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Oliver Bantel, Felix Heinl, Carsten Körner, Dr. Duc Hung Tran, Philipp Immenkötter,
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Chapter 1

Introduction

Measuring, describing, and modeling the dependence structure between different ran-
dom events is at the very heart of statistics. Therefore, a broad variety of different
dependence concepts have been developed in the past. The most famous concept is the
correlation coefficient of Bravais-Pearson, and in many applied fields it is even common
to express the dependence of a multivariate random variable solely by its correlation.
However, the correlation coefficient has various drawbacks and is only a measure of
linear dependence. In order to model the full dependence structure of multivariate ran-
dom variables, one needs to go beyond dependence measures. Copula theory offers the
possibility to model the entire dependence structure of a multivariate random variable
separately from its margins. This approach has been thoroughly investigated in recent
publications, however, most work has been done in the 2-dimensional case and for static
random variables. Using this concept in a high-dimensional or continuous-time setting
is still challenging and the focus of this dissertation.

During the last two decades, we have observed a huge increase in scientific publica-
tions and conferences on dependence modeling. Embrechts (2009) explains this increas-
ing attention by the application of the copula concept in the financial sector, driven by
renewed regulatory guidelines and new financial products. The recent financial crisis
has illustrated that risk management is another area where sound dependence modeling
is essential. Throughout the crisis, it has become obvious that there are no risk free
investments. Housing prices may decline, banks and insurance companies can file for
bankruptcy, and even government bonds of developed countries and bank deposits are
not perfectly save. Thus, common sense suggests to diversify a portfolio in order to
avoid severe losses. However, the quantification of the risk exposure of a well-diversified
portfolio requires a thorough modeling of the dependence structure between the single
assets. That is why we need flexible and tractable high-dimensional dependence models
that account for the dependence between the different assets. These models enable us
to provide correct risk forecasts for the regulator and to base portfolio rebalancing de-
cisions on correct risk scenarios. In particular, we need dependence concepts that are
flexible enough to account for the joint behavior of assets in times of crises. There-
fore, dependence modeling is an important field in financial risk management. Besides
the numerous challenges, the enormously increased computational power as well as the
improved quality and availability of financial data constantly improves the modeling
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Figure 1.1: The three different plots show realizations of a 3-dimensional random variable
with standard normally distributed margins. All bivariate margins have the
same correlation coefficient; however, major differences in the joint behavior
of the extremes are obvious. The underlying dependence structure is a pair-
copula construction.

procedures. Overall, risk management is facing massive challenges and the constant
improvement of the flexibility of the dependence models as well as the continuous ad-
justment of the high-dimensional dependence concepts is only a small part in a sound
risk management process. Nevertheless, poor dependence models can lead to dramatic
misjudgments on the risk exposure of well-diversified portfolios, and therefore, with this
dissertation, we intend to provide new tools to further improve dependence modeling.

Outline and Summary

This dissertation is divided into two parts. In the first part (Chapter 2-4), we focus
on modeling the dependence structure for static random variables in a high-dimensional
setting. Figure 1.1 illustrates why the correlation coefficient concept is not sufficient to
describe the full dependence structure of a multivariate random variable. All univariate
margins of this 3-dimensional random variable are standard normally distributed, and
all bivariate margins, which are visualized in the plot, have the same correlation coeffi-
cient; however, the joint behavior in the plots is quite different. In Figure 1.1a, extreme
negative values in the first dimension tend to occur at the same time as extreme negative
values in the second dimension, whereas in Figure 1.1b, we see a different behavior. Ex-
treme positive values occur at the same time, and the dependence of the strong negative
values is less distinct. Figure 1.1c shows neither a strong dependence in the extreme
positive nor in the extreme negative values. These differences in the behavior of the ex-
tremes can have severe consequences in many applications on the overall risk exposure,
and this problem is even more pronounced in higher dimensions as the correlation matrix
only provides insufficient information on the bivariate margins. Copula theory offers the
possibility to overcome most of the drawbacks of the correlation coefficient since this
theory provides all information on the dependence structure. Unfortunately, most of
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the existing high-dimensional parametric copulas are not flexible enough to model a de-
pendence structure like in Figure 1.1. A very promising approach to create flexible and
tractable high-dimensional parametric copulas in arbitrary dimensions is the pair-copula
construction (PCC) of Aas et al. (2009). This theory is based on the seminal work of
Joe (1997), and the structure of a pair-copula constructions is usually visualized by the
concept of regular vines, which has been developed by Bedford and Cooke (2002). How-
ever, the implementation of estimation and simulation algorithms requires a different
representation. Furthermore, the number of parameters in the pair-copula construction
increases quadratically with the dimension and it is not evident that we need all of the
parameters within the pair-copula construction. Therefore, the two main contributions
of the dissertation to this field are

(i) the introduction of a new representation for pair-copula structures that is straight-
forward to interpret and can be easily implemented in pair-copula algorithms,

(ii) the development of a new parameter reduction technique that crucially reduces the
number of parameters in the pair-copula construction in order to avoid overfitting
and to keep the model tractable in high dimensions.

The second part of the dissertation (Chapter 5-6) focuses on dependence modeling for
continuous-time processes. The increasing availability of high frequency data and non-
equidistantly spaced observations demand for continuous-time concepts. Furthermore, it
can be useful to model equidistant data by an underlying continuous-time process, which
is only observed at a discrete time grid. Compared to the static situation, continuous-
time dependence modeling is still in its infancy. The contributions of the dissertation to
this area of dependence modeling are

(iii) the development of a flexible, high-dimensional, parametric dependence concept
for continuous-time stochastic processes,

(iv) the derivation of simulation and estimation techniques for this new dependence
model.

We transfer some of the ideas from classical dependence modeling to the continuous-time
setting. In particular, we use the intuition of the pair-copula construction techniques
and develop a generalization of this concept for the Lévy copula framework of Kallsen
and Tankov (2006).

This dissertation is structured as follows:

In Chapter 2, we recall the basics of copula theory. We fix the notation for the following
chapters and state Sklar’s theorem, the starting point in copula theory. Furthermore, we
recall the definitions of important parametric copula families. Copula based dependence
measures of bivariate random variables are recapitulated in Section 2.3, and in the
subsequent section, we discuss parametric and semi-parametric estimation techniques
for copulas. In Section 2.5, we recall one of the most powerful goodness-of-fit tests for
dependence structures. This test will play an important role in the parameter reduction
procedure that we introduce in Chapter 4.

3



Chapter 1 Introduction

Chapter 3 reviews the pair-copula construction framework. In Section 3.1, we sum-
marize two different ways to introduce and interpret pair-copula constructions. These
two approaches help to clarify the role of the controversial simplifying assumption in
Subsection 3.1.3. We describe two different procedures to represent the structure of a
pair-copula in the following sections. Furthermore, we discuss the advantages and draw-
backs of these two pair-copula representations. Finally, in Section 3.4, we propose a new
representation that overcomes some of the drawbacks of the existing ones.

A discussion of model selection procedures for the pair-copula construction is given
in Chapter 4. Section 4.1 presents different heuristics to fit a pair-copula model to
a data set. In the following, we focus on the sequential model selection approach of
Subsection 4.1.1. Since pair-copula models can get very complex with increasing dimen-
sions, we introduce a new parameter reduction technique in Section 4.2, which helps
to avoid redundant parameters in the pair-copula construction process. We show that
parameter reduced pair-copula models offer a flexible and low-parametric framework for
high-dimensional dependence modeling. In the subsequent section, we illustrate how
this parameter reduction technique works for a multivariate set of equity return data.

In Chapter 5, we discuss dependence modeling for stochastic processes. Therefore,
we review the concept of Lévy processes in Section 5.1. This short summary is by far
not exhaustive, but we fix the notation and recall some of the most important theorems
for Lévy processes. Dependence modeling for these processes is discussed in the second
part of the chapter. There, we review the concept of Lévy copulas that we use in the
subsequent chapter. Lévy copulas model the jump dependence of Lévy processes. This
is particularly important in many applications since Lévy copulas allow to model the
dependence of sudden large movements in stochastic processes.

In Chapter 6, we transfer the pair-copula construction concept of Chapter 3 to the
continuous-time setting of Chapter 5. That is, we develop a pair construction concept
for Lévy copulas. In this concept, we assemble bivariate Lévy copulas and bivariate
distributional copulas to one high-dimensional Lévy copula. This construction approach
is introduced in Section 6.1. In the following section, we develop simulation techniques
for dependent Lévy processes, based on the pair-Lévy copula construction (PLCC).
Furthermore, we provide maximum likelihood estimators for these continuous-time de-
pendence structures. In Section 6.3, we evaluate these new procedures in a simulation
study. In the following sections, we show how to apply the PLCC concept to multivariate
Ornstein-Uhlenbeck processes and give an outlook on further applications.
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Chapter 2

Dependence Modeling with Copulas

Modeling the dependence structure between different events is one of the fundamental
challenges in statistics. In applications, one is seldom confronted with one single source
of uncertainty and the dependence structure between the different sources can have a
tremendous effect on the overall risk exposure. This is a well-recognized fact especially
in financial and actuarial applications. See, e.g., Genest et al. (2009a), McNeil et al.
(2005), Cherubini et al. (2004), and Panjer (2006). However, thorough dependence
modeling is also important in many other areas like hydrology, engineering, operations
research, economics, and biostatistics, see, e.g., Genest and Favre (2007) and Genest
et al. (2009a).

The correlation coefficient of Bravais-Pearson is the most prominent dependence con-
cept. However, as discussed, e.g., in Embrechts et al. (2002), the correlation coefficient
has severe drawbacks for non-elliptical random variables and is only a measure of linear
dependence. For a survey on dependence measures that are invariant under monotonic
transformations and often more appropriate than the correlation, we refer to Schmid
et al. (2010). In this chapter, we review the copula concept of Hoeffding (1940) and
Sklar (1959) which has been rediscovered and expanded, e.g., by Joe (1997), Nelsen
(2006), and references therein. Copulas go beyond dependence measures and provide
a sound framework for general dependence modeling. They separate the margins and
the dependence structure of any multivariate distribution. This result is important to
estimate, understand, and interpret the dependence structure in a given set of data. Fur-
thermore, this concept offers the possibility to combine arbitrary marginal distributions
to a valid multivariate distribution function with a specific dependence structure. This
is essential for multivariate modeling, since we can use sophisticated univariate models
for any margin and combine them with a copula. Moreover, the separation of the depen-
dence structure and the margins offers the possibility to estimate a parametric model for
the multivariate distribution in two steps. That is, one estimates the parameters of the
univariate marginal models in a first step and continues by estimating the dependence
structure in a second step. This is a very important feature, since even the estima-
tion of high-dimensional distributions becomes feasible in this sequential framework. In
addition, simulation of random variables is straightforward within the copula concept.
The standard references for copula theory are Joe (1997) and Nelsen (2006). Durante
and Sempi (2010) give a historical introduction to the topic and provide an extensive
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Chapter 2 Dependence Modeling with Copulas

list of further references. The application of copula theory to finance is discussed, e.g.,
in McNeil et al. (2005), Cherubini et al. (2004), and Cherubini et al. (2012). Mai and
Scherer (2012) give a broad overview on simulation techniques.

This chapter is structured as follows. In the first section, we give a short introduc-
tion to copula theory. Then, we discuss methods to create valid copula functions and
give prominent examples of parametric copula families that we apply in the subsequent
chapters. In the third section, we present dependence measures for bivariate random
variables that are solely based on the underlying copula. In the fourth section, we discuss
different estimation procedures for an underlying parametric copula. Finally, we recall
goodness-of-fit procedures to decide whether we have found an adequate dependence
model for a given set of data.

2.1 Definition, Properties, and Sklar’s Theorem

In this section, we give a brief introduction to copula theory. We state some of the
well-known properties of copula functions that we need in the subsequent chapters. For
a more detailed introduction and the proofs of the given results, we refer to Joe (1997)
and Nelsen (2006). Furthermore, with Sklar’s theorem, we recall the central result in
copula theory that explains the key role of copula functions in dependence modeling. In
the next definition, we formally define copulas.

Definition 2.1 A d-dimensional distribution function C(u1, . . . , ud) : [0, 1]d → [0, 1],
where the margins satisfy Cj(uj) = C(1, . . . , 1, uj, 1, . . . , 1) = uj for all uj ∈ [0, 1] and
j = 1, . . . , d, is called a copula.

Obviously, the condition on the margins assures that the copula is a distribution func-
tion with uniform margins. Sklar’s Theorem is the starting point in copula theory. It
shows how we can decompose any multivariate distribution function into the marginal
distribution functions and a copula that contains the dependence structure. The the-
orem was first given in Sklar (1959) and is also stated, e.g., in Nelsen (2006, Theorem
2.10.9).

Theorem 2.2 Let F1,...,d be a d-dimensional distribution function with marginal distri-

bution functions F1, . . . , Fd. Then there exists a copula C such that for all x ∈ R
d
,

F1,...,d(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (2.1)

If F1, . . . , Fd are all continuous, then C is unique. Otherwise, C is uniquely determined
on the Cartesian product of the ranges of the marginal distribution functions Ran(F1)×
. . . × Ran(Fd). Conversely, if C is a copula and F1, . . . , Fd are distribution functions,
then the function F1,...,d defined by Equation (2.1) is a d-dimensional distribution function
with margins F1, . . . , Fd.

6



2.1 Definition, Properties, and Sklar’s Theorem

In this work, we focus on continuous margins only. For a treatment of copula theory
with discrete marginal distributions, we refer to Genest and Nešlehová (2007). Next, we
discuss functions of special importance in copula theory. The Fréchet-Hoeffding upper
bound M , the Fréchet-Hoeffding lower bound W , and the independence copula Π are
given by

M(u) = min(u1, . . . , ud), (2.2)

Π(u) = u1 · . . . · ud, (2.3)

W (u) = max(u1 + . . .+ ud − d+ 1, 0). (2.4)

Note that the Fréchet-Hoeffding upper bound M and the independence copula Π are
copulas in arbitrary dimensions, whereas the Fréchet lower bound W is only in the
bivariate case a copula function. The Fréchet-Hoeffding bounds are pointwise bounds
for any copula function. This is shown, for instance, in Nelsen (2006, Theorem 2.10.12).

Proposition 2.3 If C is any copula function, then for every u ∈ [0, 1]d,

W (u) ≤ C(u) ≤M(u) (2.5)

holds.

Note that even for d > 2, where the Fréchet-Hoeffding lower bound W is not a copula,
these inequalities are best possible. Furthermore, M , Π, and W have a special interpre-
tation, as given, e.g., in Nelsen (2006, Theorem 2.5.5, Theorem 2.10.14), whenever they
are copulas.

Proposition 2.4 For d ≥ 2, let X1, . . . , Xd be continuous random variables. Then

(i) X1, . . . , Xd are independent if and only if the copula of X1, . . . , Xd is Π,

(ii) each of the random variables X1, . . . , Xd is almost surely a strictly increasing func-
tion of any of the others if and only if the copula of X1, . . . , Xd is M .

For d = 2, let X1, X2 be continuous random variables. Then

(iii) X1 is almost surely a strictly decreasing function of X2 if and only if the copula of
X1, X2 is W .

In more than two dimensions, the properties of the Fréchet-Hoeffding upper and lower
bound are very different. This is due to the fact that positive and negative dependencies
are not comparable anymore. It is possible, for example, to have a collection of random
variables X1, . . . , Xd such that each of these random variables is an increasing function
of any of the others. This is not possible for negative dependencies and more than
two random variables. Suppose that X1 is a decreasing function of X2 and X2 is a
decreasing function of X3 as well. Then, the variable X1 has to be an increasing function
of X3. Another important and well-known property of any copula is given in the next
proposition, see, e.g., Nelsen (2006, Theorem 2.10.7).

7
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Proposition 2.5 Let C be a d-dimensional copula. Then for every u and v in [0, 1]d,

|C(v)− C(u)| ≤
d∑

j=1

|vj − uj|.

Hence, C is uniformly continuous on [0, 1]d.

There are different kinds of symmetry for copula functions. See, e.g., Nelsen (2006,
Chapter 2.7). Here, we recall the definition of permutation symmetry, which is a neces-
sary condition on the copula of exchangeable random variables.

Definition 2.6 Let C be a d-dimensional copula. We say C is permutation-symmetric
if

C(u1, . . . , ud) = C(uτ(1), . . . , uτ(d))

for any permutation τ and any u1, . . . , ud ∈ [0, 1]d.

Thus, permutation-symmetry is closely related to the concept of exchangeability for
random variables.

2.2 Parametric Copula Families

We are not only interested in theoretical properties of copula functions, but we want to
apply this theory to a given data set as well. Therefore, we discuss different construction
methods for d-dimensional, parametric dependence structures. Furthermore, we recall
the definition of selected copula families that we need in the following chapters. Note
that this is by no means exhaustive. Especially in two dimensions, there are plenty
of different copulas families. For a thorough discussion, we refer to Joe (1997), Nelsen
(2006), and references therein. However, there are only few copula models that are
flexible enough to represent the dependence structure of high-dimensional data. The
most prominent ones are the Gauss and t copula being easy to estimate and widely used
in applications. In some cases, however, these dependence structures fail to model
desirable dependence properties. Nevertheless, we use them as benchmarks for the
high-dimensional copula model in Chapter 3. Another approach to build multivariate
copulas is based on the extension of bivariate Archimedean copulas. Unfortunately,
these copulas lack the desired flexibility in higher dimensions. In the third part of this
section, we discuss a hierarchical procedure to overcome this problem. Therefore, we
combine lower-dimensional Archimedean copulas such that the resulting structure is a
valid d-dimensional copula.
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2.2 Parametric Copula Families

2.2.1 Implicit Copula Families

Here, we present a way to define parametric copula families by extracting the dependence
structure of a known multivariate distribution. The next corollary shows how to invert
Sklar’s theorem to define parametric copula families in d dimensions. This corollary is
already stated, e.g., in Nelsen (2006, Corollary 2.10.10).

Corollary 2.7 Let F1,...,d be a d-dimensional distribution function, where F1, . . . , Fd

denote the continuous marginal distribution functions, and let C be the corresponding
copula. We denote the marginal quasi-inverses, see Nelsen (2006, Definition 2.3.6), by
F−1
1 , . . . , F−1

d . Then, we have for any u ∈ [0, 1]d

C(u1, . . . , ud) = F1,...,d(F
−1
1 (u1), . . . , F

−1
d (ud)).

This relation is particularly interesting for the class of elliptical distributions, since the
univariate margins as well as the multivariate distribution function are well-known. See,
e.g., Fang et al. (1990). Furthermore, the resulting copulas are quite flexible dependence
models. These elliptical copulas can be used to combine arbitrary margins and create
new multivariate distribution functions. In the next example, we give the definition of
the best known elliptical copula.

Example 2.8 Let Φ1,...,d be the distribution function of the multivariate normal distri-
bution with zero mean and correlation matrix R. We denote the distribution function of
the univariate standard normal distribution by Φ, and define the d-dimensional Gauss
copula by

C(u1, . . . , ud) = Φ1,...,d(Φ
−1(u1), . . . ,Φ

−1(ud)).

The Gauss copula extracts the dependence structure from the multivariate normal dis-
tribution. It is uniquely defined by the correlation matrix and thus has d(d − 1)/2
parameters. Hence, it offers a certain flexibility and is widely applied. We use the Gauss
copula as a benchmark model for the more advanced multivariate copula models that
we discuss in Chapter 3. In financial applications, however, it is often observed that
the dependence of the extreme events is stronger than suggested by the Gauss copula.
Therefore, we state the definition of the t copula in the next example. For the definition
of the multivariate t-distribution t1,...,d, we refer to Fang et al. (1990, Example 2.5).

Example 2.9 Let t1,...,d be the distribution function of a vector X ∼ t1,...,d(ν, 0, R), where
R is a correlation matrix and ν > 0. We denote the univariate standard t-distribution
with ν degrees of freedom by t, and we define the d-dimensional t copula by

C(u1, . . . , ud) = t1,...,d(t
−1(u1), . . . , t

−1(ud)).

In contrast to the Gauss copula, the t copula has an additional parameter to control
for the dependence of the extreme events. This makes the t copula more suitable for
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Chapter 2 Dependence Modeling with Copulas

financial application. However, the t copula is symmetric in the sense that extreme
positive and extreme negative events are modeled equivalently. Furthermore, there is
only one parameter for the dependence of all extreme events, which might not be enough
for high-dimensional dependence structures. The definitions of these two copulas can be
found, e.g., in McNeil et al. (2005, Chapter 5).

2.2.2 Archimedean Copulas

Besides the implicit copulas, the class of Archimedean copulas is one of the most popular
families in parametric dependence modeling. In contrast to implicit copula families, we
do not need well-known multivariate distribution functions to create a new copula family.
Archimedean copulas are uniquely defined by a generating function. The generator of
a 2-dimensional Archimedean copula is a convex, continuous, and strictly decreasing
function ϕ : [0, 1] 7→ [0,∞], such that ϕ(1) = 0. The following theorem, stated, e.g., in
Nelsen (2006, Section 4.1), shows how to use the generator to define a valid copula.

Theorem 2.10 Let ϕ be a generator function and denote by ϕ[−1] the pseudo inverse

ϕ[−1](t) =

{
ϕ−1(t) 0 ≤ t < ϕ(0),

0 ϕ(0) ≤ t ≤ ∞.

Then, the function C : [0, 1]2 7→ [0, 1]

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) (2.6)

is a copula.

In the next example, we present three of the most popular Archimedean copulas that
we are going to use in the subsequent chapters. For more information on these copulas
and additional Archimedean families, we refer to Nelsen (2006).

Example 2.11 In this example, we give the generator and the copula function of selected
bivariate Archimedean copulas.

• Clayton copula (Clayton, 1978): For θ ∈ [−1,∞)\{0}, the Clayton copula is given
by

C(u, v) =
(
max{u−θ + v−θ − 1, 0}

)− 1
θ , (2.7)

with generator

ϕ(t) =
1

θ
(t−θ − 1).

For θ = 0, we set C = Π.

• Gumbel copula (Gumbel, 1960): For θ ∈ [1,∞), the Gumbel copula is defined as

C(u, v) = exp
(
−
(
(− log(u))θ + (− log(v))θ

) 1
θ

)
, (2.8)

10
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with generator
ϕ(t) = (− log(t))θ.

• Frank copula (Frank, 1979): For θ ∈ (−∞,∞)\{0}, the Frank copula is defined as

C(u, v) = −1
θ
log

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, (2.9)

with generator

ϕ(t) = − log

(
e−θt − 1

e−θ − 1

)
.

Again, we set C = Π for θ = 0.

The concept of Archimedean copulas can be generalized to the multivariate case.
The definition of the multivariate Archimedean copula is straightforward. However, we
need to impose additional assumptions on the generator to guarantee for a valid copula
function. This is formalized in Nelsen (2006, Theorem 4.6.2).

Theorem 2.12 Let ϕ : [0, 1] 7→ [0,∞] be a continuous strictly decreasing function such
that ϕ(0) =∞ and ϕ(1) = 0, and let ϕ−1 denote the inverse of ϕ. We define a function
C : [0, 1]d 7→ [0, 1] by

C(u) = ϕ−1 (ϕ(u1) + . . .+ ϕ(ud)) .

The function C is a copula for all d ≥ 2 if and only if ϕ−1 is completely monotonic on
[0,∞), that is, it is continuous and has derivatives of all orders that alternate in sign
for any t ∈ (0,∞).

For necessary and sufficient conditions on the generator for a fixed dimension d, we refer
to McNeil and Nešlehová (2009). Note that these multivariate copulas are permutation-
symmetric. This implies that all lower-dimensional margins of the copula have the same
dependence structure. In particular, models based on multivariate Archimedean copulas
have equicorrelated ranks.

2.2.3 Hierarchical Archimedean Copulas

Two-dimensional Archimedean copulas constitute a very important class in dependence
modeling. Some of the best known copula families are Archimedean and this property
has many theoretical and practical advantages. As shown in the preceding section,
generalizations to the multivariate case (d ≥ 3) are possible. However, the property of
permutation-symmetry is a severe restriction in more than two dimensions. Usually, this
symmetry is not tenable when dealing with a high-dimensional set of data. Joe (1997)
introduces the idea of a hierarchical construction method to define multivariate copulas
by nesting different lower-dimensional Archimedean copulas. With this approach, one
can partially overcome the permutation-symmetry in high-dimensional copula models.
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C3;1

C2;1

C1;1

1 2 3 4

(a)

C2;1

C1;1 C1;2

1 2 3 4 5

(b)

Figure 2.1: This plot shows an example of two different hierarchical Archimedean copula
structures

The idea in Joe (1997) is straightforward. First, one models the dependence between the
first and second dimension with the bivariate Archimedean copula C1;1. In the next step,
one defines z1,2 = C1;1(u1, u2) and combines this new variable with the untransformed
variable u3 of the third dimension by the Archimedean copula C2;1. Then, one defines
z1,2,3 = C2;1(z1,2, u3) and we can iterate this procedure until all variables are included.
This approach is visualized in Figure 2.1a with four variables. The dependence function
is given by

C1,2,3,4(u1, u2, u3, u4) =

= C3;1(C2;1(C1;1(u1, u2), u3), u4)

= ϕ
[−1]
3;1

(
ϕ3;1 ◦ ϕ[−1]

2;1

(
ϕ2;1 ◦ ϕ[−1]

1;1

(
ϕ1;1(u1) + ϕ1;1(u2)

)
+ ϕ2;1(u3)

)
+ ϕ3;1(u4)

)
,

where we denote the generator of Ci;j by ϕi;j. A sufficient condition for C1,2,3,4 to be a
copula is that all inverse generator functions are completely monotonic, and furthermore,
the composition of the generator functions ϕ3;1◦ϕ[−1]

2;1 and ϕ2;1◦ϕ[−1]
1;1 have to be completely

monotonic as well, see Joe (1997, Chapter 4).

Different nestings strategies also lead to valid multivariate copulas. A 5-dimensional
example is illustrated in Figure 2.1b. In this case, the copula is given by

C1,2,3,4,5(u1, . . . , u5) = C2;1(C1;1(u1, u2, u3), C1;2(u4, u5))

= ϕ
[−1]
2;1

(
ϕ2;1 ◦ ϕ[−1]

1;1

(
ϕ1;1(u1) + ϕ1;1(u2) + ϕ1;1(u3)

)

+ ϕ2;1 ◦ ϕ[−1]
1;2

(
ϕ1;2(u4) + ϕ1;2(u5)

))
,

where all inverse generator functions as well as ϕ2;1 ◦ ϕ[−1]
1;1 and ϕ2;1 ◦ ϕ[−1]

1;2 have to be
completely monotonic. This procedure can be extended easily to arbitrary dimensions.
However, the notation gets involved, and therefore we refer to Savu and Trede (2010)
for a general treatment. Choosing an adequate nesting structure is treated in Okhrin
(2007), simulation techniques for hierarchical Archimedean copulas are given in Whelan
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(2004), McNeil (2008), and Hofert (2008). The density for the general case is derived in
Savu and Trede (2010).

Hierarchical Archimedean copulas are popular for several reasons. They overcome the
problem of permutation-symmetry, the connection to other areas in probability theory
like Laplace transforms is appealing, and the hierarchical structure often has a nice
interpretation. In financial applications, for example, the dependence of the assets in
one sector can be modeled on the first level and the dependence between the different
sectors on a second. However, there are also severe drawbacks of this method. For
any hierarchical structure and any selection of Archimedean copulas, the conditions on
the composite generator functions have to be verified separately. Furthermore, these
conditions can be very restrictive. In the hierarchy of Figure 2.1b, for example, it is
not possible to use a Gumbel copula for C1;1 and a Clayton copula for C2;1, see Savu
and Trede (2010). The conditions are only easy to verify if all Archimedean copulas in
the hierarchy belong to a special Archimedean family. For instance, if all copulas in the
structure are of Gumbel type, of Clayton type, or of Frank type one only has to check that
the dependence parameters decrease with the hierarchy level (Aas and Berg, 2009). That
is, for the hierarchy in Figure 2.1b, we need to guarantee that θ2;1 < θ1;1 and θ2;1 < θ1;2.
However, the restriction to one copula family for all copulas in the hierarchy limits the
applicability of the concept strongly. Finally, hierarchical Archimedean copulas are not
the only high-dimensional dependence models that overcome permutation-symmetry.
The multivariate Gauss and t copula, as well as the pair-copula construction of Chapter
3 are in general not permutation-symmetric. Furthermore, in the model comparison of
Fischer et al. (2009) and Aas and Berg (2009), hierarchical Archimedean copula models
perform worse than competing dependence structures.

2.3 Dependence Measures

The copula framework is a most general dependence concept. It captures all infor-
mation on the dependence structure of a random variable. However, the copula is a
d-dimensional cumulative distribution function on [0, 1]d and therefore hard to inter-
pret. Furthermore, comparing the magnitude of dependence for different copulas might
be ambiguous. Therefore, it is often advantageous to summarize the dependence struc-
ture in a scalar valued dependence measure. The most famous dependence measure
is the correlation coefficient ρ of Bravais-Pearson. But, as discussed, this measure has
many drawbacks for non-elliptical dependence structures. In this section, we present
three alternatives. These measures depend only on the underlying copula and not on
the marginal distributions. This is a desirable property, since the margins do not influ-
ence the dependence structure. In addition, the first two dependence measures are more
robust to estimate than the correlation coefficient. Here, we focus on the bivariate case.
For generalizations to the d-dimensional case (d ≥ 3), we refer to Gaißer (2010), Schmid
et al. (2010), and references therein.
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Figure 2.2: The plot on the left shows a deterministic relation between X and Y . In
particular, every pair of two realizations is concordant. In the plot on the
right, we have a realization of a bivariate normal distribution with a positive
correlation coefficient, and there are more concordant than discordant pairs.

2.3.1 Measures of Concordance

In this section, we discuss two well-known bivariate measures of association that do not
depend on the marginal distributions. There exists a broad variety of different bivariate
dependence measures. For an overview on these, we refer to Nelsen (2006). Here, we
recall briefly two selected measures of association that are particularly important in the
subsequent chapters. To introduce these measures, we need to discuss the concept of
concordance. Let (X, Y ) be a bivariate random variable. A pair of realizations (x1, y1)
and (x2, y2) is concordant if x1 < x2 and y1 < y2, or x1 > x2 and y1 > y2. That is, if
(x1 − x2)(y1 − y2) > 0. In Figure 2.2b, the red and the black points as well as the red
and the green points are concordant. We say that (x1, y1) and (x2, y2) are discordant if
x1 < x2 and y1 > y2, or x1 > x2 and y1 < y2. That is, if (x1−x2)(y1−y2) < 0. In Figure
2.2b, the black and the green observations are discordant. Figure 2.2 visualizes how we
use the concordance concept to measure the dependence of random variables. Figure
2.2a shows a realization of a perfectly positively dependent random variable (X, Y ).
Here, all pairs are concordant. In Figure 2.2b, we have a non-deterministic dependence
structure of a bivariate normal distribution with a positive correlation. In this case,
we observe more concordant than discordant pairs. With this concept, we are able to
introduce two different measures of association.

Kendall’s Tau

This dependence measure is introduced in Kendall (1938). Let (X1, Y1) and (X2, Y2)
be independent and identically distributed random variables with continuous marginal
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distribution functions FX(x), FY (y) and copula C. We define Kendall’s tau as

τ = P ((X1 −X2)(Y1 − Y2) > 0)− P ((X1 −X2)(Y1 − Y2) < 0) (2.10)

= 4

∫

[0,1]2
C(u, v)dC(u, v)− 1.

That is, Kendall’s tau gives the probability of concordance minus the probability of
discordance. The second relation is proved, e.g., in Nelsen (2006).

Spearman’s Rho

Spearman’s rho is first mentioned in Spearman (1904) as a rank-based dependence mea-
sure. Nelsen (2006) introduces this measure in the following way. Let (X1, Y1), (X2, Y2)
and (X3, Y3) be independent and identically distributed random variables with continu-
ous marginal distribution functions FX(x), FY (y) and copula C. We define Spearman’s
rho by

ρS = 3 (P ((X1 −X2)(Y1 − Y3) > 0)− P ((X1 −X2)(Y1 − Y3) < 0)) (2.11)

= 12

∫

[0,1]2
uv dC(u, v)− 3.

Interestingly, it is easy to show that Spearman’s rho is exactly the correlation coefficient
between FX(X) and FY (Y ). That is,

ρS =
Cov(FX(X), FY (Y ))√

Var(FX(X))
√
Var(FY (Y ))

.

2.3.2 Tail Dependence

Kendall’s tau and Spearman’s rho measure the dependence on the whole range of the
bivariate random variable (X, Y ). The tail dependence coefficient, on the contrary,
is a measure for the dependence of extreme events. Again, we denote the marginal
distribution functions by FX(x), FY (y) and the copula by C. The lower tail dependence
coefficient is given by

λl = lim
u�0

P
(
Y ≤ F−1

Y (u)
∣∣X ≤ F−1

X (u)
)

(2.12)

= lim
u�0

C(u, u)

u
, (2.13)
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and the upper tail dependence coefficient is

λu = lim
u�1

P
(
Y > F−1

Y (u)
∣∣X > F−1

X (u)
)

(2.14)

= 2− lim
u�1

1− C(u, u)

1− u
. (2.15)

The representation of the tail dependence coefficient in terms of the copula in Equation
(2.13) and (2.15) is derived, e.g., in Nelsen (2006, Section 5.4). See Frahm et al. (2005) for
a survey of different estimators. Tail dependence is an important property in finance.
The Gauss copula has a tail dependence of zero and is therefore not appropriate in
many situations. The t copula can model upper and lower tail dependence, where
λu = λl. The next example presents a copula that has both upper and lower tail
dependence. Furthermore, this copula can have different values for the upper and lower
tail dependence coefficient.

Example 2.13 The BB1 copula family, introduced and discussed in Joe and Hu (1996,
Example 5.1), is a parametric copula with different upper and lower tail dependence. In
particular, the upper and lower tail dependence coefficients can be set independently of
each other. The bivariate copula with parameters θ > 0 and τ ≥ 1 is defined by

C(u, v; θ, τ) =
(
1 +

(
(u−θ − 1)τ + (v−θ − 1)τ

) 1
τ

)− 1
θ

.

The lower tail dependence coefficient is λl = 2−1/(τθ) and the upper tail dependence
coefficient is λu = 2− 21/τ .

For further measures of tail dependence in arbitrary dimensions, we refer to Schmid
and Schmidt (2007).

2.4 Estimation

There are different ways to estimate the underlying copula for a given set of i.i.d data. In
this section, we give a very brief overview and discuss the estimation procedure that we
use in the subsequent chapters. For a survey of the different estimation procedures, we
refer to Choroś et al. (2010). We focus on maximum likelihood methods only, using that
under absolute continuity assumptions the probability density f1,...,d can be decomposed
into

f1,...,d(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))
d∏

i=1

fi(xi), (2.16)

where f1, . . . , fd are the marginal densities and c is the copula density. The first possible
method is the straightforward maximum likelihood estimation of the full model. This
requires choosing a parametric model for the copula and the margins such that we can
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calculate the full likelihood function with respect to all parameters. That is, we specify
the parameter vectors α1, . . . , αd of the margins and the parameter vector θ of the copula
altogether. The problem of this method is that the number of parameters can be very
large, even for moderate dimensions. Therefore, the optimization algorithm might be
very slow or even computationally infeasible.

To overcome this problem, or at least to provide good starting values for the full max-
imum likelihood method, Joe (1997) has suggested the inference functions for margins
(IFM) approach. This is a sequential procedure where we estimate the marginal param-
eters separately for every dimension. In a second step, we transform the observations
(xi,1, . . . , xi,d)i=1,...,n with the estimated marginal distribution functions

uIFM
i,j = Fj(xi,j; α̂j),

for i = 1, . . . , n and j = 1, . . . , d. In the following, we treat the transformed variables
(uIFM

i,1 , . . . , uIFM
i,d )i=1,...,n like observations from the underlying copula and estimate the

parameter vector θ by the maximum likelihood approach. This is conceptually the same
as plugging in the marginal estimators into the likelihood function that is based on
the density in Equation (2.16) and maximizing this likelihood function with respect to
the copula parameters. Of course, it is not possible to apply the standard maximum
likelihood results for the asymptotic properties of this sequential estimator. However,
Joe (1997) proves consistency and asymptotic normality under the usual regularity con-
ditions. This stepwise procedure reduces the complexity of the problem and makes
estimation feasible even for high dimensions and complex marginal models. However,
since the marginal distributions are unknown, we cannot guarantee to select the correct
model for the margins and, as shown in Kim et al. (2007), misspecified margins can have
a crucial effect on the estimator of the copula parameter.

The third method is similar to the IFM approach but it is based on nonparametric
estimates of the margins. This excludes the possibility of misspecified margins and
is particularly appropriate if the dependence structure is in the focus of the analysis.
We denote the one-dimensional empirical distribution function by F̂ n

j and define the
pseudo-observations as

un
i,j =

n

n + 1
F̂ n
j (xi,j), (2.17)

for i = 1, . . . , n and j = 1, . . . , d. Note that we use the normalization n/(n + 1) to
avoid problems at the boundaries of [0, 1]d. Thus, the pseudo-observations are simply
the rank of the observation in its dimension, normalized by 1/(n+ 1). In the next step,
we continue as in the IFM case. That is, we treat (un

i,1, . . . , u
n
i,d)i=1,...,n as observations

from the underlying copula and estimate the parameter vector θ with a standard maxi-
mum likelihood approach. Genest et al. (1995) show that the semiparametric estimator
is consistent and asymptotically normal. Kim et al. (2007) advocate the use of this
estimation method if the marginal distributions are unknown.

A completely nonparametric way to estimate the copula is given in Deheuvels (1979).
We use the pseudo-observation of Equation (2.17) and define the empirical copula on
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[0, 1]d as

Cn(u1, . . . , ud) =
1

n

n∑

i=1

1(un
i,1 ≤ u1, . . . , u

n
i,d ≤ ud). (2.18)

Note that Cn is not continuous and therefore not a copula function. Furthermore, one
needs a large amount of data to get a good approximation of the underlying copula
on [0, 1]d by the empirical copula function. Thus, one of the main applications of the
empirical copula is goodness-of-fit testing for parametric copula models.

2.5 Goodness-of-Fit

There are several different ways to evaluate the fit of a parametric copula for a given
data set. A graphical analysis of the dependence structure should always be the first
step. In two dimensions, scatter plots of the data can give a first hint on the depen-
dence. However, in many cases, the influence of the marginal distributions conceals the
underlying dependence structure. Therefore, it is advantageous to transform the orig-
inal data and plot the pseudo-observations. Sometimes, these pseudo-observations are
further transformed such that all univariate margins are standard normally distributed.
In this case, all margins have the same distribution and do not affect the scatter plot
asymmetrically. By construction, scatter plots are particularly appropriate for two di-
mensions. Nevertheless, in the multivariate case, we can apply the bivariate graphical
methods on the 2-dimensional margins. A different graphical approach to evaluate the
fit of a parametric copula is suggested by Genest and Rivest (1993). They transform the
selected parametric copula C to the so called λ-function on [0, 1]. Then, they compare
this function with its nonparametric estimate from the data. For further information
and the definition of the theoretical and empirical λ-function, we refer to Genest and
Rivest (1993) and Genest et al. (2009b).

Graphical evaluations are often suitable to discover a bad fit of the selected dependence
model. Though, it is substantially more difficult to distinguish between a moderate and
an excellent fit by these approaches. Furthermore, it is desirable to have a statistical
framework to validate the intuition that we get from the graphical procedures. Therefore,
we need goodness-of-fit tests to decide whether the selected copula can represent the
dependence structure in a given data set adequately. We denote a parametric copula
family by C = {Cθ : θ ∈ O}, where O is an open subset in Rp. The hypotheses for these
goodness-of-fit tests are given by

H0 : C ∈ C, against Ha : C /∈ C.

Recently, a large variety of different goodness-of-fit tests have been proposed. Fermanian
(2005) bases his goodness-of-fit on the density of the copula. A different procedure is
introduced in Breymann et al. (2003) and corrected in Dobrić and Schmid (2007). This
approach is based on the Rosenblatt transformation, see Rosenblatt (1952). Genest
et al. (2009b) and Berg (2009) introduce further approaches. Moreover, they conduct
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extensive simulation studies on computer clusters to compare size and power of selected
goodness-of-fit tests for different hypotheses and sample sizes. Genest et al. (2009b) focus
on the bivariate case, whereas Berg (2009) applies the tests in d = {2, 4, 8} dimensions.
Here, we discuss one of the goodness-of-fit tests. This test performs particularly well in
the power comparison of the simulation studies and we use this test in Section 4.2 in
the bivariate case. We denote by θn an estimate of θ. The test is proposed in Genest
and Rémillard (2008) and is based on the distance between the empirical copula Cn, see
Equation (2.18), and the fitted copula Cθn ∈ C. More formally, the distance is measured
by the empirical process

Cn =
√
n (Cn − Cθn)

and the Cramér-von Mises test statistic

Sn =

∫

[0,1]d
Cn(u)

2dCn(u).

As shown in Genest and Rémillard (2008) and noted in Genest et al. (2009b), the
asymptotic distribution of the test statistic is highly complex and depends on the copula
family under the null hypothesis. Moreover, it is not possible to tabulate critical values
since these values depend on the true parameter θ of the underlying copula. Therefore,
we have to use a parametric bootstrap procedure to calculate the p-value of the goodness-
of-fit test. The validity of this parametric bootstrap is derived in Genest and Rémillard
(2008).

An example to illustrate the importance of goodness-of-fit tests is given in Figure 2.3.
In the plot 2.3a and 2.3b, we see realizations of a Frank and Gauss copula, respectively.
Both dependence structures have the same value of Kendall’s tau τ = 0.3. The corre-
sponding empirical lambda functions are given in 2.3c. The blue empirical λ-function
corresponds to the Frank copula. The red function corresponds to the Gauss copula. In
this case, it is very difficult to distinguish between these dependence structures visually.
The goodness-of-fit test, on the contrary, is able to reveal the correct underlying copula
in our example. The null hypothesis that the copula in the plot on the left is Gaussian is
correctly rejected at a 1% level (p-value = 0.004), and the null hypothesis that the un-
derlying copula in the plot in the middle is a Frank copula is correctly rejected (p-value
= 0.001) as well.

2.A Parametric Two-Level Bootstrap

Goodness-of-Fit Algorithm

In this goodness-of-fit test, we compare the observed distance between the empirical
and the estimated parametric copula with the distance that we expect under the null
hypothesis. Therefore, we approximate the distribution of this distance under the null
with a parametric bootstrap procedure. The calculation procedure is provided in Genest
et al. (2009b, Appendix A), and the validity of the two-level bootstrap procedure is
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Figure 2.3: Pseudo-observations of a Frank (a) and Gauss (b) copula. Both copulas
have a Kendall’s tau of τ = 0.3. The plot on the right shows the empirical
lambda functions. The blue function corresponds to the data in (a) and the
red function to (b).

derived in Genest and Rémillard (2008). In particular, the estimation step in line 11 is
time-consuming, since this estimation is conducted in every bootstrap iteration. On the
other hand, the computation procedure is appropriate for parallelization of the bootstrap
iterations. Note that, if the copula family under consideration can be evaluated efficiently
on u ∈ [0, 1]2, it is not necessary to approximate the parametric copula at lines 3-4 and
12-13 in the bootstrap algorithm.
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Algorithm 1 Two-level parametric bootstrap goodness-of-fit test of Genest et al.
(2009b)

Input: pseudo-observations un
i,j, i = 1, . . . , n and j = 1, . . . , d, parametric copula family

C = {Cθ : θ ∈ Θ}, number of primary bootstrap samples N , number of secondary
bootstrap samples m

Output: approximation of the p-value

1: define Cn(u) =
1
n

∑n
i=1 1(u

n
i ≤ u)

2: estimate θ with the maximum likelihood estimator θn
3: generate random sample (y∗1, . . . , y

∗
m) from distribution Cθn

4: approximate Cθn(u) by B∗
m(u) =

1
m

∑m
i=1 1(y

∗
i ≤ u)

5: compute Sn =
∑n

i=1 (Cn(u
n
i )− B∗

m(u
n
i ))

2

6: for k = 1, . . . , N do
7: generate random sample (y∗1,k, . . . , y

∗
n,k) from distribution Cθn

8: compute ranks (r∗1,k, . . . , r
∗
n,k) of (y

∗
1,k, . . . , y

∗
n,k)

9: compute pseudo-observations (u∗
1,k, . . . , u

∗
n,k) = (

r∗1,k
n+1

, . . . ,
r∗
n,k

n+1
)

10: define C∗
n,k(u) =

1
n

∑n
i=1 1(u

∗
i,k ≤ u)

11: estimate θ from (u∗
1,k, . . . , u

∗
n,k) with the maximum likelihood estimator θ∗n,k

12: generate random sample (y∗∗1,k, . . . , y
∗∗
m,k) from distribution Cθ∗

n,k

13: approximate Cθ∗
n,k
(u) by B∗∗

m (u) = 1
m

∑m
i=1 1(y

∗∗
i,k ≤ u)

14: compute S∗
n,k =

∑n
i=1

(
C∗

n,k(u
∗
i,k)− B∗∗

m,k(u
∗
i,k)
)2

15: end for
16: p-Value =

∑N
k=1 1(S

∗
n,k > Sn)/N
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Chapter 3

Pair-Copula Construction

Dependence modeling with copulas has been a vibrant area of research for the last 20
years. The copula approach has improved the understanding of dependence between
random variables considerably. Most work, though, was done for the 2-dimensional
case, and therefore, a large variety of parametric bivariate copula families exists. Nelsen
(2006) gives an excellent introduction to the topic and provides an overview of the most
prominent bivariate copula families. However, modeling a high-dimensional dependence
structure with a multivariate copula remains challenging. Nevertheless, in numerous
applications one needs to find models for the dependence of many variables. See, e.g.,
Chavez-Demoulin et al. (2006) and Brechmann et al. (2012).

For most bivariate parametric copula families, generalizations to the d-dimensional
case exist, but usually these multivariate copulas lack the desired flexibility. In Section
2.2, we review some of the more promising approaches, but, as discussed, all of these
procedures come with some drawbacks. In this chapter, we present the pair-copula con-
struction which is a relatively recent way to build multivariate copulas. This approach
can model a broad variety of different dependence structures and it is in many aspects
superior to the competing high-dimensional copula models. It uses a cascade of bivari-
ate copulas as building blocks to create a high-dimensional dependence model. The idea
goes back to a seminal paper of Joe (1996). Since there are numerous different ways
to assemble a pair-copula, Bedford and Cooke (2001, 2002) have developed a graphical
representation, called regular vines, to visualize the structure of pair-copula construc-
tions. Due to this representation, pair-copulas are sometimes even called vine copulas.
This graphical representation is an important tool in pair-copula modeling. However, it
requires a certain amount of graph theoretical knowledge to work with these dependence
models. Another drawback of the regular vine concept is that the implementation of
simulation and estimation algorithms for pair-copulas requires a different representa-
tion. To overcome these problems, we introduce a new, matrix-based representation for
pair-copulas. Using this representation, we present new algorithms for pair-copulas. In
addition, we develop a tool to specify the structure of a pair-copula without any knowl-
edge of graph theory. Thus, we hope to make the pair-copula concept accessible for a
broader audience.

The remainder of this chapter is structured as follows. In Section 3.1, we introduce
the concept of pair-copula constructions. In the next three sections, we present dif-
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ferent ways to represent the structure of a pair-copula. In Section 3.2, we present a
graphical approach, and in Section 3.3, we discuss a matrix based approach that has
been developed for determining the number of regular vines, but can be used for the
implementation of algorithms as well. In Section 3.4, we present the new, matrix-based
representation for pair-copula structures. The matrix representation exploits the fact
that we can store the structure of a pair-copula construction in an upper diagonal matrix.
This is a consequence of Kurowicka and Cooke (2003, Lemma 3.5). Unfortunately, the
proof that the authors have stated for the lemma is not correct. Therefore, we prove this
lemma in Appendix 3.A. Algorithms that are based on this new matrix representation
are given in Appendix 3.C.

3.1 Definition, Concept, and Properties

There are two different ways to introduce the pair-copula construction. In Section 3.1.1,
we discuss the pair-copula composition. This integral-based approach has already been
established in the first paper on pair-copulas by Joe (1996). The second approach, given
in Section 3.1.2, is more popular in the recent literature. See, e.g., Aas et al. (2009)
and Kurowicka and Joe (2011). There, one decomposes any multivariate distributional
density into a sequence of bivariate copulas and univariate densities. The integral-based
pair-copula composition is of special importance in the following since we develop a
related approach for Lévy copulas in Chapter 6. This is due to the fact that it is not
adequate to work with a probability density decomposition in the setting of Lévy pro-
cesses. Finally, in Section 3.1.3, we discuss an important assumption for the applicability
of pair-copula constructions. This assumption plays a crucial role in the estimation of
parametric pair-copula models.

3.1.1 Pair-Copula Composition

In the first approach, we build high-dimensional copulas from bivariate ones. Since
copulas are distribution functions, we can apply the well-known theory for conditional
distributions on copulas. In Appendix 3.B we show how to evaluate the conditional dis-
tribution functions in the pair-copula setting. First, we fix some notation. Let Ci,j1,...jm

be a copula on the set of variables with indices {i, j1, . . . , jm}. Then, we denote by
Fi|j1,...,jm the corresponding conditional distribution function of variable i, given the set
of variables {j1, . . . , jm}. Using this notation, we introduce the concept of pair-copula
constructions as in Joe (1996).

We start in three dimensions and select any bivariate copula C1,2 for the dependence
between the first and second variable, and a second bivariate copula C2,3 for the depen-
dence between the second and third dimension. We use another bivariate copula, which
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we denote by C1,3|2, and define the 3-dimensional copula

C1,2,3(u1, u2, u3) =

∫

[0,u2]

C1,3|2(F1|2(u1|z2), F3|2(u3|z2))dz2. (3.1)

Note that C1,2,3 is a well-defined copula function for any choice of C1,2, C2,3, and C1,3|2.
In Subsection 4.1.1, we discuss the interpretation of F1|2(u1|u2) and F3|2(u3|u2) as con-
ditional pseudo-observations in detail. For u2 ∈ [0, 1] the two equations F1|2(1|u2) = 1
and F3|2(1|u2) = 1 hold. Now, it is easy to check that the bivariate margins of this cop-
ula satisfy C1,2,3(u1, u2, 1) = C1,2(u1, u2) and C1,2,3(1, u2, u3) = C2,3(u2, u3), respectively.
This shows that the choice of the copula C1,3|2 only affects the bivariate dependence be-
tween the first and third variable as well as the 3-dimensional dependence structure. In
order to construct a 4-dimensional copula on the variables {1, 2, 3, 4}, we need to define
a second 3-dimensional copula C2,3,4 on the set of variables {2, 3, 4}. It is important for
the definition of the 4-dimensional pair-copula that C2,3,4 has the same bivariate margin
as C1,2,3 on the variables {2, 3}. Therefore, we reuse the bivariate copula C2,3 from the
previous step. Additionally, we select the new bivariate copulas C3,4 and C2,4|3. Now,
we can define the second 3-dimensional copula as

C2,3,4(u2, u3, u4) =

∫

[0,u3]

C2,4|3(F2|3(u2|z3), F4|3(u4|z3))dz3. (3.2)

Note that we use the bivariate copula C2,3 to specify both the conditional distribution
functions F3|2 in Equation (3.1) and F2|3 in Equation (3.2). Therefore, the 3-dimensional
copulas C1,2,3 and C2,3,4 have the same dependence structure between the variables u2

and u3. For the 4-dimensional copula, we reuse both 3-dimensional copulas C1,2,3 and
C2,3,4 to define F1|2,3 and F4|2,3, respectively. Furthermore, we select a new, bivariate
copula, denoted by C1,4|2,3, to define

C1,2,3,4(u1, u2, u3, u4) =

∫

[0,u2]×[0,u3]
C1,4|2,3(F1|2,3(u1|z2, z3), F4|2,3(u4|z2, z3))dC2,3(z2, z3).

(3.3)

Again, C1,2,3,4 is a valid copula and we can continue this procedure up to arbitrary
dimensions. Of course, any permutation of the indices in this example gives a copula
function as well. It is important to note that interchanging the indices is not the only
possibility to construct a valid 4-dimensional pair-copula. Alternatively, the bivariate
copulas C2,3, C2,4 and C3,4|2 can be used to define

C2,3,4(u2, u3, u4) =

∫

[0,u2]

C3,4|2(F3|2(u3|z2), F4|2(u4|z2))dz2

instead of the copula in Equation (3.2). Together with the copula C1,2,3 from the pre-
vious example, we define the 4-dimensional copula similar to Equation (3.3). Note that
this pair-copula cannot be obtained from the first pair-copula by a permutation of the
indices. There are many different ways to assemble the bivariate copulas in higher di-
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mensions. Moreover, we can use any bivariate copula within the construction process.
That is, we can choose the bivariate building blocks from a large number of different
parametric families, and it is even possible to combine Archimedean and elliptical copu-
las. Therefore, we can model a broad variety of high-dimensional dependence structures.
For these reasons, the pair-copula construction is such a flexible concept.

3.1.2 Density Decompositions

Decomposing the density of any high-dimensional distribution function into bivariate
building blocks is a different approach to introduce pair-copulas. This procedure is more
common in the recent literature, e.g., Aas et al. (2009), than the integral-based pair-
copula composition. In Section 3.1.1, we sequentially build parametric copula models.
Here, we start with a high-dimensional density and decompose it into bivariate functions
of conditional distributions and univariate densities. First, we recall some well-known
properties of multivariate density functions. Under the appropriate regularity conditions
we have

f1,...,d(x1, . . . , xd) = c1,...,d
(
F1(x1), . . . , Fd(xd)

)
f1(x1), . . . , fd(xd), (3.4)

where c1,...,d is a copula density. The calculation rules for conditional densities give

f1,...,d(x1, . . . , xd) = f1|2,...,d(x1|x2, . . . , xd)

f2|3,...,d(x2|x3, . . . , xd) . . . fd−1,d(xd−1|xd)fd(xd).
(3.5)

Again, any permutation of the indices gives a different decomposition. In the next
example, we present the 3-dimensional case. We start with the density f1,2,3 and apply
the factorization of Equation (3.5). Moreover, we permute the second and the third
index. This results in

f1,2,3(x1, x2, x3) = f1|2,3(x1|x2, x3)f3|2(x3|x2)f2(x2). (3.6)

Basic calculations give

f3|2(x3|x2) = c2,3(F2(x2), F3(x3))f3(x3), (3.7)

and for the first factor on the right in Equation (3.6)

f1|2,3(x1|x2, x3) =
f1,3|2(x1, x3|x2)

f3|2(x3|x2)

= c1,3|2(F1|2(x1|x2), F3|2(x3|x2))f1|2(x1|x2)

= c1,3|2(F1|2(x1|x2), F3|2(x3|x2))c1,2(F1(x1), F2(x2))f1(x1)

(3.8)
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holds. Using Equation (3.6) together with the Equations (3.7) and (3.8), we get the
following decomposition

f1,2,3(x1, x2, x3) = c1,3|2(F1|2(x1|x2), F3|2(x3|x2))

c1,2(F1(x1), F2(x2))c2,3(F2(x2), F3(x3))

f1(x1)f2(x2)f3(x3).

(3.9)

This example illustrates how we can represent a 3-dimensional density with bivariate
building blocks together with the corresponding marginal distributions. The same pro-
cedure is possible for any other factor in Equation (3.5).

To point out the similarity between this approach and the integral-based representa-
tion from Section 3.1.1, we present the density of the 3-dimensional pair-copula from
Equation (3.1)

c1,2,3(u1, u2, u3) = c1,3|2(F1|2(u1|u2), F3|2(u3|u2))c1,2(u1, u2)c2,3(u2, u3). (3.10)

Note that we work with the density of a copula, and therefore, the univariate marginal
distribution functions are the identity function and the univariate marginal densities
satisfy f1 ≡ f2 ≡ f3 ≡ 1. Comparing Equation (3.9) and Equation (3.10) shows how the
two approaches coincide.

3.1.3 Simplifying Assumption

The simplifying assumption is important to make the pair-copula constructions mathe-
matically tractable. In particular, it is important for fast and robust estimation proce-
dures. This assumption states that all bivariate copulas in the pair-copula construction
are constant and depend on the conditional variables only through their arguments.
In the decomposition, given in Equation (3.10), the simplifying assumption guaran-
tees that the bivariate copula C1,3|2(F1|2(u1|u2), F3|2(u3|u2)) does depend on the vari-
able u2 solely through the conditional distribution functions F1|2(u1|u2) and F3|2(u3|u2).
The assumption assures that the copula C1,3|2 itself does not change with the variable
u2. However, it is possible to construct probability distributions in such a way that
the pair-copula decomposition leads to bivariate copulas that vary with the conditional
variable. Here, we give a particularly easy example of a 3-dimensional pair-copula con-
struction where the simplifying assumption does not hold. That is, the bivariate copula
C1,3|2

(
F1|2(u1|u2), F3|2(u3|u2)|u2

)
does depend directly on the variable u2. We use the

pair-copula from Equation (3.1), and set C1,2 and C2,3 to the independence copula Π.
Furthermore, we specify

C1,3|2(u1, u3|u2) =

{
CGauss(u1, u3; ρ = 0.5) if u2 > 0.5,

CGauss(u1, u3; ρ = −0.5) if u2 ≤ 0.5.
(3.11)
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Figure 3.1: The plots show a 3-dimensional realization of a pair-copula, where C1,2 and
C2,3 are set to the independence copula Π. The copula C1,3|2 depends directly
on u2 and is specified in Equation (3.11). We present the bivariate margin
{1, 3} for different values of the second variable.

This clearly violates the simplifying assumption, since the copula C1,3|2 depends directly
on the parameter u2. In Figure 3.1, we illustrate the effect of this specification on
the bivariate margin {1, 3}. Looking only at (a), we cannot observe any dependence
between the first and third variables, but (b) and (c) reveal the fact that these variables
are dependent, conditional on the value of the second variable. For more examples on
this topic, we refer to Hobæk Haff et al. (2010).

At the moment, there is a vivid debate on the necessity of the simplifying assumption
for pair-copula constructions in the academic community, see Hobæk Haff et al. (2010)
and Acar et al. (2012). Nevertheless, the simplifying assumption is essential for inference
on pair-copulas in more than three dimensions. If the pair-copulas do not depend on the
conditional variables directly, Aas et al. (2009) present estimators for the parameters of
the pair-copula. If, on the other hand, the pair-copulas do depend on the conditional
variables, it is not straightforward to estimate the parameters in the pair-copula con-
struction. In a remarkable paper, Acar et al. (2012) give a kernel-based approach for
the 3-dimensional case. Though, inference for higher dimensions without the simplifying
assumption remains an open problem. In the following, we presume that the simplifying
assumption holds. Hobæk Haff et al. (2010) show that any elliptical model with a posi-
tive definite scale matrix can be decomposed into a simplified pair-copula construction.
In particular, the Gaussian and the t copula can both be represented by the simplified
pair structure, and in many other cases, the simplified pair-copula construction gives
good approximations, even if the simplifying assumption is not fulfilled.

In conclusion, one has to keep in mind that the simplifying assumption is a very nat-
ural assumption in the pair-copula composition in Section 3.1.1. In this case, we simply
build a flexible, high-dimensional, parametric model from bivariate copulas. Allowing
additionally that the bivariate copulas depend on the conditional variables directly cre-
ates a new class of extremely flexible but less tractable, high-dimensional copula models.
Of course, parametric models are never perfect, but the simplified pair-copula construc-
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tion has proven, e.g., in Aas and Berg (2011) or Czado et al. (2011), to be an excellent
approach for dependence modeling in different applications.

3.2 Regular Vine Representation

Pair-copula constructions are flexible dependence models that offer the possibility to
construct high-dimensional copulas by using bivariate building blocks. There are dif-
ferent ways to assemble the 2-dimensional copulas. The copula density decompositions,
introduced in Section 3.1.2, for

c1,2,3,4 = c1,4|2,3 · c1,3|2 · c2,4|3 · c1,2 · c2,3 · c3,4 (3.12)

and
c1,2,3,4 = c3,4|1,2 · c2,3|1 · c2,4|1 · c1,2 · c1,3 · c1,4 (3.13)

are both valid pair-copula densities in four dimensions. For readers’ convenience, we omit
the unambiguous arguments of the copula densities. In Equation (3.12), we model the
2-dimensional margins {1, 2}, {2, 3}, and {3, 4} with a bivariate copula, and in Equation
(3.13), we specify the margins {1, 2}, {1, 3}, and {1, 4} directly. Note that relabeling
the dimensions does not account for these differences.

Whereas it is feasible to keep track of all possible pair-copula structures in four di-
mensions by using the density decomposition, this task becomes more difficult in higher
dimensions, since the number of possible pair-copula constructions rises dramatically
with the number of variables. There are already more than 4.8 · 1014 possible structures

for a 10-dimensional pair-copula construction. In general, we have d!
2
× 2(

d−2
2 ) possi-

ble structures in d dimensions, see Morales-Nápoles (2011). Note that pair-copulas are
designed for high-dimensional applications and that this approach can be applied for
dependence modeling with 100 or even more variables. Therefore, we need a representa-
tion to visualize the structure of pair-copula constructions in order to interpret, compare,
and choose the best pair-copula for a given application. For these reasons, Bedford and
Cooke (2001) present a graphical model, called regular vines, in which they code every
bivariate copula in the pair-copula construction by an edge in this vine. Thereby, they
can represent any pair-copula construction within this graphical framework. These reg-
ular vines allow to keep track of the possible decompositions, they are easy to interpret,
and they specify the structure of a pair-copula uniquely. The regular vine structures are
based on an echelon of trees, i.e., connected graphs with no cycles. We define regular
vines as in Bedford and Cooke (2002, Definition 4.1).

Definition 3.1 V is a regular vine on d elements if all of the following conditions hold.

(i) V = (T1, . . . , Td).

(ii) Tu is a tree with edge set Eu and node set Nu = Eu−1, with #Nu = d − (u − 1)
for u = 1, . . . , d, where we # denotes the cardinality of a set. We specify N1 =
{1, . . . , d}.
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T1 1 2 3 4 5

T2 1,2 2,3 3,4 2,5

T3 1, 3|2 2, 4|3 3, 5|2

T4 1, 4|2, 3 4, 5|2, 3

T5 1, 5|2, 3, 4

1, 2 2, 3 3, 4

2, 5

1, 3|2 2, 4|3

3, 5|2

1, 4|2, 3 4, 5|2, 3

1, 5|2, 3, 4

Figure 3.2: Regular vine V = (T1, . . . , T5). The nodes in the first tree T1 code the
variables u1, . . . , u5. Each of the d(d− 1)/2 edges in the vine represents one
bivariate copula in the pair-copula construction.

(iii) The proximity condition holds: for u = 2, . . . , d − 1, if e1 = {i1, j1} and e2 =
{i2, j2} are two nodes in Nu connected by an edge (recall i1, i2, j1, j2 ∈ Nu−1), then
#(e1 ∩ e2) = 1.

Figure 3.2 shows a regular vine. The proximity condition can be checked for every
pair of connected nodes. For example, the nodes {1, 2} and {2, 3} in the second tree
are connected by an edge. These two nodes contain both the node {2} of the first tree,
and therefore, satisfy the proximity condition #({1,2}∩{2,3}) = #{2} = 1. We will
see that this condition is central for the applicability of the regular vine concept on
pair-copula construction since it guarantees overlapping margins. In order to interpret
the higher trees in Figure 3.2, we introduce some additional notation for regular vines in
the following Definition. This notation is based on Bedford and Cooke (2002, Definition
4.2 and Definition 4.3) and Cooke et al. (2011, Definition 3.3).

Definition 3.2 For a regular vine V , we give the following definitions.

(i) For any eu ∈ Eu, the complete union of eu is the subset Aeu = {i ∈ N1 : ∃ek ∈
Ek,with i ∈ e1, ek ∈ ek+1(k = 1, . . . , u− 1)}.

(ii) For a regular vine and an edge eu ∈ Eu, the k-fold union of eu (0 < k ≤ u) is the
subset Ueu(k) = {eu−k ∈ Eu−k : ∃ edges el ∈ El (l = u− k+1, . . . , u− 1) with el ∈
el+1 (l = u − k, . . . , u − 1)}. For k = 0, define Ueu(0) = {eu} and for k = −1,
define Ueu(−1) = ∅.

30
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(iii) For e = {i, j} ∈ Eu, u = 1, . . . , d−1, the conditioning set associated with e is De =
Ai ∩ Aj, and the conditioned sets associated with e are Ce,i = Ai\De and Ce,j =
Aj\De. The constraint set for the edge e is defined as C e = {(Ce,i, Ce,j|De)}. The
constraint set of the full vine is given by C V = {C e : e ∈ Eu(u = 1, . . . , d− 1)}.
Note that Ae = Ai ∪Aj = Ce,i ∪ Ce,j ∪De.

(iv) If node e is an element of node f , we say that e is a child of f .

As an immediate consequence of Bedford and Cooke (2002, Lemma 4.3), the constraint
set specifies the edge uniquely in the vine. Therefore, we denote the edges by their
constraint set. Again, we illustrate this concept with the 5-dimensional regular vine in
Figure 3.2. The different trees in this vine are denoted by T1, . . . , T5. The edges in the
vine are labeled by their corresponding constraint sets. Note that

e1,2 = {1, 2}, e1,3|2 =
{
{1, 2}, {2, 3}

}
, e1,4|2,3 =

{{
{1, 2}, {2, 3}

}
,
{
{2, 3}{3, 4}

}}
.

Since 1 ∈ e1,2 ∈ e1,3|2 ∈ e1,4|2,3, it is easy to see that 1 ∈ Ae1,4|2,3 . Furthermore, the k-fold
unions Ue1,4|2,3(k) for k = 1, 2, 3 are given by

Ue1,4|2,3(1) = {e1,3|2, e2,4|3},
Ue1,4|2,3(2) = {e1,2, e2,3, e3,4},
Ue1,4|2,3(3) = Ae1,4|2,3 = {1, 2, 3, 4},

and the regular vine in Figure 3.2 represents the pair-copula construction with density

c1,2,3,4,5 = c1,5|2,3,4 · c1,4|2,3 · c4,5|2,3 · c1,3|2 · c2,4|3 · c3,5|2 · c1,2 · c2,3 · c3,4 · c2,5.

All nodes that are connected by an edge in a tree satisfy the proximity condition of
Definition 3.1 (iii). The nodes e1,4|2,3 = {e1,3|2, e2,4|3} and e4,5|2,3 = {e2,4|3, e3,5|2} in N4,
for example, share the common node e2,4|3 in N3.

The proximity condition is the reason why the graphical concept of regular vines
is suitable for describing pair-copula constructions. The character of this condition
becomes particularly clear in the pair-copula composition in Section 3.1.1. There, the
condition guarantees that in each step, the u-dimensional copulas, which are combined to
(u+1)-dimensional ones, have the same (u− 1)-dimensional margin. This is important,
since we build the (u+ 1)-dimensional copulas by integrating with respect to this joint
(u− 1)-dimensional margin.

The most prominent regular vine structures are C- and D-vines. C-vines or canonical-
vines have one central node in the first tree. That is, all edges in the first tree share
this common node. This structure is of special importance if the multivariate model
has one outstanding variable with a leading influence on the other variables. A D-vine
or drawable vine can be seen as the opposite of the C-vine structure. There, none of
the nodes is an element in more than two edges. It is particularly easy to visualize the
D-vine structure and in the first paper on pair-copula constructions by Joe (1996), only
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Chapter 3 Pair-Copula Construction

D-vine structures were considered. The regular vine structure in Figure 3.2 is a D-vine,
and the 4-dimensional copula in Equation (3.12) is an example of a D-vine pair-copula
construction, whereas Equation (3.13) shows a C-vine decomposition.

3.3 Vine Array Representation

Morales-Nápoles (2011) introduces vine arrays which are a different approach to rep-
resent pair-copula constructions. This representation is based on a lower triangular
matrix. Vine arrays have their origin in finding the number of possible regular vines
for a given dimension d. The entries of a vine array represent the nodes of the trees
in a vine. Therefore, we need to specify d(d + 1)/2 entries for the complete vine array
representation. This representation is based on a lower triangular matrix including the
main diagonal. Before we can state the vine array representation, we need to introduce
the concept of natural orderings for regular vines as given in Morales-Nápoles (2011).

Definition 3.3 Let V be a d-dimensional regular vine. The natural order NO(V ) is a
sequence (Ad, Ad−1, . . . , A1) of the nodes in the first tree of the vine. We set the Ai in
a sequential way. We specify Ad to be the smaller element and Ad−1 to be the larger
element of the two elements in the conditioned set of the single node in tree Td. This
node has two children in tree Td−1, and Ad−1 appears in one of the conditioned sets.
We set Ad−2 to be the second element in this conditioned set. Again, this node (with
conditioned set {Ad−1, Ad−2} has two children in tree Td−2, where Ad−2 appears in one
of the conditioned sets. We iterate this procedure sequentially until A1.

The natural order of the regular vine in Figure 3.2 is (1, 5, 4, 2, 3). This natural order
does not specify the regular vine completely. Nevertheless, we need this ordering to
introduce vine arrays, as in Morales-Nápoles (2011).

Definition 3.4 A regular vine array TA(V ) = {Ai,j} for i, j = 1, . . . , d and j ≥ i
is a lower triangular matrix with elements in {1, . . . , d} indexed in “reverse order” (see
Equation (3.14)), where Aj,j equals the element in position j in NO(V ) and Aj−1,j equals
the element in position j−1 in the same natural order. The element Ai,j codes the node
(Aj,j, Ai,j|Ai−1,j, . . . , A1,j).

To illustrate the concept of regular vine arrays, we present this representation for the
5-dimensional regular vine in Figure 3.2.

TA(V ) =




A5,5

A4,5 A4,4

A3,5 A3,4 A3,3

A2,5 A2,4 A2,3 A2,2

A1,5 A1,4 A1,3 A1,2 A1,1




=




1
5 5
4 4 4
3 3 2 2
2 2 3 3 3




(3.14)
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The single node in tree T5 with constraint set (1, 5|2, 3, 4) is coded by the element A4,5 in
the regular vine array. The element A4,5 represents the node (A5,5, A4,5|A3,5, A2,5, A1,5),
which is the top node of the tree. Note that the representation of a constraint set is
invariant with respect to reordering of the elements within the conditioned set and it
is also invariant with respect to reordering of the elements within the conditioning set.
The first two elements in the third row, i.e., A3,5 and A3,4, represent the nodes (1, 4|2, 3)
and (4, 5|2, 3), respectively, in tree T4. Any element Ai,j that is not on the main diagonal
codes the node in the vine in the following way. The conditioned set of the corresponding
node is given by the element itself and by the element on the main diagonal in the same
column. The conditioning set is given by all the elements in the same column below the
element.

3.4 Matrix Representation

The graphical concept of regular vines has proven to be an important tool in pair-copula
modeling. However, there is one drawback of this approach. It is difficult to implement a
regular vine structure on a computer. Aas et al. (2009) propose to restrict the algorithms
to special cases and suggest customized functions for C- and D-vines. This method is
sufficient for small dimensions since there are only C- and D-vines in the 4-dimensional
case. In higher dimensions, however, proceeding this way is very limiting. The vine
array representation, on the other hand, can be used to implement algorithms for ar-
bitrary vine structures. Though, it is not easy to interpret and compare the different
dependence structures in this representation. To overcome these problems, we introduce
a new representation that allows for the implementation of algorithms for arbitrary vine
structures and is still very easy to interpret. To obtain a valid multivariate pair-copula,
we need to specify the position of each bivariate copula in the pair composition, as in
the regular vine representation. We use the fact that there are d(d−1)/2 edges in a vine
structure that code the positions of the bivariate copulas in a pair-copula construction.
An upper triangular matrix has d(d− 1)/2 entries too. In this section, we show how we
can represent any regular vine, and therefore any pair-copula structure, with an upper
triangular matrix by coding the edges of the vine with corresponding matrix entries in
the following way. There are two elements in the conditioned set {Ce,i, Ce,j} of an edge
e that specify the position of the corresponding entry in the matrix. Thus, we store the
conditioning set De in the selected matrix entry. One advantage of this matrix represen-
tations is that this framework is still very easy to interpret. We present the algorithms,
based on the matrix representation, in Appendix 3.C.

Before introducing the matrix representation for pair-copula constructions, we need
a Lemma that is already stated in Kurowicka and Cooke (2003, Lemma 3.5). Unfortu-
nately, the proof given there is not correct. Nevertheless, the statement is true and we
provide a detailed proof of the Lemma in Appendix 3.A.

Lemma 3.5 If the conditioned sets of edges i, j in a regular vine are equal, then i = j.
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Using this Lemma, the next theorem shows that a matrix representation is indeed
possible and we have an unambiguous mapping from the edges of any regular vine to
the entries of an upper triangular matrix.

Theorem 3.6 Every regular vine can be represented in an upper triangular d×d-matrix
M , and the vine matrix entriesmu,v, u < v, are defined for every e = {i, j} ∈ ⋃u=1,...,dEu

by
mu,v = De, (3.15)

where u = min{Ce,i, Ce,j}, and v = max{Ce,i, Ce,j}.

Proof: A regular vine consists of d(d − 1)/2 copulas, i.e., there are d(d − 1)/2 edges in
a regular vine. An upper triangular d × d-matrix also has d(d − 1)/2 entries and by
Lemma 3.5, it is not possible that any entry can be used for more than one edge. ✷

Another advantage of the matrix representation for regular vines is the fact that
the matrices are quite compact. Note that we omit the braces of the sets in the matrix
representation. The regular vine presented in Figure 3.2, for example, can be represented
by the following matrix.

1 2 3 4 5
1 ∅ 2 2,3 2,3,4
2 ∅ 3 ∅
3 ∅ 2
4 2,3

Recall that the edges in the first tree of the vine in Figure 3.2 are e1,2 = {1, 2}, e2,3 =
{2, 3}, e2,5 = {2, 5}, and e3,4 = {3, 4}. These edges are represented by the matrix
entries m1,2 = m2,3 = m2,5 = m3,4 = ∅, respectively. The second tree in the vine
consists of the edges e1,3|2, e2,4|3, and e3,5|2. Therefore we set the matrix entries m1,3 = 2,
m2,4 = 3, and m3,5 = 2. In the third tree we represent the edges e1,4|2,3 and e4,5|2,3 by
the entries m1,4 = {2, 3} and m4,5 = {2, 3}. Finally, we store the single edge e1,5|2,3,4 of
the fourth tree in the last free entry of the upper triangular matrix M . That is, we set
m1,5 = {2, 3, 4}.
The C- and D-vine copula, given in the decompositions in Equations (3.12) and (3.13),

can be represented by the two matrices

1 2 3 4
1 ∅ 2 2,3
2 ∅ 3
3 ∅

,

1 2 3 4
1 ∅ ∅ ∅
2 1 1
3 1,2

,

respectively. These examples illustrate that the matrix representation is straightforward
to implement on a computer and still very easy to interpret. We can instantly check
which bivariate margins are modeled in the first tree and, in contrast to the other repre-
sentations, we can immediately see that, in the first example, the dependence between
the third and fifth variable is modeled conditional on the second variable.
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In addition, we present an Excel tool which is based on the matrix representation for
specifying regular vines. We do not presume any knowledge on graph theory, since we
automatically check for the validity of the pair-copula structure. Figure 3.3 illustrates
how to apply the Excel tool for easily creating a vine matrix. In the following example,
we build the vine matrix M corresponding to the regular vine structure in Figure 3.2.
We start with an empty upper triangular matrix. It is advantageous to specify the most
important bivariate margins at a low level in the structure, since the dependence of
bivariate margins in the first tree is modeled directly. In this way, we can choose from
the broad variety of all bivariate copulas for this margins. Suppose that in this example,
the edge {1, 2} represents our most important bivariate dependence. Thus, we specify
m1,2 in (a) as the first entry of the vine matrix. Next, we select the entry m2,3 in (b) that
corresponds to the edge {2, 3}. Now, we cannot select the entry m1,3 corresponding to
the edge {1, 3} in the first tree anymore. Remember that the selection of this edge leads
to a circle in the first tree of the vine. We continue in (c) and (d) and select the vine
matrix entries m2,5 and m3,4, respectively. Up to now, the selected matrix corresponds
to the first tree T1 in Figure 3.2. By selecting m1,3 in (e), we specify the first edge in the
second tree and the yellow fields give the possible entries of the vine matrix, so that the
proximity conditions are satisfied in the current tree. We continue with the entry m3,5

in (f). Now, the entry m2,4 is the only possible choice for the last edge in the second
tree. We can choose the edges for the third tree from three possibilities and we select
m1,4 and m4,5. Finally, there is only one possible edge left in the fourth tree, so that we
complete the selection procedure by choosing m1,5 with conditioning set {2, 3, 4}.

3.5 Conclusion

Pair-copula constructions offer the possibility to reach a broad variety of different de-
pendence structures in high dimensions. The pair-copula consists of d(d−1)/2 bivariate
copulas and we can specify each of these copulas separately. This procedure allows
for a direct modeling of d − 1 of the 2-dimensional margins. In contrast to hierar-
chical Archimedean copulas, it is even possible to use different parametric families for
each bivariate copula, and there are no restrictions on the parameters of these copulas
either. Therefore, we can build high-dimensional dependence models with various differ-
ent bivariate tail dependence coefficients, which is crucial in many financial applications.
Simulation from pair-copulas is straightforward and the sequential structure allows for
stepwise estimation algorithms, which is particularly important for high-dimensional ap-
plications. As we have seen, there is a huge number of possible ways to assemble the
d(d − 1)/2 bivariate copulas in order to build a valid d-dimensional pair-copula. Regu-
lar vines have proven to be an important tool for the visualization of these structures.
Especially the first tree of the vine can be interpreted easily. Comparing the different
representations in Section 3.2, 3.3 and 3.4, the graphical concept of regular vines is
still superior from a didactic point of view. Therefore, we use this representation in the
following chapters for explanatory purposes. However, implementing algorithms for pair-

35



Chapter 3 Pair-Copula Construction

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.3: Selection process of a regular vine structure in the matrix representation
with assistance of the Excel tool. Yellow fields can be chosen for the next
vine matrix entry, light green entries are already selected in the current tree,
and dark green fields are already selected in the previous trees. Red entries
cannot be selected in the current tree, since this would lead to non-valid
structures.
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3.5 Conclusion

copula constructions requires different methods. Regular vine arrays are appropriate for
simulation and estimation algorithms. They allow for very elegant algorithms and they
are most parsimonious representations. On the other hand, they are harder to interpret
than the competing approaches. The matrix representation, presented in Section 3.4, is
also well-suited for the development of algorithms. Moreover, it is easy to interpret and,
in addition, it can be used to develop tools that help the user to create a valid regular
vine structure. Comparing all different representations, we base all algorithms in this
work on the matrix representation.
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3.A Proofs

In this section, we prove Lemma 3.5. To do so, we need the next remark, which is a
direct consequence of the definitions.

Remark 3.7 Let V be a regular vine and u ∈ {1, . . . , d− 1}. Then
(i)

⋃
e∈Eu

Ae = {1, . . . , d},
(ii)

⋃
e∈Ueu (k)

Ae = Aeu.

This lemma is central for the proof.

Lemma 3.8 Let V be a regular vine. Let i = {i1, i2}, j = {j1, j2} ∈ Eu be connected
by an edge e in Eu+1 and w.l.o.g. suppose that i1 = j1. Then

Ai ∪Aj = Ai ∪ Cj,j2 = Aj ∪ Ci,i2

holds.

Proof:

Ai ∪Aj = Ai ∪Aj1 ∪Aj2 = (Ai ∪ Aj1) ∪ (Aj2\Aj1) = Ai ∪ (Aj2\Aj1) = Ai ∪ Cj,j2

Switching i and j completes the proof. ✷

Additionally, we need a more technical Lemma.

Lemma 3.9 Let u1, u2 > 0, i = {i1, i2} ∈ Eu1+u2, and j = {j1, j2} ∈ Eu1. If j ∈ Ui(u2),
then the conditioned sets of i and j are different.

Proof: We show that the conditioned sets of i and j cannot be equal if j is an element
of Ui(u2). To do so, we first split the set Ui(u2) into two subsets such that each subset
“contains” exactly one of the conditioned sets of i. Since j “contains” both of its
conditioned sets and j has to be an element of one of the subsets, the conditioned sets
of i and j cannot be equal. More formally: we split

Ui(u2) = Ui1(u2 − 1) ∪ Ui2(u2 − 1)

in two subsets. If j is an element of Ui(u2), then j is an element of Ui1(u2 − 1) or
Ui2(u2 − 1). With Remark 3.7(ii), we know that Aj ⊂ Ai1 or Aj ⊂ Ai2 . Now it immedi-
ately follows that j cannot have the same conditioned sets as i, because the conditioned
sets {Cj,j1, Cj,j2} ⊂ Aj and by the definition of the conditioned sets, the sets Ai1 and Ai2

contain exactly one of the conditioned sets {Ci,i1, Ci,i2}. Thus, {Cj,j1, Cj,j2} ⊂ Aj ⊂ Ai1

or {Cj,j1, Cj,j2} ⊂ Aj ⊂ Ai2 proves that, under the given conditions, i and j cannot have
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the same conditioned sets. ✷

Now, we are able to state an alternative proof of Kurowicka and Cooke (2003, Lemma
3.5).

Lemma 3.10 If the conditioned sets of edges i, j in a regular vine are equal, then i = j.

Proof: We split the proof in two cases. First we consider the case where both i and j
are elements of Eu, that is, i and j are edges in the same tree. We will prove this case
by contradiction. We know that ∪e∈Eu

Ae = {1, . . . , d}. The idea behind this proof is to
show that when the two edges i and j have the same conditioned sets, the number of all
elements in the set ∪e∈Eu

Ae has to be smaller than d  . We show this contradiction by
iteratively adding all elements of Eu to a working set. In the second part of the proof,
we consider the case where i and j are edges in different trees of the vine.

First part: Suppose that i, j ∈ Eu have the same conditioned sets and i 6= j. We start
by counting the elements of Eu in order to know how many elements we have to add
to the primarily empty working set, which we denote by M . With Bedford and Cooke
(2002, Definition 4.1) we know that

#Eu = d− u. (3.16)

The first element that we add to our still empty working set M is e(1) := i, such that
M = {e(1)}. With Bedford and Cooke (2002, Lemma 4.2) we get

#Ae(1) = u+ 1. (3.17)

Since Tu+1 is a connected tree, there is at least one element of Eu\M which is connected
to e(1) by an edge in Eu+1. We denote one of these elements by e(2) and add it to
M . Since e(1) = {i(1), j(1)} and e(2) = {i(2), j(2)} are connected, we use the proximity
condition and set w.l.o.g. i(1) = i(2). With Lemma 3.8 we get

#(Ae(1) ∪ Ae(2)) = #(Ae(1) ∪ Ce(2),j(2)) ≤ u+ 2. (3.18)

In the special case, when we add j to the working set M , that is, e(2) = j and M =
{i, j} = {e(1), e(2)}, we get the following, stronger inequality

#(Ae(1) ∪ Ae(2)) = #(Ae(1) ∪ Ce(2),j(2)) < u+ 2, (3.19)

since Ce(2),j(2) ⊂ {Cj,j1, Cj,j2} ⊂ Ai = Ae(1). This is the case because i and j have the
same conditioned sets.

Now, we repeat this procedure and iteratively add all elements of Eu to the working
set M . Finally, we get M = Eu. This is possible since Tu+1 is a connected tree and there
is always an element of Eu\M which is connected by an edge in Eu+1 to an element in
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M . Note that we started with #Ae(1) = u+1. In d−u− 1 steps we have added at most
one element to the set ∪e∈MAe. In one step we had to add j, which is different from i
but has the same conditioned set, to the set M . Therefore, we did not add anything to
∪e∈MAe. This leads to

#(∪e∈Eu
Ae) < u+ 1 + d− u− 1 = d (3.20)

in contradiction to #(∪e∈Eu
Ae) = #{1, . . . , d} = d.  

Second part: In the second case, we say w.l.o.g. that i is an edge in a higher tree of the
vine than j, that is, j ∈ Eu1 and i ∈ Eu1+u2. We also prove this case by contradiction.
Again we know that ∪e∈Eu1

Ae = {1, . . . , d}. We show that when the two edges i, j have
the same conditioned sets, the number of all elements in the set ∪e∈Eu1

Ae has to be
smaller than d  . We show this contradiction by iteratively adding all elements of Eu

to a working set. In contrast to the first case, we do not start with only one element in
the working set, but with elements that can be easily deduced from i.

Suppose that j ∈ Eu1 and i ∈ Eu1+u2 have the same conditioned sets and u1, u2 > 0.
Since the edges i, j are not in the same tree anymore, we start with the working set
M := Ui(u2). With Lemma 3.9, we can guarantee that j * M . This enables us to use
the set Eu1 , in spite of the fact that the edges i, j are in different trees. By definition
M ⊂ Eu1 and with Bedford and Cooke (2002, Lemma 4.1) #M = u2 + 1. Furthermore
we know that #Eu1 = d − u1. This leads to #(Eu1\M) = d − u1 − u2 − 1 which is
exactly the number of elements that we still have to add to M . Now, we use Remark
3.7(ii) and get

#
⋃

e∈M

Ae = #Ai = u1 + u2 + 1. (3.21)

Since by Lemma 3.9 j * M , we have to add j in one of the following d − u1 − u2 − 1
steps to the working set. With the same argumentation as in the first case, we are now
able to show that

#(∪e∈Eu1
Ae) < u1 + u2 + 1 + d− u1 − u2 − 1 = d (3.22)

in contradiction to #(∪e∈Eu1
Ae) = #{1, . . . , d} = d.  

✷

3.B Conditional Distributions

In Section 3.1, we discuss an approach to model high-dimensional dependence structures
by a cascade of bivariate copulas. This procedure uses conditional distribution functions.
In estimation and simulation routines, we need to evaluate these conditional distributions
for every observation. Therefore, it is important that we can compute these functions
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in an efficient way. Joe (1996) shows that this can be done by

F1|2,...,d(x1|x2, . . . , xd) =
∂C1,2|3,...,d(F1|3,...,d(x1|x3, . . . , xd), F2|3,...,d(x2|x3, . . . , xd))

∂F2|3,...,d(x2|x3, . . . , xd)
.

(3.23)
Now, we have to apply this procedure sequentially to the lower-dimensional conditional
distribution functions in Equation (3.23) until we have only unconditional univariate
distribution functions left. Note that we might need to adjust the indices in order to
use the appropriate bivariate copulas of the pair-copula construction. Aas et al. (2009)
denote the partial derivative of the bivariate copula function ∂C(u, v)/∂v as h-function.

3.C Algorithms

In this section, we provide algorithms, written in pseudocode, for the simulation and
estimation of pair-copula constructions. The algorithms are based on the matrix rep-
resentation introduced in Section 3.4. In order to apply the algorithms to any R-vine
structure, we make use of auxiliary functions that we define in Algorithms 5, 6, and 7. If
we limit ourselves to C- and D-vine structures only, it is also possible to give customized
simulation and estimation algorithms without these auxiliary functions. These algo-
rithms, presented in Aas et al. (2009), are special cases of our algorithms. In addition
to the flexibility, the auxiliary functions allow for very short and simple estimation and
simulation routines.

The simulation procedure, presented in Algorithm 2, works sequentially. We start with
the first variable and proceed step by step in the pair-copula structure. The auxiliary
function in Algorithm 5 chooses the next variable and we simulate this variable, given
the first. This procedure is based on Appendix 3.B and the h-function (h-Func(·)) as
well as the inverse of the h-function (h-Inverse(·)) are as in Aas et al. (2009). This
sequential simulation procedure continues until all variables are simulated. Algorithm 3
evaluates the log-likelihood function for pair-copula constructions, and with Algorithm
4, we provide a routine for the stepwise maximum likelihood approach. This is particu-
larly important for higher dimensions and in finding starting values for the full maximum
likelihood approach. The auxiliary functions are used in the simulation or estimation
procedures. The function in Algorithm 7 is a straightforward way to recursively eval-
uate the conditional distribution used in the pair-copula construction. In Algorithm 5,
we define a function that selects the next variable given a set A of already simulated
variables. Algorithm 6 makes sure that we follow the correct ordering when we use the
already simulated variables.

Next, we fix the notation for the following algorithms. By A and B, we denote working
sets of indices. As usual, #A denotes the number of indices in the set, and, as intro-
duced in Section 3.4, the matrix M stores the structure of the pair-copula construction.
The bivariate copula Ci,j corresponds to the matrix entry mi,j and by ci,j, we denote
the copula density. Since M is an upper triangular matrix and in order to keep the
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pseudocode simple, we use mi,j instead of mi∧j,i∨j, where i∧j denotes the minimum and
i ∨ j denotes the maximum of i and j.

Algorithm 2 Simulation algorithm for a pair-copula construction (R-vine structure).

Input: ω1, . . . , ωd ∼ U([0, 1]), i.i.d., vine matrix M
Output: realization of a random variable u1, . . . , ud with a given pair-copula distribu-

tion and vine matrix M
1: u1 ← ω1

2: A← {1}
3: for i← 2, . . . d do
4: j ← selectNextVariable(A)
5: uj ← ωj

6: B ← A
7: for h← 1, . . . i− 1 do
8: k ← selectConditionedIndex(j, B)
9: B ← B\{k}
10: uj ← h-Inverse(uj,calculateF(uk, B))
11: end for
12: A← A ∪ {j}
13: end for
14: return u1, . . . , ud
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Algorithm 3 Evaluation of the likelihood function of a pair-copula construction (full
maximum likelihood).

Input: observations (um,1, . . . , um,d)m=1,...,n, vine matrix M
Output: value of the likelihood function ll for one observation
1: function calculateFullLikelihood

2: ll ← 0
3: for i← 1, . . . d− 1 do
4: for j ← i+ 1, . . . d do

5: ll ← ll +
∑

m=1,...,n log
(
cij
(
calculateF(um,i, mi,j), . . .

calculateF(um,j, mi,j)
))

6: end for
7: end for
8: return ll
9: end function

Algorithm 4 Sequential estimation of the parameters in a pair-copula construction

Input: observations (um,1, . . . , um,d)m=1,...,n, vine matrix M
Output: upper triangular matrix C with stepwise maximum likelihood parameter es-

timates
1: function calculateStepwiseLikelihood

2: for i← 1, . . . d− 1 do
3: for j ← 1, . . . d− 1 do
4: for k ← j + 1, . . . d do
5: if i = 1 & mj,k = ∅ then
6: (C)j,k ← argmax

∑
m=1,...,n log

(
cjk(um,j, um,k)

)

7: else if #mj,k = i− 1 then

8: (C)j,k ← argmax
∑

k=1,...,n

log
(
cj,k
(
calculateF(um,j, mj,k), . . .

calculateF(um,k, mj,k)
))

9: end if
10: end for
11: end for
12: end for
13: return C
14: end function

43



Chapter 3 Pair-Copula Construction

Algorithm 5 Auxiliary function for the simulation routine. This algorithm selects the
index of the next variable in the simulation procedure.

Input: nonempty set A of already simulated indices, vine matrix M
Output: index j of the next variable in the simulation routine
1: function selectNextVariable(A)
2: for i ∈ A do
3: for j ∈ {1, . . . , d}\A do
4: if #A = 1 & mi,j = ∅ then
5: return j
6: else if mi,j = A\{i} then
7: return j
8: end if
9: end for
10: end for
11: end function

Algorithm 6 Auxiliary function for simulation and estimation algorithms. This algo-
rithms selects an index l in a given set B, such that (k, l|B\{l}) is the constraint set of
a node in a regular vine.

Input: index k, set of indices B such that k /∈ B, vine matrix M
Output: index l such that (k, l|B\{l}) is the constraint set of a node
1: function selectConditionedIndex(k,B)
2: for l ∈ B do
3: if mj,l = B\{l} then
4: return l
5: end if
6: end for
7: end function

Algorithm 7 Function to evaluate a conditional distribution function in a pair-copula
construction setup.

Input: variable uk, set of conditioning indices B and conditioning variables {uj|j ∈ B},
vine matrix M

Output: value of the conditional distribution function Fk|B(uk|{uj|j ∈ B})
1: function calculateF(uk, B)
2: if B = ∅ then
3: return uk

4: else
5: j ← selectConditionedIndex(k, B)
6: return h-Func(calculateF(uk, B\{j}),calculateF(uj, B\{j}), , θk,j)
7: end if
8: end function
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Chapter 4

Model Selection for Pair-Copula
Constructions

In the previous chapter, we have discussed the theoretical foundation of the pair-copula
construction. This approach turned out to be a highly flexible framework for dependence
modeling in arbitrary dimensions. In this chapter, we want to apply this promising
method in a real world application. Therefore, we need to discuss in detail how to find
an adequate pair-copula model for a given set of data. This is a challenging task, not
because there are too few, but because there are too many competing models within
the pair-copula framework. The number of parameters for pair-copula models increases
quadratically with the dimension. Thus, parameter reduction techniques are important
in this approach to keep the dependence model parsimonious and to prevent overfitting.
In order to reduce the number of parameters, we introduce a new heuristic, which is
based on goodness-of-fit tests. The heuristic selects and replaces specific parametric
building blocks by the parameter-free independence copula.

In the first section of this chapter, we demonstrate how to choose an adequate vine
structure, select appropriate bivariate copulas, and estimate the parameters of this se-
lection. In Section 4.2, we introduce a new method to reduce the number of parameters
in the model, and in Section 4.3, we apply our methods to multivariate financial return
data.

4.1 Model Selection

All model selection techniques for pair-copulas that we discuss here base on pseudo-
observations. Therefore, we are able to specify the dependence structure without any
knowledge of the univariate margins. Thus, in a first step, we transform the data to the
pseudo-observations. After that, fitting a pair-copula model to given data consists of
three different tasks. Namely, we need to

(i) specify the vine structure for the model,

(ii) select an appropriate family for each bivariate copula in the structure,

(iii) estimate all parameters.
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Since we can choose from many different bivariate parametric copulas, and since the
vine structure allows for many different ways to assemble these building blocks, pair-
copula modeling offers the possibility to model a broad variety of different dependence
structures. In this section, we present different heuristics for finding an appropriate
specification of the pair-copula construction. But note that none of the available model
selection techniques can guarantee an optimal global fit. Generally, the model selection
depends on the application, and therefore, customized techniques might be favorable in
specific situations.

In the first part of this section, we discuss a sequential heuristic that is popular in the
recent literature and is also used in the empirical example in Section 4.3. The next part
of this section gives a short overview on other possible procedures for finding appropriate
pair-copula models.

4.1.1 Sequential Model Selection

The sequential model selection approach for pair-copula constructions is suggested in
Aas et al. (2009) for C- and D-vines. This procedure is generalized to all regular vine
structures in Dißmann et al. (2011). Nikoloulopoulos et al. (2012) suggest a very similar
procedure based on their experience with financial return data. The stepwise model
selection proceeds tree by tree in the vine. That is, we specify the structure of the
first tree, select an appropriate parametric family for all the bivariate copulas in this
tree and estimate the parameters for the bivariate copulas. Then, we transform the
pseudo-observations to conditional pseudo-observations by using the fitted copulas in
the first tree. In the following steps, we apply the same procedure to the conditional
pseudo-observations and iterate until we have found a complete specification of the
pair-copula construction. After specifying the complete structure, one conducts a full
maximum likelihood estimation, where we use the sequential parameter estimates as
starting values to improve the fit of the model. A detailed discussion of this procedure
is given in Dißmann et al. (2011). In the following, we discuss the different steps in the
sequential model selection procedure.

First Tree

We start with the pseudo-observations and calculate Kendall’s tau for each of the d(d−
1)/2 possible bivariate margins. That is, we measure the strength of all 2-dimensional
dependencies within our data set. We specify the first tree in the vine by using a
maximum spanning tree algorithm, where the absolute value of Kendall’s tau is the
weight of the edge. Thereby, we try to capture as much information as possible on the
dependence structure in the first level of the vine. Now we have to choose appropriate
copula families for the bivariate building blocks that correspond to the edges in the first
tree. Therefore, we estimate the parameters separately for all bivariate copula families
under consideration and calculate the Akaike information criterion (AIC), see Akaike
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(1974). Finally, we select the parametric copula family with the smallest AIC.

Transformation of the Pseudo-Observations

In the first tree, we are able to work with the pseudo-observations directly. Unfortu-
nately, this is no longer possible in the higher trees, since the bivariate copulas in the
higher layers of the vine specify conditional dependencies. This is particularly easy
to see in pair-copula representation of Section 3.1.1. To illustrate this, we recall the
3-dimensional example of a pair-copula in Equation (3.1)

C1,2,3(u1, u2, u3) =

∫

[0,u2]

C1,3|2(F1|2(u1|z2), F3|2(u3|z2))dz2.

Obviously, the conditional distribution of the variables u1 and u3 given u2 is specified
by C1,3|2(F1|2(u1|u2), F3|2(u3|u2)). Using the simplifying assumption, we know that the
bivariate copula function C1,3|2 does not change with u2. Therefore, we transform the
pseudo-observations to the conditional pseudo-observations u1|2 = F1|2(u1|u2) and u3|2 =
F3|2(u3|u2), and then, we use the well-known procedures from copula theory to estimate
C1,3|2. Remember that we utilize the estimated parametric copula C1,2 and C2,3 from
the first tree to calculate F1|2 and F3|2, respectively, and thus to compute the conditional
pseudo-observations u1|2 and u3|2.

Subsequent Trees

In the second tree, we proceed as follows. All selected edges in the first tree of the vine
turn to nodes in the second tree. Next, we check all possible edges for the proximity
condition. If this condition holds, we transform those variables which correspond to the
nodes of the edge to conditional pseudo-observations. Then we calculate Kendall’s tau
for this edge. Again, we build a maximum spanning tree from all edges that satisfy
the proximity condition, and thereby, we select the structure of the second tree in the
vine. Once more, we try to capture as much dependence in the lower trees as possible.
In the next step, we continue by selecting appropriate copula models by the AIC. This
procedure is repeated for all subsequent trees until the complete pair-copula model is
specified.

4.1.2 Alternative Model Selection Techniques

The model selection technique, presented in the previous section, is not the only possible
heuristic to specify the pair-copula construction. One of the competing approaches is
given in Kurowicka (2011). There, the model selection proceeds bottom-up. That is, one
specifies the edge in the highest tree firstly and continues sequentially until the structure
of the first tree is chosen. This model selection procedure is particulary appropriate if the
dependence structure is close to a Gaussian copula. A different approach to choose an

47



Chapter 4 Model Selection for Pair-Copula Constructions

appropriate pair-copula construction specifies the complete structure for a small subset
of variables at first. Then, it sequentially adds the remaining variables to this model, c.f.
Morales-Nápoles (2011). Schnieders (2012, Chapter 4.3) introduces such an approach
based on goodness-of-fit tests for C- or D-vines. The different model selection techniques
can be classified into

(i) top-down (Section 4.1.1 and Aas et al. (2009)),

(ii) bottom-up (Kurowicka (2011)),

(iii) side-to-side (Schnieders (2012))

procedures. Note that many variations are possible within these model selection ap-
proaches. In Section 4.1.1, for example, we use Kendall’s tau to choose a tree structure
in the top-down approach, whereas Vaz de Melo Mendes et al. (2010) implicitly use
the tail dependence coefficient for defining the structure. Note that the model selection
procedure simplifies considerably if we allow for C- and D-vine structures only, as in Aas
et al. (2009), Nikoloulopoulos et al. (2012), and Schnieders (2012). If there exists one
extraordinary variable such that most of the dependence is captured by the bivariate
margins including this pilot variable, it is reasonable to restrict the regular vines to
the C-vine case. Furthermore, a Bayesian approach for model selection, as suggested in
Czado and Min (2011), is also possible.

4.2 Parameter Reduction Approach

In this section, we introduce a new approach to check if all parametric building blocks
are necessary to characterize the complete dependence model. To the best knowledge of
the author, this is the first approach that uses the observations directly and checks all
building blocks separately for their relevance.

The pair-copula construction is a d-dimensional parametric model that is built from
d(d − 1)/2 bivariate ones. Thus, the number of building blocks increases quadratically
with the dimension. Using, for instance, only one-parametric bivariate copula families as
building blocks, like the Gauss or Frank copula, we already have d(d− 1)/2 parameters
that specify the dependence model. If we select bivariate copula families with more than
one parameter, like the t or BB1 copula, this number increases even more. Remember
that pair-copula models only account for the dependence structure and do not include
any information on the margins. Thus, the number of parameters for the full model can
be considerably larger. Working with such high-parametric models might be appropriate
in situations where we have a sufficient number of observations. However, in many cases,
we need to model a high-dimensional dependence structure while we only have a limited
number of observations. In financial applications, for example, we can only use a short
time horizon to calibrate the model, since the dependence structure might change over
time, and therefore, the number of relevant observations is low. Thus, it is important to
have a parsimonious dependence model to avoid overfitting. One advantage of the pair-
copula construction is that we can choose the number of parameters that we want to use
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T1 1 2 3 4

T2 12 23 34

T3 13|2 24|3

M M M

C1,3|2 C2,4|3

C1,4|2,3

(a)

1 2 3 4 T1

12 23 34 T2

13|2 24|3 T3

Π Π Π

Π Π

C1,4|2,3

(b)

Figure 4.1: Two D-vine structures in four dimensions, where all bivariate copulas in the
first tree are the Fréchet upper bound M (a), and all copulas in the first and
second tree are bivariate independence copulas Π (b).

for an application, since it is possible to set specific building blocks to the independence
copula Π, and therefore, reduce the number of parameters. For instance, if we set all
bivariate copulas from the second to the last tree to the independence copula, we get
a Markov tree model, which is build from d − 1 bivariate parametric copulas, see, e.g.,
Bedford and Cooke (2002). But note that Markov tree models are often too restrictive
and have too few parameters. The fully specified pair-copula construction, on the other
hand, might include unnecessary parametric copula families. Thus, we need another
step in the model selection procedure to decide whether we need to specify a certain
parametric bivariate copula in the pair-copula construction, or whether we can simply
replace it with the independence copula. Furthermore, we need to set the structure
of the vine in a way such that many bivariate building blocks can be replaced by the
independence copula. In particular, we want to replace the bivariate copulas in the
higher trees of the pair-copula construction by the independence copula. Therefore, we
try to capture as much information on the dependence structure as possible in the lower
trees of the vine. This consideration is one of the reasons why we use maximum spanning
trees in the model selection procedure to specify the structure of the trees in the vine,
as discussed in Section 4.1.1.

In the next step, we discuss how to decide whether we can set specific bivariate copulas
to the independence copula. One way to avoid redundant parametric copula families in
the pair-copula construction is already suggested in Dißmann et al. (2011). They conduct
a test of independence for all conditional pseudo-observations that are connected by an
edge in the vine structure. That is, before selecting a parametric family for the bivariate
building blocks, they check if they can reject the null hypothesis of independence for this
conditional dependence structure. Only if they can reject this hypothesis, they continue
and select a parametric copula family for this bivariate dependence structure. This is the
first heuristic to reduce the number of parameters in the vine. However, this parameter
reduction strategy does not account for an important characteristic of the pair-copula
construction. That is, the influence of a bivariate copula in the pair-copula construction
depends on the pair-copulas in the lower trees. This is illustrated in the next example.
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Example 4.1 In this example, we use the 4-dimensional D-vine structure of Figure
4.1 to illustrate the influence of the bivariate building blocks in the higher trees of the
pair-copula construction.

• In Figure 4.1a, the bivariate copulas in the first tree are all set to the Fréchet upper
bound. That is, we have a deterministic relation between the first and the second,
the second and the third, and between the third and the fourth variable. Therefore,
the resulting 4-dimensional pair-copula construction is the 4-dimensional Fréchet
upper bound. This is true whatever bivariate copula we use in the second and the
third tree. Thus, the copulas C1,3|2, C2,4|3, and C1,4|2,3 have no influence at all.

• In Figure 4.1b, all bivariate copulas in the first and second tree are set to the
independence copula. Therefore, the influence of the copula C1,4|2,3 is not affected
by the building blocks in the lower trees. That is, the unconditional dependence
between the first and the fourth variable is completely modeled by the copula C1,4|2,3.

The pair-copula constructions in Figure 4.1 illustrate two extreme cases where the cop-
ulas in the higher trees have no influence, or the influence is completely passed through
to the unconditional variables. Choosing less extreme copulas in the lower trees will,
of course, lead to less extreme results. However, independence tests on the conditional
pseudo-observations cannot decide whether the bivariate copula in the pair-copula con-
struction have a relevant influence on the unconditional variables. This is further illus-
trated in the next example.

Example 4.2 We analyze a 4-dimensional pair-copula with a D-vine structure, as in
Figure 4.1. The bivariate building blocks are all set to Gauss copulas. The parameters
of the copulas in the first tree are ρ1,2 = 0.9, ρ2,3 = −0.7326, and ρ3,4 = −0.9. In the
second tree, we set the parameters of C1,3|2 and C2,4|3 to ρ1,3|2 = 0.9 and ρ2,4|3 = −0.9,
respectively. Finally, we use different values for the parameter of the copula C1,4|2,3 to
illustrate the influence of this copula on the 4-dimensional dependence structure. We use
ρ1,4|2,3 ∈ {−0.5, 0, 0.5} to model the conditional dependence of the first and the fourth
variable, given the second and the third.

Using only bivariate Gauss copulas in the pair-copula construction results in a 4-
dimensional Gauss copula. This copula is completely specified by the covariance matrix
Σ. Now, we can illustrate the effect of the parameter value ρ1,4|2,3 on the 4-dimensional
dependence structure by analyzing the covariance matrix.

Σ =




1 0.9 −0.3923 −0.0180/0/0.0180
0.9 1 −0.7326 0.3923

−0.3923 −0.7326 1 −0.9
−0.0180/0/0.0180 0.3923 −0.9 1




We see that large variations in the parameter ρ1,4|2,3 have only a very limited influence
on the complete dependence structure. Furthermore, the influence of C1,4|2,3 is limited to
the unconditional dependence between the first and the fourth parameter.
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T1 1 2 3 4

T2 12 23 34

T3 13|2 24|3

C1,2 C2,3 C3,4

Π C2,4|3

C1,4|2,3

(a)

1 2 3 4 T1

12 23 34 T2

13|2 24|3 T3

C1,2 C2,3 C3,4

C1,3|2 C2,4|3

C1,4|2,3

(b)

Figure 4.2: In these 4-dimensional vine structures, we focus only on the dependence
structure of the bivariate margin between the first and the third variable.
This margin is completely specified by C1,2 and C2,3 in (a) and by C1,2, C2,3,
and C1,3|2 in (b).

In general, every bivariate copula in the current tree of the sequential model selec-
tion procedure affects only one bivariate margin. Therefore, we propose to conduct an
independence test on the untransformed variables within the sequential model selec-
tion procedure of Section 4.1.1. These bivariate independence tests are based on the
Cramér-von Mises test statistic, as discussed in Section 2.5. Thus, our parameter reduc-
tion technique is similar to the one in Dißmann et al. (2011). However, we work with
the untransformed variables.

Here, we illustrate this procedure in four dimensions. Suppose that we have already
specified the complete vine structure of a 4-dimensional pair-copula construction as
in Figure 4.1. In order to avoid redundant building blocks in the first tree, we test
the bivariate margins {1, 2}, {2, 3} and {3, 4} for independence. In the next step, we
choose a parametric family for the copulas C1,2, C2,3, and C3,4 whenever we reject the
null hypothesis of independence for these margins. Otherwise, we set these bivariate
copulas to the independence copula. We continue in the second tree by analyzing if the
bivariate dependence structure {1, 3} is already adequately modeled by the copulas C1,2

and C2,3. Dißmann et al. (2011) suggest to transform the pseudo-observations and test
if u1|2 = F (u1|u2) and u3|2 = F (u3|u2) are independent. Unfortunately, this procedure
neglects the fact that, as seen in Example 4.2, the influence of the bivariate copula
in a vine structure strongly depends on the position in the vine and on the bivariate
copulas in the lower trees. Therefore, we propose to test if the dependence between the
untransformed pseudo-observations u1 and u3 is already adequately modeled. This is
visualized in Figure 4.2. We use the goodness-of-fit test in Appendix 2.A and compare
the distance between the empirical bivariate copula of u1 and u3 with the corresponding
bivariate marginal copula in the pair-copula model. Note that this bivariate marginal
copula between the first and the third variable is completely specified by C1,2 and C2,3,
which are fitted in the first tree, and C1,3|2, which is set to the independence copula for
this test, see Figure 4.2a. Only if we can reject this test, we precede as in Figure 4.2b
and select the most appropriate bivariate copula for C1,3|2.
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We proceed with the next bivariate building block in the second tree. In order to
check if we can set C2,4|3 to the independence copula, we test if the dependence struc-
ture between the second and fourth variable is already appropriately modeled by C2,3

and C3,4. Finally, we conduct the goodness-of-fit test on the pseudo-observations u1

and u4 to see if this bivariate margin is already implicitly well-fitted by the copulas
C1,2, C2,3, C3,4, C1,3|2, C2,4|3 of the lower trees. If not, we need to select a parametric cop-
ula family for C1,4|2,3. Note that we choose the goodness-of-fit test in Appendix 2.A,
since it is not practical to evaluate all marginal copulas or their densities directly in
the pair-copula construction. However, it is fast to simulate from a pair-copula, and
therefore, it is computationally feasible to conduct two-level goodness-of-fit tests.

Alternative procedures for parameter reduction are the truncation and simplifica-
tion approach, discussed in Brechmann et al. (2012) and Heinen and Valdesogo (2009).
There, one sequentially specifies the vine structure up to a certain level and replaces all
copulas in higher trees by independence copulas (truncation) or by bivariate Gauss cop-
ulas (simplification). These procedures are particularly appropriate in situations where
rough parameter reduction procedures are needed. Furthermore, these procedures can
be used for very high-dimensional problems, since they stay computationally feasible.
On the contrary, our parameter reduction approach, based on the two-level parametric
goodness-of-fit test, is an in-depth approach that checks every bivariate copula in the
pair-copula construction individually. Note that this accuracy comes with the price of
a higher computational effort. However, for less then ten dimensions, our approach is
still feasible on a personal computer, and in a higher-dimensional setting, we can apply
parallel computing techniques. Therefore, our approach is a valid alternative to the
rough truncation or simplification procedures and helps to prevent the specification of
redundant building blocks in the pair-copula construction.

4.3 Empirical Example

In this empirical study, we evaluate the performance of different dependence models
for a data set of seven major German stocks in a copula-GARCH setting. That is, we
specify the marginal GARCH models for each univariate time series separately, and in
the next step, we fit the competing copula models to the residuals. This procedure is
well-established in recent articles on high-dimensional dependence modeling for financial
data. See, e.g., Aas et al. (2009) and Kurowicka and Joe (2011). In order to evaluate
the different high-dimensional copula models, we use rolling window estimators to gen-
erate out-of-sample value at risk (VaR) forecasts from the different models for an equally
weighted portfolio. These out-of-sample forecasts vary only in the choice of the underly-
ing dependence model. Finally, we compare the VaR forecasts with the observed values
of the equally weighted portfolio. In contrast to in-sample evaluation techniques, this
procedure allows us to check these highly complex models for overfitting. Furthermore,
the results from the out-of-sample comparison are very important and easy to interpret
in a risk management framework. We use the fGarch package by Wuertz and Chalabi
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(2009) within the statistical software package R 2.12.0 (R Development Core Team,
2010) to estimate and evaluate the univariate GARCH model of Bollerslev (1986). In
particular, we use the GARCH(1,1) model

yt = µ+ εt, (4.1)

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1, (4.2)

where εt is skewed t-distributed with E[εt] = 0 and V ar[εt] = σ2
t . In contrast to the

original model, we allow for non-normally distributed error terms, as already suggested
in Bollerslev (1987). The estimation and simulation algorithms for the different copula
models have been implemented in MATLAB R2010a.

Our data set consists of daily log returns of Allianz, Deutsche Bank, E.ON, Munich
RE, RWE, Siemens, and ThyssenKrupp from January 2003 to December 2012. The stock
price time series are available at http://finance.yahoo.com. In a preliminary analysis we
fit different GARCH models to each of the univariate log return time series on the full
time range. Overall, the GARCH(1,1) model with a skewed t- error distribution shows
a satisfactory fit for all univariate time series and varying time periods. The Ljung-Box
tests in Table 4.7 indicate that we cannot reject the null hypothesis that there is no
autocorrelation left in the residuals and squared residuals for nearly all time series and
different lag sizes. A visual analysis of the QQ-plots shows that the skewed t-distribution
provides a good fit for the distribution of the residuals. Table 4.6 gives an overview on
the estimated parameters on the full time range. Figure 4.3 shows the log return time
series of an equally weighted portfolio. In our data set we have 2441 daily log returns,
and we use rolling window estimators with a lag size of 250 observations. Thus, we
generate VaR0.99 forecasts of an equally weighted portfolio on t = 251, . . . , 2441. In this
study we use the Gauss copula (Gauss), t copula (t), pair-copula construction (PCC),
and the parameter reduced pair-copula construction (PRPCC) as competing dependence
models. We denote the out-of-sample forecasts by (VaRGauss

0.99,t ), (VaR
t
0.99,t), (VaR

PCC
0.99,t),

and (VaRPRPCC
0.99,t ) and generate these forecasts on t = [251, . . . , 2441] with the following

procedure.

1. Univariate rolling window estimation:

a) Estimate the GARCH(1,1)-Skewed-t parameters on [t − 250, t − 1] for all 7
time series separately.

b) Transform the standardized residuals with the empirical distribution function
to un

i,j, i = t− 250, . . . , t− 1, j = 1, . . . , 7, as in Equation (2.17).

2. Fit the dependence models to the pseudo-observations un
i,j.

3. Simulate ufc
i,j, i = 1, . . . , 10 000, j = 1, . . . , 7 from the estimated copulas.

4. Approximation of the univariate log return distributions for time t and j = 1, . . . , 7:

a) For i = 1, . . . , 10 000, transform the ufc
i,j with the quantile function of the

skewed t-distribution with the estimated skewness and shape parameter to
xfc
i,j. (mean = 0, variance = 1)
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Figure 4.3: This plot shows the log returns of an equally weighted portfolio of seven
major German stocks. The red line gives the one day VaR0.99 forecasts from
the parameter reduced PCC model.

b) Forecast the variance σfc
j with Equation (4.2) and the estimated parameters.

c) For i = 1, . . . , 10 000, forecast yfci,j = µ̂j + σfc
j x

fc
i,j .

5. We get 10 000 dependent forecasts for each time series. Generate 10 000 possible
log returns for the equally weighted portfolio by

ypfci = log

(
7∑

j=1

exp
(
yfci,j
)

7

)
.

6. Use a nonparametric estimator to generate a VaR0.99,t forecast for the portfolio on
day t.

In step 2 of the rolling window procedure, we fit the four different dependence models
to the residuals. Due to the computational complexity, we cannot conduct the parameter
reduction procedure in the PRPCC model in every iteration. Therefore, we reduce
the parameters only every 50 steps and reuse this parameter reduced model for the
subsequent forecasts. In order to evaluate the different dependence models, we compare
the exceedances of the portfolio log return time series with the VaR forecasts. If the
selected model provides a good fit for the data, we expect that only one percent of
the log returns are below the VaR0.99 forecasts. Furthermore, we do not expect these
exceedances to appear in clusters. To check the fit of the different models, we apply the
test by Christoffersen (1998), see Appendix 4.A, that accounts for these two features.

We also evaluate the influence of the different dependence models on the portfolio VaR
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4.4 Conclusion

Time Period Gauss (21) t (22) PCC (30) PRPCC (ø21.2)

2004–2012 0.031 0.19 0.42 0.19
2004–2007 0.26 0.23 0.18 0.26
2008–2012 0.0052 0.072 0.30 0.12
2008–2009 0.040 0.19 0.36 0.092
2010–2012 0.11 0.34 0.71 0.71

Table 4.1: P-values of the conditional coverage test for the different dependence models
and different time periods. We provide the number of parameters of the
parametric copula model within brackets. P-values smaller than 5% are bold.

forecasts for different time periods, see Figure 4.3. The findings of this model evaluation
are summarized in Table 4.1. More detailed results are given in Appendix 4.B. Table 4.1
gives the p-values of conditional coverage test, see Appendix 4.A, and the first row in the
table indicates that we can reject the Gaussian dependence model on the full time range
at a 5% level. None of the other dependence models can be rejected. In the subsequent
rows of Table 4.1, we list the p-values of this test for different time periods. The poor
performance of the Gaussian copula on the whole time range is mainly due to the bad fit
of the dependence structure during the financial crisis 2008− 2009. Table 4.2 indicates
that the portfolio VaR forecasts in this period are too optimistic. This is a severe
problem since in times of crises the Gaussian dependence model is not cautious enough.
Comparing the expected and the observed exceedances under the VaR forecasts in Tables
4.3-4.5, the pair-copula construction gives slightly better forecasts than the t copula
and the parameter reduced pair-copula construction on this set of data. This slight
improvement on forecast quality comes along with the cost of additional parameters.
The t copula dependence model and the parameter reduced pair-copula construction are
comparable in the number of parameters and the quality of VaR forecasts. Both cannot
be rejected at any time period under consideration, and they clearly outperform the
Gaussian dependence model. This example illustrates that it is possible to decisively
reduce the number of parameters in the pair-copula construction from 30 to an average
of 21.2 by the method presented in Section 4.2 without severe negative effects on the
forecast quality. Still, the parameter reduced model is a pair-copula construction and
this is advantageous compared to the t copula, e.g., in economically interpreting the
dependence structure, and building time varying dependence models as in Almeida et al.
(2012).

4.4 Conclusion

The pair-copula construction framework is a flexible and tractable concept to build
parametric copula models in arbitrary dimensions. Throughout the last two chapters,
we have seen how this method transfers the flexibility of bivariate copula families to
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higher dimensions. Here, we discuss model selection techniques in detail. Model se-
lection heuristics are particularly important in this concept since there are too many
possible ways to create a valid pair-copula. One drawback of the pair-copula construc-
tion concept is that the number of bivariate parametric copulas increases quadratically
with the dimension. Furthermore, it is not obvious that we actually need all of these
parametric copulas in the model. To overcome this problem, we present a parameter
reduction technique that evaluates the impact of an additional copula in the multivari-
ate dependence structure. This heuristic helps to distinguish between necessary and
redundant copulas in the model. We apply this parameter reduction technique in an
empirical study and observe that it is possible to reduce the number of parameters for
financial return data seriously without a severe impact on the forecast quality.

4.A Conditional Coverage Test

Here, we recall a test proposed by Christoffersen (1998) to evaluate the appropriateness
of a fitted model. That is, we compare a given time series (yt)t∈T with out-of-sample
VaRp forecasts (VaRp,t)t∈T. Therefore, we define an auxiliary time series (It)t∈T for all
t ∈ T by

It = 1(yt ≥ VaRp,t).

If the model provides appropriate out-of-sample forecasts, the sequence (It) is indepen-
dent and Bernoulli(p) distributed. Christoffersen’s test consists of two different parts.
The unconditional coverage (UC) part tests the null hypothesis that the exceedance ra-
tio of the yt under the VaRp,t forecasts is 1− p. This results in the likelihood ratio test
statistic

LRUC = −2 log
(
(1− p)n0(p)n1

(1− π̂)n0π̂n1

)
, (4.3)

where n0 is the number of exceedances under the VaRp, n1 is the number of yt that are
larger than the corresponding VaRp,t forecast, and π̂ = n1

n0+n1
.

The independence (Ind) part checks if the exceedances appear in clusters. Therefore,
we test the null that (It)t∈T is independent against a first-order Markov alternative. Let
ni,j be the number of observations with value i followed by j, where i, j ∈ {0, 1}. The
test statistic compares the transition matrix under the independence assumption

ΠInd =

(
1− π2 π2

1− π2 π2

)

with the general transition matrix

ΠGen =

(
1− π0,1 π0,1

1− π1,1 π1,1

)
.
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4.B Supplementary Results for the Empirical Example

This results in the likelihood ratio test statistic

LRInd = −2 log
(

(1− π̂2)
(n0,0+n1,0)π̂

(n0,1+n1,1)
2

(1− π̂0,1)n0,0 π̂
n0,1

0,1 (1− π̂1,1)n1,0π̂
n1,1

1,1

)
, (4.4)

where π̂0,1 = n0,1/(n0,0 + n0,1), π̂1,1 = n1,1/(n1,0 + n1,1), and π̂2 = (n0,1 + n1,1)/(n0,0 +
n0,1 + n1,0 + n1,1).

Finally, combining these two parts gives the conditional coverage (CC) test statistic

LRCC = LRUC + LRInd, (4.5)

and Christoffersen (1998) shows that LRCC is asymptotically χ2(2) distributed under
the null hypothesis that the sequence (It) is independent and Bernoulli(p) distributed.

4.B Supplementary Results for the Empirical

Example
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Time Periode EE OE n0,0 n0,1 n1,0 n1,1 UC Ind CC

2004–2012 21.91 35 1 34 34 2121 0.0097 0.59 0.031
2004–2007 9.97 11 1 10 10 975 0.75 0.11 0.26
2008–2012 11.94 24 0 24 24 1145 0.0020 0.32 0.0052
2008–2009 4.8 11 0 11 11 457 0.015 0.47 0.040
2010–2012 7.14 13 0 13 13 687 0.048 0.49 0.11

Table 4.2: Results for the Gauss copula model in the empirical example in Section 4.3.
The expected exceedances (EE) and the observed exceedances (OE) under
the VaR0.99 forecasts are given in the first two columns. The definition of
n0,0, n0,2, n1,0, n1,1 is given in Appendix 4.A. The last three columns provide
p-values for the unconditional coverage (UC), independence (Ind), and con-
ditional coverage (CC) tests.

Time Periode EE OE n0,0 n0,1 n1,0 n1,1 UC Ind CC

2004–2012 21.91 30 1 29 29 2131 0.10 0.43 0.19
2004–2007 9.97 10 1 9 9 977 0.99 0.085 0.23
2008–2012 11.94 20 0 20 20 1153 0.033 0.41 0.072
2008–2009 4.8 9 0 9 9 461 0.086 0.56 0.19
2010–2012 7.14 11 0 11 11 691 0.18 0.56 0.34

Table 4.3: Results for the t copula model in the empirical example in Section 4.3.
The expected exceedances (EE) and the observed exceedances (OE) under
the VaR0.99 forecasts are given in the first two columns. The definition of
n0,0, n0,2, n1,0, n1,1 is given in Appendix 4.A. The last three columns provide
p-values for the unconditional coverage (UC), independence (Ind), and con-
ditional coverage (CC) tests.

Time Periode EE OE n0,0 n0,1 n1,0 n1,1 UC Ind CC

2004–2012 21.91 26 1 25 25 2139 0.39 0.32 0.42
2004–2007 9.97 9 1 8 8 979 0.75 0.066 0.18
2008–2012 11.94 17 0 17 17 1159 0.17 0.48 0.30
2008–2009 4.8 8 0 8 8 463 0.18 0.60 0.36
2010–2012 7.14 9 0 9 9 695 0.50 0.63 0.71

Table 4.4: Results for the pair-copula construction model in the empirical example in
Section 4.3. The expected exceedances (EE) and the observed exceedances
(OE) under the VaR0.99 forecasts are given in the first two columns. The def-
inition of n0,0, n0,2, n1,0, n1,1 is given in Appendix 4.A. The last three columns
provide p-values for the unconditional coverage (UC), independence (Ind),
and conditional coverage (CC) tests.
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Time Periode EE OE n0,0 n0,1 n1,0 n1,1 UC Ind CC

2004–2012 21.91 30 1 29 29 2131 0.10 0.43 0.19
2004–2007 9.97 11 1 10 10 975 0.75 0.11 0.26
2008–2012 11.94 19 0 19 19 1155 0.059 0.43 0.12
2008–2009 4.8 10 0 10 10 459 0.037 0.51 0.092
2010–2012 7.14 9 0 9 9 695 0.50 0.63 0.71

Table 4.5: Results for the parameter reduced pair-copula construction model in the em-
pirical example in Section 4.3. The expected exceedances (EE) and the ob-
served exceedances (OE) under the VaR0.99 forecasts are given in the first
two columns. The definition of n0,0, n0,2, n1,0, n1,1 is given in Appendix 4.A.
The last three columns provide p-values for the unconditional coverage (UC),
independence (Ind), and conditional coverage (CC) tests.

Stock µ ω α1 β1 skew shape

Allianz 7.05e− 04 3.86e− 06 7.97e− 02 0.91 −5.03e− 02 2.81
Deutsche Bank 4.49e− 04 2.72e− 06 7.68e− 02 0.92 1.49e− 02 2.68

E.ON 7.79e− 04 1.03e− 05 1.18e− 01 0.85 1.02 5.22
Munich RE 4.85e− 04 3.28e− 06 7.86e− 02 0.91 −1.55e− 03 1.93

RWE 4.71e− 04 6.11e− 06 8.37e− 02 0.89 −3.57e− 02 2.09
Siemens 6.79e− 04 2.12e− 06 5.32e− 02 0.94 1.02 6.60

ThyssenKrupp 8.96e− 04 7.15e− 06 1.11e− 01 0.88 9.69e− 01 6.07

Table 4.6: Univariate parameter estimates for the GARCH(1,1)-Skewed-t model on the
whole time range.

Stock QR(10) QR(15) QR(20) QR2(10) QR2(15) QR2(20)

Allianz 0.056 0.029 0.082 0.091 0.16 0.30
Deutsche Bank 0.13 0.16 0.11 0.66 0.73 0.63

E.ON 0.90 0.88 0.79 1 1 1
Munich RE 0.11 0.31 0.50 0.91 0.90 0.72

RWE 0.24 0.38 0.43 0.19 0.55 0.78
Siemens 0.55 0.37 0.51 0.76 0.95 0.98

ThyssenKrupp 0.98 0.98 0.83 1 1 1

Table 4.7: P-values of the Ljung-Box tests for different lag sizes for the residuals (R) and
the squared residuals (R2) of the univariate GARCH(1,1)-Skewed-t models.
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Chapter 5

Dependence Modeling for Lévy
Processes

The previous chapters contain a discussion on dependence modeling for random vari-
ables. In particular, the pair-copula construction has proven to be a flexible and appli-
cable method to deal with high-dimensional problems. In practice, however, it is rarely
sufficient to model the dependence between the dimensions for a given time t only, be-
cause many observations also show a time structure. Therefore, it is important to find
models that account for the dependence between the different dimensions and include
the dependence in time as well. Up to now, we removed the time series facet of the
data in a univariate preprocessing step. This procedure is well-known for time series
data on an equidistant time grid as in the empirical example in Section 4.3. However,
the increasing availability of high frequency and non-equidistantly spaced data demands
for more general methods. Therefore, we introduce a continuous-time approach to cope
with these current problems. In this chapter, we focus on Lévy processes that constitute
an important class of continuous-time stochastic processes. These Lévy processes are of
special importance due to several reasons. Firstly, they are used for modeling purposes
in many applications directly. Secondly, Lévy processes are building blocks in most
continuous-time models, and thirdly, models based on Lévy processes can be applied to
equidistant and non-equidistant spaced data.

In the first section of this chapter, we discuss Lévy processes in d dimensions. The sec-
ond section introduces a concept to separate the dependence structure and the margins
of the Lévy process.

5.1 Lévy Processes

Lévy processes are continuous-time stochastic processes with the main feature that their
increments are independent and identically distributed. They have been extensively
studied in Sato (1999) or Kallenberg (2002) and references therein. The application
of Lévy processes in finance is discussed in Cont and Tankov (2004). The class of
Lévy processes includes the Brownian motion, the compound Poisson process and also
processes with infinitely many jumps on any bounded interval. Especially the jumps
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of the Lévy processes make them relevant for applications in any area where normality
assumptions are violated. The well-known results on Lévy processes, which we state in
the following, make this class flexible and tractable. Lévy processes can be used in many
different applications. The arrival process of insurance claims or losses in the operational
risk context, for instance, are often supposed to be modeled adequately with a pure jump
Lévy process like the compound Poisson process. In finance, stochastic processes defined
by an Itô-integral are usually driven by a Brownian motion. Moreover, the important
class of Ornstein-Uhlenbeck processes are built upon so-called background driving Lévy
processes.

Firstly, we fix some notation which will be used throughout the following chapters.
The well-known definitions, theorems, propositions, and remarks are close to Sato (1999),
where we adjust the notation for consistency.

5.1.1 Definition and Properties

Stochastic processes are intended to describe random objects throughout time. It is
possible to think of a stochastic processes as a special random variable, where the real-
ization of this random variable is a function of time. Here, we focus on continuous-time
processes and follow Sato (1999, Definition 1.4) in defining stochastic processes.

Definition 5.1 A family {Xt : t ≥ 0} of random variables on Rd with parameter t ∈
[0,∞) defined on a common probability space (Ω,F , P ) is called a stochastic process. It is
written as (Xt)t∈R+. A stochastic process (Yt)t∈R+ is called a modification of a stochastic
process (Xt)t∈R+ , if

P (Xt = Yt) = 1 for t ∈ [0,∞).

For any fixed 0 ≤ t1 < t2 < . . . < tn,

P (X(t1) ∈ B1, . . . , X(tn) ∈ Bn)

determines a probability measure on the Borel σ-algebra B((Rd)n). The family of proba-
bility measures over all possible choices of n and t1, . . . , tn is called the system of finite-
dimensional distributions. Two stochastic processes (Xt)t∈R+ and (Yt)t∈R+ are identical
in law, written as

(Xt)t∈R+

D
= (Yt)t∈R+ ,

if the systems of their finite-dimensional distributions are identical. For any fixed value
of ω, Xt as a function of t is called a sample path.

Lévy processes are stochastic processes with independent increments. We follow Sato
(1999, Definition 1.6) and define Lévy processes in this thesis in the following way.

Definition 5.2 (Lévy Process) Let (Ω,F , P ) be a probability space. Then an Rd-
valued stochastic process (Lt)t∈R+ is called a Lévy process, if
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(i) L0 = 0 a.s.

(ii) For any choice n ∈ N and 0 ≤ t0 < t1 < · · · < tn the random variables

Lt0 , Lt1 − Lt0 , . . . , Ltn − Ltn−1

are independent (independent increments).

(iii) Lt+h − Lt
D
= Ls+h − Ls ∀h, s, t ∈ R+ (stationary increments).

(iv) The process L is continuous in probability, i.e.,

Lt − Ls
P→ 0 for t→ s ∀s ∈ R+

(stochastically continuous).

(v) There is an Ω0 ∈ F with P (Ω0) = 1 such that, for every ω ∈ Ω0, Lt(ω) is right-
continuous in t ≥ 0 and has left limits in t > 0 (càdlàg path).

It is possible to define Lévy processes without explicitly stating condition (v), since
from Sato (1999, Theorem 11.5) follows that every process that satisfies the conditions
(i)-(iv) has a modification such that (i)-(v) holds. Therefore, we just use condition (v)
for convenience.

Some of the best known stochastic processes satisfy the Lévy properties. We recall
some processes in the following example. In order to display the path behavior of these
Lévy processes, we give one realization of such Lévy Processes on the interval [0, 1] in
Figure 5.1.

Example 5.3 (i) Standard Brownian motion: A stochastic process (Wt)t∈R+ on Rd

is a standard Brownian motion if it is a Lévy process and if, for any t > 0, the
random variable Wt has a Gaussian distribution with mean 0 and covariance matrix
tId, where Id is the identity matrix.

(ii) Poisson process: Let (τi)i∈N be a sequence of independent, exponential random
variables with parameter λ and Tn =

∑n
i=1 τi. The process (Nt)t∈R+ defined by

Nt =
∑

n≥1

1(t ≥ Tn)

is called a Poisson process with intensity λ. At any time t ≥ 0, the random variable
Nt follows a Poisson distribution with parameter λt.

(iii) Compound Poisson process : Let (Nt)t∈R+ be a Poisson process with intensity λ. Let
(Yi)i∈N be a sequence of independent and identically distributed random variables
that are independent from (Nt). Then

Xt =
Nt∑

i=1

Yi
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Figure 5.1: Sample path of a Poisson process Nt (upper left), a Brownian motion Wt

(upper right), a compound Poisson process Xt (lower left), and a sum of a
Brownian motion with a compound Poisson process Lt(lower right).
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5.1 Lévy Processes

is called a compound Poisson process.

(iv) Sums of Lévy processes: An immediate consequence of Definition 5.2 is that the
sum of two Lévy processes is again a Lévy process.

For an in-depth discussion of these processes we refer to Sato (1999) and Cont and
Tankov (2004).

Due to the special properties of Lévy processes, it is possible to characterize each Lévy
process (Lt)t∈R+ completely by its distribution at any point t up to identity in law. We
will see that these distributions are all infinitely divisible. The definition of infinitely
divisible distributions can be found, for example, in Sato (1999, Definition 7.1).

Definition 5.4 A probability measure ξ on Rd is infinitely divisible if, for any positive
integer n, there is a probability measure ξn on Rd such that

ξ = ξn ∗ . . . ∗ ξn︸ ︷︷ ︸
n−times

.

That is ξ is the n-fold convolution of ξn.

Now we are able to state the connection between Lévy processes and infinitely divisible
distributions in a more formal way. Therefore, we recall a special case of Sato (1999,
Theorem 9.1, Corollary 11.6).

Proposition 5.5 If (Lt)t∈R+ is a Lévy process on Rd, then, for every t, the distribution
of Lt is infinitely divisible. On the other hand for every infinitely divisible probability
measure ξ on Rd, there is a Lévy process (Lt)t∈R+ such that L1 is distributed like ξ and
(Lt)t∈R+ is unique up to identity in law.

Since there is this one-to-one correspondence between Lévy processes and infinitely di-
visible distributions, any representation of infinitely divisible distributions can be used to
characterize Lévy processes. This representation is given in the famous Lévy-Khintchine
formula that is stated, for example, in Sato (1999, Theorem 8.1).

Theorem 5.6 (Lévy-Khintchine representation) (i) Let ξ be an infinitely divis-
ible distribution on Rd. Then there exists γ ∈ Rd, a symmetric non-negative
definite matrix Σ ∈ S+

d and a measure ν on (Rd,B(Rd)) with ν({0}) = 0 and∫
Rd(|x|2 ∧ 1)ν(dx) <∞, such that the characteristic function of ξ

ϕξ(z) = exp
{
i〈γ, z〉 − 1

2
〈z,Σz〉

+
∫
Rd(e

i〈z,x〉 − 1− i〈z, x〉1[0,1](|x|))ν(dx)
}
,

(5.1)

where 〈., .〉 denotes the inner product.

(ii) The representation of ϕξ by (γ,Σ, ν) is unique.
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(iii) Let (γ,Σ, ν) be as in (i). Then there exists an infinitely divisible distribution ξ
with ϕξ given as in (i).

We will see later in this section that γ and Σ can be interpreted as the drift and the
covariance matrix of a Brownian motion, whereas the Lévy measure ν controls the jumps
of the Lévy process.

By looking at the distribution of the Lévy process (Lt)t∈R+ only at time t = 1, which
is an infinitely divisible distribution, it is possible to characterize the Lévy process with
γ, Σ and ν used in Theorem 5.6. This is a remarkable result, since we have seen that
the class of Lévy processes is a rich class with a great diversity of possible processes,
and we only assume that this processes satisfy the conditions (i)-(v) in Definition 5.2.
In the following, we call (γ,Σ, ν) the characteristic triplet.

In this chapter, we want to introduce a general dependence modeling method for
multivariate Lévy processes. Since we know from Proposition 5.5 that a Lévy process
is uniquely defined by the distribution of Lt at any time t, in particular by L1, we can
simply use the copula theory to model the dependence of the random variable L1 and
thereby specify the dependence within the Lévy process completely. This is theoretically
true but, as mentioned in Kallsen and Tankov (2006), this procedure is not applicable in
practice due to several reasons. A d-dimensional probability distribution constructed of
univariate, infinitely divisible distributions and a copula does not have to be infinitely
divisible. It is furthermore unclear under which conditions, on the copula and the
margins, such a construction leads to a multivariate, infinitely divisible distribution.
Another drawback of specifying the distribution of L1 is that it is not apparent how
to simulate the Lévy process on the real line. It is only straightforward to simulate
realizations of this Lévy process at times t = 1, 2, 3, . . .. In the next section, we introduce
a dependence modeling technique to resolve these shortcomings, but therefore, we need
to discuss more characteristics of Lévy processes.

Up to now, we have focused on the properties of the Lévy process Lt at a given time t
which is simply a random variable. Since Lévy processes are stochastic objects in time,
it is also interesting to analyze the sample path L(t, ω) for a given ω as a function of
time t. Therefore, we introduce the Poisson random measure as in Sato (1999, Definition
19.1).

Definition 5.7 Let (Θ,B, ρ) be a σ-finite measure space. A family of N-valued random
variables {N(B) : B ∈ B} is called a Poisson random measure (PRM) on Θ with
intensity measure ρ if the following hold:

(i) for every ω, Nω(.) is a measure on Θ,

(ii) for every B, N(B) has Poisson distribution with mean ρ(B),

(iii) if B1, . . . , Bn are disjoint, then N(B1), . . . , N(Bn) are independent.

We introduce the notion of Poisson random measures as a mathematical tool for describ-
ing the jump behavior of Lévy processes. The following lemma reveals how the jumps of
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a Lévy process define a PRM, and therefore, the connection between these two concepts.
It is important that Nω(.) is a measure on Θ for every ω ∈ Ω. Thus, for every ω ∈ Ω,
we can integrate with respect to this measure. In the next lemma, we establish the
connection between the jumps of Lévy processes and Poisson random measures. This
result is given in Sato (1999, Theorem 19.2)

Lemma 5.8 Let (Lt)t∈R+ be a Lévy process on Rd defined on the probability space
(Ω,F , P ) with characteristic triplet (γ,Σ, ν) and define the measure ν̃ on H = (0,∞)×
(Rd)\{0} by ν̃((0, t] × B) = tν(B) for B ∈ B(Rd). Using Ω0 from Definition 5.2 of a
Lévy process, define for B ∈ B(H),

J(B, ω) =

{
#{s : (s, Ls(ω)− Ls−(ω)) ∈ B} for ω ∈ Ω0,

0 else.
(5.2)

Then {J(B) : B ∈ B(H)} is a Poisson random measure on H with intensity measure ν̃.

Up to now the Lévy measure ν was a theoretical object arising from the Lévy-Khintchine
formula which we needed to describe all possible Lévy processes. With the result from
Lemma 5.8 we have an intuitive interpretation of the Lévy measure. Let B ∈ B(Rd),
then ν(B) = ν̃((0, 1] × B) is the expected number of jumps of the Lévy process with
values in B within a unit time interval. With the definition of J(B, ω) in Equation (5.2)
we can now state the Lévy-Itô decomposition as in Sato (1999, Theorem 19.2).

Theorem 5.9 Let (Lt)t∈R+ , ν̃ and J(B, ω) be as in Lemma 5.8. Then the following
hold.

(i) There is an Ω1 ∈ F with P (Ω1) = 1 such that, for any ω ∈ Ω1,

L1
t (ω) = lim

ǫ↓0

∫

(0,t]×{x:ε<|x|≤1}

{xJ(d(s, x), ω)− xν̃(d(s, x))} (5.3)

+

∫

(0,t]×{x:|x|>1}

xJ(d(s, x), ω) (5.4)

is defined for all t ∈ [0,∞) and the convergence is uniform in t on any bounded
interval. The process (L1

t )t∈R+ is a Lévy process on Rd with characteristic triplet
(0, 0, ν).

(ii) Define
L2
t (ω) = Lt(ω)− L1

t (ω) for ω ∈ Ω1.

There is an Ω2 ∈ F with P (Ω2) = 1 such that, for any ω ∈ Ω2, L
2
t (ω) is continuous

in t. The process (L2
t )t∈R+ is a Lévy process with characteristic triplet (γ,Σ, 0).

(iii) The two processes (L1
t )t∈R+ and (L2

t )t∈R+ are independent.
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Chapter 5 Dependence Modeling for Lévy Processes

This theorem states that we can decompose any Lévy process into a Jump process
(L1

t )t∈R+ and a Brownian motion (L2
t )t∈R+ , i.e., a Lévy process with characteristic triplet

(γ,Σ, 0). Again, this is a remarkable result since we only presume that the process
satisfies the Conditions (i)-(v) in Definition 5.2. The second part of the jump process
(L1

t )t∈R+ , given in (5.4), is simply the sum of all big jumps. The first part of this process,
given in (5.3), is a bit more difficult to interpret. There, we sum over all small jumps,
but to ensure that the limit exists, we need to compensate this sum with the expected
number of the small jumps. To avoid this compensation in Theorem 5.9, we can impose
the stronger condition

∫
|x|≤1
|x|ν(dx) <∞ on the Lévy measure ν. That is, we state the

Lévy-Itô decomposition for a subclass of Lévy processes, as in Sato (1999, Theorem 19.3).
This condition guarantees that the jump part of the Lévy process has finite variation
on (0, t] for any t ∈ (0,∞), see Sato (1999, Theorem 21.9). This assumption is not very
strict and we will see that it holds for most parametric families of Lévy processes that
we use in the following.

Theorem 5.10 Let (Lt)t∈R+ be a Lévy process with characteristic triplet (γ,Σ, ν) as in
Lemma 5.8. Let the Lévy measure ν satisfy

∫
|x|≤1
|x|ν(dx) <∞ and let γ̃ be the drift of

(Lt)t∈R+. Then the following hold.

(i) There is Ω3 ∈ F with P (Ω3) = 1 such that, for any ω ∈ Ω3,

L3
t (ω) =

∫

(0,t]×{x:|x|>0}

xJ(d(s, x), ω)

is defined for all t ∈ [0,∞). The process (L3
t )t∈R+ is a Lévy process on Rd with

ϕL3
1
(z) = exp

(∫

Rd

(ei〈z,x〉 − 1)ν(dx)

)
.

(ii) Define
L4
t (ω) = Lt(ω)− L3

t (ω) for ω ∈ Ω3.

Then, for any ω ∈ Ω2 ∩Ω3, L
4
t (ω) is a continuous Lévy process with characteristic

triplet (γ̃,Σ, 0), thus a Brownian motion.

(iii) The two processes (L3
t )t∈R+ and (L4

t )t∈R+ are independent.

Comparing the jump parts L1
t in Theorem 5.9 and L3

t in Theorem 5.10, we see how the
stronger assumption in the second theorem simplifies the decomposition clearly.

5.1.2 Lévy Subordinators

In this work, Lévy subordinators, which are increasing Lévy processes, play a crucial
role. They are of special importance in many applications, e.g., in summing up losses,
and we will see in the following chapters that this restriction facilitates the notation, used
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5.1 Lévy Processes

for the dependence modeling, considerably. We follow Barndorff-Nielsen et al. (2001a,
Section 3) and introduce Lévy subordinators by their path properties.

Definition 5.11 A Lévy Subordinator is a Lévy process (Lt)t∈R+ in Rd
+ which is in-

creasing in each coordinate.

Using this special property simplifies the Lévy-Khintchine formula substantially, and
facilitates the interpretation as well. The Lévy-Khintchine representation for subordi-
nators is stated in Barndorff-Nielsen et al. (2001a, Proposition 3.1).

Proposition 5.12 (i) Let (Lt)t∈R+ be a d-dimensional Lévy subordinator. The char-
acteristic function ϕL1 can be represented as

ϕL1(z) = exp

{
i〈γ̃, z〉+

∫

Rd
+

(ei〈z,x〉 − 1)ν(dx)

}
, (5.5)

where γ̃ ∈ Rd
+ and ν is a σ-finite measure on Rd, which is concentrated on Rd

+\{0}
and satisfies

∫
|x|≤1
|x|ν(dx) <∞.

(ii) Conversely, let γ̃ ∈ Rd
+ and ν be a σ-finite measure on Rd which is concentrated

on Rd
+\{0} and satisfies

∫
Rd
+
|x| ∧ 1ν(dx) <∞. Then there exists a d-dimensional

subordinator (Lt)t∈R+ such that ϕL1 satisfies (5.5).

The first difference to Theorem 5.6 is the lack of the covariance matrix Σ in Equation
(5.5). This is no surprise because we know from the Lévy-Itô decomposition that the
covariance matrix Σ specifies the Brownian motion part of the Lévy process. Since the
Brownian motion is in- and also decreasing, subordinators cannot have a Brownian part.
The second difference lies in the integral part. In the Lévy-Khintchine representation
for general Lévy processes, we need the truncation function i〈z, x〉1[0,1](|x|)) in order to
guarantee that the integral exists. With the restriction to subordinators, we do not need
this truncation function anymore. Since the Lévy measure for subordinators satisfies∫
Rd
+
|x| ∧ 1ν(dx) < ∞, we can use the easier version of the Lévy-Itô decomposition,

stated in Theorem 5.10. In conclusion, Lévy subordinators are pure jump processes with
a non-negative drift. In the next example we define parametric families of univariate
subordinators.

Example 5.13 (i) Compound Poisson processes with positive jumps: Let (Xt)t∈R+

be a compound Poisson process as defined in Example 5.3. If we only allow for
positive jumps, (Xt) is a Lévy subordinator. These stochastic processes are of
special importance in the field of loss modeling.

(ii) Stable subordinator (Basawa and Brockwell, 1978): The Lévy measure is defined
for any 0 < α < 1 and β > 0 by

ν(B) =

∫

R+

1B(z)
αβ

zα+1
dz.
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Figure 5.2: Sample path of a stable Subordinator L
(α)
t (left) and a Gamma process L

(Γ)
t

(right), as introduced in Example 5.13.

This Lévy process has heavy tails and is therefore suggested in many financial
applications. One realization of this process is given in Figure 5.2.

(iii) Tempered stable subordinators (Tankov, 2005, p.115): This Lévy subordinator has
three parameters α, c, λ, where c, λ > 0 and 0 ≤ α < 1. The Lévy measure is given
by

ν(B) =

∫

R+

1B(z)
ce−λz

zα+1
dz.

The idea behind the tempering concept is to multiply the density of a Lévy measure
with the term ce−λz, where c, λ > 0. This changes the intensity measure of the
Poisson random measure in the way that the probability of large jumps is reduced.
Since the term ce−λz declines exponentially, this has decisive effect on Lévy pro-
cesses with a high probability of large jumps, and therefore, this concept can be
used to enrich the class of stable Lévy processes. The following two examples are
important Lévy subordinators within the class of tempered stable processes.

(iv) Gamma process (Tankov, 2005, p.116): The gamma process is a tempered stable
process with α = 0. The Lévy measure is given by

ν(B) =

∫

R+

1B(z)
ce−λz

z
dz,

where c, λ > 0. One realization of this process is given in Figure 5.2.

(v) Inverse Gaussian process (Tankov, 2005, p.116): The inverse Gaussian process is
a tempered stable process with α = 1/2.

ν(B) =

∫

R+

1B(z)
ce−λz

z3/2
dz,

where c, λ > 0.
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5.2 Lévy Copulas

5.2 Lévy Copulas

In this section, we discuss modeling the dependence structure between the dimensions
of multivariate Lévy processes. Recall that we can decompose every Lévy process into a
Brownian motion and a pure jump process. Since these two parts are independent, we
are able to model each process separately. The dependence structure of the Brownian
motion is completely specified by the covariance matrix Σ of the characteristic triplet.
However, we are more interested in the jump part since the dependence of the jumps is
crucial in many applications. Insurance companies, for instance, may model their losses
for different risk types with univariate compound Poisson processes, which are basic Lévy
processes. It is indisputably important to have adequate models for the margins, but the
overall risk exposure of the insurance company and the extent to which diversification
of risk is possible depends decisively on the interaction between the risks.

The fundamental work on dependence modeling for Lévy processes are the seminal
publications of Tankov (2004), and Kallsen and Tankov (2006), where the concept of
Lévy copulas is introduced. This concept transfers the idea of distributional copulas
to the context of pure jump Lévy processes. As shown in Chapter 2, distributional
copulas (normally just referred to as copulas) are functions that connect the marginal
distribution functions of a random variable to the joint distribution. They contain the
entire dependence information of the random variable. In the same sense, the theory
of Lévy copulas enables us to model a multivariate Lévy process by its marginal Lévy
processes and to choose a suitable Lévy copula for the dependence structure separately.

5.2.1 Definition and Properties

In this section, we illustrate how to decompose the Lévy measure of a Lévy subordinator
into marginal parts and a dependence component, the Lévy copula. In this context, it
is not advantageous to work with the Lévy measure directly. Therefore, we need to
introduce the tail integral which captures all the information of the Lévy measure and
is not defined on the σ-algebra B(Rd

+), but on Rd
+. The tail integral is related to the

Lévy measure in a comparable way as the distribution function is related to probability
measures. The tail integral is defined as follows (see, for example, Definition 3.1 in
Esmaeili and Klüppelberg (2010)).

Definition 5.14 (Tail Integral) Let ν be a Lévy measure on Rd
+. The tail integral is

a function U : R
d

+ 7→ R+ defined by

U(x1, . . . , xd) =





ν([x1,∞)× . . .× [xd,∞)) if (x1, . . . , xd) ∈ Rd
+\{0},

0 if xi =∞ for at least one i,

∞ if (x1, . . . , xd) = 0.
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Chapter 5 Dependence Modeling for Lévy Processes

The tail integral U of a Lévy subordinator uniquely determines its Lévy measure ν. We
define the marginal tail integrals Uk for any dimension k = 1, . . . , d of the multivariate
Lévy subordinator in a similar way. For one-dimensional Lévy measures ν on R+, the
tail integral U(x) = ν([x,∞)) is the expected number of jumps per unit of time with
jump sizes larger or equal to x.

For most of the one-dimensional subordinators in Example 5.13, there are no explicit
formulas for the tail integrals. One exception is the univariate stable subordinator. For
this Lévy process, the tail integral can be explicitly calculated and inverted.

Example 5.15 Let (Lt) be a stable subordinator as in Example 5.13. Then, for any
x > 0, its tail integral is given by

U(x) =

∫

[x,∞)

αβ

zα+1
dz = βx−α.

The inverse of the tail integral is needed for the simulation of the process and can also
be calculated explicitly by

U−1(u) =

(
u

β

)− 1
α

for any u > 0.

The tail integrals of the other subordinators may be calculated and inverted numerically.
The dependence in the jumps of a multivariate Lévy process can be described by a Lévy
copula which couples the marginal tail integrals to the joint one.

Definition 5.16 A d-dimensional measure defining function C(u1, . . . , ud) : R
d

+ → R+,
where the margins satisfy Ck(uk) := C(∞, . . . ,∞, uk,∞, . . . ,∞) = uk for all uk ∈ R+,
and k = 1, . . . , d, is called a Lévy copula.

For a detailed introduction of measure defining functions, we refer to Kingman and
Taylor (1966), and after Assumption 5.18, we discuss the connection between positive
measures and Lévy copulas.

Now, we are able to state Sklar’s theorem for Lévy copulas, as in Cont and Tankov
(2004, Theorem 5.6).

Theorem 5.17 Let U denote the tail integral of a d-dimensional Lévy subordinator
whose components have the tail integrals U1, . . . , Ud. Then, there exists a Lévy copula C

such that for all (x1, . . . , xd) ∈ R
d

+

U(x1, . . . , xd) = C(U1(x1), . . . , Ud(xd)). (5.6)

Conversely, if C is a Lévy copula and U1, . . . , Ud are marginal tail integrals of a Lévy sub-
ordinator, Equation (5.6) defines the tail integral of a d-dimensional Lévy subordinator
and U1, . . . , Ud are the tail integrals of its components.
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In this dissertation, we focus on Lévy copulas for which the following assumption
holds.

Assumption 5.18 Let C be a Lévy copula on R
d

+ such that for every nonempty set
I ⊂ {1, . . . , d}

lim
(ui)i∈I→∞

C(u1, . . . , ud) = C(u1, . . . , ud)|(ui)i∈I=∞ (5.7)

holds.

This is a rather weak assumption on the Lévy copula and is assumed in many papers,
e.g., in Tankov (2005). It means that the Lévy copula has no new information at the
points ui =∞ which is not already contained in the limit for ui →∞. We need it since

it ensures a bijection between a Lévy copula on R
d

+ and a positive measure µ on B(Rd
+)

with one-dimensional Lebesgue margins. This measure is given by

µ((a, b]) = VC([a, b]), (5.8)

where a, b ∈ Rd
+ with a ≤ b, component-wise, and VC refers to the C-volume of the d-box

[a, b] which is defined as

VC([a, b]) =
∑

sgn(c)C(c).

The sum is taken over all vertices c of [a, b] and

sgn(c) =

{
1 if ck = ak for an even number of k,

−1 if ck = ak for an odd number of k.

Furthermore, any positive measure µ on Rd
+ with Lebesgue margins uniquely defines a

Lévy copula on R
d

+ that satisfies Assumption 5.18 by

C(u1, . . . , ud) := µ([0, u1]× . . .× [0, ud])

and by specifying

C(u1, . . . , ud)|(ui)i∈I=∞ := lim
(ui)i∈I→∞

µ([0, u1]× . . .× [0, ud]).

These results are proved, e.g., in Section 4.5 in Kingman and Taylor (1966).

In this work, we focus on the theory of Lévy copulas for subordinators. Therefore,

it is sufficient to define the Lévy copula on R
d

+. This is no restriction at all since it is
straightforward to define a Lévy copula for every orthant separately. In two dimensions,
for example, we need to define four Lévy copulas. Proceeding this way, we can use the

techniques for Lévy copulas on R
d

+ to construct Lévy processes with positive and negative

jumps in all dimensions. For the theoretical background on general Lévy copulas on R
d

we refer to Kallsen and Tankov (2006).
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Chapter 5 Dependence Modeling for Lévy Processes

5.2.2 Parametric Lévy Copula Families

In the following chapter, we use bivariate Lévy copulas to construct Lévy copulas in
arbitrary dimensions. Therefore, we are interested in parametric families of bivariate
Lévy copulas. There are several ways to define these 2-dimensional dependence func-
tions. The first method that we present uses distributional copulas and a function to
adjust for the domain and the image of the copula. This procedure is suggested in Cont
and Tankov (2004, Proposition 5.5).

Proposition 5.19 Let C be a distributional bivariate copula and f : [0, 1] 7→ R+ an
increasing, convex function. Then

C(u, v) = f(C(f−1(u), f−1(v)))

defines a 2-dimensional Lévy copula.

A different class of Lévy copulas is defined similarly to Archimedean distributional cop-
ulas, which is shown in Cont and Tankov (2004, Proposition 5.6).

Proposition 5.20 Let φ : R+ 7→ R+ be a strictly decreasing convex function such that
φ(0) =∞ and φ(∞) = 0. Then

C(u, v) = φ−1(φ(u) + φ(v))

defines a 2-dimensional Lévy copula.

An example for such a Lévy copula, which is used later in this thesis, is the Clayton-Lévy
copula (Cont and Tankov, 2004, Example 5.5).

Example 5.21 The Clayton-Lévy copula on R
2

+ for 2-dimensional Lévy subordinators
is given by

C(u, v) =
(
u−θ + v−θ

)−1/θ
. (5.9)

Here, θ > 0 determines the dependence of the jump sizes, where larger values of θ
indicate a stronger dependence.
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Chapter 6

The Pair-Lévy Copula Construction

To the best knowledge of the author, all papers involving Lévy copulas focus on rather
small dimensions since higher-dimensional flexible Lévy copulas are difficult to construct.
A similar effect has been observed during the first years of literature on distributional
copulas, where mainly 2-dimensional distributional copulas have been analyzed. One
solution regarding distributional copulas has been the development of very flexible pair
constructions of copulas, see Chapter 3. In the pair-copula construction, a d-dimensional
copula is constructed from d(d−1)/2 bivariate copulas, where d−1 of the bivariate cop-
ulas model the dependence of bivariate margins, and the remaining bivariate copulas
model certain conditional distributions, such that the entire d-dimensional dependence
structure is specified. The Lévy copula concept is conceptually different from distribu-
tional copulas. While d-dimensional distributional copulas are distribution functions on

a [0, 1]d hypercube, d-dimensional Lévy copulas are defined on R
d

+ and relate to Radon
measures, see Section 5.2. Therefore, the pair construction idea for distributional cop-
ulas is not directly transferable to Lévy copulas and up to now it has not been clear
whether it is possible at all. In this chapter, we show that a pair-copula construction
of Lévy copulas is indeed possible. It also consists of d(d − 1)/2 bivariate dependence
functions but only d − 1 of them are Lévy copulas, while the remaining ones are dis-
tributional copulas. For statistical inference, we derive sequential maximum likelihood
estimators for an arbitrary pair construction of Lévy copulas as well as a simulation
algorithm. We analyze the applicability of the concept in a simulation study. Moreover,
we show in detail how the pair-Lévy copula construction (PLCC) concept can be applied
to model the dependence structure of multivariate Ornstein-Uhlenbeck processes and we
give an outlook on further applications. This chapter is joint work with Oliver Grothe
and several parts of it are accepted for publication (Grothe and Nicklas, 2013).

6.1 Pair-Lévy Copulas

In this section, we present the theory of the pair construction for d-dimensional Lévy
copulas. In particular, we show that analogously to the pair construction of distribu-
tional copulas, d(d− 1)/2 functions of bivariate dependence may be arranged such that
they define a d-dimensional Lévy copula. In Section 6.1.2, we provide illustrating ex-
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amples how to construct multivariate pair-Lévy copulas. Readers not interested in the
technical parts may read these examples first.

6.1.1 Technical Part

The central theorem for the construction is Theorem 6.4. It states that two (d − 1)-
dimensional Lévy copulas with overlapping (d−2)-dimensional margins may be coupled
to a d-dimensional Lévy copula by a new, 2-dimensional distributional copula. Ensured
by vine constructions (see Bedford and Cooke (2002)) and starting at (d− 1) = 2, The-
orem 6.4 therefore enables to sequentially construct Lévy copulas out of 2-dimensional
dependence functions, i.e., 2-dimensional distributional copulas and Lévy copulas. Be-
fore we state the theorem, for convenience, we recall some definitions which can be found,
e.g., in Ambrosio et al. (2000, Chapter 1 & 2).

Definition 6.1 Let (X, E) and (Y,F) be measure spaces, and let µ be a positive measure
on (X, E).
(i) We say that N ⊂ X is µ-negligible if there exists E ∈ E such that N ⊂ E and

µ(E) = 0.

(ii) Let Eµ be the collection of all the subsets of X of the form F = E ∪N , with E ∈ E
and N µ-negligible; then Eµ is a σ-algebra which is called the µ-completion of E .

(iii) A function f : X 7→ Y is said to be E-measurable if f−1(A) ∈ E for every A ∈ F .
(iv) The function f is said to be µ-measurable if it is Eµ-measurable.

(v) A positive measure on (Rd
+,B(Rd

+)) that is finite on compact sets is called a positive
Radon measure.

(vi) Let f : X → Y be a µ-measurable function. We define the push forward measure
f#µ in (Y,F) by

f#µ(K) := µ
(
f−1(K)

)
∀K ∈ F .

(vii) Let µ be a positive Radon measure on Rd
+ and x 7→ ξx a function which assigns a

finite Radon measure ξx on Rm
+ to each x ∈ Rd

+. We say this map is µ-measurable
if x 7→ ξx(B) is µ-measurable for any B ∈ B(Rm

+ ).

Definition 6.2 Let µ be a positive Radon measure on Rd
+ and x 7→ ξx a µ-measurable

function which assigns a probability measure ξx on Rm
+ to each x ∈ Rd

+. We denote by
µ⊗ ξx the Radon measure on Rd+m

+ defined by

µ⊗ ξx(B) :=

∫

Rd
+

(∫

Rm
+

1B(x, y)dξx(y)

)
dµ(x) ∀B ∈ B(K × Rm

+),

where K ⊂ Rd
+ is any compact set.
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We also need a theorem which states that a Radon measure may be decomposed into
a projection onto some of its dimensions and a probability measure. For a proof see
Theorem 2.28 in Ambrosio et al. (2000) and also the sentence after Corollary 2.29 there.

Theorem 6.3 Let µ1,...,d+m be a Radon measure on Rd+m
+ , π : Rd+m

+ 7→ Rd
+ the projection

on the first d variables and µ1,...,d = π#µ1,...,d+m. Let us assume that µ1,...,d is a positive
Radon measure, i.e., that µ1,...,d+m(K × Rm

+ ) <∞ for any compact set K ⊂ Rd
+. Then,

there exists a finite measure ξx in Rm
+ such that x 7→ ξx is µ1,...,d-measurable, ξx is

a probability measure almost everywhere in Rd
+, and for any B ∈ B(K × Rm

+), where
K ⊂ Rd

+ is any compact set

∫

Rd+m
+

1B(x, y)dµ1,...,d+m(x, y) =

∫

Rd
+

(∫

Rm
+

1B(x, y)dξx(y)

)
dµ1,...,d(x).

This is µ1,...,d+m(B) = µ1,...,d ⊗ ξx(B).

We are now able to state the main theorem that shows how we can construct high-
dimensional, parametric Lévy copulas.

Theorem 6.4 Let C1,...,d−1 and C2,...,d be two Lévy copulas on R
d−1

+ where C1,...,d−1 is a
Lévy copula on the variables u1, . . . , ud−1 and C2,...,d is a Lévy copula on the variables
u2, . . . , ud. Denote the corresponding measures on Rd−1

+ by µ1,...,d−1 and µ2,...,d, respec-
tively. Suppose that the two measures have an identical (d − 2)-dimensional margin
µ2,...,d−1 on the variables u2, . . . , ud−1. Then, we can define a Lévy copula on Rd

+ by

C1,...,d(u1, . . . , ud) :=

∫

[0,u2]×...×[0,ud−1]

C(F1|z2,...,zd−1
(u1), Fd|z2,...,zd−1

(ud))dµ2,...,d−1(z2, . . . , zd−1),

where F1|u2,...,ud−1
is the one-dimensional distribution function corresponding to the prob-

ability measure ξ1|u2,...,ud−1
from the decomposition of µ1,...,d−1 into

µ1,...,d−1 = µ2,...,d−1 ⊗ ξ1|u2,...,ud−1
,

Fd|u2,...,ud−1
is the one-dimensional distribution function corresponding to the probability

measure ξd|u2,...,ud−1
from the decomposition of µ2,...,d into

µ2,...,d = µ2,...,d−1 ⊗ ξd|u2,...,ud−1
,

and C is a distributional copula. Since Lévy copulas are functions on R
d

+, we set for
every I ⊂ {1, . . . , d} nonempty,

C1,...,d(u1, . . . , ud)|(ui)i∈I=∞ := lim
(ui)i∈I→∞

C1,...,d(u1, . . . , ud). (6.1)
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T1 1 2 3

T2 12 23

C1,2 C2,3

C1,3|2

Figure 6.1: Pair-Lévy copula construction of a 3-dimensional Lévy copula out of 3(3 −
1)/2 = 3 bivariate dependence functions. The functions C1,2 and C2,3 in the
first tree are Lévy copulas, while C1,3|2 in the second tree is a distributional
copula.

The theorem, which is proved in Appendix 6.B, illustrates how to construct a d-
dimensional Lévy copula from two (d − 1)-dimensional Lévy copulas with a common
margin. Applying the theorem recursively, these (d − 1)-dimensional Lévy copulas can
be constructed from (d− 2)-dimensional ones. This can be repeated down to construct
3-dimensional Lévy copulas from bivariate ones.

6.1.2 Pair-Lévy Copula Construction

In higher dimensions, the pair-copula construction method offers many ways to build
multivariate Lévy copulas from bivariate dependence functions. This is due to permuta-
tions of the dimensions and numerous possible pairwise combinations within each step.
We visualize the different structures of the pair construction by the concept of regular
vines, see Section 3.2. Regular vines also help to construct pair-Lévy copulas top-down.
This means to start with d − 1 bivariate Lévy copulas and to combine them succes-
sively to 3, 4, 5, . . . , d-dimensional Lévy copulas. The regular vine approach ensures that
at each step the involved Lévy copulas have sufficiently overlapping margins, and that
therefore the theorem can be applied. To illustrate this approach, we give two detailed
examples. The first example refers to the most simple case, a 3-dimensional Lévy copula.
The second, 4-dimensional example then illustrates how to sequentially add dimensions
to the pair-Lévy copula construction.

Example 6.5 A 3-dimensional example can be constructed applying Theorem 6.4 to
combine two 2-dimensional Lévy copulas by a distributional copula. As in the usual
pair-copula construction for distributional copulas, in Figure 6.1 we use the vine concept
to visualize the resulting dependence structure. The bivariate dependence structures in
the first tree are Lévy copulas, whereas the copula in the second tree is a distributional
copula. From Theorem 6.4 follows that

C1,2,3(u1, u2, u3) =

∫

[0,u2]

C1,3|2(F1|z2(u1), F3|z2(u3))dµ2(z2) (6.2)

is a Lévy copula, where F1|u2(u1) is the one-dimensional distribution function corre-
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sponding to the probability measure ξ1|u2
from the decomposition of µ1,2 into

µ1,2 = µ2 ⊗ ξ1|u2
, (6.3)

and F3|u2
is the one-dimensional distribution function corresponding to the probability

measure ξ3|u2 from the decomposition of µ2,3 into

µ2,3 = µ2 ⊗ ξ3|u2. (6.4)

Remember that µ1,2 is the Radon measure corresponding to C1,2. With Theorem 6.3 and
the considerations after Assumption 5.18 we see that µ2 in Equation (6.3) is the Lebesgue
measure. Analogously, µ2,3 is the Radon measure corresponding to C2,3 and therefore µ2

in Equation (6.4) is the Lebesgue measure as well. To check whether C1,2,3(u1, u2, u3)
has the desired margins, we calculate

C1,2,3(u1, u2,∞) =

∫

[0,u2]

C1,3|2(F1|z2(u1), F3|z2(∞))dz2

=

∫

[0,u2]

C1,3|2(F1|z2(u1), 1)dz2

=

∫

[0,u2]

F1|z2(u1)dz2

=

∫

[0,u2]



∫

[0,u1]

dξ1|z2(z1)


 dz2

=

∫

[0,u1]×[0,u2]

dµ1,2(z1, z2)

= C1,2(u1, u2).

A similar procedure shows that

C1,2,3(∞, u2, u3) = C2,3(u2, u3).

As expected, we do not get such a direct representation of the third bivariate margin

C1,2,3(u1,∞, u3) =

∫

[0,∞)

C1,3|2(F1|z2(u1), F3|z2(u3))dz2

because this margin is not only influenced by the distributional copula C1,3|2 but also by
C1,2 and C2,3. Note that, by changing C1,3|2, we can modify the bivariate margin of the
first and third dimension without any influence the other two bivariate margins.
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Figure 6.2: Realizations of 3-dimensional Lévy processes with stable margins. The de-
pendence structure is modeled by the Lévy copula given in Example 6.5. In
both cases we use Clayton-Lévy copulas with parameter θ = 1 in the first
tree. In the second tree, we use a Gaussian copula. For the process on the
left, we set the parameter of C1,3|2 to ρ = −0.99 and for the process on the
right we set ρ = 0.99.

In Appendix 6.A, we give an example for a 3-dimensional pair-Lévy copula. In this
special case, we combine two Clayton-Lévy copulas and one distributional Clayton cop-
ula and give an explicit formula for the resulting PLCC. In Figure 6.2, we illustrate the
flexibility of the PLCC concept. There, we see two realizations of 3-dimensional Lévy
processes. All univariate processes are stable with parameters α = 0.8 and β = 1.25. To
visualize the influence of the distributional copula in the second tree, we use the same
Clayton-Lévy copulas with parameter θ = 1 in the first tree for both processes. In the
second tree we use a Gaussian distributional copula. For the process on the left, we set
the parameter of the copula C1,3|2 to ρ = −0.99 and for the process on the right, we set
ρ = 0.99. Omitting the third dimension for a moment and only looking at the processes
L1 and L2 in Figure 6.2, we see joint jumps in the realization of these stochastic pro-
cesses. These joint jumps occur, for example, at small values of t on the left hand side
and around t = 0.56 on the right. We also observe jumps in the first dimension without
noticeable jumps in the second dimension in both realizations. We do not see much
qualitative difference in the jump dependence of L1 and L2 between the path on the left
and the path on the right in Figure 6.2. This is no surprise since the dependence between
the first and the second component is modeled by the same bivariate Lévy copula C1,2

for both processes. The same holds true if we focus on the jump dependence between
L2 and L3 since this dependence is also modeled by the same Lévy copula C2,3 for both
processes. As we know from the theory, the jump dependence between L1 and L3 is the
only bivariate marginal dependence that is affected by the choice of C1,3|2. This effect
can be observed if we compare both graphs in Figure 6.2. In the graph on the right,
the processes L1 and L3 always jump at the same time and when they jump, the jump
size is almost the same. This effect is due to the distributional copula C1,3|2 with a very
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T1 2 3 4

T2 23 34

C2,3 C3,4

C2,4|3

Figure 6.3: Pair construction of the second three dimensions of a 4-dimensional Lévy
copula out of 3(3− 1)/2 = 3 bivariate dependence functions. The functions
C2,3 and C3,4 in the first tree are Lévy copulas, while C2,4|3 in the second tree
is a distributional copula. The Lévy copula C2,3 is the same Lévy copula as in
Figure 6.1 which refers to the pair construction of the first three dimensions.

T1 1 2 3 4

T2 12 23 34

T3 13|2 24|3

C1,2 C2,3 C3,4

C1,3|2 C2,4|3

C1,4|2,3

Figure 6.4: Combination of the first three dimensions and the second three dimensions to
a pair construction of a 4-dimensional Lévy copula. It consists of 4(4−1)/2 =
6 bivariate dependence functions. The functions in the first tree are Lévy
copulas, while the functions in the second and third tree are distributional
copulas.

high value of ρ = 0.99 in the PLCC. In the graph on the left, the processes L1 and L3

rarely jump at the same time and in cases they do jump together, we do not observe
similar jump sizes. We achieve this effect by using a distributional copula with negative
dependence in the second tree.

Example 6.6 Considering 4 dimensions, we need two 3-dimensional Lévy copulas with
an identical 2-dimensional margin. Here, we reuse the Lévy copula from Example 6.5
for the first three dimensions. The second 3-dimensional Lévy copula is constructed in
the same way and has the vine representation shown in Figure 6.3.

Notice that the Lévy copula C2,3 is used in both 3-dimensional pair-Lévy copulas.
Therefore, the marginal Lévy copulas

C1,2,3(∞, u2, u3) = C2,3(u2, u3) = C2,3,4(u2, u3,∞)

are the same and we can apply Theorem 6.4 to construct a 4-dimensional Lévy copula
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Figure 6.5: Realization of a 4-dimensional Lévy process with stable margins. The de-
pendence structure is modeled by the pair-Lévy copula construction given in
Example 6.6. We use three bivariate Clayton-Lévy copulas with parameter
θ = 2 in the first tree. In the second and third tree, we use Gaussian copulas
with parameter ρ = 0.3.

with the vine representation shown in Figure 6.4 and

C1,2,3,4(u1, u2, u3, u4) =

∫

[0,u2]×[0,u3]

C1,4|2,3(F1|z2,z3(u1), F4|z2,z3(u4))dµ2,3(z2, z3),

where F1|u2,u3 is the one-dimensional distribution function corresponding to the probabil-
ity measure ξ1|u2,u3

from the decomposition of µ1,2,3 from the first pair-Lévy copula C1,2,3

into
µ1,2,3 = µ2,3 ⊗ ξ1|u2,u3.

The one-dimensional distribution function F4|u2,u3
corresponds to the probability measure

ξ4|u2,u3 from the decomposition of µ2,3,4 from the second pair-Lévy copula C2,3,4 into

µ2,3,4 = µ2,3 ⊗ ξ4|u2,u3.

In Figure 6.5, we show a realization of a 4-dimensional PLCC. All univariate processes
are stable with parameters α = 0.8 and β = 1.25. The structure of the pair-Lévy copula
construction is as visualized in Figure 6.4. We use three Clayton-Lévy copulas with
dependence parameter θ = 2 in the first tree. The distributional copulas in the second
and third tree are all Gaussian with the same dependence parameter ρ = 0.3. This
setting represents a medium magnitude of dependence. We see that the large jumps in
the processes tend to occur at the same time, i.e. at t = 0.11 and t = 0.36. However,
the jump sizes do not coincide perfectly between the four dimensions.
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6.2 Simulation and Estimation

In this section we discuss the simulation of multivariate Lévy processes as well as the
maximum likelihood estimation of the pair-Lévy copula. We need the following assump-
tion which is fulfilled by the common parametric families of the bivariate (Lévy) copulas.

Assumption 6.7 In the following, we assume that all bivariate distributional and Lévy
copulas are continuously differentiable.

6.2.1 Simulation

The simulation of multivariate Lévy processes built upon Lévy copulas is based on a
series representation for Lévy processes and the following theorem.

Theorem 6.8 Let ν be a Lévy measure on Rd
+, satisfying

∫
Rd
+
(|x| ∧ 1)dν(x) <∞, with

marginal tail integrals Uj, j = 1, . . . , d and Lévy copula C1,...,d with corresponding measure
µ1,...,d. Let (Vi)i∈N be a sequence of independent and uniformly [0, 1] distributed random
variables and (Γ1

i , . . . ,Γ
d−1
i )i∈N be a Poisson point process on Rd−1

+ with intensity measure
µ1,...,d−1 from the decomposition of

µ1,...,d = µ1,...,d−1 ⊗ ξd|u1,...,ud−1
,

with ξd|u1,...,ud−1
being a probability measure. For any value of Γ1

i , . . . ,Γ
d−1
i , we suppose

that Γd
i is a random variable with probability measure ξd|Γ1

i ,...,Γ
d−1
i

. Then, the process

(L1
t , . . . , L

d
t )t∈[0,1] defined by

Lj
t =

∞∑

i=1

U−1
j (Γj

i )1[0,t](Vi), j = 1, . . . , d

is a d-dimensional Lévy process (Lt)t∈[0,1] without a Brownian component and drift. The
Lévy measure of (Lt) is ν.

Proof: The proof is similar to the proof of Tankov (2005, Theorem 4.3).

In practical simulations, the sum cannot be evaluated up to infinity and one omits
very small jumps. The sequence (Γ1

i )i∈N is therefore only simulated up to a sufficiently
large N, resulting in a large value of Γ1

N (see Rosiński (2001) for this approximation).
Note that large values of Γ1

i correspond to small values of the jumps U−1
1 (Γ1

i ), since the
tail integral is decreasing.

Based on the pair-copula construction of the Lévy copula, Γ2
i , . . . ,Γ

d
i can be drawn

conditionally on Γ1
i in a sequential way. For convenience, assume that the pair-Lévy
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copula has a D-vine structure and that the dimensions are ordered from left to right.
The dependence between Γ1

i and Γ2
i is then determined in the first tree of the pair

construction by the bivariate Lévy copula C1,2, and the distribution function F2|Γ1
i
of Γ2

i

given Γ1
i is derived in the following Proposition.

Proposition 6.9 Let C1,2 be a 2-dimensional Lévy copula with corresponding measure
µ1,2. Then, we can decompose

µ1,2 = µ1 ⊗ ξ2|u1,

where ξ2|u1
is a probability measure and the distribution function for almost all u1 ∈

[0,∞) is given by

F2|u1
(u2) =

∂C1,2(u1, u2)

∂u1
.

Proof: This is a special case of Tankov (2005, Lemma 4.2).

Inverting this distribution function allows the simulation of Γ2
i . Now suppose that we

have already simulated the variables Γ1, . . . ,Γd−1, d ≥ 3 and we want to simulate the last
variable Γd. We already know from Theorem 6.3 that the distribution of the last variable,
given the first d− 1, is a probability distribution and therefore we are interested in the
corresponding distribution function Fd|u1,...,ud−1

. Having found Fd|u1,...,ud−1
, we can again

invert it and easily simulate a realization of a random variable with this distribution
function. The next proposition provides Fd|u1,...,ud−1

within the pair construction of the
Lévy copula.

Proposition 6.10 Let d ≥ 3 and C1,...,d be a pair-Lévy copula, µ1,...,d the corresponding
measure, π the projection on the first d− 1 variables, and µ1,...,d−1 = π#µ1,...,d the push
forward measure. Then, we can decompose

µ1,...,d = µ1,...,d−1 ⊗ ξd|u1,...,ud−1
,

where ξd|u1,...,ud−1
is a probability measure on R+ with distribution function

Fd|u1,...,ud−1
(ud) =

∂C1,d|2,...,d−1(F1|u2,...,ud−1
(u1), Fd|u2,...,ud−1

(ud))

∂F1|u2,...,ud−1
(u1)

µ1,...,d−1-almost everywhere. Moreover, Fd|u1,...,ud−1
is continuously differentiable.

The proposition is proved in the appendix. Similar to Aas et al. (2009), it shows how
we can iteratively evaluate and invert the distribution function Fd|u1,...,ud−1

.

6.2.2 Maximum Likelihood Estimation

It is usually not possible to track Lévy processes in continuous time. Therefore, we
have to choose a more realistic observation scheme. In the context of inference for pure
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jump Lévy processes, a common assumption is that it is possible to observe all jumps
of the processes larger than a given ε (see, e.g., Basawa and Brockwell (1978, 1980)
or Esmaeili and Klüppelberg (2010)). Following Esmaeili and Klüppelberg (2011b),
we estimate the marginal Lévy processes separately from the dependence structure.
That is, for dimension j ∈ {1, . . . , d}, we use all N

(ε)
j observed jumps with jump sizes

x
1,j
, . . . , x

N
(ε)
i ,j

that are larger than ε in dimension j, and estimate the parameters of the

one-dimensional Lévy process. For the estimation of the dependence structure, i.e., the
Lévy copula, we can use the fact that the process, consisting of all N

(ε)
1,...,d jumps where

the jump sizes xi,j are larger than ε in all dimensions, is a compound Poisson process.

Note that, N
(ε)
1,...,d ≤ min{N (ε)

1 , . . . , N
(ε)
d }. We suppose that all densities f1, . . . , fd of the

marginal Lévy measures exist and we denote the parameter vectors of the Lévy copula
and the marginal Lévy measures by δ, γ1, . . . , γd, respectively. The likelihood function is
given by

Lε(δ, γ1, . . . , γd) = (6.5)

e−λ
(ε)
1,...,dt

N
(ε)
1,...,d∏

i=1

[f1(xi,1, γ1) · . . . · fd(xi,d, γd)c1,...,d(U1(xi,1, γ1), . . . , Ud(xi,d, γd), δ)] ,

where λ
(ε)
1,...,d(δ) = C1,...,d(U1(ε, γ1), . . . , Ud(ε, γd), δ) and c1,...,d is the density of C1,...,d. This

result also holds for m-dimensional marginal Lévy processes with m < d and is already
stated in Esmaeili and Klüppelberg (2011a) for two dimensions.

To use the above likelihood for pair-Lévy copula constructions, we have to know how
to calculate the density c1,...,d of a pair-Lévy copula.

Proposition 6.11 Let C1,...,d be a pair-Lévy copula of the following form

C1,...,d(u1, . . . , ud) =

∫

[0,u2]×...×[0,ud−1]

C(F1|z2,...,zd−1
(u1), Fd|z2,...,zd−1

(ud))dµ2,...,d−1(z2, . . . , zd−1)

and µ1,...,d the corresponding measure and suppose that the density f2,...,d−1 of µ2,...,d−1

exists. Then the density of µ1,...,d exists as well and has the form

f1,...,d(u1, . . . , ud) = c(F1|u2,...,ud−1
(u1), Fd|u2,...,ud−1

(ud))

·∂F1|u2,...,ud−1
(u1)

∂u1

∂Fd|u2,...,ud−1
(ud)

∂ud

·f2,...,d−1(u2, . . . , ud−1).

This proposition is proved in the appendix and states that we can iteratively de-
compose the pair-Lévy copula into bivariate building blocks and therefore evaluate the
density function in an efficient manner.

A straightforward estimation approach would be maximizing the full likelihood func-
tion to estimate the dependence structure. This, however, is disadvantageous because of
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Figure 6.6: Evaluation of a pair-Lévy copula for different values of η by Monte Carlo
methods, where η is the parameter of the bivariate distributional copula
used in the last tree of the PLCC. This methods are used in the sequential
estimation algorithm.

two reasons. The first reason is a numerical one. The likelihood function is not easy to
evaluate if more than one parameter is unknown. The second reason is more conceptual.
Since we can only use jumps larger than ε in all d dimensions, we waste a tremendous
part of the information about the dependence structure, especially if the dependence
structure is weak. For weak dependence structures, the probability that two jumps are
both larger than a threshold (conditioned that at least one jump exceeds the threshold)
is lower than for strong dependence.

For both reasons, we estimate the parameters of the bivariate Lévy and distributional
copulas of the vine structure sequentially. This is also common for pair-copula con-
structions of distributional copulas (see, e.g., Hobæk Haff (2012)). We make use of the
estimated marginal parameters and start in the first tree, using all observations larger
than ε in the first and second components to estimate the parameters of C1,2. Then, we
use all observations larger than ε in the second and third components to estimate the
parameters of C2,3. We continue this procedure for all other Lévy copulas in the first tree.
To estimate the parameter of C1,3|2, we use all observations larger than ε in dimensions
one, two, and three as well as the previously estimated marginal parameters of the first
three dimensions and the parameters of C1,2 and C2,3. This means that we proceed tree
by tree and within the tree, copula by copula or Lévy copula by Lévy copula, respec-
tively. In each step, we make use of the estimated parameters from the preceding steps.
In contrast to the computation of the density, it is not easy to evaluate a pair-Lévy
copula itself. This is no real drawback since the value of C1,...,d is not needed in most

cases. For the normalizing constant λ
(ε)
1,...,d(δ) of the likelihood, however, C1,...,d has to

be evaluated. In the bivariate case we do not face any problems since usually explicit
formulas to evaluate the Lévy copula exist. In higher dimensions we have to evaluate the
pair-Lévy copula, and therefore we need to solve high-dimensional integrals. Even worse,
since λ

(ε)
1,...,d(δ) is part of the likelihood function, see Equation (6.5), we need to solve

these integrals in every step of the maximum likelihood optimization algorithm. Thus,
using numerical integration methods seems out of reach. Straightforward Monte Carlo
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integration cannot be used either, since the Monte Carlo error causes severe problems in
the optimization routines. This is because randomly occurring large Monte Carlo errors
might lead to strong positive deviations from the true value of the function. This causes
the optimization routine to stop far away from the maximum, since other evaluations in
this area give smaller values and indicate spuriously a local maximum.

The solution, we propose, makes use of Monte Carlo methods but still allows for
the usual optimization routines. To simplify the notation, we present this estimation
procedure for a one-parametric bivariate distributional copula in the highest tree of a
pair-Lévy copula construction. Note that this procedure can be applied to any other dis-
tributional copula in the vine structure as well. Since we focus on the last tree of the vine
structure, we suppose that all parameters of the parameter vector δ have already been
sequentially estimated except for the parameter of the bivariate distributional copula
in the last tree. We denote this parameter under consideration by η, and to emphasize
that all other parameters are treated as constants in this sequential estimation step,
we denote the normalizing constant by λ(ε)(η). In a first step, we evaluate λ(ε)(η) for
different values of η and approximate the function λ(ε)(η) by the polynomial λ̃(ε)(η). We
illustrate this procedure on the left hand side of Figure 6.6. Then, we replace λ(ε)(η) in
the likelihood function by the smooth polynomial λ̃(ε)(η) and maximize the likelihood
function. To enhance the speed and the accuracy, we proceed as follows. In a first
step, we use only few evaluations of λ(ε)(η) on the whole range of possible η to fit a
first polynomial λ̃(ε)(η) and maximize the likelihood function. We denote the maximum
likelihood estimate of this first step by η̂1. In the next step we use more evaluations
of λ(ε)(η) in a region around η̂1 to fit the second polynomial. Again, we maximize the
likelihood function in this region where we replace λ(ε)(η) by the second, more accu-
rate polynomial. This procedure may be iterated until the desired accuracy is reached.
In a simulation study, we found that a three step approach performs well in terms of
accuracy and speed. This procedure is illustrated in Figure 6.6, where the distribu-
tional copula under consideration is a Gauss copula, however, any other distributional
copula that satisfies Assumption 6.7 could also be used. In the first step we evaluate
the likelihood function λ(ε)(η) for η ∈ {−0.99,−0.6,−0.2, 0.2, 0.6, 0.99} to get a rough
approximation of λ(ε)(η) on the whole range of possible dependence parameters η. The
evaluations of the likelihood function are plotted as dots and the fitted polynomial of
order two is visualized as the solid line on the left in Figure 6.6. The optimization of the
approximated likelihood function (remember that we replace λ(ε)(η) by λ̃(ε)(η)) gives an
optimal value of η̂1 = 0.27. Since we use an approximated likelihood function, we do
not believe that η̂1 is the true optimal parameter value, but we know that the optimal
value is somewhere close to η̂1. Therefore, we calculate λ(ε)(η) for more values of η in
the interval [−0.13, 0.67] around η̂1 and fit a new polynomial of order one. This is illus-
trated in the second plot of Figure 6.6. We use the fitted polynomial to approximate the
likelihood function in the interval [−0.13, 0.67] and the maximization routine gives the
optimal value η̂2 = 0.31. We repeat this procedure a third time on the smaller interval
[0.17, 0.45] around η̂2 and get the final optimal value η̂ = η̂3 = 0.30 in this maximum
likelihood approach.
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Scenario Clayton Parameters θ Gaussian Parameters ρ

High dependence (H) 5 0.8
Medium dependence (M) 2 0.3

Low dependence (L) 1 -0.2

Table 6.1: Parameters of the PLCC for scenarios H, M and L.

6.3 Simulation Study

In order to evaluate the estimators, we conduct a simulation study with a 5-dimensional
PLCC. To make the results comparable, all marginal Lévy processes are chosen to be
stable Lévy processes with parameters α = 0.5 and β = 1. All bivariate Lévy copulas in
the first tree are Clayton-Lévy copulas, see Example 5.21, and all distributional copulas
in the higher trees are bivariate Gaussian copulas, see Example 2.8.

We analyze three different scenarios of dependence structures: high dependence (H),
medium dependence (M) and low dependence (L). In scenarios H and M, we choose
a D-vine structure for the PLCC and in scenario L a C-vine. The D-vine structure
refers to a structure where all dimensions in the lowest tree form a line and are each
connected to the nearest neighbors, whereas the dimensions in a C-vine structure are
connected to only one central dimension (see, e.g., Aas et al. (2009)). Within a scenario,
all Clayton-Lévy copulas have the same parameter θ and all Gaussian copulas have the
same parameter ρ. The parameter values are summarized in Table 6.1.

For each scenario, we simulate a realization of a 5-dimensional Lévy process over a
time horizon [0, T ]. We then estimate the parameters of the marginal processes and
the dependence parameters from the simulated data using our estimation approach.
We choose two different thresholds ε = 10−4 and ε = 10−6 for jump sizes we can
observe, i.e., we neglect jumps smaller than ε = 10−4 or ε = 10−6, respectively. Each
simulation/estimation step is repeated 1000 times. The estimation results are reported
in Tables 6.2, 6.3, and 6.4. We give the true values of the parameters, the mean of the
estimates of the 1000 repetitions and resulting estimates for bias and root mean square
error (RMSE). Since the parameters in the different trees rely on different numbers of
observations (the higher the tree, the more dimensions have to exceed the threshold at
the same time), we also report the mean numbers of available jumps per tree. As the
marginal parameters influence the estimation procedure of the dependence parameters,
we conduct another simulation study where we do not estimate the marginal parameters.
In this setting, the parameters of the univariate marginal processes are taken from the
simulation setup. The estimation results are given in Table 6.5. Comparing the tables,
we see that the lower threshold leads to a higher number of jumps. We also find that
weaker dependence leads to less co-jumps available for the estimation of higher trees than
a stronger dependence. The impact of the estimation error in the marginal parameters
on the estimators for the dependence structure is rather small, at least in our estimation
setting. We observe that the estimator for the dependence structure in Tree 4 of the
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Tree # Jumps True Value Mean Bias RMSE

High Dep. 1 870.61 5 5.0038 3.78 · 10−3 2.33 · 10−1

2 833.51 0.8 0.7987 −1.28 · 10−3 1.33 · 10−2

3 814.39 0.8 0.7980 −1.97 · 10−3 1.34 · 10−2

4 798.46 0.8 0.7890 −1.10 · 10−2 2.19 · 10−2

Med. Dep. 1 707.18 2 2.0010 1.02 · 10−3 9.65 · 10−2

2 573.56 0.3 0.2983 −1.67 · 10−3 4.58 · 10−2

3 498.45 0.3 0.2983 −1.72 · 10−3 4.97 · 10−2

4 451.69 0.3 0.3001 1.31 · 10−4 5.11 · 10−2

Low Dep. 1 500.10 1 1.0016 1.63 · 10−3 4.46 · 10−2

2 267.36 -0.2 -0.1987 1.31 · 10−3 4.98 · 10−2

3 163.22 -0.2 -0.1992 7.96 · 10−4 7.12 · 10−2

4 113.91 -0.2 -0.2004 −3.76 · 10−4 9.50 · 10−2

Table 6.2: Results for a time horizon T=1 and a threshold ε = 10−6 for three scenarios
from low dependence to high dependence. The columns refer to the number
of jumps used in the estimation of parameters within a certain tree, the true
value of the parameters, the mean of the estimated parameters, estimated
bias and RMSE from 1000 Monte Carlo repetitions. The first three trees
contain more than one dependence function and we report the mean values
of the estimators in these cases.

high dependence structure is slightly more symmetric if the marginal parameters are
known, see Figure 6.7 and 6.13. In all cases, the bias is very small. We find, however,
that the RMSE is affected by the number of jumps available in certain trees. Comparing
the RMSEs in the second, third and fourth tree, the RMSE increases with decreasing
number of jumps. The RMSE in the first tree is not directly comparable to the RMSEs in
the subsequent trees since in the first tree, we estimate the parameter of a bivariate Lévy
copula instead of a distributional copula, and therefore, we estimate a different parameter
in a different parameter space. This effect is illustrated in Figures 6.7, 6.11, 6.12, and
6.13 in terms of histograms of the estimates. Overall the results of the simulation study
are very satisfying. The simulation and estimation algorithms work well within the
simulation study in terms of accuracy. Furthermore, the estimators are well distributed
around the true value.

6.4 Non-Gaussian Ornstein-Uhlenbeck Processes

In the previous sections, we have shown how to use the pair-Lévy copula construction
to create dependent Lévy processes in arbitrary dimensions. Here, we discuss how to
transfer this concept to more advanced models which use Lévy processes as building
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Figure 6.7: Histograms of the estimation results for a time horizon T=1 and a threshold
ε = 10−6. Each column refers to one scenario, the rows refer to the estimated
parameters in the first to fourth tree.
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blocks. That is, we show how to apply the pair-Lévy copula construction to model the
dependence of stochastic processes that do not necessarily satisfy the conditions of a
Lévy process but are more appropriate in certain applications. Important examples of
such processes are Ornstein-Uhlenbeck processes that are driven by Lévy subordinators.
Barndorff-Nielsen and Shephard (2001) introduce these processes as the solution to a
stochastic differential equation to model the volatility of financial time series, and they
already address a multivariate extension of their model. Here, we show how the flexi-
bility and tractability of the pair-Lévy copula concept can be transferred to this highly
relevant area of multivariate financial and econometric research. Before we start with
the multivariate case, we recall the univariate non-Gaussian Ornstein-Uhlenbeck model.

6.4.1 Univariate Ornstein-Uhlenbeck Processes

We follow Brockwell et al. (2007) and introduce Ornstein-Uhlenbeck processes that are
driven by univariate, second order Lévy subordinators. That is, Lévy subordinators with
E(L2

1) < ∞. To avoid identifiability problems, we suppose that the Lévy subordinator
(Lt)t∈R+ is scaled, such that Var(Lt) = t. The univariate Ornstein-Uhlenbeck processes,
which we consider here, are stationary solutions to the stochastic differential equation

dyt = −α yt + σ dLt, (6.6)

where α, σ > 0 and (Lt)t∈R+ is a second order Lévy subordinator. We denote the
process (Lt)t∈R+ as the background driving Lévy process of (yt)t∈R+ . The stochastic
process, defined by

yt = exp (−αt)y0 + σ

∫ t

0

exp (−α(t− u)) dLu, (6.7)

is a stationary solution to the stochastic differential equation (6.6) if y0 is independent
of (Lt)t∈R+ and has the distribution of σ

∫∞

0
e−αudLu, see Brockwell et al. (2007). Jumps

in the background driving Lévy process (Lt)t∈R+ result in jumps in (yt)t∈R+ . After a
jump of (yt)t∈R+ , the process decreases exponentially until the next jump in the Lévy
subordinator causes again a jump in the Ornstein-Uhlenbeck process. This is illustrated
in Figure 6.8, where we see an Ornstein-Uhlenbeck process with parameters α = 1/2
and σ = 15. This process is driven by a gamma process, see Example 5.13, with param-
eters c = 1/2 and λ =

√
1/2. Figure 6.8 visualizes clearly the connection between the

Ornstein-Uhlenbeck process and the background driving Lévy process and shows how
the jumps in the background driving Lévy process (Lt)t∈R+ carry over to the process
(yt)t∈R+ . For example, the large jumps of (Lt)t∈R+ around t = 9.5 and t = 15.1 cause the
large jumps of (yt)t∈R+ at these points in time. The time interval [15.5, 17.5] is particu-
larly illustrative for the path behavior of these processes. All jumps of the background
driving Lévy process in this interval are very small, causing an exponential decline of
the Ornstein-Uhlenbeck process within this interval.
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Figure 6.8: This figure shows a realization of an Ornstein-Uhlenbeck process in the up-
per plot. The lower plot shows the corresponding background driving Lévy
process.

Please note that the condition on the background driving Lévy process for the exis-
tence of a stationary solution to Equation (6.6) can be relaxed from a second order Lévy
subordinator to E(0 ∨ log |L1|) <∞, see Brockwell and Lindner (2012, Example 1).

6.4.2 Multivariate Ornstein-Uhlenbeck Processes

The univariate case illustrates the effect of the jumps in the background driving Lévy
process on the Ornstein-Uhlenbeck process. This makes dependence modeling of the
dimensions of a multivariate Ornstein-Uhlenbeck process straightforward. The idea is
to use different univariate Ornstein-Uhlenbeck processes and specify the dependence in
these processes by modeling the dependence of the background driving Lévy process with
a Lévy copula. Therefore, we can apply the theory of pair-Lévy copula constructions
to model the dependence structure of high-dimensional Ornstein-Uhlenbeck processes.
We follow the idea of Barndorff-Nielsen and Shephard (2001, Section 6.4) and define the
multivariate Ornstein-Uhlenbeck process (yt)t∈R+ in Rd

+ by the following equations

yjt = exp (−αjt)y
j
0 + σj

∫ t

0

exp (−αj(t− u)) dLj
u, for j = 1, . . . , d, (6.8)

where (Lt)t∈R+ is a multivariate subordinator, see Definition 5.11, and the marginal

processes satisfy Var(Lj
t) = t, for j = 1, . . . , d. This procedure is illustrated in Figure

6.9. There we see a realization of a 3-dimensional Ornstein-Uhlenbeck process. The
parameters of the univariate Ornstein-Uhlenbeck processes are αj = 1/2 and σj = 15
for all three margins (j = 1, 2, 3). The univariate Lévy subordinators are all gamma
processes with parameters c = 1/2 and λ =

√
1/2. We use the same marginal processes

for all three time series, since our focus is on dependence modeling. The dependence
structure of the 3-dimensional Lévy process is modeled via the background driving Lévy
process by a 3-dimensional pair-Lévy copula construction as in Figure 6.1, where we use
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Figure 6.9: This figure shows a realization of a 3-dimensional Ornstein-Uhlenbeck pro-
cess, where the dependence structure in the background driving Lévy process
is modeled by a PLCC.

a bivariate Clayton-Lévy copula with parameter θ = 5 for C1,2 and a bivariate Clayton-
Lévy copula with parameter θ = 1 for C2,3. The bivariate distributional copula C1,3|2

is a Gaussian copula with parameter ρ = 0.2. Due to the strong dependence between
the first and second dimension and the weak dependence between the second and third,
most of the dependence is already captured in the first tree of the pair-Lévy copula by
the bivariate Lévy copulas. Figure 6.9 visualizes how the dependence structure of the
background driving Lévy processes is carried over to the Ornstein-Uhlenbeck process.
The strong dependence between the Lévy subordinator in the first and second dimen-
sion is directly visible in the path behavior of the first and the second dimension of the
Ornstein-Uhlenbeck process. These two dimensions are almost identical. The weaker
dependence between the third dimension and the first two in the background driving
Lévy process is also visible in the Ornstein-Uhlenbeck paths. We observe joint jumps in
Figure 6.9 in all three dimensions, however, the dependence in the jump sizes is much
stronger between the first and second dimension, compared to the other bivariate mar-
gins. This effect is an immediate consequence of the jump dependence in the background
driving Lévy process, and this example illustrates the potential of the pair-Lévy cop-
ula construction framework for modeling the dependence structure of high-dimensional
Ornstein-Uhlenbeck processes. In this example, the univariate driving background sub-
ordinators are identical in law, however, due to the flexibility of the pair-Lévy copula
construction, it is also possible to define multivariate Ornstein-Uhlenbeck models, where
each marginal background driving Lévy process belongs to a different parametric family.

6.5 Overview of Further Applications

In this section, we give an outlook on four possible applications of the pair-Lévy copula
construction framework. In the first two subsections, Lévy processes are used directly in
the modeling procedures, whereas we apply the Ornstein-Uhlenbeck processes of Section
6.4 in the last two subsections.
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6.5.1 Operational Risk Modeling

A possible application of the pair-Lévy copula construction framework is operational
risk modeling. For an introduction to the topic, we refer to McNeil et al. (2005) and
Panjer (2006). The Basel II accord requires banks to implement a sound operational risk
management (Basel Committee on Banking Supervision, 2004), and under the advanced
measurement approach in the Basel II framework, banks are allowed to develop their
own model that accounts for their operational risk exposure. Within this framework the
banks are encouraged to classify their losses to 8 business lines and 7 event types and
to model the dependencies between these 56 risk cells. Böcker and Klüppelberg (2008,
2010) model the losses in the single cells by a compound Poisson process and suggest to
apply the Lévy copula concept for dependence modeling. In order to implement such a
theoretical risk modeling approach in a bank, tractable and flexible dependence concepts
for 56 dimensions are needed. Up to now, the pair-Lévy copula construction is the only
Lévy copula framework that offers these properties. Therefore, the pair-Lévy copula
construction approach permits the implementation of Lévy copula modeling within the
operational risk framework.

6.5.2 Subordination of Lévy Processes

A different area of research, where the pair-Lévy copula construction can be applied to,
is subordination of Lévy processes. Please note that, in order to facilitate the reading, we
use the notation (X(t))t∈R+ instead of (Xt)t∈R+ for stochastic processes in this subsection.
In the univariate case, subordination is a popular way to define new families of Lévy
processes. Therefore, one combines an arbitrary univariate Lévy process (L(t))t∈R+ with
an independent univariate Lévy subordinator (T (t))t∈R+ by

X(t) = L(T (t)).

This procedure defines a new Lévy process (X(t))t∈R+ and is extensively studied, e.g.,
in Sato (1999). Barndorff-Nielsen et al. (2001b) extend this procedure to the multi-
variate case, where they set (L(t))t∈R+ = (L1(t), . . . , Ld(t))t∈R+ to be a Lévy process
consisting of d independent marginal processes. Furthermore, they set (T (t))t∈R+ to be
a d-dimensional Lévy subordinator and define

X(t) = (L1(T 1(t)), . . . , Ld(T d(t))).

Again, this defines a d-dimensional Lévy process. Since this construction method uses
multivariate subordinators, we can apply the pair-Lévy copula construction to model the
dependence between the dimensions of the process (T (t))t∈R+ . Thus, we use the pair-
Lévy copula construction to introduce a dependence structure implicitly to (X(t))t∈R+ .
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Figure 6.10: The plot shows the path of three volatility indices between January 2008
and March 2013. The blue line shows a volatility measure for the S&P
500 index (VIX), the green line is a measure for the volatility of the DAX
(VDAX-NEW), and the red line visualizes a volatility process connected to
the NIKKEI 225 (csfi-VXJ).

6.5.3 Modeling of Multivariate Volatility Indices

A further possible application of the pair-Lévy copula construction is dependence mod-
eling for volatility indices. These indices exist for a broad variety of different markets
and are used as underlyings for financial derivatives, see, e.g., Rhoads (2011). In Fig-
ure 6.10 we show three different volatility indices, which are all based on well-known
equity indices. The volatility indices in the chart are the Chicago Board Options Ex-
change market volatility index (VIX) on the S&P 500, a volatility index calculated by
the Deutsche Börse on the DAX (VDAX-NEW), and a volatility index for the Nikkei
225 (csfi-VXJ) provided by the Center for the Study of Finance and Insurance at Osaka
University. The data is provided directly by the respective institutions. Distinct fea-
tures of these times series are the sudden jumps and the exponential decline, as well as
the strong dependence between the dimensions. These features can be well captured by
multivariate Ornstein-Uhlenbeck processes, where the background driving Lévy process
is a PLCC subordinator.

6.5.4 Stochastic Volatility Modeling

Multivariate stochastic volatility modeling is another research area, where we can ap-
ply the pair-Lévy copula construction. The idea in the univariate case goes back to
Barndorff-Nielsen and Shephard (2001), where they already mention a possible multi-
variate generalization of their stochastic volatility model. The multivariate model, which
we use here, is defined in Barndorff-Nielsen et al. (2002) by the stochastic differential
equation

dxt = (µ+ Σtβ)dt+ Σ
1/2
t dWt + ρdLt, (6.9)
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where (Wt)t∈R+ is a d-dimensional standard Brownian motion, (Σt)t∈R+ is a (d × d)-
dimensional time varying covariance matrix, (Lt)t∈R+ is a (d+k)-dimensional Lévy sub-
ordinator with independent marginal processes, µ, β ∈ Rd, and ρ ∈ Rd×(d+k). Barndorff-
Nielsen et al. (2002) model the dependence in the volatility processes (Σt)t∈R+ by a

factor model. That is, they define an Ornstein-Uhlenbeck process (yt)t∈R+ on R(d+k)
+

driven by the (d+ k)-dimensional Lévy subordinator (Lt)t∈R+ , i.e., they construct d+ k
independent univariate Ornstein-Uhlenbeck processes. The first d Ornstein-Uhlenbeck
processes are responsible for the idiosyncratic properties of the volatility model and the
subsequent k processes represent the common factors. That is, they define two diagonal
matrices

It = diag(y1t , . . . , y
d
t ),

Jt = diag(yd+1
t , . . . , yd+k

t ),

and a factor loadings matrix B ∈ Rd×k. Altogether, the stochastic volatility matrix
process is defined by

Σt = It +BJtB
′. (6.10)

The term ρdLt in Equation (6.9) accounts for the leverage effect, which is often observed
in financial data, see, e.g., Cont (2001). Note that the Lévy subordinator (Lt)t∈R+

appears not only in the leverage term, but also in the definition of the (d+k)-dimensional
Ornstein-Uhlenbeck process (yt)t∈R+ , which is used to define the volatility processes
(Σt)t∈R+ . Therefore, large jumps in the Lévy process cause a jump in the volatility
process and also influence the stock price process (xt)t∈R+ directly. Thus, this model is
capable to account for the leverage effect.

The factor approach in Equation (6.10) is not the only possibility to model the depen-
dence structure in multivariate stochastic volatility models. A different framework for
dependence modeling is already suggested in Barndorff-Nielsen and Shephard (2001).
They propose to generalize such a model by allowing for dependent Ornstein-Uhlenbeck
processes. As we have shown in Subsection 6.4.2, the pair-Lévy copula construction
is particularly suitable for modeling the dependence of these volatility processes in
higher dimensions. This framework also offers the possibility to simplify the multi-
variate stochastic volatility model in Equation (6.9) decisively. Since we do not need
to rely on factors anymore, it is possible to use d instead of d + k Ornstein-Uhlenbeck
processes. Moreover, Σ can be defined as

Σt = I
1/2
t BI

1/2
t , (6.11)

where I
1/2
t = diag

(√
y1t , . . . ,

√
ydt

)
and B is a constant correlation matrix. Furthermore,

we choose ρ ∈ Rd instead of Rd×(d+k) to account for the leverage effect. Note that
even if we select a constant B, rolling window estimates of the correlation coefficient
between the dimensions of a realization of (xt)t∈R+ on a discrete time grid may show
time varying correlations. This is due to the dependence of the driving background
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Lévy process and the leverage effect. If the dependence between the dimensions in
(Lt)t∈R+ is strong, exceptional large jumps in one dimension tend to occur simultaneously
with exceptional large jumps in the other dimensions. Allowing for the leverage effect,
i.e. setting ρ 6= 0 componentwise, results in simultaneous joint jumps in the different
dimensions of (xt)t∈R+ . Therefore, this model is able to account for an increase in the
absolute value of the correlation in times of high volatility.

A further extension of the multivariate stochastic volatility model is to use non-
negative CARMA processes (Brockwell et al., 2011) instead of Ornstein-Uhlenbeck pro-
cesses to describe the volatility process. A multivariate generalization of the CARMA
model can be done analogously to the Ornstein-Uhlenbeck framework via Lévy copulas.

6.6 Conclusion

Lévy copulas describe the jump dependence of Lévy processes in a multivariate setting.
For more than two dimensions, however, known parametric Lévy copulas are very restric-
tive. In this chapter, we develop a multidimensional pair construction of Lévy copulas
from 2-dimensional dependence functions, which are either Lévy copulas or distributional
copulas. The resulting parametric Lévy copula is very flexible, since every regular vine
and every bivariate (Lévy) copula can be used in the PLCC. Therefore, the pair-Lévy
copula construction opens the way to flexible high-dimensional continuous-time model-
ing. In a 5-dimensional simulation study, we evaluate the proposed pair-Lévy copula
concept. Overall, the results of this simulation study are very satisfying. In particular,
the bias of the estimators is small throughout all the trees in the pair-Lévy copula con-
struction. The pair-Lévy copula concept is not only theoretically appealing, it is also
important in numerous applications.
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6.A Explicit 3-Dimensional Clayton PLCC

Here, we present a special case, where we can give an explicit formula for a 3-dimensional
pair-Lévy copula. We use the setting of Example 6.5 and set the Lévy copulas C1,2 and
C2,3 to be Clayton-Lévy copulas (5.9) with the same parameter θ. Furthermore we set
C1,3|2 to be a bivariate distributional Clayton copula (2.7) with parameter θ̃ > 0. This
simplifies the formula for this distributional copula to

C(u, v) = (u−θ̃
1 + u−θ̃

2 − 1)−
1
θ̃ ,

where we set the parameter θ̃ = θ
θ+1

. Using Proposition 6.9, we get

F1|u2(u1) =
∂C1,2(u1, u2)

∂u2
= (u−θ

1 + u−θ
2 )−

θ+1
θ u

−(θ+1)
2 ,

and

F3|u2
(u3) =

∂C2,3(u2, u3)

∂u2

= (u−θ
3 + u−θ

2 )−
θ+1
θ u

−(θ+1)
2 .

Finally, we construct a 3-dimensional Lévy copula as suggested in Equation (6.2)

C1,2,3(u1, u2, u3) =

∫

[0,u2]

C1,3|2(F1|z2(u1), F3|z2(u3))dz2

=

∫

[0,u2]

((
(u−θ

1 + z−θ
2 )−

θ+1
θ z

−(θ+1)
2

)− θ
θ+1

+
(
(u−θ

3 + z−θ
2 )−

θ+1
θ z

−(θ+1)
2

)− θ
θ+1 − 1

)− θ+1
θ

dz2

=

∫

[0,u2]

(
(u−θ

1 + z−θ
2 )zθ2 + (u−θ

3 + z−θ
2 )zθ2 − 1

)− θ+1
θ dz2

=

∫

[0,u2]

(
u−θ
1 zθ2 + 1 + u−θ

3 zθ2
)− θ+1

θ dz2

=

∫

[0,u2]

(
u−θ
1 + z−θ

2 + u−θ
3

)− θ+1
θ z

−(θ+1)
2 dz2

=
(
u−θ
1 + u−θ

2 + u−θ
3

)− 1
θ

and get a 3-dimensional Clayton-Lévy copula.

6.B Proofs

For readers convenience, we provide the more complicated proofs of this chapter in the
appendix.
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Proof of Theorem 6.4

For the proof of Theorem 6.4, we need a lemma which we state first.

Lemma 6.12 Let µ be a positive Radon measure on Rd
+, f1 : x 7→ ξ1x and f2 : x 7→ ξ2x

µ-measurable measure-valued maps, where ξ1x and ξ2x are probability measures on R+ with
corresponding distribution functions F 1

x and F 2
x . Let C be a 2-dimensional distributional

copula and let ξCx be the probability measure defined by the distribution function C(F 1
x , F

2
x )

on R2
+. Then, the map x 7→ ξCx is µ-measurable.

Proof: By definition, the maps x 7→ ξ1x(B1) and x 7→ ξ2x(B2) are µ-measurable for any
B1, B2 ∈ B(R+). This holds in particular for the intervals [0, b] ∈ B(R+). Therefore, the
maps x 7→ F 1

x (b1) and x 7→ F 2
x (b2) are µ-measurable for any b1, b2 ∈ R+. By definition

of ξCx , we have
ξCx (B) = C(F 1

x (b1), F
2
x (b2))

for any rectangle B ∈ {[0, b1]× [0, b2] : b1, b2 ∈ R+}. Since C is a copula, it is continuous
and therefore measurable. We get that x 7→ ξCx (B) is a composition of µ-measurable
functions and therefore µ-measurable for any rectangle B ∈ {[0, b] : b ∈ R2

+}. Now
that we have shown that x 7→ ξCx (B) is µ-measurable for any B ∈ {[0, b] : b ∈ R2

+},
we use the same argumentation as in the proof of Ambrosio et al. (2000, Proposition
2.26), to show that x 7→ ξCx (B) is µ-measurable for any B ∈ B(R2

+). Note that the set
of intervals B ∈ {[0, b] : b ∈ R2

+} is closed under finite intersection, it is a generator
of the σ-algebra B(R2

+), and there exists a sequence (Bh) of these intervals such that
R2

+ = ∪hBh. Denote the family of Borel sets such that x 7→ ξCx (B) is µ-measurable by
M. Obviously, M ⊃ {[0, b] : b ∈ R2

+}. In order to use Ambrosio et al. (2000, Remark
1.9), we have to show that the following conditions hold:

(i) (Eh) ∈M, Eh ↑ E ⇒ E ∈M,

(ii) E,F , E ∪ F ∈M⇒ E ∩ F ∈M,

(iii) E ∈M⇒ R2
+\E ∈M.

This is already shown in the first part in the proof of Ambrosio et al. (2000, Proposition
2.26). ✷

Now we are able to prove Theorem 6.4.

We show that the integral is well-defined in the first step. From Theorem 6.3 follows
that (u2, . . . , ud−1) 7→ ξ1|u2,...,ud−1

is µ2,...,d−1-measurable. By the definition of measure-
valued maps, (u2, . . . , ud−1) 7→ ξ1|u2,...,ud−1

(B) is µ2,...,d−1-measurable for any B ∈ B(R+)
and especially for any B ∈ {[0, b] : b ∈ R+}. Therefore,

ξ1|u2,...,ud−1
([0, b]) = F1|u2,...,ud−1

(b)

is µ2,...,d−1-measurable. With the same arguments, we see immediately that Fd|u2,...,ud−1
(b)

is µ2,...,d−1-measurable for any b ∈ R+. Since every copula is continuous, we can use the
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same arguments as in the proof of Lemma 6.12 to show that

(u2, . . . , ud−1) 7→ C(F1|u2,...,ud−1
(u1), Fd|u2,...,ud−1

(ud))

is µ2,...,d−1-measurable and that the integral is well-defined. To show that C1,...,d is in-
deed a Lévy copula, we have to check the properties of Tankov (2005, Definition 3.3).
We start by showing that C1,...,d is d-increasing. In a first step, we show this prop-
erty for any d-box B where all vertices lie in Rd

+. For every (u2, . . . , ud−1) ∈ Rd−2
+

let ξC1,d|u2,...,ud−1
be the probability measure on R2

+ defined by the distribution function

C(F1|u2,...,ud−1
(u1), Fd|u2,...,ud−1

(ud)). With Lemma 6.12 we know that (u2, . . . , ud−1) 7→
ξC1,d|u2,...,ud−1

is µ2,...,d−1-measurable. By definition of C1,...,d

C1,...,d(u1, . . . , ud) =

∫

[0,u2]×...×[0,ud−1]

C(F1|z2,...,zd−1
(u1), Fd|z2,...,zd−1

(ud))dµ2,...,d−1(z2, . . . , zd−1)

=

∫

[0,u2]×...×[0,ud−1]




∫

[0,u1]×[0,ud]

dξCu


 dµ2,...,d−1(z2, . . . , zd−1)

holds, and therefore

C1,...,d(u1, . . . , ud) = µ2,...,d−1 ⊗ ξC1,d|u2,...,ud−1
([0, u1]× . . .× [0, ud])

= µ1,...,d([0, u1]× . . .× [0, ud]).

Since µ2,...,d−1 ⊗ ξC1,d|u2,...,ud−1
is a positive and well-defined measure,

VC1,...,d
(B) = µ2,...,d−1 ⊗ ξCu (B) ≥ 0.

In the next step, we denote uI := {ui : i ∈ I} and show that the limit in Equation (6.1)
exists for any I ⊂ {1, . . . , d} nonempty, I 6= {1, . . . , d}. First, suppose that {1, d} ⊂ I.
Since I 6= {1, . . . , d}, we say w.l.o.g. that {2} /∈ I. Since C1,...,d is non-decreasing in
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every component, it suffices to show that

lim
uI→∞

C1,...,d(u1, . . . , ud)

= lim
uI→∞

∫

[0,u2]×...×[0,ud−1]

C(F1|z2,...,zd−1
(u1), Fd|z2,...,zd−1

(ud))dµ2,...,d−1(z2, . . . , zd−1)

= lim
uI\{1,d}→∞

∫

[0,u2]×...×[0,ud−1]

dµ2,...,d−1(z2, . . . , zd−1)

= lim
uI\{1,d}→∞

∫

[0,u2]×...×[0,ud−1]

∫

[0,∞)

dξ1|z2,...,zd−1
dµ2,...,d−1(z2, . . . , zd−1)

= lim
uI\{1,d}→∞

∫

[0×∞)×[0,u2]×...×[0,ud−1]

dµ1,...,d−1(z1, . . . , zd−1)

= lim
uI\{1,d}→∞

C1,...,d−1(∞, u2, . . . , ud−1)

≤ C1,...,d−1(∞, u2,∞, . . . ,∞) = u2

to prove that the limit exists. We use the dominated convergence theorem (stated, e.g.,
in Ambrosio et al. (2000, Theorem 1.21)) and the fact that for every distributional copula
C(u1, u2) ≤ 1 holds. For the inequality, we use the fact that Assumption 5.18 holds for
the Lévy copula C1,...,d−1. Now, suppose that at least one element of {1, d} is not in I.
W.l.o.g. {1} /∈ I then we have

lim
uI→∞

C1,...,d(u1, . . . , ud)

= lim
uI→∞

∫

[0,u2]×...×[0,ud−1]

C(F1|z2,...,zd−1
(u1), Fd|z2,...,zd−1

(ud))dµ2,...,d−1(z2, . . . , zd−1)

≤ lim
uI\{d}→∞

∫

[0,u2]×...×[0,ud−1]

F1|z2,...,zd−1
(u1)dµ2,...,d−1(z2, . . . , zd−1)

= lim
uI\{d}→∞

∫

[0,u2]×...×[0,ud−1]

∫

[0,u1]

dξ1|z2,...,zd−1
dµ2,...,d−1(z2, . . . , zd−1)

= lim
uI\{d}→∞

∫

[0,u1]×[0,u2]×...×[0,ud−1]

dµ1,...,d−1(z2, . . . , zd−1)

≤ C1,...,d−1(u1,∞, . . . ,∞) = u1.

Now that we have shown that the limit exists, it follows immediately that C1,...,d is

d-increasing on R
d

+. To show that the Lévy copula C1,...,d has Lebesgue margins, we
can again use the same equations as before and replace “≤” by “=” since in this case
|I| = d− 1 and therefore we can directly use Assumption 5.18. ✷
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Proof of Proposition 6.10

Suppose that F1|u2,...,ud−1
and Fd|u2,...,ud−1

are continuously differentiable. For any rect-
angle B = ([0, u1]× . . .× [0, ud]), we get by Theorem 6.3
∫

Rd
+

1B(z1, . . . , zd)dµ1,...,d(z1, . . . , zd) =

∫

[0,u1]×...×[0,ud−1]
Fd|u1,...,ud−1

(ud)dµ1,...,d−1(z1, . . . , zd−1).

By the definition of the pair-Lévy copula we see that
∫

Rd
+

1B(z1, . . . , zd)dµ1,...,d(z1, . . . , zd)

=

∫

Rd−2
+

(∫

R2
+

1B(z1, . . . , zd)dξ
C
1,d|u2,...,ud−1

)
dµ2,...,d−1(z2, . . . , zd−1)

=

∫

[0,u2]×...×[0,ud−1]

(
C(F1|z2,...,zd−1

(u1), Fd|z2,...,zd−1
(ud))

)
dµ2,...,d−1(z2, . . . , zd−1)

=

∫

[0,u2]×...×[0,ud−1](∫

[0,u1]

∂C(F1|z2,...,zd−1
(z1), Fd|z2,...,zd−1

(ud))

∂F1|z2,...,zd−1
(z1)

∂F1|z2,...,zd−1
(z1)

∂z1
dz1

)
dµ2,...,d−1(z2, . . . , zd−1)

=

∫

[0,u2]×...×[0,ud−1](∫

[0,u1]

∂C(F1|z2,...,zd−1
(z1), Fd|z2,...,zd−1

(ud))

∂F1|z2,...,zd−1
(z1)

dξ1|z2,...,zd−1
(z1)

)
dµ2,...,d−1(z2, . . . , zd−1)

=

∫

[0,u1]×...×[0,ud−1]

∂C(F1|z2,...,zd−1
(z1), Fd|z2,...,zd−1

(ud))

∂F1|z2,...,zd−1
(z1)

dµ1,...,d−1(z1, . . . , zd−1),

and therefore

Fd|u1,...,ud−1
(ud) =

∂C(F1|u2,...,ud−1
(u1), Fd|u2,...,ud−1

(ud))

∂F1|u2,...,ud−1
(u1)

holds µ1,...,d−1-almost everywhere. The fact that this result does not only hold for fixed
values of ud but for all ud ∈ R+ is already shown in the proof of Tankov (2005, Lemma
4.2). Since F1|u2,...,ud−1

, Fd|u2,...,ud−1
are continuously differentiable and C is by Assump-

tion 6.7 also continuously differentiable, we get immediately that Fd|u1,...,ud−1
is differen-

tiable and

∂Fd|u1,...,ud−1
(ud)

∂ud

=
∂2C(F1|u2,...,ud−1

(u1), Fd|u2,...,ud−1
(ud))

∂F1|u2,...,ud−1
(u1)∂Fd|u2,...,ud−1

(ud)

∂Fd|u2,...,ud−1
(ud)

∂ud

is a composition of continuous functions and therefore continuous. Finally, all bivari-
ate Lévy copulas are by Assumption 6.7 continuously differentiable and therefore, the
proposition follows by complete induction. ✷
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Proof of Proposition 6.11

This statement follows from the definition of the pair-Lévy copula construction, since

C1,...,d(u1, . . ., ud) =∫

[0,u2]×...×[0,ud−1]

C(F1|z2,...,zd−1
(u1), Fd|z2,...,zd−1

(ud))dµ2,...,d−1(z2, . . . , zd−1)

=

∫

[0,u2]×...×[0,ud−1]

(∫

[0,u1]×[0,ud]

c(F1|z2,...,zd−1
(z1), Fd|z2,...,zd−1

(zd))

∂F1|z2,...,zd−1
(z1)

∂z1

∂Fd|z2,...,zd−1
(zd)

∂zd
d(z1, zd)

)
dµ2,...,d−1(z2, . . . , zd−1)

=

∫

[0,u2]×...×[0,ud−1]

(∫

[0,u1]×[0,ud]

c(F1|z2,...,zd−1
(z1), Fd|z2,...,zd−1

(zd))

∂F1|z2,...,zd−1
(z1)

∂z1

∂Fd|z2,...,zd−1
(zd)

∂zd
d(z1, zd)

)

f2,...,d−1(z2, . . . , zd−1)d(z2, . . . , zd−1)

=

∫

[0,u1]×...×[0,ud]

c(F1|z2,...,zd−1
(z1), Fd|z2,...,zd−1

(zd))

∂F1|z2,...,zd−1
(z1)

∂z1

∂Fd|z2,...,zd−1
(zd)

∂zd
f2,...,d−1(z2, . . . , zd−1)d(z1, . . . , zd)

as stated. ✷

6.C Results of the Simulation Study

Here, we present additional results from the simulation study with varying thresholds
and time horizons. The tables are in the same format as Table 6.2. We also provide the
corresponding histograms similar to Figure 6.7.
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Tree # Jumps True Value Mean Bias RMSE

High Dep. 1 87.26 5 5.0403 4.03 · 10−2 7.06 · 10−1

2 83.63 0.8 0.7933 −6.76 · 10−3 4.61 · 10−2

3 81.69 0.8 0.7810 −1.90 · 10−2 5.67 · 10−2

4 80.10 0.8 0.7086 −9.14 · 10−2 1.46 · 10−1

Med. Dep. 1 70.82 2 2.0312 3.12 · 10−2 3.19 · 10−1

2 57.47 0.3 0.2970 −3.00 · 10−3 1.50 · 10−1

3 50.00 0.3 0.2844 −1.56 · 10−2 1.59 · 10−1

4 45.37 0.3 0.2797 −2.03 · 10−2 1.63 · 10−1

Low Dep. 1 50.21 1 1.0246 2.46 · 10−2 1.55 · 10−1

2 26.88 -0.2 -0.2019 −1.87 · 10−3 1.67 · 10−1

3 16.42 -0.2 -0.1859 1.41 · 10−2 2.57 · 10−1

4 11.47 -0.2 -0.1378 6.22 · 10−2 3.44 · 10−1

Table 6.3: Results for a time horizon T=1 and a threshold ε = 10−4 for three scenarios
from low dependence to high dependence. The columns refer to the number
of jumps used in the estimation of parameters within a certain tree, the true
value of the parameters, the mean of the estimated parameters, estimated
bias and RMSE from 1000 Monte Carlo repetitions. The first three trees
contain more than one dependence function and we report the mean values
of the estimators in these cases. Compared to Table 6.2, the higher threshold
ε results in fewer observed jumps and in higher RMSE of the estimates.
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Tree # Jumps True Value Mean Bias RMSE

High Dep. 1 870.89 5 4.9921 −7.85 · 10−3 2.27 · 10−1

2 833.89 0.8 0.7995 −4.79 · 10−4 1.33 · 10−2

3 814.79 0.8 0.7978 −2.23 · 10−3 1.34 · 10−2

4 798.91 0.8 0.7890 −1.10 · 10−2 2.21 · 10−2

Med. Dep. 1 707.03 2 2.0027 2.74 · 10−3 9.50 · 10−2

2 573.47 0.3 0.2994 −6.18 · 10−4 4.87 · 10−2

3 498.36 0.3 0.2968 −3.17 · 10−3 5.05 · 10−2

4 451.75 0.3 0.2999 −1.46 · 10−4 5.18 · 10−2

Low Dep. 1 500.98 1 1.0041 4.14 · 10−3 4.50 · 10−2

2 268.03 -0.2 -0.1984 1.56 · 10−3 5.18 · 10−2

3 163.82 -0.2 -0.1978 2.16 · 10−3 7.11 · 10−2

4 114.17 -0.2 -0.1929 7.09 · 10−3 9.36 · 10−2

Table 6.4: Results for a time horizon T = 10 and a threshold ε = 10−4 for three scenarios
from low dependence to high dependence. The columns refer to the number
of jumps used in the estimation of parameters within a certain tree, the true
value of the parameters, the mean of the estimated parameters, estimated
bias and RMSE from 1000 Monte Carlo repetitions. The first three trees
contain more than one dependence function and we report the mean values
of the estimators in these cases. The results are comparable to Table 6.2.
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Tree # Jumps True Value Mean Bias RMSE

High Dep. 1 869.93 5 5.0084 8.43 · 10−3 1.65 · 10−1

2 832.90 0.8 0.7991 −9.13 · 10−4 1.30 · 10−2

3 813.85 0.8 0.7996 −4.15 · 10−4 1.27 · 10−2

4 798.03 0.8 0.7984 −1.64 · 10−3 1.27 · 10−2

Med. Dep. 1 706.83 2 2.0020 1.97 · 10−3 8.10 · 10−2

2 573.26 0.3 0.2980 −1.98 · 10−3 4.64 · 10−2

3 498.19 0.3 0.2981 −1.94 · 10−3 5.10 · 10−2

4 451.45 0.3 0.2972 −2.75 · 10−3 5.16 · 10−2

Low Dep. 1 500.08 1 1.0003 2.56 · 10−4 4.59 · 10−2

2 267.83 -0.2 -0.1982 1.83 · 10−3 5.22 · 10−2

3 163.83 -0.2 -0.1968 3.24 · 10−3 7.36 · 10−2

4 114.23 -0.2 -0.1973 2.67 · 10−3 9.67 · 10−2

Table 6.5: Results for a time horizon T = 1 and a threshold ε = 10−6 for three scenarios
from low dependence to high dependence. In this simulation study we only
estimate the dependence parameters. The marginal parameters are not esti-
mated but taken from the simulation setup. The columns refer to the number
of jumps used in the estimation of parameters within a certain tree, the true
value of the parameters, the mean of the estimated parameters, estimated
bias and RMSE from 1000 Monte Carlo repetitions. The first three trees
contain more than one dependence function and we report the mean values
of the estimators in these cases. The results are comparable to Table 6.2.
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Figure 6.11: Histograms of the estimation results for a time horizon T=1 and a threshold
ε = 10−4. Each column refers to one scenario, the rows refer to the estimated
parameters in the first to fourth tree. Compared to Figure 6.7, the higher
threshold ε and fewer jumps results in a higher variation of the estimator.
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Figure 6.12: Histograms of the estimation results for a time horizon T=10 and a thresh-
old ε = 10−4. Each column refers to one scenario, the rows refer to the
estimated parameters in the first to fourth tree. The results are compara-
ble to Figure 6.7.
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Figure 6.13: Histograms of the estimation results for a time horizon T=1 and a threshold
ε = 10−6. Each column refers to one scenario, the rows refer to the esti-
mated parameters in the first to fourth tree. Here, the marginal parameters
are known from the simulation setup, and the results are slightly more sym-
metric than in Figure 6.7, in particular for Tree 4 in the high dependence
setting.
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6.D Algorithms

In this section, we provide algorithms for the pair-Lévy copula concept. The structure
of distributional pair copulas, discussed in Chapter 3, and pair-Lévy copulas can both
be visualized by regular vines. We exploit these structural similarities and modify the
algorithms, presented in Appendix 3.C, slightly so that we can apply them to pair-Lévy
copulas. Firstly, we need to adapt the h-function (h-Func(·)) to

h(xi, xj , θ) =

{∂Ci,j(xi,xj ,θ)

∂xj
if mi,j = ∅,

∂Ci,j|mi,j
(xi,xj ,θ)

∂xj
else,

where we use the same notation as in Appendix 3.C. The inverse of the h-function
(h-Inverse(·), inverse with respect to the first variable) has to be modified similarly.

As discussed in Section 6.2.2, we use every available jump for the estimation procedure
and transform it with the marginal tail integral to the so called pseudo-jumps Γ1, . . . ,Γd.
Now, we can reuse Algorithm 4 with the adapted h-function to estimate a pair-Lévy
copula from the pseudo-jumps. Note that in these Algorithms ci,j can either be the
density of an ordinary copula or the density of a Lévy copula, depending on position in
the vine structure.

The simulation Algorithm 8 is based on Theorem 6.8. Therefore, we create pseudo-
jumps Γ1, . . . ,Γd which we then transform, in a second step, with the inverse of the
marginal tail integrals to the jumps of the Lévy process. As discussed in Section 6.2.1,
we do not simulate single pseudo-jumps, but a sequence (Γ1

i , . . . ,Γ
d
i )i=1,...,N of N pseudo-

jumps.
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Algorithm 8 Simulate a Poisson point process from a pair-Lévy copula (R-Vine)

Input: Let (Γ1
l )l=1,...,N be the jump times of a Poisson process with intensity 1 and N

large. (ω2
l , . . . , ω

d
l )l=1,...,N an independent sequence of i.i.d random variables with

ωi
l ∼ U([0, 1]).

1: for l = 1, . . . , N do
2: A← {1}
3: for i← 2, . . . d do
4: j ← selectNextVariable(A)
5: Γj

l ← ωj
l

6: B ← A
7: for h← 1, . . . i− 1 do
8: k ← selectConditionedIndex(j, B)
9: B ← B\{k}

10: calculateF(Γk
l , B)

11: Γj
l ← hInverse(Γj

l ,calculateF(Γ
k
l , B), θj,k)

12: end for
13: A← A ∪ {j}
14: end for
15: end for
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Chapter 7

Summary

The overall topic of this dissertation is dependence modeling in d > 2 dimensions. In
the first part of this dissertation, we summarize the copula concept to lay the theoretical
foundation for dependence modeling. We review the different state of the art multivariate
dependence modeling techniques, in particular, we discuss high-dimensional parametric
copula models, like Archimedean, implicit, and hierarchical Archimedean copulas. Still,
the main focus is on the pair-copula construction concept, which is a very flexible and
tractable concept to transfer the advantages of bivariate copula modeling to higher
dimensions. We contribute to this framework by providing a new representation for the
structure of the pair-copula construction. This new representation is easy to interpret
and particularly useful for the implementation of simulation and estimation algorithms.
Furthermore, we develop a new parameter reduction technique that crucially reduces the
number of parameters in the pair-copula construction approach. In an empirical study,
we evaluate the performance of the different high-dimensional dependence models and
show that a parameter reduced pair-copula is competitive in terms of complexity and
forecast quality.

In the second part of this dissertation, we discuss continuous-time dependence model-
ing. Up to now, dependence modeling for Lévy processes focuses mainly on the Brownian
motion. However, the Brownian motion has no jumps and is therefore not appropriate
in many applications. The recent introduction of Lévy copulas provides a new concept
for more flexible dependence models, since this mathematical tool allows to model the
dependence in the jumps of multivariate Lévy processes. Unfortunately, the generaliza-
tion of the existing parametric Lévy copula families to d > 2 dimensions is not flexible
enough. Thus, we develop a new concept to construct adaptable high-dimensional Lévy
copulas. The idea behind the pair-Lévy copula construction is similar to the pair-copula
construction for random variables. However, the technical details are substantially more

challenging since the Lévy copula is defined on R
d

+. In order to construct a pair-Lévy
copula in d dimensions, we need to assemble bivariate Lévy copulas and bivariate distri-
butional copulas. Simulation and estimation techniques are essential for the applicability
of this new concept, thus, we develop a fast sequential simulation procedure and derive
maximum likelihood estimators for pair-Lévy copulas. In a simulation study, we eval-
uate the performance of these simulation and estimation procedures. Furthermore, we
give outlook on possible applications of this high-dimensional dependence concept.

113



Chapter 7 Summary

Topics for Further Research

Finally, we want to point out some further research topics in dependence modeling for
stochastic processes. Up to now, continuous-time dependence modeling for pure jump
processes is not a very active research area but we hope that we have convinced the
reader that this is an important and interesting part in dependence modeling. One topic
for further research is the development of new bivariate parametric Lévy copula families.
Some construction techniques for building new Lévy copulas are well-known, however,
only few parametric models are explicitly defined and in use. Further bivariate Lévy
copulas that provide a broad range of different dependence structures are needed. As
we show in Chapter 6, these bivariate Lévy copulas can also be used in the multivari-
ate setting of a pair-Lévy copula construction. The development of new multivariate
Lévy copula families as benchmark models for the pair-Lévy copula construction is also
an interesting topic. Moreover, the adjustment of the presented PLCC techniques to
particular applications should be addressed in further research.
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in the first tree. In the second tree, we use a Gaussian copula. For the
process on the left, we set the parameter of C1,3|2 to ρ = −0.99 and for
the process on the right we set ρ = 0.99. . . . . . . . . . . . . . . . . . . 80

6.3 Pair construction of the second three dimensions of a 4-dimensional Lévy
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Czado, C., Gärtner, F. and Min, A. (2011). Analysis of Australian electricity loads
using joint bayesian inference of d-vines with autoregressive margins. In D. Kurowicka
and H. Joe (eds.), Dependence Modeling: Vine Copula Handbook, Singapore: World
Scientific, pp. 265–280.

— and Min, A. (2011). Bayesian inference for D-vines: Estimation and model selection.
In D. Kurowicka and H. Joe (eds.), Dependence Modeling: Vine Copula Handbook,
Singapore: World Scientific, pp. 249–264.
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Fischer, M., Köck, C., Schlüter, S. and Weigert, F. (2009). An empirical
analysis of multivariate copula models. Quantitative Finance, 9 (7), 839–854.

Frahm, G., Junker, M. and Schmidt, R. (2005). Estimating the tail-dependence
coefficient: Properties and pitfalls. Insurance: Mathematics and Economics, 37 (1),
80 – 100.

Frank, M. J. (1979). On the simultaneous associativity of f(x, y) and x+ y− f(x, y).
Aequationes Mathematicae, 19, 194–226.

Gaißer, S. C. (2010). Statistics for Copula-based Measures of Multivariate Association
– Theory and Applications to Financial Data. Ph.D. thesis, University of Cologne.

Genest, C. and Favre, A.-C. (2007). Everything you always wanted to know about
copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12 (4),
347–368.

—, Gendron, M. and Bourdeau-Brien, M. (2009a). The advent of copulas in
finance. The European Journal of Finance, 15 (7-8), 609–618.

—, Ghoudi, K. and Rivest, L.-P. (1995). A semiparametric estimation procedure of
dependence parameters in multivariate families of distributions. Biometrika, 82 (3),
543–552.

124



Bibliography
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