science/blob/master/pileup_analyzers/NewAnnotateRef.py
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of this distribution to determine the p value. Note that I verified that these estimates of per-

individual burdens do not change if the regions carrying sweep signatures are removed from the 

analysis.  

2.1.6 Scan for selective sweeps 
Areas influenced by selective sweeps were inferred by estimating composite likelihood ratios with 

SweeD v4.0 (Pavlidis et al. 2013). The analysis was done in 2 kb grid sizes for the SP and PL 

samples. As a bottleneck can easily bias CLR estimates (Jensen et al. 2007), I used data simulated 

under the best supported demographic model to define limits to neutral variation among the 

observed estimates. Estimates exceeding the 99th percentile of neutral CLR values were considered 

putatively adaptive. I combined significant grid points within 10 kb regions to create outlier 

windows. Grid points that had no other outliers within 10 kb distance were removed from the 

analysis. Next, I examined the sweep regions in combination with regions showing elevated 

differentiation to find areas targeted by strong selection after the populations diverged. As with 

CLR, windows with FST values above the 99th percentile of their distribution were considered 

outliers. Genes from the regions showing higher than neutral differentiation with both CLR and 

FST were extracted. Gene Ontology enrichment analysis was performed in R with the topGO 

package (Subramanian et al. 2005; Alexa and Rahnenfuhrer 2016). Significance of the enrichment 

was evaluated with Fisher’s exact test. Significance threshold was evaluated by permutating the 

sample’s population identity 1,000 times. 

2.1.7 Identification of S alleles 
Our collaborators, X. Vekenmans, V. Castric and M. Genete, genotyped the individuals at the self-

incompatibility locus (S-locus) with a genotyping pipeline (Genete et al. 2019) using raw Illumina 

reads from each individual and a database of all available sequences of SRK (the self-

incompatibility gene expressed in the pistil) from A. lyrata, A. halleri and Capsella grandiflora 

(source: GenBank and unpublished sequences). Briefly, this pipeline uses Bowtie2 to align raw 

reads against each reference sequence from the database and produces summary statistics with 

Samtools (v1.4) allowing to identify alleles at the S-locus (S-alleles). Coverage statistics allow to 

reliably identify homozygote versus heterozygote individuals at the S-locus. Genotype data was 

used to compute population genetic statistics using Fstat (Goudet 2005): number of alleles per 

sample, sample allelic richness (a standardized estimate of the number of alleles taking into 

account differences in sample sizes among populations, computed after the rarefaction method 
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described in El Mousadik and Petit (1996), gene diversity (expected heterozygosity under Hardy-

Weinberg hypotheses), and FST (unbiased estimate of the among population fixation index). 

2.1.8 Identification of gene functional groups  
FST, dxy and π were estimated for all genes according to the A. lyrata gene annotation v1.0.37 with 

PopGenome and as described above for the genomic windows. Genes that had functions involved 

in light, cold, flowering, plant development and dormancy were determined based on the gene 

ontology of the sister species A. thaliana. To explore whether the aforementioned groups of genes 

had genetic differentiation estimates that were significantly different from the genome-wide 

background, I performed a non-parametric, two sample Kolmogorov Smirnov test (Marsaglia et 

al. 2003) between the gene group of interest and the rest of the genomic genes identified in A. 

thaliana and belong in a GO group (ks.test function in R). 

2.1.9 Comparative analysis of growth rate and biomass accumulation in a common 

garden experiment 
I propagated clonally 10 genotypes from SP and 10 from PL to study growth in a common garden 

setting. The experiment was initiated in September 2017 and ended August 2018 and took place 

at the garden of the University of Cologne. During winter, the presence of vegetative plant material 

was scored during periods of prolonged frost, as well as the two subsequent months. Throughout 

the growing season (March to August), I scored monthly diameter size, in millimeters, as a proxy 

for vegetative growth. At the end of the growing season, I harvested the above ground material to 

estimate the dry to fresh weight ratio of the plants as a proxy for the plants’ biomass. The 

phenotypic data are provided as Appendix Table 1. Differences between the two populations were 

tested in R with linear mixed models using the library lme4 (Bates et al. 2015). The model included 

population and month of the measurement taken as fixed effects. The genotype and replicate 

number were included as random effects in order to correct for pseudoreplication resulting from 

sampling the same individuals multiple times throughout the experiment. Significance levels were 

estimated with a type-II likelihood-ratio-test using the function Anova, from car library (Fox and 

Weisberg 2019).  

We estimated the per individual heterozygosity level (inbreeding coefficient F) for the derived 

sites, using vcftools. The phenotypes of the clonal plants were averaged per genotype and 

correlated to F and genomic load using spearman’s rank correlation (ρ).  
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2.1.10 Seedling growth of between and within population crosses in controlled 

conditions. 
Seeds from random within population (within SP and within PL) and between population crosses 

were produced in controlled environment (see for more details section 2.2.1). The seeds were 

stratified on wet filter paper in the dark and +4oC, for 4 and 7 days the SP and 7 PL seeds, 

respectively. The hybrid seeds were stratified as long as their mother population would. 

Subsequently, the seeds were allowed to germinate in 20oC, 16 hrs of daylight. Each seedling was 

transferred to pots as soon as the cotyledons were fully open and were transferred to a walk-in 

growth chamber (Dixel, Germany) set at +12oC and 16 hrs of daylength. The light intensity was 

adjusted via the light ratio of the LEDs (LED Modul III DR-B-W-FR lights by dlicht®).The LEDs 

were set at 100% intensity of blue (440nm), red (660nm) and white light with total measured 

intensity of 224 +/- 10 μmol * sec-1 *m-2 . During both experiments a light pulse of far red (750nm) 

was implemented for 10mins at the end of the day. 

For each plant, the days till they have 6, 10 and 25 leaves were estimated. When they had 25 leaves, 

the rosette diameter was also measured. The data were analysed with the R library lme4, with 

population (SP, PL or hybrid) as the fixed effect and individuals identification number as random 

effect, to correct for pseudoreplication. Significance levels were estimated with a type-II 

likelihood-ratio-test using the function Anova, from car library (Fox and Weisberg 2019).  
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2.2 Chapter 2: The adaptive potential of gene expression variation 

2.2.1 Preparation of Inter-population Crossings and plant material generation 
I crossed six plants from SP with six plants from PL to obtain inter-population hybrids. The 

parental individuals were propagated clonally and vernalised for nine weeks in 4oC and 12 hours 

daylength, before being transferred to greenhouse conditions till they flowered. Crosses were 

performed so that everyone from one population was crossed with two individuals from the other 

population. All crosses were reciprocal, which means that each individual plant was used as both 

pollen receiver and donor, to be able to control for maternal effects. Since the exact same plants 

were used for the reciprocal crosses, the resulting seeds are considered full siblings and they are 

termed “family”. Each family’s members are half-siblings with the members of at least another 

family with one parent common. Details about the resulting crossing scheme, families, and their 

kinship are given in Table 2.  

For each reciprocal cross, I germinated between 4 and 10 plants as described in section 2.1.10. 

Once the cotyledons were fully open, the plants were transferred to pots and placed into a walk-in 

growth chamber (Dixel, Germany) set at 12oC, 16 hrs of daylength. The light conditions were the 

same as the HL treatment described in section 2.1.10. We sampled the individuals when the 10th 

leaf was visible on the rosette. All samplings were performed at 4 hours Zeitgeber Time. Two 

families (annotated as fam11 and fam12 in Table 2) did not germinate well, and the remaining 

individuals died before producing the 10th leaf and thus these families had to be removed from the 

subsequent analysis. 

Table 2: Information about the full sibling families used in the analysis of Chapter 2 and 3. For each full 

sibling family, the SP parent sequence ID, the PL parent sequence ID and the number of full-sibling 

samples sequenced are provided.  

Family SP parent PL parent Number of family 

members 

Fam01 70539 10a 11 

Fam02 70539 80936 18 

Fam03 70535 80936 13 

Fam04 70535 5a 12 

Fam05 70537 6a 9 

Fam06 70536 2a 8 
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Fam07 70544 6a 20 

Fam08 70544 5a 14 

Fam09 70545 2a 6 

Fam10 70545 10a 6 

Fam11 7056 11a 0 

Fam12 70537 11a 0 

Fam15 70539 2a 4 

Fam16 70545 80936 12 

 

2.2.2 RNA extractions and data preparation 
We extracted RNA and DNA using the AllPrep DNA/RNA Mini Kit (QIAGEN, USA). We used 

custom primers to amplify DNA around regions that the restriction cut enzyme PvuII could not 

digest at a specific position within one of the two populations. The forward primer sequence was 

5’-GCACAAGACTGCTGTAACGC-3’ and the reverse primer sequence was 5’-

AATGGCCTCCCGTATTTGCA-3’. Then the amplified area was digested and visualised with a 

0.8% agarose gel. A sample from SP or PL would have unique sized bands, while a hybrid between 

the populations would show all the possible bands. Thus, we confirmed that all the samples were 

crosses between the two populations, by heterozygosity at the site. The amplification and digestion 

protocols can be found in the Appendix. RNA quality and quantity were checked with Qubit 4 

Fluorometer (Thermofisher Scientific, Germany), 2100 Bioanalyzer (Agilent, USA) and a 0.8% 

agarose gel. Whole transcriptome sequencing for 133 plants was performed in 4 subsequent 

batches at the former Cologne Center for Genomics (now West Germany Center). We sequenced 

75bp long RNA, paired end with average depth 80X. Sequence quality was checked with FastQC. 

The first 3 bp and unpaired reads were discarded with Trimmomatic v0.36 (Bolger et al. 2014). 

Transcriptome mapping against the A. lyrata v1 (Hu et al. 2011) reference genome was performed 

with STAR v2.5.3 (Dobin et al. 2013) using standards settings plus a cut off for maximum indel 

length of 10kbp. The ribosomal RNA was identified and removed based on the A. lyrata genome 

annotation v37 and use of bedtools subtract (Quinlan and Hall 2010).  

All the reciprocal crosses had been performed in the greenhouse, which is not pollinator free. To 

make sure that all the parents were the ones we intended and not the result of natural pollination, 

we assigned parents to each hybrid sample. The SNPs of the hybrids’ transcriptome as well as of 
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the parental genome sequences were called using samtools v1.5 and bcftools v1.5 (Li et al. 2009). 

The sites were filtered based on their quality (minimum 60), depth (minimum 10) and minor allele 

frequency (minimum 0.01), using vcftools v0.1.15 (Danecek et al. 2011). All indels were removed 

and no missing sites were allowed. I used custom python scripts (see Appendix) to calculate the 

genetic distance between the hybrids and the parental genomes. The genetic distance between two 

lines was estimated as: 

((Number of pairwise differences / Number of comparisons) * Number of variant sites) / Number 

of non-variant sites 

Furthermore, the relatedness between all individuals was estimated with vcftools. PCA of the 

samples was performed with R Statistical Language (R Core Team 2018) and specifically using 

the adegenet package (Jombart 2008). At the end of the analysis 22 samples were reassigned into 

new families. 

I calculated the gene counts per individual using htseq-count (Anders et al. 2015) and estimated 

the number of fragments per kilobase per million reads (FPKM) in R. Based on the total FPKM 

and log2 distribution of the gene counts, I removed two individuals from the analysis as they 

showed indications of lower transcriptome quality than the rest. 

2.2.3 Partitioning of gene expression variance to its components 
I partitioned the expression variance of each gene to its genetic and environmental components. I 

filtered the resulting gene list based on their expression level. Genes with total reads less than 130 

across all individuals, genes with median counts more than 180,000, as well as genes which 80% 

of the individuals had FPKM less than 0.31 were removed from the analysis. Then, for each of the 

remaining genes, the animal model (Lynch and Walsh 1998; Wilson et al. 2010) was implemented 

in R v3.6 statistical language (R Core Team 2018), via the package MCMCglmm (Hadfield 2010). 

MCMCglmm takes a Bayesian approach to fitting general linear model. The fitted multivariate 

models included the population of the mother as a fixed effect, to account for the different 

population origin of the parents. Random effects included the additive and dominance matrix as 

well as the identity of the mother plant to correct for maternal effects. The model, thus followed 

the following formula: 
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log10(transcript_counts + 1) ~ Population of Mother Plant + (1|Additive Matrix) + (1|Dominance 

Matrix) + (1|Mother Plant). 

The prior distribution for both fixed and random effects was an inverse gamma (0.001; 0.001). The 

counts were transformed to fit a gaussian distribution. Each model was run twice, for 2.2 million 

iterations, from which the first 200,000 iterations were discarded and every 2,000th iteration was 

sampled (see Appendix). To correct for poor model fit, I removed from the dataset genes that at 

least one of random or fixed effects had effective size less than 500. Additionally, I removed genes 

from the analysis that the Markov chains showed low quality of convergence based on Gelman 

Rubin criterion values less than 1.1 (Gelman and Rubin 1992). In the end, we used the expression 

counts of 17,657 genes for the rest of the analysis.  

For each gene, the additive (VA), maternal (VM), dominance (VD) and residual (VR) variance was 

extracted from the model. The sum of the four variances comprises the total phenotypic variance 

(VP), while the sum of the VA and VD is the genetic variance (VG). All variances are presented as 

proportion of VP. Note that the narrow sense heritability corresponds to the estimated proportion 

of VA out of total VP and the broad sense heritability to the estimated VG / VP. The above analysis 

was implemented for the growth rate of each plant, which was defined as the number of days 

between potting and sampling.  

Furthermore, for each gene we run an additional linear mixed model, excluding the dominance 

matrix from the random effects, and compared it to the original model. The best fitting model 

selection was done based on the Bayesian Information Criterion (BIC). We identified 26 genes 

that the inclusion of the dominance matrix did not improve the inference of the model.  

I tested for potential clustering of the data and therefore non-independence of the phenotypes by 

firstly estimating the pairwise correlation of all the genes in the dataset. To cluster the genes, the 

pairwise ρ values were transformed to pairwise Euclidean distance with the formula D = (1-ρ)/2. 

Hierarchical clustering was done in R with the function hclust (Müllner 2013). Potential clusters 

were identified by examining the within groups sum of squares for clusters between 1 and 300. 

The gene tree then was cut with cutree function in 23, 50, 100 and 200 clusters. The impact of 

clustering on the genes was tested by correlating the groups’ median dominance, additive, and 

transcript length with the number of genes within each cluster. 
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Gene ontology enrichment analysis for decreasing values of VA and VD were performed as 

described above in section 2.1.6. For each enrichment performed, the gene universe was the list of 

orthologues genes with A.thaliana present in the A. lyrata genome. The p value thresholds were 

estimated by permuting the gene identity 1,000 times.  

2.2.4 Correlation of genome architecture, selection and population genetic parameters 

with dominance and additive genetic variance 
I aimed to assess whether there is a relationship between the genetic variance components and 

transcription factor binding sites, gene properties and population genetic features of A. lyrata 

genes. Dr. Hannes Dittberner and I collaborated to use a database created by Dr. U. Göbel, to 

extract the counts of each transcription factor binding site in all genes of A. lyrata. We treated the 

count of each TF binding site per gene as a separate feature and additionally determined the total 

number of TF binding sites per gene, the number of exons, the transcript length, and the gene 

length. Furthermore, we determined the mean value of the following population genetic features 

for each gene: FST, Tajima’s D, SNP density per kb, dxy and π (per population of origin) as 

described in section 2.1.6. Additionally, we categorized each gene based on whether it is located 

within a selective sweep area defined as described in section 2.1.6, and if the gene is differentially 

expressed between at least one pair of families. The differentially expressed genes (DEG) were 

estimated using the R library DESeq2 (Love et al. 2014) and testing for a family effect. The 

significant change in gene expression level was tested based on corrected p values for multiple 

testing. 

We trained a random forest model using the ranger library (Wright and Ziegler 2017) with VA or 

VD as the response variable and all other variables mentioned above as predictors. We set the 

number of trees of the forest to 500, the number of variables to possibly split at each node (mtry) 

to 200 and the impurity mode to impurity_corrected. From the trained random forest, we extracted 

the relative importance (i.e. explanatory power) of each predictor variable as well as the out-of-

bag prediction error, which is informative about the predictive power of the model. Finally, we 

estimated a p value for each predictor variable using the “Altmann” method, using 60 

permutations. 

I explored further the impact of the genome architecture on VA and VD by, firstly correlating the 

VA, and VD values with the transcript and total length by using spearman’s ρ via the R function 

cor.test. Then, the combined effect of transcript length and median gene expression, correcting for 
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the level of broad sense heritability, was estimated by a generalized linear model in R, with 

function glm and poisson distribution of the residual variance. Moreover, the difference between 

gene length for significantly enriched Gene Ontology categories was tested with lme4, having the 

variance type as fixed effect and the Gene Ontology category as random effect, to correct for 

pseudoreplication. 

To investigate the level of constraint of the groups of genes with different levels of genetic variance 

in the PL and SP populations, I grouped the genes in four categories based on the different 

proportions of the additive, dominance, genetic and a combination of residual and maternal 

variance as a group with little genetic variance. Additionally, a random set of 3,500 genes was 

used as a control group. Dr Kim A. Steige and I collaborated on assessing the distribution of fitness 

effects (DFE) using a combination of general python functions, ai and fitai, as described in 

section 2.1.4. The confidence intervals for each group were based on 200 bootstrap replicates for 

each group. Significant differences between the groups were calculated by pairwise comparisons 

within each bin of the DFE (0-1, 1-10 and 1-inf) by using the union of the bootstrap values to 

calculate what proportion of the mutations belong to the same group, multiplied by 2, to account 

for the fact that the test is one-sided (Keightley and Eyre-Walker 2007).  
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Chapter 3: Polygenic basis of gene expression in Arabidopsis lyrata 

2.3.1 Genome wide association study for identifying trans effects on gene expression 
I used the SNP calls of the 131 available hybrid transcriptomes to identify trans effects using the 

Genome Wide Association study (GWAS) method (Kang et al. 2010; Korte and Farlow 2013), 

with the corresponding R packages downloaded from https://github.com/arthurkorte/GWAS. I 

filtered the SNP calls with vcftools to maintain only biallelic sites, with no missing information in 

any sample, minimum depth of 10 reads per sample, minimum SNP calling quality of 30 and minor 

allele frequency of 0.05. The remaining 127,585 SNPs were used to estimate the kinship matrix 

with the function emma.kinship. The log transformed counts of each of the 17,657 genes were 

successively used as the phenotypic input for each GWAS. I retained the top hits for each GWAS 

using the Bonferonni cut off (p = 3.918956e-07) to correct for multiple testing. Moreover, we 

checked the coefficient of variance (cv) of gene expression between the groups of samples with 

specific genotype on the site. If the cv was smaller than the 25th percentile of their distribution, it 

was removed from the further analysis.  

2.3.2 Estimation of cis regulatory variation within the hybrids by allele specific 

expression 
Dr F. He and I used 105 out of 131 samples that were available at the time of the analysis to 

estimate the allele specific expression in the between SP and PL crosses. All transcriptome 

sequences and genome sequences were mapped as described in sections 2.2.1 and 2.1.1, 

respectively. We used the default pipeline of GATK variant caller v4.1.1.0 (McKenna et al. 2010) 

to call SNPs in the whole genomes of the SP and PL parents. Those SNPs were contrasted to the 

transcriptome SNPs called by freebayes v1.3.2-38-g71a3e1ce (Garrison and Marth 2012) to assign 

population origin in the hybrid samples. For each gene, the median depth of the SP and the median 

depth of the PL allele were estimated from the vcf files. The deviation from the 1:1 ratio for each 

gene per sample was tested with a chi square test. The p values were corrected for multiple testing 

using the Bonferroni correction.  

We used the whole genome sequence of two extra sample from fam03 and fam08 to see for 

possible mapping errors. We mapped the genomes using bwa mem, called SNPs with freebayes 

and identified population origin of the alleles as described above. Subsequently, we tested for the 

deviance of the allelic depth from the 1:1 ratio and we removed from the transcriptome dataset of 

https://github.com/arthurkorte/GWAS
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fam03 and fam08 all the alleles that deviated significantly from the ratio as they showed signs of 

mapping bias towards the allele of one of the two populations. 

2.3.3 Allele specific ratio analysis 
I calculated the ratio of allelic depth for all genes using the formula : 

Ratio = log10 ((SP depth +1) / (PL depth + 1)) 

Defining the ratio that way allowed to know that all the genes with ratio above 0 had overexpressed 

the SP allele and the genes with ratio below 0 had overexpressed the PL allele. In the case that the 

ratio was equal to zero, then the two alleles are expressed in the same quantity. Also, adding 1 to 

both allelic depths allowed me to define the ratio for those genes that one of the two alleles is not 

expressed. Genes with total depth less than 20 were removed from the analysis. 

Allele specific expression (ASE) is defined for the genes with significant deviance of the allelic 

depth from the 1:1 ratio. For each family, I defined genes as ASE for the family, if they are ASE 

in at least 30% of the individuals. An ASE gene was polymorphic for one population, if it fullfilled 

the following two criteria. Firstly,  the allele from that population should have been overexpressed 

in the full sibling families with common parent the plant from that population. Secondly, the 

population specific allele should be overexpressed within the cross in more than two instances of 

half siblings comparison. 

We used the list of ASE and polymorphic genes to perform gene ontology enrichment analysis, as 

described in Sections 2.1. Moreover, we used the population genetic parameters, as well as VA and 

VD values estimated previously, to explore for signals of genetic differentiation for the ASE genes. 

All the above analysis was performed with R statistical language. 
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3. Results 
 

3.1 Chapter 1: Genetic Diversity and adaptive evolution in a range-edge population 

3.1.1 Demographic history of three European A. lyrata ssp. petraea populations confirms 

a scenario of range expansion 

I analyzed whole genome sequence data for 46 Arabidopsis lyrata individuals, of which, 22 were 

collected in a range edge population in Norway (Spiterstulen, SP), and 17 and 7 individuals from 

two core populations in Germany (Plech, PL) and Austria (a scattered sample, AUS; Figure 2a), 

respectively. A principal component analysis (PCA) confirmed that the sample was partitioned in 

three geographically and genetically distinct populations. The first principal component (PC) 

explained 24.95% of the variance, separating the Northern site from the two Central European sites 

(PL and AUS). The second PC (6.82%) differentiated the AUS and PL sites. AUS individuals were 

more scattered than SP and PL individuals, presumably because AUS individuals were collected 

over a broader area (Figure 2b). Admixture analysis showed that the samples formed three 

populations, without indication of admixture between the populations. The samples were well 

described with K=2 clusters (cross-validation error, cv = 0.397). The SP individuals formed a 

unique cluster, while PL-AUS individuals grouped together in one cluster. The second most 

probable scenario (cv = 0.419) was K=3, with each population forming its own cluster (Figure 2c). 

I further estimated the FST across 10 kb non-overlapping windows along the genome. Mean FST 

was 0.231 (median of 0.232) and 0.234 (median of 0.236) for SP vs. PL or AUS, respectively. 

Between PL and AUS, differentiation was much lower, with a mean FST value of 0.079 (median 

of 0.047). Thus, most of the genetic differentiation resides between Northern and Central European 

populations and not between PL and AUS. Average number of nucleotide differences between 

pairs of individuals from distinct sites (dxy) confirmed the pattern of inter-population 

differentiation (Table 2). Within populations, nucleotide diversity was estimated as the average 

number of pairwise differences per sites (π) across the same non-overlapping 10 kb windows. 

Mean nucleotide diversity of the genomic windows was π=0.0081, π=0.0067 and π = 0.0055 for 

PL, AUS and SP, respectively (Table 3).  
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PCA, Fst and STRUCTURE provide measures genetic differentiation between individuals and 

populations. Genetic differentiation, in turn, is a result of the time since divergence, the intensity 

of gene flow, and the size of the population. Two populations could have split a long time ago, and 

nevertheless remain genetically similar if their population size is large and/or if there is gene flow. 

Conversely, populations could be genetically differentiated if they experienced a strong reduction 

in population size, even if they split recently. To identify the most likely demographic history 

explaining the observed pattern of genetic differentiation between populations, we used our dataset 

to model the demographic history of the three populations with fastsimcoal2 (Excoffier et al. 

2013).We tested models assuming different population split times. Model selection based on the 

Akaike information criterion (AIC) indicated that it was significantly more probable that the 

ancestral population of SP and PL (SP, PL) split from the AUS lineage first (Table 3; Figure 3b). 

Divergence between (SP, PL) and AUS (T) was estimated to have occurred approximately 292,210 

generations ago (CI: 225,574 – 336,016). The split between SP and PL was estimated to have 

occurred more recently, approximately T = 74,042 generations ago (CI: 51,054 – 100,642). 

Demographic modelling further indicated that the most probable migration scenario entailed 

historical migration between all populations. The model indicated that gene-flow was higher 

between PL and AUS (PL to AUS, 4Nem =2.113, (CI: 1.668 – 6.771) and from AUS to PL 4Nem= 

0.039 (CI: 0.05 – 0.125)) than between SP and PL (SP to PL 4Nem =  0.038  (CI: 0.013 – 1.699), 

and PL to SP 4Nem = 0.162, (CI: 0.062 – 1.924).  

 

 

Figure 2: Population differentiation of 3 A. lyrata populations a. Geographical distribution of the Spiterstulen (SP), 

Plech (PL) and Austrian (AUS) populations. b. Principal Components analysis of SP, PL and AUS. The first Principal 

Component (PC) explains 24.95% of the sample variation and the second PC explains 6.82%. Within the PCA plot the 

FST values between all the population pairs are given. c-d. Observed, and estimated site frequency spectra of SP and 

PL used for the fastsimcoal analysis. e. Admixture analysis results for all samples. From top to bottom, the clustering 

in 2, 3, 4, or 5 clusters is shown. The samples are arranged in the same order in all five panels, with SP samples shown 

first, then PL and lastly AUS. According to the cross-validation error the most probable clustering is the K=2, and 

second best the K=3. 
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Table 3: Summary of genome wide statistics calculated along 10kb windows in each of the three populations. The 

mean nucleotide diversity (π), Tajima’s D, FIS, and differentiation (pairwise FST above the diagonal and dxy values 

below the diagonal and in bold) between the 3 populations. Finally, the ratio of synonymous to non-synonymous 

derived alleles (Pn/Ps) are given. Whenever it is applicable, the 75th percentile of the distribution is given between 

parenthesis. 

 Population Watterson’s 

θ 

Π Pn/Ps Differentiation (Fst , dxy) TajD FIS 

SP PL AUS 

SP 0.00512 

(0.00682) 

0.0055 

(0.007) 

0.5028 -  0.231 

(0.349) 

0.234 

(0.367) 

1.23 

(1.85) 

-0.193 

(0.130) 

PL 0.0093 

(0.0121) 

0.0081 

(0.011) 

0.4826 0.0094 

(0.013) 

 - 0.079 

(0.129) 

0.31 

(0.70) 

-0.04 

(0.17) 

AUS 0.00768 

(0.0102) 

0.0067 

(0.0096) 

0.4612 0.0083 

(0.012) 

0.0079 

(0.011) 

 - 0.24 

(0.59) 

- 

 

In addition, the estimated effective population sizes before and after divergence events indicated 

bottlenecks in all populations. The size estimate of the ancestral population reached Ne= 839,169 

(CI: 823,959 – 877,924). The effective population size (Ne) of SP was reduced approximately 6-

fold after it diverged from PL, from Ne= 206,610 (CI: 100,945 – 308,029) to Ne=35,479 (CI: 

21,624 – 54,855), respectively before and after the split. In contrast, the PL population experienced 

a weaker initial bottleneck with Ne reduced by 40% after the split from SP: 127,100 (CI: 87,666 – 

162,171). Both SP and PL also experienced more recent population size changes, with a slight 

increase in SP to a current Ne of 40,886 (23,081 – 47,713), approximately 4,421 (CI: 2,755 – 

39,967) generations ago, and a very recent drop in PL to a current Ne of 11,190 (2,573 – 20,751), 

approximately 143 (CI: 4 – 361) generations ago. The population size in AUS decreased to 219,078 

(CI: 148,664 – 249,105) after splitting from an ancestral population shared with PL. We note, 

however, that the AUS sample consists of individuals collected from three closely located sites, 

and thus might reflect diversity at a coarser grain than the SP and PL samples.  
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Figure 3: Demographic analysis of 3 Arabidopsis lyrata ssp. petraea populations. a. Folded site frequency 

spectrum of synonymous sites for PL and SP b. Schematic representation of the best-fit demography model. 

Shown within the boxes are the effective number of diploid individuals (Ne), divergence times (horizontal 

black lines) are indicated in thousands (k) of generations, with the exception of the final bottleneck in PL, 

which occurred only 143 years ago.  The time since migration ended (horizontal red lines and numbers in 

red) is also indicated in thousands of individuals or generations. Width of the elements represents relative 

differences in Ne (in logarithmic scale), while time-differences in logarithmic-scale are represented by the 

height of the elements.  

 

 

 

Table 4: Selection criteria for the population divergence models tested. The three possible trees were 

compared based on the Aikake Information Criterion (AIC). The best fitting model is shown in bold. 

Split model Log Likelihood AIC Akaike weight 

(AUS, (PL, SP)) -1438975.068 2877964 1 

(PL, (AUS, SP)) -1439477.708 2878969 ~0 

(SP, (AUS, PL)) -1439527.678 2878809 ~0 
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Table 5: Selection criteria for the demographic model including migration. The three possible trees were 

compared based on the Aikake Information Criterion (AIC). The best fitting model is shown in bold. 

Migration model Log likelihood AIC Akaike weight 

No migration -1438975.068 2877964 ~0 

Current migration between 

PL and AUS 

-1439112.311 2878247 ~0 

Historic migration between 

PL and AUS 

-1438901.002 2877824 ~0 

Historic migration between 

all populations 

-1438455.012 2876936 1 

 

 

Table 6: Demographic parameters estimated for the complete data set are compared against two 

downsampled data sets. SP and PL datasets were reduced to 2/3 and 1/3 of their original sizes. 

N = effective number of diploids (Ne) 

T = time in number of generations 

M = population migration rate 4Nem 

NSP-H and NPL-H denote historic population sizes after population split, and TSP-H and TPL-H are times 

since population sizes changed to current estimates 

TISOL are times since migration ended 

Parameter 3/3 2/3 1/3 

NSP 40,886 43,607 46,809 

NSP-H 35,479 30,198 14,935 

NPL 11,190 9,041 2,606 

NPL-H 127,100 111,881 59,107 

NAUS 219,078 187,331 181,429 

NANC_SP-PL 206,610 233,398 197,094 
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NANC_PL-AUS 839,169 863,225 838,472 

TSP-H 4,421 3,390 4,134 

TPL-H 143 312 676 

TISOL_PL-AUS 22,308 27,453 4,912 

TISOL_SP-PL 61,148 59,642 20,622 

TSP-PL 74,043 65,341 33,507 

TPL-AUS 292,210 244,191 335,141 

 

 

Figure 4: Evidence of a strong bottleneck along the SP genome. a. Tajima’s D distribution for AUS, PL 

and SP calculated along the chromosomes in 10kb non-overlapping windows. b. Linkage disequilibrium 

decay in SP and PL given by SNP pairwise r2 as a function of the distance between the SNPs. For 

comparison, both populations were down-sampled to 12 individuals each. 
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To test the robustness of bottleneck inference to sample size, we also conducted the demographic 

modeling with down-sampled data sets (1/3 and 2/3 of SP and PL sample sizes). Even though 

down-sampling changed the Ne estimates, the fold reductions in population size remained 

comparable and the bottleneck events are always supported (Table 6). Furthermore, we observed 

a good correspondence between the observed population-specific SFS (Figure 3a) and those 

simulated under the best-fit demography model, indicating that the model captures the 

evolutionary history of these populations reasonably well (Figure 3c-d).  

I calculated Tajima’s D values in 10kb windows for each population (Figure 4a). The distribution 

of Tajima’s D values for SP was shifted towards positive values (mean = 1.230, median = 1.286), 

which was consistent with the inferred demographic history of a strong recent bottleneck in SP. 

Tajima’s D values for PL and AUS were also mainly positive (mean = 0.313, median 0.265 for PL 

and mean =0.240, median =0.151 for AUS) but both were significantly lower than in SP 

(Kolmogorov-Smirnov, KS test p < 2.2e-16 in both cases). The two distributions also differed 

significantly (KS test p < 2.2e-16). 

Additionally, analysis of linkage disequilibrium (LD) decay further confirmed the stronger 

bottleneck experienced by the SP population. LD decay was calculated on the subsample of 12 

field collected SP individuals to ensure that native LD levels were analyzed (individuals obtained 

from crosses in the greenhouse were removed). LD was halved within 2.2 kb in SP, which is 

considerably slower than for an equally sized sample of PL individuals (LD halved within 0.5kb; 

Figure 4b). 

Demographic modeling indicates that the large and fairly stable effective population sizes along 

with the persistence of gene flow for quite some time has resulted in a modest population 

differentiation between PL and AUS, despite their early split. By contrast, a more severe bottleneck 

and the lack of gene flow led to a stronger differentiation between SP and the other two 

populations. Demographic modeling therefore confirmed that SP is a range-edge population that 

can be contrasted to the more range-core populations PL and AUS (Muller et al. 2008; Pyhäjärvi 

et al. 2012; Mattila et al. 2017). This supports a scenario of colonization in Scandinavia with 

genetic material from Central European glacial refugia, a history that is common to several plant 

species (Clauss and Mitchell‐Olds 2006; Pyhäjärvi et al. 2007; Ross-Ibarra et al. 2008; Ansell et 

al. 2010; Schmickl et al. 2010; Pyhäjärvi et al. 2012; Laenen et al. 2018). 
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3.1.2 The distribution of fitness effects  

To infer the efficiency of negative selection, we estimated the distribution of fitness effects of new 

mutations in both range-edge (SP) and core (PL) populations, taking the demographic history into 

account (Williamson et al. 2005; Boyko et al. 2008). As the AUS population had a smaller sample 

size, as well as individuals taken from three different local sites, it was excluded. For SP and PL, 

we used a modified version of the software fit∂a∂i (Kim et al. 2017). We also fit a simplified 

demographic model that excluded AUS to the 4-fold SFS using ∂a∂i (Gutenkunst et al. 2009). This 

model was compatible with the complex model described above but assumed a larger population 

size in PL to account for migration from AUS. The demographic model showed a very good fit 

with (putatively neutral) SFS at 4-fold degenerate sites of both PL and SP (Figure 1a-d). 

Interestingly, the simplified inferred model in SP, which consisted of a bottleneck followed by 

exponential growth, corresponded very well to the scenario expected for range-core and -margin 

populations in an expanding species (Figure 1a-b). Distributions of fitness effects of new mutations 

(DFE) were estimated based on the non-synonymous (0-fold) folded SFS and taking the 

demographic history into account. We estimated the shape and scale parameters of a gamma-

distributed DFE by fitting the demographic model and the 0-fold SFS of both populations 

(shape=0.213, scale=552.394, Figure 1c-d). Using the estimated gamma distribution of effects, we 

predicted for each frequency bin, the proportion of variants within four bins of selection 

coefficients (Figure 5a;c-d). The strength of s among segregating variants differed between the 

populations. Neutral and nearly-neutral mutations were found to contribute to a greater proportion 

of variation in the PL population compared to SP, whereas mutations with a stronger s were found 

to contribute more to variants segregating in SP (Figure 5a). Additionally, as a robustness check 

against our assumed non-synonymous mutation rate and gamma-distributed DFE, we used a 

multinomial model to predict the DFE fitting only the observed proportions in the folded 0-fold 

SFS. In this case, the best fit DFE was a point mass at 2*Nanc*s=1.2, indicating that only slightly 

deleterious mutations were segregating in the two populations. Although the latter model ignores 

variation too deleterious to show up in the sample, we found that fixing the proportion of strongly 

deleterious new mutations to 44% provides a good fit to the observed 0-fold SFS in both 

populations, indicating that the Ne.s estimate of 1.2 was a reasonable approximation to the strength 

of selection against mildly deleterious non-synonymous variants (Figure 5b).  
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Figure 5: Comparative efficacy of selection and genomic burden in SP and PL. a. ratio of PL/SP of the proportion of 

variants for each s category and each allele frequency bin. Values below 1 indicate that mutations of a given size effect 

are less abundant in PL than in SP, within each frequency bin. This estimate is based on the gamma distribution of the 

DFE given by fit∂a∂I and the expected SFS in each category of s. As a proportion of the total number of variants at each 

count, PL has more slightly neutral and nearly neutral mutations (orange lines) at low frequency and considerably less 

strongly deleterious mutations (purple lines). b. Difference in per-individual cumulative derived allele burden between 

PL and SP given as the ratio of PL/SP. The cumulative derived allele burden is based on the contribution of deleterious 

variants depending on their count in the population assuming the point s estimate of deleterious mutations. Low frequency 

mutations contribute more to the burden in PL – negative values indicate that an excess of up to 10 000 deleterious 

mutations with count 10 or less in the population accumulate in each individual in PL-, whereas fixed mutations (count 

28 in the population) play an important role in SP. The net difference, given by the end of the line, is 185. c. Distribution 

of selection coefficients for deleterious variants of each size category in each frequency bin of the SFS for PL d. 

Distribution of selection coefficients for deleterious variants of each size category in each frequency bin of the SFS for 

SP. 
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3.1.3 Estimates and Measures of accumulated burden in SP individuals 

The severe bottleneck in the range edge population is expected to have facilitated the fixation of 

derived variants. Because some of them are expected to be deleterious, we investigated whether 

the per-individual burden in SP was higher than in PL. The number of derived non-synonymous 

mutations per Mbp of each lineage has been shown to be an appropriate proxy for the genomic 

load of a population, because its expectation is unaffected by demographic events (Simons and 

Sella 2016).  

We used the inferred DFE to get an estimate of the expected burden in each of the two populations. 

SP and PL differed in the frequency of the variants contributing to the burden (Figure 5a). Low 

frequency mutations contribute more to the burden in PL, the core population. We inferred that an 

excess of about 10,000 slightly deleterious mutations of frequency below 30% were expected in 

PL, compared to SP. In the latter, instead, we inferred an almost equal excess of fixed derived 

mutations in the range-edge population (SP). Fixed mutations thus played a more important role 

in the estimated burden of SP individuals. The net difference, however, was comparatively small 

with an excess burden of 185 mutations per diploid genome in SP, compared to PL (Figure 5b). 

Although this number remains a crude estimation, it clearly indicates that the bottleneck in the 

range-margin population SP was not sufficiently long and severe to allow the accumulation of a 

much stronger burden.  

I also directly measured the accumulated burden of deleterious mutations per individual haploid 

genome in the range edge and core population by calculating the mean count of derived mutations 

per haploid genome and corrected by the total number of genotyped sites. As expected, the mean 

per-individual count of derived synonymous mutations did not differ significantly between SP and 

PL (p = 0.121, Table 7; Figure 5c-d). There was a shift towards a smaller average number of 

synonymous mutations per genome in AUS (Figure 6a), which likely reflects a residual effect of 

the overall lower genomic coverage of AUS individuals. Thus, AUS individuals had to be excluded 

from this analysis. For each of the other two populations, I estimated the mean count of derived 

non-synonymous mutations (Figure 6b). The average burden accumulated by SP (range-edge) 

individuals reached a mean 0.0123 non-synonymous mutation per site (CI: 0.0118 – 0.0127). For 

the core population, PL, the mean burden was 0.0117 (CI: 0.0113 – 0.0121), which is 4.9% less 

than in SP. Permuting individuals among populations revealed that the mean difference between 
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the two populations is significantly different from zero (p <10e-4 for SP vs PL). These estimates 

remained identical when we removed regions with signatures of selective sweeps from the analysis 

(Figure 6bc, see also Methods as well as results below). Based on the approximate total of 2M 

non-synonymous sites per genome, I deduce that there are about 1,200 additional derived non-

synonymous mutations per diploid genome in SP individuals, on average, compared to PL. Based 

on the estimated effect size of deleterious mutations above (point mass 2*Nanc*s estimated to be 

1.2), this excess would result in a fitness loss of approximately 1,200 * 1.2.10-6 = 0.014%. 

Although this is higher than the theoretical prediction, it is much less than the approximately 3% 

fitness loss predicted in simulations (Gilbert et al. 2017).  

I further used SNPeff (Cingolani et al. 2012) to identify mutations with a high deleterious impact 

and evaluate whether SP and PL could differ in the number of strongly deleterious mutations. 

Individuals in SP contained approximately 4.5% more such mutations (0.000164, CI: 0.000148-

0.00018) than in PL (0.000156, CI:0.000142-0.000171, Figure 6b; Table 7). Individuals in SP 

contained approximately 4.5% more such mutations (0.000164, CI: 0.000148-0.00018) than in PL 

(0.000156, CI:0.000142-0.000171, Figure 6b; Table 7). Bootstrap across genomic regions, 

however, showed that this difference was not significant, with many regions in the genome 

showing no detectable difference in the number of mutations with high deleterious impact 

(p=0.183, Table 7). This indicates that the bottleneck was not severe enough to allow detecting a 

reduction of selection efficacy against strongly deleterious mutations. 
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Table 7: Genomic load per population for synonymous, non-synonymous and high impact mutations as 

defined by SNPeff. Confidence intervals are provided within the parenthesis (see methods). The excess of 

mutations in SP was estimated by multiplying the genomic load difference by the number on non-

synonymous sites in the A. lyrata genome as estimated by SNPeff. 

Type of 

Mutations 
Total 

Number of 

Derived 

Positions 

Genomic 

load in SP 
Genomic 

load in PL 
Genomic 

load Ratio of  

SP to PL 

P-value Excess of 

mutations in 

SP 

synonymous 125,228 0.0245 

(0.0237-

0.0252) 

0.0243 

(0.0235-

0.0251) 

1.008 0.121 400 

non-

synonymous 
77,781 0.0123 

(0.0118-

0.0127) 

0.0117 

(0.0113-

0.0121) 

1.049 0.00099 1,200 

high impact 1,323 0.000164 

(0.000148-

0.0001800) 

0.000156 

(0.000142-

0.000171) 

1.099 0.183 16 

 

Figure 6: Accumulated burden per individual. a. The number of synonymous sites corrected by the total number of genotyped sites 

per sample for each population. For each population, the mean obtained during each bootstrap iteration is shown in color and the 

original mean is marked in black. The expectation is that all three populations should show no differences among the number of 

accumulated synonymous sites. The discrepancy noted between AUS and the other populations is the result of lower genome wide 

coverage, which lessened the power to detect derived mutations in this population. b. Comparison of genomic load in PL and SP, 

for synonymous, non-synonymous and high impact mutations. For each population, the genomic load was calculated as the mean 

number of non-synonymous corrected by the total number of genotyped sites for each sampled individual. The ratio of mean per 

individual genomic load of SP vs. PL is given. The distribution was established by bootstrap of the genome. c. Comparison of 

genomic load in PL and, for synonymous, non-synonymous and high impact mutations, when the areas with signatures of selective 

sweep have been removed. The values per category were not altered drastically compared to Fig 3c, which includes all the derived 

sites. For each population, the genomic load was calculated as the mean number of non-synonymous corrected by the total number 

of genotyped sites for each sampled individual. The ratio of mean per individual genomic load of PL vs SP is given, for 1000 

permutations. 
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3.1.4 SP and PL show similar growth rate in a common garden of the species in the range 

core.  

I further investigated whether a significant fitness erosion could be detected at the phenotypic level 

in the range edge population. I planted six replicate cuttings of 10 genotypes of each of the two 

populations in the common garden of University of Cologne, at a latitude that is comparable to 

that experienced in the species core range. The experiment was initiated early autumn and 

terminated a year later at the end of the growth season. During February, there was a week-long 

frost period, which resulted in 46% of SP plants to maintain their vegetative mass. In contrast, 

86% of the PL plants maintained their vegetative mass, which was significantly higher than the SP 

proportion (p=0.000183). However, two months later most plants started producing new leaves 

and finally 86% of both SP and PL plants had vegetative mass. From this point onwards, none of 

the other replicates recovered and thus were considered dead. The effect of month (p = 2.362e-05) 

and of population (p=0.0001298) on the plant vegetative mass presence between January and April 

was significant. This indicates that the plants originating from PL are better equipped to handle 

frost than SP plants, which usually are covered by insulating snow during winter. 
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Figure 7: SP and PL show similar growth rate in a 

common garden experiment performed in the range 

core of the species’ distribution. Six replicates of 10 

genotypes per population were grown for one year in 

common garden setting in Cologne, which has 

climate representative of the core range of the species 

distribution. a. Diameter size (mm) per population for 

each month of the growing season in Cologne. 

Population and Month had a significant interaction (p 

<2.23-16). The overall population effect was 

significant (p = 0.01403), even though SP and PL did 

not differ at the end of the growing season (August p 

=0.265). b. Biomass of the plants at the end of the 

experiment as the dry to fresh weight ratio. The 

populations did not differ significantly (p = 0.2873). 

c. Diameter size (mm) per population when seedlings 

of A. lyarata had 25 leaves under controlled 

conditions. Seedlings from within population and 

between population crossings (orange color) were 

used for this experiment. 
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Although individuals of SP had a comparatively smaller rosette diameter after winter, the rosette 

diameter as well as their accumulated biomass did not differ from that of PL individuals at the end 

of the growth season (GLM model, p=0.26, and p=0.28, for the population effects of rosette 

diameter and accumulated biomass, respectively; Figure 7), due the comparatively higher growth 

rate of SP individuals during the growth season (Month and Population interaction p < 2.2e-16). 

Furthermore, none of these fitness measure correlated with the per-individual burden (ρ = -0.111, 

p = 0.66 for weight; ρ = -0.149, p = 0.55 for diameter at end of the season), nor with the level of 

heterozygosity (ρ = 0.243, p = 0.34 for diameter at end of the season; ρ = 0.243, p = 0.29 for 

biomass), which was estimated as the inbreeding coefficient F. Seedling growth was also not 

impaired in SP. I compared the growth of seedlings, which were produced by crossing the available 

individuals within and between populations (see Material and Methods). While growing under 

controlled conditions, the seedlings did not require significantly different time to produce the same 

number of leaves (p = 0.4507) It is notable that the between population hybrids did not produce 

leaves at different rates from the SP or PL seedlings, even though the diameter size (p = 8.571e-

14***) was significantly different between the populations when they had 25 leaves. The SP had 

the largest rosette with median 43.01mm and PL the smaller diameters with median 22.79mm. The 

between population hybrids had intermediate values at 32.78mm diameter length 

These analyses show that despite its increased per-individual burden and the potential impact of 

recessive deleterious variants, the cumulative effect of these mutations in the SP population did 

not result in a detectable decrease in complex fitness component traits such as growth. This 

observation is in agreement with previous reciprocal transplant experiments involving the same 

set of A. lyrata ssp. petraea populations, which concluded that the SP population is locally adapted 

(Leinonen et al. 2009). However, it stands in strong contrast with the clear effect of range 

expansion detected on plant survival and population growth rate in the relative A. lyrata ssp. lyrata 

(Willi et al. 2018).  

3.1.5 Potential differences in recessive load in SP and PL 

Recessive mutations with deleterious effects can segregate at higher frequency in a bottlenecked 

population and thus lead to a genomic load in the population that is higher than predicted by 

measures of per-individual burden (Balick et al. 2015). To evaluate whether recessive deleterious 
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mutations may contribute to the genomic load in SP and PL, I tested whether the FIS distribution 

of non-synonymous mutations showed a departure from Hardy Weinberg expectations indicative 

of a selective removal of homozygotes. I found that both in range edge and core populations, the 

FIS distribution of synonymous and non-synonymous mutations was significantly shifted towards 

lower values, revealing an excess of heterozygous non-synonymous mutations (Figure 8, KS test 

p < 2.2e-16). The shift towards negative FIS values was more pronounced for the high impact 

variants, which were significantly different from the distribution of the synonymous sites (KS test 

p < 2.2e-16). This pattern suggests that, in both populations, offspring homozygous for deleterious 

alleles tend to be removed by selection. Compared to PL, the FIS distribution of all sites in SP was 

shifted towards negative values, indicating a stronger excess of heterozygotes in this range edge 

population (Figure 8; p<2.2e-16).  

While the FIS statistic is generally useful to detect excess homozygosity, revealing cryptic 

population subdivision or partial selfing, excess levels of heterozygotes genome wide is more 

difficult to explain. I verified that this result was not influenced by unanticipated mapping biases 

by using the mean read coverage of each population and the distribution of genic coverage to set 

depth read filters. Then, for each filter, I correlated the new gene FIS values with the median gene 

depth. Spearman’s ρ was in the range of -0.125 to -0.145 for SP and -0.126 to -0.164 for PL. 

Filtering stringency did not modify the correlation, indicating that the FIS bias that I specifically 

observe in SP is independent of read depth. In addition, I observed that SNPs with FIS = -1 were 

not clustered in the genome, as would be expected from paralogous mapping. In contrast, the 

distribution of the physical distance between 2 consecutive such SNPs was significantly shifted 

towards higher values than two consecutive SNPs with any FIS value (KS test for each population 

p < 2.2e-16). Therefore, I cannot fully rule out that this effect is not due to mapping inaccuracies, 

but it was independent from coverage thresholds or SNP density. It therefore suggests that the 

preferential removal of recessive homozygous might be more important in SP. Taken together, 

these data indicate that the per-individual burden we calculated may not fully recapitulate the 

deleterious load of the populations.  
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Figure 8: FIS distribution of SP and PL. a. The FIS of high, non-synonymous and synonymous sites of SP 

is shown. b. The FIS of high, non-synonymous and synonymous sites of PL is shown. c. In blue the FIS 

distribution for the PL individuals is shown, and in pink the FIS distribution for the field collected SP 

individuals is provided. 
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3.1.6 Selective sweeps in the range edge are broader than in the core but equally frequent  

I searched for the footprints of selective sweeps within SP and PL – the two populations with the 

largest sample sizes using the Composite Likelihood Ratio (CLR) test. CLR estimates were 

computed in windows along the chromosomes with SweeD (Pavlidis et al. 2013). Significant 

deviations from neutral expectation were defined by comparing the observed diversity estimates 

to neutral diversity estimates simulated under the demographic model obtained above. I used the 

overlap of outlier CLR and FST to identify putative selective sweep regions specific to SP or PL 

(and thus indicative of local selection). I detected signatures of local sweeps within both 

populations despite their large differences in recent effective population size. In SP, I identified 

1,620 local sweep windows, which grouped in 327 genomic regions of average size 7051bp and 

they cover 0.17% of the genome. Within PL, 745 windows, covering 104 genomic regions 

(average size 4,384bp; 0.87% of the genome), had PL specific signatures for sweep. In both 

populations, the sweeps were distributed along all the chromosomes (Appendix Table 2). Hence, 

the rate of adaptive evolution in the SP populations does not seem to have been compromised by 

the recent bottleneck. 

Genes within the genomic regions carrying a population-specific signature of a selective sweep 

were extracted and tested for functional enrichment. In SP, fifteen Gene Ontology (GO) terms 

were enriched among genes showing signatures of positive selection (significance based on 

permutation derived p threshold of 0.0295). Interestingly, the top three GO terms were related to 

plant growth in response to environmental stimuli: “cellular response to iron ion”, “response to 

mechanical stimulus” and “response to hormone”. This observation agrees with the higher growth 

rate displayed by SP individuals in the common garden experiment. In PL, three GO enriched 

terms were significant (p threshold of 0.02137) and they were “intra-Golgi vesicle-mediated 

transport”, “regulation of anion transport” and “hexose metabolic process” (Table 8). Some of 

these functions have been associated with abiotic stress reactions in plants (Howell 2013) and may 

indicate adaptation in PL to the absence of snow cover protection during the cold season.  

I further investigated whether specific groups of candidate genes carried signatures of adaptive 

evolution. Phenotypic differences in flowering time and especially selection related to the 

photoperiodic pathway, or to development have been shown to contribute to local adaptation in SP 

(Toivainen et al. 2014; Mattila et al. 2016; Hämälä and Savolainen 2019), as well as response to 
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abiotic factors such as cold and drought (Vergeer and Kunin 2013; Davey et al. 2018). I thus 

explored whether specific groups of genes associated with these traits carried signatures of 

adaptive evolution. I used the A. thaliana annotation to identify the A. lyrata orthologs of genes 

involved in these phenotypes. I then tested whether their FST estimates tended to be higher than the 

rest of the annotated genes (Table 9). An excess of high FST values was detected for genes involved 

in development and light (p = 0.018 and p = 0.036, respectively). Yet, genes related to dormancy, 

flowering, cold and water conditions did not exhibit significantly higher FST values than the control 

group (Table 9).  

 

Table 8: Gene Ontology (GO) categories that are significantly enriched for genes located within areas with 

signature of selective sweep in SP or PL. The GO ID number, the description of the term and the p value 

of the Fisher’s exact test (topGO) are provided. The p value threshold for determining the significance of 

the enrichment analysis was set by randomly picking genes to belong in area with signature of selective 

sweep, as described in the material and methods. Non significant GO.IDs are not shown. 

GO.ID Term P Population 

GO:0071281 cellular response to iron 

ion 

0.0043 SP 

GO:0009612 response to mechanical 

stimulus 

0.0066 SP 

GO:0009725 response to hormone 0.0080 SP 

GO:0009743 response to carbohydrate 0.0086 SP 

GO:1901699 cellular response to 

nitrogen compound 

0.0094 SP 

GO:0042592 homeostatic process 0.0150 SP 

GO:0019725 cellular homeostasis 0.0162 SP 

GO:0090304 nucleic acid metabolic 

process 

0.0165 SP 

GO:0009581 detection of external 

stimulus 

0.0200 SP 

GO:0046483 heterocycle metabolic 

process 

0.0203 SP 

GO:0016070 RNA metabolic process 0.0246 SP 
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GO:0042991 transcription factor 

import into nucleus 

0.024 SP 

GO:0006338 chromatin remodelling  0.0247 SP 

GO:1901360 organic cyclic compound 

metabolic processes 

0.0260 SP 

GO:0050801 ion homeostasis 0.0261 SP 

GO:0006891 intra-Golgi vesicle-

mediated transport 

0.0024 PL 

GO:0044070 regulation of anion 

transport 

0.0063 PL 

GO:0019318 hexose metabolic process 0.0141  PL 

 

Table 9: Comparative analysis of FST distributions for gene groups. The genes were grouped based on 

candidate adaptive traits in the populations, or based on functions related to environmental differences 

between SP and PL, compared to the rest of the genome. The adjusted p values for multiple KS tests are 

provided. 

 Gene Group Control Group Adjusted p 

Flower Athaliana GO annotated 

 

0.235 

Cold Athaliana GO annotated 0.331 

Water Athaliana GO annotated 1 

Light Athaliana GO annotated 0.0364 

Development Athaliana GO annotated 0.0183 

Dormancy Athaliana GO annotated 0.899 
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3.1.7 Negative frequency-dependent selection maintained S-locus diversity in the range-

edge population 

Despite a smaller effective population size in SP, strong negative frequency-dependent selection 

acting on the self-incompatibility locus effectively maintained or restored S-allele diversity. In SP, 

15 S-alleles (allelic richness was equal to 7.6) were detected across 22 individuals, with gene 

diversity at the S-locus equal to 0.828. These values were only slightly lower than to those 

observed within the 18 PL individuals (14 S-alleles; allelic richness = 8.1; gene diversity = 0.877) 

and the 7 AUS individuals (10 S-alleles; allelic richness = 10.0; gene diversity = 0.940) (Table 

10). High S-allele diversity in SP (while a drastic reduction of the diversity at the S-locus would 

have been expected if a shift in the mating system had occurred), suggests that individuals are 

highly outcrossing and thus that the past bottleneck does not seem to have affected the mating 

system. The S-locus FST between SP and either PL or AUS was equal to 0.027 or 0.037, 

respectively, values much lower than the whole genome (0.231 or 0.234, respectively) as predicted 

by (Schierup et al. (2001). 

 

Table 10: S –locus allelic diversity has been maintained within SP. The number of S-alleles for each 

population sample, as well as the number of individuals is provided. For each population the allelic richness 

has been calculated according to a rarefaction protocol with N=7. 

Population S – alleles Allelic Richness Sample Size 

SP 15 7.6 22 

PL 14 8.1 17 

AUS 10 10.0 7 
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3.2 Chapter 2: The adaptive potential of gene expression variation 

3.2.1 Gene expression variance is mostly not heritable 
Whole transcriptome sequences of controlled inter-population crosses were used to analyse the 

gene expression variance of the species. The crossing scheme included the production of full-sib 

and half-sib families (see Methods), as this pedigree allows the accurate partitioning of the genetic 

variance into additive (VA) and dominance (VD) genetic variance (Falconer and Mackay, 1996; 

Lynch and Walsh, 1998). In total, I grew 131 individuals, from 10 full sibling families, each of 

which had between 4 and 20 members (Table 2). I implemented the animal model using the R 

library MCMCglmm (Hadfield 2010; see Material and Methods) to partition the total phenotypic 

variance (VP) of 17,657 expressed transcripts to VA, VD, residual variance (VR) and maternal 

variance (VM). The sum of the VA and VD corresponds to the total genetic variance of the gene 

expression.  

Most of the phenotypic variance could be attributed to genetics, as VG composed more than 50% 

of the total phenotypic variance for 67.7% of the genes (Figure 9). However, the additive and 

dominance variance contributed to the phenotypic variance disproportionally, with 6.39% and 

25.4% of the transcripts having more than 50% of VP explained by VA or VD, respectively. I 

compared the generalized mixed model against a model that does not include the dominance 

matrix. Thus, it was possible to check whether VD contributes significantly to the phenotypic 

variance. Based on the model’s AIC values, all but 26 genes’ expression was described better by 

the inclusion of the dominance matrix in the model. Most full-sib families included reciprocal 

crossings between the parents, and thus, I estimated the proportion of maternal variance (VM) out 

of the VP as being close to zero, with mean and median values of 0.088 and 0.075, respectively. I 

tested for effect of the population of origin of the mother plant on the gene expression level, by 

including the mother’s population as fixed effect. There was no significant effect of the mother 

plant population on any genes’ expression (Bonferroni corrected threshold of p = 2.486e-06). Thus, 

gene expression variance is genetic and mostly attributed to the fraction of genetic variance that is 

not heritable. 
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Figure 9: Gene expression variance is mostly described by genetic dominance variance. a. Proportion of 

the total phenotypic variance for each of the 17,657 genes’ expression, which is composed of residual (Vr), 

maternal (Vm), additive (Va) and dominance (Vd) variance. The horizontal dashed line marks the 0.5. b. 

Proportion of the genetic variance that is additive or dominance variance, per gene. The horizontal dashed 

line marks the 0.5. c. Distribution of the Narrow Sense Heritability or else Va. Narrow sense heritability 

was estimated as the additive variance divided by the total phenotypic variance. d. Distribution of the Broad 

Sense Heritability or else Vg. Broad Sense heritability was estimated as the sum of additive and dominance 

variance divided by the total phenotypic variance. In both c. and d. the red and blue dashed lines mark the 

mean and median of the distributions, respectively. 

3.2.2 Additive and dominance genetic variance accumulate in distinct functions 
The distributions of the additive and dominance variance along the genome are not random. I 

determined whether specific molecular and biological functions can be associated with either VA 

or VD based on their decreasing values. In total, 90 and 174 GOs were significantly enriched for 

high VA and high VD values at significance threshold of p = 0.03813 and p=0.3810, respectively.  
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The significantly enriched GOs for high values of VA were accumulating in different functions 

than the high values of VD. The five enriched GOs for the highest VA values are “Glucose catabolic 

process” (p = 8.3-05), “Glycolytic process” (p = 1.6e-05), “gluconeogenesis” (p = 9.1e-05), 

“response to cadmium ion” (p = 0.00015) and “proteasome core complex assembly” (p = 0.00016; 

Appendix Table 3). Interestingly, the enriched categories for high VA are reminiscent of the 

enriched GOs for genes within sweep regions identified in SP population (see section 3.1.6 and 

Table 8). In contrast, the five top enriched GOs for the highest VD values are “chromatin silencing” 

(p = 4.5e-16), “cytokinesis by cell plate formation” (p = 2e-11), “DNA methylation” (p = 4.3e-

11), “nuclear-transcribed mRNA catabolic processes” (p = 9.2e-11) and “methylation-dependent 

chromatin silencing” (p = 6.3e-10; Appendix Table 4). Based on the p-value of enrichments, 

functional enrichment appeared to be much stronger for genes displaying high VD.  

3.2.3 Gene structural properties correlate with the degree of dominance variance along 

the genome 
Dominance variance is defined as the non-heritable genetic variance derived by the allelic 

interactions within a locus (Fisher 1918; Falconer and Mackay 1996). Thus, we tested the impact 

of the gene structural properties that would create differences in the genic sequences and this way, 

they could contribute to the proportion of VD out of the VP. The nonrandom accumulation of the 

VA and VD values among the functions has been found to correlate with gene structural properties. 

We trained a random forest model (see Methods) to identify the genomic or population genetic 

parameters that best explain variation in dominance and additive variance in gene expression. The 

model’s predicted value correlated poorly with the true values for VA (R2 = 0.009 and mean square 

error of 0.021). We therefore could not associate variation in VA with any such parameters (Figure 

10a-b).  

For VD, instead, the model’s predicted value correlated well with the true values for (R2 = 0.18 

and mean square error of 0.026). The random forest analysis revealed that various components of 

gene architecture form the most important factor for explaining the level of the VD observed in the 

transcriptome (Figure 10a). The number of exons per gene, the total gene length and the transcript 

length were the factors that most contributed to determine dominance variance in transcript 

expression. The level of variable importance of each parameter persists even when we correct all 

tested parameters for gene length. Transcript length has a significant positive correlation of 

ρ=0.258 (p=1.22e-266) with VD, but it does not correlate with median gene expression (ρ=0.093, 
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p=9.54e-16; Table 11). We used a linear model to show that the significant effect of transcript 

length on VD (p < 2.2e-16) remains significant even after correcting for median gene expression 

(p = 0.0176) and VG (p < 2.2e-16). The tested model did not show significant interaction between 

transcript length and median gene expression (p=0.224). On the other hand, we found that VA has 

a significant but negative correlation with transcript length (ρ= -0.177, p < 2.2e-16; Figure 10c-d). 

The density of SNP sites within a gene, as well as the total number of transcription factors 

accumulating within a gene are also predicted to explain VD well. The most important transcription 

factor was found to be the Dof zinc finger protein (DOF5.3; p=0.01639).  
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Figure 10: Gene architecture traits can predict the level of dominance variance. The level of variance that 

each factor included in the random forest model explains for a. dominance variance and b. additive 

variance. The bars are colored green and black when their effect is significant or not significant, 

respectively. c. Transcript length correlation with the dominance variance. d. Number of exons per gene 

correlate with the dominance variance. 
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3.2.4 Gene clustering highlights the impact of gene structural variation and population 

divergence on the components of the genetic variance 
Gene expression is a highly regulated phenotype, as genes are inter-connected in co-expression 

and co-regulation pathways. To gain insight into how many effectively independent phenotypes 

could be observed in our dataset, I used a hierarchical clustering approach to group the genes based 

on their spearman correlation coefficient ρ. Based on the within groups sum of squares, the 

identifiable number of potential clusters is between 23 and at least 300 (Figure 11a). This indicates 

that variation in distinct gene expression is at least partially independent from each other, with at 

most 300 observations.  

I investigated the impact of gene clustering. I grouped the data into 200 clusters. Each clusters’ 

size was very variable, with number of genes per cluster between 5 and 2,829 genes (median=39.5 

genes per cluster; Figure 11b). The number of genes per cluster showed a significant positive 

correlation with the median VD of the cluster (ρ = 0.49 and p = 1.253e-13; Figure 11c). The 

opposite relationship was observed when we correlated the gene number per cluster with the VA 

(ρ = -0.277, p = 7.101e-05; Figure 11d). Moreover, the median VD per cluster was positively 

correlated with the median transcript length (ρ = 0.201 and p = 0.0042) and median gene exon 

number (ρ = 0.439 and p = 7.752e-11). This result does not differ from the pattern observed for 

each gene (see section 3.2.2 and Table 11).  

Correlation between VA and population genetic parameters of the SP and PL was detectable, 

indicating that the genetic divergence of the populations (described in Chapter 1) has contributed 

to the additive variance. The median VA of each cluster was positively correlated with the median 

FST (ρ = -0.201 and p = 0.0041) and dxy (ρ = 0.32 and p = 2.59e-06) of SP vs PL. There was 

correlation of the median VA with the median π values of SP (ρ = 0.34 and p = 8.643e-07) and PL 

(ρ = 0.33 and p = 1.627e-07). The VA per gene was also significantly correlated with ρ= 0.115 

(p<2.2e-16) and ρ= 0.1152 (p<2.2e-16) for π of PL and dxy of SP vs PL, respectively. 

A subset of the dataset is well described by epigenetic non-heritable variance. I detected a core of 

approximately 2,829 genes that were almost always clustered in the same group during the 

previous analysis. This cluster was the largest one and had median VD and VA values of 0.501 and 

0.141, respectively. Gene Ontology enrichment analysis highlights 294 GOs (significance 

threshold p=0.077; Appendix Table 5). The top processes are related to developmental functions, 
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such as “gravitropism” (p = 6.4e-28), “trichome morphogenesis” (p = 8.9e-15), “protein 

glycosylation” (p = 9.7e-15) and “protein N-linked glycosylation” (p = 2e-14).  

 

 

 

Figure 11: Clustering of genes based on pairwise gene expression correlation. a. The within sum of squares 

for 1 to 300 clusters. b. Genes per cluster when the genes are grouped in 200 clusters. c. Median dominance 

variance per cluster has a positive significant correlation with the number of genes within each cluster. d. 

Median additive variance per cluster has a negative significant correlation with the number of genes within 

each cluster. 
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Table 11: Correlation of dominance and additive variance with genome architecture traits and population 

genetics statistics. For each correlation of variance and feature, the p value, spearman’s ρ as well as the 

number of clusters we had grouped the genes into are given. When the number of clusters is 1, the 

expression level of each gene was treated as independent observation. 

Variance Feature Number of 

clusters 

P value Spearman’s ρ 

Dominance Transcript Length 1 1.22e-266 0.2588 

Median Gene 

Expression 

1 9.54e-16 0.093 

Number of Exons 1 <2.2e-16 0.3852 

Gene Number 200 1.253e-13 0.49 

Transcript Length 200 0.0042 0.201 

Number of Exons 200 7.752e-11 0.439 

Additive  Transcript Length 1 <2.2e-16 -0.177 

FST 1 0.0152 -0.023 

Dxy 1 <2.2e-16 0.1152 

π of SP 1 <2.2e-16 0.0916 

π of PL 1 <2.2e-16 0.115 

Gene Number 200 1.101e-05 -0.277 

FST 200  0.0041 -0.201 

Dxy 200 2.59e-06 0.32 

π of SP 200 8.643e-07 0.34 

π of PL 200 1.627e-07 0.33 

 

3.2.5 Genes with high additive variance have signals of relaxed purifying selection 
Genes with high dominance variance in the dataset show signals of pleiotropy and network 

connectivity, two properties that are often connected with strong constraints on the genome level 

(Hahn and Kern 2005; Josephs et al. 2015). Furthermore, to test for signals of directional selection, 

we estimated the DFE of non-synonymous mutations for the SP and PL genomes, which were 

described in Chapter 1. For each population, I extracted non-overlapping sets of genes based on 

the level of different variances they had (Figure 12a). In total, I have tested 4 different groups in 

addition to a random set of genes. Two group of them had either high VD or VA values, that are 

equal or more than 0.5 of the total phenotypic variance. Moreover, a similar gene group with 
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combined VR and VM (VR+VM) values of equal or more that 0.5 of the total phenotypic variance 

was tested. Finally, a group of genes with VG more or equal to 0.5 of the total phenotypic variance, 

which is that high due to similar contribution of VA and VD (more than 0.25 but less than 0.5 of 

total phenotypic variance each) was tested.  

The results show, that the groups of genes with different levels of genetic variance have evolved 

under different levels of purifying selection (Figure 12, Table 12). The group of genes with low 

genetic variance (VR+VM) has a significantly lower proportion of nearly neutral non-synonymous 

mutations (0 < Nancs < 1) than the other groups, as well as a significantly higher proportion of 

mutations under strong purifying selection (Nancs > 10). Genes with high genetic variance but 

intermediate dominance and additive variance (VG) show stronger constraint than VA, VD and the 

control group, but less constraint than the genes with (VR+VM). The fraction of nearly neutral sites 

for the VG group is significantly lower than the other groups as well as having a significantly higher 

fraction of mutations under strong purifying selection, except for (VR+VM). In contrast, genes with 

high VA has signal of relaxed constraints. It has a significantly higher fraction of nearly neutral 

non-synonymous mutations (0 < Nancs < 1) than the other groups, as well as a significantly lower 

fraction of mutations under strong purifying selection (Nancs > 10). Genes with high level of VD 

did not significantly differ from the control group consisted of random genes. 

 

Table 12: The p values for all pairwise comparisons within each DFE bin. The gene groups were 

specified based on their level of additive, dominance, genetic as well as the sum of the residual and 

maternal variance, as seen in Figure 12a.. 

0 < Nancs < 1     

 VA VD VG VR+VM 

Rand 0.03 0.3 0.01 0.01 

VA NA 0.01 0.01 0.01 

VD  NA 0.01 0.01 

VG   NA 0.01 

     

1 < Nancs < 10     

 VA VD VG VR+VM 

Rand 0.23 0.19 0.01 0.01 

Va NA 0.52 0.01 0.01 

Vd  NA 0.01 0.01 
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VG   NA 0.43 

     

10< Nancs < Inf     

 VA VD VG VR+VM 

Rand 0.01 0.39 0.01 0.01 

VA NA 0.07 0.01 0.01 

VD  NA 0.01 0.01 

VG   NA 0.01 

 

 

 

Figure 12: Different levels of constraints for genes with excess of different variance type. a. All the genes 

are plotted based on their additive, dominance, and genetic variance. The colors correspond to each of the 

5 groups as indicated on the legend of figure b. The VD and VA correspond to genes with more than 0.5 

additive and dominance variance, respectively. VG corresponds to the group of genes with genetic variance 

more than 0.5 and additive and dominance variance between 0.25 and 0.5. The VR+M group corresponds to 

the genes with a combined value of maternal and residual variance above or equal to 0.5.  b. The distribution 

of fitness effects in bins of Nanc*s for different set of genes. It was estimated based on the site frequency 

spectrum of the non-synonymous sites in the genomic samples of SP and PL. 
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3.3 The polygenic basis of gene expression in A. lyrata 

3.3.1 Trans effects indicate the polygenicity of gene expression variation 
I next asked whether we could determine the genetic basis of gene expression variance, in order to 

confirm whether the genetic architecture explains dominance variance. Since genetic variation 

segregated in the 131 individuals, it was possible to perform GWAS, controlling for the structure 

of the population. The number of variants was restricted to the number of heterozygote sites in the 

10 parents of the population. This approach was used to estimate the genetic architecture of gene 

expression variance. Evidence of the polygenic basis of gene expression variation was found via 

genome wide association study (GWAS). I used the transcript counts per gene to associate with 

the genotypic variance, which is observed in the transcriptome. In total, 127,585 SNPs were 

included in the GWAS analysis. Few genetic associations were identified, with only 174 transcripts 

having at least one significant association. This was revealing of the polygenic basis of gene 

expression variation (Figure 13a). The unique significant associations were 156 across all analysis 

were in total 156 and they corresponded to equal number of genes. On average, each of the 174 

transcripts had only one significant association. Similarly, on average, each significant hit was 

identified successfully in only one association analyses, with a few exceptions (Figure 13b; Table 

12). However, there are a few SNPSs that were identified as significant hits in more than 5 

association analysis. It is notable, that none of the GWAS returned an association located within 

the genomic region of the transcript tested. Thus, all the associations have a potential trans 

regulatory effect on the transcripts and no cis regulatory effect. The VD of the associating genes 

has a bimodal distribution (median = 0.33 vs control median = 0.37) and it is significantly higher 

(KS test p= 0.00598). The distribution of VA values of the associating genes (median=0.22, 

median=0.15) is also significantly higher (KS test p=2.253e-05) than the rest of the genes. There 

was no difference for VG (p=0.1). 

I compared the VA and VD values of the genes within which a SNP with significant association is 

located (trans effect gene), to the values of genes with no significant hit located within them 

(control genes). Trans effect genes have more VA (median = 0.3) but less VD (median = 0.33), 

compared to the control genes (median of 0.20 and 0.39 for VA and VD respectively; Figure 13c). 

This indicates that genes with polygenic background have higher VD than the genes under the 

control of a few genes. Moreover, less of the trans effect genes (24%) were located within sweep 
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regions than the control genes (36%). I used a generalized linear mixed model to test whether FST 

or positive selection signal can have an impact on the values of VA, VD and VG. Also, I tested with 

the same model whether VA, VD and VG distributions are different. The variances are all 

significantly different from each other (p < 2.2e-16) and the signal of positive selection has a 

significant impact on each component of genetic variance (p = 0.0001319). Overall, it was 

observed that trans effect genes located within a sweep area, have more VA and less VD than the 

ones with no positive selection (Figure 13d). Thus, genes with large effect on the expression of 

another gene have more additive variance, which could enable the action of positive selection.  

 

Table 13: The genes that were identified in the majority of the GWAS analysis as significant associations. 

The gene name, chromosome, start and end position are given. Furthermore, the number of transcripts they 

associate with are given. 

Gene Name Chr Start End Transcript 

gene:fgenesh2_kg.4__134__AT2G22120.1 4 665407 668437 36 

gene:scaffold_302751.1 3 10320792 10322007 11 

gene:fgenesh2_kg.8__2670__AT5G67420.1  8 22300392 22301941 10 

gene:scaffold_701797.1 7 7237139 7237787 8 

gene:fgenesh1_pg.C_scaffold_8000314 8 2411704 2412746 7 

gene:fgenesh2_kg.1__1019__AT1G09650.1 1 3676022 3677313 7 

gene:fgenesh2_kg.6__1519__AT5G15390.1 6 6272766 6273086 6 
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Figure 13: Genome wide association study reveals the polygenic basis of gene expression variation. a. The 

results of the GWAS run for each individual gene are summarized. On the y axis, the position of the 

expressed gene whose phenotype was tested is shown. On the x axis the position along the chromosomes 

of the trans effect gene, which associates significantly with the expressed gene is given.  Brown dots show 

the position of the expected cis effect, blue dots show significant associations of genetic variant with 

variation in transcript level. Horizontal clusters of variant association reveal a set of transacting variants 

regulating many transcripts. b. Histogram showing the number of transcripts associating with each variant. 

c. Boxplot representation of the dominance (VD), additive (VA) and genetic (VG) variance for the GWAS 

significant hits and a control set of genes. d. Comparison of the dominance (VD), additive (VA) and genetic 

(VG) variance for the GWAS significant hits and a control set of genes, grouped by their presence or absence 

within a sweep region. 
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3.3.2 PL specific alleles drive most of the allele specific polymorphism in the dataset 
The signals of selection identified within the two populations indicate the presence of polygenic 

selection along the whole genome. Furthermore, the substantial heritability of the gene expression 

variance, as well as the impact of transcription factors on the degree of dominance variance 

indicate that cis regulatory variance is important for the diversification and evolution of the two 

populations.  

I used 105 out of 131 available transcriptomes at the time of the analysis, to explore the cis 

regulatory divergence between the families. I had crossed plants from SP to plants from PL, a 

design that enables the creation of heterozygous sites and the identification of allele specific 

expression (ASE). ASE can be used to identify the cis regulatory elements that vary between the 

parents. Thus, for each individual, we identified the parental origin of the expressed alleles, using 

the parental SNP calls as guide (see Methods). A gene was flagged as being ASE if the ratio of the 

expressed alleles was significantly different to the 1:1 proportion, based on Bonferroni corrected 

p value (threshold of p = 0.001), which were obtained by chi square test. In total, the median 

number of ASE genes per individual was 2,454, which is approximately 50% of all expressed 

genes per individual (Figure 14a). It is noted that for members of fam03 and fam08, the median 

number of genes with ASE is 16.1% and 14.6% respectively. Furthermore, I estimated the ASE 

per family, as the genes that are ASE in 30% of the family members (Figure 14b). The median 

gene number with ASE per family is 3,594 genes, which is the 72% of all genes within the family. 

I observe here the same discrepancy in the ASE numbers as before; fam03 and fam08 have 24.7% 

and 18.5% genes as ASE, respectively.  

This difference between the fam03, fam08 and the rest of the families can be attributed to the way 

the gene expression datasets were filtered. Using genome sequences of family members as guide, 

areas, where the mapping shows a bias towards the mapping of one allele, have been removed (see 

methods). Thus, the ASE number per individual in the rest of the full sibling families, is inflated 

by possible mapping errors. However, this preliminary dataset allows to explore the cis regulatory 

elements divergence and the potential impact of selection on them.  

A first aspect of the dataset to be explored, is the potential of preferential overexpression of the 

allele originating from one population. In order to do this, I categorized ASE genes as polymorphic 
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or not for one population, based on the comparison of half sibling families (see Methods). There 

is evidence for preferential expression of the allele from the PL parents over the SP parent. 

 

Figure 14: Proportion of ASE genes out of the total expressed genes per a. individual and b. per family. 

The individuals are grouped by family and their order corresponds the order presented in b.   

I identified 184 and 506 polymorphic genes for SP and PL, respectively. The population specific 

polymorphic alleles are enriched for different set of functions within the SP and PL. When 

compared to the rest of the expressed genes, the SP specific polymorphic alleles were enriched in 

functions were in total 81 (p < 0.05). The top three functions were “anthocyanin-containing 

compound biosynthesis”, “secondary metabolic process” and “proteasome-mediated ubiquitin-

dependent processes” (Appendix Table 6). In contrast, the PL specific polymorphic alleles were 

enriched in 125 functions (p < 0.05) and a lot of them were related to response to stress and 

photosystem reactions (Appendix Table 7). The top three functions were “translation”, “pentose-

phosphate shunt” and “rRNA processing”. It is notable though, that there were only 4 genes that 
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had overexpressed the allele from one population. This was an unexpected aspect, which requires 

further investigation. 

3.3.3 Evidence for impact of positive selection and adaptive potential of the ASE genes 
The next question I wanted to explore with this preliminary dataset, was the impact of positive 

selection on genes with ASE. In fact, when I investigate the genetic diversity and association with 

sweep regions in the genomic regions of the candidate ASE genes, there is evidence for genetic 

divergence and selection. I tested for signals of population divergence and selection in the SP and 

PL genomes for the ASE genes in contrast to the non ASE but expressed genes. The percentage of 

ASE genes (26.8%) accumulating within a sweep region is similar to the rate of the non ASE genes 

(27.1%). However, the population specific polymorphic sites are present in higher percentages 

within sweep regions than the non ASE, with 29.3% and 31.1% accumulating within the sweep 

regions, respectively. Furthermore, the distribution of FST values were significantly different (KS 

test p = 0.0214), with median values of 0.325 and 0.334, for ASE and non ASE genes respectively. 

Similarly, the distributions of the dxy values were significantly different (KS test p = 6.684e-10), 

with median values of 0.0101 and 0.009 for ASE and non ASE genes respectively. Thus, the ASE 

genes accumulate more genetic differences between the populations. Furthermore, they are located 

in areas with higher level of nucleotide diversity within populations. The ASE genes had in SP a 

median π = 0.0044, which was significantly shifted towards higher values than the non ASE genes 

(π= 0.004; KS test = 5.821e-08). Similarly, the distribution was significantly (KS test p=2.453e-

13) shifted towards higher values in PL, with π= 0.0079 and π= 0.007 for ASE and non ASE genes 

(Figure 15).  

The Tajima’s D values for the ASE genes was higher in both populations, indicating that genetic 

drift have influenced the presence of alleles capable to cause ASE. Both within SP (KS test p = 

0.035) and PL (KS test p = 0.0003), the ASE genes had higher values of Tajima’s D than the non 

ASE. Specifically, the median values for ASE where 1.142 in SP and 0.1545 in PL. The 

distributions for non ASE had median values of 1.037 and 0.071, respectively.  

Finally, I explored the adaptive potential of the genes accumulating cis acting changes. The ASE 

genes have more heritable genetic variance and less dominance variance than the non ASE genes. 

The distribution of VA values for the ASE genes was significantly higher (KS test p < 2.2e-16) 

with median of 0.182 and 0.156 for ASE and non ASE genes, respectively. On the contrary, the 
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distribution of VD  was significantly lower (KS test p < 2.2e-16), with median values 0.334 and 

0.359 for ASE and non ASE.  

 

 

Figure 15: Distributions of population genetic parameters and genetic variances for ASE genes (TRUE) and non 

ASE genes (FALSE). a. Distribution of Fst values for SP vs PL b. Distributions of dxy values for SP vs PL. c. 

Distributions of π values in PL and d. SP. e. Tajima’s D values for PL and f. SP. g. Distribution of additive and h. 

dominance variance between ASE and non ASE genes. 
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4. Discussion 
 

4.1 Genomic burden detectable in range edge population, but no evidence of impaired 

fitness 
The relationship between population size and selection is a centerpiece of population genetics 

theory. At equilibrium, smaller populations have a lower adaptive potential and increased burden 

of deleterious alleles (Kimura et al. 1963). These premises formed a viewpoint that population 

bottlenecks inhibit the removal of deleterious mutations (Kirkpatrick and Jarne 2000; Hamilton 

2009; Glémin and Ronfort 2013; Balick et al. 2015). In reality however, it takes time until the 

equilibrium between gain and loss of mutations is restored in a bottlenecked population, so that 

population size reduction does not immediately associate with the presence of an increased 

mutation burden (Simons et al. 2014; Do et al. 2015).  

The SP population provides a clear case of a range-edge population likely exposed to a severe 

bottleneck but with only a mild increase in average burden of deleterious mutations. Demographic 

modeling estimated that the population progressively decreased to about 4.8% of its initial size, 

despite the population growth estimated in recent generations. In agreement with previous reports 

(Mattila et al. 2017; Hämälä and Savolainen 2018), this decrease had pronounced population 

genetics consequences: a markedly lower level of diversity, a slower LD decay and non-

synonymous variants segregating at higher frequency. The genome-wide elevation of Tajima’s D 

further indicates that the population has not yet returned to equilibrium, since it is still depleted in 

rare alleles relative to common ones.  

Significant mutation load has been associated to post-glacial expansion in several instances, where 

expansion occurred along with a mating system shift. Individuals of the sister sub-species A. l. ssp. 

lyrata showed a marked increase in phenotypic load at the range edge, particularly in populations 

that shifted to selfing (Willi et al. 2018). In Arabis alpina, individuals sampled in a selfing 

population of the species Northern European range also appeared to have accumulated a load of 

deleterious mutations greater than that of populations closer to the range-core (Laenen et al. 2018). 

Here, we investigated the footprint left by post-glacial range expansion in populations that did not 

experience a shift in mating system. 
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To measure the per individual genomic burden of deleterious variation we calculated the number 

of derived non-synonymous mutations in individual genomes. This metric has the considerable 

advantage that it is insensitive to variation in population size (Simons et al. 2014; Do et al. 2015) 

and we verified it is not influenced by the presence of selective sweep areas (data not shown). 

Other metrics, such as those which use the proportion of variation that is non-synonymous are 

confounded by demographic history (Do et al. 2015; Brandvain and Wright 2016; Simons and 

Sella 2016; Koch and Novembre 2017).   

In the range-edge population of A. lyrata, prediction based on the estimated DFE indicated that 

the differences in the demographic histories of the two populations had a strong effect on the 

frequency of the mutations contributing to the per-individual burden. In SP, fixed mutations 

contributed comparatively more to the individual per-genome burden, whereas in PL, it was 

sustained by a greater number of low frequency mutations. Overall, our model predicted only an 

average excess of 185 non-synonymous mutations per diploid genome in SP. This prediction was 

within an order of magnitude of the excess non-synonymous burden of about 1,200 observed in 

the data. The predicted burden may be less than the observed for a number of reasons. It is possible 

that the SP population evolved a greater number of adaptive substitutions when expanding its range 

into a new environment. Since our predictions assumed free recombination, it is indeed possible 

that linkage with adaptive variants could have caused the faster accumulation of a burden (Marsden 

et al. 2016), along with adaptive non-synonymous variants themselves being potentially 

mischaracterized as deleterious. However, three elements suggest that linked selection will not 

have a strong impact on our predictions. First, the estimate of per-individual burden obtained after 

excluding regions carrying sweep signatures was similar (see methods). Second, the increased 

accumulation of deleterious mutation in the range-edge population is caused by nearly-neutral 

variants that become effectively neutral in the bottlenecked population, and the rate of fixation of 

neutral mutations is not expected to be affected by linked selection (Birky and Walsh 1988). Third, 

linked selection tends to distort allelic distribution in very large samples, because they mostly 

affect the low and high frequency ends of the spectrum, (Cvijović et al. 2018).  The effect of linked 

purifying selection is therefore unlikely to be important with our limited sample sizes. We note, 

however, that the population bottleneck could have been underestimated, if we overcorrected for 

the reduced power to call variants due to the somewhat lower coverage of the range-edge 

population. This would indeed lead to an underestimation of the burden. 
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This number of deleterious mutations per individual genome, however, remains a crude estimator. 

First, it underestimates the impact of recessive deleterious mutations (Balick et al. 2015). The 

strong deficit of homozygous large effect mutations within SP and PL clearly shows that recessive 

deleterious variants do contribute to the load in these populations. We suspect, based on the very 

crude impression given by the FIS analysis, that these variants may be more frequent in SP, in 

which mutations of strong deleterious effect tended to segregate at higher frequency. This would 

be in line with previous estimates, which show that more deleterious mutations are recessive in the 

species in comparison to the sister species A.thaliana (Huber et al. 2018). This data will be useful 

for theoretical studies investigating how bottlenecks impact the recessive loads. Second, indirect 

methods may be more powerful. For example, patterns of Neanderthal introgression in the modern 

human genome, revealed the increased deleterious load of the introgressing genome and its 

preferential removal in the larger Homo sapiens population (Juric et al. 2016). In maize, an 

outcrossing crop, which experienced two successive drastic bottlenecks during domestication, the 

variance in gene expression revealed a burden of deleterious regulatory mutations that significantly 

impaired fitness (Kremling et al. 2018).  

The accumulated effect of deleterious mutations in the genome is expected to negatively impact 

any polygenic fitness trait, such as e.g. growth rate in plants (Leinonen et al. 2009; Debieu et al. 

2013; Younginger et al. 2017). Our analysis indicated that the predicted effect of deleterious 

mutations is around 1.2.10-6 and therefore too small to lead to a detectable decrease in fitness. The 

lack of growth and survival difference observed in common gardens within the range-core area of 

the species both here and in a previous study, also support the notion that SP individuals do not 

suffer from a massive deleterious burden (Leinonen et al. 2009). Furthermore, seedlings of SP 

grow slower, but also larger than PL individuals, despite the presence of burden in the parental 

lines. The presence of the burden can be detected by the observed heterosis of the between 

populations hybrids; the crosses would have masked the effect of any strongly deleterious 

mutations of the parental lines, enabled them to perform better than their parents (Falconer and 

Mackay 1996). Even though, the hybrid plants grow faster than PL or SP, they do not grow bigger, 

indicating that the burden did not have a strong impact on SP. Our results therefore indicate that 

in this plant system, the severity and duration of the bottleneck experienced at the range-edge was 

not sufficient to allow the emergence of an impactful load of deleterious mutations. In this sense, 

the accumulated deleterious burden in SP is more similar to the consequences of the out-of-Africa 
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bottleneck in humans, which has had substantial effects on the SFS of deleterious variation, but no 

detectable effect on the genetic load (Simons et al. 2014; Do et al. 2015). 

4.2 Absence of a bottleneck signature at the self-incompatibility locus  
The S-locus diversity, both in terms of allelic richness and heterozygosity, was found to be only 

marginally lower in SP compared to PL and AUS. Similar levels of S-allele diversity were also 

reported for 12 Icelandic A. lyrata ssp petraea populations (Schierup et al. 2008), that share recent 

history with SP (Pyhäjärvi et al. 2012). This, together with the observation that homozygote 

genotypes are not more frequent throughout the genome, confirms that SP has maintained a 

functional self-incompatibility system, despite the historical genetic bottleneck. The persistence of 

obligate outcrossing in Scandinavian A. l. ssp. petraea populations has previously been discussed 

by Sletvold et al. (2013). Several North American populations of A. lyrata ssp. Lyrata, in contrast, 

have shifted to predominant selfing at the species distribution edges (Mable et al. 2005; Griffin 

and Willi 2014). Low inbreeding depression (Willi et al. 2013) along with a reduced diversity of 

S-alleles (Mable et al. 2017) may have contributed to parallel breakdowns of self-incompatibility 

in these bottlenecked populations, as predicted by theory (Brom et al. 2020). Accordingly, loss of 

self-incompatibility has been frequently reported after range expansion or strong genetic 

bottlenecks [e.g. in Arabis alpina (Laenen et al. 2018), Leavenworthia alabamica (Busch et al. 

2011) or Capsella rubella (Guo et al. 2009)]. Our result illustrates the remarkable power of 

negative frequency-dependent selection acting on the S-locus at promoting a high level of 

resilience against the effect of a bottleneck on allelic diversity. Similar results were found in L. 

alabamica, were the authors did not find reduced S-allele diversity or mate limitation in 

outcrossing populations from small patches as compared to large populations (Busch 2005). Even 

if allelic diversity could have been reduced at the time of bottleneck in Scandinavian populations 

of A. lyrata, theory predicts that negative frequency-dependent selection promotes higher effective 

migration rates at the S-locus as compared to control loci (Schierup 1998), suggesting that high 

allelic diversity could have also been restored subsequently by gene flow.  

4.3 Adaptive dynamics maintained in SP 
Small size populations are also expected to require larger effect mutations to adapt, although these 

mutations are rare (Hamilton 2009). Whether a population size reduction immediately reduces 

adaptive evolution is, however, a complex question in the context of range expansion (Gilbert et 

al. 2017).  If populations have to adapt locally at the range edge, the rate of geographical expansion 
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slows down, along with the severity of the expansion bottleneck (Gilbert et al. 2017). A decrease 

in population size, however, increases the range of beneficial alleles that behave effectively 

neutrally (Lynch 2007). Searching for signals of selective sweeps in SP, after accounting for its 

demography, we identified 327 regions that formed outlier for both CLR and FST statistics. In fact, 

the number of genomic regions displaying a signature of positive selection was greater in SP than 

in PL, a pattern that has been observed also in Northern Swedish populations of A. thaliana in 

contrast to Southern Swedish populations (Huber et al. 2014). However, we cannot exclude that 

some of the signal detected in SP could also result from the surfing of new alleles towards the 

range margin, which can mimic signatures of adaptive evolution and create false positive 

signatures of adaptation (Excoffier et al. 2009). In addition, some of the selective sweep signatures 

could be caused by background selection, although theoretical work indicates that genetic 

signatures of selective sweeps and adaptive divergence are unlikely to be mimicked by background 

selection (Lynch 2007; Matthey‐Doret and Whitlock 2019; Schrider 2020). Adaptive dynamic 

therefore appear to be maintained despite evidence for a slight reduction in the ability of the SP 

population to purge deleterious alleles. This agrees with basic population genetics theory showing 

that the fixation probability of deleterious mutation is much more sensitive to changes in 

population size than that of deleterious alleles (Kimura 1964; Otto and Whitlock 1997).  

Functional enrichments among regions displaying signatures of local positive selection, however, 

indicate the presence of true positive signals. Within those regions, functions involved in the 

response to stress were enriched, in agreement with a previous study investigating micro-

geographical patterns of local adaptation in Norwegian populations connected by gene flow 

(Hämälä and Savolainen 2018; Hämälä and Savolainen 2019). We also found a significant 

enrichment in genes involved in light perception, a function enriched in loci differentiating the SP 

population from a close-by population of lower elevation (Hämälä and Savolainen 2019). 

Furthermore, the FST distribution of genes related to development was significantly shifted towards 

higher values, suggesting polygenic selection on alleles associated to this function (Foll et al. 2014; 

Daub et al. 2015; Stephan 2016). Previous work has documented that Scandinavian populations 

display differences in several traits related to growth and resource allocation, including plant size, 

inflorescence production and fruit production (Quilot-Turion et al. 2013; Hämälä et al. 2018). Both 

local and regional reciprocal transplant experiments have revealed local adaptation in this species 

via life history traits and growth-related phenotypes (Leinonen et al. 2009; Hämälä et al. 2018). 
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This shows that adaptive dynamics are ongoing also at smaller geographical scale in this system 

and is consistent with the broad genomic signals of positive selection we observed.   

4.4 The importance of understanding the adaptive potential of gene expression variance  
In plant and animal breeding research, it has been vital to estimate the amount of additive and non-

additive genetic variance, to predict the response of selection. Especially, the additive variance is 

important, as it describes the heritable proportion of the genetic variance and it is therefore inter-

twined with selection (Falconer and Mackay 1996; Lynch and Walsh 1998). For evolutionary bi-

ology, it is also of great interest to identify the additive genetic variance, as it can be a great tool 

to understand the complex traits’ response to selection in natural populations (Fisher 1918). Life 

history traits are closely associated with fitness and for that reason studies have tried to identify 

the relation of additive variance and selection. The life history traits are expected to have been 

under strong selection, and thus the amount of additive variance will be reduced. As expected, in 

a lot of wild populations, these traits do not have as high additive genetic variance as for instance 

traits related to physiology (Mousseau and Roff 1987; Shaw and Shaw 2014).  

One of the greatest challenges of understanding the genetic variance of phenotypes in the wild, has 

been the limited number of phenotypes that we can sample (Shaw and Shaw 2014). I used the 

transcriptome of inter- population crossings to expand the range of studied phenotypes. Nowadays, 

it is possible to cost effectively sequence the whole transcriptome, increasing exponentially the 

number of phenotypes we can analyze. Moreover, gene expression is a phenotype of great im-

portance as it directly influences other organismal phenotypes, even fitness. Despite the evolution-

ary importance of gene expression (Oleksiak et al. 2002; Fay and Wittkopp 2008; Romero et al. 

2012; He et al. 2016), there has not been an extensive investigation of the genetic basis of its 

variance.  Recently, an investigation of the relationship between selection strength and genetic 

variance of gene expression in rice was done (Groen et al. 2020). The authors estimated the 

strength and direction of selection by correlating the populations fecundity with gene expression 

under both stressed and control conditions. Stronger signals of selection were associated with the 

genetic variance of gene expression in stressed conditions than under control conditions. While 

the authors have identified an important connection between the two, the study confounds the 

dominance, additive and epistatic effects on gene expression variance. The importance of the ig-

noring the difference between additive and genetic variance could be derived by looking at another 

study of gene expression variance in natural populations of sticklebacks (Leder et al. 2015). Using 
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microarray data, the authors have successfully demonstrated that gene expression variance has 

substantial dominance variance, which is moreover linked to environmental fluctuations. Further-

more, they were able to associate signals of directional selection with differential gene expression, 

despite the limitations of microarray assays and the limitations imposed by microsatellite datasets.  

I used a crossing design of full and half siblings to partition the genetic variance of gene expression 

in A. lyrata to its components. The relationship between the individual plants allowed the partition 

of genetic variance to both additive and dominance variance. Moreover, I aimed to have an exten-

sive phenotypic dataset by sequencing the whole transcriptome of each of the 131 samples. As a 

result, I analyzed the gene expression variance of approximately 17,500 genes. Broad sense herit-

ability, which is the proportion of genetic variance out of the total phenotypic variance, was more 

than half of the phenotypic variance for approximately 67% of the transcriptome. This indicates 

that, within A. lyrata, gene expression has a largely genetic basis. However, the amount of the 

actual heritable genetic variance, expressed as additive variance, is low. The median additive var-

iance is approximately 20% of the phenotypic variance and only around 6% of the genes have 

additive variance more than half of the total phenotypic. It is noteworthy that the growth rate dom-

inance and additive variance of the plants (VD = 0.62 and VA=0.005) is similar to the genes with 

the genes that have more than 50% of the phenotypic variance dominance variance. Nevertheless, 

the amount of additive variance observed in the transcriptome is comparable to what has been 

found in sticklebacks and human blood tissues with additive variance of approximately 20% of the 

total phenotypic variance (Price et al. 2011; Leder et al. 2015). even though a large part is con-

trolled by within and between loci interactions, these results indicate that gene expression variance 

between A. lyrata populations have adaptive potential. 

4.5 Evolution of gene expression variance has been shaped by directional selection 
Directional selection has shaped the gene expression evolution within the species. Genes with high 

level of residual variance, and thus low levels of genetic variance, were shown to be under stronger 

constraints than a control group of randomly selected genes. On the contrary, genes with high level 

of additive variance, are under relaxed selection. Therefore, a substantial amount of genes’ expres-

sion along the transcriptome has been under purifying selection. This result is in line with the 

expectation of Fisher’s fundamental theorem of natural selection, according to which, selection on 

a specific phenotype will act on the additive variance by decreasing its proportion out of the total 

phenotypic variance. At the same time the genetic variance will also decrease (Fisher 1918; 
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Mousseau and Roff 1987; Orr 2009). Gene expression is a phenotype that influences fitness and 

its changes can even be connected to severe diseases manifesting in human populations (Emilsson 

et al. 2008; Cookson et al. 2009; Cooper-Knock et al. 2012). Thus, it is expected that deleterious 

mutations will be exposed to natural selection and they will be prevented from accumulating. 

While, this is especially true for mutations with large effect on the phenotype (Charlesworth 2012), 

natural selection can also act when the mutations are nearly neutral within a population (Bedford 

and Hartl 2009). Gene expression divergence is often under stabilizing selection, especially when 

species are compared (Whitehead and Crawford 2006; Bedford and Hartl 2009; Hodgins-Davis et 

al. 2015; Metzger et al. 2017). However, signals of purifying selection are not uncommon; regu-

latory elements have been found to be under different strengths of purifying selection, as for in-

stance in Capsella grandiflora and Theobroma cacao (Fay and Wittkopp 2008; Steige et al. 2015; 

Hämälä et al. 2020).  

The different types of genetic variance accumulate in different functions, and therefore so are the 

associating signals of selection. A similar observation was reported lately for gene co-expression 

modules in cacao, in which specific functional modules are under negative selection (Hämälä et 

al. 2020). Similarly, in Capsella grandiflora, not only the cis acting changes are under weaker 

purifying selection (Steige et al. 2017), but also the intensity of purifying selection depends on the 

level of interconnection between the genes (Josephs et al. 2017). Gene expression levels of wild 

populations are not always optimal for high fitness in certain environments (Keren et al. 2016), 

and, based on theoretical models, the selection strength will be dependent, firstly, on how far away 

from the optimum is the gene expression and also on its location in a gene network (Hurst and 

Randerson 2000; Huber et al. 2018). Therefore, it can be expected that the type and intensity of 

selection we observe within a species is not uniform across the transcriptome. In fact, in A. lyrata, 

I identified genes with higher level of additive variance, accumulate in functional groups that par-

tially overlap with the enriched functions located within selective sweep areas. This observation is 

important as it shows that there is still potential for adaptation via modulating gene expression 

variance. However, this is a small number of genes that have the potential to contribute to selection. 

One consideration, to be taken into account is the impact of the bottleneck and the subsequent 

genetic drift in both SP and PL. However, in a similar crossing design between yeast populations, 

adaptive divergence was found to have played a role in promoting additive variance in admixed 

populations (Liu et al. 2020). Adaptive divergence between our populations has influenced part of 
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the gene expression evolution, as genes located within sweep areas have decreased additive vari-

ance.  

The selection strength is affected by the number of loci that control gene expression. (Hodgins-

Davis et al. 2015). Selection, especially if it is positive, is usually harder to identify when a trait 

has polygenic basis (Stephan 2016), with the extreme case of the infinitesimal model attributing 

all genetic variance to genetic drift (Barton et al. 2017). More plant and animal traits have a poly-

genic basis than previously thought. In plants, vegetative growth (Wieters et al. 2020), and stomata 

size and density (Dittberner et al. 2018) are some examples of traits with polygenic basis. Perhaps, 

one might expect gene expression to be mostly regulated by large effect mutations located within 

its own sequence. I observed the opposite; of the approximately 17,500 gene wide association 

studies, only 174 genes had significant associations. This is a clear indication that the gene expres-

sion’s genetic basis is polygenic. Interestingly, is that genes regulated by trans genes have a higher 

additive variance than the rest of the genes and additionally they are more often under positive 

selection. Those genes have a large effect on the phenotype and therefore the selective sweeps are 

easier to identify than if they were mutations of small effect (Pritchard et al. 2010; Stephan 2016; 

Barghi et al. 2020). The large number of phenotypes with small effect mutations regulating gene 

expression, in combination with the evidence of selection for a large number of genes, indicates 

that a large proportion of the A. lyrata transcriptome is under polygenic selection. Note, however, 

that this outcome is not true for the small number of genes that have little genetic variance. This 

observation is in line with the overall signals of polygenic adaptation observed in genomes of the 

two populations.  

4.6 Investigating the dominance variance can further enrich our understanding of the 

missing heritability 
One aspect of polygenic traits that has arisen in the recent years, is the problem known as the 

mystery of the missing heritability, which refers to the phenomenon reported by genome wide 

association studies. Genome wide association studies can be used to infer the genetic variance of 

a trait in addition to its genetic architecture (Visscher et al. 2006). Often, the cumulative effect of 

the most important loci that control the tested phenotype explain only a small proportion of the 

predicted genetic variance (Manolio et al. 2009; Boyle et al. 2017). The missing heritability is 

attributed to rare alleles, which, due to their frequency, they are often not represented in the da-

tasets (Simons et al. 2014; Marouli et al. 2017). However, often investigating the narrow sense 
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heritability alone does not provide the whole picture, due to the within and between locus allelic 

interactions. In my study, for example, there was a discrepancy between the values of genetic and 

additive variance; the difference between the two can be attributed to dominance variance. More 

than 25% of the transcripts had dominance variance greater than 50% of the total phenotypic var-

iance. Moreover, in almost all cases the importance of including the dominance variance as a pre-

dictive variable in the model was significant. Dominance variance is often neglected from studies 

because of the assumption that it will be minimal under a demographic model of mutation balance 

and infinite population size. However, dominance variance has been shown to be a considerable 

part of phenotypic variance in wild (Waldmann 2001) and domesticated populations (Yang et al. 

2019). Moreover, ignoring the contribution of dominance variance can lead to overestimation of 

narrow sense heritability as it is seen both by theoretical models (Ovaskainen et al. 2008) and field 

population analysis (Class and Brommer, 2020). Class and Brommer used a time series dataset of 

bird families to investigate the level of additive and non-additive variance within the species. 

Moreover, using model fits including and excluding the dominance matrix, as well as phenotypic 

modeling, they reached the conclusion that dominance variance is important to accurately explain 

the phenotypic variance observed in the wild. Therefore, partitioning genetic variance to both ad-

ditive and dominance variance can provide insights into the part that is the result of the interactions. 

The interactions between loci and genes are not detectable via genome wide association study, due 

to the per SNP basis correlations (Korte and Farlow 2013). However, since the quantitative genet-

ics approach is blind to the genetic architecture of the trait; it can provide insight into the mystery 

of missing heritability.  

4.7 Dominance variance levels within the transcriptome support the omnigenic model due 

to pleiotropic effects and genic interactions 
The accumulation of dominance variance observed in this study, align with the omnigenic model 

prediction. The omnigenic model predicts that gene regulatory networks are sufficiently intercon-

nected, in such a way that they all can affect the phenotype (Boyle et al. 2017). I have identified 

three aspects of the genes with high dominance variance that support the model. First of all, genes 

with high dominance variance tend to accumulate in functions that are related to epigenetic func-

tions such as chromatin silencing and DNA and protein methylation, which affect many genes 

(Robertson 2005; Choi et al. 2008). Secondly, most of the genes with high dominance variance 
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show evidence of network connectivity, as they are often clustered together based on their expres-

sion correlation. Network connectivity is a measure of pleiotropy (Langfelder and Horvath 2008), 

which is assumed to exist in the omnigenic model. Thirdly, the correlation of the high dominance 

variance and the number of transcription factors is further evidence of the pleiotropic and epigenic 

role of those genes. Hence, the polygenic basic of the transcriptome and the gene interconnection, 

as they are evident by analyzing the additive and dominance variance respectively, provide support 

for the omnigenic model in gene expression. 

However, there is an interesting aspect that has arisen regarding dominance variance. In different 

species there has been evidence of strong constraints and negative selection related to pleiotropy 

in gene networks or co-expressed genes (see for example Hahn and Kern 2005; Orr 2009; Josephs 

et al. 2017; Masalia et al. 2017), including the species A.lyrata ssp petraea (Huber et al. 2018). 

The genes with high dominance variance within A.lyrata show the same level of constraints as a 

random set of genes, indicating no relation to negative selection. Furthermore, the genes do not 

show correlation with population genetic parameters indicative of divergence between the two 

populations in the study. This observation could have been due to the inevitable cofounding of 

within locus and between locus interactions. A proportion of the observed dominance is due to the 

within locus interactions. I have identified a significant association of specific genome architec-

ture, such as gene length and exon number and dominance variance. This can be connected with 

the definition of dominance genetic variance (within locus interactions) and specifically, domi-

nance deviation, as described in Falconer & MacCay (1996). Dominance deviation is the differ-

ence of the breeding value (or additive variance) from the genotypic value (or genetic variance), 

and it represents the interactions between the alleles within or across loci. Thus, increasing the 

number of potential alleles in a locus can have an impact on the amount of dominance variance.  

One way, to disentangle the dominance variance from the epistatic variance is to partition the 

phenotypic variance in the next generation (Lynch and Walsh 1998) and then look for signals of 

selection in the two groups separately. An additional gene pathway analysis would be useful to 

investigate constraints between the genes that belong in the same pathway.  

4.8 Considerations arising by the unique study design 
One unique aspect of the study design has to be considered; I have crossed populations, while most 

of the studies are investigating the genetic variance within populations (see for example Leder et 
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al. 2015; Koch and Guillaume 2020). My design, even though it allows for investigation of the 

interaction of an increased number of alleles and gene structures, at the same time, it masks the 

effect of some alleles. The effect of the within population fixed alleles is lost, while the alleles that 

are in fixed heterozygous state within population, change in frequency in the next generation. Es-

pecially, the impact of fixed alleles is very important, as for traits with simple genetic architecture, 

selection acts on the allele frequencies, leading to fixation of advantageous alleles within a popu-

lation and thus the reduction of additive variance (Hill et al. 2008). On the contrary, when genetic 

drift is the primary force affecting the allelic frequencies, as for example after a strong bottleneck, 

then additive variance increases (Crnokrak and Roff 1995; Hill et al. 2008). This indicates that the 

degree of additive variance is underestimated in the design.  

The impact of the crossing design on dominance variance, on the other hand is more complicated 

to disentangle than the impact on additive variance. The proportion of dominance variance due to 

within locus effects should be represented fairly, except for the cases that a recessive allele is fixed 

within one population (Falconer and Mackay 1996; Lynch and Walsh 1998). When considering 

the impact of genetic load in the two populations, those cases would be rare, if they exist at all. It 

has also been shown that in yeast strongly deleterious mutations are additive (Agrawal and Whit-

lock 2011) and thus they would not contribute to dominance variance in a disproportional way.  

Even though the type of allelic interactions and their frequencies within populations does not in-

flate the dominance variance within the design, I cannot readily exclude the inflation of dominance 

variance due to genome-wide incompatibilities. Genome wide incompatibilities can occur by 

merging two divergent genomes and lead to miss regulation of transcriptome (Lafon-Placette and 

Köhler 2015; Todesco et al. 2016). This does not seem to be the case here, as there was no large 

genomic area associating with the gene expression of most genes, which would have been the 

signal of genome incompatibility. On the contrary, the location of trans effects were dispersed 

along the genome, indicating that we do not have a misinterpretation of the dominance variance 

values in the design. One aspect of the design that would still need to be explored is a possible 

inflation of the dominance variance due to the private alleles. Each population have accumulated 

a number of unique alleles since their divergence, which could increase the number of interactions 

within and between loci, inflating dominance variance. Simulations of phenotypes based on inter-

action of private alleles could help solve this problem. 



95 
 

4.9 Indications of the important role that cis regulatory elements have in the evolution 

within species 
It has been previously documented, that the cis regulatory elements have had a significant role in 

species divergent adaptation (He et al. 2012; He et al. 2016; Steige et al. 2017). The cis regulatory 

elements are used to understand the impact of small effect mutations on the phenotype (Fay and 

Wittkopp 2008; He et al. 2016; de Meaux 2018) and they have an additive nature of their allelic 

interactions, which generally contribute more to the additive genetic variance than alleles with 

non-additive interactions (Falconer and Mackay 1996). Using the GWAS of each gene’s expres-

sion, I was able to identify mutations with large effect for approximately 1% of the transcriptome. 

Interestingly, almost all of the significant associations have a trans effect, leading to the conclusion 

that most of the gene expression variance has polygenic basis. Thus, it would be interesting to 

identify those elements with cis regulatory effect on gene expression, as they can add to the un-

derstanding of polygenic selection via accumulation of small effect mutations. 

However, using the allele specific expression within the generated transcriptomes poses a problem 

that is yet to be overcome. There is evidence of mapping bias, with alleles from SP population 

often being identified as overexpressed more often than the alleles from PL. Mapping bias can 

distort the accurate detection of ASE and cis elements (Degner et al. 2009) and it could stem from 

mapping errors in areas with high divergence both between populations and the reference genome. 

Further investigation into the causes of it, can provide solutions for improved filtering of the ASE 

dataset. 

Despite this fact, it is evident that even within species, the cis elements tend to accumulate in 

different functions between the populations. Also, it indicates that there is potential for adaptation 

via accumulation of small effect mutations, as genes with ASE seem to have higher additive vari-

ance than the genes with alleles expressed in equal proportion. Taken together, these observations 

illustrate the potential of studying the accumulation of cis regulatory variation within species.  

4.10 Concluding remarks 
The aim of this thesis was to investigate the polygenic basis of adaptation in the European subspe-

cies of A. lyrata, using two populations from the edge and the core of its distribution. Firstly, I 

identified that, despite a strong bottleneck, the range-edge population has accumulated a moderate 

genomic load, which has neither compromised plant fitness nor the adaptive dynamics. This result 
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highlights the importance of studying populations with natural variation to better understand the 

impact of selection and genomic load.  

Furthermore, I established that the gene expression variance within the species has substantial 

additive variance, which is related to signals of directional selection in the two populations. Gene 

expression in most of the cases is not a trait with simple genetic architecture, but with non-additive, 

polygenic basis. I identified evidence that the genetic variance of the trait is also highly dependent 

on pleiotropic effects and also the gene’s structure. Taken together, these results support with ev-

idence the novel omnigenic model, which aims to explain the complex gene interactions of com-

plex phenotypes. Finally, the exploration of the cis regulatory variation indicates that small effects 

mutations have had an important role in adaptation of the two populations.  
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6.1 Custom scripts 

6.1.1 Python script for calculation of genetic distance 
#!/usr/bin/env python 

 

import numpy as np 

from numpy import array 

import sys 

import csv 

 

#genetic pairwise diversit per sample 

def genetPairDiver(vcfIO): 

 lines = 0 

 filename = input("Give file name to save the matrix as 'name.txt':") 

 for line in vcfIO: 

  if line[1] == '#': 

   pass 

  else: 

   if line[1] == 'C': 

    line2 = line.split('\t') 

    line2 = line2[9::] 

    indexes = [x for x in range(0,len(line2))] 

    num_diff = np.zeros((len(indexes), len(indexes))) #create the table 

that I can add if different the two indiv 
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    num_comp = np.zeros((len(indexes), len(indexes))) #create the 

table that I can add number of comparisons 

    #print indexes, line2 

   else: 

    lines = lines + 1 #count the number of lines in the variant file 

    line2 = line.split('\t') 

    line2 = line2[9::] 

    for indv in indexes: 

     i = indv + 1 

     gt1 = line2[indv].split(':') #get the correct index for each indv 

     gt1 = gt1[0] 

     while i < len(indexes): #to compare with the next indv in the 

line, The comparison with the ones before has already be done, and no need to compare with itself 

      gt2 = line2[i].split(':') 

      gt2 = gt2[0] 

      #print lines,indv, i 

      if gt1 == './.' or gt2 =='./.': #skip if missing info 

      # print 1 

       pass  

      else: 

       if gt1 != gt2: 

        num_diff[indv, i] = num_diff[indv, i] 

+ 1 
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        num_comp[indv, i] = 

num_comp[indv, i] + 1 

        num_diff[i, indv] = num_diff[i, indv] 

+ 1 #add in both columns and rows, the matrix for heatmap3 must be symmetrical 

        num_comp[i, indv] = num_comp[i, 

indv] + 1 

        #print num_comp 

      #  print 2 

       elif gt1 == gt2: 

        num_comp[indv, i] = 

num_comp[indv, i] + 1 

        num_comp[i, indv] = num_comp[i, 

indv] + 1 #count it only in the number of comparisons. 

      #  print 3 

      i = i + 1 

 diff_1 = num_diff / num_comp 

 diff_1 = diff_1 * float(lines) 

 diff_1 = diff_1 / float(nonvar)  #normalise by multiple total number of sites in variant sites 

file and divide by total number of lines in nonvariant file  

 np.savetxt('{}'.format(filename), diff_1, delimiter='\t')    

 

file = sys.argv[1] #vcf file containing all the variant sites for the gene 

nonvar = sys.argv[2] #number of nonvariant sites, pre counted 

vcfIO = open(file, 'r') 
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genetPairDiver(vcfIO, nonvar) 

sys.exit("Live long and prosper!") 
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6.1.2 Python script for the estimation of the genomic load per individual 
#!/usr/bin/env python 

 

import os 

import sys 

import csv 

import numpy as np 

 

###get the number of derived alleles, based on the polyDFE dervided state file. 

# 

def counts2(vcf, non, outTable, r, name): 

 dictPos = {'1':[], '2':[], '3':[], '4':[], '5':[], '6':[], '7':[], '8':[]} 

 print("Creating dictionary with positions of input variants...") 

 for line in non: 

  if line[0] == '#': 

   pass 

  else: 

   line2 = line.split("\t") 

   chrom = line2[0] 

   pos = line2[1][0:-1] 

   dictPos[chrom].append(pos) 

 #print(dictPos['1']) 
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 outFile = open("{}.derived.pos.alls.txt".format(name), 'w') 

 print("Going through the csv file...") 

 for line in vcf: 

  if line[0] == 'C': 

   outFile.write(line) 

  else: 

   line2 = line.split(",") 

   chrom = line2[0] 

   pos = line2[1] 

   #print pos 

   #print line2 

   if pos in dictPos[chrom]: 

    line3 = line2[4::] 

    #print line3 

    l = len(line3) 

    outFile.write(line) 

    #print l 

    i = 0 

    while i < l: 

     all1 = line3[i] 

     all2 = line3[(i + 1)][0] 

     #print all1, all2 
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     if all1 == 'NA' or all2 == 'NA': #missing info for the 

individual 

      pass 

     elif all1 == '0' and all2 == '0': #it is the ancestral state, then 

no change 

      pass 

     elif all1 == '0' and all2 == '1': #it is a change in the individual 

      outTable[i/2, int(r)] = outTable[i/2, int(r)] + 1 #this 

is like before, the general count of het or hom state 

      outTable[i/2, (int(r) + 1)] = outTable[i/2, (int(r) + 1)] 

+ 0.5 #for the haploid genome the heter is +0.5 

     elif all1 == '1' and all2 == '0': #it is a change in the individual 

      outTable[i/2, int(r)] = outTable[i/2, int(r)] + 1 #this 

is like before, the general count of het or hom state 

      outTable[i/2, (int(r) + 1)] = outTable[i/2, (int(r) + 1)] 

+ 0.5 #for the haploid genome the heter is +0.5 

     elif all1 == '1' and all2 == '1':  

      outTable[i/2, int(r)] = outTable[i/2, int(r)] + 1 #this 

is like before, the general count of het or hom state 

      outTable[i/2, (int(r) + 1)] = outTable[i/2, (int(r) + 1)] 

+ 1 #for the haploid genome the hom is +1 

      #print 1 

     i = i + 2  

   else: 

    pass 
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 print("Counted the variants per individual.") 

 #print(outTable) 

 outFile.close 

 return(outTable) 

 

############Main Part of the Code###### 

vcf1 = open(sys.argv[1], 'r') 

output = np.zeros((int(sys.argv[4]), 2)) #create the table that I can add the data if the individual 

has the syn and nonsyn variance. Non/Syn/ratio, the order of the things 

 

non = open(sys.argv[2], 'r') 

output = counts2(vcf1, non, output, 0, sys.argv[3]) 

np.savetxt('derived.{}.counts.txt'.format(sys.argv[3]), output, delimiter='\t') 

sys.exit("Live long and prosper!") 
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6.1.3 R Script for running the MCMCglmm analysis on the cluster or locally 
#!/usr/bin/env Rscript 

args = commandArgs(trailingOnly=TRUE) 

start_time <- Sys.time() 

 

####Arguements are the array number, and number of genes to be run in each file 

library(MCMCglmm) 

library(pedigreemm) 

library(nadiv) 

library(coda) 

 

load("counts.RData") 

#load("genes100.RData") 

 

#give the table with the counts, the first gene index, last gene index 

#return a table with the VA, Vd, Vr, h2, diagnostics 

variancesCalc <- function(tre, st, end){ 

  out1 <- NULL 

  flags <- NULL 

  gelman <- NULL 

  prior4 <- list(R=list(V=1, nu=0.02), G = list(G1 = list(V=1, nu=0.02), G2 = list(V=1, nu=0.02), 

G3 = list(V=1, nu=0.02))) 

  #counts <- tre[st:end,] #pick a subset to iterate over 
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  counts <- tre[,st:end] #already transposed dataset 

  pdf(paste(st, end, "gelman", "pdf", sep = ".")) 

  par(mfrow=c(2,2), mar=c(2, 1, 1, 1)) 

  for (iter in 1:length(colnames(counts))){ 

    temp <- as.data.frame(counts[,iter]) 

    gene <- colnames(counts)[iter] 

   print(gene) 

    colnames(temp) <- "counts" 

    temp$animal <- rownames(temp) 

    temp$dom <- rownames(temp) 

    #print(temp$animal) 

    temp <- merge(temp,  toMergeFam, by="animal")  

    #print(summary(temp)) 

   temp$counts <- as.numeric(as.character(temp$counts)) 

   print(summary(temp)) 

    print(hist(log2(temp$counts))) 

    f <- "o" 

    tryCatch({ 

      gene.model <- MCMCglmm(log2(counts) ~ pop, random= ~ animal + dom + Dam, ginverse 

= list(dom=Dinv), start=list(QUASI=FALSE), singular.ok = FALSE, family="gaussian", 

prior=prior4,  pedigree=fam_matrix2, data=temp, nitt = 2200000, burnin = 200000, thin=2000, 

verbose = FALSE) 

      print(summary(gene.model)) 
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      EfR <- effectiveSize(gene.model$Sol)[1] #effective size of fixed effects. More than 1000, 

close or above 10000 is good 

      EfA <- effectiveSize(gene.model$VCV)[1] #effective size of random effects 

      EfD <- effectiveSize(gene.model$VCV)[2]  

      EfM <- effectiveSize(gene.model$VCV)[3] 

      EfU <- effectiveSize(gene.model$VCV)[4] 

      Va <- median(gene.model$VCV[,"animal"]) 

      Vd <- median(gene.model$VCV[,"dom"]) 

      Vr <- median(gene.model$VCV[,"units"]) 

      Vm <- median(gene.model$VCV[,"Dam"]) 

      h2 <- Va / (Va + Vm + Vr + Vd) 

      a.cor <- autocorr.diag(gene.model$VCV)[2] 

      d.cor <- autocorr.diag(gene.model$VCV)[7] 

      m.cor <- autocorr.diag(gene.model$VCV)[12] 

      u.cor <- autocorr.diag(gene.model$VCV)[17] 

      sdA <- sd(gene.model$VCV[,"animal"]) 

      sdD <- sd(gene.model$VCV[,"dom"]) 

      sdU <- sd(gene.model$VCV[,"units"]) 

      sdM <- sd(gene.model$VCV[,"Dam"]) 

      outp <- c(as.character(gene), Va, Vd, Vm, Vr, h2, sdA, sdD, sdM, sdU, a.cor, d.cor,m.cor, 

u.cor,EfR, EfA, EfD, EfM, EfU) 

      out1 <- rbind(out1, outp) 

      f <- "e" 
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    }, error = function(cond){print("Error in first model.")}) 

    ###run the other chain 

    tryCatch({ 

      gene.model1 <- MCMCglmm(log2(counts) ~ pop, random= ~ animal + dom + Dam, ginverse 

= list(dom=Dinv), start=list(QUASI=FALSE), singular.ok = TRUE, family="gaussian", 

prior=prior4,  pedigree=fam_matrix2, data=temp, nitt = 2200000, burnin = 200000, thin=2000, 

verbose = FALSE) 

      chains <- mcmc.list(gene.model$Sol, gene.model1$Sol) #collect the chain 

      gelman <- rbind(gelman, c(as.character(gene), gelman.diag(chains)$psrf[1], 

gelman.diag(chains)$psrf[2]))#the actual diagnostic. Has to be close to 1 

      print(plot(chains, ask=F, auto.layout=F)) #plot them on top of each other 

      f <- "y" 

    }, error = function(cond){print("Error in second model.")}) 

      if (f == "y"){flags <- rbind(flags, c(as.character(gene), "pass"))} #both chains run properly 

      else if (f == "e"){flags <- rbind(flags, c(as.character(gene), "fail2nd"))} #only the first passed 

      else if (f == "o"){flags <- rbind(flags, c(as.character(gene), "fail"))} #both chains failed 

      } 

  colnames(out1) <- c("Gene", "Va", "Vd","Vm", "Vr", "h2", "Va.sd", "Vd.sd","Vm.sd", "Vr.sd", 

"Va.cor", "Vd.cor","Vm.cor", "Vr.cor", "Ef.R","Ef.A", "Ef.D","Ef.M", "Ef.U") 

  colnames(gelman) <- c("Gene", "Inter", "PopSp") 

  dev.off() 

  assign("gelmanValues", gelman, envir =.GlobalEnv) 

  assign("flags", flags, envir =.GlobalEnv) 

  return(out1) 
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} 

 

csvprint <- function(x, nameP, row.names=FALSE, col.names=TRUE){ 

  write.table(x, file=nameP, append=FALSE, eol='\n', sep="\t", na = "NA", dec='.', 

row.names=FALSE, col.names=TRUE) 

} 

 

#pick the index based on the array iteration on the cluster 

#args[1] is the array being run.  

#args[2] is the number of genes I want to run in each array 

end = as.numeric(as.character(args[1])) * as.numeric(as.character(args[2])) 

start = end - (as.numeric(as.character(args[2])) - 1) 

print(start) 

print(end) 

variances1.2k <- variancesCalc(counts, start, end) 

#variances1.2k <- variancesCalc(genes100, start, end) 

csvprint(variances1.2k, paste("variances", start, end, "csv", sep=".")) 

csvprint(gelmanValues, paste("gelmanValues", start, end, "csv", sep=".")) 

csvprint(flags, paste("flags", start, end, "csv", sep=".")) 

end_time <- Sys.time() 

end_time - start_time 
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6.2 Protocols for PCR and digestion of DNA 
PCR with the custom primers 

 

The annealing Temperature of the primers is 56°C 

 

Add per sample: 

 

H2O 15.9 μl 

10x Buffer 2 μl 

dNTPs 10mM 0.3 μl 

Forward Primer 0.5 μl 

Reverse Primer 0.5 μl 

Dream Taq 0.1 μl 

 

Run the following program in the PCR machine: 

1. 95oC for 2 mins 

2. 95oC for 25secs 

3. 60oC for 30 secs 

4. 72oC for 30 secs 

5. 72oC for 5 mins 

Repeat 35 times the steps 2 to 3.  

 

Digestion with the enzyme Pvu II (Promega) 

 

Add per sample: 

 

H2O 16.3 μl 

RE 10x Buffer 2 μl 

Acetylated BSA 0.2 μl 

Restrivtion Enzyme 0.5 μl 

PCR Product 10 U/μl  

 

 

Incubate at 37oC for2 hours. 
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6.3 SupplementaryTables 
 

Appendix Table 1: Phenotypic data of PL and SP individuals, collected during common garden 

experiment in Cologne. The experiment started in September 2017 and lasted for a year. The 

Diameter per month is given in mm and the fresh weight, dry weight and dry to fresh weight for 

each individual in gramms. Each of our original individuals was replicated by vegetative clones.  

ID signifies the clones and Family the original plant. 

ID Fam-

ily 

Popu-

lation 

Spe-

cies 

Diam-

March

(mm) 

Di-

amAp

ril(m

m) 

Di-

amMa

y(mm) 

Diam-

June(

mm) 

Dia-

mAug

(mm) 

Diam-

July(

mm) 

Fresh

Weigh

t(gr) 

Dry-

Weigh

t(gr) 

Dryto

Fresh

Weigh

tRatio 

1897 10a PL A.ly-

rata 

NA NA NA 44,98 45,78 40,17 3,552 0,5635 0,1586

43018 

1905 1a PL A.ly-

rata 

85,13 76,46 80,2 29,62 38,15 35,59 4,078 0,8181 0,2006

13046 

1908 10a PL A.ly-

rata 

37,43 35,47 26,85 27,78 36,32 29,17 1,612 0,3099 0,1922

45658 

1903 9a PL A.ly-

rata 

23,98 27,71 32,29 32,1 33,24 34,85 1,438 0,2855 0,1985

39638 

1913 80936 PL A.ly-

rata 

17,05 23,03 20,85 33,02 30,12 29,39 2,546 0,4361 0,1712

88295 

1896 5a PL A.ly-

rata 

31,62 33,97 46,53 31,35 35,09 33,03 2,18 0,2434 0,1116

51376 

1900 3a PL A.ly-

rata 

41,83 32,08 24,1 26,17 25,47 27,81 1,144 0,1829 0,1598

77622 

1906 2a PL A.ly-

rata 

NA NA NA NA 25,01 22,27 1,092 0,1043 0,0955

12821 

1904 4a PL A.ly-

rata 

48,49 41,18 17,63 43,43 46,38 41,98 4,315 0,7226 0,1674

62341 

1898 6a PL A.ly-

rata 

NA NA NA NA 26,48 23,76 0,488 0,0879 0,1801

22951 

1902 11a PL A.ly-

rata 

76,29 74,02 NA 52,15 39,95 43,36 3,124 0,696 0,2227

91293 

1901 80936 PL A.ly-

rata 

NA 5,1 23,56 NA NA NA NA NA NA 

1899 7a PL A.ly-

rata 

66,3 59,12 13,35 44,36 45,75 27,81 4,388 0,8178 0,1863

71923 

1943 9a PL A.ly-

rata 

41,26 28,2 46,57 41,69 48,93 35,66 3,353 0,5808 0,1732

18014 

1938 6a PL A.ly-

rata 

NA 4,85 NA NA NA NA NA NA NA 

1939 7a PL A.ly-

rata 

55,24 38,16 18,9 41,29 48,22 34,3 2,77 0,4243 0,1531

76895 

1942 11a PL A.ly-

rata 

35,34 38,44 40,4 28,95 40,75 30,88 2,07 0,266 0,1285

02415 

1940 5a PL A.ly-

rata 

64,8 53,88 38,68 24,81 47,05 30,37 2,893 0,4672 0,1614

9326 

1946 2a PL A.ly-

rata 

68,2 56,46 34,99 17,46 35,54 19,67 2,24 0,3544 0,1582

14286 
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1945 1a PL A.ly-

rata 

36,3 34,6 32,08 26,77 32,79 30,9 1,48 0,2401 0,1622

2973 

1944 4a PL A.ly-

rata 

24,72 22,54 23,16 25,36 46,19 25,17 1,46 0,2439 0,1670

54795 

1954 2a PL A.ly-

rata 

15,11 18,64 19,33 24,78 47,48 26,47 2,229 0,9158 0,4108

56886 

1953 10a PL A.ly-

rata 

68,45 66,49 56,11 34,14 64,13 45,99 2,44 0,1286 0,0527

04918 

1936 3a PL A.ly-

rata 

47,25 44,38 36,73 30,22 37,1 35,9 1,569 0,1102 0,0702

35819 

1937 10a PL A.ly-

rata 

33,13 40,2 NA 27,41 43,58 33,54 2,045 0,3901 0,1907

57946 

2001 11a PL A.ly-

rata 

54,92 53,93 17,29 40,8 49,84 26,05 3,396 0,6729 0,1981

44876 

1983 9a PL A.ly-

rata 

28,33 29,11 23,76 28,61 37,9 30,84 1,935 0,0402 0,0207

75194 

1981 80936 PL A.ly-

rata 

69,64 74,47 64,78 38,98 52,1 40,6 3,457 0,4149 0,1200

17356 

1984 4a PL A.ly-

rata 

36,44 34,22 33,57 27,71 36,03 32,55 2,002 0,2224 0,1110

88911 

1986 2a PL A.ly-

rata 

26,52 27,94 26,7 22,58 42,27 27,18 1,974 0,2426 0,1228

9767 

1977 10a PL A.ly-

rata 

37,33 40,62 40,58 32,32 47,81 40,56 1,059 0,1289 0,1217

18602 

1976 3a PL A.ly-

rata 

15,46 28,63 25,2 37,85 45,78 31,57 1,709 0,3991 0,2335

28379 

1978 6a PL A.ly-

rata 

48,04 64,3 60,7 24,79 49,86 39,51 3,681 0,5559 0,1510

18745 

1980 5a PL A.ly-

rata 

NA NA NA NA 29,71 20,45 0,718 0,1347 0,1876

04457 

1985 1a PL A.ly-

rata 

17,78 32,07 30,8 26,39 49,47 22,78 0,954 0,2999 0,3143

60587 

2023 9a PL A.ly-

rata 

51,43 62,22 70,8 22,19 43,79 33,24 4,207 0,8667 0,2060

13787 

2019 7a PL A.ly-

rata 

31,88 3,56 NA NA NA NA NA NA NA 

2020 5a PL A.ly-

rata 

10,05 NA NA NA NA NA NA NA NA 

2022 11a PL A.ly-

rata 

19,5 30,12 28,9 30,92 37,01 32,71 2,173 0,4297 0,1977

45053 

2018 6a PL A.ly-

rata 

32,24 42,86 44,1 40,85 43,05 40,27 3,244 0,5627 0,1734

58693 

2024 4a PL A.ly-

rata 

11,84 21,3 20,8 34,83 48,03 30,79 2,072 0,2943 0,1420

3668 

2026 2a PL A.ly-

rata 

15,98 14,08 14,2 16,1 24,05 20,41 0,697 0,1194 0,1713

05595 

2017 10a PL A.ly-

rata 

29,46 53,62 60,01 32,62 32,05 35,89 3,273 0,6081 0,1857

92851 

2021 80936 PL A.ly-

rata 

NA 16,42 20,1 30,74 28,43 16,07 1,745 0,2904 0,1664

18338 

2025 1a PL A.ly-

rata 

20,39 36,11 38,9 37,03 37,55 NA 2,798 0,4869 0,1740

17155 

2016 3a PL A.ly-

rata 

NA 3,54 22,9 32,08 37,15 31,4 1,415 0,2144 0,1515

19435 
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2074 2a PL A.ly-

rata 

48,76 58,01 41,12 23,76 35,46 32,07 1,358 0,2874 0,2116

34757 

2067 7a PL A.ly-

rata 

14,34 27,14 23,94 33,04 32,17 24,16 1,683 0,2751 0,1634

58111 

2061 80936 PL A.ly-

rata 

86,91 41,92 43,45 22,83 35,06 21,71 1,497 0,3676 0,2455

57782 

2056 3a PL A.ly-

rata 

78,58 29,53 29,65 21,78 20,95 16,74 NA NA NA 

2066 2a PL A.ly-

rata 

NA 13,44 14,4 24,27 21,42 23,25 0,592 0,1221 0,2062

5 

2062 11a PL A.ly-

rata 

64,29 60,96 60,7 39,04 33,51 38,18 3,004 0,6166 0,2052

59654 

2072 11a PL A.ly-

rata 

43,06 38,95 40,6 25,25 35,08 NA 1,984 0,3064 0,1544

35484 

2059 7a PL A.ly-

rata 

65,44 38,89 50,8 28,52 37,53 23,79 2,423 0,4399 0,1815

51795 

2063 9a PL A.ly-

rata 

34,16 37,1 40 34,22 33,53 36,49 1,86 0,2899 0,1558

60215 

2064 4a PL A.ly-

rata 

41,31 39,11 50,2 32,47 44,47 36,13 2,054 0,4212 0,2050

63291 

2058 6a PL A.ly-

rata 

27,78 29,81 17,37 23,8 33,85 26,01 1,655 0,324 0,1957

70393 

2060 5a PL A.ly-

rata 

53,72 40,89 58,9 44,9 49,15 47,78 2,599 0,4914 0,1890

7272 

2065 1a PL A.ly-

rata 

54 23,97 34,48 26,5 43,88 25,82 3,612 0,6328 0,1751

93798 

2136 3a PL A.ly-

rata 

25,62 25,76 20,1 34,08 35,78 31,76 0,649 0,1439 0,2217

25732 

2143 9a PL A.ly-

rata 

38,15 31,15 28,08 28,77 45,78 40,01 2,598 0,4605 0,1772

51732 

2139 7a PL A.ly-

rata 

48,81 NA NA NA 23,84 NA NA NA NA 

2144 4a PL A.ly-

rata 

NA 5,9 10,01 32,92 51,67 39,88 3,086 0,4836 0,1567

07712 

2146 2a PL A.ly-

rata 

NA 47,39 26,59 26,67 41,59 27,44 2,42 0,4616 0,1907

43802 

2138 6a PL A.ly-

rata 

32,83 29,28 30,1 21,22 33,78 20,01 1,397 0,2689 0,1924

83894 

2141 80936 PL A.ly-

rata 

50,13 44,76 50,81 14,73 37,16 21,2 2,509 0,5361 0,2136

70785 

2154 6a PL A.ly-

rata 

60,08 55,25 60,1 26,15 51,27 30,35 3,639 0,5674 0,1559

21957 

2137 10a PL A.ly-

rata 

NA NA NA 32,56 49,83 45,56 1,632 0,2294 0,1405

63725 

2155 3a PL A.ly-

rata 

42,22 47,42 23,81 26,37 39,88 31,15 1,31 0,1763 0,1345

80153 

2142 11a PL A.ly-

rata 

63,44 61,15 70,41 41,04 39,67 38,42 3,089 0,6325 0,2047

58822 

2145 1a PL A.ly-

rata 

54,82 50,34 25,46 27,24 39,24 29,81 2,724 0,4114 0,1510

279 

2140 5a PL A.ly-

rata 

NA 18,13 NA NA NA NA NA NA NA 

1915 70542 SP A.ly-

rata 

10,67 26,81 23,89 35,66 32,41 30,92 1,631 0,2788 0,1709

38075 
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1916 70545 SP A.ly-

rata 

NA NA NA NA NA NA 0,102 0,0023 0,0225

4902 

1914 70541 SP A.ly-

rata 

NA 7,46 14,23 29,2 35,41 25,84 2,076 0,2624 0,1263

96917 

1910 70538 SP A.ly-

rata 

NA 15,68 NA 30,31 32,48 28,77 1,783 0,3141 0,1761

63769 

1912 70539 SP A.ly-

rata 

29,9 26,1 NA 45,52 NA NA NA NA NA 

1909 70537 SP A.ly-

rata 

NA NA NA 40,15 60,01 34,58 3,058 0,4491 0,1468

60693 

1911 SP5 SP A.ly-

rata 

NA NA 54,43 NA NA NA NA NA NA 

1957 SPH7 SP A.ly-

rata 

10,09 8,57 NA NA NA NA NA NA NA 

1955 70542 SP A.ly-

rata 

NA NA 15,16 25,74 33,61 30,88 1,3 0,2221 0,1708

46154 

1950 70538 SP A.ly-

rata 

16,33 23,74 25,6 31,79 48,61 40,96 1,837 0,3376 0,1837

77899 

1948 70537 SP A.ly-

rata 

NA 14,47 37,51 NA 37,62 33,88 0,956 0,1625 0,1699

79079 

1997 70538 SP A.ly-

rata 

25,83 20,71 33,01 30,87 39,32 26,9 2,159 0,3115 0,1442

79759 

2009 70539 SP A.ly-

rata 

NA NA 25,3 52,28 57,75 40,44 3,456 0,6985 0,2021

12269 

1990 70536 SP A.ly-

rata 

13,01 20,16 NA 31,69 48,35 45,74 1,706 0,2743 0,1607

85463 

1979 70536 SP A.ly-

rata 

NA NA 14,97 16,95 26,39 24,9 0,791 0,0615 0,0777

49684 

1995 70542 SP A.ly-

rata 

NA 10,55 28,39 33,53 36,31 27,27 2,251 0,1826 0,0811

19502 

1991 SP5 SP A.ly-

rata 

15,17 17,29 18,2 31,57 26,19 28,17 0,726 0,1534 0,2112

94766 

1996 70545 SP A.ly-

rata 

18,55 37,13 43,7 45,75 52,15 40,41 2,653 0,502 0,1892

19751 

1987 70536 SP A.ly-

rata 

NA 7,67 8,5 15,07 23,78 20,76 1,06 0,0602 0,0567

92453 

1994 70541 SP A.ly-

rata 

NA 12,86 NA NA NA NA NA NA NA 

1993 70540 SP A.ly-

rata 

NA 12,92 19,85 40,19 39,9 38,79 1,855 0,3352 0,1807

00809 

1992 70539 SP A.ly-

rata 

17,21 24,16 21,81 39,34 44,9 34,88 1,766 0,4291 0,2429

78482 

2031 SP5 SP A.ly-

rata 

28,33 28,99 28,3 43,44 44,46 40,09 2,676 0,4365 0,1631

16592 

2027 70536 SP A.ly-

rata 

NA 16,17 17,8 18,48 23,79 26,54 0,741 0,0887 0,1197

03104 

2033 70540 SP A.ly-

rata 

NA 16,76 10,02 43,1 38,3 39,66 2,184 0,2911 0,1332

87546 

2036 70545 SP A.ly-

rata 

NA NA NA 9,23 24,01 NA 0,612 0,1003 0,1638

88889 

2030 70538 SP A.ly-

rata 

19,38 16,75 18,8 44,07 43,3 NA 2,763 0,4199 0,1519

72494 

2035 70542 SP A.ly-

rata 

14,72 22,38 24,2 50,22 37,4 34,47 1,188 0,2376 0,2 
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2037 SPH7 SP A.ly-

rata 

17,97 31,14 30,1 25,94 NA 36,8 0,489 0,0892 0,1824

13088 

2029 70537 SP A.ly-

rata 

18,55 25,53 21,65 32,29 34,3 NA 1,099 0,2183 0,1986

35123 

2071 SPH7 SP A.ly-

rata 

NA 10,97 NA NA NA NA NA NA NA 

2077 SPH7 SP A.ly-

rata 

32,5 18,11 20,1 33,41 29,55 32,34 1,006 0,1734 0,1723

65805 

2075 70542 SP A.ly-

rata 

NA 23,35 25,5 47,91 58,95 43,97 4,315 0,7882 0,1826

65122 

2069 70537 SP A.ly-

rata 

48,11 41,76 60,1 37,75 48,19 30,44 2,136 0,4836 0,2264

04494 

2070 70538 SP A.ly-

rata 

NA 7,64 10,6 58,91 57,87 38,52 2,999 0,4884 0,1628

54285 

2157 SPH7 SP A.ly-

rata 

49,24 25,4 10,2 34,23 49,68 35,2 2,049 0,3063 0,1494

87555 

2150 70538 SP A.ly-

rata 

NA 17,8 19,61 44,34 46,48 35,71 2,99 0,5056 0,1690

9699 

2152 70539 SP A.ly-

rata 

47,17 35,98 21,41 23,4 46,75 25,58 1,573 0,3131 0,1990

46408 

2149 70537 SP A.ly-

rata 

51,04 47,41 36,2 38,01 44,38 40,64 2,681 0,5219 0,1946

66169 

2153 70540 SP A.ly-

rata 

13,05 28,45 38,1 44,62 49,39 48,65 2,82 0,4341 0,1539

3617 

2156 70545 SP A.ly-

rata 

NA 16,64 10,9 NA  NA NA NA NA 

2147 70536 SP A.ly-

rata 

52,42 50,11 32,98 46,9 62,85 37,66 3,318 0,6391 0,1926

16034 
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Appendix Table 2: Candidate genome regions for selective sweep in SP and PL. For each 

candidate region, the chromosome, start and end position, as well as the length in kb is given. Also, 

the average CLR and Fst value for the whole region is provided. 

Chr Start End kb CLR Fst win-

dows 

Population 

1 1020482 1028479 7997 10,30 0,38 2 SP 

1 1134441 1156433 21992 13,70 0,53 9 SP 

1 1710234 1724228 13995 12,98 0,57 5 SP 

1 1742222 1746221 3999 10,81 0,52 2 SP 

1 1808198 1810198 1999 11,36 0,64 2 SP 

1 1860180 1864178 3999 6,54 0,33 2 SP 

1 2280028 2286026 5998 15,06 0,28 4 SP 

1 2415979 2433973 17994 10,38 0,45 6 SP 

1 2673887 2675886 1999 7,26 0,35 2 SP 

1 2693879 2701876 7997 9,52 0,28 4 SP 

1 2763854 2791844 27990 43,02 0,52 14 SP 

1 2981776 2989773 7997 19,26 0,50 5 SP 

1 3001769 3003768 1999 9,12 0,63 2 SP 

1 3099733 3123725 23991 8,72 0,54 6 SP 

1 4357280 4359280 1999 7,03 0,48 2 SP 

1 4569204 4577201 7997 8,30 0,30 2 SP 

1 4589197 4599193 9996 11,78 0,46 2 SP 

1 4989053 4991052 1999 12,42 0,54 2 SP 

1 5087018 5097014 9996 10,41 0,55 2 SP 

1 5382911 5384910 1999 20,45 0,48 2 SP 

1 5404903 5408902 3999 18,60 0,27 3 SP 

1 5420897 5432893 11996 10,74 0,30 3 SP 

1 6110649 6116647 5998 16,88 0,84 2 SP 

1 6164630 6166629 1999 10,56 0,35 2 SP 

1 7174266 7176265 1999 9,17 0,54 2 SP 

1 7708074 7710073 1999 10,13 0,43 2 SP 

1 8187901 8219890 31988 19,62 0,55 10 SP 

1 8231885 8233885 1999 79,10 0,32 2 SP 

1 8603751 8613748 9996 7,87 0,63 3 SP 

1 8645736 8653733 7997 13,57 0,45 4 SP 

1 8819674 8841666 21992 12,41 0,46 5 SP 

1 8889649 8893647 3999 10,05 0,28 3 SP 

1 8907642 8917638 9996 8,18 0,32 3 SP 

1 8937631 8943629 5998 9,99 0,40 4 SP 

1 9483435 9491432 7997 12,53 0,45 4 SP 

1 10303140 10305139 1999 10,05 0,42 2 SP 

1 10527059 10535056 7997 14,12 0,39 5 SP 

1 10603032 10605031 1999 8,58 0,36 2 SP 
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1 11622665 11628662 5998 14,40 0,42 3 SP 

1 14097773 14113768 15994 9,01 0,44 5 SP 

1 14231725 14237723 5998 15,27 0,32 3 SP 

1 14967460 14969459 1999 8,66 0,52 2 SP 

1 15781167 15789164 7997 14,58 0,43 3 SP 

1 16161030 16167028 5998 12,25 0,48 3 SP 

1 17468560 17478556 9996 9,29 0,36 2 SP 

1 17772450 17776449 3999 13,50 0,44 2 SP 

1 18020361 18024360 3999 32,40 0,27 3 SP 

1 18130321 18146316 15994 14,87 0,46 8 SP 

1 21701036 21703035 1999 7,98 0,65 2 SP 

1 22328810 22330809 1999 11,81 0,40 2 SP 

1 22670687 22682682 11996 6,61 0,31 4 SP 

1 22866616 22868615 1999 11,79 0,52 2 SP 

1 23680323 23682322 1999 16,44 0,37 2 SP 

1 23696317 23698317 1999 9,95 0,35 2 SP 

1 24633980 24637978 3999 7,01 0,35 2 SP 

1 25949506 25969499 19993 15,91 0,51 7 SP 

1 26149434 26155432 5998 24,63 0,38 4 SP 

1 26285385 26295382 9996 11,29 0,49 4 SP 

1 26419337 26429333 9996 13,17 0,46 5 SP 

1 26477316 26485313 7997 8,81 0,48 4 SP 

1 26541293 26547291 5998 10,54 0,47 2 SP 

1 26563285 26565284 1999 13,15 0,60 2 SP 

1 26671246 26675245 3999 10,96 0,45 3 SP 

1 27099092 27107089 7997 10,92 0,39 5 SP 

1 28484593 28490591 5998 18,11 0,33 2 SP 

1 29352281 29364277 11996 12,50 0,41 3 SP 

1 29686161 29700156 13995 15,10 0,49 3 SP 

1 29766132 29776128 9996 15,73 0,59 5 SP 

1 30675804 30677804 1999 25,75 0,35 2 SP 

1 31237602 31239601 1999 9,96 0,39 2 SP 

1 31251597 31265592 13995 39,66 0,36 8 SP 

2 249464 253464 4000 15,20 0,41 3 SP 

2 361465 367465 6000 8,06 0,35 2 SP 

2 549467 553467 4000 18,33 0,34 2 SP 

2 3595500 3599500 4000 80,17 0,33 3 SP 

2 3633501 3639501 6000 15,73 0,34 4 SP 

2 3905504 3909504 4000 18,80 0,47 2 SP 

2 4123506 4129506 6000 29,97 0,34 3 SP 

2 7913547 7919548 6000 8,55 0,32 4 SP 

2 9603566 9605566 2000 15,06 0,28 2 SP 

2 9671567 9675567 4000 9,95 0,44 3 SP 

2 11311585 11313585 2000 7,54 0,56 2 SP 

2 11881591 11883591 2000 14,45 0,36 2 SP 

2 11981592 11983592 2000 16,35 0,55 2 SP 

2 12179594 12213594 34000 21,40 0,59 12 SP 
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2 12859601 12865602 6000 9,66 0,44 3 SP 

2 12955603 12957603 2000 13,32 0,82 2 SP 

2 13053604 13057604 4000 9,37 0,37 2 SP 

2 13073604 13087604 14000 7,90 0,43 3 SP 

2 13127604 13155605 28000 28,52 0,59 13 SP 

2 13189605 13233606 44000 14,62 0,48 15 SP 

2 13577609 13579609 2000 8,62 0,29 2 SP 

2 13943613 13967614 24000 40,58 0,50 10 SP 

2 14033614 14039614 6000 11,11 0,74 4 SP 

2 15543631 15545631 2000 7,37 0,44 2 SP 

2 16189638 16195638 6000 6,40 0,35 2 SP 

2 16795644 16797645 2000 7,93 0,46 2 SP 

2 17431651 17439652 8000 9,11 0,37 2 SP 

2 17743655 17751655 8000 6,98 0,36 2 SP 

2 18389662 18391662 2000 60,60 0,58 2 SP 

3 28278 30278 2000 6,01 0,57 2 SP 

3 180285 186285 6000 22,08 0,59 4 SP 

3 322291 328291 6000 7,18 0,51 2 SP 

3 346292 350292 4000 10,18 0,51 2 SP 

3 970319 974320 4000 10,32 0,45 3 SP 

3 1352336 1354336 2000 6,23 0,63 2 SP 

3 2346379 2360380 14001 22,44 0,34 5 SP 

3 2830401 2832401 2000 9,81 0,44 2 SP 

3 2846401 2860402 14001 28,09 0,40 5 SP 

3 3348423 3360424 12001 21,48 0,49 4 SP 

3 3388425 3390425 2000 17,88 0,67 2 SP 

3 3512430 3514430 2000 6,24 0,39 2 SP 

3 3756441 3758441 2000 14,43 0,42 2 SP 

3 4770485 4780486 10000 20,62 0,46 6 SP 

3 4906491 4914491 8000 17,89 0,49 3 SP 

3 4930492 4932492 2000 17,30 0,42 2 SP 

3 5570520 5574520 4000 17,17 0,30 3 SP 

3 6932580 6936580 4000 8,56 0,58 3 SP 

3 7208592 7212592 4000 7,38 0,39 3 SP 

3 7304596 7306596 2000 9,34 0,51 2 SP 

3 7654611 7658611 4000 17,22 0,91 3 SP 

3 7692613 7696613 4000 7,05 0,44 2 SP 

3 7714614 7716614 2000 18,35 0,33 2 SP 

3 7740615 7752615 12001 50,27 0,54 6 SP 

3 8336641 8342641 6000 13,96 0,35 2 SP 

3 8410644 8412644 2000 7,64 0,34 2 SP 

3 8498648 8500648 2000 6,42 0,62 2 SP 

3 8972669 8974669 2000 13,33 0,48 2 SP 

3 9130675 9132676 2000 9,14 0,78 2 SP 

3 9230680 9232680 2000 13,71 0,43 2 SP 

3 10536737 10538737 2000 19,15 0,35 2 SP 

3 10796748 10798748 2000 9,13 0,33 2 SP 
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3 11618784 11620784 2000 11,50 0,51 2 SP 

3 13518867 13522867 4000 5,75 0,34 2 SP 

3 14042890 14048890 6000 11,90 0,39 4 SP 

3 14412906 14416906 4000 21,73 0,35 3 SP 

3 17435038 17439038 4000 31,80 0,48 3 SP 

3 18435081 18437082 2000 45,00 0,43 2 SP 

3 18831099 18833099 2000 47,50 0,36 2 SP 

3 20781184 20783184 2000 101,35 0,26 2 SP 

3 20909189 20911190 2000 22,55 0,38 2 SP 

3 21033195 21039195 6000 13,09 0,38 3 SP 

3 21099198 21103198 4000 8,23 0,41 2 SP 

3 21359209 21365209 6000 8,29 0,34 2 SP 

3 22137243 22139243 2000 18,00 0,42 2 SP 

4 900093 906093 6000 34,23 0,40 3 SP 

4 2106089 2114089 8000 12,38 0,47 3 SP 

4 2420088 2426088 6000 13,88 0,26 2 SP 

4 2964087 2976087 12000 14,76 0,40 5 SP 

4 3052087 3054087 2000 24,32 0,46 2 SP 

4 3142086 3148086 6000 10,36 0,51 2 SP 

4 3400085 3408085 8000 9,09 0,48 2 SP 

4 4842081 4848081 6000 22,25 0,43 4 SP 

4 5028080 5030080 2000 30,45 0,59 2 SP 

4 7020074 7024074 4000 8,09 0,32 2 SP 

4 10254064 10272064 18000 8,91 0,41 4 SP 

4 10310064 10328064 18000 82,94 0,36 7 SP 

4 10622063 10628063 6000 8,16 0,35 2 SP 

4 11550060 11554060 4000 8,81 0,52 3 SP 

4 13200055 13216055 16000 195,59 0,29 5 SP 

4 14290052 14292052 2000 8,55 0,48 2 SP 

4 14328051 14334051 6000 11,76 0,64 2 SP 

4 15006049 15008049 2000 32,75 0,71 2 SP 

4 16148046 16154046 6000 17,86 0,35 3 SP 

4 16524045 16534045 10000 20,27 0,59 6 SP 

4 18822037 18836037 14000 16,00 0,34 5 SP 

4 19674035 19676035 2000 14,30 0,33 2 SP 

4 19864034 19872034 8000 13,43 0,42 5 SP 

4 20028034 20036034 8000 11,04 0,41 2 SP 

4 20104033 20108033 4000 10,47 0,48 2 SP 

4 20122033 20132033 10000 8,14 0,50 3 SP 

4 20644032 20648032 4000 39,55 0,68 2 SP 

4 21374029 21404029 30000 41,44 0,43 14 SP 

4 21796028 21798028 2000 9,66 0,45 2 SP 

4 22252027 22254027 2000 30,80 0,43 2 SP 

4 22304027 22314027 10000 11,70 0,51 4 SP 

4 23028024 23032024 4000 8,00 0,77 3 SP 

5 694302 698302 3999 10,01 0,31 2 SP 

5 2189984 2191983 2000 9,89 0,43 2 SP 
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5 2283964 2291962 7998 8,10 0,30 2 SP 

5 2315957 2321956 5999 11,78 0,44 4 SP 

5 2355949 2367946 11997 15,62 0,34 3 SP 

5 2387942 2389941 2000 12,63 0,33 2 SP 

5 2421935 2423934 2000 18,45 0,44 2 SP 

5 2657884 2659884 2000 10,44 0,28 2 SP 

5 2897833 2901832 3999 10,80 0,47 3 SP 

5 2923828 2927827 3999 9,47 0,45 3 SP 

5 3805640 3809639 3999 5,91 0,40 2 SP 

5 4225550 4229549 3999 15,49 0,44 3 SP 

5 4241547 4247546 5999 21,70 0,40 4 SP 

5 4595472 4597471 2000 11,12 0,38 2 SP 

5 4661457 4667456 5999 5,94 0,36 2 SP 

5 4861415 4869413 7998 17,40 0,43 4 SP 

5 5389302 5391302 2000 26,69 0,31 2 SP 

5 5865201 5867201 2000 6,58 0,30 2 SP 

5 5893195 5909192 15997 9,68 0,42 3 SP 

5 9528421 9530420 2000 8,49 0,46 2 SP 

5 10068306 10072305 3999 15,40 0,37 2 SP 

5 12291832 12297831 5999 16,48 0,49 4 SP 

5 12431802 12439801 7998 21,09 0,75 5 SP 

5 13045672 13057669 11997 20,83 0,52 3 SP 

5 13511572 13513572 2000 9,75 0,30 2 SP 

5 13525569 13529569 3999 7,88 0,32 3 SP 

5 13595555 13599554 3999 10,28 0,61 3 SP 

5 13763519 13765518 2000 15,60 0,34 2 SP 

5 13985472 13989471 3999 21,90 0,37 2 SP 

5 14345395 14355393 9998 16,83 0,27 2 SP 

5 16412954 16422952 9998 22,86 0,34 5 SP 

5 16444948 16454946 9998 10,17 0,49 2 SP 

5 17350755 17354754 3999 11,37 0,40 2 SP 

5 17382748 17392746 9998 7,55 0,45 2 SP 

5 17476728 17478727 2000 17,25 0,35 2 SP 

5 17694681 17696681 2000 8,70 0,52 2 SP 

5 17826653 17832652 5999 26,58 0,48 4 SP 

5 17890640 17898638 7998 7,42 0,58 2 SP 

5 18460518 18464517 3999 9,10 0,46 2 SP 

5 19130376 19136374 5999 19,95 0,38 4 SP 

5 19274345 19306338 31993 25,03 0,51 12 SP 

5 19320335 19332333 11997 19,63 0,40 5 SP 

5 19462305 19464305 2000 9,83 0,53 2 SP 

5 19684258 19694256 9998 9,73 0,54 4 SP 

5 20558072 20560071 2000 9,20 0,59 2 SP 

6 372407 380407 8000 12,83 0,53 3 SP 

6 530413 532413 2000 5,82 0,56 2 SP 

6 1080432 1082432 2000 13,05 0,33 2 SP 

6 1254438 1266439 12000 14,34 0,41 3 SP 
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6 1280439 1288440 8000 11,61 0,39 2 SP 

6 2002465 2004465 2000 25,20 0,67 2 SP 

6 3310511 3312511 2000 34,45 0,31 2 SP 

6 3552520 3560520 8000 8,01 0,31 2 SP 

6 5098574 5102575 4000 7,12 0,33 3 SP 

6 5316582 5318582 2000 21,00 0,52 2 SP 

6 6630629 6632629 2000 24,05 0,32 2 SP 

6 7178648 7180648 2000 6,65 0,59 2 SP 

6 7200649 7202649 2000 7,13 0,37 2 SP 

6 7236650 7238650 2000 11,59 0,40 2 SP 

6 7744668 7746668 2000 10,85 0,40 2 SP 

6 8290687 8300688 10000 16,55 0,36 4 SP 

6 8842707 8854707 12000 30,95 0,37 3 SP 

6 8886709 8888709 2000 10,25 0,69 2 SP 

6 9512731 9530731 18001 17,26 0,48 6 SP 

6 9830742 9852743 22001 29,45 0,46 11 SP 

6 9922745 9924745 2000 9,39 0,38 2 SP 

6 10194755 10198755 4000 30,70 0,43 3 SP 

6 11150789 11154789 4000 8,75 0,60 3 SP 

6 17203003 17205003 2000 22,10 0,30 2 SP 

6 17227004 17231004 4000 10,35 0,51 2 SP 

6 18211039 18217039 6000 28,08 0,26 4 SP 

6 18501049 18505049 4000 22,92 0,38 2 SP 

6 18855061 18859062 4000 16,03 0,43 3 SP 

6 18943065 18949065 6000 7,99 0,48 2 SP 

6 19687091 19693091 6000 17,63 0,31 4 SP 

6 20211109 20219110 8000 8,45 0,52 5 SP 

6 20411117 20413117 2000 6,88 0,56 2 SP 

6 20491119 20495120 4000 29,00 0,38 3 SP 

6 20755129 20767129 12000 18,09 0,46 4 SP 

6 20865133 20869133 4000 18,71 0,55 3 SP 

6 21053139 21059139 6000 15,03 0,34 3 SP 

6 21869168 21873168 4000 11,32 0,46 2 SP 

6 21941171 21951171 10000 15,38 0,50 4 SP 

6 23133213 23141213 8000 27,50 0,30 2 SP 

6 23445224 23447224 2000 8,41 0,33 2 SP 

6 23513226 23529227 16001 19,96 0,55 6 SP 

6 23545227 23565228 20001 23,11 0,63 7 SP 

6 23683232 23695233 12000 22,27 0,52 3 SP 

6 23883239 23885240 2000 10,51 0,34 2 SP 

6 24071246 24073246 2000 12,70 0,46 2 SP 

6 24375257 24387257 12000 20,37 0,43 4 SP 

7 1290947 1298947 8000 13,92 0,45 5 SP 

7 1330946 1334946 4000 75,33 0,33 3 SP 

7 1802944 1804944 2000 12,35 0,46 2 SP 

7 2728939 2742938 14000 7,89 0,44 3 SP 

7 5272924 5274924 2000 33,25 0,57 2 SP 
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7 5754921 5764921 10000 23,03 0,36 3 SP 

7 6338918 6340918 2000 12,11 0,34 2 SP 

7 6992914 6998914 6000 27,13 0,42 3 SP 

7 7498911 7504911 6000 6,67 0,47 2 SP 

7 8608905 8610905 2000 20,36 0,35 2 SP 

7 8986903 8990903 4000 13,22 0,38 3 SP 

7 9738899 9744899 6000 11,53 0,38 2 SP 

7 9862898 9868898 6000 14,64 0,47 3 SP 

7 10228896 10234896 6000 21,07 0,38 3 SP 

7 10366895 10370895 4000 72,80 0,41 3 SP 

7 12120885 12140885 20000 19,83 0,40 6 SP 

7 12196885 12222885 26000 18,97 0,45 10 SP 

7 12770882 12778881 8000 9,39 0,32 3 SP 

7 14650871 14698871 48000 134,87 0,44 23 SP 

7 14746870 14750870 4000 12,10 0,33 3 SP 

7 17896852 17898852 2000 13,16 0,31 2 SP 

7 18364850 18380850 16000 22,00 0,38 4 SP 

7 18650848 18654848 4000 8,06 0,32 3 SP 

7 20542837 20544837 2000 8,39 0,55 2 SP 

7 20590837 20592837 2000 13,05 0,35 2 SP 

7 21120834 21122834 2000 45,75 0,35 2 SP 

7 23480821 23502821 22000 31,13 0,47 6 SP 

7 23606820 23616820 10000 8,00 0,41 2 SP 

7 23736819 23738819 2000 29,54 0,29 2 SP 

7 24620814 24622814 2000 7,52 0,29 2 SP 

8 490985 498984 7999 124,20 0,42 5 SP 

8 1160926 1176925 15999 9,96 0,43 7 SP 

8 1450900 1452900 2000 10,51 0,29 2 SP 

8 1732876 1738875 5999 9,79 0,35 2 SP 

8 1832867 1838866 5999 15,21 0,46 4 SP 

8 2070846 2072846 2000 12,97 0,34 2 SP 

8 2144839 2146839 2000 12,10 0,29 2 SP 

8 2166837 2168837 2000 8,08 0,50 2 SP 

8 2230832 2238831 7999 19,28 0,30 4 SP 

8 3576713 3584712 7999 7,95 0,36 2 SP 

8 3608710 3614710 5999 8,54 0,48 2 SP 

8 3854689 3888686 33997 22,76 0,35 15 SP 

8 3928682 3932682 4000 11,70 0,41 2 SP 

8 4070669 4078669 7999 11,44 0,34 3 SP 

8 4230655 4242654 11999 25,43 0,37 3 SP 

8 4288650 4296650 7999 13,35 0,32 3 SP 

8 4420639 4422638 2000 9,96 0,61 2 SP 

8 4690615 4696614 5999 26,24 0,48 4 SP 

8 5966502 5974502 7999 10,84 0,42 4 SP 

8 6008499 6012498 4000 14,00 0,30 3 SP 

8 11366026 11368026 2000 13,61 0,28 2 SP 

8 11991971 11993971 2000 25,45 0,48 2 SP 
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8 12231950 12243949 11999 33,80 0,41 3 SP 

8 14141782 14159780 17998 6,83 0,46 4 SP 

8 14335765 14337765 2000 5,92 0,29 2 SP 

8 14715731 14719731 4000 12,90 0,61 3 SP 

8 14735729 14739729 4000 14,57 0,53 3 SP 

8 14973708 14975708 2000 11,09 0,39 2 SP 

8 15399671 15401671 2000 6,25 0,49 2 SP 

8 17007529 17009529 2000 8,04 0,52 2 SP 

8 17063524 17073523 9999 13,09 0,41 3 SP 

8 17731465 17765462 33997 22,34 0,49 11 SP 

8 17813458 17827457 13999 11,78 0,63 6 SP 

8 17923448 17927448 4000 19,23 0,58 3 SP 

8 20487222 20489222 2000 13,80 0,32 2 SP 

8 21075171 21077170 2000 10,85 0,48 2 SP 

8 22223069 22231069 7999 16,94 0,44 5 SP 

1 188032 190032 2000 4,11 0,50 2 PL 

1 1427936 1429936 2000 16,05 0,31 2 PL 

1 1795907 1805906 9999 5,17 0,57 2 PL 

1 6101572 6105572 4000 9,35 0,69 3 PL 

1 6123570 6125570 2000 17,60 0,66 2 PL 

1 8805362 8813361 7999 23,32 0,65 5 PL 

1 9443312 9447312 4000 21,52 0,48 2 PL 

1 11339165 11349164 9999 7,50 0,35 2 PL 

1 11433157 11435157 2000 15,25 0,26 2 PL 

1 11681138 11683138 2000 4,75 0,56 2 PL 

1 17576679 17584678 7999 15,83 0,34 3 PL 

1 22152323 22154323 2000 26,90 0,56 2 PL 

1 22834270 22836270 2000 5,63 0,72 2 PL 

1 24754120 24756120 2000 22,80 0,31 2 PL 

1 25024099 25030099 6000 7,74 0,49 3 PL 

1 25744043 25748043 4000 20,54 0,55 2 PL 

1 26072018 26074018 2000 12,20 0,73 2 PL 

1 26841958 26845958 4000 4,24 0,57 3 PL 

1 29589744 29593744 4000 6,10 0,51 2 PL 

1 29647740 29659739 11999 11,14 0,72 4 PL 

1 29673738 29679737 6000 5,87 0,73 3 PL 

1 30903642 30915641 11999 6,98 0,47 4 PL 

2 3370791 3372791 2000 13,92 0,27 2 PL 

2 11167248 11171248 4000 31,32 0,55 3 PL 

2 15455499 15461499 6000 16,75 0,33 4 PL 

2 15579506 15581506 2000 10,86 0,52 2 PL 

2 16155540 16159540 4000 30,23 0,78 3 PL 

2 17495618 17501618 6000 11,59 0,73 3 PL 

2 18711689 18717690 6000 24,25 0,54 2 PL 

2 18831696 18833696 2000 18,65 0,48 2 PL 

3 2120309 2128309 8000 12,82 0,75 3 PL 

3 2344319 2348319 4000 5,79 0,42 2 PL 
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3 2974348 2986349 12001 18,20 0,51 4 PL 

3 4790433 4794433 4000 5,06 0,66 2 PL 

3 6764525 6784526 20001 10,10 0,63 6 PL 

3 7126541 7128542 2000 8,72 0,31 2 PL 

3 7386554 7394554 8000 33,90 0,41 2 PL 

3 11086726 11088726 2000 31,10 0,49 2 PL 

3 13984860 13992861 8000 6,72 0,35 3 PL 

3 18831086 18833086 2000 20,70 0,36 2 PL 

3 23635309 23639309 4000 61,30 0,71 3 PL 

3 23797317 23801317 4000 12,05 0,59 2 PL 

4 1348079 1352079 4000 9,30 0,57 2 PL 

4 1556079 1562079 6000 9,31 0,48 4 PL 

4 3646080 3648080 2000 7,62 0,60 2 PL 

4 4786081 4788081 2000 6,50 0,31 2 PL 

4 5604082 5606082 2000 6,92 0,32 2 PL 

4 11038085 11044085 6000 7,48 0,70 3 PL 

4 12934087 12936087 2000 13,14 0,46 2 PL 

4 14114087 14116087 2000 11,50 0,44 2 PL 

4 16388089 16390089 2000 10,60 0,48 2 PL 

4 16606089 16608089 2000 10,04 0,60 2 PL 

4 16830089 16834089 4000 6,41 0,39 2 PL 

4 17470090 17472090 2000 11,87 0,45 2 PL 

4 19950091 19952091 2000 25,00 0,39 2 PL 

4 22864093 22866093 2000 14,50 0,69 2 PL 

5 3748665 3754662 5996 13,95 0,46 2 PL 

5 5157830 5163826 5996 23,28 0,32 4 PL 

5 13049150 13051148 1999 17,65 0,54 2 PL 

5 13336979 13338978 1999 4,52 0,53 2 PL 

5 13376955 13378954 1999 4,95 0,40 2 PL 

5 16766945 16768944 1999 6,77 0,49 2 PL 

5 16842900 16854893 11993 7,66 0,34 3 PL 

5 18290041 18298037 7995 4,68 0,44 2 PL 

5 19293446 19295445 1999 6,68 0,69 2 PL 

5 19721193 19729188 7995 5,78 0,57 2 PL 

5 20070985 20072984 1999 11,35 0,64 2 PL 

5 20090973 20096970 5996 44,81 0,27 4 PL 

6 1474430 1476430 2000 5,45 0,62 2 PL 

6 1606433 1608434 2000 17,41 0,66 2 PL 

6 5092521 5100522 8000 19,45 0,41 5 PL 

6 6342553 6344553 2000 20,35 0,40 2 PL 

6 7712587 7716588 4000 5,79 0,44 2 PL 

6 13656737 13658737 2000 18,80 0,42 2 PL 

6 18760866 18762866 2000 13,38 0,91 2 PL 

6 21534936 21538936 4000 70,53 0,27 3 PL 

6 22032948 22038949 6000 10,16 0,61 2 PL 

6 22222953 22226953 4000 8,88 0,57 2 PL 

6 22466959 22468959 2000 11,01 0,33 2 PL 
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6 23550987 23554987 4000 13,55 0,65 2 PL 

6 23818993 23820993 2000 7,37 0,49 2 PL 

6 23914996 23916996 2000 21,10 0,72 2 PL 

7 148731 156732 8000 23,70 0,40 2 PL 

7 1310751 1316751 6000 5,00 0,43 2 PL 

7 1890761 1892761 2000 7,94 0,33 2 PL 

7 2564772 2566772 2000 4,76 0,53 2 PL 

7 3054780 3058780 4000 21,20 0,36 2 PL 

7 11136916 11140916 4000 10,59 0,40 2 PL 

7 17897029 17899029 2000 18,15 0,31 2 PL 

7 18391038 18393038 2000 13,16 0,31 2 PL 

7 20695076 20699076 4000 5,63 0,36 2 PL 

8 694447 698448 4000 8,56 0,51 2 PL 

8 1730479 1732479 2000 26,83 0,35 2 PL 

8 2394500 2402500 8000 8,84 0,58 3 PL 

8 2902515 2906516 4000 16,53 0,70 3 PL 

8 3610537 3614537 4000 14,96 0,45 2 PL 

8 6310620 6316621 6000 8,24 0,31 2 PL 

8 15480903 15488903 8000 6,59 0,34 2 PL 

8 16024920 16026920 2000 41,00 0,30 2 PL 

8 16370931 16372931 2000 5,93 0,43 2 PL 

8 16620938 16624938 4000 8,63 0,28 3 PL 

8 17470964 17476965 6000 20,95 0,38 2 PL 

8 19777036 19781036 4000 11,38 0,63 2 PL 

8 19803036 19813037 10000 108,60 0,56 6 PL 

8 20601061 20603061 2000 10,30 0,29 2 PL 

8 21649093 21651093 2000 6,30 0,65 2 PL 

8 22473119 22475119 2000 16,38 0,37 2 PL 
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Appendix Table 3: Gene ontology enrichment analysis for decreasing values of additive vari-

ance. The GOs ID, the term and the p value of the significant GOs (p < 0.03813) are given. 

GO.ID Term P value 

GO:0008150 biological_process 5.4e-12 

GO:0006007 glucose catabolic 

process 

8.3e-06 

GO:0006096 glycolytic process 1.6e-05 

GO:0006094 gluconeogenesis 9.1e-05 

GO:0046686 response to cadmium 

ion 

0.00015 

GO:0080129 proteasome core 

complex assembly 

0.00016 

GO:0006511 ubiquitin-dependent 

protein catabolic pr... 

0.00016 

GO:0051788 response to mis-

folded protein 

0.00077 

GO:0009853 photorespiration 0.00099 

GO:0006412 translation 0.00231 

GO:0006626 protein targeting to 

mitochondrion 

0.00243 

GO:0010498 proteasomal protein 

catabolic process 

0.00382 

GO:0000162 tryptophan biosyn-

thetic process 

0.00545 

GO:0009805 coumarin biosyn-

thetic process 

0.00626 

GO:0006575 cellular modified 

amino acid metabolic 

p... 

0.00627 

GO:0019760 glucosinolate meta-

bolic process 

0.00788 

GO:0042542 response to hydrogen 

peroxide 

0.00846 

GO:0009651 response to salt stress 0.00865 

GO:0009610 response to symbiotic 

fungus 

0.00903 

GO:0055114 oxidation-reduction 

process 

0.00921 

GO:0019395 fatty acid oxidation 0.01062 

GO:1901566 organonitrogen com-

pound biosynthetic 

pro... 

0.01064 

GO:0034440 lipid oxidation 0.01098 

GO:0042180 cellular ketone meta-

bolic process 

0.01139 

GO:0050801 ion homeostasis 0.01232 



149 
 

GO:0006635 fatty acid beta-oxida-

tion 

0.01251 

GO:0009812 flavonoid metabolic 

process 

0.01263 

GO:0007030 Golgi organization 0.01349 

GO:0010256 endomembrane sys-

tem organization 

0.01410 

GO:0000041 transition metal ion 

transport 

0.01428 

GO:0030258 lipid modification 0.01529 

GO:0009408 response to heat 0.01625 

GO:0031365 N-terminal protein 

amino acid modifi-

cati... 

0.01710 

GO:0006498 N-terminal protein 

lipidation 

0.01733 

GO:0006499 N-terminal protein 

myristoylation 

0.01733 

GO:0006520 cellular amino acid 

metabolic process 

0.01776 

GO:0044272 sulfur compound bio-

synthetic process 

0.01900 

GO:0072329 monocarboxylic acid 

catabolic process 

0.01904 

GO:0048878 chemical homeosta-

sis 

0.01905 

GO:0006873 cellular ion homeo-

stasis 

0.01940 

GO:1901605 alpha-amino acid 

metabolic process 

0.01967 

GO:1901420 negative regulation 

of response to al-

coh... 

0.01988 

GO:0009788 negative regulation 

of abscisic acid-act... 

0.01988 

GO:1905958 negative regulation 

of cellular response... 

0.01988 

GO:0016144 S-glycoside biosyn-

thetic process 

0.02042 

GO:0019761 glucosinolate biosyn-

thetic process 

0.02042 

GO:0019758 glycosinolate biosyn-

thetic process 

0.02042 

GO:0046482 para-aminobenzoic 

acid metabolic pro-

cess 

0.02197 

GO:0022904 respiratory electron 

transport chain 

0.02218 
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GO:0009062 fatty acid catabolic 

process 

0.02316 

GO:0030003 cellular cation home-

ostasis 

0.02317 

GO:0000096 sulfur amino acid 

metabolic process 

0.02332 

GO:0006497 protein lipidation 0.02407 

GO:0042157 lipoprotein metabolic 

process 

0.02407 

GO:0042158 lipoprotein biosyn-

thetic process 

0.02407 

GO:0062012 regulation of small 

molecule metabolic 

p... 

0.02437 

GO:0044281 small molecule meta-

bolic process 

0.02465 

GO:0044282 small molecule cata-

bolic process 

0.02651 

GO:0009813 flavonoid biosyn-

thetic process 

0.02669 

GO:0000097 sulfur amino acid bi-

osynthetic process 

0.02689 

GO:0006820 anion transport 0.02731 

GO:0055082 cellular chemical ho-

meostasis 

0.02735 

GO:0019752 carboxylic acid meta-

bolic process 

0.02824 

GO:0009060 aerobic respiration 0.02833 

GO:0006082 organic acid meta-

bolic process 

0.02871 

GO:0018377 protein myristoy-

lation 

0.02877 

GO:0046351 disaccharide biosyn-

thetic process 

0.02878 

GO:0044273 sulfur compound cat-

abolic process 

0.02948 

GO:0022613 ribonucleoprotein 

complex biogenesis 

0.02958 

GO:0006833 water transport 0.03039 

GO:0042044 fluid transport 0.03039 

GO:0042773 ATP synthesis cou-

pled electron 

transport 

0.03137 

GO:0042775 mitochondrial ATP 

synthesis coupled 

elec... 

0.03137 

GO:0043436 oxoacid metabolic 

process 

0.03177 
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GO:0006576 cellular biogenic 

amine metabolic pro-

ces... 

0.03278 

GO:0042254 ribosome biogenesis 0.03338 

GO:0046395 carboxylic acid cata-

bolic process 

0.03374 

GO:0016054 organic acid cata-

bolic process 

0.03374 

GO:0055080 cation homeostasis 0.03403 

GO:1901659 glycosyl compound 

biosynthetic process 

0.03423 

GO:0019321 pentose metabolic 

process 

0.03462 

GO:0042732 D-xylose metabolic 

process 

0.03462 

GO:0046149 pigment catabolic 

process 

0.03562 

GO:0051596 methylglyoxal cata-

bolic process 

0.03602 

GO:0009438 methylglyoxal meta-

bolic process 

0.03602 

GO:0046185 aldehyde catabolic 

process 

0.03602 

GO:0042182 ketone catabolic pro-

cess 

0.03602 

GO:0006661 phosphatidylinositol 

biosynthetic proces... 

0.03637 

GO:0009963 positive regulation of 

flavonoid biosynt... 

0.03637 

GO:0009269 response to desicca-

tion 

0.03800 
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Appendix Table 4: Gene ontology enrichment analysis for decreasing values of dominance vari-

ance. The GOs ID, the term and the p value of the significant GOs (p < 0.03810) are given. 

GO.ID Term P value 

GO:0031048 chromatin silencing 

by small RNA 

4.5e-12 

GO:0000911 cytokinesis by cell 

plate formation 

2.0e-11 

GO:0006306 DNA methylation 4.3e-11 

GO:0000956 nuclear-transcribed 

mRNA catabolic 

proce... 

9.2e-11 

GO:0006346 methylation-de-

pendent chromatin 

silencin... 

6.3e-10 

GO:0008150 biological_process 2.1e-09 

GO:0045010 actin nucleation 3.5e-09 

GO:0010090 trichome morpho-

genesis 

5.6e-09 

GO:0051567 histone H3-K9 

methylation 

1.6e-08 

GO:0007062 sister chromatid co-

hesion 

1.8e-08 

GO:0009630 gravitropism 3.1e-08 

GO:0035196 production of miR-

NAs involved in 

gene si... 

1.3e-07 

GO:0007131 reciprocal meiotic 

recombination 

7.9e-07 

GO:0051225 spindle assembly 8.8e-07 

GO:0006275 regulation of DNA 

replication 

1.1e-06 

GO:0010267 production of ta-

siRNAs involved in 

RNA ... 

1.2e-06 

GO:0009616 virus induced gene 

silencing 

2.0e-06 

GO:0016572 histone phosphory-

lation 

3.4e-06 

GO:0016558 protein import into 

peroxisome matrix 

3.7e-06 

GO:0045132 meiotic chromo-

some segregation 

4.8e-06 
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GO:0009909 regulation of flower 

development 

5.4e-06 

GO:0000278 mitotic cell cycle 5.5e-06 

GO:0007267 cell-cell signaling 8.5e-06 

GO:0000724 double-strand break 

repair via homolo-

gou... 

9.0e-06 

GO:0007129 synapsis 1.1e-05 

GO:0015996 chlorophyll cata-

bolic process 

1.9e-05 

GO:0007155 cell adhesion 2.1e-05 

GO:0000226 microtubule cyto-

skeleton organiza-

tion 

2.6e-05 

GO:0006635 fatty acid beta-oxi-

dation 

2.7e-05 

GO:0006270 DNA replication in-

itiation 

4.0e-05 

GO:0032204 regulation of telo-

mere maintenance 

6.2e-05 

GO:0046855 inositol phosphate 

dephosphorylation 

6.4e-05 

GO:0043247 telomere mainte-

nance in response to 

DNA ... 

7.0e-05 

GO:0010228 vegetative to repro-

ductive phase 

transit... 

7.8e-05 

GO:0010389 regulation of G2/M 

transition of mi-

totic... 

8.5e-05 

GO:0042138 meiotic DNA dou-

ble-strand break for-

matio... 

8.9e-05 

GO:0032957 inositol trisphos-

phate metabolic pro-

cess 

9.1e-05 

GO:0010332 response to gamma 

radiation 

9.1e-05 

GO:0008283 cell proliferation 0.00018 

GO:0009855 determination of bi-

lateral symmetry 

0.00025 

GO:0043687 post-translational 

protein modification 

0.00026 
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GO:0016926 protein desumoy-

lation 

0.00044 

GO:0006342 chromatin silencing 0.00046 

GO:0008380 RNA splicing 0.00050 

GO:0006623 protein targeting to 

vacuole 

0.00057 

GO:0010264 myo-inositol hex-

akisphosphate bio-

synthet... 

0.00062 

GO:0006312 mitotic recombina-

tion 

0.00065 

GO:0006486 protein glycosyla-

tion 

0.00067 

GO:0016444 somatic cell DNA 

recombination 

0.00089 

GO:0010638 positive regulation 

of organelle or-

ganiz... 

0.00099 

GO:0051276 chromosome organ-

ization 

0.00113 

GO:0009887 animal organ mor-

phogenesis 

0.00120 

GO:0016246 RNA interference 0.00126 

GO:0006406 mRNA export from 

nucleus 

0.00135 

GO:0043414 macromolecule 

methylation 

0.00146 

GO:0008284 positive regulation 

of cell proliferatio... 

0.00156 

GO:0006606 protein import into 

nucleus 

0.00158 

GO:0010014 meristem initiation 0.00171 

GO:0000280 nuclear division 0.00201 

GO:0032875 regulation of DNA 

endoreduplication 

0.00202 

GO:0006665 sphingolipid meta-

bolic process 

0.00214 

GO:0010050 vegetative phase 

change 

0.00229 

GO:0043543 protein acylation 0.00245 

GO:0050665 hydrogen peroxide 

biosynthetic process 

0.00270 

GO:0016192 vesicle-mediated 

transport 

0.00288 
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GO:0006487 protein N-linked 

glycosylation 

0.00296 

GO:0009640 photomorphogene-

sis 

0.00338 

GO:0048573 photoperiodism, 

flowering 

0.00357 

GO:0030029 actin filament-based 

process 

0.00362 

GO:0006397 mRNA processing 0.00364 

GO:0007346 regulation of mitotic 

cell cycle 

0.00383 

GO:0010564 regulation of cell 

cycle process 

0.00400 

GO:0031047 gene silencing by 

RNA 

0.00400 

GO:0048449 floral organ for-

mation 

0.00419 

GO:0016570 histone modification 0.00441 

GO:0009560 embryo sac egg cell 

differentiation 

0.00441 

GO:0010182 sugar mediated sig-

naling pathway 

0.00442 

GO:0051726 regulation of cell 

cycle 

0.00446 

GO:1902275 regulation of chro-

matin organization 

0.00504 

GO:0048440 carpel development 0.00623 

GO:0010072 primary shoot apical 

meristem specifi-

cat... 

0.00652 

GO:0010162 seed dormancy pro-

cess 

0.00703 

GO:0016567 protein ubiquitina-

tion 

0.00725 

GO:0051604 protein maturation 0.00728 

GO:0051301 cell division 0.00770 

GO:0006281 DNA repair 0.00791 

GO:0010051 xylem and phloem 

pattern formation 

0.00830 

GO:0048451 petal formation 0.00949 

GO:0048453 sepal formation 0.00949 

GO:0042127 regulation of cell 

proliferation 

0.00961 

GO:0006497 protein lipidation 0.00973 
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GO:0072528 pyrimidine-contain-

ing compound bio-

synthe... 

0.00996 

GO:0000375 RNA splicing, via 

transesterification 

re... 

0.01002 

GO:0000377 RNA splicing, via 

transesterification 

re... 

0.01002 

GO:0006325 chromatin organiza-

tion 

0.01033 

GO:0006261 DNA-dependent 

DNA replication 

0.01090 

GO:0031056 regulation of histone 

modification 

0.01139 

GO:0051168 nuclear export 0.01186 

GO:0048229 gametophyte devel-

opment 

0.01219 

GO:0018377 protein myristoy-

lation 

0.01237 

GO:0031365 N-terminal protein 

amino acid modifi-

cati... 

0.01237 

GO:0043603 cellular amide meta-

bolic process 

0.01280 

GO:2000242 negative regulation 

of reproductive 

proc... 

0.01421 

GO:0000398 mRNA splicing, via 

spliceosome 

0.01444 

GO:0019915 lipid storage 0.01513 

GO:0070646 protein modification 

by small protein re... 

0.01522 

GO:0006498 N-terminal protein 

lipidation 

0.01567 

GO:0006499 N-terminal protein 

myristoylation 

0.01567 

GO:0006891 intra-Golgi vesicle-

mediated transport 

0.01834 

GO:0010224 response to UV-B 0.01854 

GO:0046519 sphingoid metabolic 

process 

0.01864 

GO:0030048 actin filament-based 

movement 

0.01866 
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GO:0006928 movement of cell or 

subcellular compo-

nen... 

0.01866 

GO:0010212 response to ionizing 

radiation 

0.01882 

GO:0043604 amide biosynthetic 

process 

0.01902 

GO:0070918 production of small 

RNA involved in 

gene... 

0.01916 

GO:0031050 dsRNA processing 0.01916 

GO:0097435 supramolecular fi-

ber organization 

0.01928 

GO:0051302 regulation of cell di-

vision 

0.01968 

GO:0006220 pyrimidine nucleo-

tide metabolic pro-

cess 

0.01980 

GO:0006221 pyrimidine nucleo-

tide biosynthetic 

proce... 

0.01980 

GO:0009220 pyrimidine ribonu-

cleotide biosyn-

thetic p... 

0.01980 

GO:0009218 pyrimidine ribonu-

cleotide metabolic 

proc... 

0.01980 

GO:0016579 protein deubiquiti-

nation 

0.01985 

GO:0009943 adaxial/abaxial axis 

specification 

0.02030 

GO:0009944 polarity specifica-

tion of adaxial/ab-

axia... 

0.02030 

GO:0065001 specification of axis 

polarity 

0.02030 

GO:0003002 regionalization 0.02159 

GO:0009553 embryo sac devel-

opment 

0.02206 

GO:0009955 adaxial/abaxial pat-

tern specification 

0.02224 

GO:0001510 RNA methylation 0.02231 

GO:0044275 cellular carbohy-

drate catabolic pro-

cess 

0.02232 
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GO:0006518 peptide metabolic 

process 

0.02252 

GO:0010048 vernalization re-

sponse 

0.02275 

GO:0000303 response to superox-

ide 

0.02288 

GO:0000305 response to oxygen 

radical 

0.02288 

GO:0045595 regulation of cell 

differentiation 

0.02413 

GO:0009910 negative regulation 

of flower develop-

men... 

0.02466 

GO:0032504 multicellular organ-

ism reproduction 

0.02581 

GO:0000394 RNA splicing, via 

endonucleolytic 

cleava... 

0.02586 

GO:0009057 macromolecule cat-

abolic process 

0.02587 

GO:0009311 oligosaccharide 

metabolic process 

0.02601 

GO:0046520 sphingoid biosyn-

thetic process 

0.02609 

GO:0048439 flower morphogene-

sis 

0.02634 

GO:0051338 regulation of trans-

ferase activity 

0.02657 

GO:0033044 regulation of chro-

mosome organiza-

tion 

0.02670 

GO:0043161 proteasome-medi-

ated ubiquitin-de-

pendent ... 

0.02694 

GO:0010876 lipid localization 0.02704 

GO:0010351 lithium ion transport 0.02797 

GO:0051093 negative regulation 

of developmental 

pro... 

0.02803 

GO:0006611 protein export from 

nucleus 

0.02809 

GO:0048481 plant ovule develop-

ment 

0.02810 

GO:0035670 plant-type ovary de-

velopment 

0.02810 
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GO:0001676 long-chain fatty acid 

metabolic process 

0.02849 

GO:0005984 disaccharide meta-

bolic process 

0.02861 

GO:0009798 axis specification 0.02964 

GO:0043043 peptide biosynthetic 

process 

0.02966 

GO:0006259 DNA metabolic pro-

cess 

0.02975 

GO:0006897 endocytosis 0.03171 

GO:0098657 import into cell 0.03171 

GO:0048193 Golgi vesicle 

transport 

0.03182 

GO:0006412 translation 0.03248 

GO:0050826 response to freezing 0.03377 

GO:0009410 response to xenobi-

otic stimulus 

0.03426 

GO:0007031 peroxisome organi-

zation 

0.03434 

GO:0016571 histone methylation 0.03488 

GO:0006508 proteolysis 0.03595 

GO:0050657 nucleic acid 

transport 

0.03597 

GO:0050658 RNA transport 0.03597 

GO:0006403 RNA localization 0.03597 

GO:0006405 RNA export from 

nucleus 

0.03597 

GO:0051236 establishment of 

RNA localization 

0.03597 

GO:0065009 regulation of molec-

ular function 

0.03611 

GO:0000272 polysaccharide cata-

bolic process 

0.03805 
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Appendix Table 5: Gene ontology enrichment analysis for the genes included in the cluster with 

high coregulation. The GOs ID, the term and the p value of the significant GOs (p < 0.077) are 

given.   

GO.ID  Term P value 

GO:0009630  gravitropism 6.4e-28 

GO:0010090  trichome morpho-

genesis 

8.9e-15 

GO:0006486  protein glycosyla-

tion 

9.7e-15 

GO:0006487  protein N-linked 

glycosylation 

2.0e-14 

GO:0000956  nuclear-transcribed 

mRNA catabolic 

proce... 

5.8e-14 

GO:0010228  vegetative to repro-

ductive phase 

transit... 

4.0e-12 

GO:0007155  cell adhesion 1.4e-11 

GO:0007062  sister chromatid co-

hesion 

4.8e-11 

GO:0045010  actin nucleation 1.1e-10 

GO:0016926  protein desumoy-

lation 

2.4e-09 

GO:0016567  protein ubiquitina-

tion 

2.5e-09 

GO:0016579  protein deubiquiti-

nation 

2.5e-08 

GO:0050665  hydrogen peroxide 

biosynthetic process 

2.8e-08 

GO:0048193  Golgi vesicle 

transport 

3.8e-08 

GO:0010182  sugar mediated sig-

naling pathway 

4.7e-08 

GO:0010072  primary shoot api-

cal meristem spec-

ificat... 

1.6e-07 

GO:0033044  regulation of chro-

mosome organiza-

tion 

5.2e-07 

GO:0035196  production of miR-

NAs involved in 

gene si... 

5.6e-07 
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GO:0031048  chromatin silencing 

by small RNA 

6.1e-07 

GO:0006897  endocytosis 6.3e-07 

GO:0000911  cytokinesis by cell 

plate formation 

7.6e-07 

GO:0007010  cytoskeleton organ-

ization 

8.6e-07 

GO:0009909  regulation of flower 

development 

9.3e-07 

GO:0009887  animal organ mor-

phogenesis 

1.0e-06 

GO:0045132  meiotic chromo-

some segregation 

1.0e-06 

GO:0045595  regulation of cell 

differentiation 

1.1e-06 

GO:0009640  photomorphogene-

sis 

1.5e-06 

GO:0009845  seed germination 1.8e-06 

GO:0016558  protein import into 

peroxisome matrix 

2.0e-06 

GO:0000278  mitotic cell cycle 2.3e-06 

GO:0000226  microtubule cyto-

skeleton organiza-

tion 

2.6e-06 

GO:0043687  post-translational 

protein modifica-

tion 

3.0e-06 

GO:0050826  response to freezing 6.3e-06 

GO:0008284  positive regulation 

of cell proliferatio... 

6.7e-06 

GO:0010332  response to gamma 

radiation 

6.8e-06 

GO:0010048  vernalization re-

sponse 

8.5e-06 

GO:0030244  cellulose biosyn-

thetic process 

1.9e-05 

GO:0009880  embryonic pattern 

specification 

2.6e-05 

GO:0043247  telomere mainte-

nance in response to 

DNA ... 

2.9e-05 

GO:0006397  mRNA processing 2.9e-05 

GO:0019915  lipid storage 4.7e-05 
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GO:0042138  meiotic DNA dou-

ble-strand break 

formatio... 

6.2e-05 

GO:0009616  virus induced gene 

silencing 

6.4e-05 

GO:0008150  biological_process 6.5e-05 

GO:0032204  regulation of telo-

mere maintenance 

6.6e-05 

GO:0048765  root hair cell differ-

entiation 

6.7e-05 

GO:0010073  meristem mainte-

nance 

7.9e-05 

GO:0010267  production of ta-

siRNAs involved in 

RNA ... 

9.5e-05 

GO:0010162  seed dormancy pro-

cess 

0.00010 

GO:0007131  reciprocal meiotic 

recombination 

0.00011 

GO:0010498  proteasomal protein 

catabolic process 

0.00012 

GO:0051301  cell division 0.00012 

GO:0000398  mRNA splicing, via 

spliceosome 

0.00013 

GO:0010050  vegetative phase 

change 

0.00014 

GO:0009855  determination of bi-

lateral symmetry 

0.00018 

GO:0045893  positive regulation 

of transcription, 

DN... 

0.00027 

GO:0000281  mitotic cytokinesis 0.00032 

GO:0009832  plant-type cell wall 

biogenesis 

0.00038 

GO:0010638  positive regulation 

of organelle or-

ganiz... 

0.00038 

GO:0006094  gluconeogenesis 0.00046 

GO:0006346  methylation-de-

pendent chromatin 

silencin... 

0.00048 

GO:0010051  xylem and phloem 

pattern formation 

0.00048 

GO:0046855  inositol phosphate 

dephosphorylation 

0.00053 
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GO:0016571  histone methylation 0.00054 

GO:0048573  photoperiodism, 

flowering 

0.00058 

GO:0006366  transcription by 

RNA polymerase II 

0.00061 

GO:0051302  regulation of cell 

division 

0.00061 

GO:0007033  vacuole organiza-

tion 

0.00061 

GO:0010014  meristem initiation 0.00066 

GO:0032957  inositol trisphos-

phate metabolic 

process 

0.00068 

GO:0006499  N-terminal protein 

myristoylation 

0.00074 

GO:0010315  auxin efflux 0.00080 

GO:0048825  cotyledon develop-

ment 

0.00081 

GO:0030422  production of 

siRNA involved in 

RNA inte... 

0.00083 

GO:0051726  regulation of cell 

cycle 

0.00098 

GO:0006468  protein phosphory-

lation 

0.00100 

GO:0046777  protein autophos-

phorylation 

0.00102 

GO:0006306  DNA methylation 0.00122 

GO:0009894  regulation of cata-

bolic process 

0.00139 

GO:0006342  chromatin silencing 0.00154 

GO:0035194  posttranscriptional 

gene silencing by 

RN... 

0.00173 

GO:0006635  fatty acid beta-oxi-

dation 

0.00177 

GO:0051273  beta-glucan meta-

bolic process 

0.00215 

GO:0007034  vacuolar transport 0.00224 

GO:0048364  root development 0.00260 

GO:0009793  embryo develop-

ment ending in seed 

dorman... 

0.00272 
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GO:0090056  regulation of chlo-

rophyll metabolic 

proc... 

0.00275 

GO:0022904  respiratory electron 

transport chain 

0.00275 

GO:0048437  floral organ devel-

opment 

0.00276 

GO:0009933  meristem structural 

organization 

0.00302 

GO:0016192  vesicle-mediated 

transport 

0.00310 

GO:0048229  gametophyte devel-

opment 

0.00342 

GO:0009910  negative regulation 

of flower develop-

men... 

0.00354 

GO:0048580  regulation of post-

embryonic develop-

ment 

0.00364 

GO:0090698  post-embryonic 

plant morphogene-

sis 

0.00381 

GO:0016036  cellular response to 

phosphate starva-

tio... 

0.00402 

GO:0006310  DNA recombina-

tion 

0.00407 

GO:0007267  cell-cell signaling 0.00440 

GO:0006418  tRNA aminoacyla-

tion for protein 

translat... 

0.00468 

GO:0016570  histone modifica-

tion 

0.00488 

GO:0010629  negative regulation 

of gene expression 

0.00491 

GO:0042732  D-xylose metabolic 

process 

0.00608 

GO:0009908  flower development 0.00635 

GO:0030865  cortical cytoskele-

ton organization 

0.00637 

GO:0007129  synapsis 0.00663 

GO:0000394  RNA splicing, via 

endonucleolytic 

cleava... 

0.00818 

GO:0048767  root hair elongation 0.00847 
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GO:0016049  cell growth 0.00859 

GO:0040007  growth 0.00947 

GO:0032504  multicellular organ-

ism reproduction 

0.00949 

GO:0010558  negative regulation 

of macromolecule 

bio... 

0.01012 

GO:2000113  negative regulation 

of cellular macro-

mol... 

0.01012 

GO:0065007  biological regula-

tion 

0.01022 

GO:0042773  ATP synthesis cou-

pled electron 

transport 

0.01039 

GO:0042775  mitochondrial ATP 

synthesis coupled 

elec... 

0.01039 

GO:0008356  asymmetric cell di-

vision 

0.01039 

GO:0031329  regulation of cellu-

lar catabolic process 

0.01039 

GO:0051641  cellular localization 0.01068 

GO:0010564  regulation of cell 

cycle process 

0.01076 

GO:0031324  negative regulation 

of cellular 

metaboli... 

0.01163 

GO:0006891  intra-Golgi vesicle-

mediated transport 

0.01205 

GO:0042546  cell wall biogenesis 0.01223 

GO:0009926  auxin polar 

transport 

0.01313 

GO:0032879  regulation of locali-

zation 

0.01334 

GO:0050789  regulation of bio-

logical process 

0.01394 

GO:0070592  cell wall polysac-

charide biosynthetic 

pr... 

0.01400 

GO:0070589  cellular component 

macromolecule bio-

synt... 

0.01400 
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GO:0044038  cell wall macromol-

ecule biosynthetic 

pro... 

0.01400 

GO:0048827  phyllome develop-

ment 

0.01434 

GO:0006816  calcium ion 

transport 

0.01438 

GO:0031327  negative regulation 

of cellular bio-

synth... 

0.01442 

GO:0040008  regulation of 

growth 

0.01452 

GO:0048439  flower morphogen-

esis 

0.01493 

GO:0006312  mitotic recombina-

tion 

0.01517 

GO:0098727  maintenance of cell 

number 

0.01517 

GO:0019827  stem cell population 

maintenance 

0.01517 

GO:0010413  glucuronoxylan 

metabolic process 

0.01533 

GO:2000280  regulation of root 

development 

0.01585 

GO:0009553  embryo sac devel-

opment 

0.01615 

GO:0045492  xylan biosynthetic 

process 

0.01712 

GO:0031537  regulation of antho-

cyanin metabolic 

proc... 

0.01719 

GO:0040029  regulation of gene 

expression, epige-

neti... 

0.01731 

GO:0044265  cellular macromole-

cule catabolic pro-

cess 

0.01746 

GO:0009890  negative regulation 

of biosynthetic 

proc... 

0.01801 

GO:0016441  posttranscriptional 

gene silencing 

0.01912 

GO:0097435  supramolecular fi-

ber organization 

0.01942 

GO:0051274  beta-glucan biosyn-

thetic process 

0.01965 
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GO:0032875  regulation of DNA 

endoreduplication 

0.02018 

GO:0090329  regulation of DNA-

dependent DNA 

replicat... 

0.02018 

GO:0006623  protein targeting to 

vacuole 

0.02037 

GO:0072665  protein localization 

to vacuole 

0.02037 

GO:0072666  establishment of 

protein localization 

to... 

0.02037 

GO:0045491  xylan metabolic 

process 

0.02119 

GO:0090567  reproductive shoot 

system develop-

ment 

0.02127 

GO:0051168  nuclear export 0.02146 

GO:0003002  regionalization 0.02164 

GO:0030243  cellulose metabolic 

process 

0.02194 

GO:0010359  regulation of anion 

channel activity 

0.02233 

GO:0022898  regulation of trans-

membrane trans-

porter ... 

0.02233 

GO:0032412  regulation of ion 

transmembrane 

transpor... 

0.02233 

GO:0032409  regulation of trans-

porter activity 

0.02233 

GO:0006119  oxidative phosphor-

ylation 

0.02293 

GO:0010074  maintenance of me-

ristem identity 

0.02300 

GO:0032880  regulation of pro-

tein localization 

0.02300 

GO:0030029  actin filament-based 

process 

0.02303 

GO:0010410  hemicellulose meta-

bolic process 

0.02360 

GO:0051172  negative regulation 

of nitrogen com-

pound... 

0.02522 

GO:1905393  plant organ for-

mation 

0.02551 
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GO:0048449  floral organ for-

mation 

0.02583 

GO:0051640  organelle localiza-

tion 

0.02583 

GO:0006302  double-strand break 

repair 

0.02587 

GO:0006007  glucose catabolic 

process 

0.02587 

GO:0048509  regulation of meri-

stem development 

0.02598 

GO:0016246  RNA interference 0.02661 

GO:0061458  reproductive system 

development 

0.02683 

GO:0048608  reproductive struc-

ture development 

0.02683 

GO:0051240  positive regulation 

of multicellular 

org... 

0.02794 

GO:0048522  positive regulation 

of cellular process 

0.02990 

GO:0010540  basipetal auxin 

transport 

0.03177 

GO:0045787  positive regulation 

of cell cycle 

0.03177 

GO:1902532  negative regulation 

of intracellular sig... 

0.03177 

GO:1902275  regulation of chro-

matin organization 

0.03177 

GO:0090697  post-embryonic 

plant organ mor-

phogenesis 

0.03186 

GO:0048589  developmental 

growth 

0.03326 

GO:0010383  cell wall polysac-

charide metabolic 

proce... 

0.03374 

GO:0019320  hexose catabolic 

process 

0.03417 

GO:0046365  monosaccharide 

catabolic process 

0.03417 

GO:0009749  response to glucose 0.03417 

GO:0090696  post-embryonic 

plant organ devel-

opment 

0.03424 
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GO:0010304  PSII associated 

light-harvesting 

complex... 

0.03490 

GO:0048582  positive regulation 

of post-embryonic 

de... 

0.03495 

GO:0009314  response to radia-

tion 

0.03541 

GO:0052543  callose deposition 

in cell wall 

0.03559 

GO:2000243  positive regulation 

of reproductive 

proc... 

0.03559 

GO:0031123  RNA 3'-end pro-

cessing 

0.03603 

GO:0009960  endosperm develop-

ment 

0.03603 

GO:0051253  negative regulation 

of RNA metabolic 

pro... 

0.03779 

GO:0051049  regulation of 

transport 

0.03794 

GO:0048638  regulation of devel-

opmental growth 

0.03861 

GO:0006281  DNA repair 0.03991 

GO:0051094  positive regulation 

of developmental 

pro... 

0.03994 

GO:0090693  plant organ senes-

cence 

0.04038 

GO:0010150  leaf senescence 0.04038 

GO:0045934  negative regulation 

of nucleobase-con-

tai... 

0.04114 

GO:0015931  nucleobase-contain-

ing compound 

transport 

0.04220 

GO:0046467  membrane lipid bio-

synthetic process 

0.04220 

GO:0006643  membrane lipid 

metabolic process 

0.04233 

GO:0006874  cellular calcium ion 

homeostasis 

0.04247 

GO:0048574  long-day photoperi-

odism, flowering 

0.04247 

GO:0048440  carpel development 0.04253 
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GO:0050657  nucleic acid 

transport 

0.04370 

GO:0050658  RNA transport 0.04370 

GO:0006611  protein export from 

nucleus 

0.04370 

GO:0006403  RNA localization 0.04370 

GO:0006405  RNA export from 

nucleus 

0.04370 

GO:0051236  establishment of 

RNA localization 

0.04370 

GO:0009416  response to light 

stimulus 

0.04371 

GO:0052386  cell wall thickening 0.04384 

GO:0009225  nucleotide-sugar 

metabolic process 

0.04384 

GO:0009057  macromolecule cat-

abolic process 

0.04399 

GO:0006338  chromatin remodel-

ing 

0.04431 

GO:1902531  regulation of intra-

cellular signal 

trans... 

0.04431 

GO:0010017  red or far-red light 

signaling pathway 

0.04431 

GO:0071489  cellular response to 

red or far red ligh... 

0.04431 

GO:0018205  peptidyl-lysine 

modification 

0.04468 

GO:0050793  regulation of devel-

opmental process 

0.04476 

GO:0007389  pattern specification 

process 

0.04487 

GO:0048467  gynoecium devel-

opment 

0.04507 

GO:0009555  pollen development 0.04515 

GO:0071554  cell wall organiza-

tion or biogenesis 

0.04529 

GO:0010118  stomatal movement 0.04537 

GO:1903507  negative regulation 

of nucleic acid-

temp... 

0.04665 

GO:0045892  negative regulation 

of transcription, 

DN... 

0.04665 
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GO:1902679  negative regulation 

of RNA biosyn-

thetic ... 

0.04665 

GO:0071555  cell wall organiza-

tion 

0.04707 

GO:0006974  cellular response to 

DNA damage stim-

ulus 

0.04809 

GO:0051604  protein maturation 0.05065 

GO:0043269  regulation of ion 

transport 

0.05111 

GO:0034762  regulation of trans-

membrane transport 

0.05145 

GO:0034765  regulation of ion 

transmembrane 

transpor... 

0.05145 

GO:0007292  female gamete gen-

eration 

0.05168 

GO:0050794  regulation of cellu-

lar process 

0.05258 

GO:2000241  regulation of repro-

ductive process 

0.05267 

GO:0006511  ubiquitin-dependent 

protein catabolic 

pr... 

0.05340 

GO:0009150  purine ribonucleo-

tide metabolic pro-

cess 

0.05375 

GO:0055074  calcium ion homeo-

stasis 

0.05508 

GO:0002253  activation of im-

mune response 

0.05508 

GO:0048571  long-day photoperi-

odism 

0.05508 

GO:0002218  activation of innate 

immune response 

0.05508 

GO:0048518  positive regulation 

of biological pro-

ces... 

0.05845 

GO:0042398  cellular modified 

amino acid biosyn-

theti... 

0.05945 

GO:0007051  spindle organization 0.05945 

GO:0010608  posttranscriptional 

regulation of gene 

e... 

0.05993 



172 
 

GO:0021700  developmental mat-

uration 

0.06017 

GO:0010154  fruit development 0.06018 

GO:0044036  cell wall macromol-

ecule metabolic 

proces... 

0.06127 

GO:0019375  galactolipid biosyn-

thetic process 

0.06203 

GO:0043480  pigment accumula-

tion in tissues 

0.06203 

GO:0043481  anthocyanin accu-

mulation in tissues 

in r... 

0.06203 

GO:0043473  pigmentation 0.06203 

GO:0043476  pigment accumula-

tion 

0.06203 

GO:0043478  pigment accumula-

tion in response to 

UV l... 

0.06203 

GO:0043479  pigment accumula-

tion in tissues in re-

spo... 

0.06203 

GO:0009560  embryo sac egg cell 

differentiation 

0.06306 

GO:0000271  polysaccharide bio-

synthetic process 

0.06317 

GO:0044070  regulation of anion 

transport 

0.06375 

GO:1903959  regulation of anion 

transmembrane 

transp... 

0.06375 

GO:0006406  mRNA export from 

nucleus 

0.06376 

GO:0051028  mRNA transport 0.06376 

GO:0071427  mRNA-containing 

ribonucleoprotein 

comple... 

0.06376 

GO:0043632  modification-de-

pendent macromol-

ecule cat... 

0.06417 

GO:0019941  modification-de-

pendent protein cat-

abolic... 

0.06417 

GO:0061647  histone H3-K9 

modification 

0.06542 
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GO:0051567  histone H3-K9 

methylation 

0.06542 

GO:0009955  adaxial/abaxial pat-

tern specification 

0.06667 

GO:2001057  reactive nitrogen 

species metabolic 

proc... 

0.06810 

GO:0031056  regulation of his-

tone modification 

0.06810 

GO:0010252  auxin homeostasis 0.06810 

GO:0016032  viral process 0.06810 

GO:0009954  proximal/distal pat-

tern formation 

0.06810 

GO:0010015  root morphogenesis 0.06830 

GO:0006275  regulation of DNA 

replication 

0.06933 

GO:0072507  divalent inorganic 

cation homeostasis 

0.06954 

GO:0016444  somatic cell DNA 

recombination 

0.06963 

GO:0006473  protein acetylation 0.06963 

GO:0051645  Golgi localization 0.06963 

GO:0051646  mitochondrion lo-

calization 

0.06963 

GO:0060151  peroxisome locali-

zation 

0.06963 

GO:0019374  galactolipid meta-

bolic process 

0.06964 

GO:0009411  response to UV 0.06982 

GO:0043161  proteasome-medi-

ated ubiquitin-de-

pendent ... 

0.06990 

GO:0051649  establishment of lo-

calization in cell 

0.07344 

GO:0010646  regulation of cell 

communication 

0.07411 
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Appendix Table 6: Gene ontology enrichment analysis for the genes with a polymorphic cis ef-

fect for SP. The GOs ID, the term and the p value of the significant GOs (p < 0.05) are given.   

GO.ID Term resultKS 

GO:0009718 anthocyanin-con-

taining compound 

biosynth... 

0.00057 

GO:0019748 secondary meta-

bolic process 

0.00064 

GO:0043161 proteasome-medi-

ated ubiquitin-de-

pendent ... 

0.00165 

GO:0051302 regulation of cell 

division 

0.00179 

GO:0017144 drug metabolic pro-

cess 

0.00228 

GO:0046686 response to cad-

mium ion 

0.00350 

GO:1901617 organic hydroxy 

compound biosyn-

thetic pr... 

0.00355 

GO:0022603 regulation of ana-

tomical structure 

morph... 

0.00531 

GO:0009962 regulation of flavo-

noid biosynthetic 

pro... 

0.00730 

GO:0009651 response to salt 

stress 

0.00757 

GO:0008284 positive regulation 

of cell proliferatio... 

0.00795 

GO:0018958 phenol-containing 

compound meta-

bolic pro... 

0.00876 

GO:0043085 positive regulation 

of catalytic activit... 

0.00923 

GO:0005982 starch metabolic 

process 

0.01024 

GO:0042023 DNA endoredupli-

cation 

0.01031 

GO:0044786 cell cycle DNA rep-

lication 

0.01088 

GO:0043933 protein-containing 

complex subunit or-

gan... 

0.01127 
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GO:0044281 small molecule 

metabolic process 

0.01146 

GO:1901135 carbohydrate deriv-

ative metabolic pro-

ces... 

0.01268 

GO:0042274 ribosomal small 

subunit biogenesis 

0.01271 

GO:0031540 regulation of antho-

cyanin biosynthetic 

p... 

0.01271 

GO:0006595 polyamine meta-

bolic process 

0.01281 

GO:0044085 cellular component 

biogenesis 

0.01299 

GO:0043248 proteasome assem-

bly 

0.01364 

GO:0051788 response to mis-

folded protein 

0.01364 

GO:0006796 phosphate-contain-

ing compound met-

abolic ... 

0.01387 

GO:0006766 vitamin metabolic 

process 

0.01494 

GO:0019684 photosynthesis, 

light reaction 

0.01522 

GO:0019252 starch biosynthetic 

process 

0.01539 

GO:0016999 antibiotic metabolic 

process 

0.01594 

GO:0006793 phosphorus meta-

bolic process 

0.01665 

GO:0044042 glucan metabolic 

process 

0.01674 

GO:0006073 cellular glucan met-

abolic process 

0.01674 

GO:0034622 cellular protein-

containing complex 

asse... 

0.01681 

GO:0090407 organophosphate 

biosynthetic pro-

cess 

0.01716 

GO:0009636 response to toxic 

substance 

0.01764 

GO:0046189 phenol-containing 

compound biosyn-

thetic ... 

0.01866 
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GO:0009404 toxin metabolic 

process 

0.01936 

GO:0017000 antibiotic biosyn-

thetic process 

0.01981 

GO:0065003 protein-containing 

complex assembly 

0.02076 

GO:0051186 cofactor metabolic 

process 

0.02129 

GO:0009411 response to UV 0.02236 

GO:0019637 organophosphate 

metabolic process 

0.02365 

GO:0009642 response to light in-

tensity 

0.02382 

GO:0055086 nucleobase-contain-

ing small molecule 

met... 

0.02386 

GO:0009611 response to wound-

ing 

0.02394 

GO:0000023 maltose metabolic 

process 

0.02517 

GO:0006364 rRNA processing 0.02679 

GO:0019932 second-messenger-

mediated signaling 

0.02709 

GO:0016072 rRNA metabolic 

process 

0.02836 

GO:0006260 DNA replication 0.03170 

GO:0022607 cellular component 

assembly 

0.03251 

GO:0048528 post-embryonic 

root development 

0.03338 

GO:0051604 protein maturation 0.03756 

GO:0006598 polyamine catabolic 

process 

0.03942 

GO:0006807 nitrogen compound 

metabolic process 

0.03970 

GO:0006091 generation of pre-

cursor metabolites 

and ... 

0.04025 

GO:0046677 response to antibi-

otic 

0.04096 

GO:0006261 DNA-dependent 

DNA replication 

0.04326 

GO:0034470 ncRNA processing 0.04326 
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GO:1901566 organonitrogen 

compound biosyn-

thetic pro... 

0.04340 

GO:0006139 nucleobase-contain-

ing compound met-

abolic... 

0.04362 

GO:0009735 response to cyto-

kinin 

0.04448 

GO:0009409 response to cold 0.04468 

GO:0001666 response to hypoxia 0.04470 

GO:0007020 microtubule nuclea-

tion 

0.04470 

GO:0009407 toxin catabolic pro-

cess 

0.04499 

GO:0046785 microtubule 

polymerization 

0.04722 

GO:0009117 nucleotide meta-

bolic process 

0.04738 

GO:1902531 regulation of intra-

cellular signal 

trans... 

0.04784 

GO:0006301 postreplication re-

pair 

0.04784 

GO:0005984 disaccharide meta-

bolic process 

0.04798 

GO:0006753 nucleoside phos-

phate metabolic 

process 

0.04806 

GO:0080129 proteasome core 

complex assembly 

0.04886 

GO:0009697 salicylic acid bio-

synthetic process 

0.04951 

GO:0006979 response to oxida-

tive stress 

0.04960 

GO:0051510 regulation of unidi-

mensional cell 

growth 

0.04981 

GO:0036293 response to de-

creased oxygen lev-

els 

0.04981 

GO:0031109 microtubule 

polymerization or 

depolymeri... 

0.04981 

GO:0070482 response to oxygen 

levels 

0.04981 
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Appendix Table 7: Gene ontology enrichment analysis for the genes with a polymorphic cis ef-

fect for PL. The GOs ID, the term and the p value of the significant GOs (p < 0.05) are given.   

GO.ID Term resultKS 

GO:0006412 translation 8.8e-23 

GO:0006098 pentose-phosphate 

shunt 

6.8e-22 

GO:0006364 rRNA processing 1.3e-18 

GO:0046686 response to cad-

mium ion 

2.5e-17 

GO:0006096 glycolytic process 5.0e-16 

GO:0010207 photosystem II as-

sembly 

4.2e-15 

GO:0019344 cysteine biosyn-

thetic process 

7.2e-12 

GO:0009651 response to salt 

stress 

1.2e-11 

GO:0006833 water transport 1.6e-11 

GO:0007030 Golgi organization 2.1e-11 

GO:0019288 isopentenyl diphos-

phate biosynthetic 

pro... 

3.3e-11 

GO:0010114 response to red 

light 

3.5e-11 

GO:0042744 hydrogen peroxide 

catabolic process 

5.3e-11 

GO:0009902 chloroplast reloca-

tion 

9.9e-11 

GO:0010027 thylakoid mem-

brane organization 

1.2e-10 

GO:0010155 regulation of proton 

transport 

1.5e-10 

GO:0010218 response to far red 

light 

4.6e-10 

GO:0015995 chlorophyll biosyn-

thetic process 

9.7e-10 

GO:0009637 response to blue 

light 

5.3e-09 

GO:0019252 starch biosynthetic 

process 

9.3e-09 

GO:0000023 maltose metabolic 

process 

1.6e-08 

GO:0043085 positive regulation 

of catalytic activit... 

1.9e-08 

GO:0009735 response to cyto-

kinin 

2.3e-08 
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GO:0009657 plastid organization 5.4e-08 

GO:0001510 RNA methylation 1.6e-07 

GO:0019761 glucosinolate bio-

synthetic process 

1.3e-06 

GO:0009773 photosynthetic 

electron transport 

in pho... 

3.0e-06 

GO:0009965 leaf morphogenesis 4.4e-06 

GO:0006972 hyperosmotic re-

sponse 

4.6e-06 

GO:0009409 response to cold 8.8e-06 

GO:0009744 response to sucrose 1.2e-05 

GO:0019684 photosynthesis, 

light reaction 

1.3e-05 

GO:0009266 response to temper-

ature stimulus 

1.3e-05 

GO:0006094 gluconeogenesis 2.3e-05 

GO:0042793 plastid transcription 3.7e-05 

GO:0035304 regulation of pro-

tein dephosphoryla-

tion 

6.1e-05 

GO:0009644 response to high 

light intensity 

8.6e-05 

GO:0009269 response to desic-

cation 

9.7e-05 

GO:0019760 glucosinolate meta-

bolic process 

0.00012 

GO:0006816 calcium ion 

transport 

0.00013 

GO:0045893 positive regulation 

of transcription, 

DN... 

0.00014 

GO:0042254 ribosome biogene-

sis 

0.00015 

GO:0009658 chloroplast organi-

zation 

0.00017 

GO:0016117 carotenoid biosyn-

thetic process 

0.00019 

GO:0010043 response to zinc ion 0.00020 

GO:0010304 PSII associated 

light-harvesting 

complex... 

0.00036 

GO:0010264 myo-inositol hex-

akisphosphate bio-

synthet... 

0.00051 
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GO:0030003 cellular cation ho-

meostasis 

0.00051 

GO:0070838 divalent metal ion 

transport 

0.00058 

GO:0009853 photorespiration 0.00067 

GO:0042364 water-soluble vita-

min biosynthetic 

proce... 

0.00115 

GO:0009073 aromatic amino 

acid family biosyn-

thetic ... 

0.00120 

GO:0009750 response to fructose 0.00152 

GO:0045036 protein targeting to 

chloroplast 

0.00229 

GO:0006007 glucose catabolic 

process 

0.00235 

GO:0042742 defense response to 

bacterium 

0.00241 

GO:0009805 coumarin biosyn-

thetic process 

0.00327 

GO:0030154 cell differentiation 0.00440 

GO:1901566 organonitrogen 

compound biosyn-

thetic pro... 

0.00499 

GO:0043255 regulation of carbo-

hydrate biosyn-

thetic ... 

0.00541 

GO:0045037 protein import into 

chloroplast stroma 

0.00541 

GO:0051186 cofactor metabolic 

process 

0.00600 

GO:0015979 photosynthesis 0.00676 

GO:0017004 cytochrome com-

plex assembly 

0.00704 

GO:0090056 regulation of chlo-

rophyll metabolic 

proc... 

0.00704 

GO:0006790 sulfur compound 

metabolic process 

0.00995 

GO:1901565 organonitrogen 

compound cata-

bolic proces... 

0.01011 

GO:0009825 multidimensional 

cell growth 

0.01016 

GO:0009746 response to hexose 0.01038 
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GO:0009765 photosynthesis, 

light harvesting 

0.01106 

GO:0009749 response to glucose 0.01108 

GO:0000272 polysaccharide cat-

abolic process 

0.01128 

GO:0006979 response to oxida-

tive stress 

0.01177 

GO:0016052 carbohydrate cata-

bolic process 

0.01191 

GO:0009108 coenzyme biosyn-

thetic process 

0.01198 

GO:0009664 plant-type cell wall 

organization 

0.01202 

GO:0048767 root hair elongation 0.01203 

GO:0033559 unsaturated fatty 

acid metabolic pro-

cess 

0.01265 

GO:0006636 unsaturated fatty 

acid biosynthetic 

proc... 

0.01265 

GO:0034284 response to mono-

saccharide 

0.01266 

GO:0051188 cofactor biosyn-

thetic process 

0.01369 

GO:0009310 amine catabolic 

process 

0.01421 

GO:0042402 cellular biogenic 

amine catabolic 

proces... 

0.01421 

GO:0042168 heme metabolic 

process 

0.01618 

GO:0032880 regulation of pro-

tein localization 

0.01654 

GO:0031163 metallo-sulfur clus-

ter assembly 

0.01661 

GO:0016226 iron-sulfur cluster 

assembly 

0.01661 

GO:0080129 proteasome core 

complex assembly 

0.01745 

GO:1901658 glycosyl compound 

catabolic process 

0.01916 

GO:0006518 peptide metabolic 

process 

0.02165 

GO:0071555 cell wall organiza-

tion 

0.02167 
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GO:0010118 stomatal movement 0.02221 

GO:0006576 cellular biogenic 

amine metabolic 

proces... 

0.02238 

GO:0006598 polyamine cata-

bolic process 

0.02241 

GO:0080147 root hair cell devel-

opment 

0.02275 

GO:0009411 response to UV 0.02692 

GO:0006301 postreplication re-

pair 

0.02977 

GO:0010015 root morphogenesis 0.03114 

GO:0019725 cellular homeosta-

sis 

0.03140 

GO:0045229 external encapsu-

lating structure or-

ganiz... 

0.03206 

GO:0044106 cellular amine met-

abolic process 

0.03319 

GO:0005982 starch metabolic 

process 

0.03344 

GO:1901136 carbohydrate deriv-

ative catabolic pro-

ces... 

0.03388 

GO:0043480 pigment accumula-

tion in tissues 

0.03480 

GO:0043481 anthocyanin accu-

mulation in tissues 

in r... 

0.03480 

GO:0043473 pigmentation 0.03480 

GO:0043476 pigment accumula-

tion 

0.03480 

GO:0043478 pigment accumula-

tion in response to 

UV l... 

0.03480 

GO:0043479 pigment accumula-

tion in tissues in re-

spo... 

0.03480 

GO:0048481 plant ovule devel-

opment 

0.03498 

GO:0035266 meristem growth 0.03498 

GO:0035670 plant-type ovary 

development 

0.03498 
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GO:0006109 regulation of carbo-

hydrate metabolic 

pro... 

0.03559 

GO:0008361 regulation of cell 

size 

0.03717 

GO:0010119 regulation of sto-

matal movement 

0.03717 

GO:0072525 pyridine-containing 

compound biosyn-

theti... 

0.03767 

GO:0009809 lignin biosynthetic 

process 

0.04291 

GO:0010054 trichoblast differen-

tiation 

0.04419 

GO:0051181 cofactor transport 0.04422 

GO:0048364 root development 0.04667 

GO:0048232 male gamete gener-

ation 

0.04783 

GO:0009625 response to insect 0.04783 

GO:0022622 root system devel-

opment 

0.04787 

GO:0010053 root epidermal cell 

differentiation 

0.04915 
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Abstract 

Arabidopsis thaliana is the most prominent model system in plant molecular biology and genetics. 

Although its ecology was initially neglected, collections of various genotypes revealed a complex 

population structure, with high levels of genetic diversity and substantial levels of phenotypic var-

iation. This helped identify the genes and gene pathways mediating phenotypic change.  Popula-

tion genetics studies further demonstrated that this variation generally contributes to local adapta-

tion. Here, we review evidence showing that traits affecting plant life history, growth rate and 

stress reactions are not only locally adapted, they also often co-vary. Co-variation between these 

traits indicate that they evolve as trait syndromes, and reveals the ecological diversification that 

took place within A. thaliana. We argue that examining traits and the gene that control them within 

the context of global summary schemes that describe major ecological strategies will contribute to 

resolve important questions both in molecular biology and ecology.  

Keywords: Arabidopsis thaliana, natural variation, local adaptation, trait syndrome, CSR strategy 

 

Local adaptation suggests a diversity of ecological specializations within A. thaliana  

Arabidopsis thaliana (L.) Heyhn is exceptional within its genus. It is the only annual species, it 

has adapted to open, dry habitats prone to seasonal drought (Ruppert et al., 2015; Kiefer et al., 

2017), and its reproductive success is directly dependent on interannual variation in environmental 
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conditions (Segrestin et al., 2018). It also has the widest geographic range in the Arabidopsis genus 

(Clauss and Koch, 2006; Novikova et al., 2016). Natural populations have been found throughout 

Europe, from the North of Scandinavia to the South of Spain, in the Balkans, in Central Asia, 

China and parts of Africa (Hoffmann, 2005; He et al., 2007; 1001 Genomes Consortium. 2016; 

Durvasula et al., 2017). It is also naturalized in North America and Argentina (Stock et al., 2015; 

Kasulin et al., 2017; Exposito-Alonso et al., 2018a). This exceptionally wide distribution range is 

only limited by very low spring or autumn temperatures or by high temperature in regions of low 

precipitation (Hoffmann, 2002).  

The unrivaled genomic resources available for these populations have helped demonstrate that the 

last glacial period determined the current distribution of genetic variation (reviewed in this issue, 

Koch 2018). After the last glacial maximum, populations have spread towards Northern latitudes, 

experiencing successive bottlenecks (Svardal et al., 2017; Durvasula et al., 2017). As a result, 

regional diversity is highest in Africa and lowest in Scandinavia. Genetic variation in Eurasia also 

follows a longitudinal gradient (1001 Genomes Consortium, 2016; Zou et al., 2017).  

The local adaptation of A. thaliana populations has been documented throughout its range, despite 

a history of pervasive gene flow (Fournier-Level et al., 2011; Hancock et al., 2011; Ågren and 

Schemske, 2012; Savolainen et al., 2013; Weigel and Nordborg, 2015; Svardal et al., 2017). Field 

experiments and correlation analyses with climate parameters identified numerous genomic re-

gions associated with local climatic conditions. Association studies correlating SNP variants with 

climatic variation showed that non-synonymous SNPs were enriched among SNPs associating 

with environmental variance (Hancock et al., 2011; Lasky et al., 2014). Among them, SNPs asso-

ciating with fitness differences in the field were also over-represented (Hancock et al., 2011). Fur-

thermore, alleles associating with fruit production are more frequent in populations closer to field 

sites where the selective advantage was expressed (Fournier-Level et al., 2011). Therefore, it is 

now clear that much of the variation found in this species has played a role in optimizing plant 

performance to local environmental conditions.  

Combination of development traits underpin local adaptation in A. thaliana 

Flowering time is one of the development traits underpinning adaptation in A. thaliana. It has been 

extensively studied and elevated levels of variation have been observed in the lab (Koornneef et 

al., 2004). The adaptive relevance of its genetic variation is supported by multiple independent 
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studies. Variation in flowering time follows climatic clines, both at the regional and species levels 

(Mendez-Vigo et al., 2011; Montesinos-Navarro et al., 2011; Debieu et al., 2013; Li et al., 2014; 

Sasaki et al., 2015). Warmer climates appear to favor earlier flowering time, a pattern that has 

been documented for a great number of species (Austen et al., 2017; Whittaker and Dean, 2017). 

Strong selection for early flowering was detected in Italy but was weaker in Sweden (Ågren et al., 

2017). Population genetics studies also uncovered signatures of natural selection on genes control-

ling flowering time (Le Corre, 2005; Toomajian et al., 2006). Finally, the analysis of co-variation 

between environmental and phenotypic variance consolidated evidence for the adaptive distribu-

tion of this trait (van Heerwaarden et al., 2015).  

Much of the flowering time variation measured in the lab, however, does not manifest as variation 

in flowering phenology in the field (Wilczek et al., 2009; Brachi et al., 2010; Hu et al., 2017). It 

is indeed tightly dependent on the environmental conditions prevailing during seedling establish-

ment, and hence on another developmental trait: the timing of germination (Donohue, 2002; 

Wilczek et al., 2009).  Both field experiments and theoretical models integrating seed and flower-

ing phenology have shown that seed dormancy is often decisive for controlling the life cycle across 

environments (Chiang et al., 2013; Burghardt et al., 2015).  Therefore, the adaptive relevance of 

variants modulating flowering time control must be examined in the context of variation for the 

timing of germination.  

There is indeed consistent support for the adaptive relevance of traits determining the timing of 

germination. Seed dormancy has a strong fitness advantage before the hot season, but can impair 

fitness if it delays plant growth before winter (Donohue, 2002; Donohue et al., 2005; Chiang et 

al., 2013). Population genetics analysis of seed dormancy and its major QTL DOG1 supported the 

adaptive importance of strong dormancy in Southern regions, to escape dry and hot summers, 

whereas weaker dormancy was reported in Norway, where the season is shorter (Kronholm et al., 

2012; Postma and Ågren, 2016; Kerdaffrec et al., 2016). 

Since flowering time determines the maternal environment the seeds experience during their mat-

uration, it also impacts life history traits expressed by the next generation (Chiang et al., 2013; He 

et al., 2014; Postma and Ågren, 2015). Light, temperature, nutrient availability and water status 

have all been identified as significant environmental factors influencing the maternal inheritance 

of seed dormancy (Footitt et al., 2013; Morrison and Linder, 2014; He et al., 2014; Kerdaffrec et 
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al., 2016). Germination can also be distributed over more than one seasonal window. For example, 

maintaining a spring germinating cohort is important for the maintenance of populations exposed 

to low winter temperature (Akiyama and Ågren 2014; Picó, 2012). Furthermore, later flowering 

can lead to late seed dispersal, which can result in overwintering at the seed stage (Hu et al. 2017). 

Flowering time and seed dormancy are therefore jointly subject to fluctuating seasonal selective 

forces. They can evolve as a syndrome, defining distinct life history strategies that have diversified 

across environments (Marcer et al.; Chiang et al., 2013; Vidigal et al., 2016). An analysis of seed 

dormancy and flowering time co-variation revealed that the optimization of the two traits probably 

depends on latitudinal differences in climate. Late flowering (i.e. vernalization requirement) and 

strong dormancy are more frequent in regions where summer drought is typically more severe, 

whereas late flowering in Northern latitudes co-varies negatively with dormancy (Debieu et al. 

2013). Co-variance between flowering time and dormancy is also detected at much smaller scale, 

along steep altitudinal gradients (Vidigal et al. 2016). Normally, diverse life-history trait combi-

nations can allow comparable population growth rates in field conditions (Taylor et al., 2017). In 

some years, however, early winter frost can wipe out genotypes expressing inadequate life histo-

ries (Hu et al. 2017). Minimum winter temperature and precipitation, in fact, were also the main 

climatic factors that acted as selective pressures on flowering time and their underpinning genes 

in a set of Iberian A.thaliana genotypes (Méndez-Vigo et al., 2011). This suggests that extreme 

deviation from seasonal averages may be important drivers of the allelic combination of life history 

variants adjusting development to the optimal growth season throughout the species range.  

Patterns of co-variation between growth rate and developmental traits suggest the existence 

of trait syndromes 

Beyond the combination of life history traits to target the best season for growth, A. thaliana also 

displays considerable genetic variation in its growth rate (Debieu et al., 2013; Marchadier et al., 

2018). The pattern of co-variation linking growth rate with flowering time and seed dormancy is 

independent of population structure and changes from Southern to Northern latitude (Debieu et 

al., 2013). This suggests that trade-offs between growth rate and life history change across the 

distribution range of the species (Debieu et al., 2013). It further implies that complex multi-trait 

combinations, i.e. trait syndromes, are necessary to adjust to the changing trade-offs imposed by 

regional differences in climatic conditions. Co-variation between flowering time, final biomass 
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and average rate of biomass accumulation before flowering also suggests that genetic adaptation 

to local climate conditions is mediated by a trait syndrome (Vasseur et al., 2018a).  

Genetic variation for tolerance to drought stress, just like that for life history, displays signatures 

of local adaptation. Many genetic variants have been identified that also affect either root or rosette 

growth in the face of severe drought stress (El Soda et al.; Clauw et al., 2016; Davila Olivas et al., 

2017). Several studies highlighted the adaptive relevance of variation in the ability to maintain 

growth and photosynthesis when water is limited. After accounting for the demographic history of 

the species, stomata size variation was found to correlate with water-use efficiency (i.e. rate of 

carbon fixation to water loss) and both air humidity and the local probability of spring drought 

severity (Dittberner et al. 2018), in agreement with field measurements (Mojica et al., 2016). The 

molecular evolution of the gene P5CS, which contributes to the synthesis of proline, a potent os-

moprotectant in A. thaliana, suggests it contributed to local adaptation (Kesari et al., 2012). Nu-

cleotide variants within genes displaying stress-dependent expression was also shown to be over-

represented among variants correlating with climatic parameters (Lasky et al., 2014; Exposito-

Alonso et al., 2018b).  

In fact, genetic variation for stress tolerance is not only involved in local adaptation, it also appears 

to be part of a trait syndrome, because it is often reported to coincide with variation in life history. 

Early flowering individuals, which sometimes complete their life cycle within a few weeks, can 

escape conditions causing high pre-reproductive mortality (Franks et al., 2011; Fournier-Level et 

al., 2013; Riboni et al., 2013). In addition, the major flowering time QTL FRIGIDA controls not 

only the timing of flowering but also water-use efficiency (Johanson et al., 2000; Lovell et al., 

2013). Improved performance in plants exposed to moderate drought stress is correlated with the 

ability to flower early (Bac Molenaar et al., 2016), but genotypes with a strong vernalization re-

quirement rather tend to avoid the effect of drought by maintaining their internal water level 

(McKay et al., 2003; Des Marais et al., 2012; Lovell et al., 2013; Easlon et al., 2014; Davila Olivas 

et al., 2017). The most stress tolerant individuals actually appear to be either early flowering or 

slow growing (Davila Olivas et al., 2017; Vasseur et al., 2018a).  

Because of its co-variation with life-history, adaptation to drought stress can show counter-intui-

tive patterns. In A. thaliana, local adaptation for increased tolerance to drought stress is not found 

in the driest regions, because, in these areas, natural selection rather promoted genotypes with the 
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ability to escape the stress (Tabas‐Madrid et al.; Kronholm et al., 2012; Vidigal et al., 2016, Mojica 

et al. 2016). Genotypes showing smaller stomata, higher water-use efficiency and longer photo-

synthetic activity in the face of terminal drought have in fact evolved in Southern Scandinavia, 

where the growth season is too short to allow escaping the drier season but dry enough to require 

improved drought tolerance (Dittberner et al., 2018; Exposito-Alonso et al., 2018b, Mojica et al. 

2016). Genotypes with a strong vernalization requirement are in fact more frequent in this region, 

limiting the possibility to escape drought during the growing season (Li et al., 2014). Non-mono-

tonic patterns of co-variation between flowering time and temperature have also been reported in 

Spain (Tabas‐Madrid et al., 2018), suggesting that the selective advantage of early flowering for 

persisting in dry regions depends on a broader ecological context, and thus presumably on the 

possibility to rely on earlier flowering to escape stressful conditions.  The evolution of the response 

to abiotic stress in A. thaliana is therefore not independent of the evolution of the timing of life 

history transitions.  

The ability of plants to face biotic stresses is also dependent on life history variation. Alleles ac-

celerating flowering were shown to be often combined with alleles decreasing the expression of 

plant defense genes throughout natural A. thaliana populations (Glander et al., 2018). Indication 

that this assortment coincides with differential fitness suggests that it has been driven by natural 

selection. In addition, plant growth in response to the specialist herbivore Pieris rapae was en-

hanced in fast flowering individuals but showed a trade-off with the drought response (Davila 

Olivas et al., 2017). Here again, this hints to the evolution of a trait syndrome, where early flow-

ering genotypes may have been selected for their ability to allocate fewer resources into defense, 

in order to maximize their growth rate or to reshuffle energetic priorities and ensure survival.  

A. thaliana thus displays significant levels of genetic variation in traits controlling life-history, 

growth rate or tolerance to diverse stresses, all of which co-vary with each other and with climatic 

conditions at the location of origin. This suggests that adaptation to novel environments after the 

last glaciation has allowed the evolution of trait syndromes, i.e. combination of multiple traits. 

These combinations probably reflect both adaptive synergies and global trade-offs imposed by 

resource limitations. Identifying the exact composition of trait syndromes and their variation re-

quires a careful monitoring of life-history transitions, growth rates, stress tolerance and plant fit-

ness in natural conditions.  We argue below that interpreting trait variation and co-variation in the 
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global context of plant ecological strategies, i.e. within summary schemes developed by ecologists 

to describe the major dimensions determining variation in form and function within and across 

habitats, may help resolve the ecological significance of traits and their combinations.  

Interpreting A. thaliana trait syndromes in the context of major ecological strategies 

Not all possible trait combinations are viable in natural environments: Natural selection indeed 

limits the diversity of forms and functions in plants as a result of trade-offs among the diverse 

options for resource allocation (Reich, 2014; Díaz et al., 2016). This major constraint has moti-

vated several attempts to classify plants with respect to their ecological strategies (reviewed in 

Westoby et al., 2002; Díaz et al., 2016). Among them, Grime’s CSR theory (Grime, 1974; Grime, 

1977) is a prominent strategy scheme (Pierce et al., 2017). It distinguishes three primary strategies, 

i.e. competitive (C), stress-tolerant (S) and ruderal (R). The two first strategies evolve in rather 

constant environments, which differ in the severity of resource shortage (light, water, and/or nu-

trients). The third one prevails in disturbed environments, and involves investment of a large pro-

portion of resources in propagules from which the population can regenerate in the face of repeated 

biomass destruction events. Distinct strategies may also co-occur within a given environment en-

hancing local niche separation between species (Kraft et al. 2008). The multivariate and complex 

traits that form the basis of ecological strategies are often difficult to measure. Yet, a small number 

of plant functional traits related to growth, survival and reproduction has been shown to efficiently 

summarize the overall diversity of plant life form and functions (Díaz et al., 2016). Among them, 

as many as three leaf traits – leaf area, leaf dry matter content, and specific leaf area – can be used 

as surrogate to describe a species’ CSR strategy (Pierce et al., 2017). 

Like many other annuals in the Brassicaceae family, these leaf traits position A. thaliana as a 

typical R-strategist (Pierce et al., 2017). It is typically encountered in regularly disturbed habitat 

patches, such as urban, ruderal or mountainous habitats, and its seedlings are directly exposed to 

seasonal climatic fluctuations (Pico et al., 2008; Bomblies et al., 2010; Svardal et al., 2017). How-

ever, the past years have shown that plant species are far from having a fixed CSR strategy. On 

the contrary, strategy classifications at the species level have been more and more challenged by 

the large spectrum of intraspecific variation (Des Roches et al., 2017; Volaire, 2018). For this 

reason, it is now increasingly acknowledged that trade-offs in life-history and growth strategies 

can also occur at the level of genotypes and populations, and that more attention should be devoted 
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to inter-individual and inter-population variation of the CSR strategy (Astuti et al., 2018). Intra-

specific trade-offs have been found along the S-R axis of Grime’s CSR strategy scheme (Bilton et 

al., 2010; May et al., 2017), but also along the C-S axis (Ravenscroft et al., 2014; Astuti et al., 

2018). These trade-offs are commonly explained as a mechanism of local adaptation, for example 

in response to different levels of resource stress. It is thus not surprising that considerable intra-

specific variation has also been found for A. thaliana. A study with 16 individual accessions sam-

pled along a steep altitudinal gradient revealed that populations from hotter climates clustered 

towards the stress-tolerant end of the observed strategy spectrum, implying pronounced intraspe-

cific variation along the S-R axis (May et al., 2017). The extent of variation along the S-R axis 

was recently confirmed by a comprehensive analysis of variation in CSR positioning in some 300 

genotypes in A. thaliana (Vasseur et al. 2018b). As for other annual plants, we could thus assume 

that A. thaliana populations growing in water- or temperature-limited  habitats may be well-

adapted to high levels of stress and thus characterized as stress tolerant (Volaire, 2018).  By con-

trast, genotypes that grow fast and complete their life cycle within a few weeks may be described 

as extreme ruderals (Fig. 1).In A. thaliana, genotypic variation covers the whole S-R strategy spec-

trum. The geographical distribution of this variation contrasts with that of genome-wide patterns 

of variation, suggesting a role in local adaptation (Vasseur et al. 2018b).  

Intraspecific variation along the S-C or R-C axes involves traits that have not been intensively 

investigated in A. thaliana (Fig. 1). The ability to compete with other species plays a presumably 

minor role for a pioneer species that only subsists in disturbed environments. Yet, the few studies 

that investigated this aspect (e.g. Masclaux et al. 2010; Baron et al., 2015; Frachon et al., 2017) 

suggest that intraspecific variation in C-strategic features will be significant as well (Fig.1). The 

disturbed environments in which A. thaliana can be found are sometimes densely populated (G. 

Schmitz, pers. Com, see also the population studied in Frachon et al. 2018). Interspecific compe-

tition has been shown to modify the pattern of natural selection operating on flowering traits in a 

collection of recombinant inbred lines (Brachi et al., 2012). Some A. thaliana genotypes, initially 

collected in a densely populated habitat patch, displayed the ability to decrease the biomass of 

some of their interspecific competitors (Baron et al., 2015; Frachon et al., 2017).  

Intraspecific competition is also expected to stand under strong selection in the species. The pop-

ulation census size is small in a newly colonized habitat patch but will increase with the age of the 
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habitat patch. Under increasing density of intraspecific competitors, plants differ in their ability to 

reach the fruiting phase and produce seeds (Masclaux et al. 2010; Muñoz‐Parra et al. 2017). Root 

growth is also negatively impacted by intra-specific competition (Muñoz‐Parra et al. 2017). Com-

petitive ability may also modulate the intensity of selection on water-use efficiency variants (Cam-

pitelli et al., 2016). Intraspecific variation along the S-C or  

R-C axes might be less pronounced than along the S-R axis, but is probably not negligible, as 

indicated by the recent discovery of a gene locus promoting positive interactions between geno-

types (Wuest and Niklaus, 2018; see also Vasseur et al. 2018b).  

The CSR-strategy scheme is one of the conceptual frameworks that can help understand the role 

specific trait- (or gene-) combinations have played in the ecological diversification observed 

within A. thaliana. To date, their contribution remains mostly hypothetical (Fig. 1). Late flowering 

in controlled conditions was reported to associate with increased stress-tolerance in the CSR 

scheme, yet whether this trait mediates an increase in stress tolerance or associates with traits 

which control stress tolerance has not been elucidated (Vasseur et al. 2018b). Identifying causal 

links between traits, their underpinning genes and shifts in CSR strategy could considerably ame-

liorate knowledge transfer between model and non-model species, because this scheme was de-

signed to facilitate interspecific comparisons (Pierce et al. 2018).  

Towards linking molecular biological functions with their role in ecological strategies 

Exploring how traits are combined in natural populations to tune the ecological strategy of local 

genotypes to their local environmental conditions can indeed cast new light on gene function at 

the molecular level. We illustrate this idea with two points: first we describe how natural variation 

can help identify genes controlling ecologically important traits and focus on plant nutrition as an 

exemplary trait. Second, we show that the function of the well-known flowering time regulator 

FLC can be revised in the perspective of ecological strategies.    

Studies of natural variation have greatly assisted the discovery of the genes controlling functions 

that cannot be easily dissected in mutant screen approaches (reviewed in Alonso-Blanco et al., 

2009). For example, QTL analyses of nutrient unraveled the function of the anion channel AtCLC-

c in nitrate transport to vacuoles (Loudet et al. 2003; Harada et al. 2004) or showed that the ATPase 
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subunit G and the multicopper oxidase LPR1 have a major impact on the accumulation of phos-

phate and phytate (Bentsink et al. 2003; Reymond et al. 2006). They further showed that foliar 

sulfate accumulation is dependent on sulfate reduction rates (Loudet et al. 2007; Koprivova et al. 

2013). The fact that one of the two major QTLs controlling sulfate reduction, the gene APR2, has 

evolved loss of function alleles three times independently, in Central Asia, Czech Republic and 

Sweden, also came out as a striking result (Loudet et al. 2007, Chao et al. 2014). 

Studies of natural variation can also inform about the genetic architecture and evolutionary poten-

tial of specific traits. For example, the major discoveries driven by differences in ionomes between 

A. thaliana populations were not achieved through genome-wide association mapping (Atwell et 

al. 2010), but through the use of ionomics to screen for genotypes with contrasted nutrient content 

for analysis (Lahner et al. 2003; Salt et al. 2008). Approximately 20-fold differences in molyb-

denum concentration was measured in leaves of 98 A. thaliana genotypes and the genetic analysis 

of the progeny of two of the most contrasted accessions Col-0 and Ler revealed the role of Molyb-

denum Transporter-1 MOT1 (Tomatsu et al. 2007; Baxter et al. 2008). Similarly, tetraploidy was 

shown to increase potassium content in the progeny of Col-0 and the autotetraploid line Wa-1 

(Chao et al. 2013). Such studies demonstrate that heritable variation in nutrient content often re-

sults from variants that are i) large effect mutations since they can be easily dissected in bi-parental 

progenies, and ii) rare because they do not give a detectable signal in GWAS. This indicates that 

plant ability to preempt resources for improved nutrition can be easily manipulated at the genetic 

level. Such genetic variants in nutrient uptake can be used to understand population maintenance 

and plant community formation in a context of nutrient depletion or plant-plant competition. In 

other words, they provide a valuable resource to understand how molecular mechanisms can con-

tribute to ecological diversification.  

For most ionomic traits, however, a contribution to plant growth rate, competitive ability or stress 

tolerance has not been established. Accumulation of sodium is one of the rare examples where the 

ecological relevance of genetic variation for mineral uptake could be documented. An allele of the 

sodium transporter AtHKT1 was shown to mediate increased Na+ concentration in A. thaliana gen-

otypes originating from two coastal habitats in Spain and Japan and was found to co-segregate 

with salt tolerance (Rus et al. 2006, Baxter et al. 2010). Using distance to sea or to a known salinity 

soil as a quantitative measure, a strong relationship between high leaf Na+ and origin in potentially 
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saline impacted soils was confirmed (Baxter et al. 2010). Recently, the mechanism by which the 

weak allele of AtHKT1 confers Na+ tolerance has been elucidated (An et al. 2017). High expression 

of AtHKT1 in stems strongly limits the allocation of Na+ to reproductive tissues and confers thus 

higher fertility specifically under salt stress (An et al. 2017).  

An ecological perspective on functional variation can also allow a more comprehensive description 

of gene function.  For example, the gene FLOWERING LOCUS C was named after its typical 

effect on flowering time: flc mutants are considerably earlier flowering in long-day controlled 

conditions (Michaels & Amasino, 1999). The dissection of natural variation present at this locus 

in A. thaliana uncovered an allelic series conferring a wide range of flowering times and responses 

to vernalization (Lempe et al., 2005; Coustham et al., 2012; Shindo et al., 2005; Li et al., 2014). 

Allelic variation at FLC orthologues is also responsible for variation in flowering time or duration 

of flowering in other crucifer species (Albani et al., 2012; Kemi et al., 2013; Baduel et al., 2016). 

Progressively, however, the specificity of FLC action on flowering time has been questioned. FLC 

variation was associated with the timing of germination (Chiang et al. 2009), raising the possibility 

that FLC acts pleiotropically on multiple phenotypes. Indeed, the genome-wide analysis of FLC 

binding sites uncovered several hundred genes, a large proportion of which were involved in re-

sponse to cold stress (Deng et al., 2011; Mateos et al., 2015; Mateos et al., 2017). Several genes 

involved in cold stress were strongly deregulated in flc mutants compared to FLC wild-type when 

plants were exposed to cold, but not at normal growth temperatures, suggesting that FLC has a 

role in modulating expression of genes conferring tolerance to cold (Mateos et al., 2017). Plei-

otropic genes such as FLC may respond to the fundamental requirement for ecological pleiotropy 

in natural environments that are marked by inevitable fluctuations. Indeed, the monitoring of fre-

quency changes in alleles associated with various reproductive and phenological traits in the field 

within a single natural A. thaliana population showed that variants with intermediate levels of 

pleiotropy contributed the largest adaptive steps (Frachon et al. 2018). This is because selective 

forces fluctuate across years and seasons and they are more likely to act consistently on variants 

controlling more than one phenotype. Natural selection at this particular site thus appeared to have 

favored variants contributing to both increased tolerance to local warming and increased com-

petivive ability (Frachon et al. 2018). Although it stands beyond the scope of this review to enu-

merate all molecular functions whose ecological role remains to be fully determined, the examples 

given by plant nutrition or the pleiotropic effects of FLC illustrate how placing molecular functions 
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within the context of ecological strategies helps identify genes and their ultimate role in natural 

conditions.  

Towards resolving ecological questions with a genetically tractable plant system 

Conversely, the diverse ecological strategies co-segregating in A. thaliana provides a unique sys-

tem to address at the genetic and molecular level those questions that are key to ecologists. We 

illustrate this idea below with a pressing question in current ecological research: the impact of 

climate change. 

In today’s ecological research, discerning the mechanisms behind ecosystem responses to climate 

change is a central theme (Reed et al., 2012; Ruppert et al., 2015). Extended periods of high tem-

perature and net declines in soil moisture are expected in many regions (IPCC, 2013). Intraspecific 

variation in functional traits associated with resource-use efficiency and stress tolerance may help 

understand the determinants of species growth and survival under climate change (Aspinwall et 

al., 2013).  

A first consequence of increased climatic unpredictability is that ecological shifts towards increas-

ingly ruderal strategies will be promoted. The study of flowering time variation in A. thaliana has 

demonstrated that species are not limited in the number of mutations that can promote accelerated 

flowering (Mendez-Vigo et al., 2011; Sanchez-Bermejo et al., 2012; Hepworth and Dean, 2015; 

Whittaker and Dean, 2017; ): species will therefore have ample opportunities to adapt to drought 

by advancing their transition to flowering (Franks et al. 2009). As a matter of fact, earlier flowering 

seems to be globally under selection (Munguía-Rosas et al., 2011). 

However, adapting the timing of major life history transitions will probably not suffice. As water 

is a paramount factor in determining both the distribution and the productivity of plant species, 

drought stress responses will be increasingly critical for species assemblages in most environments 

(Volaire, 2018). Through manipulative experiments and data fusion approaches, ecologists have 

learned what they may basically expect for ecosystem dynamics: Individual-level responses are 

followed by species reordering within communities, and finally by species losses and immigration 

(Smith et al., 2009). These observations lack a generic understanding of individual-level re-

sponses, which are typically initiated at the molecular level, and then cascade upwards to affect 

plant individuals’ physiology and growth (Chaves et al., 2003; Avolio et al., 2018). Unfortunately, 
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detecting and linking cascading stress responses across levels of biological organization is highly 

challenging (Meyer et al., 2014; Lovell et al., 2016), partly due to the use of different conceptual 

frameworks and terminologies across the different disciplines and scales (Volaire, 2018). Although 

ecologists have grown increasingly interested in linking molecular drought responses with physi-

ological data from plant individuals (Lovell et al., 2016; Hoffman & Smith, 2018), very few studies 

have up to now examined the link between different levels of biological organization in plant water 

stress responses (Avolio et al., 2018). Besides the research challenges described above, this is 

partly due to a reluctance of ecologists to include an ecological outlier such as the ruderal A. tha-

liana.  

 Ecologists nevertheless increasingly acknowledge that an understanding of gene expression is a 

critical hurdle for dissecting stress response mechanisms (Hoffman & Smith, 2018). Many studies 

focusing on drought ecology have been conducted in perennial grasses such as Andropogon ger-

ardii, Sorghastrum nutans or Panicum virgatum (Hoover et al. 2014). Agronomic studies have 

been mostly conducted on domesticated, annual grasses such as durum wheat (Triticum turgidum) 

or barley (Hordeum vulgare). In light of the comparatively high ecological diversification re-

viewed above, one can argue that the annual forb A. thaliana could efficiently complement these 

studies. Some recent, interdisciplinary attempts have exemplified how such a diverse species could 

help us understand the mechanisms and ecological trade-offs of stress responses. Combining a 

characterization of genetic variation in drought stress resistance with current and future climate 

envelopes revealed the enormous adaptive potential of A. thaliana in the face of climate change 

(Exposito-Alonso et al. 2018a, Fournier-Level et al. 2015). It also documented the genetics of this 

potential (Fournier-Level et al. 2015, Exposito-Alonso et al. 2018b, c). Among European geno-

types, it is predicted that those originating from Northern and Southern latitudes will be able to 

adapt in the new climate, due to their higher drought resistance as well as the genetic variability of 

the populations (Exposito-Alonso et al., 2018b). In fact, in A. thaliana, it is possible to perform 

experiments quantifying the impact of selection in populations faced with increasingly realistic 

scenarios of global climate change, where exposure to drought stress, average temperature, or in-

creased frequency of major disturbance set new limits on plant plasticity (Exposito-Alonso et al., 

2018c). To enhance the comparability of drought studies across model species and disciplines, 

drought regimes (e.g. frequency and intensity) should also be characterized with standard methods 

in the species (Vicca et al., 2012; Ruppert et al., 2015), and diagnostic experimental procedures 
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should be adopted to identify the ecological mechanisms promoting drought resistance (Gilbert & 

Medina, 2016).  

As an undomesticated species A. thaliana has been subject to a complex suite of environmental 

challenges over the course of its evolutionary history (see Koch, 2018 in this issue), which pro-

moted a diversification in ecological strategy.  Its amenability to genetic approaches (e.g. seed 

stocks, mapping populations, mutant collections, GWAS panels) can greatly facilitate trait analysis 

and reveal which functional trait or trait combinations are sufficient to promote shifts in ecological 

strategies. For example, dissecting how the plant combines tolerance to multiple stresses, whilst at 

the same time fine-tuning the balance between defence, growth, and productivity is of great im-

portance for interpreting the dynamics of plant communities (Bechtold et al., 2018). Knowing 

which genes contribute to unobservable traits underpinning key aspect of ecological strategy can 

also improve the ecological classification of species. Indeed, they provide measurable proxies for 

traits that are difficult to measure but make important contributions to dimenstions of the ecolog-

ical strategy that leaf traits and the CSR strategy scheme do not fully recapitulate. 

Conclusion and Outlook 

The high natural variation and the unrivaled genomic resources of Arabidopsis thaliana are great 

assets in understanding pressing questions in contemporary plant ecology but also to comprehen-

sively dissect gene function, from the molecular to the community level. This review has assem-

bled recent conceptual and methodological developments that show how this field is advancing. 

The advent of new sequencing technologies has increasingly digitalized observations both in the 

lab and in the field. To enhance our interpretation of these data, links between specific genes and 

the evolution of novel ecological preferences must be established. Evidence that variation in CSR 

positioning contributes to local adaptation in A. thaliana already suggests that variation in global 

ecological strategy is both heritable and relevant for understanding plant performance in diverse 

part of the species range (Vasseur et al. 2018b). Yet, variation in CSR positioning also depends on 

the environment in which traits are measured (Vasseur et al. 2018b). Several key challenges re-

main to be addressed such as e.g.  i) to what extent do intraspecific changes in CSR positioning 

translate in changes in competitive ability, stress-resistance or tolerance to disturbance?, ii) how 

many traits in a trait syndrome are sufficient to initiate significant ecological shifts ?, iii) what is 

the importance of plasticity in shifting ecological strategies? iv) which gene or gene activity can 
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be used as proxy to quantify ecological dimensions that are not correctly summarized in global 

strategy schemes? Answering these questions in A. thaliana will pave the way for bridging ecology 

and molecular biology in Plant Sciences.  
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Data Availability 
 

All sequence data used in Chapter 1 are available in either NCBI Short Read Archive (SRA; 

https://www.ncbi.nlm.nih.gov/sra) or in the European Nucleotide Archive (ENA; 

https://www.ebi.ac.uk/ena) with accession codes: SAMN06141173-SAMN06141198 (SRA; Mat-

tila et al. 2017), SRP144592 (SRA; Hämälä et al. 2018), PRJEB34247 (ENA; Marburger et al. 

2019), and PRJEB33206 (ENA; whole genome sequences generated for this project and the rest 

of PL sequences).All sequence data used for the analysis in Chapter 2 and Chapter 3 will be shortly 

available in ENA. Morphological data used in the analysis are either available as a Supplementary 

file, or will be available in the database dryad. 
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Computer Skills 

Knowledge of Python and R programming languages for processing and statistical analysis of genomic, 

transcriptomic, and phenotypic datasets. 

Knowledge of Linux based software and command line to analyse population genomic and transcriptomic data.  

Knowledge of Markov Chains Monte Carlo algorithms and generalized linear mixed models for partitioning 

phenotypic variance into its components.  

I have gained knowledge of using bioinformatics tools such as fastsimcoal2, BEAST2, STRUCTURE, Admixture, 

DNAsp, Arlequin, bwa, samtools.  

Intermediate knowledge of Microsoft office and Adobe Photoshop. 

Basic knowledge of topics of algorithms and data structures. 

Language Skills 

My mother language is Greek. In addition to this I have developed language skills that have been evaluated 

according to the Common European Reference for Languages: English (level C2), Spanish (level C1), German 

(level B1) and Finnish (level A1). 

Additional Skills 

Soft skills were acquired while volunteering work as event coordinator for Network of International Students in Oulu, 

NISO ry. The duties included coordination of events to help new students to integrate in the university society and 

network through promoting cultural exchange in a relaxed atmosphere. Through my experience I gained experience 

in organizing events, coordinating team work, communicating through social media and communicating with people 

with multicultural backgrounds, skills that can be applied for building relationships and manage team collaboration in 

any professional level.   

Teaching and communication skills were acquired by teaching bioinformatic skills, such as statistical analysis in R 

and python, to various bachelor students working in the de Meaux lab. During the process, I gained insight in judging 

the abilities and information gaining abilities of persons collaborating with. 

Clean driver’s license, class B. 

Personal Interests 

Personal hobbies include participating in creative writing groups, pen and paper tabletop game, as well as in the 

activities of book clubs. Joined the training of archery club based in Cologne.  

Future plans 

I am interested in exploring the evolution of small effect mutations and the potential for polygenic adaption in wild 

sexual populations. Specifically, what is the adaptive potential of small effect populations in the wild? What is the 
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impact of the selection and population parameter interaction on polygenic adaptation? Can we trace their impact on 

phenotypic differentiation between environments on a large scale?  
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