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Abstract

This thesis consists of two parts. In part I, we prove equivariant Morse inequalities via
Bismut-Lebeau’s analytic localization techniques. As an application, we obtain Morse in-
equalities on compact manifold with nonempty boundary by applying equivariant Morse
inequalities to the doubling manifold. In part II, we calculate the second coefficient of
the asymptotic expansion of the Bergman kernel of the Hodge-Dolbeault operator asso-
ciated to high powers of a Hermitian line bundle with non-degenerate curvature, using
the method of formal power series developed by Ma and Marinescu.

Keywords Equivariant Morse inequalities, Analytic localization techniques, Hodge-
Dolbeault operator, Bergman kernel, Asymptotic expansion.

Kurzzusammenfassung

Diese Arbeit besteht aus zwei Teilen. Im ersten Teil werden wir die aquivarianten
Morse-Ungleichungen mit Hilfe der analytischen Lokalisierungstechniken von Bismut-
Lebeau beweisen. Als eine Anwendung erhalten wir die Morse-Ungleichungen auf kom-
pakten Mannigfaltigkeiten mit nicht-leerem Rand, in dem wir die Morse-Ungleichungen
auf die doubling Mannigfaltigkeit anwenden.

Im zweiten Teil berechnen wir den zweiten Koeffizienten der Entwicklung des Bergman-
Kerns des Hodge-Dolbeault-Operators, der mit dem Komplex der Differentialformen mit
Werten in grossen Potenzen eines hermiteschen Geradenbiindels mit nicht-degenerierter
Kriimmung assoziiert wird. Dabei benutzen wir die Methode der formalen Potenzreihen,
die von Ma und Marinescu entwickelt wurde.

Stichworter dquivariante Morse-Ungleichungen, analytische Lokalisierungstechniken,
Hodge-Dolbeault-Operator, Bergmanscher Kern, asymptotische Entwicklung.
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1 Introduction

A function f on a smooth manifold is called Morse function if all its critical points are
isolated and non-degenerate. The weak Morse inequalities state that the Betti number
B; of a smooth closed manifold bounds up by the number of critical points of a Morse
function with the same index j. It is known that Morse functions always exist on a
smooth compact manifold. Moreover, the space of Morse functions is dense in the space
of smooth functions on smooth compact manifold.

The standard Morse inequalities were first proved by topologists using the change of
topology of the half-spaces M, = {x € M| f(z) < a} associated with a Morse function
f on a closed manifold M [34]. Thom and Smale observed the importance of the space
of trajectories for the gradient flow of f. Under certain transversality condition of these
trajectories (Morse-Smale condition) one can form a chain complex, called Thom-Smale
complex, whose chains are generated by the critical points of f and whose boundary
operator is defined by counting gradient flow lines (with sign). The cohomology of the
Thom-Smale complex is isomorphic to the singular homology of the manifold with inte-
ger coefficients. This isomorphism immediately yields the standard Morse inequalities.
Witten introduced a deformation of the de Rham complex by using a Morse function
and indicated that the Thom-Smale complex is isomorphic to a subcomplex of the de-
formed de-Rham complex, consisting of eigenspaces of small eigenvalues of the associated
deformed de-Rham operator.

In Zhang’s book [56], especially [56, Chapter 6], we find an analytic proof of Witten’s
intuitions, by using the analytic localization techniques developed by Bismut-Lebeau
([6, §8-9]).

In his influential work [52], Witten sketched analytic proofs of the degenerate Morse in-
equalities of Bott [8] for Morse functions whose critical submanifolds are non-degenerate
in the sense of Bott. Rigorous proofs were given by Bismut [4], by using heat kernel
methods, and later by Helffer and Sjostrand [22], by means of semiclassical analysis.
Braverman and Farber [12] provided another proof using the Witten deformation tech-
niques suggested by Bismut [4].

Concerning the standard Morse inequalities (i.e., for Morse functions with isolated
critical points), an analytic proof is given by Zhang [56, Chapter 5|, in the spirit of
the analytic localization techniques developed by Bismut-Lebeau [6, §8-9]. Moreover,
[56, Chapter 6] contains a complete proof of the isomorphism between the Thom-Smale
complex and the Witten instanton complex. Following the ideas in [56], we give here a
proof of degenerate Morse inequalities by similar techniques.

Let us mention the related papers [12, 13, 18]. In [12, 13], Braverman, Farber and
Silantyev used Witten deformation techniques to study the Novikov number associated to
closed differential 1-forms non-degenerate in the sense of Bott and Kirwan, respectively.



1 Introduction

In this way, they obtained Novikov-type inequalities associated to a closed differential
1-form. When the closed differential form is exact, these inequalities turn to Morse
inequalities.

In [18], Feng and Guo establish Nivokov’s type inequalities associated to vector fields
instead of closed differential forms under a natural assumption on the zero-set of the
vector field.

In this thesis, we give a proof of the equivariant Morse-Bott inequalities along the
lines of [56] (cf. [6, §8-9]). Note that our theorem does not follow from the Morse
inequalities of Braverman-Faber [12]. Moreover, it is difficult to adapt Bismut’s heat
kernel approach [4] in the equivariant situation. On the other hand, such equivariant
Morse-Bott inequalities are probably folklore among topologists. Compared to [18],
where Bismut-Lebeau’s analytic localization techniques are applied along the lines of
[56], we can choose the geometrical data near the singular points as simple as possible,
due to the equivariant Morse’s Lemma [51]. As an application, we get degenerate Morse
inequalities for manifolds with nonempty boundary by passing to the doubling manifold.
Thus, we extend the result from [54] to the most general situation.

Let us now turn to our second topic of this Thesis.

The study of the asymptotic expansion of Bergman kernels has attracted much atten-
tion recently. The existence of the asymptotic expansion of the Bergman kernel of Dirac
operator acting on high power tensors of positive line bundle over compact complex
manifold was established by Catlin [14] and Zelditch [55]. Tian [50], followed by Ruan
[39] and Lu [26], computed many terms of the asymptotic expansion on the diagonal via
Tian’s method of peak solutions.

Using Bismut-Lebeau’s analytic localization techniques, Dai, Liu and Ma [17] estab-
lished the full off diagonal asymptotic expansion of the Bergman kernel of the Spin®
Dirac operator associated to high powers of a Hermitian line bundle with positive cur-
vature in the general context of symplectic manifold. Moreover, they calculated the first
coefficient of the expansion in the case of Kahler manifolds. Later, Ma and Marinescu
[31] studied the expansion of generalized Bergman kernels and developed a method of
formal power series to computer the coefficients. By the same method, Ma and Mari-
nescu [29, Theorem 2.1] compute the first coefficient of the asymptotic expansion of the
Bergman kernel of the Spin® Dirac operator acting on high tensor powers of line bundles
with positive curvature in the case of symplectic manifolds.

Here we consider the Hodge-Dolbeault operator, which is a modified Dirac operator,
associated to a high power of a Hermitian line bundle with non-degenerate curvature
over compact complex manifold. For the non-degenerate curvature case, R. Berman and
J. Sjostrand [3] studied the asymptotic expansion for Bergman kernels for high powers
of complex line bundles. Ma and Marinescu [29] obtained the expansion [29, Theorem
1.7] of the Bergman kernel of the Spin® Dirac operator in non-degenerate curvature case
and they computed the coefficient [29, Theorem 2.1] in the case of positive curvature
assumption. Our work in this thesis is a continuation of their work [29]. We compute
the second coefficient of asymptotic expansion of the Hodge-Dolbeault operator via the
method in [29, 31]. Compared to [29, 31], the main feature here is that we do our
calculations without the positive curvature assumption.



The organization of this Thesis is as follows. We will prove the Equivariant Morse
inequalities and the degenerate Morse inequalities for manifold with boundary in Chapter
2. Chapter 3 is devoted to the calculation of the second coefficient of the asymptotic
expansion of the Bergman kernel of the Hodge-Dolbeault operator associated to high
powers of a Hermitian line bundle with non-degenerate curvature. In Appendix 4, we
give a complete proof of the known fact that, given a Morse function, there exists a metric
on M such that the corresponding gradient vector field satisfies Morse-Smale conditions
[35], [45]. Appendix 4 plays a crucial role in the construction of Thom-Smale-Witten
complex.



2 Equivariant Morse inequalities and
applications

The contents of this Chapter is as follows. In Section 2.1, we state the first main result
of this Thesis. In Section 2.2, we describe briefly the Standard Morse inequalities. In
Section 2.3, we prove the degenerate Morse inequalities along the lines of [56] (cf. [6, §8-
9]). A key point is to compare the relations between the kernel spaces of Dirac operator
on critical manifolds and the eigenspaces associated to small eigenvalues of the deformed
de-Rham operator of M following [52].

In Section 2.4, we give a proof of equivariant Morse inequalities (Theorem 2.1), mo-
tivated by the idea in [56]. For a finite group G, we first construct a G—isomorphism
between the two spaces considered in Section 2.3, i.e., the kernel of Dirac operator on
critical manifolds and the eigenspaces associated to small eigenvalues of the deformed
de-Rham operator of M. Using this G-isomorphism, we immediately get the equivariant
Morse inequalities. When G = {1}, the equivariant Morse inequalities reduce to the
degenerate Morse inequalities.

In Section 2.5, we establish the general Morse inequalities (Theorem 2.2) for manifolds
with possibly non-empty boundary. We first consider the special case that f|sy = 0,
where we divide our proof into three special cases. When N, or N_ (cf. Section 2.1)
is empty and we reduce the equivariant case by using the Z, action to the doubling
manifold of M. In the general case, we need to consider a Z, X Zs action and paste the
manifold twice along the boundary N,, N_ respectively. Combining the result in the
special case and the degenerate Morse inequalities, we get Theorem 2.2.

2.1 Main result

Let M be a smooth m-dimensional closed and connected Riemannian manifold and G
be a finite group acting on M as diffeomorphism. Let f : M — R be a smooth G-
invariant Morse-Bott function [8]. That is, the critical points of f form a union of
disjoint connected submanifolds By, Bs, - , B, and if x € B;, the Hessian of f is non-
degenerate on any subspace of T, M which intersects T, B; transversally. For 1 <i < r,
let n; be the dimension of the submanifold B; and n; be the index of the Hessian of f
on B;.

Using equivariant Morse-Bott Lemma [51], we embed each critical submanifold B; in
a tubular neighborhood (h, N;” & N;") so that

—2 12

A A (2.1.1)

foZ . 2%) =c— "= o



2.1 Main result

where ¢ denote the constant value of f(B;) and the rank of N, is n;, while that of N;"
is m —n; —n; . Let o(NN; ) denote the orientation bundle of N;. We call n; the index
of B; in M.

In the sequel, we will often omit the subscript ¢ in B;,n;,n
dimension of the critical submanifold B and n™ is the index.

Let Wy, W5 be two finite-dimensional real representations of G. Let Homg(W7q, W)
denote the set of all linear G—morphism between W7 and W5. If Eq, E5 are two finite-
dimensional real representations of G, then we denote

i.e., n denotes the

7

Ey < By (2.1.2)

in the representation ring R(G) if for any irreducible representation V' of G, the multi-
plicity of V in Ej is smaller than the multiplicity of V' in F,, equivalently,

dim Homg(V, Ey) < dim Homg(V, Ey). (2.1.3)
The first main result in the Thesis is as follows.

Theorem 2.1. Let M be a smooth m-dimensional closed and connected manifold, and
let G be a finite group acting smoothly on M. Let f : M — R be a smooth G-invariant
Morse-Bott function. Then we have for k =0,1,...,m,

SO EIM) <SS (—1)FT HIT (B o(N))) (2.1.4)

J=0 i=1 j_p-

in the sense of (2.1.2). When k = m, the equality holds,

S0 (M) =30 S ()" TH (B ol N))). (2.1.5)

7=0 =1 j=n;

Let us explain Theorem 2.1 in some details.
Set

F; = éHj‘”i(Bi, o(N;)). (2.1.6)

=1

F} is a finite-dimensional real vector space. We denote by g; the dimension of Fj,

gj =Y dim H" (B;,0(N;)). (2.1.7)
=1

Let {V*} be the irreducible representations of G, which is finite. As G-representation,
we have the following decomposition:

lo
Fj = @HomG(V“, FJ) ® Va, (218)

a=1
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and
lo
HI(M) = @ Homea(V*, H (M) @ V°. (2.1.9)
a=1
For integers 7 =0,1,--- ;m,a=1,--- 1y, set
dj = dim Homg(V*, F}), (2.1.10)
and
b = dim Homg(V*, H'(M)). (2.1.11)

Then (2.1.4) is equivalent to say for k =0,1,--- ,m,a=1,--- ,l,

k k
D (=1F <> ()M, (2.1.12)
=0 =0
and (2.1.5) is equivalent to:
(=1 =) (1) (2.1.13)
=0 =0

From the above equivariant Morse inequalities (2.1.12) and (2.1.13), we will obtain
the Morse inequalities for manifold with boundary.

Let M be an m-dimensional smooth oriented, connected manifold with nonempty
boundary OM. Let f : M — R be a smooth function such that it is a Morse-Bott
function in the interior of M. Let f|sns be restriction of f to the boundary. We assume
that the following condition holds. Let M = N, LU N_ be a disjoint union of closed
manifolds such that f(y,u) = 2u? 4+ f1(y) in a collar neighborhood of N x [0,1), while
f(y,u) = —3u*+ f_(y) in a collar neighborhood of N_ x [0,1), here fi (resp. f_)is a
Morse-Bott function on N, (resp. N_). That is, f|sn is also a Morse-Bott function.

Let Ny = N,y UN,y and N_ = N,_ U N,_ be disjoint union of closed manifolds. The
subscripts "a” and ”r” refer respectively to absolute and relative boundary condition.
Set N, = Noy UN,_, N, = N, UN,_. We assume that in the collar neighborhood
OM x[0,1), Riemannian metric is assumed to take the product form ¢ = "M g2y,
where ¢g7(®™) is a Riemannian metric on OM.

Let {B;}i_, (vesp. {S;}t,, resp. {S_;}'=,) be the critical submanifolds of f in the
interior of M (resp. of fy on N, resp. of f_ on N_).

Set

Sati = 54, N Nay Sp—j = S5—i N Ny (2.1.14)

Let o(N; ) denote the orientation bundle over B; as before. To simplify our notation,
we denote by 0(S,4 ;) (resp. o(S,—;)) the corresponding bundle on S, ; (resp. o(S,—;))
and by n,, ; (resp. n,_;) be its index in N, (resp. N,).
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Set

ty

e . .

Fa+,j = @ H7 Ma+.i (SaJr’i’ O(Sa+7i)>, Qat,j = dim FaJr,j;
i=1

t
FT—,j = @ Hj_n’j*vi (Sr—,i> O(ST_J‘)), Qr—j5 = dim F’I‘—,j‘ (2115)
i=1
Theorem 2.2. The following inequalities hold for k =0,1,--- ,m,
k k
S8, N < S (=1, (2.1.16)
§=0 §=0
where
Bj(M,N,) = dim H’(M,N,),1t; = qj + qasj + Gr—j1- (2.1.17)

The equality holds for k=m.

When f|sy = 0 and the critical points of f are isolated and non-degenerate, Theorem
2.2 reduces to [54, Theorem 1].

2.2 Standard Morse inequalities

In this Section, we briefly review some basic materials about standard Morse inequalities.
See [34] for more details.

Let M be a smooth m-dimensional closed and connected manifold. Let f be a smooth
real valued function on M. A point p € M is called a critical point of f if the induced
map fi : T,M — Ty (R) is zero, here T, M denotes the tangent space of M at the point

p. If we choose a local coordinate system (xy,--- ,z,,) in a neighborhood U of p, the
critical point p is called non-degenerate if and only if the (Hessian) matrix | ij{?f:p - (p)]

is non-singular. We say that f is a Morse function if every critical point of f is non-
degenerate.

Let f be a Morse function on M. It is clear that every non-degenerate critical point
of f is isolated. Thus, the number of critical points of f are finite. Let d?f denote
the Hessian of f. Then index of d?f is defined to be the dimension of the maximum
subspace of T,M on which d*f is negative definite. The index of d*f on T,M will be
referred to simply as the index of f at p.

The following Lemma, known as Morse Lemma [34, Lemma 2.2], is important in the
study of properties of topology of manifold via Morse functions.

Lemma 2.3. Let p be a non-degenerate critical points of f. Then there is a local
coordinate system (z1,--- ,Zy,) in a neighborhood U of p with x;(p) = 0 for all j and
such that the identity

2 2 2 2

! Iy LTm
T Y g Im 2.2.1
f=10) -3 SR (2:2.1)

holds through U, where X\ is the index of f at p.
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For j =0,1,---,m, let b; be the j-th Betti number, i.e., b; = dim H?(M,R) and ¢;
denote the number of critical points with index j.
The following inequalities are known as strong Morse inequalities [34, §5].

Theorem 2.4. For any k=0,1,--- ,m,

k

k
> (1 < YD) ey, (222)

Z(—mﬂ'bj = Z(—nm*jcj. (2.2.3)

Adding (2.2.2) for k = j and (2.2.2) for k = j — 1, one gets
bj <Cj, ]:07 ,m. (224)

The inequalities (2.2.4) are known as weak Morse inequalities.

2.3 Degenerate Morse Inequalities

In this Section, we will prove Theorem 2.1 when G is trivial.

2.3.1 Statement of main result when G is trivial

Let M be a smooth m-dimensional closed and connected Riemannian manifold and
f: M — R be a Morse-Bott function. Then Theorem 2.1 takes the following form [4,
Theorem 2.14].

Theorem 2.5. For k=0,1,--- ,m

)Fb; i (2.3.1)

'Mw

J=0 7=0

For k = m, the equality holds,
S =1y by = 3 (=) g, (2:32)
j=0 Jj=0

If all critical manifolds B; are isolated, i.e., f is a Morse function, then g; is precisely
the number of critical points with critical index 7, (2.3.1) and (2.3.2) turn to the standard
Morse inequalities (2.2.2) and (2.2.3).

Since (2.3.1) and (2.3.2) are purely topological result, we may and will choose a special
Riemannian metric on the manifold. This will greatly simply the proof.
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2.3.2 Some calculations on Euclidian space

In this subsection, we will perform some calculations on Euclidian space. The result of
this subsection will be applied to the fibres of the normal bundle N to B in M.

Let V' be an [-dimensional real vector space endowed with an Euclidean scalar product.
Let VT, V™ be two subspaces such that V =V~ @ V™" and dimV~ =n". Let ey, -+ ,¢
be an orthonormal basis on V' such that V'~ is spanned by ey, - -+ ,e,-. Let f € C*(V,R)
defined by:

ZzI*  1Z2*]
Z)=f0) — ——+ ———
1(2) = 10) - -+
where 7~ = (Z1,+ , Zn-), 2" = (Zn-11, -+, Z1),(Z~, ZT) denote the coordinate func-
tions on V' corresponding to the decomposition V =V~ @ V.
Let

(2.3.3)

l
Z =Y Zaeq (2.3.4)
a=1

be the tautological vector field on V. There is a natural Euclidean scalar product on
AV*. Let dvy(Z) be the volume form on V. Let I' be the set of the square integrable
sections of AV* over V. For o, € T, set

(a, ) = /V (0, B)avedvn (2). (2.3.5)

Let d be the usual differential operator acting on the smooth section of AV* and § be
the formal adjoint of d with respect to the Euclidean product (2.3.5).

Let C'(V) be the Clifford algebra of V| i.e., the algebra generated over R by e € V
and the communication relations ee’ + ¢'e = —2(e, ¢’) for e, e’ € V. Let c(e), c(e) be the
Clifford action on AV* defined by

cle) =e" N\ —i., ¢(e) =€ A +ie, (2.3.6)

where e*A and ¢, are the standard notation for exterior and interior multiplication and
e* denotes the dual of e by the Euclidean scalar product on V. Then AV* is a Clifford
module.

If X,Y €V, one has

c(X)e(Y) +e(YV)e(X) = =2(X,Y),
cX)elY)+eY)e(X) =2(X,Y), (2.3.7)
c(X)e(Y) +cY)e(X) = 0.

We denote by v the gradient of f with respect to the given Euclidean scalar product,
then

W(Z) ==Y Zacat > Zata. (2.3.8)



2 Equivariant Morse inequalities and applications

Let A be the standard Laplacian on V| i.e.,

A=— ;( a‘;)? (2.3.9)
Set
dr =e . et §p=e 175 Y, Dry,=dr+opr=d+§+Tc(v).
Let el,--- ! be the dual basis of ey, -+ ,¢;. Then we have the following result [52],[56,

Proposition 4.9].

Proposition 2.6. The kernel of D%, is one dimension and is spanned by

U

7|22

B=e "z e Ao ne . (2.3.10)

Moreover, all nonzero eigenvalues of D% 70 are = 2T

Proof. For e € V, let V. be the differential operator along the vector e.
It is easy to calculate the square of Dy,

l
Di,=A+TZ°+ T clea)d(Ve,v)

a=1

= (A+T?Z)* =TI —l—TZl—cea dleq) +T Z 1+ cleq)clen)]
a=n—+1
= (A +T?Z]> = Tl) + 27( Zzee A+ Z e Nig,). (2.3.11)
a=n—"+1

The operator
Lyr=A+TZ)?-Ti (2.3.12)
is the harmonic oscillator operator on V. By [19, Theorem 1.5.1], [30, Appendix E],

we know that Lr is nonnegative elliptic operator with the kernel of dimension one and
1Z|?

generated by e Moreover, the nonzero eigenvalues of L are all greater than 27
It is also easy to verify that the linear operator

ten € N+ e* N, (2.3.13)
Z >

a=n—"+1

is nonnegative with the kernel being one dimensional and generated by
et A nET . (2.3.14)

The proof of Proposition 2.6 is complete. O

10
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2.3.3 Local analysis near critical manifolds

In this subsection, we give the geometric setting for this Section.

By the generalized Morse Lemma [23], we know that B possesses a tubular neighbor-
hood (h, N) such that:
(1) N is a vector bundle over B, which is endowed with the scalar product g". Moreover
N, which has rank m — n, splits into two orthogonal subbundles N = N~ @ N, where
the rank of N~ is n~ and the rank of Nt is n*.
(2) h embeds N into M. Moreover there is an open neighborhood B of B in N such
that if Z = (Z~,Z%) € B, then

2 L2
iy o 12T vors
where ¢ denotes the constant values f(B).
In the sequel, we will identify N and h(N). Let 7 be the projection N — B.
Let ¢”2 be a Riemannian metric on 7B and V'? be the Levi-Civita connection
on TB associated to ¢g”?. As Euclidean bundles, (N—,¢"") (resp. (N*,¢g"")) can
be endowed with Euclidean connections VY (resp. V¥*). We then have a natural

Euclidean connection V¥ on N, i.e.,
vV =v¥ g vV (2.3.16)

The Euclidean connection V¥ on N induces a splitting TN = TH N&TV N of the tangent
space of the total space N [2, Proposition 1.20], where T# N is the horizontal part of TN
with respect to the Euclidean connection V¥ and TV N is isomorphic to m*N. If X € T'B,
let X denote the horizontal lift of X in T# N such that X ¢ THN, 7, X" = X.

Ify € N, then 7, identifies T, N with T,y B. Moreover, T’ N and N can be naturally
identified. In this way, TyH N and TJ/ N are both endowed with scalar product induced
by ¢"B and ¢V, i.e., we get a metric ¢"V = 7*¢"P®gN on TN = THN@GTY N. Here we
still denote ¢V as the induced metric on TV N. Let VIV be the Levi-Civita connection
on N associated to the Riemannian metric g%,

Let T'N|p be the restriction of the tangent bundle T'N to B. Recall that N is identified
with the bundle orthogonal to TB in TN|g, TN|g = TB & N. Let V'NI5 be the
restriction of VIV to TN|p.

Lemma 2.7. The following identity holds:
VINE — gTB g gV, (2.3.17)

Proof. Let PTB (resp. PY) be the orthogonal projection from T'N|g to TB (resp. N).
We need to prove that B is totally geodesic submanifold of N with respect to the metric
g™V and that

VB = pTByTNIs pTB N — pNyTNls pN, (2.3.18)

11



2 Equivariant Morse inequalities and applications

The first equality in (2.3.18) is easily proved by the uniqueness of the Levi-Civita con-
nection on B.

Fix yo € B. Let e1(yo),- -+ ,€i(yo) be an orthonormal basis of N,,. Let y denote the
tautological vector field in T,,B. Let Tt];,] be the parallel transport of section of N along
the curve t — ty,t € [0, 1] with respect to the connection V¥. Set

ea(y) =75 (€a(t0))- (2.3.19)

This gives a trivialization of N over a neighborhood U of yo in B. Let w = (wqg), Wap €
QY(U) be the connection one-form of N with respect to the trivialization:

l
Nly ~U xR, Z=>" Zoeo — (7(2), 21, , Z), (2.3.20)
a=1
and
l
VV=dtw wy()Z= Y wyas(-)eaZs. (2.3.21)
a,f=1

Then wy s is antisymmetric over o and 5. Moreover, as vector space, Ny is naturally
identified to its tangent space, thus

ea(y) = 82a (y). (2.3.22)

Let RN the curvature operator of Euclidean connection V¥, i.e., RN = (V)2 From
[2, Proposition 1.18],

wy() = SN (y. )+ OllyP). (23.23)

In particular, wg o5 = 0.
The tautological vector field y on T}, B may also be regarded as a point of U. Some-

times we also use y to denote the point y in U.
Fory € U, Z € Ny, we have the decomposition:

TiyzN = T(I;,Z)N + T(Z,Z)N, (2.3.24)

where TV N is the vertical bundle over B and the horizontal part T N may be expressed
as [2, Proposition 1.20]:

TN = {(X,~w(X)Z)|X € T,B}. (2.3.25)
By definition, the metric 7*¢?® on TH N is given by:

(7 9™) .2y (W1, Wa) = g B (m. Wi, mWa). (2.3.26)

12



2.3 Degenerate Morse Inequalities

By definition of 77 N, the identification between TN and T#N @ TV N is given by

TN ~TU xR* - TEN®TYN

Y, W) = (Y —w(Y)Z,W +w(Y)Z). (2.3.27)

Then g™ can be written out explicitly.

g?N ((}/lvwl)v (1/27W2))
9 (V1 —w(N) Z,Ys —w(Ya) Z) + gy (W + w(Y1) Z, Wa + w(Y2) Z)

= (1"g
=g, 2 (Y1, Ya) + gy W1+ w(V1) Z, Wa + w(Y2) Z). (2.3.28)

Let f1(0),---, fn(0) be an orthonormal basis of T}, B. We denote by y; the coordinate
system on T, B = R" such that y = >"_, ;f;(0) holds. We denote by 75 the parallel
transport of f;(yo) along the curve t — ty, t € [0, 1] with respect to the Levi-Civita
connection VIB. Set

fily) =72 (fi(wo))-
Then f;(y) is a local orthonormal frame of B and

(VI2),, = (2.3.29)

Then {f;}}_, and {e,},—; form an orthonormal frame of TN|.
To prove that B is totally geodesic in N with respect to the metric g7V
show

, it suffice to

0 0
TN
_— = 2.3.
<v8yl oy 07, (2.3.30)
By the formula [2, (1.18)] of the Levi-Civita connection VIV, we have
o 0 o ,0 0 0 o 0 o ,0 0
N 2L 9y, 2 9y 22 9N (9331
AV e o 07, = op'ag 07, T oy 07y By T 07 oy 3y (233D
It is clear that
(— 0 > = (fj. e > (2.3.32)
dy;’ 0Z, 7 Ca
Therefore
g 0 0 o 0
TN _ v 9
2<vayz dy;’ 8Z,/w 97, 8yi’8yj>y°
9 o DD 9 9
=0[g <3y¢’3yj>+ (3y) w<9%> >]
= 0. (2.3.33)

13



2 Equivariant Morse inequalities and applications

The last equation in (2.3.33) is due to the fact that the term gé\;<w(a%)Z, w(a%j)Z> is a

quadratic form of Z.
The second formula of (2.3.18) follows from

<V7@%€a’ 65>y0 - <V]av%iea’eﬁ>yo'

We prove (2.3.34) as follows.
The right hand side of (2.3.34) is

<v%€a7 eﬁ)?}o = wyoﬁa(fj) = 0.

For the left side of (2.3.34), we have

2<VCJZ‘;N60“65> :<[fj’ea]’6ﬁ> - <[€m€ﬁ]a f]> + <[€/3, fj]vea>
+ fi(eares) +eales, f5) — es(fi, €a)-

At the point gy, we find that
fj<ea, €5>y0 =0.
From (2.3.28), we have
(€8, fi) .z = (a0 () Z),.

Then

ea(es; fi),, = ealea, w(fi)Z), = wy pa(fi) =0.

Similarly,

€ﬁ<€a,fj>y0 =0.

It is clear that

<[€a7 65]7 fj>yo =0.

From (2.3.22), we find that

[fj7€a]y =0, [fj;eﬁ]y = 0.

Thus the left side of (2.3.34) equals to 0. The proof of Lemma 2.7 is complete.
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2.3 Degenerate Morse Inequalities

2.3.4 Proof of Theorem 2.5

Let ¢"™ be a Riemannian metric on the manifold M which coincides with ¢’™ in a
neighborhood of B via the embedding h. (Using partition of unity argument, it is
always possible.)

Let o(T'M) be the orientation line bundle on M and let dvy, be the density (or
Riemannian volume form) on M. Note that we do not assume that M is oriented; thus
dvyr € CO(M,A™(T*M) ® o(T'M)) [2, Page 29|, [10, Page 88]. Let Q(M) be the set of
smooth sections of A(T*M) on M. For f,g € Q(M), set

(f,9) = /M<f, g)(x)dvpr (). (2.3.42)

Let DM be the classic Dirac operator on M, i.e.,
DM = d +, (2.3.43)

where d the exterior differential operator and ¢ is the adjoint of d with respect to the
metric (2.3.42). Let V f be the gradient vector field of f with respect to the Riemannian
metric g™ on M. Set

dT:e_de-eTf, (5T:eTf5-e_Tf,
v N (2.3.44)
Dy =dry + 0ry = DV +Te(Vf).

Following the argument after [56, Proposition 5.5], one easily gets degenerate Morse
inequalities (2.3.1) and (2.3.2) if the following Proposition holds.

Proposition 2.8. There exist Cy > 0,1y > 0 such that when T > Ty, the number of
eigenvalues in [0, Cy) of Di|qir equals to g;.

Proof of Theorem 2.5. Let Fgoj be the g;-dimensional vector space generated by the
eigenspaces of D%|Qj( m) associated to the eigenvalues lying in [0, Cy). Since dpDrp =

Drdy, dr(F5°) € Fgo,,.

Then we have the following complex:
(Fo,dr) : 0 — F% — FFY — -+ 5 FF0 — 0.

By Hodge Theorem, the j-th cohomology group of the above complex is isomorphic
to Ker (D%|Qj( M)), which is again by Hodge Theorem isomorphic to the j-th cohomol-
ogy group of the complex (Q(M),dr). Then (2.3.1) and (2.3.2) follows from standard
algebraic techniques ([30, Lemma 3.2.12]). This completes the proof of Theorem 2.5. [

The rest of this Section is left to prove Proposition 2.8.
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2 Equivariant Morse inequalities and applications

2.3.5 Local expansion of Dy near the critical submanifold B

In this subsection, we study the local behavior of the twisted operator Dy near the
sub-manifold B.

We first introduce a coordinate system on M near B. If y € B,Z € N, let y, =
exp,(tZ),t € R be the geodesic in M with y, = y,%h:o = Z. For e > 0, set B, =
{(y.Z) € N;y € B,|Z| < £}. Here and after, |Z| always stands for |Z],x. Since B and
M are compact, there exists g9 > 0 such that for 0 < & < &g, the map (y,7) €
N — exp,Z € M is a diffeomorphism from B, onto a tubular neighborhood . of B in
M. From now on, we identify B. with U, and use the notation = = (y, Z) instead of
x = exp,Z. Finally, we identify y € B with (y,0) € N.

Take o > 0. Let E (resp. E,) be the set of smooth sections of 7*(A(7*M)|g) on the
total space of N (resp. of 7*(A(T*M)|p) over B,).

The symbols dvg and dvy are understood in the same manner as dvy,. Let fi, -, fn
(resp. e1,---,e) be the orthonormal basis of T, B (resp. N,) as in Lemma 2.7. From
(2.3.28), we know that ey, --- , ¢, are also orthonormal basis at the points (y, Z) on the
total space N. It is clear that

doy(y, Z) = dvp(y)don,(Z). (2.3.45)

For f,g € E have compact support, set

(f.g) = / ( /N (. 9) (> Z)dvy, (Z))dvs(y). (2.3.46)

Y

If f € E has compact support in B,,, we will identify f with an element of E which
has compact support in U.,. This identification is unitary with respect to the Euclidean
product (2.3.42) and (2.3.46).

Let VI™ be the Levi-Civita connection on 7M. Then there exists a natural connection
on A(T*M) on A(T*M) induced by V™ which we denote by VAT™M) et VAT M)z
be the restriction of VA" M) to A(T*M)|z. The connection VAT Mz on A(T*M)|p can
be lift to a connection on the bundle 7*(A(T*M)|g), which we denote by 7*(VAT " Mlz),

Definition 2.9. Let D¥ D" be the operators acting on E:

n

D =% e(f) (VAT
j=1

l
DV =" cleq)(w VAT MIE),

a=1

(2.3.47)

ot

We now prove that D is self-adjoint with respect to metric (2.3.46). For s;,sy €
C®°(N,n*(AT*M|p)) and one of them has compact support, then
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2.3 Degenerate Morse Inequalities

(D51, 55) :2 [, L (e ) s o)y, 2o, (Ddenty
=3 [ [ (T g 0,00 Do, (st
/ / ((rwaTa01e) 1)1, 52 ) (s Z)dow, (Z)dos ()
/ S [ etsiss on) = (ethon, (2794 o), (Z) ()

—Z// 7T *y (T M) ‘B fj 81, 82>(y, Z)dvn,(Z)dvg(y)

=(s1,D"sy) + I + 11,

(2.3.48)
where
I=- Z// f; 51, 52 va( )dvs(y),
and
f— . . — TB .
11 = ;/B/Ny [f]<c(f])sl,32> <C<ij fj)sl,32>]vay(Z)de(y).
From (2.3.21) and integration by parts, we find that
I =— Z Z // Zowy o fj) 8Z (<c fi)s1, 32>>va Ydvgp(y
7=1 o,f=1
(2.3.49)
_ZZ// wyﬁﬁ fj <C fj S1, 82>d’UN dUB
j=1 f=1
=0.
For the term I1, we set
Y )(y) = / <c(Y)31,52>(y, Z)dvy,(Z), for Y € C*(B,TB). (2.3.50)
Ny
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2 Equivariant Morse inequalities and applications

Then ¥ € C*(B,T*B) and

n

Te(V) =) [fj (9(£)) - 19(VTJ-ij)]

i=1

n (2.3.51)
:Z/N [fj<c<fj)31752> - <C(V};ij)81, 82>]dUNy(Z)-
j=1 7Ny
From [2, Proposition 2.7], we deduce that
Il = / Tr(VY)(y)dvp(y) = 0. (2.3.52)
B

Combining (2.3.48), (2.3.49) and (2.3.52), one immediately gets
<DH81, 52> = <S17 DH82>.

Similarly DV is also self-adjoint. Moreover, D is formally self-adjoint along the fibres
of N, i.e., for s1,s9 € E with compact supports,

/N(DN31,32>(y,Z)vay(Z):/ (s1, DN s2)(y, Z)dvw, (Z). (2.3.53)

Ny

The proof of (2.3.53) is just by integration by parts.

Using identification (A(T*N))|y,z) with (AT*N), by transport parallel along the
geodesic t — (y,tZ),t € [0,1] with respect to the connection VAN we can now
consider the connection VAT™M) as a Euclidean connection on 7*(A(T*M)|z) over B..

For T" > 1, let )r be a first order differential operator acting on E.,. Then Q)7 can
be written in the form

n l
Qr = a;(T.y, Z)m* (VATMIE) iy % bo(Tyy, Z)m (VAT 4 o(Ty, Z),
where a;(T,y,Z,),b0(T.,y, Z),c(T,y, Z) are endomorphisms of 7*(A(T*M)|p) which de-
pend smoothly on (y, Z).
Assume there exist constants C' > 0 such that for any 7" > 1, (y, Z) € B,,, then

|a;(T,y, Z)| < C|Z),1 < j < m;
ba(T.y, Z)| < C1Z]% 1 < a < (2.3.54)
(T, y, 2)| < C(|1Z] + T|2]*).
We will then use the notation
Qr = O(|Z|2P0N + | Z]20" + | Z| + T|Z|"). (2.3.55)

In (2.3.55), 0% and OV represent horizontal and vertical differential operators respec-
tively.
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2.3 Degenerate Morse Inequalities

Recall that the vector field v is defined as in (2.3.8). Set
DY = DY +Te(v). (2.3.56)

For the twisted operator Dy, we have the following Theorem which is an analogue of
[18, Lemma 2.3] , [6, Theorem 8.18].

Theorem 2.10. As T — +o00, we have
Dy = DY + DH + O(|1z0N + 220" + |z| + T|Z|"). (2.3.57)

Proof. The proof is easier than those of [18, Lemma 2.3|, [6, Theorem 8.18] because B
is now totally geodesic submanifold of the total manifold N.

We now use freely the notations in Section 2.4 as the local geometry near B is described
in detail therein.

For y € U, we denote by Z the tautological vector field in Ny, i.e., Z = 22:1 AN
If (y,Z2) € B.,X € T,N, let X be the parallel transport of X with respect to the
connection VI along the geodesic t — (y,tZ), t € [0,1], i.e

(VIMX)(y, Z) = 0. (2.3.58)
Since
(VM o(X)] = «(VEMX) =0, (2.3.59)
Then
(X)) (y, Z) = c(X)(y). (2.3.60)

By (2.3.58), we find that é,(y, Z) = e,(y). From (2.3.43) and (2.3.60), we have

n l

— Zc(fj) M) e VM. (2.3.61)
j=1 a=1
For 1 < j < n, set
~ n l l l
fily, Z) = fily) + W Zafo(y) + D> (W) Zaes(y) + O(Z), (2.3.62)
k=1 a=1 B=1 a=1

From (2.3.58), we have

O—VTij—i—Zchj VZ fk—i—ZZcB] ) Zaes + O Z]). (2.3.63)

k=1 a=1 B=1 a=1

From (2.3.41), We also find that

l l
VM =32V =3 2,V e, (2.3.64)
a=1 a=1

19



2 Equivariant Morse inequalities and applications

By Lemma 2.7, at the point of vy,
VM, = Ve,
Then (2.3.63) becomes

l n l

l l
0=> Zua(Viea)y, + W) Zafr + DY (W) Zaes + O(|1Z)).

a=1 k=1 a=1 f=1 a=1
As Vgea has no component of fi, from (2.3.65) it is clear that
cni(y) =0, for 1<k <
and
c3;(y) = —(Vgea,eg)y, for 1</ <L

Thus,

l l

fj(ya Z) = fj - ZZ(v%eaa e,@)yZaeﬂ + O(’Z‘z)

B=1 a=1
By [2, Proposition 1.20], we know that

fj(?/a Z)=f;— Z(vgea)yza + O(’Z|2) = fjH(ya Z) + O(’Z‘z)'

a=1

Set
r = vTM _ W*VTMlB.

From (2.3.61), (2.3.69) and (2.3.70), we get

DM =3 e[ VM) 4 3 e([IT(F) + Y elea)T(ea)

+ ) e (@ VB, 4+ O(|1 220" + | Z70).

a=1

From (2.3.17), we deduce that
T, =0.
Thus from (2.3.71) and (2.3.72), we find

DM = D + DN + O(1Z)20" + | Z|?0N + | Z)).
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2.3 Degenerate Morse Inequalities

Set
vy, 2) = (i)W, 2), valy, Z) = (eaf)(y, 2).

As {ea, f]} is an orthonormal frame of the total space IV, then

n

Viw.2)=> vy, 2)f; +Zva Y, Z)ea,
j=1
Lemma 2.11. For1 < j < n,
vily. 2) = O(|Z]").
Proof of Lemma 2.11. By (2.3.15) and (2.3.68),

vi(y, Z) = (fif), 2) = f; [f@) - @ + @}
= [ -] (- R 20 oz

1z— _1Z*P

:_Zz%ﬁaf])eg[ T+ | ouzp).

a,f=1
Thus

I n~

vy, Z Zzwyﬁa fi)ZaZg — Z Z wy sa(f7)Z, Zﬂ+0(|Z| ).

a=1 g=1 a=1 B=n—+1

(2.3.74)

(2.3.75)

(2.3.76)

(2.3.77)

(2.3.78)

It is clear that w, g, is anti-symmetric in o and . From (2.3.16), we know that w, g, = 0,

ifl<a<<n ,n +1< <Ll Then

[
Vi, Z) = > wysalf)ZaZs— Y wypalf))ZaZs+O(|2Z]") =

a,f=1 a,B=n"+1

Now we continue the proof of Theorem 2.10.
From (2.3.15),

(v, Z) = —Z, if 1<a<<n,
Vol 2) =Y 7z if n-+1<a<l

Combining (2.3.8), (2.3.76) and (2.3.80), we get

n- l
VIWZ) == Zatat Y. Zaea+O(Z")=v+0(Z]).

a=1 a=n—+1

The proof of the Theorem 2.10 is complete.

o( 2.

(2.3.79)
m

(2.3.80)

(2.3.81)
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2 Equivariant Morse inequalities and applications

Note that DY is actually an elliptic operator acting fibrewise on 7*A(N*).

Theorem 2.12. For any y € B, the restriction of (Dy)* on C*(N,, A(N}})) is nonneg-
ative with the kernel generated by

T|z|?

B,=e "z 0, (2.3.82)

where 0, is the volume form of N, . Moreover, all the nonzero eigenvalues of (DX)? are
> 2T.

Proof. Let AN be the positive Laplacian along the fibres of N.
From (2.3.47) and (2.3.56), it is clear that on C** (N, 7*(A(T*M)|s)),

l l
(DY) == (@VIMEY L TP + T clea)e(nVEMB0). (2.3.83)

a=1 a=1

From (2.3.80), we obtain

(DY) = AN + T Z) — TZ cleq)eleq) + T Z 2)e(eq). (2.3.84)

a=n—"+1

For Z € N,, (7*(A(T*M)|p))(y, Z) = n*(A(T;B)) ® AN;. One gets the results of
Theorem 2.12 from Proposition 2.6. O

2.3.6 Some estimates on the Dy ;'s as T" — 400

In this subsection, we will give a decomposition of Dt as Z?zl Dr ; and establish some
estimates about Dr; as T" — +oo by using Bismut-Lebeau analytic localization tech-
niques [6].

Recall that o(N ™) is the orientation bundle of the bundle N~. We denote by det ((N~)*)
the determinant line bundle of (N7)*. The connection V¥~ on N~ induces naturally
an Euclidean connection V4*((V7)") on det(N*)*. Let @ : det((N7)*) — o(N~) denote
the canonical isomorphism over B. Let V°W7) be the Euclidean connection on o(N~)
induced by V(7)) via the canonical isomorphism ® : det((N~)*) — o(N~). Since
there exists canonical metric on o(N~) (which is independent of the trivialization of the
bundle o(N7)), we could find canonical Euclidean connection on o(N~), which is just
the exterior differential operator d. However, given the canonical metric on o(/N ™), there
exists one and only one Euclidean connection on o(N7). If V! V2 are two Euclidean on
o(N7), set w = V' — V2, then w € C*(B,T*B ® End(o(N™))). Since V!, V? preserve
the metric, w is antisymmetric. Thus w equals to 0. Therefore we have VoV = d.

For any pu > 0, let E* (resp. E¥, resp. F") be the set of sections of A(T*M) on M
(resp. of m*A(T*M)|p on the total space N, resp. of A(T*B) ® o(N~) on B) which lies
in the p-th Sobolev spaces. Let ‘ g (T€sp. ! |Ew resp. ! |F“> be the Sobolev norm on
E* (resp. E¥, resp. F*). We will always assume that the norm |- |go (resp. |- |g,) is the

oo
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2.3 Degenerate Morse Inequalities

norm associated with the Euclidean product (2.3.42) (resp (2.3.46)). The norm ’ : ‘FO
defined on the section of A(T*B)®o(N ) is associated with a Euclidean product similar
0 (2.3.42).

Take € € (0, 2]. Let ¢ be a smooth function on R with values in [0, 1] such that

1 ifa<
— ~ 27
ola) = { 0 ifa> 1. (2.3.85)
Iftye B,Z¢c Ny, set
7
o(2)= o2 (2.3.86)
For T'> 0,y € B, set
ar(y) = / exp(—T|Z[)0%(Z)duw, (Z). (2.3.87)
Ny
Clearly, for 1 < i < r,ap(y) takes a constant value on B;. We now write ar instead of
ar(y). Since for ]Z| < ¢€/2, p(Z) =1, there exist ¢ > 0,C > 0 such that for T' > 1,
C
c (2.3.88)

/2 S ar S TU2"
Here [ = m — n denotes the rank of N.

Definition 2.13. For p > 0,7 > 0, define Jp : F* — E* by: for s € F¥,

1 T|Z|?
il 2) = <=plZyexpl 7

)s(y) NG, € EF, (2.3.89)

where the smooth section 6 of A" (N~) ® o(/N™) is given by

0, =u' N Au" @O A~ Au")

for any orthonormal basis {u/}_, of N .
It is easy to see that Jp is an isometry from F” onto its images. In fact for s € F°,

HJTSHQEO:// <JTS,JT3>(y,Z)va(y,Z)
- |+ /N 2)esp(~T17) (0, 0,) (3(0) ) o, () 1)
= [ () ser) = [ pZexp(-T12F )y, (2)

/ <S dvy( )

= ||3Hpo‘ (2.3.90)
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2 Equivariant Morse inequalities and applications

For i > 0,7 > 0, let E/. be the image of F* in E* by Jr. Let E%L be the orthogonal
space to ES. in E| let pr, p7 be the orthogonal projection operators from E° on EY., E%l
respectively.

Recall that on B., ~ U.,, A(T*M) is identified with 7*(AT*M)|p. Therefore if s € F#,
we can also consider Jrs as an element of E¥. Let Ef be the image of F* in E* by Jr.
Particularly ES. may be identified with EJ.. Moreover, by (2.3.45) the identification is
isometric. Let E%’L be the orthogonal space to ES. in E°. Then E° splits orthogonally
into

E’ = ES. @ E)*. (2.3.91)

Let Py, D+ be the orthogonal projection operators from E° on E(}, E%L respectively. We
denote by Supp(s) the support of any section s. Since E7. may be identified isometrically
with EY., we find that

Prs = prs, for any s € E” and Supp(s) C B.,. (2.3.92)
In particular,
prJrs = prJps, for any s € FY. (2.3.93)
According to the decomposition (2.3.91) we set:
Dry = prDrpr,  Dra = brDrbr,
Dr3 =Py Drbr,  Dra = DrDrpy. (2.3.94)
Then
Dy = Dry+ Dro+ Drs+ Drpy. (2.3.95)

We will now establish various estimates on the Dy ;’s as T" — 4-00.
We defined a twisted de-Rham operator

DP = ic(fj)v]tBj :C*°(B,A(T*"B) ® o(N™)) — C*(B, (AT*B) ® o(N 7)),

j=1

where VB = VB 1 +1® VoY), Similar to [6, Theorem9.8] and [18, Lemma 3.1], we
have the following result.

Proposition 2.14. As T — +oo, the following formula holds
=)
VT~

where O(—=) is a first order differential operator with smooth coefficients dominated by

VT
CIVT.

JtDryJr = DB 4 O( (2.3.96)
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2.3 Degenerate Morse Inequalities

Proof. We can proceed as in [6, Theorem 9.8|, [18, Lemma 3.1] and the proof is easier
here due to the fact that the local formula (2.3.81) of gradient of f is simple.
By (2.3.57),

Dy = prDrpy = pp(D" + DY + Rr)py, (2.3.97)
where
Ry = O(|Z]P0" + | Z)20N + |Z| + T|Z|*). (2.3.98)
From (2.3.92), (2.3.93) and (2.3.97), we find that
JtDryJr = Jotpr(DR + DY + Rp)prJr. (2.3.99)

We may write out the projection pr explicitly.
From (2.3.89), one verifies directly that for s € E°,

/<s (y, Z"), y>p Yexp(—

1 T]Z| VAR

or () p(Z)exp(—

prs(y, Z) = )dun, (Z') N6,
(2.3.100)

For s € EY, pys is well defined and has the same expression as the above formula for

pr.
From (2.3.15), (2.3.16) and [2, Proposition 1.20], we claim that

(mVY)mZ =0, V0, =0. (2.3.101)

In fact from (2.3.25),

l
(1) Z =3 | (1 Za)ea + Za(m" V™) e
a=1

:—Z’wyga f]ZGg—i-ZZ *Vijea

a,f=1
! (2.3.102)
- Z wy,ﬁv(fj)ZaZv(W*vN)e@e ]
a,B,y=1
l
=y { — Wy ga(fj)Zaes + wy,ﬂa(fj)Zaeﬁ}
a,f=1
From (2.3.17) and (2.3.102), we find that
(7 V) u] 22 = 2<(7r VN2, Z> =0, v}V g =, (2.3.103)
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2 Equivariant Morse inequalities and applications

Since o(N~) ® o(N~) is canonically a trivial real line bundle with trivial metric, given
s e F!,

- Tz

D Jrs(y, 2) =3 e(f3)(w VM1 g |

J

= \/ QT 2

= >[I (oo ) )st) 16,

Tz
2

T|2Z|2)7T* (VﬁS(y)) A 6yi|

+ p(Z)exp(— )s(y) A (VO g,

= ;cm)pmexp(—ﬂf D yn (259)) A0,
=JrD®s(y). (2.3.104)

By Theorem 2.12, we get for s € F°,

r|z)
>

)s(y) A c(Vp(2))6,, (2.3.105)

DY grs ==t 1 DY [ 2pen(-

—1)lsl 2
:(\/% exp(—T|QZ|

where Vp(Z) is calculated in the fiber direction, i.e.,

l

Vp(Z) = (eap)(Z)ea. (2.3.106)

a=1

From (2.3.100), (2.3.105) and (2.3.106), we get that
prDYprJrs = 0. (2.3.107)
For the term containing Ry, we establish that for 7> 1,7 € R, s € E?,
e 215l < 5 sl (23108
and that for s € F!,
[ 78]l < (sl + VTl ). (2.3.109)

From (2.3.98) and (2.3.108), we have as T' — oo,

J pr Ryprdr = O(—=). (2.3.110)

1
VT
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2.3 Degenerate Morse Inequalities

Now we prove (2.3.108) and (2.3.109). From (2.3.100),

T\Z\z)
2

(prlZ|"s)(y, Z) = p(Z)exp(—

1
ar(y)
/Ny 127 {(s0.2).0,)p(Z)esp(~ 2 yavn, (2) 6,

Thus
2 1
((pr125) (5, 2)| <——0*(Z)exp(~T|2P)
ar(y)
T\Z'| 2
| [ 12750, 290(2)en(- T2 o, (2)
Ny
1
<—— 0" (Z)exp(=T|Z[")
ar(y)
12202 )exp(~T 2/ / s(y. 2)dvw, (2).
N?!

(2.3.111)
After changing variables W = v/T'Z’, we obtain that

(el 2175) 0. 20| < (Dol T12P)
7 [ W Pesp W), ) [ sty 2P, ()
<7%04T1(y)p (Z)exp(—T|Z| )/N s(y, Z')Pdon, (Z").  (2.3.112)

Then
2
loetzrsllzy = [ [ el 20 dus, (2)i0n(y)
B J Ny

<t [ il | A @esTizPn, 2

ar(y) Y Ny

C !/ !/
[ ] bt 2P, (2dunto)
BJN,

s(y, 2') v, (2')] dvs(y)

2

=77 15l go- (2.3.113)

Hence, (2.3.108) holds. The proof of (2.3.109) is similar. From (2.3.104), (2.3.107) and
(2.3.110), we finish the proof of Proposition 2.14. ]

Remark 2.15. For s € E' with Supp(s) C Bs
that for T' > 1,

we deduce from (2.3.98) and (2.3.108)

€07’

C
|prRrs|| g < ﬁHsHEl. (2.3.114)
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2 Equivariant Morse inequalities and applications
Set
AL 0,1
Ef- =EfNEZ.

Lemma 2.16. There exists Ty > 0,C; > 0,Cy > 0 such that for any T > Ty, s €

1,1
E; 7,81 € Er., we have

C
D1l <71HsnEl,
[Drssillpo <l o (2:3.115)

1Dz.45]| g0 ZCo(llsllr + VT3] go)-

Proof. Let v be a smooth function on R with values in [0, 1] such that
1 ifa<?
- NEE
v(a) { 0 ifa>2.
Set

w(2) =~(Z

- ). (2.3.116)

We will consider ¢ as a function defined on M, which vanishes outside Us<, .

4
Take s € El". Set

s =1s.

Since £ < 22, 1 equals to 1 on the support of p. Since pps = 0, we get from (2.3.100)

prs =0, 1.e., 5 € E . Again by (2.3.100) we have p;Drs = ppDrs as Drs = Drs on
the support of p. T hat is

DT,ZS = DT’QE.

For s € E;’L,

cl>|

Dr3(y, Z) = pr(D™ + DY + Ry)3(y, Z). (2.3.117)
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2.3 Degenerate Morse Inequalities

For the term with DY, from (2.3.53), (2.3.100) and Theorem 2.12 we find that

(prD15) (. 2) ZaTl(y)p(Z)eXP( - %)
/N <D¥§(y, Z"), p(Z")exp( — T|§/| )9y>d’UNy(Z/) A0,
712
Dol =750)
/N <§(y, Z"), DY [p(Z’)exp(—T’2/| )Qy}>vay(Z') N
=y D= 1)
VAR

/N<§(y,Z’),c(Vp(Z’))eXp(— > )9y>vay(Z’)A9y. (2.3.118)

From (2.3.118), we get

iy Qe ~T1ZP) - [ [5t.2) o, (2)
‘c(Vp(Z’))exp( — T‘2Z/’)6’y

2
duy, (Z"). (2.3.119)

Ny

As Vp(Z') =0 for | Z'| < § ,we get

2

’ C C
Ipr D5l < e 5ln < il < sl 23120
Next we claim for any s’ € E!,
prD"s' (y, Z) = D" prs'(y, Z). (2.3.121)
In fact from (2.3.100) and (2.3.101), we find that
H / __nNnH - T|Z|2
D prs (y7 Z) =D [aT(y>p(Z>eXp( 92 )
712
/ <s'(y, Z’),9y>p(Z')eXp( _ Tz )dun, (Z") A Hy}
Ny
1 T|Z] &
_CYT<y>p(Z)exp(_ 9 );C<f])
712
(W*VA(T*M)IB)fA [/ <8,(y, Z’),p(Z’)eXp( _ T|§| )9y>dUNy(Z,)} A 0y~
il)n,
(2.3.122)
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2 Equivariant Morse inequalities and applications

On the other hand, from (2.3.100) and (2.3.101),

" 1 T2
(prD"'5) (5. 2) = s p(Z)exp( - 2
/ DH / y’ ) ,O(Z’)exp(—T‘Z/| )0y>dUNy(Z/)/\0y
ZQT(y)p(Z)exp( T|2Z| )
TlZ/|2

/N DH< "(y, Z'), p(Zexp(— )9y>vay(Z')/\0y. (2.3.123)

By integration by parts and antisymmetry of w, .z as in (2.3.49), we find that for
j = 17 N,

p(Z)exp( — T|QZ| )

1
o IMlE o A
(7'(' fj pr ) (y ) ar (y)

(rvs) /N y (59, 2)), p(Zexp( ~ T‘§/’2)9y>d%(z’) A,
=aT1(y)p(Z)exp( - T|QZ|2)

/N y (M) (5 (9. 2'), p( 2 )exp T'%"Q)eyywy(z) A D,
:&Tl(y)p(z)exp( - T|QZ|2)

/N ((=V"™12) 10/ (9, 2'). p(Z )exp T|§/|2)9y>dmvy(z’) A6,
:(p; vl fsz’) (. 2). (2.3.124)

Thus for the term with D in (2.3.117), we have for 5 € Ey",
prD"3(y, Z)) = D" pr3(y, Z) = 0. (2.3.125)

From (2.3.114), (2.3.120) and (2.3.125), we get the first inequality in (2.3.115).
For s, € EJ,,

Dr3si(y, Z) = pr(D® + DY + Ry)s1(y, Z). (2.3.126)

For every s € E', prs’ € EL may be viewed as smooth section in EY.. It is clear that
(2.3.120) holds for s’ € E*. Note that D¥pr is the formal adjoint operator of ppDX.
From (2.3.120) we have

| DFprs'|| go < \/—IISHEO (2.3.127)
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2.3 Degenerate Morse Inequalities
Then for s, € E}., we have
C
[z D sl < (D7 prsiflee < =51l (2:3.128)

For the term with D in (2.3.126), from (2.3.121) we find that for s; € E7,
prD"s) = prD"prs, = prprD"s, = 0. (2.3.129)

From (2.3.114), (2.3.128) and (2.3.129), we obtain the second inequality in (2.3.115).
To prove the last inequality in (2.3.115), we need to prove the following Proposition
about D7, which we will prove later.
Note that the vector spaces EY., Egll implicitly depend on ¢ € (0, ]

Proposition 2.17. There exist € € (0,%],C > 0,b > 0 such that for any T > 1, any
5 € E;’L, then

[Drslize = C([Isllz + (7 = 0)lsllz ). (2.3.130)

Now we continue to prove the last inequality for Dy 4 in (2.3.115).
For any s € E%F’L,
DT748 = DTS - DT728.

Then
1Drasllgo =] Drslzo = [|Dr2s]| o

2 2 012 2
>C<||SHE:1 + (T — b)HSHE0> - ?HSHEO

So we get last estimate in (2.3.115) for T" large enough and the proof of Lemma 2.16 is
complete. ]

Proof of Proposition 2.17. To prove Proposition 2.17, we need the following two Lem-
mas. We postpone their proofs later.

Lemma 2.18. There exist € € (0,$],C >0, b > 0 such that for any T > 1, s € E%F’L
whose support is included in Us., then

|Drslize = C([Islla + (7 = 0)]lsllz ). (2.3.131)

Throughout the paper, € may be viewed as a constant once Lemma 2.18 is proved.

Lemma 2.19. There exist C > 0, b > 0, such that for any T > 1, any s € E* which
vanishes on U., then

|Drszo = C([lsllg: + (T = ) s]lzo ). (2.3.132)
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2 Equivariant Morse inequalities and applications

Now using the above two Lemmas, we prove Proposition 2.17 as follows.
Set

niz)=———2 7))
P+ (1) =
po(Z) =P (@). (2.3.133)
P+ (l-p)
Then py, py are smooth functions on the total space N such that
i’ +pt =1 (2.3.134)
For j = 1,2, set
S; = p;S. (2.3.135)
Then s, € E;l and Supp(s;) C Us. and s, € E' vanishing on U..
By (2.3.100) and p; equals to 1 on support of p, we have for s € E;’L,
prs; =0, ie., s; € Ept. (2.3.136)
Note
<[pj,D:2p]s,sj> (pjD3s,5;) — (D7sj, s5), (2.3.137)

From (2.3.134) and (2.3.137), we find that
2 2 2 2
|Drsz0 =D 11Drs o + D= (los Dis.s5)
=1 =1
]2 j2
= 1Drssllgo + - (L3 (D) 5,5 ). (2.3.138)
=1 j=1

Since [pj, (DM )2} is a differential operator of order one, for any n > 0 there exists C,, > 0
such that

iK [0 (D)2, )| < s + Gl (2.3.130)

From (2.3.138) and (2.3.139), we get

2
D18l = S syl sl — Callsle (25140
7j=1
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2.3 Degenerate Morse Inequalities

Now we use Lemma 2.18 and Lemma 2.19 to find that

Do CZHSJ||E1+C —) ZHSJHEO sl = Callsls

—OZ 15501 = nll 3|5 + (CT — Cb — Cy) 15[ (2.3.141)
By (2.3.134),
= 2 T2 12
2 sills = S lsllge = Clls - (2.3.142)
=1
At last we get
C ~
1Drs]zo > (5 = mllsl + (€T = Cb— Gy = ) |s||5o. (2.3.143)
By taking n < %, we get (2.3.130). The proof of Proposition 2.17 is complete. O

Proof of Lemma 2.19. From (2.3.44), it is clear that
D3 = (DM)? + T[DM &V )] + T*|V fI. (2.3.144)

As V£ is invertible outside of B., there exists C' > 0 such that if s € E* vanishes on
B., then

1(V£)s][50 = C|[5]|o- (2.3.145)
From (2.3.61), we find that
n l
[DM AV =D clfye(VEMN -V ) + Y eleae(VEMN -V f). (2.3.146)
j=1 ' a=1

Then [DM 2(V f)] is an operator of order zero, there exists C' > 0 such that

(DM 3T s 5) g0 < Clsllo (2.3.147)

Since DM is an elliptic operator of order 1, there exists C”,C" > 0 such that
DYl > sl — s 23.15)
Combining (2.3.144)-(2.3.148), we get
| Drs|2 = C"||s||2 + (CT? — C'T — C™)||s]%0, (2.3.149)

from which Lemma 2.19 follows. O
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2 Equivariant Morse inequalities and applications

Proof of Lemma 2.18. We must be careful to distinguish whether the estimates below
are independent of €, since the vector spaces E%, E%L do implicitly depend on . We will
use C3,Cy, - - - to denote constants independent of ¢ and C. to denote constants which
do depend on e¢.

Since s € E#l and Supp(s) C Us., it may be regarded as an element of E!. Then

Drs = DYs+ D"s + Rys. (2.3.150)
Then
2 1 i Ny 12 2
Drsl = 210" + DY)sl — Brsl (23151)
It is clear that

(D" + DY)? = (D")*+ (D} )* + [DY, DYY]. (2.3.152)

We now establish the following relation on E*:

H pN

[D",D"] 5 =0. (2.3.153)

We prove (2.3.153) as follows. Let h € C®(N),w € C*(B,A(T*M)|p). We get

DN (hr*w) = Z(eah)c(ea)ﬂ*w.

Then,

n l

DD (b ) = 3 57 { (A cam)elelen)"u + (cate( )

[c(ea)ﬂ*(V};Bw) + c((ﬂ*VTM‘B)fjHea> W*w] }

On the other hand,

n

D" (hw) = 3 efy) | () w + b (V5 Pw)|.

Then

n l

DVDH(hrw) =) "> [(ea( Fi)elea)e(f)m*w + (eah)c(ea)e(f;)m* (VT Pw)| .

j=1 a=1

Thus

n !

(D", DY (hm*w) Z Z { < o | >c(ea)c(fj)7r*w

j=1 a=1

+ (eah)el fj)c<(7r*VTM|B) ffea)w*w}.
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2.3 Degenerate Morse Inequalities

By (2.3.17),
(7T”‘VTM|B)f]Hea = V};Mmea = V}\;ea = wy ga(fi)es-
Moreover from (2.3.25),
[ear [1T] = [ear f5 — w(f}) Z] = —[ea, wy s, (f1) Zves] = —wy palf))es.
Therefore
D7, D

(072)(h7r*w) = 0.

One can also verify that
(D, é(v)]

0.2 =0 (2.3.154)

By (2.3.8) and (2.3.25), we get for j =1,--- ,n,

n- l
(W*VTM'B)fij =Y [wypalfi) Zats — wyap(f7) Zsea]

=1 a=1

l l
+ > > [wyas(fi) Zsea — wypalf;) Zacs)-

B=n—+1 a=1
Since wy o =0 for 1 <a<n™,n” +1< B <, then
(W*VTMlB)fJHU = 0.
Thus (2.3.154) holds. By (2.3.153) and (2.3.154),
(D", DY] =o0.
Let E’jp be the image of F? in E° by the linear map

|Z]”

s € F' s exp(— )s A0 € E°. (2.3.155)
Then E'T’O is exactly the kernel of DY by Theorem 2.12. Let pi. be the orthogonal

projection operator from EY on E/ILO.
Similar as (2.3.100), for s € F* we have

sty 2) =(5ybesp (- T2
/N <s(y, Z", 9y>exp( — T|§/| Ydu, (Z') N6, (2.3.156)
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2 Equivariant Morse inequalities and applications

Then
DY s = DY (s — plps). (2.3.157)
Using Theorem 2.12, for s € E;l whose support is contained in ., we have
|D¥sllzo = 2T s = phsllzn > 27 (|15l — sl (2:3.158)
From (2.3.84), we find that there exists C3 > 0 such that for any C, € (0, 1],
C C
D5l >SS, gy +

We now fix Cy € (0,1] such that C3Cy <
From (2.3.158) and (2.3.159), we have

T2H|Z| 5| — C3CAT |52 (2.3.159)

1 1
D5l SO AYs g + 2CiT121 5]

1
+ 57|50 = Tllprs|eo- (2.3.160)
Using elliptic estimates, there exists C5 > 0, Cs > 0 such that
1
Lo s )+ [DHs] > Golllfe — Calls 23360
As s € E;L has support in Us., prs = 0. From (2.3.100) and (2.3.156), we find,
T T|Z?
Prs(y.2) =(2)hesp( - '2 -

VAR

)dUNy(Z/> A Qy.

/ (s(y, 2"), —p(Z"))exp( —

The function 1 — p(Z) vanishes for |Z] < /2, thus

1|50 < \/—%HSHEo- (2.3.162)
From (2.3.152)—(2.3.154) and (2.3.160)—(2.3.162), we finally get
1
[0 + DY)sllgn ZCillsllg: + 771715 o
1
+ (5T = VTC. = Co) 3] - (2.3.163)

From (2.3.98), there exists C7 > 0 such that
|Ros|Z < Co(@s]% + 72121 - 5[[%)- (2.3.164)
From (2.3.151), (2.3.163) and (2.3.164), we have

1
2| Drs|| o =(Cs — 2072 ||s]| oy + (3C4 — 207 T?[| 2] - 5|,

4
1
+ (5T = VTC. = C5) sl o- (2.3.165)
We finally get (2.3.131) from (2.3.165) for € small. The proof of Lemma 2.18 is complete.

]
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2.3 Degenerate Morse Inequalities

2.3.7 Resolvent estimates

In this subsection, we establish estimates on resolvent of some elliptic operators.
We now fix € € (0, %] once and for all as in Lemma 2.18. Also C denote the positive
constant which was determined in Lemma 2.16.

Definition 2.20. Let D/, be the operator

/o DT,l 0
DT_( 0 DT,4)' (2.3.166)

Proposition 2.21. There exist Ty > 1, C > 0 such that

(1). For any T > Ty, the operator DY is self-adjoint with domain E', and the operator
Dy is one to one from EX* into B9,

(2). For anyT > Ty, A€ C, |\ < % T, s € Ey", then

= D) sl < lsloge
|(A = Dra) sl s <Cls]| o, (2.3.167)
Proof. Since DM is an elliptic operator of order 1, by elliptic estimate we have
[5][g: <C(HDMSHE0+ HSHE0>- (2.3.168)
By (2.3.44),
|DMs||* = (D2s, s) — T< (DM &(V )]s, s> - T2<(6(Vf))25, s>. (2.3.169)
Since [DM,¢(V f)] is an operator of order zero,

DYl o < [Drsls + OV s (23170)

Using (2.3.168) and (2.3.170),
lslles < C(I1Drs]leo + VTIs]lgs ) (2.3.171)

Using Lemma 2.16, we find that if s € E!,

C
|(Dr — Df)s| o < ﬁ”SHEl- (2.3.172)
From (2.3.171), (2.3.172), we get for s € E',
1
|(Dr — D7)s|| o < C’(ﬁ”DTsHEO + ||l go)- (2.3.173)
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2 Equivariant Morse inequalities and applications

For T > 1 large enough, C’/y/T is strictly small than 1. Also for any 7 > 1, Dy
is a self-adjoint operator with domain E'. By the Kato-Rellich theorem, i.e., in [41,
Theorem X. 12], we deduce that for T' > 1 large enough, the operator D/, is self-adjoint
with domain E'. In particular for 7 > 1 large enough, D4 is self-adjoint with domain
E;l. From Lemma 2.16, we see that for 7' large enough, Dy 4 is one to one from E;l
into E%L.

The first line in (2.3.167) follows from Lemma 2.16.

By Lemma 2.16, for A\ < % T, se E%L,

A

A0zl < Gl < 3l 23174
Then
Dr4 —1\-1
Again by Lemma 2.16, we have

D
IA = Dr) s re < H 5= Dyl < Cllsllaye (2.3.176)
The proof of Proposition 2.21 is complete. O

Definition 2.22. Let H, H be separable Hilbert spaces. We denote by E(H, H’) linear
bounded operators from H to H. When H' =H, we simply denote by E(H) For A €

L(H, H'), set [A] = (A A) If 1 < p < +oo, set
£,(H, 1) = {4 € L(H, H); Tr(|AP) < +oo},
If Ae L,(H, H), set
4l = [r:(1ap)]
Then by [41, Theorem 1X] ([42, Theorem 2.3.8]), || - || is a norm on £,(H, H'). We
shall adopt the convention that Lo (H, H') is £(H, H'). If A € £L(H, H'), let ||A]|__ be

the usual operator norm of A.
In the sequel, the norms H . Hp,

: Hoo will always be calculated with respect to the

Sobolev spaces of order zero like EJ., E%l, FY.

Now we establish an Lemma as follows.

Lemma 2.23. Ifp > 2m + 1, (DM + v—=1)~' € £p<L2 (0 (M), L2(Q-(M))).
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2.3 Degenerate Morse Inequalities

Proof. It is clear that D™ —+/—1 is the adjoint operator of DM 4-y/—1. Set P = (DM)2+
1. P is a generalized Laplacian operator. Recall that P~! : L*((0(M)) — L*(Q(M))
is continuous. Let P~?/2(x,y) be the Schwartz kernel associated to the operator P~7/2.
We now prove that P~?/2(z,y) is continuous for z,y € M. Let k = £> m+% andr >0
such that 2r = mT“ < k. From regularity theorem and Sobolev inequalities, we have

PP gy <C - [ PP s
<C-(|PP*P"s||go + || PP ]| o) (2.3.177)
<C sl

Here 2r = mTH is required for the second inequality. From the above inequality, the
continuity of P~P/(z,y) follows.
Then
[(DM + V=1)7H) = Te(P %) = / Te(P7*/?(z,2)) < o0. (2.3.178)
M
O

Let H be an Hilbert space. Assume p > 2m + 1 and 0 < ¢ < p satisfies % + % =1.
Lemma 2.24 ([42]). For k> 1, if A€ L(H), B € L,x(H), then AB € L(H) and
[AB], < [[A[l,, | Bl (2.3.179)

We omit the proofs of the above Lemma. See [42] for more details.
Recall that T is determined in Proposition 2.21.

Proposition 2.25. Ifp > 2m+1, there exists C > 0 such that for T > Ty, A € C, |\| <
%\/T, then

Ix = Dra) M|, <

Ir = D)™, <

Q@Q

: (2.3.180)

C
HDT,Q()\ — DT,4)71 HOO < ﬁ

Proof. The first line of (2.3.180) follows from Proposition 2.3.13. Also by Lemma 2.24,
|\ = Dra) M| < JOM + V=D [[(DY + V=) (A= Dra) Y| .. (2.3.181)

(DM + \/—_1)_1Hp < 00.

From Lemma 2.23, we know that when p > 2m + 1,
Also by Proposition 2.21, for T' > Ty,

(DM + V=1)(A = Dra) 7|, < C. (2.3.182)
The second line in (2.3.180) follows. Using (2.3.115), (2.3.167), we get the third line in
(2.3.180). O
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2 Equivariant Morse inequalities and applications

Next we derive the estimates on the resolvent of DB.
Recall Cy > 0 is the constant determined in Lemma 2.16. Let Cyy € (0, 1] be a constant
fixed once and for all such that

Co < %To and Spec (D) N [ 2¢/Cp, 2 OO] c {0}, (2.3.183)
where Spec(-) denotes the spectrum of an operator.
Set
U= {)\ €T\ <2 \/007 inf =l > v OO}. (2.3.184)
HESpec 4

Then for any A € U, |A| < 2/Ts.
Proposition 2.26. There exists a constant C > 0 such that for T'> Ty, A\ € U, then
| Drs(X— JpDP I 71| < C. (2.3.185)
Proof. Clearly if A € U,
(A=D1 <C. (2.3.186)
Since Jr is an isometry from F° into E7., we get
|(A=JrDPJ 7|, < C. (2.3.187)
By the resolvent equation, we find that
A=DP)t=(-1-DB)y '+ (V-1-NA-D®)(vV/-1-DP)"t.  (2.3.188)
Using Sobolev inequalities, if o € F°,
J(V=T=D%) 0 < C(Jloo + 1V=T = D) 0 0) < Cllo- (28.180)
From (2.3.188), (2.3.189) and elliptic estimate, we have
| = D)o

<[(V=1= D)o + @+ M[|(V=1= D)7 = D)o
<Clolgo + CA+IAD[ A = D)oo

<C'(1+ AN ||o|| po- (2.3.190)
Using (2.3.109), (2.3.186) and (2.3.190), we get that if A € U, s € EY,
| = 52D 5778l <O([| (8= D)7 g + VT 5] o)
<C[C/(1+ ANz lpo + VT|s]| o]
<O (14 V)| 3]l - (2.3.191)
From Lemma 2.16 and (2.3.191), we get (2.3.185). O
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2.3 Degenerate Morse Inequalities

By Proposition 2.21, for T' > Ty, A € U, the operator A — Dy 4 is an invertible operator
from EL" into EX'.

Definition 2.27. For T' > Ty, A € U, let My(\) be the linear map from E} into EY.
Mrp(A) =X — Dy — Drao(A— Dry) ' Drs. (2.3.192)
If s € E°, set
S| = PpS; So = PrS. (2.3.193)

Then s = 51 + s9.
Take then T > Ty, A € U, s € E', s’ € E°. Consider the equation

(A= Dr)s =45 (2.3.194)
It is clear that (2.3.194) is equivalent to

MT()\)Sl :8/1 -+ DT72()\ — DT74)718/2,
so =(A\ — Dp4) ' (sy + Dr3sy). (2.3.195)

From (2.3.195), we deduce that to estimate (A— D7)}, we need first estimate M, '(\).

Theorem 2.28. There exists Ty > Ty such that if T > Ty, A € U, then Mp(\) is
invertible and moreover for any integer p = 2m + 1, there exists C > 0 such that for
T>T ), e U

[RZE Y]/ NS
HDTsM >H
HM H <C(1+ w
C
Jt MN)PJp — (A —DP)7P|| < 1+ (AP 2.3.196
|77 (7 Q)" = (A= DY, < =1+ A (2:3.196)
Proof. Set
Cr = J' Dy Jr — DP. (2.3.197)
For A\ € U, set
mT()\) = 1—JTCT(/\ — DB)ilg]j:l
—Drs(A\ — Dpg) ' Drs(A — JpDB ;)7 (2.3.198)
Clearly
Mp(A) = mp(A\)(\ — JpDPJSh). (2.3.199)

41



2 Equivariant Morse inequalities and applications

Now by Proposition 2.14 and (2.3.190), we find that

|Cr(A—DP)7H| . < %(1 +|A]). (2.3.200)

Also by Proposition 2.25 and 2.26, we get
Cl
VT’

From (2.3.198)—(2.3.201), it is clear that if 1/v/T is small enough, then the operator
mq(\) is invertible, and moreover for T > 1,

| Dr2(X = Dra) ' Drg(A = JrDPJph) 7| < (2.3.201)

|mzt () = 1| < %(1 + ). (2.3.202)
In particular,
|mzt V)], < C". (2.3.203)
By (2.3.199), we get
Mzr(N) = (A= JrDP I mpt (). (2.3.204)

From (2.3.186), (2.3.203), we obtain the first inequality in (2.3.196). The second in-
equality in (2.3.196) follows from (2.3.185), (2.3.203) and (2.3.204). From Lemma 2.24
and (2.3.203), we get

Mz V||, < Cj(x = DB (2.3.205)
From Lemma 2.23, (2.3.188) and Lemma 2.24, we find that if A € U,

I =D,
<IV=L=D")7, + 20+ AN = D) - [(V=1 = D)7
<C+ C(1+|A]). (2.3.206)
The third inequality in (2.3.196) follows from (2.3.205) and (2.3.206). Now we apply
Lemma 2.24 to prove the last inequality in (2.3.196) as follows.
Note
Jr My gy = (A= D) Ui mp Jr — 1) + (A= DP)7L (2.3.207)
Set

A= J M I, B=(\— D). C = J'mptJr — 1. (2.3.208)
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2.3 Degenerate Morse Inequalities

Then A = BC + B and

AP — BP = > A - A, (2.3.209)

A;€{B,BC},1<j<p
#{jlA;=BC}>1

Here # stands for the cardinality of the mentioned finite set. By applying (2.3.179) p—1
times, we find that
1A Al <[[Ar--- Apal] e [ A,

p
p—

Sl Aol ([l [ 40]],

p
p—

<[[ A, [ 4]l (2.3.210)

We may assume that A; = BC.
From (2.3.202) and (2.3.206), we get

C
1B, <C+ ), ||, <[IB],IC] < ﬁ(l + A2 (2.3.211)

If BC appears in A; more than two times, instead of (2.3.202), we may use the following
estimates for other ||C’HOO: for A € U,

C
Cll_<—=@0+|\)<C.
o]l < -+
So
C 1

[Ar- A, < ﬁ(l + [ADT, (2.3.212)
and

| A7 — B?||, < %(1 + |A])PF (2.3.213)
The proof of last inequality in (2.3.196) is complete. O

If B € £(E®), for any T > 1, we write B as a matrix with respect to the splitting

E° = EY. @ E%" in the form
_ (B, B,
5= (3 5)
Definition 2.29. If B € L(E°),C € L(F"), set

4
d(B,C) =Y ||Bj||, + |/z'BiJr = C|,. (2.3.214)

j=2
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2 Equivariant Morse inequalities and applications

Clearly, if B € L1(E"),C € £,(F°), then
|Tr(B) — Tr(C)| < d(B,0). (2.3.215)

We prove (2.3.215) as follows. If o; is an orthonormal basis of F’, then Jro; is an
orthonormal basis of EY. and Tr(B;) = Tr(J;' By Jr), so
ITr(B) — Tr(C)| <|Tr(By) — Tr(C)| + |Tr(By)|
=|Tr(J;'BiJr) — Tr(C)| + |Tr(By)]

<||J7' BiJr — CJ|, + || Bs (2.3.216)

I
Here we have used |Tr(A)| < ||4 ,» for A e £,(H) ([42, Lemma 2.3.3]).
Theorem 2.30. There exists Ty > Ty such that for any T > Ty, € U, X — Dp is

invertible. For any integer p > 2m + 2, there exists C' > 0 such that of T > Ty, A € U,
then

d(()\ —Dy)P (A — DB)"’> < —=(1+ AP (2.3.217)

glo

Proof. Set
Br = (\—Dp)™ L. (2.3.218)
In view of (2.3.195), we find that
Bry = Mz'(V),
Broy = M;Fl()\)DTg()\ — DT,4>717
Brs = (A— Dy4) 'DrsMzt(N),
Bra = (A= Dra) (1 + Dr3Bry). (2.3.219)
If A € U, then A\ < %\/T Using Proposition 2.25 and Theorem 2.28, we find that if
p=2m+2,T > Ty, N € U, for j =2,3,4, then
C
VT’
From (2.3.179), (2.3.220) and Theorem 2.28, we deduce that if j,-- - , j, € {1,2,3, 4},

if one of the j’s is not equal to 1, suppose there exists j; # 1.

| Brj, -+ Bry, ||, =||Bryjs -+ Brjo, (B Brji ) Brjo. - Br, ||,

1Brsll,., <C; |[Bryl., < (2.3.220)

< Briill, - | BriiBrjiall,—y - || B |,
< Brill o - 1Braull,y - 1Briially—y - - [ Bro s
C
<— - CA+)---CA+N\)---C(1+ |\
Z7 A+ AN CA+A) - CL+ A
C
<——(1+ AP 2.3.221
SR+ D (23.221)

Now(2.3.217) immediately follows from the last inequality of (2.3.196) and (2.3.221). O

44



2.3 Degenerate Morse Inequalities

2.3.8 Proof of Proposition 2.8
Recall the constant Cy € (0, 1] is fixed such that

Spec (D®) N [ 24/ Cy, 2 C’O}C{O}

Let F%O be the direct sum of eigenspaces of D2 associated to the eigenvalues A such
that A < Cy. Let v be the circle in C of center 0 and radius y/Cy. Then v C U.
Using Theorem 2.30, we see that for T' large enough,

v N Spec(Dr) = (.

Set

1

PCO _
T 27

()\ Dr) td). (2.3.222)

For T large enough, PTC % is exactly the orthogonal projection operator from E° on Fgo.
Let @ be the orthogonal projection operator from F° to K = Ker DZ. Then we also
have the following:

Proposition 2.31. For T large enough, we have

C
d(P%, Q) < —. 2.3.223
(Pr°, Q) T ( )
Proof. 1t is clear that
P& = N=H\ = Dp)7Pd), 2.3.224
T = oo \/— )" ( )
and
1
= N7HN = DB)7Pd\. 2.3.225
Q o=, ( ) ( )
Then
1
d(PS,Q) < — / |)\|p‘1d<(/\ —Dy)P (A — DB)‘p>d)\. (2.3.226)
2m .
Then (2.3.223) follows form (2.3.217). O

Proof of Proposition 2.8. From (2.3.215) and (2.3.223), we see that for T" large enough,
dim F$° = dim K. (2.3.227)

Let P; denote the orthogonal projection operator from E° onto the L2-completion space
of Q/(M). To prove Proposition 2.8, we need to show that when T is large enough,

dim P; F$* = g;. (2.3.228)
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2 Equivariant Morse inequalities and applications

By (2.3.26),
> dim PF < dim FF =) " dimK
4=0 j=0 j=0
=3 ) dimH/(Bi,0o(N;)) = > g5 (2.3.229)
=0

i=1 j=0

Also we find that for any s; € Fj,

SjHFO =1,

[P Pr° Jrs; = Jrsjl|go <[[(PE) Jrss = Trsillg + ([ (PF*) g 7rsil g
<[z Pro)adr = QY|+ [[(PE)]
<d(Pp*, Q).

Thus from (2.3.223), we have for s € K,

| P P50 Jrs — (2.3.230)

C
5l < ol
From (2.3.230), one deduces that
dim P; F° > ¢;. (2.3.231)

From (2.3.229) and (2.3.231), we get (2.3.228). We finish the proof of Proposition 2.8
and hence the proof of Morse-Bott inequalities (2.3.1) and (2.3.2) is complete. O

2.4 Equivariant Morse Inequalities

Now we consider Theorem 2.1 in general case, i.e., G is a finite group. The main goal
of this Section is to prove our main Theorem 2.1, i.e., (2.1.12), (2.1.13).
Forpe B, X € T,M, g € G, we have

(971 : dzf)p(X, X) = gt (dzf)g-p(Xa X) = (de)g-p(g - X, g X). (2.4.1)
On the other hand,
(97" (X, X) =g7" - (& f) (X, X)

~(9- Xgpl9- X)f) = X%, {[(9- %) - f] o9}
=X,[X - (fog)] = X,(X - )
:(de)p(X> X)v (2.4.2)

where X is a smooth vector field on M such that at the point of p it coincides with Xp.
By (2.4.1) and (2.4.2),

(@ f)gplg - X, g+ X) = (d°f),(X, X). (2.4.3)
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2.4 Equivariant Morse Inequalities

Therefore, g preserves the index of critical manifolds, i.e., the critical manifolds on the
orbit G - B have the same index. Now the orbit G - B is a G-invariant submanifold of
M, which we still denote by B when there is no confusion involved.

By equivariant Morse-Bott Lemma [51], we know that B possesses a G-invariant
tubular neighborhood (h, V) such that:
(1) N is a G-vector bundle over B, which is endowed with G-invariant scalar product
g". Moreover N, which has rank m — n, splits into two orthogonal G-subbundles N =
N~ @ NT, where the rank of N~ is n~ and the rank of Nt is n™.
(2) h G-embeds N into M. Moreover there is an open G-invariant neighborhood B of B

in N such that if Z = (Z~,Z") € B, then

z7 |, 127

—_—t — 244
5T (24.4)

where ¢ denotes the constant values f(B).

We choose a G-invariant metric g7 ? on critical manifold B. Then we get a G-invariant
metric on the total space N, namely g7 = 7*¢"8 @ ¢"¥. We can obtain a G-invariant
metric on M such that it has the form ¢"™ = 7*¢"2 @ ¢" near the critical manifold B.
Then G commutes with the Levi-Civita connection VI on B and Euclidean connection
V¥ on the bundle N and thus G commute with V¥ on the tangent bundle T'N.
Applying the result in Section 2.3, we get the following analogue of Proposition 2.8.

Proposition 2.32. There exist Cy > 0, Ty > 0 such that when T > Ty, the number
of eigenvalues in [0,Cy) of D%|Qj(M) equals to q;j. Moreover, the eigenspaces are all
G-space.

Proof. For any g € G, g commutes with the deformed de-Rham operator Dy. Thus the
eigenspaces of D are all G-space. The rest is exactly the same as in Section 2.3. The
proof of Proposition 2.32 is complete. O]

We now use the notations from Section 2.3. Let F OJ denotes the g;-dimensional
vector space generated by the eigenspaces of DT|QJ(M associated with the elgenvalues
in [0,Cp),j = 0,1,--- ,m as in Section 2.3. From Proposition 2.32, G maps F Oj into

C
F7o.

Let PS° be the orthogonal projection from E° to F$° with Fgoj = P,FS". The isometric
map Jp : F® — E° is given as in (2.3.89). Let ep : F* — Fgo be defined by

er = PSOJy. (2.4.5)

We now show that er is an G-isomorphism from F; onto its image when 7' is large
enough.

Lemma 2.33. There exists C' > 0 such that as T'— 400, for any s € F},
C .
(er — Jr)s = O<ﬁ>HSHW uniformly on M. (2.4.6)

In particular, er is an G-isomorphism from G-space F; onto G-space F(;O]
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2 Equivariant Morse inequalities and applications

Proof. 1t is clear that e; maps F} into Fgoj and
(ep — Jr)s = ppPS Jps — Jrs + pe P80 Jps. (2.4.7)
By (2.3.202), (2.3.208), (2.3.209) and (2.3.220), for any s € £},

Ier = Tr)sllpo <[|(PF*), Trs = Jrsllgo + | (PF°) /sl
<72t (") I = Qllo - sl + (P25l - sl

C
<ﬁ||5HFo- (2.4.8)
Then
> ||J J > (1 ¢ 24.9
lexsllge > [177sllo = [l(er = Jr)sllgo > (1= =) slleo- (24.9)
Therefore, er is injective on subspace F; when 7' is large enough. Moreover,
dim Fj = dim F®% = g;. (2.4.10)
Thus er is an isomorphism from F; onto Fg(’]
Since ¢V is G-invariant,
g7 Zln = |Zlgy, g-0=9. (2.4.11)
From (2.3.87) we have ar(y) = ar(g~' - y). Then by (2.3.89) for any s € F°,
(9 Jrs)(y. Z) =g - (Jrs)(g™" y.9~" - Z)
—1. 72
L 2l Yo - g )
—_— Ll Jexp| —
arlg -y i) 2
g-s(g7 Y NGy (2.4.12)

:ﬁp(ﬂ]%y)e){p( — T’Z2|3év> (9 : 5) (y) A (g-0),

:JT(Q ' S)<y7 Z)

That is, g commutes with Jp. Since g commutes with D7, then g commutes with Pg 0
by (2.3.222). Therefore, er is a G map, i.e., it commute with the action of G. The proof
of Lemma 2.33 is complete. O]

Proof of Theorem 2.1. Recall that V!,.-. V% are the irreducible representations of G.
As G-representation space, FTCE can be decomposed as follows:

lo

F% = Homg(V®, Fr%) @ V. (2.4.13)

a=1
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2.4 Equivariant Morse Inequalities

Then (HomG(V"‘,FTCE) ® Vo‘,dT) is a G-subcomplex of the complex (F%Oj,dT). From
Lemma 2.33, we find that

dim Home(V*, Ff8) = df. (2.4.14)

From the Hodge theorem for finite-dimensional vector space, we know that the j-th
cohomology group of the complex (FTC °,dr) is equal to the dimension of Ker D7.|q; (). By
the following Lemma 2.34, the dimension of the j-th cohomology group associated to
the complex (HomG(Va,Fgf,’) ® V, dr) equals b - dimV®. Now (2.1.12) and (2.1.13)
follow from standard algebraic argument ([30, Lemma 3.2.12]). The proof of our main

Theorem 2.1 is complete. [
Lemma 2.34.
1 (Home (V*, FY), dr ) = Home Ve, 1Y (FSY) ). (2.4.15)
Proof. Set
T = Homg (va, ) (2.4.16)

Then T is an exact factor, i.e., for any exact sequence

E—F—G, (2.4.17)
the following sequence is exact:
T(E) - T(F) = T(G). (2.4.18)
We need to show
1 (T(F) ) = (1 (FE) ). (2.4.19)
Set
A; = Im(F%fl - F%) B; = Ker<F§?j - F%OjH). (2.4.20)
Then the following sequence is exact:
0— A; — B; — HI(F{%) = 0. (2.4.21)

Since T is exact, the following sequence is also exact:
0 T(A;) = T(B;) - T(H(FF)) 0. (2.4.22)
By definition,

ey Ker (7(F5) - T(FE.))
1 (T(F) ) = (T ) S 1)) (2.4.23)
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2 Equivariant Morse inequalities and applications

It is clear that

B; — F{% — F{® | (2.4.24)
is exact, where i : B; — Fgo is the inclusion, then
T(B;) — T(F%) — T(F3° ) (2.4.25)
is also exact. Therefore,
Ker(T(Fgy) — T(FFy.,) ) = m(T(B;) - T(FE)). (2.4.26)
It is clear that in the sequence
FEO_ | — Aj = FEY, (2.4.27)

the first map is surjective and the second inclusion map is injective. Then for sequence
T(FF_y) = T(4;) = T(FF), (2.4.28)
the first map is surjective and the second is injective. Therefore,
I (T(FS_,) = T(FS)) ) = (T (4;) — T(FFY) ). (2.4.29)
From (2.4.23), (2.4.26) and (2.4.29), we get

ey m(T(B) - T(FD))
1 (T(FG) ) = (T() > 7)) (2.4.30)

Consider the surjective map:
6:T(B;) — 1 (T(F)). (2.4.31)
It is clear that
Ker(¢) = Im(T(4;) = T(B;)). (2.4.32)
Hence, we get the following exact sequence:
0 T(A;) = T(B;) — 1 (T(F5) ) 0. (2.4.33)

Combining (2.4.22) and (2.4.33), we get (2.4.19). The proof of Lemma 2.34 is com-
plete. O
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2.5 Application of equivariant Morse inequalities

2.5 Application of equivariant Morse inequalities

In this Section, we apply the equivariant Morse inequalities (2.1.12) and (2.1.13) to prove
Theorem 2.2, which is a generalization of [54, Theorem 1].

We first recall the settings for our application of equivalent Morse inequalities.

Let M be a smooth m-dimensional oriented, connected manifold with nonempty
boundary OM. Let f : M — R be a smooth function such that it is a Morse-Bott
function in the interior of M. Moreover, we assume that the following condition holds.
Let 9M = N, UN_ be a disjoint union of closed manifolds such that f(y, u) = su+ f4(y)
in collar neighborhood of N x [0, 1), while f(y,u) = —1u?+ f_(y) in collar neighborhood
of N_ x [0,1), here f, (resp. f_) is a Morse-Bott function on N, (resp. N_).

Let Ny = N,y UN,y and N_ = N,_ U N,_ be disjoint union of closed manifolds. The
subscripts 7a” and ”r” refer respectively to absolute and relative boundary condition.
Let w be a smooth differential j-form on M. In a collar neighborhood U of OM it takes
the form

w|y = wy + du A ws, (2.5.1)

where wy, wy are u-depending differential forms not containing the factor du. Differential
form w satisfies the relative boundary condition N, if

awg

wi(y,0) =0, and (y,0) = 0. (2.5.2)

u
Differential form w satisfies the absolute boundary condition N, if

%(y,()) =0, and ws(y,0)=0. (2.5.3)
ou
From now on we impose the relative boundary condition on N, and the absolute bound-
ary condition on N,.

In the sequel, we assume collar neighborhood U = dM x [0,1) just for convenience.
Since Theorem 2.2 is a topological result independent of our choice of metric on M, we
choose a metric g™ such that in collar neighborhood OM x [0,1), it takes the product
form g™ = ¢7OM) @ ?u, where g"(®™) is a Riemannian metric on OM.

2.5.1 Interpretation of the boundary conditions

In this subsection, we give another interpretation of the above two boundary conditions.
Given the Riemannian metric ¢?™ on M, every smooth j-form w has in every point
of the boundary a natural decomposition into the norm and the tangential component:

W = Wian + Wnorm- (2.5.4)
For w € Q¥ (M), we consider the following boundary conditions ,

Wian = 0, (0W)tan =0 on N, (2.5.5)
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2 Equivariant Morse inequalities and applications

and
Wnorm=0, (dw)norm =0 on Na- (256)

Then we have

Lemma 2.35. The boundary condition (2.5.5), (2.5.6) is equivalent to the relative bound-
ary condition (2.5.2) and absolute boundary condition (2.5.3), respectively.

Proof. In the collar neighborhood 0M x [0,1), let
w(y,u) = w(y,u) + du AN wy(y,u), y € OM,u € [0,1), (2.5.7)

where w; and ws are u-depending differential forms which do not contain the factor du.
The decomposition (2.5.7) does depend on the coordinate system chosen in the product
neighborhood. Then

Wean = W1(¥,0),  Wnorm = du A wa(y, 0). (2.5.8)

Let V™™ be the Levi-Civita connection and V7(M) be the Levi-Civita connection
on OM induced by V7™, Then VZ(®M) induces an Euclidean connection on AT*(9M),
which we denote by VAT M) Since the metric g™ takes the product form over OM x
[0, 1), the boundary dM is totally geodesic in M. Let ey, -+, epn_1, 5, be an orthonormal
frame in the product neighborhood OM X [0,1). Then

m—1

. * a
d= CAVATTOM) gy A~ 2.5.9
; ’ “ o ou’ ( )
and
m—1 a
_ - oATe (M) . 9
Z o, V2 ioom (2.5.10)
Therefore in the product neighborhood OM x [0, 1),
w, = .
do =S AT O, gy n (52 =Y e A vl @u,),  (2511)
Jj=1 Jj=1
and
dw, = AT* (M) =y AT*(9M)
ow = 5 Z ie; NV, wy + du A Z ie; Ve, wy. (2.5.12)
L j=1
By (2.5.11),
m—1
(dw)ian = Y € AV O, (y,0), (2.5.13)
J=1
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2.5 Application of equivariant Morse inequalities

and
aw m—1
(dw)norm =du A |:a_u1 (y, O) - Z ej A Vé\jT*(aM)UJQ(y, O)] . (2514)
j=1
From (2.5.12),
ow i
(0W)tan = _@_j(ya 0) — Z le; N VﬁjT*(aM)Uh(y, 0), (2.5.15)
j=1
and
m—1
(6W)norm = du A i, VAT @My (y, 0). (2.5.16)
j=1

Now Lemma 2.35 follows from (2.5.2), (2.5.3), (2.5.8), (2.5.14) and (2.5.15). From
(2.5.8), (2.5.13) and (2.5.16), it is obvious that wi,, = 0 implies (dw)in = 0 and
Wyorm = 0 implies (0w)norm = 0. O

2.5.2 Hodge theorem for manifolds with boundary

In this subsection, we will briefly introduce Hodge theorem (Theorem 2.36) for manifolds
with nonempty boundary endowed with mixed boundary conditions.
Consider the following boundary conditions for w € Q/(M):

Wean = 0, (0W)an = 0, on Ny;
Wnorm = 07 (dw)norm — O, on Na. (2517)

Let Q}(M) C Q7 (M) be the subspace consisting of all smooth forms which satisfy the
boundary conditions (2.5.17).

Recall DM is defined in (2.3.43). Set A = (DM)2. For any wy,w, € Q7 (M), we have
([48, (10.19)]),

<Aw1, U}2> :<dw1, dw2> + <5w1, 5w2>
+/ [<e” A (5w1,w2> — <iendw1, w2>] dvgas. (2.5.18)
oM
By taking adjoint ([48, (10.20)]),
<Aw1, w2> :<dw1, dw2> + <(5’UJ1, 5w2>

+/ [<5w1, ienw2> — <dw1, e A w2>] dvgar. (2.5.19)
oM

Here e, is the outward-pointing unit normal to OM, e" is the dual of e, with respect
to the product metric near OM and dvgy, is the volume form on M induced by the
volume form on M. See [48] for more details.
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2 Equivariant Morse inequalities and applications

In our notation, we find that
(B, wa) =(dun, dus) + (S, Bz} +
[ e A G50 (02hor) = i (0o () s (2520
and that
(B, wa) =(dun, dus) + (S, 55} +

/BM |:<(6w1)tana le, (wQ)norrn> — <(dw1)norm, e" N (wg)tan>] dvgy.  (2.5.21)

From (2.5.20) and (2.5.21), we deduce that for wy,ws € Q4(M), the following relation
holds:

<AU)1, w2> = <dw1, d’LU2> + <5U)1, 5U)Q> (2522)
Let H’(M,N,) be the space of harmonic fields, i.e., w € H/(M,N,) if and only

if we QM) and dw = 0,6w = 0. Let H’(M,N,) be the j-th cohomology group
associated to the complex (7 (M, N,.),d), where Q7 (M, N,) consists of w € /(M) such
that w,, = 0 on N,.

The following result is established in [40, Corollary 5.7] ([36, Section 1]).

Theorem 2.36. The following isomorphism holds:
HI (M, N,) ~ HI(M,N,). (2.5.23)

Let M be the doubling manifold of M, ie., M = M Ugy; (—M) with (—M) another
copy of M. Let 7 be the involution of M which interchanges M and (—M) and leaves
OM fixed and i : M — M be the inclusion.

Lemma 2.37. If w € QI (M) satisfies 7w = w, then
Whorm = 0, (dW) porm =0 on OM. (2.5.24)
If w e (M) satisfies T*w = —w, then
Wian = 0, (0W)4an =0 on OM. (2.5.25)

Here the meanings of Wi, and Wperm are clear (we may interpret them as the meanings

for i*w € QI (M)).
Proof. We assume that in product neighborhood OM x (—1,1),

where 1, and v, are u-depending differential forms not containing the factor du. Then
Wian = wl (y, O), Wnorm — du N wg(y, O) (2527)
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Since 7 acts as identity on the boundary oM,

7. = Id on T(OM). (2.5.28)
Moreover,
0 0

From (2.5.28) and (2.5.29), we get

(T*w) (yv u) = (T*wl)(i% u) —du A (T*qu)?)(yv u) = 77Z}1 (yv u) —du 77Z)2(y7 u) (2530)

Therefore,
(T*w)tan = wl(yv 0)7 (T*w)norm = _du A d}?(y? 0) (2531)
From (2.5.27) and (2.5.31), 7w = w implies ¢5(y,0) = 0 and 7*w = —w gives
¢1(y,0) = 0. Since 7*w = w implies 7*(dw) = dw, (2.5.24) holds. And 7" w = —w gives
T*dw = —dw, then (2.5.25) holds. The proof of Lemma 2.37 is complete. O

The doubling manifold M carries a natural Z, action. Let g be the nontrivial element
in Zy, then gr = 7(z) for any x € M. For w € (M), the condition 7*w = w (resp.

T*w = —w) is equivalent to gw = w (resp. gw = —w).
Set
(M) = {w € QI (M), (DM)*w = 0}. (2.5.32)
Set
H, (M) ={w € W (M)| 7w = w},
H? (M) ={we HI(M)| 75w = —w}. (2.5.33)
Then
HI(M) = H(M) @ H.(M) (2.5.34)

is exactly the decomposition as Zs-representation spaces.
We now state an important result from [28, Proposition 1.27]:

Theorem 2.38. The following relations hold:

dim H7 (M)
dim #/ (M)

B;i(M),
Bi(M,0M). (2.5.35)
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2 Equivariant Morse inequalities and applications

2.5.3 Special case: f|yy =0

In this subsection, we prove Theorem 2.2 in a special case, namely f ’ o = 0 and
all critical points of f in the interior of M are isolated and non-degenerate. Then
fly,u) = “2—2 in Ny x[0,1) and f(y,u) = —“—22 in N_x[0,1).
Set N, = Now UN,_, N, = N, LUN,_. Set
B;(M, N,) = dim H’(M, N,),
B;(N,_) = dim H’(N,_
B(Now) = dim HI(N, ;

), (2.5.36)
)

We denote by ¢; the number of non-degenerate critical points with Morse index j. Then
Theorem 2.2 reduces to the following forms.

Theorem 2.39. The following inequalities hold for 0 < k <m

k k
ST MN,) <Y (=), (2.5.37)
Jj=0 Jj=0
where
CJ + BJ( a+> + ﬁ] 1( ) (2538)

The equality holds for k=m.

The function f may be easily extend to the whole manifold M via the Z, action. More
precisely, set

= flz) ifxe M,
flw) = { f(=z) ifxe—M,

where —x denotes the point g - x. We also denote by f the extended function on M
when there is no confusion.
Set b= 3" cj. Let {x1,--- 2} be the isolated non-degenerate critical points for f

in M, then the isolated non-degenerate critical points in M for the extended function are
{z1, -+ ,xp, —x1, -+, —x} and the Morse index for any zj, 1 < k < m, is unchanged.
Also OM is a critical submanifold of f in the sense of Bott [8].

Denote by R*, R~ the trivial and the nontrivial one dimensional real Z,—representatation
respectively.

Proof of Theorem 2.39. We divide the proof of inequalities (2.5.37) into three cases.
Case 1. OM = N, ie., N_ = 0.

Under the condition that OM = N, the inequalities (2.5.37) turn to the following
form:

Ea

D EDMIBM N < Y (=D e 4 B (Mo ). (2.5.39)

j=0 j=0
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2.5 Application of equivariant Morse inequalities

Moreover, the equality holds when £ = m, i.e.,

m m

D (FDTIB(M N = ) (=1 e 4 B5(Nay )] (2.5.40)

=0 =0
From Theorem 2.38,

by = B;(M), b5 = B;(M,0M). (2.5.41)
On the other hand, the general expression (2.1.10) may be interpreted as:

di = B;(0M) + ¢; di =¢;. (2.5.42)

J
We now prove (2.5.42). For critical point = of f and x € M\OM, set
W= {z}®{r(2)}. (2.5.43)

Here {x} is the real line generated by x. Then W is a 2-dimensional real vector space
spanned by x and 7(x) and Zs, acts naturally on W. W can be rewritten as

W={z+7(x)}o{z—1()} (2.5.44)

Moreover, the 1-dimensional space {z + 7(z)} (resp. {z — 7(x)}) is isomorphic to R*
(resp. R™) as Zy—representation spaces. Therefore, as a Zs—representation space, W
can be decomposed as

W=RteR". (2.5.45)

Hence (2.5.42) holds.
From (2.5.41) and (2.5.42), the equivariant Morse equalities (2.1.12) should be read
now

k k
> (1FIB(M) < 3D (-1 (B,(0M) + ), (2.5.46)
and
S (=DM M) <3 (—1) ey (2.5.47)

The equalities hold in (2.5.46) and (2.5.47) when k = m.
As OM = N, U N, is disjoint union,

HI(OM, N,,) ~ H(N,,). (2.5.48)
Moreover, it is obviously that

H°(M,0M) = 0. (2.5.49)
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2 Equivariant Morse inequalities and applications

Consider the Mayer-Vietoris sequence ([33, p. 185]) associated to the triad (M,0M, N, ):
o= HI7Y(Nyy) = HY(M,0M) — HY(M,N,;) = H?(Ngy) — -+, (2.5.50)
which begins as
0— H(N,y) — H'(M,0M) — -+ | (2.5.51)
and ends as
— H™ Y(N,y) — H™(M,0M) — H™(M,N,,) — 0. (2.5.52)

For the sequence (2.5.50), by standard algebraic technique ([30, Lemma 3.2.12]), we
find that for k =0,1,--- ,m,

> (=1 I [Bi(Nay) = Bi(M, N,y) + B;(M,0M)] = dim Im o*, (2.5.53)

7=0
where
& H*(N,,) — H*Y(M,0M) (2.5.54)

is the connecting morphism in the long exact sequence (2.5.50). Note

dim Im 0™ = 0. (2.5.55)
From (2.5.47), we get
k k
D (1R [B(M,0M) + B;(Nay)] <D (=17 [¢; + Bj(Nay)]. (2.5.56)
Jj=0 7=0

The equality in (2.5.56) holds when k& = m. Combining (2.5.53), (2.5.55) and (2.5.56),
we get (2.5.39) and (2.5.40). The proof of Case 1 is complete.
Case 2. OM = N_,i.e., Ny = 0.

The inequalities (2.5.37) turn to

k

S (=DFIB(M N <O (=1 e + B (N,2)]. (2.5.57)

7=0 7=0

And the equality holds when k& = m, i.e.,

m m

D EDTIB(M N =Y (1) e 4 B (N-)] (2.5.58)

=0 =0

In this case, bj,b? are the same as in Case 1, i.e., b; = 8;(M), b7 = 3;(M,0M).

LR R |
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2.5 Application of equivariant Morse inequalities

The general expression (2.1.10) may be interpreted now as:

d]1 = Bj_l(aM> +Cj, d2 = Cj.

J

Let fi = —f. Then — f; is also a Morse-Bott function. A critical point in the interior
of M of Morse index j for f has Morse index m — j for f;. The critical manifold OM
with index 1 for f has index 0 for f;. Note the number of critical points with index j
for fi is ¢p—;. Now we directly apply the result (2.5.47) in the Case 1 to the Morse-Bott
function fi: for k=0,1,--- ,m,

k

k
D (DFIB(M,OM) <> (1) s (2.5.59)

j=0 Jj=0

when £ = m the equality holds:

m m

D (=1)"IB (M, OM) = (=) ey, (2.5.60)

j=0 Jj=0
Poincarés duality [48, Proposition 9.12] states that:
HI(M,0M) ~ H™ 7 (M). (2.5.61)
From (2.5.60) and (2.5.61), we have

D (DB (M) < Y (-1 ey, (2.5.62)

S B () = Y1) e (25.6)
It is clear that
S DI (M) = (< S (PG M) + (<1 S (175 (M),
and
k m m—k—1
Z( 1)k_jcm—3 (=)t Z(—I)JC] + (=t (=1)¢; (2.5.64)

(—1)k+m+l Z (—1)78,(M) < (=1)F+m+1 (=1)¢;. (2.5.65)

J=0 J=0
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2 Equivariant Morse inequalities and applications

Then we replace k by m —p, for p=1,--- ,m,

—
[y

p— p—

(1B < (-1 (2.5.66)

<
Il
o

<
Il
o

Finally we replace p — 1 by ¢ and we get for ¢ =0,1,--- ,m — 1,

q q

Z(—l)q_jﬁj(M) < Z(—l)q—jcj. (2.5.67)

Note when ¢ = m, the equality in (2.5.67) holds. Hence for k =0,1,--- ,m,

k

D (=1)FB (M) <Y (=1 ey (2.5.68)

7=0 7=0

. As OM = N_, we get:
H°(M,N,_) =0. (2.5.69)
Consider the Mayer-Vietoris sequence ([33, p. 157]) associated to the pair (M, N,_):
o= HYN,.) = H(M,N,_) = H (M) = H(N,_) — -+ -, (2.5.70)
which begins as
0— H'(M)— H°(N,_) = H'(M,N,_) — -, (2.5.71)
and ends as
— H™Y(N,_) = H™(M,N,_) — H™(M) — 0. (2.5.72)

From (2.5.70) and [30, Lemma 3.2.12], we have for k =0,1,--- ,m,

k

> (=1 [B(M) = B;(M,N,_) + Bj—1(N,_)] = dim Im o*, (2.5.73)

J=0

where o denotes the map H*¥(M) — H*(N,_) in the long exact sequence induced by the
inclusion map ¢ : N,_ — M. Note

dim Im ¢™ = 0. (2.5.74)
From (2.5.68), we have
k k
D (1B 4 Bia (Ne )] < (=) e + Bj-a (Mo )] (2:5.75)
j=0 Jj=0
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2.5 Application of equivariant Morse inequalities
Now (2.5.57) and (2.5.58) follow from (2.5.73)—(2.5.75).
Case 3. OM =N, UN_, N, #(,N_ #0.

We first claim the following inequalities.
For k=0,1,---,m,

D (1AM NG < 3 (=) e, (2.5.76)

Z(—1)m*iﬁj(M, Ny =) (=) e (2.5.77)

We postpone the proof of (2.5.76) and (2.5.77) later. We now prove general inequalities
(2.5.37) and the associated equality via (2.5.76) and (2.5.77).
By (2.5.76), we have

k k

D CDFIB (M, NL) + Bi(Naw)] < D (=1 e + B;(Nav )] (2.5.78)

J=0 J=0

We now consider the Mayer-Vietorie sequence ([33, p. 185]) associated with the triad
(M7 N+7 NT+):

oo = HI7Y(Nyy) = HY(M,Ny) — H) (M, N,) = H(Ngy) — -+, (2.5.79)

which begins as

0— H°(Nyy) = H' (M,Ny) = -+, (2.5.80)

and ends as
coo = H™YN,y) — H™(M,N,) — H™(M,N,,) — 0. (2.5.81)

From (2.5.79),

k
> (=1} [8;(Nag) = Bj(M, Nyy) + B;(M, N,)] = dim Im 6, (2.5.82)

j=0

where

§¥  H¥(N,y) — H*TH(M, N,) (2.5.83)

is the connecting morphism in the long exact sequence (2.5.79). Note

dim Im 67" = 0. (2.5.84)
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2 Equivariant Morse inequalities and applications

From (2.5.78), (2.5.82) and (2.5.84), we get

> (=1)F98;(M, Nyy) + dim Tm 6f < Z(—nk*j [c; + B;(Nay)]- (2.5.85)

Jj=0 J
When k£ = m, the equality holds:

m m

D (=DM, N ) = (=1 e+ B;(Nay)]. (2.5.86)

J=0 J=0

From (2.5.85) and (2.5.86), we find that

Xk:(—l)’“‘j [8; (M, Nyy) + B;-1(N,—)] + dim Tm 67
- k
<Y (=D e + Bi(Nay) + Bi-1(N)].
m (2.5.87)
When k = m,
i(—l)m_j [8;(M,N,4) + Bj-1(N,-)] = Zm%(—l)m_j [¢j + Bj(Nas) + Bj-1(N;-)].
Next we consider the triad (M, N,, N,):
o= HI7Y(N,_) = H)(M,N,) = H(M,N,,) — H (N,_) — -+, (2.5.88)
which begins as
0— H(N,.) = H'(M,N,) — -+, (2.5.89)
and ends as
oo = H™YN,_) = H™(M,N,) = H™(M, N,,) — 0. (2.5.90)
From (2.5.88),
Zk:(—l)k_j [8; (M, Nyy) = B;(M, N,) + B; 1 (N, )] = dim Im &3, (2.5.91)

J=0

where 65 denotes the morphism H*(M,N,,) — H¥(N,_) in the long exact sequence
(2.5.88) induced by the inclusion

(N, N,y) < (M, N,..). (2.5.92)
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It is clear that
dim Im 45" = 0. (2.5.93)

Thus from (2.5.87) and (2.5.91), we get

k 2 k
D (DMIBM N + Y dim Im 6 <Y (=1 [+ Bi(Nay) + B5-1(N,-)],
and when k = m,

S (=1)"IBH (M, N =Y (=1 ¢ + Bi(Nax) + Bj—1(No—)]. (2.5.94)

Jj=0 Jj=0

The proof of (2.5.37) is complete.
Now we prove the inequalities (2.5.76) and (2.5.77).
Set

Ml == M UN+ (—M), MQ = M1 UN/, <—M1>, (2595)

where N’ is the boundary of My, i.e., N\ = N_U(—N_). From Theorem 2.38, we know
that if we endow natural Z, action on My, we would have the decomposition:

HI(My) = H (M) @ R" @ H (M;,N' ) @ R™. (2.5.96)
If we endow natural Z, action on M, we would also have the decomposition:
Hj(Ml) = H' (M) Rt ® H(M,N,) @z R". (2.5.97)

The proof of (2.5.97) is similar as we do for the closed manifold, see [28, Proposition
1.27] for more details.

Now we consider natural Zy X Zs action on My and apply the results for closed man-
ifolds to the doubling manifold M. Let 7 and 7 be the flip maps of M; and M,
respectively. Let g (resp. e) be the nontrivial (resp. trivial) element in Zy. Zs could
be viewed as a multiplication group, i.e., g> = e = 2. Then there is a natural Z, x Z,
action on My,

(e,9) - x=m(x), (g9,e)-x=m(x), Ve M. (2.5.98)

Let {W2}2_, be the non-isomorphic irreducible representation of Zy x Zs. As vector
space, W7 = R but (e, g) acts as Id on W1, W? and acts as —Id on W3, W*; besides
(g,e) acts as Id on W1, W3 and acts as —Id on W2, W4,

From (2.5.96) and (2.5.97), we find that the general expression (2.1.11) may be inter-
preted as:

= B;(M), b2 = By (M), b2 = 3;(M,N,), bt = (M, Ny). (2.5.99)
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2 Equivariant Morse inequalities and applications

Here we apply Poincare’s duality again to get 8;(M;, N7) = Bp—;(My).
The general expression (2.1.10) for Morse-Bott function — f may be interpreted as :

dj = cmj 4 Bi—1(Ny) + Bi(N_), df = comj + Bi—1(Ny);
42 = cpj + B;(N-), dj = o (2.5.100)
Now we prove (2.5.100). For critical point = of f and x € M\OM, set
W={z}®{n()} e {n@}e {nn)}. (2.5.101)
Zo X 7o acts naturally on W. W may be rewritten as
W ={z+ 71 (z) + (2) + n7i(z)} & {z + 11 (2) — () — 271 (2)}
() {I’ — Tl(fl?) + TQ(.CIZ’) — T2T1(IE)} () {.CI? — Tl(.fL') — 7'2(%') + ’7'27'1(.1')}. (25102)

It is clear that the 1-dimensional Zy x Zs-representation space {.11: +71(x)+ 71+ Tom (aj)}
(resp. {z 4+ 71(z) — 72(2) — 11 (2)}, resp. {& — 7 (z) + m(zx) — 7271 (x)}, resp. {x —
71(x) — 72(z) + 7271 () }) is isomorphic to W' (resp W2, resp. W3, resp. W*) as Zy x Z,
space. Therefore, as a representation space of Zsy X Zy, W can be decomposed as

W=w'eWw?eoW?*eo W (2.5.103)
For non-degenerate critical manifolds, we have for any w € H'~'(N,),
wd W) ={w+nw)} e {w-mnw)}; (2.5.104)
and for any w’ € H/(N_),
w' e m(w)={w+mnw)} e {w-—nw)} (2.5.105)

Note that 7, = Id on H='(N,) and 75 = Id on H?(N_). Then (2.5.100) follows from
(2.5.102)—(2.5.105).

Applying equivariant Morse equalities (2.1.12) to a = 4, one can get (2.5.76) and
(2.5.77) exactly the same way as we obtain (2.5.68) in Case 2. The proof of general
inequalities (2.5.37) and its associated equality is complete. The proof of Theorem 2.39
is complete. O

2.5.4 Morse inequalities on manifolds with boundary
In this subsection, we prove Theorem 2.2 using equivariant Morse inequalities.

Proof of Theorem 2.2. We first establish the following relations, which plays the same
role in this subsection as that of (2.5.76) and (2.5.77) in Case 3 in subsection 2.5.3.
Recall g; is given in (2.1.7). For k =0,1,--- ,m,

D (MG NG < (=1 g, (2.5.106)
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2.5 Application of equivariant Morse inequalities

when & = m, the equation holds:

m m

D (FD)TIB(M N =Y (1) g (2.5.107)

=0 §=0

The proof of (2.5.106) and (2.5.107) is exactly the same as that of (2.5.76) and (2.5.77)
in subsection 2.5.3 except that the expression (2.5.100) should be replaced by

d} =Qqm—j -+ dimRFrf,jfl(_f) + dimRFaJr,j(_f)?
43 =G + dimg F,_ ;1 (= f), &} = gm—; + dimgFoy ;(—f), (2.5.108)
d; =qu—;

j _qujv

where F;(—f) (vesp. Fut ;(—f), resp. F,_ j(—f)) denotes the corresponding vector space
F; (resp. F,. j, resp. F,_ ;) with respect to the Morse-Bott function —f.

Now we prove (2.5.108) as follows.

For every w € F;(—f), set

W= {w}e {nw}e {nw}e{nmnw)}. (2.5.109)
Then Zs X Zy acts naturally on W. W can be rewritten as

W ={w + 1 (w) + m(w) + R (w) } & {w + 71 (w) — T2 (w) — o711 (w)}

& {w — n(w) + 1(w) — ri(w)} & {w -7 (w) — 7a(w) + 7271 (w) }. (2.5.110)

Moreover, the 1-dimensional Z, x Zy-representation space {w+71(w) + o(w) + 7271 (w) }
(resp. {w+ 71 (w) = n(w) — r(w)}, resp. {w — 7 (w) + T2(w) — 77 (W)}, resp.

{w—7(w) = r(w) + Tng(w)}> is isomorphic to W' (resp W2, resp. W3, resp. W*) as
representation space of Zs X Zs. Thus as a representation space of Zy X Zs,

WeWweoaw?eWw?oWw (2.5.111)

For non-degenerate critical manifolds on the boundary, we have for any w € F,_ ;_1(—f),
w' e Fa+,j<_f)v

{w} & {nw)} ={w+nw)} & {w-"nw)};

2.5.112
{w}e{nw)} ={w+nw)} e {v—-n)} ( )
From (2.5.111) and (2.5.112), one get (2.5.108) immediately.
Applying equivariant Morse inequalities (2.1.12) to a = 4, we deduce that
k k
SV By (M N < 31 g (25,113

One verifies (2.5.106) from (2.5.113) as in Case 2 in subsection 2.5.3.
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2 Equivariant Morse inequalities and applications

Recall that (2.5.37) follows from (2.5.76) and (2.5.77) in subsection 2.5.3. Thus from
(2.5.106) and (2.5.107), we have the following analogue of (2.5.37):

k k
S DRI N) < (-1 (25114)
j=0 Jj=0
where
pj = a5+ B;(Nat) + Bj—1(Nr—). (2.5.115)

The equality holds for k£ = m.

We next deduce the inequalities (2.1.16) and its associated equality from (2.5.114)
and its associated equality. We directly apply our results for closed manifold to the
submanifolds N,, and N,_ respectively.

Applying degenerate Morse inequalities, i.e., (2.3.1) and (2.3.2), to closed manifold
Ny, we find that for 0 < k< m —1,

k

D (=1FIB(Nas) <

J=0

(=) gay ;. (2.5.116)

M-

<
Il
o

The equality in (2.5.116) holds for £k = m — 1. Note

Bm(Nat) = 0 = ot m- (2.5.117)
By (2.5.116) and (2.5.117), we get that for 0 < k < m,

k

D (=1FIBi(Nay) <

J=0

(—=1)"gay ;. (2.5.118)

-

<
Il
o

The equality in (2.5.118) holds when k& = m.
For closed manifold N, _, we also have for 0 < k <m — 1,

k

D (DMIBN) < D (1) g (2.5.119)

J=0

<

The equality holds for £k =m — 1.
From (2.5.119), we have for 0 < k < m,

k

Y (DB (N) €

J=0

(=1 g,— ;1. (2.5.120)

-

<
I
o

The equality in (2.5.120) holds when k& = m.
From (2.5.114), (2.5.118) and (2.5.120), we get (2.1.16). It is clear that its associated
equality also holds when k& = m. The proof of Theorem 2.2 is finished. O
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3 The second coefficient of asymptotic
expansion of Bergman kernel

The aim of this Chapter is to calculate the second coefficient of the asymptotic expansion
of the Bergman kernel of the Hodge-Dolbeault operator associated to high powers of a
Hermitian line bundle with non-degenerate curvature, using the method of formal power
series developed by Ma and Marinescu.

This Chapter is organized as follows. In Section 3.1, we state our second main result of
this Thesis, i.e., Theorem 3.3. In Section 3.2, we provide the corresponding Lichnerowicz
formula for the Hodge-Dolbeault operator and the Bergman kernel. In Section 3.3, we
establish the spectral gap property of the Hodge-Dolbeault operator. The spectral gap
plays an essential role in the proof of the existence of the asymptotic expansion of the
Bergman kernel. In Section 3.4, we investigate in great detail about the existence of the
asymptotic expansion. We also provide there an explicit formula (3.4.224) of the second
coefficient in the asymptotic expansion. In Section 3.5, we prove that the last terms in
the formula (3.4.224) vanish. In Section 3.6, we calculate the rest terms in (3.4.224) and
then finish the proof of our second main result. In Section 3.7 we check the compatibility
of our final result (3.1.19) with Riemann-Roch-Hirzebruch formulas.

3.1 Main result

Let (X, J) be a compact complex manifold with complex structure J. Let (L, h’) be a
holomorphic Hermitian line bundle on X endowed with holomorphic Hermitian connec-
tion VI and curvature R = (VF)2.

Our basis assumption is that w := %RL defines a symplectic form on X.

The complex structure J induces a splitting 7X @ C = THOX @ TOD X | where
TOOX and TOYX are the eigenbundles of J corresponding to the eigenvalues /—1
and —y/—1 respectively. Since the J-invariant bilinear form w(-,J-) is non-degenerate
on TX, there exist J-invariant subbundles denoted V,V+ C TX such that

w(-J)|, <0, w(,J)|,. >0 (3.1.1)
and V, V1 are orthogonal with respect to w(-, J-). Equivalently, there exist subbundles
W, W+t c T X such that W @ W+ = TOO X, W, W+ orthogonal with respect to w

and

RY(u,w) <0, for u € W; R*(u,u) >0, for ue W+, (3.1.2)
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3 The second coefficient of asymptotic expansion of Bergman kernel

Set rankW = ¢. Then the curvature R* is non-degenerate of signature (¢,n — ¢). Now
take the Riemannian metric g7~ on X to be

g™ = —w(-,J-)|VEBw(-,J-)|VL. (3.1.3)

Since w is compatible with the complex structure J, then the metric 7% is also com-
patible with J. Note that (X, g’¥) is not necessarily Kihler. Denote by <,> the
C-bilinear form on TX ®g C induced by ¢g”*. Denote by VI¥ the Levi-Civita connec-
tion on (T'X, g7™) and by RT¥ (resp. r¥X) its curvature (resp. scalar curvature). Set
AW = AT X) @ A(T*OVX). Since RF € AY!, then w is compatible with the
complex structure J.

Denote by RT"YX the Hermitian metric on 7MY X induced by g'X. Let vIeox
be the holomorphic Hermitian connection on (79X, h7""X) and let RT"”X be its
curvature. Then V"X induces the holomorphic Hermitian connection Vdet(THOX) o
the holomorphic line bundle det(T"?X). Let V¢ denote the Clifford connection on
A(T*OD X)) induced canonically by V7X and Vaet(T"9X),

Let (E,h¥) be a holomorphic Hermitian vector bundle on X endowed with holomor-
phic Hermitian connection V¥ and the curvature R¥ = (VF)2. Set

E =NT"X)e’®E, E,=PE). (3.1.4)

p
J=1

Let (-, -) be the metric on E, induced by ¢g7*, h* and h”, and let dvx be the Riemannian
volume form of (T'X, g"*). Let Q%/(X, LP ® E) denote the space of smooth sections of
E) on X. Set Q" (X,LP x E) = @7_Q%(X,L? ® E). The L? scalar product on
QY (X, [P ® F), is given by

(31,52>:/X<81(x),52(m)>dvx(x). (3.1.5)

We denote by || - ||z2 the corresponding norm.

Let 3“7 be the formal adjoint of the Dolbeault operator """ with respect to the
scalar product (3.1.5).

Definition 3.1. The Hodge-Dolbeault operator on the complex manifold (X, .J) is de-
fined as

D, = V2(8" " + 3", (3.1.6)
By the Hodge theory, we know that
KerD?|goi(x,1reor) ~ H (X, [P @ E), (3.1.7)

where H%*(X, LP ® E) is the Dolbeault cohomology. By Andreotti-Grauert coarse van-
ishing theorem (see e.g. [29, (1.29)], [30, (8.2.18)]) we obtain that for p large enough,

HY(X,[’® E) =0, forj#q. (3.1.8)
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3.1 Main result

It is a consequence of (3.1.7) and (3.1.8) that the kernel of D> is concentrated in de-
gree ¢ for p large enough. Let ngq be the orthogonal projection from Q%(X, P @ E)
on Ker(D?2), and let P9(-,-) be its kernel with respect to dvx. The operator P is
smoothing, so the kernel B)(-,-) is smooth.

Let I;o 7)o be the orthogonal projection from AT*OVX) @ E onto det(W') ®

E. We denote by (det(W*))l the orthogonal complement of det(W) in A(T**VX).
Denote by © the form associated to 7%, i.e.,

O(U, V) =(JU,V) for UV € TX. (3.1.9)
The following result is due to Ma and Marinescu, see [29, Theorem 1.7].

Theorem 3.2. There exist smooth coefficients b,(x) € End(AY(T*VX) @ E)  which
are polynomials in RTX RE (and dO, RY) and their derivatives of order < 2r—2 (resp. <
2r — 1,2r) at x, such that

bo = Ly (7701 (3.1.10)

and for any k,l € N, there ezists Cy; > 0 with

< Crp™ L, 3.1.11
olx) k1P ( )

for any p € N. Moreover, the expansion is uniform in that for any k,l € N, there is an
integer s such that if all data (g7, hE, VL hE VE) run over a set which are bounded in
C* and with g™* bounded below, there exists the constant Cy; independent of ", and
the C'-norm in (3.1.11) includes also the derivative on the parameters.

To state our main result we continue to introduce more notations. Let V7"”X be
the Chern connection of (TH9X, AT"X) where hT""X is the Hermitian metric on
T X induced by ¢7¥ in (3.1.3). We denote by RT""”X the curvature of V7" X . Let
J:TX — TX be the almost complex structure defined by

w(U, V)= g™ U, V) for UV € TX. (3.1.12)

Then J commutes with J. Let vy, . . ., v, an orthonormal frame of (T3 X, 17" X) such
that the subbundle W is spanned by vy,...,v,, and let v',... v™ be the dual frame. It
is a consequence of (3.1.3) and (3.1.12) that

Jvj = —v—1v;, for j <¢q; Jv; =+v—-1v;, for j > q+ 1. (3.1.13)

Let T}I’O)X and T}O’I)X be the eigenbundles of J corresponding to the eignevalues v/—1
and —+/—1 respectively. Set

u;j =; if j < ¢ and u; = v; otherwise. (3.1.14)
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3 The second coefficient of asymptotic expansion of Bergman kernel

Then uq,...,u, forms an orthonormal frame of the subbundle T}I’O)X . We denote by

ul, ..., u" its dual frame. Then

=V-1) AT, (3.1.15)
j=1

Let V2 be the Bismut connection (see (3.2.20)) on A(T*(®VX) whose curvature is
denoted by RZ. Denote by VX1, VB¢ the covariant derivative of a tensor ¢ with

respect to VX and VB, respectively. Let e, ..., es, denote an orthonormal frame of
(X, g™), set

VX = Z (VED)e,|*, |VEI" = Z [(VED)e,|”. (3.1.16)

7,7=1 1,7=1

We denote by T, the anti-symmetrization of the torsion tensor of the connection induced
by the Chern connection V7% on T'X (cf. (3.2.1), (3.2.2)). Let A,, be the contraction
operator with the form w. Let P be the smooth 2-form over X defined by

P(U,V) :%(RB(uj,aj)U, V)

1 1
+ (0T (w0, U V) + (§Tr [RT"X] + RE) (U, V). (3.1.17)

The summation convention of summing over repeated indices is used here and throughout
this paper. Note that (cf. [30, (1.2.51)]),

Tos = —V—=1(0 = 0)© and dT,, = 2v/—1000. (3.1.18)

The main result of this Chapter is as follows.

Theorem 3.3. Let X be a compact complex manifold and (L,h*) be a holomorphic
Hermitian line bundle whose curvature is non-degenerate of signature (q,n — q). Let
(E,h¥) be a holomorphic Hermitian vector bundle. Endow Q°°(X, LP ® E) with the L*-
scalar product induced by the Riemannian metric g7 defined by (3.1.3) and by h* hE.
Then the coefficient by from the expansion (3.1.11) of the Bergman kernel P)4(-,-) on
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3.1 Main result

(0, q)-forms is given by

1 1 1, _
mby(z) = {§RE(%’=%’) +Ir [RT( "X (uy, 1)

1 B
- EAUJ (d(AwTas)) B m (V UJ’ } det(W")®E (3-1-19)
_2 Z Z <(meJ)u], uk><(V§mJ)m, ﬂl>ﬂl VAN Y;Ui[det(W*)@)Euj A iﬂk
i.j=1 k,l=q+1
1 q n L ,—
-3 Z Z [P(uj,uk) — —< VBVBJ) (wi 7) uj,uk>]u Ny Ly 0B
J=1 k’*q-ﬁ-l
+ Z Z |: dTCLS u27 u], uk;, ul) VU»,nJ UZ’ ul> < vﬂBmJ>ﬂ]7 ﬂk‘>
1,7=1 k,l=q+1
1
10 (V2 J) Vi, w) - {( (VE J)u],ukﬂu AT A b Lyer 708
1 - — V=1 o
- Z Z Z [P(uk’ uj) B T<(VBVBJ)(E',UZ’)UI€> u]>:| Idet(W*)(g)Eu] VAN Ly,
J=1 k=q+1
+ g Z Z |:§<dTa5)<u’i7uj7uk7ul) - E (VﬂmJ)ui, ul> . <<Vum,])uj7 uk>
i,j=1 k,J=q+1

(VUmJ uz,ul> < V J u],ukﬂ[det( )@EUJ /\ui/\imz’ﬂk.

In particular,

T Tl“|Aq(T*(o,1)X) [bl(l’)}

1 1 1, _
=§RE(U17%‘) + o Tr [RTX) (uy, ;) —

3.1.20
%Aw (d(ALTys)). ( )

By integration of the expansion (3.1.11) we can compare coefficients with the Riemann-
Roch-Hirzebruch formula and we can check our formula for b;. This will carried out in
Section 3.7.

Since the explicit formula (3.1.19) seems rather lengthy, it is worthwhile to show what
it reduces to in various interesting special cases.
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3 The second coefficient of asymptotic expansion of Bergman kernel
Corollary 3.4. If (X, g™, J) is Kdhler, then we have
1 g, _ 1 710 x — b
’/Tbl(aj’) = iR (uj,uj)+ZTr[R }(uj,uj) 144|(V J u]‘ det( )®E

Z Z <V Juj,uk><(V§mJ)m,m>ﬂl/\z’uifdct(W*)QbEuj/\z’ﬂk

zy 1 k,l=q+

T Z Z [ Te[R™7] + RF) (w;, W) (3.1.21)

Jj=1 k=q+1

1 X — \—  — —k .
B 6<RT (uz‘7uz’)uj>“k>]“ Nt lgoiyom

12 3[R R )

=1 k=q+1
1 _ .
- 6<RTX(W7 ;) ur, U3>] Idet(W*)®Eu] Nty -
Taking the trace over AY(T*OV X)) yields
1 1 1, _
™ T oo x) [br (2)] = SR (g, W) + ZTr[RT( "X (uy,5). (3.1.22)

Corollary 3.5. If ¢ =0, then it follows (3.1.3) and (3.1.12) that (X, g*™, J) is Kdihler.
Then the formula (3.1.19) reduces to the known one [30, (4.1.8)] for positive line bundles:

1 1 . _ 1 o
7Tb1<:1)‘) = §RE<Uj,@j) —+ ZTY [RT( O)X} (’l}j,?}j)IdE = §RE<Uj,Uj) —+ ?IdE (3123)

Formula (3.1.23) follows immediately from (3.1.21).

3.2 Bergman kernel of the Hodge-Dolbeault operator

In this Section we introduce the corresponding Lichnerowicz formula for the operator

Df) and the Bergman kernel of the operator DIQ,. We also calculate here the curvature

RB,A‘*‘@LP@E

operator which naturally arises in the Lichnerowicz formula.

3.2.1 Lichnerowicz formula

For any v € TX ®@g C with decomposition v = v +wvp1 € THOX @ TOVX | let 77, be
the metric dual of vy o. Then ¢(v) = \/5(5{70 A —iy,, ) defines the Clifford action of v on
A(T*OD X)), where A and i denote the exterior and interior product, respectively.

The holomorphic Hermitian connection VY% on 79X induces naturally a Her-
mitian connection V7""X on TOD X Set

VX = yTOX g yTOnx (3.2.1)
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3.2 Bergman kernel of the Hodge-Dolbeault operator

Then V7¥ is a Hermitian connection on TX ®g C and it preserves the decomposition
TX @g C=To0X @ TODX. We still denote by VT¥X the induced connection on TX.
Let T be the torsion of the connection V7 , and let T,¢ be the anti-symmetrization of
the tensor T, i.e., for U,V W € TX,

Tos(U,V,W) = (T(U, V), W) + (T(V,W),U) + (T(W,U), V). (3.2.2)

It is a consequence of (3.2.1) that the torsion operator 7" maps T X @ TUO X (resp.
TONX @ TOVX) into THOX (resp. TV X) and vanishes on TU0) X @ TOV X,
If {e',...,e*"} denotes an orthonormal frame of 7* X, then define

‘(A Ne)=cle) - cley), forip <- - <ij. (3.2.3)

In this sense °B is defined for any B € A% by extending C-linearity.
Take U € T'X. Let

. 1,
vEAT — v 7 (i) (3.2.4)

be a Hermitian connection on A(T*®Y X)) induced by V¢ and T, then Vg’AO" preserve
the Z-grade of A(T*OYX) (cf. [30, (1.4.27)]). If {v1,...,v,} denotes an orthonormal
frame of 70 X as in (3.1.13), set

= P
€2j71—ﬁ(%‘+vj)’ =7 (v —5). (3.2.5)

Then {eq, e, ..., €9, 1,€2,} forms an orthonormal frame of T'X. Set

ViXe; = TT¥e;, ydet(T0X) (Vi A= Awy,) = Fdet(T(l’O)X)(vl A= Avy).  (3.2.6)

Denote by o/ the metric dual of v;. It is a consequence of [30, (1.3.5)] that VBA™ g
given, with respect to the frame {2/t A -7k, 1 < j; < -+- < j, < n} of A(T*OVX),
by the local formula

1 1 det(r(1:0) ..
d+ Z<FTX€"’ ejye(e;)ce;) + §Fd HTTEEX) 2 (1. Ts)- (3.2.7)

Let 22" be the connection 1-form of VZA”* (associated to the above frame of A(T*©1 X)),
ie.,

,® 1 1 3 1 .
[BAY = Z(FTXei, ejyc(e;)c(e;) + §Fdet(T(1 0x) _ 1 (3. Ts)- (3.2.8)

Denote by V¥®F the holomorphic Hermitian connection on L? ® E induced by V¥
and V¥, Set

YBAOLPOE _ B o 1 4 | g VE'OF, (3.2.9)
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3 The second coefficient of asymptotic expansion of Bergman kernel

0,e D . . . . 0,e D
Then VBATOLOF ig 3 Hermitian connection on E,. Let RBAOL'®E he the curvature

0,e 0,e . .
operator of VBATOLIOE and let ABATOLPOE b the Bochner Laplacian associated to
B,A%*QLPQE
\% :

ie.,
2n
. D 0 D 0,0 P
ABAYQLPGE _ _ Z [(ij’AO ®L ®E)2 _ vg;ﬁxej‘m E | (3.2.10)
j=1 ’
If {eq,...,ea,} denotes an orthonormal frame of T'X, then set
AP = > |Aler,e5.e)]?, for A€ A(T*X). (3.2.11)

i<j<k
The following Lichnerowicz formula [30, (1.2.51) and (1.4.29)] for D2 holds:

1

0,0 p
D2 = APATOLIOE 2pRL(ei, ej)c(e;)c(ej) + @, (3.2.12)
where
?"X c E 1 T(1,0) x 1 c 1 2
=+ (R +5Tr (R 1) - 7 (dT0s) = g\Tas\ (3.2.13)

Definition 3.6. The Bergman kernel P,(x,y)(xz,y € X) is the smooth kernel with
respect to dvx(y) of the orthogonal projection P, from Q%*(X, [? ® E) onto KerD,.

Then P,(z, z) is an element of End(A(T**VX) ® E) . Moreover, it follows from (3.1.7)
and (3.1.8) that PY9(x,y) coincides with P,(z,y) for p large enough.

3.2.2 The calculation of the curvature operator REA" ®L'®E

Denote by S® the 1-form with values in the space of antisymmetric elements of End(7T'X)
which satisfies for U, V. W € T X,

1
(SE(U)V, W) = —§Ta5(U, V,W). (3.2.14)
Substituting (3.2.14) into (3.2.8) we get

.1 1
BAY 1<(FTX + SB>€i7€j>C(€i)C(€j) + §Fdet(T(LO)X)' (3.2.15)

Let RBA™ denote the curvature operator of VBA”. For U,V € TX, then

REA™ (U, V) =(dDPA) (U, V) + (DEA™ ATEA) (U, V)

— (dTPA™ Y (U, V) + [DBA™ (U), TBA™ (V). (3.2.16)
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3.2 Bergman kernel of the Hodge-Dolbeault operator

It is clear that

% [< (FTX + SB) (U)e;, ej>c(ei)c(ej), <(FTX + SB)(V)ek, el>c(ek)c(e,)}

:% x 4 <(FTX + 5B (U)es, ej> : <(FTX + 5B (V)ex, ej> [c(ei)c(ej), C(ek)c(ej)]
i#7,j#k
:;l<(FTX + SB)ei, ej> . <(FTX T SB)% ej>(c(ei)c(ek) — c(ex)c(e;))
1

== (T + 5 (V) (T + B)es, 1 ) (clen)eler) — eler)eler)

:}K((PTX +8%) A (I 4+ 98) (U, V)e,, 6]‘>°’(€Z‘)C(Bj)‘

Therefore,

REA :i<d(FTX + SB)ei, €j>c(€¢)0(€j) + %Tr [RTO’O)X} (3.2.17)

{07 4 87) A (I 4 57))ew e elen)ele)
:i<(RTX + Q)e;, e5)ce;)cle;) + %Tr [RT(LO)X},
where
Q=dS" + S ANSP + (SPATTX +TTX A SP). (3.2.18)
Then
REBAOLPOE _pBA® | pl | RE (3.2.19)
:i«RTX + Q)ei e )clei)c(ef) + %Tr [RT"”X] + pR* + RE.
Let us consider the Bismut connection on 7°X
VP =vT¥ 4+ 85 (3.2.20)

By [5, Prop.2.5], V¥ preserves the metric ¢’* and the complex structure J of TX.
Then the curvature R? is compatible with the complex structure J of TX, so is the
curvature RBA". Clearly,

RP = RT™* 4+ [VT¥ S8 + SB A SE. (3.2.21)
Combining (3.2.18) and (3.2.21) yield
RP = R™ 1+ Q. (3.2.22)

Substituting (3.2.22) into (3.2.19) we obtain

. p 1 1 s
ROAMEVEE = 2(RPey ej)eler)ele;) + 5 Te[RTX] +pR" + R”. (3.2.23)
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3 The second coefficient of asymptotic expansion of Bergman kernel

3.2.3 Comparison between curvatures of Bismut and Levi-Civita
connections

Let us first describe some properties of the tensors VXJ and V2J.
It is a consequence of (3.1.12) that J, VT, (VXV*J) (. are skew-adjoint endomor-
phisms of TX. Also by (3.1.12), we find that for U, V,W € T X,

(VEQV.W) =(Viw) (V. ), -
((TEDV.W) + (TENW,U)+{(VEI)U,V ) = dw(U,V, W) = 0. h
By the definition of (VXVXJ) 1),

(VVED vy — (VIVED) oy = [R™(U, V)],
J- (VXVED ) + (Vi) - (V) + (Vi) - (Vi) (3.2.25)
+(VXVED vy - I =0.

From (3.2.24), we have for Y € TX,
<(VXVXJ)(Y7U)V, W> + <(VXVXJ)(W)W, U> + <(VXVXJ)(KW)U, V> — 0. (3.2.26)
For the other tensor V2J, we have for U, V,W € TX,
(VENV. W) = (VEw) (V. W) (3.2.27)

and

(VEVED) vy — (VEVED) vy = [RP(U,V),J],
I (VEVED) vy + (V5I) - (VEI) + (Vi) - (Vi) (3.2.28)
+(VEVEY) vy - I = 0.

Since the torsion V? is not torsion-free, then the analogue of the second equality in
(3.2.24) for the tensor VZJ does not hold, neither does the analogue of (3.2.26). Let

T;(l’O)X and T}(O’l)X be the dual bundle of T}l’O)X and T}O’l)X, respectively. By the
definition of VXJ and (3.2.24),

((VXJ)-,-) is of type (T (* O)X) @ (T}(O’I)X)(m. (3.2.29)
On the other hand, the tensor V2J satisfies the following properties.

Proposition 3.7. VBJ preserves TOOX and TOVX . Furthermore, it exchanges the
subbundle W and W+.
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3.2 Bergman kernel of the Hodge-Dolbeault operator

Proof. It is a consequence of the facts that VZJ = 0 and JJ = JJ that
J(VEI) = (VPI)J, (3.2.30)

which implies immediately that VZJ preserves 7% X and TV X . Clearly by (3.1.13)
forUeTX and 1 < j,k < q,

<(V§J)vj,vk> <VU(JU]) vk> + <V5vj,mk> —0. (3.2.31)
This completes the proof of Proposition 3.7. O

Lemma 3.8.

ZZZ’<VJUJ’UR‘*2Z‘ (W),

zl]lkq—i-l

S 3 [ = vl -2 3 [(sP )

i=1 j=1 k=q+1 ij,k=1

(3.2.32)

Proof. In view of Proposition 3.7 and (3.2.29), we find

S5 S [ =2 3 () =2 3 [P @]
ij.k=1 ij,k=1

i=1 j=1 k=q+1

(3.2.33)
Again by Proposition 3.7 we get
VEI* =23 [(VED |+ 2 [(VEI)uy|” (3.2.34)
ij=1 ij=1
n q n 2 n q n 2
=433 3 [(VEDum)[ #4330 D (VD)
i=1 j=1 k=q+1 i=1 j=1 k=q+1

Combining (3.2.33) and (3.2.34), we obtain the second equality of (3.2.32). This com-
pletes the proof of Lemma 3.8. n

The main result in this subsection is the following difference formula (3.2.35) between
the two curvatures R? and RTX.

Proposition 3.9.
< (RB - RTX) (Ui, ﬂi)uj, ﬂj>

:é(]vBJf—}vXJf) +%A (A(AThe)) — 2 Z (87w u],uk>‘

i,5,k=1

(3.2.35)
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3 The second coefficient of asymptotic expansion of Bergman kernel

To prove Proposition 3.9 we need the following three Lemmas.

Lemma 3.10.
<(RB - RTX)(Ui,ﬂi)Uj,ﬂj> (3236)
Z ’<S u;) ujuk>‘ - Z ‘(S u; ujuk>‘ + 1 A A (dTs).
i,5,k=1

Proof. One verifies directly that
<(RB — RTX)(ui,m)uj,ﬂj>
:<SB(u,~)uj, sB(m)aj> - <53(m>uj, SB(ui)Ej> (3.2.37)
<(VXSB)(ul)u],u]> <(v§53)(ui)uj,aj>.
By (3.2.14), we obtain

<(VXSB)(uz)u],uJ> %(VXTCLS)(u“u],uJ) (3.2.38)
1
<(V%SB)(ui)uj,Uj>— é(VXTas)(uZ,u],u])
Substituting (3.2.38) into (3.2.37) vields (3.2.36). O

Lemma 3.11.
S(Iv7af = v af’)
i ’<S i), Uk ‘ + i )<SB(E‘)UJ’7U1@>’2 (3.2.39)

+ @@B(ui)uj, (VE3)E; )~ §<33(m)m, (VET);).

Proof. By (3.2.29) we obtain

V¥I =2 ((VED |, [VEPIP =23 [(VED "+ 2 [(VE 3wy

ij=1 ij=1 ij=1
(3.2.40)
A direct computation leads to
v - vaf
n 9 n 9
=23 187 (), Iy +2 Y 157 (@), IJu, (3.2.41)
1,j=1 i,j=1

+ 2<[SB(ui), Iu,, (vgi_J)aj> n 2<[SB(E,~), I3, (vuXiJ)uj>.
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Clearly,

Z ‘ 198 (), uj Z ’ SB (u;), uj,uk>’ =4 Z ‘<S u;) uj,uk>‘2, (3.2.42)

1,7=1 3,7,k=1

and

Z‘SB @), ;| Z‘ (1S® (@), uj,uk>’ —4 Z (s”(m) uj,uk>(2. (3.2.43)

i,j=1 i,7,k=1 i,j,k=1
Substituting (3.2.42) and (3.2.43) into (3.2.41) yields (3.2.39). O
Lemma 3.12.
1 1
—Aw(d(AwTas)) :—A A, (dT,s) — <SB(uz)u],uk>< 7Xuj,uk>

4 16

- <S u; uj,uk>< u],uk> (3.2.44)
Proof. Clearly

— 1/\ (d(AwTas)) = gd(AwTas)(uiaﬂi) (3245)

1 _ 1 _ _
_vﬂi (Tas (uj7 uj7 uz)) - §Tas<uj> uj7 [uia uz])

:_vul( as(ujau]auz)) 5

By (3.2.14) we obtain
1 1
— 1A (d(AuThs)) = — 1—6AwAw(dTas) + (SP(w)uy, Vi5uy) + (S8 (uy)w, Vi Xa;)
- <SB<UZ‘)ﬂj, V%Xu]> + <SB(UZ')U]', V%ZXEJ> (3246)
Clearly,

(S (w;)uy, Viru;) + (SP(uy)u;, Vi wy) =(S% (wW)u;, w) - (Ve s, we),  (3.2.47)
<SB Uy, szuj> <S u],VIXu]> < B(ui)uj,uk> . <V£_Xﬂj,ﬂk>.

Substituting (3.2.47) into (3.2.46) yields (3.2.44). The proof of Lemma 3.12 is complete.
[

Proof of Proposition 3.9. Formula (3.2.35) follows immediately from (3.2.36), (3.2.39)
and (3.2.44). O

3.3 The spectral gap of D’

In this Section, we establish the spectral gap property of the Hodge-Dolbeault operator
D,. This property serves as an essential ingredient for the existence of the asymptotic
expansion of the Bergman kernel.
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3 The second coefficient of asymptotic expansion of Bergman kernel

If Ais a 2-form, then

L Aen e;)elenele;) = -

1 A(v;, 75) + A(vy, 050" A i, (3.3.1)

| = =

1 .
Alvj, v )i i, + 5 A@;, DD A AL

+

Set

q n
Wi = — 271'2@'@ AT —2r Z W Ay,
j=1 j=q+1 (3.3.2)

T, =m1r —J)V2 = onn.

[

From (3.1.12), (3.1.13) and (3.3.1), we have

1
ERL(eZ-, ej)clei)c(e;) = —2wq — . (3.3.3)
Set
O7(X, [P @ E) =Y Q"(X,[’® E). (3.3.4)
J7#4q

The following result is due to Ma and Marinescu, see [29, Theorem 1.1].

Theorem 3.13. There exists C, > 0 such that for any p € N,
2 2
HDI%SHLZ > (4pm — CL)||SHL2, Vs e Q%X [P ® E). (3.3.5)

Proof. We give the proof for the reader’s convenience. Substituting (3.3.3) into (3.2.12)
we get,

HD;SHi2 = |!VB’AO’.@U)@ESHi2 — p<Ts, s> — 2p<wds, s> + <<I>s, s>. (3.3.6)
We first claim that there exists C; > 0 such that for every s € Q*(X, [P ® E),
HVB’A(]’.@’LP@)ESHi2 —p<73, s> > —CleHiQ. (3.3.7)
In fact, let us now consider the almost complex manifold (X, J). Recall that
u; =7;, for j < qand u; =v;, for j > q. (3.3.8)

Then {uy, ..., u,} spans the eigenbundles of J corresponding to the eigenvalue v/—1 and
the positive condition [30, (1.5.21)] holds for R*| i.e.,

RY(uj, ;) = 27, and R"(uj,uy) = 0 = R"(u;, ). (3.3.9)

Let (E', h¥") be a Hermitian vector bundle on (X, J), and let V¥ denote a Hermitian
connection on (E', h¥"). Denote by V**®¥ the Hermitian connection on L? x £’ induced
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3.4 Diagonal asymptotic expansion of Bergman Kernel

by V¥ and V. It is a consequence of (3.3.9) that [30, (1.5.30)] holds, i.e., there exists
Cy > 0 such that for every s € C*(X, LP x E'),

||VLP®EIS ‘; —p(7's,s) > _CQHSHiQ, (3.3.10)
where
T = Z RY(uj, ;) = 2nm = 7. (3.3.11)
=1

Then (3.3.7) follows from (3.3.10) by taking E' = A(T*OVX) ® E and VI'®F =
vB,AOV'®LP®E.

In view of (3.3.2), for every s € Q079(X, [P @ E),

(wys, s) < —27THS||i2. (3.3.12)
Clearly there exists C3 > 0 such that for every s € Q**(X, [P ® F),

(@5,5) = —Cy 3] (3.3.13)
Substituting (3.3.7), (3.3.12) and (3.3.13) into (3.3.6), we get (3.3.5). The proof of
Theorem 3.13 is complete. O]

The following spectral gap, i.e., (3.3.14) (cf. [29, Theorem 1.2]) plays an essential role
in the asymptotic expansion of the Bergman kernel of the Hodge-Dolbeault operators.
For any operator P, we denote by Spec(P) the spectrum of P. It is a consequence of
Theorem 3.13 that

Corollary 3.14.
Spec(D2) C {0} U [4mp — Cp, +00). (3.3.14)
Then, (3.1.8) follows immediately from (3.3.14) for p large enough.

3.4 Diagonal asymptotic expansion of Bergman Kernel

This Section is devoted to the study of the near diagonal asymptotic expansion of the
Bergman kernel. It is written along the lines of [30, Chapter 4]. In subsection 3.4.1, we
explain that our problem is local. The localization of the problem allows us to extend the
Hodge-Dolbeault operator from a small neighborhood of 0 to the whole space of R?", such
that the spectral gap property still holds for the operator (D;’AU)Q, where Df;AO denotes
the extension operator on R?*" of the Hodge-Dolbeault operator D,. This is done in
subsection 3.4.2. We also derive there the Taylor expansion of the rescaled operator
LY of (Dg’A0)2. Subsection 3.4.3 is devoted to the Sobolev estimate on the resolvent
(A — L)~ In subsection 3.4.4, we derive the uniform estimate on the Bergman kernel
of the rescaled operator £} and then establish its near diagonal estimates in Theorem
3.30. In subsection 3.4.5, we examine the Bergman kernel of the limit operator L) of
the rescaled operator £4. Then we finish our proof of Theorem 3.2 in subsection 3.4.6.
Moreover, an explicit formula (3.4.224) is given there for the second coefficient of the
asymptotic expansion in Theorem 3.2.
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3 The second coefficient of asymptotic expansion of Bergman kernel

3.4.1 Localization of the problem

For z € X,e > 0, denote by B¥(z,¢) the open ball in X with the center z and radius
e. Choose ¢ small enough such that a normal coordinate around B*(z,¢) is available.
Since X is compact, then there exists {zy,...,7y,} such that the union of B*(z;,¢)
forms a covering of X. Set U; = B*(x;,¢). On U;, we identify Ly, EZ,A(T;(O’UX) to
L, E,, A(T;i(o’l)X) by parallel transport with respect to the connections V¥, V¥, vEBAT
respectively, along the curve ¢t — tZ,t € [0,1]. This induces a trivialization of E, on
Us,.

Let {ej1,...,€e2,} be an orthonormal basis of T,,X. Denote by V the ordinary dif-
ferential operator on T,, X in the direction U. Let {11, ..., 1y, } be a partition of unity
subordinate to {Uy,...,Un,}. For [ € N, we define a Sobolev norm on the I-th Sobolev
space H' (X, E,) by

No l 2n
HSHJ :ZZ Z HV% Vezk(¢’3)||i2 (3.4.1)
i=1 k=0 i1, ir=1
It is clear that the norm H : Ho is equivalent to H : ||L2 as in (3.1.5).

Lemma 3.15. For any m € N, there exists C,, > 0 such that for any s € H*""2(X | E,),

m—+1
[5/lomss < Conp™ > p77||DYs|| . (3.4.2)
j=0
Proof. Let 'V, TF, ['BA" be the connection form of VE, VE and VA" respectively,

with respect to any fixed frame for L, F and A(T*®Y X) which is parallel along the curve
t—tZ,t €[0,1]. From [30, (1.4.17) and (1.4.28)], we have on Uj,

Dy =) (Ve, +pU"(e;) + T7(2)) + DB (&) + = “(Tus), (3.4.3)

where €; denotes the parallel transport of e; with respect to V7 along the curve ¢ —
tZ,t € [0,1]. Then

D2 = —(Vz,)* + pe(é))e(én)TH(6,) Ve, — p* (TH(E)* + I, (3.4.4)

where [; is a differential operator of order 1 with values in End (A(T;i(o’l)X ) ® Exl) and
I, is independent of p. From (3.4.1) and (3.4.4),

Il <c (el + 1 2o 0vs 2wl

<O(ID3sl15. +#*sll5. ) (3.4.5)
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3.4 Diagonal asymptotic expansion of Bergman Kernel

That is
lsll, < (D28l + 215l ) (3.4.6)

Let @ be a differential operator of order m with scalar principal symbol and with
compact support in U;. Then

[Dy, Q] = p[e(&)T (&), Q] + [c(&;) (T(&;) + TP (&) + TE(¢))) + % “(Tas), Q]
(3.4.7)

where the two summand on the righthand side of the equation are differential operators
of order m — 1, m, respectively. Clearly,

Combining (3.4.6), (3.4.7) and (3.4.8), we have
|@sll, <o (D308, + 975,
<O(lQD3s]| 2 + 1@l s + 5l (3.4.9)
By (3.4.9) there exists C,, > 0 such that
5lams2 < G (125 + 2511 (3-4.10)
Similarly,
5lams1 < G (127 + 22051 (34.11)
Substituting (3.4.11) into (3.4.10) we get
5lamsz <Con (12350, + 210380y + 91150,
<O (103510 + #0511 )- (34.12)
Replacing m by m — 1 in (3.4.12),
512 < G (1035 3+ 2512 (3-4.13)
Then
10351, < G (1035 - + 22 D35l o) (34.14)
Substituting (3.4.13) and (3.4.14) into (3.4.12) we find

50212 < G (105 + 221D s+ 2512 (34.15)
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3 The second coefficient of asymptotic expansion of Bergman kernel

Similarly,

0o < Cont® (1055 s + 71055 sy 21D35 g + 9] (B:426)

We finally get

[8llase <Co®™ ([0l + 22D slly + - 4+ 97 ],)
m+1
=C,,p*m Zp*QjHDf)jSHO. (3.4.17)
§=0
The proof of Lemma 3.15 is complete. O]

Let 6 : R — [0,1] be a smooth even function given by

0(v) =1, if [v] < - and 6(v) = 0, if |v] > e. (3.4.18)

€
2
Set

Pla) = ( /_ " B()dv) ! /_ " (). (3.4.19)

[e.9]

Then F(0) =1 and F'(a) lies in Schwartz space S(R), i.e., for any multi-index «, 3 there
exists Cy g > 0 such that

36
j— < . 4.
a5 5F(a)‘ < Cup (3.4.20)

sup
a€R

Proposition 3.16. For any [,m € N, there exist Cy,, > 0 such that for v,y € X,

‘F(D;J(I’,y) - Pp(x7y)‘cm < Cl,mpia
| By, y)| o < Crmp™, it d(z,y) > €, (3.4.21)

where | - | . is induced by V*,VE and h*, h¥, g"x.

m

Proof. For a € R, set

9p(a) = X(yampo) (lal) F(a), (3.4.22)

where X[ /27p,50)(+) is the characteristic function of the subset [\/27p, 00) of R.
It is a consequence of (3.3.14) that if p > %, then

Spec(D2) € {0} U [2mp, o0) (3.4.23)
and

F(Dy) — By = ¢p(Dy). (3.4.24)
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3.4 Diagonal asymptotic expansion of Bergman Kernel

Set 5 =0 in (3.4.20) we get
sup }a|m|F(a)’ < . (3.4.25)

a€R

It is known that Spec(Dg) is discrete and if we denote by {A1,..., A, ...} the set of
the eigenvalues DI%, then 0 < A\ < - < Ay < -+, Ay & +00 as B — oo and the

Ai-eigenspace E), is of finite dimension. Let {ai} denote an orthonormal basis of Ej,,
then D,o] = £/ Agoi. Every s € Q% (X, LP @ E) can be written

s = Z (s, O'£>O'i. (3.4.26)
k,j

Then for any mq, mo,l € N,

1257 60D Dol 2 =10 60( D IILz

—”Z)‘ L ¢p <5 0k>ngL2

<S;lp|xﬁ¢p< EOIEY DIRCTALA P
k .

<Cuamy s ||5]] 12 (3.4.27)

Let @ be a differential operator of order m; with scalar principle symbol and with
compact support in U;, then its adjoint @Q* is also a differential operator of order m;
with scalar principle symbol and with compact support in U;. From (3.4.2) and (3.4.27),
we have

[5H]+1
Q0 DID 0 <™ 3 57Dy (DYDP
7=0
<Clmymap ™ 2|5 L (3.4.28)

where [-] denotes the integer part. Clearly,
(DI'2¢,(D,)Qs,8") = (s,Q"¢,(Dy)D*s'). (3.4.29)
Combining (3.4.28) and (3.4.29) we get

D52, (Dy) Q5| 12 < Cromynap™ 27 |5 - (3.4.30)

If P,@Q are differential operators of order m,m; with compact support in U;,U;, re
spectively. By (3.4.2) and (3.4.30),

[F]+1

HP%(DP)QSHB <Cpp™™*? Z piszDij(bp(Dp)QsHLz

j=0
<Cl,m1,mp_lH3HL2- (3431)
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3 The second coefficient of asymptotic expansion of Bergman kernel

From Sobolev inequalities and (3.4.31),
160(Dp)@s || o < Cllén(Dp) Q5,114
< C(|IP6y(Dy)Qs]| 2 + | 6(D,) Q5]
< Cramymp ' ||8]] - (3.4.32)
On the other hand,

Op(Dp)Qs(x) = /X (Qy(6p(Dp)(,9)), s(y))dvx (y) = (Qup(Dy)(x,),5).  (3.4.33)
Then it is a consequence of (3.4.32) and (3.4.33) that for every z € X,

HQ°¢F’(DP)($7 .)”LQ g C’l,mpil' (3434)

Since ¢,(Dy)(x,y) = ¢p(D,)(y, x), then the first inequality in (3.4.21) holds.
Note

F(D,)(x,-) = (/00 O(v)dv)~* /OO cos(vD,)(x,-)8(v)dv. (3.4.35)

o o0

By the finite propagation speed of solutions of hyperbolic equations, F'(D,)(x,y) only
depends on the restriction of D, to BX(z,¢), and equal zero if d(x,y) > . Thus we get
the second inequality in (3.4.21). The proof of Proposition 3.16 is complete. O]

3.4.2 Rescaling and Taylor expansion of the operator D;f

Fix zg € X. Set B, = B™0X(0,a) for a > 0. We identify B,. with B*(x,4¢) by
the exponential map Z — expfO(Z) for Z € T,,X. For Z € By, we identity Lz, Fy
and AT,V X) to Ly, E,, and A(T5"VX) by parallel transport with respect to the
connection V¥, VE and VB’AO", respectively, along the curve u — uZ,u € [0,1]. Thus
on By, (L, h2), (E, hE), (A(T*OD X)), BAT" VX)) are identified to the trivial Hermitian
bundles (Ly,, ht0), (Eg, hB=0), (AMTOV X), BAT""X0) 1f TL TE and TBA” denote
the corresponding connection form of VE VE and VBA™ on Bi., respectively, then
L, TE TBA™ are skew-adjoint with respect to hleo, hf=o, R X) Moreover, (cf.
(30, (1.2.30)])

re =0, for I'*=TFTF or PBA™, (3.4.36)
In view of (3.2.15) and (3.4.36) we get
TX | B
TTX 4 58 — . (3.4.37)
Let {e1,...,€2,} be an orthonormal basis of T, X. The coordinates on T,, X ~ R*"
is given by
2n
(Z1,-++, Zon) ER*" =Y Zje; € Ty X. (3.4.38)
j=1
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Let ¢. : R — R be the map defined by ¢.(2) = p(1Z)Z with
p(v) =1, if |v] <2 and p(v) =0, if |v| > 4. (3.4.39)
Let R be the radial vector field defined by

R=> Zjej =2 (3.4.40)

For the trivial vector bundle Ey := (E,,, h¥=0), we define a Hermitian connection on
Xo:=1T,,X by

Z
Vo v+p(| ’)FE. (3.4.41)
For the trivial vector bundle Ly := (L, h* IO), we define a Hermitian connection on
Xo :=1T,,X by
L * L 1 |Z| L
VH =0l (VE) 4+ 5 (1= p* () Biy (R, ). (3.4.42)

Then its curvature R* = (V0)? equals

o8 + [0, (1 (2 mE . ] (3.4.43)
Clearly,
_ |Z| / |Z| Zi
(@)ei = p(—)ei+p (?)ng. (3.4.44)
Therefore,

(62(RY)) ,leire))
:Rés(Z ((9255)*61‘, (¢e)*€j)

=p <|f|> )(61’, ej) + P(Lﬁ)ﬂ/(@) ( ; % N Rqug(z) (R, )) (€i,€5).
That is
528 = 2 (ZhRE )+ (o0 ><’Z'>Z Z|Z| AR (R, ). (3.4.45)
On the other hand,
[e:v"). (- ZhyrE (. ]
—i(1- 2 Drr (=)
22 Z G nrs R+ 2 - 22 R (3.4.46)
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Substituting (3.4.45) and (3.4.46) into (3.4.43) we get

Z A
ro = -2y, + 2 Zhas

1Z| . &N Zyel

k

) Sy M (BE(R ) = R (R.0)). (3.4.47)
k=1

It is clear that R™ = RL for |Z| < 2. The third summand on the righthand side of

(3.4.47) tends to zero as |Z| tends to 0. Hence there exists 7 > 0 such that for any

0 < |Z] < n we have

7] & Zek R . R 2
R R ()| < 5 3.4.48
(o) (2 >Z — N ()~ Rhn )| < 57 (3.4.48)
Then
Lo/ — 8 ... L, — 8 ...
R (vj,v;) < —=T if j < ¢ and RZ(v;,7;) > =7 if 7 >q+1, (3.4.49)
where {v1,...,v,} is alocal orthonormal frame of 739 X such that the relation (3.1.13)

holds. In the sequel we fix e = 17.
Let g7%0(2) = ¢"™X(¢.(2)), Jo(Z) = J(¢-(Z)) be the metric and the almost struc-
ture on X,. Let 7%V X, be the anti- holomorphlc cotangent bundle of (X, Jy). Then

TZ(J Y X, is naturally identified with T (Z) JXO We identify A(T), (0, )Xo) with A(T. T30 VX)

by identifying first A(T OV Xy) with A(T¢ (2} XO) which in turn is identified with

A(TIO(O Yx ) by using the parallel transport with respect to the connection V5 A% along
the curve t — t¢.(Z),t € [0,1]. We trivialized A(T*®Y Xy) in this way.

We trivialize the Hermitian line bundle det(7"% Xy) by identifying first det (7% X))
to det(T19X) 4. (z), and then to det(T9X),, by using parallel transport along the
curve t — t¢.(Z),t € [0, 1] with respect to the connection VT X) et Ve he the
Hermitian connection on det(70% X)), defined by

A
yieto — g 1 p(u)pdet(T“‘o)X)‘ (3.4.50)
£

Let VT*Xo denote the Levi-Civita connection of (Xp, g7*°). Then g?*° and V9 define
a Clifford connection V% on A(T*OV X)), i.e

1 Z 1
VOl = d 4 (T8, 8 )el@)ele;) + o2 pamcreox (3.4.51)
9

where {é1,...,é,} is a local orthonormal frame of (X, g7*°) and I'7* is the corre-
sponding connection form of VX0 associated to the frame {éy,...,é,}.

Since ¢7¥0 is trivial outside By and p({Z) = 0 outside By., the connection form [
of VO associated to the above trivialization of A(T*OD X)) on R?" satisfies

% =0, for |Z| > 4e. (3.4.52)
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Denote by D, be the Spin® Dirac operator on R*" acting on Ey, = A(T**YX,) ®
Lg ® Eo, i.e.,

2n
D§, = c(e;) Vg w0, (3.4.53)

i=1
p . . .
where V0®Lo®Eo jg the connection on Ey, induced by V¢ Vo and V0. Set

1 |Z
Ay = ——P(u
€

. )T sz (3.4.54)

The modified Dirac operator on the almost complex manifold (X, Jy) is given by
D;’AO = Dg, + “(Ao), (3.4.55)

which coincides with D, on Bs.. It is a consequence of (3.4.49) that the following spectral
gap of the operator (D;"“O)2 holds:

Spec((De)?) ¢ {0} U [16?”;9 _Co0). (3.4.56)

Let Py, be the orthogonal projection from L*(X, Ey,) onto Ker((Dg4)?) and let
Py p(x,y) be the smooth kernel of Fy, with respect to the volume form dvy,(y). As a
consequence of (3.4.56), the following Proposition is an analogue of Proposition 3.16 for
the operator D;’AO.

Proposition 3.17. For any [,m € N, there exist Cy,, > 0 such that for x,y € X,

‘F(D;’AO)('I7 y) - PO,p(xa y) ‘Cm < Cl,mpil,
|Pop(@ 9)|cn < Crmp™, if d(2,y) > . (3.4.57)

Note F(Do)(x,y) = F(Dy)(x,y) if 2,y € B,.. Combining Proposition 3.16 and
Proposition 3.17, we get

Proposition 3.18. For any [,m € N, there exist Cy,, > 0 such that for x,y € B,
|P07P($7 y) - Pp(ma y)}Cm g Cl,mpil' (3458)

Let sz, be a unit vector of Ly,. Using sz, we get an isometry Ef o~ (AY(T*OVX) &
E)wo = E,,. As the operator (D;?AO)Q takes values in End(E, ,,) = End(E,,) under
the natural identification End(L?) ~ C (which does not depend on sr), our formulas do

not depend on the choice of s;,. Now under this identification, we will consider (D]‘;’AO)2
acting on C* (X, E,,).

Let dvrx be the Riemannian volume form of (T}, X, g7=%). Let k(Z) be the smooth
positive function defined by the equation

dUXO(Z) = k(Z)dUTx(Z) (3459)
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3 The second coefficient of asymptotic expansion of Bergman kernel

with k(0) = 1. Let V4 be the connection induced by V% and A4y on A(T*Y X)) as
before, i.e.,

Vio =V + <(igAy), for U € TX,. (3.4.60)

Let I'* be the corresponding connection form of V4.

For s € C*°(R*",E,,), Z € R*", and for t = \/%37 set

A ) 1
(0:5)(2) = S(;), Vie = 0; k2 V%25,

L= 6, k3 (DSA) k26, (3.4.61)
We restate the following expansion of the operator L5, see [30, Theorem 4.1.7].

Theorem 3.19. There exist polynomials A;;, (resp. B;,,C,) (r € N,i,j € {1,---,2n})
in Z with the following properties:

(1) their coefficients are polynomials in RTX (resp. RTX RBA™ RE RAUTHIX) Q). RE)
and their derivatives at xo up to order r —2 (resp. v — 2,7 — 2,7 — 2,7 — 2,7 — 1,71),
(2) Ajjr is a homogenous polynomial in Z of degree r, the degree in Z of B;, is <r—+1
(resp. of C, is < r+ 2), and has the same parity as r — 1 (resp. r),

(3) if we denote

O, = 44, Ve Ve, + B, Ve, + Cp, (3.4.62)
then
L= L9+ i O, + O™, (3.4.63)
r=1
where
LY = —(Voe,)? — 207 — 2W44,, Voe= Ve -+ %RﬁO(R, ). (3.4.64)

Moreover, there exists m’ € N such that for any k € N,t < 1, the derivatives of order
< k of the coefficients of the operator O(t™*1) are dominated by Ct™ (1 + |Z|)™ .

Proof. We give the proof for the sake of completeness. We will add a subscript 0 to
indicate the corresponding object on X, e.g., R0, R4% are the curvatures of V0, Vdeto,
As in (3.2.13), let &g, be the smooth self-adjoint section of End(E,,) on X,

Xo

4

1
+ (R + 5Rdeto) + “(dAg) — 2| A% (3.4.65)
Then Lichnerowicz formula (3.2.12) entails

(D;,Ao)2 — AAO +p C(RLO) + CI)EO' (3466)
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3.4 Diagonal asymptotic expansion of Bergman Kernel

Set
gij(Z) = QTXO(% ej)(Z), Vﬁxoej = Ffjel- (3.4.67)
Let (¢"(Z)) be the inverse of the matrix (g;;(2)). By (3.4.61),

1 t
Vi =V + (30056 + 02 (e) + T 3(e) ) = 5 (K79 k) (12),

‘C; = - gij (tZ) (vt,eivt&j - Pfjvtvek> + C(RtLZO) + tQCI)Eo,tZ' (3'4‘68)
It is a consequence of [30, (1.2.27) and (1.2.29)] that
95(tZ) = 0+ Y "Dy (Z) + O(t™H), (3.4.69)
r=2

where D, is polynomial in R™ and its derivatives at xo up to order r — 2 and D;;, is
homogenous polynomial in Z of degree r, e.g.,

1 1
Dija = §<REOX(R; ei)R, €j>7 Dij3 = —6<(V%RTX)%(R, e)R, €j>. (3.4.70)
Then
1 m
k(tZ) = det?(g;;(tZ)) = 1 + 3 > Dy (Z) + O™, (3.4.71)
r=2
and
t(k™'Ve,k)(tZ) =k7'V ., (k(tZ)) (3.4.72)
1 & 1 &
=5 > #'VeDji(2) - T > D, (Ve, Dirg) + O(E™).
r=2 rl=2
By [30, (1.2.30)],
m+l . A
a L
Vie, =V, + Zl 51 |Z (0°R"), (R.e) (3.4.73)
r= al=r—1
m—1
tr+1 a pE o pB,AV® zZ
] > (0°RF+0°RP ) o(Roen) =
r=1 la|=r—1
1 & 1 &
+35 > Ve, Dy (2) - 1 > Dy (Ve, Dira) + O™ )
r=2 =2

“Voe + Y 1"Di,(Z) + O™,

r=1
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3 The second coefficient of asymptotic expansion of Bergman kernel

where D;,.(Z) satisfies
(i) polynomial in RTX, RBA™ RE RAUT"OX) g0 RL and their derivatives at zo up to
order r — 2,r — 2,7 — 2,7 — 2,7 — 1 and r, respectively;
(ii) polynomial in Z of degree < r + 1 and has the same parity as r — 1.
It is known (cf. [30, (4.1.102)]) that

1
Il (tZ) = 5g’fl(tz) (Vej gi + Ve gt — Ve, gij> (tZ). (3.4.74)
Then I'};(tZ) has similar expression as (3.4.72).
Clearly,
(& 1 ~ =~ ~ ~ (& - T m
(Ri2) = SR2 (e &))c@)cl;) = “(R) + Y t"Di(Z) + O™ "), (3.4.75)
r=1

where D,.(Z) is polynomial in R” and its derivatives at ¥y up to order r and D,(Z) is
homogenous polynomial in Z of degree r, e.g.,

D, :(ngL)xo (e:,e5)c(e;)c(e;), (3.4.76)

1
Dy :§ (VBVBRL)(R,R),x()(ei’ 6j)C(€i)C(€j),

Substituting (3.4.73), (3.4.74) and (3.4.75) into (3.4.68) we get

Lh=LS+) 0, + 0™, (3.4.77)
r=1
where
O, = —Dy;,VeVe, + B,V +C, (3.4.78)

with B;, and C, satisfying the conditions (1) and (2) of Theorem 3.19. The proof of
Theorem 3.19 is complete. O

3.4.3 Sobolev estimate on the resolvent (A — £})™!

Let h)"" be the Hermitian metric on A(T*®YX,) induced by ¢7*° and J,. By the
trivialization of A(T*OVX,), (A(T*OVXy), hd"*) is identified to the trivial Hermitian
vector bundle (A(Ta"Y X)), BA%3).

Let hE=0 be the metric on E,, induced by hA% and hP=0. We denote by (-, o2 and
H - | o.r» the scalar product and the L?*norm on C*® (X, A(T**V X)) @ Ey) induced by

h{}o", h%o. Then (-, )¢ r2 is the same as the scalar product on C*°(Xy, E,,) induced by
hEe0 dvy, under our trivialization.
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3.4 Diagonal asymptotic expansion of Bergman Kernel
For s € C>(T,,X,E,,), set

sl =llsle = [ 1s(2)Paors (2),
m 2n
||8Him :Z Z Hvt7eil .”Vt’eizs

1=0 i1, ;=1

o (3.4.79)

We denote by <-, ->t0 the inner product on C*(Xy,E,,) corresponding to H . Hfo' Let
H}" be the Sobolev space of order m with norm H . Htm Let H; ' be the Sobolev space
of order —1 and let H : Ht _, be the norm on H, ' defined by

{5, 51)]

Isfl, -, = sup :
t,—1

O#s1€H} HslHt,l

(3.4.80)

If A e £L(HP,H™), we denote by ||A||:1m/ the norm of A with respect to the norm

-1l and -
Remark 3.20. Since D% is symmetric with respect to || - H&LQ, by (3.4.61), Lf is a

i.e., for s1,s9 € C§°(Xo, Eyy),

formal adjoint elliptic operator with respect to H . HO,

<£§817 S2>t,0 - /

_ /RW <((D;7Ao)2k—%5tsl> (t2), k;—%(tz)32(2)>k(t2)dvTX(Z) (3.4.81)
=<31, 5332>t70.

Theorem 3.21. There exist constants Cy,Cy,C3 > 0 such that for t € (0,1] and any
81,82 € Cgo(Xo,]EzO),

< (5;1t2/<;% (D;’AO)Qk‘%ét&) (2), 32(2)>dvTX(Z)

2

t 2 .
(Las1,51), = Cu|si|,, — Calsa];

‘<‘Cgsl’ 82>t,0

< 03H81Ht,1HSﬂ|t,1‘ (3'4‘82)
Proof. Clearly,
<(5;1t2k%AA°k*%5tsl, 31> (3.4.83)

t,0
—? / <<6{1t2k%AA0k:’%5tsl>(Z),sl(Z)>dvTX(Z)
R2n
220 / ((A%k 56,51 (2), (k~26,5:) (2) ydvx, (2)
R2n
_t22n/
R2n
1 1 2
:/ (5;1tkav/*0k—§5tsl)(2)) dvx,(Z)
R?n

=[|Vesa [ -

(k%VAokfé(stSl) (Z) ‘2dUXO<Z)
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3 The second coefficient of asymptotic expansion of Bergman kernel

In view of (3.4.61), (3.4.66) and (3.4.83) we get

<£§81, 81>t,0 = ||Vt81Hiz + <( C(RtLZO) + tQCI)EO,tz>Sl, 81>t0, (3484)

which implies the first inequality of (3.4.82). Similarly we have
<£§$1, 82>t,0 = <Vt7.81, Vt,32>t70 + << C(RtLZO) + tgq)E(),tz)Sl, 82>t 0. (3485)

Then the second inequality of (3.4.82) follows from (3.4.85). The proof of Theorem 3.21
is complete. O

s

Let 0 be the counterclockwise oriented circle in C of center 0 and radius 5, and let v
be the oriented path in C consisting of the ray from (+o00,) to (m,1i), the interval from
(m,4) to (m, —i) and the ray from (7, —i) to (+o00, —1).

It is an consequence of (3.4.61) that

Spec(Lh) = t* Spec(D;’A°)2. (3.4.86)
In view of (3.4.56), there exist to € (0, 1] such that for ¢ € (0, ¢o],

Spec(Ly) C {0} U [27, o0). (3.4.87)
Thus, (A — £5)7! exists for A € § U ~y.

Theorem 3.22. There exists C > 0 such that fort € (0,to], A € § U,

=) < ¢ (3.4.88)
[ =277 < e+ P,

Proof. Set
Dom(Ly) = {s € H}, Lise H}}, (3.4.89)

where Ls is calculated in the sense of distribution.
By (3.4.87), for every s € C°(R*, E,,), A € d U,

2 2
”(/\ - £é)8”t,0 Z HS||t,0' (3.4.90)

Now we claim that
A — L5 Dom(Lh) — L*(Xo, E,,) is bijective for A € § U . (3.4.91)

First it follows from (3.4.90) that A\ — £} is injective. Given s; € Dom(L}), (A —LY)s; —
v € L*(Xo, E,,), then

[N = L5)(s; — Sk)”tQ,O > ||s; — SkHio' (3.4.92)
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3.4 Diagonal asymptotic expansion of Bergman Kernel

Therefore there exists s € L?(Xj, E,,) such that
s; — s in L*(Xo, Egp). (3.4.93)
For any ¢ € C§°(Xo, Ey,),

(A= L4)s, ¢) =(s, (A — L})o)
= lim <sj,/\ Et)¢>

Jj—o0
= lim (A — LY)s;,0) = (v, 9). (3.4.94)
j—00
That is
(A= LY)s=v in L*(Xy, E,,). (3.4.95)

In particular, s € Dom(L£%) and v € Tm(\ — £%). Therefore, the image Im(\ — £}) is
closed in L*(Xy,E,,). To complete the proof of (3.4.91), it suffice to prove

Im(\ — £5) = L*(Xo, Ey,). (3.4.96)

If not, there exists a nonzero element s € L?(Xy,E,,) such that s is orthogonal to
Im(\ — £%). In particular, for any s’ € C§°(Xo, E,,),

0={(s,(A—Ly)s") =((A\—L})s,s). (3.4.97)
Then we get
(A= LY)s = 0. (3.4.98)

Hence s = 0. This is a contradiction to the choice of s. Thus the claim (3.4.91) holds.
From (3.4.90) we get

(A — £} < 1. (3.4.99)
By (3.4.82) and (3.4.87), for A\g € R, Ao < =%, (Ao — £}) ™" exists and

_qp-1t 1
(o = L5)7H], " < o (3.4.100)
Clearly,
(A= L) = (o= L£3) 7 = (A= X)X = Ly) 7 (N — L£3) " (3.4.101)

Combining (3.4.99), (3.4.100) and (3.4.101) we obtain
= )7 [, < (1o = 257 I = ol - ([ = 257 o = £5) 71,

1
5(1 + 1A= Xol)- (3.4.102)

95



3 The second coefficient of asymptotic expansion of Bergman kernel

Similarly,
(A=L5)7 = (N — L) = (A= A0)(ho — L)' (A = L£5)7". (3.4.103)
Now (3.4.99), (3.4.100), (3.4.102) and (3.4.103) entail

=27 < 10 = 257 =l 2 = 297l = 257
L A= X

<— 141X = Xo)). 3.4.104

—+ B2l o) (34104
Now the second inequality of (3.4.88) follows immediately from (3.4.104). The proof of
Theorem 3.22 is complete. [

Proposition 3.23. Take m € N, there ezists Cp, > 0 such that fort € (0,1], Q1,- -+ ,Qm €
{Vtyei, Zl}le and S1, 82 € CSO(RZR,]EIO),

(@1 (@, [Qu, 4] - .]]31,52%0] < Cllsil, [, (3.4.105)

Proof. For every s € C*°(R*" E,,),
[Vie, Z]s = (5;1tk%vg§0k-%5tzjs) (2) - Z, (5;1tk%v;j§0k—%5ts) (2)
—tk* (t2) (vgw%ét (st)> (tZ) — Z;k3 V2 (k73 (t2)s(2))
—tk3 (t2) (vg‘;%k—%ats> (tZ) — Z;k3V2 (k3 (t2)s(2))
—tk=(tZ)6;; - %k—i(tZ)S(Z)
=5:;5(2). (3.4.106)
That is
(Vi Zi] = 045 (3.4.107)
Combining (3.4.68) and (3.4.107), we get
(L4, Z;] = 29" (tZ) Ve, + tg" (tZ)T (¢ Z). (3.4.108)

It follows from (3.4.108) that [Z;, £}] satisfies (3.4.105).
By (3.4.68) we get

(Viess Vie,] = (Rg +2R2 + *R}?) (s, ¢;). (3.4.109)

Combining (3.4.68) and (3.4.109) we find that [V,,,, £5] has the same structure as £}
for t € (0,1], ie., [Vie,, £5] is of the type

Z CLZ']' (t, tZ)Vt,ein,ej -+ Z dl(t, tZ)Vt,eZ. + C(t, tZ), (34110)

ij

96



3.4 Diagonal asymptotic expansion of Bergman Kernel

where a;;(t,tZ),d;(t,tZ),c(t,tZ) and their derivatives on Z are uniformly bounded for
Z € R? t € [0, 1] and they are polynomials in t.
For s1,s, € C°(R*™,E,,), by integration by parts,

<vt7€i81782>t0 :/RQ” <(5{1tk%V20k_%5t51)(Z), 82(Z>>dUTX(Z)
_pan / (V2K 35,5)(2), (K 28,52)(2) v, (2)
R2n
:tl_Q”/ ei<k_%5tsl,k_%5t32>dUX0(Z) — <317vt,e¢32>
RQTL
Z/ €i<31a32>d'UTX(Z) - <51,Vt,ei82>
R2n

_ /R (kY R)(2) (51,52 )dvrx (2)

_— <31, (Vie + t(k*lveik)(tZ))sg> . (3.4.111)
£,0
Denote by (Vy,)* the formal adjoint of V., with respect to the product (-,-), . Then
(3.4.111) implies

(Vi) = =Vie, — L7V, k) (12), (3.4.112)

and the last term of (3.4.112) and its derivatives in Z are uniformly bounded in Z €
R?" ¢ € [0,1].

By (3.4.110) and (3.4.112), (3.4.105) is verified for m = 1. By iteration, the expression
[Q1,[Q2, -+, [@Qum, £4] - --]] has the same structure (3.4.110) as £5. By (3.4.112), we get
Proposition 3.23. O

Theorem 3.24. For any t € (0,tg],\ € 6 U~y,m € N, the resolvent (A — L5)™! maps
H™ into H**'. Moreover, for any a € N?, there exist N € N, Com > 0 such that for
t € (0,tp], A\ € 6 U, s € C§°(Xo, Ey,p),
Zo(N = L)~ < Com(l+ A z° 3.4.113
720 =27t < Camtts DY D278 (34113

BLa

2 2
Proof. For @1, ,Q,, € {Vtei}i;,QmH, o Qo) € {Zi}z‘;’ we can express the
expression Q1 - -+ Q| (A — L£4) ™" as a linear combination of operators of the type

Qi Qi+ Qi N =LY 7 1]Qi Qi s (3.4.114)

where {41, ,im+ja} is a perturbation of {1,--- ,m + |al}.
Let R; be the family of operators

R: = {[ij[Qjm"' 7[Q]l7£§]H} (3'4'115)
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3 The second coefficient of asymptotic expansion of Bergman kernel

If [Q, L] = S € Ry, then
Q. (A= L) =M= Ly)'Sh—Lh)~ (3.4.116)

By (3.4.116), any commutator [Q;,,[Qs,, -, [Qi ,, (A — £5)7']---]] is a linear combi-
nation of operators of the form

A—=LYTRy(N— L) Ry Ry (N — L5 (3.4.117)

with Ry, -+, Ry € Re.
By Proposition 3.23, for R € R,

‘<R$1’ 82>t,0 < CHslHt,lHSQHt,l‘ (3'4'118)
If s # 0, then
‘ Rsy, s
[Ro1, )] < Cllsil, ;- (3.4.119)
2]l |
It follows from (3.4.119) that
1Bl = > |Rs|, , <cC. (3.4.120)
lIslle, =1

By Theorem 3.22, there exist C' > 0 and N &€ N such that the norm of H : HS’I of the
operators (3.4.117) is dominated by C(1 + |A|?)". O
Remark 3.25. Take |a| = 1,m =0 in (3.4.113) for example. Clearly,
VieZiA= L) =\ =LY 'V Zi+ [Vie, (A= L4712
+ [ Ziy (A= LY Ve + [Vies [Zi, (A= £5)71]. (3.4.121)

Since V. is formally self-adjoint with respect to <,> by Theorem 3.22 for s &€

C(())O(Xm Exo)a

£,0°

~10
H(/\ LYV, Zis o Hvt,ezis

-

t,—1

‘<Vt,e(Zi5)7 51>
<CO(1+|A[%) sup

5170 [s1lle
<C(1+ AP Zis] - (3.4.122)

From Theorem 3.22 and Proposition 3.23,
H [Vies (A — £5)7") Zis ‘0 :H(A — L) [V L5 (A — £4) " Zis ]0
t—1

SC1+ M| [Vie, L] (A = L£5) 7 Z;s

SCA+ AP (A= L)™' Zis

t,1

<C(1+ M| Zis

‘ . (3.4.123)
0
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3.4 Diagonal asymptotic expansion of Bergman Kernel

Similarly,
H[zi,u—ct)—l}vtes <O+ sl
| (Ve 126 0= )70 < c+ AR |lsl,. (3.4.124)
Combining (3.4.121)—(3.4.124) we get
[Veezin— 2715 < e+ (sl + 12, (34125
For m € N, let Q™ be the set of operators {Vtew e ,Vt,eij }j<m. For k,r € N*, let
J J
Ly = {(kx) = (ki,r:), Y kj=k+4 Y rj=rkyr e N'}. (3.4.126)
=0 i=1
For (k,r) € Iy,,A € §U~,t € (0,1], set
A = (= £ 0 gty 9 e (3.4.127)
r ’ - 2 atT]- 2 8t7']' 2 . = N
Then there exist a¥ € R such that
o ty—k k gk
oA=Ly = D arAR(Ab). (3.4.128)
(k,l‘)elk,r

Theorem 3.26. For anym € N,k > 2(m+r+1),(k,r) € I, there exist C > 0, N € N
such that for X € §U~,t € (0,],Q,Q" € Q™,

[eXHPN

CO+ DN Y (127, (3.4.129)
|B|<2r

Proof. From Theorem 3.24, we find that for ) € Q™, there exist ), > 0 and N € N
such that for any A € 6 U ~,
0,0
HQ()\ - Lg)—mH < Ol + APV, (3.4.130)
t

Since the operator £} is formally self-adjoint, after taking adjoint of (3.4.130) we have
for any A € d U,

H(/\ L) —mQH O (1 + NN, (3.4.131)
From (3.4.130) and (3.4.131), we obtain (3.4.129) for r = 0.
Consider now 7 > 0. By (3.4.68), 2L} is a combination of

Y atr
o o o o o o

P (o) (2v,). Dz, L (02) (D). (34132
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where d(Z),d;(Z) and their derivatives in Z are uniformly bounded for Z € R*". Now
D2 (d(tZ)) (vesp. (25 Vie)) (r1 = 1), are functions of the type d'(t2)Z°, (8| < r
(resp. < r;+1) and d'(Z) and its derivatives in Z are bounded smooth functions of Z.

Let R} be the family of operators of the type

,R':t = { [fjl@jl? [f]é@jw B [flejl’ ‘Cé] e ]:| } (34133)

with f;, smooth bounded (with their derivatives) functions and @);, € {Vt,el, Z 5221

We hand now the operator AX(\,#)Q’. We shall move first all the terms d'(tZ)Z°
(defined above) to the right-hand side of the operator. To do so, we always use the
commutator trick as in the proof of Theorem 3.24, i.e., each time we perform only with
the commutation with Z; or d'(tZ)Z; (not directly with Z# for |3| > 1). After this step,
AX(N 1) Q' takes the form

> LhQ2”, (3.4.134)

|8]<2r

where Q} is obtained form Q' and its commutations with d'(tZ)Z” (then Qj € Q™),
and Lg is a linear combination of operators of the form

(A= L) R Ve, Ro(A = L) " RyVye, Ry--- (A — L) (3.4.135)
with R; of the form

[fj1Qj17 [szQj27 Ty [flej“ Lg] e H, jS S {Zl 1211 (34136)

Now we move all the terms V., (from Lj) in (3.4.134) to the left side of QF, then we
finally get that QAX(\,¢)Q’ is of the form

> izt (3.4.137)

|B|<2r
where Etﬁ is a linear combination of operators of the form
QU — L) MR (A — £3) MRy - Ry — £) Q" Q) (3.4135)
with
R, R, eR, Q"€ Q™. (3.4.139)

By (3.4.127) we have

l/

D k>

J
ki+U=k+j+1>2k+1'+1 (3.4.140)
j=0 1=0
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3.4 Diagonal asymptotic expansion of Bergman Kernel

It is a consequence of (3.4.140) that we can split (3.4.138) into two parts:

Q1 :=Q\— LY ™R(N— LY MR, RI(N— L) 7R

Qs i=(A = L5) "B TFIRL (A = L) TF R, - Ry (A = £5)7Q"QE  (34.141)
with
ky+ Ky 4 -+ K 1+k§-’> +1i
ki — K +ki 4+ +ky>m+2r+ (' —1). (3.4.142)
By (3.4.113) we obtain
WA—£944 C1+ AP)Y|s]], (3.4.143)
t,m+1 m
Similarly as the proof of (3.4.113), for R' € R}
Hu-z@*ﬁg-c@* <+ BN, (3.4.144)
t,m+ )
Combining (3.4.113), (3.4.142) and (3.4.144), we get
[Quslly = | QO = £ R = £ S Ry RA = £)7s |
< || = )R (8~ L) RS - RN - £
S CA+APYI A= L5) TR (A = £5)
(A= £5) M IR, - Ri(A = £5) s
tym—k(+1
CO+ P = L) OV Ry RO = £5)7s)|
t,m—kj
g ......
<C(1+|A A—Lh)~*=
L+ AF||( ) ° tm—zi”k()ﬂ'—l
C(l—l— ’)\| H )\ ﬁt) (R +32020 ko — m—i) ¢
t,0
SO+ AP s,
That is
Q" < c@+ PN (3.4.145)
Similarly we have
||Q2|| <O+ MHY. (3.4.146)
The proof of Theorem 3.26 is complete. O]
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3 The second coefficient of asymptotic expansion of Bergman kernel

Clearly, as ¢t — 0, the limit of the norm || - [|;, exists and we denote it by || - |o,m-
Note || - llto =l - llo,0-

Theorem 3.27. For any r > 0,k > 0, there exist C' > 0, N € N such that for t €
[0,t0), N € dU~,s € CF(Xo,Eyp),

oL, oL

|G =Tl sl <ot 3 1zeslo, (34147
7 || <r+-3
o
|G- = 3 akaxo)s|  <ota+ Py Y 2],
(k,r)€El),r ' |or|<4r+3

Proof. By the definition of || - ||¢m, for t € [0,1],k > 1,
Isll <€ 2112l Nsllon < € 2211270, (3.4.148)

laf<k laf<k

Combining (3.4.148) and the Taylor expansion for (3.4.68), we find that if s1, s, have
compact support, then

8a£t aaﬁt X
‘<( 3tr2 _ atr2 t:0)51752>t’0‘ < C't”sth’l. Z HZ SlHo,p (3.4.149)

|| <r+3

where the upper bound 7 + 3 of || comes from the term
—97 (V. Ve, = 05V e, ) (3.4.150)

Now the first inequality in (3.4.147) follows immediately from (3.4.149).
It is a consequence of the first equation of (3.4.68) that

Vie, = Voe, +tg:(Z) + O(t?), (3.4.151)

where ¢;(Z) is a polynomial in Z of degree 2. Substituting (3.4.151) into the second
equation of (3.4.68),

Lh— L3 =th;V., + O(t?) (3.4.152)

with h;(Z) polynomial in Z of degree 3.
Note

A=L)P=A=LY ==L L - LY=L (3.4.153)

By passing to the limit, we obtain that Theorem 3.22, Proposition 3.23 and Theorem
3.24 still hold for ¢ = 0. Using Theorem 3.22 for ¢t = 0 and (3.4.153),

H((A—Cé) (A= L3)” H (3.4.154)

=[x = 2ot - £ - o)

0,0

1+ R 2s - £8)(r - £9)7!

t,—1
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3.4 Diagonal asymptotic expansion of Bergman Kernel

Substituting the first inequality of (3.4.147) for r = 0 into (3.4.154) yields

l( -2t ==,

SCHL+ PPN D |20 = £9) s, (3:4.155)

|| <3
Finally using (3.4.113) for ¢t = 0, we get
H (A—Lh) ™ —(A— cg)fl)sHOO <O+ DY S 2%, (3.4.156)
’ lal<3
If we denote £, = A — L5, then
AX(X ) — AX(X, 0) ZF + ZG (3.4.157)
with
o L} o Ly oLl oLl
_ ko 2 p—ki 2 p—kio1 2 2 —k;
=Ent g Fne Jiris ( ot ot t:0>£)"0
ori+L Ll i " L} —k;
( Otri+1 t:O)ﬁ)"O < ot t:o)ﬁ’\’o (3-4.158)
and
oLt oLy . OLL s ks
Gi :‘C)\,]:O ath'C)\,]:l T atri,12£/\,t ) ath <‘C/\,l7?2 - EA](?) '
ori+L Ll i i Lh k;
< Otri+t t:0>£)"0 < ot" t:o)ﬁ’\’o ' (3.4.159)

Similar to the proof of (3.4.113) we have

HZ“()\ — LY s L’O < Cam(1+ PN S0 2%, (3.4.160)

B<a

Combining the structure of 8”2 (a combination of (3.4.132)), (3.4.113), (3.4.160) and

the first inequality of (3.4.147), we obtain

[Fisl[o0 < CHI+ DN > []2%]|, - (3.4.161)
|a|<4r+3
Similarly by (3.4.156),
1Gisllo < CEHA+ PN D7 (12,0 (3.4.162)
|a|<4r+3

Now the second inequality of (3.4.147) follows from (3.4.128), (3.4.157), (3.4.161) and
(3.4.162). The proof of Theorem 3.27 is complete. O
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3 The second coefficient of asymptotic expansion of Bergman kernel

3.4.4 Uniform estimate on the Bergman kernel

Denote by Py, the spectral projection from (L*(Xo,E,,), || - [lo) onto Ker(£4). It is a
consequence of (3.4.87) that

1 t\—1
= — — . 4.1
Poe =g [ (0= £2)71dA (3.4.163)

Our next step is to convert the estimates for the resolvent (A — £5)~! into estimates for

the spectral projection Py, via the formula (3.4.163). Let Py (Z, Z") (with Z, Z" € X))
be the smooth kernel of Py, with respect to dvpx(Z').

Let m : TX xx TX — X be the natural projection form the fibrewise product of
TX on X. Note that £} is a family of differential operators on T,,X with coefficients
in End(E),,. Thus we can view Po;(Z,Z') as a smooth section of 7*(End(E)) over

TX xx TX by identifying a section s € C> (TX wx TX, w*(End(E))) with the family
(Sz)zex, where s, = s‘ﬂ_l ()" Let VF(E) be the connection of End(E) induced by VF

(which is in turn induced by V# and V¥). Then V™ (¥2d®) induces naturally a C™-
norm of s for the parameter 2o € X. In the rest of this section, we will denote by C™(X)
the C™-norm for the parameter o € X.

Theorem 3.28. For any m,m',r € N,a > 0, there exists C > 0 such that for t €
(0,t0], 2, 2" € T,,, X, | Z],|Z'| < a,

glal+lal — gr
_— 7,7 < C. 3.4.164
i Nozegz a0 D] o (34164
Proof. Tt is a consequence of (3.4.163) that
1
= — [ MY =LY R 4.1
Por =5 i (A—L5) (3.4.165)
From (3.4.130), (3.4.131) and (3.4.165) we obtain
QP Q)" < Cry for Q@ € Q™. (3.4.166)

Let |- |(a) _be the usual Sobolev norm on C*(B,41,E,,) induced by h®o and the
volume form dvrx(Z), i.e., for s € C®°(B,y1,Ey,),

o= [ Is(2)Pdurx(2),
’ Bat1

m 2n
‘8|?a),m - Z Z HVeil T v6i15||(a)70' (34167)

1=0 i1, ;=1

From (3.4.68), (3.4.79) and (3.4.167), we get that for m > 0, there exists C,, > 0 such
that for s € C°(Xy, E,,),supp(s) C Bai1,

Cm .
el < Islym < Cnl +0)" I, (3.4.168)
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3.4 Diagonal asymptotic expansion of Bergman Kernel

If Q" € @™ and Q" has compact support in By, then for every s € L*(X,E,,), Z €
R?*" and |Z| < a

(QQ7Poi(Z.),5()),, / QuPos(Z, 2) Q)2 dvrx (Z)
= (QPoQ"s)(2). (3.4.169)
Using (3.4.168), (3.4.169) and Sobolev inequalities, we obtain

|@ @Rz, = s (QUQsPo(Z.).50)),,

lIsllo=1

= sup ‘ (QPO,tQ"s) (Z)‘

l[sllo=1
<C sup ‘QPO,tQ”S
lsllo=1 (a)mt1
<C(1+a)"™ sup |QP,Q"s (3.4.170)
lIsllo=1 tin+1
Substituting (3.4.166) into (3.4.170), we get
HQ”QZPM(Z, )H < O(1 +a)". (3.4.171)
t0
Combining (3.4.168), (3.4.171) and Sobolev inequalities, we have
swp | QPou(2, 2)| <C sup |QLQ7Po(Z, )
1Z|,|1Z"|<a |Z|<a (a),n+1
<C(L+a)"™ sup (QuQzPos(Z, )
|Z|<a t,n—+1
<CO(1+ a)**2. (3.4.172)
From (3.4.68) and (3.4.172) we obtain the estimates (3.4.164) for r = m’ = 0.
To obtain (3.4.164) for » > 1 and m’ = 0, note that
o 1 o
N (X = L8) R 3.4.173
ot Poa = 2mi 5 ot ' 2) ( )
By (3.4.128) and (3.4.129) we know
‘ - "< O for Q.Q € O™ (3.4.174)

Then by the above argument, we get the estimate (3.4.164) for r > 1 and m’ = 0.
Finally for U € TX,

n 1 _ 7 (En -
Vi O Py = g [ N0 - 2R (3.4.175)
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3 The second coefficient of asymptotic expansion of Bergman kernel

Clearly,
k
vy EEI N L) =S e, (3.4.176)
i=1
where a; € R and

Since Vg*(End(E)) L} is a differential operator on T,,X with the same structure on L5,
i.e., it has the same type as (3.4.110), we know from the proof of (3.4.129),

H *(End(E)) ¢ 0,0 / m
Q(V A=LHQ| < Cp, forQ,Q € Q™ (3.4.178)
t

Then using the above argument, we conclude that (3.4.164) holds for m’ > 1. The proof
of Theorem 3.28 is complete. O

For k large enough, set

227.!/1612 kAk)\O)\
T

(kI‘ Efkr

19
Fro =5 Pos = Fr. (3.4.179)

Let F.(Z,2") (Z, 7' € T,,X) be the smooth kernel of F, with respect to dvyx(Z’). Then
F(2,2") € C*(TX xx TX,n*(End(E))). (3.4.180)

Theorem 3.29. For a > 0, there exists C > 0 such that fort € (0,1|,2,72" € T,, X,
and |Z|,|2'| < a,

‘]—“T(Z, 7| < ct=a. (3.4.181)

Proof. Combining (3.4.173) and (3.4.179),

1 w1 O . o ok
= - . 4.182
Fr 2mi - r! /5>\ <8t (A =Ly ot (A= L) t:O)d)\ (3.4.182)
It is a consequence of (3.4.147) that
[ Frtll .0 < Ct. (3.4.183)

Let o : R* — [0,1] be a smooth function with compact support in By, equal 1 near
0. Take ¢ € (0,1]. By the proof of Theorem 3.28, F, (hence F,;) verifies the similar
inequalities as in (3.4.164), i.e

Plel+lal

SUp | o Fr(Z, 7 <C. 3.4.184
alt o< 1022071 %7 | )
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3.4 Diagonal asymptotic expansion of Bergman Kernel

For |Z|,|Z'| < a,U;,Us € E,, set

K= / (FualZ - W, 2/ = W')U, U2>%U(K)O(m)dUTX(W)dUTXU/V/).
g X X Ty X S o S
Combining (3.4.164) and (3.4.184) we find
’<FT,T(Z, Z"Uy, Us) — IC‘ < Cs|Uy| - |Uy). (3.4.185)
Set
5s(W) = gino(g)m, for i — 1,2
5(W)=s1(Z=W), (W) =s(Z"—W).
Then
supp(s;) C By and supp(§;) C Bay1, fori=1,2 (3.4.186)
and
151 = ||| = ;/ U2, for i =1,2. (3.4.187)
s Jon

It is clear that
]C ::/ <J—'j,=7t(Z — W, Z, — W/>81(W/>, SQ(W/>>dUTX(W)dUTX<W/)
Tyo X X Ty X
_ / <fm(w, W5 (W), §2(W’)>dvTX(W)dvTX(W’)
Tyo X XTig X
:< Foidn, 32>t70, (3.4.188)
From (3.4.183), (3.4.187) and (3.4.188) we obtain
_ - Ct
K] < Wl [l - 5l < St 3.4.150)
Combining (3.4.185) and (3.4.189) we get

(Frl2, 200,02

t
< C(s+ ng)|U1] - |Us]. (3.4.190)
Set ¢ = t2n1+1, then

[(For(2. 200, 5)| < Ot - (U, (3.4.191)

which implies (3.4.181) immediately. The proof of Theorem 3.29 is complete. O
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3 The second coefficient of asymptotic expansion of Bergman kernel

Finally we obtain the following near diagonal estimate for the kernel of Py ;.

Theorem 3.30. For any k,m,m’ € N,a > 0, there exists C > 0 such that for t €
(0,t0], Z, 2" € T, X and |Z|,|Z'| < a,

glal o]

k
S | (Po = S FE)2,2)
r=0

laf+|a’|<m

< cthtt, (3.4.192)
om'(X)

Proof. By (3.4.179) and (3.4.181) we have

1o

— 7. 3.4.193
o at,,POt =5 ( )

From (3.4.164), (3.4.193) and the Taylor expansion

k ¢ k+1
19 1 LORIG

;T_ - /O (t = )y (5)ds, (3.4.194)
we obtain (3.4.192). This completes the proof of Theorem 3.30. O

3.4.5 Bergman kernel of L)

Recall that £9 is given by (3.4.64). Now we discuss the eigenvalues and eigenfunctions
of £5 in detail.
Let {vi,...,v,} denote an orthonormal basis of T\ X such that (3.1.13) holds. Set

v + 7, V-1 _
€251 = ]\/5 J, €25 = W(Uj — Uj). (34195)

Then {ey, e, ..., €2,_1, €2, } forms an orthonormal basis of T,,, X. We use the coordinates
on T, X ~ R?" induced by {e1,...,es,} as in (3.4.38).
We also introduce the complex coordinates z = (zq,--- , z,) on C" ~ R** such that
= \/58%]_ holds at the point z = xo. We identify 2 to Y 7_, zj(%j and Z to Y07, ij%
when we consider z and Z as vector fields. Then Z = z+7%, and v; = \/58%]_, v = \/58%]_.
Remark that

J

Set

§ = (317 T, Zg, ZgHl, 7Zn)7 §= (Zb Ty 2g Zgt, 7311)- (34197)
It is a consequence of (3.1.13) that

0 0 0 0
J_:\/—_l_, J— =— —1T, for :17 , 1 3.4.198
9, 96" " O, oe, (34195)

J J
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3.4 Diagonal asymptotic expansion of Bergman Kernel

We also identify & to D7, fja%_ and € to Y." when we consider ¢ and € as

< 9
j=1 fj@
vector fields. Then & + 5 = /Z = 2+ Z. Remark that

|
\ | _|—| ——, and !§|2=\€|2=512}2. (3.4.199)

Set u; = 29 and

9€;
faj-1= %(Uj TU;),  fo = %(Uj —u;), j=1,,n (3.4.200)

Then {f1,..., fan} is also an orthonormal basis of T, X.
Set

Lo =—(Voge,)* — 2nT. (3.4.201)
Then
LY = Lo — 2Wd.z,- (3.4.202)

It is very useful to rewrite Lo in (3.4.201) by using the creation and annihilation opera-
tors. Set

0 — 0
bJ:—ZVQ% :—Qa—é_j—i—ﬂ'é], b _QVO (Z] _2£+7T§], b:(bl,bn>
(3.4.203)
Then for any polynomial g(¢,€) on € and &,
o . - _ ) (3.4.204)
) 7b' =2 ) ) ) ab+ =—-2—
[9(€.€),bj] (%jg(é‘ §), [9(§9) ]] OE, 9(&,9).
By (3.4.201), (3.4.203) and (3.4.204), we obtain
Lo=) bbf. (3.4.205)
j=1

The following result is due to Ma and Marinescu, see [30, Theorem 8.2.3].
Theorem 3.31. The spectrum of the restriction of Ly to L*(R?") is given by

Spec(Lo|2(r2n)) {4#204]‘ a=(a, - ,0) €N} (3.4.206)
and an orthogonal basis of the eigenspace of 4w Zj:1 a; 15 given by

b (Pexp( — gz 61%)),  with B € N, (3.4.207)
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3 The second coefficient of asymptotic expansion of Bergman kernel

It is a consequence of (3.4.207) that an orthonormal basis of Ker(Ly) is
18l 1
T

() exp ——Z\fg . with 8 € N". (3.4.208)

Let P denote the orthogonal projection from (L*(R?"), ||-||o) onto Ker(Lo). Let P(Z, Z')
be the smooth kernel of P with respect to dvrx(Z’). From (3.4.208), we get

P(2.2) =exp| = 5 Z (1617 + 1€ +7r2g] ] (3.4.200)
7j=1
and
WP =0, (0P)2,.2')=2n(§; —E)P(Z,Z"), forj=1,---.n. (3.4.210)

Let PV be the orthogonal projection from (L*(R*",E,,),||  [lo,0) onto N := Ker(L9),
and let PN(Z,Z") be its smooth kernel with respect to dvrx(Z’). Denote by N+ the
orthogonal space of N in L*(R*", E,,). Set P+ =1d — P, PN" =1d — PV. Since

wd|(det e S 2, (3.4.211)
it is a consequence of (3.4.202) that
PYZ,2") = P(Z, Z") Lyiwys 2 (3.4.212)

3.4.6 Proof of Theorem 3.2

Let f(),t) be a formal power series on ¢ with values in End(L*(R*",E,,)),

Ztr £o(t) ) € End(L*(R*™,E,,)). (3.4.213)
Consider the equation of formal power series for A € 6 U,
(A= L5 — Zf“ FOLt) = Tdpagen, &, )- (3.4.214)

We decompose f(\,t) according to the splitting L?(R?", E,,) = N & N+,

gr(N) = PVEN), £ ) = PV, (3.4.215)
Using (3.4.215) and identifying the powers of ¢ in (3.4.214), we get
1 L
m) =L PN, ) = (- )7 P
)= =£)7> PY0; 500, (3.4.216)
j=1

1 T
= > PNO;fr (V).
j=1
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3.4 Diagonal asymptotic expansion of Bergman Kernel

Theorem 3.32. There exist J.(Z,7') € End(E),, polynomials in Z,Z" with the same
parity as v and degJ.(Z,Z") < 3r, whose coefficients are polynomials in RT™ RB RF
(and RF) and their derivatives of order < r — 2 (resp. <), such that

fr<Zv Z/) = Jr<Z7 ZI>P(Z7 Z/)v J0<Z7 ZI) = ldet(WRE" (34217)

Proof. By (3.4.173) and (3.4.193),

1 d” ty—1 1 1
= — (A — A\ = —— (A A))dA. 4.21
F 27ir! /5dtr (A= L) t=0 27ir! /5(9 N+ 1) 3 8)

From Theorem 3.31 and (3.4.202), the only eigenvalues of £ inside § is 0. By (3.4.212),
(3.4.216) and (3.4.218), we get

Fo=PN = Pl o (3.4.219)
and
Fi=—PYNO,(L) PN — (LY PN O, PV (3.4.220)

The two summands on the righthand side of (3.4.220) are self-adjoint to each other.
By (3.4.209) and (3.4.212),

PY(7,7) = 3 5im (aPgr-sg) o

(3.4.221)
By Theorem 3.19,
O, = B V., + (i, (3.4.222)

where B, 1, C are polynomial in Z and satisfy the following conditions: the coefficients
of B;1,C; are polynomials of Rﬁ() with deg, B;; < 2, and deg,C; < 3.
Substituting (3.4.221) and (3.4.222) into (3.4.220) we get

F(Z,72")= J(Z,Z"YP(Z,Z) (3.4.223)

with Jy(Z, Z") satistying deg, Ji(Z, Z") + deg, J1(Z, Z") is odd, while deg,J,(Z,Z") +
deg, J1(Z, Z") < 3, and the coefficients of J;(Z, Z’) being polynomials of R . O

Combining (3.4.216) and (3.4.218), we get the following formula for 7,
Fo =(LY' PN O£ PN O, PN — (£9)7 PN 0, PN
+ PNOLLY) PN O (L)) PN — PO, (L) PN
+ (L) PN O PNOL(LY) PN — PN Oy(LY) 2PN 0PN (3.4.224)
— PYOPNO(L) 2PN — PV (£9) 20, PN O, PN,

The following near diagonal expansion of the Bergman kernel is the main result of this
Section.
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3 The second coefficient of asymptotic expansion of Bergman kernel

Theorem 3.33. For any k,m,m' € N,a > 0, there exists C > 0 such that for a > 1,
72,7 e T, X and |Z|,|Z'| < \/iﬁ,

o 1P 7,7
su — (= 7
|0‘|+\0}|)<m oY AT YA <p p( )
R @Z/)k_%(z)k_%(mp_%)‘c Th Cp~F7. (3.4.225)
r=0

Proof. 1t is a consequence of (3.4.86) and (3.4.87) that

1 -1
Po= A — (D%A0)2) " g\ 4.22
0,p 27T'L M ( ( D ) ) ) (3 6)
where ¢ = {z € C, |z| = Zp}.
Combining (3.4.163) and (3.4.226) we get for Z, Z' € R*",
VAV

Pop(Z,2') = t*"k 2 (Z)Por . K 2(Z). (3.4.227)

From Proposition 3.18, Theorem 3.30 and (3.4.227), we get (3.4.225). O

Proof of Theorem 3.2. Set Z = Z' = 0 in (3.4.225). Since Theorem 3.32 implies that
For41(0,0) = 0 we obtain (3.1.11) and

b, (x0) = F2,(0,0). (3.4.228)

Combining (3.4.209), (3.4.219) and (3.4.228), we obtain (3.1.10). O

3.5 A simplified formula for the coefficient b,

In this Section, we prove the last two terms in the formula (3.4.224) vanish. In subsection
3.5.1, we calculate the second and third terms, i.e., Oy, O, of the Taylor expansion of
the rescaled operator L. In subsection 3.5.2, we establish that the last two terms in
(3.4.224) vanish. Then we obtain a simplified formula (3.5.28) for the second coefficient
b;.

3.5.1 The second and third terms in the Taylor expansion of L

We use freely the notations from Section 3.4. In particular, the operator £ is given by
(3.4.64).

It is an immediately consequence of (3.4.39) that all objects on X, with subscript
coincides with the original date on X in Bs., e.g., the connections V0, VX0 vFo co-
incides in By, with V¥, VIX and V¥, respectively. Hence, the cutoff function p has no
contribution to our calculation of the local date by(x). In this sense, we forget it in our
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3.5 A simplified formula for the coefficient b,

subsequent calculations of by(zg). Then the rescaling (3.4.61) is simplified as follows.

For s € C*(B.,E,,) and Z € B., for t = f’ set
(6:5)(Z) = s(Z/t), Vi = 6; ‘thkzVBAT OLIOE =55, (3.5.1)
1,91 2,1 -9
LY =06;"k2D2k 26,
If @ = (a1, ,9,) is a multi-index, set Z% = ZP* - - - Z52*. Let (0*RL),, be the

tensor (9 RY),,(e;, ¢;) = 0“( R (e, ej))xo. We adopt the convention that all tensors will
be evaluated at the base point xg € X, and most of the time, we will omit the subscript
zo. Let O1, O} be the operators defined as [29, (2.5)], [31, (1.30)]:

, 2 1
OI(Z) = - g(aJRL>$0 (R7 ei)ZjVO,Ei - g(azRL)xo (R7 ei)a

04(7) =5 (RIX (R, )R, ¢; ) Vo, Vi, (35.2)
+ (B R e) - (4 |Z (0B )., 20 4 ) (R.e)] Vi,
«|=2
B iv&( Z (8O‘RL)¢0§(R7 ei)) _ % Z [Z(ajRL)xO(R, €i>Zj] 2
jal=2 i

_ % o (R Roe)R ) .

Set

1
= 7 (AT, (3.5.3)

The following result, an analogue of [29, Theorem 2.2], provides us the explicit ex-
pressions of O and Os.

Theorem 3.34. There are second order differential operators O, (r > 1) which are self-

adjoint with respect to || - ”0,0 on C°(R*™, E,,), and

0, =0] —7r\/_1< Vi ez,ej> (ei)c(ej), (3.5.4)
Oy —0) — REN (R, ) Vo, — \/__1<(va3.]) S ej>c(ei)c(ej)
1

[RT(I O)X})(ez, e;)c(e)c(e;) + irﬁ) -

such that

=LS+) O, (3.5.5)
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3 The second coefficient of asymptotic expansion of Bergman kernel

Proof. We still give the proof for the reader’s convenience. From the Lichnerowicz
formula (3.2.12) we find that

L= °(RE) +t*®, + L, (3.5.6)
where
L0 =07 P AP SLOE =56, = GU(12) [V, Ve, — 15 V10, ] (3.5.7)

From [29, (2.14)], the Taylor formula of ¢(RL,) is
“(Rly) = (e e )eledeles) - VoInt{ (VAD)ewe Jeledele)  (35.8)

B Tm2<(vaBJ)(RR e, €j>c<ei)c(6j> + O(t3)-

It is a consequence of (3.2.13) that

X

,
t2®,, :t2{ﬂ+

c 1 (1,0 1 c 1
4 [Rf;) + iTr(Rgo X)} - Z (dTas)xO - g‘Tasl } + O(tg) (359)

Clearly by (3.5.1) we have

p t
Vie, = Ve, + tDEAMGLICE (o h (U 2)(Vek)(12), (3.5.10)
where ['BA"*®LP8E i induced by TPA"* T'F and T'F. Recall that by [30, (1.2.30)]:
Z(aarB,AO"é?LP@E)m (Q’)E _ 1 Z (8aRB,A°7‘®LP®E)x ('R ei)ﬁ. (3_5_11)
= al r+1 o T al

Therefore,

;@ p 1 ,® P 1 .0 P
F?Ao ®L ®E(€i) :QRfdAO ®L ®E(R, ei) + § Z (ajRB,AO ®L ®E)IO(R, ei)Zj
la|=1

Z (9 REAMTOLIOE) (R ez)Z o(|z|", (3.5.12)

pbl»—

which implies

;@ D t2 ,® P t3 , P

(TBATSLIOE ZERE(;AO BLPBE(R ¢;) + 3 > " (;RPATELOE) (R, €:)Z,
la]=1

t4 0,e P ZO[

+ = (8aRB,A QL ®E)w0 (R ei>_

’ |

4 o= ol

+ O(t%). (3.5.13)
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3.5 A simplified formula for the coefficient b,

Substituting (3.2.19) and (3.5.13) into (3.5.10), we have

t2 corp t
Vie, =V, + ER;?(;A“’ SR, ) = Sk (LZ)(Ve k) (12) (3.5.14)

t 12 zZ
+3 2 (RN (Roe)Zy+ 7 D (0°R)sy(Roen) o + O(FF).

laf=1 |af=2

That is

12 2 . 1
Vie =Ve, + ER;EO (R, e:) + ERvaA‘) (R, e:) + 5350(72, e;)

«

t t° Z
+ g Z (8jRL)LB0 (R7 €i>Zj + Z Z (8QRL)$0 (R’ 61)?

lo|=1 |a|=2

~ K2 (VR 02) + O(F), (3.5.15)

From [29, (2.8)] we deduce

2

—%kl(tZ)(Veik)(tZ) - —%<R§§<ej, e R) +O(F). (3.5.16)

Substituting (3.5.16) into (3.5.15), we obtain

Vie =Ve, + <1RL + L 0uRY) 2+ r > (0°R") 2 Py ﬁRB’AO">(R &)
tei — Ve 9" 'zo 3 k oLk 4| =, o ol 9 "o 9 "'z » &1
t2 TX 3
. g<Rxo (es,¢,)R, ej> O (3.5.17)
t
:V()ﬁi + —(&RL)% (R, ei)Zk + O(tg)
3
t2 B,A%® E 1 a pL z* 1 TX
+ 5 [(Rxo + Rxo + 5 Z (8 R )xoa)(]z, 61') - §<Rx0 (61', ej)R, €j>i|.

=2
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3 The second coefficient of asymptotic expansion of Bergman kernel

Substituting (3 5.17) and [30, (4.1.102)] into (3.5.7), we get
L= [51] — <RTX(R )R, e;) + O(tf”)}

X {Vo,ei + g(apRL)xo (R, ei)Zp + O(ts)

t? . 1 N Z
+ b [(RﬁAO + Rfo + 3 Z (0 RL)zoJ R e) <R (ei,ep)R, ep>] }
|a|=2 ’

t
X {Vo,ej + g(alRL)xo (R, €j>Zl + O(t3)

2
_i_%[(Rﬁ),Ao,- B+ Z (O°R)4 =) (R, ¢;) <R (ej,en)R, el>}}

\oe| 2
+t[5” 3<RTX(R e R,ej>+0(t3)}
x [§<R§OX(R, ei)e; + RIX (R, ej)er, ex) + O(tB)}

t
X {VO,ek + §<81RL)330 (R, Gk)Zl + O(tg)

—l-g[(Rf(;Ao"—FRE 41 Z (0" R")0y 2 ) (R, ex __<R ek,el)R,€l>]}+O(t3)
2o
— (Voe,)* — g[(alR )20 (R, €5) ZiN0e; + Vo, - (AR" )20 (R, ej>Zz}
_ {;[(RBAO‘_'_RE 4= |Z (0*RY),, )(R,e;) _%<Rfj{(ej,el)72,el>}vo,ej
a|=2
;Vo ., [(RB AL RE 4 2 Z (0°R")ey—) (R, €;) — <Rff(€j7€l)737 6z>}
2 0=
SO )] [0

2
_ —<RTX R,e))R,€;)Voe,Voe, — <R§§(R,ej)ej,ek>vo,ek} +O(t%)

3

t
~ (Vo) 5 [2(@11#)%(7@, ¢5) V0., + (8-RL)IO (R, ej)}
tZ{[(Rf(;A"" ot Z (0°RY)00=—) (R, ;) ——<R (ej, )R, el>}v0,ej
|a\ 2
%[Vo ejs (RfO’AO’. + RE + - Z (0“R"),, R e;) — —<R (ej,e)R, el>}
|a\ 2

2n 2n 2

500 | DGR (R )2
i=1  j=1

1 2
— §<R£;X (R, Gi)R, €j>V07eiVQ,ej — §<R£OX(R, ej)ej, €k>v0,ek} —+ O(t3)
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3.5 A simplified formula for the coefficient b,

That is

L=~ (VO,ej)2 %[ (8lRL)a:o (R ej)ZlVO eJ (ajRL)mo (R, ej)} (3518)

1 7o
+ t2{§<R§OX (R e)R,€5)Vo.eVoe, = 5 [Vo,ej, > (0"R")40(R, ej)g]
|| =2 '

2n 2n

- %(Rff(ej, er)ej.er) — %Z [Z(ajRL)%(Rv ei)ZJ]2

i=1  j=1

1 00
+ [§<R;X(R, el)el,ej> (RBA +RE + = Z (0“RY),, R Gj)}V()eJ}
\Oé| 2

+ O(t%).

Clearly,

% [(VO,ej)27 <RZ:0X (R7 ei)R7 61>} (3519)
1 1
:6 [Vo,ej7 <R§OX(R7 ei)R, €i>} Voe; + 19 [Vo,eja [vo,eja (RfoX(R, ei)R, €i>H

1 1
= - §<R£}X(R, er)er, €)Voe, + = (RLX (e, e)ej, €).

6
That is
<R (R, ek)ek,ej>vo e; + = <R e],ei)ej,ei> (3.5.20)

—<R (R, ex)en, )V, + 2[(Vo,ej)Q,<R£)X(R,ei)7€,ei>}

Substituting (3.5.8), (3.5.9) and (3.5.18) into (3.5.6) yields (3.5.5) with Oy, O, given by
(3.5.4). The proof of Theorem 3.34 is complete. ]

3.5.2 The new formula for b,
By Proposition 3.7, (3.3.1), (3.5.4) and (3.2.29),

0o 0

O, =0, — 8/ 1In <(VRJ)8 B

>dzk Nig. (3.5.21)

We have the following analogue of [29, Theorem 2.3].
Theorem 3.35. The following relation holds:

PNO, PN =0. (3.5.22)
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3 The second coefficient of asymptotic expansion of Bergman kernel

Proof. Set
J = —2mV/—1J. (3.5.23)
By (3.5.2) and (3.2.29),
) 2 1
01(2) = = S((VETIR. ;)Voy, — (VTR f;) (3.5.24)
_ Y s rr 9 _Yvsnmr L
== (VDR 5 ) Va0 = 5((VEDR. 52 )Va g

J

From (3.2.29) and (3.4.203), we find that

K(V?J)R, a%>bj - bj<(v§j)7z, a%ﬂ' (3.5.25)

2
3

O\(2) =
By Theorem 3.31 and (3.4.210), any polynomial g(&,€) in &, € satisfies
Pbg(&,E)P =0, for |a] > 0. (3.5.26)
By (3.5.25) and (3.5.26), we get
PO|P =0. (3.5.27)
Now (3.5.22) follows from (3.2.29), (3.4.212), (3.5.21) and (3.5.27). O
Substituting (3.5.22) into (3.4.224) we find

Fo =(LY) PN O, (£) PV O, PY — (£9)7 1PN 0, PN (3.5.28)
+ PNOL(LY) T PN O (L) T PN — PN Oy(L9) 7 PN
+ (L) PN O PN OL(L£5) T PN — PN O PN (L£5) 20 PV,
and

We only need to compute the first two terms and the last two terms in (3.5.28), since
the third and fourth term in (3.5.28) are adjoint of the first two terms by Theorem 3.34.

3.6 Calculation of the coefficient b;

In this Section, we calculate term by term of the formula (3.5.28) of the second coefficient
b;. Subsection 3.6.1 is devoted to a formula for the scalar curvature r*. In subsection
3.6.2, we calculate the terms in (3.5.28) containing the factor O;. In subsection 3.6.3,
we calculate the rest terms in (3.5.28) and then obtain the formula (3.1.19).
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3.6 Calculation of the coefficient by

3.6.1 A formula for the scalar curvature r~*

Before our calculation, we establish the relation between the scalar curvature r* and

|VXJ|?, which is exactly the same as [31, Lemma 2.2]. Here we use the coordinate

gla"'agn'

Lemma 3.36.
o 0.0 0 1 2
=8(R"™ — —|VXII%. 3.6.1
(PG 5255 5z) ~ 1V (361)
Proof. We give the proof for the sake of completeness. By the definition of X,
(R (f £ 1) = —a( R™ (2 s 05 (3.6.2)

:8<R 2 0,90 9 > 8<RTX( 0 ,i)i,i>.

&’ (9§ 0&;’ O, 9% 08;” 0¢, 0§
By (3.1.13),
b 000 9\ VT 0 010 0
(R (e 55t azj>‘ 5 (R (e i a§j>. (3.6.3)
From (3.2.25) and anti-symmetry of (VXV*J) 4, we get
R I RS )
(7 (a@’a@)"”a@’a&> A7 J)<%»a?j>azxazj>' o4
By (3.2.26),
Nox g 0 Yo g0 0 NeX o 0
<(V Vv J)(% ai)_g ?> <(V v J)(gfgl@‘zi)a_gj’a__j>_<(v Vv J) (5¢; 65 85] 8§>

(3.6.5)
By (3.2.25) and (3.2.29), we find that

o 0 0 0
2v/—1( (V*V*J — ) =((V5I)—, (V5 I)—). 6.
<(v v )ai% %,aé) <(v£i )8§j7(v% )agj> (3.6.6)
Similarly,
o 0 3} 0
2v/—1( (V*V*J — = 5 J 5 I)—=). 6.
<(V v )(Baﬁi’%j)agj7 a§z> <(v )8§j (Vaéj >a§z> (36.7)
Substituting (3.6.6), (3.6.7) into (3.6.5), one immediately gets
g 0
2V-1((VIVHI 3.6.8
<( ) (5%:3%) OF, ¢, > ( )
9, 0 0 0
— X . X X X o
=((V5D) i (Vaz‘”_ag) (VD57 g (V) a&}
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3 The second coefficient of asymptotic expansion of Bergman kernel

By the definition of |[VXJ|? and (3.2.29),

0 9
VIR =((VEDL (VENG) =8((VE ) 5 o5 Vi V5T ) (3.6.9)
Thus,
X 9 X d _1 X 712
<(v%J)a§j’(V£J>3_‘j> = 8]V JP. (3.6.10)

By (3.2.24) and (3.2.29),
<(VX N2 vy 52 > <(vX 52 9 ><(v;€9J)i,i>

05" s g, 9¢;" 08 o 08 08,
oleox 9 ox p o 9 9 9
_2<(V%J)8£k (Vi D 8§i><(va?j‘])a§k’ aZ.> (3.6.11)
)

_/(ux x 1.9\ /Jiox 1.9 ox 1 9
(Ve eV ) (TaVag Ve

Combining (3.6.10) and (3.6.11), we find that
0 B B, B
X J X J % J X I)— XJ2 6.12
((v% Do (T >a§> 2<<v g6 (V% >a§j> SR (36.12)

By (3.6.3), (3.6.4), (3.6.8), (3.6.10) and (3.6.12), we obtain

g 0,0 0 1
R™ (o )= — v 3.6.13
< <8§,~ 8§j)a§i a§j> 32 ‘ ( )
Now (3.6.1) follows from (3.6.2) and (3.6.13). O

We are now ready to compute the terms in the expression (3.5.28).

Lemma 3.37. For every 2-form A, we have

°(A) .]det(W*)(@E:[ 2A % ag Z Z A(—= ag (%k dgk/\@ 3

=1 k=

+4) A(—= A=, —=)dE; /\df} et
];1 05 65 S ,;;H ag agk | e WeE
(3.6.14)

If A is compatible with the complex structure J, then

“(A4) - Idet(W*)®E = Z Z Al= dfk Ni o [det(W*)®E-
[ 85 86 j=1 k=q+1 85 afk % }
(3.6.15)
Proof. One easily get the result (3.6.14) from (3.3.1). O
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3.6 Calculation of the coefficient by

3.6.2 The term in b; containing the factor O,

By (3.2.29), (3.4.210), (3.4.212), (3.5.21) and (3.5.25), we know that
O.PN(Z,7")

:{—£6b<( 5 3)E, §> 47“§_ <(VXJ)§ ;;'> (3.6.16)

0
—4\/ a d o b 2
Zk2< e D e, e i b+ 275

_87“/_2 Z < 53 0 >d§k/\z?}P(Z,Z’)I

j=1 k=q+1 85 af det(W")QE"

From Theorem 3.31 and (3.6.16),
(L) LPN 0, PN)(2,2")

- _ b_ X i
B \/_{127r<( e J)E, 5> 3<(V J)S,%) (3.6.17)
q n a 8 b .
+ vBa J)—, — d N1l o _m+ m
jzz;k::zq;-1<( 9m )85 8€k> gk Za*5J<37T f )
q n a a B
T (VBJ)T7T df /\’ia}'P(Z,Z’)I ot (T .
;k§—1< o 85k> Fe det(W )@
Therefore,
<(£O)_1PNL01P *)0.2) (3.6.18)
0
R deg Nia PO, AT ,
;k;ﬂ< ¢ ag ' O, 52, ) Mg PO s
and
(<£°>*1PNL0 PY)(2.0)
0
3 dg Nig P(Z.0)]g
;k§1< e ag ag> k det(W") @B
0
- \/_Z Z < VEJ 8f >d$k/\2 ‘2 P(Z,0)1 det(W")QE" (3.6.19)
Jj=1 k=q+1 k
By taking adjoint of (3.6.18) and (3.6.19), we find that
<PN01(£ 7P )20 (3.6.20)

o 0

— B ! -

- Z Z < Ved)or 9 a€k>P<Z70)Idet(W*)®Ed6j/\7’a‘gka
J=1 k=g¢+1
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3 The second coefficient of asymptotic expansion of Bergman kernel

and
(PNOI(EO)—leL) 0,2)

o 0
B .
§ : § - (( Vi) a§k>7)(0’ Z) gy Ni o (3.6.21)

Jj=1 k=q+1

g 0
B
+\/_jzlk§l< (Ve e a§k>P<0 D)l guiryons Mo

By (3.2.29), (3.6.19), (3.6.21) and [, [¢]2e™™ = 1 we obtain

(PNoleL (50)—201PN) (0,0)

E:Z:E:K ﬂé%W%MWME

mlj 1 k=q+1

53 DD DR (LA

m=1 j=1 k=q+1

1
:72—7T<’VBJ‘2 410 Z \(53@)%,uk>|2)[det(W*)®E. (3.6.22)

i k=1

By (3.6.18) and (3.6.20),

((ES)”PW OlPNOl(ﬁg)*IPNL> (0,0). (3.6.23)

I & s D NSy 0D
> 21<(VZJ)8—&,8—5><N8J)% 38 i iy Mo

0ém

Let h(Z) (resp. F(Z)) be homogenous polynomials in Z with degree 1 (resp. 2), then
by (3.4.210) and Theorem 3.31,

(L5 Phb;P)(0,0) = (L5 PLb;hP)(0,0) = —%g—h, (3.6.24)
m é_j
(Ly"PHFP)(0,0) = — i rr
‘ U Artagog;

From (3.4.210) and Theorem 3.31, one verifies directly the following relations. For
1<j<¢q+1<k<n,

1 0Oh

(29 hbudg Ao PY) (0.0) = 1o o7 8k A Ly (3.6.25)
i N 1 O
(e Pdg, i g PY)(0.0) = o 7 a7 Lok N e
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3.6 Calculation of the coefficient by

Moreover, we have for 1 <i,j < gand ¢+ 1 < k,l < n,
1 O*F
807 9€,,IE

((Lg)—lpdgk A dgliaafiiaiszN) (0,0) = QB A i g i 0 Loy

(3.6.26)

y (3.2.29), (3.5.21) and (3.6.19), we get

),
( )y LPN O, (£9)- 1(91PN>(0 0)

0\ ~ .
X Z Z < 65 a_gk>d€k/\Zagj]P}<OaO)Idet(W*)®E

Jj=1 k=q+1

le/\Z )

oz,

_ 8W{(£8>‘17’Nl [WRJ >ai 3821>

B
XZ Z ((vEs ag a§k>d5km - ]P}(O )T A (3.6.27)

7=1 k=q+1

ZZZ’ ag ag >‘ det(W E+]1

m=1 j=1 k=q+1

2SS (V) ) D+

m=1 j=1 k=q+1

T 2Ur (|VBJ‘ +4 Z (57 (@)u;, ur,)| ) det(Wyer T 11+ 12,

i,7,k=1
with
- - g 0 o 0
YT 157 ”Z:Mlzzq+1< o6 O, agl>< s OE, agk>
X dE A dE; N ia%ii%Idet(W*)t@E
and
- Z Z <vB 52 i><(vBaJ)i,i> (3.6.29)
107‘— ij=1k,l=q+1 5 él 9&m aé_] agk

X dfk A dfz N i%i%]det(w*)Q@E
3.6.3 The term in b; containing the factor O,

Before computing ((£3)"' PN 0sPN)(0,0), we first calculate (Ly'P+O5P)(0,0). The
following result is due to Ma and Marinescu, see [31, Lemma 2.1].
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3 The second coefficient of asymptotic expansion of Bergman kernel

Lemma 3.38. The following relation holds for the operator O:

Oy P Z{é’%b <RTX(R I, 2 >+ b, Z (0°R") (R,i)z

9§, 55 o= o,/ a!
+ %bj KRTX(;&, a%)& a%> - <RTX(R, 88@)6%’ ai_)] + R (R %)bi
n <(VXVX‘7)(R,R)%’ 6%> + 4<RTX(88&’ %)%, %>}P (3.6.30)

+ (- %E (RT™(R, a%)n, a%> + é](vRJ)RF)P

Proof. We give the proof for the sake of completeness. From (3.4.203) we have

%(Rff(n e))R, ej>v06.v0 ¢

0. 0.,

&R o 7 b b;
2,

TX I T \h.}H.

LR (R, o ,az>b,bj

9 9 +71+
56 R 5 WY

9E;
+ _ TX i i
b <Rx0 (R, aEi)R’ 5

:%< RTX(R, >b+b+ <RTX (R,

5’&
1, oy a B

< RTX

+
>bb .

8

85 6
2iprxr. Lyp. 9
3<RCC0 (Ra 8&)73 ag

>bb + = <RTX
3
(3.6.31)
Since

aRL (Rie)Z,; = <(vgj)7z,ei>, (3.6.32)

IIPﬁ"D

then
Z [Z (9;R"), (R, 61)23}2 = —[(VETR". (3.6.33)

Set

1 Ze 9 10 2 9
0;71 25 Z (aaRL)ZOJ(R, g)bz - 5%( Z (8O‘RL):EOJ(,R’7 a_é.l)>

b fal=2

s (S, L rE) R ),
loj=2 ’

0}, —3<RTX(R %)R a(z >bb <RTX(R, ej)ej,%y)i.

i
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3.6 Calculation of the coefficient by

Then
0 =041+ Og = 5 [0 (REX (R, g R, 50)] + RER, )
+ E(Rf R, e;)e;, aaE - (%|;2(aaRL)m% + RY)(R, aa&)] b
3 [(REY R GRS — 2 REK (R R S
— 4n(RTX (R, i)n aiﬂ \(vgj) \ (3.6.34)
Clearly,
O35 =%<RfOX(R7 a%)Ra %>bz‘bj
sl aag % ai> (REY(R. ) 885 ai g
:%<R§OX( ,a%)n,%>bj—%[bi,<3m R,a%)n,a%ﬂbj
-5l R G g )+ (R g )
gl (RN ) )+ YR gy )
zlbl.bj< RTX(R, a% IR, a%> (3.6.35)
[<R aagz €, a§> (e sz 885 3@ >}
g[mm% B i) m%,%%%ﬂ
-5l (az aaa)aas a(z>
—-bb(R 83 _> 885 aagj)ai 8i>
-3 [<RTX(% gt % > (e 885 aaf a(z )}

Recall that by [31, (2.7)],
ze 1 1
> (0°R"), (R, )= §<(VXVXJ)(R7R)R, N+ 6<RTX(72, IJR)R,-).  (3.6.36)

|af=2
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3 The second coefficient of asymptotic expansion of Bergman kernel

Then
[Z e 2R D] = 5[ S @R L (R
=2 !
)
)

/
021_

l\DI»—t

aagj SRR, IR)R
a TX
a@} 3<R (R,JR)R ¥

aplL a
aR a! aZi)] (3.6.37)

=2
( (V¥VY TR aa&
( 9

(VIV*T)rr)R

- »M»— m»—

N)I»—t

52

a> B
' 08, ag

9 X 9
¥ a€<R (R,IR)R a§>)

(V*V*T)rr)R, 0 >

<(VXVXJ) rRR)R a&>

5

w|" »Jklb—‘

(R,JR)R

Using (3.2.25) we find that

0
9&;

~4{(V¥V*T)mm)

o\ 0
) o

az 3€§> <47rRTX(R,

(VV*T)mmR 8(2> (3.6.38)
0

. 9 0
5e R+ R(TRR) 5o ag>

<(VXVXJ) =R,

Clearly,

%<RTX(R,JR)R, a%> ;;<RTX(R IR)R ai} (3.6.39)

:3<RTX(R, JR) aa& %> <RTX(R, ai)’/z,a%>.

Substituting (3.6.38) and (3.6.39) into (3.6.37), we obtain

Oy = b |a22(aaRL)m§(R, a%)] (3.6.40)
<RTX(R IR, %> <(VXVXJ)RR

o 0
% )

08 0,
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3.6 Calculation of the coefficient by

Combining (3.6.34), (3.6.35) and (3.6.40), we get

, , , 1 0 0
(9273 :(927173 ‘I’ (927273 - g |:£O7 <RTX<R’ agl)R7 _Z>:| <364]‘)
rE (R Lypp it \(vXJ R|*P - <RTX(R 9 \r i_>73
o 8§ R 78& ) fz
1 0 J 0
—b; O*R* R, —)|P + ((V*V¥
> [la222< Jeo o 7 P+ (V¥ Drrge = =)
1 0 0 0o 0,0 0
+ 9 =bib(RIX(R, =)R, =) + 4RI (=, = )=, —
{3 < ( 85) a§j> < ’ (afl 86]')851 8€j>
4 g 0 0 g, 0 0
~b; (R (—, =R, =) —(RIY(R, =)=, — }73
+ 3 (R g ) 5, ~ e R5g) g, afﬂ
YO S AN PR RVPRIS T
3[Lo (R (R 5o0R, 7 |P+RER®. 5 0P+ Gl (VRIIR[P.
Now (3.6.30) follows immediately from (3.6.41). The proof of Lemma 3.38 is complete.

O

Let h(§) and f(€) be arbitrary polynomials in . From (3.4.210) and Theorem 3.31,

we have
(b:hP)(0,0) = —222 (0), (bibjfP)(0,0) = 4 a?jg;j 0), (3.6.42)
_ 1 o
(L5'0:fb;P)(0,0) = T or 06,05, (0).

The following result is due to Ma and Marinescu, see [31, (2.39)].

Lemma 3.39.

~(£5'P+04P) (0,0) = [RE(;& 8@)+<RTX(88&,8%>%,%>] (3.6.43)

Proof. We give the proof for the sake of completeness. If U,V € T'X, then

o 9
R™U V), Y], — ) = 3.6.44
GRICARIIPS 8€j> (3.6.44)
In view of (3.2.25) and (3.6.44), we find that
o 0 o 0
XX N XX !
<(v v J)(gﬁg)a—&,a—a>7>(z,2)_<(v v J)(&g)a—&,a—g)P(Z,Z). (3.6.45)
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3 The second coefficient of asymptotic expansion of Bergman kernel

By (3.6.6), (3.6.24) and (3.6.45), we get

_ o 0
_ <£0 1pi<(vaXj) RRDE’ e, >P> (0,0)
B U7 B
_ 27T<(V%J) 5 (V%J)ﬁg> (3.6.46)
__ L oxgpe
N 167T|v J‘ '
From (3.6.2) and Theorem 3.31, we find that
L/ 1/ rx 0 0
5<7> (R™(R, R 5 —=)P)(0.0)
L 00 o 9 b,
5 (P (R w5 T G )t & )5eP) 00 (36.47)
L g @ 000 0 00 0
a 37T<R ((%j’ (‘95)8& * R <8Ej, 8&)8@’ 8Ez>
7,.X
-

It is a consequence of (3.2.29) that

872

—% (ﬁglpi\(vgjmfp) (0,0) = - (5517ﬂ<(vg&1)§, (V?J)E>P> (0,0).
(3.6.48)
By (3.4.210), we deduce that

(V¥ <V§<J>£>P<Z Z)

{[(mame w0 )i+ (e i)
+((VEDE (VY 8 >Qb— +((VEDs. (VIE) P 2.2

:{ {<Z£Q(V£J)% + 2 (V% 9 + (v a‘z ). (VE3)E) (3.6.49)
+ 2i2<( AR (V?J)az (v;i;J)g + <v:§]‘])a§>

+%<( )f—i—(V?J)aa& (V 8%J)f +(V§J)%>+<(v§{])g7 (vgJ)E’>
X 0 ¥ 0 x K ,
732<(V J)a—&Jr(VaEJJ)afz (V J)8_§j>]P}(Z’Z)'
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3.6 Calculation of the coefficient by
Using (3.6.10), (3.6.12) and Theorem 3.31, we find that
(23" P+ ((VEDE (VEDE)P) (0.0)

0
X X
{{3%3 v J)¢ (VBZJ)a—E)

(V% D+ (T (TR A+ (7 )5 P00
(7% J>a%+ 5 D5 (T D) (5.6.50
- ﬁ<(v§%(})% + (7% J)az (V% J)(%+ (Vj‘;‘])a%)
- 8i3<(V§5]J)06; (Ve J)az (ngl‘])a%) :_12§7r3‘vx "
Now (3.6.48) and (3.6.50) imply
—%(EOIPL‘(V)QJ)RVP) (0,0) = wiﬂ\vXJf. (3.6.51)

In view of (3.4.210), when calculating —(Ly'P+O4P)(0,0), the contribution of the

term 10, Z|a|:2(8O‘RL)$O (R, a‘z )Z: in O} consists of the terms whose total degree of b,

and Ej is the same as the degree of £&. Hence we only consider the contribution from the
terms where the degree of £ is 2. From [31, (2.7)], the contribution is

1 — 0
I :—bi K(VXVXJ)(&@g + (VXVXJ)(E@g + (VXVXJ)(&)& ¥> (3.6.52)

)

+ 2 (RNE 706+ BN(E IO —§>]

By (3.2.25), (3.2.26) and (3.2.29), we get

(P Dot 5) = (7T Dieg 3) + VD (VL E), (36.59)
and
(VY D) gt ai ) - - L (wrae, (vXJ>a%> (3.6.54)
(V9 Dot ) == Y {((VEDE(TED )
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3 The second coefficient of asymptotic expansion of Bergman kernel
Using (3.6.42), we find that
(£5 PH0( BT E ),
1 0 8 8 0 o 0,0 0
= — —F RTX -, = + RTXTy_ [~ )
47T2<< <0£j 3&:)3&' 8£i> < (36 ‘953')(9&' 3€i>

__ Y oprx 9 0,0 9 rx 0 0,0 0
i (2<R AL A A AR Fr azi>>'
From (3.6.10), (3.6.12), (3.6.13), (3.6.42) and (3.6.52)—(3.6.55), we obtain

- (ﬁglpHg 73) 0,0)

>7)> 0,0) (3.6.55)

_ | L yprx 9 0,0 0N 1 /gy 0 0,0 0
3 |:27T2 <R (3&'7 32)85]‘7 8§> * 47T2< (852" afj)agi’ agj >}
X 0 X 0 X 9
87T<(v s D) g + (Va5 (vang)a£> (3.6.56)

_ Lprx @ 030 0N L5 gxgpe

Combining (3.6.30), (3.6.46), (3.6.47), (3.6.51) and (3.6.56), we get
- (£5PHOLP) (0,0)
-~ { (e e g )+ e
F (RN G e = BN ) o) P oo

37 96" O€, 0&" 0¢," O,

(PL<RTX(R a%)R %>P) (0,0) = (£5'P*L P)(0,0)
o 0

) og;” O,
1

- §(£517>L|(vgj)72|27>> (0,0) (3.6.57)

S GAEE P b SR GAT P SEaF 9)
o 8%) G %)% - R ai)a‘;, ai}

3w 5 [ e i 5 ) 1)

G ) e G ik 3

- (551PL<(VXVXJ) RR) A >P) (0,0)

67 0&; 3 a_gj’a_gz 6m
1 5 0 0 r 5 X 112
o g 5 T o el I
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3.6 Calculation of the coefficient by

Then (3.6.1), (3.6.13) and (3.6.57) entail (3.6.43). The proof of Lemma 3.39 is complete.

]
We now compute the term ((Eg)_lPNL\I/PN) (0,0).
Note ¥ = 1(dT,,) € A22. By (3.3.1),
1
24 =1 (dTaS) (€i, €5, ex, ex)cle;)c(ej)cler)c(er)
1 )
S §(dTas) (i, €5, vk, Uk )c(e;)c(ej) + (dTas) (ei, €5, 05, 0y )c(e;)c(e; )T A iy,
1 oo
+ 3 (dTas) (€iy €5, vk, vi)c(e;)c(e; )iz, iz,
1
+ §(dTa5) (e, ej,ﬂk,@)c(ei)c(ej)ﬁk AT
1 .
- _ 2[ — 5(dTaS)(uj,@-,vk,6,6) + (dT o) (vi, 05, v, U)W A zg]
1 T
+ 4[ — §(dTas)(vj,§j,vk,@) + (dTus)(vi,ij,vk,@l)W A Z@i:|’Ul A iz,
+ (dTs) (U5, U, v, 00 AV A i, i,
+ (dTos) (vi, vj, U, 0y )i, 1,0 AT
=(dTs) (v5, U, i, Ok) — 4(dTs) (vi, Uz, Uk, Vi)V A i,
+ 4(dT s ) (vi, g, v, )V A i, 0 A i,
+ (dTs) (U5, 0, v, 0 AV A i, i,
+ (dTys) (vi, vj, g, 0y )i, 1,07 AT
Using the relation
v Ny, + 05,0 = b, (3.6.58)
we get
240 =3(dT,s) (vi, Vi, 05, 0;) — 12(dT ) (vi, U, vk, DRV A i,
+ 6(dTus) (i, 05, Tk, )V AT A i i,
That is
1 o o0 0 0 o o0 0 0
V= (dlos) (5= 7=, 7 o=) —2(dLos) (57— o=, =, == )dz; Ni s
2( )((%i 0z, 0z; ﬁzj) ( )(821- 0z, 0z, azk) Fi M
o o0 0 0
AT, ) (=—, =—, —,=—)dz, NdZ; Ni o i o .
+ ( )(827; 0z; 0z, 821) “k Z Za% Za%
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3 The second coefficient of asymptotic expansion of Bergman kernel

Hence,

9 9 9 9
Paairior =5 (M) (5 520 5 gz, Mo

q
8 o 0 0
-2 T I
Z(d “ 8,21 0z, 0z, 0% PR U

. & o o0 0 0
_22 Z <dTa8)(821 @E]’azk 5% k)dz]/\z;;]det(w)

—+ 2 Z (dTas) (82i7 82] ) azj ) azl )Idet(W*)@)E

~ o o0 9 0
OIS (dTas)(@zi,g—zj7a_§k7azz)dzk/\z o L8

ij=1kl=q+1
1 o o0 0 0
—>(dT, I
9 (d as)(8§Z 5 85] 86 ) det( w* )®F

o a a 9
_QZZ (dT.s) ( ag 06 T, —)dE; Ni o Lo )er

z—lj q+1
o o0 0 0

+Z Z (dT,s) ——T—)dgkAdglmaMJdt( T0E-
1,7=1k,l=q+1 af ag 8§k agl

Now it follows immediately that

((EO)‘lPNl quN> (0,0) (3.6.59)

8 g 9 0
167‘('|:Z Z 85 ag 8§k a€l> gk/\dgl/\Z(‘;Z(g

1,j=1 k,l=q+1 I

8 0
- —Z Z dT“S 86 Oﬁk)dgk a e ][det(W*)@aE'

J=1 k=q+1
By (3.5.4), we get

Oy =04 + REA(R, a% )b; — REA™(R, i)zﬁ (3.6.60)

j %"
_ g <(VBVBJ)(RR e, 6m>c(el>c(€m)
1
+

(RE T [RT(1 O)XD(el, em)c(er)c(en) + ercf) — 0.

1
2 2
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3.6 Calculation of the coefficient by

By (3.3.1) and (3.6.15),
PN (05 — Oy + W) PV (3.6.61)
0;

1|1 (1,0)

B 9 BB g 0
_ <<R (R,a—gi)bi—%\/—_l(v v J)(R’R)>a_§j’a_§j>

+2]21k;+1{< (Z)b—QFW(VBVBJ)RR)ai ai,)

1 o 9
+2(RE+§Tr[RT( W])(@g agk)}dgkm 5 }PN.

Using (3.2.25), (3.4.210), (3.6.24)—(3.6.25) and Theorem 3.31, we have

- ((cgrlpw (0y— O+ \I/)PN) (0,0) (3.6.62)
(D - (7 i>vJ])%’aiE>
-3 3 (G MG gt )+ 5 (7 ) G )

-1 a 0 g 0
_ £<<2(VBVBJ)(@_,31_) — [RP( _4)’J}>8§ 8§k>}d§k Nig }]det(w*)m

((co) PN (0, — O) + \II)PN> (0,0) (3.6.63)

o 0.0 0
[<Rf°(a&’ 5, 7€, 5%
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3 The second coefficient of asymptotic expansion of Bergman kernel

By (3.2.28), we obtain

n

V-1 <(VBVBJ) () % %> = v (3.6.64)

=1

Substituting (3.6.64) into (3.6.63), we obtain

_ <(£0)—1PNL (0 — Oy + 1) P ) 0)

L&r‘vB - <RB<86& %‘)% %>
ﬁﬂ#”WQQﬂ%ww o
=2 X [(MGe 2 )

2\/_<(VBVBJ) 0278‘2.)%’ a%)
n (RE n %Tr[RT(LO)X]> (a%’ a%c)}dgk Ni o Liyiryom

Combining (3.6.13), (3.6.43) and (3.6.65) together, we finally get

B ((Lg)—lPNLOQPNyO 0) (3.6.66)
:[ﬁ vEI[ - |VXJ\ + RE(;& %HﬁTr[RT“O)X](aza%)
_ %<(RB RTX)(aa&7%)%7 a(z >} Liew(w*)oE
_;kzzqﬂ {%< fo(aii’a%)ai’ a§k> 4i<dT“5)(985/%’3%’3%)
_ \é_;_1<(vaBJ)(£7%)%,%>
NG ;Tr[RT“)X})%,%)]d& nig
g T o ai S NN g oo
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3.7 Compatibility with Riemann-Roch-Hirzebruch formula

By (3.2.35), we obtain

~ (9P 0:PY)(0,0)

:[L RE((‘)Z’ % " iTr[RT<Lo>X](8%7 a% ) — %%Aw(d(AwTas)) (3.6.67)
|VBJ‘ + — ‘<SB % %,ai >21 det(W")QE
1 K — o 0
) 2_22 "5 o,
—QT\/__l (VEVE )(81% 8(2 a§k>]dgk/\i8§jldet(w*)®ﬁ’
+ %(dT )(885 885 32 aagl)dfk/\dfl Nig Z = Id (WO E

Now our main result (3.1.19) follows immediately from (3.5.28), (3.5.29), (3.6.22), (3.6.23),
(3.6.27) and (3.6.67). This completes the proof of Theorem 3.3.

Proof of Corollary 3.4. Since (X, g7X,J) is Kihler, then the torsion T vanishes, hence
T,,=0, V8 =v"™ v8]=v*J, and R? = R™. (3.6.68)
From (3.2.25) and (3.2.29), we know
<(VXvXJ)@Ej)ﬂk,ul> = <(vaXJ)(mﬂk)ul,ﬂj> =0. (3.6.69)
By (3.2.26) and (3.6.69), we obtain
<(VXVXJ)@M)@,E,€> —0, (3.6.70)
which implies
<(VXVXJ)(%E)@,H,€> = —2\/—1<RTX(ui,m)ﬂj,ﬂk>. (3.6.71)

Formula (3.1.21) follows from (3.1.19), (3.2.29), (3.6.68) and (3.6.71). The proof of
Corollary 3.4 is complete. O

3.7 Compatibility with Riemann-Roch-Hirzebruch
formula

In this Section we check the compatibility of our final result (3.1.19) with Riemann-
Roch-Hirzebruch formulas.
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3 The second coefficient of asymptotic expansion of Bergman kernel

Let h)9 be the dimension of H*(X, L? ®E), and let rk(E) be the rank of E. Combin-
ing (3.1.8) and the Riemann-Roch-Hirzebruch Theorem (cf. e.g. [30, Theorem 1.4.6)),
we find that

(—1)7h07 = /X Td(TMYX)ch(L? ® E) (3.7.1)
) [ A (e P

+O(p"?),

where ch(-), c1(+), Td(-) are the Chern character, the first Chern class and the Todd class
of the corresponding complex vector bundles, respectively.
By integrating over X the expansion (3.1.11) for k£ = 1, we have

/XTr [Pz, z)]|dvx (x) (3.7.2)

=p" /)(Tr[bo(xﬂdvx(x) +p" /)(Tr[bl(x)]dvx(x) +0("™),

where the trace is taken over AY(T*®VX) ® E. By (3.1.9) and (3.1.13), we obtain
dvy = 0" /n! = (—1)%w"/n!. (3.7.3)
It follows from (3.1.15) that the following identity holds for any smooth 2-form «,
a AW (n— 1) = —vV=1la(u;,q;) - w"/n! = (Aya)w"/nl. (3.7.4)
Applying (3.7.4) for o = d(A,Tys) and the Stokes” Theorem, we obtain

/ Ay (d(ATys))dox = (—1)7/(n = 1)! - / d(ATys) Aw™ ! = 0. (3.7.5)
X X
Substituting (3.1.20), (3.7.3), (3.7.5) and the equality (3.7.4) for a = ¢;(E) and ¢; (TM0 X),
respectively, into (3.7.2), we obtain (3.7.1). Therefore, our final formula (3.1.19) is com-
patible with (3.7.1).

On the other hand we also explain here the compatibility of our formula (3.1.19) with
the local index formula obtained by Bismut [5, (2.53)] for non Ké&hler manifolds under
the assumption that the form T, is closed.

Recall that S? is defined in (3.2.14). Set
VB =V 4978 with §7% = -85, (3.7.6)

We denote by R=5 the curvature of the connection V=2. Note that by (3.2.14) and [5,
(2.36)] our notations SE, R=8 correspond to S=% and RP in [5, §1Ib)] respectively. Let

-~

A be the Hirzebruch fAl—polynomial on (2n,2n) matrices. Then
-B

E(B;—W) e ®; OY(X), (3.7.7)
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3.7 Compatibility with Riemann-Roch-Hirzebruch formula

where (/(X) denotes the space of smooth j-forms over X.

For t > 0, let Q,+(x,y) be the smooth kernel on X associated to the operator
exp(—tD2). Let Q*(X, [F @ E) (resp. Q°°(X,L? ® E)) be the direct sum of
the space of smooth (0, 2j)-forms (resp. (0,25 + 1)-forms) over X with values in [P ® E
for 7 > 0. Set

Tr (3.7.8)

s = Trlmvcvcn(x,m@E) - Tr‘QoaOdd(X,LPQ@E)'

Note that the auxiliary vector bundle ¢ in [5, Theorem 2.11] should read as [P ® E.
Denote by RY"®F the curvature of the Chern connection V**®¥ on LP ® E. Then we
can restate [5, Theorem 2.11] as follows.

Theorem 3.40. Assume that dT,s = 0, then

gy s [@nelr ) dexa) (3.7.9)
:{A\( IZ;B )eXp (%Tr [RT(I’O)X} ) Tr [exp (%RLP@)E)} }max

uniformly on X.

Now we check the compatibility of our final result (3.1.19) with (3.7.9).
Mckean-Singer formula [2, Th. 3.50] also holds for the modified Dirac operator D,,:

n

Z(—l)j dim H™ (X, [’ ® E) = / Trs [Qpi(x,z)]dvx(z) for any ¢ >0. (3.7.10)

=0 X

Combining (3.1.8), (3.7.9) and (3.7.10) yields

(—1)qhg’q—/XA\(f;f)exp(%Tr[RTu’o)XDTr[exp(%RLp@E)}. (3.7.11)

If we expand the right hand side of the formula (3.7.11) in a polynomial of degree n in p,

then it follows from (3.7.7) that the term E(RZ—;B) has no contribution to the coefficients
of p™ and p"~!. Hence we obtain from (3.7.11) that

(—1)?h2? = rk(E) /X %Tpn + g/}( (TT[RE] + @Tr [RT(LO)XD (:i_i)gpn_l

+O0(p"?), (3.7.12)

which can be obtained by replacing the cohomology classes in (3.7.1) by the correspond-
ing Chern-Weil forms. We find that the coefficient of p"~! in (3.7.12) coincides pointwise
to (3.1.20) modulo the term —7A,, (d(A,T,s)). This fits well the compatibility of the
asymptotic expansion of Bergman kernel and the local index theorem along the lines of
[30, Remark 4.1.4], [32, §5.1].
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4 Appendix

In this Chapter, we give a complete proof of the following fact. Two basic references
here are [35] and [45].

Theorem 4.1. Given a Morse function on a smooth closed manifold, there always exists
a Riemannian metric such that the minus gradient vector field of the function associated
to the metric verifies the Morse-Smale conditions.

Let M be a smooth closed oriented manifold and f denote a Morse function. Let
g™ be a Riemannian metric on TM. Denote by Vf be the gradient vector filed of f
associated to g7, Let C(f) consist of the critical points of f. Set X = —V(f). Denote
by ¢, be flow lines of X, i.e., for x € M,

dpi()
dt

If p € C(f) with index A, the unstable (resp. stable) manifold W*(p) (resp. W*(p))
in the X system is given by

= Xoi(), po(z) = 1. (4.0.1)

W(p) = {x € M,| lim ¢(z) =p} (4.0.2)
(resp.
W(p) = { € M, lim ¢u(x) = p} ). (4.0.3)
Moreover,
dim W*(p) = A; dim W?*(p) =n — A (4.0.4)

Definition 4.2. We say the vector field X satisfies the Morse-Smale conditions if for
any p,q € C(f), W"(p) and W#(q) intersect transversally, which we usually denote by
W (p) b W=(q).

Definition 4.3. A vector field £ on M is called a minus gradient-like vector field for f

it
1). &f <0 over M\C(f);
2). given p € C(f) with index X there are coordinates x = (xy,--- ,x,) in a neighbor-
hood U of p so that
2 2 2 2
7 Ty TX z,
— Sl ALy T 4.0.
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and

N '
£ = ;xja—xj - j;la;ja—fcj (4.0.6)
holds throughout U.
Clearly, X = —V f is a minus gradient-like vector field if g7 is the Euclidean metric

on U. Conversely, we have the following results.

Proposition 4.4. Given & a minus gradient-like vector field, there always exists a Riem-
mannian metric such that £ is exactly the minus gradient vector field of f with respect
to the chosen metric.

Proof. For p € C(f), let (V,,¢,) be coordinates system appeared Definition 4.3. We
assume there exists d, > 0 such that B(0,26,) C ¢,(V},), where B(0,26,) is the ball in
R™ centered in 0 with radius 26,. Set U, = ¢, (B(0,26,)),U, = ¢,*(B(0,6,)). Then

we define

g™ =) drj®dr;, on B(0,25,). (4.0.7)
j=1

Set M{ = M — Up@. Then M, is an open submanifold of M.
For x € M, set

N, ={X € T,M| (df).X = X,.f = 0}. (4.0.8)

That is, N, is the kernel space of (df),. Since df # 0 on M;, N is a (n — 1)-dimensional
subbundle of T'M|y;,. There is a Riemaninan metric g™ on the subbundle N. Since &
does not belong to N, then we could define a metric gi™ on TM|y, = RE ® N such
that gI™ = ¢* @ g", here ¢ is defined by:

95(6,6) = =&(f), V€ M. (4.0.9)

Let po and p; be the partition of unit associated to the open covering U,U, and M;.
Set

g™ = poge™ @ prgi ™. (4.0.10)

It is clear that ¢’ is a Riemannian metric. We claim that ¢ is the minus gradient
vector field of f associated to g”™, i.e., for any vector field X,

(& X)grm = =X (f). (4.0.11)
If 2 € U,U}, then py = 0, (€, X)gra = (€, X) yru and
<€7 X>gTM = _X<f) (4012)
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4 Appendix
Ifxe M- UpUp, then pg = 0, <€,X>gT]V[ = <§,X>91TM and

_ —df (X) = —-X(f), if X € N,,
<§’X>gTM = { ( ) _ (f), X = f (4013)

If z € U,U, — U,U., then
<€7X>gTM :P0<£aX>g("{M + p1<€7X>ng
=—poX(f) = pX(f) = =X(f)
From (4.0.12), (4.0.13) and (4.0.14), we get (4.0.11). The proof of Proposition 4.4 is

(4.0.14)

complete. O
Set
C(f) Z{ph,--- DLy s D215 P2yt Py ,prsT}> (4.0.15)
fj) =f(pj) == [flps.,) =p; G=1,---.r.
Without loss of generality, we assume
D1 > Do > Dy (4.0.16)

Let ¢ denote a minus gradient-like vector field of f. The following Lemma plays a
crucial role in the proof of Theorem 4.1.

Lemma 4.5. Given sufficient small € > 0, j, there exist a minus gradient-like vector
field & = £ outside of f’l[z_?j +€,p; + 2¢] and in the § system W*(p;,) h W*(py,) for all
i,k. W¥(pj,) in the & system has the obvious meaning.

Proof. Let A;, denote the index of p;, € C(f).
Set

S"(pj,) =W p;) N fH(D; +€), S(pr) = Wo(pe) N f~H (D, + ). (4.0.17)

Then S*(p;,) is a closed sphere in the hypersurface f~'(p; + 2¢) and S*(p;) is a smooth
submanifold in f~'(p; + 2¢). From the definition of the unstable manifolds,

SU(p;) NS () = 0, if i # 1. (4.0.18)

Since the unstable (stable) manifolds have transverse intersection with any level set
of fin M. Then

W*(p;,) M W?*(pp) <= S“(pj;) h S*(px) in f’l(]_aj +e). (4.0.19)
We also have
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We divide its proof into three steps.

Step 1. Let ®;, : S“(p;,) x R*%i — U;, C f~(p; + ¢) be a diffeomorphism onto a
product neighborhood Uj, of S*(p;,) in f~1(p; +¢) such that ®;, (5(p;,) x 0) = S“(p;,)-
From (4.0.18), we also assume that

Up,NU; =0, ifi #1. (4.0.21)
Let g be the composition map:
Ss(pk) N Uji — Uji — Su(p]) X Rn_kji — Rn_)\ji, (4022)

where the first map is the inclusion i : S%(px) N U;, — U, the second is the diffeomor-
phism @' and the last is the projection m : 5%(p;,) x R" i — R* Vi,
We claim that there exists a point Z;, € R"~%: such that

®;, (5" (pj,) x Z;,) hS°(py), for all k. (4.0.23)

From (4.0.22), the manifold ®;, (S*(p;,) x Z), Z € R™ i intersects S*(py) if and only if
Z € g(S*(pr) N Uj,). Then we prove (4.0.23) as follows.

(1). TEN;, < Mgy g2 S%(pr) MU, — RN and dim(S (p)NU;) S n—1—=Xp <n—2Aj.
By Sard’s theorem, g(S%(x2) N Uj,) has measure zero in R"~%:. Thus we may choose a
point Z;, € R"%i\g(S*(px) N Uj,) such that ®;, (S*(p;,) x Z;;) N S*(p) = 0.

(2). If A; > A We already know that @, (S"(p;) x Z) N S*(py) = 0 if and only if Z
does not belong to the image of g. Then we have the following discussion.

(2a). If @, (S"(pj) X Z) N S*(p) = 0, then Z € R" i\ g(S*(px) NUj;,). That is, there
exists Z;, € R"%:\g(S*(px) NUj,) such that

®;, (5" (psi) x Z;,) N S*(px) = 0. (4.0.24)

(2b). If @;(S"(p;) x Z) N S*(px) # 0, then Z € g(S*(px) N Uj,). Since @, is a
diffeomorphism, we get from (4.0.22) that

(4.0.25)
®; ) ( (Ss pk))> = T(S“(pji)) + RN

That is ®;, (S(pj,) x Z) h S*(p) if and only if g is submersion at w € S*(py) N Uj, for
any w € g 1(Z ) By Sard’s theorem, we can also choose a point Zj;, € g(S*(px) N sz)
such that @, (S“(p;,) x Z;,) th S (pk)

Step 2. We will construct a diffeomorphism A of f’l(]_)j + ) onto itself smoothly

isotopic to the identity, such that h(S%(p;,)) equals ®;, (S"(p;,) x Z;,) for all i and thus
has transverse intersection with S*(py).

141



4 Appendix

We can easily construct a smooth vector field X, on R" % such that

_ Zji’ 1f|Z| < |ij‘|7
X;.(2) = { 0. it]Z] > 2/Z;). (4.0.26)
Let v, +(Z) be the integral curve of Xj,. Since supp(in) is compact, 1;,(Z) is
defined for all ¢ € R. In fact, ¢, ;(Z) can be written as

_ Z_'_thi? if|Z+th¢’ < ‘ZJ’¢’7
Vj(Z) = { Z, if | 2] > 2|Z;,). (4.0.27)
Then 1, ¢ is the identity on R" i, 1), ; is a diffeomorphism sending zero to Zj,, and
Y+, 0 <t < 1, gives a smooth isotopy from 1, o to v, 1. Since this isotopy leaves all
points fixed outside a bounded set in R"%i we can use it to define an isotopy

he: [7' (D +¢e) — fH(D; +e) (4.0.28)
by setting
_ (I)ji(x7¢jiyt(z))’ ifw:@ji(x,Z) S Uji’
ielw) = { w, if we f7(p; +2)\ U, Uy, (4.0.29)

Then h = hy is the desired diffeomorphism f~'(p; +¢) = f~'(p; + ). Clearly,

h(S“(p;.) = @5, (S"(ps.) % Z;,). (4.0.30)

Step 3. In this step, we denote p;+¢ and p;+2¢ by a and b, respectively. We will alter
the minus gradient vector field { = —V f (with respect to any given metric compatible
with f) in f~![a,b] and get another minus gradient-like vector field £ such that in the &
system,

S (ps.) = h(S"(p;), S (pr) = S*(pa)- (4.0.31)
From (4.0.23), (4.0.30) and (4.0.31), we have
S"(p;.) h S (px), for all i, k. (4.0.32)
Let 7, be the diffcomorphism generated by the vector field € = —£/€(f), that is

dyi(2)

) _ Eu(2)) and 0(2) = = (40.33
Then we have
df (ve(2)) _ dn(2) _
=V =L (4.0.34)
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Hence

f(v(2) = —t+ f(2), V2 € fa,b. (4.0.35)

Now we define a diffeomorphism

¢ a,b] x f(a) = fa,b] (4.0.36)
by setting
o(t, 1) = yp(z), forte[a,b], € f(a). (4.0.37)
Then we have
Flott,x) =a+b—t, pba)=zN e fa) (4.0.38)

Define a diffeomorphism H of [a,b] x f~!(a) onto itself by setting
H(t,z) = (t, (), (4.0.39)

where h;(z) is a smooth isotopy [a, b] X f~*(a) — f~!(a) from the identity to h adjusted
so that h; is the identity for ¢ near a and h; = h for t near b, i.e.,

Id, if ¢ near a,
he = { h, ift near b. (4.0.40)
Set
£ =(poHop"),E (4.0.41)

~ We now claim that ¢'is a smooth vector field defined on f~'[a, b] which coincides with
¢ near f~'(a) and f~(b) and ¢ (f) = —1. In fact, we get from (4.0.37), (4.0.38) and
(4.0.39) that

poHop™ i fta,b] = fa,b] (4.0.42)
is given by
0o Hop M(2) = Yarf(2) © Patb—f(z) © Vf(2)—a(2), V2 € [ a, ). (4.0.43)
Set w= o How '(z) € fa,b]. Clearly, f(w) = f(z). Then
E(f)=[(poHop ) E|f =& [flpoHop™)] =&(f) = —1. (4.0.44)
From (4.0.39), (4.0.40) and (4.0.43), we find that when z is near f~*(b),

’ ~

poHoop ' (2) =2 & =¢&; (4.0.45)
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4 Appendix

and when 2 is near f~!(a),

rd
Suw :% htﬂz*f(z)ht+a+bff(z)’7f(z)ftfa%(Z)} -0
d .
=2 e -a]| | = & (4.0.46)
Next we define a smooth vector field € on M by
z _ [ €€, ifre flab]
S = { §, if elsewhere. (4.0.47)

Clearly, £(f) < 0 on f~*[a,b] and € coincides with € elsewhere. Thus € is a minus
gradient-like vector field.
We now verify that ¢(t, hi(z)) is an integral curve of £ as follows. From (4.0.37),

Sp(ta ht(x» = %—b(ht(x))- (4.0.48)

On the other hand, fix z € f~!(a), the integral curve of the vector field ¢

Veta—f(z) © Ratbrt—f() © V@) —a(®) = Ve © P (). (4.0.49)

Then we know that ¢(t, hy(x)) is the integral curve of the vector field £. We can also
see this point by direct computer as follows:

o 0 d
ot @l =g

!

£ =(poHop™).l=(poH)E=p.[= o(t, he(x)).  (4.0.50)

Let t(s) denote the solution of the ordinary partial problem

d
St =Vl

o (4.0.51)

5) ht(s) x))

with the given initial data ¢(0) = a. Then ¢(¢(s), hys)(z)) is the integral curve of the
vector field:

d
—(t(s), his () =—@(t(s), hys(x)) - —t(s
Lo (16 b () = (1(5), gy (1)) - 4(5) oo

Finally for each fixed x € f~'(a), ¢(t, hi(x)) describes an integral curve of & from
¢(a,z) in f7H(b) to p(b,h(z)) = h(z) in f~*(a). It follows that

S (pi) = h(S" (1) S (pr) = S*(pi)- (4.0.53)

]
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Proof of Theorem 4.1. Introduce the following hypothesis:

(q): There exist a gradient-like vector field ¢, = £ in a neighborhood of the p; such
that in the &, system, W*"(pq_;),) M W?*(py) for all j <gq,i=1,---,5,_; and all k (We
make the induction on the level set of f.) H(r) implies Theorem 4.1.

When ¢ = 0, it is clear that W*(p,,) h W¥(py) for all i = 1,--- | s, and all k since
W*py,) = {pr,},i =1,---,s,. We will show that H(q — 1) implies H(q). Given §,_;
by H(q — 1) we will construct &,. Let € > 0 be small enough and apply Lemma 4.5 to
obtain a minus gradient-like vector field &, = £, outside of f~! [Py_y+€,D_y+2¢], and

in the & system, for all k, W*(pu_q),) h W*(py), i = 1,--- ,s,—, . But all W"(p;,) rh

Ws(pg),i=1,---,s; for j > r—q and all k since this is true in the £,_; system, &, = £,_4
on fﬁl[ﬁrqurlaZ_?r] and Wu(p]z) nws (pk) C fﬁl[z_?rfq+172_9r]7i =1,-- » S5 This Completes
the proof of Theorem 4.1. O
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