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1 Introduction

In my thesis, I present three essays dealing with issues of applied microe-

conomics. All three essays were originally motivated by research questions

emerging from liberalized electricity markets, but the models I discuss can

be more or less applied to other industries as well.

Traditionally, the electricity industry has been regarded as a natural mono-

poly. The electricity grid constitutes an essential facility, meaning that du-

plication is impossible or inefficient from an economic perspective. Since

1997, the European Union has adopted a number of directives in order to

establish an efficient internal electricity market and to increase competition

in national markets. The subsequent deregulation of electricity markets in

Europe relies on the idea that only the electricity grid itself needs to be

regulated, whereas the generation of electricity and related services can be

organized such that competition may arise.

Therefore, appropriate market designs have to be implemented. Naturally,

the question arises as to whether these market designs provide the correct

incentives for firms to achieve an efficient market outcome.

In the thesis at hand, I analyze the behavior of firms in two different ar-

eas of electricity trading: cross-border electricity trading and reserve capacity

markets. In both cases, mechanisms have been implemented by the author-

ities that admonish the grid operator to ensure non-discriminating access to

downstream markets. These mechanisms are aimed to induce competition

and to increase efficiency.

In Chapter 2, I discuss an issue related to cross-border electricity trading.

Naturally, the prices of two neighboring domestic markets may vary for a

given hour. If these markets are physically connected, transmitting elec-

tricity between these markets decreases the price difference. Because the

transmission capacity between two markets is bounded, the right to trans-
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1 Introduction

mit electricity has a value. Therefore, the management of transmission ca-

pacity needs to be organized by an appropriate mechanism in order to allo-

cate scarce transmission capacity. Preferably, the implemented mechanism

should lead to an efficient outcome. At some borders in Europe, transmis-

sion rights are explicitly auctioned by the grid operator to electricity traders

ex-ante. Traders then schedule their transmission flows by means of profit

maximization. Empirical data indicates that cross-border capacity is not uti-

lized efficiently if explicit auctions are in place. Together with my co-author

JOHANNES VIEHMANN, we analyze the strategic behavior of traders in schedul-

ing transmission flows, e.g. exercising their transmission rights. We adopt a

Bayesian-Cournot model by perceiving the price difference between markets

as an inverse demand function. Traders face incomplete information with

respect to the transmission capacity with which the other traders are en-

dowed. We analyze equilibrium strategies and market outcomes when the

number of electricity traders is small. We find that besides Cournot behavior

and capacity constraints, a lack of information with respect to the allocation

of transmission rights also reduces social welfare. Thus, we provide new

insights as to why explicit cross-border auction regimes are inefficient.

Chapter 3 presents a Bayesian-Cournot model in which firms face incom-

plete information with respect to the other firms’ production capacities. I

adopt the general model framework presented in Chapter 2, but analyze a

different specification of the common prior belief : I assume that the firms’

capacities are stochastically independent, whereas in Chapter 2 the firms’

capacities are strongly interdependent because total capacity is fixed. Thus,

the model discussed in Chapter 3 is not a special case of the model ana-

lyzed in Chapter 2. In contrast to Chapter 2, in Chapter 3 I provide ana-

lytical results on existence, uniqueness and shape of equilibrium strategies

and discuss the impact of sharing information ex-ante on producer surplus,

consumer surplus and social welfare. Thus, I provide results that are com-

plementary to results previously established by other authors dealing with

Bayesian-Cournot oligopolies, who solely focused on incomplete informa-

tion with respect to inverse demand or production costs.
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In Chapter 4, I address the issue of reserve capacity, which is an ancillary

service needed to ensure grid stability. For technical reasons, the frequency

in Europe’s electricity grids needs to be equal to 50 Hz. If the actual fre-

quency deviates from this reference value, the grid could collapse. Such a

deviation arises when demand and supply are not balanced. In order to en-

sure that demand equals supply in the very short term, generation capacity

is procured that can increase or decrease its generation on short notice. Typ-

ically, this reserve capacity is procured by the grid operator via an auction.

In Germany, market prices for reserve capacity resulting from these procure-

ment auctions fluctuated heavily over the past years. It is initially unclear

what drives these fluctuations. In order to better understand market prices

for incremental reserve, I discuss a general equilibrium model containing a

spot market for electricity and a market for incremental reserve capacity. By

characterizing equilibrium strategies, I provide a benchmark for the compet-

itive market outcome and thus describe how competitive prices are formed.

The model shows how strongly market prices are driven by a firm’s oppor-

tunity costs arising from spot market participation.

The next three sections provide extended abstracts of the three papers

presented in the thesis, which are non-technical but more detailed compared

to the sketches provided above.

Chapter 2: The Value of Information in Explicit
Cross-Border Capacity Auction Regimes in Electricity
Markets (based on Richter and Viehmann (2013))

The paper discussed in Chapter 2 is joined work with my co-author Johannes

Viehmann, who contributed to the paper in equal parts.

We address an issue arising from cross-border electricity trading by con-

sidering two spot electricity markets connected by a fixed amount of cross-

border capacity that is common knowledge. We model the price difference

between both markets via a decreasing function of total cross-border trans-

mission. We assume that traders, or firms, are perfectly informed about

this functional relationship. Moreover, firms can not influence each mar-
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1 Introduction

ket’s price by means other than transmitting electricity between markets. In

particular, firms do not produce and sell electricity on any of the two spot

markets.

Total cross-border capacity is split among a finite number of firms via

an auction. Every firm receives some information on the auction outcome.

When it comes to spot market clearing, firms utilize their share of capacity

to some extent in order to generate profits arising from a price difference

between the two markets. Since the number of firms is finite, we adopt

a game theoretic framework, with the share of capacity utilization as the

strategic variable. We do not consider the first step of the game in which the

capacity shares itself are auctioned.

These assumptions allow us to perceive the problem as a Bayesian-Cournot

oligopoly. The price difference between markets, depending on total cross-

border transmission, is perceived as an inverse demand function. The com-

mon prior belief is a probability measure on a finite set of capacity configura-

tions. The total capacity with which the industry is endowed is equal to the

total cross-border capacity, which is fixed ex-ante and common knowledge.

Therefore, the firms’ capacities are not stochastically independent.

We analyze three different levels of information with which the firms may

be endowed. The case of complete information is just the case without any

uncertainty. In the case of incomplete information, firms only learn their own

capacity. Finally, in the case of partial information, firms additionally learn

the number of successful firms, i.e. the number of firms that are endowed

with a share of capacity exceeding zero.

Due to the dependency structure of the firms’ capacities, equilibrium strate-

gies cannot be derived analytically. Thus, the model is solved by means of

simulation. We show that in the case of three firms, the best response func-

tion is a contraction under standard assumptions (Theorem 1). Thus, the

iterated best response function converges to the unique equilibrium.

In the case in which firms only learn their own capacity, the unique and

thus symmetric equilibrium strategy is an increasing function in the amount

of capacity with which the firm is endowed. More precisely, a firm fully

4



utilizes its capacity up to a threshold. When the firm’s capacity exceeds

this threshold, the output of the firm is increasing in a convex manner up

to the Cournot monopoly output. This is because if a firm is endowed with

the total cross-border capacity, the firm knows that there are no competitors,

meaning that the firm acts as a Cournot monopolist without uncertainty. The

case in which firms also learn the number of competitors is similar, although

the equilibrium strategy is a function of two arguments in this information

setting.

A welfare analysis shows that social welfare is increasing with the level of

information. This increase in welfare is driven by an increase in producer

surplus. However, there are states of nature in which firms do not profit from

more information. Nevertheless the result shows that the gain from having

more information is dominant. The key issue is that the more information

a firm receives, the better firms can coordinate total industry output. This

reduces the variance of total industry output, which is beneficial for the

firms, but harmful for consumers.

However, the effect on consumer surplus is ambiguous. Reducing the vari-

ance of total industry output reduces expected consumer surplus. Expected

total industry output only changes slightly between the three information

regimes. Depending on which information regimes are compared, expected

output may increase or decrease, and, thus, may increase or decrease con-

sumer surplus. However, the effect on consumer surplus is small and some-

what less interesting.

To sum up, we find three forces reducing social welfare when cross-border

capacity is explicitly auctioned to the firms. First, the fact that firms play a

Cournot game apparently reduces social welfare compared to the compet-

itive market outcome. Second, capacity constraints reduce welfare, even

in the presence of complete information. This is derived from the slope of

the best response function. Third, a lack of information further diminishes

social welfare. Thus, we provide new arguments as to why explicit auction-

ing of cross-border capacity between electricity leads to inefficient market

outcomes.
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1 Introduction

Chapter 3: Incomplete Information in Cournot Oligopoly:
The Case of Unknown Production Capacities (based on
Richter (2013))

In this essay, I discuss the general Bayesian-Cournot model in which the firms

face incomplete information about production capacities (as sketched in the

previous section). However, the specification of the common prior belief is

different: I assume here that the firms’ capacities are stochastically indepen-

dent. Thus, analytical results can be obtained.

Under standard assumptions ensuring that the expected payoff function of

each firm is convex in its own output, equilibrium strategies are nondecreas-

ing. More precisely, firms fully utilize their capacity up to some threshold. If

the capacity with which a firm is endowed exceeds this threshold, the out-

put remains constant (Theorem 1). In particular, any equilibrium strategy

is completely defined by a firm’s action when endowed with the maximum

level of capacity available. Therefore, a firm’s strategy space is essentially

one-dimensional. This result holds for a general common prior belief as long

as the firms’ capacities are stochastically independent.

If, in addition, the firms’ capacities are identically distributed, and if the

inverse demand function is concave, only one symmetric equilibrium exists.

This result is intuitively clear in the case of linear demand: A firm’s best

response function then only depends on the expected aggregate output of

the other firms. Since a firm’s strategy space is essentially one-dimensional,

the firm’s strategy can be scaled up to the point at which is a fixed point of

the best response function. The existence of the fixed point follows from the

continuity of the underlying functions.

A similar argument shows that every equilibrium is symmetric if demand

is linear, implying that only one equilibrium exists (Theorem 3). Again, the

best response function of each firm only depends on the expected aggregate

output of the other firms. Due to Theorem 1, any two strategies coincide if

and only if their expected values coincide, which is implied by linearity of

demand.
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In the second part of the paper, I address the issue of information sharing,

meaning that firms have the option to commit ex-ante to an industry-wide

agreement on information pooling. Because equilibrium strategies cannot

be calculated explicitly, but are rather implicitly characterized, the general

case is not tractable. Therefore, a duopoly with a simple common prior

belief is analyzed.

I find that the effects on producer and consumer surplus depend on the

horizontal demand intercept as long as the available capacity levels are

fixed. If the demand intercept is sufficiently large, then firms have an in-

centive to exchange information, as the expected profits under complete in-

formation exceed expected profits under incomplete information (Theorem

4). Contrarily, if the demand intercept is sufficiently small, then consumers

benefit from information sharing. Moreover, within a certain range, both

producers and consumers benefit from information sharing. Social welfare

increases in a large class of examples; however, I also give a simple example

where social welfare decreases.

Standard results on information sharing in Cournot oligopoly state that

the incentives for firms to share information are stable (the case of unknown

costs) or that an increase of consumer surplus is stable (the case of unknown

demand intercept). These results, however, are driven by the assumption

that the common prior belief is normally distributed. This leads to affine

equilibrium strategies. In particular, outputs are unbounded and may be

negative. I establish that similar stable results on information sharing cannot

be derived in the case of non-negative outputs and incomplete information

with respect to production capacities, i.e. standard results can be reversed.

Chapter 4: On the Interaction Between Product Markets
And Markets For Production Capacity: The Case of the
Electricity Industry (based on Richter (2011))

In this essay, I consider two markets and analyze simultaneous equilibria.

Both markets are supplied by the very same continuum of firms able to pro-

duce a homogeneous good up to production capacity, which is normalized

7



1 Introduction

to unity.

On the first market, the capacity market, firms may sell their production

capacity. The buyer of this capacity may request the capacity he procured

for spot market production. On the second market, the spot market, firms

may sell the good itself. Offering production capacity on the capacity market

decreases production opportunities on the spot market. The capacity market

clears first, before the spot market is able to follow.

Both markets are characterized by an inelastic demand curve. The de-

mand of the spot market is anticipated by the firms via an appropriate prob-

ability distribution, whereas the demand of the capacity market is perfectly

known to the firms beforehand. Both markets are cleared by determining

the intersection of the inelastic demand and the accumulated supply curve.

The variable costs of production are different for each firm. Therefore,

when firms are sorted according to their marginal costs, the resulting margi-

nal cost curve is increasing. Moreover, it is assumed that the marginal cost

curve is convex.

Since firms are price takers, they bid according to their marginal costs on

the spot market. Costs are different for every firm, so firms can generate rev-

enues exceeding their marginal costs. Therefore, the expected spot market

profits of each firm per unit of production exceed zero.

On the capacity market, the accumulated supply curve of the firms is

driven by opportunity costs. These opportunity costs consist of two com-

ponents: First, firms face foregone spot market profits, since the selling of

capacity reduces potential spot market output and thus the expected spot

market profits of a firm exceed zero. The higher the marginal costs of a firm

are, the lower are the expected foregone spot market profits. Therefore,

these opportunity costs are decreasing with marginal costs.

Second, when selling capacity on the capacity market, firms are faced

with costs of keeping their capacity ready for production. It is assumed

that if firms provide capacity, they are subject to a minimum production

condition, meaning that a fixed share of their capacity needs to be utilized.

I call this condition the must-run condition. The production arising from the

8



must-run condition is sold on the spot market at any price. Thus, the market

outcome of the capacity market transforms the accumulated supply curve of

the spot market and in turn expected spot market profits of each firm. Since

a firm’s variable costs of production may, with positive probability, exceed

the market clearing price, the expected losses a firm faces exceed zero. Thus,

the higher the marginal costs of a firm are, the higher are the expected losses

arising from the must-run condition. Therefore, these opportunity costs are

increasing with marginal costs.

The leading example of this setting is the electricity industry. The capacity

market corresponds to the market for incremental reserve capacity: On this

market, production capacity is procured, which may be called upon short

notice in order to compensate for short-term deviations in demand and sup-

ply. When providing incremental reserve, a power plant has to generate

electricity at a minimum load level in order to be able to quickly increase its

output. Speaking in terms of the model as sketched above, the spot market

corresponds to a liquid day-ahead electricity market. Finally, the increasing

marginal cost curve corresponds to the merit order of conventional power

plants.

I find that it is sufficient to consider the sum of expected foregone spot

market profits and expected must-run costs in order to analyze the bidding

behavior of the firms (Proposition 1). Since the first cost component is de-

creasing, whereas the second cost component is increasing with marginal

costs, the accumulated supply curve of the capacity market is u-shaped (The-

orem 1). As previously mentioned, the market outcome of the capacity mar-

ket transforms the accumulated supply curve of the spot market. Moreover,

the accumulated supply curve on the capacity market is determined by spot

market expectations. Therefore, the supply curves of both markets are in-

terdependent. Thus, an equilibrium is a fixed point ensuring that firms bid

according to the accumulated supply curve on the capacity market that is

consistent with spot market expectations. Since the capacity market supply

curve is u-shaped, the set of firms selling production capacity is an interval

at equilibrium (Corollary 1).

9



1 Introduction

Regardless of the parameters of the model, a unique equilibrium exists

(Theorem 2). Lastly, the equilibrium is efficient, meaning that total expected

costs of meeting spot market demand are minimized. Although this result

may be derived from the first welfare theorem, I give an instructive proof that

provides further insights on how strongly opportunity costs on the capacity

market correspond to a consumption of resources (Theorem 3).

To sum up, the market coordinates at an efficient equilibrium in this spe-

cial setting. In particular, the design of the market for balancing power

in Germany induces an efficient outcome also, provided that suppliers are

competitive.

10



2 The Value of Information in Explicit
Cross-Border Capacity Auction
Regimes in Electricity Markets

The content of this chapter is joined work with my co-author Johannes

Viehmann, who contributed in equal parts.

We study two electricity markets connected by a fixed amount of cross-

border capacity. The total amount of capacity is known to all electricity

traders and allocated via an auction. The capacity allocated to each bid-

der in the auction remains private information. We assume that traders are

faced with a demand function reflecting the relationship between electricity

transmitted between the markets and the spot price difference. Therefore,

traders act like Bayesian-Cournot oligopolists in exercising their transmis-

sion rights when presented with incomplete information about the competi-

tors’ capacities. Our analysis breaks down the welfare effect into three dif-

ferent components: Cournot behavior, capacity constraints, and incomplete

information. We find that social welfare increases with the level of informa-

tion with which traders are endowed.

2.1 Introduction

Efforts to liberalize European electricity markets led to unparalleled struc-

tural changes within the last 10 to 15 years. Directives and regulations

issued by the European Commission aimed to open markets, ensure non-

discriminatory third-party access to power grids1 and enforce cross-border

trading activities2 in order to harmonize prices and to mitigate market power.

1European Union, Directive 54/EC (2003).
2European Union, Regulation EC No 1228 (2003).
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2 The Value of Information in Explicit Cross-Border Capacity Auction Regimes

Resulting from Article 6 of Regulation 1228/2003 –“Network congestion prob-

lems shall be addressed with non-discriminatory market based solutions which

give efficient economic signals [...]”–, non-market-based congestion meth-

ods such as first-come-first-serve or pro-rata were replaced by market-based

regimes like implicit and explicit auctions. In explicit auction regimes, the

right to use cross-border capacity is sold first stage to market participants

by a uniform-pricing auction. In a second stage, market participants then

have to decide which share of their transmission rights to exercise in order

to schedule a power flow from one market area to another.

Explicit auctions have been criticized mainly for two reasons. First, they

might allow for exertion of market power. A firm might acquire capacity

to block it or strategically misuse it to protect a dominant position in one

regional market. Second, firms face incomplete information with respect to

the demand for power transmission. Traders might just not know ex ante

in which region excess demand (and therefore prices) are larger and might

nominate capacity in the wrong direction. However, explicit auctions are

still in place at many interconnectors.3

We add to the analysis of explicit auctions an additional source of ineffi-

ciency, namely the inefficiency arising from strategic usage of capacity un-

der incomplete information with respect to the allocation of capacity among

competing traders. To do so, we consider explicit auction regimes as two

stage games: while transmission rights are sold to firms via an auction in

the first step and auction results are made public, the actual utilization of

transmission capacity is determined by firms in the second step, in which

firms essentially play a Bayesian-Cournot game. The strategic variable is a

firm’s utilization of transmission rights. We solely focus on the second stage

of the game and argue why this is sufficient to demonstrate the inefficiency

of the auction regime.

Since the total cross-border capacity is fixed, there is a strong stochastic

dependency structure between the firms’ transmission rights. Consequently,

3Examples are, among others, the interconnectors between France and the UK, France
and Italy, Germany and Switzerland and Czech Republic and Poland.
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2.1 Introduction

equilibrium strategies can not be derived analytically. Therefore, we solve

the model numerically for the case of three firms, which is the simplest

relevant model specification – in the case of two firms, the game is subject

to complete information because total capacity is common knowledge.

It turns out that a unique equilibrium exists, provided that firms are sym-

metric. In particular, the equilibrium itself must be symmetric. This is

achieved by showing that the best response function converges to a unique

fixed point – as opposed to the standard form Cournot oligopoly, in which

the best response function only converges as long as n < 3. This result

enables us to implement a stable algorithm that converges to the unique

symmetric Bayesian-Cournot equilibrium.

The simulation results show that in the unique Bayesian-Cournot equilib-

rium, firms fully exercise their transmission rights up to a certain thresh-

old. When the transmission rights with which a firm is endowed exceed

this threshold, a bend occurs, leaving afterwards the strategy increasing in

a convex manner up to the firm’s monopoly output.

Moreover, social welfare increases with the level of information. The in-

crease in social welfare is driven by an increase in producer surplus – i.e.,

when firms have more information, they can coordinate better on total elec-

tricity transmission. In particular, firms have an incentive to commit on

an industry-wide information sharing agreement ex-ante. Stabilizing total

transmission reduces its variance, which in turn lowers consumer surplus.

However, the effect on consumer surplus is small and can be ambiguous,

depending on the model parameters.

The remainder of this paper is structured as follows. In Section 2.2, we

provide a literature review. In Section 2.3, we explain cross-border eco-

nomics, auction offices and further motivate the model. The model and

analytical results are presented in Section 2.4. The results of the numeri-

cal solution are presented and discussed in Section 2.5. Finally, Section 2.6

concludes.
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2 The Value of Information in Explicit Cross-Border Capacity Auction Regimes

2.2 Related Literature

The inefficiency of explicit auction regimes is unchallenged and has been

documented in recent studies. Meeus (2011) describes the transition from

explicit to implicit market coupling of the so-called Kontek-cable connecting

Germany and the Danish island Zealand. He shows that implicit price cou-

pling clearly outperforms explicit auctions. Gebhardt and Höffler (2013)

find that cross-border capacity prices (first stage of the two-stage game)

at the German-Danish and German-Dutch borders predict on average spot

price differentials correctly, but with a lot of noise. Similar arguments are

provided by Dieckmann (2008) and Zachmann (2008) who show that un-

certainty about spot prices and timing of explicit auction regimes lead to a

poor performance. For the German power market, Viehmann (2011) em-

pirically shows the high volatility of spot prices also in comparison to their

expected values.

While some of the literature mentioned above identifies market abuse as

one possible reason for the inefficiencies observed, Bunn and Zachmann

(2010) analytically derive cases in which dominant players, such as na-

tional incumbents, can maximize their profits by deliberately misusing cross-

border capacities. The authors then analyze empirical data from the IFA-

interconnector between France and UK and disclose flows against price dif-

ferentials as well as unused capacity in the profitable direction in a signif-

icant number of hours. Additionally, Bunn and Zachmann (2010) provide

a list of various design deficiencies contributing to the poor performance of

explicit auction regimes. Finally, Turvey (2006) provides a broad overview

about non-market and market-based congestion management methods and

detailed information about South Eastern European markets.

The issue of incomplete information with respect to production capaci-

ties in Cournot oligopolies has recently been discussed by Richter (2013),

who provides a characterization of equilibrium strategies when a firm’s ca-

pacities are stochastically independent. Moreover, sufficient conditions for

the existence and uniqueness of a Bayesian-Cournot equilibrium are given.
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2.3 Power Interconnectors

Bounded capacity is modeled by curtailing the firm’s strategy space. We

adopt this approach, since it ensures that the strategy spaces are compact

and the expected payoff function is concave given a linear demand function,

ensuring the existence of an equilibrium by Nash’s theorem.

Regarding the issue of information sharing in oligopolies, literature fo-

cuses on Bayesian Cournot models in which there are no non-negativity

constraints and no capacity constraints with respect to outputs. Provided

the common prior belief is normally distributed, equilibrium strategies are

linear (or affine) and closed-form solutions can be derived. An overview of

these models is provided by Raith (1996). In all such models, firms face

uncertainty with respect to marginal costs, or inverse demand, or both.

Most similar to the setting discussed in the paper at hand is the case of

unknown costs, since costs as well as capacities are private values in which

equilibrium strategies should be monotonous. Shapiro (1986) finds that in

this case, firms have an incentive to share information, meaning that sharing

information increases expected producer surplus. Moreover, he finds that

consumer surplus decreases, whereas social welfare increases as a result of

a positive net effect.

As outlined in the previous section, we obtain similar results as Shapiro,

although the impact on consumer surplus is not that clear in the model

developed. This is due to non-negativity and capacity constraints on out-

puts, leading to equilibrium strategies that are not affine. Thus, well-known

results regarding information sharing can be reversed by introducing con-

straints – an issue that was addressed earlier by Maleug and Tsutsui (1998)

and recently by Richter (2013).

2.3 Power Interconnectors

To further justify the use of the Cournot approach, we provide insights into

interconnector economics and briefly introduce European auction offices

and their information policies.
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2.3.1 Interconnector Economics

While pools like the PJM Market in the US deal with regional supply and

demand imbalances via nodal pricing, the predominant system in Europe

can be described as a connection of market areas. In most cases, market

areas that are connected by power interconnectors are equivalent to national

borders.4

Today, the two prevailing mechanisms to allocate scarce cross-border ca-

pacities in Europe are implicit and explicit capacity auctions. With implicit

auctions, also referred to as market coupling or market splitting, the auc-

tioning of transmission capacity is implicitly integrated into the day-ahead

exchange auctions of the connected market areas. Power exchanges can

ensure welfare-maximizing cross-border flows between the market areas as

they possess full information about all hourly supply and demand curves in

the connected market areas and the available cross-border capacity.

When explicit capacity auctions are in place, the right to use cross-border

capacity is sold in a first stage to market participants by a uniform-pricing

auction, usually on a yearly, monthly and daily basis. In daily auctions,

firms can bid for each hour of transmission capacity separately. In a second

stage, market participants have to decide which share of their transmission

rights to exercise in order to schedule a power flow from one market area to

another.5

The basic interconnector economics are pictured in Figure 2.1, in which

the relation between the used transmission capacity Q and the price spread

P between two market areas is shown. When no transmission capacity is

utilized (Q = 0), the price spread is at its maximum. The more capacity is

booked to flow power from the low price area to the high price area, the

smaller the price spread becomes. When the total available cross-border

capacity t̂ is not sufficient to equalize prices (pictured left), total welfare is

maximized at a price spread P∗ and leads to Q∗ = t̂. However, provided the

4Exceptions are Italy, the United Kingdom and the Scandinavian countries.
5A comprehensive overview of explicit and implicit cross border auctions is given by Kris-

tiansen (2007) and Jullien et al. (2012).
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2.3 Power Interconnectors

Figure 2.1: Basic economics of interconnectors

available cross-border capacity t̂ is more than sufficient to equalize prices

(pictured right), the price spread P equals zero and Q∗ < t̂.

If implicit market coupling or market splitting is in place and no further

restrictions exist, the chosen quantity Q of cross border transmission flows is

equal to Q∗ for any given hour. The auction office knows the hourly aggre-

gated supply and demand curves in both market areas and maximizes total

welfare accordingly.

In the case of explicit auctioning, market participants who have acquired

transmission rights determine the quantity Q. Empirical data shows that

market participants do not choose the optimal quantity Q∗, especially when

Q∗ < t̂ (Figure 2.1, right). As previously mentioned, there is a lot of noise

in the empirical data due to the incomplete information about the demand

for power transmission. However, when the assumption that firms play a

Cournot game is valid, then firms must be undershooting on average, mean-

ing that the outcome is ex-ante inefficient.

2.3.2 Auction Offices and Information Levels

Auction offices were recently subject to constant changes. Today, there

are two main organizations in Europe, the Capacity Allocating Service Com-
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2 The Value of Information in Explicit Cross-Border Capacity Auction Regimes

pany (CASC) and the Central Allocation Office (CAO).6 Additionally, there are

other platforms like DAMAS, KAPAR and the French TSO RTE that conduct

daily cross-border auctions.7

In order to understand the inefficiencies in the second stage of explicit

auction regimes, we first have a closer look at the auction offices and the

information about the first-stage results passed to the traders. While some

offices give detailed information about the number of successful bidders in

the first stage (coincides with the number of firms in the second stage),

others do not. The same holds true on how capacities are split among the

firms. We analyze three explicit auction regime settings:

Complete information: The number of firms and their endowments with

capacity are known to all firms,

Incomplete information: Each firm solely knows its own endowment, the

number of competing firms is unknown,

Partial information: Each firm knows its own endowments and the num-

ber of other firms, but does not no know their rival’s endowment.

There is at least one auction office providing complete information for day-

ahead capacity auction results. Using the DAMAS System, the Romanian

TSO Transelectrica, for example, currently publishes the number of success-

ful auction participants, their names and their allocated capacities.8 The

6CASC is currently operating daily cross-border capacity auctions at the Austrian-Swiss,
Austrian-Italian, German-Swiss, French-Swiss, French-Italian, Greek-Italian and Swiss-
Italian borders. Website: www.casc.eu. CAO is currently operating daily cross-border ca-
pacity auctions at the Austrian-Czech, Austrian-Hungarian, Austrian-Slovenian, Czech-
German, Czech-Polish, German-Polish and the Polish-Slovakian borders. Website:
www.central-ao.com. Last Update: 20th of September 2012.

7Daily cross-border auctions based on the DAMAS system are currently conducted at the
French-English, Bulgarian-Romanian, and Hungarian-Romanian borders, among others.
Daily cross-border auctions based on the KAPAR system operated by the Hungarian TSO
MAVIR are currently conducted at the Hungarian-Croatian and the Hungarian Serbian
borders. Last update: 20th of September 2012.

8Transelectrica is currently conducting explicit day-ahead auc-
tions at the Bulgarian-Romanian and Hungarian-Romanian borders.
https://www.markets.transelectrica.ro/public. Last update: 20th of September
2012.
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incomplete information design, in which very little information about the

number of successful bidders is published, is currently used by RTE at the

French-Spanish Border and has been in operation at several other borders

in the past. One prominent example was the German-French interconnector

used before market-coupling started in November 2010. RTE merely pub-

lishes the number of successful bidders per day for daily auctions, meaning

that firms know the maximum number of competitors for each hour but do

not know how many competitors are endowed with a positive amount of

capacity in a given hour. CASC and CAO currently publish partial informa-

tion. They provide the number of successful bidders, but not precisely how

capacities are split amongst them.

In the next section we present the general model framework, which is

able to capture the information regimes as described above.

2.4 The Model

We consider a set of firms N = {1, 2, . . . , n}. Firms may face uncertainty

with respect to the other firm’s endowment of transmission capacity. In a

Bayesian approach, a strategy of firm i is a decision rule that specifies a

firm’s amount of transmitted electricity for every possible information set

with which the firm may be endowed. The amount of transmitted electricity

corresponds to a firm’s output in the Cournot model setting, and we use the

terms transmission and output interchangeably.

We denote T ⊂ [0,∞) as the finite set of possible capacity levels and

Ω =
∏

n∈N T as the set of possible states of nature. We assume that 0 ∈ T .

The common prior belief µ is a probability measure on Ω. An element of

Ω, which is a capacity allocation among all n firms, is denoted by ω =
(ω1,ω2, . . . ,ωn). We assume that every firm is endowed with a produc-

tion capacity exceeding zero with positive probability. The information with

which a firm is endowed when making its output decision is described by

19



2 The Value of Information in Explicit Cross-Border Capacity Auction Regimes

a random variable Ti on Ω.9 A strategy is a function qi(Ti(·)) satisfying

qi(Ti(ω)) ≤ ωi. Lastly, we denote Si as the strategy space of firm i and

S =
∏n

i=1 Si as the space containing all strategy profiles.

As previously defined, qi(Ti(ω)) is the output of firm i. We let Q(ω) :=
∑n

i=1 qi(Ti(ω)) denote the overall output. The inverse demand function

P(Q) corresponds to the price difference between two electricity markets.

We assume that P is linear and decreasing with total industry electricity

transmission Q. We do not consider costs, since exercising transmission

rights is costless.

The state-dependent payoff function ui of firm i is given by

ui(ω, qi, q−i) = qi(Ti(ω))P(Q(ω)). (2.1)

A strategy profile q ∈ S is a Bayesian Cournot equilibrium if for every i and

q̃i ∈ Si the expected payoff function is maximized,

E
�

ui
�

·, qi, q−i
��

≥ E
�

ui
�

·, q̃i, q−i
��

, (2.2)

meaning that in an equilibrium no firm has an incentive to unilaterally de-

viate from its strategy. Maximizing (2.2) is equivalent to maximizing the

conditional payoff expectation, so that

E
�

ui
�

·, qi, q−i
�

| Ti(ω)
�

≥ E
�

ui
�

·, q̃i, q−i
�

| Ti(ω)
�

(2.3)

for all i ∈ N and all ω ∈ Ω.10

Remark 1. Linearity of inverse demand ensures that the state-dependent payoff

function (2.1) is concave in the output of firm i. Moreover, concavity is inher-

ited by the expected payoff function (2.2) (Einy et al., 2010). Since a firm’s

strategy space is compact and convex, Nash’s theorem implies the existence of

an equilibrium.

9The information sets of firm i are then the elements of the σ−algebra σ(Ti) generated
by Ti .

10See Harsanyi (1967) and Einy et al. (2002).
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As previously mentioned, we analyze three schemes of information. In

terms of the model formulation, the case of complete information corre-

sponds to Ti(ω) = ω for all i ∈ N and all ω ∈ Ω. Thus, every firm is

perfectly informed. When firms only know their own transmission capacity,

then Ti(ω) = ωi holds. Finally, when information is partial, meaning that

the number of active firms is known, then Ti(ω) = (ωi, F(ω)), where

F(ω) = |{i ∈ N :ωi > 0}|.

In the next section we construct equilibrium strategies for the case of com-

plete information. Moreover, for the case of three firms we provide a tech-

nique to numerically derive equilibrium strategies when information is in-

complete.

2.4.1 Complete Information

This question of existence and uniqueness of equilibrium strategies in this

setting is treated extensively in the literature.11 However, we provide a con-

structive proof on existence and uniqueness, which coincidently is helpful

for the simulations. Speaking in terms of the model formulation, we discuss

the case of Ti(ω) =ω for all i and all ω.

We arbitrarily choose a capacity configurationω= (ω1,ω2, . . . ,ωn). With-

out loss of generality, we assume that ωi ≤ω j if i < j. We let qi denote the

output of firm i and write q = (q1, q2, . . . , qn). The firm’s equilibrium strat-

egy of the corresponding unrestricted Cournot oligopoly is denoted by qC .

We define

q1(ω1,ω2, . . . ,ωn) =min
¦

ω1, qC
©

. (2.4)

Firm 1 produces the n−firm Cournot quantity, whenever possible, and oth-

erwise all of its capacity ω1. If q(ω1,ω2, . . . ,ωn) = qC , we define

q j(ω j,ω1,ω2, . . . ,ω j−1,ω j+1, . . . ,ωn) = qC

11See for example Bischi et al. (2010).
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for all j ≥ 1. If not so, we consider the n− 1-firm oligopoly in which firms

i = 2,3, . . . , n face residual demand resulting when firm 1 produces ω1.

We let qC
n−1 denote the Cournot output of the corresponding unrestricted

oligopoly and define

q2(ω2,ω1,ω3, . . . ,ωn) :=min
¦

ω2, qC
n−1

©

.

By iteration, we obtain a strategy for every firm with the following prop-

erty: There exists a threshold k ∈ N so that qi(ωi,ω−i) = ωi for all i < k

and qi(ωi,ω−i) = qk(ωk,ω−k) < ωk for all i ≥ k, following from the con-

struction procedure.

If in equilibrium there is a firm with a binding capacity restriction, the

total output of the industry is lower compared to the output of the standard

form Cournot oligopoly. This property is derived from the slope of the best

response function r, which exceeds -1. If one firm decreases its output due

to its capacity restriction, then the corresponding increase of the other firms

is smaller. The following proposition sums up the well-known results we

reconsidered in this section.

Proposition 1. The strategy constructed above is the unique and symmetric

complete information equilibrium of the Cournot oligopoly. If there exists an

i ∈ N such that µ
�

Ti < qC� > 0, then the expected total output in the com-

plete information equilibrium is smaller compared to the total output of the

unrestricted Cournot oligopoly.

All proofs are provided in the Appendix of the chapter.

2.4.2 Incomplete and Partial Information

The results provided in this section cover both the case of incomplete infor-

mation and the case of partial information defined on page 18. Since we

seek to solve the model numerically, we provide an algorithm converging to

a unique equilibrium solution, which then must be symmetric.
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While equilibrium strategies can be explicitly constructed in the case of

complete information, as demonstrated in the last section, this task is chal-

lenging when information is incomplete. In the very general model setting

presented on Page 19, equilibrium strategies can be of any shape since the

common prior belief is left unspecified.12

However, in the context of exercising cross-border capacity, we can im-

pose two restrictions on the common prior belief. First, firms are ex-ante

symmetric by assumption. This leads to the following requirement:

µ
�

Ti = t
�

= µ
�

T j = t
�

for all t ∈ T and i 6= j. (2.5)

Second, we explicitly allow for firms to be endowed with zero capacity

with positive probability. In particular, given that firm 1 is endowed with

some capacity level t, then, with positive probability, firm 2 is endowed

with zero capacity as long as there are at least three firms participating.

This leads to

If n> 2, then µ
�

T2 = 0|T1 = t
�

> 0 for all t ∈ T. (2.6)

Conditions (2.5) and (2.6) do not sufficiently specify the common prior

belief to allow for an analysis of the shape of equilibrium strategies. To pro-

vide intuition for that, we consider the following construction procedure for

the common prior belief. Let µ̃ be an arbitrarily chosen probability measure

on the product space
∏n

i=1 T such that µ̃ meets conditions (2.5) and (2.6).

If Ti denotes the capacity with which firm i is endowed and if t̂ denotes the

overall cross-border capacity, we can define

µ( · ) := µ̃( ·
�

�

n
∑

i=1

Ti = t̂).

Thus, we can choose almost any distribution for µ̃ and obtain the corre-

sponding common prior belief µ. Even for a simple µ̃, the conditional distri-

bution µ is difficult to handle.

However, conditions (2.5) and (2.6) enable us to prove the existence of a

unique Bayesian-Cournot equilibrium for the case of three firms. We show

12See Richter (2013) for an example.
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2 The Value of Information in Explicit Cross-Border Capacity Auction Regimes

that under conditions (2.5) and (2.6), the industry’s best response function

r̃ is a contraction mapping, meaning that if we iterate the best response

function, then the sequence we obtain converges to the unique equilibrium

solution.13

Therefore, we derive the best response function of the model. For a given

strategy profile q = (q1, q2, . . . , qn), we write q−i =
∑

j 6=i qi and define for

t ∈ T and i ∈ N

r̃i(t, q−i) =min
�

t, r
�

E
�

(q−i|Ti = t
��	

.

Thus, r̃i(t, q) is the best response function of firm i when it is endowed

with capacity t, given that the other firms apply q−i. This stems from linear

demand, since then the best reply function r of the unrestricted Cournot

oligopoly only depends on the expected output of the other firms j 6= i. We

define

r̃(q) := (r̃i(t, q−i))i∈N ,t∈T

to be the vector of best responses in each state and for each firm. Then a

fixed point of r̃ is an equilibrium. Theorem 1 states that the iterated best re-

sponse function converges to the unique fixed point. While we cannot derive

equilibrium strategies analytically, Theorem 1 implies that we can numeri-

cally implement the iterated best response algorithm for any common prior

belief and obtain the unique equilibrium solution.

Theorem 1. Under conditions (2.5) and (2.6) and when n≤ 3, for any q0 the

sequence

q(m) := r̃(q(m− 1))

converges to the unique fixed point q that does not depend on the choice of q0.

In particular, a unique equilibrium exists, which then must be symmetric.

13More precisely, there exists θ < 1 and a metric d on the space S of strategy profiles so
that

d(r̃(q), r̃(q′))≤ θd(q, q′)

for all strategy profiles q, q′. Moreover, S needs to be complete with respect to d. Then,
the sequence xn := r̃(xn−1) converges to some element x that does not depend on x0.
Completeness with respect to d ensures that x is an element of S.
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2.5 Numerical Solution to the Model

2.5 Numerical Solution to the Model

We solve the model numerically and compare the corresponding market out-

comes by means of social welfare, producer surplus and consumer surplus

for the three information regimes incomplete information (I I), partial infor-

mation (P I) and complete information (C I). For the simulation, we assume

that inverse demand is given by p(q) = 6 − q. We allow for 21 capacity

levels, starting at 0 and ending at 5. The distance between any two capacity

levels is constant and equal to 0.25. Lastly, we assume that µ is uniformly

distributed on the set of feasible capacity levels.

2.5.1 Equilibrium Strategies

In Figure 2.2 A, the equilibrium strategy for the incomplete information set-

ting is pictured. On the horizontal axis, the capacity with which a firm is

endowed is plotted and on the vertical axis, we can see the correspond-

ing output. The symmetric equilibrium strategy is strictly increasing with a

firm’s capacity. As in the i.i.d.-case analyzed by Richter (2013), firms fully

utilize their capacity up to a threshold. Then, a bend occurs and the strategy

is increasing up to the monopoly output in a convex manner. Indeed, a firm

must produce its monopoly output when it is endowed with maximum ca-

pacity, since then the firm is facing a monopoly with complete information.

Next, we consider Picture B, in which the PI -equilibrium strategy qPI is

plotted (to some extent). Because qPI is a function of two arguments (ca-

pacity of a firm and number of active players), we cannot directly plot it in

Figure 2.2, and a three-dimensional chart is unfortunately not instructive.

Therefore, we define qPI
min to be

qPI
min(ωi) =min{qPI(Ti(ω̃))|ω̃i =ωi}.

Thus, for a given capacity level ωi, we pick the smallest equilibrium output

among all possible numbers of active players given ωi. The number qPI
max is

defined accordingly and, as seen in the example, qPI
max equals qPI if and only
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Figure 2.2: Numerically derived equilibrium strategies
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if there are two or less active firms. In the example, a firm has complete

information when knowing that there is only one competitor.

We can see that the PI -strategy exceeds the I I -strategy on a certain range

(if the number of active firms is low) and the other way around (if the

number of active firms is small). The range [2,3] corresponds to the event

(2,3, 0) (or a permutation) in which two firms produce their two-player

Cournot quantity. Moreover, for large capacity values, both strategies con-

verge: If firm 1 is endowed with a sufficiently large amount of capacity, the

other firms fully utilize their capacity in both information settings.

Lastly, we depict a similar modified strategy for the case of complete in-

formation in Picture C. The corresponding maximal strategy qC I
max coincides

with qPI
max because in both cases, firms face complete information. The cor-

responding minimum strategy qC I
min is smaller than the other strategies, since

under complete information, a firm can protect itself against the case in

which all three firms have roughly the same amount of capacity. In fact,

in the range [1.5, 2], the strategy qC I
min corresponds to the case in which

every firm produces its Cournot quantity, which corresponds to the event

(2,1.5, 1.5) (or a permutation).

2.5.2 Social Welfare

In this section, we analyze expected social welfare for the different infor-

mation regimes and different demand intercepts. We express the expected

welfare achieved under a given scheme of information and for a given de-

mand intercept as a share of the maximal achievable welfare. When the

demand intercept exceeds total capacity, welfare is maximized if and only if

every firm utilizes all of its capacity. When the demand intercept is smaller

than total capacity, welfare is maximized at the demand intercept.

As previously defined, the random variable Q(ω) denotes the industry’s

realized output. Consumer surplus is equal to CS(ω) := Q(ω)2/2 and pro-

ducer surplus is given by the aggregate industry profit PS(ω) :=Q(ω)P(Q(ω)).
We define realized social welfare to be CS(ω) + PS(ω).
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Figure 2.3: Effects of information sharing on social welfare

Figure 2.3 shows the expected welfare for the different schemes of infor-

mation. On the horizontal axis, the demand intercept is plotted. On the

vertical axis, we can see the expected share of maximum achievable welfare

(Figure 2.3 B is an enlargement of Figure 2.3 A).

The expected welfare in the complete information regime and the par-

tial information scheme coincide when the demand intercept is sufficiently

small. In this setting, firms do not fully utilize their capacities (as long as ca-

pacity is exceeding zero). Therefore, firms have complete information when

they are informed about the number of active firms.

Furthermore, relative expected welfare approaches unity as the demand

intercept approaches 10 in all information regimes. Apparently, this is be-

cause then every firm fully utilizes its capacity in every information regime

and in every state of nature. In this case, we have defined the maximum

achievable welfare to be full utilization of total capacity. Via similar rea-

soning, the curve is increasing on the right-hand side of its local minimum.

Therefore, relative expected social welfare is high when either capacity lim-

its are rarely active (when the demand intercept is small, case 1) or when

they are rarely redundant (when the demand intercept is high, case 2).

Equivalently speaking, expected social welfare is low if, with high prob-

ability, a firm with a large capacity can act as a monopolist on residual de-
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mand, since the other firms have little capacity and thus fully utilize it. In

this case, the dominant firm leaves a large share of capacity unused. This

follows from the slope of the best response function, which is equal to −1/2.

The impact of the slope of the best response function on total electricity

transmission becomes smaller in case 1 and vanishes in case 2 as defined

above. In case 1, in which the demand intercept is relatively small com-

pared to total cross-border transmission capacity, firms do not fully utilize

their capacity, since their capacity limits exceed the Cournot quantity of the

unrestricted game. Therefore, if the demand intercept is sufficiently small,

partial information is equivalent to complete information, whereas firms

face uncertainty with respect to the number of active firms in the case of

incomplete information.

In case 2, in which the demand intercept is relatively large compared to

total cross-border transmission capacity, every firm fully utilizes its capacity,

regardless of the observed capacity allocation. In this case, the equilibria of

all three information regimes coincide.

Lastly, Figure 2.3 shows that social welfare increases with the level of

information. This is the is the main result of the paper. Figure 2.4 compares

expected welfare for different settings for the case in which the demand

intercept equals 3. In the competitive market outcome, total output equals

the demand intercept. Consumer surplus and social welfare coincide, since

marginal costs are zero, and are equal to 32/2 = 4.5. The outcome of the

unrestricted Cournot oligopoly leads to an output of 9/4. This leads to a

dead weight loss of (3− 9/4)2/2 = 9/32, thus implying that social welfare

is equal to 4.5 − 9/32 ≈ 4.22. To sum up, we can identify three driving

forces reducing welfare.

First, Cournot behavior of firms reduces welfare, a well-known fact that

holds in any Cournot oligopoly setting.

Second, capacity constraints reduce welfare, even when total capacity ex-

ceeds the demand intercept and firms have complete information. This re-

sult is already indicated by Proposition 1, which states that in the presence of

capacity constraints, the expected total transmission of electricity declines.
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Figure 2.4: Expected welfare in different information regimes

The effect on welfare is initially unclear; however, Figure 2.4 shows that due

to capacity constraints, welfare decreases.

Third, a reduction in information reduces welfare. The information effect

is systematic but small; however, if we chose a common prior belief with a

higher variance, the effect would probably become stronger.14 The next two

sections seek to explain the information effect on social welfare. The main

driving force is the variance of total electricity transmission.

2.5.3 Consumer and Producer Surplus

We demonstrate that the increase of social welfare induced by information

sharing is driven by an increase in producer surplus, whereas the effects on

consumer surplus are small and partly ambiguous. When firms are better

informed, they coordinate better on total industry output. This lowers the

variance of total output, which decreases consumer surplus. This effect on

consumer surplus is clearly observable when comparing the incomplete in-

formation equilibrium with the complete information equilibrium. However,

the effect is less clear when we compare the partial information equilibrium

with the complete information equilibrium.

14Richter (2013) discusses the impact of the variance of the common prior believe on
results of information sharing in a similar context.

30



2.5 Numerical Solution to the Model

Figure 2.5: Effects of information sharing on producer surplus

Producer Surplus

As before, we calculate a relative number: We define the maximum achiev-

able producer surplus to be the minimum of the maximal capacity and the

aggregate industry output of the standard form Cournot oligopoly. Then,

we consider the ratio of expected producer surplus and maximum achiev-

able producer surplus.

Figure 2.5 shows that the effect on producer surplus is similar to the effect

on social welfare – producer surplus increases with the level information.

However, there are states of nature in which producer surplus can decrease

due to information sharing: When there are two firms A and B that do

not fully utilize their capacity in the incomplete information equilibrium,

and when some firm C is endowed with zero capacity, then revealing this

information induces firms A and B to increase their output. This is because

the incomplete information output of firms A and B takes into account the

possibility that there are three active firms rather than two. To give an

example based on the simulation results, we consider the case in which the

demand intercept is equal to 1. Firm A has a capacity that is equal to 2 and

firm B has a capacity that is equal to 5. Under incomplete information, firm

A produces 0.253, whereas firm B produces 0.296. That is to say, A and B

31



2 The Value of Information in Explicit Cross-Border Capacity Auction Regimes

take into account that the remaining capacity is (evenly) split up between

two firms, which is why A and B produce less than the Cournot quantity,

which is equal to 0.333. These equilibrium outputs lead ex-post to payoffs

that are equal to 0.114 and 0.133, respectively. The complete information

output of A and B equals 0.333, leading to a payoff that is equal to 0.112.

Similarly, there are states of nature in which producer surplus increases

when information is shared. The simulation results show that this is always

true as long as there are one dominant firm and two firms with little or zero

capacity. Then, the small firms overestimate total industry output under

incomplete information, and, as a consequence, their outputs are ex-post

too low. Therefore, when information is shared, small firms increase their

output. Because total industry output is relatively low due to the presence

of a large firm, the marginal revenue of an increase of output is positive.

Thus, the small firms gain from sharing.

Notice that in every information regime the outputs of the firms are neg-

atively correlated. This is because if a firm is endowed with a large share of

cross-border capacity, the other firms are endowed with little capacity. As a

consequence, the variance of total output decreases.

Apparently, the absolute value of the correlation of outputs increases with

the level of information, regardless of the choice of the common prior belief.

This is because firms transmit some “average” amount of electricity when

they have little information. Figure 2.6 shows that the variance of total

output is decreasing with the level of information. Since consumer surplus

is increasing with the variance of total industry output (see Richter (2013)

or Shapiro (1986)), Figure 2.6 indicates that consumer surplus decreases

with the information with which firms are endowed.

Consumer Surplus

Figure 2.7 A shows that consumer surplus varies with the demand intercept

in a similar fashion as social welfare. Starting at 0.53, a local minimum of

0.45 is attained when the demand intercept equals 5. Apparently, the effect

of different information regimes on consumer surplus is small.
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2.5 Numerical Solution to the Model

Figure 2.6: Effects of information sharing on the standard deviation of total indus-
try output

Figure 2.7: Effects of information sharing on consumer surplus
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Figure 2.7 B enlarges the range [0, 5]. The expected consumer surplus

in the incomplete information setting weakly exceeds both the complete in-

formation and partial information consumer surplus. However, in the case

of partial information, consumer surplus can be above and below consumer

surplus resulting from complete information. Thus, a clear statement re-

garding the impact of information sharing on consumer surplus can not be

obtained.15 However, Figure 2.6 shows that we can identify one stable result

with respect to consumer surplus: The standard deviation of total output is

decreasing with the level of information, which in turn decreases consumer

surplus. To sum up, the impact on consumer surplus is small, and increas-

ing information tends to reduce consumer surplus. The same holds true for

expected electricity transmission. This follows from the fact that the vari-

ance of total output is decreasing and from the fact that consumer surplus

is increasing with both variance of total output and expected total output.

2.6 Results and Discussion

We analyzed the strategic behavior of firms endowed with transmission

rights that arises when transmission capacity between electricity markets

is explicitly auctioned. In doing so, we perceived the strategic behavior of

firms as a Cournot oligopoly in which firms face incomplete information

with respect to the other firms’ transmission rights.

Thereby, total cross-border capacity is common knowledge, which enables

a firm to calculate the conditional distribution of the other firms’ transmis-

sion rights given its own amount of transmission rights (the case of incom-

plete information). Moreover, we allow for an information regime in which

the number of firms endowed with a positive amount of transmission rights

is also revealed to the firms (the case of partial information).

For the case of three or less firms, we have shown that the best response

function is a contraction, a result that is specific to the special setting under

consideration. The best response function converges to the unique Bayesian
15This is a common issue, seen for example in Raith (1996).
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Nash equilibrium, which, in particular, must then be symmetric. Because

the best response function converges, we were able to calculate equilibrium

solutions by means of simulation and to perform a sensitivity analysis with

respect to the demand intercept. Moreover, we calculated the equilibrium

for the case of complete information.

By comparing the equilibria for the three information regimes, we find

that revealing information to firms increases social welfare. The increase

of social welfare is driven by an increase in producer surplus. The states

of nature that potentially diminish producer surplus are overcompensated

by states of nature in which producer surplus increases. Since information

sharing increases the negative correlation of the firms’ outputs, the variance

of total industry output decreases.

Although a decrease of the variance of total industry output in general de-

creases consumer surplus, the effect on consumer surplus is smaller than on

producer surplus. We find that expected consumer surplus decreases when

moving from the incomplete information equilibrium to the partial informa-

tion or to the complete information equilibrium. However, when moving

from the partial information equilibrium to the complete information equi-

librium, the effect on consumer surplus is ambiguous. As a consequence,

the same holds for total electricity transmission.

Thus, we identified three forces regarding capacity auctions that diminish

social welfare: First, firms play a Cournot game, which prevents an efficient

market outcome. Second, the presence of capacity constraints further re-

duces social welfare. This is derived from the slope of a firm’s best response

function, which exceeds −1: When a firm with little capacity fully exer-

cises its transmission rights, its lack of transmission is not fully compensated

by those firms endowed with a large amount of transmission rights. Third,

incomplete information reduces welfare as well, as in the presence of incom-

plete information, firms exercise their transmission rights less aggressively.

As mentioned in the introduction, explicit capacity auctions are in fact a

two-stage game. In the first stage, the transmission rights are auctioned.

Then, firms are informed about their own amount of transmission rights
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2 The Value of Information in Explicit Cross-Border Capacity Auction Regimes

(and, depending on the auction office, the number of active firms). In the

second stage, firms exercise their transmission rights. The model analyzed

in the paper at hand could be expanded to a two-stage game such as the

following example.

Before the first step of the auction process is conducted, firms observe

signals about a common value, for example the demand intercept of the in-

verse demand function. The action space of the first stage can be modeled

via linear bidding functions that are decreasing, mapping transmission ca-

pacity to a price. The horizontal intercept of each firm’s bidding function

could be modeled as an increasing function of the firm’s signal. The mar-

ket operator then selects the highest bids and assigns transmission rights to

the firms. When firms make their output decisions in the second step, the

transmission rights of the other firms are stochastic – the corresponding dis-

tribution is induced by the distribution of the signals observed by the firms

before the first step of the auction was conducted. Thus, the second stage

game is equivalent to the game analyzed in the paper at hand. The results

on the three driving forces diminishing social welfare should be stable even

when the problem is modeled as a two-stage game.

As previously mentioned, implicit auction regimes clearly outperform ex-

plicit auction regimes. Nevertheless, as long as explicit auction regimes are

still in place, we recommend that auction offices provide as much infor-

mation as possible about the first stage results in order to maximize social

welfare.
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Appendix

Proof of Proposition 1

To show that q is an equilibrium, we choose the smallest number k ∈ N

so that qk(ωk,ω−k) < ωk. Then qk(ωk,ω−k) is firm k’s best response by

definition. Since a firm i > k minimizes the same payoff function as firm k

does, qi(ωi,ω−i) = qk(ωk,ω−k) is the best response of firm i as well. Any

firm i < k can not increase its output and does not have an incentive to

decrease its output because qi(ωi,ω−i) < qk(ωk,ω−k). Furthermore, firm k

does not have an incentive to decrease its output.

To show that the equilibrium is unique, we consider q̃ 6= q to be another

equilibrium and denote i as the smallest number such that

q̃i(ωi,ω−i) 6= qi(ωi,ω−i).

Without loss of generality, we assume that i = 1. First, we consider the case

in which

q̃1(ω1,ω−1)< q1(ω1,ω−1).

This implies

q̃1(ω1,ω−1)<ω1,

which in turn leads to

q̃ j(ω j,ω− j) = q̃ j(ωi,ω−i)

for all j > i. But then

qC = q̃1(ω1,ω−1)< q1(ω1,ω−1),

contradicting (2.4).

Second, when

q̃1(ω1,ω−1)> q1(ω1,ω−1),
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we conclude

q1(ω1,ω−1)<ω1

and thus

q j(ω j,ω− j) = qi(ωi,ω−i)

for all j > i, meaning that q is the standard form of the Cournot oligopoly

equilibrium, which is unique, thus implying that q̃ can not be an equilibrium.

To show that the statement holds in the case of duopoly, we let r denote

the best response function of the unrestricted Cournot duopoly. We choose

ω ∈ Ω arbitrarily and assume that firm 1 produces ω1 and firm 2 produces

r(ω1)<ω2 in the unique equilibrium. Then, since r(qC) = qC ,

ω1+ r(ω1)≤ 2r(qC)

if and only if

r(ω1)≤ 2qC −ω1,

which is equivalent to

r(ω1)− r(qC)≤ qC −ω1. (2.7)

The decrease of production by firm 1 must overcompensate the increase of

production by firm 2, which is true: Equation (2.7) holds because r ′ > −1.

Without loss of generality, we assume that µ
�

T1 < qC�> 0, which yields the

given statement.

The result easily translates to the case of an oligopoly. We arbitrarily

choose a capacity configuration (ω1,ω2, . . . ,ωn). Again, we assume that

ωi ≤ω j if i ≤ j. Choose k so that q(ωk−1,ω−k−1) =ωk−1 and q(ωk,ω−k)<
ωk. Define the capacity configuration (ω̃1, ω̃2, . . . , ω̃n) by ω̃i := ωi if i <

k − 1 and for i ≥ k − 1 choose ω̃i large enough so that in the correspond-

ing equilibrium q(ωk−1,ω−k−1) =ωk−1 < ω̃k−1, meaning that when moving

from (ω1,ω2, . . . ,ωn) to (ω̃1, ω̃2, . . . , ω̃n) the former active capacity restric-

tion of firm k−1 becomes inactive, whereas all other active capacity restric-
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tions remain as they are. Having established this, it is sufficient to show that

the total output of the industry with respect to the former capacity config-

uration is smaller than the output of the industry with respect to the new

capacity configuration (ω̃1, ω̃2, . . . , ω̃n). But this follows from the case of

duopoly: We can either focus on the residual game in which we neglect

firms 1,2, . . . , k− 2 or we assume without loss of generality that k = 2.

Proof of Theorem 1

Any feasible strategy profile q is an element of

S =
∏

j∈N

{q : T →R+|q(t)≤ t for all t ∈ T}.

If we define

d(q, q′) = max
j∈N ,t∈T

|q j(t)− q′j(t)|,

then (S, d) is a complete metric space. Thus, it is sufficient to show that r̃

is a contraction with respect to d, since then Banach’s fixed-point theorem

establishes that r̃ has a unique fixed point. Therefore, it remains to be shown

that there exists 0≤ θ < 1 so that

d(r̃(q), r̃(q′))≤ θd(q, q′)

for every q′ ∈ S such that q′ 6= q.

We define

p :=min
t∈T

�

µ
�

T2 = 0|T1 = t
�	

and

θ :=
(1− p)( j− 1)

2
.

Clearly, if j = 2, then θ < 1. If j = 3, then p > 0 due to (2.6) and thus θ < 1
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2 The Value of Information in Explicit Cross-Border Capacity Auction Regimes

as well. We choose s ∈ T and i ∈ N such that

d(r̃(q), r̃(q′)) =|r̃i(s, q−i)− r̃i(s, q′−i)|

=
�

�

�min
�

s, r
�

E
�

q−i|Ti = s
��	

−min
¦

s, r
�

E
�

q′−i|Ti = s
��©

�

�

� .

(2.8)

If (2.8) = 0, then q = q′, which contradicts the assumption that q 6= q′.

Thus, we must have (2.8)>0. In particular, either

r
�

E
�

q−i|Ti = s
��

< s

or

r
�

E
�

q′−i|Ti = s
��

< s

or both. For the last case when both capacity limits are not active, we obtain

(2.8) =
1

2

�

�

�E
�

q−i − q′−i|Ti = s
�

�

�

�≤
(1− p)( j− 1)

2
d(q, q′) = θd(q, q′),

since q−i and q′−i differ at most with probability 1−p, and the difference can

never exceed ( j − 1)d(q, q′) by definition. If only one capacity constraint is

active, say r
�

E
�

q−i|Ti = s
��

= s without loss of generality, we get

(2.8) =s− r
�

E
�

q′−i|Ti = s
��

≤r
�

E
�

q−i|Ti = s
��

− r
�

E
�

q′−i|Ti = s
��

and the proposed statement follows from the case case where both capacity

limits are not active.
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3 Incomplete Information in Cournot
Oligopoly: The Case of Unknown
Production Capacities

I study a Cournot oligopoly in which firms face incomplete information with

respect to production capacities. For the case where the firms’ capacities

are stochastically independent, the functional form of equilibrium strategies

is derived. If inverse demand is concave, a unique symmetric equilibrium

exists, and if demand is linear, then every equilibrium is symmetric. In the

case of duopoly, I analyze the impact on social welfare when firms commit

ex-ante on exchanging information. Sharing information increases expected

output and social welfare in a large class of models. If the demand inter-

cept is sufficiently large, sharing information increases producer surplus and

decreases consumer surplus (and vice versa).

3.1 Introduction

Previously conducted research on Bayesian-Cournot oligopolies deals with

incomplete information with respect to inverse demand or production costs

or both. In the paper at hand, a model in which the firms’ production capac-

ities are private information to the firms is analyzed. Models of this kind are

not yet included in research concerning Bayesian Cournot oligopolies. In

the well-known case where costs are unknown, the cost function is typically

assumed to be convex; therefore, the model frameworks developed to deal

with this source of uncertainty can not be applied to the case of unknown

capacities (via production costs approaching infinity as output approaches

the capacity limit). Alternatively, capacity constraints can be modeled via

a penalty payment embedded in the firms’ payoff function, such that firms
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3 Incomplete Information in Cournot Oligopoly: The Case of Unknown Production Capacities

receive a negative payoff if capacities are exceeded. However, this might

destroy the quasi-concavity of the expected payoff function and thus may

lead to the non-existence of equilibria.

Instead, we model a firm’s capacity restriction by curtailing a firm’s strat-

egy space, ensuring that the existence of an equilibrium is implied by Nash’s

theorem under standard assumptions on inverse demand and costs if the

common prior belief is probability measure on a finite space. For the case

where capacities are stochastically independent and the state space may be

infinite, we characterize the functional form of equilibrium strategies: In

every equilibrium firms fully utilize their capacities up to some threshold.

If the capacity with which firms are endowed exceeds this threshold, then

firms produce a constant quantity that equals the inner maximum of the ex-

pected payoff function. This implies that a firm’s strategy space is essentially

one-dimensional.

Under the additional assumption that demand is strictly concave and that

the firms’ capacities are identically distributed, we show that a unique sym-

metric equilibrium exists. The expected output of the industry is smaller

compared to the output of the standard form Cournot oligopoly. In case of

linear demand, every equilibrium is symmetric. This is because each firm’s

best response function only depends on the expected aggregate output of the

other firms and from the slope of the best response function (which exceeds

-1).

For the special case of two firms and a simple common prior belief, we

analyze the impact of information sharing on producer surplus, consumer

surplus and social welfare. This is done by comparing the unique symmetric

equilibrium when information is incomplete, the private information equilib-

rium, with the equilibrium of the corresponding complete information game,

the shared information equilibrium.

In order to calculate expected profits and outputs, an explicit characteri-

zation of equilibrium strategies is required. However, due to non-negativity

and capacity constraints standard techniques do not apply to derive closed-

form solutions of equilibrium strategies. Therefore, we access the impacts
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on surplus and welfare by using inequality arguments.

While consumers benefit from an increase of expected output, they suffer

from a decrease of the variance of outputs. Since under complete infor-

mation equilibrium outputs are negatively correlated, the variance of total

industry output is potentially reduced. We find that the net effect, which

determines whether sharing information is beneficial for consumers, is am-

biguous and depends on the horizontal demand intercept: While consumers

benefit from sharing information when the horizontal demand intercept a is

small, they increasingly suffer from information sharing when a increases.

Thus, the change in consumer surplus is positive for small values of a and

negative for sufficiently large values. This effect is driven by a constella-

tion in which both firms are endowed with a large amount of capacity, thus

leading to an “overproduction” under incomplete information as the total

industry output exceeds the Cournot output. Due to information sharing,

firms reduce their output accordingly. In contrast, the change of producer

surplus may be negative for small values of a and is positive if a is suffi-

ciently large.

3.2 Related Literature

Regarding Cournot oligopolies with complete information, a number of au-

thors analyze equilibrium existence and uniqueness when production ca-

pacities are bounded and asymmetric. For example, Bischi et al. (2010)

and Okuguchi and Szidarovszky (1999) discuss a wide range of oligopoly

models and provide results on existence and uniqueness of equilibria. As in

the paper at hand, production capacity is modeled by curtailing the strategy

spaces.

For the case of incomplete information, Einy et al. (2010) provide a gen-

eral framework of Bayesian-Cournot games and provide results of existence

and uniqueness of Bayes-Nash equilibria. They allow for incomplete infor-

mation with respect to the demand function as well as with respect to the

cost function. However, the case of unknown capacities is not covered, and
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the model framework can not be applied.

The work on information sharing in oligopoly was pioneered by Novshek

and Sonnenschein (1982), Clarke (1983) and Vives (1984). Novshek and

Sonnenschein (1982) and Vives (1984) discuss a duopoly with uncertain

linear demand, whereas Clarke (1983) analyzes an oligopoly where both

demand and costs may be unknown.

Raith (1996) provides a general model that allows for Bertrand or Cournot

competition and incomplete information with respect to costs or demand. If

parameters are specified in an appropriate way, virtually all models on infor-

mation sharing in oligopoly follow as special cases. As Clarke (1983), Raith

(1996) applies a general result provided by Radner (1962): If the joint dis-

tribution of private values is normal, then equilibrium strategies are affine.

Raith (1996) shows that if firms’ signals are independent private values and

if each firm perfectly learns its private value, meaning that no noise is added,

then industry-wide information sharing is always profitable for firms.

However, equilibrium strategies are not affine in our model. In the case of

uncertain demand, Maleug and Tsutsui (1998) find that standard results on

information sharing can be reversed if equilibrium strategies are not affine.

In their model, in which demand is random, non-linearity stems from non-

negativity constraints or capacity limits. In particular, consumer surplus can

decrease although firms have an incentive to share information – in con-

trast, Raith (1996) and the literature cited therein find that firms do not

have an incentive to share information when demand is uncertain, but con-

sumers would profit from sharing information. Moreover, Maleug and Tsut-

sui (1998) demonstrate that information sharing is profitable as long as the

the variation of demand is sufficiently large. In the case of uncertain costs,

Shapiro (1986) finds that firms have an incentive to share information, and

that information sharing increases social welfare but decreases consumer

surplus.

In the work at hand, I provide a result complementary to Maleug and

Tsutsui (1998). I find that firms might not have an incentive to share their

information, but consumers would benefit from sharing. Moreover, if the
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3.3 The Model

variance of the firms’ capacities is sufficiently large, then firms have an in-

centive to share their information.

The remainder of the paper is structured as follows: Section 3.3 contains

the model framework. Section 3.4 presents the private information equilib-

rium and provides a detailed characterization of the symmetric equilibrium

strategy. Results on the impact of information sharing on producer and con-

sumer surplus surplus as well as social welfare are derived in Section 3.5.

Lastly, Section 3.6 concludes.

3.3 The Model

We consider a set N = {1,2, . . . , n} of firms that may face uncertainty re-

garding the other firm’s endowment with production capacity. Firms only

differ with respect to their production capacities. In a Bayesian approach,

a strategy of firm i is a decision rule that specifies a firm’s output for every

possible information set with which the firm might be endowed.

More formally, we denote T = [0, t̂] ⊆ [0,∞] as the set of possible ca-

pacity levels and Ω =
∏

n∈N T as the set of possible states of nature. The

common prior belief µ is a probability measure on Ω (with respect to some

appropriate σ-field). An element of Ω is denoted as ω = (ω1,ω2, . . . ,ωn).
We assume that every firm is endowed with a production capacity exceed-

ing zero with positive probability. The information with which a firm is

endowed when making its output decision is described by a random vari-

able Ti : Ω → Ωi, where Ωi is chosen appropriately. Moreover, we assume

that E
�

|Ti|
�

<∞ for all i. The information sets of firm i are then the ele-

ments of the σ−algebra σ(Ti) generated by Ti.
1 A strategy is an integrable

function qi : Ωi 7→ R+ satisfying qi(Ti(ω)) ≤ ωi.
2 Lastly, the strategy space

of firm i is denoted by Si and the space containing all strategy profiles is

1Following Einy et al. (2002), this is equivalent to the model by Harsanyi (1967) because
each firm’s σ-algebra is generated by a partition of Ω that is given by Πi = {T−1

i (ω̃)|ω̃ ∈
Ωi}.

2Integrable means that qi is Borel-measurable and satisfies
∫

Ω
|qi(Ti(ω))|dµ <∞.
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given by S =
∏n

i=1 Si.

As defined above, qi(Ti(ω)) denotes the output of firm i. We let Q(ω) :=
∑n

i=1 qi(Ti(ω)) denote the overall production. The inverse demand func-

tion and the cost function are denoted by P and C , respectively. The state-

dependent payoff function ui of firm i is given by

ui(ω, qi, q−i) = qi(Ti(ω))P(Q(ω))− C(qi(Ti(ω))). (3.1)

The strategy profile q ∈ S is a Bayesian Cournot equilibrium if for every i

and q̃i ∈ Si the expected payoff function is maximized,

E
�

ui
�

·, qi, q−i
��

≥ E
�

ui
�

·, q̃i, q−i
��

, (3.2)

meaning that at equilibrium, no firm has an incentive to unilaterally deviate

from its strategy. Maximizing (3.2) is equivalent to maximizing the condi-

tional payoff expectation, so that

E
�

ui
�

·, qi, q−i
�

�

�σ
�

Ti
�

�

(ω)≥ E
�

ui
�

·, q̃i, q−i
�

�

�σ
�

Ti
�

�

(ω) (3.3)

for all i ∈ N and almost all ω ∈ Ω.3

Throughout the paper, we assume:

(A) The cost function C is convex, twice continuously differentiable and

there are no fixed costs, meaning that C(0) = 0;

(B) Inverse demand P is nonincreasing and twice continuously differen-

tiable;

(C) There exists Z <∞ such that qP(q)− C(q)≤ 0 for all q ≥ Z;

(D) The marginal revenue of firm i is strictly decreasing with the aggregate

output of the other firms. This is equivalent to P ′(Q) + qi P
′′(Q) < 0 (the

so-called Novshek condition). Notice that (B) and (D) imply that P is strictly

decreasing.

Remark 1. If µ
�

Ti ≥ Z
�

= 1, the model reduces to a standard form Cournot

oligopoly with complete information in which firms face the capacity constraint
3See Harsanyi (1967) and Einy et al. (2002).
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Z, which is never exceeded due to assumption (C). In this case, assumptions (A)

and (D) ensure the existence of a unique equilibrium (see Vives (1999), p.97).

Throughout the paper, we denote the corresponding standard form Cournot

oligopoly equilibrium quantity by qC and the corresponding best response func-

tion by r.4 Under assumptions (A), (B) and (D), the best response r is twice

continuously differentiable and r ′ >−1 (see Vives (1999), p.97).

Remark 2. Assumptions (A), (B) and (D) ensure that the state-dependent pay-

off function (3.1) is concave in the output of firm i. Moreover, concavity is in-

herited by the expected payoff function (3.2) (Einy et al., 2010). If Ω is finite,

then a firm’s strategy space is compact and convex, and Nash’s theorem implies

the existence of an equilibrium.

Notice that we allow for negative prices in the model, which is arguable

from an economic point of view but which is helpful when it comes to prov-

ing existence of equilibria. If demand is truncated where it intercepts the

horizontal axis in order to avoid negative prices, a firm’s payoff function

is no longer concave but only quasi-concave. This is not a problem in the

complete information case, however the argument for equilibrium existence

may collapse if we allow for incomplete information. In this case, the quasi-

concavity of the state-dependent payoff function does not necessarily trans-

late into quasi-concavity of the expected payoff function (Einy et al., 2010).

In contrast, allowing for negative prices ensures that the expected payoff

function is concave.

3.4 Characterization of Equilibrium Strategies

First, we reconsider the case in which firms have asymmetric capacity con-

straints and share their information, meaning they are subject to complete

information. The question of existence and uniqueness in this setting is

treated extensively in the literature, as previously mentioned. In terms of

the model formulation, we discuss the case where Ti(ω) = ω for all i and

4Thus, we implicitly assume Z ≤ t̂, which is not a limitation.
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all ω. If demand and costs are linear, then existence and uniqueness of an

equilibrium are easily obtained.

In the remainder of the paper, we denote the shared information equi-

librium strategy by qS. For the duopoly case, the shared information equi-

librium strategy qS can be presented in a compact manner. As previously

mentioned, r denotes the best response function of the unrestricted Cournot

duopoly and qc denotes the equilibrium strategy of the unrestricted Cournot

duopoly.

qS(ω1,ω2) =







min
�

ω1, qC	 , ifω1 ≤ω2,

min
�

ω1, r
�

qS(ω2,ω1)
�	

otherwise.
(3.4)

It is easily demonstrated that qS is the unique equilibrium strategy. We use

this representation of qS in Section 3.5.

Notice that if in an equilibrium there is a firm with a binding capacity

restriction, the total output of the industry is lower compared to the output

of the standard form Cournot oligopoly. This property derives from the slope

of the best response function r which exceeds −1. If one firm decreases its

output due to its capacity restriction, then the corresponding increase of the

other firms is smaller (see also Remark 2).

In the private information setting, every firm perfectly learns its own ca-

pacity but receives no information about the other firms’ capacities. Speak-

ing in terms of the model, we analyze the case Ti(ω) = ωi. A strategy of

firm i is now a function on T . In the following, we write qi(t) instead of

qi(Ti(ω)).

Recall that t̂ denotes the maximal element in T . Theorem 1 states that an

equilibrium strategy qi is completely determined by qi( t̂) if the firms’ capaci-

ties are independent. That is, the relevant strategy space is one-dimensional.

Theorem 1. If the firms’ capacities are stochastically independent, then in

every equilibrium q = (q1, q2, . . . , qn) and for every firm i the strategy qi is

nondecreasing. More precisely, for every i there exists a threshold si ∈ T such

that qi(t) = t for all t ≤ si and qi(t)< t for all t > si.
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3.4 Characterization of Equilibrium Strategies

Proof. We assume that q is an equilibrium and choose i ∈ N arbitrarily. If

qi(t) = t for all t ∈ T , then the proposed statement follows. Therefore,

we denote si as the infimum of the set {t ∈ T |qi(t) < t}. If t, u ∈ T so

that u > t > si, we must have qi(u) = qi(t) < t since qi(t) maximizes the

conditional payoff expectation (3.3), which is concave, and because qi(t)
lies in the inner of [0, t], implying that qi(t) is the global maximum. Notice

that either qi(t) = qi(s)< s or s = qi(s)< qi(t).

The result of Theorem 1 is driven by the independence of T1, T2, . . . , Tn

and does not generally hold, as shown in the following example. We con-

sider a duopoly in which the inverse demand function is given by P(q) =
2− q. The set of possible capacity levels equals T = {0, 1,2}. We assume

that µ is symmetric, meaning that for all ω1,ω2

µ
�

T1 =ω1, T2 =ω2

�

= µ
�

T1 =ω2, T2 =ω1

�

.

Moreover, we assume that µ
�

T1 = 0|T2 = 1
�

= 1 and µ
�

T1 = 2|T2 = 2
�

=
1.5 Then, the unique symmetric equilibrium is given by

q(0) = 0,

q(1) = 1,

q(2) = 2/3.

The equilibrium strategy is neither increasing nor decreasing. In fact, when

allowing for an arbitrary common prior belief, then we can say nothing

about the shape of the equilibria.

Theorem 1 states that a firm’s equilibrium strategy qi is completely de-

termined by qi( t̂), since qi(t) = min{t, qi( t̂)}. If we restrict the analysis

to symmetric equilibria and assume that the firms’ capacities are identi-

cally distributed, then the space of feasible strategy profiles becomes one-

5This specification of the conditional probabilities implies that firms have complete infor-
mation. However, this is just for convenience. We obtain similar results if we allow for
the conditional probabilities to be close to 1.
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3 Incomplete Information in Cournot Oligopoly: The Case of Unknown Production Capacities

dimensional. Next, we show that there exists a unique symmetric equilib-

rium if the inverse demand function is concave. We use two arguments in

the proof: A fixed point argument applied to the one-dimensional space

of feasible strategy profiles described above and the existence of a unique

Cournot equilibrium in the unrestricted, standard form Cournot oligopoly,

characterized by a smooth best reply function (see Remark 1). In order

to ease notation, we write r(q) instead of r((n − 1)q) if q is a symmetric

equilibrium strategy or quantity in the remainder of the paper.

Theorem 1 shows that a firm produces some constant output q( t̂) if the

capacity level with which the firm is endowed exceeds a certain threshold.

In Theorem 2 we show that in the case of independent and identically dis-

tributed capacities and concave inverse demand function, exactly one sym-

metric equilibrium exists. In this equilibrium, the output q( t̂) exceeds the

Cournot quantity qC , but is smaller than the monopoly quantity qM .6 We

characterize q( t̂) via

qC < q( t̂) = r(λqC)< qM

for an appropriate 0< λ < 1.

Clearly, q( t̂) does not exceed the monopoly quantity, implying λ > 0. To

encourage intuition why q( t̂) exceeds the Cournot quantity, implying λ < 1,

we consider a duopoly in which inverse demand is given by P(q) = 1− q

and in which marginal costs are equal zero. Every firm’s capacity may take

values in T = {0, 1}, and each capacity level occurs with probability p = 1/2.

If firm 1 is endowed with capacity 1, it maximizes

E
�

q1(1− q2− q1)
�

= q1(1− E
�

q2

�

− q1)

subject to q1 ≤ 1. We let r̃ denote the best response function of firm 1. At

6Note that this result relies on the assumption of identically distributed capacities: Oth-
erwise, some firms might have systematically small capacities, while other firms receive
systematically large capacities. Firms with expected large capacities might then produce
an expected quantity exceeding the Cournot quantity.
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3.4 Characterization of Equilibrium Strategies

equilibrium,

q1(1) = r̃(q2) =
1− E

�

q2

�

2
=

1− 1
2
q2(1)

2
,

because q2(0) = 0. Since q1(1) = q2(1) in a symmetric equilibrium, we

obtain q1(1) = 2/5> 1/3= qC . The equilibrium strategy is then

q1(t) =min {t, 2/5} ,

which may be written as

q1(t) =min
�

t, r
�

3

5
qC

��

.

Theorem 2. If capacities are i.i.d. and the inverse demand function is concave,

there exists exactly one symmetric equilibrium and the equilibrium strategy qP

satisfies

E
�

qP
�

≤ qC .

The inequality strictly holds if µ
�

Ti < qC�> 0.

Proof. We construct a symmetric equilibrium. Recall that firm i maximizes

E
�

ui
�

·, qi, q−i
��

= E
�

qi(Ti(·))P(Q(·))− C(qi(Ti(·)))
�

(3.5)

by choosing qi. For every t ∈ T and λ ∈R we define the strategy qλ by

qλ(t) =min
¦

t, r
�

λqC
�©

. (3.6)

Then, qλ(t) is continuous in λ since r is smooth (see Remark 1). We assume

that the other firms j 6= i apply qλ for some λ ∈ [0,1] and define

Qλ−i(ω) :=
∑

j 6=i

qλ(T j(ω)).

to be the corresponding, realized aggregate output, which is nonincreasing
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3 Incomplete Information in Cournot Oligopoly: The Case of Unknown Production Capacities

and continuous in λ. Consider the mapping φ :R2→R defined by

φ(λ, x) :=E
�

ui

�

·, x , qλ
��

=x E
�

P
�

Qλ−i(·) + x
��

− C(x).

Then φ is continuous in λ as well. Due to the assumptions placed on P and

C , the integrand

x P
�

Qλ−i(ω) + x
�

− C(x)

is strictly concave in x (see Remark 2) and this implies that φ is concave

in x as well. We let γ(λ) denote the global maximizer of φ(λ, ·). Then γ

is strictly decreasing with λ because Qλ−i is strictly decreasing with λ,7 and

this implies that the maximizer γ must increase since output decisions are

strategic substitutes.

We prove indirectly that γ is continuous: Assume that γ has a discontinu-

ity in µ. Then, since γ is nondecreasing, there exists an ε > 0 and a sequence

µn > µ converging to µ such that

γ(µn)− γ(µ)> ε (3.7)

for all n ∈ N . Because γ(µ) maximizes φ(µ, ·), which is strictly concave, we

conclude

φ(µ,γ(µ))> φ(µ,γ(µ) + ε).

Because the sequence µn converges to µ and φ is continuous in its first

argument, we can choose n∗ large enough so that

φ(µn∗ ,γ(µ))> φ(µn∗ ,γ(µ) + ε).

This implies that γ(µn∗) < γ(µ) + ε, since φ is strictly concave in its second

7More precisely, there exists a set A⊂ Ω such that Qλ−i(ω) is strictly decreasing for almost
all ω ∈ A and constant almost everywhere on Ac . In a non trivial setting, µ (A) > 0,
which is sufficient because γ does only depend on the expected value of Q−i .
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3.4 Characterization of Equilibrium Strategies

argument (and thus continuous as well). But this yields

γ(µn∗)− γ(µ)< ε,

contradicting (3.7).

Next, we demonstrate that there exists λ > 0 such that γ(λ) = r(λqC) by

applying the intermediate value theorem. If λ = 0, then r(λqC) = r(0) =
qM , where qM is the monopoly output. Clearly, we must have γ(0) < qM :

γ(0) is the maximizer of

x E
�

P
�

Q0
−i(·) + x

��

− C(x).

Since the inverse demand function is concave by assumption, we may apply

Jensen’s inequality and obtain

E
�

P
�

Q0
−i(·) + x

��

≤ P
�

E
�

Q0
−i

�

+ x
�

< P(x),

meaning that the expected price is smaller than the monopoly price for any

x , implying that γ(0)< qM .

Similarly, if λ = 1, then r(λqC) = r(qC) = qC , and γ(1) exceeds qC : The

expected price satisfies

E
�

P
�

Q0
−i(·) + x

��

≥ E
�

P
�

(n− 1)qC + x
��

= P
�

(n− 1)qC + x
�

,

implying that the expected price exceeds the price of the unrestricted Cournot

oligopoly for any x and further that γ(1) must exceed qC . Since both r and

γ are continuous, we conclude that there exists a λ as claimed. Notice that

the inequality above strictly holds if µ
�

Ti < qC�> 0.

Lastly, we denote r̃(t, ·) as the best response of the restricted oligopoly

when Ti = t, meaning that r̃ maximizes E
�

ui
�

·, x , q−i
��

subject to x ≤ t.

When q j = qλ for j 6= i, we obtain

r̃(t, qλ) =min
�

t,γ(λ)
	

=min
¦

t, r(λqC)
©

= qλ(t).
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This shows that qλ is a fixed point of the best response function.

Ultimately, the result established in Theorem 2 stems from the slope of the

best response function, which exceeds -1 (see Remark 1). If a firm’s output

is bounded with positive probability, then the remaining firms (state-wise)

do not fully compensate this lack of production. It is easily verified that a

similar result holds in the case complete information. Thus, Theorem 2 is a

natural analog to the complete information case.

Remark 3. Notice that if demand is linear, it follows γ(λ) = r
�

E
�

qλ
��

. This

is because the expected payoff of firm i only depends on the expected aggregate

output of the other firms. Since γ(λ) = r(λqC) in the equilibrium, we conclude

E
�

qλ
�

= λqC .

Since a firm’s strategy is of the form qi(t) = min
�

t, qi( t̂)
	

, the strategy

is completely determined by its expected value, which is strictly increasing

with t̂. That is to say, a firm’s decision variables are one-dimensional and

the best response is of the form r̃(t,Q−) =min
�

t, r(Q−)
	

and thus depends

only on the aggregate output. Under these conditions, only symmetric equi-

libria can exist if the slope of r̃ strictly exceeds −1.8 In our case, r ′ > −1

(see Remark 1) and in fact, r ′ > −1/2 when demand is linear. Conversely,

Theorem 3 may not hold if demand is not linear.

Theorem 3. If capacities are i.i.d. and demand is linear, then every equilib-

rium is symmetric.

Proof. First, we give a proof for the duopoly case. Second, we argue why the

statement also holds true in an oligopoly. For an arbitrarily chosen equilib-

rium q = (q1, q2) it is sufficient to show that E[q1] = E[q2] due to Theorem

1. We define x := E[q1], y := E[q2] and

φ2(z) = E
�

u2

�

·, z, q1

��

= zP
�

E
�

q1

�

+ z
�

− C(z).

8See Vives (1999), p. 42–43, who discusses the complete information case.
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Clearly, φ2 is maximized by r
�

E
�

q1

��

= r(x) because the expected payoff

function of firm 2 does only depend on the expected quantity of firm 1 as a

result of the linearity of P.

We let f denote a marginal probability density with respect to Ti, meaning

that f is such that for all c ∈ T

µ
�

Ti ≤ c
�

=

∫ c

0

f (t)d t.

We write

y =E
�

min
�

T2, r(x)
	�

(3.8)

=

∫ r(x)

0

t f (t)d t +

∫ ∞

r(x)

r(x) f (t)d t (3.9)

=:g(x). (3.10)

Similarly, we conclude x = g(y).

Next, we demonstrate that g(x) = y and g(y) = x implies x = y , which

yields the given statement. The strategy is to show that g ′ > −1, implying

that g can not intersect a linear function with derivative −1 twice; however,

this is a necessary condition for the existence of x 6= y satisfying g(x) = y

and g(y) = x . We calculate9

g ′(x) =r ′(x)r(x) f (r(x)) + r ′(x)

∫ t̂

r(x)

f (t)d t − r(x)r ′(x) f (r(x))

=r ′(x)µ
�

Ti ≥ r(x)
�

>−1. (3.11)

We suppose that there exist 0 ≤ x < y such that g(x) = y and g(y) = x .

We define the linear function h by h(z) = x + y − z. Then h(x) = y and

h(y) = h(h(x)) = x . On one hand, this implies that h intersects g at x and

y , so that

g(x)− h(x) = g(y)− h(y) = 0. (3.12)

On the other hand, g ′− h′ > 0, implying that g − h is strictly increasing – a

9If the common prior belief is discrete, then g is piecewise linear and thus differentiable
almost everywhere.
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3 Incomplete Information in Cournot Oligopoly: The Case of Unknown Production Capacities

contradiction to (3.12).

It is important to notice that the proof does not rely on the demand func-

tion parameter a and b. This implies that for the oligopoly case we can

define ã = a − b
∑

j>2 E[q j(T j)] and apply the duopoly result to the resid-

ual demand function defined by ã (which is the same for both firm 1 and

firm 2). Equivalently speaking, we proved that the firms’ strategies are pair

wise identical for any a, which is sufficient to prove the statement for the

oligopoly case.

The result of Theorem 3 is driven by by the linearity of the demand func-

tion: If demand is linear, then the best response function of a firm does only

depend on the expected output of the other firms. Thus, the maximizer of

a firm’s payoff function inherits the slope of the Cournot best response r to

some extent (see equation (3.11)).

Lastly, Theorem 3 implies the existence of a unique symmetric equilib-

rium in the linear case: g has exactly one fixed point, and the fixed points

of g correspond to symmetric equilibria. Figure 3.1 shows the symmetric

equilibrium of the oligopoly for the case in which demand is linear and the

common prior belief is discrete and uniformly distributed.

3.5 Information Sharing

We discuss the effects of information sharing on producer surplus, consumer

surplus and social welfare. We consider the two extreme cases in which in-

formation is not shared at all, the private information equilibrium, and where

firms commit ex-ante to an industry-wide information sharing agreement,

e.g. via some trade association, the shared information equilibrium. We find

that even in simple examples, the impact on both consumer and producer

surplus is ambiguous. This ambiguity is driven by the concavity of the firms’

payoff function and by the covariance of firms’ equilibrium outputs. For a

large class of examples, social welfare increases. However, we provide an

example where social welfare decreases.
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3.5 Information Sharing

Figure 3.1: The unique symmetric equilibrium when capacities are stochastically
independent and uniformly distributed (a = 1, b = 1, c = 0, n= 6,
t̂ = 0.25, |T |= 11, λ= 0.83).
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3 Incomplete Information in Cournot Oligopoly: The Case of Unknown Production Capacities

In the following, we discuss a simple duopoly. The common prior belief

is discrete and there are two possible capacity levels t L < tH that may each

occur with probability p = 1/2. The symmetry of the common prior belief is

just for convenience – the results are not driven by this assumption. Without

loss of generality, we assume that costs equal zero and that inverse demand

equals p(q) = a−q.10 To avoid trivialities, we assume throughout the analy-

sis that t L ≤ qC , which is equivalent to a ≥ 3t L. In the limiting case a = 3t L

the model reduces to a standard form Cournot duopoly in which both firms

produce their Cournot quantity in both the private and shared information

equilibrium.

Moreover, we assume that tH is sufficiently large, meaning that tH exceeds

the monopoly output. This assumption simplifies the analysis, but we are

still able to demonstrate the ambiguous effects on producer and consumer

surplus. In contrast, under this assumption, social welfare increases when

information is shared.

In this model specification we obtain (see Remark 3)

t L < E
�

qP
�

< r
�

E
�

qP
��

.

This leads to

E
�

qP
�

= pt L + pr
�

E
�

qP
��

.

Substituting p = 1/2 and solving for E
�

qP� yields

E
�

qP
�

=
2

5
t L +

3

5
qC =

2

5
t L +

1

5
a, (3.13)

r
�

E
�

qP
��

=
6

5
qC −

1

5
t L =

2

5
a−

1

5
t L. (3.14)

We can see that the model becomes trivial if a = 3t: In this case, we obtain

qC = t = E
�

qP�.

10If c > 0, we define ã = a− c; if b 6= 1, we define a = ã/b. The payoff function of the case
b 6= 1 is then a scaled version of the payoff function arising when demand equals a− q.
The same holds for consumer surplus.
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3.5 Information Sharing

3.5.1 Producer Surplus

Since both the shared and the private information equilibria are symmetric,

firms have an incentive to share their information if and only if sharing

information increases producer surplus (PS). Producer surplus equals the

expected profit of the industry. Thus, firms have an incentive to share their

information if the difference

E [∆PS] := 2E
�

ui

�

·, qS, qS
��

− 2E
�

ui

�

·, qP , qP
��

exceeds zero.

Information sharing may ex-post lead to losses for firm i if and only if

its capacity restriction is binding and the capacity restriction of firm 2 is

not binding in the private information equilibrium, allowing firm 2 to in-

crease its output when learning that firm 1 produces little, and the other

way around. If both firms’ capacity restriction are not binding, then shar-

ing information induces both firms to decrease outputs and thus increases

profits. The net effect depends on the demand intercept a.

We derive the effects of information sharing on producer surplus by an-

alyzing the possible states of nature separately. Ex-post, information shar-

ing leads to losses for firm 1 if and only if ω1 = t L and ω2 = tH . In this

case, firm 2 produces r
�

E
�

qP�� in the private information equilibrium and

r(t L) > r
�

E
�

qP�� in the shared information equilibrium, whereas the out-

put of firm 1 remains constant. If we combine the events (t L, tH) and (tH , t L)
and multiply the expected difference of a firm’s payoff by 2, the decrease in

producer surplus arising from asymmetric capacities PS−(a) equals

PS−(a) = 2t L

�

a− r
�

E
�

qP
��

− t L

�

−2t L
�

a− r(t L)− t L
�

= t L(E
�

qP
�

−t L).

Via (3.13) and (3.14) we calculate

PS−(a) =
1

5
at L − 5

t2
L
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3 Incomplete Information in Cournot Oligopoly: The Case of Unknown Production Capacities

and
∂

∂ a
PS−(a) =

1

10
t L. (3.15)

Thus, PS− is linear and increasing. Clearly, if a = 3t L, then PS−(a) = 0.

Next, we examine two constellations that ex-post lead to an increase in

producer surplus. The first is the counterpart of PS−: If firm 1 is endowed

with tH and firm 2 is endowed with t L, then firm 1 produces r
�

E
�

qP��

in the private information equilibrium and r(t L) in the shared information

equilibrium. The output of firm 2 equals t L in both equilibria. Again, we

combine the events (t L, tH) and (tH , t L) and we denote the increase in pro-

ducer surplus (when capacities are asymmetric) by PS+1 (a):

PS+1 (a) = 2r(t L)
�

a− t L − r(t L)
�

− 2r
�

E
�

qP
���

a− t L − r
�

E
�

qP
���

.

The expression PS+1 has a zero at a = 3t L. A straightforward calculation

shows that
∂

∂ a
PS+1 (a) =

4

25
a−

12

25
t L. (3.16)

This implies that PS+1 is a parabola that has a local minimum at a = 3t L.

Finally, both firms benefit ex-post from sharing information if ω1 = ω2 =
tH . In this case, both firms reduce their output to the Cournot quantity qC

when information is shared. The corresponding increase in producer surplus

is denoted by PS+2 and given by

PS+2 (a) = 2qC(a− 2qC)− 2r
�

E
�

qP
��

(a− 2r
�

E
�

qP
��

).

Again, PS+2 (3t L) = 0. Moreover, a calculation shows that

∂

∂ a
PS+2 (a) =

140

1125
a−

6

25
t L. (3.17)

Since
∂

∂ a
PS+2 (3t L) =

2

15
t L > 0,

PS+2 is increasing as long as a ≥ 3t L.
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All three events (tH , t L), (t L, tH) and (tH , tH) occur with probability p2,

leading to

E [∆PS] (a)

=p2

�

1

2
PS+1 (a)−

1

2
PS−(a)

�

+ p2

�

1

2
PS+1 (a)−

1

2
PS−(a)

�

+ p2PS+2 (a)

=p2
�

PS+1 (a) + PS+2 (a)− PS−(a)
�

.

Using (3.15), (3.16) and (3.17), we obtain

∂

∂ a
E [∆PS] (3t L) =p2 ∂

∂ a

�

PS+1 (3t L) + PS+2 (3t L)− PS−(3t L)
�

=p2

�

0+
2

15
t L −

2

10
t L

�

< 0.

On one hand, since E [∆PS] (3t) = 0 and ∂ /∂ aE [∆PS] (3t) < 0, we

conclude that E [∆PS] (a) < 0 if a is sufficiently small, meaning that firms

do not have an incentive to share their information.

On the other hand, calculating the second derivative shows that

∂ /∂ 2aE [∆PS]> 0.

This stems from the fact that PS− is linear and implies E [∆PS] (a) > 0

when a is sufficiently large. Thus, we have established:

Theorem 4. If the demand intercept is sufficiently large, then firms have an

incentive to exchange information.

The result is driven by the concavity of the firms’ payoff function. Consider

that capacities are asymmetric and that T1 = t L, T2 = tH . Then firm 1 ex-

post suffers from information sharing due to the price effect when firm 2

increases output, and theses losses are linear with respect to a. Conversely,

firm 2 is subject to a price effect and a quantity effect. If a is large, then the

quantity effect gains weight in a convex fashion, i.e. the marginal revenue

of firm 2 is high (and vice versa).
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3.5.2 Consumer Surplus

We let Q(ω, qP) and Q(ω, qS) denote the realized total output of the industry

in the private information and shared information equilibria, respectively.

Consumer surplus is given by Q2(ω, qP)/2 and Q2(ω, qS)/2. Sharing infor-

mation leads to an increase in consumer surplus if and only if the expected

difference

E [∆CS] =
1

2
E
�

Q2(·, qS)
�

−
1

2
E
�

Q2(·, qP)
�

(3.18)

is positive.

Before we analyze the impact on consumer surplus, it is instructive to ana-

lyze the net effect on total industry output arising from information sharing.

As performed in the last section, we can identify the states of nature that

lead to a decrease or an increase of total output. A decrease can only occur

if both firm 1 and firm 2 are endowed with tH . We denote this quantity effect

by Q−. In this case, both firms produce r
�

E
�

qP�� in the private information

equilibrium and qC < r
�

E
�

qP�� in the shared information equilibrium. An

increase, denoted by Q+, occurs if both firms are endowed with different ca-

pacity levels: If firm 1 is endowed with t L, then its outputs in both equilibria

coincide. Firm 2 increases its output by r(t L)− r
�

E
�

qP��. Notice that the

same increase of output occurs if ω= (tH , t L).

The decrease in output ex-post amounts to

Q− = 2r
�

E
�

qP
��

− 2qC = qC − E
�

qP
�

=
2

15
a−

2

5
t L.

The increase of output ex-post, multiplied by 2, is given by

2Q+ = 2
�

r(t L)− r
�

E
�

qP
���

= E
�

qP
�

− t L =
1

5
a−

3

5
t L.

Both the increase and the decrease of output equal zero if a = 3t L, as ex-

pected. Apparently, the expected difference of total output exceeds zero as
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long as a > 3t L:

E [∆Q] = p2Q++ p2Q+− p2Q− =
p2

15
a−

p2

5
t L.

That is to say, sharing information always leads to an increase in expected

output. This stems from the fact that equilibrium strategies are concave.

Shapiro (1986) finds that in the presence of uncertain costs and linear

equilibrium strategies, a firm’s output does not change when information

is shared.

Moreover, the variance of a firm’s output increases. By applying (3.13),

we see that the increase in the output of firm 1 when firm 2 is endowed with

t L exceeds the decrease in output of firm 1 when firm 2 is endowed with tH :

�

qS(tH , t L)− qP(tH)
�

−
�

qP(tH)− qS(tH , tH)
�

=r(t L)− r
�

E
�

qP
��

− r
�

E
�

qP
��

+ r
�

qC
�

=
1

15
a−

1

5
t L ≥ 0 (3.19)

if and only if a ≥ 3t L. Since the output of firm 1 remains constant when

endowed with t L and since qS(tH , t L) exceeds qP(tH), the variance of outputs

of firm 1 increases due to information sharing. Because equation (3.19)

increases with a, the increase of variance, in turn, increases with a.

In order to examine consumer surplus, we calculate the realized consumer

surplus of the shared information equilibrium when both firm 1 and firm 2

are endowed with tH :

CSS(a, tH , tH) =

�

2qC�2

2
=

2

9
a2.

For the private information equilibrium, we find

CSP(a, tH , tH) =

�

2r
�

E
�

qP���2

2
=

2

25

�

4a2− 4at L + t2
L

�

.

The ex-post decrease in consumer surplus when both firms are endowed with
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tH is then

CS−(a) = CSP(a, tH , tH)− CSS(a, tH , tH) =
2

25

�

11

9
a2− 4at L + t2

L

�

.

Similarly, if both firms have different capacity levels, we calculate the

corresponding consumer surplus for both the shared and the private infor-

mation equilibrium:

CSS(a, t L, tH) =

�

t L + r(t L)
�2

2
=

1

8

�

a2+ 2t La+ t2
L

�

and

CSP(a, t L, tH) =

�

t L + r
�

E
�

qP���2

2
=

2

25

�

a2+ 4at L + 4t2
L

�

.

The ex-post increase in consumer surplus when firms have asymmetric ca-

pacities is then

CS+(a) = CSS(a, t L, tH)− CSP(a, t L, tH) =
1

25

�

9

8
a2−

7

4
at L −

39

8
t2

L

�

.

Since an increase in consumer surplus occurs in two states of nature, we

may write

E [∆CS(a)] = 2p2CS+(a)− p2CS−(a).

Thus, it is sufficient to analyze the difference 2CS+−CS− in order to deter-

mine the sign of E [∆CS] (a). Note first that both CS+ and CS− have a zero

at a = 3t.

Differentiating with respect to a yields

2
∂

∂ a
CS+(a) =

2

25

�

9

4
a−

7

4
t L

�

and
∂

∂ a
CS−(a) =

2

25

�

22

9
a− 4t L

�

.
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Evaluating at a = 3t shows

2
∂

∂ a
CS+(3t L) =

30

75
t L >

20

75
t L =

∂

∂ a
CS−(a).

On one hand, this implies that E [∆CS(a)] is positive when a is sufficiently

small. On the other hand, calculating the second derivative yields

2
∂

∂ 2a
CS+(a) =

9

100
<

22

225
=
∂

∂ 2a
CS−(a).

This implies that E [∆CS] (a) is negative when a is sufficiently large. We

have established:

Theorem 5. If the demand intercept is sufficiently small, then information

sharing increases consumer surplus.

Ultimately, the result is due to the negative correlation of equilibrium

outputs in the complete information case. This correlation effect decreases

the variance of total industry output, which in turn lowers consumer sur-

plus. When increasing a, the negative correlation of equilibrium outputs

increases. If q(T1) + q(T2) denotes the total industry output, we observe

E
�

�

q(T1) + q(T2)
�2�

=VAR
�

q(T1) + q(T2)
�

+ E
�

q(T1) + q(T2)
�2 (3.20)

=2VAR
�

q(T1)
�

+ 2COV
�

q(T1), q(T2)
�

+ E
�

q(T1) + q(T2)
�2 . (3.21)

As discussed on page 63, both expected output and variance of output of

a single firm increase when information is shared. Theorem 5 and equation

(3.20) imply that the variance of total industry output must decrease if a is

sufficiently large. Lastly, equation (3.21) shows that the decrease of the vari-

ance of total industry output driven by a negative correlation of equilibrium

outputs.

Apparently, we can easily construct an example in which firms do not have

an incentive to share information but consumers nevertheless profit from an
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Table 3.1: Equilibrium outputs for private (P) and shared (S) information equilibrium and
effects on surplus and welfare (a = 5, T = {1, 5},µ is uniformly distributed on
T 2, implying r

�

E
�

qP��= 9/5= 1.8)

ω Output P. surplus C. surplus Welfare
P S P S P S P S

(1,1) 1.00 1.00 6.00 6.00 2.00 2.00 8.00 8.00
(1,5) 1.00 1.00 4.40 4.00 3.92 4.50 8.32 8.50
(5,1) 1.80 2.00 7.92 8.00 3.92 4.50 11.84 12.50
(5,5) 1.80 1.67 5.04 5.56 6.48 5.56 11.52 11.11

Expected Values 1.40 1.42 5.84 5.89 4.08 4.14 9.92 10.03
Variances 0.21 0.25 2.36 2.72 3.38 2.28 4.16 4.58

information sharing agreement, shown by choosing a sufficiently small a.

Similarly, an example in which firms do have an incentive to share informa-

tion, but the sharing of information in turn decreases consumer surplus, is

easily obtained by choosing a sufficiently large a.

The example presented in Table 3.1 shows that we can choose a such that

both producer and consumer surpluses increase, a result that is not implied

by the analysis conducted above. We choose a = tH = 5 and t L = 1, implying

r
�

E
�

qP��= 9/5.

3.5.3 Social Welfare

Finally, we look at the expected change of social welfare, given by

E [∆W (a)] =E [∆PS(a)] + E [∆CS(a)]

=E
�

PS+1 (a) + PS+2 (a)− PS−+ 2CS+(a)− CS−(a)
�

.

Using the results previously established and differentiating with respect to

a show that E [∆W (a)] is a quadratic function that has a zero at a = 3t L

and is increasing as long as a ≥ 3t L. This implies that information sharing

increases social welfare.

Lastly, we demonstrate that social welfare may decrease if tH is sufficiently
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Table 3.2: Equilibrium outputs for private (P) and shared (S) information equilibrium
when tH = r

�

E
�

qP��= 1.8

ω Output P. surplus C. surplus Welfare
P S P S P S P S

(1,1) 1.00 1.00 6.00 6.00 2.00 2.00 8.00 8.00
(1,1.8) 1.00 1.00 4.40 4.40 3.92 3.92 8.32 8.32
(1.8,1) 1.80 1.80 7.92 7.92 3.92 3.92 11.84 11.84
(1.8,1.8) 1.80 1.67 5.04 5.56 6.48 5.56 11.52 11.11

Expected Values 1.40 1.37 5.84 5.97 4.08 3.85 9.92 9.82
Variances 0.21 0.18 2.36 2.15 3.38 2.11 4.16 3.77

small. We discuss an example in which tH = r
�

E
�

qP��. This implies that

firms can never increase their outputs when moving from the private to the

shared information equilibrium. The ex-post decrease in output that occurs

when ω = (tH , tH) is not affected as long as tH ≥ r
�

E
�

qP��. Thus, both

consumer surplus and social welfare decrease with tH . Table 3.2 shows the

equilibrium output and the corresponding surplus and welfare effects when

we modify the example presented in Table 3.1 by defining tH = r
�

E
�

qP��=
9/5.

Remark 4. All results established in this section hold when we conduct the

analysis in terms of t L and keep the demand intercept constant. By lowering t L,

we increase the variance of µ. Theorem 4 implies that we can choose t L small

enough that firms have an incentive to share their information. This result is

complementary to the results established by Maleug and Tsutsui (1998), who

show that firms have an incentive to share their information if the variance of

the common prior belief is sufficiently large.

3.6 Results and Discussion

In the presence of uncertainty with respect to production capacities, equilib-

rium strategies are concave if capacities are stochastically independent. If

firms are symmetric, a unique equilibrium exists. When inverse demand is
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linear, the best reply of a firm only depends on the expected output of the

other firms, ensuring that every equilibrium is symmetric.

Consistent with the literature, we find that capacity constraints can re-

verse standard results on information sharing. These results are established

by discussing a Cournot duopoly in which the common prior belief is discrete

and there exist two capacity levels t L < tH such that tH is sufficiently large.

Due to the concavity of equilibrium strategies, information sharing leads to

an increase in the expected aggregate output of the industry. Moreover, the

variance of each firm’s output increases with the horizontal demand inter-

cept a when information is shared. However, the variance of total industry

might decrease when information is shared, which is due to the negative

correlation of the firms’ equilibrium outputs. The net effect can lead to an

increase as well as to a decrease in producer surplus. The same is true for

consumer surplus, which can decrease when information is shared although

total output increases. However, social welfare increases when information

is shared due to the sufficiently large value of tH . This effect can be reversed

by choosing tH small enough.

The question as to whether antitrust authorities should either encourage

firms to share information or if they should prohibit information exchange

can not be answered clearly for two reasons. First, we needed to specify the

weights an authority assigns to producer surplus and consumer surplus. In

case an authority relies on social welfare as the appropriate measure, shar-

ing information is beneficial for a large class of markets. In case an author-

ity emphasizes consumer surplus, the question as to whether information

should be shared depends on the market parameters.

One can think of a number of possible applications of the model. Con-

sider, for example, two markets A and B, where market prices PA and PB

are common knowledge. If the markets are physically separated, firms who

possess transport capacity may take advantage of arbitrage profits. If we as-

sume that the price difference P := PA− PB is positive and decreasing in the

quantity q bought on market B and sold on market A, we can perceive the

problem as a Cournot oligopoly with capacity constraints. These capacity
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constraints may be unknown: Consider that A and B are two market places

for natural gas that are connected via Liquefied Natural Gas (LNG) carriers.

Since firms do not know their rival’s operation strategies, they do not know

the amount of carriers that are available to serve the route between A and

B.

The model is limited to the case of stochastically independent capacities.

However, the assumption on independence might not be reasonable in mar-

kets where the uncertainty is driven by a common source of risk. For exam-

ple, local markets for agricultural products do not satisfy the assumption of

independent signals, since the firms’ harvest is determined by local weather

conditions. However, independent capacities might be a suitable approxi-

mation.
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4 On the Interaction Between Product
Markets and Markets For Production
Capacity: The Case of the Electricity
Industry

We study the interdependency between two markets. In the first market,

production capacity is offered; in the second, the produced commodity it-

self is sold. Selling capacity initially leads to foregone product market prof-

its due to a lower output. These opportunity costs decrease with a firm’s

marginal costs. The key issue of the model is that there arises an additional

cost component of selling capacity: Keeping capacity ready for delivery on

demand induces ready-to-operate costs that increase with a firm’s marginal

costs.

It is shown that a competitive equilibrium not only exists, but is unique

and efficient. In this equilibrium, the cumulative supply function of the ca-

pacity market is u-shaped, meaning that it is convex with respect to marginal

costs. The leading example is the electricity industry, in which there is a ca-

pacity market that clears before the spot market is able to follow.

4.1 Introduction

Electricity markets are characterized by some properties that tend to com-

plicate a matching of demand and supply. First, electricity is virtually non-

storable in large quantities from an economic perspective. Second, demand

for and supply of electricity are not perfectly predictable. Third, supply

has to equal demand at any time, since otherwise the electricity grid would

collapse. Moreover, due to technical restrictions end-consumers cannot re-
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spond to real-time electricity prices, so demand for electricity is essentially

inelastic in the short term (see, for example, Patrick and Wolak (2001)).

To ensure system stability, a network operator procures capacity to com-

pensate for short-term prediction errors and to fill the gap between demand

and supply.1 If demand exceeds supply, capacity is called. The procurement

of capacity is usually organized on a separate market platform.2 Demand

for capacity is defined by the transmission system operator to ensure a well-

defined safety level regarding grid stability. In most European countries, a

procurement auction is implemented in which the pricing mechanism can

be uniform or pay-as-bid. The market for capacity clears before the spot

market follows.

In the paper at hand, the analysis is conducted in terms of a day-ahead

spot electricity market and a market for capacity.3 We consider a continuum

of firms that have different marginal costs of electricity generation.4 Each

firm has a fixed production capacity that can be split up allowing a firm

to sell quantities on both markets. A technical restriction is imposed to

ensure that if a firm wants to offer capacity electricity must be generated at

a level greater than some minimum production level (the so-called “must-

run” condition). A plant providing capacity must be running to guarantee a

short response time when capacity is called. In the event of an unforeseen

imbalance between demand and supply the plant’s electricity generation can

be increased quickly.

Selling capacity on the capacity market leads to foregone spot market

profits due to a lower output of electricity. These opportunity costs are de-

creasing with a firm’s marginal costs. The key issue of the model is the

second cost component of selling capacity: Keeping capacity ready for de-

1In the electricity industry, capacity procured is called “incremental reserve”, “incremental
reserve capacity” or “positive balancing power”.

2As is the case in Germany, for example.
3Here, it is important that the spot market is not a real-time market, since the time lag

between gate closure and delivery necessitates a capacity market.
4Although it is generally not clear whether electricity markets are sufficiently competitive,

the analysis tries to derive the competitive benchmark for the interaction between the
two markets.
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livery on demand induces ready-to-operate costs that are increasing with

a firm’s marginal costs since, with positive probability, the firm’s marginal

costs exceed the spot market clearing price.

The must-run condition leads to a strong interdependency between both

markets, as quantities contracted on the capacity market induce quantities

on the spot market. We see that in the setting sketched above, a unique

equilibrium exists. The capacity market bidding function is u-shaped in this

equilibrium, which stems from the must-run condition. This shows that

in equilibrium, the set of firms supplying capacity constitutes an interval.

Moreover, a welfare analysis shows that the equilibrium is efficient.

There are several other markets where at least one of these cost com-

ponents as sketched above occur. Costs of foregone foregone profits from

production always arise when assets are rented; costs of capacity provision

arise when keeping capacity ready to operate is costly. The electricity in-

dustry, while an important example for the problem sketched in this paper,

is not the only example where both effects occur simultaneously. Another

example is presented in the discussion at the end of the paper.

There is little, but growing, literature available on capacity procurement

in the electricity sector. One important line of research is instigated by the

fact that capacity auctions are interpreted as a multi-unit auction with inter-

dependent private values.5 For example, the theory is applied to electricity

markets in Hortacsu and Puller (2008). Swider (2007) introduces a model

in which the spot market is competitive and the capacity market is not. The

prices on the capacity market are modeled as random variables that bid-

ders anticipate. Creti and Fabra (2006) model a short-term capacity market.

Optimal bidding strategies for market participants are derived under con-

sideration of opportunity costs that arise from previous sales on domestic

and foreign electricity markets. It is assumed that all firms have identical

marginal costs. The authors derive equilibrium strategies for both a monop-

olistic and a competitive market structure.

5The firms’ signals are interrelated since the opportunity cost consideration of every firm
depends on the stochastic spot market demand.
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Closely related to the present paper is the work of Just and Weber (2008)

and Just (2011). These papers, in turn, rely partly on Chao and Wilson

(2002), who investigate optimal scoring rules on multi-dimensional pro-

curement auctions for power reserves. Just and Weber (2008) model the

interdependencies between markets for secondary reserve capacity and spot

electricity to derive the price of capacity under equilibrium conditions in a

uniform pricing setting. Just (2011) applies the same model setup and ad-

dresses questions on appropriate contract durations in the German market

for reserve capacity. Both articles investigate the model numerically. The

present work provides analytical results for a specific type of the stylized

model developed by Just and Weber (2008), proving that a unique efficient

competitive equilibrium exists.

The remainder of this paper is structured as follows. In Section 4.2, the

model is explained and the equilibrium concept is introduced. Some prop-

erties of the model are derived, which allows for the model’s strategy space

to be narrowed down. In Section 4.3, the existence and uniqueness of an

equilibrium is proved. Section 4.4 provides a welfare analysis that shows

that the previously derived equilibrium is efficient. Finally, Section 4.5 sum-

marizes the results.

4.2 The Model

The supply side is given by a continuum X = [0, 1] of firms that have con-

stant and different marginal costs. Firms are sorted by their marginal costs,

so that the market’s marginal cost curve c : X → R+ is strictly increasing.

For the sake of analytical convenience, c is assumed to be differentiable.

Moreover, c is common knowledge.

The production capacity of every firm x ∈ X equals one. Each firm bids

quantities on both the spot and capacity market. First, capacity market bid-

ding takes place. The result of the capacity market auction is revealed be-

fore the spot market bidding takes place. In the second step, the spot market

clears. Some of the overall generation capacity is then no longer available,
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since it has been contracted on the capacity market.

We assume every firm x bids some price b(x) on the capacity market and

marginal costs c(x) on the spot market. The share offered by every firm

on the capacity market is fixed and given by α ∈ (0,1).6 Thus, strategies

based on the spot market only are excluded. This is not a limitation since

every firm x may choose an arbitrarily high b(x). An independent system

operator (ISO) ensures that demand is met cost-efficiently, meaning the ISO

selects the lowest bids on both markets.

Lastly, we reconsider the timing of the model as sketched above:

1. Each firm x bids some value b(x) based on opportunity costs from

spot market participation on the capacity market;

2. An ISO selects the lowest bids. Every firm is informed about the out-

come of the capacity market;

3. Firms offer their remaining production capacity on the day-ahead spot

market according to their marginal costs c(x);

4. The day ahead spot market clears. (Whether procured capacity has to

be called due to a gap in demand and supply during the short term is

determined the following day and is not part of the model.)

4.2.1 Strategy Space and Payoff Function

The ISO ensures that demand for capacity is met cost-efficiently by selecting

the lowest bids. This can be formalized by defining an allocation, which is

an integrable function

s : [0,1]−→ {0, 1}

6This share is determined by a power plant’s minimum and maximum production level as
well as the power plant’s gradient (see Müsgens et al. (2011) for details). For simplicity
we let α be the same for every firm. Typically, α≈ 0.1 (see for example Stoft (2002), p.
307).
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satisfying

∫ 1

0

s(y)d y = Dc, (4.1)

meaning that demand for capacity is met.

We choose a strategy profile b : [0, 1] 7→ R arbitrarily. We seek to con-

sider an allocation sb that is consistent with b, meaning that it ensures cost

efficiency. That is to say, sb is implicitly defined by the following condition:

If b(x)< b(y) and sb(y) = 1, then sb(x) = 1. (4.2)

Therefore, we define the strategy space to be

�

b : [0,1]→R+ | there exists a unique measurable sb
	

.

Thus, the ISO provides the well-defined mapping b 7→ sb. As shown in

the analysis, this definition of the strategy space does not exclude relevant

strategy profiles.

The strategy profile b and the corresponding allocation sb are interdepen-

dent. In order to be able to solve the model some results for an arbitrarily

chosen s satisfying (4.1) but not necessarily (4.2) are provided. These re-

sults hold for all b and all s and thus, in particular, for a consistent pair

(b, sb). From now on, s is arbitrarily chosen, but fixed.

Firms selected to provide capacity are rewarded by the marginal bid, im-

plying that the capacity market auction is uniform pricing.7 For a given b

and s, we denote by

b̂ := inf
x∈X
{b(x)| s(x) = 0}

the marginal bid. We do not indicate the dependency of b̂ on s to ease

notation.

7Since the marginal cost curve c is common knowledge, a pay-as-bid auction mechanism
leads to the same market outcome (see Müsgens et al. (2011)). All results on existence,
uniqueness and efficiency of equilibria translate to the pay-as-bid case.
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An allocation s transforms the cumulative supply curve on the spot mar-

ket for two reasons: First, we assume that demand for electricity on the spot

market is high. Then, the firms providing capacity may happen to be infra-

marginal but can only generate electricity at the level 1−α. This leads to a

higher price on the spot market compared to the case where no market for

capacity is considered.

Second, we impose the technical restriction that a power plant needs to

operate at a level of β in order to be able to provide capacity. Otherwise, a

power plant cannot respond fast enough when capacity is actually called. If

a power plant is providing capacity, then the cost of generating β are sunk,

which implies that the firm bids the share β at a price of zero on the spot

market. This leads to lower prices on the spot market when demand is low.

As previously mentioned, we call this technical restriction the “must-run”

condition.

In order to cover demand Dc for capacity, the accumulated must-run pro-

duction amounts to q1 = βDc/α, meaning that q1 is a technical lower bound

for the overall electricity generation in the model. Furthermore, the maxi-

mum electricity production in the market is given by q2 = 1−Dc. We assume

that the model parameters are such that q2 ≥ q1. We define Q = [q1, q2] and

denote by De the random spot market demand, where the support of De

equals Q.8 We assume that De is distributed with respect to some probability

measure P, and denote by E the expectation operator with respect to P. For

a given s we seek to define the corresponding spot market price function

ps : Q 7→ [0,∞) that maps quantities to prices and that is consistent with the

following assumptions:

• A firm x that does not provide capacity bids all of its capacity at

marginal costs into the spot market,

• A firm providing capacity is committed to bid its must-run share β at

a price of zero into the spot market,

8We may also allow for the support of De to be an interval that is a subset of Q. All results
remain, but the proofs become cumbersome.
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• A firm bids the remaining share 1−α−β , which is assumed to strictly

exceed zero, at marginal costs in the spot market.

For a given allocation s, we let ms(x) denote the aggregate amount of

electricity firms bid into the market at a price not exceeding c(x). Then ms

is the spot market’s inverse cumulative supply curve resulting from s and

following the restrictions described above. The function ms can be written

as

ms :[0, 1]−→Q, (4.3)

ms(x) = q1+

∫ x

0

1− s(y)(α+ β)d y.

Thus, the integrand equals 1 if and only if s(y) = 0, meaning that firm y

bids all of its capacity into the spot market. If s(y) = 1, firm y bids only the

share 1− α− β at marginal costs, whereas the share β is bid at a price of

zero and incorporated into q1. Since q1 is bid into the market at a price of

zero ms(0) = q1 holds.

Note that the inverse supply curve ms is continuous and invertible as long

as α+ β < 1. The spot market clearing price is given by

ps(De) = c ◦m−1
s (De). (4.4)

Notice that if Dc = 0, then ms is the identity and ps(De) = c(De). Figure

4.1 shows how the supply curve is transformed via s: Since the must-run

capacity q1 is bid into the spot market at a price of zero, electricity prices de-

crease when demand is low compared to the original supply curve c. Prices

increase accordingly when demand is high, since firms with low marginal

costs provide capacity and thus have to reduce electricity generation.

After having defined the spot market price function, we can express the

expected payoffs of a firm. First, the relevant costs and profits are dis-

cussed. The must-run costs of a firm x are given by the expected difference

of marginal costs and spot market prices, multiplied by the minimum load

factor β:
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Figure 4.1: The transformation of the cumulative supply curve via s.

βE
�

�

c(x)− ps(De)
�

1{c(x)≥ps(De)}

�

= βE
�

�

c(x)− ps(De)
�+� (4.5)

Thus, when providing capacity, firm x produces at least β due to the must-

run property and sells this share on the spot market. This may lead to losses

if the spot market price ps exceeds the marginal costs of firm x . Expression

(4.5) formalizes the expected value of these losses.

The spot market profits are given by the expected difference between spot

market price and marginal costs. If this difference is positive, it is multiplied

by the remaining share 1− α that is not contracted on the capacity market

and thus can be offered on the spot market. Expression (4.6) formalizes the

expected profits from spot market participation:
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(1−α)E
�

�

ps(De)− c(x)
�

1{ps(De)≥c(x)}

�

= (1−α)E
�

�

ps(De)− c(x)
�+� .

(4.6)

The function u expresses the profits of a risk neutral firm for fixed b and s

and equals the sum of expected profits on both markets minus the expected

costs of keeping the plant running. If a firm does not provide capacity, mean-

ing that b(x) > b̂, then u reduces to the expected spot market profits (the

second case below):

u(x , b, s) :=






αb̂+ (1−α)E
�

�

ps(De)− c(x)
�+�− βE

�

�

c(x)− ps(De)
�+� , if b(x)≤ b̂,

E
�

�

ps(De)− c(x)
�+� otherwise.

(4.7)

Here, αb̂ equals the profit from capacity market participation.

Since the allocation s is arbitrarily chosen and does not ensure that de-

mand for capacity Dc is met cost-efficiently, u is not the payoff function but

rather a helping function. The payoff function ũ is then given by

ũ(x , b) := u(x , b, sb). (4.8)

An equilibrium is a strategy profile b if for any x and any b̃ satisfying b̃(y) =
b(y) as long as x 6= y it holds true that ũ(x , b)≥ ũ(x , b̃).

4.2.2 Firms Bid Opportunity Costs

In this section, it is shown that we can restrict the analysis to an opportunity

cost curve arising from expected gains and losses from spot market bidding.

The basic argument is that given complete information, every firm bids its

costs.

We see that the opportunity cost curve is u-shaped, which implies that
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those firms providing capacity constitute an interval in X in every equilib-

rium. This allows us to solve the interdependency of b and sb. We now

define b in a way ensuring that the marginal firm is exactly compensated

for the expected foregone spot market profits. From now on, we explicitly

indicate the dependency of b on s:

b(x , s) := E
�

�

ps(De)− c(x)
�+�+

β

α
E
�

�

c(x)− ps(De)
�+� . (4.9)

Note that b(x , s) does not depend on the other firm’s bids. Finding an equi-

librium now reduces to finding the consistent allocation s, meaning that s

must be the cost-efficient procurement of Dc if firms bid according to b(·, s).9

Recall that b̂ denotes the marginal bid. If x places the highest accepted

bid, if follows that b(x , s) = b̂ and thus

u(x , b, s) = E
�

�

ps(De)− c(x)
�+� , (4.10)

which equals the expected profits generated by a spot market only strategy,

implying that the marginal firm is indifferent between both markets. If firm

x places a bid that is not accepted, the firm again generates profits at the

amount of

u(x , b, s) = E
�

�

ps(De)− c(x)
�+� . (4.11)

Any other firm places a bid that is lower than b̂ and thus generates higher

profits. The next proposition shows that every equilibrium b can be repre-

sented by a function of the form (4.9).

Proposition 1. If a is an equilibrium strategy profile, then b(·, sa) is also an

equilibrium, and sa = sb as well as â = b̂.

Proof. We arbitrarily choose an equilibrium a and show that b(x , sa) ≤ â if

and only if a(x) ≤ â: Choose x ∈ X so that sa(x) = 1 and a(x) 6= b(x , sa).
Since a is an equilibrium, we must have b(x , sa) ≤ â, since b(x , sa) > â

9Equivalently speaking, finding an equilibrium reduces to finding a fixed point of the
mapping s 7→ sb(·,s).
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implies u(x , a, s) < b(x , sa), which is impossible since a is an equilibrium.

This implies sa = sb and the statement follows.

Thus, the equilibrium b(·, sb) is equivalent to b, meaning that the market

result does not change when moving from b to b(·, sb). The basic intuition

behind this result is that firms bid their costs in a uniform pricing auction

if the industry’s cost structure is common knowledge. Note that the proof

does not rely on the continuity of c.

As explained above, the first summand of b describes the foregone spot

market profits a firm faces when selling capacity. This cost component is

decreasing with a firm’s marginal costs. The second summand describes the

costs of standby while offering capacity; these costs are increasing with a

firm’s marginal costs. Unsurprisingly, the sum of both cost components is a

convex function, as Theorem 1 implies:

Theorem 1. The opportunity cost function b(·, s) is continuous and u-shaped,

meaning that b(·, s) there exists x̌ such that b(·, s) is strictly increasing for

values smaller than x̌ and increasing for values exceeding x̌. The minimizer x̌

is defined by

P
�

De ≤ ms( x̌)
�

=
α

α+ β
. (4.12)

Proof. Since b(·, s) is an integral of a bounded function and since the marginal

cost curve c is differentiable, b(·, s) is continuous everywhere and differen-

tiable almost everywhere. We let X̃ denote the set of points where b(·, s) is

not differentiable. We arbitrarily choose x ∈ X\X̃ and calculate:

d

d x
b(x , s) = c′(x)

�

(1+ β/α)P
�

De ≤ ms(x)
�

− 1
�

.

Recall that c′ > 0 by assumption. The term on the right-hand side is increas-

ing with x and equals zero if and only if P(De ≤ m(x)) = (1+ β/α)−1. We

denote by F the distribution function of De. Then F is invertible on [0,1]
since f (x)> 0 for all x ∈Q. We define

x̌ := m−1
s

�

F−1

�

1

1+ β/α

��

.
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Since b(·, s) is not differentiable everywhere, it remains to be shown that

b(·, s) is strictly decreasing on [0, x̌] and strictly increasing on [ x̌ , 1]. We

define

b′(x , s) := 0 ∀x ∈ X̃ .

As it is an antiderivative of a function that is integrable with respect to the

Lebesgue measure, b(·, s) is absolutely continuous. Thus, we may express

b(·, s) as

b(x , s) = b(0, s) +

∫ x

0

b′(t, s)d t.

If x , y ∈ [0, x̌] and x < y , we conclude

b(y, s)− b(x , s) =

∫ y

x

b′(t, s)d t < 0.

A similar argument shows that b(·, s) is strictly increasing on [ x̌ , 1].

Theorem 1 states that firms at the boundary of X have high opportunity

costs when bidding on the capacity market. For x = 0, expected losses

from not bidding on the spot market are high, since the marginal costs are

low. Moreover, the must-run costs equal zero. Conversely, x = 1 has high

must-run costs due to high marginal costs, but the expected gains from spot

market bidding are zero. If a firm’s marginal costs are close to the expected

spot price, the firm places a relatively low bid.

4.3 Existence and Uniqueness of an Equilibrium

The following Corollary 1 states that in every equilibrium the set of firms

providing capacity is an interval in X , due to the shape of b. This result

is the key to the solution procedure: It allows us to establish a one-to-one

correspondence between X and the set of all allocations s that can eventually

arise in an equilibrium.
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Corollary 1. In every equilibrium the set of firms providing capacity is an

interval.

Proof. The statement follows from the shape of b(·, s).

We define h := Dc/α to ease notation. Thus, h is the length of the interval

of firms providing capacity. By a slight abuse of notation we define sx by

sx(y) = 1 if and only if y ∈ [x , x + h] .

Thus, the allocation sx selects all firms located in [x , x+h]. One should keep

in mind that from now on, x always equals the left boundary of this interval.

According to the previous notation, the corresponding inverse supply curve

should be denoted by msx
, but by a slight abuse of notation we identify msx

with mx .

The strategy to prove the existence of equilibria relies on the observation

that by restricting the shape of s to the functional form defined above we

have established a mapping

x 7→ b(·, sx)

that maps [0,1− h] bijective to the set of strategies in which every equilib-

rium must be located, as given by Corollary 1. We analyze the function g

defined by

g :[0, 1− h]→R,

x 7→ b(x + h, sx)− b(x , sx).

Figure 4.2 provides the connection between g and the equilibrium so-

lutions. The horizontal axis shows the continuum of firms. The interval

[x , x + h] contains those firms selected via sx to provide capacity.

We consider the case where g has a zero. This corresponds to Fig. 4.2 B,
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4.3 Existence and Uniqueness of an Equilibrium

Figure 4.2: The three different possible types of equilibria.

where

b(x , sx) = b(x + h, sx)

holds true, and where every firm providing capacity is located in the inner

of X . An obvious condition for g to possess a zero is if for the allocation s0,

the interval [0, h] of firms providing capacity is located on the left-hand side

of the minimum of b(·, s0) and for the allocation s1−h, the interval is located

on the right-hand side of the minimum of b(·, s1−h). Since b is u-shaped, it

follows that g(0) < 0 and g(1− h) > 0; and since g is continuous, a zero

exists. The next proposition proves the existence of a zero under these two

conditions mentioned above.

In the cases (A) and (C), the underlying model parameters are specified in

a way that there does not exist an equilibrium in which b(x , sx) = b(x+h, sx)
holds, meaning g does not have a zero. In this case, it must be g > 0 or g < 0

everywhere, since g is continuous. If g < 0, we define x = 1 − h, which

corresponds to Fig. 4.2 A. If g > 0, we define x = 0, which corresponds

to Fig. 4.2 C. Although it may not be apparent, we find that (A) and (C)

constitute equilibria. In the remaining analysis, the equilibrium pictured in

Fig. 4.2 B is sometimes referred to as an inner equilibrium or inner solution,

since x lies in the inner of [0,1− h]. The next proposition establishes some

properties of g and provides sufficient conditions for g to have a zero. This

is intuitively the case when the ratio Dc/Q is sufficiently small and β is

sufficiently large. Since this is typically the case in markets for capacity

(Dc/Q ≤ 0.03,β ≥ 0.3), the inner equilibrium, as pictured in Fig. 4.2 B, can

be seen as the typical equilibrium.
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Proposition 2. The function g has at most one zero. If g has a zero x0, then

g is strictly increasing in a neighborhood of x0. A sufficient condition for g to

have a zero is given by

P
�

De ≤ Dc

�

1

α
− 1
��

≤
α

α+ β

and

P
�

De ≤ 1− Dc

�

1− β
α

��

≥
α

α+ β
.

Proof. To see that g has a zero under the assumptions of Proposition 2, we

show that g(0) < 0 and that g(1− h) > 0 holds true. Then the statement

follows since g is continuous.

In order to prove g(0)< 0 we show that

h≤ arg min
x∈X

b(x , s0) =: x̌ ,

implying that for the allocation s0 the minimum x̌ of the corresponding bid-

ding function b(·, s0) is located on the right-hand side of the interval [0, h],
which is sufficient, since according to Theorem 1 b(·, s0) is strictly decreasing

on [0, x̌].

A calculation shows that we have m0(h) = h− Dc. Theorem 1 shows that

P
�

De ≤ m0( x̌)
�

= (1+ β/α)−1.

Since the mapping x 7→ P
�

De ≤ m0(x)
�

is strictly increasing with x , it is

sufficient to show that

P
�

De ≤ m0(h)
�

≤
1

1+ β/α
,

which follows from the assumptions:

P
�

De ≤ m0(h)
�

= P
�

De ≤
Dc

α
− Dc

�

≤
1

1+ β/α

The proof that g(1 − h) > 0 holds is a similar calculation. We have to
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show that

1− h≥ argmin
x∈X

b(x , s1−h) := x̌ ,

meaning that for the allocation s1−h the minimum of the corresponding bid-

ding function is located on the left-hand side of the interval [1− h, 1]. It is

sufficient to show that

P
�

De ≤ m1−h(1− h)
�

≥
1

1+ β/α
,

which follows again from the assumptions:

P
�

De ≤ m1−h(1− h)
�

= P
�

De ≤ q1+ 1− h
�

= P
�

De ≤ 1− Dc

�

1− β
α

��

≥
1

1+ β/α
.

Next, we see that we can find values x1, x2 ∈ [0, 1− h] so that g(x) <
0 if x ≤ x1, g(x) > 0 if x ≥ x2 and so that g is strictly increasing on

[x1, x2]. This is sufficient to prove the proposition. Note first that Theorem

1 implies that if the range [x , x+h] of firms providing capacity moves to the

right, then the minimum of b(·, sx) moves to the left because the mapping

x 7→ mx(·) is increasing with x . Therefore, under the assumptions of the

proposition there exists a value x1 so that the right edge of the interval

[x1, x1+h] and the minimum of the corresponding bidding function b(·, sx1
)

coincide, meaning that x1 + h minimizes b(·, sx1
). Similarly, there exists x2

so that x2 minimizes b(·, sx2
).

The u-shape of the bidding function and the fact that g(0)< 0 imply that

g(x) < 0 if x ≤ x1. Similarly, g(1− h) > 0 implies that g(x) > 0 if x ≥ x2.

It remains to be shown that g is strictly increasing on [x1, x2]. We choose

x and y satisfying x1 < x < y < x2 and show that g(y)− g(x) > 0. This
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expression can be written as

g(y)− g(x) = b(y + h, sy)− b(y, sy)− (b(x + h, sx)− b(x , sx))

= b(y + h, sy)− b(x + h, sx)
︸ ︷︷ ︸

(I)

+ b(x , sx)− b(y, sy)
︸ ︷︷ ︸

(I I)

.

First, we look at expression (I I):

b(x , sx)− b(y, sy) = b(x , sx)− b(x , sy)
︸ ︷︷ ︸

(A)

+ b(x , sy)− b(y, sy)
︸ ︷︷ ︸

(B)

Expression (B) strictly exceeds zero because the function b(·, sy) is u-shaped

and the function’s minimum strictly exceeds y by construction of [x1, x2]. It

remains to be shown that expression (A) is non-negative. To prove this, we

choose z < x < y and consider the difference b(z, sx)− b(z, sy). We show

that this difference is non-negative and since the difference is continuous

in z, the limit z → x is non-negative as well. The key to this result is the

observation that the must-run costs of firm z are equal for both the allocation

sx and sy because must-run costs only occur for z when a firm z̃ < z happens

to be the marginal firm on the spot market. Since z̃ < z < x < y , the must-

run costs of z are not affected when moving from sx to sy . Furthermore, the

foregone spot market profits for z decrease when the allocation moves from

sx to sy because the spot market price (weakly) decreases. More formally

(note that mx ≤ my), it can be outlined:

b(z, sx)− b(z, sy)

=E
�

(px(De)− c(z))+
�

− E
�

(py(De)− c(z))+
�

=

∫ q2

mx (z)

(c(m−1
x (t))− c(z)) f (t)d t −

∫ q2

my (z)

(c(m−1
y (t))− c(z)) f (t)d t

≥
∫ q2

mx (z)

(c(m−1
x (t))− c(z)) f (t)d t −

∫ q2

mx (z)

(c(m−1
y (t))− c(z)) f (t)d t

≥
∫ q2

mx (z)

c(m−1
x (t)) f (t)d t −

∫ q2

mx (z)

c(m−1
x (t)) f (t)d t = 0.
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It remains to be shown that (I) is non-negative. The proof is similar to the

proof that (I I) exceeds zero: By construction, x+h and y+h are located on

the right-hand side of the minimum of b(·, sx) so that we can take advantage

of the u-shape of b(·, sx). Moreover, the foregone spot market profits of a

firm z > y + h are not affected when the allocation moves from sx to sy in

analogy to the situation above. The details are omitted.

Inequality (2) in Proposition 2 ensures that g(0) < 0 and inequality (2)

leads to g(1− h)> 0. Since g is continuous, if follows that g has a zero.

Note that if β = 0, no costs of keeping the plant running arise, so that

the first equality always holds true. Contrarily, since α < 1, the second

inequality does not hold true for any configuration of the model parameters

as long as β = 0. This is consistent with the fact that b is strictly decreasing

if β = 0, which is easily demonstrated. The next theorem is an immediate

consequence of the proposition above.

Theorem 2. A unique equilibrium exists.

Proof. We split the existence proof into three parts.

First, we assume g has a zero x0. It is apparent that b(·, sx0
) is an equilib-

rium in this case.

Second, we consider the case in which g > 0 everywhere. The proof of

Proposition 2 shows that

P
�

De ≤ m0(h)
�

= P
�

De ≤ Dc

�

1

α
− 1
��

>
α

α+ β
. (4.13)

The first equation is a calculation. We observe that b(·, s0) is an equilibrium,

as pictured in Fig. 4.2 C: Combining expressions (4.12) and (4.13), we con-

clude that the minimum of b(·, s0) is located in [0, h], since the mapping

x 7→ P
�

De ≤ m0(x)
�

is strictly increasing with x . Since b(·, s0) is strictly

increasing on [h, 1], condition (4.2) is satisfied.

Third, we assume g < 0 everywhere. Then b(·, s1−h) is an equilibrium as

pictured in Fig. 4.2 A. We argue by similar considerations as in the second

case that minX b(·, s1−h) ∈ [1− h, 1], which yields the given statement.
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As in the existence proof, we examine three cases in order to prove unique-

ness. First we assume g > 0 and that there exists x > 0 so that b(·, sx) is

an equilibrium. We denote by x̌ the minimizer of b(·, sx). It follows that

x̌ ∈ [x , x + h]. Since g > 0, it holds true that b(x , sx) < b(x + h, sx). Since

b(·, sx) is continuous and strictly decreasing on [0, x], we may choose y ∈
[0, x] so that b(y, sx)< b(x+h, sx). But it also holds true that sx(x+h) = 1,

sx(y) = 0, which is a contradiction to the cost-efficiency of sx .

The second case in which g < 0 is similar to the first and is omitted.

Third, if there exists x0 so that g(x0) = 0, then x0 is unique, which follows

from Proposition 2.10 We conclude that in this case, there exists exactly one

equilibrium of the form pictured in Fig. 4.2 B. Moreover, b(·, s0) and b(·, s1−h)
also do not constitute equilibria since, according to Proposition 2, it holds

true that minX b(·, s0) /∈ [0, h] and minX b(·, s1−h) /∈ [1−h, 1]. Lastly, for any

x ∈ X satisfying x 6= 0, x 6= 1− h and g(x) 6= 0, b(·, sx) does not constitute

an equilibrium by the arguments of the first case.

4.4 Welfare Analysis

Although the efficiency of the equilibrium may be derived from the first wel-

fare theorem, I give an explicit proof. The aim is to show in an instructive

manner that the cost minimizing problem of a central planner and the effi-

cient equilibrium achieved by the market are equivalent.11

If the market equilibrium is attained, the cost-efficient firms that provide

capacity are selected. As demonstrated in the analysis, a firm’s costs are

opportunity costs arising from foregone spot market profits and ready-to-

operate costs. If we consider a central planner determining the allocation on

both the capacity and the spot market, the goal is to minimize the expected

10If we allow for the support of De to be an interval that is a subset of Q, then g is no longer
increasing but rather nondecreasing. However, if [x , x + h] ∩ supp(De) is empty, then
g(x) 6= 0 because then b(x , sx)− b(x + h, sx) has a very simple form and equals either
c(x+h)− c(x) or c(x)− c(x+h). If [x , x+h]∩ supp(De) is non-empty, then g ′(x)> 0.
Thus, the null of g remains unique.

11See also Müsgens et al. (2011) for a similar discussion.
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costs of electricity generation by choosing an optimal interval of firms pro-

viding capacity.

We have to show that minimizing the firms’ cumulative opportunity costs

of capacity provision leads to the same allocation as minimizing the ex-

pected costs of electricity generation by the central planner. This implies

that opportunity costs of capacity market bidding must be accompanied by

real costs, meaning by an expected consumption of resources on the spot

market.

To provide intuition, we discuss the issue in a heuristic manner. Since

demand for capacity is inelastic, an efficient supply allocation is sufficient

for efficiency. A supply allocation, in turn, is efficient if it minimizes overall

costs. For the moment, we let demand De for electricity on the spot market

be constant and be equal to some value d.

Any efficient allocation a central planner establishes is given by an interval

[x , x + h]. If we denote by d̃ := m−1
x (d) the firm that is price setting on the

spot market, we must have d̃ ∈ [x , x + h]. This is easily demonstrated: If

the interval is located on the left-hand side of d̃, then there exists a firm y ≥
x+h that is inframarginal, meaning that c(y)< c(d̃). Clearly, we can reduce

costs by shifting the interval to the right, so that y then provides capacity

and a firm that has lower marginal costs compared to y can solely produce

electricity. Conversely, x ≤ d̃ is necessary condition for cost efficiency: If d̃ <

x , there exists y such that c(d̃) < c(y) < c(x), which immediately implies

that shifting the interval to the left does not change the spot market price

but reduces must-run costs. Thus, shifting to the left decreases expected

costs of electricity generation in this case.

Therefore, we assume that d̃ ∈ [x , x+h]. In order to minimize total costs,

the central planner has to minimize the marginal increase of costs when

shifting the interval [x , x + h] to the right. Next, we derive this marginal

effect.

Note first that shifting to the right implies that x does not provide capacity

anymore and can increase production by the share α. At the margin, this
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leads to negative additional costs of electricity generation that equal

α[c(x)− c(d̃)].

In turn, additional must-run costs emerge that equal

β c(x + h),

which reduce costs by

β c(d̃).

We denote by γ the total costs of electricity generation the central planner

seeks to minimize. Shifting to the right changes costs according to

γ′(x) :=β c(x + h)− β c(d̃) +α[c(x)− c(d̃)]

=β[c(x + h)− px(d)]−α[px(d)− c(x)]

=αg(x). (4.14)

Thus, the marginal effect of shifting the interval corresponds to the func-

tion g we previously analyzed – g is defined as the difference between the

capacity market bids placed by x + h and x . In the case of deterministic

demand discussed here, g has a simple form: Firm x only faces costs of

foregone spot market profits, whereas firm x+h only faces ready-to-operate

costs.

Recall that if sx is the allocation of an inner equilibrium, then g(x) = 0.

This implies γ′(x) = 0, and we conclude that x minimizes γ. This is because

g and thus γ′ are strictly increasing in a neighborhood of x as previously

derived.

For the general case, we consider the expected costs of electricity produc-
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tion for a given sx , which equal

γ(x) := E





∫ De

q1

px(q)dq



+ β

∫ x+h

x

c(q)dq. (4.15)

The first summand describes the the expected costs of generating electric-

ity with respect to stochastic demand De and with respect to the allocation

sx . The transformation of the aggregated supply curve via sx is incorporated

in px . The second summand describes the costs that arise from generating

q1 units of electricity due to the must-run condition, which equal the inte-

grated costs multiplied by β over the set [x , x + h]. The next proposition

shows that equation (4.14) holds in the general case.

Proposition 3. The overall cost function γ satisfies γ′ = αg.

Proof. By applying Fubini’s theorem to the first summand of (4.15) and then

the transformation formula with transformation mx we calculate (remember

mx(0) = q1, mx(1) = q2 and the definition of mx):

γ(x) =

∫ q2

q1

px(q)P
�

q ≤ De
�

dq+ β

∫ x+h

x

c(y)d y

=

∫ 1

0

c(y)
�

1− sx(y)(α+ β)
�

P
�

mx(y)≤ De
�

d y + β

∫ x+h

x

c(y)d y.

(4.16)

In order to be able to calculate the derivative of γ, we write (note that

on the intervals [0, x], [x , x + h], [x + h, 1] the function sx is constant and

equals 0 or 1):
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γ(x) =

∫ x

0

c(y)P
�

mx(y)≤ De
�

d y (4.17)

+

∫ x+h

x

c(y)(1−α− β)P
�

mx(y)≤ De
�

d y (4.18)

+

∫ 1

x+h

c(y)(1−α− β)P
�

mx(y)≤ De
�

d y (4.19)

+ β

∫ x+h

x

c(y)d y. (4.20)

Notice that on [0, x] and [x + h, 1], the function mx(·) does not depend

on x , which makes it easy to differentiate expressions (4.17) and (4.19)

with respect to x . Expression (4.18) is differentiated by applying the multi-

dimensional chain rule to the function g̃(φ(x)), where

g̃(x , z) :=

∫ x+h

x

c(y)(1−α− β)P
�

mz(y)≤ De
�

d y

φ(x) := (x , x).

We calculate:

γ′(x) =c(x)P
�

mx(x)≤ De
�

− c(x + h)P
�

mx(x + h)≤ De
�

+ (1−α− β)
�

c(x + h)P
�

mx(x + h)≤ De
�

− c(x)P
�

mx(x)≤+De
��

+ β (c(x + h)− c(x))− (α+ β)
∫ mx (x+h)

mx (x)

f (y)px(y)d y

=c(x)
�

(α+ β)P
�

mx(x)≤ De
�

− β
�

− c(x + h)
�

(α+ β)P
�

mx(x + h)≤ De
�

− β
�

(4.21)

− (α+ β)
∫ mx (x+h)

mx (x)

f (y)px(y)d y. (4.22)
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Second, we derive αg(x):

αg(x) =α

∫ q2

mx (x+h)

f (y)
�

px(y)− c(x + h)
�

d y

+ β

∫ mx (x+h)

q1

f (y)
�

c(x + h)− px(y)
�

d y

−α
∫ q2

mx (x)

f (y)
�

px(y)− c(x)
�

d y

− β
∫ mx (x)

q1

f (y)
�

c(x)− px(y)
�

d y

=c(x)
�

αP
�

mx(x)≤ De
�

− βP
�

De ≤ mx(x)
��

− c(x + h)
�

αP
�

mx(x + h)≤ De
�

− βP
�

De ≤ mx(x + h)
��

− (α+ β)
∫ mx (x+h)

mx (x)

f (y)px(y)d y

=c(x)
�

(α+ β)P
�

mx(x)≤ De
�

− β
�

− c(x + h)
�

(α+ β)P
�

mx(x + h)≤ De
�

− β
�

− (α+ β)
∫ mx (x+h)

mx (x)

f (y)px(y)d y

=γ′(x).

The factor α arises because the opportunity costs b(·, sx) are per-unit

costs, whereas γ describes the overall costs of production. Theorem 3 is

an immediate consequence of Proposition 3, but in addition covers the case

where an inner equilibrium does not exist.

Theorem 3. The equilibrium is efficient.

Proof. This follows from the proposition above: If there exists an inner equi-

librium and if sx denotes the equilibrium allocation, then γ′(x) = 0. Since

g is strictly increasing in a neighborhood of x according to Proposition 2,
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x is a local minimum of γ. If g does not have a zero, then s0 or s1−h is the

equilibrium allocation. Since γ′(x) 6= 0 for all x , γ is minimized by 0 or

1− h. Since the range of firms providing capacity must contain the bidding

function’s minimum in an efficient solution, γ is minimized by 0 if and only

if s0 is the equilibrium allocation.

4.5 Results and Discussion

We analyzed a stylized model that accounts for the main interdependencies

between a spot electricity market and a capacity market. We have seen that

the strategy space of the firms may be restricted to an opportunity cost func-

tion that is u-shaped. Opportunity costs arise from the alternative of spot

market participation instead of providing capacity. These opportunity costs

are decreasing with marginal costs. Additional costs of capacity provision

arise from the technical requirement that power plants must be running

while providing capacity, and these ready-to-operate costs are increasing

with a firm’s marginal costs.

An immediate consequence of this result is Corollary 1, which states that

in every equilibrium the set of firms providing capacity is an interval. This

ensures that a unique equilibrium exists. Moreover, the equilibrium is ef-

ficient, since the opportunity costs a firm faces when placing a bid on the

capacity market become true costs in the case of electricity generation on

the spot market.

In the model, firms differ only by their marginal costs. In reality, there is

a large number of different power plants that exhibit very different techni-

cal and economical properties. For example, the share of capacity a power

plant can offer on the capacity market depends on the specific technology;

and some technologies can not even meet the technical requirements for

providing capacity at all. Moreover, the minimum load condition varies ex-

tensively and may even be zero (in the case of a pumped storage power

station).

96



4.5 Results and Discussion

As previously mentioned, the results developed may translate to other

markets where there is demand for products as well as for production ca-

pacity. There are three essential characteristics the market must possess: (i)

The firms differ with respect to their marginal profits per unit, (ii) the overall

profit that a firm generates is increasing with product market demand and

(iii) a firm faces ready-to-operate that are decreasing with a firm’s marginal

profit per unit.

We consider, for example, two different restaurants A and B. Restaurant

A has a reputation, whereas restaurant B does not. Every other restaurant

in town is located between A and B with regard to its reputation. All restau-

rants have an identical cost structure and provide service of equal quality.

Due to restaurant A’s reputation, prices in restaurant A are higher than in

restaurant B. The same translates for the profit per (customer). This yields

the case described in property (i). If we assume that the potential customers

are equally distributed across the restaurants that are open we yield prop-

erty (ii).12

We next consider a small group of businessmen who want to rent a dining

room in one of these two restaurants for a meeting. We analyze the costs of

renting the dining room to the businessmen that both restaurants may face

on a day with average demand.

Since restaurant A generates the highest profit per customer, it is the last

restaurant in town to be closed when demand decreases. In particular, it

is open when demand is on average. Since the group of businessmen is

sufficiently small, restaurant A effectively looses customers when renting

the dining room to the businessmen. Thus, there arise opportunity costs

from sending customers away.

Conversely, due to the relatively low number of guests, restaurant B is not

able to recover labor costs that evening and thus it is closed. If the group of

businessmen is sufficiently small, the costs for restaurant B to rent a dining

room are driven by the labor costs that have to be recovered, that is to say,

12We assume that this price structure and distribution of customers constitute a short-term
equilibrium.
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by the costs of keeping capacity ready for delivery on demand. If restaurant

C has two dining rooms, it operates the one that is not rented and thus

generates a contribution margin to cover labor costs. Thus, a restaurant

with low marginal profits per unit has high ready-to-operate costs, which

yields property (iii).

If prices decrease from A to B, then a restaurant with intermediate prices

offers the dining room at the lowest price. We let C denote this restau-

rant. Notice that the allocation of the regular customers to the restaurants

is transformed when C rents a dining room to the businessmen. If C was

open anyway, then renting the dining room decreases supply on the product

market. However, if C was originally meant to be closed, then renting the

dining room leads to an increase of supply on the product market, as long

as C has at least two dining rooms.
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