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Abstract 
Stroke is a severe disease of the brain, which leads to cell death and loss of function. 

Neuroprotective therapy to prevent neuronal loss has not been effective in human stroke 

patients. Therefore, new therapeutic strategies are needed. Spontaneous recovery can be 

observed in some patients. However, the basis of this phenomenon is not completely 

understood yet. Several endogenous regenerative processes have been observed following 

cerebral ischemia, which may be the reason for functional recovery and can be used as a  

basis for new therapeutic strategies. Shortly after the insult, endothelial cells start to 

proliferate and eventually lead to revascularization of ischemic brain tissue (angiogenesis). 

Furthermore, resident neural progenitor cells increase their proliferative activity, migrate 

towards the ischemic tissue and even differentiate into new neurons (neurogenesis). Detailed 

knowledge about the molecular mechanisms and interactions between angiogenesis and 

neurogenesis in response to stroke is needed in order to reveal new therapeutic targets. This 

PhD thesis established novel non-invasive imaging strategies to followed post-stroke 

angiogenesis and neurogenesis with particular regard to their dynamic temporal profiles. 

Bioluminescence imaging and magnetic resonance imaging were chosen for this purpose. 

The vascular endothelial growth factor receptor 2 was used as a molecular marker for 

angiogenesis, and for the first time the molecular basis of post-stroke vascular remodelling 

was observed non-invasively with bioluminescence imaging in an angiogenesis-specific 

reporter mouse. Structural changes of the vascular system were monitored with a magnetic 

resonance imaging strategy. Initial pronounced decrease of vessel density in ischemic tissue 

was followed by vessel density normalization. Non-invasive observation of endogenous 

neurogenesis is limited by the small number of neural progenitor cells within the adult brain. 

This work established the first bioluminescence protocol optimized for highly sensitive 

bioluminescence imaging of neurogenesis in a neurogenesis-specific reporter mouse. For 

the first time, increased proliferation of neural progenitor cells after stroke was observed with 

bioluminescence imaging. As post-stroke angiogenesis and neurogenesis may lead to 

regeneration of brain function, this PhD thesis established the first functional magnetic 

resonance imaging protocol for the specific application in mice. First investigations of brain 

function after stroke were performed and future studies will have the opportunity to follow 

functional recovery in transgenic mouse models. All methods used in this thesis bear the 

exceptional potential to be combined into a multimodal approach. Screening for new 

therapeutic targets within the brain endogenous regenerative capacity will be possible non-

invasively. Furthermore, the effect of new therapies on angiogenesis, neurogenesis or 

functional recovery can be quickly tested.  
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Zusammenfassung 
Der Schlaganfall ist eine schwere Erkrankung des Gehirns, welche zu Zelltod und 

Funktionsverlust führt. Da neuroprotektive Therapien bei Schlaganfallpatienten bisher 

unwirksam waren, werden neue therapeutische Ansätze benötigt. Einige Patienten zeigen 

nach dem Schlaganfall eine spontane Erholung, deren Grundlage noch nicht vollkommen 

entschlüsselt ist. Endogene, d.h. körpereigene Prozesse, können die Ursache der spontanen 

Erholung sein und können des weiteren als Grundlage für neue Therapien genutzt werden. 

Neue Blutgefäße entstehen in der Nähe das ischämische Hirngewebes (Angiogenese) und 

endogene neurale Vorläuferzellen wandern in das ischämische Gewebe, wo sie sich zu 

neuen Neuronen weiterentwickeln (Neurogenese). Detaillierte Kenntnisse über die 

endogenen Prozesse der Angiogenese und Neurogenese nach Schlaganfall werden nun 

benötigt, um auf ihrer Grundlage neue Therapien zu entwickeln. In dieser Arbeit werden 

erstmals nicht-invasive bildgebende Strategien verwendet um die endogenen Prozesse der 

Angiogenese und Neurogenese nach Schlaganfall zu beobachten und insbesondere ihren 

dynamischen Zeitverlauf zu dokumentieren. Für die Angiognese wurde der vaskuläre 

endotheliale Wachstumsfaktor Rezeptor 2 als molekularen Marker verwendet und erstmals 

mittels Biolumineszenzbildgebung die molekulare Regulation der Gefäßsystemver-

änderungen nach Schlaganfall nicht-invasive beobachtet. Strukturelle Veränderungen des 

Gefäßsystems wurden mittels einer kernspintomographischen Methode mit hoher räumlicher 

Auflösung observiert. Auf eine anfängliche Verringerung der Gefäßdichte in ischämischen 

Bereichen folgte einer Normalisierung. Die nicht-invasive Beobachtung der endogenen 

Neurogenese wird durch die geringe Anzahl von neuronalen Vorläuferzellen im adulten 

Gehirn erschwert. Diese Arbeit erstellte ein Protokoll für hochempfindliche 

Biolumineszenzbildgebung der Neurogenese in einer Neurogenese-spezifischen 

Reportermaus. Damit ließ sich erstmals die endogene Neurogenese nach Schlaganfall nicht-

invasiv untersuchen. Da die untersuchten spontanen regenerativen Prozesse die Grundlage 

funktioneller Erholung sein können, wurde in dieser Arbeit erstmals ein nicht-invasives 

funktionelles Bildgebungsverfahren für die spezifische Anwendung an Mäusen etabliert. 

Erste Untersuchungen der Hirnaktivität nach Schlaganfall wurden in dieser Arbeit 

durchgeführt und künftige Studien haben die Möglichkeit transgene Mäuse für 

Untersuchungen der funktionelle Erholung nach Schlaganfall zu verwenden. Die in dieser 

Arbeit etablierten Verfahren stellen neue, nicht-invasiven Methoden zur Untersuchung von 

endogenen regenerativen Prozessen nach Schlaganfall dar. Insbesondere können sie nun 

zu innovativen multimodalen Ansätzen kombiniert werden. Neue Erkenntnisse über die 

Wechselwirkung von Angiogenese und Neurogenese können erzielt werden und Therapien 

schneller und einfacher auf ihre Wirksamkeit getestet werden. 
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Introduction 

1. Stroke 

Stroke remains the third-leading cause of death and the main cause of disability 

worldwide, leaving the majority of survivors dependent on institutional care (Donnan et al., 

2008). Stroke describes the pathological situation when sudden oxygen and glucose 

deprivation results in severe brain damage. Depending on the cause, stroke can be either 

hemorrhagic or ischemic. Hemorrhagic stroke results from intra-cerebral bleeding caused by 

the rupture of a blood vessel in the brain parenchyma or in the subarachnoid space, which 

causes damage to the brain due to the elevation of intra-cranial pressure but also due to the 

lack of oxygen and glucose supply. Ischemic stroke can be further subdivided into thrombotic 

and embolic. Thrombotic stroke is the blockage of a cerebral artery by a gradual formation of 

a clot within this artery, while embolic stroke results from a traveling blood clot (embolus) 

formed somewhere else in the body. With 85-90% of all incidences, ischemic stroke 

represents the most common kind of stroke. Stroke symptoms are versatile, including 

sensory and motor dysfunction, paralysis, aphasia, nausea, and headache (Fatahzadeh and 

Glick, 2006) and are dependent on the size and area of the brain affected. Although stroke 

represents a severe and frequent disease, only few therapeutic interventions with limited 

applicability exist. Therefore, stroke continues to cause personal and familial tragedies. 

Furthermore, stroke and stroke-related rehabilitation places a heavy economical burden 

upon society (Meairs et al., 2006). 

1.1. Pathophysiology 

The blockage of a cerebral artery leads to oxygen and glucose deprivation within the 

area supplied by the artery. Very quickly the production of adenosine-tri-phosphate (ATP) by 

oxidative phosphorylation ceases and the high energy demand of the brain cannot be fulfilled 

(energy failure) (Dirnagl et al., 1999). This energy deficit is most severe in areas with the 

lowest residual blood flow (ischemic core), resulting in rapid anoxic depolarizations (Mitsios 

et al., 2006). Energy dependent ion pumps fail to restore ionic gradients, leading to increased 

intracellular ion concentration with water passively following the concentration gradient 

(cytotoxic edema) (Dirnagl et al., 1999). In the ischemic core, cells die quickly by necrosis. 

Areas with collateral blood supply experience less severe ischemia (ischemic penumbra) but 

incomplete restoration of ion gradients generates waves of depolarizations (peri-infarct 

depolarizations) leading to excessive neurotransmitter release (Dirnagl et al., 1999). Due to 
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impaired glial re-uptake of neurotransmitters, extracellular concentrations of glutamate 

become toxic through excessive activation of glutamate receptors (excitotoxicity) causing an 

accumulation of intracellular calcium (Iadecola and Anrather, 2011b). Excessive intracellular 

calcium triggers several deleterious events including activation of lytic enzymes, 

mitochondrial dysfunction and oxidative stress (Moskowitz et al., 2010). As a result, free 

radicals are produced in detrimental amounts, which are potent destroyers of cell 

membranes, DNA and any other cellular component. Damaged endothelium causes a break-

down of the protective blood-brain barrier, which leads to an increased permeability to 

plasma proteins and consequently to increased fluid content within the extracellular space 

(vasogenic edema) (Durukan and Tatlisumak, 2007). Starting already a few hours after 

stroke, upregulation of pro-inflammatory cytokines calls peripheral immune cells to infiltrate 

the injured brain parenchyma, which form together with activated astrocytes and brain 

resident microglia a glial scar (Iadecola and Anrather, 2011a). The above described events 

after ischemia activate programmed cell death (apoptosis) which expands tissue damage in 

the ischemic penumbra (Mitsios et al., 2006, Ginsberg, 2003, Durukan and Tatlisumak, 

2007). The temporal aspect of the events within the ischemic cascade is illustrated in Figure 

1. Details of the underlying separate events are reviewed in (Chavez et al., 2009, Dirnagl et 

al., 1999, Durukan and Tatlisumak, 2007, Iadecola and Anrather, 2011b, Mitsios et al., 2006, 

Moskowitz et al., 2010)  

 

	
  
Figure 1: Time line of major events of the ischemic cascade 
Detrimental effects of energy failure, excitotoxicity and oxidative stress predominantly occur during the 
acute phase. The inflammatory reaction starts during the first few hours after onset of ischemia, while 
regenerative processes are effective during the chronic phase.  
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Figure 2: Middle cerebral artery occlusion in rodents  
A Architecture of major cerebral arteries. A filament is inserted through the common carotid artery and 
blocks the blood flow to the middle cerebral artery. B Magnetic resonance angiography shows blood 
flow through the major cerebral arteries before (left panel) and after (right panel) insertion of the 
filament. C Top: MR T2 map at 3 days after MCAO in a mouse (30 min occlusion time). Bottom: 
Corresponding brain section taken from the mouse brain atlas (Paxinos and Franklin, 2001). Cerebral 
lesions after MCAO form in the caudate putamen, thalamus, and the cortex, including the 
somatosensory and piriform cortex.  

1.2. Rodent model of transient focal cerebral ischemia 

In order to study molecular mechanisms or to investigate the benefit of therapeutic 

interventions, ischemic stroke is modeled in experimental animals. The majority of 

experiments are carried out on small animals such as rats and mice, which have a similar 

cerebrovascular system as humans. Several animal models have been developed to study 

ischemic stroke. The most frequently used model in experimental stroke research uses the 

intraluminal filament technique, which was first developed in the rat model by Koizumi et al. 

(1986) (Koizumi et al., 1986). A filament is introduced into the lumen of an extra-cranial 

artery and advanced through the internal carotid artery until it blocks the blood flow to the 

middle cerebral artery (Figure 2A+B). Therefore, this technique is commonly referred to as 

middle cerebral artery occlusion (MCAO). With this model the duration of ischemia can be 

controlled. Leaving the filament in the artery results in a permanent occlusion model. 

Retraction of the filament models successful reperfusion (transient ischemia). Infarcts 

develop in the vascular territory of the middle cerebral artery (MCA), including the lateral 

striatum, the thalamus and the fronto-parietal cortex (Figure 2C). A very good reproducibility 

of infarct size was achieved by coating the filament with poly-L-lysine, which increases 

adhesion to the vascular wall (Belayev et al., 1999). Early studies used predominantly rats 

for intraluminal MCAO (Belayev et al., 1996, Koizumi et al., 1986, Longa et al., 1989). With 

the availability of a broad spectrum of transgenic mice, this technique was adjusted for this 
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species (Belayev et al., 1999, Hata et al., 2000), allowing investigation of molecular 

mechanisms of stroke. The advantage of this method is the relative low invasiveness with no 

need for craniectomy and the high reproducibility with control over the ischemic duration.   

Intraluminal MCAO was used to model transient cerebral ischemia in this thesis. While 

rat MCAO was already established in our laboratory, modifications of the surgical procedure 

for mouse MCAO were evaluated during the course of this thesis and an optimal mouse 

MCAO protocol established for the use in our laboratory. Detailed description of the 

procedures can be found in the Materials and Methods section of the publications.  

1.3. Established therapies and new approaches 

Current treatments for stroke are very limited, focusing on removal of the clot in the 

acute phase for fast restoration of blood supply. Pharmacological lysis of the clot with 

intravenous administration of recombinant tissue plasminogen activator (rt-PA) within the first 

4.5 h after the insult is an effective therapy, approved by the US Food and Drug 

Administration (Albers et al., 2002, Hacke et al., 2008, Hacke et al., 1998, Wahlgren et al., 

2008). However, only around 15% of stroke patients arrive at the hospital within this time 

window and only 10% of the ischemic stroke patients receive this therapy (Minnerup et al., 

2011) due to an increased risk of hemorrhage (Hacke et al., 2008). Mechanical endovascular 

recanalization with a wire system has proven similar effectiveness and can be applied within 

an extended therapeutic time window for up to 8h post infarction (Clark et al., 2009, Kulcsar 

et al., 2010, Smith et al., 2008, Smith et al., 2005).  

Besides reperfusion therapy for the acute phase, several agents have been reported to 

rescue damaged brain tissue by modulating the biochemical events following cerebral 

ischemia. Summarized under the term of neuroprotection these agents target the detrimental 

effects of excitotoxicity, oxidative stress, inflammation and apoptosis within the ischemic 

cascade. Over 1000 neuroprotective agents have been tested preclinically (O'Collins et al., 

2006) and around 200 have entered clinical trials – but none was able to reproduce 

effectiveness in the clinics so far (Minnerup et al., 2012). Currently under clinical 

investigation are growth factors (erythropoietin (Ehrenreich et al., 2002, Ehrenreich et al., 

2009, Minnerup et al., 2009), granulocyte colony-stimulating factor (Schabitz et al., 2010)), 

free radical scavengers (Edaravone (Tohgi et al., 2003); Ebselene (Ogawa et al., 1999), 

NXY-059 (Lees et al., 2006, Macleod et al., 2008, Shuaib et al., 2007)), antibiotics 

(Minocycline (Fagan et al., 2010, Lampl et al., 2007)), N-Methyl-D-aspartate  (NMDA) 

channel blocker (magnesium sulfate (Saver et al., 2004)) and other neuroprotective 

strategies like hypothermia, edema amelioration with albumin and anti-hypertensive drugs. 
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The therapeutic time window for neuroprotective therapy can be extended into the sub-acute 

phase, for example Edaravone was beneficial when treatment was started within 72 h after 

stroke onset (Tohgi et al., 2003, Naritomi et al., 2010). 

Very few patients are eligible to receive thrombolytic therapy and hundreds of 

neuroprotective compounds were unsuccessful in clinical trials, therefore new therapeutic 

strategies begin to focus onto the chronic phase. The main objective of the new strategies is 

to restore lost function. Potential routes to achieve this goal are being identified, including 

stem cell transplantation and brain endogenous regenerative processes. Transplantation of 

various types of cells directly into the ischemic brain or intravenous infusion improved 

functional outcome in animal models of stroke and first transplantations were already 

performed on human stroke patients (Bang et al., 2005, Kondziolka et al., 2005, Nelson et 

al., 2002). Possible mechanisms of action include cell replacement (Oki et al., 2012), trophic 

support and modulation of the inflammatory processes after ischemia (Lee et al., 2008). It 

was recently recognized that even the adult brain has some capacity to react to cerebral 

injury. The endogenous regenerative processes initiated after ischemia include the formation 

of new blood vessels (angiogenesis) and the endogenous production of new neurons 

(neurogenesis). These processes may represent promising targets for the development of 

new therapies.  

2. Endogenous regenerative processes after stroke 

Early in the ischemic cascade hypoxia-induced up-regulation of growth factors and 

cytokines initiates the endogenous regenerative processes of angiogenesis and 

neurogenesis. Angiogenesis is the formation of new blood vessels from pre-existing ones. In 

the context of cerebral ischemia the angiogenic response describes the whole process of 

vascular remodeling which possibly translates into an increase of cerebral micro vessel 

density. Stroke patients with increased vessel density survived longer and showed a better 

neurological performance (Krupinski et al., 1994, Szpak et al., 1999). Angiogenesis is closely 

linked to endogenous neurogenesis (Sun et al., 2003). Endogenous neurogenesis describes 

the formation of new neurons from neural stem cells, which reside in the adult brain. The 

phenomenon of adult neurogenesis and its responsiveness to injury are well documented in 

animal models. However, endogenous neurogenesis does not seem potent enough to 

restore lost neuronal functions. As both processes share signal molecules, e.g. vascular 

endothelial growth factor (VEGF) (Carmeliet and Tessier-Lavigne, 2005), and manipulation 

with pro-angiogenic growth factors results in an enhanced neurogenic response to stroke 

(Wang et al., 2004, Xiong et al., 2010, Li et al., 2011), it is desirable to investigate both 
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processes in conjunction. The evaluation of their temporal profiles will allow determination of 

key events within each process, which may represent new therapeutic targets.  

2.1. Angiogenesis 

Angiogenesis is the formation of new blood vessels. In general, blood vessels can form 

via two distinct processes: vasculogenesis and angiogenesis. While vasculogenesis denotes 

de novo formation of vessels from proliferating and differentiating mesoderm-derived 

endothelial progenitor cells during embryonic development, angiogenesis represents new 

vessel formation from pre-existing blood vessels. Almost no changes of the cerebral 

vasculature appear under healthy conditions. However, ischemic injury will trigger molecular 

and structural changes.  

2.1.1. Stroke-induced angiogenesis 

The occlusion of a cerebral artery leads to a lack of oxygen (hypoxia) and glucose 

(hypoglycemia) in the affected brain region. Hypoxia inducible factor 1α (HIF1α) stabilizes 

under hypoxic conditions and forms a dimer with HIF1β [65] which functions as a 

transcription factor and binds to the hypoxia-response element (HRE) promoter. Thus, 

hypoxia triggers the elevation or de novo expression of several growth factors and cytokines, 

including vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), 

transforming growth factor (TGF), hepatocyte growth factor (HGF), platelet-derived growth 

factor (PDGF), insulin-like growth factor (IGF), epidermal growth factor (EGF) and 

angiopoietins (Ang1 and Ang2) (Hayashi et al., 2003, Lin et al., 2000).  

VEGF is the major effector of angiogenesis (Adams and Alitalo, 2007, Ferrara, 2004). 

Under healthy conditions low levels function as endothelial survival factor (Ferrara, 1999, Lee 

et al., 2007). Following stroke, VEGF expression increases starting already 1 h after onset of 

ischemia (Hayashi et al., 2003).  VEGF activates vascular endothelial growth factor receptor 

2 (VEGFR2) on endothelial cells and results in endothelial cell proliferation, differentiation 

and migration. Therefore, an increased expression of VEGFR2 is characteristic for the 

process of active vascular remodeling after stroke.  

Structural changes of the vascular system are initiated in the presence of above listed 

pro-angiogenic growth factors. Angiogenesis starts with vasodilation and an increase in 

vascular permeability. Secretion of matrix metalloproteinases (MMPs) results in degradation 

of the basement membrane and the local extracellular matrix. The inter-endothelial cell 

contact loosens and endothelial cells start to proliferate. Designated tip cells begin to sprout 
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into the surrounding space, following chemo-attractive signals of VEGF, that promote the 

polarized extension of tip cell filopodia. Circulating endothelial progenitor cells are recruited 

to the site of angiogenesis and integrate into the new sprout. Release of PDGF by the tip 

cells promotes the recruitment of pericytes to stabilize the new sprout. Eventually, the tip 

cells encounter another sprout to fuse and establish a continuous lumen. The lumen is most 

likely formed by intercellular fusion of large vacuoles. Reestablished blood flow improves 

oxygen delivery and thereby reduces the pro-angiogenic signals. Subsequently, Ang1 

signaling leads to maturation and stabilization of the new capillary. A distinct process of so 

called intussuceptive angiogenesis can also lead to an increase in vessel density without the 

need of endothelial cell proliferation. The lumen of an existing vessel is divided into two tubes 

by the deposition of extracellular matrix. 

 

 

Figure 3: Major steps of post-stroke angiogenesis  
A Brain capillaries are formed by endothelial cells, pericytes and basement membrane. B Hypoxia 
changes the expression of pro-angiogenic growth factors, like VEGF and Ang2, which induce 
destabilization of the endothelial wall. Matrixmetalloproteinases (MMPs) degrade the basement 
membrane. C Proliferating endothelial cells follow guidance molecules and invade the parenchyma to 
form an endothelial sprout. D Fusion of sprouts establish a new caplillary. E Re-established blood flow 
enhances anti-angiogenic signals, including PDGF and Ang1 expression, which results in pericyte 
recruitment and vessel stabilization. Modified from (Clapp et al., 2009). 
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2.1.2. Temporal and spatial profile of post-stroke angiogenesis 

Initially, ischemic neuronal cell death is accompanied by pronounced vascular 

regression and endothelial apoptosis within the ischemic core (Bosomtwi et al., 2008, Lin et 

al., 2008a, Hayashi et al., 2003). Endothelial cell proliferation was detected as early as 3 

days after stroke in rodent models of MCAO (Hayashi et al., 2003, Beck et al., 2000). A 

similar time profile was observed in human stroke patients (Krupinski et al., 1994). Increases 

in vascular density were discovered in peri-lesional areas starting 3-4 days after stroke 

(Hayashi et al., 2003, Beck and Plate, 2009). In particular, intensive vascular sprouting was 

found in the caudo-ventral area next to the subventricular zone in a mouse model of MCAO 

(Ohab et al., 2006, Thored et al., 2007) and in the pial network of the brain surface in rats 

with cortical stroke (Lin et al., 2002, Lin et al., 2008a). In some cases, the increase in vessel 

density was only transient (Thored et al., 2007). Although no increase in vascular density 

was detected in an embolic model of stroke, changes in cerebral blood flow and volume, as 

well as increased blood-brain barrier leakage indicate active vascular remodeling in peri-

infarct regions (Lin et al., 2008a, Li et al., 2007). As literature gives only few and model-

specific pieces of information about the location and the extent of vascular changes, much 

more knowledge is needed to fully elucidate its spatio-temporal profile. 

2.2. Adult neurogenesis 

Neurogenesis describes the formation of mature neurons from neuronal stem or 

progenitor cells. Long time it has been believed that neuronal proliferation in the central 

nervous system ceases after birth and that the adult mammalian brain does not have the 

ability to regenerate after injury. However, in 1962 Joseph Altman made the initial discovery 

that new neurons were continuously added to the adult rat brain. To date, the concept of 

adult neurogenesis is well established and signs of neurogenesis were confirmed in the adult 

human brain (Eriksson et al., 1998, Curtis et al., 2007). The adult brain has two established 

neurogenic regions, the subventricular zone (SVZ) and the subgranular zone (SGZ), where 

neural stem cells are present and proliferate throughout life (Alvarez-Buylla et al., 2002). The 

SVZ is located along the lateral ventricles and under physiological conditions gives rise to 

new interneurons in the olfactory bulb. The architecture of SVZ is subject of intensive 

research. Slowly dividing, primary neural stem cells located in the SVZ give rise to highly 

proliferative cells, therefore named transient amplifying cells. From these cells migratory 

neuroblasts arise, which follow the rostral migratory stream towards the olfactory bulb (Figure 

3A). Neural precursor cells begin to express doublecortin (DCX), a microtubule-associated 

protein, while actively dividing. In particular, the migratory neuroblasts express DCX until 

they differentiate into mature neurons. The SGZ is located within the dentate gyrus of the 
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hippocampus. Newly formed neuroblasts migrate only over a short distance into the adjacent 

granule cell layer and differentiate into granule cells.  

 

	
  
Figure 3: Adult neurogenic niches in the rodent brain  
Neural stem/progenitor cells lie within the subventricular zone (SVZ) along the lateral ventricle (LV) 
and within the subgranular zone (SGZ) within the hippocampus. The former stem/progenitor cells give 
rise to neuroblasts, which migrate along the rostral migratory stream (RMS) to the olfactory bulb to 
form olfactory bulb specific interneurons. The stem/progenitor cells of the SGZ give rise to new 
granule cells of the granule cell layer (see insert). Adapted form (Ekdahl et al., 2009) 

2.2.1. Stroke-induced neurogenesis 

Cerebral ischemia induces changes in adult neurogenesis. Molecular cues involved in 

angiogenesis, including FGF, EGF, brain-derived neurotrophic factor, Ang and VEGF 

signaling, induce increased proliferation of neural stem cells within the SVZ and SGZ 

(Christie and Turnley, 2013). Neuroblasts of the ipsilateral SVZ, normally migrating to the 

olfactory bulb, change their direction and follow chemo-attractive signals of VEGF and 

stromal cell-derived factor 1α towards the site of injury (Zachary, 2005). During this journey 

they use newly built vessels as travelling scaffold (Ohab et al., 2006). A subset of the arriving 

neuroblasts differentiates into mature neurons of the appropriate neuronal type and even 

electrophysiological activity was observed in some studies.  

	
  
	
  
Figure 4: Neurogenic response to ischemia  
Subventricular zone (SVZ) neural stem/ 
progenitor cells increase their proliferation. 
Neuroblasts migrate into the ischemic striatum 
and differentiate into the appropriate striatal 
neuron.  
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2.2.2. Temporal and spatial profile of post-stroke neurogenesis 

Increased proliferation of SVZ neural progenitor cells was observed already 2 days 

after the onset of ischemia (Jin et al., 2001). In some studies it was found bilaterally but most 

studies report significantly higher proliferation in the ipsilateral SVZ. Proliferation peaked at 

1-2 weeks and returned to normal levels by 3-4 weeks (Thored et al., 2007, Jin et al., 2001, 

Zhang et al., 2001), although continuous proliferation was observed several months after 

stroke (Thored et al., 2007). New neurons can be found in the ischemic striatum at 2 weeks 

after ischemia (Arvidsson et al., 2002, Parent et al., 2002). Some studies also report post-

ischemic neurogenesis in the cerebral cortex (Gould et al., 1999, Palmer et al., 2000), but the 

origin of those cells is being debated. Proliferating cells from the SVZ were seen to migrate 

into the corpus callosum and the penumbral cortex (Jin et al., 2003) but almost no mature 

neurons differentiated from these cells were observed at later time points (Arvidsson et al., 

2002, Parent et al., 2002). 

3. Non-invasive imaging strategies 

The angiogenic and neurogenic responses after cerebral ischemia are highly dynamic 

processes. Traditional experimental methods are invasive and require sacrificing high 

numbers of animals at many different time points during the experiment to resolve critical 

steps within those processes. Non-invasive imaging overcomes the limitation of one time 

point results by allowing the investigation of the whole dynamic process within the 

physiological or pathological context of the living organism. Thus, non-invasive imaging 

offers exclusive advantage for the field of regenerative stroke research. The non-invasive 

observation of biological processes holds the advantage of only mildly affecting the 

physiological homeostasis an organism. Various techniques exist for small animal imaging 

based either on optical probes (e.g Bioluminescence Imaging - BLI), magnetic properties 

(e.g. Magnetic Resonance Imaging - MRI), or radio nucleotides (e.g. Positron Emission 

Tomography - PET). These methods differ in spatial and temporal resolution, sensitivity, 

signal specificity and tissue penetration. BLI offers high sensitivity but is limited in spatial 

resolution. Radiotracer methods are also highly sensitive but offer only slightly higher spatial 

resolution. Finally, MRI is superior for spatial resolution but is limited in sensitivity. This thesis 

employs the methods of BLI and MRI for the investigation of regenerative processes after 

cerebral ischemia.  
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3.1. Bioluminescence imaging 

Bioluminescence imaging (BLI) belongs to the group of optical imaging methods, which 

are based on the sensitive detection of light to visualize cellular and molecular processes. In 

the special case of BLI the source of light is a photon-producing enzymatic reaction between 

a specific enzyme (luciferase) and its specific substrate (luciferin). The phenomenon of 

bioluminescence has been observed in several species, including jellyfish (Aequorea), sea 

pansy (Renilla), corals (Tenilla), click beetle (Pyrophorus plagiophthalamus), and several 

bacterial species (Vibrio fischeri) (Hastings, 1996). The most commonly used 

bioluminescence reporter for research purposes is the luciferase from the North American 

firefly (Photinus pyralis) (Figure 5A).  

BLI has quickly developed into a powerful tool for non-invasive imaging of cells or 

molecular processes within a living organism. Although spatial resolution is quite poor due to 

tissue induced light scattering, BLI offers very high sensitivity. Mammalian cells do not 

express the enzyme luciferase, so that light emission of the reporter can be unambiguously 

assigned to the process under investigation, generating images with high signal to noise 

ratio. 

 
Figure 5: Principles of bioluminescence imaging  
A Firefly (Phontinus pyralis) showing the endogenous production of light by a biochemical reaction 
(www.firefly.org). B Oxidation of luciferin by luciferase results in the emission of light (530-640 nm) 
(Inouye, 2010).  

3.1.1. The principles of bioluminescence imaging 

The light emitting reaction of luciferase-luciferin interaction varies between the 

luminous organisms. All reactions rely on an oxidative process with molecular oxygen and 

the conversion of chemical energy into light (Inouye, 2010). Firefly luciferase produces 

photons in a two-step reaction that requires ATP, magnesium, and a benzothiazoyl–thiazole 

luciferin (Wilson and Hastings, 1998). Initially, the firefly luciferase catalyzes the formation of 

a luciferase-bound luciferyl adenylate in the presence of magnesium and ATP, thereby 
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releasing an inorganic pyrophosphate (PPi) and adenylating the D-luciferin (Figure 5B). 

During the second step the adenylated D-luciferin is oxidized to produce an excited state of 

oxyluciferin. This reaction releases AMP and CO2. When the excited oxyluciferin relaxes to 

its ground state, light of a broad spectrum (530–640 nm) is emitted (Figure 6A). This 

emission spectrum is pH and temperature dependent and further in vivo related factors 

change the photon emission, which has to be considered for in vivo application.   

3.1.2. In-vivo bioluminescence imaging in pre-clinical research 

The utilization of BLI for in vivo application includes stable over-expression of the 

luciferase enzyme as a molecular reporter in mammalian cells. The expression of luciferase 

allows subsequent sensitive imaging of molecular processes like promotor activity of a gene 

of interest (Figure 6B+C) or cell tracking of luciferase-expressing cells in the living organisms 

(Figure 6D) (Contag et al., 1997). Photon emission of the luciferase labeled cells is initiated 

upon injection of the substrate D-luciferin. Another benefit of BLI is that the light reaction of 

firefly luciferase is energy dependent, therefore only viable cells contribute to the BLI signal. 

Different injection routes (subcutaneous sc, intra-peritoneal ip, intra-venous iv) result in 

distinct light emission kinetics. BLI is simple to execute and allows monitoring of processes 

over a long period of time, with multiple measurements in the same animal, reducing the 

number of animals needed and minimizing the effects of biological variation.  

Light emission from living tissue is detected by a specialized charged coupled device 

(CCD) camera, which converts the photon signal into an electrical signal. CCD cameras 

spatially encode the intensity of incident photons into electrical charge patterns to generate 

an image. Such cameras are installed in dark chambers and active cooling of the CCD 

camera reduces the noise of the system.  

	
  
Figure 6: In-vivo application of bioluminescence imaging in this thesis 
A Emission spectrum of firefly (Phontinus pyralis) luciferase under in-vivo condition (temperature 
37°C, pH=7.4). B VEGFR2-luc knock-in mouse, expressing luciferase under the control of the 
vascular endothelial growth factor VEGFR2 promotor. C DCX-luc mouse, expressing luciferase under 
the control of the doublecortin (DCX) promotor. D Implantation of neural stem cells constitutively 
expressing luciferase enables to track their location.  
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The sensitivity of light detection is limited by wavelength-dependent absorption through 

pigments and chromophores in living tissues. Only light of 600 nm and above can penetrate 

through several centimeters of tissue, allowing the detection of light emitted from deeper 

structures inside an experimental animal (Sadikot and Blackwell, 2005). Nevertheless, 

images are surface weighted, meaning that light sources closer to the surface of the animal 

appear brighter compared to deeper sources, which has to be considered for quantitative 

analysis (Sutton et al., 2008). The interaction of light and tissue results in signal scattering, 

which decreases spatial resolution to mm scale.   

Stable and reproducible imaging protocols are needed for achieving comparability 

between measurements at different time points and between different studies.  For example, 

the luciferase reaction is temperature-dependent, indicating the need for close physiological 

monitoring of the animal's body temperature in order to gain comparable results. A variety of 

anesthesia and injection routes (sc, ip, iv) of the substrate D-luciferin have been used in 

literature so far, resulting in different photon emission intensities and kinetics, although the 

underlying luciferase expression is identical (Virostko et al., 2004, Keyaerts et al., 2008, 

Inoue et al., 2009, Keyaerts et al., 2011). Furthermore, in the specific case of BLI of the 

central nervous system substrate availability is aggravated by the presence of the blood-

brain barrier (BBB), although luciferin is a small molecular weight molecule und freely 

diffusible through the BBB. In conclusion, BLI is a powerful tool for longitudinal non-invasive 

in vivo imaging of small animals, the potential of which can be exploited if an optimal protocol 

is evaluated for every new application with regard to its aim. 

3.2. Magnetic resonance imaging 

Magnetic resonance imaging (MRI) is one of the most powerful tools for non-invasive 

imaging approaches and is commonly used in clinical diagnosis. Compared to other imaging 

methods, MRI combines high resolution with excellent soft tissue contrast. The underlying 

physical principle is termed nuclear magnetic resonance (NMR) and was discovered by 

Purcell and Bloch in 1952. Further work by Lauterbur and Mansfield around 20 years later 

enabled the use of NMR for imaging (Lauterbur, 1989).  

3.2.1. The principle of nuclear magnetic resonance 

The basis of NMR lies in the magnetic properties of certain atomic nuclei, which posses 

a non-zero spin. The spin describes the charge-related rotation of the nucleus around its own 

axis, which induces magnetic properties to the nucleus similar to those of a bar magnet. The 

hydrogen nucleus fulfills this requirement and is commonly used for MRI in clinical and pre-
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clinical research, because of its abundance in molecules and organisms. The orientation of 

the proton spins is random under normal conditions. When introduced into an external 

magnetic field (B0), the spins will align paralelle or anti-parallel with the external field, 

resulting in a net sum magnetization along the magnetic field axis Mz (Figure 7A). The proton 

spins start to precess around the axis Mz with a special frequency, which is dependent on the 

external magnetic field strength and termed Larmor frequency. The actual MR signal is 

generated by applying a radiofrequency pulse with Larmor frequency. It induces a flip of the 

net magnetization into the transverse plane of B0. The new transverse magnetization (MT) 

continues to precess around the Mz axis and induces a current in a conductive coil, which 

represents the MR signal (Figure 7B). Once the radiofrequency pulse is removed, the MT 

magnetization will gradually disappear, by a process called relaxation, until the proton spins 

reach their equilibrium in realigning with the external magnetic field Mz.  

	
  
Figure 7: Principles of nuclear magnetic resonance  
A Proton spins behave like small bar magnets and can orientate along an external magnetic field. 
Their magnetization sums up to a net magnetization Mz in the direction of the external field B0. B 
Proton spins can be excited by a radio frequency wave, so that the net magnetization Mz flips into the 
xy-plane. Continuous precession of Mz around B0 results in an electrical signal in a receiver. The 
signal decreases with tissue specific time curves, the so-called free induction decay (FID). Adapted 
from (http://wikidoc.org/index.php/Basic_MRI_Physics). 

The relaxation can be divided in two distinct components: The transverse relaxation 

and the longitudinal relaxation. Transverse relaxation describes the decay of the transverse 

component of the magnetization, which is caused by an exchange of energy between the 

protons as well as by the impact of constant external inhomogeneities of the magnetic field. 

This decay is called free induction decay (FID) and follows a specific time constant termed 

T2* relaxation time (Figure 7B). Utilization of a second radiofrequency pulse, a so-called 

refocusing pulse, can reverse the impact of external magnetic field inhomogeneities on the 

signal by generating an echo for signal detection. The amplitude of the echos decays with a 

tissue specific time constant termed T2 relaxation. The longitudinal component of the net 

magnetization recovers with a tissue specific time constant T1 until the equilibrium of spin 

alignment with the external magnetic field is reached. The above described relaxation 

processes can be used for contrast generation between different types of tissue. Variation of 

the major parameters of repetition time (TR) and echo time (TE) can be utilized to create 
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images with enhancement of one relaxation process for contrast generation. Special contrast 

agents can be introduced into the system, to order to increase contrast for specific 

applications. 

3.2.2. In vivo magnetic resonance imaging in pre-clinical research  

Performing MR imaging in small animals requires the position of an anesthetized 

animal into the center of an external magnetic field created by superconductive coils within 

an MR system. Several different sequences can be acquired on the same animal during one 

same imaging session, which illustrates the exceptional potential of this method to assess 

different aspects of biological structures and processes.  

For the application of small animal MRI, field strengths up to 16 tesla are available and 

highly specialized equipment enables imaging with resolutions down to 50 µm. This allows 

visualizing fine neuroanatomical structures in small animal brains. Besides imaging of 

cerebral anatomical structures, MRI can be employed to image cerebral blood flow (CBF), 

cerebral blood volume (CBV), and oxygenation status of the blood. The integration of these 

pieces of information can be used to gain knowledge even about brain activity. The use of 

additional contrast agents can further extend the application range to investigate the 

functional integrity of the blood-brain barrier and the microvascular architecture.  

As in most in-vivo imaging approaches, tight control of the physiological state of the 

animal is necessary to avoid confounding influence on the measurement. For example, 

temperature and partial pressure of CO2 in the blood have effects on the cerebral blood flow 

and can alter any measurement based on this parameter. Dedicated equipment is needed for 

physiological monitoring, which allows controlling temperature, respiration rate, heart rate, 

and oxygen saturation. In conclusion, MRI qualifies for pre-clinical small animal imaging, due 

to its non-invasive, longitudinal, and especially multimodal characteristics.  

3.2.3. Imaging brain vasculature with magnetic resonance 

MRI can be employed to image the architecture of large to medium size arteries in the 

brain (angiography). However, changes following stroke pathology appear predominantly in 

the microvasculature system. In order to gain information about changes of the 

microvasculature, measurements of CBF and CBV have been used as correlates (Lin et al., 

2002, Jiang et al., 2005, Li et al., 2007, Ding et al., 2008, Hayward et al., 2011). But CBF and 

CBV based measurements provide relative low specificity for angiogenesis-related vascular 

changes, since CBF and CBV increases may also arise in response to autoregulatory 

vasodilation. Therefore, this thesis makes use of the new emerging methodology of steady 
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state contrast enhanced MRI, which provides direct information about the characteristics of 

the microvasculature, namely mean vessel density and mean vessel size.  

Steady-state contrast-enhanced magnetic resonance imaging 

In steady-state contrast-enhanced MRI (SSCE-MRI), transverse relaxation rates R2 

and R2* (R2=1/T2, R2*=1/T2*) are measured before and after the administration of an 

intravascular contrast agent. The difference in relaxivity ΔR2 and ΔR2* within a given voxel 

can be used to quantify mean vessel density and mean vessel size of that voxel on the basis 

of mathematical modeling. Monte Carlo simulations showed that ΔR2 is predominantly 

sensitive to small vessels  (<10µm), representing blood volume within the microvasculature, 

while ΔR2* is sensitive to vessels of all sizes, representing a measure of regional total 

cerebral blood volume.  

	
  

Figure 8: Steady state contrast enhanced MRI  
Intravascular injection of superparamagnetic contrast agent results in changes in tissue relaxivity ΔR2 
and ΔR2*. ΔR2 represents CBV in microvessels, while ΔR2* represents regional total CBV. 
Mathematical modeling allows determination of microvessel density and size on a voxel-wise basis.  
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3.2.4. Imaging brain function with magnetic resonance 

Imaging brain function with MRI can employ CBV or CBF changes as a correlate for 

functional activity but is most commonly performed with blood oxygenation level-dependent 

(BOLD) contrast. Functional MRI (fMRI) approaches rely on neurovascular coupling, a 

phenomenon, which describes the vascular response to neuronal activity.  

Neurovascular coupling 

Neural activity is energy demanding, in particular, the re-uptake of neurotransmitters 

and the re-establishment of the ion gradients (Attwell and Laughlin, 2001). The exact 

mechanism by which the brain achieves the tight control of CBF to locally changing energy 

demands is not yet completely understood and several concepts exist. Local cerebral blood 

flow is controlled on the arteriole level. Arterioles are surrounded by smooth muscle cells, 

which can constrict or dilate vessel diameter. Blood flow in capillaries which do not possess 

smooth muscle cells can be regulated by pericytes serving as capillary sphincters. Originally, 

decreased oxygen and glucose concentration and increased carbon dioxide concentration 

were thought to trigger metabolic signals for increased blood flow. However, more recent 

concepts established that neurotransmitters and lactate, both released by active neurons, 

are metabolic regulators of blood flow (Attwell et al., 2010). Glutamate activates neuronal 

NMDA receptors, resulting in neuronal nitric oxide synthase activation and nitric oxide 

production, which dilates vessels.  As part of the neurovascular unit, astrocytic end feet 

surrounding brain vessels are key players of neurovascular coupling. Upon neural activity, 

the extracellular presence of neurotransmitters, in particular glutamate, provokes astrocytic 

release of vasoactive substances, including adenosine, potassium, arachidonic acid and its 

derivates like prostaglandins, which lead to vasodilation and regionally increased CBF 

(Iadecola and Nedergaard, 2007, Koehler et al., 2009).  

BOLD contrast 

BOLD contrast was discovered in the early 90s (Ogawa et al., 1990) and uses the 

differential magnetic properties of hemoglobin. Hemoglobin consists of 4 subunits, each 

containing an iron complex. Binding of oxygen changes the molecular conformation and 

further results in pairing of previously single electrons of the iron atoms. Oxygenated 

hemoglobin (oxyHb) is diamagnetic and has no effect on the local magnetic field, thus not 

changing tissue related relaxivity. However, deoxygenated hemoglobin (deoxyHb) is 

paramagnetic and thereby changes the local magnetic field resulting in small field 

inhomogeneities which shorten the T2* relaxivity. A blood vessel containing excessive 

amounts of deoxygenated hemoglobin will induce enhanced signal drop in the tissue 

surrounding the vessel. Neural activity increases the cerebral metabolic rate of oxygen. This  
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Figure 9: Principle of functional magnetic resonance imaging 
A Neural activity increases the energy demand and thereby the supply of oxygenated hemoglobin. In 
the presence of deoxygenated hemoglobin (deoxyHb) the signal void is stronger than in the presence 
of oxygenated hemoglobin (oxyHb) (compare inserts of MR images of glass capillaries filled with 
deoxyHb (insert a) and oxyHb (insert b); inserts from Ogawa et al. 1990). B Repetitive fast imaging 
during the resting phase and the activation phase allows to statistically determine areas of activation. 

increases the amount of deoxyHb and thus enhances signal loss in the area of activation 

(decreased BOLD signal). However, neural activity also triggers a hemodynamic response as 

described above, which results in increased CBV and CBF due to vasodilation. The increase 

in CBF lowers the amount of deoxyHb due to a washout and dilution with fresh, oxygen rich 

arterial blood. The CBF increase is the dominating process that eventually leads to a net 

increase in the level of oxyHb at the site of activation, resulting in the BOLD signal. Thus, the 

BOLD contrast represents an indirect measure of neural activity, with an inherent temporal 

delay. CBF increase can be detected approximately half a second after the onset of neuronal 

activity, while BOLD contrast starts shortly afterwards (approximately half a second later) and 

reaches its maximum only at 6 seconds after neural activity started (Silva et al., 2000). A 
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typical fMRI experiment acquires MR images during a resting phase and during an activation 

phase (Figure 9B). Neuronal activation is achieved by a stimulus, most commonly electrical 

forepaw stimulation. Subsequent statistical comparison of both phases reveals areas with 

BOLD changes, which are only in the order of a few percent and are visualized in parametric 

maps. 
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4. Aims 

Stroke is a severe disease with extensive impact on personal life quality. The failure of 

adequate oxygen supply to the brain quickly leads to widespread cell death and loss of 

function.  Stroke therapy has to prevent cell death or restore cellular circuits in order to retain 

and restore functional integrity. As neuroprotective therapies could not show beneficial 

effects for human stroke patients, new hope is laid on restoration therapies. Especially the 

discovery of the endogenous regenerative capacity of the brain led to several strategies, 

which aim to enhance the endogenous processes. One strategy is based on the 

spontaneous revascularization of ischemic tissue, starting early after the insult by the 

induction of endothelial cell proliferation. Another strategy considers endogenous neuronal 

stem cells of the established adult neurogenic niches, which respond to stroke by enhanced 

proliferation and directed migration towards the injured brain area. However, it is not clear if 

these endogenous mechanisms can be utilized to have an effect on functional recovery. 

Thorough knowledge about post-stroke angiogenesis and endogenous neurogenesis will 

reveal potential new therapeutic targets.  

The aim of this PhD thesis was to monitor the endogenous regenerative processes of 

angiogenesis and neurogenesis following cerebral ischemia with new non-invasive imaging 

methods based on bioluminescence imaging and magnetic resonance imaging. Rat and 

mouse models of cerebral ischemia were employed and specific transgenic mice were used. 

Since regeneration is supposed to lead to functional recovery, this thesis also aimed to 

monitor functional changes of specific brain regions following stroke. As no such method 

existed for specific application in mice, this thesis established a mouse specific protocol.  
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Abstract 

 

Thrombolysis remains the only beneficial therapy for ischemic stroke, but is restricted to a short 

therapeutic window during the acute phase following the infarct. Currently much research is focusing 

on spontaneous regeneration processes during the sub-acute and chronic phase. Angiogenesis was 

described in the border zones of the infarct, but further insight into the temporal profile and the 

molecular mechanisms is needed to fully apprehend its therapeutic potential. Angiogenesis is a 

multistep process, involving extracellular matrix degradation, increased blood brain-barrier 

permeability, endothelial cell proliferation/migration, and, finally, new vessel formation and 

maturation. Interaction between vascular endothelial growth factor (VEGF) and its receptor 2 

(VEGFR2) plays a central role in angiogenic signaling cascades, and VEGFR2 transcription is 

upregulated following stroke. In the present study we investigated the VEGFR2 expression as a 

molecular marker for ongoing poststroke angiogenesis. We used a transgenic mouse model expressing 

firefly luciferase under the control of the VEGFR2 promotor to non-invasively elucidate the temporal 

profile of VEGFR2 expression after stroke. We found increased VEGFR2 expression up to 14d after 

the insult, which was paralleled by increased protein levels of VEGFR2 in Western blots of the 

ischemic cortex and striatum.  Further, we observed increased vascular volume in the peri-infarct 

region and also in the striatal core on histological sections. This mouse model enables non-invasive 

global tracking of the vascular remodeling process after ischemic stroke, which lasts at least up to 2 

weeks after the insult.  
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Introduction 

 

Angiogenesis, the formation of new blood vessels from pre-existing ones, is recognized as a potential 

new therapeutic target in ischemic stroke [1-3]. Increased vascularization in areas surrounding the 

infarct has been observed in human [4,5] as well as in animal brain tissue [6-10] and is associated with 

improved functionality [11-13,4]. These results support the hypothesis, that angiogenesis after stroke 

is therapeutically advantageous. 

 

The absence of adequate blood supply caused by the blockage of a cerebral artery leads to tissue 

hypoxia, which triggers the angiogenic response [8,14]

hypoxia responsible element in the promotor region of several hypoxia inducible cytokines and growth 

factors [15,16]. The most potent angiogenic factor is the vascular endothelial growth factor (VEGF), 

which exerts its effect through its main receptor, i.e. vascular endothelial growth factor receptor two 

(VEGFR2) [15,17]. Activation of the VEGFR2 results in endothelial cell proliferation, migration and 

differentiation and thus plays a key role in adult angiogenesis. VEGFR2 is upregulated as early as 1h 

poststroke in mouse models of middle cerebral artery occlusion (MCAO), continues to increase for up 

to one week and decreases thereafter [18,6,8]. This time profile of VEGFR2 expression after stroke is 

mainly based upon invasive methods like immunohistochemistry, Western blot and mRNA analysis. 

Non-invasive tracking of VEGFR2 expression as a correlate for angiogenesis after stroke was 

performed with PET in combination with a VEGFR tracer [18]. Increased VEGFR2 expression was 

observed in the ischemic hemisphere of rats until 16 days after stroke, and subsequently decreased to 

almost normal levels at 23 days post-stroke, correlating with immunohistological VEGFR2 

quantification. However, a correlation to actual vessel density in the post-stroke tissue is missing in 

this study.  

 

In the following study we aim to investigate the usefulness of VEGFR2 as a molecular marker for 

longitudinal observation of post-stroke vascular remodeling. We performed longitudinal and non-
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invasive bioluminescence imaging of the VEGFR2 expression following middle cerebral artery 

occlusion in VEGFR2-luc mice, which express firefly luciferase under the control of the VEGFR2 

promoter. After validation of elevated VEGFR2 levels in the ischemic hemisphere, we further 

investigated the changes in vessel density in immunohistological sections. 

 

 

Methods 

 

Animal model 

 

All animal experiments were conducted according to the guidelines laid out in the German Animal 

Welfare Act, in accordance with the European Council Directive 2010/63/EU, and were approved by 

the Landesamt für Natur, Umwelt und Verbraucherschutz North Rhine-Westphalia, reference number 

84-02.04.2011.A123, as well as by the bioethics committee from Leiden University Medical Center, 

Leiden, The Netherlands, reference number 10215. A transgenic knock-in mouse model [19] which 

expresses firefly luciferase under the control of the VEGFR2 promotor was used for all experiments. 

The animals were kept under ad libitum supply of food and water in a 12h/12h day and night cycle. 

All measurements and surgical interventions were performed under isoflurane anesthesia. 

 

 

Experimental groups 

 

In total 30 male VEGFR2-luc knock-in mice (7-13 weeks old) were randomly assigned into groups of 

different survival times and different post mortem tissue processing. Six healthy control animals were 

measured at three different days for the assessment of inter- and intra-animal stability of 

bioluminescence kinetics from the brain. Subsequently, these mice were sacrificed for Western 

blotting (n=3) and immunohistochemistry (n=3). Eighteen mice received a 30 min occlusion of the 

right middle cerebral artery. Of this group, 2 animals were excluded and prematurely sacrificed due to 
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lack of stroke (n=1) and strong weight loss (n=1). Of the remaining 16 animals, 4 were sacrificed at 7 

days and brain tissue was collected for Western blotting (n=2) and immunohistochemistry (n=2). 12 

animals were let to survive to 14 days post MCAO and brain tissue was collected for Western blotting 

(n=6) and immunohistochemistry (n=6). 6 animals received a sham surgery of which 1 had to be 

excluded due to spontaneous lesion formation detected as hyperintense brain areas on T2-weighted 

MR images. The remaining 5 sham animals were sacrificed at 14 days post sham surgery. Tissue was 

collected for Western blotting (n=3) and immunohistochemistry (n=2). MCAO and sham animals were 

imaged 3 to 7 days before surgery (baseline acquisition) and 3, 7 and 14 days post surgery. Each 

bioluminescence imaging session was directly followed by a MRI acquisition of T2 maps. Between 

day 3 and day 7 post surgery, sham and stroke animals received injections of 5-bromo-2'-deoxyuridine 

(BrdU, Sigma Aldrich, Taufkirchen, Germany) twice daily (50mg/kg). An overview of the study 

design is presented in Fig. 1a.  

 

Middle cerebral artery occlusion 

 

The ischemic lesion was induced by transient occlusion of the right middle cerebral artery (MCAO), 

using the intraluminal filament model adapted from rat. The specific surgical method used in this 

study equals previously described MCAO in mice [20]. Mice were anesthetized with 1-2% isoflurane 

in a 30/70 oxygen/air mixture and received a subcutaneous injection of 4 mg/kg buprenorphin 

(Temgesic, Merck, Darmstadt, Germany) for analgesia. A neck incision exposed the common carotid 

artery and a silicon rubber-coated filament 

Corporation, Sharon, MA USA) was introduced into its lumen. The filament was advanced through 

the internal carotid artery until it blocked the blood flow to the middle cerebral artery. Animals were 

allowed to recover under a red light lamp during the occlusion. After 30 min of occlusion, animals 

were re-anesthetized and reperfusion was initiated by filament removal. The common carotid artery 

(CCA) was permanently ligated. Sham surgery involved the partial introduction of a filament into the 

common carotid artery without blocking the blood flow to the MCAO. Animals were also recovered 

for 30 min and re-anesthetized for filament removal. The CCA was also ligated permanently. 
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Following MCAO surgery, all animals received s.c. injections of 1 ml NaCl twice daily until the body 

weight stabilized.  

 

Bioluminescence Imaging 

One day prior to the first bioluminescence imaging session, mice were anesthetized in 2% isoflurane 

and the fur on the head was shaved to allow better photon penetration. It was not necessary to shave 

the animals a second time during the study. Photon emission (PE) was captured using the IVIS 100 

(Perkin-Elmer, Waltham, MA, USA) equipped with a mirror system consisting of two mirrors at a 45° 

angle to the basis (Fig. 1b). Mice were individually anesthetized in 2% isoflurane and subsequently 

injected i.p. with 150 mg/kg click beetle luciferin (Promega, Madison, WI, USA) (stock solution 20 

mg/ml). The acquisition of photon emission was directly started after luciferin injection. 15 

consecutive measurements of 1 min duration were performed in order to capture the inflow kinetics. 

Photon emission was analyzed for different regions of interest (ROIs; Fig. 1b). Inflow kinetics and 

photon emission of the 15th min (PE15) after injection were extracted for each ROI. PE15 values from 

ormalized to the 

 

 

Magnetic Resonance Imaging 

Experiments were performed on a 7 Tesla Bruker Pharmascan 70/16 (Bruker Biospin, Ettlingen, 

Germany) with a 16 cm horizontal bore magnet and a 9 cm (inner diameter) shielded gradient, a 

maximum gradient strength of 300 mT/m, and a 23-mm birdcage transmit-receive RF coil (Bruker 

Biospin, Ettlingen, Germany). A multi slice multi echo (MSME) sequence (TR/TE = 4000 ms /11 ms, 

16 echoes, 8 slices, slice thickness 1 mm, FOV 1.5 x 1.5 cm, matrix 128 x 128, resolution 117 x 117 

with IDL software (Exelis Visual Information Soution, Boulder, CO, USA). 
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Western Blotting 

Animals were deeply anesthetized and killed by cervical dislocation. Brains were removed quickly and 

placed in ice cold phosphate buffered saline (PBS). Left and right cortex, as well as left and right 

striatum were dissected and directly frozen on dried ice. Tissue was stored at -80 °C until further 

processing. Tissue was lysated in cell lysis buffer (#9803, Cell signaling Technology, Beverly, MA, 

USA) and treated with protease inhibitor complete Mini (CatNo 04693159001, Roche Applied 

Science, Indianapolis, Indiana, USA) supplemented with phenylmethylsulphonyl fluoride (PMSF, 

P6726, Sigma-Aldrich, Taufkirchen, Germany). Protein concentration was determined using the BCA 

Protein Assay Kit (Pierce, Rockford, IL, USA). For each sample equal amounts of protein were 

electrophoresed through 8-16% SDS PAGE gel (Invitrogen, Life Technologies, Darmstadt, Germany) 

and subsequently electrotransferred to nitrocellulose membranes (ProTran, Whatman, Kent, UK). 

Membranes were probed with the primary antibodies for VEGFR2 (1:500; #2479, Cell Signaling 

-actin (1:5000; MP Biomedical, Solon, Ohio, USA) overnight 

at 4°C. For detection, horseradish peroxidase-conjugated secondary antibodies were used (1:3,000 for 

-actin, 1:800 for VEGFR2) followed by enhanced chemiluminescence development with Amersham 

ECL Western Blotting Detection Reagents (GE Healthcare, Buckinghamshire, UK). Results were 

analyzed using ImageJ software (NIH, rsbweb.nih.gov/ij/). Regions of interest with constant size were 

positioned over each protein band and the integrated density was quantified followed by background 

-actin signal. Data from the ischemic/sham hemisphere was then 

normalized to the intact hemisphere and displayed as mean ± standard error of mean. 

 

Immunohistochemistry 

Animals were deeply anesthetized and transcardially perfused with ice cold PBS followed by 20 ml 

4% paraformaldehyde. Subsequently, brains were removed and shock frozen in -40 °C methylbutane 

(Sigma-Aldrich, Taufkirchen, Germany). Brain tissue was stored at -80°C until further processing. 
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and stored at -20°C. Sections for BrdU staining were pretreated with 2N hydrochloric acid for 2 hours 

at room temperature. Prior to immunostaining, sections were pre-incubated at room temperature in 5% 

normal serum and 0.25% Triton X-100, in KPBS for 45 minutes. Primary antibodies were incubated 

overnight at 4°C. The following primary antibodies were used for double staining: Anti-laminin 

(1:100, ab11575, Abcam, Cambridge, UK), anti-GFAP (1:200, G3898, Abcam Cambridge, UK), 

biotinylated solanum tuberosum (potato) lectin (1:100, B-1165, Vector Laboratories, Burlingame, CA, 

USA), anti-BrdU (1:100, ab6326, Abcam, Cambridge, UK). Secondary antibodies were applied for 2h 

at room temperature. A biotin-conjugated secondary antibody (1:200, Vector Laboratories, 

Burlingame, USA) was used with Alexa 488-conjugated streptavidin (1:200, Molecular Probes, 

Invitrogen, Life Technologies, Darmstadt, Germany). Cy2 and Cy3 (1:200, Jackson Immuno 

Research, West Grove, PA, USA) were used as complementary secondary antibodies for double 

staining, and Hoechst 33342 (1:1,000 Invitrogen, Carlsbad, USA) was added during final incubation 

with secondary antibodies for nuclear staining. Slides were coverslipped with mounting medium 

(Entellan, Merck, Darmstadt, Germany). Z-stacks of BrdU/lectin positive cells were acquired with a 

confocal microscope (Leica TCS SP8, Leica Microsystems, Wetzlar, Germany). Laminin/GFAP 

double staining was used for vascular volume estimation. Microscopic images of whole brain sections 

were acquired at 4x magnification with a fluorescent microscope (BZ-9000 Keyence, Osaka, Japan). 

Area

magnification from the ischemic side and from corresponding areas within the intact hemisphere. 

Using the Keyence microscope processing software, the area of staining was quantified in these ROIs 

by thresholding. Clusters of small size (<100 pixels) were regarded as unspecific dirt and were 

eliminated from the selection. Subsequently, the ratio of the area covered by the staining was 

calculated for each image and a ratio was made to the corresponding image of the intact hemisphere. A 

mean was calculated for each region for each animal. Subsequently, a group mean was calculated for 

each region. Data is presented as group mean ± standard error of mean.  
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Statistics 

Statistical analysis was performed on in vivo BLI data using a repeated measures ANOVA (SPSS 

version 20, IBM SPSS statistics, Ehningen, Germany) for the time points pre-stroke, 3d and 7d. Post 

hoc comparisons to the pre-stroke time points within each group were corrected for multiple 

comparisons using Bonferoni correction. A separate repeated measures ANOVA had to be employed 

for looking at sham and MCAO animals including the 14d time point. Post hoc comparisons included 

comparison to pre-stroke time points and comparison between sham and MCAO for each time point 

with Bonferoni correction. A p-  for 

comparison to the pre-stroke time point, # for comparison to the sham group.  

 

Results 

 

Inter- and intra-animal stability and kinetics of the bioluminescence signal 

 

We characterized the photon emission kinetics from the brain of 6 healthy transgenic mice expressing 

firefly luciferase under the control of the VEGFR2 promotor. All animals showed increasing photon 

emission from the brain between 1 to 10 min after luciferin injection. Photon emission (PE) reached a 

maximum between 10 and 13 min and remained on this level in a steady state until the end of the 

measurement at 15 min post injection (Fig. 2b). PE kinetics and intensity from the right hemisphere 

were equal to the left hemisphere for each individual animal (Fig. 2b). We continued to evaluate the 

photon emission during the 15th minute after luciferin injection (PE15), which represents photon 

emission during the steady state phase. Healthy animals were measured at three consecutive days for 

the assessment of inter- and intra-animal stability. Repetitive MRI on the healthy subjects reveals 

stable T2 values between time points and equality of both hemispheres (Fig. 2a). Corresponding BLI 

of this exemplary animal, presented as color-coded PE15, confirm the equality of the hemispheres, as 

well as a stable PE15 between time points (Fig. 2a). Repeated measurement of the same animal resulted 

in absolute PE15 variation from 3 to 30% of the mean (Fig. 2c). Absolute signal intensity variation 
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between animals was 20 to 45% of the mean (Fig. 2, b + c). In order to investigate BLI changes over 

time, we corrected for inter- and intra-individual variation by normalizing the ischemic (right) to the 

intact (left) hemisphere. 

 

Cerebral ischemia 

 

Cerebral ischemia was induced by 30 min occlusion of the right MCA with a silicone rubber-coated 

filament. Lesion size, location and development were assessed by MRI using quantitative T2 maps. 

Lesions appear as areas of increased T2 values on T2 maps, and a representative lesion is displayed in 

Fig. 3a. Lesions were of similar size throughout all groups, including damage in the striatum and the 

parietal cortex, except for one animal of the 7d immunohistochemistry (IHC) group that showed only 

a small striatal infarct. However, three animals of the 14d Western Blot (WB) group showed larger 

lesions (including larger parts of the parietal cortex), thus slightly increasing the average lesion size of 

the WB group compared to the IHC group. The different lesion size of these three animals is probably 

due to their genetic background, since these three animals were siblings. At 14 days after MCAO, the 

ischemic hemisphere has shrunken in size, giving space to cerebrospinal fluid, which is visible as a 

rim of increased T2 value along the ischemic cortex (Fig. 3a).  

 

 

Bioluminescence of VEGFR2 expression after stroke 

 

Before MCAO, T2 maps displayed no signs of lesion and photon emission was comparable for the 

right and left hemisphere (Fig. 3a, first row). Three days after MCAO, vasogenic edema resulted in 

increased T2 values, and a clear lesion was visible in the right hemisphere on T2 maps (Fig. 3a, 

second row). At this point, photon emission of the ischemic hemisphere was already significantly 

increased (Fig. 3d) indicating an upregulation of VEGFR2 expression. Photon emission continued to 

increase from the ischemic hemisphere and was clearly visible on BL images on 7d and 14d after 

MCAO (Fig. 3a, 3rd and 4th row). The maximal PE increase of 58 ± 36 % in the ischemic hemisphere 
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was observed 7d post MCAO in the top view (Fig. 3d, left graph). The PE increase was even more 

pronounced (78 ± 26 %) when observed through the mirror system (Fig. 3d, right graph). At the last 

observation time point of 14d post MCAO, the photon emission was still strongly increased in the 

ischemic hemisphere in both, the top view (44 ± 34 %) and the mirror view (65 ± 26 %). The stroke-

induced changes in photon emission were significant for all 3 post-stroke time points when compared 

to pre-stroke values (3d: p=0.001; 7d: p<0.001; 14d: p<0.001; repeated measures ANOVA F(1.72, 

34.438)=6.85 p=0.005 with Bonferroni correction for multiple comparisons). The BLI kinetics, 

composed of an inflow phase and a steady state phase as observed in healthy control mice, are not 

changed in the pathological condition of ischemia. Although photon emission from the ischemic 

hemisphere rises faster during the inflow phase, a steady state phase is reached after 10 min with 

higher photon emission than from the steady state phase of the intact hemisphere (Fig. 3c). 

 

Sham surgery (introduction of the filament into the ICA but without advancing it to occlude the MCA) 

did not result in lesion formation (cf. T2 maps in Fig. 3b), but, nevertheless, resulted in a transient 

change in PE on the ispilateral hemisphere (Fig.ure 3, B+D). Three days after surgery, the increase in 

emission was of similar magnitude as observed in the MCAO group (top view: 28 ± 17%; mirror 

view: 58 ± 31%) and was significantly different from pre-surgery values (p=0.005). Although 

emission from the sham hemisphere stayed elevated at 7d and 14d, the change to the pre-surgery 

values was no longer significant (Fig. 3d). The upregulation of VEGFR2 expression was significantly 

higher in MCAO animals when compared to sham animals at 7d (p=0.022) and at 14d (p=0.044) 

(repeated measures ANOVA F(3.444, 34.438)=7.333 p<0.001 with Bonferroni correction). Sham was 

significantly different from healthy animals only at 3d post surgery (p=0.004), but no longer 

thereafter. The BLI kinetics of sham animals show similar behavior of the intact and the sham 

hemisphere, with slightly higher PE from the sham hemisphere (Fig. 3c). 

 

 

 

Western blot analysis 
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Western blot analysis of healthy control animals shows little change in VEGFR2 expression between 

left and right hemisphere (Fig. 4). MCAO results in changes in VEGFR2 protein content of the 

ischemic hemisphere. Western blot of VEGFR2 confirmed elevated levels of VEGFR2 protein in the 

ischemic cortex and striatum at 7d and 14d post MCAO (Fig. 4, a+b). Quantification revealed a 40 ± 

21% increase in the ischemic cortex and a 32 ± 43% increase in the ischemic striatum at 14d after 

surgery (Fig. 4c). Sham surgery resulted in elevated levels of VEGFR2 protein in the cortex (21 ± 

16%), but an apparent decrease in the striatum (-16 ± 14%) (Fig. 4c).  

 

 

Immunochistochemistry 

 

Histology was performed on the brains to determine changes in vascular volume after MCAO. 10- m-

thick brain sections were therefore stained with Laminin with the stained area interpreted as vascular 

volume approximation. GFAP staining was used for characterization of astrocyte activation in 

association with the ischemic lesion. Overview images were acquired for identification of the four 

areas of interest: the core lesion in the cortex (cortex core), the peri-infarct area the cortical lesion 

(cortex peri), the striatal core lesion (striatum core), and the peri-infarct area of the striatal lesion 

(striatum peri). Three close-ups of 20x magnification were taken from each area of interest and from 

corresponding sites of the intact hemisphere. Fig. 5a shows representative close-ups of each region. As 

a measure for vascular volume changes, the area positive for laminin was compared between the 

ischemic hemisphere and the corresponding regions on the contralateral hemisphere (% area, 

normalized to contralateral side). Vascular volume was strongly reduced in the cortical core region in 

the MCAO animals (16 ± 5 % reduction), and less so in the sham-operated animals. The striatal core, 

the striatal peri, and the cortical peri regions all showed an increased vascular volume of (21% ± 6 %), 

(26% ± 4%) and (14% ± 3%), respectively (Fig. 5b). Sham animals did not show significant 

differences between the hemispheres in any of these regions. We further investigated the presence of 

newly formed endothelial cells as possible source for the increased vascular volume using BrdU 
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staining. In each region that showed increased vascular volume, we found several endothelial cells 

with incorporated BrdU (Fig. 5c), proving that dividing endothelial cells may be the source of newly 

formed blood vessels between day 3 and 7 after stroke.  

 

 

Stroke-induced angiogenesis is detectable with the VEGFR2-luc mouse model 

 

MCAO resulted in increased PE from the ischemic hemisphere. In a cluster analysis presentation of 

the group averages, this increase was corroborated by increased VEGFR2 protein content in the 

ischemic striatum and cortex (Fig. 6a) and also by increased vascular volume in the peri-infarct areas 

of the cortex and striatum (Fig. 6b). Healthy control mice and sham animals showed only minor 

changes in BLI, minor changes in VEGFR2 expression and minor changes in vessel density from the 

left and right hemisphere, building a separate and distinct cluster around 1 (Fig. 6, a+b). The BLI 

signal recorded by the CCD camera is a two dimensional image from the three dimensional structure 

of the brain. Signals from deeper structures of the brain are subjected to stronger absorption by 

overlaying tissue than signals from structures closer to the brain surface. Additionally, the half-life of 

both proteins, VEGFR2 and luciferase, may be substantially different, resulting in a (partially) 

decoupled BLI signal. This could explain the lack of a tight correlation between the PE intensity and 

VEGFR2 protein content, or between PE intensity and vascular volume. A time delay between 

VEGFR2 expression and the occurrence of laminated microvessels will confound the correlation at the 

14d time point. However, stroke-induced increased BLI was paralleled by increased VEGFR2 content 

and increased vascular volume. This is observed in a correlation between VEGFR2 protein content 

and vascular volume following stroke (striatum r = 0.97, cortex r = 0.67). 

 

 

Discussion 
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We have non-invasively observed the temporal profile of VEGFR2 expression after cerebral ischemia 

as a potential molecular reporter for poststroke angiogenesis, while we followed lesion development 

with the complementary method of MRI. VEGFR2 plays a key role in post-ischemic vascular 

remodeling and we found increased expression lasting up to 14d post MCAO, which was paralleled by 

an increased vascular volume in distinct peri-infarct areas.  

 

 

Methodological considerations 

 

Bioluminescence imaging is a very sensitive method and allows the detection of even small changes in 

cell numbers [21]. However, it has a poor spatial resolution. For the first time we report the additional 

observation of photon emission (PE) through two 45° angled mirrors for a better discrimination of left 

and right hemisphere through lateral views. Signal changes were consistently greater with intensity 

readouts from the mirror views, but variation of the signal was also increased, suggesting the 

introduction of additional noise. In vitro, a linear correlation exists between PE and number of 

luciferase expressing cells. In vivo this relation is affected by luciferin distribution and photon 

absorption and scattering by tissue [22-24]. Bioluminescence imaging of the brain has to deal with 

limited substrate diffusibility through the blood brain-barrier (BBB) [25]. Brain pathologies, which 

result in a breakdown of the BBB, impose even further methodological obstacles towards the 

interpretation of the photon emission. An open BBB may facilitate luciferin inflow on the ischemic 

hemisphere, thus resulting in higher photon emission due to higher substrate availability, instead of 

higher luciferase content. Photon emission will rise faster, when substrate availability is higher, which 

was illustrated in the comparison between i.v. and i.p. substrate application [21]. In order to gain 

insight into the possible effect of an open BBB, we recorded PE already during the luciferin inflow 

phase with a temporal resolution of 1 min.  Subsequently, we compared the inflow behavior between 

the intact and the ischemic hemisphere. The ascent was faster in the ischemic hemisphere, indicating 

faster substrate availability through a disturbed BBB. Nevertheless, emission reached a steady state at 

maximal PE in the ischemic and in the intact side, suggesting that a constant level of substrate is 
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reached in the brain and is maintained. In this steady-state phase the difference in signal intensity will 

be due to the difference in luciferase content, rather than substrate concentration. We can therefore 

conclude that BBB breakdown in this model does not result in higher substrate availability in the 

ischemic side, and the increase in photon emission during steady-state can be solely attributed to 

increased VEGFR2 expression.  

 

 

VEGFR2 upregulation during post-stroke angiogenesis 

 

In order to non-invasively monitor VEGFR2 expression following stroke, we made use of a transgenic 

mouse expressing luciferase under the control of the VEGFR2 promotor [19]. We observed increasing 

bioluminescence intensity after cerebral ischemia in the ischemic hemisphere, which peaked at 7d 

post-stroke. In agreement to previous reports [18,6,8], our results show a continuous increase in 

VEGFR2 expression from 3d to 7d post-stroke. We observe still significantly elevated expression at 

14d post-stroke, which was confirmed by increased VEGFR2 protein content in the ischemic 

hemisphere compared to the intact hemisphere. Semi-quantitative analysis of regional VEGFR2 

content in the brain by Western blotting indicates strong vascular remodeling in the ischemic striatum, 

since the amount of VEGFR2 was increased by as much as 40%. Also sham surgery resulted in a 

lower transient increase in BLI signal from the sham hemisphere, indicating an upregulated VEGFR2 

expression. Western blot results show a slightly increased VEGFR2 content at 14d post surgery in the 

right cortex, but not in the striatum of sham animals. Sham surgery involved the introduction of a 

filament only into the common carotid artery (CCA). Upon removal of the filament, the CCA was 

ligated permanently to control for blood flow changes induced by the permanent ligation of the CCA 

in the stroke group. CCA occlusion is used as a model for mild hypoxia and chronic cerebral 

hypoperfusion [26,27]. Following the occlusion of the internal carotid artery (ICA), Hecht et al. 

observed reduction by 80% in overall cerebral blood flow, while cortical perfusion was not notably 

changed. Unilateral CCA occlusion did not result in neuronal cell death within the territory of the 

MCAO [27], but at 21d after ICA occlusion, slightly increased vessel density was noted in the 
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ipsilateral cortex [26].  Although our study did not indicate a strong increase in cortical or striatal 

vascular volume, BLI was sensitive enough to detect the minor changes in VEGFR2 expression 

induced by mild hypoxia after CCA occlusion.  

 

 

Vascular volume increase 

 

We investigated the vascular volume in a core region and in a peri-infarct region of the cortex and the 

striatum. Our MCAO model resulted in strong reduction in vascular volume within the cortical core 

region. Similar observations were made by Bosomtwi et al. [28] in a distal MCAO rat model. Yet, in 

the region defined as striatum core, we detected an increase in vessel density. High upregulation of 

VEGFR2 in the striatum, as indicated by the Western blot results, may have possibly contributed to 

early enhanced endothelial survival due to its protective properties [29-32] which may then have been 

followed by new vessel recruitment. As reported by previous studies [6-8,12,9], we observed 

increased vascular volume in the peri-infarct striatum (26% ± 4) and peri-infarct cortex (16% ± 5%). 

The samples on which the striatal peri-infarct vascular volume is based include the most dorsal part of 

the striatum close to the subventricular zone (SVZ), which has been described as highly angiogenic 

[9,33]. Strong endothelial cell proliferation was observed in this area next to the SVZ between 1 and 2 

weeks, and consequently increased vessel density persisted up to 16 weeks [9]. Previous studies 

reported endothelial cell proliferation started as early as 24h after MCAO in mice [6], and increased 

vessel density was detectable at 2-3d post-stroke [6,8]. The number of microvessels remained 

increased up to 21d [6]. In all three regions with increased vascular volume we detected several new 

endothelial cells, which were newly generated in the first week after stroke. However, new vessels can 

also form without endothelial cell proliferation through a process called intussusception [34]. 

Peripheral bone marrow-derived endothelial progenitor cells contributed to vessel formation or 

stabilization [35]; especially high numbers of endothelial progenitor cells were found beneficial for 

stroke patients [36]. We did not quantify the numbers of newly generated endothelial cells, since our 
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main objective was to investigate the impact of VEGFR2 signaling on new vessel formation, 

regardless of their origin.  

 

 

Bioluminescence of angiogenesis 

 

The bioluminescence signal change showed increased VEGFR2 expression within the ischemic 

hemisphere. Western blot analysis revealed increased VEGFR2 protein concentration in ischemic 

striatum as well as in the cortex. In both, peri-infarct cortex and striatum, as well as in the striatal core 

increased VEGFR2 expression translated into increased vascular volume. VEGFR2 is mainly 

expressed on endothelial cells and functions as transducer of survival, proliferation, migration and 

differentiation cues [15]. Following stroke, the number of VEGFR2 positive endothelial cells was 

strongly increased in the penumbra [7]. Although very early studies reported that VEGFR2 was 

expressed solely on endothelial cells, later studies found VEGFR2 expression as well in post-ischemic 

neurons [14,6]. Furthermore, inhibition of VEGFR2 resulted in decreased neurogenesis and decreased 

arrival of newly formed neuroblasts in the ischemic striatum [7]. Neuroprotection may therefore be 

another important function of VEGFR2 upregulation besides the promotion of angiogenesis. 

VEGFRs have been also found to be upregulated on astrocytes following stroke [6]. Although 

VEGFR2 expression was found on reactive astrocytes [37] and microglia/macrophages [38] following 

stroke, other groups could not reproduce these results [39]. Further, a distinct pattern, where astrocytes 

express VEGFR1 and endothelial cells express VEGFR2 was suggested [40]. These conflicting 

results, however, imply caution for the interpretation of the BLI signal expressing solely ongoing 

angiogenesis.  

 

Conclusion 

 

We monitored the temporal profile of vascular changes following transient cerebral ischemia and 

established the usability of the VEGFR2-luc mouse model for non-invasive tracking of angiogenesis 
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in stroke pathology. The present study detected angiogenesis within the first two weeks after stroke 

and imaged lesion evolution in parallel. Future studies will benefit from this non-invasive tool for 

investigation of the angiogenic activity beyond this time window.   
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Figure legends 

 

Fig. 1 Study design and imaging setup a) Healthy control animals were measured 

repetitively for the assessment of BLI brain kinetics and the inter- and intra-animal variability 

of the BLI signal. Sham and MCAO animals were measured before (pre), and 3, 7, 14 days 

(3d, 7d, 14d) after 30 min MCAO with MRI and BLI. At 7d and 14d post MCAO tissue was 

collected for WB and IHC. b) BL imaging setup: Animals were placed in a prone position on 

an elevated bar between two 45° mirrors. BLI was evaluated in four different regions of 

interest: intact lateral view in mirror, intact hemisphere and ischemic hemisphere in top view, 

ischemic lateral view in mirror. (MCAO: middle cerebral artery occlusion, MRI: magnetic 

resonance imaging, BL: bioluminescence, BLI: bioluminescence imaging, WB: Western blot, 

IHC: immunohistochemistry) 

 

 

 

Fig. 2 Assessment of brain kinetics and stability of the BLI  signal from healthy animals 
a) Exemplary MRI and BLI images of the three-fold repetition of one healthy animal shows 

an intact brain and a stable intensity of photon emission over time. b) The measurement 

directly after luciferin injection enabled to reveal the inflow kinetics specifically for the brain. 

An inflow phase between 1-10 min can be distinguished from a steady state phase of maximal 

photon emission between 12 and 15 min after injection. Emission from left and right 

hemisphere was consistently of same magnitude. Data is presented as mean ± standard 

deviation. c) Repeated measurement of each animal revealed intra-individual variability of 3  

30%. Inter-animal variability of the absolute intensity during the steady state was around 20% 

to 45%. Data is presented as mean ± standard deviation. Note: Data is presented divergently 

to other graphs as group mean ± standard deviation for the purpose of descriptive statistics. 

(PE: photon emission, PE15: photon emission during the 15th minute after luciferin injection 

representing PE of the steady state phase) 
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Fig. 3 Qualitative and quantitative evaluation of BLI  changes after sham and MCAO 

surgery a) Representative longitudinal MRI and BLI data set from one animal that received 

MCAO surgery. After MCAO, a clear lesion is visible in the right hemisphere on T2 maps. 

BLI signal intensity starts to increase 3d post-stroke and PE is clearly increased over the 

ischemic hemisphere compared to the intact hemisphere at 7d and 14d post-stroke. Increased 

PE from the ischemic hemisphere is distinctively visualized in the mirrors. b) Representative 

longitudinal MRI and BLI data set from one animal that received sham surgery. Sham surgery 

did not result in lesion formation confirmed by unchanged T2 maps. However, sham surgery 

lead to a transient increase in photon emission from the ipsilateral side, which was best visible 

in the mirror system. c) BLI kinetics of the ischemic and the intact hemisphere at 14d post 

sham surgery (upper graph) and MCAO surgery (lower graph). After sham surgery, both 

hemispheres exhibit similar inflow behavior. PE from the sham hemisphere is slightly but not 

significantly increased compared to the intact side. After MCAO, PE increases faster in the 

ischemic side. The ischemic side as well as the intact side reach a steady state emission 

starting 12 min after luciferin injection. The absolute PE during the steady state is higher from 

the ischemic hemisphere. d) Quantification of BLI changes was achieved by normalization of 

PE from ischemic to intact hemisphere for the top view (left graph) and the mirror view (right 

graph). Pre-stroke PE was consistently equal in all investigated groups with a stronger 

variation in the mirror view. Increased PE was significantly different to pre-stroke values on 

day three for stroke, but also for sham animals in both views. At 7d and 14d, elevated PE in 

stroke animals was statistically significant compared to pre-stroke values (both p<0.001) and 

to the sham group (p=0.021, p=0.044). For visual comparison, the results of the repetitive 

measurement of healthy animals are incorporated in the graph, although these were measured 

at different days than indicated here. (* comparison to pre p<0.05 ; # comparison to sham 

p<0.05) 

 

 
 
Fig. 4 Qualitative and quantitative evaluation of tissue VEGFR2 protein content a) 
Representative Western blots from cortical tissue samples for each group showing increased 

VEGFR2 (210 and 230 kDa) content in the ischemic cortex of animals that underwent 

MCAO. Note the strong increase in the 7d group. Sham animals and healthy control display 

similar levels between left and right hemisphere. b) Representative Western blots from striatal 
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tissue samples. Strongest elevation is visible in the 14d MCAO group. c) Semi-quantification 

(including normalization to actin) and subsequent normalization to the intact hemisphere 

reveals slightly increased VEGFR2 expression in the cortex of sham animals, while the 

increase is very pronounced in cortex and striatum in the MCAO group.  

 

 

 
 
Fig. 5 Immunohistochemical analysis of vascular changes a) Immunohistochemistry of 

laminin for vascular volume estimation. Representative close-ups of 20x magnification for 

each region of interest already display apparent changes in vessel density. b) Quantification 

and subsequent normalization to the intact hemisphere confirms decreased vascular volume in 

the core region of the cortex but not in the core region of the striatum. Sham animals showed 

little changes in corresponding areas of the brain. However, healthy animals displayed strong 

variability in corresponding regions in the cortex, probably inherent to the methodological 

approach chosen here. Vascular volume in the peri-infarct zone of the striatum was elevated, 

but not in the peri-infarct zone of the cortex. Sham animals showed little changes in 

corresponding areas of the brain. D) Z-stacks of three representative BrdU+/lectin+ newly 

formed endothelial cells from the striatum and the peri-infarct cortex. Scale bar shows 20 µm  

 

 

 

Fig. 6 Correlation a) Scatter plot of group-pooled BLI signal change (change of ischemic 

hemisphere compared to intact hemisphere) against VEGFR2 protein content (WB  Western 

blot) shows two distinct clusters: Healthy and sham animals show little change and cluster 

around the 1 intersection, while MCAO animals have increased PE and increased VEGFR2 

content in the ischemic hemisphere and cluster in upper right quadrant. b) Scatter plot of 

group-pooled BLI signal change against vessel density change (IHC  

immunohistochemistry) shows two distinct clusters: Healthy and sham animals show little 

change and cluster around the 1 intersection, while MCAO animals have increased PE and 

increased vessel density in the ischemic hemisphere and cluster in upper right quadrant.  
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Figure 3 
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Figure 7 
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Vascular changes after stroke in the rat: a
longitudinal study using optimized magnetic
resonance imaging
Philipp Boehm-Sturma†, Tracy D. Farra†, Joanna Adamczaka, Jan F. Jikelia,b,
Luam Menglera, Dirk Wiedermanna, Therése Kallura, Valerij Kiselevc and
Mathias Hoehna*

During stroke, the reduction of blood flow leads to undersupply of oxygen and nutrients and, finally, to cell death,
but also to upregulation of pro-angiogenic molecules and vascular remodeling. However, the temporal profile of
vascular changes after stroke is still poorly understood. Here, we optimized steady-state contrast-enhanced
magnetic resonance imaging (SSCE MRI) and followed the dynamic changes in vascular architecture for up to 4
weeks after transient middle cerebral artery occlusion (MCAO) in rats. Using MRI diffusion measurements and the
changes of transversal relaxation rates ΔR2 and ΔR!

2 after injection of a superparamagnetic contrast agent, SSCE
MRI provided several hemodynamic parameters: relative cerebral blood volume (rCBV), rCBV in small vessels,
microvascular density, and relative vessel size. Six rats underwent SSCE MRI before MCAO and at 7, 14, 21 and 28
days after surgery. 5-Bromo-20deoxyuridine (BrdU) was injected between days 2 and 7 to label proliferating cells
during this time. SSCE MRI depicted a decrease in microvessel density and an increase in vessel size in the ischemic
striatum after stroke. A persistently decreased MRI vessel density was confirmed with histology at 28 days. BrdU+
endothelial cells were found in regions close to the infarct indicating endothelial cell proliferation during the
first week after MCAO; however, late-stage angiogenesis, as would be reflected by increased vessel density, was
not detected. The optimized SSCE MRI protocol was used to follow spatio-temporal changes of important vessel
characteristics, which may contribute to a better understanding of the role of angiogenesis at different stages after
stroke. Copyright © 2013 John Wiley & Sons, Ltd.
Supporting information may be found in the online version of this paper

Keywords: steady-state contrast-enhanced MRI; vessel density imaging; vessel size imaging; middle cerebral artery
occlusion; angiogenesis

1. INTRODUCTION

Stroke is characterized by a disturbance in blood supply to the
brain. Reduction of blood flow results in widespread cell death,
but also activation of several molecules and signaling pathways
that are thought to promote angiogenesis, reviewed in (1–3).
Proliferating endothelial cells were first observed more than a
decade ago in human post mortem ischemic tissue (4), and
vascular casting in rodent models of middle cerebral artery
occlusion (MCAO) illustrated the formation of vascular buds,
some of which appeared to anastomose with surrounding
vessels (5). However, it is not clear whether or not these new
vessels are functional, or whether they have the capacity to play
a role in stroke outcome.
Magnetic resonance imaging (MRI) has long been used to

observe alterations in cerebral blood supply following stroke.
While resolution is currently lacking to detect formation of new
microvessels directly, under the assumption that these vessels
are functional, MRI can, however, depict cerebral blood volume
(CBV) changes, which in turn can be used to noninvasively
estimate microvessel density and size, as reviewed in Neeman
et al. (6) and Seevinck et al. (7). Here, the term microvessel
usually refers to capillaries (5–10 mm diameter) in contrast to
large arteries and veins (~100 mm diameter). Although the

vascular tree may more accurately be described by self-similar
structures of a wide range of diameters, such simple categoriza-
tion into small and large vessels is under defined conditions
justified in the context of MRI signal from vasculature (8).
Steady-state contrast-enhanced magnetic resonance imaging
(SSCE MRI) provides measures of blood volume, vessel size, and
vessel density by measuring relaxivity changes (ΔR2 and ΔR!2) in
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tissue following injection of an intravascular superparamagnetic
contrast agent (9–12).

Initial studies applying SSCE MRI in embolic stroke showed
that the microvascular density in the lesion core and adjacent
tissue decreased (13). However, another study reported an
increase in relative cerebral blood volume (rCBV) and density of
microvessels in cortical regions starting 14 days after permanent
distal MCAO, interpreted as late-stage angiogenesis by those
authors (14). Moreover, increased rCBV and vessel size were
found in the ischemic territory of rats after MCAO and were inter-
preted as vasodilation in response to the stroke (15). Further
work is required to better understand the optimal acquisition
and analysis strategies for SSCE MRI in order to obtain deeper
insight into biological processes. In the present study, we
carefully refined the technique of SSCE MRI and applied it to
the monitoring of vascular changes for up to 4 weeks after
transient MCAO in the rat. The results were complemented with
an assessment of endothelial cell proliferation during the first
week after MCAO by histological means. Our ultimate aim was
to elucidate the extent of angiogenesis after cerebral ischemia,
which theoretically should be reflected by increased MRI-derived
vessel density.

2. MATERIALS AND METHODS
2.1. Animals and experimental design

All animal experiments were conducted according to the guide-
lines laid out in the German Animal Welfare Act and approved by
the authorities (Landesamt für Natur, Umwelt und Verbrau-
cherschutz Nordrhein-Westfalen) under permission number
9.93.2.10.31.07.048 (dated 22 May 2007). Adult male Wistar rats
(body weight 300–350 g, Harlan–Winkelmann GmbH, Borchen,
Germany) were housed in cages under a 12 h light/12 h dark
cycle with access to food and water ad libitum. During all surgical
and scanning procedures animals were anesthetized and main-
tained with isoflurane in a 70:30 nitrous oxide–oxygen mixture,
and core body temperature was maintained at 36.7 ! 1.0 "C
using in-house automated feedback systems and heat blankets
(medres GmbH, Cologne, Germany). Animals were scanned with
MRI 4–7 days before and on days 7, 14, 21 and 28 after MCAO,
and were sacrificed for histology after the last experimental
session. Additionally, rats received 5-bromo-20deoxyuridine (BrdU,
50 mg kg#1 twice daily i.p., Sigma-Aldrich, Hamburg, Germany)
between days 2 and 7 after MCAO to label proliferating cells.

2.2. Stroke induction

Stroke was induced by occlusion of the middle cerebral artery via
intraluminal filament technique (16) with the following modifica-
tions. Rats were anesthetized and an incision was made in the
right temporal muscle halfway between the eye and ear. The
animals were subsequently placed in a supine position and a
calibrated 1 mm diameter Laser probe was placed against the
right skull to monitor cerebral blood flow changes in the senso-
rimotor cortex following filament placement with a laser doppler
perfusion monitor (Perimed, Järfälla, Sweden). A midline incision
was made in the neck, and the mandibular glands, pretrachial
strap, and sternomastoid muscles were retracted. The carotid
artery and external carotid artery were exposed and ligated
with surgical sutures and a microclip was placed on the internal
carotid artery. A small incision was made in the carotid artery

below the external carotid artery and internal carotid artery
bifurcation and a silicone coated monofilament (410 mm diame-
ter, Doccol Corporation, Redlands, CA, USA) was inserted and
advanced up the internal carotid artery until resistance was felt
and a decrease in cerebral blood flow noted (approximately 17
mm). After 60 min the filament was withdrawn, the suture on
the external carotid artery removed, muscles and glands guided
back into place, wounds sutured and treated with local anes-
thetic. Animals received 2.5 ml of physiological saline s.c. daily
and were provided with moistened food until weight stabilized.
Exclusion criteria stipulated any animals with subarachnoid
hemorrhage, incomplete MCAO (no observable T2 changes
during MRI 1 week after MCAO) were removed from the study.
Six rats entered the study, four of which had a lesion restricted
to the striatum, depicted as hyperintensities on T2 maps; two
animals exhibited cortical and striatal damage. One animal did
not perform the SSCE MRI measurement 2 weeks post MCAO.

2.3. SSCE MRI

2.3.1. Theory

In order to analytically describe the changes in MRI signal owing
to i.v. injection of a paramagnetic substance, the vessel network
is modeled as a set of infinitely long, randomly distributed cylin-
ders (17,18). Proton spins are assumed to be restricted to one of
two compartments: either within vessels (intravascular) or within
the tissue surrounding the vessels (extravascular). Further
assumptions include a small blood volume fraction x0<< 1
and a diffusion length much smaller than the size of a strongly
dephased area around the vessel, that is, do $ r2/D>> 1 (8). D
represents the water diffusivity in the extravascular compart-
ment, r is the vessel radius, and do is the characteristic shift in
Larmor frequency of a magnetized cylinder in an external
magnetic field.
Under these assumptions, the change in MRI signal from

before (Spre) to after (Spost) the contrast agent injection can
simply be described by shifts of the relaxation rates measured in
a spin echo (SE) (R2! R2 +ΔR2) and gradient echo (GE) experiment
(R%2 ! R%2 þ ΔR%2) (cgs units) (11):

ΔR2 ¼
1
TE

ln
Spre;SE
Spost;SE

! "
( 0:694$do2=3D1=3x0r#2=3 (1)

ΔR%2 ¼
1
TE

ln
Spre;GE
Spost;GE

! "
( 2

3
x0do (2)

Here, TE is the echo time.
In order to assess the important tissue parameters T2 and ΔR2

simultaneously, we decided to use a multi spin echo pulse
sequence (MSME). This results in an effective reduction of the
diffusion effect D!D/n2 depending on the number of refocusing
pulses n (19,20). ΔR2 is then determined with the MRI signal SMSME

of the nth echo of the MSME via the modified relationship:

ΔR2 ¼ nb
1

TE nð Þ ln
Spre;MSME nð Þ
Spost;MSME nð Þ

! "
; b ¼ 2

3
(3)

Neglecting the reduced diffusion effect leads to a high under-
estimation of ΔR2 values. We found a lower exponent b= 0.49 in
the experiment (Supporting Information, Fig. S1), which was
used for all further analysis. The deviation from the theory will
be subject to further studies.

P. BOEHM-STURM ET AL.
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Equations (1) and (2) show that ΔR2 is a measure of rCBV
in small vessels whereas ΔR!2 reflects the rCBV in all vessels.
However, both still depend on the concentration C of the
contrast agent in blood, which usually needs to be assessed
invasively or with dynamic contrast-enhanced measurements
(11). Therefore, Jensen and Chandra introduced the so-called Q
-factor, which is largely independent of C and is a measure of
microvessel density (10).

Q ¼ ΔR2
ΔR!2ð Þ2=3

(4)

Q relates to the number of vessels that punctuate a cross-
section of tissue per unit area. Microvessel density N is counted
in units of [N] = 1 mm%2 and can be calculated when the pres-
ence of large macrovessels can be neglected and taking into
account the water diffusivity in tissue (12):

N ¼ 0:218 Q3=D
! "

; D½ ' ¼ mm2s%1; Q½ ' ¼ s%1=3 (5)

Furthermore it can be shown that the mean vessel size holds
true (11):

r ¼ 0:425
1

gΔwB0

# $1=2

( Dð Þ1=2 ΔR!2
ΔR2

# $3=2

(6)

Owing to the lack of in vivo measurements of the contrast
agent concentration and thus lack of Δw values, we neglected
the first term in eqn (6) and used a relative vessel size R (in arbi-
trary units) throughout the article, which is defined as:

R ¼ D
Dlit

# $1=2 ΔR!2
ΔR2

# $3
2:=

(7)

Here, we accounted for local changes in diffusivity in the path-
ologic brain by multiplication with the square root of the quo-
tient of measured diffusivity D and a known value for the healthy
brain Dlit = 6.64) 10%4 mm2 s%1 (21).

2.3.2. MRI acquisition

MRI was carried out on a 4.7 T animal scanner (Biospec47/30,
Bruker BioSpin, Ettlingen, Germany) equipped with actively
shielded gradient coils (BGA 12, 220 mT m%1, 120 ms rise time,
Bruker BioSpin). We used a custom-built surface radiofrequency
coil 30 mm in diameter for reception and a Helmholtz coil for
homogeneous transmission (medres GmbH, Cologne, Germany).
Animals were fixed with tooth bar and ear bars in a custom-
made animal holder (medres). Respiration rate was monitored
with a pressure-sensitive pad under the thorax using DASYlab
(Measurement Computing, Norton, USA) software.
The imaging protocol consisted of apparent diffusion coefficient

(ADC) measurement [spin echo MRI, field of view= (2.56 cm)2,
eight contiguous 1 mm thick slices, matrix = 1282, echo time/
repetition time (TE/TR) = 40.66 ms/4 s, one diffusion direction
medial-lateral in the animal coordinate system, beff = 0.26, 600.26,
and 1500.26 s mm%2,Q1 TA = 12:48 min], an MSME (TE/TR=
13.55 ms/4 s, 10 echoes, TA=8:32 min) and a multigradient echo
pulse sequence (MGE, TE/TR=5 ms/2 s, eight equidistant echoes,
flip angle= 60*, TA=8:32 min). The geometries of the MSME and

MGE were matched to the ADC measurement to allow voxel-wise
calculation of vessel density, except that four additional slices were
acquired in order to cover the whole forebrain in the T2 and T!2
images.

After initial measurements, superparamagnetic iron oxide
particles (Endorem, Guerbet, Sulzbach, Germany, 11.2 mg
Fe ml%1) were injected in the tail vein at a dose of 30 mg
Fe kg%1 without moving the animal. We allowed the contrast
agent to distribute homogeneously over the blood pool for 3
min, and then identical post-contrast MSME and MGE images
were acquired.

2.4. MRI data processing

The MRI data were processed with Interactive Data Language
(IDL, ITT visual information solutions, Boulder, CO, USA) and
FMRIB Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl).

For T2 maps, the MRI signal S(TE) in MSME scans was fitted on a
voxel-wise basis with a monoexponential decay S(TE) = A exp
(%TE/T2) + B with equilibrium signal A, relaxation time T2, and
an offset B to reduce bias introduced by the use of magnitude
images (22). Accordingly, ADC maps were generated by fitting
the MRI signal with S(b) = A exp(%b (ADC) + B. Maps were co-
registered to a template rat brain (an average of 34 high-resolution
T2 -weighted images from 28 rats, scaled tomatch the resolution of
our scans) with FSL’s linear registration tool.

For vessel size and densitymaps, the A0 images (b=0.26 smm%2)
of the ADC scan and the first echo images of the pre- and
post-contrast MSME and MGE scans were segmented with
FSL’s brain extraction tool. The segmented images were co-
registered to the template brain with an affine transformation
(12 degrees of freedom) with FSL. The determined transforma-
tion matrices were applied to the other ADC images, and the
later echoes of the MSME and MGE datasets. Finally, the co-
registered images were used for voxel-wise calculation of ΔR!2 ,
ΔR2, Q, N and R according to equations (2)–(5) and (7), respec-
tively. ΔR2 and ΔR!2 were calculated from the second echo of
the MSME and MGE images, respectively, in order to minimize
error propagation in the data analysis scheme (Supporting
Information, Fig. S2). Voxels with a signal to noise ratio< 5 in
either the A0 image of ADC measurements or in the first echo
of the MSME or MGE were excluded from the analysis. Voxels
with negative ΔR2 or ΔR!2 values, or those with ΔR2 > ΔR!2 were
also excluded.

Volume-of-interest (VOI) analysis was carried out with the
freeware program ImageJ (http://rsbweb.nih.gov/ ij/). First, for
anatomically selected VOIs, the intact and ischemic striatum
was manually delineated in the coronal slices corresponding to
%0.3 and %1.3 mm from bregma. Second, lesion-based VOIs
were manually drawn in the same two slices for each animal
on T2 maps acquired 1 week post MCAO. The lesion-based VOIs
encompassed voxels with increased T2 values (T2 > mean+ 2
standard deviations of contralateral striatum). Third, a VOI of
the peri-infarct zone was drawn by extension of the lesion VOI
by 0.4 mm in-plane (neglecting ventricles and areas outside
the brain) and by subsequent subtraction of the lesion VOI.
Mirroring of the lesion and peri-infarct VOIs at the midline with
a custom ImageJ macro yielded the contralateral VOIs. Mean
ΔR!2 , ΔR2, Q, N and R values were recorded and presented as a
ratio of the ischemic to intact side.

The incidence maps were generated by normalization (voxel-
wise division) of the post-MCAO parameter maps to the time point
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before surgery. An incidence in a voxel at a certain time point was
counted when that voxel showed a significant increase/decrease,
that is, with a normalized parameter of interest larger/smaller
than the mean! 2 standard deviations when compared with
the contralateral striatum. For each SSCE MRI parameter increase/
decrease, incidences of all animals were added voxel-wise.
The resulting incidence map for the group of animals was
smoothed (Gauss filtered, sigma=0.2 mm) and overlaid on the
template brain.

2.5. Immunohistochemistry

After the last MRI session, animals were deeply anesthetized and
perfused transcardially with cooled saline followed by cooled 4%
paraformaldehyde. Brains were post-fixed overnight and cryo-
protected in 30% sucrose solution prior to coronal sectioning
at 40 mm on a freezing microtome (Leica Microsystems, Wetzlar,
Germany). Sections were kept at "20 #C in cryo-protective
solution. For double-label immunofluorescence with BrdU, free-
floating sections were denatured in 1 mol l"1 HCl for 10 min at
65 #C, followed by 20 min incubation at room temperature and
pre-incubation in appropriate blocking solution: 5% normal sera
and 0.25% Triton X-100 in potassium phosphate-buffered saline
for 60 min at room temperature. Incubation with primary
antisera was carried out overnight at +4 #C and the following
primary antibodies were used: rat anti-BrdU (1:100, Abcam,
Cambridge, MA, USA), and mouse anti-Rat Endothelial Cell
Antigen (RECA; 1:400, AdB Serotec, Oxford, UK). Primary antibo-
dies were detected using either standard diaminobenzidine
(DAB) immunohistochemistry or appropriate fluorescent Cy3
(Jackson ImmunoResearch, West Grove, PA, USA) or biotin-
conjugated (Vector Laboratories, Burlingame, CA, USA) second-
ary antibodies (1:200), the latter of which was detected with
Alexa 488-conjugated streptavidin (1:200, Invitrogen, Carlsbad,
CA, USA). Sections were mounted on poly L-lysine coated slides
(Thermo Fisher Scientific, Waltham, MA, USA) and coverslipped
with glycerol-based mounting medium.

Microscopic images were acquired and double-immunoreac-
tivity verified with a confocal laser scanning microscope (Leica
TCS SP5 X, Leica Microsystems). Microvessel density was semi-
quantified across the entire intact and ischemic striatum from
RECA DAB stained sections located approximately"0.3 mm from
bregma (corresponding to the anterior commissure) (23) using
the Stereo Investigator system (MicroBrightField Europe, E.K.,
Magdeburg, Germany) with a counting frame of 40 mm2 at 20$
magnification. Microvessel size was estimated by measuring
the diameter at the thickest point of a counted vessel every
100 frames.

2.6. Statistical analysis

Data are expressed as group means! standard deviation of the
means. Statistical analysis was performed using SPSS version 17
software and a p-value< 0.05 was used as the significance level.
VOI values in the striatum/lesion/peri-infarct zone were com-
pared using one way repeated measures analysis of variance
with time as the within-subject factor followed by post-hoc
pairwise comparisons with the least significant difference test.
For comparison of histology and MRI, microvessel densities in
the intact and ischemic striatum were analyzed using paired
Student’s t-tests.

3. RESULTS
3.1. Impact of noise and echo times on SSCE MRI results

To determine the impact of noise on the most noise-sensitive
parameter N, we performed simulation experiments in which
white noise was added to artificial MRI datasets. In parallel we
analyzed histograms in experimental MRI datasets from animals
before MCAO. Our simulations also determined that suboptimal
echo times result in non-Gaussian, widespread distribution of
the resulting N values (Supporting Information, Fig. S2). From
this, we anticipated that, in order to detect physiologically
relevant changes in N (as a marker of microvessel density), the
relative change must be in the order of magnitude of 20%.

3.2. Impact of tissue water diffusivity on interpretation of
SSCE MRI results

In the chronic phase after MCAO, necrosis, phagocytosis and
associated cystic formation in tissue are visualized by a steep
increase in ADC values. In all animals with this cyst formation
(n= 3) regions of elevated ΔR2 were observed within or close
to the lesion core (Fig. F11a). According to the theory, increases
in ΔR2 indicate an increase of rCBV in small vessels, but as is
demonstrated by eqn (1), diffusivity also plays a role. Compari-
son of vessel density maps calculated under inclusion of a
constant diffusion value from the literature (21) (Fig. 1b) with
those vessel density maps for which the local diffusivity was
taken into account on an experimentally recorded, voxel-wise
basis (Fig. 1c, d), revealed that the dominant effect leading to the
increased ΔR2 was highly elevated water diffusivity in necrotic
tissue. Vessel staining on histological sections confirmed that
tissue in these regions was not intact at 4 weeks after MCAO
and that the density of small vessels in adjacent regions was
not higher compared with healthy tissue (Fig. 1e, f).

3.3. Vascular changes after stroke

3.3.1. MRI Incidence maps

Incidence maps revealed that decreases in ΔR2 and Q and an
increase in R were most frequent (Fig. F22, bottom three rows).
All six animals were used for map calculations but the highest
number of incidences found in all pixels for any of the SSCE
MRI parameters was three, indicating a regionally and temporally
variable pattern of vascular changes across the different animals.
Other incidence maps did not show a specific trend.

3.3.2. MRI VOI analysis

Parameter maps from all animals are presented for all time
points in Fig. F33. In all maps except T2 and ADC we observed
global image intensity fluctuations between animals and time
points within the whole brain that followed no defined pattern
and probably reflected differences in contrast agent concentra-
tion within the blood, which was not measured in this study.
To account for this, quantitative analysis was carried out in the
striatum (Fig. F44a), within the lesion (Fig. 4b) and within the
peri-infarct areas (Fig. 4c), and values expressed as a percentage
ratio of the ipsilateral (lesioned) to the contralateral (intact)
hemisphere. Only a negligible number of voxels (<0.5 %) were
excluded from the analysis owing to the imposed thresholds
on signal to noise, ΔR2 and ΔR%2.
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As expected, prior to MCAO the calculated MRI parameters
were comparable between the ipsilateral and contralateral side:
rCBV in small vessels ΔR2 (striatum, 101.8! 1.3%; lesion,
101.6! 2.0%; peri-infarct, 98.5! 2.6%), rCBV ΔR"2 (striatum,
100.5! 4.5%; lesion, 103.9! 8.2%; peri-infarct, 98.1! 4.3%), mi-
crovascular density index Q (striatum, 101.3! 3.3%; lesion,
99.1! 4.1%; peri-infarct, 99.7! 2.8%), vessel density N (striatum,
103.8! 9.0%; lesion, 98.3! 17.3%; peri-infarct, 97.3! 6.3%), and
relative vessel size R (striatum, 97.1! 6.2%; lesion, 102.3! 11.4%;

peri-infarct, 99.0! 9.3%) (Fig. 4). After stroke, the overall rCBV
ΔR"2 remained relatively constant over the course of the experi-
ments. There was a significant effect of time in rCBV in small
vessels ΔR2 [striatum, F(4,16) 3.890, p= 0.022; lesion, F(4,16)
6.082, p=0.004; peri-infarct, F(4,16) 5.040, p= 0.008]. The
percentage ratio of ΔR2 decreased around 1 week after stroke with
a trend towards subsequent increase by week 2, which was con-
firmed by post-hoc pairwise comparisons of values within the
lesion before and 1 week post stroke (p=0.05; Fig. 4b).

Significant effects of time were also observed for the micro-
vascular density index Q [striatum, F(4,16) 3.342, p= 0.036; lesion,
F(4,16) 6.861, p= 0.002; peri-infarct, F(4,16) 3.339, p= 0.036],
microvessel density N [striatum, F(4,16) 3.586, p= 0.029; lesion,
F(4,16) 6.311, p= 0.003; peri-infarct, not significant], and relative
vessel size R [striatum, F(4,16) 3.259, p= 0.039; lesion, F(4,16)
4.727, p= 0.01; peri-infarct, not significant]. In line with the
decrease in rCBV in small vessels, Q and N ratios both decreased
around 1 week after stroke, although post-hoc tests failed to
reach significance. The decreases in N and Q at week 1 were
accompanied by a dramatic increase in relative vessel size R. This
persisted throughout the course of the experiments, although
less pronounced for later times.

3.4. Immunohistochemistry

RECA staining clearly detected blood vessels in the brain sections
4 weeks after surgery. Photomicrographs from two representa-
tive animals indicate fewer visible vessels in the ischemic
striatum (Fig. F55a and b). Histological microvessel density in the is-
chemic striatum was significantly lower than that of the intact
striatum (585! 89 vs 827! 58 vessels mm#2) [t(5) = 4.679,
p=0.005). This corresponded roughly to a ~29% decrease
(Fig. 5c, right), which is within the detectability limits determined
from our simulations. A similar, significant decrease of ~27%
[t(5) = 2.705, p= 0.043) was observed in MRI-derived vessel
density N from the VOI analysis at 4 weeks after MCAO, that is,
(209! 81) mm#2 ipsilateral and (289! 75) mm#2 contralateral
(Fig. 5c, left). The mean vessel diameter, and thus size, measured
from brain sections in small vessels (<40 mm) were not signifi-
cantly different between the ischemic (7.4! 1.0 mm) and the
intact striatum (7.0! 1.0 mm; Fig. 5d, right). However, there was
a ~50% increase in R in the ischemic striatum determined from
the MRI VOI analysis, although this failed to reach significance
[t(5) =#2.037, p= 0.097; Fig. 5d, left].

We systematically examined sections double-stained for BrdU
and RECA. No double-labeled cells were observed in the hemi-
sphere contralateral to the infarct, and green autofluorescence
within the ischemic core did not permit analysis there. However,
in peri-infarct regions we found occasional individual endothelial
cells that also appeared to be BrdU+ (Fig. F66). Overall, very few
proliferating endothelial cells were detected.

4. DISCUSSION

The present study demonstrates that the temporal profile of
vascular changes after stroke can be assessed noninvasively with
SSCE MRI. However, our data indicate that it is crucial to optimize
MRI acquisition in order to maximize sensitivity of the method.
For the first time, we show that when cystic transformation
occurs, inclusion of diffusion measurements on a voxel-wise
basis is essential to prevent overestimation of SSCE MRI-derived

Figure 1. Impact of tissue diffusivity on MRI-derived blood volume and
vessel density. All animals with cyst formation exhibited regions with
highly elevated ΔR2 close to or within the lesion core, which is usually
interpreted as high rCBV in small vessels. Such an area is indicated by
the box on the ΔR2 map from a representative animal 4 weeks after
MCAO (a). Assuming a constant diffusivity value for each voxel that is
comparable to healthy tissue leads to high MRI-derived vessel densities
(box in b). However, ADC values in this region were also elevated, which
indicates necrosis and liquefaction of tissue (box in c). When we took
local tissue diffusivity into account on a voxel-wise basis, the ‘hot spots’
in the MRI-derived vessel densities disappeared (box in d). Histology in
the same region confirmed tissue necrosis (e) and a decrease in micro-
vessel density (e, arrows) compared with the same region on the contra-
lateral side (f). Thus, the high ΔR2 was a result of high tissue diffusivity
and not an indicator of increased rCBV in small vessels.
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Figure 3. Temporal profile of MRI-derived parameters. T2, ADC, ΔR2, ΔR!2, Q, N and R maps before and weekly after MCAO of an animal with a lesion
restricted to the striatum (animal 1) and an animal with both, cortical and striatal damage (animal 2). Most relevant maps (T2, N and R) are shown for all
other animals. ΔR2, Q and N decreased in the ischemic regions in all animals whereas there was an observable increase in relative vessel size R. The
changes were most pronounced 1 week after surgery (arrows) but persisted also at the later time points. Animal 6 did not perform the SSCE MRI
measurement at 2 weeks post stroke.

Figure 2. Incidence maps for the MRI-derived parameters. Maps indicating, for each voxel, the number of animals that exhibited a decrease in ΔR2 or
Q, or an increase in R during the 4 weeks after MCAO. For each time point the two coronal slices shown are those that are most affected by the infarct:
"1.3 (left) and "0.3 mm from bregma (right). A small trend towards the decrease of ΔR2 and Q can be observed in the ischemic hemisphere, as well as
an increase in R (bottom row) mostly in areas of the striatum. The striatum was therefore used for further quantitative volume-of-interest analysis. Other
incidence maps did not show a specific trend. Although six animals entered the calculations, the maximum number of incidences found in any of the
parameters was three, that is, within any region, a significant, simultaneous vascular change occurred only in a subgroup of animals.
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vessel densities. Our major finding was that there was a signifi-
cant decrease in rCBV in small vessels, leading to a decrease in
vessel density, which was accompanied by an increase in vessel
size 1 week after MCAO in the ischemic striatum that persisted
for several weeks. Microvessel density determination from histo-
logical brain sections confirmed that decreased vessel density
was still present at 4 weeks after the initial insult. If large-scale
angiogenesis occurred in response to stroke, this should have
been reflected by an increase in vessel density. This was not
the case, although the presence of sparse numbers of BrdU+/
RECA+ cells in the ischemic striatum indicated that some endo-
thelial cell proliferation occurred during the first week after
MCAO. Absence of double-labeled cells on the contralateral

hemisphere indicated that the proliferation was induced by the
stroke and not by natural turnover of endothelial cells.

4.1. SSCE MRI methodological considerations

When this method was first employed in a rodent model of stroke
to measure changes in the vascular network (rCBV in small vessels,
overall rCBV, vessel density and size) ΔR2 was assessedwith a turbo
spin echo pulse sequence using multiple refocusing pulses to
speed up the acquisition (14). Subsequent studies employed multi
spin echo sequences in order to obtain measures of T2 and ΔR2
simultaneously and further included ADC measurements (13,24).
This strategy is useful as both T2 and ADC provide important

Figure 4. Quantification of MRI-derived parameters. Volume-of-interest analysis in the striatum (a), in the lesion (b), and peri-infarct zone (c) revealed a
decrease in ΔR2, Q and N and an increase in R in the ischemic striatum that was most pronounced 1 week after MCAO. These parameters normalized at
the later time points (weeks 2–4). Values are expressed as a ratio of the ipsilateral to the contralateral side (group means! standard deviation). The
volumes of interest are indicated on coronal slices corresponding to "1.3 and "0.3 mm from bregma on a T2-weighted template image (a) and a
T2-map (b, c) of animal 2. The two slices are illustrated in gray on a schematic sagittal view of the rat brain.

MRI OF VASCULAR CHANGES AFTER STROKE

Contrast Media Mol. Imaging 2013 Copyright © 2013 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cmmi

7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130



Joanna M. Adamczak 
 

 

 76 

information about the state of the ischemic tissue. However,
neither of these studies performed any modification to the theory
in order to account for the well-known reduction of the diffusion
effect on MR transverse relaxation (19,20,25). Using the theory
modification, however, leads to higher ΔR2, Q and N values. In line
with this, we found higher values of these parameters compared
with the reports in which a theory correction was not applied.
Furthermore, we also identified a major pitfall in the interpretation
of SSCEMRI parameters when the tissue exhibits cystic transforma-
tion. In such cases, ΔR2 is no longer a good measure of rCBV in
small vessels, and neither isQ because of elevated tissue diffusivity.
Our data indicate that it is essential to include local ADC values in
the calculations, otherwise ΔR2 ‘hot spots’ may be misinterpreted
as angiogenic activity.

Despite these improvements in MRI acquisition, our results
show that SSCE MRI is prone to noise, especially for the vessel
density estimate N. Even after optimization of acquisition para-
meters, the relative error in N values is on the order of ~20%.
Although this is in accordance with the previous reports (13), it
represents an inherent limitation of the technique. Further
limitations come from the fact that the ischemic rodent brain
probably violates some of the previously described assumptions
that are made when applying the theory. For example, the

mathematical model underlying SSCEMRI only holds for imperme-
able vessel walls, low blood volume fractions, and vasculature for
which the microvessels can be modeled as rigid long cylinders
(26). Therefore, the use of blood as an intravascular tracer through
the blood oxygen level-dependent contrast seems to be an
appealing alternative, e.g. to overcome problems of contrast agent
leakage and heterogenous water diffusivity in peri-infarct area.
Indeed, quantitative blood oxygen level-dependent approaches
have been developed in order to map important parameters of
oxygenation in vivo (27,28). Furthermore, the use of fast MR imag-
ing during the first bolus (dynamic susceptibility MRI) or arterial
spin labeling techniques could help to correlate SSCE MRI with
perfusion and thus functionality of blood vessels.

4.2. Vascular changes after stroke

Using SSCE MRI we observed a decrease in microvessel density
in the ischemic striatum at 1 week after stroke, a situation not
surprising as this tissue has experienced widespread cell death
by this time. Similar findings were reported as early as 1 day after
ischemia in an embolic (13) and distal occlusion model (14). This
decrease in microvessel density persisted for up to 2 weeks in
the former study, which is also consistent with our results.

Figure 5. Comparison of MRI and histology. Tissue sections stained for vessels (RECA) of an animal with a small striatal lesion (a) and of a rat with a
larger infarct (b). Semi-quantification on histological sections revealed a significant ipsilateral decrease in microvessel density (c, right) that corre-
sponded well with the MRI results at 4 weeks after MCAO (c, left). Histological vessel diameter (of vessels <40 mm) showed only a small, nonsignificant
increase in the ipsilateral striatum (d, right), whereas a highly elevated relative vessel size was found in the MRI analysis (d, left), although this failed to
reach significance. For better visualization, MRI and histology data are scaled differently. Values are expressed as group means! standard deviation.
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Despite the notion that the decrease in microvessel density
observed in the ischemic region after stroke is persistent, the
SSCE MRI study that employed the distal occlusion model noted
a significant increase in microvessel density in the outer cortex of
the ischemic region beginning after about 2 weeks that was
attributed to angiogenesis (14). One potential reason for this
discrepancy could be the choice of stroke model. However, our
findings suggest that this effect could be artifactual in nature as
we were able to observe a similar phenomenon in animals with
cystic transformation when we employed, rather than the correct
and necessary voxel-wise diffusion measurement, only a constant
diffusion value to determine N maps. Indeed and in line with this,
the authors of that study mentioned that this area of increased
microvessel density was prone to cystic transformation.
In parallel to the decrease in microvessel density, we observed

an increase in vessel sizewith SSCEMRI most pronounced at 7 days
post stroke that was probably due to vasodilation of arterioles in an
effort to maintain autoregulation. This phenomenon probably
occurs earlier, and, indeed, Lin et al. (14) reported this observation
within the first week of stroke (1–3 days), which was confirmed by
an increase in the number of vessels with a diameter greater than
30 mm in tissue sections from the same time period. While that
study reported a subsequent decline in vessel size, other groups
suggested that this effect remains between days 7 and 21 (15)
and even up to 6 weeks in the recovery region (24). In the present
study, we only measured animals up to 28 days, and while R was
still elevated at this time, this elevation was not as pronounced
as during the first week. In accordance with these findings, we
were also unable to observe an increase in the mean vessel

diameter in the ipsilateral when compared with the contralateral
striatum at 4 weeks post stroke. While it is possible that this could
be an artifact of our sampling strategy, microvessel is a gross term
that includes capillaries, venules and arterioles, which means that
the size of vessels varies considerably even in the intact brain
(29). Nevertheless, the mean vessel size estimated subcortically at
6 h post symptom onset was recently shown to be a good predic-
tor of final infarct size at 6 days in a small cohort of patients that
underwent a modified dynamic contrast-enhanced protocol simi-
lar to SSCEMRI (30). A follow-up study extended the same protocol
to a larger patient cohort that presented a significant perfusion-
diffusion mismatch around 24 h post symptom onset (31). Vessel
size was found to be a poor predictor of infarct growth at 6 days,
but microvessel density proved to be useful at discriminating
infarcted from oligemic or healthy tissue. These studies highlight
the utility of this technique to provide valuable information in
the post-ischemic period.

4.3. Angiogenesis after stroke

Angiogenesis after ischemia is generally characterized at a cellu-
lar level by gene transcription leading to expression of pro-
angiogenic molecules and finally to endothelial cell proliferation.
We observed some endothelial cell proliferation during the first
post-operative week, which is already well described (5), and
another study observed increases in various pro-angiogenic
compounds such as growth factors and endothelial nitric oxide
synthase (14). While stabilization of vessel walls and formation
of new networks have been reported (5), it is unclear if these
processes can lead to truly functional new vasculature (7). Perfu-
sion measurements could help to elucidate if proliferating,
BrdU+ endothelium belongs to functional vasculature. Unfortu-
nately, as SSCE MRI is based on CBV measurements using an
intravascular contrast agent, it is only capable of detecting
perfused vessels. The evidence from the preclinical SSCE-MRI
studies in stroke models consistently indicates that there is an
overall decrease in microvessel density rather than a large-scale
increase. The small number of animals in the present study
renders general conclusions difficult. However, taken together,
this implies that angiogenesis is not occurring at an advanced
level and that new, functional vessel formation is limited. The
histological evidence also supports this as measurements of
microvessel density in tissue sections decrease corresponding
to the same pattern in the MR images. From a translational point
of view this may be discouraging. However, chronic hypoxia
generally leads to angiogenesis and this has been shown for
human stroke (4). Therefore, discrepancies owing to choice of
species and model (transient ischemia in a specific rat strain
versus human stroke) should further be addressed.

5. CONCLUSION

In conclusion, SSCE MRI is a useful technique to noninvasively
estimate changes in the microvasculature after stroke. Our results
indicate that optimization of the MR acquisition parameters is
essential in order to allow robust conclusions. The focus of our
study in experimental stroke has been to probe for evidence
of angiogenesis in the chronic stages. Immunohistochemistry
revealed endothelial cell proliferation only in peri-infarct regions,
which is a sign for early angiogenesis, but newly formed endothe-
lial cells failed to translate into higher vessel densities and func-
tional vasculature.

Figure 6. Confocal microscopy images of tissue sections stained for
RECA (red) and BrdU (green) 4 weeks after MCAO. BrdU was administered
between days 2–7 after MCAO. Overview (a) and higher magnification
images (b, corresponds to the white box in a) revealed some red/green
overlap and a confocal microscopy image (c, corresponds to the white
box in b) confirmed this. Strong green ipsilateral staining in the lesion
core (a) is due to ischemia-induced autofluorescence.

MRI OF VASCULAR CHANGES AFTER STROKE
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6. SUPPORTING INFORMATION
Supporting information can be found in the online version of
this article.
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Full Paper

Vascular changes after stroke in the rat: a longitudinal study using optimized magnetic
resonance imaging

Philipp Boehm-Sturm, Tracy D. Farr, Joanna Adamczak, Jan F. Jikeli, Luam Mengler, Dirk Wiedermann, Therése Kallur,
Valerij Kiselev and Mathias Hoehn

We investigated the evidence of angiogenesis after transient focal ischemia in rats using SSCE MRI, which measures
diffusivity of tissue and changes in transverse relaxation rates upon i.v. administration of superparamagnetic particles.
Important vessel characteristics such as blood volume, vessel size and vessel density were calculated and followed up
to 4 weeks after the stroke. Following stroke, vessel size increased, whereas blood volume in small vessels and vessel
density decreased, indicating limited potential of ischemic tissue to form new, functional vasculature.
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Boosting Bioluminescence Neuroimaging: An Optimized
Protocol for Brain Studies
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Abstract

Bioluminescence imaging is widely used for optical cell tracking approaches. However, reliable and quantitative
bioluminescence of transplanted cells in the brain is highly challenging. In this study we established a new bioluminescence
imaging protocol dedicated for neuroimaging, which increases sensitivity especially for noninvasive tracking of brain cell
grafts. Different D-Luciferin concentrations (15, 150, 300 and 750 mg/kg), injection routes (iv, ip, sc), types of anesthesia
(Isoflurane, Ketamine/Xylazine, Pentobarbital) and timing of injection were compared using DCX-Luc transgenic mice for
brain specific bioluminescence. Luciferase kinetics was quantitatively evaluated for maximal photon emission, total photon
emission and time-to-peak. Photon emission followed a D-Luciferin dose-dependent relation without saturation, but with
delay in time-to-peak increasing for increasing concentrations. The comparison of intravenous, subcutaneous and
intraperitoneal substrate injection reflects expected pharmacokinetics with fastest and highest photon emission for
intravenous administration. Ketamine/Xylazine and Pentobarbital anesthesia showed no significant beneficial effect on
maximal photon emission. However, a strong difference in outcome was observed by injecting the substrate pre Isoflurane
anesthesia. This protocol optimization for brain specific bioluminescence imaging comprises injection of 300 mg/kg D-
Luciferin pre Isoflurane anesthesia as an efficient and stable method with a signal gain of approx. 200% (compared to
150 mg/kg post Isoflurane). Gain in sensitivity by the novel imaging protocol was quantitatively assessed by signal-to-noise
calculations of luciferase-expressing neural stem cells grafted into mouse brains (transplantation of 3,000–300,000 cells).
The optimized imaging protocol lowered the detection limit from 6,000 to 3,000 cells by a gain in signal-to-noise ratio.
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Introduction

Noninvasive imaging has gained high interest for cell tracking
approaches in preclinical studies of stem cell transplantation.
Bioluminescence imaging (BLI) is one of the methods to overcome
the restrictions of conventional invasive histological evaluations of
stem cell fate and localization. Bioluminescence (BL) is based on
the oxidation of the substrate D-Luciferin in the presence of
oxygen and ATP by the enzyme luciferase, which was first isolated
from the firefly Photinus pyralis [1]. Cell localization is achieved by
the specific light signal generated only by genetically modified cells
expressing a luciferase gene. In case of the firefly luciferase the
enzyme reaction is ATP-dependent and therefore serves also as an
indicator for cell viability. In addition, gene expression is
quantifiable based on the linear relationship between substrate
and photon emission.
In vivo BLI is challenged by tissue related light absorbance from

hemoglobin and melanin. The high blood to brain tissue ratio is
particularly unfavorable for most luciferase imaging since their
wavelength-windows of maximal emission overlap with the
maximal absorption of hemoglobin. The photon transmission in
living brain tissue is limited substantially by the multilayer

anatomical barriers (skin, bone, meninges, brain tissue). Further-
more, the blood brain-barrier reduces diffusion of the luciferase
substrate or even selectively transports the substrate back to the
blood system [2].
For a maximized sensitivity, the technical set-up especially with

an up-to-date CCD camera system is a prerequisite. At the cellular
level, the photon emission per cell can be maximized by using
a strong promoter and single cell cloning approaches to identify
high-expression clones, which enable the detection of individual
subcutaneous tumor cells in vivo [3]. On the other side,
physiological parameters during in vivo imaging such as the type
of anesthesia [4] and the route of substrate delivery [5,6] influence
decisively BL signal outcome and experimental stability. D-
Luciferin biodistribution and cell uptake kinetic studies have
revealed a limitation of light emission due to restricted substrate
availability, particularly in the brain [7]. Nevertheless, the general
imaging protocol seems to vary substantially between studies.
Own survey on recent BLI literature indicated that many labs

use an ip injected luciferin dose of 150 mg/kg under Isoflurane –
a condition which we call ‘‘standard protocol’’ in the following
investigation. The aim of our present study was to establish an
optimized protocol for BLI sensitivity and reproducibility,

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e55662
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dedicated for imaging investigations on the rodent brain. For this
purpose, we assessed the following parameters influencing the BLI
signal: 1) substrate concentration, 2) substrate injection route, and
3) type of anesthesia (Isoflurane, ketamine/xylazine, Pentobarbital)
and its timing relative to substrate application. The effect of the
above listed parameters on maximal photon emission (PEmax), on
total photon emission (represented by area-under-curve, AUC),
and on in- and efflux kinetics of D-Luciferin (time-to-peak) was
investigated. Brain-specific BLI was obtained with DCX-Luc
transgenic mice expressing firefly luciferase specifically under
control of the doublecortin (DCX) promoter, which is active in
migrating neuroblasts and early-stage differentiated neurons. This
mouse model is proven to serve as a suitable tool to follow
neurogenesis in the brain [8]. Based on the evaluation of the
different protocols with the transgenic mouse line, we tested the
optimized protocol on nude mice, which received implants of
distinct amounts of neural stem cells (NSCs) expressing the firefly
luciferase. This in vivo dilution series of grafted cells served to
validate our optimized protocol for maximized sensitivity for brain
imaging applications.

Materials and Methods

1. Animals and Ethics Statement
Heterozygous DCX-Luc mice (n = 4) with C57/Bl6 albino

background (B6(Cg)-Tyrc-2J/J) were used for optimization of the
brain BLI protocol. Experiments were carried out with 4–6
months old mice. For BLI optimization, each DCX-Luc mouse
underwent 12 times BLI measurements including D-Luciferin
injections and anesthesia. In general, the time delay between two
experiments were 2 days or more. Cell transplantations were
performed with 12 male Nu/Nu mice (Janvier, Saint Berthevin
Cedex, France). These mice were measured with two different BLI
protocols with a time delay of 6 h or more. All animal experiments
were conducted according to the guidelines laid out in the German
Animal Welfare Act, in accordance with the European Council
Directive 2010/63/EU, and were approved by the local author-
ities (Landesamt für Natur, Umwelt und Verbraucherschutz North
Rhine-Westphalia, reference number 84-02.04.2011.A123). Ani-
mals were housed in individually ventilated cages under 12 h
light/12 h darkness cycle with access to water and food ad libitum.

2. Cell Culture
The generation of neural progenitor cells (NPCs) from murine

embryonic stem (mES) cells was achieved by adaption of
previously described protocols [9]. The mES cell line D3 [10] (a
generous gift of Dr. Tomo Saric, Institute of Neurophysiology,
University at Cologne, Germany) was cultured on mitotically
inactivated mouse fibroblast cells as previously described [11].
Embryoid body (EB) formation was induced in suspension for 4
days in DMEM supplemented with 15% FCS (Gibco, Darmstadt,
Germany), 16non-essential amino acids (PAA, Pashing, Austria),
2 mM L-glutamine (PAA), 1% penicillin/streptomycin (PAA). EBs
were converted into neurosphere-like aggregates by culturing in
N2/B27 medium consisting of DMEM/F12 (Gibco), Neurobasal
(Gibco), 16B27 (Gibco), 16N2 (Gibco) and 2 mM L-glutamine
(PAA), changing medium every 3–4 days on Poly-HEMA (Sigma-
Aldrich, Schnelldorf, Germany) coated flasks. After 10–14 days,
neurospheres were plated on flasks coated with 0.2% gelatin
(Sigma-Aldrich). 24 hours later, medium was changed to N2Euro
medium consisting of Euromed (Biozol, Eiching, Germany),
10 ng/ml EGF (Peprotech, Hamburg, Germany), 10 ng/ml b-
FGF (Peprotech), 50 mg/ml BSA (PAA), 25 mg/ml Insulin (Sigma-
Aldrich) and 16 N2 (Gibco). The N2Euro medium promoted

proliferation of EGF and b-FGF responsive stem cells, while non-
NSCs were removed by culturing and passaging with Accutase
(PAA) for 20 days until the final D3WT_N2Euro cell line was
established. Cells were cultured under humidified 5% CO2 and
95% air.

3. Cloning of Luc2 Retroviral Plasmid and Generation of
Transgenic NPCs
The retroviral plasmid pBabe-Luc2-T2A-copGFP-SV40P-Neo

consisted of the codon optimized firefly luciferase Luc2, the ‘‘self-
cleaving’’ 2A-like peptide sequences T2A for efficient multi-
cistronic reporter expression, the superbright fluorescent protein
copGFP from the copepod Pontenilla plumata (excitation/emission
maximum=482/502 nm) [12] and the antibiotic resistence gene
neomycin (Neo) for clone selection. Retroviral packaging was done
according to established protocols with transfection of the
packaging Plat-E cells, which express the gag-pol and ecotropic
envelope proteins [13]. The plasmid was cloned by amplifying
recombinant DNA by PCR using specific primers bearing
appropriate restriction sites in 2 steps: 1) Luc2 was cloned from
pGL4.14 (Promega, Madison, USA) into pCDH-EF1-MCS-T2A-
copGFP (Biocat, Heidelberg, Germany) with the following primer
pair Luc2-BamHI-for (AAGGGAAAGGATCCGCCACCATG-
GAAGATATGCCAAAAACATTAAG) and Luc2-NotI-rev
(AAATTTGCGGCCGCCACGGCGATCTTGC), 2) the resulting
Luc2-T2A-copGFP fragment was cloned into pBabe-Neo-GIT (a
generous gift of Prof. Andreas Jacobs, European Institute of
Molecular Imaging, Münster, Germany) by restriction with
BamHI and NotI. Successful cloning was verified by restriction
analysis and sequencing.

4. Ecotrope Transduction and Selection of Stable
Transgenic NSCs
Retroviral packaging of Plat-E cells was done according to

manufacturers protocol with small modifications (Cell Biolabs, San
Diego, USA). Briefly, Plat-E cells were plated 24 h before the
transfection at 16105/cm2 in 0.25 ml/cm2 DMEM FCS (without
antibiotics). The transfection mix consisted of 0.2 mg/cm2 plasmid
DNA, 20 ml/cm2 Optimem (Gibco) plus 0.2 ml/cm2 Lipofecta-
mine Plus Reagent, and 0.25 ml/cm2 Lipofectamine (Gibco) and
was added dropwise to the cells covered with 0.1 ml/cm2

Optimem containing Chloroquine (final conc.: 25 mM) and
incubated for 24 h. After virus collection 48 h post transfection,
the virus was used for retroviral infection of proliferating
D3WT_N2Euro cells (non-confluent culture in 24-well plate), by
adding 200 ml Optimem containing 7.5 ng/ml Polybrene and
200 ml virus-supernatant for 24 h. In a first step of transgenic cell
selection, 500 mg/ml G-418 was added to the media. In a second
step, cells were FACS-sorted (FACSAria III, BD Biosciences, San
Jos, USA) according to the copGFP expression – performed to
assure Luc2 expression in an equimolar range. Sustained cell
viability was confirmed by PrestoBlue assay according to the
manufacturers protocol (Invitrogen, Darmstadt, Germany) and
measured with a microplate reader (Mithras LB940, Berthold, Bad
Wildbad, Germany). In the following, we will refer to the
transgenic NSCs as NSCLuc2+ and to non-transduced NSCs as
NSCWT.

5. Cell Transplantations
Nude mice were anesthetized with Isoflurane in O2:N2O

(30:70%), and 4 mg/kg Carprofen (Pfizer, Berlin, Germany) was
used for analgesia. During surgery, mice remained fixed in
a stereotactic frame (Stoelting, Dublin, Ireland). The skull was
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exposed by a small incision and one hole was drilled at the
following coordinates relative to bregma: AP +0.5; L +2.0; DV
23.0 using a stereotactical instrument (Stoelting). The homoge-
neous cell suspensions were kept on ice during surgery and were
subsequently injected into the brain through a Hamilton syringe
(26G needle) using a micropump system with flow rates of
1.500 nl/min (withdrawal) and 500 nl/min (injection). Cell
amounts were adjusted to 36103, 66103, 36104 and 36105 cells
(n = 3 for each cell number) and injected in a volume of 2.0 ml
after leaving the needle in place for 5 min. The wound was closed
with a non-colored suture (Resorba, Nürnburg, Germany), and
BLI was applied 24 h later.

6. In vitro and in vivo Imaging Set-up
D-Luciferin (Synchem, Felsberg, Germany) solutions were

prepared by dilution in phosphate buffered saline (PBS) to obtain
3, 20, 50 and 100 mg/ml stock solutions, which were filtered
sterile prior to use and stored at -20uC. In vitro sensitivity was
evaluated with NSCLu2+ and NSCWT plated in different cell
densities of 36103, 66103, 36104 and 36105 cells in black 96-
wells (Corning, Tewksbury, USA), in four wells per condition. D-
Luciferin was added in excess (0.3 mg/ml, <1 mM according to
[1]) and the plate was subsequently measured for BLI recording
data on the Photon Imager (Biospace Lab, Paris, France) for
1 min.
Before the first BLI recording, animals were shaved under

Isoflurane anesthesia on the head region and on the back of similar
size using a conventional hair shaver (Typ 1556, ermila,
Unterkirnach, Germany). Shaving was repeated when necessary
according to visual inspection. Animals were injected intraperito-
neally (ip) using a 1 ml syringe with 30 gauge needle. For
intravenous (iv) injections, a catheter with 30 gauge needle was
placed into the tail vein, flushed with saline and 1 units/ml
heparin (Braun, Melsungen, Germany). Injection volume for
different D-Luciferin concentrations (15–750 mg/kg) was kept
constant (approx. 200 ml) by using the appropriate stock concen-
tration. Anesthesia was induced either by 2% Isoflurane (Iso) in
100% O2, or subcutaneous (sc) injection of 60 mg/kg Pentobar-
bital (Pento), or ip injection of 100/10 mg/kg Ketamine/Xylazine
(Ket/Xyl). The impact of anesthesia on photon emission was
investigated in 4 DCX-Luc mice by comparing the standard
procedure 2150 mg/kg post Isoflurane (post-Iso) to substrate
administration pre Isoflurane (pre-Iso) and injection of 150 m/kg
after Pentobarbital or Ketamine/Xylazine anesthesia. In order to
induce rapid Isoflurane anesthesia for the pre-Iso condition, an
initial dose of 4% Isoflurane in 100% O2 was used. The time lag
between substrate injection and acquisition was recorded during
each BLI experiment and used for time-line correction (acquisition
time= 30 min) in order to facilitate precise data evaluation. The
time lag ranged from 30 s (e.g. ip injections) to 3 min (e.g. iv
injections and pre-Iso condition).

7. Data Analysis and Statistics
For in vitro analysis, photon emission per NSCLuc2+ was

calculated from a dilution series by dividing the photons/s/cm2/
sr per well by the cell amount and averaging of 4 individual
experiments.
In vivo BLI data was analyzed using the M3software (Biospace)

with size-constant regions of interest (ROIs) over the brain and the
back of the animal, manually drawn and based on anatomical
landmarks (ears, eyes) on equally scaled BL images. Further
calculations, plotting and statistical analysis were done with Veusz
(GPL, Jeremy Sanders) and Origin 8G (OriginLab Corporation,
Northampton, USA) according to previously described methods

[14]. Dynamic time curves were obtained with 5 and 60 s
temporal resolution for two regions of interest (ROIs) for each
animal and experiment. The brain-specific signal was corrected for
unspecific signal taken from a ROI on the skin of the animal’s
back. The 5 s and 60 s data from the ROI on the animal’s back
was subtracted from the 5 s and 60 s brain data. This correction
reduced the inter-individual differences from endogenous varia-
tions in DCX-expression and exogenously administered D-
Luciferin (see Supplementary Fig. 1). The maximum photon
emission (PEmax) was determined from the acquisition of the
signal-time curve, recorded with 5 s temporal resolution and by
calculating the 95th percentile. The area-under-curve (AUC) value
was calculated by numerical integration for comparing the total
photon yield from the same acquisition. The maximum value in
the 60 s resolution data was used for defining the time-to-peak
value. Furthermore, the slope of the signal increase during the
initial 5 min was determined for every acquisition by linear fitting
of the data points. Signal-to-noise ratio (SNR) was calculated by
dividing mean photon flux (ph/s/cm2/sr) by the standard
deviation of the noise. For accurate calculation of the noise, the
mean of 3 randomly chosen ROIs outside the mouse was
calculated.
All data are represented as mean 6 SD. Unpaired t test was

used to compare means of 2 groups for in vitro experiments. In
vivo BLI data was analysed using a repeated measures ANOVA
for each individual test regime (concentration, injection route,
anesthesia, time of injection). Post hoc comparisons were corrected
for multiple comparisons using Sidak correction. A p-value smaller
than 0.05 was considered to be significant.

Results

1. Substrate Concentration Dependent Increase in
Photon Flux
The impact of substrate concentration on photon emission was

investigated by injecting 15, 150, 300 or 750 mg/kg D-Luciferin
ip into DCX-Luc mice (n = 4) after 2% Isoflurane anesthesia, and
subsequent BLI recording for 30 min. Substrate concentration had
a significant effect on PEmax (F(1.006, 3.017) = 72.862 p=0.003),
AUC (F(1.005, 3.016) = 66.988) p= 0.004) and time-to-peak (F(3,
9) = 28.693, p,0.001). The PEmax signal exponentially increased
with substrate concentration in every animal, as well as the total
quantum yield represented by the AUC (Fig. 1a). A 5-times
standard concentration resulted in approx. 10-fold PEmax/AUC
value, together with increased error (standard deviation). This
strong signal enhancement was accompanied by higher slope
values in the initial inflow phase following also the exponential
relationship (1.16105–2.96106) and a prolonged time-to-peak for
high substrate concentrations (Fig. 1b, c).

2. Influence of Substrate Injection Route
The impact of substrate injection routes was evaluated by

injecting 150 mg/kg D-Luciferin ip, sc, or iv followed by
acquisition for 30 min in DCX-Luc mice (n = 4). Injection route
had a significant effect on PEmax (F(2, 6) = 75.048 p,0.001), AUC
(F(2, 6) = 126.935 p,0.001) and on time-to-peak (F(2, 6) = 71.148
p,0.001). According to the general model of drug absorption and
resorption [15], the PEmax for sc reached approx. 40% of the ip
experiment, whereas iv resulted in approx. 450% PEmax. The
AUC values showed a similar behavior with a minor effect for iv -
approx. 260% (Fig. 2a). The absorption kinetics was also reflected
by the BLI dynamic time curves with a smaller slope for sc vs. ip
(6.1610462.26103 vs. 2.2610568.66103). The absorption-in-
dependent iv injection reached with 234% of ip the highest slope
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(5.1610566.26104) for the initial 5 min photon flux (Fig. 2b).
This effect contributed directly to the faster biodistribution for iv
injections (8.7 min less than ip) and the delay in the time-to-peak
for sc (additional 4.4 min compared to ip) (Fig. 2c).

3. Anesthesia-dependent Photon Flux Changes
Based on previous reports describing the inhibitory effects of

volatile anesthetics and the benefit of injection anesthetics like
medetomidine [4], we sought to compare luciferase performance

for common injection anesthetics: Pentobarbital and Ketamine/
Xylazine. In a first experiment, DCX-Luc mice (n = 4) were
injected with 15, 150 and 300 mg/kg D-Luciferin pre and post
induction of Isoflurane anesthesia, in order to determine the
influence of an anesthesia pre-inhibited enzyme. D-Luciferin
injection pre Isoflurane anesthesia resulted in significantly in-
creased PEmax (F(1, 3) = 51.585 p= 0.006) and AUC (F(1,
3) = 44.488 p= 0.007). By increasing the substrate concentration
the maximum and total amount of photon flux difference for pre
to post condition was significantly increased (300 mg/kg to

Figure 1. Substrate concentration modulates luciferase activity. a, b) The PEmax and AUC values increase exponentially with the D-Luciferin
concentration. c) The time for maximal luciferase activity is dependent on the substrate concentration. d) The slope of initial photon emission kinetics
is concentration dependent. (* statistically significant difference with p#0.05 to standard protocol 150 mg/kg post-Iso in post hoc comparison with
Sidak correction).
doi:10.1371/journal.pone.0055662.g001

Figure 2. The photon flux maximum and timing are dependent on the route of substrate administration. a, b) The PEmax and AUC
increase corresponding to the physiologically expected biodistribution for sc, ip and iv substrate administration, reflected by the characteristic time
activity curves. c) Maximal photon flux is reached at minimal time for iv injections followed by ip and sc (* statistically significant difference with
p#0.05 to standard protocol 150 mg/kg post-Iso in post hoc comparison with Sidak correction).
doi:10.1371/journal.pone.0055662.g002
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150 mg/kg pre Iso: PEmax p= 0.01, AUC p=0.009) (Fig. 3a, b).
The time-to-peak suggested a similar D-Luciferin concentration-
dependent effect; this, however, did not reach the level of statistical
significance (Fig. 3c).
In a second experiment, brain specific BLI was compared for

different anesthetics revealing an overall effect on PEmax (F(2,
6) = 5.935 p= 0.038) but no significant increase or decrease
compared to Isoflurane anesthesia in post-hoc pairwise compar-
ison (Ketamine/Xylazine: p = 0.058, Pento: p = 0.742). A signif-
icantly lower AUC value for Ketamine/Xylazine compared to
Isoflurane (F(2, 6) = 22.738 p= 0.002; post-hoc p= 0.005) (Fig. 4)
was accompanied by delayed time-to-peak values. No significant
difference between the Isoflurane and Pentobarbital group was
observed for time-to-peak.

4. Generation of Neural Stem Cells Expressing Luc2 and
copGFP
The NSCs D3WT_N2Euro were stably transduced with the

retroviral plasmid pBABE-Luc2-T2A-copGFP-Neo and sorted for
copGFP/neomycin resistance to reveal a stable transgenic cell line
without an effect on cell viability (Fig. 5). The NSCLuc2+ emit
approx. 7 photons/s/cell under substrate excess (1 mM D-

Luciferin) and show a linear correlation between cell number
and photon emission under substrate excess.

5. Imaging Protocol-dependent in vivo Detection Limits
BLI was performed 24 h after transplantation of 3,000, 6,000,

30,000 or 300,000 NSCLuc2+ into the striatum of nude mice (for
each cell amount, n= 3), repeating the in vitro dilution series
under in vivo conditions in order to determine detection limits.
The mice were scanned with both protocols (150 mg/kg post
Isoflurane and 300 mg/kg pre Isoflurane –6 h time separation) for
30 min. The BLI detection limit was calculated assuming
a SNR$3 for a reliably detectable signal. A representative image
series with the corresponding SNR values is shown in Fig. 6a. This
evaluation revealed the primary advantage of the new protocol,
which, on average, leads to a 2.35-fold SNR increase. This
sensitivity increase can be exploited for reliable detection of half
the amount of cells visible using the standard protocol. The PEmax

values for the grafts of various cell numbers, show a linear
relationship with cell number (Fig. 6b).

Figure 3. Luciferase inhibition by Isoflurane is avoided by substrate administration before anesthesia onset. a, b) Difference in PEmax

and AUC under pre/post Isoflurane conditions becomes more pronounced with increasing substrate concentration. c) The order of application
between Isoflurane anesthesia and substrate had no impact on the time-to-peak for 15, 150 and 300 mg/kg D-Luciferin. (* statistically significant
difference with p#0.05 to standard protocol 150 mg/kg post-Iso in post hoc comparison with Sidak correction;+statistically significant difference
with p#0.05 between pre and post condition in post hoc comparison with Sidak correction).
doi:10.1371/journal.pone.0055662.g003

Figure 4. Photon flux is modulated by the type of anesthesia. a) PEmax and AUC were decreased under Ketamine/Xylazine conditions but not
different for Pentobarbital compared to Isoflurane. b, c) Representative time activity curves showing the anesthesia dependent signal behavior
leading to delayed time-to-peak for Ketamine/Xylazine, but no clear difference between Isoflurane and Pentobarbital anesthesia. (* statistically
significant difference with p#0.05 to standard protocol 150 mg/kg post-Iso in post hoc comparison with Sidak correction).
doi:10.1371/journal.pone.0055662.g004
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Discussion

Bioluminescence imaging is emerging as a valuable tool for
tracking transplanted (stem) cells in various disease models [16–
19]. However, a publication survey on 20 recent reports from
2008–2012, performed in preparation of the present study,
revealed the lack of a consistent protocol for in vivo BLI, but
with a strong tendency to 150 mg/kg D-Luciferin injected
intraperitoneally which we have used as our reference ‘‘standard
protocol’’. This standard protocol has proved useful, primarily for
peripheral applications, e.g. subcutaneous tumor cell transplants,
where signal is mostly used and interpreted qualitatively. However,
for a quantitative and sensitive bioluminescence imaging ap-
proach, this standard protocol does not necessarily meet the
special requirements of brain imaging.
In this study, we evaluated the basic factors affecting the

neuron-specific BL signal in transgenic DCX-Luc mice, including
substrate concentration, route/timing of substrate administration
and the type of anesthesia. The repetitive BLI measurements did
not alter the BLI signal over time. As indicated by stability
measurements (data not shown), repetition of the same protocol
showed low variability of approx. 8%. The intrinsic inter-

individual variability was 1262%. An advanced protocol
(300 mg/kg pre-Iso) was identified, which results in a 2-fold BL
signal increase, while remaining user-friendly, fast applicable and
cost-effective. We proved the advantages of the new protocol by
boosting the sensitivity for a cell tracking approach in the mouse
brain by a factor of 2 relative to the standard protocol, enabling
the quantitative detection of 3,000 transplanted NSCs under the
novel protocol conditions.

1. Concentration Dependent Increase in Photon Flux
The properties of the luciferase enzyme expressed in mamma-

lian cells are well studied under in vitro conditions but missing for
the in vivo situation – especially for brain specific BLI. We
explored a dose-dependent BLI signal which followed an
exponential increase. As was reported for 450 mg/kg D-Luciferin,
in our experiments also 750 mg/kg did still not result in saturating
photon emission levels. The exponential signal increase can be
explained by a boost in substrate diffusion into the brain
parenchyma exceeding a critical plasma level to facilitate blood
brain-barrier penetration efficiently at 750 mg/kg. This is
supported by the nearly 10-fold steeper slope, which most

Figure 5. Characterization of Luc2-expressing NSCs. a) Efficient NSC transduction and selection process (by FACS and antibiotics) was
confirmed by the homogeneous expression of the fluorescent reporter copGFP, which directly reflects Luc2 expression because of the T2A linker
element (microscopic images 206magnification, 50 mm scale bar). b) Reporter gene expression had no impact on cell viability, as confirmed with the
PrestoBlue assay (data of 5 independent measurements presented as relative fluorescent units, RFU). c, d) Quantitative analysis of NSCLuc2+ dilution
series (1 min acquisition at 37uC with 30 mg/ml D-Luciferin) revealed a linear correlation between photon emission and cell number, as well as SNR
in vitro.
doi:10.1371/journal.pone.0055662.g005

Figure 6. Photon emission is substantially increased by the modified BLI protocol. a) Representative images (equally scaled) for each cell
number grafted into nude mice acquired with the standard protocol (upper row) and with the advanced protocol (lower row) reveal the objective
sensitivity benefit, which is also represented in the quantitative SNR values. b) Correlation between photon emission and cell number revealed a linear
relationship under in vivo conditions, with a steeper slope for the novel protocol, indicating the increased sensitivity.
doi:10.1371/journal.pone.0055662.g006
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prominently represents the substrate inflow dependent photon
emission in the first 5 min of acquisition.
Considering an in vitro firefly KM of 1 mM or 0.3 mg/100 ml

[20], this concentration should be reached by injection of 30 mg/
kg D-Luciferin (assuming 2 ml total blood volume for a 20 g
mouse). Nevertheless, by further increasing the substrate concen-
tration, higher PEmax are achieved, which means that 30 mg/kg
D-Luciferin is not the in vivo concentration at which the luciferase
reaction rate is half of the maximum. Our results contradict
previous assumptions, that the enzyme is already saturated at low
substrate concentrations (5 ml of 100 mM) for subcutaneous
applications in vivo [21]. However, under in vivo conditions
substrate absorption and resorption is not 100% effective, meaning
that not every injected molecule will reach a Luc-positive DCX
neuron in the brain. Most importantly, Berger and colleagues
calculated that only 5% of blood plasma D-Luciferin reach the
brain [22], which explains the increasing luciferase activity at
substrate concentrations which would already exceed KM under
in vitro conditions. At high substrate concentrations [21], the
time-to-peak is significantly delayed. Under in vitro conditions,
this would clearly be reflected in the conformational change of the
luciferase enzyme, temporarily reducing the catalytic rate [23].
However, for the equivalent in vivo observation we rather suggest
that high concentrations of D-Luciferin result in a prolonged
concentration gradient between plasma and brain tissue facilitat-
ing a continued concentration increase at the target cells. A
toxicity effect of the different D-Luciferin concentrations is not
expected, as majority of studies have reported no toxic effect
[24,21,25–27].

2. Influence of Injection Route
The advantage of D-Luciferin as an imaging substrate is its

ability to distribute rapidly in the blood system, pass cell
membranes and enters every organ (even through the placenta
and blood brain-barrier) [21,28,29]. We validated the influence of
the substrate injection route on the brain bioluminescence signal,
by comparing sc, iv and ip injection of 150 mg/kg D-Luciferin
and acquiring BLI in list mode for superior temporal resolution.
According to reports about BLI of subcutaneously transplanted
cells [5,6], the substrate pharmacokinetics limits the biolumines-
cence signal. The absorption-independent iv injection leads to
a 400% maximum photon emission in J the time compared to
the ip injection. In contrast, after ip injection the substrate is slowly
absorbed into the vascular space, which limits bioavailability and
finally reduces PEmax while prolonging time-to-peak [6,30]. In
contrast to a study of Inoue et al. the sc injection resulted in the
lowest photon emission accompanied with a small slope and long
time-to-peak value [5]. Although iv injection generates highest
photon flux, we decided to use ip injection for the advanced
protocol. The disadvantage of iv injections is the fast kinetics with
lack of a plateau phase, which impedes reproducible measure-
ments at the PEmax and induces additional error. The ip injection
can be done with a high success rate [5], a shorter time (more mice
can be measured the same time), repetitively without tissue
irritation through tail vein catheterization and permits experi-
mental flexibility by a prolonged steady-state BLI signal.

3. Anesthesia-dependent Photon Flux Changes
In vivo BLI of subcutaneously transplanted cells was reported to

be strongly affected by the type of anesthesia [4]. Therefore, we
investigated the effect of different anesthetics (Iso, Ket/Xyl, Pento)
and the different anesthetic timing (D-Luciferin injection pre and
post Iso) on brain-specific BLI. We observed a decrease in PEmax

values for Ketamine/Xylazine anesthesia and a slight increase in

PEmax for Pentobarbital anesthesia compared to our standard
protocol using Isoflurane, however, this modulation did not reach
a level of statistical significance. In vitro, Keyearts et al. found no
direct inhibitory effect of Ketamine, Medetomidine (belonging to
the same family of a2 adrenoreceptor agonists like Xylazine) or
Pentobarbital [4]. Therefore, the modulation we observed in vivo
may be the result of an altered hemodynamic situation, changing
luciferase substrate distribution [31] and thereby indirectly
influencing BLI signal intensity and kinetics. Nevertheless,
anesthetics can have different effects on the blood system
[32,33]. In a comparison study, Isoflurane resulted in the smallest
reduction of cardiac output, followed by Pentobarbital with
medium reduction. The strongest impact on cardiac output is
expected under Ketamine/Xylazine anesthesia, which induces
hypotension, bradycardia and hypothermia [32,34]. Although
cerebral hemodynamics are autoregulated, the grading of the
hemodynamic changes parallels our observation of delayed time-
to-peak values for Pentobarbital and Ketamine/Xylazine anes-
thesia compared to Isoflurane.
The slight difference in PEmax between Pentobarbital and

Isoflurane anesthesia may be due to the direct inhibitory effect of
Isoflurane on the luciferase enzyme, which we studied by
comparing pre vs post Isoflurane anesthesia. D-Luciferin injection
before anesthesia consistently resulted in higher PEmax/AUC
compared to the standard protocol (substrate injection into the
anaesthetized animal). Direct inhibition of the luciferase enzyme
by Isoflurane was reported [35,36]. It was previously suggested,
that D-Luciferin inhibition by Isoflurane is a mixed style inhibition
with competitive binding at the substrate binding site as well as
a non-competitive binding changing the structure of the enzymatic
pocket [37]. In line with previous reports, inhibition is partially
reversible by higher substrate concentrations, which is due to an
increased KM value. Our data indicates that pre Isoflurane
administration of D-Luciferin results in a better distribution of the
substrate and hence in an increased availability of substrate in the
brain compared to post Isoflurane injection. This may lead to an
increased enzyme-substrate complex under pre-Iso condition,
which is less affected by the inhibitory Isoflurane.

4. Imaging Protocol-dependent in vivo Detection Limits
We performed a quantitative comparison of the advanced vs.

the standard imaging protocol applied to NSCLuc2+ transplanted
into the mouse brain at different quantities. With this approach it
was possible to study the detection limits of both protocols: 3,000
and 6,000 cells were not detectable with the standard protocol.
Measuring these animals with the advanced protocol enables clear
detection of even 3,000 transplanted NSCs (cf Fig. 6). To the best
of our knowledge, such a small number of transplanted non-
immortalized NSC has not been imaged in vivo before. We
extracted SNR values for each graft size and determined that
a SNR $3 can be used as a quantitative measure to reliably
distinguish BLI signal from the noise. Visual comparison of all BL
images (n = 12) confirmed that signals outside the cell graft
exhibited SNR ,3 and were identified as noise. Cell number
estimation, as it was shown under in vitro conditions [38], seems
to be possible in vivo providing that experimental conditions
remain constant. High variability between animals receiving equal
cell amounts was primarily induced by the transplantation
procedure, which resulted in variations of cell number and
transplantation depth, which strictly controls the percentage of
transmitted bioluminescence light [39].
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Conclusion
Optical brain imaging remains challenging for quantitative and

sensitive approaches like the tracking of small number of
transplanted cells. Here, we empirically determined a novel and
efficient protocol with ip injection of 300 mg/kg pre to Isoflurane
anesthesia. This novel protocol turned out to be twice as sensitive
as the conventionally applied ‘‘standard protocol’’. Our quantita-
tive analysis of the luciferase in vivo kinetics and the signal-to-
noise ratio can serve as the basis of reliable detection limits for
further studies.

Supporting Information

Figure S1 Background correction for ROI analysis of
the DCX-Luc BLI data. a) Representative overlay of BLI data
and a photograph of a mouse during BLI acquisition. ROIs mark

the area of data analysis on the head (upper circle) and on the back
of the animal. b) The background data were subtracted from the
brain data resulting in a data set corrected for the difference in Luc
expression and D-Luciferin distribution among the animals. Each
color represents one individual DCX-Luc mouse.
(TIF)
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We have established a robust protocol for longitudinal fMRI in mice at high field MRI using a medetomidine
anesthesia. Electrical forepaw stimulation in anesthetized animals is widely used to produce BOLD contrast
in the primary somatosensory cortex. To preserve neuronal activity, most fMRI experiments used α-
chloralose to produce sedation, but severe side effects make this procedure unsuitable for survival
experiments. As advantageous alternative, the α2-adrenergic receptor agonist medetomidine has been
applied successfully to permit longitudinal fMRI studies in rats. With the advent of transgenic technology,
mouse models have become increasingly attractive raising the demand for implementation of a suitable fMRI
protocol for mice. Therefore, we investigated the use of medetomidine for repetitive fMRI experiments in
C57BL/6 mice. We evaluated the optimal medetomidine dose for subcutaneous application. Somatosensory
evoked potentials (SSEPs) in the contralateral somatosensory cortex were recorded to assess brain activity
under medetominidine following forepaw stimulation. Repetitive administration of medetomidine, the
requirement for longitudinal brain activation studies, was well tolerated. Using the forepaw stimulation
paradigm, we observed BOLD contrast in the contralateral somatosensory cortex in ∼50% of the performed
scans using gradient echo-echo planar imaging (GE-EPI). However, imaging the small mouse brain at high
field strength is challenging and we observed strong susceptibility artifacts in GE-EPI images in the cortex.
We have developed an agar gel cap for successful compensation of these artifacts as prerequisite for
successful mouse fMRI at 11.7T. The established protocol will be suitable for brain activation studies in
transgenic animals and for studies of functional deficit and recovery after brain injury in mice.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Functional magnetic resonance imaging (fMRI) using endogenous
blood-oxygenation-level-dependent (BOLD) contrast (Ogawa et al.,
1990) is a widely used technique to study brain activity non-invasively.
Neuronal activation increases local energy demands and O2 consump-
tion, which leads to a shift in the relative concentration of oxygenated
and deoxygenated haemoglobin in the capillary bed. This produces a
susceptibility difference, which is the basis of BOLD imaging. The most
common fMRI paradigm in rodents requires electrical stimulation of the
fore- or hindlimbs to produce BOLD contrast in the corresponding
regions of theprimary somatosensory (S1) cortex (Bocket al., 1998). For
this purpose,most studies employα-chloralose to produce sedation and
preserve neuronal activity (Ueki et al., 1992). However, these experi-
ments are acute protocols (Silverman and Muir, 1993) and as such,
alternative protocols have been established to perform longitudinal and
non-invasive fMRI. Recently, the use of the α2-adrenergic receptor
agonistmedetomidinewas introduced as an anesthetic for fMRI (Weber
et al., 2006) and is now being used frequently in fMRI studies in the rat
(Pawela et al., 2008; Weber et al., 2008; Zhao et al., 2008).

Medetomidine produces sedation, analgesia and muscle relaxation by
binding to central α2-adrenoreceptors located primarily in the
brainstem (Ruffolo and Hieble, 1994). It decreases the release of
noradrenalin, thereby causing a general inhibition of the sympathetic
nervous system (Sinclair, 2003).

Up to now, it has been difficult to perform fMRI inmice. One reason
for this is that it is extremely challenging tomaintain tight control over
physiological parameters in the mouse. Another reason is that the
small neuroanatomical functional unit of themouse requires high field
strength to be resolved. Furthermore, the small mouse head leads to
stronger susceptibility artifacts in GE-EPI with increasing field
strength causing signal loss in the prominent brain structures of
interest. To date, very few studies have attempted fMRI in the mouse.
The first of which employed the classical α-chloralose paradigm and
hindlimb stimulation combined with a gradient echo fast low angle
shot (FLASH) sequence at 11.7 Tesla (T) (Ahrens and Dubowitz, 2001).
They reported a 7% BOLD change in the somatosensory cortex, which
was even higher in the draining veins. Subsequent studies employed
low levels of isoflurane and intravenous contrast agent to measure
changes in cerebral blood volume (CBV) at 7 T following hindpaw
stimulation (Mueggler et al., 2001), or BOLD change at 9.4 T with spin
echo-echo planar imaging (SE-EPI) (Nair and Duong, 2004). In these
studies, electrical stimulation of the hindpaws ranged up to 6 mA,
which is quite high but was required, most likely because isoflurane
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strongly suppresses neural activity. Therefore, the present study was
designed to investigate the feasibility of establishing the medetomi-
dine protocol, already proven very successful in rats, to produce
sedation in mice for the purpose of fMRI. It was the goal to establish a
robust protocol suitable for longitudinal brain activation studies in
mice.

Materials and methods

Animals

Animal experiments were performed in accordance with the
German Laws for Animal Protection and were approved by the local
animal care committee and governmental body (Bezirksregierung
Köln). Twenty-nine adult male C57BL/6 mice (20–35 g body weight)
were used. Animals were housed individually at a 12/12 h light/dark
cycle and had ad libitum access to water and standard diet.

Anesthesia

All animals were initially anesthetized with 4% isoflurane in O2:N2O
(30:70). Isoflurane was reduced to 1.5% for maintenance during
preparation. Isoflurane was required during preparation primarily to
prevent the pain response to insertion of the infusion needle, insertion
of the stimulation electrodes, and scalp incision for the SSEP procedure.
Body temperature was continuously monitored with a rectal probe and
maintained at 37.0±0.5 °C with in-house feedback controlled water or
electrical blankets. Respiration ratewas continuouslymonitored using a
pressure sensitive pad and DASYLab software (National Instruments,
Austin, TX, USA). When respiration was stable at 110–130 breaths per
min, animals received a subcutaneous bolus of medetomidine (Domi-
tor®, Pfizer, Karlsruhe, Germany) through a 23Gauge (G) needle placed
into the back that was connected to a 0.58 mm inner diameter
polythene tubing, and administered via a syringe pump (Kent Scientific
Corporation, Torrington, USA) outside themagnet room. Isoflurane was
slowly discontinued over the course of the next 10 min (by approxi-
mately 0.2% every 1 min starting 3 min after bolus administration) so
that no isoflurane was available at 10 min after bolus administration.
When respiration rate decreased more than 50 bpm in the first 3 min
after bolus administration, isoflurane was discontinued faster. At the
timepoint of 10 min after bolus administration, a subcutaneous infusion
of medetomidine was started and the N2O in the inhalation gas was
replaced by N2. At the end of the experiment, mice received an
intraperitoneal injection of atipamezole (Antisedan®, Pfitzer) at five
times the initial dose of medetomidine in order to reverse the effects.

Experimental design

The first objective was the evaluation of the optimal dose of
medetomidine for mice. Theoretically, the optimal dose would provide
sufficient sedation for a maximum period of time and allow for full
recovery after the experimentwas concluded. The second objectivewas
to establish whether neuronal activity was preserved following
medetomidine sedation with the optimized dose. This was accom-
plished by recording somatosensory evoked potentials (SSEPs) during
forepaw stimulation. The third objective was to optimize MR image
quality using a combination of shimming techniques and home-
developed agar gel head caps (cf. below). The fourth objective was to
perform serial fMRI measurements in the same mice using an identical
forepaw stimulation paradigm, thus proving the protocol suitability for
longitudinal functional studies.

Dose response

Six different doses ofmedetomidine (bolus: 0.2, 0.3, 0.4, 0.5, 0.6, and
0.7 mg/kg; and corresponding infusion: 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 mg/kg/

h respectively; n=2 each) were tested in 12 mice. Sedation duration
(i.e. time between bolus administration and the time when the animal
woke up), respiration rate and recovery were monitored for each dose.
Additionally, trend of partial pressure of carbon dioxide (pCO2) was
monitored with a transcutaneous blood gas analyzer (TCM4, Radiom-
eter Copenhagen)optimized for rodent recordings. For this, a 2 cmcircle
of fur was removed from the abdomen with an electrical razor and
depilatory cream, and an electrode was secured with a fixation ring and
contact fluid. Once sedation became light and animals began to move,
they received the corresponding dose of atipamezole (1.0, 1.5, 2.0, 2.5,
3.0, and 3.5 mg/kg) and were returned to their home cages.

SSEP recording

Somatosensory evoked potentials were recorded in mice (n=5)
sedated with 0.3 mg/kg medetomidine, which was determined as the
optimal dose from the dose response experiments. Animals were
originally anesthetized with isoflurane and positioned in a stereotaxic
apparatus. The skin over the skull was retracted and custom-built
silverball electrodes were placed over the left and right S1 cortices
(2.4 mm lateral from bregma) with conducting gel. Home-built steel
needle (30 G) electrodes were placed subcutaneously into both
forepaws. Once preparation was complete, medetomidine sedation
was initiated. Stimulation was performed with 100 rectangular pulses
(2 mA, 6 Hz, 0.3 ms; STG 1004 Stimulator, Multi Channel Systems,
Reutlingen, Germany). Each paw was stimulated 4 times with random
sequencing between the paws. The response was recorded and
averaged with DasyLab software so that one evoked potential was
obtained per stimulation period. At the conclusion of the experiments,
low doses of isoflurane (0.8–1%) were administered in order to suture
the wound, and local anesthetic (Xylocain Gel 2%, AstraZeneca, Wedel,
Germany) was applied to minimize pain. Animals were subsequently
recovered with 1.5 mg/kg of atipamezole and returned to their home
cages.

MRI

MRI experiments were conducted at a horizontal 11.7T Biospec
system (Bruker BioSpin, Ettlingen, Germany) with a 16 cm diameter
bore magnet and using ParaVision 5 software. RF transmission was
achieved with a quadrature resonator (Bruker) and the signal was
detected using a mouse quadrature surface coil (Bruker). Animals were
mounted in an animal holder (Bruker) using a toothbar and earbars for
stable positioning. Body core temperature was controlled and moni-
tored with an in-house designed automated temperature control unit
complete with water blanket.

Image quality experiments

Single shot gradient echo-echo planar imaging (GE-EPI) was
employed on two mice using the following imaging parameters: TE
approximately equal to the T2* value of the cortex (17.5 ms),
TR=3000 ms, BW=150 kHz, 1 mm slice thickness, field of
view=1.28×1.28 mm2, matrix 64×64 pixels. Microscopic field gra-
dients at interfaces of air, bone andbrain resulted in signal loss artifacts
in the S1 cortex. Therefore, different shim methods were used to
improve image quality: global shim, local shim and field map-based
shimming (MAPSHIM, ParaVision 5). The fieldmap, a 3D volume of the
B0 field distribution, was acquired with TE=2 ms, TR=20 ms, and
isotropic resolution of (150 µm)3. The shim volume for all shim
methods was a (4 mm)3 cube positioned in the mouse brain including
the S1 cortex. As no improvement of image quality was visible, field
maps were acquired after each shim method in order to visualize the
field line distributions. Additionally, field maps were acquired for
different positions of the S1 relative to the isocenter (−4,−2, 0, 2, and
4 mm along the z-axis) to locate the origin of distortions. Finally, in
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order to reduce field inhomogeneity, a 2% agarose gel wasmolded into
a head cap and introduced between the head and surface coil, which
was followed by shimming and acquisition of field maps. The shape of
the head cap was a half moon. It was made by pouring liquid agarose
into a plastic tube of 2 cm diameter that had been sliced in half
lengthwise. A second tube (1.6 cmdiameter)was then placed on top of
the hardening gel. In general, the thickness of the caps ranged at the
most caudal part being 0.5–1 mm thick and themost rostral part being
1–1.5 mm thick. The cap was 1.5 cm long and as wide as the surface
coil.

fMRI

Following optimization, 10 animals were employed to assess
protocol suitability for repetitive fMRI sessions. All 10 mice were
scanned twice (with 3 weeks interval between sessions) and 5 of them
received a third session after another 3 weeks rest. Anesthesia
preparation was performed as described above with the evaluated
medetomidine dose: an initial 0.3 mg/kg bolus followed by a 0.6 mg/
kg/h subcutaneous infusion. Following positioning, local shim was
performed using a (4 mm)3 cube positioned in the brain, including the
S1. Field maps were then acquired and used to perform MAP-Shim
with the same cube volume. GE-EPIwas performed as described above
(cf. Image quality experiments) with 5 consecutive (1 mm thin)
coronal slices with the central slice positioned in the center of the S1
(3.5 mm caudal to the rhinal fissure). Forepaw stimulation was
performed with the above described parameters (cf. SSEP recording)
in a paradigm that employed 140 repetitions, consisting of 5 blocks.
Each block consisted of a 45 s resting period and a 30 s activation
period. The fMRI scan ended with an additional 45 s resting period,
which resulted in a total scan time of 7 min. Animals were allowed to
rest for 5 min between fMRI scans. The number of fMRI scans per paw
varied between 4 (long sedation) and 2 (short sedation) and was
randomized between left and right paw. An additional GE-EPI scan
with 60 repetitions but no stimulation was included in order to
determine temporal signal-to-noise ratio (tSNR).

Image analysis

Temporal signal-to-noise ratio (tSNR) was calculated voxelwise
using ImageJ software (Rasband, 1997–2009), by dividing the mean
signal intensity of the 60 individual images by its standard deviation
over time. Subsequently, circular regions of interest (ROIs) of
25 pixels from each, the left and right forepaw representation in the
somatosensory cortex, were averaged to obtain one representative
tSNR value for each animal per session.

T2* values were acquired from 5 coronal slices (1 mm slice
thickness, 128×128 pixel matrix, 1.28 cm×1.28 cm field of view, 30°
flip angle) during resting phases in between fMRI scans, using a multi-
gradient-echo sequence (MGE) with 10 echoes ranging from 5 to
50 ms and a TR of 2500 ms. T2* maps were calculated using ImageJ
software and average T2* values were obtained from two regions of
interest (circles of 104 pixels) from the left and right primary
somatosensory cortex of the central slice through the S1.

Statistical analysis was performed with STIMULATE software
(Strupp, 1996) using a pixel by pixel paired Student´s t-test and a
95% confidence level. The largest cluster of activated pixels of the
central image slice was taken for further analysis. The number of
activated pixels was counted and the percentage signal change of each
pixel was averaged into a mean percent BOLD change for the cluster.

Results

Repetitive medetomidine sedation was well tolerated by mice.
Most animals recovered to a normal activity level within 2 min after
atipamezole administration. One animal was lost during the second

fMRI experiment due to experimental error. Following the third
administration of medetomidine, 2 of the 5 mice died within 4 h after
what appeared to have been a normal recovery.

Dose response

Maximal sedation length during the dose response study per-
formed on 12 mice on the bench was around 90 min (Fig. 1A). Mice
which received an initial bolus of 0.3 mg/kg in combination with an
continuous infusion of 0.6 mg/kg/h remained sedated for 67 and
62 min while sedation was 93 and 82 min with an initial bolus of
0.4 mg/kg combined with an infusion of 0.8 mg/kg/h. Animals
sedated with doses ranging from 0.5 to 0.7 mg/kg (infusion 1.0 to
1.4 mg/kg/h, respectively) exhibited variable sedation lengths, and
particularly with the highest dose, recovered slower and exhibited
adverse behavior such as hunching and lethargy during 24 h post
sedation. Therefore, three animalswere euthanized and doses equal to
or higher than 0.5 mg/kg were subsequently excluded. Although a
bolus dose of 0.4 mg/kg combined with a subsequent infusion of
0.8 mg/kg/h resulted in longest sedation periods, we decided to use a
dose of 0.3 mg/kg in combination with a continuous infusion of
0.6 mg/kg/h for functional MRI studies. This decision was based
primarily on the fact that the sedation length was more similar in the
animals that received the lower of the 2 doses, as well as for safety
considerations since already the dose of 0.5 mg/kg with an infusion of
1.0 mg/kg led to unwanted side effects.

In 4 of the 6 animals treated with 0.2–0.4 mg/kg (0.4–0.8 mg/kg/
h infusion respectively), a slight decrease in respiration rate (around
20 breaths/min) was observed between 1 and 5 min after the
medetomidine bolus (Fig. 1C). When isoflurane was discontinued, all
animals showed an increase in respiratory rate, which stabilized
approximately 20 min after the initial medetomidine bolus. The
respiration rate for mice sedated with medetomidine was between
160 and 200 breaths/min. In all animals, transcutaneous pCO2 showed
an initial increase upon medetomidine administration which stabi-
lized after 15 min (Fig. 1D).

SSEP recording

Investigation of electrophysiological behavior under medetomi-
dinewas carried out on 5 animals sedatedwith 0.3 mg/kg. SSEPswere
consistently recorded in the contralateral hemisphere following all 4
stimulations of each forepaw. Average SSEP waveforms for each of the
5 mice are depicted in Fig. 1B. The SSEPs exhibited the standard peaks
P1, N1 and P2 with average amplitudes of 148.8±110.6, −135.8±
124.3, and 5.1±25.4 µV, and average latencies of 20.4±1.0, 28.9±
1.3, and 37.1±4.8 ms, respectively, as summarized in Table 1.

Image quality experiments

The small mouse brain makes shimming difficult, and image
distortionswere prevalent. This was particularly so in regions of tissue
interface changes, such as the cortex, and therefore, there was often
loss of signal in the S1. Several strategies were employed to
investigate this situation. Field maps of the brain were acquired for
different positions of the S1 relative to the isocenter of the magnet
along the z-axis (Fig. 2A). Magnetic field inhomogeneities were
located in the olfactory bulbs and posterior half of the brain. This was
found to be independent of animal position relative to the isocenter.
Therefore, different shim strategies were employed, including Global
Shim, Local Shim and MAPSHIM, but none succeeded alone or in
combination in recovering the lost signal in the S1 (Fig. 2B–C).
However, the introduction of an agar head cap between the head and
surface coil (Fig. 2F), substantially improving the susceptibility
homogeneity across the mouse head volume, significantly improved
the image quality (Fig. 2D–E), even before shimming. Homogeneity
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drastically improved at the level of the eyes, as well in the posterior
half of the brain (Fig. 2E). However, following shimming on the
(4 mm)3 shim volume, geometric distortions appeared in the lower
brain parts with varying intensity.

fMRI

The 10 mice that underwent fMRI experiments exhibited slightly
longer sedation periods (112±21 min, n=24 anesthesia sessions)
with 0.3 mg/kg medetomidine than was earlier observed during the
dose response experiments. Sedation length varied between the

animals, and therefore also the number of performed scans per session
varied between 4 and 8 (Table 2). Following the stimulation of each
forepaw, BOLD activation was detected in the contralateral S1 in
approximately 50% of the performed scans (Table 2). Despite this
somewhat variable situation from scan to scan, we reproduced the
BOLD response between two independent sessions in 6 animals
(Fig. 3C–H).

Results for all 10 mice over both fMRI sessions are summarized in
Table 2. Overall, during the first fMRI session, a significant BOLD
response was detected in 8 of the 10 mice (Table 2). One of these eight
animals died during the second session, and of the remaining seven
mice, six showed a BOLD response during the second session (Fig. 3C–
H). The remaining two animals that did not showBOLD response during
the first session did, however, exhibit a strong response during the
second session (Table 2). Despite the overall trend, there was some
variability of BOLD detection between individual scans in some animals.
BOLD was detected in every scan in 2 animals during the first session
(Table 2: Animals 4+8). However, in some animals, especially during
the second session, only one BOLD positive scan was observed per
session (Table 2: Animals 2, 6, 7, 9, and 10). BOLD prevalence from the
first session across all animals was 30 BOLD positive scans out of 52
performed scans (57.7%). Following the second session, prevalence
decreased to 45 positive scans out of 105 performed scans (42.9%). The
average increase in the BOLD signal fluctuated around 1% with the

Table 1
Average SSEP peak latency and amplitude recorded during forepaw stimulation over
the S1 from medetomidine anesthetized mice.

Animal # Latency P1
(ms)

Latency N1
(ms)

Amplitude P1
(µV)

Amplitude N1
(µV)

1 19.9±0.7 27.9±1.2 119.9±47.0 -184.4±107.0
2 20.0±0.7 29.7±2.4 90.0±28.7 -42.9±25.7
3 22.1±1.9 32.4±4.2 56.3±7.5 -34.0±13.8
4 20.4±0.7 28.8±1.3 336.8±403.0 -322.8±427.6
5 20.6±0.6 30.0±1.2 161.0±117.5 -110.25±115.4
Average 20.6±1.1 29.8±1.9 152.8±109.8 -140.9±123.2

Fig. 1. The effects of medetomidine on sedation duration, SSEP recording, respiration rate and transcutaneous CO2. (A) Sedation length in response to different doses of
medetomidine. The longest sedation was achieved with 0.4 mg/kg while doses between 0.5 and 0.7 mg/kg were more variable, but also resulted in unwanted side effects.
(B) Somatosensory evoked potentials for 5 mice (represented by different colors), sedated with 0.3 mg/kg of medetomidine. Each line represents the average of 8 evoked potentials
recorded from one mouse following electrical forepaw stimulation. Representative respiration rates (C) and transcutaneous CO2 (tcpCO2) (D) for three different animals that
received different doses of medetomidine during the dose response experiments. (▼) Time of bolus administration; (●) time of complete isoflurane discontinuation and beginning
of continuous infusion.
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overall average over both sessions of 1.3±0.4%. The average number of
BOLD positive pixels in the center slice varied from 5 to 13, with an
overall average of 7.4±4.4 pixels (Table2).As canbe seen in Fig. 3B+I–
K, spontaneous fluctuations of the signal challenge the easy monitoring
of the fMRI signal. Especially, BOLD signal peakswere not sustained over
the period of stimulation. Nevertheless, average signal increase during
stimulation periods was significant at a confidence level of 95%.

Temporal SNR was subject to some variation between sessions. All
10 mice showed a good and stable temporal SNR of 48±6 during the

first session, which decreased, however, during the second session to
39±11. Specifically, the first 4 animals of the second session had a
good tSNRof 50±6,while the 5 last scannedmice had a tSNRof 27±4.
However, the detectability of the BOLD response did not appear to be
dependent on tSNR, since no correlation was found between the total
number of activated pixels weighted by the number of performed scans
of one session and the tSNR value (R2=0.07). Nevertheless, the 5 mice
with the lowest tSNR (around 27) during the second session underwent
a third fMRI session. tSNR was significantly improved to 41±7 during

Fig. 2. Evaluation of image quality. (A) Fieldmaps for different positions of the S1 relative to the isocenter along the z-axis. Note that inhomogeneitieswere present in rostral brain regions
independent of animal position. (B, C) GE-EPI images and corresponding fieldmap of an animal following shimming procedures. Note the signal loss from the cortex. (D, E) GE-EPI images
and corresponding fieldmap of an animal with an agar gel cap between the head and surface coil. Note the retained signal in the cortices and substantial improvement of homogeneity in
the field map. (F, G) Coronal and horizontal anatomical FLASH images from an animal with the agar gel cap, and (H) corresponding schematics of coronal brain slices with S1 cortices
highlighted in orange. Note in panel (G): The break of the gel (black lines) on both sides of the brain indicates the location of the ear bars for head fixation.
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the third session. The average BOLD response was comparable to
the previous sessions (1.4±0.3% signal increase) with an average of
10.8±6.5 activated pixels. Total BOLDoutcomeof all three sessionswas
53 BOLD positive scans from 131 performed scans (40.5%).

T2* values for the left and right somatosensory cortex varied
between 10 and 23 ms. The overall average of the T2* valuewas 18.0±
3.5 ms.

Discussion

In the present study, we have established a longitudinal and non-
invasive protocol for fMRI of the somatosensory cortex of mice.
Medetomidine, an α2-adrenoreceptor agonist, was used to achieve
sedation. Following evaluation of the optimal dose of 0.3 mg/kg, the
sedation was characterized by a stable respiration rate and transcuta-
neous CO2 level. Somatosensory evoked potentials (SSEPs) were
recorded during electrical forepaw stimulation from the contralateral
S1 in medetomidine sedated mice and subsequent BOLD change was
observed longitudinally in 6 of 9 mice, which underwent longitudinal
fMRI. The BOLD response was specific to the stimulus, showing the
largest cluster of activated pixels in the S1 cortex contralateral to the
stimulated forepaw. This protocol will allow for the first time access to
the investigation of functional brain activation changes in different
transgenic mouse models. Furthermore, it will help to elucidate
mechanisms of functional brain deficit and recovery, respectively, in
mice having undergone brain injury such as e.g. stroke and stem cell
therapy.

Somatosensory evoked potentials showed the well established
shape of a fast positive deflection (P1) followed by a fast negative
deflection (N1) and a second positive wave (P2), which is consistent
with literature for rodent SSEPs (Brinker et al., 1999; Franceschini et al.,
2008; Gsell et al., 2006). The amplitude of P1 and N1 is in good
agreement with previously recorded SSEPs from the S1 cortex in mice,
P1=51.3±6.4 µV, N1=−93.6±11 µV (Troncoso et al., 2000). In the
present study, the average amplitudes varied in the range of 56 to
336 µV for P1 and from −34 to −332 µV for N1 between individual
animals. Also the ratio of P1 to N1 amplitude is subject of variation, and
mostly P1 is larger thanN1. This is different than previously observed in
α-chloralose anesthetized rats.We cannot exclude that a sedation effect
may contribute to the amplitude differences and ratio variations among
animals, but it can also be influenced by small differences in electrode
position, as well as contact quality. Furthermore, Troncoso et al.
proposed light anesthesia as a confounding factor in SSEP recordings,
resulting in decreased SNR due to cortical desynchronization (Troncoso
et al., 2000), whichmay also have contributed to the observed variation
in the ratioof P1 toN1amplitude.However, it is noteworthy thatHayton
et al. (1999), in earlier studies of SSEPs of rats under medetomidine,

reported P1/N1 amplitude ratios very much in line with our present
results. These authors argued that medetomidine as an α2 adrenergic
receptor agonist disrupts the signal transduction from thalamus to
cortex and therefore more synapses have to be passed in order to
generate cortical components. Latencies for P1 and N1 were extremely
stable (20.6±1.1 msand 29.8±1.9 ms, respectively), although they are
somewhat longer thanwhat has beenobservedpreviously: (14±0.6 ms
and 24±1.1 ms) (Troncoso et al., 2000). One possible explanation for
this is that Troncoso et al. used pentobarbital to produce anesthesia, and
different anesthetic agents havebeen shown to produce different effects
on both the latencies and amplitudes of SSEPs (Hayton et al., 1999).
Furthermore, it has been shown that the optimal frequency of the
forepawstimulation can bedifferent dependingon the anesthetic agent.
For example, a frequency of 1.5–3 Hz resulted in the largest amplitude
SSEP recordings in α-chloralose anesthetized rats (Brinker et al., 1999;
Silva et al., 1999),whereas thiswas reported tobe8–12 Hz for isoflurane
anesthetized rats (Masamoto et al., 2007). We used a frequency of 6 Hz
because the BOLD response under medetomidine sedation was shown
to be maximal in the range between 6 and 9 Hz in rats (Zhao et al.,
2008).While no other frequencies were tested in our hands, the results
show that stable SSEPs can be obtained with the selected 0.3 mg/kg
medetomidine dose.

A BOLD response was observed (53/131 scans) using our sedation
strategy with a mean signal change around 1.3±0.4%. This is
comparable to other studies that employed isoflurane and similar
stimulation parameters (2 mA, 0.3 ms pulse width, but 3 Hz instead of
6 Hz) at 9.4 T (Nair and Duong, 2004). A higher BOLD response was
produced to around 3% by increasing the stimulation current to 6 mA
while decreasing the isoflurane concentration to 0.75% (Nair and
Duong, 2004). However, irregular respiration patterns and changes in
mean arterial blood pressure (MABP)were reportedwhen stimulation
was increased to 7 mA, suggesting a non-specific BOLD effect already
at 6 mA due to a contribution of pain response. Also in isoflurane
anesthetized rats, a current of minimum 6 mAwas reported necessary
to result in a BOLD increase of approximately 1% (Liu et al., 2004).
However, despite these apparent positive BOLD reports of isoflurane
as a gaseous anesthetic with the advantage of good control over
anesthesia depth and fast recovery, it is known to be a suppressor of
neuronal activity and a potent vasodilator. Isoflurane decreased the
amplitudes of evoked potentials by 54% and increased cerebral blood
flow by 45% when compared to α-chloralose (Masamoto et al., 2007).
Since the BOLD response is highly dependent on CBF (Cohen et al.,
2002), most fMRI studies tend to avoid isoflurane in favour of α-
chloralose in order to preserve functional-metabolic coupling (Ueki
et al., 1992). However, the α2-adrenergic receptor agonist medeto-
midine, employed in the present study, is now increasingly preferred
due to the ease of implementation and,more importantly still, because

Table 2
BOLD success rate for all 10 animals undergoing two separate fMRI sessions.

Animal Session 1 Session 2

BOLD positive scans/
total no. of scans

Average no. of activated
pixels of central slice ±
standard deviation

Mean BOLD change ±
standard deviation

BOLD positive scans/
total no. of scans

Average no. of activated
pixels of middle slice ±
standard deviation

Mean BOLD change ±
standard deviation

1 3/6 8.0±2.6 1.5±0.4 5/7 6.4±2.6 1.2±0.3
2 2/6 5.0±3.8 1.4±0.4 1/4 6 0.8
3 2/3 11.5±2.1 1.2±0.5 2/4 11.5±9.2 0.9±0.1
4 6/6 13.3±6.4 1.4±0.2 –* –* –*
5 3/6 9.7±4.9 1.5±0.4 3/8 5.3±1.5 1.0±0.1
6 6/6 7.8±3.5 0.9±0.2 1/8 7 1.4
7 0/4 – – 1/5 4 1.8
8 4/4 12.8±6.4 0.9±0.2 0/4 – –

9 0/5 – – 1/6 10 1.9
10 4/6 8.5±2.4 1.3±0.3 1/7 9 1.3
Average (Sum)30/52 9.7±5.5 1.3±0.4 (Sum)15/53 6.3±2.2 1.2±0.4
Average over both sessions 7.9±4.4 1.3±0.4

– indicates no BOLD change observed. * indicates no measurement obtained due to earlier death of the animal.
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of its option to perform longitudinal experiments in the same animals
(Pawela et al., 2008; Weber et al., 2008, 2006; Zhao et al., 2008).
Similar to α-chloralose (Lindauer et al., 1993; Nakao et al., 2001)
dexmedetomidine, the active ingredient of medetomidine is known to
reduce cerebral bloodflow, asmeasured by laser Dopplerflowmetry in
rats (Ganjoo et al., 1998).

BOLD increase in medetomidine sedated rats does not appear to
differ from α-chloralose anesthetized rats, and was in the same
percentage range (1–1.5%) (Pawela et al., 2008; Weber et al., 2006;
Zhaoet al., 2008) asobserved inour study.However, there are important

differences in medetomidine sedation between rats and mice. Maximal
average sedation duration in mice achieved in this study was almost 2
h while up to 3.5 h were obtained in rats (Weber et al., 2006). This has
been reported to be even extendable up to 6 h (Pawela et al., 2009).
However, increasing thedoseabove0.4 mg/kgdidnot increase sedation
duration but, instead, resulted in a potential overdose so that somemice
had to be euthanized. Since medetomidine also activatesα1-adrenergic
receptors, it is possible that arousal and vigilance were increased with
higher doses. Studies reviewed by Sinclair et al. (Sinclair, 2003) have
shown that activation of central α1-adrenergic receptors antagonizes

Fig. 3. BOLD activation in the contralateral S1 cortex during unilateral forepaw stimulation. (A) An activation map shows a 2% BOLD change in statistically activated pixels in the S1
when overlayed on a GE EPI image. (B) Time course of the activated pixels from (A) with resting periods indicated in white and stimulation periods in gray. (C–H) BOLD signal
observed in 6 of the 9 animals over the course of 2 independent sessions, separated by 3 weeks. Note: images show only the largest cluster of activated pixels. (I-K) Time courses of
three different sessions from one animal (H).
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the sedative response to even potent α2-agonists, such as medetomi-
dine, particularly with high (toxic) doses. The dose of 0.3 mg/kg with a
continuous infusion of 0.6 mg/kg/h used here provided stable respira-
tion and transcutaneous recording of CO2 at a sufficient sedation to
perform the fMRI experiments. We cannot exclude that further
experimenting with the protocol may further improve the sedation
length, though the reported duration was more than sufficient for our
purposes. Also repetitive sedation with the dose of 0.3 mg/kg in
combination with an infusion of 0.6 mg/kg/h was well tolerated by
most mice. However, two mice died in a time window of 4 h after the
second sedation, which we cannot exclude to be in context with the
sedation.

Using the samefield strength as in the present study (11.7T), Ahrens
et al. (Ahrens and Dubowitz, 2001) observed a 7% BOLD change inmice,
sedated with α-chloralose, upon electrical hindpaw stimulation with
much lower stimulation of 50 µA and 3 Hz, the optimal stimulation
frequency for α-chloralose anesthesia in rats (Gyngell et al., 1996;
Keilholz et al., 2004; Silva et al., 1999). The BOLD intensity in that report
is clearly higher than our observed 1.4+0.3%. Differences in spatial
resolution (leading to varying partial volume dilution of the BOLD
effect) can be excluded as explanation: we used 200×200×1000 µm3

while Ahrens and Dubowitz reported 180×180×1500 µm3.We believe
that the difference in BOLD strength must rather be sought for in the
physiological and experimental conditions. While all studies so far
dealing with electrical paw stimulation needed 1–2 mA for a detectable
stimulation, Ahrens and Dubowitz used only 50 µA. As we know from
our earlier fMRI studies in rats, hindpaws (used by Ahrens and
Dubowitz) need even higher currents than forepaws (Bock et al.,
1998). That makes detectability of activation in the somatosensory
cortex difficult to understand when using only 50 µA. It appears most
likely that the authors recorded at such low stimulation current only
slight hemodynamic responses in larger vessels at the surface of the
cortex instead of in the deeper layers of the S1 cortex area itself. In favor
of this explanation speaks the rather short TE of 7 ms chosen by Ahrens
and Dubowitz for their FLASH fMRI experiments compared to the
17.5 ms used in the present study. As shown by Grüne et al. (1999) in
FLASH-based fMRI experiments on the somatosensory cortex in rats, the
susceptibility gradient from tissue to bone leads to increasingweighting
of the BOLD signal to cortical surface vessels with decreasing TE values.
Functional brain activation in mice has also been measured with
cerebral blood volume (CBV) using an intravenous contrast agent and
rapid acquisition relaxation enhancement (RARE) sequence (Mueggler
et al., 2001). Changes in CBV upon hindpaw stimulationwith 1.5 Hz and
2 mA were around 17%, but temporal resolution was lacking with 21 s
per image. Furthermore, this CBV-based fMRI approach has the
disadvantage of invasive addition of contrast agent and, in consequence,
limited repetitions of activation scans following the contrast agent
injection.

The reproducibility of the BOLD response was approximately 50%
in the present study. The BOLD response in rats sedated with the
medetomidine protocol is more stable, but is also subject to variations.
One reason for the lower robustness of the protocol in mice is
obviously the strong spontaneous fluctuation of the signal visible in
the time courses. Clearly the noise is a complicating factor of mouse
fMRI, leading to noisier signal-time curves than in rats. Although
transcutaneous CO2 was stable during the period of sedation, we did
not measure absolute partial pressure of CO2 in arterial blood. We
therefore cannot exclude the possibility of a suppressing effect of high
CO2 levels on the hemodynamic response and consequently on BOLD.

Image quality is a key factor for reproducible fMRI experiments.
Susceptibility artifacts are prevalent at interfaces of air, bone and tissue
and can cause strong local field gradients, leading in consequence to
signal loss in T2*-weighted images (Yang et al., 1999). This is
particularly so at high magnetic field and is further compounded by
the difficulty in shim optimization over small sample volumes like the
mouse brain (Ahrens and Dubowitz, 2001; Nair and Duong, 2004). In

the present study, T2* values were variable in the S1 cortex from
session to session (10–24 ms), consistent with previous reports that
suffered even greater variations which those authors did not succeed
in removing by shimming (Ahrens and Dubowitz, 2001). We
experienced similar field gradients, and the 2nd order MAPSHIM
failed repeatedly. However, the introduction of agar in between the
mouse head and surface coil substantially increased the field
homogeneity so that 2nd order MAPSHIM could be applied success-
fully. Temporal stability of our image series was found variable
between separate sessions (tSNR=20–60). The variability of the tSNR
in our GE-EPI images can be the result of many influencing factors,
including physiological factors like respiration rate and heart rate. But
most likely we believe that the newly introduced agar head cap leads
to a somewhat variable distance between rf surface coil and brain. This
will in the future be further optimized.

Conclusions

With the present study, we have established a new, experimental
protocol for fMRI studies in mice under controlled physiological
conditions. We have demonstrated the feasibility to perform longitu-
dinal and non-invasive fMRI studies following forepaw stimulation in
mice sedated with medetomidine. A reproducible BOLD signal was
observed in the somatosensory cortex, demonstrating that this new
protocol is well suited to be applied for functional brain activation
studies in transgenic animal models or for investigations on functional
deficit and recovery, respectively, for the assessment of therapeutical
strategies in models of brain injury.
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Discussion 
The aim of this thesis was to investigate regenerative processes after cerebral 

ischemia. Therefore, specialized methods were established using bioluminescence imaging 

and magnetic resonance imaging. In particular, the aim was to generate methods that are 

non-invasive, in order to perform longitudinal studies and monitor the whole dynamic aspect 

of regeneration. Up to date, the vast majority of studies still employ invasive methods 

(Thored et al., 2006, Thored et al., 2007, Yu et al., 2007), which allow only single time point 

measurements and large animal numbers are needed to establish a temporal profile of 

events. This work combined novel, non-invasive imaging strategies and followed 

regeneration after stroke for the first time in parallel on different levels: the vascular, the 

neuronal and the functional level. Post-stroke vascular remodeling was observed 

longitudinally with two complementary methods. The dynamics of early phases of 

angiogenesis were visualized by molecular imaging of VEGFR2 expression. Increased 

VEGFR2 expression revealed the initiation of angiogenesis already early after the insult. This 

change on the molecular level lead to structural remodeling of the vascular network, which 

was monitored for up to 4 weeks with a specific MRI based method. Post-stroke 

neurogenesis was observed with bioluminescence imaging. After the establishment of a 

brain-specific BLI protocol, increased proliferation of neural progenitor cells was sensitively 

detected up to 2 weeks after the insult. For the investigation of stroke-induced changes of 

brain activity, the first non-invasive functional MRI protocol was established for the specific 

use in mice, as most methods used in this thesis are based on transgenic mice. Differential 

changes in brain activity and potential spontaneous functional recovery was observed in 

ischemic mice. 

This thesis employed a novel concept of multimodal imaging to look at regeneration 

after stroke in its entity. It emphasizes the value of non-invasive imaging for pre-clinical 

stroke research as time courses of dynamic processes can be established and events on 

different levels can be monitored in parallel. Future studies can combine the individual 

methods presented in this thesis into a multimodal approach for application in the same 

animal. This holds the exceptional opportunity to gain an integrated view of different aspects 

of endogenous regeneration after ischemia with regard to individual-related differences. In 

particular, the simultaneous and non-invasive observation of angiogenesis and neurogenesis 

in the same animal will offer to investigate their interaction.  
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1. Angiogenesis after stroke 

This thesis investigated two different approaches for non-invasive imaging of vascular 

changes after stroke. First, the VEGFR2 was employed as a molecular marker of post-stroke 

angiogenesis. VEGFR2 is the main receptor involved in angiogenic signaling cascades and 

invasive methods reported increased expression after stroke (Issa et al., 1999, Marti et al., 

2000, Hayashi et al., 2003). Second, SSCE-MRI was chosen to elucidate structural changes 

of the vascular network after stroke. SSCE-MRI reports changes in regional cerebral blood 

volume, vessel size and vessel density based on relaxivity changes induced by intravascular 

contrast agent. While VEGFR2 is an early marker of ongoing vascular changes and already 

present during the initial destabilization of the existing vascular network, vascular changes 

visible for SSCE-MRI require functional perfused vessels, which may only occur at later time 

points during the remodeling process. Hence, these two methods look at different levels and 

phases of the vascular remodeling process and provide complementary information.  

1.1.  Imaging angiogenesis on the molecular level 

Biological aspects 

This study found increased VEGFR2 expression already at 3 days after MCAO, which 

stayed elevated until the study`s endpoint at 14 days. Western blotting for VEGFR2 

confirmed increased expression and immunohistochemical analysis of vessel density 

revealed slight increases in peri-infarct areas. Similar temporal profiles for VEGFR2 

expression after stroke were reported for studies using histological and genetic methods 

(Issa et al., 1999, Marti et al., 2000). Increased expression started 1 day and persisted for up 

to 7 days, but levels returned to baseline at 21 days (Hayashi et al., 2003). The expression of 

VEGFRs was already previously used to investigate angiogenesis non-invasively after 

cerebral ischemia (Cai et al., 2009).  In a rodent model of distal MCAO the expression 

pattern of VEGFRs was similar to those found in the study presented here. Levels of the 

VEGFRs increased with peak expression at 9 days, persisting for up to 16 days but returned 

to baseline after 23 days. An immunohistological quantification confirmed highest VEGFR2 

expression around day 10, which is in line with the Western blot results presented in this 

thesis, showing increased VEGFR2 content on day 7 and day 14 after stroke. 5-bromo-2'-

deoxyuridine (BrdU) injection between the second and seventh day after stroke revealed 

proliferating endothelial cells in the peri-infarct region, indicating the presence of active 

vascular remodeling. This study performed quantification of vessel numbers and detected 

slightly increased vessel density in the peri-infarct striatum close to the SVZ, which is known 
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to be the location of intensive vascular remodeling after stroke (Thored et al., 2007). A direct 

correlation of changes in VEGFR2 expression levels to increased vessel density cannot be 

expected, because VEGFR2 expression primarily occurs during the early stages of 

angiogenic remodeling. The subsequent maturation of vascular sprouts into functional 

vessels is guided by other molecular cues (angiopoietin 1 - Ang1, platelet-derived growth 

factor - PDGF), which will increase their signaling at later stages while VEGFR2 will 

continuously decrease (Hayashi et al., 2003, Marti et al., 2000). It has to be mentioned that 

some stroke-induced expression of VEGFR2 occurs on neurons and astrocytes (Beck et al., 

2002, Hayashi et al., 2003, Li et al., 2011, Lennmyr et al., 1998, Issa et al., 1999). 

Nevertheless, VEGFR2 is primarily involved in angiogenesis, and, following stroke, 

predominantly increases expression in endothelial cells (Marti et al., 2000).  

Methodological aspects 

Within this PhD thesis, VEGFR2 expression after stroke was investigated with BLI 

using a transgenic mouse line (Lyons et al., 2005). Photon emission is proportional to the 

amount of luciferase, if the substrate luciferin is given in excessive amounts (Virostko et al., 

2004). In-vivo BLI has to deal with tissue-induced light absorption and scattering, but can be 

used as semi-quantitative measure (Keyaerts et al., 2012a). If the same condition is followed 

over time, relative changes can be calculated. Usually the relative change is calculated to a 

control condition, however, as injection-related signal variation can be observed between 

time points, it is advisable to include this control within each imaging session. In the present 

study the intact hemisphere was used as control condition, thus, injection-induced variation 

of signal intensity was subtracted from the measurement.  

Stroke induces injury to endothelial cells and the blood brain-barrier (BBB), which 

results in increased permeability for molecules circulating through the vasculature (Strbian et 

al., 2008). Although luciferin is a molecule with small molecular weight and freely diffusible 

across the BBB (Hochgrafe and Mandelkow, 2012), a frequently discussed complication of 

BLI in the stroke pathology is the potentially increased substrate availability due to the open 

BBB. Careful observation of the kinetics between intact and ischemic hemisphere, as well as 

comparison of sham and MCAO animals in the presented study, suggest only a minor effect 

of destroyed BBB on maximal photon emission. Photon emission during the acute phase (at 

day 3 after stroke) was similar in sham and MCAO animals, although MCAO animals are 

expected to have a more severely injured BBB. The photon emission during the steady state 

(starting approximately 10 min after injection), can be considered to be proportional to the 

luciferase content (Virostko and Jansen, 2009), since luciferin is assumed to have distributed 

equally throughout the system.  
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Recently, the VEGFR2 expression pattern following stroke was non-invasively 

investigated employing PET (Cai et al., 2009). Similar to BLI, PET has a high sensitivity and 

low spatial resolution. The major advantage of the model investigated in this thesis is the low 

invasiveness and the simplicity of the experimental execution, which does not need the time-

consuming production of radioactive tracers. Thus many repetitive experiments are possible 

and give the opportunity to establish a temporal profile with an hourly resolution.  

This non-invasive imaging approach is the first to monitor the dynamics of 
angiogenesis on the molecular level with BLI using a transgenic mouse that 
expresses luciferase under the control of the VEGFR2 promotor. VEGFR2 is 
primarily involved in angiogenesis initiation and can specifically report early 
phases of the angiogenic response to stroke. The implementation of VEGFR2 as 
a biomarker for post-stroke angiogenesis revealed the temporal profile of the 
molecular regulation of vascular remodelling after cerebral ischemia. The herein 
observed increased VEGFR2 expression up to 14 days after the insult indicates 
continuous active vascular remodelling even at chronic phases. Vascular 
remodelling translated into increased vessel density in distinct peri-infarct areas.  

1.2. Imaging angiogenesis on the structural level 

Biological aspects 

This thesis observed significantly decreased vessel density in the ischemic striatum at 

7d after stroke. Stroke induced endothelial injury and subsequent endothelial apoptosis were 

reported in this phase after stroke (Hayashi et al., 2003) and result in detectable vascular 

regression. At the same time, mean vessel size was significantly increased, which is a 

commonly observed characteristic of vasculature after stroke (Bosomtwi et al., 2008, Lin et 

al., 2008a) and may be attributable to vasodilation in response to hypoxic cues, as well as a 

possible result of predominant regression of small capillaries shifting the mean vessel size to 

arterioles. Although BrdU labeling proved the presence of endothelial cell proliferation in the 

first week after stroke, this thesis could not detect any elevation of vessel density above pre- 

stroke values in the striatum or in the peri-lesional area with SSCE-MRI. During the process 

of angiogenesis early vessels are not yet perfused (Ohab et al., 2006). The observation 

presented here indicates that not all new vascular sprouts become functional and perfused. 

Recent reports even indicate that angiogenesis after stroke is transient process (Thored et 

al., 2007, Yu et al., 2007) and only a minor population of vessels might reach maturity, which 

would explain the normalization of vessel density at around 2 weeks after stroke. 

Immunohistological quantification of vessel numbers at 28 days post stroke confirms no 

additional increase in vessel density above baseline levels.  
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Methodological aspects 

The method of SSCE MRI detects specific characteristics of the vasculature, like total 

CBV and CBV in microvessels (5-10 µm), and conveys this measure into information about 

mean vessel size and mean vessel density. As only perfused vessels contribute to the signal, 

this method can detect changes in the amount of functional vessels. The large body of 

literature providing positive reports about increase in vessel density after stroke used 

classical immunohistological approaches of endothelial cell staining (Glut-1, RECA-1, CD31, 

vWF) or basement membrane staining (laminin), which do not reveal the functional status of 

the vasculature. An improved immunohistological protocol, employing the perfusion of the 

vasculature with a fluorescent dye and thereby labeling only functional vessels, could verify 

non-perfused vessels in the peri-infarct area (Ohab et al., 2006). Since SSCE-MRI only 

visualizes perfused vessels (Yu et al., 2007, Thored et al., 2007), these newly generated 

non-perfused vessels are not detected. Previous studies employing SSCE-MRI to track 

angiogenesis after stroke were also not able to detect increased vessel density in striatal or 

cortical tissue (Bosomtwi et al., 2008, Lin et al., 2008a). Only vessels of the pial network in 

the leptomeninges showed increased density in response to distal MCAO (Lin et al., 2002, 

Lin et al., 2008b), which may be in relation with the choice of the stroke model. Nevertheless, 

vascular remodeling after stroke is an established concept (Arai et al., 2009). Angiogenic 

sprouting and subsequent vascular maturation may be present only in small distinct areas of 

the brain (Thored et al., 2007), the detection of which is obscured by analysis of mainly large 

areas of interest, as is common in SSCE-MRI. Additionally, we noted that SSCE-MRI has an 

inherent susceptibility to noise, with variation of up to 20%. Changes in vessel density below 

this threshold may therefore not be reliably detectable.  

1.3. New insights into vascular remodeling after stroke 

In this thesis vascular changes after stroke were monitored with two different non-

invasive methods, which evokes the unique position to integrate the complementary 

information into a multi-dimensional result. Vascular remodeling was monitored on the 

molecular and on the structural level with additional indication of vessel functionality. The 

strong up-regulation of VEGFR2 in response to stroke in the ischemic hemisphere is in 

agreement with previous studies (Cai et al., 2009, Hayashi et al., 2003, Issa et al., 1999, 

Marti et al., 2000). It persisted up to 14 days and revealed ongoing angiogenic signaling on 

the molecular level even during chronic phases after ischemia. Vascular remodeling during 

this phase was supported with invasive methods by the detection of endothelial cell 

proliferation and by increased vessel density in distinct areas around the lesion. SSCE-MRI 

reported pronounced structural changes of the vasculature during the first three weeks after 
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stroke. An initial strong decrease of vessel density in ischemic core areas was followed by 

renormalization around 2 weeks after ischemia. Invasive methods revealed endothelial cell 

proliferation within the first week after stroke but vessel density did not rise above pre-stroke 

values during chronic phases. The overall integration of the two complementary studies 

suggests that post-stroke vascular remodeling resulted in new microvessels, but not all 

became functional. Therefore the MRI based method only detected renormalization of vessel 

density but no increase compared to contralateral values. However, the detection of 

increased vessel density may have been obscured by analysis of a large area of interest, as 

is common in SSCE-MRI. Elevated vessel density above normal levels was predominantly 

reported from distinct areas of the peri-infarct region (Thored et al., 2007), which may be 

blurred by the analysis of a larger area. Furthermore, a species-dependent effect can not be 

excluded, as the BLI study used mice and the SSCE-MRI study used rats. The angiogenic 

response may vary between species, especially since the ischemic intensity will differ. 

Preliminary results of a SSCE-MRI study on a mouse model of MCAO, which was performed 

in conjunction with this thesis, indicate the non-invasive detection of areas with increased 

vessel density. However, especially small regions of interest were employed for the analysis 

to bypass the possible blur effect.  

Valuable information about post-stroke vascular remodeling was gained by the 
integration of the results from two complementary non-invasive methods. For the 
first time the aspects of molecular, structural and functional changes are 
presented in a temporal context. Longitudinal BLI of VEGFR2 expression as a 
biomarker for post-stroke angiogenesis revealed continuous angiogenic signaling 
on the molecular level far into the chronic phase. Structural and functional 
changes of the vasculature were detected by SSCE-MRI and showed an initial 
pronounced loss of functional vessels in the ischemic territory. Angiogenic cues 
translated into new functional microvessels and increased vessel density 
beginning 2 weeks after the insult. Vessel density increased above baseline 
values only in distinct peri-infarct areas. However, overall vessel density of the 
ischemic territory normalized beginning 2 weeks after the insult.  

2. Adult neurogenesis after stroke 

Since the discovery of adult neurogenesis several techniques have been employed to 

study the dynamic process of neurogenesis with non-invasive methods, including iron oxide 

labeling for MRI (Shapiro et al., 2006, Granot et al., 2011, Sumner et al., 2009), 

radionucleotide-labeled thymidine analog for PET (Rueger et al., 2010), or viral transduction 

with reporters for optical imaging (Vande Velde et al., 2011, Reumers et al., 2008). The aim 

of this thesis was to establish a new sensitive method to follow endogenous neurogenesis 

more specifically than previous approaches. Recently, a special transgenic mouse was 

created, which expresses firefly luciferase under the control of the doublecortin promotor. 



Watching the healing brain 
 

 

	
   111 

Doublecortin is a microtubule binding protein and its expression is specific for proliferative 

and migratory neural progenitor cells (Brown et al., 2003). The visualization of adult 

neurogenesis becomes possible with BLI (Couillard-Despres et al., 2008). This transgenic 

mouse was employed to establish for the first time a brain-specific BLI protocol optimized for 

sensitivity. Subsequently, this thesis detected sensitively and specifically the endogenous 

neurogenic response to stroke for the first time with a non-invasive strategy.  

2.1. Brain-specific bioluminescence imaging 

The high sensitivity of BLI is advantageous for in vivo imaging of neurogenesis 

because numbers of neural stem/progenitor cells in the brain are low. In mice a total amount 

of 35 proliferating neural progenitor cells were counted in the neurogenic niche of the SVZ 

(Kazanis and Ffrench-Constant, 2012). After injury, the amount of proliferating progenitor 

cells was approximately 10 times higher (Kazanis and Ffrench-Constant, 2012). These 

numbers illustrate the need for an optimized BLI protocol in order to be able to track changes 

of only small magnitude. This thesis investigated increasing substrate concentration, different 

injection routes, different anesthesia regimens and timing of anesthesia using the DCX-luc 

mouse (Couillard-Despres et al., 2008) in order to find the optimal protocol for this specific 

model. In accordance to previous studies, increasing luciferin concentration led to increased 

photon emission (Keyaerts et al., 2012b). However, even the highest concentration did not 

saturate the luciferase in contrast to other reports (Contag et al., 1997). The results 

presented in this thesis show an exponential increase in photon emission with increasing 

luciferin concentration. A boost in substrate diffusivity across the BBB can be assumed as 

the major contributor to exponentially increased photon emission, which is further supported 

by the observation of a steeper photon emission slope within the first 5 min, indicating a 

faster inflow of luciferin into the brain. According to observations in other model systems, iv 

injection of luciferin yielded a higher emission compared to classical ip injection. In our DCX-

luc model iv injection led to 4 times higher emission than ip injection. Anesthesia was 

reported to have an effect on luciferase kinetics (Keyaerts et al., 2012b). This study 

compared isoflurane, ketamin/xylazin and pentobarbital. In contrast to previously published 

observations pentobarbital did not lead to significantly increased photon emission (Keyaerts 

et al., 2012b) and ketamin/xylazin decreased the emission compared to isoflurane 

anesthesia. Furthermore, emission peaks were delayed under pentobarbital and 

ketamin/xylazin anesthesia compared to isoflurane anesthesia, which corresponds to the 

stronger impact of these anesthetics on the cardiovascular system (Janssen et al., 2004). A 

great boost in photon emission was achieved when luciferin was injected into awake animals 

before anesthesia with isoflurane. This indicates that the enzyme-substrate complex is less 
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inhibited by isoflurane. Integration of all observations under practical, financial and temporal 

aspects revealed an optimal protocol: 300 mg/kg luciferin ip injected before anesthesia with 

isoflurane. This advanced BLI protocol allowed to visualize unambiguously 3000 

intracerebrally transplanted neural stem cells, which were transduced to express clickbeetle 

luciferase under a constitutive active promotor. The direct comparison to a BLI protocol most 

often used in literature (150 mg/kg luciferin after isoflurane anesthesia) revealed that not 

even 6000 cells were unambiguously detectable. This study is unique, as it evaluated 

systematically many BLI influencing factors with special regard to brain specific application, 

and small cell populations can be tracked in the brain in future studies. 

2.2. Bioluminescence imaging of endogenous neurogenesis after stroke 

This study employed the DCX-luc mouse model with the optimized BLI protocol to 

follow the neurogenic response to stroke. Ten male homozygote DCX-luc mice (Couillard-

Despres et al., 2008) (age 6 months) received a MCAO (30 min occlusion time) and 3 mice 

received sham surgery. We recorded photon emission before, 7 days and 14 days post 

MCAO. Additionally, we performed MRI and calculated T2-maps for the visualization of 

lesion extension. Before stroke, photon emission was equal from left and right hemisphere. 

Seven days after MCAO, photon emission was increased around 4% above the ischemic 

hemisphere (Figure 10). No change in photon emission between left and right hemisphere 

was observed 7 days after sham surgery. Increased photon emission from the ischemic 

hemisphere was still present at 14 days after MCAO. Immunohistochemical analysis of DCX+ 

cells did not reveal massive increase in the amount of DCX+ cells. However, a somewhat 

thicker SVZ was noted at the rostral end of the SVZ (Figure 10D).  

These preliminary results suggest that even small changes in proliferation of neural 

progenitor cells in the SVZ upon stroke can be detected and followed by BLI. In particular, 

increased proliferation was present over 2 weeks after stroke. This time course was 

previously introduced by invasive studies (Thored et al., 2006, Thored et al., 2007, 

Yamashita et al., 2006, Zhang et al., 2004) and can be refined now. We detected increased 

photon emission from the ischemic hemisphere at 7 and 14 days, indicating increased 

proliferation of DCX+ cells. Enhanced proliferation of neural progenitor cells within the SVZ 

was described as early as 2 days after the insult, peaked at 1-2 weeks, and returned in some 

studies to baseline proliferation at 3-4 weeks. In particular, the number of DCX+ cells reached 

peak numbers around 2-3 weeks and was still elevated for up to 6 weeks after stroke (Zhang 

et al., 2004, Thored et al., 2006, Yamashita et al., 2006). The magnitude of increase was   
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Figure 10: Longitudinal and non-invasive observation of increased neurogenesis after stroke.             
A Representative brain BLI from one exemplary DCX-luc mouse showing increased photon emission 
from the ischemic (right) hemisphere at 7 and 14 days after MCAO. B Sham surgery did not lead to 
changes in photon emission.  C Quantification of the stroke-induced changes in BLI signal revealed an 
approximately 4% increase in photon emission compared to the intact hemisphere. Healthy and sham 
animals retained equal photon emission from both hemispheres. D Exemplary immunohistological 
staining of DCX+ cells in the left and right subventricular zone (SVZ).  
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between a 2-fold increase up to a 7-fold increase in DCX+ cells within the SVZ (Parent et al., 

2002, Yamashita et al., 2006). This study detected only an increase of a few percent, which 

may be due to signal absorption by tissue resulting in signal attenuation from deeper 

structures in the brain. Furthermore, as this study normalized the signal from the ischemic 

hemisphere to the intact side, any increase in proliferation on the intact hemisphere will 

decrease the effect from the ischemic hemisphere. Nevertheless, such a strategy was 

chosen in order to be quantitative and control for any irregularities in signal intensities 

between imaging sessions. The neurogenic response to stroke not only consists of increased 

proliferation in the SVZ, but also directed migration towards the injury as well as integration 

and differentiation into the appropriate neuronal cell type is initiated (Arvidsson et al., 2002, 

Parent et al., 2002, Thored et al., 2006). For example, DCX positive cells migrate along 

blood vessels towards the ischemic striatum (Yamashita et al., 2006, Thored et al., 2007, 

Kojima et al., 2010) and the first DCX+ cells were detected in peri-infarct areas as early as 

24h after ischemia (Jin et al., 2003). Although the resolution of BLI is poor due to scattering, 

previous studies were able to resolve the migration along the rostral migratory stream under 

healthy conditions (Reumers et al., 2008, Vande Velde et al., 2011). This study indicates a 

shift of the major migratory direction from the dorso-rostral axis (rostral migratory stream) into 

a more lateral migration (towards the ischemic striatum) as a shift of the center of mass is 

visible on bioluminescence images (Figure 10A).  

Initially, the neurogenic response to stroke was studied with invasive techniques, e.g. 

quantifying BrdU incorporation (Jin et al., 2001, Zhang et al., 2001) or immunohistochemical 

labeling of neural precursor specific proteins (Arvidsson et al., 2002, Parent et al., 2002, Jin 

et al., 2003, Thored et al., 2006). To date, only one study followed stroke-induced neurogenic 

proliferation in the SVZ non-invasively employing PET in combination with a radionucleotide-

labeled thymidine analog (Rueger et al., 2010). However, this study is not completely 

neurogenesis-specific, since also other cell types, like astrocytes, start to proliferate in the 

SVZ after stroke. Bioluminescence imaging was successfully applied to follow the 

endogenous neurogenesis under healthy conditions (Reumers et al., 2008, Vande Velde et 

al., 2011, Couillard-Despres et al., 2008). However, these studies employed viral vectors to 

label all proliferating cells in the SVZ (Reumers et al., 2008, Vande Velde et al., 2011). Under 

healthy conditions, proliferating cells within the SVZ are predominantly neural precursors, but 

under ischemic conditions astrocytic and endothelial cell proliferation will confound the 

specificity. The study presented in this thesis is the first to investigate the temporal profile of 

the neurogenic response to stroke non-invasively with BLI. In particular, it is very specific to 

neurogenesis, since it uses an approach with a molecular marker specific for neural 

precursor cells. Thus, the DCX-luc mouse model is an optimal tool to follow stroke-induced 

neurogenesis and provides the opportunity to investigate neurogenesis-related therapies.  
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This thesis established an optimal protocol for brain-specific BLI. No systematic 
evaluation of so many factors influencing the BLI signal existed before with the 
focus on brain-specific circumstances. Increased neurogenesis in response to 
stroke was monitored with exceptional sensitivity in a transgenic mouse 
expressing luciferase under the control of the DCX-promotor, a neural progenitor 
cell-specific protein. This is the first report of non-invasive and specific monitoring 
of post-stroke neurogenesis.  

3. Functional brain activity after stroke 

The primary goal of any stroke therapy is to restore or protect brain function. Until 

recently, the benefit of a therapy was measured by lesion size. However, this does not 

necessarily correlate with functional improvement. It is therefore indispensible to evaluate the 

effect of a given therapy on functional recovery. Non-invasive functional MRI can visualize 

the activity of specific brain areas and can follow any changes in brain function due to the 

insult. Functional MRI is an established method in rats and several studies investigated the 

effect of therapies on functional recovery. As the availability of transgenic mouse models is 

increasing and already most studies within this thesis are dependent on the use of a specific 

transgenic mouse, this thesis also established the first non-invasive fMRI protocol for mice 

and subsequently investigated functional changes of brain activity after stroke.  

3.1. Establishment of mouse functional magnetic resonance imaging 

Biological aspects 

The implementation of a longitudinal and non-invasive protocol for mouse fMRI 

involved the choice of an appropriate anesthesia. Classical anesthetics like isoflurane allow 

repetitive measurements on the same animal but suppress functional brain activity or induce 

vasodilation, which intervenes negatively with the physiological basis of the BOLD contrast 

generation. Nevertheless, isoflurane was employed for functional studies of the mouse brain 

but required very low levels of the anesthetics (e.g. 0.4 – 0.7%) in combination with strong 

peripheral electrical stimulation (6mA) (Nair and Duong, 2004). In some cases the additional 

administration of a muscle relaxant to reduce movement during image acquisition was 

implemented, which made artificial ventilation necessary (Mueggler et al., 2003). To 

overcome these drawbacks, we chose the sedative agent medetomidine, which allows 

spontaneous breathing and was already successfully employed in functional studies of the 

rat brain. Medetomidine is an α2-adrenoreceptor agonist, the main effects of which are 

relayed in the locus ceruleus and brain stem. Activation of α2-adrenoeceptors by 

medetomidine reduces the global sympathetic output resulting in sedation, analgesia and 
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muscle relaxation. Side effect of medetomidine include decreased cardiac output, 

hypotension, hypothermia and diuresis. Slight hypercapnia was observed after medetomidnie 

administration (Adamczak et al., 2010, Ramos-Cabrer et al., 2005), which can circumvent 

BOLD signal detection due to cerebral vasodilation. However, pCO2 and pO2 monitoring 

revealed hypercapnia is only transient in mice and BOLD detection under medetomidine 

sedation is possible after a transition period of a few minutes. Unilateral forepaw stimulation 

resulted in contralateral activation of the primary and the secondary somatosensory cortex 

(S1 and the S2), which is in agreement with previously observed responses to forepaw 

stimulation in rats (Weber et al., 2006). Mouse hindpaw stimulation was performed under α-

chloralose sedation and reported contralateral activation of the hindpaw representation. 

However, also bilateral activation was observed in response to unilateral forepaw stimulation 

in mice (Bosshard et al., 2010).  

Methodological aspects 

MRI can visualize functionally active brain regions non-invasively using the differential 

magnetic properties of oxy-hemoglobin versus deoxy-hemoglobin. Upon neural activity, the 

hemodynamic response increases the supply of oxy-hemoglobin and gives rise to the BOLD 

contrast. The BOLD contrast is an indirect measure of neural activity, which is already 

routinely used in human studies due to its good temporal and spatial resolution. Recently, a 

protocol for functional MRI studies of the rat brain was established and found application in 

the investigation of stroke recovery after stem cell therapy (Ramos-Cabrer et al., 2010). This 

thesis established the first protocol for longitudinal and non-invasive imaging of brain function 

in mice. Previous fMRI protocols for mice were either using anesthetics not appropriate for 

functional studies (isoflurane (Nair and Duong, 2004, Mueggler et al., 2001)) or anesthetics 

with strong side effects not appropriate for survival studies (α-chloralose). Therefore the 

establishment of the new mouse fMRI protocol offers the opportunity to employ transgenic 

mice to study the long-term effect of specific genes on functional activity or functional 

reorganization after stroke.  

The small mouse brain has an unfavorable “surface to volume”-ratio. Susceptibility 

difference of air, skull and brain tissue induce strong field inhomogeneities (Yang et al., 

1999), resulting in strong signal voids along the cerebral cortex. It was not possible to restore 

field homogeneity by implemented shimming methods. Only the introduction of an agarose 

cap on the mouse head was capable of reducing signal voids within the cortex. The high field 

strength of 11.7 Tesla used in this fMRI study had on the one hand positive effects on 

temporal and spatial resolution, but had negative influence on the field homogeneity around 

the small mouse head. The implementation of mouse fMRI at lower field strength would 

augment the strong signal voids, as field inhomogeneities will be less severe. The application 
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of a cryogenic coil has high potential for future studies as active cooling of the coil results in 

decreased electronic noise levels and can therefore detect small changes due to the BOLD 

signal more sensitively (Bosshard et al., 2010). 

3.2. Imaging functional activity after stroke 

The new protocol for functional studies of the mouse brain was established with the 

aim to investigate functional recovery processes after cerebral ischemia. Therefore, 6 mice 

were subjected to right MCAO (30 min occlusion time) and received a T2 scan 2 days after 

MCAO for lesion location. Functional response to forepaw stimulation was investigated 21 

days after MCAO and 100 days after MCAO. These pilot experiments on ischemic mice 

successfully detected brain activity upon forepaw stimulation. The sedation with 

medetomidine was well tolerated by the weak mice with cerebral ischemia. Even repetitive 

administration did not result in any complication (data not shown). Although the lesion in the 

brain gave rise to small signal distortions, brain activity was unambiguously detectable even 

close to the lesion (Figure 11).  

The preliminary results indicate differential behavior of functional brain responses to 

stroke. One mouse with only striatal lesion responded with BOLD signal in both, the left and 

right somatosensory cortex, after contralateral forepaw stimulation (Figure 11A). No 

functional activation in the ischemic hemisphere was observed in a mouse with the lesion 

extending into the S1 cortex, while activation in the intact hemisphere was preserved (Figure 

11B). However, another mouse also presenting with a lesion in the S1 cortex showed 

retained functionality on both sides. Activation on the ischemic hemisphere was shifted 

caudally when compared to the activation on the intact hemisphere (Figure 11C).  

Spontaneous functional recovery of the somatosensory cortex was observed in a rat 

model of MCAO (Weber et al., 2008). Animals lost the functional response to forepaw 

stimulation temporarily but recovered functionality around 2 weeks after stroke. However, 

animals that did not recover until 14 days post MCAO, lost the functionality of the S1 

permanently.  Similar observations were made in this thesis and the feasibility to investigate 

spontaneous recovery processes in mice was demonstrated.  

	
  
This thesis established the first non-invasive functional MRI protocol for the 
specific needs of mice. It is now possible to investigate brain function when 
employing a transgenic mouse for a study. The first non-invasive studies of brain 
activity on ischemic mice revealed differential spontaneous recovery of function 
in the somatosensory cortex. 
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Figure 11: Application of the fMRI protocol 
to mice with cerebral ischemia  
A Animal with striatal lesion shows functional 
activity upon contralateral forepaw stimulation 
in the intact and the ischemic hemisphere. B 
Animal with striatal and cortical lesion shows 
loss of functional response upon contralateral 
forepaw stimulation in the ischemic 
hemisphere. C Animal with striatal and cortical 
infarct shows functional response to both 
forepaws. 
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4. Summary 

The aim of this thesis was to investigate regenerative processes after cerebral 

ischemia with non-invasive imaging methods. Two major regenerative processes are initiated 

after stroke: angiogenesis and neurogenesis. This thesis has successfully tracked the 

processes of angiogenesis and neurogenesis after stroke. In particular, the BLI and MRI-

based methods, optimized and established for the present approach, raised the exceptional 

opportunity to follow their temporal and spatial dynamics, as it has not been possible before. 

Post-stroke vascular remodeling was observed longitudinally with two complementary 

methods. The dynamics of early phases of angiogenesis were visualized by molecular 

imaging of VEGFR2 expression, a receptor highly involved in angiogenic signal transduction. 

For the first time a transgenic mouse expressing luciferase under the control of the VEGFR2 

promotor was employed for BLI imaging of angiogenesis regulation in response to ischemia. 

Increased VEGFR2 expression revealed the initiation of angiogenesis already early after the 

insult. This change on the molecular level lead to structural remodeling of the vascular 

network, which was monitored for up to 4 weeks with a specific MRI based method. SSCE-

MRI employs an intravascular contrast agent to report microvessel density and microvessel 

size of perfused vessels. Thus, SSCE-MRI detects the functional status of microvessels and 

revealed that part of the new vascular network became perfused after 2 weeks post the 

insult. Endogenous neurogenesis was observed with bioluminescence imaging using a 

transgenic mouse expressing luciferase under the control of the DCX promotor, a neural 

progenitor cell specific protein. This thesis reports the first systematic investigation of factors 

influencing the BLI signal with special regard to brain application. An optimal protocol for the 

sensitive investigation of post-stroke neurogenesis was established. Subsequently, for the 

first time it was possible to specifically detect increased proliferation of endogenous neural 

progenitor cells in response to stroke. Since regeneration should lead to functional 

improvement, this thesis further established a non-invasive functional readout to track the 

changes of functional activity of distinct brain regions in the mouse model of stroke. This is 

the first report of functional MRI in mice. It is of exceptional importance as, similar to this 

thesis, most regenerative studies are performed on mice or transgenic mice. Pilot 

experiments performed in mice with ischemic brain lesions detected differential behavior of 

spontaneous functional recovery. These results underline the importance of the fMRI 

protocol for mice, as the effect of therapies on functional recovery can be determined and 

separated from spontaneous recovery. 
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5. Outlook 

This thesis investigated each regenerative process individually. However, these 

processes occur in parallel and in close physical proximity. Angiogenesis and neurogenesis 

even share signal molecules and thereby influence each other. This thesis lays the basis to 

investigate the interdependency of angiogenesis and neurogenesis. All methods are 

purposely non-invasive, which not only reduces animal numbers and fulfills the requirements 

of ethics committees, but also allows the combination into multimodal approaches. This 

offers the exceptional opportunity to monitor both processes in parallel in one animal. In 

particular, the response of both processes to a treatment can be observed and thereby 

allocate the primary treatment effect. For example, angiogenesis enhancing therapy can be 

now applied to the DCX-luc mouse model. While the MR-based method of SSCE-MRI will 

monitor the changes in vascular density and size after angiogenesis enhancing therapy, the 

DCX-luc mouse will show the therapeutic effect on neurogenesis. The overall functional 

benefit of the treatment can be investigated with the fMRI protocol. 

This thesis lays down a portfolio of methods, which can be combined into multimodal 

approaches for pre-clinical investigation of post-stroke regeneration. This will facilitate the 

discovery of new therapeutic targets within the endogenous regenerative capacity. 

Furthermore, new therapeutic approaches can be tested easily and quickly for their effect on 

angiogenesis and neurogenesis as well as for their effect on functional recovery.  
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Appendix 
 
List of abbreviations 
	
  
AMP   adenosine-mono-phosphate  

Ang1   angiopoietin 1 

Ang2   angiopoietin 2 

ATP   adenosine-tri-phosphate 

BBB   blood brain barrier 

BLI   bioluminescence imaging 

BOLD   blood oxygenation level dependent 

BrdU   5-bromo-2'-deoxyuridine 

CBF   cerebral blood flow 

CBV  cerebral blood volume 

CCD  charged coupled device 

CD31   platelet endothelial cell adhesion molecule (PECAM) 

CO2   carbon dioxide 

DCX   doublecortin 

deoxyHB  deoxygenated hemoglobin 

DNA   deoxyribonucleic acid 

EGF   epidermal growth factor 

FGF   fibroblast growth factor 

FID   free induction decay 

G-CSF  granulocyte colony-stimulating factor 

Gd-DTPA  gadolinium (Gd) with diethylenetriaminepenta acetic acid (DTPA) 

Glut-1   glucose transporter 1 

HIF1α   hypoxia inducible factor 1α  

HRE   hypoxia-response element  

ip   intra-peritoneal 

iv   intra-venous 

MCA  middle cerebral artery 

MCAO  middle cerebral artery occlusion 

MRI   magnetic resonance imaging 

NMDA  N-Methyl-D-aspartate 

NMR   nuclear magnetic resonance 

oxyHb   oxygenated hemoglobin 

pCO2   partial pressure of carbon dioxide 

PDGF   platelet-derived growth factor 
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PET   positron emission tomography 

pO2   partial pressure of oxygen 

PPi   pyrophosphate 

RECA-1  rat endothelial cell antigen 1 

rt-PA   recombinant tissue plasminogen activator 

S1   primary somatosensory cortex 

S2   secondary somatosensory cortex 

sc   sub-cutaneous 

SGZ  subgranular zone 

SSCE-MRI  steady-state contrast-enhanced magnetic resonance imaging 

SVZ   subventricular zone 

TE   echo time 

TR   repetition time 

VEGF   vascular endothelial growth factor 

VEGFR2  vascular endothelial growth factor receptor 2 

vWF   von Willebrand factor 
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