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Chapter 1

Introduction

Forecasts of key macroeconomic variables are essential components for the deci-

sion making of central banks, �scal authorities, households, and private sector

businesses. For example, in assessing �nancial sustainability it is crucial to have

reliable forecasts of the future path of economic activity. Due to their rele-

vant support for policy making both in the private and public sector, statistical

forecasting models and methods have found enormous interest in the academic

literature. The availability of di�erent forecasts of the same economic quantity

has raised the need for formal statistical procedures to compare the competing

forecasts' predictive accuracy. Forecast evaluation tests can provide evidence

whether a superior predictive accuracy of a forecast series is merely good luck

or truly indicative of a di�erence in population.

In many macroeconomic forecasting applications a large number of time se-

ries can be exploited to predict the variable of interest. As macroeconomic

time series are typically sampled at quarterly or monthly frequency and only

a few decades of observations are available, one has to cope with the so-called

�course of dimensionality� (large number of parameters relative to the sample

size), when estimating a statistical model with many predictor variables. This

raises the issue of how to incorporate the information of a large amount of can-

didate predictors within a single forecasting model. Although variable selection

procedures (statistical or motivated by economic theory) can be used to choose a

small subset of predictors from a large set of potentially useful variables, the per-

formance of these methods ultimately rests on the few variables that are chosen.

An alternative to variable selection is to pool the information of all the candi-

date predictors within a few factors. These factors capture the common (linear)

components of the individual series and discard their idiosyncratic variation.

In macroeconomics, factor models have proven to be successful both for fore-

casting purposes and for illustrating the state of the economy. They have been

subject to extensive analysis in the academic literature and have found applica-

tion in some well-known economic indicators. To name a few, the Conference
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Chapter 1 Introduction

Board publishes Leading, Coincident, and Lagging Economic Indexes for the

US that are constructed as factor estimates from selected macroeconomic time

series. In Germany, the German Institute of Economic Research (DIW Berlin)

provides a monthly economic indicator that is built upon a factor modeling ap-

proach. In the context of macroeconomic forecasting, factor models have become

a conventional approach to overcome the �course of dimensionality�. A popular

approach is to form a forecasting model by using the latent factor estimates un-

derlying the large set of candidate predictors as model inputs instead of relying

on variable selection procedures.

This thesis considers macroeconomic forecasting in a data rich environment,

and forecast evaluation tests. The statistical factor model provides the basic

framework and is extended with the purpose of improving its forecasting capa-

bility. This thesis contributes to the literature by proposing and re�ning di�erent

adaptations of the factor model that aim at overcoming some of its hampering

constraints.

First, it is analyzed how factor estimates can be tailored to forecasting appli-

cations by incorporating the forecasting target directly in the factor estimation

process. For this purpose the Principal Covariate Regression (PCovR) technique

of de Jong and Kiers (1992) is re�ned and it is analyzed under which circum-

stances gains in forecast accuracy can be achieved by integrating this form of

supervision in the factor estimation.

Second, the statistical factor model is aligned with the variational autoencoder

(VAE) framework of Kingma andWelling (2013) in the context of macroeconomic

forecasting. It is studied whether factor models enriched by neural networks can

provide superior forecasting power for macroeconomic time series. In contrast to

the original factor model, the resulting neural network reinforced factor model

is not subject to the linearity restriction anymore, and can capture nonlinear

common dynamics in the set of candidate predictors as well. Furthermore it is

proposed to incorporate the aforesaid supervision aspect within these models.

The extended factor models are applied to forecast key monthly macroeco-

nomic variables such as industrial production, in�ation, and employment. The

�ndings suggest that their forecasting capability can be signi�cantly improved

by the analyzed and re�ned extensions.

As already mentioned in the beginning, only reliable forecasts are helpful for

decision making. A comparison of two competing forecasts of the same economic

quantity requires a formal statistical procedure to distinguish between a better

predictive accuracy by coincidence and a fundamental advantage of one over the

2



other. To this end, one of the most popular statistics is the Diebold and Mariano

(1995) test. This thesis contributes to the literature by showing how the power

of the Diebold and Mariano (DM) test can be improved when the forecasts are

rational, i.e., unbiased and e�cient. In applied work, it is essential to uncover

superior predictive ability and therefore, powerful and yet correctly-sized tests

are needed.

Overall, this thesis comprises three self-contained essays on macroeconomic

forecasting with factor models, and on forecast evaluation tests. The essays

have been single author projects1 and are summarized below.

Chapter 2 corresponds to the paper �Forecasting with Supervised Factor Mod-

els� (Umbach, 2020) and was published in Empirical Economics. This study ana-

lyzes in which forecasting settings it is promising to use factor estimates that are

supervised with respect to the forecasting target via the PCovR technique. This

contrasts the frequently used practice where the latent factors are estimated as

the Principal Components of a large amount of candidate predictors, and then,

in a separate step, are related to the forecasting target in a regression framework.

The latter approach performs predictor space compression and estimation of the

forecasting model in two separate steps. Hence, no information regarding the

forecasting objective is taken into account during factor estimation. While the

estimated factors capture the major common variation in the predictors, it is

not guaranteed this information is most relevant for forecasting. In a simulation

study and in a macroeconomic forecasting exercise, it is shown that supervised

factors within the PCovR framework yield promising forecasting results when

they are constructed from intermediate large predictor spaces. If the number of

predictor variables is too large relative to the number of observations available

for estimation, the supervised factors are vulnerable to over�tting problems.

Principal Covariate Regression requires the speci�cation of a value for a super-

vision parameter that governs the trade-o� between predictor space compression

and target orientation of the estimated factors. In the literature, there has

not been much guidance regarding this choice. Motivated by the application

of PCovR in forecasting, the problem of choosing a value for the supervision

parameter is solved by the development of an information criterion. The infor-

mation criterion is shown to be an appropriate means to �nd a good balance

between compression and target orientation of the estimated factor.

Furthermore, another favorable aspect of the supervised factor model is shown.

1I consider it important to emphasize the helpful support of my supervisors Prof. Dr. Jörg
Breitung and Prof. Dr. Robinson Kruse-Becher.
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It requires only a single factor to achieve its full forecasting power given the

supervision parameter is adjusted appropriately. This is especially interesting

if one seeks to express the state of the economy by a single index as it is the

objective of the economic indicators mentioned in the beginning.

In Chapter 3, it is analyzed whether factor models enriched by elements from

the machine learning literature, more precisely by neural networks, can achieve

superior forecasting accuracy. First, it is shown how the statistical factor model

and variational autoencoders from the machine learning literature are interre-

lated. VAEs provide a powerful framework for nonlinear dimensionality reduc-

tion. They estimate the distribution of the common latent factors underlying the

data by combining the statistical factor model with a purely data-driven neural

network approach. It is demonstrated that the resulting deep factor model can

be interpreted as a �exible nonlinear extension of the standard factor model.

The nonlinearity is achieved by the integration of a neural network that models

the �rst two moments of the conditional distribution of the latent factors.

In their original formulation VAEs only provide a means for dimensionality

reduction. To adapt the VAE framework to (macroeconomic) prediction tasks,

an extension is proposed that relates to the supervision aspect of Chapter 2.

The �exible parametrization of the deep factor model comes at the cost of not

having a closed form for the likelihood. Instead, the model parameters have to

be estimated by variational inference. As a further consequence of their �exible

parametrization variational autoencoders do not provide a fully identi�ed latent

model such that their major purpose in macroeconometrics should be seen in

forecasting instead of revealing some interpretable latent economic dynamics.

Indeed, the results of the empirical forecasting exercise suggest signi�cant im-

provements of the deep factor model in the forecasting accuracy of four major

US macroeconomic time series.

In Chapter 4, the Diebold and Mariano test under forecast rationality is ex-

amined. The DM test o�ers a framework for testing the null hypothesis of equal

predictive accuracy of two competing forecast series. The test statistic is based

on the forecast error loss di�erential, i.e., the di�erence between the two fore-

cast error loss functions. Di�erent loss measures can be exploited, but the most

prominent measure is the mean squared error (MSE) loss di�erential.

This chapter contributes to the literature by deriving a simpli�ed variant of

the DM test statistic that is applicable under rational forecasts. The MSE loss

di�erential is decomposed and adjusted by removing some components that are

zero in expectation both under the null and under the alternative hypothesis.
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Hence, these components only add noise to the test statistic. The resulting

rationality adjusted DM test remains as simple to apply as the original approach

and can improve the power of the testing procedure considerably.

When the forecast series stem from estimated statistical models, such as, for

instance, from factor models presented in Chapters 2 and 3, the impact of pa-

rameter estimation uncertainty on the distribution of the (adjusted) test statistic

generally has to be taken into account. Otherwise size distortions can occur, es-

pecially if the number of forecasts in relation to the number of observations

used for parameter estimation of the forecasting models is relatively large. Ig-

noring these e�ects can result in misleading conclusions drawn from the test.

To prevent size distortions, a simple-to-use adjustment of the estimation of the

long-run variance of the test statistic is proposed. This adjustment accounts for

the parameter estimation uncertainty. It holds under a �xed estimation scheme

and shows good results for the rolling and recursive scheme as well.

Furthermore, the applicability of the rationality adjusted test statistic in a

nested forecast comparison is discussed. Despite its nonstandard limiting distri-

bution in the case of nested forecasts, it is argued that the adjusted DM test is

still accurate for practical purposes if standard normal critical values are used.

This is advantageous compared to the standard DM test, which is seriously un-

dersized in nested forecast comparisons.

The small sample properties of the proposed test statistic are examined in

extensive simulation studies that cover the cases of model-free forecasts, forecasts

from estimated statistical models, and forecasts from nested models.

As indicated above, the adjusted DM test rests upon the assumption of ratio-

nal forecasts. Under the MSE loss function a rational forecast is characterized

by unbiasedness and e�ciency. Although imposing forecast rationality seems to

be an appealing assumption, there is some evidence that, e.g., analysts are not

always (MSE-)rational in their forecasts. To take notice of the ongoing debate

in the literature on forecast rationality, the e�ect of rationality violations on the

adjusted DM test is discussed.
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Chapter 2

Forecasting with Supervised Factor

Models

2.1 Abstract

A conventional approach to forecast in a data-rich environment is to estimate

factor-augmented predictive regressions with factors constructed by Principal

Component Analysis. This study analyzes under which circumstances gains in

forecast accuracy can be achieved by incorporating some form of supervision

in the factor estimation process. Speci�cally, Principal Covariate Regression

(PCovR) is considered. For the problem of choosing a value for the supervision

parameter in PCovR an information criterion is proposed. The information

criterion is shown to be an appropriate means to �nd a good balance between

predictor space compression and target orientation of the estimated factors. A

simulation study and an empirical application on a macroeconomic dataset show

that supervised factors can improve the forecasting accuracy of factor models.

2.2 Introduction

In many forecasting applications in macroeconomics and �nance a vast set of

potential predictor variables can be exploited to forecast a variable or di�usion

index of interest. A popular approach to cope with large predictor spaces is to

use factor models that aim at �nding a few latent factors underlying the high-

dimensional predictor space. In a forecasting context, a frequently used practice

is to �rst estimate the factors by means of Principal Component Analysis (PCA)

and then relate them to a forecasting target in a regression framework.1 This

approach conducts predictor space compression and estimation of the forecast

equation in two separate steps such that no information regarding the forecasting

target is exploited in the factor estimation.

1See Breitung and Choi (2013) and Stock and Watson (2006) for reviews.
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This study analyzes under which circumstances gains in forecast accuracy

can be achieved by incorporating some form of supervision in the factor estima-

tion process. Speci�cally, Principal Covariate Regression (PCovR) is considered

which was introduced by de Jong and Kiers (1992). PCovR requires to choose a

value for the supervision parameter that governs the trade-o� between predictor

space compression and target orientation of the estimated factors. The problem

of determining an appropriate value for the supervision parameter is solved by

deriving an information criterion which is shown to be an appropriate means

to �nd a good balance between compression and target orientation. The infor-

mation criterion yields better results than an alternative approach based on a

stochastic extension of PCovR proposed by Vervloet et al. (2013). Additionally,

exploiting the information criterion allows to obtain competitive forecasts with

only a single supervised factor.

The simulation study shows that supervised factors are able to incorporate

information of the regressor space that is relevant for forecasting but neglected

or only captured in some minor principal components by the unsupervised factor

model. The empirical application on a macroeconomic dataset corroborates the

�nding that supervised factors can provide more accurate forecast than their

unsupervised counterparts. A complication of the supervised factor model, how-

ever, is its sensitivity to over�tting when the number of regressors is very large

compared to the observations available. It is concluded that the supervised factor

model has its strength mainly for medium-sized regressor spaces.

The remainder of this paper is organized as follows. Section 2.3 introduces

PCovR and shows how it is related to Principal Components Regression (PCR)

and Reduced Rank Regression (RRR). Furthermore, the information criterion

for the supervision parameter is derived. The simulation study is given in sec-

tion 2.4. Section 2.5 presents an empirical forecasting application for the key

macroeconomic variables Industrial Production, and the Consumer Price Index.

Finally, Section 2.6 o�ers some conclusions.

2.3 A Supervised Factor Model

A conventional approach to forecast an economic variable in a data-rich environ-

ment is to estimate common factors of the predictor space by means of PCA and

include them in factor-augmented predictive regressions. This approach rests on

the assumption that the n predictor variables xt obey a factor structure of the

8
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form

xt = Λft + et, (2.1)

where ft is an r × 1 vector of common factors. The n × r matrix Λ contains

the factor loadings and the error term et denotes the idiosyncratic components.

The principal component estimator for Λ results from applying the least-squares

principle on equation (2.1) subject to the identi�cation restriction Λ′Λ = Ir. It

is straightforward to show that the estimate Λ̂ consists of the �rst r eigenvectors

belonging to the largest eigenvalues of the covariance matrix of xt. The common

factors are then estimated by f̂t = Λ̂′xt (see, for instance, Breitung and Choi

(2013)). Given such estimates, the factors can be exploited in the predictive

regression:

yt+h = γft + ut+h, (2.2)

where h designates the forecasting horizon. The procedure described above treats

predictor space compression and estimation of the forecasting equation sepa-

rately such that the construction of the factors ft does not take into account the

relationship between the individual predictors xit, i = 1, . . . , n, and the target

variable yt+h. Instead, the factor estimates focus solely on compiling the major

variation in xt. However, this might not necessarily be the information that

is most relevant for forecasting. For instance, it can be the case that relevant

information hidden in some minor principal components, that are disregarded in

the predictive regression (2.2), is lost.

Principal Covariate Regression allows to incorporate some form of supervision

in the factor estimation process. It takes the forecasting target explicitly into

account when estimating the factor subspace. Searching for a low-dimensional

subspace of dimension r � n spanned by F = XA, PCovR comprises the two

stages of compressing the predictor space (2.1) and �tting the forecast equa-

tion (2.2) by one single criterion function:

Qθ (F,Λ, γ) = θ
(y − Fγ′)′ (y − Fγ′)

||y||2

+ (1− θ) tr
{

(X − FΛ′)′ (X − FΛ′)

||X||2

}
,

(2.3)

where F = [f1, . . . , fT−h]′, X = [x1, . . . , xT−h]′, and y = [y1+h, . . . , yT ]′. For

scaling purposes each residual sum is divided by the squared Frobenius norm of

its corresponding regressand. Furthermore, all variables should be standardized

to prevent scale e�ects. The supervision parameter θ ∈ [0, 1] speci�es the ori-

entation of the factor estimates, e.g. whether the focus is on summarizing the

9



Chapter 2 Forecasting with Supervised Factor Models

common variation in X or on aligning the factors on the target variable y. In the

original formulation of de Jong and Kiers (1992), PCovR is a purely data-based

method that does not assign an explicit underlying statistical model. However,

one can easily show that the least-squares criterion function (2.3) results from

the gaussian likelihood when the two error components are independent and the

variance ratio σ2
u/σ

2
e is assumend to be known. Ignoring the scaling factors, θ

then equals 1/(1 + σ2
u/σ

2
e).

Minimization of the criterion function (2.3) subject to the identi�cation re-

striction T−1F ′F = Ir is equivalent to maximizing

tr

{
θ
A′X ′yy′XA

||y||2
+ (1− θ) A

′X ′XX ′XA

||X||2

}
(2.4)

subject to T−1A′X ′XA = Ir. By taking the �rst order condition of the La-

grangian, the constraint optimization describes a generalized eigenvalue prob-

lem. Accordingly, estimates for A can be obtained from solving the generalized

eigenvalue problem∣∣∣∣θX ′yy′X||y||2
+ (1− θ)X

′XX ′X

||X||2
− λX ′X

∣∣∣∣ = 0, (2.5)

where the eigenvectors associated with the largest r eigenvalues are the estimator

for A. Estimates for Λ and γ are then obtained from regression of X and y on

F̂ = XÂ.2

Principal Components Regression results as a special case of PCovR when

setting θ = 0 in the criterion function (2.3). Regarding the framework above,

one obtains Â = Λ̂. Whereas the unsupervised factors from PCR focus solely

on the variation in X, PCovR �nds an r-dimensional subspace of X spanned

by F that accounts for a maximum amount of variation in both X and y. This

immediate link between the supervised factors of PCovR and the target variable

may be of advantage in forecasting with factor models.

2.3.1 Relationship to Reduced Rank Regression

As outlined above, PCR results from PCovR when choosing θ = 0 in the criterion

function (2.3). For the other extreme case of θ = 1, PCovR corresponds with a

regression of y on X. Then, the �rst factor in F is the common component of

X that is maximally correlated with y. The remaining factors are the principal

components of the residual part of X that is orthogonal to y.

2Heij et al. (2007) provide an alternative algorithm that is based on a singular value decom-
position.
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2.3 A Supervised Factor Model

PCovR can be interpreted as a Reduced Rank Regression problem. To see

this, let Zθ = [(1− θ)X, θy] and B′ = [Λ′, γ′] and consider the multivariate

regression of Zθ on X:

Zθ = XΠ + V, (2.6)

where V = [θu, (1− θ)E]. The restriction that Π has reduced rank equal to r is

expressed as Π = AB′, where A is n× r and B is r× (n+ 1). The loss function

for equation (2.6) may be written as

σ (A,B) = tr
{

(Zθ −XAB′)′(Zθ −XAB′)
}

subject to the rank and identi�cation restriction A′X ′XA = Ir. By the same

argument as above, this describes a generalized eigenvalue problem. Accordingly,

estimates for A can be obtained from solving the generalized eigenvalue problem∣∣X ′ZθZ ′θX − λX ′X∣∣ = 0, (2.7)

where the eigenvectors associated with the largest r eigenvalues constitute Â.

Equation (2.7) is indeed equivalent to equation (2.5) as

X ′ZθZ
′
θX = X ′

(
[(1− θ)X, θy] [(1− θ)X, θy]

)
X

= X ′
(
θyy′ + (1− θ)XX ′

)
X

= θX ′yy′X + (1− θ)X ′XX ′X.

Hence, PCovR can be interpreted as a special type of RRR where the predictor

matrix X is also part of the multivariate response Z with a rank r restriction

on the solution.

2.3.2 On the Choice of the Supervision Parameter

PCovR requires to specify the supervision parameter θ. In the literature, there

is not much guidance regarding this choice. There are a few simulation studies

from which one can take some heuristic advise for reasonable θ choices. These

suggest to choose a rather small value for θ, i.e. below .5 or even below .1 (see

Vervloet et al. (2013) for an overview). A more elaborate approach is based on a

stochastic extension as suggested by Wilderjans et al. (2009) and analyzed in the

context of PCovR by Vervloet et al. (2013). By assuming that the error terms

in equations (2.1) and (2.2) follow normal distributions with zero means and

variances σ2
eIn and σ

2
u, respectively, one can show that maximizing the likelihood

L
(
X, y|F,Λ, γ, σ2

e , σ
2
u

)
is equivalent to minimizing the loss function (2.3) when

11



Chapter 2 Forecasting with Supervised Factor Models

θ = ||y||2/
(
||y||2 + ||X||2 σ2

u/σ
2
e

)
. Exploiting this expression to obtain estimates

for θ, however, requires knowledge on the amount of error in equations (2.1) and

(2.2). Vervloet et al. (2015) estimate θ by setting σ̂2
e equal to the percentage of

unexplained variance from a PCA on X and σ̂2
u equal to 1− R2 of a regression

of y on X. Another option is to adapt some cross-validation (CV) method to

determine θ. However, depending on the speci�cation of the CV procedure and

the grid for θ ∈ [0, 1], this requires moderate computational e�orts.

An Information Criterion for the Supervision Parameter

The maximum likelihood choice for θ has certain drawbacks. First, it depends

crucially on having accurate estimates for σ2
e and σ2

u. Second, it relies on the

assumption that one is equally interested in recovering common factors in X

and �nding suitable factors to forecast y. While the latter is not a drawback in

general, it might be of disadvantage when one is primarily interested in predict-

ing y. Motivated by the application of PCovR in forecasting, an approximate

information criterion for selecting θ can be derived. The criterion is based on

the �t of the forecasting equation and a penalty for the `pseudo-dimension' of

the subspace spanned by the latent factors.

Without the stochastic extension, PCovR is a purely data-based method. The

essential idea is to interpret the supervision parameter θ as a smoothing pa-

rameter within a nonparametric regression framework and exploit the improved

Akaike information criterion for smoothing parameter selection of Hurvich et al.

(1998). By simply rescaling the loss function (2.3) to

Qθ (F,Λ, γ) =
(y − Fγ′)′ (y − Fγ′)

||y||2

+
(1− θ)
θ︸ ︷︷ ︸
θ̃

tr

{
(X − FΛ′)′ (X − FΛ′)

||X||2

}
,

(2.8)

one can view θ̃ as a parameter that governs the smoothness of the predictions

ŷ by forcing the factors F to recover the variance structure of the regressor

variables simultaneously. The larger θ̃ the more weight is put on the penalty

for neglecting the �t of the regressor equation (2.1) which generally leads to

smoother predictions for y.

To derive a smoother matrix Hθ̃, de�ne f := Fγ′ and β := Aγ′ and consider

12



2.3 A Supervised Factor Model

the problem of estimating a single factor f = Xβ based on

X = Xβλ′ + E,

y = Xβ + u.

By concentrating out λ, minimization of the PCovR loss function (2.8) can easily

be shown to be equivalent to minimizing

Q̃θ̃ (β) = (y −Xβ)′ (y −Xβ)− θ̃ β
′X ′XX ′Xβ

β′X ′Xβ
.

Note that the scaling constants 1/||X||2 and 1/||y||2 are omitted for readability.

Let β̂θ̃ = arg min Q̃θ̃ (β). The �rst-order condition can be rewritten to

β̂θ̃ =

[(
1 + θ̃

Q̂2

σ̂2
f

)
In −

θ̃

σ̂2
f

1

T
X ′X

]−1

β̂0, (2.9)

where σ2
f = T−1β̂′

θ̃
X ′Xβ̂θ̃, Q̂2 = T−1β̂′

θ̃
X ′XX ′Xβ̂θ̃/(β̂

′
θ̃
X ′Xβ̂θ̃), and β̂0 =

(X ′X)−1X ′y. Equation (2.9) shows the shrinkage e�ect of the smoothing pa-

rameter θ̃ on the least squares estimator β̂0. If θ̃ equals zero, i. e. no penalty

for neglecting the �t on the regressors, β̂θ̃ results as the least squares estimator

of an ordinary regression of y on X.

Using representation (2.9) the vector of �tted values results as

ŷ = Xβ̂θ̃ = Hθ̃y,

where

Hθ̃ = X

[(
1 + θ̃

Q̂2

σ̂2
f

)
In −

θ̃

σ̂2
f

1

T
X ′X

]−1 (
X ′X

)−1
X ′. (2.10)

Note that Hθ̃

∣∣
θ̃=0

= H0 is the projection matrix onto the space spanned by the

columns of X, whereas H∞ yields a projection on the space spanned by the �rst

principal component of X. Accordingly, the dimension of the subspace of �tted

values is:

rk(H0) = tr(H0) = n for θ̃ = 0,

rk(H∞) = tr(H∞) = 1 for θ̃ →∞. (2.11)

While the �rst statement follows trivially from inspection of (2.10), a proof for

result (2.11) is provided in Appendix A.1. For intermediate values of θ̃ the inter-

pretation of κθ̃ = tr(Hθ̃) is less obvious. Following Breitung and Roling (2015) it

is appealing to interpret κθ̃ as the pseudo-dimension of the �tted values, where

13



Chapter 2 Forecasting with Supervised Factor Models

κθ̃ is a real number with 1 ≤ κθ̃ ≤ n. Exploiting this pseudo-dimension, the

framework of Hurvich et al. (1998) is adapted who provide a modi�ed Akaike

information criterion in the context of smoothing parameter selection. Inter-

preting θ̃ as a parameter that governs the smoothness of the prediction ŷ, an

approximate information criterion is considered:

AIC
(
θ̃
)

= log
(
σ̂2
)

+ 2
κθ̃ + 1

T − κθ̃ − 2
, (2.12)

where σ̂2 = 1
T

∑T
t=1 (yi − ŷi)2. A higher value for θ̃ minimizes the �rst term

in (2.12) by increasing the in-sample �t. The second term in (2.12) imposes a

penalty depending on the `pseudo-dimension' induced by θ̃.3

The derivations above focused on choosing θ̃ for a single factor f which will

turn out to be totally su�cient. One advantage of choosing the supervision

parameter θ = 1/(1 + θ̃) by means of the information criterion is that it makes

the choice of the number of factors super�uous. Choosing a higher number of

factors generally leads to a lower value of θ because the sample �t as well as

the penalty term ceteris paribus increase due the enlarged factor number. The

simulation study in Section 2.4 as well as the empirical application in Section 2.5

show that the supervised factor model can achieve competitive results with just

one factor.

2.4 Simulation Study

The objective of the simulation study is two-fold. First, it is analyzed under

which circumstances supervised factors have superior forecasting power. Second,

the choice of the supervision parameter by the information criterion is evaluated

and compared to cross-validation and the likelihood approach.

3Some computational hint: In practice, it can happen that for some small θ-valuesHθ̃ is hardly
invertible causing the penalty κθ̃ = tr(Hθ̃) to be not strictly monotonically increasing in θ̃.
If this happens to be the case, a practical approach to deal with this issue is to exploit that
κθ̃ = tr

{
D−1

}
, where D contains the eigenvalues of the matrix term in Hθ̃ that is inverted

(see Appendix A.1). Setting the smallest eigenvalue of D to one, helps to circumvent the
problem. Following this route, one may interpret κθ̃ − 1 as the `additional-dimension' of
the �tted values induced by supervision of the factor estimate.
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2.4 Simulation Study

2.4.1 Data Generating Process

Corresponding to framework (2.1) - (2.2) the simulation study is based on the

data generating process (DGP):

ft = φft−1 + ηt, (2.13)

xt = Λft + et, (2.14)

yt+h = γft + ztβ + ut+h. (2.15)

The r factors ft follow an AR(1)-process with φ = 0.9 and η ∼ N
(
0, 1− φ2

)
.

The orthogonal loadings matrix Λ is parametrized as Λ = V D with V being equal

to the �rst r normalized eigenvectors of A′A, where A is a random draw from a

multivariate standard normal distribution. The entries in the diagonal matrix D

are arranged in descending order and calculated by
√
di = e−s

i
2r for i = 1, . . . , r,

where s denotes the decay constant. For scaling purposes, the diagonal of D

is then normalized to length one. This results in the eigen-decomposition of

V ar (X) = V DD′V ′+σ2
eI with the fraction di/

∑
i∈r di specifying the percentage

of common variation in X that can be explained by its ith principal component.

Hence, by tuning the decay parameter s, one can govern the importance of

common factors in the predictor space.

The error terms in et = [e1t, . . . , ent]
′ are noise processes with mean zero and

variances σ2
ei . Let ρ2

xif
= Cov (xi, f)V ar (xi)

−1 V ar (f)−1Cov (xi, f)′ denote

the squared correlation between regressor xi and factors f , where Cov (xi, f) is a

row vector containing all covariances between xi and f1, . . . , fr. The coe�cient

ρ2
xif

indicates the amount of information the factors f carry on predictor xi.

Using V ar (xi) = λ′iλi + σ2
ei , where λi denotes the ith row of Λ, the desired

squared correlation ρ2
xif

is achieved by taking

σ2
ei =

Cov (xi, f)V ar (f)−1Cov (xi, f)′

ρ2
xif

− λ′iλi.

The error process is weakly cross- and serially correlated as in Bai and Ng (2002):

ei,t =
1

ci

αei,t−1 + νit +

J∑
j 6=0,j=−J

δνi−j,t


with scaling constant ci = σ−1

ei

√
(1 + 2Jδ2) /(1− α2) and νit being i.i.d standard

normal. α and δ are both set to 0.2. J is selected by dn/20e such that about

10% of the variables are cross-correlated.

yt+h is generated from the common factors of the regressors plus an additional
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Chapter 2 Forecasting with Supervised Factor Models

term zt consisting of p variables of the predictor space. Including zt accounts for

the potential scenario that the factors of the regressor space are not necessarily

incorporating the predictor information in an optimal manner regarding their

forecasting power. Obviously, if the components of zt were few in numbers and

known to the forecaster, it would be straightforward to include them in the

estimated model. However, in the likely scenario that the exact composition of

zt is unknown and many variables have an individual e�ect on yt+h beyond their

common factor structure, one might still have to rely on a pure factor model.

The simulations below are performed with and without zt.

For the parameter vectors γ and β di�erent speci�cations are considered.

For scaling purposes γ and β are normalized such that γγ′ = n−1
∑
di and

β′β = p/n. The idiosyncratic error term ut is i.i.d. noise with mean zero and

variance σ2
u, and independent of et. Analogously to above, the desired squared

correlation ρ2
yf |z between y and f conditionally on zt is realized by taking

σ2
u =

Cov (y, f |z)V ar (f)−1Cov (y, f |z)′

ρ2
yf |z

− γγ′.

For each parameter setting, T = 100 simulated observations are used to esti-

mate the model and to compute a single forecast ŷT+1. The simulation exper-

iments focus on one-step-ahead predictions. Instead of forecasting multi-steps

ahead, di�erent choices for ρ2
yf are considered. Extending the forecasting horizon

or reducing ρ2
yf essentially has the same e�ect of a higher forecasting uncertainty

whereby the latter provides a simple and neat control over the DGP. The fore-

cast accuracy is measured by the mean squared forecast error (MSE) over 5000

simulation runs. For the purpose of having a benchmark, the MSE is divided by

the error variance σ2
u. If the data generating process (2.13) - (2.15) was perfectly

estimated, the MSE would equal 1.

2.4.2 Results

Two simulation experiments are performed. In the �rst one, the data generating

process follows a standard factor model and yt depends on the factors only,

i.e. β = 0. Table 2.1 reports the results for this factor-DGP. For the second

simulation experiment reported in Table 2.2, the forecasting equation (2.15) is

augmented by zt which consists of p randomly chosen predictors of X. This

factor-regression-DGP allows the predictor variables to have an individual e�ect

on yt beyond their common factor structure.

For both DGPs, di�erent settings regarding the number of regressors n and
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the squared correlation ρ2
yf , i.e. the amount of information the factors f carry

on y, are considered. Furthermore, two di�erent speci�cations for γ are im-

plemented. For the �rst speci�cation, denoted by γ(1), the entries in γ(1) are

set to d1, d2, . . . , dr. This ensures that the relative importance of the factors in

predicting y is the same as in explaining the variation in X. For the second

one, denoted by γ(2), all entries in γ(2) are set equal to one such that all factors

have equal weight in predicting y. In both settings, γ is normalized such that

γγ′ = n−1
∑
di.

Tables 2.1 - 2.2 show the MSEs of the factor models for di�erent choices

of the supervision parameter θ. For the unsupervised factor model the number

of factors is chosen according to the ICp2 information criterion by Bai and Ng

(2002).4 For the supervised factor model with θ determined by the likelihood

approach, θml, the supervision parameter and the number of factors are speci�ed

according to the sequential procedure proposed in Vervloet et al. (2015). When

the supervision parameter is chosen by the information criterion, θaic, or by

cross-validation, θcv, only one supervised factor is estimated. Following this

route results in a very parsimonious model structure.

Considering the simulation results of the factor-DGP in Table 2.1 it is not

surprising that the supervised model cannot improve upon the unsupervised one

in most cases as the latter �ts the DGP exactly. However, there is still an inter-

esting insight when considering the results for n = 30 and ρ2
yf = 0.8. Even under

the factor-DGP the supervised factor model can be slightly superior when the

relative importance of the factors in predicting y is not the same as in explaining

the variation in X which is shown in the columns for γ(2). If, for instance, a mi-

nor principal component that explains only a small proportion of the variation in

the regressors has a relatively strong e�ect on the forecasting target, a single su-

pervised factor can provide more accurate forecasts than multiple unsupervised

factors.

The ability of the supervised factor model to focus on the information in X

that is relevant for forecasting creates an advantage that becomes more pro-

nounced for the factor-regression-DGP presented in Table 2.2. For n = 30 and

ρ2
yf = 0.8 the supervised factor model is clearly superior under both settings for

γ. Supervision enables the factors to incorporate information in the individual

regressors that is not captured by their common factor structure and, thereby,

improves their forecasting power. However, if ρ2
yf is low, i.e. the error in the

4Among the criteria developed by Bai and Ng (2002), the ICp2 was found to recover the true
factor number most accurately in the simulations.
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Table 2.1 Simulation with factor-DGP

n 30 70

DGP: ρ2yf 0.8 0.4 0.8 0.4

γ γ(1) γ(2) γ(1) γ(2) γ(1) γ(2) γ(1) γ(2)

unsupervised 1.23 1.94 1.11 1.23 1.14 1.76 1.10 1.21
(-) (-) (-) (-) (-) (-) (-) (-)

θaic 1.32 1.89 1.13 1.32 1.53 2.72 1.17 1.39
(.28) (.43) (.17) (.26) (.11) (.13) (.06) (.07)

θcv 1.33 1.90 1.16 1.34 1.57 2.57 1.18 1.41
(.35) (.49) (.26) (.34) (.12) (.20) (.08) (.12)

θml 1.28 2.13 1.48 1.30 1.20 2.07 1.16 1.35
(.03) (.03) (.03) (.03) (.01) (.01) (.01) (.01)

.00 2.17 3.60 1.21 1.45 2.08 3.46 1.19 1.42

.05 1.89 3.41 1.19 1.43 1.82 3.27 1.18 1.41

.10 1.66 3.14 1.17 1.41 1.66 3.01 1.18 1.40

.20 1.39 2.48 1.14 1.36 1.67 2.57 1.36 1.48
θ .30 1.33 2.03 1.15 1.31 1.97 2.71 1.83 2.08

.40 1.34 1.90 1.19 1.32 2.30 3.07 2.31 2.72

.50 1.37 1.89 1.24 1.38 2.60 3.34 2.68 3.05

.60 1.41 1.91 1.30 1.43 2.86 3.55 2.94 3.24

.90 1.51 1.97 1.42 1.51 3.41 3.92 3.39 3.50

Notes: The top line speci�es the DGP settings. Furthermore it is s = 5, r = 8, ρ2xf = 0.8,
p = 0. Reported are the MSEs of the unsupervised and the supervised factor model with θ
chosen by the criterion (aic), 10-fold cross-validation (cv), and the likelihood approach (ml).
The average θ-values are reported in parentheses. The lower part of the table provides MSEs
when θ is �xed to a given value. Except for the unsupervised model and the supervised
model with θml only one factor is estimated.

forecasting equation (2.15) is large and the regressors are not particularly infor-

mative, this advantage vanishes. This might be noteworthy in the context of

multi-step-ahead forecasts that typically su�er from a higher forecasting uncer-

tainty. In this case, relying on unsupervised factors can provide better results.

In the related case where the idiosyncratic errors in the regressor equation (2.14)

are large, i.e. ρ2
xf small, supervision improves upon the forecasting performance

of factor models as it helps to identify the common variation in X that is relevant

for forecasting.5

The downside of the supervised factor model becomes obvious when consider-

ing the results for n = 70 under both DGPs. When the number of regressors is

very large compared to the observations available, the supervised factor model

su�ers from over�tting. Considering the lower part of both tables, one can see

that there is no choice for θ that improves upon the unsupervised factor model

5Results for small values of ρ2xf are not reported for the sake of readability but are available
upon request.
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Table 2.2 Simulation with factor-regression-DGP

n 30 70

DGP: ρ2yf 0.8 0.4 0.8 0.4

γ γ(1) γ(2) γ(1) γ(2) γ(1) γ(2) γ(1) γ(2)

unsupervised 1.68 2.39 1.19 1.30 1.91 2.51 1.22 1.33
(-) (-) (-) (-) (-) (-) (-) (-)

θaic 1.46 1.93 1.25 1.40 2.50 3.71 1.42 1.664
(.47) (.52) (.25) (.31) (.16) (.15) (.09) (.09)

θcv 1.46 1.93 1.26 1.40 2.36 3.09 1.45 1.67
(.53) (.57) (.33) (.39) (.23) (.27) (.11) (.14)

θml 1.85 2.69 1.27 1.43 2.09 3.03 1.32 1.50
(.03) (.03) (.03) (.03) (.01) (.01) (.01) (.01)

.00 3.79 5.21 1.48 1.71 4.19 5.58 1.55 1.78

.05 3.26 4.80 1.42 1.67 3.62 5.11 1.49 1.73

.10 2.76 4.27 1.37 1.62 3.07 4.52 1.45 1.68

.20 1.98 3.06 1.29 1.50 2.40 3.35 1.53 1.69
θ .30 1.61 2.28 1.25 1.40 2.38 2.98 1.99 2.17

.40 1.49 2.01 1.26 1.38 2.59 3.17 2.46 2.70

.50 1.46 1.95 1.30 1.41 2.82 3.38 2.78 3.00

.60 1.47 1.94 1.34 1.44 3.01 3.56 3.01 3.19

.90 1.52 1.98 1.43 1.51 3.44 3.92 3.39 3.49

Notes: The top line speci�es the DGP settings. Furthermore, it is s = 5, r = 8, ρ2xf = 0.8,
p = n/2. Reported are the MSEs of the unsupervised and the supervised factor model with θ
chosen by the criterion (aic), 10-fold cross-validation (cv), and the likelihood approach (ml).
The average θ-values are reported in parentheses. The lower part of the table provides MSEs
when θ is �xed to a given value. Except for the unsupervised model and the supervised
model with θml only one factor is estimated.

for n = 70.

An appealing feature of the supervised factor model with θ chosen by the

information criterion or by cross-validation is that a single factor is su�cient

for the model to be competitive under the circumstances outlined above. This

parsimony can be of particular interest if one is interested in having a single

factor estimate, e.g. to express the `state of the economy' with respect to a

speci�c economic �gure (GDP growth, in�ation, etc.) by a single index. Using

a supervised factor that is aligned with the target variable might then be more

reasonable than choosing the largest principal component of the dataset. Re-

garding the means for selecting the supervision parameter θ, both tables report

an overall good performance of the information criterion. In almost all cases, it

chooses θ close to the `optimal' θ from the grid in the lower part of the tables.

Determining θ by cross-validation yields similar results with θcv being slightly

larger than θaic on average. For a comparison with the likelihood approach of

selecting θ one has to mind that the latter chooses both θ and the number of

19



Chapter 2 Forecasting with Supervised Factor Models

factors while for the information criterion a single factor is su�cient. It is strik-

ing that the likelihood choice of θ does not yield an improvement in forecasting

accuracy compared to the unsupervised factor model in any case. Hence, under

the circumstance that favor the use of supervised factors, it seems advisable to

choose θ by the information criterion or by cross-validation.

2.5 Empirical Application

2.5.1 Data and Forecasting Model

For the empirical application, a pseudo real-time forecasting exercise of the com-

ing h-months growth rate of the two key macroeconomic variables Industrial Pro-

duction (`INDPRO') and the Consumer Price Index (`CPI') is conducted. The

dataset over the period 1960-01 to 2015-12 is taken from the monthly macroeco-

nomic database provided by the Federal Reserve Bank of St. Louis. It contains

135 time series and is updated in real-time. McCracken and Ng (2016) show

that factors extracted from this dataset contain the same predictive information

as those from the often used Stock & Watson datasets. All variables are trans-

formed to obtain stationary series as described in McCracken and Ng (2016).

In the dataset, some series contain missing values or are only available over a

limited time span. In line with Stock and Watson (2002b), the expectation-

maximization algorithm is employed to estimate a balanced panel.

As demonstrated in the simulation study, the supervised factor model takes

full e�ect when the number of predictors is not too large compared to the number

of observations. To circumvent the dimensionality problem, two di�erent data

subsets are considered. For the �rst one, the predictor set is simply replaced by

its major principal components such that 90% of the original variation in the

data is retained. Neglecting only 10% of the data variation should both yield

a su�cient reduction and not limit the supervised factor model too much in its

ability to exploit information from smaller principal components for forecasting.

The second subset choice is motivated by the study of Boivin and Ng (2006),

who �nd that factors extracted from a smaller pre-screened dataset often yield

satisfactory or even better results than those from the full dataset. The selection

is governed by two principles: First, only series that are commonly known to

have leading or at least coincident characteristics are chosen. The selection

is motivated by the components of the leading and coincident indices of the

Conference Board. Second, using very similar series twice is avoided to prevent

oversampling from a particular group. For example, the series on `Housing Starts:
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Total New Privately Owned' is included but its sub-series that report the same

information for di�erent U.S. regions are excluded. The �nal sub-dataset that is

used to forecast Industrial Production consists of 34 time series and comprises

labor market indicators, new orders and speed of delivery indices, housing starts,

interest rate spreads, consumer expectations, stock market series, as well as

industrial production, income and sales indices (see Table A.1 in Appendix A.2).

When forecasting the CPI, aggregate price indices are added and some of the real

variables are changed for their nominal counterparts when available such that

the dataset consists of 41 time series in total (see Table A.2 in Appendix A.2).6

Let yt denote one of the two series of interest. When forecasting Industrial

Production, the dependent variable is de�ned as average annualized monthly

growth:

yht+h|t = (1200/h) ln (IPt+h/IPt).

The Consumer Price Index is de�ned similarly but treated as I(1):

yht+h|t = (1200/h) ln (CPIt+h/CPIt)− 1200 ln (CPIt/CPIt−1).

The general forecasting function takes the form

ŷht+h|t = α̂h + f̂h,tγ̂
′
h +

p∑
j=1

δ̂h,jyt−j+1.

For the unsupervised model, the number of factors r used for forecasting and

the number of auto-regressive lags p are chosen by BIC with 1 ≤ r ≤ rmax

and 0 ≤ p ≤ 6, where rmax is determined by the ICp2 information criterion

of Bai and Ng (2002). The choice of p made for the unsupervised factor model is

taken over by the supervised models to ensure comparability of the forecasting

performances of the di�erent factor estimates. For Industrial Production, lags

are excluded, i.e. p = 0, which is in line with the results of Stock and Watson

(2002b) who show amongst other results that the pure di�usion index model

performs best for this series. Since the supervision parameter can compensate

for the number of factors, the supervised factor model is restricted to one factor

only. The �rst forecast is made in 1980-01. fh,t, γh and δh,j are estimated by

using data from 1960-01 through 1980-01. For the following periods, estimation

and prediction is performed recursively on an expanding window.

6Instead of (real) interest rate spreads, nominal interest rates are included as these contain
information about expected future in�ation.
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Table 2.3 Out-of-sample forecasting performance CPI

h = 1 h = 3 h = 9

subset based on principal components

θ0 1.0000 (.00) 1.0000 (.00) 1.0000 (.00)
θaic 0.8968

∗ (.47) 0.9086 (.47) 0.9374 (.50)
θcv 0.9064∗ (.44) 0.9113 (.50) 0.9369 (.54)
θml 0.9692 (.01) 0.9827∗ (.01) 0.9539∗ (.01)

subset based on leading indicators

θ0 1.0146 (.00) 0.9679 (.00) 0.9166 (.00)
θaic 0.8869∗∗ (.59) 0.9137 (.63) 0.8958 (.64)
θcv 0.8811

∗∗ (.57) 0.9114 (.63) 0.8947 (.66)
θml 0.9562 (.02) 0.9234 (.02) 0.9113 (.02)

Notes: The columns show the relative MSE of h-months-ahead forecasts over the period
1980-01 to 2015-12. Values below one indicate improved forecasting accuracy. The lowest
MSEs are indicated in bold. One (two) stars mean 0.10 (0.05) statistical signi�cance for the
Diebold-Mariano test (1995) with HAC standard errors. The average θ-values for di�erent
selection means are reported in parentheses.

2.5.2 Results

Tables 2.3 and 2.4 report the performance of the supervised factor model in

forecasting CPI in�ation and Industrial Production growth hmonths ahead. The

forecasting accuracy of the unsupervised factor model applied to the full database

serves as a benchmark and its MSE is normalized to one for each forecasting

horizon. All results are reported relatively to the respective benchmark with a

value below one indicating a lower MSE than the benchmark model.

Overall, the results indicate that forecasts can be improved by using supervised

factors. Especially over short forecasting horizons, supervision has a positive ef-

fect on prediction accuracy. For longer forecasting horizons, however, gains from

supervision vanish. This supports the observation from the simulation study

that supervising the factors is more promising when the regressor space is more

informative, which is naturally the case for shorter forecasting horizons. When

forecasting CPI in�ation, supervised factors improve forecasting accuracy by

up to 11%. The improvements are present for both the principal components

subset and the leading indicator subset. Regarding Industrial Production, the

improvements are less consistent. While supervision improves forecasting accu-

racy remarkably on the leading indicators subset by up to 16%, gains are small

for the principal components subset. For the latter it might be the case that the

supervised factor model is limited in bene�ting from its ability to incorporate

relevant information hidden in small principal components as some of them are
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Table 2.4 Out-of-sample forecasting performance INDPRO

h = 1 h = 3 h = 9

subset based on principal components

θ0 1.0000 (.00) 1.0000 (.00) 1.0000 (.00)
θaic 0.9610 (.35) 0.9731 (.40) 1.1265 (.47)
θcv 0.9638 (.38) 0.9910 (.42) 1.1320 (.48)
θml 1.0040 (.01) 1.0086 (.01) 1.0411 (.01)

subset based on leading indicators

θ0 1.0313 (.00) 1.0509 (.00) 1.1165 (.00)
θaic 0.9225

∗∗ (.55) 0.8384∗∗ (.60) 1.0376 (.67)
θcv 0.9229∗∗ (.50) 0.8356

∗∗ (.55) 1.0294 (.61)
θml 1.0104 (.03) 1.0024 (.03) 0.9502 (.03)

Notes: The columns show the relative MSE of h-months-ahead forecasts over the period
1980-01 to 2015-12. Values below one indicate improved forecasting accuracy. The lowest
MSEs are indicated in bold. One (two) stars mean 0.10 (0.05) statistical signi�cance for the
Diebold-Mariano test (1995) with HAC standard errors. The average θ-values for di�erent
selection means are reported in parentheses.

discarded by construction of the data subset. Finally, it might be noteworthy to

recall that the supervised model requires only a single factor to achieve in most

cases better or similar results as the model with multiple unsupervised factors.

Turning to the means for selecting the supervision parameter θ, it is appar-

ent that the information criterion and 10-fold cross-validation choose almost the

same θ value and, consequently, yield similar forecasting results. For a compari-

son with θml, one has to recall that the likelihood approach chooses both θ and

the number of factors while the information criterion estimates a single factor

only. Hence, a one-to-one comparison of individual factor estimates would be

pointless. However, when comparing the forecasting performances, Tables 2.3

and 2.4 show that the supervised factor model based on the information crite-

rion or cross-validation yields better results than the one based on the likelihood

approach in most cases. The use of more factors and a stronger focus on pre-

dictor space compression of the likelihood approach results in a small value for

the supervision parameter such that forecasts do not di�er a lot from the unsu-

pervised factor model. While the supervision gains are rather small over short

forecasting horizons, the conservative choice of θml might be advantageous for

less informative long-run forecasts to avoid over�tting.

Because the factors are only identi�ed up to an orthogonal transformation, a

detailed discussion of the individual factors is gratuitous. Nevertheless, the �nd-

ing that forecasts can be improved by supervision suggests to brie�y visualize

the supervision e�ect. Figures 2.1 - 2.2 display the R2 between the �rst factor
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Notes: R2 between the �rst factor and individual time series. The factor is supervised for
3-months-ahead predictions of Industrial Production growth.

Fig. 2.1 E�ect of supervision with respect to Industrial Production.

and the individual regressor series for di�erent degrees of supervision. Since

the results look similar for all forecasting horizons, only the cases in which the

factor is supervised for 3-months-ahead predictions are presented.7 As by con-

struction the correlation between factors and regressor series generally decreases

with higher supervision, the bar charts are normalized such that for each degree

of supervision the largest R2 is set to one and the remaining bars are set to their

value relative to the respective benchmark. As a consequence, �gures 2.1 - 2.2

emphasize on di�erences in the relative importance of the individual regressor

series for the �rst (supervised) factor.

Figure 2.1 shows that the loadings on those series that are commonly clas-

si�ed as coincident indicators mostly decrease with higher supervision. With

Industrial Production as the target variable, the �rst factor puts less weight on

variables from the `Output & Income' group and on the 3rd to 5th series from

the `Labor Market' group. All of these series are known as having coincident

characteristics. On the contrary, the higher the degree of supervision the more

relative importance is attached to some leading indicators such as, for example,

`Housing Starts', the `ISM: New Orders Index', (fourth bar in the `Consumption

& Orders' group), the `Consumer Sentiment Index' (last bar in the `Consump-

tion & Orders' group), the `Real M2 Money Stock', and the `S&P: Industrials'

7Signi�cant di�erences only show up when the factor is supervised for 9-months-ahead pre-
dictions of Industrial Production growth. In this case, supervision results in higher loadings
on variables from the interest rates group.
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Notes: R2 between the �rst factor and individual time series. The factor is supervised for
3-months-ahead predictions of the Consumer Price Index.

Fig. 2.2 E�ect of supervision with respect to the Consumer Price Index.

series.

For CPI in�ation, �gure 2.2 reports a much more pronounced di�erence be-

tween supervised and unsupervised factors than for Industrial Production. The

supervised factors load almost exclusively on price series and the `Real M2

Money Stock'. Some minor weight is put on the macro variables `Income', `Real

Personal Consumption Expenditures', and `Real Manufacturing and Trade In-

dustries Sales' (�rst bars in respective groups) which are all usually listed as

coincident indicators. These variables being relevant for forecasting might be

reasonable against the backdrop of prices being lagging indicators. The major

importance of the price variables in general re�ects the persistence in the price

series.

2.6 Conclusion

This study shows that supervision in factor estimation can improve the forecast-

ing power of factor models. Supervised factors are particularly promising when

relevant information in the regressor space is not captured by its major principal

components. For the choice of the supervision parameter, the proposed informa-

tion criterion �nds an overall good balance between predictor space compression

and target orientation of the estimated factors. A complication of the super-

vised factor model arises when the number of regressors is very large compared
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Chapter 2 Forecasting with Supervised Factor Models

to the observations available. In this case supervised factors are vulnerable to

over�tting problems. It is concluded that incorporating supervision in factor

estimation is especially promising for intermediate large regressor spaces.

In line with these �ndings, the empirical application compares the forecasting

performance of the supervised factor model applied to a macroeconomic dataset

consisting of 34-41 leading and coincident indicators to the unsupervised model

using both the reduced and the full dataset comprising 135 time series. The re-

sults indicate that a single supervised factor can provide more accurate forecasts

than the classical factor model.
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Chapter 3

Macroeconomic Forecasting with

Neural Network Reinforced Factor

Models

3.1 Abstract

In many macroeconomic forecasting applications factor models are used to cope

with large datasets. This study aligns variational autoencoders with macroeco-

nomic factor modeling and proposes an extension to adapt this framework for

forecasting exercises. Variational autoencoders are well suited for nonlinear di-

mensionality reduction. They estimate the distribution of the common latent

variables by combining a statistical factor model with a purely data-driven neu-

ral network approach. It is demonstrated that the resulting deep factor model

can be interpreted as a �exible nonlinear extension of the standard factor model.

In the empirical part, it is analyzed whether factor models augmented by neural

networks can achieve superior forecasting power. The results suggest signi�cant

improvements in the forecasting accuracy of four major US macroeconomic time

series.

3.2 Introduction

Factor models have become popular in economics because they can cope with

large data sets in an e�ective manner. They have served various purposes, for

instance, in the construction of economic indicators or in forecasting real and

nominal economic variables. The key idea behind factor models is that depen-

dencies, i.e., covariances, among the variables in the data set are explained by a

small number of latent factors which might then be used as a starting point for

further analysis.

This study takes a look beyond the linear factor model. The objective is to

analyze whether factor models enriched by elements from the machine learning
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Chapter 3 Forecasting with Neural Network Reinforced Factor Models

literature, more precisely by neural networks, can achieve superior forecasting

power. While there have been some attempts to use neural networks in forecast-

ing macroeconomic aggregates, e.g., Cook and Hall (2017), Nakamura (2005)

and Tkacz (2001), this approach is di�erent in the sense that the neural network

is integrated into the factor model instead of serving as a substitute. For this

purpose, variational autoencoder (VAE) can be exploited. VAEs have recently

raised much attention in the machine learning literature. They seek to estimate

the distribution of common latent variables underlying the data by combining

a statistical factor model with purely data-driven neural networks. The explicit

statistical model distinguishes VAEs from pure data-driven autoencoders that

are a standard tool in the machine learning literature for dimensionality reduc-

tion1 and have recently found applications in the �nance literature (see, e.g., Gu

et al. (2020) for an autoencoder asset pricing model).

This study attempts to align VAEs with the statistical factor model in the

context of macroeconomic forecasting. The object of interest is forecasting when

a large predictor space is available. A precise identi�cation of the latent factor

space or the common component per se is not attempted, which can be important

for macroeconomic modeling or index construction. For the purpose of forecast-

ing, the literature tends to prefer the fairly simple approach of Stock and Watson

(2002a), that augments the forecasting equation by nonparametric factor esti-

mates obtained from principal components, over an explicit dynamic parametric

state space formulation of the problem (Boivin and Ng, 2005). When dealing

with large predictor spaces, the nonparametric framework seems to be more

robust than the state space approach that can su�er from the high dimension-

ality.2 Variational autoencoders may be interpreted as deep factor models that

can capture nonlinear common dynamics in the predictor space. Due to their

high �exibility, they can be exploited to model complex patterns in the data.

However, they do not provide a fully identi�ed latent model such that their ma-

jor purpose should be seen in forecasting instead of macroeconomic modeling.

Indeed, the empirical application shows that signi�cant improvements over the

factor model are possible.

Incorporating machine learning techniques to macroeconomic forecasting has

recently raised much interest in the literature. See Coulombe et al. (2019) and

the references therein. Coulombe et al. (2019) analyze which features of machine

1See, for example, Goodfellow et al. (2016).
2Apart from that Stock and Watson (2016) suggest from the literature that in many empirical
applications the di�erences between parametric and nonparametric implementations are
rather small.
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learning techniques are most salient for forecast accuracy gains. Two of their

major �ndings are, �rst, that the ability of these techniques to capture nonlinear-

ities in a nonparametric way constitutes the primary bene�ts for macroeconomic

forecasting. Second, the results indicate that the factor model still provides an

accurate means for dimensionality reduction in a big data framework that is not

outperformed by alternative regularization methods such as, for instance, the

Lasso approach. The deep factor approach considered in this study takes up

exactly these two �ndings. It retains a basic factor structure but incorporates

nonlinearities to capture complex patterns in the data beyond linearity.

Section 3.3 relates the factor model to variational autoencoders, and exposes

the similarities and di�erences inherent to both approaches. Furthermore, an

adjustment is proposed that adapts the VAE framework for prediction tasks.

Section 3.4 provides an empirical forecasting application on a large macroeco-

nomic dataset and shows that signi�cant improvements in the forecasting accu-

racy of four major US macroeconomic time series can be achieved. Section 3.5

concludes and provides some directions for further research.

3.3 The Model

This section illustrates the relationship between the linear factor model and

variational autoencoders with a focus on the similarities and constraints inherent

to both modeling frameworks. While both approaches di�er with respect to their

exact model speci�cations and require di�erent estimation techniques, they are

built on a common core such that one might view VAEs as an extension of factor

models. The section starts by recapitulating both approaches with an emphasis

on how VAEs enhance the factor model. For a review on the di�erent models,

the reader is referred to more comprehensive articles.3 This summary focuses on

their shared characteristics.

3.3.1 The Factor Model Revisited

The statistical factor model is perhaps the most common example of a latent

variable model. It rests on the assumption that the n variables xt obey a factor

structure of the form

xt = Λft + et for t = 1, . . . , T, (3.1)

3See Breitung and Choi (2013) and Stock and Watson (2006) for reviews on the factor model
and Kingma and Welling (2013) for an introduction to variational autoencoders.
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where ft is an r × 1 vector of common factors. The n × r matrix Λ contains

the factor loadings and the error term et represents the variance unique to each

variable xi for i = 1, . . . , n.4 The latent factors are conventionally de�ned as

ft
iid∼ N (0, Ir) and Λ′Λ being diagonal to impose identi�cation restrictions. In

case of the strict factor model, the idiosyncratic component is et
iid∼ N

(
0, σ2

eIn
)
.5

The strict factor model can be overly restrictive in economic applications. It

sometimes seems unrealistic to assume that both components ft and eit are i.i.d.

However, for ease of exposition of the relationship to variational autoencoders,

these assumptions are retained.

Inference

A conventional approach to estimate the latent factors is by means of principal

components. In order to expose the relationship between the factor model and

variational autoencoders, a probabilistic estimation approach is taken. Instead

of using the principal components estimator, estimation by maximum likelihood

and via an EM algorithm is considered. Equation (3.1) implies a probability

distribution for xt|ft of the form

xt|ft ∼ N
(
Λft, σ

2
eIn
)
.

With the distribution over the latent factors de�ned by ft
iid∼ N (0, Ir) the

marginal distribution of xt follows from

p (xt) =

∫
p (xt|ft) p (ft) dft. (3.2)

as

xt ∼ N
(
0, σ2

eIn + ΛΛ′
)
.

The log-likelihood of observing {xt}Tt=1 is

L
(
Λ, σ2

e ;x
)

=
T∑
t=1

ln p(xt; Λ, σ2
e)

=

T∑
t=1

(
−1

2
ln
(
|σ2
eIn + ΛΛ′|

)
− 1

2
tr
{(
σ2
eIn + ΛΛ′

)−1
xtx
′
t

})
= −T

2

(
ln
(
|σ2
eIn + ΛΛ′|

)
+ tr

{(
σ2
eIn + ΛΛ′

)−1
S
})

, (3.3)

4For notational convenience it is assumed that E [xt] = 0. In practical applications the
variables are typically standardized prior to the estimation process.

5The strict factor model is also known as probabilistic PCA in the machine learning literature.
See, e.g., Tipping and Bishop (1999).
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where S is the sample covariance of {xt}Tt , and terms independent of the model

parameters are omitted. Tipping and Bishop (1999) show that the log-likelihood

is maximized when the columns of Λ span the principal subspace of the data.

Hence, the strict factor model a�ects a mapping from the latent space into

the principal subspace of the data, irrespective if maximum likelihood or the

principal components estimator is applied.

Alternatively, the model can by estimated by using an EM algorithm (Tipping

and Bishop, 1999), which provides insights into the shared characteristics of the

factor model and VAEs. In the EM approach, the latent factors ft can be

considered as `missing data'. The EM algorithm iterates between computing

the expectation of the `complete-data' log-likelihood of the joint distribution

p(xt, ft) with respect to p(ft|xt; Λ, σ2
e) (E-Step) and maximizing this expression

with respect to the model parameters (Λ, σ2
e) (M-Step). The complete-data log-

likelihood is given as

Lc
(
Λ, σ2

e ;x, f
)

=

T∑
t=1

ln
(
p
(
xt, ft; Λ, σ2

e

))
=

T∑
t=1

ln
(
p
(
xt|ft; Λ, σ2

e

)
p (ft)

)
=

T∑
t=1

(
−n

2
ln
(
σ2
e

)
− 1

2σ2
e

(xt − Λft)
′ (xt − Λft)−

1

2
f ′tft

)
, (3.4)

where terms independent of the model parameters are omitted again. In the E-

step, Lc is evaluated at the expected value of ft given the data xt and at current

parameter values (Λ, σ2
e). The factors ft are conditionally distributed as

ft|xt ∼ N

((
σ2
eIr + Λ′Λ

)−1
Λ′xt,

(
Ir +

1

σ2
e

Λ′Λ

)−1
)
. (3.5)

Taking the expectation of Lc from equation (3.4) with respect to p
(
ft|xt; Λ, σ2

e

)
gives

Ep(.) [Lc] =

T∑
t=1

(
−n

2
ln
(
σ2
e

)
− 1

2σ2
e

Ep(.)
[
(xt − Λft)

′ (xt − Λft)
]
− 1

2
Ep(.)

[
f ′tft

])

=

T∑
t=1

(
−n

2
ln
(
σ2
e

)
− 1

2σ2
e

(
tr
{
xtx
′
t

}
− 2x′tΛ Ep(.) [ft]

)
+ tr

{
Λ′ΛEp(.)

[
ftf
′
t

]}
− 1

2
tr
{
Ep(.)

[
ftf
′
t

]}) (3.6)
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with

Ep(.) [ft] =
(
σ2
eIr + Λ′Λ

)−1
Λ′xt,

Ep(.)
[
ftf
′
t

]
=

(
Ir +

1

σ2
e

Λ′Λ

)−1

+ Ep(.) [ft]Ep(.) [ft]
′ .

In the M-step, Ep(.)
[
Lc
(
Λ, σ2

e ;x, f
)]

is maximized with respect to Λ and σ2
e .

Taking the �rst order conditions of equation (3.6) and solving for Λ and σ2
e

yields the parameter update rules:

Λ̃ = xt Ep(.) [ft]
′ (Ep(.) [ftf ′t])−1

,

σ̃2
e =

1

nT

T∑
t=1

(
tr
{
xtx
′
t

}
− 2x′tΛ Ep(.) [ft] + tr

{
Λ′Λ Ep(.)

[
ftf
′
t

]})
.

To summarize, the EM algorithm iterates between the E-step and the M-step

until convergence:

E-step:

Ep(.)
[
Lc
(
Λ, σ2

e ;x, f
)]

=

∫
ln
(
p
(
x, f ; Λ, σ2

e

))
p
(
f |x; Λ(old),

(
σ2
e

)(old)
)

df.

M-step:(
Λ̃, σ̃2

e

)
= arg max

Λ,σ2
e

Ep(.)
[
Lc
(
Λ, σ2

e ;x, f
)]
,

where the superscript `old' indicates the parameter estimates from the previous

iteration. It can be shown that the likelihood increases with every iteration of

the EM algorithm, unless there is a local maximum of the likelihood function

(Dempster et al., 1977).

3.3.2 A Deep Factor Model

The factor model in equation (3.1) speci�es a linear relationship between the

latent factors ft and observed xt. Variational autoencoders as introduced by

Kingma and Welling (2013) can be regarded as deep factor models that allow

for nonlinear mappings from the latent space to the observation space. The

nonlinearity is achieved by a neural network. VAEs are capable of modeling

arbitrary data distributions by combining neural networks with a latent factor

model approach.

To see the relationship to the strict factor model, recall that the probability
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of xt given the latent factors ft is distributed as

xt|ft ∼ N
(
µ

(x|f)
t ,Σ

(x|f)
t

)
, (3.7)

where

µ
(x|f)
t = Λft, Σ

(x|f)
t = σ2

eIn. (3.8)

In contrast, VAEs parmeterize the conditional distribution in (3.7) with a neural

network. In the VAE model, one has for the conditional mean and variance((
µ

(x|f)
t

)′
, vec

(
Σ

(x|f)
t

)′)′
= g (ft; θ) , (3.9)

where g is a nonlinear function of ft with parameter vector θ that decodes the

latent factors ft to observed xt. In variational autoencoders, neural networks

are used as decoder functions. There are many possible choices for the decoder

network g(ft; θ). By way of illustration, consider a relatively simple multilayered

perceptron (MLP) network for g(ft; θ) with one hidden layer denoted by ht and

the Recti�ed Linear Unit (ReLU) activation function. Furthermore, retain the

assumptions on the conditional covariance matrix in (3.8). In this case, the

conditional moments of xt|ft are modeled as

µ
(x|f)
t = W dec

2 ht + bdec2 ,

ln
(
σ2
e

)
= W dec

3 ht + bdec3 ,

ht = max
(
0,W dec

1 ft + bdec1

)
,

where θ =
{
W dec

1 ,W dec
2 ,W dec

3 , bdec1 , bdec2 , bdec3

}
are the weights and biases of the

decoder MLP. The �exibility of this approach allows to model complex data

structures beyond linearity, but raises identi�cation issues of the latent factors

which is discussed in Section 3.3.4.

Variational Inference

The �exible parametrization of the deep factor model comes at the cost of not

having an analytically closed form for the likelihood anymore. In case of the

strict factor model, the log-likelihood L
(
Λ, σ2

e ;x
)
can be derived analytically as

summarized in equations (3.2) - (3.3). However, when a deep factor structure is

imposed, it is not possible to specify the log-likelihood function

L (θ;x) =
T∑
t=1

ln (p(xt; θ)) =
T∑
t=1

ln

(∫
p(xt|ft; θ) p(ft) dft

)
(3.10)
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in closed-form. This becomes clear when considering the conditional mean and

variance of p(xt|ft; θ), which are modeled as nonlinear functions of ft, as it

has been shown with an example in the previous subsection. The integral in

equation (3.10) remains intractable because the marginalization step which has

been exploited for linear factor model is no longer applicable in this nonlinear

setting. As a consequence no closed form for the likelihood exists.

The alternative route of estimating the model parameters θ via the EM al-

gorithm is not feasible by the same argument. The EM algorithm requires the

conditional p(ft|xt; θ), which is in case of the linear factor model given by equa-

tion (3.5). However, for the deep factor model, p(ft|xt; θ) is not analytically

tractable:

p(ft|xt; θ) =
p(xt, ft; θ)

p(xt; θ)
=

p(xt, ft; θ)∫
p(xt|ft; θ) p(ft) dft

. (3.11)

The problem still is that the denominator in (3.11) cannot be solved in closed

form.

As neither the marginal likelihood contribution p(xt; θ) nor the conditional

p(ft|xt; θ) can be computed analytically, one has to rely on approximation tech-

niques to estimate the model parameters. In case of VAEs, the problem can be

solved by variational inference, which might be seen as an generalization of the

EM algorithm outlined in Section 3.3.1. The unknown distribution p(ft|xt; θ)
is approximated by choosing a distribution q(ft;φ) from a prede�ned family

of densities D, e.g., the class of normal distributions, such that the Kullback-

Leibler (KL) divergence between p(ft|xt; θ) and q(ft;φ) is minimized. The vector

φ denotes the variational parameters. In case of the variational autoencoder, it

comprises the weights and biases of the encoder network which encodes the high-

dimensional observation vector xt into the moments of q(ft;φ). The subsequent

section will give concrete form to q(ft;φ) and the encoding network.

The KL divergence between q(ft;φ) and p(ft|xt; θ) is de�ned as

KL(q(ft;φ)||p(ft|xt; θ)) =

∫
q(ft;φ) ln

(
q(ft;φ)

p(ft|xt; θ)

)
dft

=

∫
q(ft;φ) ln

(
q(ft;φ)

p(ft, xt; θ)

)
dft + ln (p(xt; θ))

= Eq(f ;φ) [ln (q(ft;φ))]− Eq(f ;φ) [ln (pθ(xt, ft; θ))] + ln (p(xt; θ)).

Hence, the marginal loglikelihood of datapoint t can be decomposed to

ln (p(xt; θ)) = ELBO (xt; θ, φ) + KL (q(ft;φ)||p(ft|xt; θ)) , (3.12)
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where

ELBO (xt; θ, φ) = Eq(f ;φ)

[
ln

(
p(xt, ft; θ)

q(ft;φ)

)]
. (3.13)

Due to the non-negativity of the KL divergence, the ELBO (xt; θ, φ) provides

a lower bound to the likelihood function (called Evidence Lower BOund). Al-

though there is no analytical expression for the log-likelihood in equation (3.12)

since p(ft|xt; θ) in the KL term is unknown, one can optimize the ELBO in

equation (3.13).

A closer look at the ELBO reveals an analogy to the EM algorithm from

Section 3.3.1. One can rewrite the ELBO as

ELBO (xt; θ, φ) = Eq(f ;φ) [ln p(xt, ft; θ)]− Eq(f ;φ) [ln q(ft;φ)] , (3.14)

where the �rst summand is the expected complete-data log-likelihood of data-

point t similar to equation (3.6) from the strict factor model, and the second term

is the entropy of q(ft;φ). Now, optimization consists of iteratively maximizing

the ELBO (xt; θ, φ) with respect to the variational parameters φ of q(ft;φ) hold-

ing the parameters θ �xed (`E-step') and maximizing the ELBO (xt; θ, φ) with

respect to θ under given q(ft;φ) (`M-step'). Note that the EM algorithm for

the strict factor model maximizes only the �rst term in equation (3.14), i.e., the

expected complete-data log-likelihood. It exploits the fact that the ELBO equals

the log-likelihood ln (p(xt; θ)) when one chooses q(ft;φ) = p(ft|xt; θ), which of

course requires p(ft|xt; θ) to be known and tractable.6

Parameter Estimation in the Deep Factor Model

The latent factors are still de�ned as ft
iid∼ N (0, Ir). Furthermore, let p(xt|ft; θ)

be a multivariate Gaussian whose moments are computed from ft with an MLP

as de�ned by equation (3.9) and illustrated by the subsequent example in sec-

tion 3.3.2. Since the posterior p(ft|xt; θ) cannot be computed analytically, it has

to be approximated. To this end, it is assumed that the true posterior can be

approximated by q(ft;φ), where q(ft;φ) is the probability density function of a

normal distribution with mean vector µ(f |x)
t diagonal covariance matrix Σ

(f |x)
t .

More precisely, q(ft;φ) is chosen as a probability density function from the class

of normal distributions and can be described by

q(ft;φ) = N
(
ft;µ

(f |x)
t ,Σ

(f |x)
t

)
, (3.15)

6For a more extensive and general description of variational inference, the review of Blei et al.
(2017) is recommended.
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where ((
µ

(f |x)
t

)′
, vec

(
Σ

(f |x)
t

)′)′
= v(xt;φ), (3.16)

and where v(xt;φ) is a neural network with weights and biases summarized in

the variational parameter vector φ. v(xt;φ) denotes the encoding network that

encodes xt into the distribution parameters of q (ft;φ). Using the same network

structure as in the example for the decoding network in Section 3.3.2, one obtains

ht = max (0,W enc
1 xt + benc1 ), (3.17)

µ
(f |x)
t = W enc

2 ht + benc2 , (3.18)

ln
(
σ2
t

)
= W enc

3 ht + benc3 , (3.19)

where σ2
t denotes the vector of the diagonal entries of Σ

(f |x)
t . The weights and

biases φ = {W enc
1 ,W enc

2 ,W enc
3 , benc1 , benc2 , benc3 } of the encoding network are the

variational parameters of the model.

The objective function is the ELBO which is obtained for i.i.d. data as the

sum of individual-datapoint ELBOs:

ELBO (x; θ, φ) =

T∑
t=1

ELBO (xt; θ, φ)

The individual ELBO contributions can be decomposed to

ELBO (xt; θ, φ) = Eq(f ;φ)

[
ln

(
p(xt|ft; θ) p(ft)

q(ft;φ)

)]
= Eq(f ;φ) [ln (p(xt|ft; θ))]−KL (q(ft;φ)||p(ft)) . (3.20)

The �rst term denotes the expected model �t. It describes how well the

observations xt can be reconstructed from the latent ft by the decoder neural

network g(ft; θ). The second term gives the deviation of the distribution of the

encoder output from the prior p(ft; θ). The Kullback-Leibler divergence can be

computed analytically because q(ft;φ) and p(ft; θ) are assumed to be Gaussian.

One obtains

KL (q(ft;φ)||p(ft)) =
1

2

(
ln

(
|Ir|
|σ2
t Ir|

)
− r + tr

{
I−1
r σ2

t Ir
}

+
(
µ

(f |x)
t

)′
I−1
r µ

(f |x)
t

)

=
1

2

− r∑
j=1

ln
(
σ2
jt

)
− r +

r∑
j=1

σ2
jt +

r∑
j=1

(
µ

(f |x)
jt

)2


=

1

2

r∑
j=1

(
− ln

(
σ2
jt

)
− 1 + σ2

jt +
(
µ

(f |x)
jt

)2
)
, (3.21)

36



3.3 The Model

where the index j indicates the jth element of the vectors µ(f |x)
t and σ2

t , resp.

Recall that µ(f |x)
t and σ2

t depend on the variational parameters φ as exempli�ed

by the encoder network in equations (3.17) to (3.19).

Substituting equation (3.21) in (3.20) one obtains the individual ELBO con-

tributions as

ELBO (xt; θ, φ) = Eq(f ;φ) [ln (p(xt|ft; θ))]

+
1

2

r∑
j=1

(
ln
(
σ2
jt

)
+ 1− σ2

jt −
(
µ

(f |x)
jt

)2
)
.

(3.22)

The ELBO is optimized by stochastic gradient descent with respect to the de-

coder parameters θ and the encoder/variational parameters φ. Before taking the

gradients, the �rst term in equation (3.22) has to be approximated by a Monte

Carlo estimator as the expectation cannot be computed analytically. It can be

approximated by Monte Carlo sampling

Eq(f ;φ) [ln (p(xt|ft; θ))] ≈
1

L

L∑
l=1

ln
(
p(xt|f̃lt; θ)

)
, (3.23)

where f̃lt is sampled by f̃lt = µ
(f |x)
t + σ2

t � εl from εl ∼ N (0, Ir). � denotes

an element-wise multiplication. Note that this transformation (the so-called

reparametrization trick) is necessary as it makes the Monte Carlo estimate of the

expectation Eq(f ;φ) [ln (p(xt|ft; θ))] di�erentiable with respect to φ. The problem

is that the gradient of the expectation term has to be taken with respect to φ.

However, the expectation is taken with respect to the distribution q(f ;φ), which

itself is a function of φ. In such cases, it holds in general that

∇φEq(f ;φ) [ln (p(xt|ft; θ))] 6= Eq(f ;φ) [∇φ ln (p(xt|ft; θ))] .

Using the reparametrization trick, expectation and gradient operators become

commutative:

∇φEq(f ;φ) [ln (p(xt|ft; θ))] = ∇φEp(ε)
[
ln
(
p(xt|f̃t; θ)

)]
= Ep(ε)

[
∇φ ln

(
p(xt|f̃t; θ)

)]
such that the Monte Carlo estimator in equation (3.23) is di�erentiable with

respect to φ. The full proof is given by Kingma and Welling (2013).

Using the Monte Carlo estimator from equation (3.23) in (3.22) the objective
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function for datapoint xt becomes

ELBO (xt; θ, φ) ≈ 1

L

L∑
l=1

ln
(
p(xt|f̃lt; θ)

)
+

1

2

r∑
j=1

(
ln
(
σ2
jt

)
+ 1− σ2

jt −
(
µ

(f |x)
jt

)2
)
,

which can be optimized by stochastic gradient descent with respect to the model

parameters θ and φ.

3.3.3 A Supervised Deep Factor Model

The variational autoencoder focuses on compressing the common variation in

{xt}Tt=1 within a few latent factors. If the overall objective is to exploit these

factors in forecasting, it seems a natural extension to the model to include the

forecasting target yt+h in the factor estimation process as well, such that the

factors are supervised with respect to the variable of interest. In order to extend

the VAE framework, the likelihood is augmented to p(xt, yt+h) and analogously

to above it is assumed that

xt|ft ∼ N
(
µ

(x|f)
t ,Σ

(x|f)
t

)
,

yt+h|ft ∼ N
(
f ′tβ, σ

2
u

)
.

For simplicity, a linear relationship between latent factors ft and the forecasting

target yt+h and a constant error variance is assumed. Hence, the model allows

for a nonlinear factor composition but retains the linearity in the forecasting re-

lationship between ft and yt+h. It is straightforward to extent this to a nonlinear

relationship by parametrizing the conditional mean and variance of yt+h|ft with
a neural network as well. Furthermore, conditional independence between the

regressors xt and the forecasting target yt+h is assumed, such that their joint

distribution conditional on ft factorizes according to

p(xt, yt+h|ft) = p(xt|ft) p(yt+h|ft).

This assumption is motivated by the idea that the predictable dynamics of yt+h

are accounted for by the latent factors underlying the predictor space. This idea

can be seen as a general motivation for a factor modeling approach in forecasting

exercises. Nevertheless, it remains to some extent a restrictive assumption, but

it allows to simplify the estimation process considerably.

The estimation strategy remains the same as outlined in the previous sec-

38



3.3 The Model

tions. The unknown distribution p(ft|xt, yt+h; θ, β) has to approximated by

choosing a function q(ft;φ) from the class of normal distributions with mean

vector µ(f |x)
t and diagonal covariance matrix Σ

(f |x)
t , where the conditional mo-

ments are parametrized by the encoding network v(xt;φ) as shown in equa-

tion (3.16) and the subsequent example. Again q(ft;φ) is chosen such that the

KL divergence between p(ft|xt, yt+h; θ, β) and q(ft;φ) is minimized:

KL (q(ft;φ)||p(ft|xt, yt+h; θ, β)) =

∫
q(ft;φ) ln

(
q(ft;φ)

p(ft|xt, yt+h; θ, β)

)
dft

= E [ln (q(ft;φ))]− Eq(f ;φ) [ln (pθ(xt, yt+hft; θ, β))] + ln (p(xt, yt+h; θ, β)).

Hence, the marginal loglikelihood of datapoint pair (xt, yt+h) can be decomposed

to

ln (p(xt, yt+h; θ)) = ELBO (xt, yt+h; θ, φ, β) + KL (q(ft;φ)||p(ft|xt, yt+h; θ, β)) ,

with the ELBO objective being

ELBO (xt, yt+h; θ, φ, β) = Eq(f ;φ)

[
ln

(
p(xt, yt+h, ft; θ, β)

q(ft;φ)

)]
= Eq(f ;φ)

[
ln

(
p(xt|ft; θ)p(yt+h|ft;β)p(ft)

q(ft;φ)

)]
(3.24)

= Eq(f ;φ) [ln (p(xt|ft; θ))] + Eq(f ;φ) [ln (p(yt+h|ft;β))]

−KL (q(ft;φ)||p(ft)) .

As a further extension, it can be bene�cial to control the degree to which

the latent factors ft focus on the reconstruction of xt or on the prediction of

yt+h. For this purpose a supervision parameter α is introduced. The posterior

distribution of the latent factors ft given xt and yt+h in this supervised deep

factor model can be formalized as

p (ft|xt, yt+h) ∝ (p (xt|ft))(1−α) (p (yt+h|ft))α p (ft) ,

where α is a parameter from 0 to 1 that governs the degree of supervision.

Since p (xt|ft) and p (yt+h|ft) are Gaussian distributions with covariances Σ
(x|f)
t

and σ2
u, respectively., (p (xt|ft))(1−α) and (p (yt+h|ft))α are also Gaussian with

covariances 1
1−αΣ

(x|f)
t and 1

ασ
2
u, respectively.

7 The supervised ELBO follows as

7Strictly speaking (p (xt|ft))(1−α) and (p (yt+h|ft))α are proportional to a Gaussian up to the

normalization factor 1/
∫
x

(p (xt|ft))(1−α) dx and 1/
∫
y

(p (yt+h|ft))α dy, respectively.
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ELBO(α) (xt, yt+h; θ, φ) = Eq(f ;φ)

[
ln

(
(p(xt|ft; θ))(1−α) (p(yt+h|ft;β))α p(ft)

q(ft;φ)

)]
= (1− α)Eq(f ;φ) [ln p(xt|ft; θ)] + αEq(f ;φ) [ln p(yt+h|ft;β)]

−KL (q(ft;φ)||p(ft)) .
(3.25)

For α = 0, the original variational autoencoder is restored. Note that the

supervised deep factor model exhibits some similarites to Principal Covariate

Regression (PCovR) of de Jong and Kiers (1992) who estimate the factors ft by

a loss function that is a weighted sum of the squared reduction error of ft on xt

and a prediction error of ft on yt.

3.3.4 Flexibility, Identi�cation, and Robustness

While both the factor model and variational autoencoders share some common

characteristics, they follow a distinct approach to modeling the data distribution.

This holds especially for the requirements regarding parameter identi�cation,

which makes both models di�erent in their scope of application.

Identi�cation

As pointed out, the �exible VAE framework allows to describe complex data

structures. However, this comes at the cost of unidenti�ability of the true model

parameters. Identi�cation in latent variable models is by nature a di�cult task.

Even for the strict factor model, which is subject to restrictive assumptions, it

is

(ft, xt)
′ ∼ N

([
0
µx

]
,

[
Ir Λ′

Λ σIn + ΛΛ′

])
,

ft|xt ∼ N

((
σ2
eIr + Λ′Λ

)−1
Λ′xt,

(
Ir +

1

σ2
e

Λ′Λ

)−1
)
,

such that the model only is identi�ed up to an orthogonal transformation, e.g.,

ΛQ′QΛ′ = ΛΛ′, whereQ is a `rotation matrix' withQ′Q = I. The ML-estimators

reviewed in Section 3.3.1 require these assumptions to identify the factor space.

Weakening the assumptions by allowing for cross-sectional correlation immedi-

ately raises severe identi�cation problems since the factor model with an unre-

stricted error covariance matrix Σe involves n (n+ 1) /2+rn parameters whereas

the covariance matrix of the data entails only n (n+ 1) /2 parameters.8 Never-

8Note that under certain conditions it is still possible to consistently estimate the factor space
by Principal Components even if the covariance parameters of the idiosyncratic components
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theless, identi�cation of the posterior factor space is at least possible to some

extent such that the factor model o�ers some room for interpretation of the

factors and their loadings.

The VAE framework does not allow to derive an explicitly identi�ed form for

p (ft, xt) and p (ft|xt) as in the case of the factor model, where both distribu-

tions are identi�ed up an orthogonal transformation as explained above. The

VAE model assumes that the observed data xt stem from an underlying joint dis-

tribution pθ∗(xt, ft) = pθ∗(xt|ft)pθ∗(ft), where θ∗ denotes the true but unknown
model parameters. The model then gives rise to the observed distribution of the

data by

pθ(xt) =

∫
pθ(xt, ft) df =

∫
pθ(xt|ft)pθ(ft) dft.

The VAE approach estimates a full generative model pθ(xt, ft) = pθ(xt|ft)pθ(ft)
and an inference model qφ(ft|xt) that approximates the unknown pθ(ft|xt). How-
ever, there are no guarantees whether these distributions actually identify the

true data generating process. All that can be inferred is that the VAE opti-

mizes the parameters θ towards the approximate maximum marginal likelhood

objective (ELBO) of the data such that after optimization

pθ(xt) ≈ pθ∗(xt).

However, it is impossible to learn the true joint distribution over both observed

and latent variables or the true posterior distribution of the latent variables.

This would only be possible for a fully identi�ed model.9

The lack of explicit identi�cation of the factor space a�ects that there is no

(economic) interpretation of the composition of the latent variables. Obviously,

this restricts VAEs in their scope of econometric applications. However, if the

interest lies primarily in the forecasting power of latent factor models, this aspect

is of minor importance and the deep factor model can be considered a reasonable

extension to the factor model.

Flexibility and Robustness

Both the factor model and VAEs aim at learning a low-dimensional representa-

tion of the observed data xt. The stochastic factor model can be regarded as

a restricted VAE with a linear decoder function that generates xt by a linear

are left unidenti�ed. For a review see, e.g., Breitung and Choi (2013).
9Khemakhem et al. (2020) adress the issue of identi�cation of the true joint distribution over
observed and latent variables by implementing a factorized prior distribution over the latent
variables that is conditioned on an additionally observed variable.
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transformation of the latent ft. This restriction to linear dependencies among

the variables in xt makes the factor model neat and robust to over�tting.

The �exible VAE framework allows to describe more complex patterns in

the data. By modeling the �rst two moments of p (xt|ft) with a neural network,

VAEs can capture a rich class of data distributions p(xt). The deep factor model

�nds a low-dimensional manifold spanned by ft that summarizes the (nonlinear)

common characteristics of the observation space xt. The parametrization via a

neural network has the bene�t that one does not have to manually engineer the

most appropriate (nonlinear) function xt = g∗(ft) connecting the latent space

with the observation space. Instead, the weights and biases summarized in the

parameter vector θ of the neural network are used to learn g from a broad class of

functions such that g(ft; θ) is driven to match g∗(ft) during the training process.

The ability of the deep factor model to learn complex low-dimensional repre-

sentations of the data xt points out the risk of over�tting. When the capacity of

the decoder network g(ft; θ) is allowed to become too great, the model can fail

to learn informative latent factors. Theoretically, one could imagine that each

variable in xt could be recovered almost exactly by a single latent factor ft with

a very powerful nonlinear decoder g(ft; θ).10

3.4 Empirical Application

3.4.1 Data and Forecasting Models

For the empirical application, an out-of-sample forecasting exercise of the com-

ing h-months growth rate of the macroeconomic variables Industrial Production,

Nonfarm Employment, Real Manufacturing and Trade Industries Sales and Real

Personal Income ex Transfer Receipts over the period 1985-01 to 2019-12 is con-

ducted. These four variables constitute the economic Coincident Index main-

tained by the Conference Boards that can be used to describe the current state

of the economy. Figure 3.1 visualizes the series over the forecasting period. The

dataset is taken from the monthly macroeconomic database provided by the Fed-

eral Reserve Bank of St. Louis. It contains 128 time series and is updated in

real-time. All variables are transformed to obtain stationary series as described

in McCracken and Ng (2016). In the dataset, some series contain missing values

or are only available over a limited time span. In line with Stock and Wat-

son (2002b), the EM algorithm is employed to estimate a balanced panel. The

forecasting time span encompasses the so-called period of Great Moderation be-

10This problem is known as posterior collapse in the literature.
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Notes: The �gure shows the average annualized monthly growth of the forecast targets
over the period 1985-01 to 2019-12. For visualization purposes the series are standardized
and averaged over h = 3 months as described in equation (3.26). The shaded areas indicate
recession periods.

Fig. 3.1 Forecasting targets.

ginning in the mid 80ies, where macroeconomic �uctuations began to dampen

in comparison to the decades before, and the distortions in succession of the

�nancial crisis in 2007. The �rst forecast is made in 1984-12 such that the

performance comparison includes overall T = 420− h forecasts.

Let yt denote the forecasting target. The dependent variable is de�ned as

average annualized monthly growth, i.e., in case of Industrial Production

yt+h|t = (1200/h) ln (IPt+h/IPt). (3.26)

As a benchmark model the general forecasting function of the Stock and Watson

(2002b) approach is taken

ŷt+h|t = ĉh + f̂ ′tβ̂h

with the factors f̂t estimated by Principal Components. The number of factors
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is speci�ed according the ICp2 information criterion of Bai and Ng (2002) with a

maximum number of factors set to 8. To ensure comparability of the forecasting

performances, the choice of ICp2 information criterion is also used for the deep

factor model. Note that both lags of f̂t and autoregressive lags of the forecasting

target are excluded. This is in line with the �ndings of Stock and Watson (2002b)

who show amongst other results that the pure di�usion index model exhibits a

comparable or even better forecasting performance than a forecasting model that

is augmented by the respective lags. Furthermore, the exclusion of lags allows

for a tailored comparison of the factor model and its deep counterpart as no

other variables beyond the factors have an impact on the forecasting power.

For the deep factor model the forecasts are obtained by

ŷt+h|t = ĉh + f̂ ′h,tβ̂h with f̂h,t = µ
(f |x)
t = v(xt; φ̂), (3.27)

where v(xt; φ̂) denotes the encoding neural network as speci�ed in equations (3.15)

- (3.16). Note the explicit dependence of f̂h,t on h which should indicate that

in case of the supervised deep factor model the parameters φ of the encoding

network and thus the factor estimates are in�uenced by the forecasting target.

To obtain the �rst forecast, the model parameters and the number of factors

are estimated using data from 1975-01 through 1984-12. For the following peri-

ods, estimation and prediction is performed recursively on an rolling window of

10 years.

Although the analogy of the supervised deep factor model to PCovR is men-

tioned in Section 3.3.3, PCovR is not included in the forecast comparison as it

performs poorly on the given dataset.11

3.4.2 Implementation

The deep factor model requires the choice of several hyperparameters regarding

the neural network topologies and the stochastic gradient descent optimizer to

calculate the model parameters. These hyperparameters are either chosen by

crossvalidation or according to recommendations from the literature.

Neural Network Topologies

The architectures of both the encoding v (xt;φ) and decoding g (ft; θ) networks

are guided by the following considerations: First, rather small models are pre-

11The reason may be that PCovR su�ers from over�tting when the predictor space in relation
to the number of observations available is too large (see, e.g., Heij et al., 2007, and Umbach,
2020).
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ferred, especially since the number of observations in macroeconomic forecasting

is limited. Using a rolling estimation window of 10 years, only 120 observations

are available for parameter estimation at each time step. If the capacity of the

networks becomes too great, the model might fail to learn informative latent fac-

tors as argued in Section 3.3.4. Second, prefer depth over width. Theoretically,

a neural network with just a single hidden layer and an appropriate nonlinear-

ity can realize arbitrary mappings as long as the number of hidden units (the

width) is large enough (Hornik et al., 1989). Nevertheless, more hidden layers

are preferred over additional units in a single hidden layer since the number

of paths through the network grows exponentially with the number of hidden

layers whereas the number of parameters only grows linearly. Thus the �ex-

ibility becomes much higher without having to overly increase the number of

parameters.

Taking these considerations into account six di�erent network topologies are

evaluated: The encoder and decoder networks are allowed to have up to 3 hidden

layers. Furthermore, the number of hidden units per layer is set to 8 or 32 such

that the minimum number of hidden units is equal to the maximum number

of latent factors that can be chosen by BIC. The maximum number of hidden

units equals 1/4 of the total number of predictor variables in the dataset. Out of

these six speci�cations the �nal model used for forecasting is selected by a cross-

validation procedure that is explained in the following subsection. Furthermore,

note that only symmetric variational autoencoders are considered, i.e., both the

encoding and the decoding network have the same architecture.

The supervised deep factor model requires the choice of the supervision pa-

rameter α as in equation (3.25). To make the choice scale independent of the

number of predictor variables xt, the original unsupervised part of the ELBO

is divided by the squared Frobenius norm of the regressors, and the additional

supervising term of the ELBO is divided by the squared Frobenius norm of the

target variable, respectively, in the estimation process. Given these normaliza-

tions, α is set to 0.5 which constitutes equal weighting of both objectives of

approximating the predictor variables and �tting the target variable. Note that

the optimal choice of α requires further investigation. Setting α = 0.5 is a rather

heuristic approach. Using some cross-validation procedure for α may further en-

hance the forecasting accuracy of the deep factor model, but is associated with

additional computational e�ort.
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Training, Validation, and Testing

Generally, when training neural networks, the estimation sample is split into a

training and a validation set. The former is used to estimate the model parame-

ters subject to a speci�c set of hyperparameter values, for instance, the network

architecture. The latter is used for tuning the hyperparameters. As the estima-

tion sample is rather small in this forecasting exercise, the model architecture

is determined by cross-validation instead of splitting the estimation sample in

a training and validation set once. Using 5-fold cross-valdiation, the estimation

sample of 120 observations is randomly divided into �ve equally sized sets. One

set is used as the validation sample whereas the remaining four constitute the

training sample. This split ratio of 80:20 between training and validation set

is a standard choice for �tting neural networks. To select the �nal forecasting

model, the �t of the di�erent model architectures is calculated on each of the

�ve validation samples and the model that performed best on average is chosen

to produce the out-of-sample forecast.

Optimization Algorithm

The model parameters are determined by minibatch stochastic gradient descent

(SGD). Unlike standard gradient descent that uses the entire training sample at

each iteration of the optimization routine, minibatch SGD evaluates the gradient

at a small random subsample of the data at each iteration. This approximation

reduces the computational costs and lowers the risk for the optimizer to get stuck

in a local minimum. In this study a batch size of 24 observations is employed.12

For the optimizer, the AdamW algorithm of Loshchilov and Hutter (2019) is

used which is a re�ned version of the Adaptive Moment estimation algorithm

(Adam) introduced by Kingma and Ba (2014). The Adam algorithm computes

adaptive learning rates for individual parameters using estimates of �rst and

second moments of the gradient.13

Regarding the hyperparameters for the optimization process, recommenda-

tions from the literature are used. Both a default learning rate of 0.001 as

proposed by Kingma and Ba (2014), and the optimizer's default weight decay

coe�cient of 0.01 are chosen. Furthermore, a dropout probability of 10% is ap-

12Experiments indicate that the results do not critically depend on the batch size in this
forecasting application.

13Loshchilov and Hutter (2019) demonstrate that L2 regularization of the model parameters is
not e�ective in Adam, and propose an adaptive moment algorithm with decoupled weight
decay (AdamW) which they state to generalize substantially better than the original Adam
algorithm.
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plied to the hidden nodes. Dropout evokes e�ective regularization by randomly

dropping out nodes of the network during the training process. Srivastava et al.

(2014) state that the choice of the dropout probability should be coupled with

the choice of the number of hidden units. A higher dropout ratio is appropriate

for a larger number of hidden nodes. As the neural networks employed in this

study are rather compact, a small dropout probability of 10% is used.

The Monte Carlo estimator for the expectations operator in equation (3.23)

requires the choice of L, i.e., the number of samples drawn per datapoint to

approximate the expectations term. Kingma and Welling (2013) found in their

experiments that L can be set to 1 as long as the minibatch size is large enough

(e.g., 100). As in the given forecasting exercise a batch only consists of 24 obser-

vations, L is set to 5 to meet a simulated batch of more than 100 observations.14

Finally, note that the stochastic nature of the optimizer and its random ini-

tialization of the neural network parameters can cause the optimizer to settle at

di�erent optima. To enhance the stability of the results, multiple random seeds

are used to initialize estimation. For the �nal forecast, the mean value of the

resulting predictions is taken. More precisely, the model is estimated 10 times

per cross-validation fold.15 As there are 5 folds, the mean value from 5 × 10

estimates of the selected model is taken to produce the �nal forecast.

3.4.3 Results

Table 3.1 reports the performance of the deep factor model in forecasting In-

dustrial Production, Nonfarm Employment, Real Manufacturing and Trade In-

dustries Sales and Real Personal Income ex Transfer Receipts h months ahead.

The forecasting accuracy of the linear factor model serves as a benchmark and

its MSFE is normalized to one for each forecast horizon. The results for the

deep factor models are reported relatively to the respective benchmark with a

value below one indicating a lower MSFE than the benchmark principal com-

ponents forecast. The results in Table 3.1 show the forecasting performance of

the deep factor model with the factors nonlinearly determined as described in

Section 3.4.2. For the relationship between the factors and the forecasting target

linearity is retained as stated in equation (3.27). The forecasting accuracy of the

deep factor model is reported for two di�erent degrees of supervision: α = 0 (no

14The choice of L does not seem to be critical for the model performance. However, compu-
tation time increases considerably the larger L.

15The restriction to 10 repetitions is in line with Gu et al. (2020). Moreover, recall that the
forecasting performance is measured over a sample of 420-h observations, which provides a
further hedge against lucky results.
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Table 3.1 Out-of-sample forecasting performance 1985-2019

h = 1 h = 2 h = 3 h = 6

Industrial Production

deep factors, α = .0 0.9281∗∗ 0.97712 1.0109 1.0499
deep factors, α = .5 0.9018∗∗∗ 0.9312∗∗ 0.9426 0.9542

Nonfarm Employment

deep factors, α = .0 1.0596 1.0991∗ 1.0908 1.1321∗

deep factors, α = .5 0.9708 0.8810∗∗∗ 0.8742∗∗∗ 0.8546∗∗

Real Manufacturing and Trade Industries Sales

deep factors, α = .0 0.9193∗∗ 0.9717∗ 0.9865 0.9997
deep factors, α = .5 0.8760∗∗∗ 0.9352∗∗∗ 0.9755 0.9575

Real Personal Income ex Transfer Receipts

deep factors, α = .0 0.9773∗ 0.9729 0.9863 0.9496
deep factors, α = .5 0.9723∗ 0.9492∗∗ 0.9607∗ 0.8989∗∗

Notes: The columns report the relative MSFE of the deep factor model with di�erent degrees
of supervision. Pseudo out-of-sample forecasts are made h-months-ahead over the period
1985-01 to 2019-12. Values below 1.00 indicate improved forecast accuracy relative to the
linear factor model with the benchmark MSFE being normalized to 1.00 for each forecasting
target and time horizon. One (two, three) stars indicate .10 (.05, .01) statistical signi�cance
for the Diebold and Mariano (1995) test with HAC standard errors using the Bartlett kernel
and a bandwidth of bT (1/3)c = 7.

supervision) and α = 0.5 (intermediate supervision).

Overall, the results indicate that the forecast accuracy of factor models can

be improved by using deep factors. This hold particularly true when the factors

are supervised (α = 0.5). For the case of unsupervised deep factors, α = 0,

the results are mixed, but the deep factor model bene�ts considerably from

the supervision extension proposed in Section 3.3.3. The empirical results in

Table 3.1 indicate that this extension is necessary to adapt the VAE framework

for forecasting purposes. Consequently the following analysis focuses on the

supervised deep factor model.

The supervised deep factors improve upon the linear factor model by up to

10-14% depending on the target series. For all forecasting targets and horizon,

the supervised deep factor model yields more precise forecasts than the linear

factor model. In case of Industrial Production, signi�cant accuracy gains are

achieved up to a forecasting horizon of 2 months. Beyond this time span, no

improvements at a signi�cance level below 0.10 can be observed. Taking into

consideration that Industrial Production is a volatile and noisy time series, it

might be not surprising that improvements are only found in the short-run.
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Forecast beyond one quarter are generally not very informative for this series.

A similar pattern can be observed for Real Manufacturing and Trade Industries

Sales. Signi�cant improvements in forecasting accuracy are observed only over

short forecasting horizons.

Interestingly, for Nonfarm Employment and Real Personal Income ex Transfer

Receipts, the gains from using the supervised deep factor model are mainly

present for forecasts beyond one month ahead. Especially over a forecast horizon

of six months ahead, the deep factor model clearly outperfoms the linear factor

model. Both variables react with a greater delay to changes in the economy than

Industrial Production and Manufacturing and Trade Industries Sales such that

forecasts beyond one quarter are potentially still informative, which is better

exploited by the deep factor model than by its linear counterpart.

Table 3.2 provides some additional summary statistics for the comparison of

the linear factor model and the supervised deep factor model. It reports the

coe�cient on the supervised deep factor forecast from the forecast combining

regression,

yt+h = γŷ
(d)
t+h|t + (1− γ) ŷ

(l)
t+h|t + ut+h, (3.28)

where ŷ(d)
t+h|t is the supervised deep factor forecast and ŷ(l)

t+h|t is the benchmark

forecast from the linear factor model. Note that γ also is the coe�cient of the

encompassing regression which follows immediately from equation (3.28) as

ê
(l)
t+h|t = γ

(
ê

(l)
t+h|t − ê

(d)
t+h|t

)
+ ut+h,

with ê(l)
t+h|t and ê

(f)
t+h|t denoting the forecast errors of the linear factor models and

the deep factor model, respectively. Additionally, heteroscedastic and autocor-

relation robust standard errors are reported. Consider, for example, the entries

for the 3-months-ahead forecast of Industrial Production: γ is estimated to be

0.83 with a standard error of 0.29. Thus, the hypothesis that the weight on the

supervised deep factor forecast is 0 (γ = 0) is rejected at the 5% level, but the

hypothesis that the deep factor forecast receives unit weight cannot be rejected.

It is apparent that in some cases the weight γ exceeds unity. As mentioned

by Claeskens et al. (2016) this phenomenon can happen in scenarios of a high

positive forecast error correlation together with a relatively high variation in

forecast reliability. Indeed, the last column of Table 3.2 shows a high empiri-

cal cross-correlation coe�cients between both forecast error series. Against the

backdrop that the target series are very noisy, and that both forecasting models

use the same information and have a similar structure, it is not surprising that
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Table 3.2 Summary statistics

Statistic forecast combination std. cross-
horizon weight γ error correlation

Industrial Production h = 1 1.15 0.20 0.96
h = 2 0.97 0.20 0.96
h = 3 0.83 0.29 0.96
h = 6 0.85 0.39 0.97

Nonfarm Employment h = 1 0.61 0.14 0.93
h = 2 0.90 0.13 0.92
h = 3 0.99 0.17 0.94
h = 6 1.24 0.30 0.95

Real Manufacturing and
Trade Industrie Sales

h = 1 1.56 0.25 0.97
h = 2 1.17 0.22 0.98
h = 3 0.70 0.27 0.97
h = 6 0.81 0.35 0.97

Real Personal Income
ex Transfer Receipts

h = 1 0.95 0.35 0.98
h = 2 1.20 0.35 0.98
h = 3 0.96 0.36 0.98
h = 6 1.33 0.34 0.97

Notes: γ denotes the coe�cient on the supervised deep factor forecast from the forecast
combining regression (3.28). Column 4 gives the corresponding HAC standard errors using
the Bartlett kernel and a bandwidth of bT (1/3)c = 7. The last column reports the cross-
correlation between the forecast error series of the linear factor model and the supervised
deep factor model.

the forecasting error series are highly correlated.

Sometimes improvements in forecasting accuracy can be attributed to a good

performance during a particular period of time only. Table 3.3 reports the fore-

casting performance of the supervised deep factor model in relation to the linear

factor model over two subsamples. The �rst periods covers the �Great Moder-

ation� ' (1985-1 to 2006-12). The second period ranges from 2007-01 to 2019-12

and includes the �nancial crisis. In both subsamples the relative MSFE is below

1 for almost all forecasting horizons and forecasting targets which indicates a

superior forecasting accuracy of the deep factor model. For the �rst period the

improvement is signi�cant at the 5% level in 11 of 16 cases, for the second in

8 of 16 cases. Overall there is no clear indication that the superiority of deep

factor model di�ers between both periods.

To see how the relative forecasting accuracy evolves over time, Figure 3.2

plots the Giacomini and Rossi (2010) �uctuation test statistic, that is obtained

as the standardized di�erence between the MSFE of the linear factor model and

the MSFE of the supervised deep factor model calculated over a 10-years-rolling

window. While the accuracy improvements of the deep factor model are signif-
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Table 3.3 Subset results

Sample 1985− 2006 2007− 2019

Statistic
forecast
horizon

rel.
MSFE

DM
statistic

rel.
MSFE

DM
statistic

Industrial Production h = 1 0.96 1.14 0.85 2.53
h = 2 0.94 1.69 0.92 1.57
h = 3 0.91 1.84 0.97 0.29
h = 6 0.91 1.36 0.98 0.24

Nonfarm Employment h = 1 1.01 -0.16 0.90 1.67
h = 2 0.91 2.05 0.84 1.97
h = 3 0.89 1.91 0.85 1.87
h = 6 0.93 1.08 0.77 2.14

Real Manufacturing and
Trade Industrie Sales

h = 1 0.88 2.96 0.88 1.94
h = 2 0.92 2.72 0.96 0.92
h = 3 0.93 1.50 1.03 -0.69
h = 6 0.92 1.53 0.99 0.17

Real Personal Income
ex Transfer Receipts

h = 1 0.97 1.20 0.98 0.47
h = 2 0.94 2.12 0.96 1.05
h = 3 0.95 1.32 0.97 0.69
h = 6 0.98 0.45 0.82 3.11

Notes: �rel. MSFE� denotes the relative root mean squared forecast error of the deep factor
model with supervision parameter α = 0.5 against the linear factor model. Values below 1.00
indicate a higher forecast accuracy of the deep factor model. Forecast from the deep factor
model are obtained according to equation (3.27). �DM statistic� refers to the results of the
Diebold and Mariano (1995) test with HAC standard errors using the Bartlett kernel and a
bandwidth of bT (1/3)c, where T denotes the sample size.

icant over the entire forecasting period in most cases as reported in Table 3.1,

Figure 3.2 shows that signi�cance is not guaranteed over rolling subperiods ac-

cording to the Giacomini and Rossi (2010) test. Nevertheless Figure 3.2 indicates

that the superior performance of the deep factor model cannot be attributed to

a single time period or event. Although the relative forecasting performance

�uctuates over time, the deep factor model seems to be the preferred forecasting

tool in most periods.

3.5 Conclusion

This study shows that variational autoencoders, which can be understood as a

nonlinear extension of the factor model (deep factor models), have the potential

to provide improved forecasts in a data-rich environment. Both approaches aim

at estimating a low-dimensional representation of the observed data and share a

common core, that is outlined in this study. They di�er, however, with respect

to the estimation approach and the ability to identify the latent factor space.
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(c) Real Manufacturing and Trade Industries Sales
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(d) Real Personal Income ex Transfer Receipts

Notes: The �gure shows the �uctuation test statistic and the 5% critical value (red dashed
line) of the Giacomini and Rossi (2010) �uctuation test. The test statistic is obtained as
the standardized di�erence between the MSFE of the linear factor model and the MSFE
of the supervised deep factor model calculated over a 10-years-rolling window. The test
statistic is calculated with HAC standard errors using the Bartlett kernel and a bandwidth
of bT (1/3)c = 4. Values above 0 indicate a better forecast accuracy of the supervised deep
factor model.

Fig. 3.2 Fluctuation test statistic.

An adjustment is proposed that adapts the VAE framework for the forecasting

exercise. The empirical application on four major US macroeconomic time series

reveals the potential of variational autoencoders to signi�cantly improve the

forecasting accuracy over the famous factor model approach of Stock and Watson

(2002b). The architecture of the neural networks applied within the VAE model

is rather elementary in this study. The impact of exploiting more sophisticated

network structures, that allow, e.g., for the inclusion of time lags of the predictor
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variables, remains subject to further investigation. Moreover, the choice of the

supervision parameter can be re�ned to enhance the forecasting capability of the

deep factor model.

Natural extensions are the inclusion of autoregressive lags of the forecasting

target and a dynamic factor structure within the variational autoencoder frame-

work. From an empirical perspective, the former is, for instance, expected to

be relevant for in�ation forecasting. Another interesting objective for further

research is how the deep factor model can be reframed to provide some use-

ful information about the latent factor space itself, which concerns questions

regarding the interpretability and the identi�cation of the factor estimates.
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Chapter 4

Improving the Diebold & Mariano

Test under Forecast Rationality

4.1 Abstract

One of the most popular statistics to compare the predictive accuracy of two

competing forecasts is the Diebold and Mariano (DM) test. In this study, it

is suggested to decompose the mean squared error loss di�erential such that

a simpli�ed and more powerful variant of the test statistic can be derived un-

der the assumption of rational forecasts. When comparing forecasts from esti-

mated models, the estimation error uncertainty generally has to be taken into

account. To prevent size distortions that can occur when the number of forecasts

in relation to the number of estimation sample observations is relatively large,

a simple-to-use adjustment to account for parameter estimation uncertainty is

proposed. This adjustment remains valid under a �xed estimation scheme and

shows good results for the rolling and recursive scheme as well. Furthermore,

the applicability of the adjusted test statistic in a nested forecast comparison is

discussed. Despite the nonstandard limiting distribution in the case of nested

forecasts, simulation evidence suggests that the use of standard normal critical

values yields actual sizes close to nominal size in �nite samples.

4.2 Introduction

Forecasting plays a critical role both in economic research and policy-making.

Being able to compare the accuracy of competing forecasts of the same outcomes

by a formal statistical procedure is important to discriminate between good an

bad forecasts. The evaluation of competing forecasts has become an extensive

�eld in the econometric literature. One of the most popular statistics to com-

pare the predictive accuracy of two forecast is the Diebold and Mariano (1995,

henceforth DM) test that considers the null hypothesis of zero mean in a series

de�ned as the loss di�erential, i.e., the di�erence between the two forecast er-
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rors' loss functions. In empirical applications the most prominent measure for

the accuracy di�erence of two forecast is the mean squared error (MSE) loss

di�erential. In this study the MSE loss di�erential is decomposed and it is sug-

gested to exploit a rationality adjusted loss di�erential in the framework of the

DM test. Under the assumption of rational forecasts a simpli�ed variant of the

DM test for the null hypothesis of equal MSE is derived and it is shown that the

power can be considerably improved by this adjustment.

The key assumption for the power improvement of the adjusted DM test statis-

tic is forecast rationality. Imposing forecast rationality seems to be an appro-

priate assumption. At �rst sight it is not reasonable why a forecaster whose

objective is to minimize the MSE, should stick to a nonrational (i.e., biased

and/or ine�cient) forecast, when there is room for presumably easy improve-

ment. Nevertheless, there is some evidence that analysts are not always rational

in their forecasts. The e�ect of rationality violations on the adjusted DM test is

brie�y discussed.

The original DM test only exploits the forecast errors, and makes assumptions

directly on the forecast error loss di�erential. When the forecasts stem from es-

timated statistical models, nested or non-nested, the impact of the parameter

estimation uncertainty on the distribution of the DM test statistic generally has

to be taken into account. West (1996) derives how parameter estimation error

may a�ect the limiting distribution of the DM test statistic. Ignoring the e�ect

of parameter estimation uncertainty can result in non-negligible size distortions

when the number of forecasts in relation to the number of observations used

for parameter estimation is not su�ciently small. For the rationality adjusted

DM test the e�ect of parameter estimation error is analyzed and a simple-to-

implement adjustment is proposed to approximately incorporate the e�ect of

parameter estimation uncertainty on the rational DM test statistic. This adjust-

ment holds under a �xed forecasting scheme and shows decent results for the

rolling and recursive scheme as well.

Additionally, the applicability of the rationality adjusted DM test in a nested

forecast comparison is discussed. McCracken (2007) derives the non-Gaussian

limit distribution of the DM test statistic in a nested forecast environment. Clark

and West (2007) argue that after an adjustment of the MSE loss di�erential stan-

dard normal critical values are still reasonably accurate for practical purposes.

This adjustment accounts for the additional noise of the nesting model from

estimating parameters whose population values are zero under the null. The

rational DM test bene�ts from its adjustment on the MSE loss di�erential in a
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similar fashion as the approach of Clark and West. Simulation results indicate

that using standard normal critical values yields nearly accurate results in the

context of nested models.

Furthermore one should note that this study compares predictive ability at

the population level, i.e., the accuracy of forecasts at unknown population values

of the forecasting model parameters (West, 1996). In contrast, Giacomini and

White (2006) consider an environment with asymptotically non-vanishing esti-

mation uncertainty. They suggest tests of �nite-sample predictive ability that

are designed to assess the accuracy of a forecasting method in a (�nite) sample

of the size at hand.

The remainder of this paper is structured as follows. Section 4.3 introduces

the rationality adjusted DM test statistic both in a model-free framework and

in an environment where the forecast are built on either nested or non-nested

estimated statistical models. Furthermore, the adjustment for incorporating the

e�ect of parameter estimation uncertainty is derived. The section concludes with

a discussion of the rationality assumption and the e�ect of rationality violations

on the adjusted DM test statistic. Section 4.4 provides Monte Carlo evidence

of the small sample properties of the rationality adjusted DM test for survey

and model predictions. Additionally the case of nested forecasts is examined.

Section 4.5 concludes and provides some directions for further research.

4.3 The Diebold & Mariano Test under Rational
Forecasts

Diebold and Mariano (1995) base their test for comparing predictive accuracy

on forecast errors only, and make assumptions directly on the forecast error loss

di�erential. The potential e�ect of parameter estimation errors of underlying

statistical models that may have generated the forecasts is not taken into ac-

count. As Diebold (2015) rea�rms, �the DM test was intended for comparing

forecasts [...]. The DM test was not intended for comparing models�. Hence, in

its original form, the DM test is designed for a model-free environment, e.g., for

comparing forecasts that stem from survey data or expert judgment.

West (1996) extends the DM test to account for parameter estimation error.

Using the Diebold-Mariano-West framework, the original question can be recast

as whether the forecast error loss di�erential can be used to learn something

about the accuracy of the competing forecasts when the true values of the model
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parameters were known.1 Despite its original purpose and the extension of West

to include the e�ect of parameter estimation error, the DM test in its original

form has commonly been used for comparing models in pseudo-out-of-sample

forecasting exercises.

This section introduces the proposed adjustment of the DM test �rst in the

original framework to compare forecasts that are not based on (estimated) sta-

tistical models. The e�ect of parameter estimation error on the adjusted test

statistic is analyzed subsequently.

4.3.1 Comparing Rational Forecasts in a Model-Free Environment

The objective is to compare the accuracy of forecasts of some univariate time-

series {Yt} that is generated by a stationary and ergodic stochastic process. The

two competing h-step ahead forecasts of Yt+h based on information up to time

period t are denoted by Ŷi,t+h|t for i = 1, 2. The corresponding forecast errors

are obtained as ei,t+h|t = Yt+h − Ŷi,t+h|t for i = 1, 2.

As recapitulated by Patton and Timmermann (2007), a rational forecast Ŷ ∗t+h|t
is de�ned as the value of Ŷt+h|t that, conditional on the information set at time

t, minimizes the expected loss

Ŷ ∗t+h|t ≡ arg min
Ŷt+h|t

E
[
L
(
Yt+h, Ŷt+h|t

)]
,

Provided that the competing forecasts are covariance stationary, it follows for

the rational forecast errors under the mean squared error (MSE) loss function

(Diebold and Lopez, 1996):

(i) E(e∗1,t+h|t|I1,t|t) = 0 and (ii) E(e∗2,t+h|t|I2,t|t) = 0, (4.1)

where I1,t and I2,t denote the relevant information sets associated with time

period t. These conditions can be checked by using the Mincer and Zarnowitz

(1969) approach for example. In many empirical applications, it is natural to

assume that forecasts are rational. If some forecasts violate the rationality con-

dition, this implies that the forecasting method does not fully incorporate the

available information and should be revised. It is therefore appealing to impose

the rationality condition in order to improve the power of the Diebold-Mariano

test.

1Note the di�erence to the Giacomini and White (2006) test for conditional predictive ability
which compares the accuracy of forecasts given that these are constructed using estimated
parameters.
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The MSE loss di�erential of the Diebold-Mariano test can be decomposed as

dt = e2
1,t+h|t − e

2
2,t+h|t

=
(
Yt+h − Ŷ1,t+h|t

)2
−
(
Yt+h − Ŷ2,t+h|t

)2

= Ŷ2,t+h|te1,t+h|t − Ŷ1,t+h|te2,t+h|t − Ŷ1,t+h|te1,t+h|t + Ŷ2,t+h|te2,t+h|t. (4.2)

Under rational forecasts (4.1) the latter two terms are zero in expectation no

matter whether the null hypothesis is true or not. Since these two terms just

add noise to the test statistic, the power of the test can be improved by using

the reduced expression

dr,t = Ŷ2,t+h|te1,t+h|t − Ŷ1,t+h|te2,t+h|t =
(
e1,t+h|t − e2,t+h|t

)
Yt+h. (4.3)

Analogously to the original formulation of Diebold and Mariano (1995), a test

statistic for the null hypothesis of equal forecast accuracy, E [dr,t] = 0, is con-

structed as

tr =
1

ω̂
√
T

T∑
t=1

dr,t, (4.4)

which is asymptotically N (0, 1) under the null. ω̂2 denotes a consistent long-run

variance estimator for

ω2 = lim
T→∞

E

(
1√
T

T∑
t=1

dr,t

)2

.

4.3.2 The Rational Diebold & Mariano Test under Parameter
Uncertainty

The analysis so far considered forecasts that are not based on (estimated) statis-

tical models. As it has been shown by West (1996), parameter estimation error

must in principle be taken into account when the forecasts are generated by es-

timated models. Although the impact of parameter estimation errors vanishes

asymptotically, neglecting them can lead to size distortions in �nite samples as

the asymptotic variance ω2 is generally underestimated in this case. To ana-

lyze the behavior of the proposed rational DM test under parameter estimation

uncertainty, the following framework based on Breitung and Knüppel (2020) is

used.

Let {yt+h}Pt=1 denote the sample of P observations of a random variable yt to

be predicted, where h denotes the forecasting horizon. yt is assumed to be gener-

ated by a stationary and ergodic stochastic process {Yt}. Let ŷ1,t+h|t and ŷ1,t+h|t
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denote the corresponding out-of-sample forecasts based on the relevant informa-

tion sets I1,t and I2,t of two competing models. The forecasts are realizations

of the forecast generating processes
{
Y

(θi)
i,t+h|t

}
, where θi is the parameter vector

of forecasting model i = 1, 2. The parameters are estimated under the recursive

estimation scheme such that the parameter vectors are updated at each fore-

casting origin t = 1, . . . , P using the sample {−R+ 1,−R+ 2, . . . , t}.2 Hence,

θ̂i,t indicates an estimate based on t+R observations. The parameter estimates

of the competing models and the pre-evaluation sample size R are assumed to

be unknown. For the analysis, only the observed actual values {yt+h}Pt=1 and

their h-step ahead forecasts
{
ŷi,t+h|t

}P
t=1

, for i = 1, 2, are considered. For the

competing forecast functions Y
(θ̂i,t)

i,t+h|t, the following assumption is made:3

Assumption 1. (i) The parameters are estimated consistently with

a) θ̂0 − θ = Op

(
R−1/2

)
,

b) sup
t∈{1,...,P}

||θ̂t − θ̂0|| = Op

(√
t

R

)
for t = 1, 2, . . . , P,

where θ̂0 denotes the estimator based on time periods {−R+ 1,−R+ 2, . . . , 0}.
(ii) Let Dt+h(θ) = ∂Y

(θ)
t+h|t/∂θ and D̄t+h(θ) = P−1

∑P
t=1Dt+h(θ). For all θ∗i ∈

[θi − ε, θi + ε] with ε > 0 it holds that

1

P

P∑
t=1

||Dt+h(θ∗)− D̄h+h (θ∗) || p→ D̄2 with 0 ≤ D̄ ≤ ∞

E||Dt+h(θ∗)Yt+h||2+δ <∞ for some δ > 0 and all t.

Part (i) a) supposes the usual parametric convergence rate of the estimation

error in the pre-evaluation sample {−R+ 1, . . . , 0}, whereas part (i) b) limits

the variation of the estimators in recursive estimation procedure within the eval-

uation sample. Part (ii) guarantees the existences of a central limit theorem.

As before the adjusted DM test considers the reduced loss di�erential derived

from equation (4.2)

d
(θ̂)
r,t = Ŷ2,t+h|tê1,t+h|t − Ŷ1,t+h|tê2,t+h|t, (4.5)

2The analysis carries over to a rolling window estimation scheme if one assumes that the
window size R gets large relative to the size of the evaluation period.

3Note that for notational convenience the superscript indicating the dependence on parameter
estimates is henceforth omitted. Ŷi,t+h|t refers to forecast function i based on estimated

parameters θ̂i, and Yi,t+h|t denotes the (hypothetical) forecast function based on the true
parameter vector θi. The same notational distinction applies to the forecasts error êi,t+h|t
and ei,t+h|t, respectively.
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and the test statistic based on a sample of forecasts
{
ŷ1,t+h|t, ŷ2,t+h|t

}P
t=1

and

observations {yt+h}Pt=1 is calculated by

t(θ̂)r =
1

ω̂
√
P

P∑
t=1

d
(θ̂)
r,t . (4.6)

For the adjusted DM test statistic under parameter estimation error, the fol-

lowing proposition holds:

Proposition 1. Assume that Assumption 1 holds. If R→∞, P →∞, P/R→
0, then

t(θ̂)r =
√
P
d̄r
ω̂

+Op

(
P

R

)
d→ N (0, 1),

where d̄r = 1
P

∑P
t=1

(
e1,t+h|t − e2,t+h|t

)
Yt+h and ω̂

2 denotes a consistent long-run

variance estimator for ω2 = limP→∞ E
(

1√
P

∑P
t=1 dr,t

)2
.

The proof is relegated to Appendix B.1.

In the analysis, it has been assumed that only the observed values {y1+h, . . . ,

yP+h} and the competing forecasts {ŷi,t+h, . . . , ŷi,P+h} are available. It has

been shown that the parameter estimation error can be ignored when R → ∞,

P →∞ and P/R→ 0. Unlike in the case of the original Diebold-Mariano test,

the estimation error is asymptotically irrelevant only for limP,R→∞
P
R = 0. For

the DM test this requirement can be relaxed under certain conditions as shown

by West (1996). The most prominent example is when the measure of forecast

accuracy has also been used for estimating the model parameters. This arises, for

instance, when a quadratic loss function (MSE) is used to evaluate the accuracy

of forecasts that stem from two non-nested models estimated by ordinary least

squares.

Following West (1996) it is possible to derive the limiting distribution for the

case that P/R converges to some constant. This, however, requires to know the

estimation samples and complete information about how the forecasting models

have been estimated. As these information are frequently not available or simply

neglected for reasons of practicality when dealing with complex models, the e�ect

of parameter estimation error is often not taken into account in empirical forecast

comparisons. Unfortunately, for typical sample sizes the additional term due to

the parameter estimation error has a non-negligible e�ect on the adjusted DM

test statistic and can induce size distortion if the ratio P/R is not su�ciently

small.
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An (Approximate) Size Correction Strategy

In line with the argument above regarding the implementation of the adjusted

DM test in practice, two approximate size corrections are proposed to account

for the impact of parameter estimation uncertainty. The objective is to provide

a simple-to-use size correction in the spirit of West (1996), that can be applied

even when only the observed values of the forecasting target and the competing

forecasts are available, i.e., there is no information on the parameter estimates

of the competing models and the pre-evaluation sample. The proposed size

adjustments are derived under fairly restrictive assumptions but display a decent

performance under various settings in the simulation experiments.

Assume the forecast function of model i to be Ŷi,t+h|t = X ′i,tβ̂i, where the vec-

tor Xi,t contains the predictor variables. To analyze the asymptotic distribution

of the adjusted DM test statistic consider the following decomposition

1√
P

P∑
t=1

d
(θ̂)
r,t =

1√
P

P∑
t=1

(
Ŷ2,t+h|tê1,t+h|t − Ŷ1,t+h|tê2,t+h|t

)
=

1√
P

P∑
t=1

(
X ′2,tβ̂2

(
Yt+h −X ′1,tβ̂1

)
−X ′1,tβ̂1

(
Yt+h −X ′2,tβ̂2

))
=

1√
P

P∑
t=1

(
e1,t+h|t +X ′1,t

(
β1 − β̂1

)
− e2,t+h|t −X ′2,t

(
β2 − β̂2

))
Yt+1.

(4.7)

The case of a �xed estimation scheme for the parameter estimates is stud-

ied. This allows us to apply a simple approach to account for the estima-

tion uncertainty as will be shown below. When the model parameters are

estimated by least squares over a �xed estimation window using the sample

{−R+ 1,−R+ 2, . . . , 1} one obtains

(
β̂i − βi

)
=

(
1−h∑

s=−R+1

Xi,sX
′
i,s

)−1 1−h∑
s=−R+1

Xi,sei,s+h for i = 1, 2,

where ei,s+h denotes the residual from the estimation sample of model i.
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Consequently, equation (4.7) can be rewritten as

1√
P

P∑
t=1

d
(θ̂)
r,t =

1√
P

P∑
t=1

(
e1,t+h|t − e2,t+h|t

)
Yt+h

−
√
P

R

(
1

P

P∑
t=1

X ′1,tYt+h

)(
1

R

1−h∑
s=−R+1

X1,sX
′
1,s

)−1
1√
R

1−h∑
s=−R+1

X1,se1,s+h

+

√
P

R

(
1

P

P∑
t=1

X ′2,tYt+h

)(
1

R

1−h∑
s=−R+1

X2,sX
′
2,s

)−1
1√
R

1−h∑
s=−R+1

X2,se2,s+h.

The �rst term on the right-hand side represents uncertainty about the adjusted

loss di�erential d(θ)
r,t when the true parameter vectors β1 and β2 were known. The

latter terms represent uncertainty about the parameter estimates.

So far only algebraic manipulations have been done. In order to derive the

asymptotic distribution of the adjusted loss di�erential under parameter esti-

mation uncertainty, the assumptions in West (1996) are required. Speci�cally,

one has to assume that the sequences {(ei,s+h, Xi,s)
′} and {(Yt+h, Xi,t)

′} are

covariance stationary, mixing, and have bounded fourth moments. With these

assumptions in hand one obtains for P →∞, R→∞ such that limP,R→∞
P
R = π

1√
P

P∑
t=1

d
(θ̂)
r,t =

1√
P

P∑
t=1

(
e1,t+h|t − e2,t+h|t

)
Yt+h

− E
[
X ′1Yt+h

] (
E
[
X1X

′
1

])−1
√
π

R

1−h∑
s=−R+1

X1,se1,s+h

+ E
[
X ′2Yt+h

] (
E
[
X2X

′
2

])−1
√
π

R

1−h∑
s=−R+1

X2,se2,s+h + op (1)

=
1√
P

P∑
t=1

(
e1,t+h|t − e2,t+h|t

)
Yt+h

− β′1

√
π

R

1−h∑
s=−R+1

X1,se1,s+h + β′2

√
π

R

1−h∑
s=−R+1

X2,se2,s+h + op (1)

=
1√
P

P∑
t=1

(
e1,t+h|t − e2,t+h|t

)
Yt+h

+

√
π

R

1−h∑
s=−R+1

(Y2,s+he2,s+h − Y1,s+he1,s+h) + op (1) .
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Hence,

1√
P

P∑
t=1

d
(θ̂)
r,t =

1√
P

P∑
t=1

d
(θ)
r,t +

√
π

R

1−h∑
s=−R+1

ξs + op (1) ,︸ ︷︷ ︸
impact of parameter estimation error

where ξs = Y2,s+he2,s+h − Y1,s+he1,s+h. The second summand accounts for the

parameter estimation error and vanishes only for limP,R→∞
P
R = 0 as it has

already been stated in Proposition 1. When P/R converges to some constant,

the impact of parameter estimation uncertainty has to be taken into account

when specifying the limiting distribution of d(θ̂)
r,t .

Letting both P and R tend to in�nity, both statistics P−1/2
∑P

t=1 d
(θ)
r,t and

R−1/2
∑1−h

s=−R+1 ξs are asymptotically normal and independent with asymptotic

variances Sff and Shh, respectively. The asymptotic normality of the sample

mean of ξs = Y2,s+he2,s+h − Y1,s+he1,s+h follows from the assumptions made

above. Recall that the forecast function of model i has been assumed to be

Yi,t|t+h = X ′i,tβi. Together with the assumption that the sequence
{

(ei,s+h, Xi,s)
′}

is covariance stationary, mixing, and has bounded fourth moments the asymp-

totic normality of R−1/2
∑1−h

s=−R+1 ξs can be deduced by using a central limit

theorem under weak dependence. The asymptotic independence of the samples

means of d(θ)
r,t and ξs intuitively follows from their mixing properties and the

fact that P−1/2
∑P

t=1 d
(θ)
r,t and R

−1/2
∑1−h

s=−R+1 ξs are built from non-overlapping

samples due to the �xed estimation scheme employed.

Since a linear combination of normal random variables is normally distributed

it holds that under the null of equal forecast accuracy and for limP,R→∞
P
R = π

1√
P

P∑
t=1

d
(θ̂)
r,t

d−→ N
(
0, ω2

)
,

where

ω2 = Sff + πShh

with the variance components Sff = limP→∞Var
(
P−1/2

∑P
t=1 d

(θ)
r,t

)
and Shh =

limR→∞Var
(
R−1/2

∑1−h
s=−R+1 ξs

)
.

Sff represents the asymptotic variance of the adjusted loss di�erential given

the true parameter values were known. Shh captures the additional uncertainty

due to parameter estimation error of the competing models. Ignoring the latter

can results in non-negligible size distortions when the ratio π is not su�ciently

small. To get an appropriate estimate of Shh, however, requires knowledge about
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the estimation error of the competing models. In particular for the framework

above, the residuals {êi,s+h}1−hs=−R+1 and predictions {ŷi,s+h}1−hs=−R+1 from the es-

timation sample are required to construct an estimate for Shh. When these are

not available or simply for the sake of convenience, it is proposed to replace the

estimation sample values by their forecast sample counterparts {êi,t+h, ŷi,t+h}Pt=1.

These values are available to the researcher anyhow, when conducting the test.

When the parameter estimates are stable over time, this strategy yields asymp-

totically valid results.

Summarizing the derivations above: In order to account for the e�ect of

parameter estimation error on the adjusted DM test statistic t(θ̂)r from equa-

tion (4.6) in the case of limP,R→∞ P/R = π, it is proposed to approximately

estimate the asymptotic variance ω2 by

ω̂2 = Ŝff + πŜhh, (4.8)

where Ŝff and Ŝhh denote consistent long-run variance estimators of d(θ)
r,t and ξs.

When the pre-evaluation sample {−R+ 1, . . . , 1− h} is unknown it is suggested

to exploit values from the evaluation sample for calculating Ŝhh. A typical

estimate for the long-run variance is then the weighted autocovariance estimate,

for instance, in the case of Shh

Ŝhh = γ̂0 + 2
P−1∑
j=1

k

(
j

M

)
γ̂j ,

where γ̂j = P−1
∑P−1

t=1 (ξ̂t − ξ̄)(ξ̂t+j − ξ̄), and k being an appropriate kernel

function (e.g. the Bartlett kernel). M denotes the bandwidth parameter.

The adjustment on the long-run variance estimate ω̂2 for incorporating the

e�ect of parameter estimation uncertainty will simplify even further if one is will-

ing to assume that Yi,s+h ≈ Ys+h for i = 1, 2. In this case ξs can be approximated

by

ξs = e2,s+hY2,s+h − e1,s+hY1,s+h ≈
(
e1,s+h|t − e2,s+h|t

)
Ys+h.

Using this approximation and only exploiting values from the evaluation sample

as proposed above, an approximate estimate of the long-run variance ω2 results

from simply pre-multipliying Ŝff by a constant factor (1 + π). Hence, an al-

ternative approximate estimate for ω2 that takes into account the parameter

estimation uncertainty is given by

ω̂2 = (1 + π) Ŝff , (4.9)
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where Ŝff still denotes a long-run variance estimator of d(θ)
r,t .

The approximate long-run variance estimates for ω2 in equations (4.8) and

(4.9) that account for the impact of parameter estimation error on the test

statistic have been derived under the assumption of a �xed estimation scheme.

Under a recursive or a rolling estimation scheme the appropriate adjustment à

la West (1996) becomes more demanding, and the estimation of the long-run

variance ω2 cannot be simply approximated by using values from the evaluation

sample only. However, it is suggested to employ the estimates from equation

(4.8) or (4.9) under these estimation schemes as well if a thorough adjustment in

the spirit of West (1996) is either not possible or not intended. The major con-

tribution to the uncertainty due to parameter estimation errors typically stems

from θ̂0− θ, i.e., from the pre-evaluation sample part that is not overlapping the

evaluation sample. The di�erence from applying the recursive scheme instead of

the �xed scheme, θ̂t− θ̂0, is typically small if R is reasonably large (see Assump-

tion 1). Consequently, the estimates in equations (4.8) and (4.9) may serve as a

means to obtain approximate estimates of the long-run variance ω2 under the re-

cursive estimation scheme as well. Indeed, the simulations in Section 4.4.3 show

that the adjusted DM test is reasonably sized under the recursive and rolling

estimation scheme when ω2 is estimated according to equation (4.8) or (4.9).

4.3.3 Comparing Nested Forecasts

It is well known that in particular situations the DM test statistic has a non-

standard limiting distribution. The typical discussion of the problem considers

forecasts from linear models that are estimated by least squares:

Model 1: Y1,t+h = X ′1,tβ1 + e1,t+h, (4.10)

Model 2: Y2,t+h = X ′1,tδ + Z ′tγ + e2,t+h ≡ X ′2,tβ2 + e2,t+h, (4.11)

where X ′2,t = (X ′1,t, Z
′
t)
′ and β2 = (δ′, γ′)′. Furthermore, it is assumed that

E [e1,t+hX1,t] = 0 and E [e2,t+hX2,t] = 0.

Since the �rst forecast results as a special case of the second forecast when

γ = 0, the forecast Ŷ1,t+h|t = X ′1,tβ̂1 is said to be nested within Ŷ2,t+h|t =

X ′2,tβ̂2. The problem with testing the null hypothesis of equal population-level

predictive ability is that the forecasts errors are asymptotically identical under

the null causing the asymptotic variance ω2 of the loss di�erential to degenerate.

However, the results in West (1996) are only applicable if ω2 is positive, which
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is a crucial condition for asymptotic normality of the test statistic. Otherwise

1√
P

P∑
t=1

dt
p→ 0

if ω2 is zero. McCracken (2007) develops a di�erent set of asymptotics that al-

lows for testing equal one-step-ahead population-level predictive ability between

two nested models. He shows that when the number of observations used to

generate initial estimates of the models R and the number of forecasts observa-

tions P increase at the same rate, the limiting distribution of the DMW test is

non-standard and can be represented as functionals of Brownian motions. The

asymptotic null distributions under the di�erent estimation schemes depend on

the number of excess parameters of the larger model and the ration π = P/R.

The appropriate critical values for various comparison settings are simulated and

provided by McCracken. Clark and McCracken (2005) extend the analysis to

allow for a comparison of direct multistep-ahead forecasts and show how to con-

struct asymptotic critical values from Monte Carlo simulations of the asymptotic

distribution. As an alternative procedure they propose a bootstrap algorithm

such that the critical values can be obtained as percentiles of the bootstrapped

test statistic. In subsequent work, Clark and McCracken (2012) develop a �xed

regressor bootstrap that may be easier to implement from a practitioner's point

of view.

A di�erent approach to compare nested forecasts is proposed by Clark and

West (2007). They argue that under the null the larger model exhibits additional

noise from estimating parameters whose population values are zero. This a�ects

the MSE of the parsimonious model to be smaller than that of the larger model.

By a simple adjustment of the MSE loss di�erential they discard the additional

noise from parameter estimation and �nd that the use of standard normal critical

values yields size close to, but a little less than, nominal size. In particular, Clark

and West (2007) rewrite the MSE loss di�erential as

1

P

P∑
t=1

dt =
1

P

P∑
t=1

(
ê2

1,t+h|t − ê
2
2,t+h|t

)
= −2

1

P

P∑
t=1

(
Ŷ1,t+h|t − Ŷ2,t+h|t

)
ê1,t+h|t

− 1

P

P∑
t=1

(
Ŷ1,t+h|t − Ŷ2,t+h|t

)2
,

(4.12)

67



Chapter 4 Improving the Diebold & Mariano Test under Forecast Rationality

and argue that it is reasonable to expect that P−1
∑P

t=1 (Ŷ1,t+h|t − Ŷ2,t+h|t)ê1,t+h|t

is approximately zero under the null hypothesis of equal forecast accuracy. Since

−P−1
∑P

t=1 (Ŷ1,t+h|t − Ŷ2,t+h|t)
2 < 0, it can be expected that the sample MSE

from the parsimonious model is less than that of the alternative model. To

put it di�erently the latter term in equation (4.12) induces noise from parame-

ter estimation and causes a bias in the test statistic. Consequently, Clark and

West suggest to discard this term to properly center the statistic such that its

expectation will be zero under the null. Clark and West �nd that the use of con-

ventional standard errors yields an asymptotic approximate normal test statistic

that is accurate for practical purposes. Their approach considers the reduced

loss di�erential

dcw,t =
(
Ŷ2,t+h|t − Ŷ1,t+h|t

)
ê1,t+h|t. (4.13)

Note the similarity to Harvey et al. (1998) who propose to test E[e1,t+h|t(e1,t+h|t−
e2,t+h|t)] as an implication of encompassing. Clark and West prefer the interpre-

tation of executing a comparison of MSEs after adjusting for the upward bias

in the MSE of the larger model. This interpretation requires to distinguish be-

tween tests of E[e1,t+h|t(e1,t+h|t − e2,t+h|t)] in nested and non-nested forecasts

comparisons.

In the context of nested forecasts the rationality adjusted DM test bene�ts

from the same advantage as the approach of Clark and West (2007). The simu-

lations in Section 4.4.4 show that it remains properly centered under null even

when the nesting model su�ers from a potentially larger parameter estimation

error. Similar to Clark and West, the rationality adjustment a�ects a centering

of the DM test statistic such that is has approximate mean zero under the null.

Indeed, both tests are closely related when the forecast comparison is nested.

Recall that the rationality adjusted DM test is based on the sample

1

P

P∑
t=1

dr,t =
1

P

P∑
t=1

(
Ŷ2,t+h|tê1,t+h|t − Ŷ1,t+h|tê2,t+h|t

)
, (4.14)

whereas Clark and West (2007) consider

1

P

P∑
t=1

dcw,t =
1

P

P∑
t=1

(
Ŷ2,t+h|t − Ŷ1,t+h|t

)
ê1,t+h|t (4.15)

to test the null hypothesis of equal MSE. Imposing the assumption of rational

forecasts, i.e. E[e1,t+h|tY1,t+h|t] = 0, the expectation of equation (4.15) reduces

to E
[
Y2,t+h|te1,t+h|t

]
. Thus, under rational forecasts the di�erence between the

expectation of the Clark and West and the rational DM statistic is given by
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E[Y1,t+h|te2,t+h|t]. When this term is zero both tests are equal in expectation and

test the same hypothesis. This is in general not the case, but holds for the nested

scenario of equations (4.10) and (4.11). Under the null e2,t+h|t is uncorrelated

with X2,t. Since in the nested case X1,t is a strict subset of the elements of X2,t,

it follows that E[X1,te2,t+h|t] = 0 and, hence E[Y1,t+h|te2,t+h|t] = 0.

As argued above, only in a nested forecast comparison both approaches test

the same hypothesis. The adjustment of Clark and West essentially results in an

encompassing test whereas the rationality adjusted DM test is based on the null

hypothesis of equal forecasting accuracy. Clark and West distinguish with their

approach between tests of E[e1,t+h|t(e1,t+h|t−e2,t+h|t)] for nested and non-nested

models. Only when the models are nested their approach can be interpreted

as a test of equal MSE after adjusting for the additional noise from parameter

estimation of the larger model. In contrast, the rationality adjusted DM test

remains (approximately) applicable for both nested and non-nested forecasts.

When the models are nested, a higher power can be achieved by testing for

encompassing instead of equal predictive accuracy as the simulations in sec-

tion 4.4.4 indicate. However, whether the forecasts stem from nested models

may not always be as distinct as in equations (4.10) and (4.11). A simple ex-

ample is when the researcher has only excess to the forecasts and does not know

the underlying model structures. In this case, it is not clear whether a test for

nested models or the usual DM test statistic is appropriate. When the forecasts

stem from non-nested models both approaches have di�erent implications as

the former tests for encompassing whereas the latter considers equal predictive

accuracy under the null.

Even when the forecasting models are known, the distinction between nested

and non-nested can be ambiguous. As a simple example assume that the bench-

mark forecast ŷ1,t+h|t involves a few variables only (e.g. an ARMA model),

whereas the alternative model employs a large data set with hundreds of vari-

ables, say by using di�usion indices as predictors. For illustration, assume

that Ŷ1,t+h|t is obtained from a simple dynamic regression model Y1,t+h|t =

α1Yt + β1Xt + e1,t+h. The second prediction is generated by a factor model

with Y2,t+h|t = α2Yt +β2ft + e2,t+h, where ft is a single factor ft = γ′Zt and the

vector Xt is included in Zt. Is this a nested or a non-nested forecast compari-

son? Strictly speaking, the small model results as a special case from setting the

loadings of all other variables except Xt in the factor model equal to zero. Of

course this will never happen in practice and, therefore, the di�erence between

the forecasts Y1,t+h|t and Y2,t+h|t does not tend to zero unless the coe�cients β1
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and β2 are zero such that the standard DM test would usually be applied. The

crucial point is that it does not really matter whether the two models are nested

or not but whether the forecasts are asymptotically identical. One possibility is

that one model results as a special case of some more general model but this is

neither su�cient nor necessary. Whether the forecasts are asymptotically identi-

cal depends on the fact, �rst, whether there exist a region in the parameter space

where both forecasts are identical and, second, whether the actual parameters

are an element of this region.

A conclusion from the discussion is that it cannot always be decided whether

the forecast comparison is nested or non-nested. When this distinction is am-

biguous, the decision whether to use the framework of Clark and West (2007) or

the usual DM approach to test for equal MSE matters. Due to its encompassing

type the Clark and West test can be employed to test the null of equal MSE only

in an environment where the forecasts are clearly nested. In contrast, the ra-

tionality adjusted DM test accounts for the additional noise of the larger model

in a similarly fashion as the Clark and West approach but still remains a test

of equal predictive ability that is both valid in non-nested and approximately

applicable in nested forecast comparisons.

4.3.4 A Brief Discussion of Forecast Rationality

The considerable power improvements of the rationality adjusted DM test (shown

in the subsequent simulation studies) are achieved by discarding the last two

terms of the decomposed MSE loss di�erential in equation (4.2). Under rational

forecasts, these terms are zero in expectation and just add noise to the test statis-

tic. Imposing rationality seems to be an appealing assumption. At �rst sight it is

not reasonable why a forecaster whose objective is to minimize the MSE should

stick to a nonrational, ine�cient forecast, when there is room for presumably

easy improvement. Nevertheless, there is some evidence that analysts are not

always rational in their forecasts. The literature does not allow to make a clear

statement whether (survey) forecasts generally are rational or not. It presents

mixed results depending on the subsamples under consideration and the testing

strategies employed. Recent studies in this �eld include, e.g., Croushore (2010),

Jonsson and Österholm (2012), Patton and Timmermann (2012) and Romer and

Romer (2000). Related studies such as, for instance, Croushore (2012) highlight

that while forecasts may appear rational over the whole sample they may not be

rational during certain periods of time. Following this, Rossi and Sekhposyan

(2016) suggest a test for forecast rationality in the presence of instabilities.
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Another discussion in the literature on forecast rationality centers around the

question whether biases in forecasts should be dedicated to irrationality or to

an asymmetric loss function employed in the forecast generating process (see,

e.g., Elliott et al. (2008)). If the latter is the main driving force, the forecaster's

objective is not minimizing the MSE. Consequently, it is questionable if the

MSE loss di�erential is the appropriate measure for the comparison of competing

forecast. Nevertheless, it remains the most prominent measurement in empirical

applications and is commonly used to evaluate the DM test statistic.

4.4 Monte Carlo Evidence

To compare the small sample properties of the adjusted DM test in di�erent

forecasting scenarios, a number of Monte Carlo experiments are conducted. The

performance of the adjusted DM test is analyzed both in a framework where

forecasts are taken as (statistical) model-free (Section 4.4.2), and in a setting

where parameter estimation error uncertainty from estimated statistical models

is present (4.4.3). Furthermore, the behavior of the adjusted DM test in a nested

forecast comparison is analyzed (4.4.4).

4.4.1 Long-run Variance Estimation

Before proceeding to the Monte Carlo results, a note on the long-run variance

estimators employed in the simulation experiments seems to be appropriate.

Computation of the (adjusted) DM test statistic requires an estimate for the

long-run variance of the (adjusted) loss di�erential. A typical estimate for the

long-run variance is the weighted autocovariances estimate

ω̂2 = γ̂0 + 2

T−1∑
j=1

k

(
j

M

)
γ̂j , (4.16)

where γ̂j = T−1
∑T−1

t=1 (d̂t − d̄)(d̂t+j − d̄), and the kernel function k being de-

termined according to the Bartlett or the uniform kernel. M is the bandwidth

parameter that is often set to M = T 1/3 or M = h − 1, resp. The former is

based on the �nding of Newey and West (1994) that the optimal bandwidth, in

minimal MSE sense, is proportional to M = T 1/3. The latter is motivated by

the argument that optimal h-step-ahead forecasts are at most (h−1)-dependent

(Diebold and Mariano, 1995).

It is well-known that estimation of the long-run variance can be a challenging

task that becomes more di�cult as the forecast horizon and, thus, the order

71



Chapter 4 Improving the Diebold & Mariano Test under Forecast Rationality

of auto-correlation increases, and the forecast sample size declines.4 Instead

of following the usual route in estimating ω2 via equation (4.16), the �xed-m

estimator of Coroneo and Iacone (2020) is used in some simulation settings.

Coroneo and Iacone (2020) report better small sample size properties of the

�xed-m estimator in case of autocorrelated forecast errors - a �nding that is

supported by Harvey et al. (2017) who evaluate the �nite size and power of

di�erent approaches, and also corroborated by the simulation experiments in

this study. Furthermore, this approach is guaranteed to provide positive long-

run variance estimates even in small samples.

The �xed-m estimator of Coroneo & Iacone (2020) is based on a weighted

periodogram estimate. Let

I (λj) =

∣∣∣∣∣ 1√
2πT

T∑
t=1

dte
−iλjt

∣∣∣∣∣
2

denote the periodogram of dt and λj = 2πj/T for j = 0,±1, . . . ,±bT/2c being
the Fourier frequencies.5 Coroneo and Iacone (2020) construct an estimator of

the long-run variance by using the Daniell kernel:

ω̂2 = 2π
1

m

m∑
j=1

I (λj), (4.17)

where m is a function of the bandwidth M . As suggested by Coroneo and

Iacone (2020) m is set to
⌊
T (1/3)

⌋
which they �nd to yield the best size-power

combination in their simulation results. Note that when using the estimate (4.17)

the resulting test statistic is asymptotically t-distributed with 2m degrees of

freedom.

4.4.2 Survey Forecasts

In this section the small sample properties of the adjusted DM test are analyzed

in a model-free environment. The size and power properties of the adjusted DM

test are evaluated under a variety of speci�cations of forecast error contempo-

raneous and serial correlation. The adjusted DM test statistic in equation (4.4)

requires both forecast errors and forecasts themselves which is why the simula-

tion setup has to deviate from the typical experimental design of a model-free

environment where forecast errors only are simulated (see, e.g., Harvey et al.,

4See, e.g., the extensive summary article of Clark and McCracken (2013). For a review on
long-run variance estimation with emphasis on the spectral perspective see Müller (2014).

5b·c refers to the integer value of a number.
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1997).

Consider the following data generating process, in which the forecasting target

is simulated according to

yt+h = µc,t + µs,t + ut+h, (4.18)

where µc,t and µs,t represent the impact of exogenous explanatory variables, and

ut = θ (L) νt with νt
iid∼ N

(
0, σ2

ν

)
and a �nite lag order that will be speci�ed

below. The component µc,t can be interpreted as capturing the (market) infor-

mation that is commonly available to and exploited by both of the competing

forecasters, whereas µs,t summarizes all in�uences on yt+h that are known by

either forecaster 1 or forecaster 2.

Let µc,t follow an AR(1) process with autoregressive parameter |γ| < 1

µc,t = γµc,t−1 + ηt. (4.19)

with ηt
iid∼ N

(
0, σ2

η

)
, and let µs,t be generated from a sum of two independent

MA(q) processes, µs,t = αµs1,t + (1− α)µs2,t, with

µs1,t = θ (L) ε1,t, and µs2,t = θ (L) ε2,t,

where are ε1,t and ε2,t are iid-normal with variances σ2
ε1 and σ2

ε2 , respectively.

The lag order q will be chosen corresponding to the forecasting horizon h with

q = h− 1. Note that the same MA(q)-structure for ut, ε1,t, and ε2,t is imposed

for simplicity. The choice of the lag order q will give a neat control over the

degree of serial correlation of the forecast errors. The competing forecasts use

the commonly known information µc,t and the individual information represented

by µs1,t and µs2,t. They are obtained as

y1,t+h = µc,t + αµs1,t, and y2,t+h = µc,t + (1− α)µs2,t

with associated forecast errors

e1,t+h = (1− α)µs2,t + ut+h, and e2,t+h = αµs1,t + ut+h.

Hence, the forecast errors consist of a common component ut+h and individual

parts that arise from not using the information in µs1,t or µs2,t, resp. The choice

of the common error variance, σ2
u, and the individual error variances,

(
σ2
ε1 , σ

2
ε2

)
,

governs the degree of cross-correlation between the forecast errors, which is given
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Table 4.1 Empirical size, survey forecasts

low serial correlation high serial correlation

T 25 50 100 200 25 50 100 200

A. moderate cross-correlation
1-step-ahead

MSE-t 4.15 4.44 4.63 4.68 4.15 4.44 4.63 4.68
MSE-tr 4.36 4.45 4.68 4.54 4.36 4.45 4.68 4.54

3-steps-ahead

MSE-t 4.63 4.67 5.05 4.78 3.66 4.47 4.56 4.73
MSE-tr 4.33 4.73 4.78 4.86 3.68 4.36 4.77 4.81

6-steps-ahead

MSE-t 4.66 4.67 4.93 5.07 4.02 4.24 4.14 4.94
MSE-tr 4.56 4.46 4.80 4.85 3.75 4.40 4.11 4.66

B. high cross-correlation
1-step-ahead

MSE-t 4.21 4.77 4.72 4.92 4.21 4.77 4.72 4.92
MSE-tr 4.49 4.55 4.80 4.86 4.49 4.55 4.80 4.86

3-steps-ahead

MSE-t 4.31 4.61 4.74 4.59 3.91 4.17 4.98 4.74
MSE-tr 3.70 4.41 4.64 4.94 3.93 4.15 4.80 4.93

6-steps-ahead

MSE-t 4.38 4.42 4.77 4.98 4.31 4.41 4.42 4.79
MSE-tr 4.69 4.73 4.55 4.81 3.94 4.51 4.56 4.64

Notes: Reported are the empirical rejection rates at a nominal size of 5% from 10,000 Monte
Carlo simulations. MSE-t denotes the DM test, and MSE-tr refers to the proposed version
under forecast rationality. T denotes the number of forecast error observations.

by

Corr (e1,t+h, e2,t+h) =
σ2
ν√(

(1− α)2 σ2
ε2 + σ2

ν

) (
α2σ2

ε1 + σ2
ν

) .
Depending on the speci�cations of the MA(q)-processes for µ1,t, µ2,t, and ut,

one obtains di�erent degrees of forecast error autocorrelation. The kth-order

autocorrelation of forecast error ei,t+h is given by

ρk =
θk +

∑q−k
j=1 θjθj+k

1 +
∑q

j=1 θ
2
j

for k ≤ q and ρk = 0 for k > q.

Empirical Size

The empirical size properties are evaluated under di�erent degrees of contem-

poraneous and serial forecast error correlation. As in Harvey et al. (1997)

contemporaneous correlations of 0.5 and 0.9 are considered. To mimic h-step
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ahead forecasts, µs1,t, µs2,t, and ut are generated by either a white noise process

for h = 1 or an MA(q) process for h > 1 with q = h−1. The latter con�guration

represents a scenario of multistep-ahead forecasts that typically exhibit serial

error correlation (at least) up to a lag order of h− 1.

More speci�cally, the following parametrization is used: σ2
ν , determining the

common error variance, is set to one. To achieve a degree of forecast error

cross-correlation of 0.9 (0.5), σ2
ε1 and σ2

ε2 are set to 0.44 (4). Regarding the

serially correlation of the forecast errors, two di�erent autocorrelation pro�les

are examined: A high serial correlation scenario where θk = 0.8 for k ≤ q and

θk = 0 for k > q, and a low serial correlation scenario where θk = 0.2 for k ≤ q

and θk = 0 for k > q. Note that by setting θk equal to a constant for all k ≤ q

the autocorrelation at each lag increases with the forecasting horizon h, which is

considered to be a realistic property. The autocorrelation pro�les are visualized

in Figure B.1 in Appendix B.2. Furthermore, the autoregressive parameter γ in

equation (4.19) is set to 0.9 and the error variance σ2
η is set to 0.1. To ensure

equal forecast accuracy under the null α equals 0.5.

Table 4.1 shows some empirical size results of the DM test and the adjusted

DM test for di�erent degrees of forecast error serial- and cross-correlation. The

complete simulation results can be found in Appendix B.2 and are qualitatively

similar. Both the DM test and its rationality adjusted variant behave very

similarly and are well sized. Even in case of a small number of available obser-

vations both tests meet the nominal size of 5%. This may be attributed to the

weighted periodogramm long-run variance estimator employed. Many studies

report (over)size problems of the DM test in small samples when serial correla-

tion in the forecast errors is present (see e.g. Harvey et al., 2017). These size

problems are usually attributed to the di�culty of appropriately estimating the

long-run variance in small sample via a weighted autocovariance estimator as

described in equation (4.16). Using the weighted periodogramm estimator of

Coroneo and Iacone (2020) the empirical size seem to be stable with a tendency

to be rather conservative than oversized.

Empirical Power

Figures 4.1 and 4.2 show the empirical power functions for di�erent parameter

constellations of the data generating process. A complete summary for all set-

tings regarding the degrees of forecast error serial- and cross-correlations can

found in the Appendix B.2. The power of the DM test and the adjusted DM

test is plotted against the parameter α governing the distance from the null
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(b) low forecast error cross-correlation

Notes: Results from 10,000 Monte Carlo simulations of one-step-ahead forecasts. Nominal
size = 5%. T refers the number of observations. The blue line ◦ denotes the DM test.
The red line M denotes the adjusted DM test.

Fig. 4.1 Empirical power functions for the case of one-step-ahead forecasts.

hypothesis.

When α is increased to a range between 0.5 and 1, y1,t+h presents the more

precise forecast. The adjusted DM test improves the power under all di�erent

settings regarding forecast error cross- and serial-correlation. Especially in the

case of high forecast error cross-correlation - a setting where di�erences in fore-

cast accuracy can be hard to detect - the adjusted DM test shows remarkable

power improvements. Its rejection frequency is up to twice as high as under the

standard DM test. The superiority of the adjusted DM test shows up both for

one-step-ahead and autocorrelated multi-step-ahead forecasts.

4.4.3 Model Predictions

To evaluate the �nite sample properties of the adjusted DM test when forecasts

stem from estimated statistical models, the Monte Carlo design of Clark and

Mccracken (2014) is employed. The data generating process is loosely based on
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Notes: Results from 10,000 Monte Carlo simulations of six-step-ahead forecasts. Nominal
size = 5%. T refers the number of observations. The blue line ◦ denotes the DM test.
The red line M denotes the adjusted DM test.

Fig. 4.2 Empirical power functions for the case of six-step-ahead forecasts
with high serial correlation.

the empirical relationship between GDP growth and interest rate spreads, and

takes the following form:

yt+1 = 0.3yt + b1x1,t + b2x2,t + ut+1, (4.20)

xi,t = axi,t−1 + εi,t for i = 1, 2. (4.21)

The error terms are uncorrelated and iid−normally distributed with Var (ut) =

10 and Var (εi,t) = 0.1 for i = 1, 2.6 The competing forecasting models are

y1,t+1 = α1yt + α2x1,t + α3x1,t−1 + e1,t+1, (4.22)

y2,t+1 = β1yt + β2x2,t + β3x2,t−1 + e2,t+1. (4.23)

6The initial observations necessitated by the autoregressive structure of the DGP are gener-
ated by draws form the unconditional distribution implied by the DGP.
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Clark and Mccracken (2014) parametrize equations (4.20) and (4.21) with a =

0.9 and consider di�erent values for b1 and b2 with b1 = b2 under the null of

equal forecast accuracy.

In this simulation study di�erent values for the persistence parameter a are ex-

amined due to the following considerations. First, one should note that yt+1 can

be represented by an augmented ARMA(2, 1) process. Depending on whether

x1,t or x2,t is exploited one can rewrite equation (4.20) as

yt+1 = (0.3 + a) yt − 0.3ayt−1 + b1x1,t − ab1x1,t−1 + ut + b2ε2,t − aut−1 (4.24)

or

yt+1 = (0.3 + a) yt − 0.3ayt−1 + b2x2,t − ab2x2,t−1 + ut + b1ε1,t − aut−1. (4.25)

Comparing equations (4.24) and (4.25) with the forecast functions (4.22) and

(4.23) one can see that the forecasting models are misspeci�ed when a 6= 0 as

they do not incorporate the appropriate lag structures. Hence, as a by-product of

this simulation experiment the performance of the tests under (dynamic) model

misspeci�cation can be considered. Furthermore it is worth mentioning that the

persistence of the data increases with a. Neglecting the exogenous regressors

the ARMA(2,1) representation displays a degree of persistence, measured by the

sum of autoregressive roots, equal to 0.3 +a−0.3a. Even without the persistent

exogenous variables, the parametrization of Clark and McCracken with a = 0.9

results in a high degree of persistence of 0.93. Busetti and Marcucci (2013)

consider in their comprehensive Monte Carlo study a data generating process

that is similar to the one above. They observe that the presence of persistent

regressors can lead to power losses. By varying a in this simulation study the

performance of the tests can be compared under di�erent degrees of persistence.

However, these aspects are rather a by-product of the simulation study and point

the direction to further assessments. The focus remains on the performance

of the adjusted DM test when forecasts are exposed to parameter estimation

uncertainty.

Before proceeding to the empirical size and power results a note on the long-

run variance estimator employed is necessary. The �xed-m approach of Coroneo

and Iacone (2020) described in Section 4.4.1 is based on the asymptotic frame-

work of conditional predictive ability à la Giacomini and White (2006). In

particular this assumes the presence of asymptotically nonvanishing estimation

uncertainty, and consequently is only applicable for �xed and rolling estimation
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schemes. The main point, however, is that this perspective considers a philo-

sophically di�erent null hypothesis than the Diebold-Mariano-West approach as

already mentioned in Section 4.3. As the objective of these simulation experi-

ments is to analyze the e�ect of estimation error uncertainty, and to evaluate

the strategies proposed in Section 4.3.2, the Newey and West (1994) estimator

based on equation (4.16) is used for estimating the long-run variance of the ra-

tionality adjusted DM test. For the standard DM test, it su�ces to use the

sample variance as an estimator. Since the forecasts are one-step-ahead the DM

loss di�erential does not exhibit serial correlation under the null.

Empirical Size

For the empirical size a range of sample sizes (R,P ) is considered, where R and

P refer to the number of in-sample observations and one-step-ahead forecasts,

respectively. Furthermore the performance is analyzed for both a rolling and a

recursive estimation scheme and for di�erent values for the persistence parameter

a in equation (4.21). The parameters b1 and b2 are set to −1 under the null of

equal forecast accuracy.

Varying the parameter a induces di�erent variances of the regressors x1,t and

x2,t, and thus di�erent rejection rates for the tests. The e�ect of varying a

therefore needs to be analyzed while holding constant the variances of xi,t. In

the original framework of Clark and Mccracken (2014) it is a = 0.9 and Var(εi) =

σ2
εi = 0.1 such that Var(xi) = 0.5263. Thus, σ2

εi has to be selected such that

σ2
εi/(1− a

2) = 0.5263.

Table 4.2 displays the empirical rejection rates of the DM test (MSE-t) and

its rationality adjusted companion (MSE-tr). Furthermore, the results for the

adjusted DM test with the long-run variance estimated according to equations 4.8

and 4.9 are presented by MSE-tr,adj1 and MSE-tr,adj2 , respectively. These are

expected to approximately account for the e�ect of parameter estimation errors

on the rationality adjusted test statistic.

Starting with the baseline scenario where a = 0 such that the forecasting

models are correctly speci�ed, two main observations are apparent. First, the

adjusted DM test is oversized and this e�ect increases with π. The size problems

are due to the impact of parameter estimation uncertainty, and are expected

to increases as the ratio between forecasts and in-sample observations becomes

larger. Second, both size adjustment strategies clearly alleviate the size problems

as can be seen in the lines for MSE-tr,adj1 and MSE-tr,adj2 .

Note that the test statistics MSE-tr,adj1 and MSE-tr,adj2 are still solely based
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Table 4.2 Empirical size, model predictions

rolling scheme recursive scheme

π 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

a = 0
MSE-t 6.11 5.30 4.88 5.10 5.63 5.68 5.36 4.87
MSE-tr 9.50 10.61 11.31 14.35 9.24 10.44 10.85 12.03
MSE-tr,adj1 7.63 6.77 6.33 6.45 7.28 6.84 6.22 4.99
MSE-tr,adj2 7.72 6.80 6.13 6.37 7.23 6.84 6.22 4.93

a = 0.5
MSE-t 5.39 4.85 4.75 4.34 5.56 5.41 4.76 5.04
MSE-tr 8.91 8.77 10.14 11.35 9.00 9.65 9.07 10.16
MSE-tr,adj1 7.17 6.22 6.40 5.78 7.51 7.02 5.73 5.25
MSE-tr,adj2 6.97 5.36 5.24 4.08 7.08 6.20 4.62 3.55

a = 0.9
MSE-t 5.78 4.86 5.45 4.65 5.58 4.99 5.37 5.68
MSE-tr 12.15 9.91 11.06 10.03 11.91 10.76 10.88 10.21
MSE-tr,adj1 10.58 7.90 8.04 5.90 10.66 8.75 8.00 6.77
MSE-tr,adj2 9.73 6.38 5.63 3.07 9.83 6.79 5.34 3.52

Notes: Reported are the empirical rejection rates at a nominal size of 5% from 10,000 Monte
Carlo simulations. MSE-t denotes the DM test, and MSE-tr refers to the proposed version
under forecast rationality. MSE-tr,adj1 and MSE-tr,adj2 denote the adjusted DM tests with
the long-run variance estimated according to equations 4.8 and 4.9, respectively. π = P/R
is the ratio of forecasts and in-sample observations with R = 200.

on out-of-sample forecasts and do not use information from the estimation sam-

ple. Consequently, these test statistics are only approximately valid as outlined

in Section 4.3.2. Against this backdrop, Table 4.2 suggests an overall decent per-

formance of MSE-tr,adj1 and MSE-tr,adj2 . The size problems for π = 0.2 in small

samples may be partially explained by the well-known di�culties of long-run

variance estimation via the Newey and West (1994) approach in small samples.

For large π the size adjustments tend to yield conservative tests.

Turning to the cases with a 6= 0, especially to the case of a = 0.9, the size

adjustment strategies still improve the size problematic but do not work as good

as in the benchmark case. Furthermore it is interesting to note that for the

adjusted DM test the size does not further deteriorate as π increases when a = 0.9

For the case of a smaller estimation sample of R = 100 the empirical size

results can be found in Table B.5 in Appendix B.3. This table reports the same

patterns as described above.
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Table 4.3 Sized-adjusted empirical power, model predictions

rolling scheme recursive scheme

π 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

a = 0
MSE-t 13.09 20.51 27.11 36.06 15.49 20.54 28.16 42.24
MSE-tr 21.34 33.17 43.09 52.69 22.51 34.39 45.19 63.67
MSE-tr,adj1 21.76 33.30 42.67 51.46 22.98 33.85 44.82 63.50
MSE-tr,adj2 21.34 33.17 43.09 52.69 22.51 34.39 45.19 63.67

a = 0.5
MSE-t 14.68 21.30 27.43 39.07 15.06 21.36 30.19 42.04
MSE-tr 20.95 31.63 37.76 51.54 21.15 29.92 43.66 60.36
MSE-tr,adj1 21.27 31.36 37.21 50.04 21.49 30.53 42.88 58.73
MSE-tr,adj2 20.95 31.63 37.76 51.54 21.15 29.92 43.66 60.36

a = 0.9
MSE-t 13.28 20.73 23.37 36.36 14.66 21.55 24.87 35.45
MSE-tr 13.45 21.04 25.70 41.30 12.87 21.65 29.39 42.72
MSE-tr,adj1 12.89 20.83 24.99 40.38 12.88 21.05 28.10 40.85
MSE-tr,adj2 13.45 21.04 25.70 41.30 12.87 21.65 29.39 42.72

Notes: See the notes to Table 4.2.

Empirical Power

Table 4.3 shows the size-adjusted empirical power of the di�erent testing vari-

ants. The parameters b1 and b2 are set to −1 and 0, respectively. The rationality

adjustment of the DM test clearly a�ects a power improvement. The improve-

ments are especially strong for the cases of a = 0 and a = 0.5. When a = 0.9

the data generating process has a high persistence and the forecasting models

are misspeci�ed. In this case the power of both the DM test and the adjusted

DM test decreases - an observation that is also made by Busetti and Marcucci

(2013) for highly persistent data. While the power loss for the DM test is rather

small, the adjusted DM test su�ers more from the high persistence in the regres-

sors. However, it still displays equal or larger power than the DM test in this

simulation setting.

The same patterns can be observed in case of a smaller estimation sample size

of R = 100 (see Table B.6 in Appendix B.3).

4.4.4 Nested Forecast Comparison

For the nested forecast comparison a data generating process used by Clark

and West (2007) is adopted. The data generating process is motivated by the

predictive content of factor indices of economic activity on output growth. It
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takes the following form:

yt+1 = 2.247 + 0.261yt + γ1zt + γ2zt−1 + γ3zt−2 + γ4zt−3 + ut+1, (4.26)

zt = 0.804zt−1 − 0.221zt−2 + 0.226zt−3 − 0.205zt−4 + εt. (4.27)

The nested competing forecasting models are

y1,t+1 = α0 + α1yt + e1,t+1, (4.28)

y2,t+1 = β0 + 0.261yt + β1zt + β2zt−1 + β3zt−2 + β4zt−3 + e2,t+1. (4.29)

To simulate the size of the tests under the null of equal predictive ability, γi

is set to 0 for i = 1, . . . , 4. As in Clark and West (2007), equation (4.26) is

parametrized by γ = (3.363,−0.633,−0.377,−0.529)′ in the power experiments.7

Parameter estimates and forecasts of equations (4.28) and (4.29) are generated

on a rolling as well as a recursive estimation scheme.

Empirical Size

As outlined in Section 4.3.3, the rationality adjusted DM test is expected to

remain properly centered in a nested forecast comparison. As reported, for

instance, by Clark and McCracken (2005) and Clark and West (2007) the DM

test is seriously undersized when the competing models are nested. To some

extent this e�ect can be attributed to a shift in the null distribution due to

the lower parameter estimation uncertainty of the parsimonious model. This

bias becomes more pronounced as the ratio between forecasts P and in-sample

observations R gets larger. Figure 4.3 visualizes the shift of the null densities

of the DM test statistic for di�erent ratios of π = P/R. It presents smoothed

density estimates of the DM and the adjusted DM test statistic under the null

parametrization of the data generating process described above. The associated

size results can be found in the �rst two lines of Table 4.4. Clearly, the DM is

undersized as the right-sided test rejects at 1.6449 when a 5% level of signi�cance

is used. In contrast, the adjusted DM test does not su�er from the bias caused

by the di�ering parameter estimation uncertainty of both models. As Figure 4.3

shows, the adjusted DM test remains centered under the null and shows only a

marginal leftward shift.

Tables 4.4 and B.7 (Appendix B.4) report the empirical size results for di�er-

ent tests and a range of sample sizes (R,P ). The �rst line shows the empirical

7The initial observations necessitated by the autoregressive structure of the DGP are gener-
ated by draws form the unconditional distribution implied by the DGP.
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Notes: Results from 10,000 Monte Carlo simulations according to the data generating
process under the null speci�ed in equations (4.26) - (4.29). The upper panel shows
simulated densities under the rolling forecast scheme. The lower panel considers the case
of recursive forecasts. The estimation sample size is R = 200. The number of forecasts P
is varying.

Fig. 4.3 Null densities of simulated test.

rejection rates of the DM test that is clearly undersized due to the reasons out-

lined above. MSE-tr refers to the rationality adjusted DM test and MSE-tcw to

the approach of Clark and West (2007) based on the loss di�erential in equa-

tion (4.13). MSE-tsim denotes the DM test with simulated critical values as

presented by McCracken (2007). The latter holds the size almost exactly as it is

expected. Both the rationality adjusted DM test and the test of Clark and West

are only approximately valid. Nevertheless, it is striking that both approaches

alleviate the size distortions of the standard DM test to a great extent.

It is clear that the simulated critical values from the exact asymptotic dis-

tribution render the most exact test results. From a practical point of view

one may take into account that generating these critical values is not trivial.

McCracken (2007) reports the appropriate critical values for a broad variety of

settings, which, however, still have to suit to the testing problem at hand.
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Table 4.4 Empirical size, nested forecasts

rolling scheme recursive scheme

π 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

MSE-t 1.82 0.69 0.31 0.09 1.85 0.91 0.59 0.17
MSE-tr 6.19 4.58 4.21 3.08 7.31 5.33 5.45 5.93
MSE-tcw 4.88 4.17 4.46 3.70 5.14 4.24 4.13 3.84
MSE-tsim 5.66 4.44 5.40 4.82 5.68 4.83 4.56 5.16

MSE-tr,adj1 4.28 1.88 1.31 0.34 5.06 2.74 1.95 1.17
MSE-tr,adj2 4.82 2.12 1.55 0.39 5.69 3.24 2.10 1.39

Notes: Reported are the empirical rejection rates at a nominal size of 5% from 10,000 Monte
Carlo simulations. MSE-t denotes the DM test, and MSE-tr refers to the proposed version
under forecast rationality. MSE-tr,adj1 and MSE-tr,adj2 denote the adjusted DM tests with
the long-run variance estimated according to equations 4.8 and 4.9, respectively. MSE-tcw
refers to the encompassing test statistic of Clark and West (2007) and MSE-tsim denotes
the DM test under simulated critical values according to McCracken (2007). π = P/R is
the ratio of in-sample observations and forecasts with R = 200.

Furthermore it is interesting to note that the di�culties of the rational DM

test to deal with parameter estimation uncertainty does not seem to be prevalent

in this nested model comparison. An intuitive explanation might be that the

bias towards the parsimonious model counteracts the size dispersion to some

extent. However, when looking at the good centering of the rationality adjusted

DM test in �gure 4.3, it is questionable if this explanation is comprehensive.

Consequently, further accounting for parameter estimation uncertainty via

equations 4.8 or 4.9 does not seem to be adequate and results in an undersized

test as can be seen in the lower part of Tables 4.4 and B.7 (Appendix B.4).

Empirical Power

Tables 4.5 and B.8 (Appendix B.4) show the empirical power of the tests under

consideration. The power �gures are not size adjusted since the empirical size in

the simulations has been close to the nominal size. The test of Clark and West

(2007) clearly achieves the highest power, followed by the DM test based on the

simulated critical values of McCracken (2007). The rationality adjusted DM test

still yields a decent power improvement compared to the original DM test.

As discussed in Section 4.3.3 the approach of Clark and West can be used as a

test for equal MSE only when the competing forecasts stem from nested models.

In this case, the power results suggest that using the test statistic of Clark and

West is an easy to implement and powerful approach. However, when it is not

clear whether the forecast comparison is truly nested or when the distinction

between nested and non-nested is ambiguous, the test of Clark and West does
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Table 4.5 Empirical power, nested forecasts

rolling scheme recursive scheme

π 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

MSE-t 48.30 74.69 88.93 98.82 49.38 75.19 90.32 98.61
MSE-tr 64.68 89.01 96.93 99.90 66.05 88.74 97.28 99.77
MSE-tcw 94.05 99.75 99.98 99.99 94.23 99.87 99.99 99.99
MSE-tsim 70.97 93.51 99.08 99.98 71.12 93.05 98.90 99.96

MSE-tr,adj1 58.61 82.92 93.06 99.34 60.25 82.91 93.71 98.97
MSE-tr,adj2 58.07 81.22 91.46 98.69 59.61 80.84 92.22 98.46

Notes: See the notes to Table 4.4.

not allow for inference on equal MSE. The same argument holds for the DM test

based on the simulated critical values. In this case, the rationality adjusted DM

test can o�er an alternative that guarantees a test of the null hypothesis of equal

predictive accuracy and still improves the power compared to the standard DM

test.

For completeness of the discussion one has to admit that potential size viola-

tions of the rationality adjusted DM test have been observed in the simulations

for non-nested models. Including parameter estimation uncertainty via estimat-

ing the long-run variance according to equations 4.8 or 4.9 one gives up the

power improvement to some extent, but still obtains a higher power than for the

DM test both if the comparison is nested or non-nested.

4.5 Conclusion

This paper shows that the power of the Diebold and Mariano test can be im-

proved when the competing forecasts are rational. By decomposing the MSE

loss di�erential and exploiting forecast rationality, a simpli�ed variant of the

DM test statistic is derived. The rationality adjusted DM test is examined both

in a model-free environment of survey forecasts, and under the in�uence of pa-

rameter estimation uncertainty, which arises when the competing forecasts stem

from estimated (statistical) models. For the latter a simple-to-use adjustment of

the long-run variance estimation of the test statistic is proposed. This adjust-

ment accounts for the additional uncertainty from parameter estimation. Fur-

thermore, it is shown that the rationality adjusted DM test has some appealing

properties in nested forecast comparisons.

The proposed variant of the DM test statistic rests upon the assumption of

forecast rationality. Whether forecasts are always rational is an debated issue
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in the academic literature. The e�ect of potential rationality violations on the

adjusted DM test is brie�y discussed.

There are interesting objectives for further investigation. First, the applica-

tion of the adjusted DM test in an empirical study is a natural and interesting

complement to the study.

This paper examines the scenarios of survey- and model-based forecasts sep-

arately. From an empirical perspective, a mixed forecast comparison provides

another relevant scenario, where one of the forecast series stems from an esti-

mated statistical model whereas the other one is survey based. This scenario

sometimes occurs when, for instance, the Survey of Professional forecasters is

involved (see, e.g., the empirical part in Demetrescu et al. (2019)).

Moreover, the asymptotic behavior of the rationality adjusted DM test in the

framework of asymptotically nonvanishing estimation uncertainty of Giacomini

and White (2006) remains subject to further investigation.
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Appendix for Chapter 2

A.1 Proof of Equation (2.11)

Lemma 1. Let Hθ̃ denote the projection of y on ŷ. It holds

lim
θ̃→∞

tr(Hθ̃) = 1.

Proof. Let κθ̃ denote the (pseudo-)dimension of the subspace of �tted values:

κθ̃ = tr
{
Hθ̃

}
= tr

X

(

1 + θ̃
Q̂2

σ̂2
f

)
In −

θ̃

σ̂2
f

1

T
X ′X︸ ︷︷ ︸

:=G


−1

(
X ′X

)−1
X ′


⇐⇒ κθ̃ = tr

{
G−1

}
= tr

{
(V DV ′)−1

}
= tr

{
D−1

}
,

where V and D contain the eigenvectors and eigenvalues, respectively, of the

symmetric matrix G.

G can be rewritten as

G = In + θ̃

Q̂2

σ̂2
f

In −
1

σ̂2
f

Σ︸ ︷︷ ︸
:=K

 ,

where Σ = 1
TX

′X. For the eigenvalues d(G)
j of G holds

d
(G)
j (θ̃) = 1 + θ̃d

(K)
j , (A.1)

where d(K)
j denotes the jth eigenvalue of K. Considering

K =
Q̂2

σ̂2
f

In −
1

σ̂2
f

Σ =
1

σ̂2
f

(
Q̂2In − Σ

)
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and recalling that σ̂2
f and Q̂2 are scalars, the eigenvalues d(K)

j of K are given by

d
(K)
1 =

1

σ̂2
f

(
−d(Σ)

1 + Q̂2

)
, . . . , d(K)

n =
1

σ̂2
f

(
−d(Σ)

n + Q̂2

)
,

where d(Σ)
1 , ..., d(Σ)

n denote the eigenvalues of Σ in decreasing order. For θ̃ →∞,

Q̂2 is equal to the largest eigenvalue of Σ (see end of section). Hence,

d
(K)
1 =

1

σ̂2
f

−d(Σ)
1 + Q̂2︸ ︷︷ ︸

=0

 , d
(K)
2 =

1

σ̂2
f

−d(Σ)
2 + Q̂2︸ ︷︷ ︸
>0

 , . . . .

Exploiting relationship (A.1) it follows that

lim
θ̃→∞

κθ̃ = lim
θ̃→∞

tr
{
D−1

}
= lim

θ̃→∞

n∑
j=1

1

d
(G)
j

= lim
θ̃→∞

n∑
j=1

1

1 + θ̃d
(K)
j

= 1.

To see why Q̂2 is equal to the largest eigenvalue of Σ for θ̃ →∞ consider

Q̂2 =
1

T

β′
θ̃
X ′XX ′Xβθ̃
β′
θ̃
X ′Xβθ̃

=
β′
θ̃
ΛDΛ′ΛDΛ′βθ̃
β′
θ̃
ΛDΛ′βθ̃

,

where Λ and D consist of the eigenvectors and eigenvalues, respectively, of

Σ = 1
TX

′X. For θ̃ → ∞, one obtains the (unsupervised) principal compo-

nents solution such that βθ̃ = λ1, where λ1 denotes the �rst eigenvector of Σ

belonging to its largest eigenvalue. Hence,

lim
θ̃→∞

Q̂2 =
λ′1ΛDΛ′ΛDΛ′λ1

λ′1ΛDΛ′λ1
= d

(Σ)
1 .

A.2 Datasets

The dataset is taken from the monthly macroeconomic database provided by

the Federal Reserve Bank of St. Louis. All variables are transformed to get

stationary series as described in McCracken and Ng (2016).
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Table A.1 Sub-dataset to forecast industrial production

tcode fred description

Group 1: Output and income

1 5 W875RX1 Real Personal Income ex Transfer Receipts
2 5 INDPRO IP Index
3 5 IPMANSICS IP: Manufacturing (SIC)
4 1 NAPMPI ISM Manufacturing: Production Index
5 2 CUMFNS Capacity Utilization: Manufacturing

Group 2: Labour market

6 2 HWIURATIO Ratio of Help Wanted/No. Unemployed
7 5 CLAIMSx Initial Claims
8 5 PAYEMS All Employees: Total nonfarm
9 5 MANEMP All Employees: Manufacturing
10 5 SRVPRD All Employees: Service-Providing Industries
11 1 CES0600000007 Avg Weekly Hours: Goods-Producing
12 2 AWOTMAN Avg Weekly Overtime Hours: Manufacturing
13 1 AWHMAN Avg Weekly Hours: Manufacturing
14 1 NAPMEI ISM Manufacturing: Employment Index

Group 3: Housing

15 4 HOUST Housing Starts: Total New Privately Owned

Group 4: Consumption, orders, and inventories

16 5 DPCERA3M086SBEA Real Personal Consumption Expenditures
17 5 CMRMTSPLx Real Manu. and Trade Industries Sales
18 5 RETAILx Retail and Food Services Sales
19 1 NAPMNOI ISM: New Orders Index
20 1 NAPMSDI ISM: Supplier Deliveries Index
21 5 AMDMNOx New Orders for Durable Goods
22 5 ANDENOx New Orders for Nondefense Capital Goods
23 5 AMDMUOx Un�lled Orders for Durable Goods
24 2 UMCSENTx Consumer Sentiment Index

Group 5: Money and credit

25 5 M2REAL Real M2 Money Stock

Group 6: Interest and exchange rate

26 1 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS
27 1 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS
28 1 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS
29 1 T1YFFM 1-Year Treasury C Minus FEDFUNDS
30 1 T5YFFM 5-Year Treasury C Minus FEDFUNDS
31 1 T10YFFM 10-Year Treasury C Minus FEDFUNDS
32 1 AAAFFM Moody's Aaa Corporate Bond Minus FEDFUNDS
33 1 BAAFFM Moody's Baa Corporate Bond Minus FEDFUNDS

Group 7: Stock market

34 5 S&P: indust S&P's Common Stock Price Index: Industrials

Notes: `tcode' denotes the following data transformation for a series x: (1) no transforma-
tion; (2) ∆xt; (3) ∆2xt; (4) log(xt); (5) ∆log(xt); (6) ∆2log(xt); (7) ∆(xt/xt−1 − 1). `fred'
gives mnemonics in FRED.
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Table A.2 Sub-dataset to forecast the Consumer Price Index

tcode fred description

Group 1: Output and income

1 5 W875RX1 Real Personal Income ex Transfer Receipts
2 5 INDPRO IP Index
3 5 IPMANSICS IP: Manufacturing (SIC)
4 1 NAPMPI ISM Manufacturing: Production Index
5 2 CUMFNS Capacity Utilization: Manufacturing

Group 2: Labour market

6 2 HWIURATIO Ratio of Help Wanted/No. Unemployed
7 5 CLAIMSx Initial Claims
8 5 PAYEMS All Employees: Total nonfarm
9 5 MANEMP All Employees: Manufacturing
10 5 SRVPRD All Employees: Service-Providing Industries
11 1 CES0600000007 Avg Weekly Hours: Goods-Producing
12 2 AWOTMAN Avg Weekly Overtime Hours: Manufacturing
13 1 AWHMAN Avg Weekly Hours: Manufacturing
14 1 NAPMEI ISM Manufacturing: Employment Index

Group 3: Housing

15 4 HOUST Housing Starts: Total New Privately Owned

Group 4: Consumption, orders, and inventories

16 5 DPCERA3M086SBEA Real Personal Consumption Expenditures
17 5 CMRMTSPLx Real Manu. and Trade Industries Sales
18 5 RETAILx Retail and Food Services Sales
19 1 NAPMNOI ISM: New Orders Index
20 1 NAPMSDI ISM: Supplier Deliveries Index
21 5 AMDMNOx New Orders for Durable Goods
22 5 ANDENOx New Orders for Nondefense Capital Goods
23 5 AMDMUOx Un�lled Orders for Durable Goods
24 2 UMCSENTx Consumer Sentiment Index

Group 5: Money and credit

25 5 M2REAL Real M2 Money Stock

Group 6: Interest and exchange rate

26 2 FEDFUNDS E�ective Federal Funds Rate
27 2 CP3Mx 3-Month AA Financial Commercial Paper Rate
28 2 TB3MS 3-Month Treasury Bill:
29 2 TB6MS 6-Month Treasury Bill:
30 2 GS1 1-Year Treasury Rate
31 2 GS5 5-Year Treasury Rate
32 2 GS10 10-Year Treasury Rate
33 2 AAA Moody's Seasoned Aaa Corporate Bond Yield
34 2 BAA Moody's Seasoned Baa Corporate Bond Yield

Group 7: Stock market

35 5 S&P: indust S&P's Common Stock Price Index: Industrials

Group 8: Prices

36 6 WPSFD49207 PPI: Finished Goods
37 6 WPSFD49502 PPI: Finished Consumer Goods
38 6 OILPRICEx Crude Oil, spliced WTI and Cushing
39 1 NAPMPRI ISM Manufacturing: Prices Index
40 6 CPIAUCSL CPI : All Items
41 6 PCEPI Personal Cons. Expend.: Chain Index

Notes: `tcode' denotes the following data transformation for a series x: (1) no transforma-
tion; (2) ∆xt; (3) ∆2xt; (4) log(xt); (5) ∆log(xt); (6) ∆2log(xt); (7) ∆(xt/xt−1 − 1). `fred'
gives mnemonics in FRED.
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B.1 Proof of Proposition 1

Proof. Consider the rational loss di�erential (4.5) under parameter estimation

uncertainty:

d
(θ̂)
r,t = Ŷ2,t+h|tê1,t+h|t − Ŷ1,t+h|tê2,t+h|t

= Ŷ2,t+h|t

(
Yt+h − Ŷ1,t+h|t

)
− Ŷ1,t+h|t

(
Yt+h − Ŷ2,t+h|t

)
=
(
Ŷ2,t+h|t − Ŷ1,t+h|t

)
Yt+h.

Applying a mean-value expansion of the form

Ŷi,t+h|t = Yi,t+h|t +Dt+h(θ̄i,t)(θ̂i,t − θi),

where θ̄i,t denotes a value between θ̂i,t and θi, yields

d
(θ̂)
r,t =

(
Y2,t+h|t +Dt+h(θ̄2,t)(θ̂2,t − θ2)

−
(
Y1,t+h|t +Dt+h(θ̄1,t)(θ̂1,t − θ1)

))
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=
(
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)
Yt+h

+
(
Dt+h(θ̄2,t)(θ̂2,t − θ2)−Dt+h(θ̄1,t)(θ̂1,t − θ1)

)
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=
(
Y2,t+h|t − Y1,t+h|t

)
Yt+h

+ Yt+hDt+h(θ̄2,t)Op

(√
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(√
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)
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(√
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.

It follows that

1√
P

P∑
t=1

d
(θ̂)
r,t =

1√
P

P∑
t=1

[
e1,t+h|tY2,t+h|t − e2,t+h|tY1,t+h|t

]
+Op (P/R)
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and

Γ̂j =
1

P

P∑
t=1+j

d
(θ̂)
r,t d

(θ̂)
r,t−j

=
1

P

P∑
t=1

(
e1,t+h|tY2,t+h|t − e2,t+h|tY1,t+h|t

) (
e1,t+h|tY2,t+h|t − e2,t+h|tY1,t+h|t

)
+Op (1/R)

p→ Γj

It follows that ω̂2 p→ ω2 and Proposition 1 follows immediately.
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Notes: Forecast error autocorrelations pro�les for h-step-ahead forecasts generated ac-
cording the data generating process described in Section 4.4.2.

Fig. B.1 Forecast error autocorrelations pro�les.
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Table B.1 Empirical size, high forecast error cross-correlation

low error serial correlation high error serial correlation

T 25 50 100 200 25 50 100 200

1-step-ahead

MSE-t 4.21 4.77 4.72 4.92 4.21 4.77 4.72 4.92
MSE-tr 4.49 4.55 4.80 4.86 4.49 4.55 4.80 4.86

2-steps-ahead

MSE-t 4.45 4.72 5.09 5.11 4.25 4.64 4.43 5.33
MSE-tr 4.27 4.27 4.45 5.11 3.61 4.36 4.33 5.09

3-steps-ahead

MSE-t 4.31 4.61 4.74 4.59 3.91 4.17 4.98 4.74
MSE-tr 3.70 4.41 4.64 4.94 3.93 4.15 4.80 4.93

4-steps-ahead

MSE-t 4.39 4.35 4.34 4.52 3.75 4.26 4.70 4.95
MSE-tr 4.04 4.44 4.34 4.81 3.60 4.25 4.78 4.88

5-steps-ahead

MSE-t 4.68 4.89 4.94 4.63 3.41 4.17 4.64 4.88
MSE-tr 4.34 4.32 4.56 4.94 3.45 4.21 4.63 4.53

6-steps-ahead

MSE-t 4.38 4.42 4.77 4.98 4.31 4.41 4.42 4.79
MSE-tr 4.69 4.73 4.55 4.81 3.94 4.51 4.56 4.64

Notes: Reported are the empirical rejection rates at a nominal size of 5% from 10,000 Monte
Carlo simulations. MSE-t denotes the DM test, and MSE-tr refers to the proposed version
under forecast rationality. T denotes the number of forecast error observations.

Table B.2 Empirical size, moderate forecast error cross-correlation

low error serial correlation high error serial correlation

T 25 50 100 200 25 50 100 200

1-step-ahead

MSE-t 4.15 4.44 4.63 4.68 4.15 4.44 4.63 4.68
MSE-tr 4.36 4.45 4.68 4.54 4.36 4.45 4.68 4.54

2-steps-ahead

MSE-t 4.26 4.44 4.79 5.07 4.06 4.57 4.58 4.96
MSE-tr 4.49 4.53 4.82 5.08 3.89 4.39 4.44 5.13

3-steps-ahead

MSE-t 4.63 4.67 5.05 4.78 3.66 4.47 4.56 4.73
MSE-tr 4.33 4.73 4.78 4.86 3.68 4.36 4.77 4.81

4-steps-ahead

MSE-t 4.50 4.46 4.74 5.20 3.93 4.40 4.55 5.05
MSE-tr 4.03 3.19 4.53 4.80 4.02 4.43 4.58 5.01

5-steps-ahead

MSE-t 4.08 4.73 4.84 4.96 4.01 4.02 4.31 4.89
MSE-tr 4.17 4.38 4.56 4.59 4.32 4.16 4.25 5.05

6-steps-ahead

MSE-t 4.66 4.67 4.93 5.07 4.02 4.24 4.14 4.94
MSE-tr 4.56 4.46 4.80 4.85 3.75 4.40 4.11 4.66

Notes: See the notes to Table B.1.
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Table B.3 Empirical power, high forecast error cross-correlation

low error serial correlation high error serial correlation

T 25 50 100 200 25 50 100 200

1-step-ahead

MSE-t 19.11 33.58 58.06 85.69 19.11 33.58 58.06 85.69
MSE-tr 30.29 59.31 88.02 99.29 30.29 59.31 88.02 99.29

2-steps-ahead

MSE-t 18.39 32.47 56.17 83.58 14.94 26.99 44.57 71.78
MSE-tr 28.24 55.19 84.51 98.60 24.64 49.28 78.34 97.15

3-steps-ahead

MSE-t 17.80 31.34 53.62 80.61 12.61 21.59 36.25 59.64
MSE-tr 27.46 52.27 81.19 97.59 21.52 41.54 69.68 93.30

4-steps-ahead

MSE-t 17.70 29.46 50.40 77.13 11.71 19.19 30.65 50.15
MSE-tr 26.61 49.44 77.81 96.44 18.61 36.16 61.36 88.38

5-steps-ahead

MSE-t 17.14 28.65 48.41 74.23 11.38 16.59 27.50 44.99
MSE-tr 26.11 47.17 74.98 94.94 18.02 31.89 55.30 82.81

6-steps-ahead

MSE-t 17.18 27.73 45.16 70.51 10.15 15.99 24.09 38.72
MSE-tr 26.76 46.56 71.18 93.91 16.59 29.64 50.47 77.56

Notes: Reported are the empirical rejection rates at a nominal size of 5% from 10,000 Monte
Carlo simulations. For the power analysis, the parameter α of the DGP from Section 4.4.2
is set to 0.75. MSE-t denotes the DM test, and MSE-tr refers to the proposed version under
forecast rationality. T denotes the number of forecast error observations.

Table B.4 Empirical power, moderate forecast error cross-correlation

low error serial correlation high error serial correlation

T 25 50 100 200 25 50 100 200

1-step-ahead

MSE-t 61.00 92.53 99.92 99.99 61.00 92.53 99.92 99.99
MSE-tr 76.59 98.90 99.99 99.99 76.59 98.90 99.99 99.99

2-steps-ahead

MSE-t 58.48 92.23 99.84 99.99 46.63 83.24 98.98 99.99
MSE-tr 73.91 98.22 99.98 99.99 64.39 96.18 99.99 99.99

3-steps-ahead

MSE-t 56.99 90.62 99.81 99.99 37.93 71.63 95.88 99.92
MSE-tr 71.65 97.68 99.99 99.99 55.52 90.97 99.90 99.99

4-steps-ahead

MSE-t 54.91 88.64 99.64 99.99 32.27 61.22 90.45 99.53
MSE-tr 70.19 96.84 99.98 99.99 49.13 85.13 99.26 99.99

5-steps-ahead

MSE-t 53.14 86.70 99.29 99.99 28.58 54.39 84.16 98.69
MSE-tr 69.24 96.05 99.93 99.99 45.07 78.60 97.85 99.98

6-steps-ahead

MSE-t 54.33 85.16 98.87 99.99 26.64 49.34 78.54 97.50
MSE-tr 69.31 95.26 99.95 99.99 41.23 73.07 96.18 99.96

Notes: See the notes to Table B.3.
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B.3 Simulation Results Model Forecasts

Table B.5 Empirical size, model predictions, small sample

rolling scheme recursive scheme

π 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

a = 0
MSE-t 6.50 5.56 4.59 4.45 5.86 5.58 5.10 5.55
MSE-tr 10.22 10.29 10.69 13.43 9.87 10.62 10.50 12.54
MSE-tr,adj1 7.92 6.66 5.43 5.10 7.62 6.65 5.58 5.04
MSE-tr,adj2 8.21 7.01 5.61 5.17 7.88 6.98 5.83 4.96

a = 0.5
MSE-t 6.01 5.58 5.10 4.06 6.21 5.17 5.41 4.63
MSE-tr 10.22 9.89 10.42 10.35 10.65 9.50 10.31 10.31
MSE-tr,adj1 8.03 6.62 5.87 4.36 8.51 6.52 6.17 4.53
MSE-tr,adj2 8.03 6.36 5.19 3.63 8.44 6.15 5.30 3.30

a = 0.9
MSE-t 6.12 5.70 4.79 4.42 6.12 5.75 5.09 5.30
MSE-tr 12.88 12.19 10.87 10.35 13.17 11.75 10.88 11.03
MSE-tr,adj1 11.00 8.85 7.07 5.23 11.19 8.96 7.51 6.37
MSE-tr,adj2 10.86 7.73 5.53 3.55 10.81 7.77 5.77 3.74

Notes: Reported are the empirical rejection rates at a nominal size of 5% from 10,000 Monte
Carlo simulations. MSE-t denotes the DM test, MSE-tr refers to the proposed version under
forecast rationality. MSE-tr,adj1 and MSE-tr,adj2 denote the adjusted DM tests with the
long-run variance estimated according to eq. 4.8 and eq. 4.9, resp. π = P/R with R = 100.

Table B.6 Size-adjusted empirical power, model predictions, small sample

rolling scheme recursive scheme

π 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

a = 0
MSE-t 9.38 12.35 15.98 19.81 10.32 12.90 17.07 21.65
MSE-tr 11.92 17.10 21.17 25.24 13.79 18.46 22.32 30.80
MSE-tr,adj1 12.00 17.16 20.85 24.34 13.86 18.38 22.88 29.92
MSE-tr,adj2 11.92 17.10 21.17 25.24 13.79 18.46 22.32 30.80

a = 0.5
MSE-t 9.53 12.49 14.47 20.81 10.04 14.19 15.75 23.36
MSE-tr 11.57 15.54 18.91 25.22 11.71 16.96 20.25 30.52
MSE-tr,adj1 11.75 15.19 18.56 25.57 11.68 17.16 20.10 29.94
MSE-tr,adj2 11.57 15.54 18.91 25.22 11.71 16.96 20.25 30.52

a = 0.9
MSE-t 9.23 11.46 14.45 17.78 9.70 12.69 16.19 20.56
MSE-tr 8.42 11.18 14.10 17.91 8.93 11.70 15.57 21.19
MSE-tr,adj1 8.42 11.03 13.53 17.61 8.92 11.33 14.66 20.57
MSE-tr,adj2 8.42 11.18 14.10 17.91 8.93 11.70 15.57 21.19

Notes: See the notes to Table B.5.
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B.4 Simulation Results Nested Forecasts

Table B.7 Empirical size, nested forecasts, small sample

rolling scheme recursive scheme

π 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

MSE-t 2.13 0.94 0.32 0.09 2.16 1.00 0.51 0.22
MSE-tr 8.27 5.81 4.89 3.66 8.57 6.66 6.27 6.34
MSE-tcw 6.12 4.73 4.55 4.65 5.42 5.00 4.45 4.08
MSE-tsim 7.06 5.15 5.43 4.85 6.10 5.57 4.76 5.25

MSE-tr,adj1 5.52 2.47 1.33 0.44 5.75 3.16 2.25 1.35
MSE-tr,adj2 6.50 3.28 1.87 0.74 6.88 3.93 2.69 1.68

Notes: Reported are the empirical rejection rates at a nominal size of 5% from 10,000 Monte
Carlo simulations. MSE-t denotes the DM test, MSE-tr refers to the proposed version under
forecast rationality. MSE-tr,adj1 and MSE-tr,adj2 denote the adjusted DM tests with the
long-run variance estimated according to equations 4.8 and 4.9, resp. MSE-tcw refers to the
encompassing test statistic of Clark and West (2007) and MSE-tsim denotes the DM test
under simulated critical values according to McCracken (2007). π = P/R with R = 100.

Table B.8 Empirical power, nested forecasts, small sample

rolling scheme recursive scheme

π 0.2 0.4 0.6 1.0 0.2 0.4 0.6 1.0

MSE-t 27.78 41.89 55.11 75.53 28.21 44.00 58.34 79.85
MSE-tr 42.88 62.34 75.90 92.60 42.29 62.88 76.34 92.56
MSE-tcw 70.41 92.88 98.36 99.89 70.72 93.03 98.37 99.98
MSE-tsim 49.49 73.35 89.67 98.69 50.05 73.81 87.03 98.27

MSE-tr,adj1 35.27 49.63 60.31 77.41 34.83 51.35 61.63 80.26
MSE-tr,adj2 36.34 49.39 58.04 74.02 35.72 50.33 58.82 76.25

Notes: See the notes to Table B.7.
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