Fremde DNA im Säugerorganismus:
Schicksal von fremder DNA nach oraler und parenteraler
Applikation in Mäusen sowie nach Injektion von
Adenovirus Typ 12 in neugeborenen Hamstern

I n a u g u r a l - D i s s e r t a t i o n
zur
Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät
der Universität zu Köln
vorgelegt von

Urte Hohlweg, geb. Gerhardt
aus Göttingen

2001
Berichterstatter: Professor Dr. Walter Doerfler
Professor Dr. Börries Kemper

Tag der mündlichen Prüfung: 28. Februar 2001
Meinen Eltern
Inhaltsverzeichnis

2.5 Nukleinsäuren ... 24
 2.5.1 Radioaktiv markierte Nukleotide .. 24
 2.5.2 Sonstige Nukleinsäuren .. 24
2.6 Antikörper und Konjugate .. 25
2.7 Chemikalien .. 25
2.8 Puffer und Lösungen .. 27
2.9 Labor- und Verbrauchsmaterialien .. 31
2.10 Laborgeräte ... 33

3 Methoden ... 34
 3.1 Arbeiten mit Zellkultur ... 34
 3.1.1 Passagieren von Zellen .. 34
 3.1.2 Einfrieren und Auftauen von Zellen 34
 3.1.3 Transfektion von DNA in Säugerzellen 35
 3.1.4 Etablierung von Zelllinien aus Ad12-induzierten Hamstertumoren ... 35
 3.2 Arbeiten mit Bakterien .. 36
 3.2.1 Kultivierung und Aufbewahrung von Bakterien 36
 3.2.2 Herstellung kompetenter Bakterien 36
 3.2.3 Transformation kompetenter Bakterien 36
 3.3 Virusvermehrung und Virusisolierung 37
 3.3.1 Virusvermehrung in Einzelschichtkulturen 37
 3.3.2 Virusisolierung .. 37
 3.3.3 Bestimmung der Konzentration und Infektiosität des Virus 38
 3.4 Extraktion und Reinigung von genomischer DNA 38
 3.4.1 Präparation genomischer DNA aus Zellen 38
 3.4.2 DNA-Extraktion aus Organen und Tumoren 39
 3.4.3 DNA-Extraktion aus gereinigten Leukocyten 39
 3.4.4 DNA-Extraktion aus Darminhalten und Kot 40
 3.4.5 DNA-Extraktion aus Pflanzen ... 40
 3.4.6 Ethanolfällung .. 41
 3.5 Präparation von Virus DNA .. 41
 3.6 Präparation von Plasmid DNA .. 42
Inhaltsverzeichnis

3.6.1 Schnellpräparation von Plasmid DNA durch Kochlyse 42
3.6.2 Präparation von Plasmid DNA über CsCl-Dichtegradienten 42

3.7 Präparation von RNA .. 43
3.7.1 Präparation von gesamtzellulärer RNA aus Zellen 43
3.7.2 Präparation von gesamtzellulärer RNA aus Organen 44

3.8 Quantitative Bestimmung von Nukleinsäuren 44

3.9 Spaltung von DNA mit Restriktionsendonukleasen 44

3.10 Agarose-Gelelektrophorese .. 45

3.11 Southern Transfer-Hybridisierung 45
3.11.1 Transfer (Blotting) .. 46
3.11.2 Radioaktive Markierung von DNA-Sonden 46
3.11.3 Hybridisierung mit [α-32P]-markierten Sonden 47

3.12 Polymerase-Kettenreaktion .. 47

3.13 RT-PCR ... 48

3.14 Elution von DNA-Fragmenten aus Agarosegelen 49

3.15 Klonierung von DNA .. 49
3.15.1 Dephosphorylierung des Vektors 49
3.15.2 Ligasierung von DNA .. 50
3.15.3 T-Vektor Klonierungs-System 50

3.16 DNA-Sequenzierung .. 50

3.17 Fluoreszenz-in-situ-Hybridisierung 50
3.17.1 Herstellung von biotinylierten Hybridisierungserproben ... 50
3.17.2 Dot-Blot-Analyse der biotinylierten DNA 51
3.17.3 Anfertigung von Paraffin Gewebeschnitten 51
3.17.4 Fluoreszenz-in-situ-Hybridisierung an Dünnschnittpräparaten ... 52
3.17.5 Chromosomenpräparationen 53
3.17.6 Fluoreszenz-in-situ-Hybridisierung an Metaphasechromosomen ... 54

3.18 Tierexperimenteller Teil ... 55
3.18.1 Tierhaltung .. 55
3.18.2 Fütterung von Mäusen mit Plasmid DNA 55
3.18.3 Fütterung von Mäusen mit Sojablättern 55
3.18.4 Injektion von Mäusen mit Plasmid DNA 55
3.18.5 Entnahme der Organe und der Darminhalte 56
3.18.6 Injektion von Ad12-Virionen in neugeborene Hamster 56
3.18.7 Isolierung der Ad12-induzierten Tumoren 57
3.19 Züchtung von Sojapflanzen ... 57

4 Ergebnisse ... 58

4.1 Schicksal von oral verabreichter DNA in Mäusen 58
 4.1.1 Persistenz und Expression des pEGFP-C1 Plasmids in Mäusen 58
 4.1.1.1 pEGFP-C1 Plasmid zeigt keine Homologie zur Maus-DNA
 und wird in Mauszellen exprimiert ... 58
 4.1.1.2 Persistenz des pEGFP-C1 Plasmids im GI-Trakt der Maus 61
 4.1.1.3 Aufnahme von oral verabreichter gfp DNA in Körperzellen 66
 4.1.1.4 Expressionstudien der oral aufgenommenen DNA 70
 4.1.1.5 Langzeitfütterungsexperiment ... 72
 4.1.2 Persistenz von mit natürlicher Nahrung aufgenommener DNA
 im Mausorganismus .. 74
 4.1.2.1 Nukleäres Ribulose-1,5-bisphosphat Carboxylase Gen
 zeigt keine Homologie zur Maus-DNA .. 74
 4.1.2.2 Passage des Rubisco Gens durch den GI-Trakt der Maus 76
 4.1.2.3 “Pulse-Chase”-Experiment: Persistenz des Rubisco
 Gens im GI-Trakt der Maus ... 78
 4.1.2.4 Aufnahme der Pflanzen-DNA in innere Organe 79

4.2 Schicksal von parenteral applizierter DNA in Mäusen 82
 4.2.1 Persistenz und Verteilung von fremder DNA nach intramuskulärer
 Injektion .. 82
 4.2.2 Ausscheidung der injizierten DNA über den Leber-Gallen-Darmweg . . 86
 4.2.3 Expression der injizierten DNA .. 88
 4.2.3.1 Detektion von grün-fluoreszierenden Muskelfasern 88
 4.2.3.2 RT-PCR-Analysen zum Nachweis der Transkription
 der injizierten DNA ... 90

4.3 Injektion von Adenovirus Typ 12 in neugeborene Hamster 93
 4.3.1 Einfluß der Menge von Ad12-Virionen auf die Tumorinduktion 93
 4.3.2 Einfluß der Menge der injizierten Ad12-Virionen auf die Anzahl
 der in das Hamstergenom integrierten Ad12 Genome 95
 4.3.3 Injektionen von Ad12-Virionen in unterschiedliche Gewebe 99
4.3.4 Integrationsmuster der Ad12 DNA in intramuskulär induzierten Ad12-Tumoren .. 101
4.3.5 Chromosomale Lokalisation der integrierten Ad12 DNA 105
4.3.6 Klassifikation der Adenovirus Typ 12 induzierten Tumoren 106

5 Diskussion ... 110

5.1 Schicksal von fremder DNA in Mäusen nach oraler Applikation 110
 5.1.1 Expression der verfütterten DNA .. 115
 5.1.2 DNA-Transfer über die Keimbahn 115
 5.1.3 Schicksal von mit der natürlichen Nahrung aufgenommener DNA im Mausorganismus 117

5.2 Parenterale Applikation von fremder DNA 119

5.3 Induktion von Tumoren durch Injektion von Ad12-Virionen in neugeborene Hamster ... 123
 5.3.1 Tumorinduktion durch s.c. Injektion von Ad12-Virionen 124
 5.3.2 Tumorbildung in unterschiedlichen Geweben 125
 5.3.3 Klassifikation der durch Ad12-Virionen induzierten Tumoren 127

6 Zusammenfassung ... 130

7 Literatur ... 133

8 Abkürzungen .. 162

9 Anhang ... 165
 9.1 Berechnung der Zellzahl eines Sojablattes 165
 9.2 Sequenzen der verwendeten synthetischen Oligonukleotide 166

10 Abbildungsverzeichnis .. 167

11 Tabellenverzeichnis ... 169

12 Kurzzusammenfassung .. 172

13 Abstract .. 173
Einleitung

1 Einleitung

1.1 Überblick

Seit Millionen von Jahren ist die Umwelt aller Lebewesen großen Mengen fremder DNA ausgesetzt. Fremde DNA wird ständig an die Umwelt abgegeben, Pollen im Frühjahr, Laub und Früchte im Herbst, um nur einige zu nennen. Was mit dieser DNA geschieht, ist bisher ungewiß. Bekannt ist hingegen, daß die DNA ein sehr stabiles Molekül ist, das selbst über 5.000 Jahre, weit über den Tod des Organismus hinaus, zumindest in fragmentierter Form persistieren kann, wie archäologische Funde biologischer Herkunft, z.B. des Tyroler Eis-Mannes “Ötzi”, gezeigt haben (Handt et al., 1994).

Einleitung

gegen die Integration und Aktivität fremder DNA interpretiert (Übersichten in Doerfler, 1991, 2000).

1.2 DNA-Methylierung in eukaryontischen Zellen

Einleitung

virale DNA jedoch in Hamsterzellen in das Wirtsgenom integriert, so wird die virale DNA in spezifischen Mustern \textit{de novo} methyliert und dadurch inaktiviert (Orend et al., 1995). Es besteht also eine inverse Korrelation zwischen der Methylierung eines Gens bzw. seines Promoters und seiner transkriptionellen Aktivität (Übersicht in Doerfler, 1983). Demnach können sich Zellen durch die \textit{de novo} Methylierung vor der Expression von integrierten fremden Genen schützen. Der Mechanismus, der zur Inaktivierung von methylierten Genen bzw. deren Promotoren führt, ist noch nicht vollständig verstanden. Die Beobachtung, daß die Methylierung von DNA mit einer Deacetylierung von Histonen einhergeht, gibt Anlaß zu der Annahme, daß die Methylierung möglicherweise zu einer Veränderung der Chromatinstruktur führt (Eden et al., 1998).

Wenn die Methylierung fremder DNA ein zellulärer Verteidigungsmechanismus gegen die Aktivität fremder Gene ist, dann stellt sich die Frage, auf welchem Weg die fremde DNA in das Säugergenom gelangen kann. Bei Säugetieren ist der Gastrointestinal-Trakt die Haupteintrittspforte für große Mengen fremder DNA, die mit der täglichen Nahrung aufgenommen werden.

1.3 Der Gastrointestinal-Trakt als Eintrittspforte für fremde DNA

1.3.1 Aufbau und Funktion des Verdauungstrakts

Der Gastrointestinal (GI)-Trakt untergliedert sich bei nicht wiederkäuen den Säugetieren in den Magen, in dem die aufgenommene Nahrung mit dem Magensaft gemischt, homogenisiert und damit in den Speisebrei (Chymus) umgewandelt wird, und in den Darm. Der Darm wird unterteilt in den Dünndarm (kleines Intestinum) und den Dickdarm (großes Intestinum). Beim Dünndarm sind weiter zu differenzieren die Abschnitte Zwölffingerdarm (Duodenum), Leerdarm (Jejunum) und Krummdarm (Ileum). Als Abschnitte des Dickdarms sind Blinddarm (Caecum), Grimmdarm (Kolon) und Enddarm (Rektum) zu unterscheiden (Übersicht in Pfeffer, 1987).

absorbiert und damit dem Stoffwechsel des Tieres zugefügt werden.

Einleitung

1.3.2 Aufnahme fremder DNA über das Darmepithel

werden, wurde unterstützt durch die Beobachtung, daß Glycin kaum in Nukleinsäuren der Gewebe inkorporiert wurde (Codon et al., 1970).

Die Verfütterung von in Mikropartikeln verpackter DNA kann im Vergleich zur nackten DNA zu einer verlängerten Darm-Passagezeit und einer Zunahme der DNA-Aufnahme über das Darmepithel führen (Chickering et al., 1995). In polymere Mikrosphären eingeschlossene DNA überwindet dabei das Darmepithel sowohl auf dem parazellulären

1.3.3 M-Zellen als Zugang für Antigene und Mikroorganismen in den Organismus

Antigene im Darmlumen sind vom GALT durch eine dünnenschichtige epitheliale Barriere

Die zentralen Aufgaben der M-Zellen sind die endocytotische Aufnahme, der transcytotische Transport und die exocytotische Freilassung der luminalen Substanzen in den interzellulären Raum. Nach Applikation von löslichen Indikatoren, wie beispielsweise der Meerrettich Peroxidase oder Ferritin in das Darmlumen, werden diese Partikel durch Pinocytose von den M-Zellen aufgenommen und in die

vermittelte Bindungen und M-Zell-spezifische Rezeptoren diskutiert (Kato, 1990; Porta et al., 1992; Wenneras et al., 1995).

1.4 Fremde DNA nach parenteraler Applikation

Neben Skelettmuskelzellen können auch Herzmuskelzellen (Myokardfasern) die fremde DNA exprimieren, wie die Injektion des pRSVLacZ Plasmids in das Herz von Ratten gezeigt hat (Ascadi et al., 1991b). Histochemische Analysen haben ergeben, daß die DNA ausschließlich in Herzmuskelzellen und nicht in endothelialen Zellen, Fibroblasten oder Blutzellen exprimiert wird. Im Gegensatz zu Skelettmuskelzellen ist die DNA sowie deren Expression in injizierten Herzmuskelzellen nur über 3 Wochen nachweisbar. Eine stabile Luciferase Expression wird hingegen in Herzmuskeln von Ratten beobachtet, die entweder ein durch Cyclosporin geschwächtes Immunsystem oder keinen Thymus haben (Festing et al., 1978; Borel, 1986).

Entgegen früheren Untersuchungen von Wolff (Wolff et al., 1990, 1992a, b), Ascadi (Ascadi et al., 1991b) und Manthorpe (Manthorpe et al., 1993) wird die fremde DNA auch in anderen Geweben als im Muskelgewebe nach entsprechender Injektion exprimiert. Die Injektion von nackter Plasmid DNA in das Leberparenchym von Ratten führte zu

1.5 Das Adenovirussystem

Adenoviren sind doppelsträngige DNA-Viren und wurden 1953/54 unabhängig von W. Rowe und M. Hilleman als Erreger entzündlicher Erkrankungen des respiratorischen Trakts beim Menschen entdeckt (Rowe et al., 1953; Hilleman und Werner, 1954). Bis heute sind mehr als 100 serologisch unterschiedliche Adenovirus Typen bekannt, von denen mehr als die Hälfte humanpathogen sind. Diese Adenoviren verursachen beim Menschen überwiegend Erkrankungen der Atemwege, infizieren aber auch die Bindeväse des Auges und den Gastrointestinal-Trakt. Mit der Entdeckung der Onkogenität der Adenoviren in neugeborenen Hamstern (Huebner et al., 1962; Trentin et al., 1962) sowie der Fähigkeit dieser Viren, Hamsterzellen in Kultur zu transformieren (Pope und Rowe, 1964; Freeman et al., 1967), entwickelte sich das Adenovirussystem zu einem wertvollen Modellsystem für das Studium der viralen Onkogenese und der

1.5.1 Aufbau von Adenoviren

Abbildung 1: Schematische Struktur eines Adenoviruspartikels
1.5.2 Umgang verschiedener Zellsysteme mit der viralen DNA

Abhängig von einer Vielzahl von Faktoren, die die Charakteristika des Virus und der Wirtszelle umfassen, führen virale Infektionen entweder zu einer produktiven oder abortiven Infektion oder zur Transformation der Wirtszelle.

Zellen variieren in ihrer Permissivität für verschiedene Adenovirus Typen. Humane Zellen, wie beispielsweise KB oder HeLa Zellen, werden von Ad12 produktiv infiziert, wobei bis zu 10^6 Virionen pro Zelle gebildet werden (Green und Piña, 1964). Die Expression der adenoviralen Gene erfolgt im Rahmen eines lytischen Infektionszyklus in einer definierten, zeitlich genau kontrollierten Abfolge (Ginsberg, 1979; Flint 1982; Green et al., 1983; Akusjärvi et al., 1986). Der Infektionszyklus dauert bei Ad12 72 h. Während der frühen Infektionsphase innerhalb der ersten 6 bis 8 h werden die frühen Gene (E1 - E4) exprimiert, die für die Regulation der viralen Gen-Expression und für die virale DNA Replikation erforderlich sind. Als erste Gengruppe wird die E1A Region exprimiert. Das E1A-Genprodukt ist ein Transaktivator für alle anderen viralen Promotoren. Außerdem interagieren die E1A-Proteine mit verschiedenen zellulären Proteinen, wie beispielsweise den Transkriptionsfaktoren YY1 und cJun, und aktivieren die Transkription zellulärer Gene, wie z.B. diejenigen des “heat shock protein 70" (hsp 70).

1.5.3 Integration viraler DNA in das Wirtsgenom

1.5.4 Transformation und Onkogenese

Adenoviren werden als DNA-Tumorviren eingestuft, da sie Zellen von Nagetieren in Kultur transformieren und Tumoren in Nagetieren induzieren können (Huebner et al., 1962; Trentin et al., 1962; Pope und Rowe, 1964; Freeman et al., 1967; Starzinski-Powitz et al., 1982). Es werden mehrere Möglichkeiten diskutiert, wie eine Adenovirus-Infektion zu einer malignen Transformation führen kann. Die für die Transformation wichtigen Genprodukte wurden der E1A- und E1B-Region zugeschrieben (Graham et
Einleitung

Aber auch andere Regionen als die E1-Region der Adenoviren sind an der Transformation der Zelle beteiligt. So wurde beispielsweise gezeigt, daß an der östrogenabhängigen Tumorentstehung in der Brustdrüse weiblicher Ratten durch Adenovirus Typ 9 neben der Expression der E1-Region auch E4-Genprodukte erforderlich sind (Shiroki et al., 1984; Javier et al., 1992).

Das Integrationsereignis selbst könnte aber auch zur Transformation der Zelle beitragen. Zum einen könnte die Insertion im Sinne von der insertionellen Mutagenese zur Entstehung des transformierten Phänotyps führen (Doerfler, 1992). Zum anderen besteht die Möglichkeit, daß die Integration der fremden DNA zu Veränderungen des zellulären Methylierungsmusters und damit zu einem veränderten Transkriptionsprogramm der Zelle führt (Übersicht in Doerfler, 1996). Dabei werden sogar Veränderungen der DNA-Methylierung in zellulären DNA-Sequenzen beobachtet, die weit von der Insertionsstelle entfernt liegen (Heller et al., 1995; Remus et al., 1999).
1.6 Zielsetzung der Arbeit

Im Rahmen dieser Arbeit sind drei grundsätzlich verschiedene Ansätze verfolgt worden, um das Schicksal von fremder DNA im Säugerorganismus zu untersuchen.

1.6.1 Schicksal von fremder DNA in Mäusen nach oraler Applikation

Anfang der neunziger Jahre konnte erstmals gezeigt werden, daß oral verabreichte M13mp18 DNA nicht vollständig im GI-Trakt von Mäusen degradiert wird, sondern über das Darmepithel und das Blut in innere Organe gelangt (Schubbert et al., 1994, 1997). Nach Fütterung von trächtigen Mäusen werden Fragmente der verfütterten Test-DNA über die Plazenta auf Foeten übertragen (Schubbert et al., 1998). Aus diesen Beobachtungen ergaben sich folgende Fragestellungen:

- Können ähnliche Ergebnisse mit einer anderen Test-DNA erzielt werden oder sind die erzielten Ergebnisse sequenzspezifisch?
- Wird die oral applizierte Test-DNA im Mausorganismus exprimiert?
- Kann auch ein DNA-Transfer in die und über die Keimbahn beobachtet werden?
- Wie verhält sich die mit der natürlichen Nahrung aufgenommene Pflanzen-DNA im GI-Trakt der Maus?

Diese Fragen sollten im Rahmen dieser Arbeit durch verschiedene molekularbiologische Nachweisverfahren wie Restriktions- und Southern Transfer-Analyse, Polymerase-Kettenreaktion (PCR), Fluoreszenzmikroskopie, RT-PCR und Fluoreszenz-in-situ-Hybridisierung (FISH) untersucht werden.
1.6.2 Schicksal von fremder DNA in Mäusen nach parenteraler Applikation

Fremde DNA konnte nach oraler Applikation nur bis zu 18 h im Mausorganismus nachgewiesen werden (Schubbert et al., 1996). Daher sollte im zweiten Teil der Arbeit untersucht werden, wie lange fremde DNA generell im Mausorganismus persistiert. Dazu sollten Mäuse mit unterschiedlichen Mengen einer Test-DNA in die Skelettmuskulatur injiziert werden und anschließend die Persistenz, Verteilung und Expression der fremden DNA untersucht werden. Auch für diese Untersuchungen sollten unterschiedliche Methoden der Molekularbiologie (s.o.) angewendet werden.

1.6.3 Injektion von Ad12-Virionen in neugeborene Hamster

Die subkutane Injektion von $4,5 \times 10^7$ Ad12-Virionen induziert die Bildung von Tumoren klonalen Ursprungs, die häufig über 20 Kopien der Ad12 DNA in eine, für jeden Tumor spezifische, zelluläre Sequenz integriert haben (Hilger-Eversheim und Doerfler, 1997). Diese in der Nackenregion gebildeten Tumoren wurden als undifferenzierte Sarkome charakterisiert (Trentin et al., 1962).

Vor diesem Hintergrund ergaben sich folgende Fragestellungen:

- Können auch weniger als $4,5 \times 10^7$ Ad12-Virionen die Induktion von Tumoren auslösen? Enthalten diese Tumoren möglicherweise weniger Kopien der Ad12 DNA in integrierter Form?
- Können Ad12-Virionen anstatt undifferenzierter Sarkome auch die Ausbildung anderer Tumortypen induzieren?

2 Material

2.1 Tiere

C57Bl/6 Mäuse hauseigene Zucht
CB20 Mäuse hauseigene Zucht
Hamster (*Mesocricetus auratus*) Charles River, Sulzfeld

2.2 Pflanzen

Saatgut für Soja (*Glycine max*) Altromin, Lage

2.3 Zellinien, Viren, Bakterien und Plasmide

2.3.1 Zellinien

BHK21 (Nierenzellen neugeborener (Hamster) American Type Culture Collection
ATCC, Nr. CCL 10 Rockville, USA

HeLa (Zellen eines menschlichen Gebärmutterkarzinoms) ATCC, Nr. CCL 2

KB (Zellen eines menschlichen Mundhöhlenkarzinoms) ATCC, Nr. CCL 17

3T3 Maus-Fibroblasten ATCC, Nr. CCL 6577

T637 (Ad12-transformierte Hamsterzellen) Strohl et al., 1970

2.3.2 Viren

Adenovirus Typ 12 (Ad12) ATCC, Nr. VR 863

2.3.3 Bakterien

DH5α Hanahan (1983)

XL1Blue MRF’ Stratagene, Heidelberg
2.3.4 Plasmide

pBR322 Klonsammlung W. Doerfler
pBR322 Ad12-BamHI-E Klonsammlung W. Doerfler
pBR322 Ad12-PstI-C Klonsammlung W. Doerfler
pEGFP-C1 Clontech, Palo Alto, CA, USA
pRSVGFp Geschenk von U. Müller (Basel)
pSVGFP Klonsammlung W. Doerfler

2.4 Enzyme

2.4.1 Restriktionsendonukleasen

2.4.2 Sonstige Enzyme

CIP ("calf intestine phosphatase") Roche Diagnostics, Mannheim
DNA-Ligase (aus T4 Phagen) New England Biolabs Inc., Beverly, USA
DNaseI (RNaseA frei) Qiagen, Hilden
Klenow Polymerase Roche Diagnostics, Mannheim
Lysozym Calbiochem-Behring Corp., La Jolla, USA
Proteinase K (Tritirachium album) Sigma, Deisenhofen
(Tritirachium album) Sigma, Deisenhofen
Merck, Darmstadt
RNaseA Sigma, Deisenhofen
Taq DNA-Polymerase Promega, Mannheim
Trypsin United States Biochemical Corporation, USA
2.4.3 Kits

Access RT-PCR-Kit
Biotin-Nicktranslation-Mix
Blood-Kit
pGEM-T PCR Cloning-Kit
Plasmidaufreinigung (midi/maxi)
QIAquick spin Gelextraktrions-Kit
RNeasy Mini- und Midi-Kit
Taq Dye Deoxy Terminator Sequencing-Kit

Promega, Mannheim
Roche Diagnostics, Mannheim
Qiagen, Hilden
Promega, Mannheim
Qiagen, Hilden
Genomed, Bad Oenhausen
Qiagen, Hilden
Qiagen, Hilden
Applied Biosystems, Foster City, USA

2.5 Nukleinsäuren

2.5.1 Radioaktiv markierte Nukleotide

Desoxyribonukleosid-5´-[α-32P]-Triphosphate
([α32P]-dNTPs), spezifische Aktivität: 3.000 Ci/mM

2.5.2 Sonstige Nukleinsäuren

Desoxyribonukleosid-5'-triphosphate
Desoxyribooligonukleotid-Primer
Hexa-Oligonukleotide (dN6)
Lachsspermien-DNA (Ls)
λ DNA/Eco 130I/MluI
“Low Mass” DNA Größenstandard
pUC-Mix, Nr. 8

Promega, Mannheim
Gibco, Paisley, Schottland
Roche Diagnostics, Mannheim
Sigma, Deisenhofen
Fermentas MBI, St. Leon-Roth
Gibco, Paisley, Schottland
Fermentas MBI, St. Leon-Roth
2.6 Antikörper und Konjugate

Alkalische Phophatase Avidin D Roche Diagnostics, Mannheim
Avidin-FITC Vector Laboratories, Burlingam, USA
Biotinyliertes Anti-Avidin Vector Laboratories, Burlingam, USA

2.7 Chemikalien

Acrylamid-Lösung Roth, Karlsruhe
Agarose Seakem, Biozym Diagnostik, Hameln
Ammoniumpersulfat (APS) Sigma, Deisenhofen
Ampicillin Grünenthal GmbH, Stolberg
Bacto-Agar Difco, Detroit, USA
Bacto-Agar Merck, Darmstadt
Bacto-Tryptone Difco, Detroit, USA
Bacto-Yeast Extract Difco, Detroit, USA
Gibco, Paisley, Schottland
Blocking Reagenz Roche Diagnostics, Mannheim
Bromphenolblau Sigma, Deisenhofen
Calciumchlorid Baker, Deventer, NL
Cäsiumchlorid Merck, Darmstadt
Chloroform Merck, Darmstadt
CTAB (Cetyltrimethylammoniumbromid) Merck, Darmstadt
Colchizin (10 µg/ml) Gibco, Paisley, Schottland
DABCO (1,4-Diazobicyclo (2.2.2) octan) Sigma, Deisenhofen
Dimethylformamid (DMF) Merck, Darmstadt
Dimethylsulfoxid (DMSO) Fluka, Buchs AG, Basel, Schweiz
Dextransulfat Pharmacia, Uppsala, Schweden
<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller/Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dodecylsulfat, Na-Salz (SDS)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Essigsäure</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Ethanol</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Ethidiumbromid</td>
<td>Calbiochem, Los Angeles, USA</td>
</tr>
<tr>
<td>Fetal Calf Serum (FCS)</td>
<td>Cytogen, Berlin</td>
</tr>
<tr>
<td>Ficoll IsopaqueR</td>
<td>Pharmacia, Uppsala, Schweden</td>
</tr>
<tr>
<td>Formaldehyd (37%)</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Formamid</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Glycerin (95%ig)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Guanidiniumthiocyanat</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>HEPES (N-2-Hydroxyethylpiperazin-N-2-ethan-sulfonsäure)</td>
<td>Sigma, Deisenhofen</td>
</tr>
<tr>
<td>Magermilchpulver</td>
<td>Glücksklee, Hamburg</td>
</tr>
<tr>
<td>β-Mercaptoethanol</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Methanol</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Mineralöl</td>
<td>Sigma, Deisenhofen</td>
</tr>
<tr>
<td>Natriumhydroxid</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>NBT (4-Nitro-blue-tetrazolium-chloride)</td>
<td>Roche Diagnostics, Mannheim</td>
</tr>
<tr>
<td>Phenol</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Polyacrylamid (PAA-Lsg 38% : 2%)</td>
<td>Fluka, Buchs AG, Basel, Schweiz</td>
</tr>
<tr>
<td>Propidiumiodid</td>
<td>Sigma, Deisenhofen</td>
</tr>
<tr>
<td>Sephadex, G-50 (medium)</td>
<td>Pharmacia, Uppsala, Schweden</td>
</tr>
<tr>
<td>Silikonlösung</td>
<td>Sigma, Deisenhofen</td>
</tr>
<tr>
<td>Siliziumoxid</td>
<td>Sigma, Deisenhofen</td>
</tr>
<tr>
<td>TEMED (N,N,N’,N’-Tetramethylethylendiamin)</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>Sigma, Deisenhofen</td>
</tr>
<tr>
<td>Tween20</td>
<td>Sigma, Deisenhofen</td>
</tr>
<tr>
<td>Material</td>
<td>Supplier</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Wasser, HPLC-grade</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>X-Phosphat</td>
<td>Roche Diagnostics, Mannheim</td>
</tr>
<tr>
<td>(5-Bromo-4-chloro-3-indolylphosphat)</td>
<td></td>
</tr>
<tr>
<td>Xylencyanol-Blau FF</td>
<td>Fluka, Buchs AG, Basel, Schweiz</td>
</tr>
</tbody>
</table>

2.8 Puffer und Lösungen

Alle Lösungen wurden mit doppelt destilliertem Wasser (dH₂O) aus einer Millipore-Super Q-Filtrationsanlage angesetzt und im Anschluß autoklaviert oder sterilfiltriert.

<table>
<thead>
<tr>
<th>Lösung</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ampicillin-Stammlösung</td>
<td>100 mg/ml in dH₂O</td>
</tr>
<tr>
<td>APS</td>
<td>10% in dH₂O</td>
</tr>
<tr>
<td>Aufschlußpuffer zur DNA-Präparation</td>
<td>10 mM Tris-HCl, pH 8,0</td>
</tr>
<tr>
<td></td>
<td>0,2 mM EDTA, pH 7,5</td>
</tr>
<tr>
<td></td>
<td>10 mM NaCl</td>
</tr>
<tr>
<td></td>
<td>1% SDS</td>
</tr>
<tr>
<td></td>
<td>1,33 mg Proteinase K/ml</td>
</tr>
<tr>
<td>Blocking-Lösung</td>
<td>3% Milchpulver</td>
</tr>
<tr>
<td>für in-situ-Hybridisierung</td>
<td>4 x SSC</td>
</tr>
<tr>
<td>Chloroform</td>
<td>Chloroform/Isoamylalkohol 24 : 1</td>
</tr>
<tr>
<td>CTAB-Puffer</td>
<td>100 mM Tris-HCl, pH 8,0</td>
</tr>
<tr>
<td></td>
<td>1,4 M NaCl</td>
</tr>
<tr>
<td></td>
<td>20 mM EDTA, pH 8,0</td>
</tr>
<tr>
<td></td>
<td>2% CTAB</td>
</tr>
<tr>
<td>Denaturierungslösung für in-situ-Hybridisierung</td>
<td>70% Formamid in 2 x SSC</td>
</tr>
<tr>
<td>Denaturierungslösung für Southern Transfer</td>
<td>0,4 M NaOH</td>
</tr>
<tr>
<td>Denhardt´s Reagenz (50x)</td>
<td>1% Ficoll</td>
</tr>
<tr>
<td></td>
<td>1% Polyvinylpyrrolidon</td>
</tr>
<tr>
<td></td>
<td>1% BSA</td>
</tr>
<tr>
<td>Depurinierungslösung für Southern Transfer</td>
<td>0,25 M HCl</td>
</tr>
<tr>
<td>Desoxyribonukleosid-5´-triphosphate</td>
<td>10 mM in dH₂O</td>
</tr>
<tr>
<td>Material</td>
<td>Details</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| DnD-Lösung | 1,53 g DTT
| | 9 ml DMSO
| | 100 µl 1 M Kaliumacetat |
| Dot-Blot Blocking-Lösung | 0,5% Milchpulver in Puffer I |
| Dot-Blot-Puffer I | 100 mM NaCl
| | 100 mM Tris/HCl, pH 7,5
| | 2 mM MgCl₂ |
| Dot-Blot-Puffer II | 100 mM NaCl
| | 50 mM MgCl₂
| | 100 mM Tris/HCl pH 9,5 |
| Dot-Blot Verdünnungspuffer | 0,1 mg/ml Lachsspermien DNA in 6 x SSC |
| dYT-Medium | 5 g/l NaCl
| | 10 g/l Bacto-Yeast Extract
| | 16 g/l Bacto-Trypton |
| Einfriermedium für Zellen | 15% Glycerin
| | 10% FCS
| | 75% Dulbeccos Medium |
| Ethidiumbromid-Stammlösung | 10 mg/ml in dH₂O |
| Fixierlösung | Methanol/Essigsäure 3 : 1 |
| Hybridisierungspuffer | 50% Formamid (deionisiert) |
| für in-situ-Hybridisierung | 1% Dextranulsulfat |
| von Gewebeschnitten | 1 x Denhardt´s Lösung |
| | 10 mg/ml Ls-DNA in 4 x SSC |
| Hybridisierungspuffer | 10% Dextranulsulfat |
| für in-situ-Hybridisierung | 0,1% SDS |
| von Zellpräparationen | 2 x SSC, pH 7,0 |
| | 50% Formamid (deionisiert) |
| Hybridisierungspuffer | 20% Dextranulsulfat |
| für Southern Transfer | 10% Milchpulver |
| | 2 x SSC |
| | 0,17 mg/ml Ls-DNA |
| Konservierungslösung für | 90% Glycerin |
| in-situ-Hybridisierung | 10% PBS |
| | 2,3% DABCO |
Material

- LB-Agar
- LB-Medium
- Lysozym-Lösung
- Mg$^{2+}$-Mix
- Milchpulver-Mix (10 x)
- NaCl-Lösung (gesättigt)
- Oligo-Labeling-Puffer (5x OLB)
- PBS (Phosphatgepufferte Kochsalzlösung)
- PBS-d
- Phenol
- Prähybridisierungslösung für Southern Transfer
- Proteinase K-Lösung
- Probenauftragungspuffer für Agarose-Gele

<table>
<thead>
<tr>
<th>Material</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB-Agar</td>
<td>LB-Medium mit 12,5 g/l Bacto-Agar</td>
</tr>
<tr>
<td>LB-Medium</td>
<td>10 g/l Bacto-Tryptone</td>
</tr>
<tr>
<td></td>
<td>5 g/l Bacto-Yeast Extract</td>
</tr>
<tr>
<td></td>
<td>5 g/l NaCl</td>
</tr>
<tr>
<td>Lysozym-Lösung</td>
<td>12,5 mg/ml in dH$_2$O</td>
</tr>
<tr>
<td>Mg$^{2+}$-Mix</td>
<td>1 M MgCl$_2$</td>
</tr>
<tr>
<td></td>
<td>1 M MgSO$_4$</td>
</tr>
<tr>
<td>Milchpulver-Mix (10 x)</td>
<td>5% Magermilchpulver</td>
</tr>
<tr>
<td></td>
<td>10% SDS</td>
</tr>
<tr>
<td>NaCl-Lösung (gesättigt)</td>
<td>6 M NaCl</td>
</tr>
<tr>
<td>Oligo-Labeling-Puffer (5x OLB)</td>
<td>50 mM Tris-HCl, pH 7,5</td>
</tr>
<tr>
<td></td>
<td>5 mM MgCl</td>
</tr>
<tr>
<td></td>
<td>5 mM DDT</td>
</tr>
<tr>
<td></td>
<td>0,2 M HEPES pH 7,0</td>
</tr>
<tr>
<td></td>
<td>1,25 mg/ml Hexaoligonukleotide d(N)$_6$</td>
</tr>
<tr>
<td>PBS (Phosphatgepufferte Kochsalzlösung)</td>
<td>140 mM NaCl</td>
</tr>
<tr>
<td></td>
<td>1 mM KCl</td>
</tr>
<tr>
<td></td>
<td>8 mM NaH$_2$PO$_4$ x 2 H$_2$O</td>
</tr>
<tr>
<td></td>
<td>1 mM KH$_2$PO$_4$</td>
</tr>
<tr>
<td></td>
<td>1 mM MgCl$_2$ x 6 H$_2$O</td>
</tr>
<tr>
<td></td>
<td>1 mM CaCl$_2$ x 2 H$_2$O</td>
</tr>
<tr>
<td>PBS-d</td>
<td>PBS ohne CaCl$_2$ und MgCl$_2$</td>
</tr>
<tr>
<td>Phenol</td>
<td>gesättigt mit 100 mM Tris-HCl, pH 8,0</td>
</tr>
<tr>
<td>Prähybridisierungslösung für Southern Transfer</td>
<td>2 x SSC</td>
</tr>
<tr>
<td></td>
<td>1 x SDS</td>
</tr>
<tr>
<td></td>
<td>0,5 % Magermilchpulver</td>
</tr>
<tr>
<td></td>
<td>0,5 mg/ml Ls-DNA</td>
</tr>
<tr>
<td>Proteinase K-Lösung</td>
<td>10 mg/ml in 10 mM Tris-HCl, pH 7,5</td>
</tr>
<tr>
<td>Probenauftragungspuffer für Agarose-Gele</td>
<td>10 mM EDTA</td>
</tr>
<tr>
<td></td>
<td>50% Glycerin</td>
</tr>
<tr>
<td></td>
<td>1% SDS</td>
</tr>
<tr>
<td></td>
<td>1% Bromphenolblau</td>
</tr>
<tr>
<td>Material</td>
<td>Details</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>RNaseA</td>
<td>10 mg/ml RNaseA</td>
</tr>
<tr>
<td></td>
<td>10 mM Tris-HCl, pH 7,5</td>
</tr>
<tr>
<td></td>
<td>15 mM NaCl</td>
</tr>
<tr>
<td>Säulenpuffer</td>
<td>1 mM EDTA, pH 8,0</td>
</tr>
<tr>
<td></td>
<td>10 mM Tris-HCl, pH 8,0</td>
</tr>
<tr>
<td></td>
<td>0,1% SDS</td>
</tr>
<tr>
<td>SE-Puffer</td>
<td>75 mM NaCl</td>
</tr>
<tr>
<td></td>
<td>1 mM EDTA, pH 8,0</td>
</tr>
<tr>
<td>Siliziumoxidlösung</td>
<td>10 g Siliziumoxid in 50 ml H₂O suspendieren</td>
</tr>
<tr>
<td>Siliziumoxid-Lösungspuffer</td>
<td>12 g Guanidiniumthiocyanat</td>
</tr>
<tr>
<td></td>
<td>10 ml 0,1 mM Tris HCl, pH 6,4</td>
</tr>
<tr>
<td></td>
<td>2,2 ml 0,2 M EDTA, pH 8,0</td>
</tr>
<tr>
<td></td>
<td>0,26 g Triton X-100</td>
</tr>
<tr>
<td>Siliziumoxid-Waschpuffer</td>
<td>12 g Guanidiniumthiocyanat</td>
</tr>
<tr>
<td></td>
<td>in 10 ml 0,1 M Tris-HCl, pH 6,4</td>
</tr>
<tr>
<td>SOB-Medium</td>
<td>20 g/l Bacto-Tryptone</td>
</tr>
<tr>
<td></td>
<td>5 g/l Bacto-Yeast Extract</td>
</tr>
<tr>
<td></td>
<td>0,5 g/l NaCl</td>
</tr>
<tr>
<td>SOC-Medium</td>
<td>SOB-Medium mit</td>
</tr>
<tr>
<td></td>
<td>1% Mg²⁺-Mix</td>
</tr>
<tr>
<td></td>
<td>1% Glukose (2 M)</td>
</tr>
<tr>
<td>SSC (20 x)</td>
<td>3 M NaCl</td>
</tr>
<tr>
<td></td>
<td>300 mM Na-Citrat</td>
</tr>
<tr>
<td>STET-Lösung</td>
<td>50 mM Tris-HCl, pH 8,0</td>
</tr>
<tr>
<td></td>
<td>50 mM EDTA</td>
</tr>
<tr>
<td></td>
<td>0,5% Triton X-100</td>
</tr>
<tr>
<td></td>
<td>8% Saccharose</td>
</tr>
<tr>
<td>Stop-Lösung für Nick-Translation</td>
<td>300 mM EDTA, pH 8,0</td>
</tr>
<tr>
<td></td>
<td>1,25% SDS</td>
</tr>
<tr>
<td>Sucroselösung</td>
<td>25% Sucrose</td>
</tr>
<tr>
<td></td>
<td>0,05 M Tris-HCl, pH 8,0</td>
</tr>
<tr>
<td>TBE (1 x)</td>
<td>100 mM Tris-HCl, pH 8,0</td>
</tr>
<tr>
<td></td>
<td>70 mM Borsäure</td>
</tr>
<tr>
<td></td>
<td>25 mM EDTA</td>
</tr>
<tr>
<td>Material</td>
<td>Composition</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| TE | 10 mM Tris-HCl, pH 7.5
 | 1 mM EDTA, pH 8.0 |
| TES-Puffer | 100 mM NaCl
 | 10 mM Tris-HCl, pH 8.0
 | 1 mM EDTA |
| TFB-Puffer | 10 mM K-MES, pH 6.3
 | 45 mM MnCl₂
 | 10 mM CaCl₂
 | 100 mM KCl
 | 3 mM Hexamincobalt-Chlorid |
| Tris-Saline | 14 mM NaCl
 | 5 mM KCl
 | 0.3 mM Na₂HPO₄
 | 25 mM Tris-HCl, pH 7.4
 | 0.1% Glucose (w/v)
 | 0.03% Penicillin (w/v)
 | 0.02% Streptomycin (w/v) |
| Tritonlösung | 50 mM Tris-HCl, pH 8.0
 | 62.5 mM EDTA, pH 8.0
 | 0.1% Triton X-100 |
| TSM-Puffer | 0.5% NP40 (w/v)
 | 100 mM NaCl
 | 10 mM Tris-HCl, pH 7.5
 | 2 mM MgCl₂ |
| X-Gal Stammlösung| 50 mg/ml X-Gal
 | in N,N´Dimethylformamid |

2.9 Labor- und Verbrauchsmaterialien

<table>
<thead>
<tr>
<th>Material</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryo-Röhrchen</td>
<td>Greiner, Frickenhausen</td>
</tr>
<tr>
<td>Deckgläser (0,17 mm dick)</td>
<td>AL, Mainz</td>
</tr>
<tr>
<td>Dialyseschläuche</td>
<td>Medicell, London, UK</td>
</tr>
<tr>
<td>Einweggefäße, 10 ml</td>
<td>Greiner, Frickenhausen</td>
</tr>
<tr>
<td>Einweggefäße, 15 ml</td>
<td>Becton Dickinson (Falcon), Oxnard, USA</td>
</tr>
<tr>
<td>Einweggefäße, 50 ml</td>
<td>Becton Dickinson (Falcon), Oxnard, USA</td>
</tr>
</tbody>
</table>
Einwegspritzen
Färbeküvetten
Filterpipettenspitzen
Fix-O-Gum
Gewebekulturschalen (60 x 15 mm)
Glaswaren
Hybridisierungsröhren
Kimwipes, Papiertücher
Kleinbildfilme (24 x 36), EPL 400 X
Küvetten (Quarz)
Leucosep®-Zentrifugengefäße
Nitrozellulosemembran, Hybond-ECL
Nylonmembran (positiv geladen)
Objektträger, „Super Frost”
Parafilm “M”
PCR Reaktionsgefäße
Petrischalen (Polystyrol)
Pipettenspitzen
Präparationsbestecke
Reaktionsgefäße (1,5 ml und 2 ml)
Röntgenfilme, X-OMAT® AR 5
Skalpellklingen
Sterilfilter-Aufsätze (0,22 µm und 0,45 µm Porengröße)
Whatman Filterpapier
Zählkammer (Neubauer)
2.10 Laborgeräte

Alle hier nicht näher bezeichneten Geräte entsprechen der Standard-Laborausstattung.

Entwicklermaschine, AGFA Curix 60 AGFA-Gavaert, Mortsel, Belgien
Hybridisierungsofen Bachofer, Reutlingen
Inkubator für Bakterienkulturen New Brunswick Scientific, Edison, USA
Inkubator, Cytoperm Typ 8080 Heraeus, Düsseldorf
Mikroskop Typ BHS Olympus, Hamburg
PCR-Maschinen, PE 480, PE 2400/9600 Perkin Elmer, Norwalk, CT, USA
Phasenkontrastmikroskop Leitz, Wetzlar
Photometer, Beckmann DU 640 Beckman Instruments Inc., Palo Alto, USA
Pipetten Eppendorf, Hamburg
 Gillson, Villier-le-Bel, Frankreich
Rotationsmikrotom Microm, Heidelberg
Sonificator, Branson Sonifier, Modell B-12 Branson Sonic Power, Danbury, USA
Sterilbank, Bio Gard Hood, antair BSK 4 Baker Company, Stanford, USA
Szintillationszähler, LS 1801 Beckman Instruments Inc., Palo Alto, USA
Video-Dokumentationsystem (CS1) Cybertech, Berlin

Zentrifugen:

Cryofuge 5000 Heraeus, Düsseldorf
Cytozentrifuge 3 Shandon, Pittsgurg, USA
GLC-2B Sorvall Instruments, Bad Homburg
Labofuge GL Heraeus, Düsseldorf
MC 13 Sorvall Instruments, Bad Homburg
TC 6 Sorvall Instruments, Bad Homburg
Ultrazentrifuge L8 55 Beckman Instruments Inc., Palo Alto, USA
3 Methoden

3.1 Arbeiten mit Zellkultur

3.1.1 Passagieren von Zellen

Die verwendeten Zelllinien waren ausschließlich adhärent wachsende Zellen, die als "Monolayer"-Kulturen in Dulbeccos modifiziertem Eagles Medium (Bablanian et al., 1965) mit 10% v/v fötalem Kälberserum (FCS) in Gewebekulturflaschen kultiviert wurden. Je nach Art der Zelllinie wuchsen die Zellen bei 37°C in 2 - 3 Tagen zu einem konflu enten Zellrasen und wurden dann auf neue Gewebekulturflaschen verteilt. Dazu wurden die Zellen zweimal mit PBS-d gewaschen und durch Zugabe von 2 ml einer 25%igen Trypsinlösung vom Flaschenboden abgelöst. Die Zellsuspension wurde anschließend im Verhältnis 1/5 bis 1/10 in neue Gewebekulturflaschen mit frischem Medium überführt und bei 37°C inkubiert.

3.1.2 Einfrieren und Auftauen von Zellen

Zum Auftauen der Zellen wurden die Cryoröhrchen kurz bei 37°C erwärmt und die Zellsuspension wie beschrieben abzentrifugiert. Das Zellsediment wurde in Dulbecco Medium resuspendiert und die Zellsuspension in eine mit Dulbecco Medium und 20% FCS vorbereitete Gewebekulturflasche überführt. Am nächsten Tag wurde das Medium durch frisches Medium ersetzt, dem nur noch 10% FCS zugesetzt wurden.
3.1.3 Transfektion von DNA in Säugerzellen

3.1.4 Etablierung von Zelllinien aus Ad12-induzierten Hamstertumoren

3.2 Arbeiten mit Bakterien

3.2.1 Kultivierung und Aufbewahrung von Bakterien

Zur Vermehrung von Plasmid-transformierten Bakterien wurden Einzelkolonien oder wenige Mikroliter einer Glycerinkultur in 2 ml LB-Medium, das das zur Selektion notwendige Antibiotikum (100 µg/ml Ampicillin bzw. 30 µg/ml Kanamycin) enthielt, angeimpft und 16 h bei 37°C unter ständigem Schütteln inkubiert. Von dieser Übernachtkultur konnte eine Glycerinkultur angelegt werden, indem die Bakterienkultur mit Glycerin im Verhältnis 1:1 versetzt und in Cryoröhrchen bei -20°C über Monate hinweg aufbewahrt wurde.

3.2.2 Herstellung kompetenter Bakterien

(Hanahan, 1983)

Zur Herstellung von kompetenten Bakterien wurden 1-2 ml einer Übernachtkultur in 25 ml vorgewärmtem SOB-Medium angeimpft und solange bei 37°C inkubiert, bis eine optische Dichte bei $\lambda = 600$ von 0,7 erreicht wurde. Dann wurde die Bakteriensuspension 15 min auf Eis inkubiert und anschließend bei 2.500 rpm und 4°C 10 min zentrifugiert (Heraeus Labofuge GL). Das Bakteriensediment wurde in 8,3 ml kaltem TFB-Puffer aufgenommen und 10 min auf Eis inkubiert. Danach wurden die Bakterien unter denselben Bedingungen zentrifugiert und in 2 ml kaltem TFB-Puffer aufgenommen, so daß etwa eine Bakterienkonzentration von 1×10^9 Zellen/ml erreicht wurde. Anschließend wurde die Bakteriensuspension mit 70 µl DnD-Lösung versetzt und 10 min auf Eis inkubiert, bevor nochmals 70 µl DnD-Lösung hinzugefügt wurde, um eine Endkonzentration der DnD-Lösung von 7% zu erreichen. Entweder wurden dann die Bakterien direkt zur Transformation verwendet oder aliquotiert bei -80°C gelagert.

3.2.3 Transformation kompetenter Bakterien

Unter einer Transformation versteht man das Einbringen nackter DNA in vorbehandelte d.h. kompetente Zellen. Jeweils 5 µl eines Ligationsansatzes oder 100 pg Plasmid DNA wurden mit 200 µl kompetenten Bakterien 30 min auf Eis inkubiert. Anschließend wurden die Bakterien für 90 s auf 42°C erwärmt (Hitzeschock) und sofort wieder auf Eis abgekühlt. Die Zellen wurden dann mit 800 µl 37°C warmen SOC-Medium versetzt und 45 min bei 37°C unter Schütteln inkubiert. Jeweils 200 µl des Transformationsansatzes
wurden auf antibiotikahaltigen LB-Agarplatten, die gegebenenfalls mit IPTG und X-Gal versetzt waren, ausgestrichen und über Nacht bei 37°C inkubiert.

3.3 Virusvermehrung und Virusisolierung

3.3.1 Virusvermehrung in Einzelschichtkulturen

Zur Ernte wurden die Zellen vorsichtig vom Gefäßboden abgeklopf und in einer Sorvall-Zentrifuge (GSA-Rotor) bei 8.000 rpm und 4°C 10 min abzentrifugiert. Das Zellsediment wurde bei 4°C in 2 ml Tris-Saline resuspendiert und die Zellen entweder direkt zur Virusisolierung weiter aufgearbeitet, wie unter 3.5 beschrieben, oder bei -20°C als Rohextrakt gelagert.

3.3.2 Virusisolierung

Die Virionen wurden aus den Zellen isoliert, indem die Zellen zweimal 3 min bei 80 Watt in einem Eisbad sonifiziert wurden. Nachdem mit Hilfe eines Phasenkontrastmikroskops sichergestellt worden war, daß alle Zellen aufgebrochen waren, wurden die Zelltrümmer sedimentiert (Labofuge GL, 5.000 rpm, 10 min, 4°C). Die im Überstand enthaltenen Virionen wurden durch eine Gleichgewichtszentrifugation im CsCl-Dichtegradienten aufgereinigt. Dazu wurde der Überstand in Ultra-Clear Zentrifugenröhrchen (SW60) überführt und mit 0,5 g/ml CsCl (Refraktionsindex n = 1,3668) versetzt. Die anschließende Gleichgewichtszentrifugation wurde in einer Ultrazentrifuge 16 - 24 h bei 40.000 rpm und 4°C durchgeführt. Die Virionen bildeten eine Bande, die mit Hilfe eines Halogen-Punktstrahlers gut sichtbar war. Diese Virus-Bande wurde ausgetropft, in ein Eppendorf-Gefäß überführt und bei 4°C gelagert.
3.3.3 Bestimmung der Konzentration und Infektiosität des Virus

Die Konzentration von Viruspartikeln in Lösung wurde durch Messung der Absorption bei $\lambda = 260$ nm mit einem Spektralphotometer bestimmt. Dabei entspricht eine OD_{260} von 1 etwa 2×10^{10} pfu/ml (Burlingham und Doerfler, 1971). Die so berechnete Infektiosität gilt jedoch nur für frisch präparierte Virusinokula, da mit der Zeit die Infektiosität bei gleichbleibender OD_{260} sinkt. Aus diesem Grund wurden Virussuspensionen vor Gebrauch auf ihre Infektiosität getestet, indem Zellen mit verschiedenen Mengen des Inokulums infiziert wurden.

3.4 Extraktion und Reinigung von genomischer DNA

3.4.1 Präparation genomischer DNA aus Zellen

3.4.2 DNA-Extraktion aus Organen und Tumoren

Die Organe und die Tumorgewebe wurden nach der Entnahme aus den Versuchstieren sofort in flüssigem Stickstoff schockgefroren und entweder bei -80°C gelagert oder direkt weiterverarbeitet.

Die Organe wurden mit sterilen Einmalskalpellen in Kunststoffpetrischalen zerkleinert. Dadurch wurde die Oberfläche des aufzuschließenden Gewebes vergrößert und somit gewährleistet, daß die Zellen direkten Kontakt zum Aufschlußpuffer erhielten, um postmortale DNA-Abbauvorgänge zu reduzieren. Anschließend wurden die zerkleinerten Gewebeproben in 3 - 5 ml Aufschlußpuffer aufgenommen und über Nacht unter Rotation bei 37°C inkubiert. Am nächsten Tag wurde die DNA durch eine Phenol/Chloroform-Extraktion, wie unter 3.4.1 beschrieben, gereinigt, wobei je nach Gewebeart zusätzliche Extraktionsschritte durchgeführt wurden. Nach der letzten Chloroform-Extraktion wurde die DNA mit Ethanol gefällt (3.4.6).

Das Tumorgewebe wurde unter Zugabe von flüssigem Stickstoff in einem Porzellanmörser pulverisiert und anschließend in 3 ml Aufschlußpuffer aufgenommen und wie die Organe weiter behandelt.

3.4.3 DNA-Extraktion aus gereinigten Leukocyten

Die unterschiedlichen Blutzellen wurden durch Zentrifugation in einem Ficoll-Dichtegradienten getrennt. Hierzu wurden zunächst 3 ml Ficoll-IsopaqueR in ein 10 ml LeucosepR-Röhrchen gegeben und 30 sec bei 1.700 rpm zentrifugiert (Sorvall TC6). Die LeucosepR-Röhrchen enthalten eine Filterscheibe, die die Entnahme der Leukocytenfraktion vereinfacht. Das mit EDTA versetzte Vollblut wurde bis zu einem Gesamtvolumen von 3 ml mit PBS verdünnt und über das Ficoll-IsopaqueR geschichtet. Nach 10 minütiger Zentrifugation bei 1.700 rpm bildete sich im LeucosepR-Röhrchen folgende Schichtung von oben nach unten: Plasma-Leukocyten-Filterscheibe-Ficoll-Erythrocyten. Zuerst wurde das Plasma mit einer Pasteurpipette abgenommen und anschließend die Leukocytenfraktion, die noch zweimal mit PBS gewaschen wurde.

Die DNA wurde anschließend aus der Leukocytenfraktion extrahiert, indem zunächst, wie unter 3.4.2 beschrieben, ein Zellaufschluß durch Proteinase K-Lösung und SDS und anschließend eine Phenol/Chloroform-Extraktion durchgeführt wurden. Alternativ wurde die DNA über das Blood-Kit der Firma Qiagen (Hilden) nach Herstellerangaben extrahiert.
3.4.4 DNA-Extraktion aus Darminhalten und Kot

Die einzelnen Darminhalte und Kotproben wurden über Nacht in jeweils 3 - 5 ml Aufschlußpuffer bei 37°C unter Rotation inkubiert. Da Darminhalte und Kotproben viel mehr verunreinigt waren als Organproben, wurde bereits vor der RNaseA-Behandlung eine erste Phenol/Chloroform-Extraktion durchgeführt, die aus folgenden Schritten bestand: zweimal Phenol, zweimal Phenol/Chloroform und einmal Chloroform. Nach dieser ersten Extraktion sollte die wäßrige Lösung klar geworden sein und wurde erst dann mit RNaseA, wie unter 3.4.1 beschrieben, behandelt. Anschließend wurden noch ein Phenol/Chloroform- sowie zwei weitere Chloroformschritte durchgeführt, um sowohl die RNaseA als auch die freigewordenen Ribonukleotide aus der wäßrigen Phase zu extrahieren. Dann wurde die in der wäßrigen Phase befindliche DNA mit Ethanol gefällt (3.4.6) und anschließend in 200 µl TE aufgenommen.

3.4.5 DNA-Extraktion aus Pflanzen

(Doyle und Doyle, 1990)

Zur Extraktion von DNA aus Pflanzen, wurden 10 g pflanzlichen Ausgangsmaterials in kleine Stücke geschnitten und anschließend mit einem Mörser unter flüssigem Stickstoff pulverisiert. Nachdem der flüssige Stickstoff vollständig verdampft war, wurde das Pulver in 50 ml CTAB-Puffer aufgenommen, der vorher mit β-Mercaptoethanol (0,2%) versetzt worden war. Die Suspension wurde bei 60°C 30 min inkubiert und dabei gelegentlich geschüttelt. Anschließend wurde das Gemisch filtriert und das Filtrat mit gleichem Volumen Chloroform versetzt und für 20 min unter Rotation inkubiert. Zur
Phasentrennung wurde das Gemisch bei 4.000 rpm 10 min zentrifugiert. Der klare Überstand wurde abgenommen und die DNA mit 0,8 Volumen Isopropanol gefällt. Nach 5 minütiger Inkubation bei RT wurde die DNA bei 4.000 rpm 20 min abzentrifugiert. Anschließend wurde das DNA-Pellet einmal mit 70%igem Ethanol gewaschen, getrocknet, in 500 µl TE/RNase A-Lösung (20 µg/ml RNase A) aufgenommen und 60 min bei 37°C inkubiert. Anschließend erfolgte eine Phenol/Chloroform-Extraktion der DNA (3.4.1). Zum Schluß wurde die DNA in 500 - 1000 µl TE resuspendiert und bei 4°C gelagert.

3.4.6 Ethanolfällung

Die in einer Lösung enthaltene DNA wurde präzipitiert, indem die Lösung mit 1/10 Volumen 3 M Natriumacetat (pH 5,2) und dem 2 - 3 fachen Volumen an absolutem eiskaltem Ethanol versetzt und anschließend über Nacht bei -20°C inkubiert wurde. Der Alkohol entzieht dabei den Nukleinsäuren die Hydrathülle und setzt damit das Löslichkeitsprodukt des entstandenen Salzes herab. Die DNA fällt dann als Natriumsalz aus. Das Präzipitat wurde bei 4°C und 13.000 rpm 30 min abzentrifugiert, einmal mit 70%igem Ethanol gewaschen und dann getrocknet. Anschließend wurde die DNA in TE resuspendiert und bei 4°C gelagert. Sollte die DNA in Ligations- oder DNA Sequenzierungsreaktionen eingesetzt werden, so wurde sie in Wasser resuspendiert.

3.5 Präparation von Virus DNA

Zur Extraktion der Virus DNA wurde zunächst das bereits einmal im CsCl-Gradienten gereinigte Virus noch zweimal einer CsCl-Gleichgewichtszentrifugation unterzogen (3.3.2). Die isolierte Virussuspension wurde zur Entfernung des CsCl bei 4°C gegen TE dialysiert. Zum Aufschluß der Virushülle wurde die Lösung mit 1/10 Volumen Proteinase K (10 mg/ml) und 1/20 Volumen SDS (20%) versetzt und 2 - 3 h bei 37°C unter Rotation inkubiert. Danach wurde die DNA durch eine Phenol/Chloroform-Extraktion gereinigt. Nach einer Ethanolfällung wurden die Konzentration und die Reinheit der Virus DNA photometrisch bestimmt (3.4.6 und 3.8).
3.6 Präparation von Plasmid DNA

3.6.1 Schnellpräparation von Plasmid DNA durch Kochlyse

(Holmes und Quigley, 1981)

Eine Bakterienkolonie wurde in 3 ml dYT Medium mit entsprechendem Antibiotikum überimpft und über Nacht bei 37°C auf einem Schüttler inkubiert. Von dieser Übernachtkultur wurden 1,5 ml abgenommen und die Bakterien 1 min bei 13.000 rpm in einer Standard Tischzentrifuge abzentrifugiert. Das Zellsediment wurde zum Zellaufschluß in 400 µl STET-Lösung und 30 µl Lysozym-Lösung (10 mg/ml) vollständig resuspendiert. Nach dreiminütiger Inkubation bei 96°C im Wasserbad wurde die Zellsuspension zentrifugiert (13.000 rpm, 10 min, RT), um chromosomale DNA und Zelltrümmer von der Plasmid DNA abzutrennen. Die im Überstand enthaltene Plasmid DNA wurde mit 30 µl Natriumacetat (pH 5,2) und 500 µl Isopropanol versetzt und anschließend bei 13.000 rpm 12 min abzentrifugiert. Das Sediment wurde mit 70%igem Ethanol gewaschen, getrocknet und schließlich in 30 µl RNase-Wasser (0,3 µg/µl) aufgenommen. Nach 15 minütiger Inkubation bei 37°C wurde die DNA bis zur weiteren Verarbeitung bei 4°C gelagert.

3.6.2 Präparation von Plasmid DNA über CsCl-Dichtegradienten

(Clewell und Helinski, 1972)

Mit Hilfe einer steril Pipette wurde eine Bakterienkolonie in 50 ml LB-Medium, das das entsprechende Antibiotikum enthielt, überimpft und über Nacht bei 37°C im Schüttelinkubator inkubiert. Die Übernachtkultur wurde in einen Erlenmeyerkolben mit 1 Liter LB-Medium (mit Antibiotikum) überführt und wiederum unter Schütteln bei 37°C über Nacht inkubiert. Am nächsten Tag wurden die Bakterien 30 min bei 3.000 rpm und 4°C abzentrifugiert (Heraeus Cryofuge 5.000). Das Zellsediment wurde in 30 ml eiskaltem TE resuspendiert und erneut abzentrifugiert. Anschließend wurde das Sediment in 11 ml einer kalten Sucroselösung resuspendiert und nach Zugabe von 3 ml Lysozym-Lösung (10 mg/ml) 5 min lang unter mehrmaligem Schütteln auf Eis inkubiert. Lysozym hydrolysiert als Muramidase den Mureinsacculus der Bakterienzelle und bewirkt so den Aufschluß der Bakterienzelle. Im Anschluß wurde nach Zugabe von 5 ml einer 250 mM EDTA-Lösung (pH 8,0) der Ansatz weitere 5 min auf Eis inkubiert. Der vollständige Aufschluß der Bakterienzellen wurde durch den Zusatz von 17 ml Tritonlösung und 15 minütiger Inkubation auf Eis erreicht. Danach wurden die

3.7 Präparation von RNA

3.7.1 Präparation von gesamzellulärer RNA aus Zellen

Zur Reinigung von gesamzellulärer RNA wurde das RNeasy Mini- oder Midi-Kit der Firma Qiagen (Hilden) verwendet. Das Prinzip basiert auf einer Guanidiniumisothiocyanat-Extraktion, bei der die RNA durch Affinitätschromatographie an eine anionische Matrix gebunden wird. Zur Mini(Midi)-Präparation wurden entsprechend 3 x 10^6 Zellen (3 x 10^7 Zellen) eingesetzt, die nach zweimaligem Waschen mit PBS-d mittels Trypsin vom Gewebeschalenboden abgelöst und, wie unter 3.1.1 beschrieben, abzentrifugiert wurden. Das Zellsediment wurde nach Herstellervergaben verarbeitet und zuletzt die RNA in 30 µl (200 µl) RNase-freiem Wasser eluiert. Hierbei wurden RNA-Konzentrationen von 1 - 5 µg/µl (150 - 400 µg/µl) erreicht.
3.7.2 Präparation von gesamtzellulärer RNA aus Organen

Die Extraktion von gesamtzellulärer RNA aus Organen unterscheidet sich von der Isolierung aus Zellen nur darin, daß die Organe zunächst im Porzellanmörser pulverisiert wurden. Zur Mini(Midi)-Präparation wurden 20 mg (200 mg) Gewebe eingesetzt, die zunächst unter flüssigem Stickstoff pulverisiert wurden. Nach Zugabe des mitgelieferten Lysispuffers wurde die Lösung homogenisiert, indem sie mehrfach durch eine Kanüle (21 Gauge) gezogen wurde. Dadurch wurde die hochmolekulare DNA geschnitten und die Lösung verlor an Viskosität, als wichtige Voraussetzung für die weitere Präparation. Muskelgewebe wurde zusätzlich mit Proteinase K (200 µg/ml) 20 min bei 55°C verdaut, um die zahlreichen kontraktilen Proteine abzubauen, die die RNA Extraktion störten. Zuletzt wurde die RNA in 30 µl (200 µl) RNase-freiem Wasser eluiert. Hierbei wurden RNA-Konzentrationen von 0,8 - 3 µg/µl (100 - 400 µg/µl) erreicht.

3.8 Quantitative Bestimmung von Nukleinsäuren

Die Konzentrationsbestimmung von Nukleinsäuren in wäßriger Lösung erfolgte photometrisch durch Messung der optischen Dichte in einer Quarzküvette bei einer Wellenlänge $\lambda = 260$ nm (OD$_{260}$) und $\lambda = 280$ nm (OD$_{280}$). Dabei wurde die Nukleinsäure-haltige Lösung in TE pH 7,5 verdünnt, da die Absorption vom pH-Wert abhängig ist.

Eine OD$_{260} = 1$ entspricht: 50 µg/ml doppelsträngige DNA, oder

40 µg/ml RNA (Kaiser und Hogness, 1960)

Der Reinheitsgrad der Nukleinsäure-haltigen Lösung wurde durch den Extinktionsquotienten $R = \text{OD}_{260}/\text{OD}_{280}$ ermittelt. Reine Nukleinsäure Präparationen besitzen einen Quotienten $R = 1,8 - 2,0$ in 10 mM Tris-HCl, pH 7,5. Lag der Quotient zwischen 1,8 und 2,0, konnte man von einer nahezu proteinfreien DNA-Lösung ausgehen.

3.9 Spaltung von DNA mit Restriktionsendonukleasen

Zur Charakterisierung der aufgereinigten Plasmide wurden diese mit Restriktionsendonukleasen (RE) gespalten. Dazu wurden die RE so gewählt, daß sie das Plasmid entweder linearisierten oder es in ein charakteristisches Fragmentmuster spalteten. Pro Ansatz wurden 1 µg Plasmid DNA mit 10 Units RE und 2 µl des vom
Hersteller mitgelieferten 10 x Puffers in einem Reaktionsvolumen von 20 µl 1 h bei 37°C inkubiert. Anschließend wurden die RE durch Zugabe von 2 mM EDTA (pH 7,5) und Inkubation bei 75°C 10 min inaktiviert.

Genomische DNA wurde mit RE gespalten, indem 10 - 30 µg DNA mit 7 - 10 Units der jeweiligen RE pro Mikrogramm genomischer DNA 5 - 8 h bei 37°C inkubiert wurden. Das Volumen des Restriktionsansatzes betrug dabei mindestens das 10fache der eingesetzten Enzym-Menge.

3.10 Agarose-Gelelektrophorese

3.11 Southern Transfer-Hybridisierung

(Southern, 1975; Kotsier et al., 1993)

3.11.1 Transfer (Blotting)

3.11.2 Radioaktive Markierung von DNA-Sonden

(Feinberg und Vogelstein, 1983)

Für die radioaktive Markierung von DNA wurde die Methode des “Oligo-labeling” angewendet. Hierbei wird die zu markierende DNA zunächst denaturiert, anschließend werden Oligodesoxyribonukleotide mit “zufälliger” Sequenz hinzugegeben. Diese Oligomere binden an “zufälligen” Stellen im jeweiligen DNA-Molekül und dienen als Primer für die DNA-Synthese des Gegenstrangs durch das Klenow-Fragment der DNA-Polymerase I. Bei der Gegenstrangsynthese kommt es zum Einbau der Desoxyribonukleosidtriphosphate (dNTPs), wobei radioaktiv markierte DNA-Moleküle entstehen.

Zunächst wurden 50 ng der zu markierenden DNA in einem Volumen von 10 µl Wasser gelöst, 2 min bei 100°C denaturiert und sofort auf Eis abgekühlt, um ein Renaturieren der Einzelstränge zu verhindern. Durch Zugabe von 5 x OLB-Puffer, 400 µg/ml BSA, 50 µCi [α-32P]-dCTP, je 400 µM der unmarkierten dATP, dGTP, dTTP sowie 2 Units Klenow-Polymerase wurde die Synthese von komplementärer, radioaktiver DNA begonnen. Dabei dienten die im OLB-Puffer enthaltenen Hexanukleotide statistischer Zusammensetzung als Primer für die DNA-Synthese des Gegenstrangs. Der Ansatz wurde 2 - 3 h bei 37°C inkubiert und anschließend über eine Sephadex G-50 Säule abzentrifugiert, um die nicht eingebauten radioaktiv markierten Desoxyribonukleosid-
Triphosphate durch Gelfiltration abzutrennen. Die markierte DNA, die sich im Eluat befand, wurde dann der Hybridisierungslösung zugesetzt.

3.11.3 Hybridisierung mit \([\alpha-^{32}P]\)-markierten Sonden

Die an eine positiv geladene Membran gebundene einzelsträngige DNA konnte durch Hybridisierung mit homologer radioaktiv markierter DNA charakterisiert werden. Zunächst wurde die Membran prähybridisiert, um unspezifische Bindungsstellen abzusättigen. Dazu wurde die Membran in einer Hybridisierungsröhre mit 15 ml Prähybridisierungslösung 1 - 3 h in einem Rollschrank bei 68°C inkubiert. Anschließend wurde die Prähybridisierungslösung durch Hybridisierungslösung ersetzt, die die radioaktiv markierte DNA-Sonde enthielt, und die Membran 16 - 20 h bei 68°C im Rollschrank inkubiert. Prähybridisierungs- und Hybridisierungslösung wurden vor dem Gebrauch 10 min aufgekocht und dann auf Eis 5 - 10 min abgekühlt. Um unspezifisch gebundene DNA zu entfernen, wurde die Membran nach der Inkubation mit der radioaktiv markierten DNA zweimal 20 min in 2 x SSC/0,1% SDS sowie zweimal 30 min in 0,2 x SSC/0,1% SDS bei 68°C gewaschen. Anschließend wurde die Membran in Frischhaltefolie verpackt und in Röntgenfilmkassetten bei -80°C auf Kodak X-OMAT-Filmen exponiert.

3.12 Polymerase-Kettenreaktion

(Saiki et al., 1988)

Zur Vervielfältigung von DNA-Abschnitten wurden Polymerase-Kettenreaktionen (PCR) durchgeführt. Für jeden Reaktionsansatz wurden 100 - 800 ng genomische DNA mit 100 ng der beiden Oligonukleotidprimer (Länge 19 - 21 bp), 1 - 2,5 mM MgCl₂, 2 Units Taq DNA-Polymerase (Promega, Mannheim), vom Hersteller mitgelieferten 10 x Puffers in einem Volumen von 50 µl (Perkin Elmer DNA Thermal Cycler PE 480, mit Mineralöl überschichtet) bzw. 25 µl (Perkin Elmer GeneAmp 2400/9600) aufgenommen. Die PCR wurde nach folgendem Programm durchgeführt:
<table>
<thead>
<tr>
<th>Schritt Nr.</th>
<th>Bezeichnung</th>
<th>Temperatur</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Denaturierung</td>
<td>94°C</td>
<td>5 min</td>
</tr>
<tr>
<td>2</td>
<td>Denaturierung</td>
<td>94°C</td>
<td>0,5 min</td>
</tr>
<tr>
<td>3</td>
<td>Primer-Bindung</td>
<td>59 - 61°C</td>
<td>1 min</td>
</tr>
<tr>
<td>4</td>
<td>Polymerisation</td>
<td>72°C</td>
<td>0,5 - 1 min</td>
</tr>
<tr>
<td>5</td>
<td>Polymerisation</td>
<td>72°C</td>
<td>5 - 10 min</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>4°C</td>
<td></td>
</tr>
</tbody>
</table>

Die Schritte 2 - 4 wurden 30 - 35 mal wiederholt. Anschließend wurden die PCR-Produkte elektrophoretisch im Agarosegel (1,5 - 2%) getrennt.

3.13 RT-PCR

Die RT-PCR wurde zum Nachweis der Transkription bestimmter Gene eingesetzt. Bei der RT-PCR erfolgt zuerst durch die Reverse Transkriptase eine cDNA-Erststrangsynthese mit RNA als Matrise. Das Produkt dieses ersten Reaktionsschrittes, ein DNA/RNA-Doppelstrang, wird in der sich anschließenden PCR als Matrise verwendet. Zur RT-PCR Amplifikation wurde das Access RT-PCR System (Promega, Mannheim) verwendet. Hierzu wurden 100 - 200 ng Gesamt RNA in Pufferbedingungen nach Herstellerangaben mit je 10 mM dNTP, 100 ng je Primer, 1 - 2 mM MgSO₄, 5 Units AMV Reverse Transkriptase und 5 Units Tfl DNA-Polymerase versetzt.

In einem Perkin Elmer GeneAmp 9600 wurde zunächst 45 min bei 48°C der erste cDNA-Strang durch den rückwärts gerichteten Primer synthetisiert. Hierbei wurde ein Primer verwendet, der neben einem Oligo (dT)-Schwanz auch noch 4 spezifische Basen des entsprechenden Transkriptes enthielt, um sicherzustellen, daß ausschließlich RNA als Matrise diente und zusätzlich selektiv das gewünschte Transkript in cDNA umgeschrieben wurde. Im Anschluß wurde im gleichen Reaktionsgefäßen eine PCR nach dem unten aufgeführten Programm durchgeführt. Als Kontrolle wurde jede Reaktion auch ohne die Zugabe der Reversen Transkriptase durchgeführt, um zu untersuchen, ob möglicherweise auch DNA als Matrise diente und falsch positive Ergebnisse lieferte. Die Reaktionsprodukte wurden auf einem 1,5%-igen Agarosegel analysiert. Zur Identifikation der cDNA wurden die entsprechenden Fragmente aus dem Agarosegel ausgeschnitten, eluiert und in einen pGEM-T Vektor subkloniert und sequenziert.
Methoden

<table>
<thead>
<tr>
<th>Schritt Nr.</th>
<th>Bezeichnung</th>
<th>Temperatur</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cDNA-Synthese</td>
<td>48°C</td>
<td>45 min</td>
</tr>
<tr>
<td>2</td>
<td>Denaturierung</td>
<td>94°C</td>
<td>2 min</td>
</tr>
<tr>
<td>3</td>
<td>Denaturierung</td>
<td>94°C</td>
<td>0,5 min</td>
</tr>
<tr>
<td>4</td>
<td>Primer-Bindung</td>
<td>58°C</td>
<td>1 min</td>
</tr>
<tr>
<td>5</td>
<td>Polymerisation</td>
<td>68°C</td>
<td>2 min</td>
</tr>
<tr>
<td>6</td>
<td>Polymerisation</td>
<td>68°C</td>
<td>7 min</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>4°C</td>
<td></td>
</tr>
</tbody>
</table>

Die Schritte 3 – 5 wurden 40 – 45 mal wiederholt.

3.14 Elution von DNA-Fragmenten aus Agarosegelen

3.15 Klonierung von DNA

3.15.1 Dephosphorylierung des Vektors

3.15.2 Ligasierung von DNA

Die dephosphorylierte Vektor DNA und das zu klonierende DNA-Fragment wurden im Verhältnis 1 : 1 bis 1 : 10 gemischt und mit Wasser auf ein Volumen von 8 µl gebracht. Nachdem der Ansatz mit 1 µl 10 x Ligasepuffer und 1 µl T4 DNA-Ligase versetzt worden war, wurde er über Nacht bei 16°C inkubiert.

3.15.3 T-Vektor Klonierungs-System

3.16 DNA-Sequenzierung

3.17 Fluoreszenz-in-situ-Hybridisierung

3.17.1 Herstellung von biotinylierten Hybridisierungsproben

(Rigby et al., 1977)

Nach Zugabe von 4 µl Biotin-Nick-Translation-Mix wurde der Ansatz je nach Größe der eingesetzten DNA 70 - 90 min bei 16°C inkubiert. Anschließend wurde die Größe der entstandenen Fragmente kontrolliert. Hierzu wurden 2 µl des Ansatzes mit Probenaufragungspuffer versetzt, 3 min bei 95°C denaturiert und auf ein 1,2%-iges Agarose-Minigel aufgetragen. Betrug die Größe der Fragmente 200 - 500 bp, so wurde die Reaktion durch Zugabe von 1 µl 0,5 M EDTA (pH 8,0) und 10 minütiger Inkubation bei 65°C abgestoppt. Waren die Fragmente noch größer als 500 bp, so wurde der Reaktionsansatz für weitere 5 - 10 min bei 16°C inkubiert. Die markierte DNA wurde nach Zugabe der 50fachen Mengen an t-RNA und hochreiner gescherter unspezifischer DNA (Lachsspermien-DNA) mit Ethanol präzipitiert und nach dem Trocknen des DNA-Pellets in 20 µl Wasser aufgenommen.

3.17.2 Dot-Blot-Analyse der biotinylierten DNA

Die Effizienz des Biotineinbaus in die DNA-Sonde wurde durch einen Dot-Blot quantifiziert. Von der markierten DNA wurden zunächst 4 Verdünnungen in Zehnerschritten (1 ng/µl, 100 pg/µl, 10 pg/µl und 1 pg/µl) in Dot-Blot-Verdünnungspuffer hergestellt. Je 1 µl der verdünnten DNA wurde auf eine ungeladene Nitrozellulose-Membran aufgetropft, die anschließend zur Fixierung der DNA 1 h bei 80°C inkubiert wurde. Die Membran wurde dann in Blocking-Lösung 30 min inkubiert, um unspezifische Bindungen abzudecken. Nach kurzem Waschen der Membran in Dot-Blot-Puffer I wurde die Membran 30 min mit dem Antikörper Anti-Biotin Alkalische Phosphatase hybridisiert, der 1 : 500 in Dot-Blot-Puffer I verdünnt war. Die Membran wurde anschließend zweimal 15 min in Dot-Blot-Puffer I gewaschen und 2 min in Dot-Blot-Puffer II äquilibriert. Für die abschließende Farbreaktion wurde die Membran in Farblösung (200 µl NBT in Dot-Blot-Puffer II) einige Stunden im Dunkeln inkubiert. Bei erfolgreicher Biotinylierung sollten sämtliche DNA-Verdünnungen auf der Membran zu erkennen sein.

3.17.3 Anfertigung von Paraffin Gewebeschnitten

Das frisch entnommene Gewebe wurde zunächst in 4%iger Formaldehyd-Lösung (in PBS) für mindestens 12 h bei RT fixiert. Im Anschluß wurde das Gewebe mit Hilfe eines vollautomatischen Fixierungsautomaten (Tissue Tek VIP, Vogel) folgendermaßen behandelt: Zunächst wurde das Gewebe in Formalin (4%iges Formaldehyd) 1 h bei 40°C fixiert, dann in einer aufsteigenden Ethanol-Reihe entwässert, mit Xylol erneut fixiert und schließlich in flüssigem Paraffin eingebettet. Das flüssige Paraffin lagert sich dabei überall dort ins Gewebe ein, wo vorher Wasser war, so daß die ursprüngliche

Von den in Paraffin-Blöckchen eingebetteten Geweben wurden dann mit einem Rotationsmikrotom 1 - 3 µm dicke Schnitte angefertigt. Die Schnitte wurden zunächst auf einem Wasserbad (55°C) gestreckt und dann auf einen Polylysin-beschichteten Objektträger aufgezogen.

3.17.4 Fluoreszenz-in-situ-Hybridisierung an Dünnschnittpräparaten

Die Objektträger mit den Gewebeschnitten wurden zunächst 30 min bei 58°C getrocknet. Durch die folgende 10 minütige Xylolbehandlung wurde das Paraffin aus dem Gewebe entfernt. Dann wurde das Gewebe durch jeweils 2 minütige Inkubation in einer absteigenden Ethanol-Reihe (100%, 95%, 90%, 80%, 70%, 50% und 30%) rehydriert und anschließend je 5 min in einer 0,86%igen NaCl-Lösung bzw. in 1 x PBS inkubiert. Danach wurden die Schnitte in einer 4%igen Paraformaldehyd-Lösung 20 min fixiert, zweimal 5 min in PBS gewaschen und 35 min mit Proteinase K-Lösung (20 µg/ml) behandelt. Die Proteinase K baute dabei Proteine der Zellmembran ab, so daß die Hybridisierungssonde in die Zellen gelangen konnte. Anschließend wurden die Schnitte 5 min in 1 x PBS gewaschen und dann 5 min in Paraformaldehyd-Lösung fixiert. Das Gewebe wurde dann nochmal in 1 x PBS gewaschen, in 0,86%iger NaCl-Lösung inkubiert und in einer aufsteigenden Ethanol-Reihe (30%, 50%, 70%, 80%, 90%, 95% und 100%) jeweils 2 min dehydriert.

Nachdem die Objektträger an der Luft getrocknet waren, wurden 50 - 100 ng der biotinylierten Hybridisierungssonde, die zuvor in Hybridisierungspuffer aufgenommen worden war, in einem Volumen von 20 µl auf den Objektträger aufgetragen. Auf die Objektträger wurden silikonisierte Deckgläser luftblasenfrei aufgelegt und die genomische DNA zusammen mit der DNA-Sonde auf einem Heizblock 6 min bei 95°C denaturiert. Anschließend wurden die Präparate sofort auf einer -20°C kalten Glasplatte abgekühlt, mit Fixogum versiegelt und über Nacht in einer feuchten Kammer bei 42°C inkubiert. Am nächsten Tag wurden die Schnitte nach Entfernen der Deckgläser zweimal in 2 x SSC bei 20°C und einmal in 0,1 x SSC bei 42°C jeweils 5 min gewaschen. Um unspezifische Bindungen der im nachfolgenden verwendeten Antikörper zu vermeiden, wurden die Schnitte mit 50 µl Blocking-Lösung unter einem Deckgläschen bei 37°C in einer feuchten Kammer inkubiert. Im Anschluß wurde 30 min unter gleichen Bedingungen mit Avidin-DCS-FITC inkubiert, das 1 : 400 in 50 µl Blocking-Lösung verdünnt wurde. Nach Entfernung der Deckgläser wurden die
Schnitte dreimal jeweils 5 min in 4 x SSC/0,1% Tween bei 42°C gewaschen.

3.17.5 Chromosomenpräparationen

Der Zellzyklus der kultivierten Zellen wurde in der Metaphase der Mitose durch Colcemid gehemmt. Colcemid verhindert als Spindelgift die Ausbildung des Spindelapparates und inhibiert somit die weitere Zellteilung.

Das Medium der 1/2- bis 1/3-konfluent gewachsenen Zellen eines Monolayers (75 cm²) wurde bis auf 10 ml verworfen, die Zellen wurden mit Ethidiumbromidlösung (10 µg/ml) und Colcemidlösung (50 ng/ml) versetzt und 2 h bei 37°C inkubiert. Die Ethidiumbromidlösung verhinderte dabei ein zu starkes Kondensieren der in der Metaphase arretierten Chromosomen. Anschließend wurde das Medium in ein 10 ml Falcon-Röhrchen abgegossen, die Zellen wurden gewaschen, mit Trypsin abgelöst, in dasselbe Röhrchen überführt und bei 1.000 rpm 5 min abzentrifugiert (Sorvall TC6). Der Überstand wurde bis auf 1 ml verworfen, in dem das Zellpellet durch vorsichtiges Klopfen resuspendiert wurde. Danach wurden 10 ml einer auf 37°C vorgewärmten KCl-Lösung (0,075 mM) zugefügt und die Zellen in dieser hypotonen Lösung 20 - 30 min bei 37°C inkubiert. Dabei wurde durch die sehr geringe Salzkonzentration die Zellmembran zerstört. Es wurden 1 - 2 ml eiskalte Fixierlösung (Methanol/Eisessig 3 : 1) hinzugefügt, die eine Adhäsion der aufgequollenen Zellen verhinderte. Dann wurden die Zellkerne bei 1.000 rpm 10 min sedimentiert, der Überstand wurde bis auf 1 ml entfernt, in dem das Zellkernpellet resuspendiert wurde. Nach Zugabe von 8 ml Fixierlösung wurden die Zellkerne 30 min auf Eis inkubiert und anschließend, wie beschrieben, zentrifugiert. Der Überstand wurde wieder bis auf 1 ml verworfen, das Zellkernpellet vorsichtig
resuspendiert, mit 8 ml Fixierlösung versetzt und 10 min auf Eis inkubiert. Dieser Vorgang wurde drei- bis viermal wiederholt. Nach der letzten Zentrifugation wurden die Zellen je nach Zelldichte in 1 - 3 ml Fixierlösung resuspendiert und mit Hilfe eines Hawoka-Balls aus einer Pasteurpipette kräftig auf einen im Ultraschallbad gereinigten Objektträger aufgespritzt.

3.17.6 Fluoreszenz-in-situ-Hybridisierung an Metaphasechromosomen

Die Chromosomen und Zellkerne auf den Objektträgern wurden 2 h bei 58°C getrocknet und anschließend 1 h mit 150 µl RNaseA-Lösung (100 µg/ml in 2 x SSC) unter einem Deckgläschen bei 37°C in einer feuchten Kammer inkubiert. Anschließend wurden die Objektträger viermal in 2 x SSC je 3 min bei RT gewaschen und durch jeweils 3 minütige Inkubation in einer aufsteigenden Ethanol-Reihe (70%, 80%, 90% und 100%) dehydriert. Nachdem die Objektträger an der Luft getrocknet waren, wurde die DNA denaturiert, indem die Objektträger in einer 70%igen Formamidlösung (in 2 x SSC) 2 min bei 80°C inkubiert wurden. Im Anschluß wurden die Chromosomen in einer eisgekühlten aufsteigenden Ethanol-Reihe (s.o.) dehydriert und wieder an der Luft getrocknet. Gleichzeitig wurde die Hybridisierungssprobe vorbereitet, indem 20 µl der biotinylierten DNA-Sonde in der entsprechenden Menge Hybridisierungspuffer aufgenommen wurden, so daß die biotinylierte Probe in einer Konzentration von 50 - 100 ng/20 µl Hybridisierungspuffer vorlag. Nachdem die Hybridisierungslösung 10 min bei 100°C denaturiert worden war, wurde sie nach kurzem Abkühlen auf Eis auf die getrockneten Objektträger pipettiert und luftblasenfrei mit einem Deckgläschen und Fixogum versiegelt. Die Hybridisierung erfolgte über Nacht bei 37°C in einer feuchten Kammer.

Am nächsten Tag wurden die Chromosomenpräparationen nach Entfernen der Deckgläser dreimal in 50%iger Formamidlösung (in 2 x SSC) bei 42°C 5 min gewaschen. Der pH-Wert der Waschlösung wurde zuvor mit HCl auf pH 7,0 eingestellt. Im Anschluß wurden die Objektträger dreimal in 2 x SSC bei 42°C 5 min gewaschen. Nach der Inkubation mit der Blocking-Lösung erfolgte die weitere Behandlung parallel zur in-situ-Hybridisierung an Dünnschnittpräparaten wie unter 3.17.4 beschrieben.
3.18 Tierexperimenteller Teil

3.18.1 Tierhaltung

Für die Versuche wurden weibliche und männliche C57Bl/6 und CB20 Mäuse im Alter zwischen 1,5 und 6 Monaten verwendet. Die Tiere stammten aus hauseigener Zucht und wurden in Makrolonkäfigen der Normgröße Typ II (bis zu 4 Tiere) oder Typ III (bis zu 12 Tiere) unter sterilen Bedingungen gehalten. Die Mäuse erhielten bestrahlte Maus-Futterpellets (Altromin #1314, Lage) und hatten während der gesamten Versuchszeit freien Zugang zu Wasser.

3.18.2 Fütterung von Mäusen mit Plasmid DNA

Den Mäusen wurde jeweils 50 µg Plasmid DNA, die in 20 µl TE gelöst war, mit Hilfe einer Gilson Pipette oral in die Mundhöhle appliziert. Kontroll-Tiere erhielten die gleiche Menge DNA-freie Pufferlösung. Zu definierten Zeitpunkten nach Verabreichung der Fremd-DNA wurden die Tiere getötet und die Organe sowie die Inhalte des Gastrointestinal-Trakts entnommen (3.18.5).

3.18.3 Fütterung von Mäusen mit Sojablättern

Die Mäuse wurden 3 h vor Versuchsbeginn auf Diät gesetzt, indem ihnen die Futterpellets entzogen wurden. Anschließend wurden die Mäuse in saubere Makrolonkäfige gesetzt und mit Sojablättern als einziger Nahrungsquelle versorgt. Während der gesamten Versuchszeit hatten die Tiere Zugang zu ihrer üblichen Wasserquelle. Zu definierten Zeitpunkten während und nach der Soja Fütterung wurden die Tiere getötet und die Organe und Darminhalte entnommen (siehe 3.18.5).

3.18.4 Injektion von Mäusen mit Plasmid DNA

Den Mäusen wurde jeweils 5 - 500 µg pEGFP-C1, pSVGFP oder pRSVGFP Plasmid DNA in einem Endvolumen von 50 µl intramusulär (i.m.) in die linke und/oder rechte Oberschenkelmuskulatur mittels einer 1 ml Einmalspritze mit fixierter Kanüle (12 Gauge)
injiziert. Dabei wurde die DNA entweder in Wasser, PBS, 15 mM NaCl-Lösung oder TE verdünnt. Kontroll-Tiere wurden mit entsprechenden DNA-freien Lösungen injiziert. Die Tiere wurden zu verschiedenen Zeitpunkten nach der Injektion getötet und die Organe und Darminhalte entnommen (3.18.5).

3.18.5 Entnahme der Organe und der Darminhalte

Nachdem die Tiere durch CO₂ Begasung getötet worden waren, wurden sie in Rückenlage auf dem Operationstisch fixiert und das Fell mit Wasser und Ethanol gereinigt. Anschließend wurde die Bauchhaut geöffnet und stumpf von der Abdominalmuskulatur getrennt. Nach Absetzen der Haut wurde die Bauchhöhle mit einem neuen Satz steriler Präparationsbestecke geöffnet. Danach wurde das Zwerchfell durchtrennt und das Blut durch Punktion des Herzens mit einer 0,9 x 40 mm Einmalkanüle in eine 5 ml Einmalspritze entnommen und sofort auf Eis gestellt. In die Spritze wurden 10 µl EDTA (0,5 M EDTA, pH 8,0) vorgelegt, um die Blutgerinnung zu hemmen.

Im Anschluß wurden die anderen Organe in folgender Reihenfolge entnommen: Leber (ohne Gallenblase), Milz, Niere, kontralateraler Muskel und injizierter Muskel. Die Organe wurden, sofern sie zur DNA-Präparation (3.4.2) verwendet werden sollten, nach Entnahme zweimal in PBS gewaschen und sofort in flüssigem Stickstoff schockgefroren, um die nach dem Zelltod einsetzenden Abbauvorgänge durch zelleigene DNAsen zu verhindern. Die Organe, die mittels der Fluoreszenz-in-situ-Hybridisierung (3.17.4) untersucht werden sollten, wurden zweimal mit PBS gewaschen und dann in 4%iger Formaldehyd-Lösung über Nacht bei RT fixiert.

Anschließend wurden die Inhalte des Gastrointestinal-Trakts (End-, Blind-, Dünndarm und Magen) mit jeweils einer sterilen Einmalskalpellklinge extrahiert und sofort in flüssigem Stickstoff schockgefroren.

3.18.6 Injektion von Ad12-Virionen in neugeborene Hamster

Injektion wurden die Tiere jeden zweiten Tag auf Tumoren untersucht. Nach dem ersten Ertasten eines Tumors wurde der Hamster innerhalb von 5 Tagen durch CO₂ Begasung getötet.

3.18.7 Isolierung der Ad12-induzierten Tumoren

Die Entnahme der Ad12-induzierten Tumoren erfolgte unter einer Sterilbank. Nachdem ein oder mehrere Tumoren ertastet worden waren und der Hamster durch CO₂ Begasung getötet worden war, wurde das Fell mit Ethanol gereinigt und der Tumor bzw. die Tumoren mit je einem sterilen Präparationsbesteck isoliert. Je nach Verwendung der Tumorgewebe wurden die Tumoren entweder zur DNA-Präparation (3.4.2) in flüssigem Stickstoff schockgefroren oder aber durch ein Milzscheiben gepreßt und die Zellen anschließend in Kultur genommen (3.1.4). Für die Fluoreszenz-in-situ-Hybridisierungen von Gewebeschnitten (3.17.3) wurden Teile der Tumoren in 4%iger Formaldehyd-Lösung über Nacht bei RT fixiert.

3.19 Züchtung von Sojapflanzen

Samen der Soja Pflanzen der Art *Jubis* wurden von der Firma Altromin (Lage) bezogen. Die Samen wurden auf Watte ausgesät und 3 - 5 Tage im Dunkeln unter einer Frischhaltefolie gehalten. In dieser Zeit bildeten sich Keimlinge, die in sandhaltige Erde gesetzt und unter sehr feuchten Bedingungen gezüchtet wurden. Nach ca. 4 Wochen hatten sich 40 cm große Soja Pflanzen entwickelt, deren Blätter zur direkten DNA-Extraktion (3.4.5) oder zur Fütterung von Mäusen (3.18.3) verwendet wurden.
4 Ergebnisse

4.1 Schicksal von oral verabreichter DNA in Mäusen

4.1.1 Persistenz und Expression des pEGFP-C1 Plasmids in Mäusen

4.1.1.1 pEGFP-C1 Plasmid zeigt keine Homologie zur Maus-DNA und wird in Mauszellen exprimiert

In diesem ersten Teil der Arbeit wurden die Persistenz und Expression von oral verabreichter Test-DNA in Mäusen untersucht. Frühere Untersuchungen mit der DNA des Bakteriophagen M13mp18 zeigten, daß verfütterte DNA die Passage durch den Magen-Darm-Trakt von Mäusen in fragmentierter Form überstehen kann und über das Darmepithel, Peyersche Plaques und periphere Leukocyten in innere Organe gelangen kann (Schubbert et al. 1994, 1997). In dieser Arbeit wurde eine andere Test-DNA für die Fütterungsexperimente gewählt, um zu untersuchen, ob ähnliche Ergebnisse mit anderer DNA erzielt werden können. Darüber hinaus wurde der Frage nach der Expression von oral verabreichter DNA im Mausorganismus nachgegangen.

Ein weiterer Vorteil des gfp Gens war, daß dessen Expression einfach durch Fluoreszenzmikroskopie nachgewiesen werden konnte. Im Gegensatz zu anderen Reportergenen, wie z.B. β-Galaktosidase oder Chloramphenicol Acetyl Transferase (CAT), kann die Expression von GFP ohne die Hilfe von Substratreaktionen gezeigt werden. Darüber hinaus wurde die Sensitivität des GFP-Nachweises durch den Einsatz des enhanced green fluorescent protein (EGFP) erhöht, das sich im Vergleich zum Wildtyp GFP durch eine verstärkte Lichtemission auszeichnet (Cormack et al., 1996). Diese Mutante unterscheidet sich zum Wildtyp GFP durch den Austausch von nur zwei Aminosäuren: Phenylalanin (Position 64) ist durch Leucin und Serin (Position 65) ist durch Threonin substituiert. Im folgenden wird das verwendete EGFP Protein zur Vereinfachung als GFP Protein bezeichnet.

Abbildung 3: Expression von GFP in 3T3-Mausfibroblasten.
Auf Deckgläsen wachsende 3T3-Fibroblasten wurden mittels SuperFect mit dem pEGFP-C1 Plasmid transfiziert. Zu unterschiedlichen Zeiten nach der Transfektion wurden die Zellen in Paraformaldehyd fixiert und unter Durchlicht (a, c, e) bzw. Fluoreszenzlicht (b, d, f) betrachtet: (a, b) mock transfizierte Zellen, (c - f) transfizierte Zellen (c, d) 6 h, (e, f) 24 h nach Transfektion mit dem pEGFP-C1 Plasmid.
4.1.1.2 Persistenz des pEGFP-C1 Plasmids im GI-Trakt der Maus

Wie aus dem Autoradiogramm in Abbildung 4a ersichtlich wird, wurden Fragmente der verfütterten Plasmid DNA 3 h nach Applikation im Magen und in verschiedenen Abschnitten des Darm-Trakts nachgewiesen. Im Magen hatten die nachgewiesenen Fragmente eine Größe bis zu 1200 bp, wobei die meisten Fragmente bis zu 800 bp groß waren.

Tabelle 1: Expression des gfp Gens in 3T3-Mausfibroblasten in Abhängigkeit vom Promotor.

Abbildung 4: Nachweis der verfütterten pEGFP-C1 DNA im GI-Trakt von Mäusen durch Southern Transfer-Analysen.

Hierfür wurden die aus den Darminhalten extrahierten DNAs zunächst über Siliziumoxid gereinigt, da Vorversuche gezeigt hatten, daß die aus Darminhalten extrahierten DNA-Proben noch Substanzen enthielten, die die PCR inhibierten. Die Lage der für die PCR verwendeten Primer P2 und P3 innerhalb des pEGFP-C1 Plasmids ergibt sich aus Abbildung 5c und die Sequenzen der Primer sind im Anhang angegeben. Die Primer P2 und P3 haben gfp-spezifische Fragmente mit einer Größe von 398 bp amplifiziert. Die PCR-Produkte wurden auf einem 2%igen Agarosegel getrennt, auf eine positiv geladene Nylonmembran transferiert und anschließend gegen das radioaktiv markierte pEGFP-C1 Plasmid hybridisiert, um die Spezifität der amplifizierten Produkte zu bestätigen.
Durch die PCR-Analysen konnten Fragmente der verfütterten gfp DNA mit einer Größe von 398 bp ab 30 min nach Fütterung im Magen und in einem Zeitraum von 1 - 12 h im Darm nachgewiesen werden (Abbildung 5a, b). In den Darminhalten von Kontrollmäusen, die mit einer DNA-freien Pufferlösung gefüttert wurden, fand sich zu keiner Zeit gfp DNA (Abbildung 5a).
Ergebnisse

Auch größere Fragmente der pEGFP-C1 DNA konnten die Passage durch den Magen-Darm-Trakt überstehen. Mit dem Primerpaar P1/P3 durchgeführte PCR-Analysen wiesen 1277 bp große Fragmente der verfütterten DNA bis zu 3 h nach der DNA Gabe im Magen und Dünnarm und bis zu 8 h im Blinddarm und Enddarm nach (Abbildung 6). Diese Ergebnisse deuten auf eine hohe Nukleaseaktivität im Dünnarm hin. Im Gegensatz dazu scheinen in den Blinddarm gelangte Fragmente nicht so schnell degradiert zu werden, wie auch schon die Southern Transfer-Analysen gezeigt haben.

Abbildung 6: Nachweis von 1277 bp großen Fragmenten der verfütterten pEGFP-C1 DNA im GI-Trakt von Mäusen
(a) Zu den angegebenen Zeitpunkten nach Fütterung der Mäuse mit 50 µg pEGFP-C1 DNA wurde die DNA aus den Darminhalten extrahiert und mittels PCR untersucht. Die mit dem Primerpaar P1/P3 amplifizierten PCR-Produkte wurden gegen radioaktiv markiertes pEGFP-C1 hybridisiert. (b) Lage der verwendeten Primer im pEGFP-C1 Plasmid.

Die dargestellten Ergebnisse zeigen, daß oral verabreichte pEGFP-C1 DNA im GI-Trakt der Maus nicht vollständig zu niedermolekularen Mononukleotiden abgebaut wird, sondern daß Fragmente mit einer Größe von bis zu 1277 bp (28% der Plasmidgröße) mit dem Kot ausgeschieden werden. Dabei persistieren kleine Mengen dieser DNA bis zu 3 h nach Fütterung im Magen, zwischen 60 min 12 h im Darm und bis zu 24 h im Blinddarm. Die Ergebnisse korrelieren weitgehend mit denen, die in früheren Arbeiten mit M13mp18 als Test-DNA erzielt wurden (Schubbert et al., 1994, 1997).
4.1.1.3 Aufnahme von oral verabreichter gfp DNA in Körperzellen

![Abbildung 7: Nachweis der oral applizierten gfp DNA in verschiedenen Organen](image)

C57/Bl6 Mäuse wurden einmal mit 50 µg pEGFP-C1 Plasmid DNA gefüttert. Zu den angegebenen Zeitpunkten nach Fütterung wurden die Organe entnommen, DNA extrahiert und mittels der PCR-Methode unter Verwendung des Primerpaares P2/P3 untersucht (Abbildung 5). Der PCR Positivkontrolle (+) wurde 10 pg pEGFP-C1 Plasmid zugesetzt.

Unter Verwendung des Primerpaares P1/P3 (siehe Abbildung 6) konnten mit Hilfe von PCR-Analysen auch 1277 bp große Fragmente, die die komplette CMV-GFP-Region enthielten, in DNA aus verschiedenen Organen von gfp gefütterten Mäusen amplifiziert werden. Dabei wurden 1277 bp große Fragmente 3 h nach Fütterung in Leber und Blut und in einem Zeitraum von 3 - 8 h nach der gfp Verabreichung in Milz und Niere
nachgewiesen (Abbildung 8). Um die Identität der aus den Organproben amplifizierten PCR-Produkte zu bestätigen, wurden diese in einen pGEM-T Vektor kloniert und mit Hilfe von Sp6 und T7 Primern sequenziert (Daten nicht gezeigt). Die Sequenzen entsprachen dabei, von einigen wenigen Nukleotiden abgesehen, der authentischen gfp DNA. Die dargestellten Ergebnisse sind in Tabelle 2 zusammengefaßt. Es wird deutlich, daß die gfp DNA nach Fütterung nicht in jedem Tier gefunden wurde. In der Milz konnte die verfütterte DNA am häufigsten nachgewiesen werden, als möglicher Hinweis auf die Beteiligung des Immunsystems an der Elimination der fremden DNA. In früheren Studien mit der M13mp18 DNA wurden ähnliche Ergebnisse erzielt, wobei Fragmente dieser Test-DNA in seltenen Fällen bis zu 18 h nach Verfütterung in der Milz gefunden wurden (Schubbert et al., 1997).

Abbildung 8: Nachweis von Promotor-gfp-Fragmenten in Organen von Mäusen.

Zu den angegebenen Zeiten nach Fütterung der Mäuse mit 50 µg pEGFP-C1 Plasmid DNA wurde die DNA aus Leber, Milz, Niere und Blut extrahiert und mittels PCR unter Verwendung des Primerpaares P1/P3 untersucht (Abbildung 6). Als Positivkontrolle (+) wurde dem PCR-Ansatz 10 pg pEGFP-C1 DNA zugesetzt.

Abbildung 9: Nachweis der verfütterten pEGFP-C1 DNA in Gewebeschnitten mittels FISH.

Histologische Schnitte durch (a - c) die Blinddarmwand, (d, e) die Milz und (f) die Leber von Mäusen die mit (b, c, e, f) 50 µg pEGFP-C1 DNA oder (a, d) DNA-freiem Puffer gefüttert wurden. Als Hybridisierungssonde wurde gfp DNA mit Biotin markiert, die mit FITC gekoppeltem Avidin sichtbar gemacht wurde. Die nachgewiesene DNA ist als gelbes Signal in den mit Propidiumiodid gefärbten Zellkernen zu erkennen: (b) Blinddarmepithel 3 h, (c) Blinddarmepithel 8 h, (d) Milzgewebe 8 h, (f) Lebergewebe 8 h nach Verabreichung der pEGFP-C1 DNA. Vergrößerung: 1200x.

<table>
<thead>
<tr>
<th>Methode</th>
<th>maximale Länge der Fragmente</th>
<th>Organe</th>
<th>Zeit nach der Fütterung</th>
<th>Anzahl der gefütterten Tiere</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pEGFP-C1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TE</td>
</tr>
<tr>
<td>Southern-Blot</td>
<td>200 - 700 bp</td>
<td>Darminhalte 3 h</td>
<td>5/5</td>
<td>0/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8 h</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>1277 bp</td>
<td>Leber* 3 - 8 h</td>
<td>3/16</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>1277 bp</td>
<td>Milz 3 - 8 h</td>
<td>6/16</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>1277 bp</td>
<td>Niere 3 - 8 h</td>
<td>4/16</td>
<td>0/6</td>
</tr>
<tr>
<td></td>
<td>398 bp</td>
<td>Blut 3 h</td>
<td>3/11</td>
<td>0/8</td>
</tr>
<tr>
<td>FISH</td>
<td>-</td>
<td>Darmwand 3 - 8 h</td>
<td>5/8</td>
<td>0/2</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Leber 3 - 8 h</td>
<td>2/7</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Milz 3 - 8 h</td>
<td>3/7</td>
<td>0/3</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Niere 3 - 8 h</td>
<td>2/6</td>
<td>0/3</td>
</tr>
</tbody>
</table>

Tabelle 2: Nachweis der verfütterten gfp DNA im Darm und in verschiedenen Organen von Mäusen

C57/Bl6 Mäuse wurden einmal mit 50 µg pEGFP-C1 DNA gefüttert und die Darminhalte und Organe mit Hilfe der Southern DNA-Transfer-Analyse (Southern-Blot), PCR-Methode oder FISH-Technik untersucht. Kontrolltiere hatten DNA-freie Pufferlösung (TE) erhalten. *In Lebergewebe konnten 8 h nach Fütterung nur 398 bp große gfp-Fragmente nachgewiesen werden.
4.1.1.4 Expressionstudien der oral aufgenommenen pEGFP-C1 DNA

Für die RT-PCR-Analysen wurden die aus verschiedenen Organen extrahierten mRNAs in einem ersten Schritt durch die Reverse Transkriptase (RT) in cDNA umgeschrieben, die dann mit Hilfe einer hitzestabilen Polymerase (Tfl) amplifiziert wurden. Die Lage der für die RT-PCR verwendeten Primer innerhalb des pEGFP-C1 Plasmids ergibt sich aus Abbildung 10. Die Sequenzen der verwendeten Primer sind im Anhang angegeben. Für die RT-PCR-Analysen wurden RNAs aus Leber-, Milz- und Nierengewebe sowie aus Blut und aus der Darmwand von Mäusen extrahiert, die bis zu 3 Wochen täglich mit 50 µg pEGFP-C1 Plasmid gefüttert worden waren. Zu keiner Zeit konnte in einem untersuchten Organ die Transkription der gfp DNA nachgewiesen werden (Abbildung 10). Als Positivkontrolle wurde RNA eingesetzt, die aus der Oberschenkelmuskulatur einer Maus 1 Woche nach Injektion von 50 µg pEGFP-C1 DNA extrahiert wurde. Nur in dieser Probe wurde ein PCR-Produkt mit der erwarteten Größe von 1021 bp amplifiziert. Wurde dieselbe Probe im gleichen Ansatz ohne die Zugabe von RT analysiert, so wurde kein PCR-Produkt erhalten. Diese Kontrolle zeigt, daß das PCR-
Produkt nicht auf Verunreinigungen mit DNA zurückzuführen war. Auch kürzere Transkripte der verfütterten DNA, die unter Verwendung anderer Primerpaare analysiert wurden, konnten nicht nachgewiesen werden (Daten nicht gezeigt). Im Gegensatz dazu konnte mittels β-Aktin-spezifischer Primer in allen Proben ein PCR-Produkt amplifiziert werden (Abbildung 10, unterer Teil). Diese Kontrolle wurde stets zum Nachweis der Qualität und Quantität der RNA-Präparationen durchgeführt.

Die dargestellten Ergebnisse geben somit keinen Hinweis auf die Expression von oral applizierter Fremd-DNA im Mausorganismus.

Abbildung 10: Analyse der Transkription von verfütterter DNA.

Mäuse des Stammes CB20 wurden über verschiedenen lange Zeiträume (24 h, 3 Tage, 3 Wochen) täglich mit 50 µg pEGFP-C1 Plasmid gefüttert. Anschließend wurde die RNA aus Leber, Milz, Blut und Darmwand extrahiert und mittels RT-PCR analysiert. (a) Die unter Verwendung des Primerpaares P4/P5 amplifizierten PCR-Produkte wurden auf einem 2%-igen Agarosegel getrennt und gegen radioaktiv markiertes pEGFP-C1 Plasmid hybridisiert. Als Positivkontrolle (Muskel i.m.) diente RNA, die 7 Tage nach i.m. Injektion von 50 µg pEGFP-C1 DNA aus dem injizierten Muskel extrahiert wurde. Die Negativkontrolle (ohne RT) entsprach dem gleichen Reaktionsansatz ohne RT. Als endogene Kontrolle für die RNA-Qualität und Quantität wurde β-Aktin coamplifiziert. (b) Lage der verwendeten Primer innerhalb des pEGFP-C1 Plasmids.
4.1.1.5 Langzeitfütterungsexperiment

Im Rahmen dieser Arbeit wurde untersucht, ob ein DNA-Transfer auch über die Keimbahn nachgewiesen werden kann, d.h. ob Nachkommen von Tieren, die mit Fremd-DNA (pEGFP-C1) gefütterten wurden, in allen Zellen fremde DNA integriert enthalten. Um transgene Mäuse nach Verabreichung von Fremd-DNA zu erhalten, müßte die fremde DNA in Ei- oder Spermienzellen bzw. in eine deren Vorläuferzellen integrieren. Um diese Frage zu beantworten, wurden Mäuse über 8 Generationen täglich mit 50 µg pEGFP-C1 DNA gefüttert, gekreuzt, die Nachkommen auf ihren transgenen Status untersucht und weiter untereinander gekreuzt und gefüttert. Der transgene Status wurde dabei durch Analyse der aus Schwanzspitzen extrahierten DNA durch Southern Transfer-Hybridisierungen und mit Hilfe von PCR untersucht.

dargestellten Ergebnisse geben somit keinen Hinweis auf einen DNA-Transfer der mit der Nahrung aufgenommenen DNA über die Keimbahn. Möglicherweise ist die Keimbahn der Tiere vor dem Eindringen fremder DNA geschützt.

Abbildung 11: Analyse des transgenen Status der F5-Generation mittels PCR.
C57/Bl6 Mäuse wurden über acht Generationen täglich mit 50 µg pEGFP-C1 DNA gefüttert. (a - d) Die aus den Schwanzspitzen der F5-Generation extrahierte DNA wurde mittels PCR-Analysen unter Verwendung der angegebenen Primerkombinationen untersucht. Die PCR-Produkte wurden auf einem 1,5%igen Agarosegel getrennt, auf eine positive Nylonmembran transferiert und gegen gfp DNA hybridisiert. Als Marker dienten die Rsal-Fragmente des pEGFP-C1 Plasmids. (e) Lage der Primer im pEGFP-C1 Plasmid. Die Sequenzen der Primer sind im Anhang angegeben.
4.1.2 Persistenz von mit natürlicher Nahrung aufgenommener DNA im Mausorganismus

4.1.2.1 Nukleäres Ribulose-1,5-bisphosphat Carboxylase Gen zeigt keine Homologie zur Maus-DNA

In Vorversuchen wurde die Spezifität verschiedener Rubisco Primer unter Verwendung mehrerer unterschiedlicher Template DNAs in PCR-Analysen untersucht. Die Lage der verwendeten Primer innerhalb des Rubisco Gens ergibt sich aus Abbildung 12. Die PCR-Produkte wurden auf einem 1,5%-igen Agarosegel getrennt, auf eine positiv
geladene Nylonmembran transferiert und gegen ein 1516 bp großes Fragment der Rubisco DNA hybridisiert. In Abbildung 12 sind exemplarisch die Ergebnisse der PCR-Analysen dargestellt, die mit den Primerpaaren P14/P15 und P16/P17 durchgeführt wurden. Dabei konnten Fragmente der Rubisco DNA mit einer Größe von 337 bp bzw. 1516 bp ausschließlich mit DNA aus Sojapflanzen und weder mit DNA aus anderen Pflanzen noch mit DNA aus Organen und Darminhalten der Maus amplifiziert werden. Durch die verschiedenen Vorversuche konnte sichergestellt werden, daß die mit Sojablättern aufgenommene Rubisco DNA eindeutig als Fremd-DNA im Mausorganismus erkannt werden konnte.

Abbildung 12: Analyse von Rubisco-spezifischen Primer.
Die aus Organen oder Darminhalten der Maus sowie aus Pflanzen extrahierte DNA wurden mit dem Primerpaar (a) P14/P15 bzw. (b) P16/P17 in PCR-Analysen untersucht. Die PCR-Produkte wurden gegen ein 1516 bp großes radioaktiv markiertes Rubisco-Fragment der Sojapflanze hybridisiert. (c) Lage der Primer innerhalb des Rubisco Gens. Die Sequenzen der Primer sind im Anhang angegeben.
4.1.2.2 Passage des Rubisco Gens durch den GI-Trakt der Maus

Zunächst wurde die Stabilität von in Pflanzenzellen geschützter DNA im GI-Trakt von Mäusen untersucht. Dazu wurden Mäuse mit Blättern der Sojapflanze gefüttert und zu unterschiedlichen Zeiten die DNA aus den Magen- und Darminhalten dieser Mäuse extrahiert und aufgereinigt. Die mit der RE EcoRI gespaltene DNA wurde auf einem 0,8%igen Agarosegel getrennt und nach dem DNA-Transfer gegen Rubisco DNA hybridisiert. Die Ergebnisse zeigen, daß das intakte EcoRI-Fragment des Rubisco Gens mit einer Größe von 2.100 bp 1 h nach Fütterung nur im Magen, in den verschiedenen Abschnitten des Darm-Trakts nach 3 h und im Enddarm 5 h nach Fütterung durch die DNA-Transfer-Hybridisierungsmethode nachgewiesen werden konnte (Abbildung 13). Jedoch konnte nicht in allen untersuchten Darminhalten das Rubisco Gen gefunden werden. In einigen Fällen wurde im Autoradiogramm eine Bande im hochmolekularen Bereich sichtbar, die ein Hinweis darauf sein könnte, daß die DNA im Darm möglicherweise noch teilweise komplexiert mit subzellulären Komponenten komplexiert vorliegt. In anderen Fällen wurde keine Rubisco DNA nachgewiesen, was auf einen stärkeren Abbau der pflanzlichen DNA im GI-Trakt dieser Mäuse hindeuten könnte.

Zu unterschiedlichen Zeitpunkten nach Fütterung der Mäuse mit Sojablättern wurde die DNA aus verschiedenen Abschnitten des Magen-Darm-Trakts isoliert. Die extrahierte DNA (jeweils 30 µg) wurde mit der RE EcoRI gespalten und gegen das radioaktiv markierte EcoRI-Fragment des Rubisco Gens hybridisiert. Als Größenmarker dienten 2 µg aus Sojablättern isolierter DNA, die parallel zu den Darminhalten aufgereinigt und gespalten wurde.
Die mit der Southern Transfer-Hybridisierungsmethode erzielten Ergebnisse konnten durch PCR-Analysen bestätigt werden. Mit dem Primerpaar P16/P17 wurden Fragmente des sojaspezifischen Rubisco Gens mit einer Größe von 1516 bp 1 h nach Fütterung in DNA aus dem Magen und ab 3 h in DNA aus dem Blinddarm amplifiziert (Abbildung 14). In Kotproben konnten Fragmente der Rubisco DNA mit einer Größe von 1516 bp ab 3 h nach Fütterung durch PCR-Analysen nachgewiesen werden (Daten nicht gezeigt). In einigen Mäusen wurde die Rubisco DNA auch schon nach 2 h im Blinddarm gefunden. In anderen Mäusen konnten Fragmente der Rubisco DNA 6 h nach Fütterung noch nicht bzw. nicht mehr aus DNA des Blinddarminhalts amplifiziert werden. Im Gegensatz zur direkten Applikation der Plasmid DNA in die Mundhöhle der Maus konnte bei diesen Fütterungsexperimenten nicht sichergestellt werden, daß die Mäuse direkt nach Bereitstellung der Sojablätter diese auch zu sich nahmen. Alle Mäuse wurden in den hier dargestellten Experimenten 3 h vor Fütterungsbeginn auf Diät gesetzt, indem ihnen die Futterpellets als Nahrungsquelle entzogen wurden.

Zu den angegebenen Zeitpunkten nach Fütterung der Mäuse mit Sojablättern wurde die DNA aus den Inhalten des GI-Trakts extrahiert und mittels der PCR-Methode analysiert. (a) Die mit den Primerpaaren 1: P14/P15 und 2: P16/P17 amplifizierten PCR-Produkte wurden gegen Rubisco DNA hybridisiert. Als Positivkontrolle (+) wurde DNA aus Sojablättern in die PCR-Reaktion eingesetzt. (b) Lage der Primer innerhalb des Rubisco Gens.
4.1.2.3 “Pulse-Chase”-Experiment: Persistenz des Rubisco Gens im GI-Trakt der Maus

Abbildung 15: Persistenz des Rubisco Gens im GI-Trakt der Maus.

Um auch noch Restmengen der Rubisco DNA im GI-Trakt der Mäuse nachweisen zu können, wurden PCR-Analysen durchgeführt. Dabei wurden Rubisco-spezifische Fragmente mit einer Größe von 1516 bp in allen Abschnitten des Magen-Darm-Trakts bis zu 22 h nach der Sojaverabreichung amplifiziert (Abbildung 16). Nach 49 h konnten
Ergebnisse

4.1.2.4 Aufnahme der Pflanzen-DNA in innere Organe

Abbildung 16: Untersuchung der Persistenz des Rubisco Gens im GI-Trakt der Maus mittels der PCR-Methode

4.1.2.4 Aufnahme der Pflanzen-DNA in innere Organe

Um die Identität der aus den Organ-Proben amplifizierten PCR-Produkte zu bestätigen, wurden sie in einen pGEM-T Vektor kloniert und mit Hilfe von T7 und Sp6 Primern sequenziert (Abbildung 18). Die Sequenzen entsprachen dabei, von einigen wenigen Nukleotiden abgesehen, der in der Datenbank veröffentlichten Sequenz der soja-spezifischen Rubisco DNA (GenBank Accession Number J01307).

Abbildung 17: Nachweis der mit der Nahrung aufgenommenen DNA in Organen.
Die DNA aus Organen von Mäusen, die über unterschiedlich lange Zeiträume mit Sojablättern gefüttert worden waren, wurde durch PCR-Analysen unter Verwendung des Primerpaares P14/P15 untersucht (Abbildung 14).

Abbildung 18: Sequenzierung der PCR-Produkte.
Die aus den Organen mit den Primern P14 und P15 amplifizierten PCR-Produkte (Abbildung 17) wurden auf einem 1,5%igen Agarosegel getrennt, ausgeschnitten, gereinigt und in einen pGEM-T Vektor kloniert. Mit Hilfe von Sp6 Primern wurde die Sequenz des Rubisco Gens zwischen den Koordinaten 678 und 982 sequenziert.

4.2 Schicksal von parenteral applizierter DNA in Mäusen

4.2.1 Persistenz und Verteilung von fremder DNA nach intramuskulärer Injektion

Um die Persistenz fremder DNA zu untersuchen, wurden Mäuse mit verschiedenen Mengen des pRSVGFP Plasmids intramuskulär (i.m) in die Oberschenkelmuskulatur injiziert. Zu unterschiedlichen Zeitpunkten nach der Injektion wurden verschiedene Organe, wie injizierter Muskel, kontralateraler Muskel, Leber, Milz, Niere sowie Blut, entnommen, die DNA durch Phenol/Chloroform-Extraktionen gereinigt und mit Southern Transfer-Analysen untersucht. Dazu wurden 10 µg der extrahierten DNA mit der RE PmlI geschnitten, die keine Restriktionsschnittstelle im pRSVGFP Plasmid enthält, jedoch die genomische DNA in kleinere Fragmente spaltet, die somit gut im 0,8%igen Agarosegel aufgetrennt werden konnte. Nach dem DNA-Transfer auf eine positiv geladene Nylonmembran wurde die DNA gegen das radioaktiv markierte pRSVGFP Plasmid hybridisiert. Nach einmaliger i.m. Injektion von 50 µg pRSVGFP Plasmid DNA wurde die injizierte DNA nur im injizierten Muskel, aber nicht im kontralateralen Muskel nachgewiesen (Abbildung 20). Auch in Leber, Milz und Niere konnte keine i.m. injizierte DNA gefunden werden (Daten nicht gezeigt). Im injizierten Muskel war das Plasmid in seiner ursprünglichen Größe von 6.100 bp bis zu 3 h nach Injektion nachweisbar, kleinere Fragmente bis zu 6 h. Ähnliche Ergebnisse wurden auch nach Injektion von 500 µg oder 5 µg pRSVGFP DNA erzielt. Nach Injektion von 500 µg pRSVGFP Plasmid DNA wurde die fremde DNA zusätzlich 24 h nach Applikation im injizierten Muskel sowie nach 30 min in Originalgröße in verschiedenen Organen, die entfernt von der Injektionsstelle lagen, durch Southern Transfer-Analysen gefunden (Daten nicht gezeigt). Die Ergebnisse deuten darauf hin, daß die in die Oberschenkelmuskulatur injizierte fremde DNA zum einen schnell durch zelleigene Nukleasen abgebaut und zum anderen im Organismus verteilt wird.
Um auch geringe Mengen der injizierten DNA in den verschiedenen Organen nachweisen zu können, wurden sensitivere PCR-Analysen durchgeführt. Unter Verwendung der Primer P11 und P3 konnten 769 bp große gfp-spezifische Fragmente bis zu 24 h nach Injektion von 50 µg pRSVGFP Plasmid DNA im kontralateralen Muskel und bis zu 1 h in der Leber nachgewiesen werden (Abbildung 21a). Auch nach Injektion von 500 µg oder 5 µg Plasmid DNA wurde die gfp DNA bis zu maximal 24 h nach Injektion in Organen wiedergefunden, die entfernt von der Injektionsstelle lagen (Abbildung 21b, c). Im Gegensatz dazu persistierte die gfp DNA, unabhängig von der injizierten DNA Menge, bis zu 17 Monaten nach der parenteralen Applikation im injizierten Muskel (Abbildung 21d). Spätere Zeitpunkte nach Injektion wurden nicht untersucht, da die Mäuse im Alter von etwa 6 Wochen injiziert worden waren und über die 19 Monate hinaus keine wesentlich längere Lebenserwartung hatten. Es kann jedoch davon ausgegangen werden, daß die fremde DNA bis an das Lebensende der Maus (maximal 21 Monate) im injizierten Muskel persistiert.
Abbildung 21: Persistenz der i.m. injizierten DNA in verschiedenen Organen.

CB20 Mäuse wurden mit unterschiedlichen Mengen pRSVGFP Plasmid DNA intramuskulär in die Oberschenkelmuskulatur injiziert. Zu den angegebenen Zeiten (T: Tagen) nach Injektion von (a) 50 µg pRSVGFP, (b) 500 µg pRSVGFP oder (c) 5 µg pRSVGFP Plasmid DNA wurde DNA aus verschiedenen Organen extrahiert und mittels der PCR-Methode analysiert. (d) Analyse der Organe 17 Monate nach der i.m. Injektion von 50 µg bzw. 500 µg pRSVGFP Plasmid DNA. Kontrolltiere wurden mit DNA-freiem Puffer injiziert. Als Positivkontrolle (+) wurde 10 pg des Plasmids in die PCR-Ansätze eingesetzt. Die PCR-Produkte wurden gegen radioaktiv markierte pRSVGFP Plasmid DNA hybridisiert. (e) Lage der verwendeten Primer P11 und P3 innerhalb des pRSVGFP Plasmids. Die Sequenzen der Primer sind im Anhang angegeben.
Die Ergebnisse der PCR-Analysen sind in Tabelle 3 zusammengefasst. Es wird deutlich, daß die Menge der injizierten DNA keinen wesentlichen Einfluß auf die Persistenz der injizierten fremden DNA im Mausorganismus hat. Die Ergebnisse sagen jedoch nichts darüber aus, wo und in welchem Zustand sich die DNA in der Zelle befindet, ob integriert in die genomische DNA oder in episomaler Form, ob im Cytoplasma oder im Zellkern.

<table>
<thead>
<tr>
<th>Zeit</th>
<th>Muskel</th>
<th>Muskel</th>
<th>Leber</th>
<th>Niere</th>
<th>Blut</th>
<th>Darm</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>1 h</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3 h</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6 h</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>24 h</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1 h</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3 h</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6 h</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>24 h</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>30 min</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>1 h</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3 h</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6 h</td>
<td>+++</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Tabelle 3: Persistenz und Verteilung der parenteral applizierten pRSVGF DNA

Zu den angegebenen Zeiten (T: Tage; M: Monate) nach i.m. Injektion des pRSVGF Plasmids wurde die DNA aus den Organen (Muskel+: injizierter Muskel; Muskel-: kontralateraler Muskel) extrahiert und mittels der PCR-Methode analysiert. Untergangsische Mengen der pRSVGF DNA wurden injiziert: 500 µg, 50 µg, 5 µg.
4.2.2 Ausscheidung der injizierten DNA über den Leber-Gallen-Darmweg

Für den Körper nicht verwertbare Substanzen, wie beispielsweise das aus den Erythrocyten stammende Bilirubin, gelangen über den Blutkreislauf in die Leber, wo sie aktiv in Gallenkanälchen sezerniert und mit der Galle in den Darm ausgeschüttet werden. Die oben dargestellten Ergebnisse zeigen, daß injizierte Fremd-DNA für maximal 24 h im Blutkreislauf persistiert. Diese Beobachtung führte zu der Fragestellung, ob fremde DNA im Mäusorganismus komplett zu niedermolekularen Mononukleotiden abgebaut wird oder möglicherweise zusätzlich über den Leber-Gallen-Darmweg aus dem Organismus eliminiert wird. Um diese Frage zu beantworten, wurde DNA aus den Darminhalten von i.m. injizierten Mäusen extrahiert und mittels der PCR-Methode unter Verwendung der gfp-spezifischen Primer P12 und P3 untersucht. Dabei konnten in einem Zeitraum zwischen 1 und 6 h nach der Injektion Fragmente der i.m. injizierten gfp DNA mit einer Größe von 595 bp aus unterschiedlichen Abschnitten des Darm-Trakts amplifiziert werden (Abbildung 22).

Analyse der DNA aus Darminhalten von Mäusen, die mit 50 µg pRSVGFP Plasmid i.m. injiziert wurden. Die Darminhalte wurden zu den angegeben Zeitpunkten nach der Injektion entnommen, DNA extrahiert und auf das Vorhandensein der gfp DNA mittels der PCR-Methode untersucht. (b) Lage der Primer P12 und P3 innerhalb des pRSVGFP Plasmids. Die Sequenzen der Primer sind im Anhang angegeben.

In einigen Ansätzen wurde der zu injizierenden DNA-Lösung Bromphenolblau (2 mg/ml) zugesetzt, um einen groben Anhaltspunkt über die Verteilung der injizierten Lösung zu bekommen. Dabei konnte eine Blaufärbung des injizierten Muskels und des ausgeschiedenen Urins bis zu 6 h nach Injektion beobachtet werden (Abbildung 23a, b). Organe wie Leber, Milz und Niere sowie kontralaterale Muskel zeigten zu keiner Zeit eine blaue Färbung. Im Gegensatz dazu konnte bis zu 3 h nach Injektion eine starke
Ergebnisse

Abbildung 23: Ausscheidung des Bromphenolblaus aus dem Organismus.
Organe und Exkremente einer Maus in situ 3 h nach i.m. Injektion einer DNA-Bromphenolblau-Lösung: (a) injizierter Muskel, (b) ausgeschiedener Urin, (c) Leber mit Gallenblase, (d) Darmabschnitt.
4.2.3 Expression der injizierten DNA

4.2.3.1 Detektion von grün-fluoreszierenden Muskelfasern

Eine Zunahme der injizierten DNA-Menge auf 200 µg, 500 µg oder 1 mg führte zu keiner merklichen Steigerung der Fluoreszenz im quantitativen Sinne; ebensowenig konnte eine Zunahme der Fluoreszenzintensität der einzelnen Muskelfasern beobachtet werden. Im Gegensatz dazu hatte der Puffer, in dem die DNA gelöst war, einen starken Einfluß auf die Expression von GFP. Wurde die DNA in TE, Wasser oder in einer

Bildung 24: Expression von GFP in injizierten Muskelfasern.

Fluoreszenzmikroskopische Untersuchungen des injizierten Muskelgewebes zu unterschiedlichen Zeitpunkten nach der i.m. Injektion von 50 µg pEGFP-C1 DNA. Kontrollmäuse wurden mit DNA-freier Pufferlösung injiziert. (a) Kontroll-Muskel, (b-e) injizierter Muskel (b, e, f) 7 Tage, (c) 14 Tage und (d) 6 Wochen nach der Injektion. (a-e) Verwendung des FITC-Filterblocks bzw. (f) des DAPI-Filterblocks. Vergrößerung: 50 x.
20%igen Sucroselösung injiziert, so konnte keine oder nur eine ganz schwache Expression der injizierten DNA beobachtet werden. Erst die Injektion von DNA, die in physiologischer Kochsalzlösung (0,9% NaCl) gelöst war, induzierte eine starke Expression von GFP in Muskelfasern. Zusätzlich war die Expression der gfp DNA im injizierten Muskelgewebe von dem vorgeschalteten Promotor abhängig. Nach Injektion des pEGFP-C1 Plasmids, bei dem das gfp Gen unter der Kontrolle des CMV-Promotors stand, wurde die stärkste Fluoreszenzintensität sowie die meisten fluoreszierenden Fasern beobachtet. Der zweitstärkste Promotor im Muskelgewebe schien der RSV-Promotor zu sein. Nach Injektion des pSVGFP Plasmids, bei dem das gfp Gen unter der Kontrolle des SV40-Promotors stand, fluoreszierten die Muskelfasern nur ganz schwach. Die verschiedenen Promotoren hatten somit unterschiedlich starke Aktivitäten im Muskelgewebe.

In allen anderen untersuchten Geweben, die entfernt vom Injektionsort lagen, wie Leber, Milz und kontralateralem Muskel, konnte nach der i.m. Injektion zu keiner Zeit und mit keinem der Promotoren eine von GFP abhängige Fluoreszenz der Zellen beobachtet werden. Möglicherweise war in diesen Geweben die Expression des GFP Proteins zu schwach, um mikroskopisch nachgewiesen werden zu können. Aus diesem Grund wurden sensitivere RT-PCR-Analysen durchgeführt.

4.2.3.2 RT-PCR-Analysen zum Nachweis der Transkription der injizierten DNA

Gerüste

- 91 -

Im Gegensatz zum injizierten Muskel konnte in allen anderen untersuchten Geweben wie Leber, Milz, kontralateralem Muskel und Blut, weder früh nach Injektion (24 h, 72 h) noch zu späteren Zeitpunkten (1 Woche, 3 Wochen) die Transkription der injizierten DNA durch RT-PCR-Analysen nachgewiesen werden (Abbildung 26). Die β-Aktin-Kontrollen zeigten auch hier, daß die RNA-Präparationen die Amplifikation von Transkripten mittels der RT-PCR-Methode erlaubten. Die beschriebenen Ergebnisse zeigen, daß die in die Oberschenkelmuskulatur von Mäusen injizierte DNA unter den angegebenen Bedingungen nur am Ort der Injektion und dort nur in einem eng umgrenzten Bereich exprimiert wird. In keinem vom Injektionsort entfernten liegenden Gewebe konnte die Expression der i.m. injizierten DNA weder durch Fluoreszenznikroskopie noch durch die sensitivere RT-PCR-Methode nachgewiesen werden.

Abbildung 25: Nachweis der Transkription der injizierten DNA im kollateralen Muskel mittels der RT-PCR-Methode.

(a) Zu den angegebenen Zeitpunkten nach i.m. Injektion von 50 µg pEGFP-C1 DNA wurden die RNAs aus den injizierten Muskelgeweben extrahiert und mittels RT-PCR analysiert. Kontrolltiere wurden mit DNA-freier Pufferlösung injiziert. Als Negativkontrollen dienten die identischen Ansätze ohne Reverse Transkriptase (ohne RT). Zur Kontrolle der Qualität und Quantität der RNA Präparationen wurde parallel ein Fragment des β-Aktin-Transkripts amplifiziert. (b) Lage der verwendeten Primer innerhalb des pEGFP-C1 Plasmids.
Ergebnisse

Insgesamt zeigen die Injektionsexperimente, daß fremde DNA schnell durch Nukleasen abgebaut wird und mit dem Blut in verschiedene Organe gelangt. Im injizierten Muskel persistiert die fremde DNA für mindestens 17 Monate, während sie in allen anderen Organen nie später als 24 h nach Injektion nachgewiesen werden konnte. Die Expression der injizierten DNA wurde nur im injizierten Muskel beobachtet. Der Nachweis der injizierten DNA in Darminhalten läßt vermuten, daß die fremde DNA nicht komplett im Mausorganismus abgebaut wird, sondern wenigstens z.T. über den Leber-Gallen-Darmweg aus dem Organismus eliminiert.

Abbildung 26: Analyse der Transkription der i.m. injizierten DNA in verschiedenen Organen.

Zu den angegebenen Zeitpunkten nach i.m. Injektion von 50 µg pEGFP-C1 DNA wurde die RNA aus der Leber, Milz, dem kontralateralen Muskel (Muskel -) sowie aus dem Blut extrahiert und mittels RT-PCR analysiert (Abbildung 25). Als Positivkontrolle wurde RNA eingesetzt, die 7 Tage nach i.m. Injektion von 50 µg pEGFP-C1 DNA aus dem injizierten Muskel extrahiert wurde (Muskel +). Die Negativkontrolle entsprach dem gleichen Reaktionsansatz ohne Zugabe der RT (ohne RT). Als endogene Kontrolle für die RNA-Qualität und Quantität wurde ein β-Aktin-Transkript amplifiziert.

Insgesamt zeigen die Injektionsexperimente, daß fremde DNA schnell durch Nukleasen abgebaut wird und mit dem Blut in verschiedene Organe gelangt. Im injizierten Muskel persistiert die fremde DNA für mindestens 17 Monate, während sie in allen anderen Organen nie später als 24 h nach Injektion nachgewiesen werden konnte. Die Expression der injizierten DNA wurde nur im injizierten Muskel beobachtet. Der Nachweis der injizierten DNA in Darminhalten läßt vermuten, daß die fremde DNA nicht komplett im Mausorganismus abgebaut wird, sondern wenigstens z.T. über den Leber-Gallen-Darmweg aus dem Organismus eliminiert.
4.3 Injektion von Adenovirus Typ 12 in neugeborene Hamster

In dem dritten Teil der Arbeit wurde das Verhalten von adenoviraler DNA nach Injektion von Adenovirus Typ 12 in neugeborene Hamster untersucht.

Im Rahmen dieser Arbeit wurde die Menge der injizierten Ad12-Virionen reduziert, um zu untersuchen, ob auch geringere Mengen Ad12-Virionen die Induktion von Tumoren in neugeborenen Hamstern auslösen können. In früheren Arbeiten wurden in den durch Injektion von $4,5 \times 10^7$ pfu Ad12-Virionen induzierten Tumoren häufig bis zu 20 Kopien der Ad12 DNA integriert in das Hamstergenom nachgewiesen (Hilger-Eversheim und Doerfler, 1997). Möglicherweise besteht eine Korrelation zwischen der Menge der injizierten Ad12-Virionen und der Anzahl der in das Hamstergenom integrierten Kopien der Ad12 DNA. Darüber hinaus wurde durch Injektionsexperimente von Ad12-Virionen in andere Gewebe wie Muskel und Leber untersucht, ob Ad12 neben undifferenzierten Sarkomen auch die Bildung andersartiger Tumoren induzieren kann.

4.3.1 Einfluß der Menge von Ad12-Virionen auf die Tumorinduktion

Nach der subkutanen Injektion von $4,5 \times 10^7$ pfu Ad12-Virionen in neugeborene Hamster entwickelten diese in einem Zeitraum von 33 bis 47 Tagen 1 - 4 Tumoren an der Injektionsstelle (Hilger-Eversheim und Doerfler, 1997). Um den Einfluß der Ad12 Menge auf die Fähigkeit zur Tumorinduktion zu untersuchen, wurden neugeborene Hamster der Gattung *Mesocricetus auratus* in unterschiedlichen Experimenten mit Mengen zwischen
Ergebnisse

4,5 \times 10^7 und 4,5 \times 10^3 pfu Ad12-Virionen subkutan in die Nackenregion injiziert. Nach Injektion von 4,5 \times 10^7 pfu Ad12-Virionen entwickelten 9 von 11 Tieren (82\%) in einem Zeitraum von 37 bis 48 Tagen nach der Injektion Tumoren. Die Tumoren bildeten sich bei allen Tieren in der Nackenregion und hatten einen Durchmesser von 0,2 - 1,7 cm. Häufig bildeten sich in einem Tier bis zu 3 klar voneinander abgegrenzte Tumoren von teilweise sehr unterschiedlicher Größe (Abbildung 30). Die Tumoren wurden innerhalb von 5 Tagen nach der ersten Beobachtung aus den Tieren extrahiert. In keinem der Hamster konnten Metastasen makroskopisch in anderen Organen gefunden werden. Nach Injektion von 4,5 \times 10^6 pfu Ad12-Virionen entwickelten noch 71\% der Tiere (10/14) Tumoren im gleichen Zeitraum, nur bei 2 Tieren wurden die Tumoren erst 56 bzw. 64 Tage nach der Injektion beobachtet. Im Gegensatz dazu bildete nach Injektion von 4,5 \times 10^5 pfu Ad12-Virionen nur noch einer von 12 überlebenden Hamstern (8,3\%) Tumoren. Wurde die Menge der injizierten Ad12-Virionen weiter auf 4,5 \times 10^4 pfu bzw. auf 4,5 \times 10^3 pfu reduziert, konnte innerhalb von 16 Monaten bei keinem der 22 Tiere eine Tumorentwicklung beobachtet werden. Bei diesen Tieren konnten makroskopisch weder Tumoren in der Nackenregion noch in anderen Organen entdeckt werden. Somit scheint die Fähigkeit zur Tumorinduktion von der Menge der injizierten Ad12-Virionen abhängig zu sein. Mit reduzierter Menge von Ad12-Virionen sank die Anzahl der induzierten Tumoren pro Tier und die Anzahl der tumorbildenden Tiere insgesamt. Im Gegensatz dazu nahm die Zeit zu, bis Tumoren nach der Injektion gebildet wurden. Es bleibt jedoch die Frage offen, ob die durch wenige pfu induzierten Tumoren langsamer wachsen oder ob erst zu einem späteren Zeitpunkt das Integrationsereignis, das zur Transformation der Zelle führte, stattgefunden hatte.

<table>
<thead>
<tr>
<th>Anzahl der injizierten Tiere</th>
<th>Anzahl der Hamster mit Tumoren</th>
<th>Tumorbildung (in Tagen)</th>
<th>Anzahl der Tumoren pro Tier</th>
<th>Größe der Tumoren (Durchmesser in cm)</th>
<th>Ort der Tumorbildung</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5 \times 10^7</td>
<td>14 (11)(^1)</td>
<td>9 (82%)(^2)</td>
<td>35 - 48</td>
<td>1 - 3</td>
<td>0,2 - 1,7</td>
</tr>
<tr>
<td>4,5 \times 10^6</td>
<td>15 (14)(^1)</td>
<td>10 (71%)(^2)</td>
<td>37 - 49, 56,64</td>
<td>1 - 5</td>
<td>0,2 - 2</td>
</tr>
<tr>
<td>4,5 \times 10^5</td>
<td>14 (12)(^1)</td>
<td>1 (8,3%)(^2)</td>
<td>63</td>
<td>2</td>
<td>1,5</td>
</tr>
<tr>
<td>4,5 \times 10^4</td>
<td>14 (11)(^1)</td>
<td>0</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>4,5 \times 10^3</td>
<td>12 (11)(^1)</td>
<td>0</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

Tabelle 4: Tumorbildung nach subkutaner Injektion von Ad12-Virionen in Hamstern

\(^1\): Anzahl der überlebenden Tiere bis Untersuchung.

\(^2\): Die Prozentzahl entspricht der Anzahl der tumorbildenden Tiere von den insgesamt bis zur Unter- Untersuchung überlebenden Tiere.
4.3.2 Einfluß der Menge der injizierten Ad12-Virionen auf die Anzahl der in das Hamstergenom integrierten Ad12 Genome

Die oben beschriebenen Experimente zeigen, daß die Fähigkeit zur Induktion von Tumoren abhängig von der Menge der injizierten Ad12-Virionen ist. Aus diesen Ergebnissen ergab sich die weitere Frage, ob mit abnehmender Menge von injizierten Ad12-Virionen die Anzahl der integrierten Ad12 Kopien sinkt. Um diese Frage zu beantworten, wurde DNA aus Tumoren, die durch unterschiedliche Mengen Ad12-Virionen induziert worden waren, durch Restriktions- und Southern Transfer-Analysen untersucht.

Die aus den verschiedenen Tumoren extrahierten DNAs (10 µg) wurden mit den Restriktionsendonukleasen (RE) HindIII oder PstI gespalten und die entstandenen Fragmente elektrophoretisch in einem 0,8%igen Agarosegel getrennt. Im Anschluß wurde die DNA auf eine positiv geladene Nylonmembran transferiert und gegen (a) die Ad12 Gesamt-DNA (b) das linke klonierte Ende PstI-C (c) das rechte klonierte Ende BamHI-E hybridisiert. Als Größen- und Mengen-Referenz-Marker wurden 5 bzw. 10 Genomäquivalente der Ad12 DNA mit denselben RE gespalten. Die original HindIII- und PstI-Fragmente der Ad12-Marker-DNA wurden der Größe nach alphabetisch gekennzeichnet. Pfeile kennzeichnen “Off-Size”-Fragmente in den Tumor-DNAs. Die Restriktionskarte der Ad12 DNA für die RE PstI, BamHI und HindIII ist im Teil (d) der Abbildung dargestellt. Die terminalen Fragmente, die als Hybridisierungssonden verwendet wurden, sind in (d) grau unterlegt.

Wie aus der Abbildung 27a - c deutlich wird, hat jeder Tumor ein individuelles Ad12-Integrationsmuster mit einem spezifischen Muster an "Off-Size"-Fragmenten. Auch die DNA aus Tumoren, die aus demselben Versuchstier isoliert wurden, wie z.B. die DNA der Tumoren H7.1 und H7.2 haben unterschiedliche Restriktionsmuster nach dem Verdau mit HindIII oder PstI. Die unterschiedlichen Integrationsmuster der Ad12 DNA in den einzelnen Ad12-induzierten Tumoren sind ein Hinweis auf die Integration der Ad12 DNA in unterschiedliche zelluläre Sequenzen.

Beim Vergleich der Bandenintensitäten der Tumor-DNAs mit der Referenz-DNA wird deutlich, daß in einigen Tumoren (H40.1, H32.2) über 20 Kopien der Ad12 DNA integriert wurden. In anderen Tumoren (H6.1, H7.2, H8.1, H32.1) wurden hingegen weniger als 5 Kopien der Ad12 DNA nachgewiesen. Auf ähnliche Weise wurden durch Restriktions- und Southern DNA-Transfer-Analysen viele Tumoren untersucht, deren Ergebnisse in Tabelle 5 zusammengefaßt sind. Die angegebenen Kopienzahlen beruhen dabei auf dem Vergleich der Bandenintensitäten der Tumor-DNAs mit der Ad12-Referenz-DNA. Insgesamt konnte keine Korrelation zwischen der Anzahl der integrierten Ad12 Genome und der injizierten Ad12 Menge beobachtet werden. Aus dem Hamster H32, der mit 4,5 x 10^5 pfu Ad12-Virionen injiziert worden war, wurden 2 Tumoren (H32.1 und H32.2) mit jeweils einem Durchmesser von 1,5 cm isoliert, von dem der Tumor H32.1 weniger
als 5 Kopien der Ad12 DNA enthielt, während in dem Tumor H32.2 über 20 Ad12 Genome nachgewiesen wurden. Somit bestand weder eine Korrelation zwischen der injizierten Ad12 Menge und der Anzahl der integrierten Ad12 Genome noch zwischen der Anzahl der integrierten Ad12 Genome und der Wachstumsgeschwindigkeit der Tumoren. Alle 18 untersuchten Tumoren zeichneten sich durch ein individuelles Ad12 Integrationsmuster aus, als Hinweis für die Integration der Ad12 DNA an nicht spezifische Insertionsstellen in das zelluläre Hamster genom.

4.3.3 Injektionen von Ad12-Virionen in unterschiedliche Gewebe

Um zu untersuchen, ob und wie schnell Ad12-Virionen nach Injektion in Leber oder Skelettmuskulatur (i.m.) die Bildung von Tumoren induzieren können, wurden Ad12-Virionen in die entsprechenden Gewebe neugeborener Hamster injiziert. Nach Injektion von $4,5 \times 10^7$ pfu Ad12-Virionen in die Oberschenkelmuskulatur bildeten sich innerhalb von 29 - 36 Tagen in 15 von 16 Tieren (94%) Tumoren (Tabelle 6). Dabei wurden aus den meisten Hamstern je 12 - 16 Tumoren isoliert, von denen der größte Tumor einen Durchmesser von 3 cm hatte. Nur in seltenen Fällen waren die Tumoren direkt mit der Muskulatur assoziiert. Die meisten Tumoren wurden aus der Bauchhöhle isoliert, wo sie häufig mit dem Peritoneum verbunden waren. In seltenen Fällen waren die Tumoren auch mit dem Hodengewebe, dem Zwerchfell oder der Leber assoziiert. Auch nach Injektion der Ad12-Virionen ($4,5 \times 10^7$ pfu) in die Leber bildeten sich nach spätestens

Tabelle 5: Anzahl der integrierten Ad12 Genome in subkutan induzierten Tumoren

Die Anzahl der Kopien der integrierten Ad12 Genome wurde durch einen Vergleich der Bandenintensitäten der Tumor-DNAs mit der Ad12-Referenz-DNA nach Restriktions- und DNA-Transfer-Analysen geschätzt.
Ergebnisse

38 Tagen in 7 von 8 Hamstern (88%) Tumoren. Jedes Tier bildete mindestens 10 Tumoren, von denen der größte einen Durchmesser von 3 cm hatte. Auch diese Tumoren waren nicht alle mit der Leber assoziiert, sondern waren häufig über die gesamte Bauchhöhle verteilt. Im Vergleich zur subkutanen Injektion der Ad12-Virionen wurden bei der Injektion in Leber oder Muskel schneller Tumoren gebildet, die auch einen größeren Durchmesser aufwiesen. Außerdem entwickelten mehr Tiere Tumoren und die Anzahl der pro Tier gebildeten Tumoren lag im Durchschnitt mindestens viermal so hoch wie nach der subkutanen Injektion. Diese Beobachtungen deuten auf eine schnelle Verbreitung der Virionen nach Injektionen in Leber- und Muskelgewebe hin.

Wurde die Menge der intramuskulär injizierten Ad12-Virionen auf 4,5 x 10^5 pfu reduziert, so konnte die Tumorbildung erst 63 bzw. 96 Tage nach Injektion festgestellt werden (Tabelle 6). Auch die Anzahl der tumorbildenden Tiere reduzierte sich auf 20% (3 von 15 Tieren) und die Anzahl der gebildeten Tumoren sank auf 1 - 2 pro Tier. Interessanterweise konnte auch hier, wie nach der subkutanen Injektion, keine Tumorbildung nach der Injektion von 4,5 x 10^4 pfu oder weniger Ad12-Virionen beobachtet werden.

<table>
<thead>
<tr>
<th>Ad12 pfu</th>
<th>Anzahl der injizierten Tiere</th>
<th>Anzahl der Hamster mit Tumoren</th>
<th>Tumorbildung (in Tagen)</th>
<th>Anzahl der Tumoren pro Tier</th>
<th>Größe der Tumoren (Durchmesser in cm)</th>
<th>Ort der Tumorbildung</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5 x 10^7 (i.m.)</td>
<td>17 (16)^2</td>
<td>15 (94%)^3</td>
<td>29 - 36</td>
<td>12 - 16</td>
<td>0,5 - 3</td>
<td>Muskel Bauchhöhle Leber Zwerchfell Hoden</td>
</tr>
<tr>
<td>4,5 x 10^7 (Leber)</td>
<td>12 (8)^2</td>
<td>7 (88%)^3</td>
<td>38</td>
<td>10 - 15</td>
<td>0,5 - 3</td>
<td>Leber Bauchhöhle</td>
</tr>
<tr>
<td>4,5 x 10^6 (i.m.)</td>
<td>15 (11)^2</td>
<td>7 (75%)^3</td>
<td>32 - 39</td>
<td>10 - 12</td>
<td>0,2 - 3</td>
<td>Bauchhöhle Leber Zwerchfell</td>
</tr>
<tr>
<td>4,5 x 10^5 (i.m.)</td>
<td>20 (15)^2</td>
<td>3 (20%)^3</td>
<td>63, 96</td>
<td>1 - 2</td>
<td>2</td>
<td>Bauchhöhle Leber</td>
</tr>
<tr>
<td>4,5 x 10^4 (i.m.)</td>
<td>11 (10)^2</td>
<td>0</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>4,5 x 10^3 (i.m.)</td>
<td>9 (8)^2</td>
<td>0</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

Tabelle 6: Ad12-induzierte Tumorbildung in unterschiedlichen Geweben

()^1: Injektionsort (i.m.: Oberschenkelsmuskulatur)
()^2: Anzahl der überlebenden Tiere bis zur Untersuchung
()^3: Die Prozentzahl entspricht der Anzahl der tumorbildenden Tiere von den insgesamt bis zur Untersuchung überlebenden Tieren.
4.3.4 Integrationsmuster der Ad12 DNA in intramuskulär induzierten Ad12-Tumoren

Auch aus einem anderen Hamster wurden zwei Tumoren (H15.2 und H15.9) extrahiert, die gleiche Restriktionsmuster nach dem Verdau mit HindIII oder PstI zeigten (siehe Tabelle 7). Diese beiden Tumoren enthielten nur terminale Fragmente der Ad12 DNA, wie nach Hybridisierung gegen Ad12 Gesamt-DNA deutlich wurde. Alle anderen 8 aus diesem Hamster extrahierten Tumoren zeigten individuelle Restriktionsmuster (Daten nicht gezeigt). Insgesamt scheint die peritoneale Aussaat von Zellen eines Ad12-induzierten Tumors keine Ausnahme nach i.m. Injektion von Ad12-Virionen zu sein. Dennoch muß noch durch Sequenzanalysen der identische Integrationsort der Ad12 DNA in diesen Tumoren bestätigt werden.
Abbildung 28: Integrationsmuster der Ad12 DNA in den durch i.m. Injektion von Ad12-Virionen induzierten Tumoren.

Die Tumoren H9.1 - H9.7 wurden durch i.m. Injektion von 4,5 x 10^6 pfu Ad12-Virionen induziert. Die aus diesen Tumoren extrahierte DNA (jeweils 10 µg) wurde mit HindIII oder PstI gespalten und die entstandenen Fragmente in einem 0,8%igen Agarosegel getrennt. Im Anschluß wurde die DNA auf eine positiv geladene Nylonmembran transferiert und gegen (a) Ad12 Gesamt-DNA (b) das linke klonierte PstI-C Fragment (c) das rechte klonierte BamHI-E Fragment hybridisiert. Als Größen- und Mengen-Referenz-Marker wurden 5 Genomäquivalente (GÄ) der Ad12 DNA mit denselben RE gespalten.
<table>
<thead>
<tr>
<th>pfu</th>
<th>Tumor</th>
<th>Kopienzahl</th>
<th>Größe (Durchmesser)</th>
<th>pfu</th>
<th>Tumor</th>
<th>Kopienzahl</th>
<th>Größe (Durchmesser)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,5 x 10^7 (Leber)</td>
<td>H4.1</td>
<td>2</td>
<td>2,5 cm</td>
<td>4,5 x 10^7 (i.m.)</td>
<td>H15.1</td>
<td>10</td>
<td>2 cm</td>
</tr>
<tr>
<td></td>
<td>H4.3</td>
<td>1</td>
<td>2,2 cm</td>
<td></td>
<td>H15.2</td>
<td><1(2) (3)</td>
<td>2 cm</td>
</tr>
<tr>
<td></td>
<td>H4.9</td>
<td>3</td>
<td>0,4 cm</td>
<td></td>
<td>H15.3</td>
<td>2</td>
<td>2 cm</td>
</tr>
<tr>
<td></td>
<td>H5.1</td>
<td>4</td>
<td>3,3 cm</td>
<td></td>
<td>H15.4</td>
<td>3</td>
<td>1,7 cm</td>
</tr>
<tr>
<td></td>
<td>H5.2</td>
<td>1</td>
<td>3,2 cm</td>
<td></td>
<td>H15.5</td>
<td>3</td>
<td>0,9</td>
</tr>
<tr>
<td></td>
<td>H5.3</td>
<td>1</td>
<td>2,5 cm</td>
<td></td>
<td>H15.6</td>
<td>>20</td>
<td>0,9</td>
</tr>
<tr>
<td>4,5 x 10^7 (i.m.)</td>
<td>H13.1</td>
<td>>20</td>
<td>2,8 cm</td>
<td></td>
<td>H15.7</td>
<td>2</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td>H13.2</td>
<td>8</td>
<td>2,8 cm</td>
<td></td>
<td>H15.8</td>
<td>2</td>
<td>< 0,5</td>
</tr>
<tr>
<td></td>
<td>H13.3</td>
<td>7</td>
<td>1,5 cm</td>
<td></td>
<td>H15.9</td>
<td>2</td>
<td>< 0,5</td>
</tr>
<tr>
<td></td>
<td>H13.4</td>
<td>3</td>
<td>1,3 cm</td>
<td></td>
<td>H15.10</td>
<td><1(2) (3)</td>
<td>< 0,5</td>
</tr>
<tr>
<td></td>
<td>H13.5</td>
<td>1</td>
<td>1 cm</td>
<td></td>
<td>H20.1</td>
<td>2</td>
<td>2 cm</td>
</tr>
<tr>
<td></td>
<td>H13.6</td>
<td>7</td>
<td>0,8 cm</td>
<td></td>
<td>H20.2</td>
<td>1</td>
<td>1,7 cm</td>
</tr>
<tr>
<td></td>
<td>H13.7</td>
<td>8</td>
<td>0,8 cm</td>
<td></td>
<td>H20.3</td>
<td>1</td>
<td>1,7 cm</td>
</tr>
<tr>
<td></td>
<td>H13.8</td>
<td>>20</td>
<td>0,6 cm</td>
<td></td>
<td>H22.1</td>
<td>1</td>
<td>~ 2 cm</td>
</tr>
<tr>
<td></td>
<td>H13.9</td>
<td>10</td>
<td>0,6 cm</td>
<td></td>
<td>H22.2</td>
<td>3</td>
<td>2 cm</td>
</tr>
<tr>
<td></td>
<td>H13.10</td>
<td>10</td>
<td>0,5 cm</td>
<td></td>
<td>H9.1</td>
<td>2</td>
<td>3 cm</td>
</tr>
<tr>
<td></td>
<td>H13.11</td>
<td>>20</td>
<td>0,5 cm</td>
<td></td>
<td>H9.2</td>
<td>>20</td>
<td>2 cm</td>
</tr>
<tr>
<td></td>
<td>H13.12</td>
<td>8</td>
<td>< 0,5 cm</td>
<td></td>
<td>H9.3</td>
<td>2(4)</td>
<td>1,7 cm</td>
</tr>
<tr>
<td></td>
<td>H13.13</td>
<td>2</td>
<td>< 0,5 cm</td>
<td></td>
<td>H9.4</td>
<td>1(4)</td>
<td>1 cm</td>
</tr>
<tr>
<td></td>
<td>H14.2</td>
<td>5</td>
<td>2 cm</td>
<td></td>
<td>H9.5</td>
<td>15</td>
<td>0,8 cm</td>
</tr>
<tr>
<td></td>
<td>H14.2</td>
<td>2</td>
<td>1,4 cm</td>
<td></td>
<td>H9.6</td>
<td>2</td>
<td>0,5 cm</td>
</tr>
<tr>
<td></td>
<td>H14.4</td>
<td>2</td>
<td>1,2 cm</td>
<td></td>
<td>H9.7</td>
<td>1(4)</td>
<td>0,5 cm</td>
</tr>
<tr>
<td></td>
<td>H14.5</td>
<td>2</td>
<td>1,1 cm</td>
<td></td>
<td>H31.1</td>
<td>10</td>
<td>2,5 cm^2</td>
</tr>
<tr>
<td></td>
<td>H14.6</td>
<td>7</td>
<td>0,7 cm</td>
<td></td>
<td>H31.2</td>
<td>7</td>
<td>2 cm</td>
</tr>
</tbody>
</table>

Tabelle 7: Anzahl der integrierten Ad12 Genome in Tumoren nach Injektion von Ad12-Virionen in Leber oder Muskel.

Die Anzahl der integrierten Ad12 Genome wurde durch einen Vergleich der Bandenintensitäten der Tumor-DNA-Fragmente mit denen der Ad12-Referenz-DNA nach Restriktions- und DNA-Transfer-Analysen geschätzt.

1 Injektionsort (i.m.: Oberschenkelmuskulatur)
2 Die Tumoren enthielten nur terminale Fragmente der Ad12 DNA.
3/4 Restriktionsmuster der DNA-Fragmente war nach Spaltung mit HindIII oder PstI identisch.
4.3.5 Chromosomale Lokalisation der integrierten Ad12 DNA

Die Ergebnisse der FISH-Analysen zeigen, daß in allen untersuchten Tumorzellen sämtliche Kopien der integrierten Ad12 DNA an einer Stelle eines Chromosoms lokalisiert sind (Abbildung 29), so wie es auch für subkutan induzierte Tumoren mehrfach gezeigt wurde (Knoblauch et al., 1996, Hilger-Eversheim und Doerfler, 1997). Darüber hinaus wird deutlich, daß sich die Integrationsorte der Ad12 DNA in den verschiedenen Tumorzelllinien unterscheiden. In der Tumorzelllinie TZ H9.2 sind die Kopien der integrierten Ad12 DNA in der Umgebung des Zentromers eines mittelgroßen Chromosoms lokalisiert. Im Gegensatz dazu liegen die Integrationsorte der Ad12 DNA in

Abbildung 29: FISH-Analysen der integrierten Ad12 DNA in Ad12-induzierten Tumoren und Tumorzelllinien.

(a) Zellen des Tumors H20.1 bzw. der Tumorzelllinien (b) TZ 9.2 (c) TZ 13.2 (d) TZ 22.2 wurden fixiert und auf Objektträger aufgespritzt. Als Sonde wurde Ad12 DNA mit Biotin markiert, die mit FITC gekoppeltem Avidin sichtbar gemacht wurde. Die zelluläre DNA wurde mit Propidiumiodid angefärbt. Vergrößerung: 1200 x.
den Zellinien TZ 13.2 und TZ 22.2 in der Nähe der telomeren Region eines kleinen (TZ 13.2) bzw. eines größeren Chromosoms (TZ 22.2). Möglicherweise sind kurze virale Fragmente auch noch an anderen Stellen des Genoms integriert, die aber aufgrund der Nachweisgrenze der FISH-Methode, die bei etwa 1 kb liegt, nicht detektiert werden konnten.

4.3.6 Klassifikation der Adenovirus Typ 12 induzierten Tumoren

Seitdem Trentin und Mitarbeiter 1962 entdeckten, daß Ad12 in neugeborenen Hamstern die Bildung von Tumoren auslöst, haben weltweit zahlreiche Pathologen versucht, die durch Ad12 induzierten Tumoren zu charakterisieren. In einigen Veröffentlichungen werden die Tumoren als undifferenzierte Sarkome beschrieben (Trentin et al., 1962; Huebner et al., 1962). Andere Autoren schlagen vor, daß die durch Ad12-induzierten Tumoren als undifferenzierte bösartige Tumoren klassifiziert werden sollten (Kirschstein et al., 1964; Spjut et al., 1967), und wiederum andere sprechen von Tumoren, die vom peripheren oder zentralen Nervensystem abgeleitet sind (Ogawa et al., 1965; Yabe et al., 1966).

Um zu untersuchen, ob Ad12 abhängig vom Injektionsort unterschiedliche Tumorarten induzieren kann, wurden die Tumoren, die nach Injektion der Ad12-Virionen in Leber, Muskel oder Nackenregion (s.c.) gebildet wurden, näher charakterisiert. Makroskopisch unterschieden sich die an der Leber oder am Muskel gebildeten Tumoren weder von denen, die nach i.m. Injektion im Bauchraum gebildet wurden, noch von denen, die nach subkutaner Injektion aus dem Nacken isoliert wurden. Die kugelförmigen Tumoren wiesen außen eine feste kapselartige Struktur auf, die mit einer halbflüssigen Ansammlung von Zellen gefüllt war (Abbildung 30).
Ergebnisse

Abbildung 30: Ad12-induzierte Tumoren in der Nackenregion von Hamstern. Tumoren der Hamster (a) H8 (b) H6, die durch die s.c. Injektion von (a) 4,5 x 10⁶ pfu (b) 4,5 x 10⁷ pfu Ad12-Virionen induziert wurden.

Abbildung 31: Histologische und immunhistochemische Untersuchungen der Ad12-induzierten Tumoren.
(a) Tumorgewebe mit kleinen undifferenzierten gleichförmigen Zellen, die Homer-Wright-Rosetten ausbilden (Hämatoxilin/Eosin-Färbung; Vergrößerung 400 x). Immunhistochemischer Nachweis von (b) Vimentin, (c) Synaptophysin und der (d) Neuron-spezifischen Enolase (NSE). Der Nachweis dieser drei Markerproteine erfolgte indirekt durch eine Peroxidase-Färbung.
anderer Enolases nachgewiesen werden (Kaiser et al., 1989). Diese Nachweisreaktionen trafen auf alle durch Ad12-induzierten Tumoren zu.

Somit erscheint es naheliegend, daß Ad12 unabhängig von der Injektionsstelle der Ad12-Virionen und dem Ort der Tumorbildung die Entwicklung von wenig differenzierten Tumoren mit sowohl neuroektodermalen als auch mesenchymalen Merkmalen induziert.
5 Diskussion

5.1 Schicksal von fremder DNA in Mäusen nach oraler Applikation

Es ist kaum etwas darüber bekannt, was mit den riesigen Mengen fremder DNA passiert, die wir Tag für Tag mit der notwendigen Nahrung aufnehmen. Auch gibt es bis heute keine genauen Angaben über den DNA-Gehalt in den verschiedenen Nahrungsmitteln. Aus 5 g frischem Spinat konnten wir etwa 5 mg DNA extrahieren. Je nach Nahrungszusammensetzung nehmen wir schätzungsweise etwa 1 g DNA am Tag mit der Nahrung auf. Um das Schicksal von DNA-Molekülen im GI-Trakt zu untersuchen, wurden Mäuse als Modell-Organismen mit 50 µg pEGFP-C1 Plasmid DNA gefüttert. Es wurde zunächst bewußt ungeschützte nackte DNA verwendet, um die DNA allen Faktoren auszusetzen, die im Verdauungstrakt auf die in der Nahrung enthaltenen DNA einwirken. Das pEGFP-C1 Plasmid wurde als Test-DNA gewählt, da es keine Homologien zur Maus-DNA und zur DNA der Darmbakterien, weder in Vorversuchen noch in Datenbank-Seqezanzanalysen, zeigte. Die Menge der verabreichten DNA wurde so gewählt, daß sie die natürlichen Abbaumechanismen im Darm der Maus nicht übersättigte. Eine Maus nimmt je nach Größe ca. 4 bis 5 g Futterpellets täglich zu sich, in denen etwa 15 bis 19 mg DNA enthalten sind (Charles River, 1993). Demnach entsprechen 50 µg Plasmid DNA weniger als 1% der normalerweise von einer Maus am Tag aufgenommenen DNA-Menge.

Nach Fütterung von Mäusen mit 50 µg pEGFP-C1 DNA konnten Fragmente der Test-DNA bis zu 8 h im Darm durch Southern Transfer-Analysen und bis zu 24 h mit Hilfe der PCR-Methode nachgewiesen werden (Abbildungen 4 - 6). Dabei war jeweils der Blinddarm der Darmabschnitt, in dem die DNA am längsten persistierte. Dies deutet auf eine Speicherfunktion des Blinddarms der Maus sowie auf eine geringe Nukleaseaktivität im Blinddarm hin. Im Darm vorkommende Nukleasen werden entweder aus Zellen des Darmpithels sezerniert oder gelangen zusammen mit anderen proteolytischen Enzymen über den Ductus pancreaticus aus dem Pankreas in den Darm (Price et al., 1969; Azhar et al., 1974). Da der Ductus pancreaticus in das Duodenum mündet, ist dort die Nukleaseaktivität am höchsten, die im weiteren Darmverlauf abnimmt. Somit wird im Dünndarm verweilende DNA schnell abgebaut. Passiert die DNA jedoch schnell den enzymatisch hoch aktiven Dünndarm, so werden die in den Blinddarm gelangenden Fragmente durch die geringere Nukleasekonzentration nicht so schnell abgebaut und sind länger nachweisbar. Ähnliche Ergebnisse wurden durch in vitro Experimente erzielt. Wurde nackte DNA mit Extrakten des Dünndarms von Ratten
inkubiert, so war die DNA innerhalb von 15 min komplett abgebaut. Im Gegensatz dazu konnten nach 4 h fast 10% der mit dem Dickdarminhalt inkubierten DNA noch nachgewiesen werden (Maturin und Curtiss, 1977).

Im Vergleich zu Nackter DNA konnte mit SuperFect komplexierte pEGFP-C1 DNA wesentlich länger im Magen-Darm-Kanal durch Southern Transfer-Analysen nachgewiesen werden (Daten nicht gezeigt). Die gfp-spezifischen Fragmente hatten im Magen 3 h und 7 h nach Verabreichung der DNA-Komplexe Größen von über 1900 bp. Auch 18 h nach Fütterung konnten Fragmente der gfp DNA mit dieser Methode noch im Magen wiedergefunden werden. Eine ähnliche Persistenz im Magen wurde von oraler Applikation von in Mikrosphären verpackter DNA beobachtet, was mit einer hohen Adhäsion der Moleküle an das Magenepithel erklärt wurde (Chickering et al., 1995; Mathiowitz et al., 1997). Dabei war die Persistenz der DNA im Magen im starken Maße von der chemischen Zusammensetzung der Mikrosphären abhängig.

Die Aufnahme von nackter DNA in vitro wurde in HeLa und BHK Zellen nach Zugabe von Ad12 DNA in das Kulturmedium untersucht (Schröer et al., 1997). Dabei verlief die Aufnahme von Ad12 DNA, die das terminale Protein (pTP) kovalent an den Enden gebunden hatte, 10 - 20 mal effizienter als die von nackter Ad12 DNA. Möglicherweise wird im Darm die DNA erst durch Bindung von Proteinen kompetent für die Aufnahme von M-Zellen oder auch anderer Zellen gemacht. Diese Vermutung könnte näher untersucht werden, indem nackte DNA zunächst mit Extrakten aus dem Darm inkubiert wird, bevor sie in das Kulturmedium von Zellen gegeben wird.

Viren und Bakterien gelangen meistens nach Bindung von spezifischen Oberflächenrezeptoren auf Zellmembranen in verschiedene Zellen. Einige Adenoviren

Die Größe der Test-DNA schien keinen wesentlichen Einfluß auf die Ergebnisse zu haben. Die M13mp18 DNA ist mit 7250 bp um 35% größer als das pEGFP-C1 Plasmid (4730 bp). Im Gegensatz zur pEGFP-C1 Plasmid DNA, die nur bis zu maximal 8 h nach Fütterung in verschiedenen Organen nachgewiesen wurde, konnte die M13mp18 DNA bis zu 8 h im Blut und bis zu 18 h in Leber und Milz wiedergefunden werden. Diese vermeintlich längere Persistenz der M13mp18 DNA ist wahrscheinlich weder auf die Größe noch auf bestimmte Sequenzen der Test-DNA zurückzuführen, sondern hat eher statistische Ursachen. Im Rahmen der M13mp18 Fütterungsversuche wurden 237 Mäuse untersucht und nur in seltenen Ausnahmefällen konnte die Test-DNA bis zu 18 h nach Fütterung nachgewiesen werden (Schubbert et al., 1997). Die Ergebnisse beider Test-DNAs, M13mp18 und pEGFP-C1, deuten darauf hin, daß fremde DNA im Mausorganismus schnell eliminiert wird. Die Beobachtung, daß fremde DNA häufig in Zellen des Immunsystems, wie in Leukocyten, Milzzellen und Zellen der Peyerschen Plaques, gefunden wird, ist möglicherweise ein Hinweis auf die Beteiligung des Immunsystems an der Eliminierung der fremden DNA. Bisher ist jedoch wenig darüber bekannt, wie das Immunsystem mit fremder DNA umgeht. Bekannt ist hingegen, daß CpG-Dinukleotid-reiche Sequenzen immunstimulierende Wirkungen in Säugern haben (Übersicht in Krieg et al., 2000). Solche CpG-Dinukleotid enthaltende Motive sind in Bakterien zwanzigmal häufiger als in Säugern und können direkt B-Zellen zur Proliferation und Antikörper Sekretion aktivieren (Cardon et al., 1994; Krieg et al., 1995). Darüber hinaus können diese Sequenzen Antigen-präsentierende Zellen, wie z.B. Makrophagen und dendritische Zellen, stimulieren, die dann Cytokine sezernieren, was zur Aktivierung von Killerzellen führen kann (Stacey et al., 1996; Jakob et al., 1998; Cowdery et al., 1996). Ob DNA-Moleküle aus der Nahrung auf diese Weise das Immunsystem stimulieren können, könnte durch die orale Verabreichung von CpG-
Diskussion

Dinukleotid-reichen Sequenzen untersucht werden.

5.1.1 Expression der verfütterten DNA

5.1.2 DNA-Transfer über die Keimbahn

Diskussion

Auch in den Jungtieren, deren Mütter während der Schwangerschaft mit M13mp18 DNA gefüttert wurden, konnte die Test-DNA zwar in seltenen Fällen im Hodengewebe, aber nie in Spermazellen durch FISH nachgewiesen werden (Schubbert et al., 1998). Auch diese Beobachtung ist ein Hinweis auf einen Mechanismus, der die Keimbahn vor dem Eindringen von fremder DNA zu schützen scheint. Auch nach intravenöser Injektion von Plasmid-Lipopolyamin-Komplexen in trächtige Mäuse konnte ein DNA-Transfer in die Foeten beobachtet werden (Tsukamoto et al., 1995). Da die Expression der fremden DNA in der Plazenta der Mutter sowie in verschiedenen Organen der Foeten, hauptsächlich in Herz und Muskel, beobachtet wurde, wurde auch hier ein DNA-Transfer ausschließlich über die Plazenta postuliert.
5.1.3 Schicksal von mit der natürlichen Nahrung aufgenommener DNA im Mausorganismus

In der täglichen Nahrung kommt in der Regel keine nackte DNA vor, sondern DNA, die in tierischen und pflanzlichen Zellen geschützt ist. Um das Schicksal dieser DNA im GI-Trakt zu untersuchen, wurden Mäuse mit Sojablättern gefüttert und die Persistenz des pflanzenpezifischen nukleären Rubisco Gens untersucht.

Auch konnten nach Fütterung von Sojablättern Fragmente des Rubisco Gens in Leber- und Milzgewebe nachgewiesen werden (Abbildung 17). Höchstwahrscheinlich wird die pflanzliche DNA, ähnliche wie die M13mp18 und die pEGFP-C1 Plasmid DNA, über das Darmepithel aufgenommen und gelangt über die Peyerschen Plaques und das Blut in

Oral aufgenommene freie oder in Pflanzenzellkernen verpackte DNA wird im Magen-Darm-Trakt von Mäusen nicht vollständig abgebaut, sondern kann in geringen Mengen von Körperzellen aufgenommen werden. In den großen Mengen fremder DNA, die

5.2 Parenterale Applikation von fremder DNA

Den Grundstein zur DNA-Vakzinierung legten 1990 Wolff und Mitarbeiter, als sie die Aufnahme und Expression von injizierter Plasmid DNA in Muskelfasern von Mäusen beobachteten (Wolff et al., 1990). Die nächste entscheidende Entdeckung war die Induktion einer zellulären und humoralen Immunantwort in Mäusen durch die i.m. Injektion einer DNA, die für ein Nukleoprotein des Influenzavirus codierte (Ulmer et al., 1993). Im Gegensatz zu zahlreichen Berichten über erfolgreiche Gen-Expression in vivo (Übersicht in Gurunathan et al., 2000) ist bisher wenig über Persistenz und Ausbreitung der injizierten DNA im gesamten Körper bekannt. Es ist daher eine wichtige Voraussetzung, das Schicksal fremder DNA per se in vivo zu verstehen, um effiziente und sichere Gen-Transfer-Systeme zu entwickeln.

Nach Injektion von 50 µg pRSVGFP DNA in die Oberschenkelmuskulatur von Mäusen konnte die fremde DNA im injizierten Muskel bis zu 6 h mittels Restriktions- und DNA-Transfer-Analysen und bis zu 17 Monaten durch die sensitivere PCR-Methode nachgewiesen werden (Abbildung 20, 21). PCR-Analysen konnten darüber hinaus die i.m. injizierte DNA in verschiedenen Organen detektieren. Dabei wurden Fragmente der gfp DNA in Leber, Niere, Blut und kontralateralem Muskel bis zu maximal 24 h nach Injektion wiedergefunden (Tabelle 3). Die Ergebnisse deuten auf eine schnelle Degradierung der injizierten DNA durch Nukleasen sowie auf eine Verteilung der DNA im Organismus hin.

Die lange Persistenz der injizierten DNA in Muskelfasern könnte auf den postmitotischen Zustand dieser Zellen zurückzuführen sein. Auch in in vitro Experimenten konnte eine längere Persistenz und damit Expression von Plasmid DNA in sich langsam teilenden konfluenten Fibroblasten im Vergleich zu schnell proliferierenden Fibroblasten nachgewiesen werden (Wolff et al., 1992b). Diese Beobachtung wurde so interpretiert, daß die fremde DNA bei der Zellteilung durch Auflösung der Membranen verloren geht. Da aber auch in anderen Zelltypen mit niedrigen Turnover-Raten, wie beispielsweise den Hepatocyten, direkt injizierte fremde DNA nur für wenige Tage nachgewiesen werden konnte, scheint die niedrige Turnover-Rate der Muskelzellen nicht alleine
ausschlaggebend für die lange Persistenz der fremden DNA zu sein (Hickman et al., 1994). Möglicherweise kann fremde DNA von Muskelfasern effektiv aufgenommen werden. Bisher ist jedoch kein Mechanismus bekannt, der an der Aufnahme von DNA in Muskelfasern oder in andere Gewebezellen beteiligt ist (Kapitel 5.1).

Die Expression des GFP Proteins wurde im injizierten Muskel ab 3 Tagen nach Injektion der pEGFP-C1 Plasmid DNA beobachtet. Unter Verwendung des FITC-Filterblocks zeigte auch das Muskelgewebe von Kontrollmäusen je nach Schnittdicke eine mehr oder weniger starke Autofluoreszenz (Abbildung 24). Diese Autofluoreszenz wird in Säugern durch NADH-Moleküle und Flavine induziert (Aubin, 1979; Benson et al., 1979). Die Expression des GFP Proteins konnte jedoch unter Verwendung des DAPI-Filterblocks verifiziert werden, bei dem das gesamte Gewebe bläulich erscheint und GFP-

In allen anderen Organen, die entfernt vom Injektionsort lagen, konnte keine Expression von GFP beobachtet werden. Möglicherweise war hier die Methode der Fluoreszenzmikroskopie nicht sensitiv genug, um geringe Mengen des exprimierten GFP Proteins nachweisen zu können. Aus diesem Grund wurde die Transkription der gfp DNA mittels RT-PCR-Analysen untersucht. Aber auch mit dieser sensitiveren Methode konnte die Expression der injizierten DNA nur im injizierten Muskel ab 3 Tagen nach Injektion, aber in keinem anderen Organ nachgewiesen werden. Auch nach Injektion von RSV-GFP- oder SV-GFP-Konstrukten konnte keine Expression von GFP in Organen beobachtet werden, die nicht mit dem Injektionsort übereinstimmten. Da mit der PCR-Methode die gfp DNA in Leber, Niere und kontralateralem Muskel nur bis zu maximal 24 h nach i.m. Injektion nachgewiesen wurde, scheint nicht die Inaktivierung des Promotors, sondern eher die Eliminierung der DNA für die nicht nachweisbare Expression der fremden DNA in diesen Organen verantwortlich zu sein. Ob die DNA von Nicht-Muskelzellen ineffektiv aufgenommen wird oder durch zelluläre Nukleasen schnell abgebaut wird, wird aus diesen Ergebnissen nicht deutlich. Es ist bekannt, daß

Insgesamt zeigen die Ergebnisse, daß i.m. injizierte DNA bis zu mindestens 17 Monaten im injizierten Muskel persistiert und bis zu höchstens 24 h in verschiedenen anderen Organen vorhanden ist. Ob die DNA von Nicht-Muskelzellen nicht effektiv aufgenommen oder durch zelluläre Nukleasen schnell abgebaut wird, kann aufgrund der bisherigen Untersuchungen nicht entschieden werden. Auch die Expression der injizierten DNA konnte nur im injizierten Muskel, aber nicht in Leber, Milz, Niere oder kontralateralem Muskel beobachtet werden, übereinstimmend mit der Persistenz der DNA.

5.3 Induktion von Tumoren durch Injektion von Ad12-Virionen in neugeborene Hamster

5.3.1 Tumorinduktion durch s.c. Injektion von Ad12-Virionen

Restriktions- und Southern Transfer-Analysen der Tumor DNAs sowie Fluoreszenz-in-

5.3.2 Tumorbildung in unterschiedlichen Geweben

Unabhängig von dem Ort der Injektion der Ad12-Virionen, in die Muskulatur oder in die Leber von neugeborenen Hamstern, bildeten sich häufig Tumoren in der Bauchhöhle. Die Vermutung liegt nahe, daß die Ad12-Virionen, analog zu der i.m. injizierten Plasmid DNA (siehe Kapitel 4.3.2), innerhalb von Minuten über das Blut im Organismus verteilt werden. Ähnlich wie nach der subkutanen Injektion konnte nach der i.m. Injektion von Ad12-Virionen ein Zusammenhang zwischen der Menge der injizierter Ad12-Virionen und der Anzahl der tumorbildenden Tiere, der Zeit bis zur Bildung der Tumoren bzw. der Anzahl der Tumoren pro Tier beobachtet werden. Im Vergleich zur subkutanen Injektion bildeten die Hamster jedoch schneller mehr (bis zu 15) und größere Tumoren. Auch die Anzahl der Hamster, die Tumoren bildeten, war nach i.m. Injektion höher als nach subkutaner Injektion. Die Bildung von mehr Tumoren in der Bauchhöhle könnte vielleicht
damit erklärt werden, daß über die Blutbahn oder auch die Peritonealflüssigkeit mehr Zellen erreicht werden, die kompetent für die Transformation durch Adenoviren sind. Adenoviren können in vivo postmitotische Zellen, wie beispielsweise Skelettmuskelnzellen, infizieren (Quantin et al., 1992; Stratford-Perricaudet et al., 1992). Im Gegensatz dazu können Adenoviren sowie auch Retro- und Herpesviren nicht effizient in nicht replizierende Zellen integriert werden (Mellerick und Fraser, 1987; Miller et al., 1990). Somit scheint der Zellzyklus einen Einfluß auf die Integration der viralen DNA und somit auch auf die Transformation von Zellen zu haben.

Für die Bildung von größeren Tumoren in der Bauchhöhle im Vergleich zur Nackenregion könnte die bessere Nährstoffversorgung der Tumoren in der Bauchhöhle über das Blut oder die Peritonealflüssigkeit verantwortlich sein. Auch könnte die höhere Temperatur in der Bauchhöhle einen Einfluß auf die Wachstumsgeschwindigkeit der Tumoren haben. Unter der Haut ist die Basaltemperatur etwa um 5°C niedriger als in der Bauchhöhle (Silbernagl und Despopoulos, 1991).

Restriktions- und Southern Transfer-Analysen von peritonealen Tumoren haben ergeben, daß die Integrationsmuster der Ad12 DNA in verschiedenen Tumoren eines Tieres nicht immer unterschiedlich waren (Abbildung 28). Der Hamster H9 bildete innerhalb von 39 Tagen nach i.m. Injektion von 4,5 x 10^6 pfu 7 Tumoren, von denen 3 ähnliche Restriktionsmuster nach Verdau mit HindIII oder PstI zeigten. Die 3 Tumoren waren unterschiedlich groß (1,7 cm, 1 cm, 0,5 cm) und wurden als einzelne Tumoren, die nicht miteinander assoziiert waren, aus der Bauchhöhle isoliert. Höchstwahrscheinlich sind diese 3 Tumoren nicht auf unabhängige Transformationsereignisse zurückzuführen, sondern eher auf die Aussaat von Zellen eines Tumors über die Peritonealhöhle (peritoneale Aussaat). Beim Vergleich der Bandenintensitäten dieser drei Tumoren im Autoradiogramm in der Abbildung 28 fällt auf, daß die Anzahl der integrierten Ad12 Genome mit abnehmender Größe der Tumoren sinkt. Diese Unterschiede lassen vermuten, daß aus einem prämären Tumor, höchstwahrscheinlich H9.3, die anderen beiden kleineren Tumoren H9.4 und H9.7 durch Dissemination (Aussaat) entstanden sind. Durch Sequenzanalysen müßte jedoch noch der identische Integrationsort der Ad12 DNA in das Hamstergenom bestätigt werden. Die durch s.c. Injektion von Ad12-induzierten Tumoren zeigten im Gegensatz dazu in keinem Fall Übereinstimmungen des Integrationsmusters der Ad12 DNA (Kuhlmann und Doerfler, 1982; Orend et al., 1994; Hilger-Eversheim und Doerfler, 1997).

Eine Metastasierung in andere Organe wurde hingegen weder nach s.c. noch nach i.m. Injektion von Ad12-Virionen beobachtet, mit der Ausnahme, daß nach s.c. Injektion einige Tumorzellen in lokalen Lymphknoten nachgewiesen werden konnten (Kuhlmann
et al., 1982). Nach der i.m. Injektion von Ad12-Virionen wurden Tumoren in verschiedenen Geweben, wie Muskel, Hoden, Zwerchfell und Leber, gebildet, die sich alle durch ein individuelles Integrationsmuster der Ad12 DNA auszeichneten, auch wenn sie in demselben Tier gebildet wurden. Es läßt sich jedoch nicht ausschließen, daß sich das Integrationsmuster der viralen DNA während der Metastasierung veränderte. Zellkulturexperimente haben allerdings gezeigt, daß die Ad12 DNA in den meisten Fällen stabil in das Hamstergenom integriert ist und die Integrationsmuster über einen langen Zeitraum und über viele Zellgenerationen meistens unverändert bleiben (Sutter et al., 1978; Orend et al., 1994; Hilger-Eversheim und Doerfler, 1997). Die Ad12-transformierte BHK Zelllinie T637 zeigt beispielsweise seit 22 Jahren ein unverändertes Integrationsmuster der viralen DNA.

5.3.3 Klassifikation der durch Ad12-Virionen induzierten Tumoren

Wird das Polyomavirus der Maus auf neugeborene Mäuse übertragen, so bilden sich 24 verschiedene Tumortypen (Eddy et al., 1961). Der Name Polyoma leitet sich von der Eigenschaft ab, in verschiedenen Organen viele Tumoren erzeugen zu können. Auch Epstein-Barr-Viren können sowohl Leukocyten als auch epitheliale Zellen transformieren und entsprechend die Bildung von Lymphomen bzw. Karzinomen induzieren (zur Hausen et al., 1970; Popescu et al., 1993). Im Gegensatz dazu scheinen Adenoviren in
Hamstern nur einen einzigen Tumortyp induzieren zu können. Unabhängig von dem
Injektionsort oder dem Ort der Tumorbildung ließen sich die Tumoren durch
histologische und immunhistochemische Analysen nicht unterscheiden. Alle
untersuchten Tumoren bestanden aus undifferenzierten kleinen nacktkernigen
Zellelementen mit monotonen hyperchromatischen Kernen. Die Tumorzelien bildeten
ferner Homer-Wright-Rosetten, die im Zusammenhang mit primitiven
neuroektodermalen Tumoren (PNET) auftreten (Yanoff, 1991). Die Expressionen von
Synaptophysin und der Neuron-spezifischen Enolase in allen durch Ad12-induzierten
Tumoren deuten auf einen neuronalen Charakter der Tumoren hin. Ein undifferenzierter
neuronaler Tumor aus Neuroblasten, die Homer-Wright-Rosetten ausbilden, ist das
Neuroblastom. Dieser hochmaligne Tumor gehört zu den häufigsten Tumoren im
Kindesalter (Riede und Saeger, 1995). Bei etwa 90% aller humanen Neuroblastome sind
die Katecholaminmetaboliten Homovanillinsäure und Vanillinmandelsäure im Serum
und/oder Urin erhöht (Berthold et al., 1992, 1999). Der Nachweis dieser beiden
Katecholaminmetaboliten war jedoch in Seren von Hamstern, die einen oder mehrere
Tumoren gebildet hatten, negativ (Daten nicht gezeigt). Möglicherweise ist dieser Befund
auf eine geringe Sensitivität der Methode für die Untersuchung von Hamsterseren
zurückzuführen. Die Methode war für menschliche, z.T. auch für neurogene
Rattengeschwülste spezifisch und wurde in der Abteilung von Prof. Dr. Berthold,
Kinderonkologie, Universität Köln, durchgeführt. Zusätzlich zu den neuroektodermalen
Charakteristika wurde in den Tumoren auch eine Vimentin-Expression nachgewiesen,
die auf einen mesenchymalen Ursprung der Zellen hindeutet. Es wäre somit denkbar,
dß undifferenzierte Zellen von Ad12 transformiert werden, die im Zuge der
Transformation sowohl neuroektodermale als auch mesenchymale Merkmale ausbilden.

Viele DNA-Viren zeigen eine stark ausgeprägte Gewebespezifität. Die Papillomviren
befallen und transformieren ausschließlich epitheliale Zellen, entweder Keratinocyten
der Haut oder Epithelzellen im Genitalbereich. Wahrscheinlich spielt der Rezeptor, der
für die Aufnahme der Viren verantwortlich ist, eine entscheidene Rolle bei der
Zellspezifität bestimmter Viren. Epstein-Barr-Viren (EBV), die sowohl mit Lymphomen
als auch mit Nasopharynxkarzinomen assoziiert sind, binden mit ihrem
Glykoproteinkomplex gp 220/350 an das Oberflächenprotein CD21 (Tanner et al., 1987,
1996). Dieses Membranprotein wurde sowohl auf B-Lymphocyten als auch auf
Epithelzellen des Oro- und Nasopharynx nachgewiesen, korrelierend mit den von EBV
infizierbaren Zellen. Der zelluläre Rezeptor, der dem Adenovirus die Adsorption an die
Zelle ermöglicht, wurde erst in den letzten Jahren identifiziert. Viele Adenovirus Typen
binden an ein 46 kDa Glykoprotein, das zu der Immunglobulin Superfamilie gehört und
als integrales Membranprotein auf zahlreichen humanen und Mauszelltypen exprimiert.
Zusammenfassung

6 Zusammenfassung

Im Rahmen dieser Arbeit wurde das Schicksal von fremder DNA im Säugerorganismus in drei konzeptionell unterschiedlichen Ansätzen untersucht: nach oraler und parenteraler Applikation in Mäusen sowie nach Injektion von Ad12-Virionen in neugeborenen Hamstern.

Orale Applikation von fremder DNA

Im weiteren wurde die Expression der verfütterten DNA im Mausorganismus untersucht. Dazu wurden Mäuse bis zu 3 Wochen täglich mit der pEGFP-C1 Plasmid DNA gefüttert. In keinem der 21 untersuchten Tiere konnte die Expression des GFP Proteins in der Darmwand oder in inneren Organen mit Hilfe der Fluoreszenzmißkroskopie beobachtet werden. Auch sensitivere RT-PCR-Analysen ergaben keinen Hinweis auf die Transkription der oral verabreichten DNA im Mausorganismus.

Die tägliche Fütterung von Mäusen mit der Test-DNA über 8 Generationen führte zu keinem Hinweis, daß fremde DNA über die Keimbahn an Nachkommen weitergegeben wird. In keinem der 97 untersuchten Nachkommen konnte die gfp DNA in allen Zellen
eines Tieres durch Southern Transfer-Analyse oder mit Hilfe der PCR-Methode gefunden werden. Es ist anzunehmen, daß die Keimbahn im Gegensatz zu anderen Organsystemen vor dem Eindringen fremder DNA geschützt ist.

Parenterale Applikation von fremder DNA

Um die Persistenz und Ausbreitung fremder DNA im allgemeinen im Säugerorganismus zu untersuchen, wurde das pRSVGFP Plasmid in die Skelettmuskulatur (i.m.) von Mäusen injiziert. Nach Injektion von 50 µg Plasmid DNA wurde die fremde DNA bis zu 6 h nach Injektion mittels Southern Transfer-Hybridisierungen nachgewiesen. Durch sensitivere PCR-Analysen konnte die gfp DNA bis zu 24 h in Leber, Blut, Niere und kontralateralem Muskel und bis zu 17 Monaten im injizierten Muskel wiedergefunden werden. Die Ergebnisse deuten darauf hin, daß fremde DNA zum einen mit dem Blut in verschiedene Organe gelangt und zum anderen schnell durch Nukleasen abgebaut wird. Auch in Darminhalten wurden Fragmente der i.m. injizierten DNA gefunden: ein Hinweis, daß fremde DNA nicht nur im Körper durch Nukleasen abgebaut wird, sondern auch über den Leber-Gallen-Darmweg aus dem Organismus eliminiert wird.

Im weiteren konnte sowohl durch Fluoreszenznmikroskopie als auch durch RT-PCR-Analysen gezeigt werden, daß fremde DNA ab 3 Tagen nach Injektion über einen Zeitraum von mindestens 6 Wochen in dem injizierten Muskelpartikel exprimiert wird. Dabei war die Expression von GFP auf einen kleinen Abschnitt des Muskelfasergebisses begrenzt, der wahrscheinlich mit dem Injektionsort übereinstimmte. In allen anderen Organen, die entfernt vom Injektionsort lagen, konnte weder durch fluoreszenznmikroskopische noch durch RT-PCR-Analysen eine Expression der fremden DNA nachgewiesen werden.
Zusammenfassung

Injektion von Ad12-Virionen

Die subkutane (s.c.) Injektion von Ad12-Virionen in neugeborene Hamster führte innerhalb von 35 - 48 Tagen zu der Bildung von 1 - 3 Tumoren an der Injektionsstelle, wie beispielsweise in der Nackenregion. Im Gegensatz dazu wurden nach i.m. Injektion von Ad12-Virionen Tumoren nicht nur in Assoziation mit dem injizierten Muskelgewebe, sondern auch mit Leber, Hoden, Zwerchfell sowie dem Peritoneum beobachtet. Die Ergebnisse deuten auf eine Verteilung der Virionen über die Blutbahn und die Peritonealflüssigkeit hin. Im Vergleich zu s.c. induzierten Tumoren bildeten sich nach i.m. Injektion von Ad12-Virionen schneller mehr (bis zu 15) und größere Tumoren. Restriktions- und Southern Transfer-Analysen zeigten, daß manchmal mehrere aus der Bauchhöhle eines Tieres isolierte Tumoren identische Integrationsmuster der Ad12 DNA aufwiesen. Es ist anzunehmen, daß diese Tumoren nicht durch unabhängige Transformationsereignisse, sondern eher durch peritoneale Aussaat von Zellen eines primären Tumors entstanden sind. Nach subkutaner Injektion waren hingegen die Integrationsmuster der Ad12 DNA spezifisch und individuell für jeden Tumor.

Im weiteren konnte gezeigt werden, daß sowohl nach s.c. als auch nach i.m. Injektion die Tumorbildung von der Menge der injizierten Ad12-Virionen abhing. Nach Injektion von 4,5 x 10⁷ pfu Ad12-Virionen entwickelten 94% (i.m.) bzw. 82% (s.c.) der Hamster Tumoren, während nach Injektion von 4,5 x 10⁵ pfu nur noch bei 20% (i.m.) bzw. 8% (s.c.) der Hamster eine Tumorbildung beobachtet werden konnte. Darüber hinaus nahm mit abnehmender Ad12 Menge die Zeit bis zur Tumorbildung zu sowie die Anzahl der pro Tier gebildeten Tumoren ab. Nach Injektion von 4,5 x 10⁴ pfu oder weniger Virionen wurde in keinem von 40 injizierten Hamstern die Bildung eines Tumors induziert.

Southern Transfer-Analysen haben gezeigt, daß die Menge der injizierten Ad12-Virionen keinen Einfluß auf die Anzahl der in die zelluläre DNA integrierten Ad12 Genome hat. Sowohl nach Injektion von 4,5 x 10⁷ pfu als auch von nur 4,5 x 10⁵ pfu Ad12-Virionen wurden Tumoren isoliert, die viele (>20) oder wenige Kopien der integrierten Ad12 DNA enthielten.

Die in der Nackenregion, am Muskel oder in der Bauchhöhle gebildeten Tumoren waren durch histologische und immunhistochemische Untersuchungen nicht unterscheidbar und wiesen sowohl neuronale als auch mesenchymale Merkmale auf. Diese Beobachtungen deuten darauf hin, daß Ad12 unabhängig von der Injektionsstelle der Ad12-Virionen und dem Ort der Tumorentwicklung die Bildung von wenig differenzierten Tumoren mit sowohl neuroektodermalen als auch mesenchymalen Charakteristika induziert.
7 Literatur

Abdou, N.I.; Wall, H.; and Clancy, J. 1981
The network theory of autoimmunity: In vitro modulation of DNA-binding cells by anti-

and Davies, K.E. 1991a
Human dystrophin expression in mdx mice after intramuscular injection of DNA
constructs, Nature 352, 815-818.

Direct gene transfer and expression into rat heart in vivo, New Biologist 3, 71-81.

Akusjärvi, G.; Persson, H.; and Roberts, R.J. 1986
in Doerfler, W. (ed.): Adenovirus DNA: Structure and function in the adenovirus-2
genome, Martinus Nijhoff Publishing, Boston, 53-95.

Allan, C.H.; Mendrick, C.L.; and Trier, J.S. 1993
Rat intestinal M cells contain acidic endosomal-lysosomal compartments and express
class I major histocompatibility complex determinants, Gastroenterology 104, 698-708.

Altschul, S.F.; Madden, T.F.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; and Lipman,
D.J. 1997
Gapped BLAST and PSI-BLAST: A new generation of protein database search
programs, Nucl. Acids Res. 25, 3389-3402.

Anderson, C.W.; Young, M.E.; and Flint S.J. 1989
Characterization of the adenovirus 2 virion protein, mu, Virology 172, 506-512.

Armstrong, D.G. 1976
Proteinverdauung und -absorption bei Monogastriden und Wiederkäuern, Übers.
Tierernährung 4, 1-24.

Adenovirus type 37 uses sialic acid as a cellular receptor, J. Virol. 74, 42-48.

Aubin, J.E. 1979
 Autofluorescence of viable cultured mammalian cells, J. Histochem. Cytochem. 27,
36-43.

Autenrieth, I.B.; and Firsching, R. 1996
Penetration of M cells and destruction of Peyer’s patches by Yersinia enterocolitica an

Changes in the level of hydrolytic enzymes in the caecum and intestine of virulent
Babich, A. Feldkamp, L.T.; Nevins, J.R.; Darnell, J.E.; and Weinberger, C. 1983

Bablanian, R.; Eggers, H.J.; and Tamm, I. 1965
Studies on the mechanism of poliovirus-induced cell damage. I. The relation between poliovirus-induced metabolic and morphological alterations in cultured cells, Virology 26, 10-113.

Bandara, L.R.; and LaThangue, N.B. 1991
Adenovirus E1A prevents the retinoblastoma gene product from complexing with a cellular transcription factor, Nature 351, 494-497.

Bankhurst, A.D.; and Williams, R.C. 1975

Behn-Krappa, A.; Hölder, I.; Sandaradura de Silva, U.; and Doerfler, W. 1991
Pattern of DNA methylation are indistinguishable in different individuals over a wide range of human DNA sequences, Genomics 11, 1-7.

Bendig, M.M. 1988
The production of foreign proteins in mammalian cells, Gent. Eng. 7, 91-127.

Bennet, R.; Gabor, G.; and Merritt, M. 1985

The production and characterization of murine monoclonal antibodies to a DNA receptor on human leukocytes, J. Immunol. 140, 2937-2942.

Benson, R.C.; Meyer, R.A.; Zaruba, M.E.; and Mc Khann, G.M. 1979
Cellular autofluorescence - is it due to flavins?, J. Histochem. Cytochem. 27, 44-48.

Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5, Science 275, 1320-1323.

Which cases are found and missed by neuroblastoma screening at 1 year? Results from the 1992 to 1995 study in three Federal States of Germany, J. Clin. Oncol. 17, 1200.
Bestor, T.H.; and Verdin, G.L. 1994

Bewley, M.C; Springer, K.; Zhang, Y.B.; Freimuth, P.; and Flanagan, J.M. 1999
Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR, Science 286, 1579-1583.

Bienenstock, J.; Mc Dermont, M.; Befus, D.; and O'Neill, M. 1978

Bird, A.P.; and Southern, E.M. 1978

Black, P.H. 1966
Transformation of mouse cell line 3T3 by SV40: Dose response relationship and correlation with SV40 tumor antigen production, Virology 28, 760-763.

Bocckmann, D.E.; and Cooper, M.D. 1973
Pinocytosis by epithelium associated with lymphoid follicles in the bursa of Fabricius appendix and Peyer’s patches – An electron microscopic study, Am J. Anat 136, 455-478.

Borel, J.F. 1986
Immunological properties of ciclosporin (Sandimmune), Contrib. Nephrol. 51, 10-18.

Borghesi, C.; Regoli, M.; Bertelli, E.; and Nicoletti, C. 1996
Modifications of the follicle-associated epithelium by short-term exposure to a non-intestinal bacterium, J. Pathol. 180, 326.

Bos J.L.; Polder, L.J.; Bernards, R.; Schrier, P.I.; van der Elsen, P.J.; van der Eb, A.J.; and van Ormondt, H. 1981
The 2.2 kb E1A mRNA of human Ad12 and Ad5 codes for two tumor antigens starting at different AUG triplets, Cell 27, 121-131.

Brown, D.T.; Westphal, M.; Burlingham, B.T.; Winterhoff, U.; and Doerfler, W. 1975
Naked DNA delivered intraportally expresses efficiently in hepatocytes, Gene Therapy 3, 593-598.

Burlingham, B.T.; and Doerfler, W. 1971
Three size classes of intracellular adenovirus deoxyribonucleic acid, J. Virol. 7, 707-719.

Bye, W.A.; Allan, C.H.; and Trier, J.S. 1984
Structure, distribution and origin of M cells in Peyer’s patches of mouse ileum, Gastroenterology 86, 789-801.

Carbone, M. 1999
Simian virus 40 and human tumors; It is time to study mechanisms, J. Cell. Biochem. 76, 189-193.

Cardon, L.R.; Burge, C.; Clayton, D.A.; and Karlin, S. 1994

Centar, M.S.; and Behal, F.J. 1966

Green fluorescent protein as a marker for gene expression, Science 263, 802-805.

Charles River 1993
Informationsblätter über Inzuchtmäuse.

Protective immunity induced by oral immunization with a rotavirus DNA vaccine encapsulated in microparticles, J. Virol. 72, 5757-5761.

Chickering, D.E.; Harris, W.P.; and Mathiowitz, E. 1995

Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression, Cancer Res. 57, 2042-2047.

Clark, M.A.; Jepson, M.A.; Simmons, N.L.; Booth, T.A.; and Hirst, B.H. 1993
 differential expression of lectin binding sites defines mouse intestinal M cells, J.
 Histochem. Cytochem. 41, 1679-1687.

Clark, M.A.; Jepson, M.A.; Simmons, N.I.; and Hirst, B.H. 1994
 Differential surface characteristics of M cells from mouse intestinal Peyer’s patches
 and caecal patches, Histochem. J. 26, 271-280.

Clark, M.A.; Hirst, B.H.; and Jepson, M.A. 1998
 M cell surface β1 integrin expression and invasin-mediated targeting of Yersinia
 pseudotuberculosis to mouse Peyer’s patch M cells, Infect. Immun. 66, 1237-1244.

Clegg, M.T. 1993
 USA 90, 363-367.

Clewell, D.B.; and Helinski, D.R. 1972
 Effect of growth conditions on the formation of the relaxation complex of supercoiled
 COL E1 deoxyribonucleic acid and protein in Escherichia coli, J. Bacteriol 110, 1135-
 1146.

Condon, R.J.; Hall, G.; and Hatfield, E.E. 1970
 Metabolism of abomasally infused 14C labeled ribonucleic acid, adenin, uracil and
 glycine, J. Anim. Sci. 31, 1037

Cormack, B.P.; Valdivia R.H.; and Falkow, S. 1996
 FACS-optimized mutants of the green fluorescent protein (GFP), Gene 173, 33-38.

Counis, M.F.; and Torriglia, A. 2000

 Bacterial DNA induces NK cells to produce IFN-γ in vivo and increases the toxicity of
 lipopolysaccharides, J. Immunol. 156, 4570-4575.

 The mouse ileal lipid-binding protein gene: A model for studying axial patterning
 during gut morphogenesis, J. Cell Biol. 126, 1547-1564.

Crystal, R.G. 1995
 Transfer of genes to humans: Early lessons and obstacles to success, Science 270,
 404-410.

D’Albis, A.; Couteaux, R.; Janmot, C.; Roulet, A.; and Mira, J-C. 1988
 Regeneration after cardiotoxin injury innervated and denervated slow and fast muscle

Davis, H.L.; Demeneix, B.A.; Quantin, B.; Coulombe, J.; and Whalen, R.G. 1993
 Plasmid DNA is superior to viral vectors for direct gene transfer in adult mouse
 skeletal muscle, Human Gene Therapy 4, 733-740.
Davis, H.L.; Michel, M-L.; and Whalen, R.G. 1995

Debard, N.; Sierro, F.; and Kraehenbuhl, J-P. 1999

Dejean, A.; and de The, H. 1990

Diamandopoulos, G.T.; and McLane, M-F. 1975

Mitochondrial DNA sequences in prehistoric human remains from the alps, European J. Human Genet. 8, 669-677.

Doerfler, W. 1968

Doerfler, W. 1969
Non-productiv infection of baby hamster kidney cells (BHK21) with adenovirus type 12, Virology 38, 587-606.

Doerfler, W. 1970
Integration of the DNA of adenovirus type 12 in BHK12 cells, J. Virol. 6, 652-666.

Doerfler, W. 1975
Integration of viral DNA into the host genome, Current Topics in Microbiology and Immunology 71, 1-78.

Doerfler, W. 1981

Doerfler, W. 1982

Doerfler, W. 1983
On the mechanism of recombination between adenoviral and cellular DNAs: The structure of junction sites, Current Topics in Microbiology and Immunology 109, 193-228.

Doerfler, W. 1984

Doerfler, W. 1991a

Doerfler, W. 1991b
The abortiv infection and malignant transformation by adenoviruses: Integration of viral DNA and control of viral gene expression by specific patterns of DNA methylation, Adv. Virus Res. 39, 89-128.

Doerfler, W. 1992
Transformation of cells by adenoviruses: less frequently discussed mechanisms, in Doerfler, W., and Böhm P. (eds.): Malignant Transformation by DNA viruses, Molecular Mechanisms, Verlag Chemie, Weinheim, 87-109.

Doerfler, W. 1993
Adenoviral DNA integration and changes in DNA methylation patterns: a different view of insertional mutageneses, Prog. Nucleic Res. Mol. Biol. 46, 1-36.

Doerfler, W.; and Boehm, P. (eds.) 1995
The molecular repertoire of adenoviruses II, Verlag Chemie, Weinheim.

Doerfler, W. 2000
Foreign DNA in mammalian systems, Wiley-VCH.

Dowty, M.E.; Williams, P.; Zhang, G.; and Wolff, J.A. 1995

Doyle, J.J.; and Doyle, J.L. 1990
Isolation of plant DNA from fresh tissue, Focus (Life Technologies Inc.) 12, 13-15.

Eberhardt, R.F. 1851

Eddy, B.E.; Borman, G.S.; and Berkeley, W.H. 1961

DNA methylation models histone acetylation. Nature 394, 842.
Eggerding, F.A.; and Pierce, W.C. 1986

Eick, D.; and Doerfler, W. 1982

Ellis, W.C.; and Bleichner, K.L. 1969
J. Anim. Sci. 29, 157-163

Emlen, W.; and Burdick, G. 1988

Emlen, W.; Rifai, A.; Magilavy, D.; and Mannik, M. 1988
Hepatic binding of DNA is mediated by a receptor on nonparenchymal cells, Am. J. Pathol. 133, 54-60.

Ermak, T.H.; and Owen, R. L. 1987
Phenotype and distribution of T lymphocytes in Peyer's patches of athymic mice, Histochemistry 87, 321-325.

Ermak, T.H.; Dougherty, E.P.; Bhagat, H.R.; Kabok, Z.; and Pappo, J. 1995

Esche, H.; Schilling, R.; and Doerfler, W. 1979

Fanning, E.; and Doerfler, W. 1976
Intracellular forms of adenovirus DNA. V. Viral DNA sequences in hamster cells abortively infected and transformed with human adenovirus type 12, J. Virol. 20, 373-383.

Farber, M.S.; and Baum, S.G. 1978
Transcription of adenovirus RNA in permissiv and nonpermissiv infection, J. Virol. 20, 373-383.

Featherstone, C.; Darby, M.K.; and Gerace, L. 1988

Fechteler, K.; Tatzelt, J.; Huppertz, S.; Wilgenbus, P.; and Doerfler, W. 1995
The mechanism of adenovirus DNA integration: Studies in a cell-free system, Current Topics in Microbiology and Immunology, 199/II, Doerfler, W.; and Böhm, P. (eds.): “The molecular repertoire of adenoviruses II”, 109-137.
Feinberg, A.P.; and Vogelstein, B. 1983

Feldherr, C.M.; and Akin, D. 1990

Ferkol, T.; Perales, J.C.; Mularo, F.; and Hanson, R.W. 1996

Festing, M.F.; May, D.; Connors, T.A.; Lovell, D.; and Sparrow, S. 1978

Fisherman, D.M.; and Patterson, G.D. 1996
Light scattering studies of supercoiled and nicked DNA, Biopolymers 38, 535-552.

Flint, S.J. 1982

Franzini-Armstrong, C.; Ferguson, D.G.; Castellani, L.; and Kenney, L. 1986
The density and disposition of Ca-ATPase in in situ and isolated sarcoplasmic reticulum, Ann. N.Y. Acad. Sci. 483, 44-56.

High perfusion pressure damages the sieving ability of sinusoidal endothelium in rat livers, Br. J. Exp. Pathol. 61, 222-228.

Freeman, A.E.; Black, P.H.; Vanderpool, J.H.; Henby, P.H.; Auston, J.B.; and Huebner, R.J. 1967

Fujimura, Y.; Kihara, T.; and Mine, H. 1992

Fuller, 1984

Gahlmann, R.; and Doerfler, W. 1983
Integration of viral DNA into the genome of the adenovirus type 2-transformed hamster cell line HE5 without loss or alteration of cellular nucleotides, Nucl. Acids Res. 11, 7347-7361.

Gahlmann, R.; Schulz, M. and Doerfler, W. 1984
Low molecular weight RNAs with homologies to cellular DNA at the sites of adenovirus DNA insertion in hamster or mouse cells, EMBO J. 3, 3263-3269.
Gaynor, R.B.; Hillman, D.; and Berk, A.J. 1984
 Adenovirus E1A protein activates transcription of a non viral gene which is infected or

Gerber, P.; and Kirschstein, R.L. 1962
 SV40-induced ependymonas in newborn hamsters, Virology 18, 582-588.

Gebert, A.; and Bartels, H. 1991
 Occluding junctions in the epithelium of the gut associated lymphoid tissue (GALT) of
 the rabbit ileum and caecum, Cell Tissue Res. 266, 301-314.

Gebert, A.; and Hach, G. 1993
 Differential binding of lectins to M cells and enterocytes in the rabbit cecum,
 Gastroenterology 105, 1350-1361.

Gebert, A.; Rothkötter, H-J.; and Pabst, R. 1996

Giesecke, D.; and Hendrickx, H.K. 1973
 Biologie und Biochemie der mikrobiellen Verdauung, BLV Verlagsgesellschaft
 München, Bern, Wien.

Ginsberg, H.S. 1979
 Adenovirus structural proteins, in Fraenkel-Conrat, H.; and Wagner, P.R. (eds.):

Ginsberg, H.S.; Bello, L.J.; and Levine 1967
 Control of biosynthesis of host macromolecules in cells infected with adenovirus, in
 Colter, J.S.; and Parachych (eds.): The molecular biology of viruses, Academic Press,
 New York, 547-572.

Glover, T.; and Stein, C.K. 1988
 Chromosome breakage and recombination at fragile sites, Am. J. Hum Genet. 43,
 265-273.

Graham, F.L.; van der Eb, A.J.; and Heijneker, H.L. 1974
 Size and location of the transforming region in human adenovirus 5 DNA, Nature 251,
 687-691.

Graham, F.L. 1984
 The adenoviruses, in Ginsberg, H.S. (ed.): The adenoviruses, Plenum Publishing
 Corp. N.Y., 339-398.

Graham, F.L.; Abraham, P.J.; Mulder, C.; Heijneker, H.L.; Sarnaar, S.O.; De Vries,
F.A.J.; Fries, W.; and van der Eb, A.J. 1984
 Studies on the in vitro transformation by DNA and DNA-fragments of human
Green, M.; and Piña, M. 1964
Biochemical studies on adenovirus multiplication, VI. Properties of highly purified
tumorgenic human adenovirus and their DNAs, Proc. Natl. Acad. Sci. USA 51, 1251-
1259.

Green, M.; Brackmann, K.H.; Lucher, L.A.; and Symington, J.S. 1983
Antibodies to synthetic peptides targeted to the transforming genes of human
adenoviruses: An approach to understand early viral gene function, Current Topics in
Microbiology and Immunology 109, 167-192.

Groneberg, J.; Sutter., D.; Soboll, H.; and Doerfler, W. 1978
Morphological revertants of adenovirus type 12-transformed hamster cells, J. Gen.
Virol. 40, 635-645.

Groneberg, J.; and Doerfler, W. 1979
Revertants of adenovirus type 12-transformed hamster cells have lost part of the viral

Involvement of M cells in the bacterial invasion of Peyer’s patches: A common
mechanism shared by Yersinia enterocolitica and other enteroinvasive bacteria, Gut 3,
1011-1015.

DNA vaccines: Immunology, application, and optimization, Annu. Rev. Immunol. 18,
927-974.

Habrova, V.; Takac, M.; Navratil, J.; Macha, J.; Ceskova, N.; and Jonak, J. 1996
Association of Rous sarcoma virus DNA with Xenopus laevis spermatozoa and its
transfer to ova through fertilization, Mol. Reprod. 44, 332-342.

Hanahan D. 1983
Studies on transformation of Escherichia coli with plasmids, J Mol Biol. 166, 557-580

Handt, O.; Richards, M.; Trommsdorff, M.; Kilger, K.; Simanainen, J.; Georgiev, O.;
Bauer, K.; Hedges, R.; and Schaffner, W. 1994
Molecular genetic analyses of the Tyrolean Ice Man, Science 264, 1775-1778.

Hansen, E.; Fernandes, K.; Goldspink, G.; Worth, P.; Umeda, P.K.; and Chang, K.C.
1991
Strong expression of foreign genes following direct injection into fish muscle, FEBS
Lett. 290, 73-76.

Harrison, F.A.; and Leat, W.M.F. 1975
Digestion and absorption of lipids in non-ruminant and ruminant animals: a
Heller, H.; Kämmer, C.; Wilgenbus, P.; and Doerfler, W. 1995
Chromosomal insertions of foreign (adenovirus type 12, plasmid, or bacteriophage λ) DNA are associated with enhanced methylation of cellular DNA segments, Proc. Natl. Acad. Sci. USA 92, 5515-5519.

Herbst, G. 1844
Das Lymphgefäßsystem und seine Verrichtung, Vandenhoeck & Ruprecht, Göttingen, 333-337.

Immune responses and protection obtained by oral immunization with rotavirus VP4 and VP7 DNA vaccines encapsulated in microparticles, Virology 259, 148-153.

Hertz, J.; Schell, G.; and Doerfler, W. 1999
Factors affecting de novo methylation of foreign DNA in mouse embryonic stem cells, J. Biol. Chem. 24, 24232-24240.

Gene expression following direct injection of DNA into liver, Human Gene Therapy 5, 1477-1483.

Hilger-Eversheim K.; and Doerfler W. 1997

Hilleman, M.R.; and Werner, J.H. 1954

Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles, J. Drug Target 2, 151-156.

Hirsch, R. 1906

Hirsch, R. 1908

Hörnicke, H. 1984

Holmes, D.S.; and Quigley, M. 1981
Horkovics-Kovats, S. 1999
Efficiency of enterophepatic circulation, its determination and influence on drug bioavailability, Arzneimittelforschung 49, 805-815.

Horwitz, M.S. 1996
Adenoviruses, in Fields, B.N. et al. (eds.), Fields Virology, 2149-2171.

Hotchkiss, R.D. 1948
The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography, J. Biol. Chem. 175, 315-327.

Houweling, A.; van der Elsen, P.J.; and van der Eb, A.J. 1980
Partial transformation of primary rat cells by the leftmost 4.5% fragment of adenovirus 5 DNA, Virology 105, 537-550.

Huebner, R.J.; Rowe, W.P.; and Lane, W.T. 1962

Javier, R.; Raska Jr.; K.; Mac Donald, G.J.; and Shenk, T. 1992
Requirements for the adenovirus type 9 E4 region in production of mammary tumors, Science 257,1267-1271.

Jepson, M.A.; Simmons, N.L.; Savidge, T.C.; James, P.S.; and Hirst, B.H. 1993
Selective binding and transcytosis of latex microsphere by rabbit intestinal M cells, Cell Tissue Res. 271 399-405.

Jepson, M.A.; Clark, M.A.; Foster, N.; Mason, C.M.; Bennet, M.K.; Simmons, N.L.; and Hirst, B.H. 1996
Targeting to intestinal M cells, J. Anat. 189, 507-516.

Recombination in hamster cell nuclear extracts between adenovirus type 12 DNA and two hamster preinsertion sequences, EMBO J. 8, 869-878.

Integration of Epstein-Barr virus in Burkitt's lymphoma cells leads to a region of enhanced chromosome instability, Annals of Oncology 8, 131-135.
Just, A. 1983
The role of the large intestine in the digestion of nutrients and amino acid utilization in monogastrics, in: Protein metabolism and nutrition, Proc. 4th Int. Symb., 289-309.

Kaiser, A.D.; and Hogness, 1960

Kaiser, E.; Kuzmits R.; Pregant P.; Burghuber O.; and Worofka W. 1989

Kato, T. 1990
A study of secretory immunoglobulin–A on membranous epithelial cells (M cells) and adjacent absorptive cells of rabbit Peyer’s patches, Gastroenterology Jpn. 25, 15-23.

Kato, T.; and Owen, R.L. 1999

Kay, R.N.B.; and Pfeffer, E. 1969

Kerneis, A.; Bogdanova, A.; Colucci-Guyon, E.; Kraehenbuhl, J-P.; and Pringault, E. 1996
Cytosolic distribution of villin in M cells from mouse Peyer’s patches correlates with the absence of a brush border, Gastroenterology 110, 515-521.

Khalili, K.; and Weinberg, R. 1984
Shut-off of actin biosynthesis in adenovirus serotype-2 injected cells, J. Mol. Biol. 175, 453-468.

Kirschstein, R.L.; Rabson, A.S.; and Peters, E.A. 1964

Knoblauch, M.; Schröer, J.; Schmitz, B.; and Doerfler, W. 1996
The structure of integration sites of adenovirus type 12 DNA in the hamster cell genome, Virology 70, 3788-3796.

Kochanek, S.; Toth, M.; Dehmel, A.; Renz, D.; and Doerfler, W. 1990
Koetsier, P.A.; Schorr, J.; and Doerfler, W. 1993

Kraehenbuhl, J-P.; and Neutra, M.R. 1992
 Molecular and cellular basis of immune protection of mucosal surfaces. Physiol. Rev. 72, 853-879.

Kraehenbuhl, J-P.; Pringault, E.; and Neutra, M.R. 1997
 Review article: Intestinal epithelia and barrier functions, Aliment Pharmacol. Ther. 11, 3-9.

 CpG motifs in bacterial DNA trigger direct B-cell activation, Nature 374, 546-549.

Krieg, A.M.; Hartmann, G.; and Yi, A.K. 2000
 Mechanism of action of CpG DNA, Current Topics in Microbiology and Immunology 247, 1-21.

Kruczek, I.; and Doerfler, W. 1982
 The unmethylated state of the promoter/leader and 5'-regions of integrated adenovirus genes correlates with gene expression, EMBO J. 1, 409-414.

Kuhlmann, I.; Achten, S.; Rudolph, R.; and Doerfler, W. 1982
 Tumor induction by human adenovirus type 12 in hamsters: Loss of the viral genome from adenovirus type 12-induced tumor cells is compatible with tumor formation, EMBO J. 1, 79-86.

Kuhlmann, I.; and Doerfler, W. 1982

Lavitrano, M.; Camaioni, A.; Fazio, V.M.; Dolci, S.; Farace, M.G.; and Spadafora, C. 1989
 Sperm cells as vectors for introducing foreign DNA into eggs: Genetic transformation of mice, Cell 57, 717-723.

Lee, J.S.; See, R.H.; Deng, T.; and Shi, Y. 1996
 Adenovirus E1A downregulates CJun- and JunB-mediated transcription by targeting their coactivator p300, Moll. Cell Biol. 16, 4312-4326.

Lelouard, H.; Reggio, H.; Mangeat, P.; Neutra, M.; and Montcourrier, P. 1999

Leonetti, J.P.; Mechtli, N.; Degols, G.; Gagnor, C.; and Lebleu, B. 1991
Lettman, C.; Schmitz, B.; and Doerfler, W. 1991
Persistence or loss of preimposed methylation patterns and de novo methylation of foreign DNA integrated in transgenic mice, Nuc. Acid Res. 19, 7131-7137.

Levine, A.J.; Momand, J.; and Finlay, C.A. 1991

Lichy, J.H., Field, J.; Horwitz, M.S.; and Hurwitz, J. 1982

Liebeler, E.M.; Lemke, C.; and Pohlenz, J.F. 1995
Ultrastructural study of uptake of ferritin by M cells in the follicle-associated epithelium in the small and large intestines of pigs, Am. J. Vet. Res. 56, 725-730.

Lillie, J.; and Green, M.R. 1989
Transcription activation by the adenovirus E1A protein, Nature 338, 39-44.

Lowden, S.; and Heath, T. 1995

Lucher, L.A. 1990

Altered Expression of adenovirus type 12 DNA-binding protein but not DNA polymerase during abortiv infection of hamster cells, Virology 189, 17-195.

Ludlow, J.W.; and Skuse, G.R. 1995
Viral oncoproteins binding to pRB, p107, p130, and p300, Virus. Res. 35, 113-121.

Madara, J.L. Bye, W.A.; and Trier, J.S. 1984
Structural features of and cholesterol distribution in M cell membranes in guinea pig, rat, and mouse Peyer’s patches, Gastroenterology 87, 1091-1103.

Fas gene mutation in the progression of adult T cell leukemia, J. Exp. Med. 189, 1063-1071.

Manthorpe, M.; Cornefert-Jensen, F.; Hartikka, J.; Felgner, J.; Rundell, A.; Margalith, M.; and Dwarki, V. 1993

Mason, V.C. 1984
Biologically erodable microsphere as potential oral drug delivery systems, Nature 386, 410-414.

Maturin, L.Sr.; and Curtiss, R. 1977

McAllan, A.B.; and Smith, R.H. 1969

McAllan, A.B.; and Smith, R.H. 1973a

McAllan, A.B.; and Smith, R.H. 1973b

McAllan, A.B. 1980

McAllan, A.B. 1982

McGhee, J.D.; and Ginder, G.D. 1979
Specific DNA methylation sites in the vicinity of the chicken β-globin genes, Nature 280, 419-420.

Mellerick, D.M.; Fraser, N.W. 1987

Messing, J.; Gronenborn, B.; Müller-Hill, B.; and Hofschneider, P.H. 1978

Meyer, H. 1982
Beiträge zur Verdauungsphysiologie des Pferdes, Fortschritte in der Tierphysiologie und Tierernährung, 13.

Intratracheal gene delivery to the mouse airway: Characterization of plasmid DNA expression and pharmacokinetics, Gene Therapy 2, 450-460.

Miller, D.G.; Adam, M.A.; and Miller, A.D. 1990
Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection, Mol. Cell. Biol. 10, 4239-4242.
Miller, A.D. 1992
Human gene therapy comes of age, Nature 357, 455-460.

Minagawa, K.; Matsuzawa, Y.; Yoshikawa, K.; Masubuchi, Y.; Matsumoto, M; Doi, M.; Nishimura, C.; and Maeda, M. 1993
Change of the higher order structure of DNA induced by the complexation with intercalating synthetic polymer, as is visualized by fluorescence microscopy, Nucleic Acids Res. 21, 37-40.

Modrow, S.; and Falke, D. 1997

Münger, K. 1995

Murray, E.J.; and Grosveld, F. 1987
Site specific demethylation in the promoter of human c-globin gene does not alleviate methylation mediated suppression, EMBO J. 6, 2329-2335.

Najfeld, V.; Ballard, S.G.; Menninger, J.; Ward, D.C.; Bouhassira, E.F.; Schwartz, R.S.; Nagel, R.; and Rybicki, A.C. 1992
The gene of human erythrocyte protein 4.2 maps to chromosome 15q15, Am. J. Hum. Genet. 50, 71-75.

Nakanishi, A.; and Iritani, A. 1993

Nemerow, G.R. 2000
Cell receptors involved in adenovirus entry, Virology 276, 1-4.

Neutra, M.R.; and Kraehenbuhr, J-P. 1992a

Neutra, M.R.; and Kraehenbuhr, J-P. 1992b

Neutra, M.R.; and Kraehenbuhr, J-P. 1996
Increased delivery of tumor-specific monoclonal antibodies to brains after osmotic blood-brain barrier modification in patients with melanoma metastatic to the central nervous system, Neurosurgery 20, 885-895.

Niswender, K.D.; Blackman, S.M.; Rohde, L.; Magnuson, M.A.; and Piston, D.W. 1995

Oesterlen, F. 1846

Ogawa, K.; Tsutsumi, A.; Iwata, K.; Fujii, Y.; Ohmori, M.; Hamaya, K; and Yabe, Y. 1965

Okudaira; K.; Yoshizawa, H.; and Williams, R.C. 1987
Monoclonal murine anti-DNA antibody reacts with living mononuclear cells, Arthritis Rheum. 30, 669-674.

Orend, G.; Kuhlmann, I.; and Doerfler, W. 1991
Spreading of DNA methylation across integrated foreign (adenovirus type 12) genomes in mammalian cells, J. Virol. 65, 4301-4308.

Orend, G.; Linkwitz, A.; and Doerfler, W. 1994

Orend, G.; Knoblauch, M.; and Doerfler, W. 1995
Selectiv loss of unmethylated segments of integrated Ad12 genomes in revertants of the adenovirus type 12-transformed cell line T637, Virus Res. 38, 261-267.

Ortin, J.; and Doerfler, W. 1975
Transcription of the genom of adenovirus type 12. I. Viral mRNA in abortively infected and transfected cells, J. Virol. 15, 27-35.

Ortin, J.; Scheidtmann, K.H.; Greenberg, R.; Westphal, M.; and Doerfler, W. 1976

Overbeek, P.A.; Sing-Ping, L.; Van Quill, K.R.; and Westphal, H. 1986
Tissue specific expression in transgenic mice of a fused gene containing RSV terminal sequences, Science 231, 1574-1577.
Owen, R.L.; and Jones, A.L. 1974
Epithelial cell specialization within human Peyer’s patches: An ultrastructural study of intestinal lymphoid follicles, Gastroenterology 66, 189-203.

Owen, R.L. 1977
Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer’s patches in the normal unobstructed mouse intestine, Gastroenterology 72, 440-451.

Owen, R.L.; Apple, R.T.; and Bhalla, D.K. 1986
Morphometric and cytochemical analysis of lysosomes in rat Peyer’s patch follicle epithelium: Their reduction in volume fraction and acid phosphatase content in M cells compared to adjacent enterocytes, Anat. Rec. 216, 521-527.

Owen, R.L.; and Ermak, T.H. 1990
Structural specification of antigen uptake and processing in the digestive tract, Springer Semin. Immunopathol. 12, 139-152.

Owen, R.L. 1999
Uptake and transport of intestinal macromolecules and microorganisms by M cells in Peyer’s patches - A personal and historical perspective, Immunology 11, 157-163.

Pääbo, S.; Gifford, J.A.; and Wilson, A.C. 1988
Mitochondrial DNA sequences from a 7000 year old brain, Nucleic Acids Res. 16, 9775-9787.

Pappo, J. 1989

Pappo, J.; and Ermak, T.H. 1989

Pfeffer, E. 1987

Integrated viral genomes can be lost from adenovirus type 12-induced hamster tumor cells in a clone-specific, multistep process with retention of the oncogenic phenotype, Virus Research 59, 113-127.

Pfister, H. 1996
The role of human papillomavirus in anogenital cancer, Human Papillomavirus 23, 579-595.

Pines, J. 1995
GFP in mammalian cells, Trends Genet. 11, 326-327.
Pope, J.H.; and Rowe, W.P. 1964
Immunofluorescent studies of adenovirus 12 tumors and of cells transformed or infected by adenovirus, J. Exp. Med. 120, 577-588.

Popescu, N.C.; Di Paolo, J.A.; and Amsbaugh, S.C. 1987

Popescu, N.C.; Zimonjic, D.; and Di Paolo, J.A. 1990

A Burkitt lymphoma cell line with integrated Epstein-Barr virus at a stable chromosome modification site, Virology 195, 248-251.

Popescu, N.C.; and Zimonjic, D.B. 1997
Molecular cytogenetic characterization of cancer cell alterations, Cancer Genet Cytogenet 93, 10-21.

Porta, C.; James, P.S.; Phillips, A.D.; Savidge, T.C.; Smith, M.W.; and Cremaschi, D. 1992
Confocal analysis of fluorescent bead uptake by mouse Peyer’s patches follicle-associated M cells. Exp. Physiol. 77, 929-932.

Properties of chromatographically purified bovine pancreatic deoxyribonuclease, J. Biol. Chem. 244, 917-923.

The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDA and Bcl-2 proteins, Proc. Natl. Acad. Sci. USA 89, 7742-7746

Metabolism of the nucleic acids of ruman bacteria by preruminant and ruminant lambs, British J. Nutr. 45, 517-527.

Insertion of foreign DNA into an established mammalian genome can alter the methylation of cellular DNA sequences, J. Virol. 73, 1010-1022.
Rerat, A.A. 1980

Riede, U-N.; and Saeger, W. 1995

Rigby, P.W.J.; Diekmann, M.; Rhodes, C.; and Berg, P. 1977

Riggs, A.D.; and Jones, P.A. 1983

Robinson, P.J.; and Rapoport, S.I. 1987
Size selectivity of blood-brain barrier permeability at various times after osmotic opening, Am. J. Physiol. 253, 459-466.

Roelvink, P.W.; Lee, G.M.; Einfeld, D.A.; Kovesdi, I.; and Wickham, T.J. 1999

In vivo transfer of the human cystic fibrosis transmembrane conductance regular gene to the airway epithelium, Cell 68, 143-155.

Rosner, A.J.; and Keren, D.F. 1984

Enhanced reporter gene expression in cells transfected in the presence of DMI-2, an acid nuclease inhibitor, Gene Therapy 5, 1244-1250.

Ross, M.H.; Rohen, J.W.; Lütjen-Drecoll, E.; and Kaye, G. 1996

Rowe, W.P.; Huebner, R.J.; Gilmore, L.K.; Parrott, R.H.; and Ward T.G. 1953

Rueckert, R.R. 1996

Russell, W.C. 2000

Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase, Science 239, 487-491.

Sansonetti, P.J.; and Phalipon, A. 1999
M cells as ports of entry for enteroinvasive pathogens: Mechanisms of interaction, consequences for the disease process, Immunology 11, 193-203.

Sarnow, P.; Jacobson, S.J.; and Najita, L. 1990
Poliovirus genetics, Curr Top Microbiol Immunol 161, 155-188.

Schellander, K.; Peli, J.; Schmall, F.; and Brem, G. 1995

Schick, J.; Baczko, K.; Fanning, E.; Groneberg, J.; Burger, H.; and Doerfler, W. 1976

Schubbert, R.; and Dondera, M.E. 1993
Two new candidate adenovirus serotypes, Intervirology 36, 79-83.

Schröer, J.; Hölker, I.; and Doerfler, W. 1997
Adenovirus Type 12 DNA firmly associates with mammalian chromosomes early after virus infection or after DNA transfer by the addition of the DNA to the cell culture medium, J. Virol. 71, 7923-7932.

Schubbert, R.; Lettmann, C.; and Doerfler, W. 1994
Ingested foreign (phage M13) DNA survives transiently in the gastrointestinal tract and enters the bloodstream of mice, Mol. Gen. Genetics 242, 495-504.

Schubbert, R.; Renz, D.; Schmitz, B.; and Doerfler, W. 1997
Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA, Proc. Natl. Acad. Sci. USA 94, 961-966.

Schulz, M.; Freisem-Rabien, U.; Jessberger, R.; and Doerfler, W. 1987
Transcriptional activities of mammalian genomes at sites of recombination with foreign DNA, J. Virol. 61, 344-353.

Shenk, T. 1996

Expression of the E4 gene is required for establishment of soft-agar colony-forming rat cell lines transformed by the adenovirus 12 E1 gene, J. Virol. 50, 854-863.

Siebers, A.; and Finlay, B.B. 1996
M cell and the pathogenesis of mucosal and systemic infections, Trends in Microbiology 4, 22-29.

Sikes, M.L.; O’Malley Jr., B.W.; Finegold, M.F. and Ledley, F.D. 1994
In vivo gene transfer into rabbit thyroid follicular cells by direct DNA injection, Human Gene Therapy 5, 837-844.

Silbernagl, S.; and Despopoulos, A. 1991
Taschenatlas der Physiologie, 4. überarb. Auflage, Thieme Verlag.

Southern, E.M. 1975
Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98, 503-517.

Sperandio, S.; Lulli, V.; Bacci, M.L.; Forni, M.; Maione, B.; Spadafora, C.; and Lavitrano, M. 1996

Spjut, H.J.; Van Hoosier, G.L.; and Trentin, J.J. 1967
Neoplasms in hamsters induced by adenovirus type 12, Arch. Pathol. 83, 199-203.

Sprengel, J.; Schmitz, B.; Heuss-Neitzel, D.; and Doerfler, W. 1995
The complete nucleotide sequence of the DNA of human adenovirus type 12, Current Topics Microbiol. Immunol. 199/II, 190-273

Stabel, S.; Doerfler, W.; and Friis, R.R. 1980
Integration sites of adenovirus type 12 DNA in transformed hamster cells and hamster tumor cells, J. Virol. 36, 22-40.

Stacey, K.J.; Sweet, M.J.; and Hume, D.A. 1996
Macrophages ingest and are activated by bacterial DNA, J. Immunol. 157, 2116-2122.
Starzinski-Powitz, A.; Schultz, M.; Esche, H.; Mukai, N.; and Doerfler, W. 1982
The adenovirus 12 mouse cell system: Permissivity and analysis of interaction
patterns of viral DNA in tumor cells, EMBO J. 1, 493-497.

Stillmann, B. 1986
Functions of the adenovirus E1B tumor antigen, Cancer Surv. 5, 389-404.

Stratford-Perricaudet, L.D.; Briand, P.; and Perricaudet, M. 1992
Feasibility of adenovirus-mediated gene transfer in vivo, Bone Marrow Transplant. 9
Suppl 1, 151-152.

Sutter, D.; Westphal, M.; and Doerfler, W. 1978
Patterns of integration of viral DNA sequences in the genome of adenovirus type 12-
transformed hamster cells, Cell 14, 569-585.

Sutter, D.; and Doerfler, W. 1980
Methylation of integrated adenovirus type 12 DNA sequences in transformed cells is
inversely correlated with viral gene expression, Proc. Natl. Acad. Sci. USA 77, 253-
256.

and Kishi, K. 2000
Mammalian deoxyribonucleases I are classified into three types: pancreas, parotid,
and pancreas-parotid (mixed), based on differences in their tissue concentrations,
Biochem Biophys Res Commun. 269, 481-484.

Tanner, J.E.; Weis, J.; Fearon, D.; Whang, Y; and Kief, E. 1987
Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates
absorption, capping and endocytosis, Cell 50, 203-213.

Tanner, J.E.; Alfieri, C.; Chatila, T.A.; and Diaz-Mitoma, F. 1996
Induction of Interleukin-6 after stimulation of human B-cell CD21 by Epstein-Barr virus
glycoproteins gp350 and gp220, J. Virol. 70, 570-575.

Tatzelt, J.; Scholz, B.; Fechteler, K.; Jessberger, J.; and Doerfler, W. 1992
Recombination between adenovirus type 12 DNA and a hamster preinsertion
sequence in a cell-free system: Patch homologies and fractionation of nuclear extracts,

Thews, G.; Mutschler, E.; and Vaupel, P. 1989

Todaro, G.J.; and Green, H. 1966a
High frequency of SV40 transformation of mouse cell line 3T3; Virology 28, 756-759.

Todaro, G.J.; and Green, H. 1966b
Cell growth and the initiation of transformation by SV40; Proc. Natl. Acad. Sci. USA
55, 302-308.

Toofanian, F.; and Teshfam, M. 1978
Trentin, J.J.; Yabe, Y.; and Taylor, G. 1962

Gene transfer and expression in progeny after intravenous DNA injection into pregnant mice, Nature Genet. 9, 243-248.

Heterologous protection against influenza by injection of DNA encoding a viral protein, Science 259, 1745-1749.

Large E1B proteins of adenovirus types 5 and 12 have different effects on p53 and distinct roles in cell transformation, J. Virol. 67, 5226-5234.

van der Eb., A.J.; Mulder, C.; Graham, F.L.; and Houweling, A. 1977
Transformation with specific fragments of adenovirus DNAs. I. Isolation of specific fragments with transforming activity of adenovirus 2 and 5 DNA, Gene 2, 115-132.

van der Vliet, P.C.; and Levin, A.J. 1973

Vardimon, L.; Neumann, R.; Kuhlmann, I.; Sutter, D.; and Doerfler, W. 1980
DNA methylation and viral gene expression in adenovirus-transformed and -infected cells, Nucl. Acids Res. 8, 2461-2473.

Volkheimer, G. 1964
Durchlässigkeit der Darmschleimhaut für großkorpuskuläre Elemente (Herbst Effekt), Gastroenterology 2, 57-64.

Volkheimer, G. 1993
Persorption von Mikropartikeln, Pathologe 14, 247-252.

Wadell, G.; Hammarskjöld, M-L.; Winberg, G.; Varsani, T.W.; and Sundell, G. 1980

Wang, J.; Chenivesse, X.; Henglein, B.; and Brechot, C. 1990

Weinberg, R.A. 1980
Wells, D.J.; and Goldspink, G. 1992

Wels, A. 1987

Wenneras, C.; Neeser, J.R.; and Svennerholm, A.M. 1995
Binding of the fibrillar CS3 adhesin of enterotoxigenic Escherichia coli to rabbit intestinal glycoproteins is competitively prevented by Ga1NAcβ1-4Gal-containing glycoconjugates, Infect. Immun. 63, 640-646.

Whalen, R.G.; Harris, J.B.; Butler-Browne, G.S.; and Sesodia, S. 1990

The 19-kilodalton adenovirus E1B transforming protein inhibits programmed cell death and prevents cytolysis by tumor necrosis factor α, Mol. Cell Biol. 12, 2570-2580.

Association between an oncogene and an anti-oncogene: The adenovirus E1A proteins bind to the retinoblastoma gene product, Nature 334, 124-176.

Whyte, P.; Williamson, N.M.; and Harlow, E. 1989
Cellular targets for transformation by adenovirus E1A proteins, Cell 56, 67-75.

Wilson, J.M. 1996

Wolf, J.L.; Kauffmann, R.S.; Finberg, R.; Dambrauskas, R.; Fields, B.N.; and Trier, J.S. 1983
Determinants of reovirus interaction with the intestinal M cells and absorptive cells of murine intestine, Gastroenterology 85, 291-300.

Wolf, J.; Jox, A.; and Skarbeck, H. 1995
Selective loss of integrated Epstein-Barr virus genome after long term cultivation of Burkitt’s lymphoma x lymphoblastoid cell hybrids due to chromatin instability at the integration site, Virology 212, 179-185.

Conditions affecting direct gene transfer into rodent muscle in vivo, Biotechniques 11, 474-485.

Wolff, J.A.; Ludtke, J.J.; Acsadi, G.; Williams, P.; and Jani, A. 1992b

Wolff, J.A. 1997
Naked DNA transport and expression in mammalian cells, Neuromuscular Disorders 7, 314-318.

Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration, Human Gene Therapy 8, 37-44.

Yabe, Y.; Ogawa, K.; Iwata, K.; and Murakami, S. 1966

Yanoff, M. 1991

Yoder, J.A.; Walsh, C.P.; and Bestor, T.H. 1997
Cytosine methylation and the ecology of intragenomic parasites, Trends Genet. 13, 335-340.

Yoneda, Y.; Imamoto-Sonobe, N.; Yamaizumi, M.; and Uchida, T. 1987

Yunis, J.J. 1987

Yunis, J.J.; Soreng, A.L.; and Bowe, A.E. 1987
Fragile sites are targets of diverse mutagens and carcinogens, Oncogenes 1, 59-69.
 The mechanism of binding of exogenous DNA to sperm cells: Factors controlling the DNA uptake, Exp. Cell Res. 217, 57-64.

 Expression of naked plasmid DNA injected into the afferent and efferent vessels of rodent and dog livers, Human Gene Therapy 8, 1763-1772.

Zimmermann, S.B.; and Sardeen, G. 1966

Zock, C.; and Doerfler, W. 1990
 A mitigator sequence in the downstream region of the major late promoter of adenovirus type 12, EMBO J. 9, 1615-1623.

Zock, C.; Iselt, A.; and Doerfler, W. 1993
 A unique mitigator sequence determines the species specificity of the major late promoter in adenovirus type 12 DNA, J. Virol. 67, 682-693.

Zoraqi, G.; and Spadafora, C. 1997
 Integration of foreign DNA sequences into mouse sperm genome, DNA and Cell Biology 16, 291-300.

zur Hausen, H. 1967
 Induction of specific chromosomal aberations by adenovirus type 12 in human embryonic kidney cells, J. Virol. 1, 1174-1185.

zur Hausen, H.; and Schulte-Holthausen, H. 1970
 Presence of EB virus nucleic acid homology in a "virus-free" line of Burkitt tumor cells, Nature 227, 245-248.

zur Hausen, H. 1991
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ampere</td>
</tr>
<tr>
<td>Ad</td>
<td>Adenovirus</td>
</tr>
<tr>
<td>Ad12</td>
<td>Adenovirus Typ 12</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaar</td>
</tr>
<tr>
<td>bzw.</td>
<td>beziehungsweise</td>
</tr>
<tr>
<td>ca.</td>
<td>zirka</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalieivirus</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>dATP</td>
<td>Desoxyadenosintriphosphat</td>
</tr>
<tr>
<td>dCTP</td>
<td>Desoxycytosintriphosphat</td>
</tr>
<tr>
<td>dGTP</td>
<td>Desoxyguanosintriphosphat</td>
</tr>
<tr>
<td>dNTP</td>
<td>Desoxyribonukleosidtriphosphat</td>
</tr>
<tr>
<td>dTTP</td>
<td>Desoxythimidintriphosphat</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr-Virus</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylen diamintetraacetat</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidiumbromid</td>
</tr>
<tr>
<td>FCS</td>
<td>Foetales Kälberserum</td>
</tr>
<tr>
<td>FISH</td>
<td>Fluoreszenz-in-situ-Hybridisierung</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>GFP</td>
<td>grün-fluoreszierende Protein</td>
</tr>
<tr>
<td>gfp</td>
<td>Gen für das GFP</td>
</tr>
<tr>
<td>GI-Trakt</td>
<td>Gastrointestinal-Trakt</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Name</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HBV</td>
<td>Hepatitis-B-Virus</td>
</tr>
<tr>
<td>HPV</td>
<td>Humanes Papillomvirus</td>
</tr>
<tr>
<td>i.m.</td>
<td>intramuskulär</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>Ls-DNA</td>
<td>Lachsspermien-DNA</td>
</tr>
<tr>
<td>M</td>
<td>Mol</td>
</tr>
<tr>
<td>m</td>
<td>milli</td>
</tr>
<tr>
<td>µ</td>
<td>mikro</td>
</tr>
</tbody>
</table>
| MHC | Major Histocompatibility Complex
 Haupt-Histokompatibilitäts-Komplex |
| min | Minute |
| MLP | Major Late Promotor
 Später Hauptpromotor |
| NSE | Neuron-spezifische Enolase |
| OD | Optische Dichte |
| PCR | Polymerase Chain Reaction
 Polymerase Kettenreaktion |
<p>| pfu | plaque forming unit |
| p.i. | post injection |
| PLC | Primäres Leberzellkarzinom |
| PNET | primitive neuroektodermale Tumoren |
| RNA | Ribonukleinsäure |
| rpm | Umdrehungen pro Minute |
| RE | Restriktionsendonuklease |
| RSV | Rous Sarcomavirus |
| RT | Raumtemperatur |</p>
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>Reverse Transkriptase</td>
</tr>
<tr>
<td>Rubisco</td>
<td>Ribulose-1,5-bisphosphat Carboxylase</td>
</tr>
<tr>
<td>s.c.</td>
<td>subkutan</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>sec</td>
<td>Sekunde</td>
</tr>
<tr>
<td>SV</td>
<td>Simian-Virus</td>
</tr>
<tr>
<td>TE Puffer</td>
<td>Tris-EDTA-Puffer</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris-(hydroxymethyl)-aminomethan</td>
</tr>
<tr>
<td>UV</td>
<td>Ultroviolett</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
<tr>
<td>z.T.</td>
<td>zum Teil</td>
</tr>
</tbody>
</table>
9 Anhang

9.1 Berechnung der Zellzahl eines Sojablattes

Blattmaß: 1 x 2,5 cm (= a x b)

1. Annahme: Blatt ist elliptisch

Fläche der Ellipse: \(a \times b \times \pi \)

\[1 \times 2,5 \times \pi = 7,854 \text{ cm}^2 \]

Blattoberfläche \(\sim 8 \text{ cm}^2 = 800 \text{ mm}^2 \)

2. Annahme: Sojablatt ist 1,25 mm dick

Blattvolumen: \(800 \times 1,25 \text{ mm} = 1.000 \text{ mm}^3 (1) \)

3. Annahme: Größe der Zellen sei im Durchschnitt: 30 x 30 x 30 µm

Zellvolumen beträgt demnach \(27 \times 10^3 \text{ µm}^3 \) oder \(27 \times 10^{-6} \text{ mm}^3 (2) \)

4. Annahme: 25% des Blattvolumens sind Interzellulare

Gesamtzellvolumen pro Blatt: \(1.000 \times 0,75 = 750 \text{ mm}^3 (3) \)

Zellzahl ergibt sich wie folgt: \(750 : 27 \times 10^{-6} = 27,8 \times 10^6 \)

Einschränkungen:

a) Blätter sind seitlich abgeplattet
b) Ellipsenform ist zu hoch gegriffen

--> Die errechnete Zellzahl ist etwas zu hoch.

Schlussfolgerung:

Die Anzahl der Zellen in einem Sojablatt entspricht etwa: \(1 - 2 \times 10^7 \text{ Zellen/Sojablatt} \)
9.2 Sequenzen der verwendeten synthetischen Oligonukleotide

Die hier aufgeführten einzelsträngigen Oligonukleotide wurden von den Firmen Gibco BRL, Life Technologies und MWG, Biotech bezogen. Sie wurden in 5´ -> 3´-Richtung notiert und als PCR-Primer verwendet.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 (42 sense)</td>
<td>CCC ATA TAT GGA GTT CCG</td>
</tr>
<tr>
<td>P2 (921 sense)</td>
<td>CGA CGG CAA CTA CAA GAC CC</td>
</tr>
<tr>
<td>P3 (1319 anti-sense)</td>
<td>CGT CCA TGC CGA GAG TGA TCC</td>
</tr>
<tr>
<td>P4 (582 sense)</td>
<td>GTC AGA TCC GCT AGC GCTACC</td>
</tr>
<tr>
<td>P5 (1574 anti-sense)</td>
<td>TTT TTT TTT TTT TTT TTT TAT TTG TG</td>
</tr>
<tr>
<td>P6 (378 sense)</td>
<td>GGC AGT ACA TCA ATG GGC</td>
</tr>
<tr>
<td>P7 (604 anti-sense)</td>
<td>GCT CAC CAT GGT GGC GAC C</td>
</tr>
<tr>
<td>P8 (1010 anti-sense)</td>
<td>CCT CCT TGA AGT CGA TGC C</td>
</tr>
<tr>
<td>P9 (395 anti-sense)</td>
<td>GAG TCA AAC CGG CTA ATC CAC G</td>
</tr>
<tr>
<td>P11 (11 sense)</td>
<td>CCT AGC TCG ATA CAA TAA ACG C</td>
</tr>
<tr>
<td>P12 (185 sense)</td>
<td>CCA CCT ACG GCA AGC TGA CC</td>
</tr>
<tr>
<td>P14 (645 sense)</td>
<td>CTA GGT GTG GCC ACC AAT TGG C</td>
</tr>
<tr>
<td>P15 (982 sense)</td>
<td>AAG TCT GAG ATA GAA AAA ATC C</td>
</tr>
<tr>
<td>P16 (20 sense)</td>
<td>TGG AAC CTC CAT GTG TCA CC</td>
</tr>
<tr>
<td>P17 (1536 anti-sense)</td>
<td>GGA AAT GCA AGG ACA ATGG</td>
</tr>
<tr>
<td>P18 (1284 anti-sense)</td>
<td>GCG ATG AAG CTG ATG CAC TGC</td>
</tr>
</tbody>
</table>

Tabelle 8: Sequenzen der verwendeten Primer
10 Abbildungsverzeichnis

Abbildung 1: Schematische Struktur eines Adenoviruspartikels 15
Abbildung 2: Organisation des Adenovirus Typ 2 Genoms. 16
Abbildung 3: Expression von GFP in 3T3-Mausfibroblasten. 60
Abbildung 4: Nachweis der verfütterten pEGFP-C1 DNA im GI-Trakt von Mäusen durch Southern Transfer-Analysen. 62
Abbildung 5: Nachweis der verfütterten pEGFP-C1 DNA im GI-Trakt von Mäusen mittels PCR. ... 64
Abbildung 6: Nachweis von 1277 bp großen Fragmenten der verfütterten pEGFP-C1 DNA im GI-Trakt von Mäusen 65
Abbildung 7: Nachweis der oral applizierten gfp DNA in verschiedenen Organen .66
Abbildung 8: Nachweis von Promotor-gfp-Fragmenten in Organen von Mäusen... 67
Abbildung 9: Nachweis der verfütterten pEGFP-C1 DNA in Gewebeschnitten mittels FISH. ... 68
Abbildung 10: Analyse der Transkription von verfütterter DNA......................... 71
Abbildung 11: Analyse des transgenen Status der F5-Generation mittels PCR. 73
Abbildung 12: Analyse von Rubisco-spezifischen Primer. 75
Abbildung 13: Nachweis des Rubisco Gens im GI-Trakt mittels DNA-Transfer-Analyse nach Fütterung von Mäusen mit Sojablättern. 76
Abbildung 14: Nachweis von Fragmenten des Rubisco Gens im Magen-Darm-Trakt von Mäusen durch PCR-Analysen 77
Abbildung 15: Persistenz des Rubisco Gens im GI-Trakt der Maus. 78
Abbildung 16: Untersuchung der Persistenz des Rubisco Gens im GI-Trakt der Maus mittels der PCR-Methode .. 79
Abbildung 17: Nachweis der mit der Nahrung aufgenommenen DNA in Organen. .80
Abbildung 18: Sequenzierung der PCR-Produkte. ... 80
Abbildung 19: Fluoreszenz-in-situ-Hybridisierungen von Sojablättern. 81
Abbildung 20: Nachweis der injizierten DNA durch Southern Transfer-Analyse. .. 83
Abbildung 21: Persistenz der i.m. injizierten DNA in verschiedenen Organen. 84
Abbildung 22: Ausscheidung der injizierten DNA über den Leber-Gallen-Darmweg. 86
Abbildung 23: Ausscheidung des Bromphenolblaus aus dem Organismus. 87
Abbildung 24: Expression von GFP in injizierten Muskelfasern. 89
Abbildung 25: Nachweis der Transkription der injizierten DNA im kollateralen Muskel mittels der RT-PCR-Methode. 91
Abbildung 26: Analyse der Transkription der i.m. injizierten DNA in verschiedenen Organen.92

Abbildung 27: Integrationsmuster der Ad12 DNA in den durch subkutane Injektion von Ad12-Virionen induzierten Tumoren.97

Abbildung 28: Integrationsmuster der Ad12 DNA in den durch i.m. Injektion von Ad12-Virionen induzierten Tumoren. 103

Abbildung 29: FISH-Analysen der integrierten Ad12 DNA in Ad12-induzierten Tumoren und Tumorzelllinien. ... 105

Abbildung 30: Ad12-induzierte Tumoren in der Nackenregion von Hamstern. 107

Abbildung 31: Histologische und immunhistochemische Untersuchungen der Ad12-induzierten Tumoren. ... 108
11 Tabellenverzeichnis

Tabelle 1: Expression des gfp Gens in 3T3-Mausfibroblasten in Abhängigkeit vom Promotor.61

Tabelle 2: Nachweis der verfütterten gfp DNA im Darm und in verschiedenen Organen von Mäusen69

Tabelle 3: Persistenz und Verteilung der parenteral applizierten pRSVGFP DNA85

Tabelle 4: Tumorbildung nach subkutaner Injektion von Ad12-Virionen in Hamstern94

Tabelle 5: Anzahl der integrierten Ad12 Genome in subkutan induzierten Tumoren99

Tabelle 6: Ad12-induzierte Tumorbildung in unterschiedlichen Geweben100

Tabelle 7: Anzahl der integrierten Ad12 Genome in Tumoren nach Injektion von Ad12-Virionen in Leber oder Muskel.104

Tabelle 8: Sequenzen der verwendeten Primer ...166
Erklärung

Teilpublikationen:

On the fate of orally ingested foreign DNA in mice: Chromosomal association and placental transmission to the fetus,

Schubbert, R., Hohlweg, U., and Doerfler, W. 1999
Mit der Nahrung aufgenommene DNA überwindet die Gastrointestinal- und Plazenta-Barriere,
Ernährungsforschung 44, 1-6

Hohlweg, U., and Doerfler, W. 2001
On the fate of plant or other foreign genes upon the uptake in food or after intramuscular injection in mice,

Ich versichere, daß ich alle Angaben wahrheitsgemäß nach dem besten Wissen und Gewissen gemacht habe und verpflichte mich, jedmögliche, die obrigen Angaben betreffenden Veränderungen, dem Dekanat unverzüglich mitzuteilen.

Köln, den

Urte Hohlweg
"DANKE"

Mein Dank gilt in erster Linie und in ganz besonderer Weise Professor Dr. Walter Doerfler nicht nur für die interessanten Aufgabenstellungen, sondern auch für sein großes und stetes Interesse an meiner Arbeit sowie für seine Unterstützung und zahlreiche Ratschläge, die maßgeblich zu der Verwirklichung dieser Arbeit beigetragen haben.

Mein Dank gilt darüber hinaus den Mitarbeitern der Pathologie der Universität Aachen für die histologischen und immunhistochemischen Untersuchungen der durch Ad12-induzierten Tumoren. Den Mitarbeitern beider Tierställe, insbesondere Frau Molsberger-Pesch, Frau Morol und Herrn Schwabe, danke ich für die hervorragende Tierpflege.

Zum Schluß herzlichen Dank an Georg, der nicht nur stets verständnisvoll, sondern auch in jeder Weise für mich persönlich hilfreich war.

Abstract

The uptake and distribution of food-ingested foreign DNA have been investigated in model experiments with mice. The DNA of the cloned gene for green fluorescent protein (GFP) from *Aequorea victoria* as test gene has been traced from the intestinal contents, via the gut wall and peripheral white blood cells to liver, spleen and kidney. After feeding the cloned gfp gene daily for 21 days, transcription of this foreign gene has not been detected in any organ system of the mouse by UV-light microscopy or by the sensitive RT-PCR method. Hence, there is no evidence for the detectable expression of orally administered genes. Choosing a natural scenario, soybean leaves were fed to mice. The distribution of the plant-specific gene for the ribulose-1,5-bisphosphate-carboxylase (rubisco) has then been studied in the mouse organism. Starting at 3 h after feeding, the rubisco gene can be recovered almost intact from the contents of the gut. Rubisco gene fragments remain detectable up to 49 h after feeding in the intestine, up to 121 h in the cecum. Thus, plant-associated, naturally fed DNA is more stable in the intestinal tract than naked DNA which had disappeared from the intestinal tract by 24 h after feeding. Rubisco gene-specific PCR products of 337 bp nucleotides in length have been amplified from spleen and liver DNA.

Upon the intramuscular injection of gfp DNA, fragments of the foreign DNA have been amplified by PCR up to 17 months post injection in DNA from injected muscle, up to 24 h post injection in DNA from liver, blood, kidney and contralateral muscle. Furthermore gfp fragments can also be retrieved from the intestinal contents. Apparently, the organism eliminates injected foreign DNA via the liver-bile-intestinal route. However expression of the gfp gene could only be detected in the injected muscle, but not in the contralateral muscle, liver, spleen or blood of the same animal.

After the subcutaneous injection of Ad12 virions into newborn Syrian hamsters (*Mesocricetus auratus*) tumors have been generated at the site of virus injection. In contrast, the intramuscular injection of Ad12 has caused widespread dissemination of tumors over the entire peritoneal cavity involving the surface of many abdominal organs. Independent of the subcutaneous or intraperitoneal localization of all Ad12-induced hamster tumors, their histological and immunohistochemical properties proved identical. The Ad12-induced malignancies are best classified as undifferentiated tumors with neuroectodermal and mesenchymal characteristics.
Lebenslauf

Persönliche Daten

Name: Urte Hohlweg, geb. Gerhardt
Geburtsdatum: 7. November 1968
Geburtsort: Göttingen
Familienstand: verheiratet, keine Kinder
Eltern: Sybille Gerhardt, geb. Bach
Richterin am Oberlandesgericht
Dr. iur. Walter Gerhardt
ordentlicher Professor an der Universität Bonn
Staatsangehörigkeit: deutsch

Schulbildung

1975 - 1979 Grundschule Königswinter-Ittenbach
1979 - 1989 Gymnasium am Ölberg in Oberpleis
Mai 1989 Abitur

Hochschulausbildung

Aug. 1992 - Mai 1993 Studienaufenthalt an der Brock-University in St. Catharines, Ontario, Kanada
Juni 1993 Bachelor of Science in Biological Science
Jan. 1996 Diplom in Biologie
seit Sep. 1996 Promotionsstudium Biologie in Köln

Beruflicher Werdegang

März 1996 - Juli 1996 Wissenschaftliche Mitarbeiterin am Max-Planck-Institut für Biochemie in Martinsried
seit Sep. 1996 Wissenschaftliche Mitarbeiterin am Institut für Genetik, Universität zu Köln

Sonstige Aktivitäten

Feb. 1989 Förderprogramm “Jugend forscht” und Forschungsaufenthalt in Norditalien
Juli 1989 - Sep. 1989 Mitarbeiterin beim Caritas Hilfswerk
Feb. 1992 Sprachschule Kings College in Bournemouth, England