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Zusammenfassung

Die Darstellungstheorie von (getwisteten) Schleifen-und Stromalgebren hat in den let-
zen Jahrzenten stark an Attraktivität gewonnen, z.B. wurden lokale Weylmoduln, De-
mazuremoduln und Kirillov-Reshetikhin-Moduln intensiv untersucht. Die äquivarianten
Funktionenalgebren stellen eine umfangreiche Klasse von Algebren dar, welche die (get-
wisteten) Schleifen-und Stromalgebren verallgemeinern. Wir haben die Definition von
lokalen Weylmoduln für äquivariante Funktionenalgebren erweitert, wo g halbeinfach,
X affin vom endlichen Typ und die Gruppe Γ eine abelsche Gruppe ist, die frei auf
X operiert. Wir haben eine Verbindung, genauer einen Isomorphismus, zwischen einer
Unterkategorie von Darstellungen von äquivarianten Funktionenalgebren und deren
ungetwisteten Analoga erzielt. Wir haben ebenfalls gezeigt, dass weitere Eigenschaf-
ten von lokalen Weylmoduln (z.B. deren Charakterisierung durch homologische Eigen-
schaften und eine Tensorprodukt-Eigenschaft) auch für äquivariante Funktionenalge-
bren gelten. In dem Fall wo die Operation nicht frei ist, haben wir lokale Weylmoduln
für getwistete Stromalgebren untersucht. Wir haben diese mit affinen Demazuremo-
duln identifiziert und eine explizite Konstruktion dieser ausgehend von ungetwisteten
Weylmoduln angegeben, die das Fusionsprodukt verallgemeinert. Mit Hilfe dieser Re-
sultate haben wir somit eine Dimensions und Charakterformel erhalten. Auf der Seite
der Kombinatorischen Darstellungstheorie haben wir eine explizite Realisierung von
Kirillov-Reshetikhin-Kristallen über Polytope für den affinen Typ A bewiesen. Der
Vorteil dieser Realisierung besteht darin, dass alle Formeln explizit angegeben sind.
Diese Realisierung erlaubt es die Kombinatorik von kristallinen Basen von Kirillov-
Reshetikhin-Moduln zu beschreiben.

Abstract

The representation theory of (twisted) loop and current algebras has gained a lot
of attraction during the last decades, e.g. local Weyl modules, Demazure modules
and Kirillov-Reshetikhin modules were investigated intensively. The equivariant map
algebras are a large class of algebras that are generalizations of (twisted) loop and
current algebras. We have extended the definition of local Weyl modules to the setting
of equivariant map algebras where g is semisimple, X is affine of finite type, and the
group Γ is abelian and acts freely on X. We have established a link, particularly an
isomorphism, between certain categories of representations of equivariant map algebras
and their untwisted analogues. We have also shown that other properties of local Weyl
modules (e.g. their characterization by homological properties and a tensor product
property) extend to the more general setting of equivariant map algebras. When the
assumption of freeness does not hold we have investigated local Weyl modules for
twisted current algebras. We have identified them with corresponding affine Demazure
modules and have given an explicit construction from untwisted Weyl modules which
generalize the fusion product. Therefore, we deduce from these results dimension and
character formulas. On the combinatorial representation theory side, we have given an
explicit realization of Kirillov-Reshetikhin crystals for the affine type A via polytopes.
The advantage of this realization is mainly the fact that all formulas are explicit. This
realization allows to describe explicitly the combinatorics of crystal bases of Kirillov-
Reshetikhin modules.
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Introduction
Lie algebras were orginally introduced by S. Lie as an algebraic structure whose main use
is in studying geometric objects such as Lie groups. The classification of simple finite-
dimensional Lie algebras over C was provided by W. Killing and E. Cartan by the end of the
19th century and found huge applications in mathematical physics. This theory was extended
in 1967 where V.G. Kac and R.V. Moody introduced independently Kac-Moody algebras.
These algebras include all simple finite-dimensional Lie algebras but also many infinite-
dimensional examples. Kac-Moody algebras have applications in many areas of mathematics
and theoretical physics, e.g. group theory, combinatorics, differential equations, invariant
theory and statistical physics. It is thus important to understand their structure. For the
investigation of their structure representation theory plays a crucial role, which is one of
the classical branches of mathematics. It is dedicated to the study of algebraic structures,
e.g. Lie algebras, by representing their elements as linear transformations of vector spaces.
In the last 50 years the research on arbitrary Lie algebras, as affine Lie algebras, quantum
algebras, loop algebras or equivariant map algebras, became a highly competitive field in
mathematics.
This thesis consists of three articles, which are published or will be published soon

I G. Fourier, T. Khandai, D. Kus, A. Savage
Local Weyl modules for equivariant map algebras with free abelian group actions

J. Algebra 350 (2012), 386–404
II G. Fourier, D. Kus,

Demazure modules and Weyl modules: The twisted current case,
to appear in Transactions of the AMS

III D. Kus,
Realization of affine type A Kirillov-Reshetikhin crystals via polytopes,
submitted to Journal of Combinatorial Theory, Series A

In this thesis we study the category of finite-dimensional representations of certain equi-
variant map algebras. Let X be a scheme and let g be a finite-dimensional semisimple Lie
algebra, both defined over an algebraically closed field k of characteristic zero. Assuming
that a finite group Γ is acting on both (X and g) by automorphisms, the equivariant map
algebra M = M(X, g)Γ is the Lie algebra of regular maps X −→ g which are equivariant
with respect to the action of Γ.
A more algebraic definition of these algebras is provided via the identification with fixed point
algebras of the diagonal action of Γ on (g⊗A), where the action of Γ on the coordinate ring
A of X is induced by the action of Γ on X, i.e. M = (g⊗ A)Γ.
One important class of equivariant map algebras is the class of loop algebras (X = C

∗,Γ =
{1}), playing a significant role in the theory of affine Lie algebras. The classification of their
irreducible finite-dimensional representations is worked out by Chari and Pressley in [5], [11],
[12].
Another class of equivariant map algebras are the current algebras (X = C,Γ = {1}), On-
sager algebras and tetrahedon algebras. The irreducible finite-dimensional representations of
the latter two algebras are classified in [15] and [25] respectively. Summarizing the results, it
is shown that all irreducible finite-dimensional representations are evaluation representations.
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A complete list of irreducible finite-dimensional representations of an arbitrary equivariant
map algebra is provided in [40]. The main result is that any finite-dimensional irreducible
representation is a tensor product of evaluation representations and a one-dimensional rep-
resentation. In particular, not all one-dimensional representations are evaluation represen-
tations.
Since the category of finite-dimensional modules of equivariant map algebras is not semisim-
ple (even the category of finite-dimensional modules of loop algebras is not semisimple), the
set of representations which can be assembled out of the irreducible ones is far from being the
whole list of finite-dimensional representations. Thus, many other classes of representations
can be defined and studied.
For instance local Weyl modules, global Weyl modules, Demazure modules and Kirillov-
Reshetikhin modules were investigated for (twisted) loop algebras. For details we refer to a
serie of papers ([6],[7],[8],[9],[13],[14],[16],[17],[20],[21],[22]).
The local Weyl modules for loop algebras, denoted by W (ψ), are parametrized by finitely
supported functions ψ from X = C

∗ to P+, the set of dominant integral weights for g, and
have the property that any finite-dimensional highest weight module of highest weight ψ
and one-dimensional highest weight space is a quotient of W (ψ). Moreover, they have a
nice tensor product decomposition into “smaller” local Weyl modules supported in a single
point. Furthermore, it was conjectured in [14] that they play an important role in the theory
of quantum affine algebras (q-deformation of the loop algebra), namely that all local Weyl
modules are obtained as q = 1 limits of irreducible finite-dimensional representations of
quantum affine algebras. The above conjecture can be reduced to computing dimensions
and characters for local Weyl modules supported in a single point. Additionaly by using
pull back maps, it is sufficient to compute dimensions and characters of local Weyl modules
supported in zero. The conjecture is proven in the following papers:

• for the Lie algebra sl2 by Chari-Pressley in [14]
• for the Lie algebra sln by Chari-Loktev in [9]
• for simply-laced Lie algebras in [21]
• for non simply-laced Lie algebras in [38].

There are several ways to generalize the notion of local Weyl modules. By replacing C[t, t−1]
with a commutative, associative algebra ([7],[17]) one can define local and global Weyl mod-
ules as before and obtain similar properties, but character and dimension formulas are known
only in certain cases.
Another way of generalizing local Weyl modules is to consider twisted current and twisted
loop algebras or more general equivariant map algebras. The local Weyl modules for twisted
loop algebras, also called twisted Weyl modules and denoted by W Γ(ψ), are studied in [8],
where dimensions and characters are computed.
The more general setting of generalized Weyl modules for certain equivariant map algebras
are studied in [I]. The initial problem here is, that for the study of representations of arbitrary
equivariant map algebras, one needs new techniques, since past approaches to the study of
representations for twisted loop algebras rely heavily on the representation theory of g. Only
in a few cases one is assured of the existence of a semisimple fixed point subalgebra gΓ or a
Cartan subalgebra of M as in the classical sense. In [I] we develop new techniques for the
study of local Weyl modules and obtain the following results:



3

We assume that g is semisimple, X is of finite type, Γ is abelian, and Γ acts freely on X. The
(twisted) loop algebras are still among these equivariant map algebras, while the (twisted)
current algebras violate the freeness condition. It means, up to this point, the results of [I]
do not apply to the twisted current case.
In the case where the action of Γ is free, all irreducible finite-dimensional representations of
M(X, g)Γ are tensor products of evaluation modules. To be more precise, the map

EΓ −→ SΓ, ψ 7→
n⊗

i=1

Vxi
(ψ(xi)),

is a bijection, where SΓ denotes the set of isomorphism classes of irreducible finite-dimensional
representations of M(X, g)Γ and EΓ is the set of Γ-invariant finitely supported functions
ψ : Xrat → P+. The x′is are representatives of each orbit in the support of ψ, i.e.
Suppψ = {Γx1, · · · ,Γxn}.
Let F and FΓ denote the category of finite-dimensional (g⊗A)-modules and (g⊗A)Γ-modules
respectively. Let X∗ be the set of finite subsets x = {x1, · · · , xn} such that Γxi ∩ Γxj = ∅.
For x ∈ X∗, let Fx (respectively FΓ

x
) denote the full subcategory of F (respectively FΓ)

consisting of modules with support contained in x (respectively Γ ·x). Then we have on the
one hand an isomorphism of Lie algebras

(g⊗ A)Γ/(g⊗ Iη)
Γ ∼=
−→ (g⊗ A)/(g⊗ Iη)

for suitable ideals (g⊗Iη) and (g⊗Iη)
Γ respectively and on the other hand (by using the above

isomorphism), we proved that we obtain for each x ∈ X∗ mutually inverse isomorphisms of
categories

Fx

Tx

//

FΓ
x

Ux

oo

called twisting and untwisting functors.
These functors allow us to move back and forth between the theory of finite-dimensional
representations of equivariant map algebras (satisfying the aforementioned assumptions)
and the corresponding theory for map algebras. In particular we define the twisted Weyl
modules as follows:
Let V be a finite-dimensional irreducible module for M(X, g)Γ and let x ∈ X∗ contain one
point in each Γ-orbit in the support of V . Then UxV is an irreducible finite-dimensional
(g ⊗ A)-module, to which is associated an untwisted local Weyl module W (ψ). We then
define the twisted local Weyl module associated to V to be TxW = W Γ(ψ), and it is shown
that this definition is independent of the choice of x (see [I],[Proposition 3.6]). By using the
above definition, a tensor product decomposition is proven. Moreover, a justification of the
definition is provided by proving a similar characterization of twisted local Weyl modules by
homological properties as in [7]. More precisely, for a maximal weight (g ⊗ A)Γ-module M
([I] ,[Definition 4.2]) of maximal weight ψ we have M ∼= WΓ(ψ) if and only if

HomFΓ(M,VΓ(ϕ)) = 0 and Ext1FΓ(M,VΓ(ϕ)) = 0 ∀ ϕ ∈ EΓ with ht(ϕ) < ht(ψ).

The advantage of this characterization is that it can be used as a general definition of local
Weyl modules for arbitrary equivariant map algebras, where the action is not necessarily
free. We recall that the Weyl module conjecture for twisted current algebras is still unsolved
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up to this point, since the results of [I] do not apply. This issue is treated particularly in
[II], where the gap in the computation of dimension and character formulas for local Weyl
modules of twisted current algebras is worked out. The techniques are the following:
Let Γ be the finite group of order 2 or 3 of non-trivial diagram automorphism of a simple Lie
algebra g of type A,D,E. The action by automorphisms on X = C is given by multiplication
with ξ, a primitive 2nd or 3rd root of unity. Denote by P+

0 the set of dominant weights of
the fixed point algebra g0. Then we can divide our results into two parts:
Let g be not of type A2l, then for λ ∈ P+

0 we obtain that the graded Weyl modules W Γ(λ)
can be identified with level one Demazure modules and furthermore it is isomorphic to the
associated graded module of the restriction of a local Weyl module for g ⊗ C[t, t−1]. To be
more precise we get the following isomorphisms,

W Γ(λ) ∼= D(1, λ) and W Γ(λ) ∼= gr(Wa(λ)).

In the second part g is assumed to be of type A2l. Here the Weyl modules are described for
the weights λ = λ1 + λ2 ∈ P+

0 , satisfying the property λ(α∨
l ), λ2(α

∨
l ) ∈ 2Z+ 1.

We obtain that the Weyl module is isomorphic to a Demazure module

W Γ(λ) ∼= D(1/2, λ)

and moreover

W Γ(λ) ∼= gr(Wa(λ1)⊗W Γ(λ2)).

In the case where λ(α∨
l ) is even, the dimension and character of the local Weyl modules

remain uncomputed and the identification with Demazure modules fails. The description of
these Weyl modules and Weyl modules for arbitrary equivariant map algebras are therefore
undetermined.
Another powerful tool of studying representations, as irreducible representations, Weyl mod-
ules, Demazure modules and Kirillov-Reshetikhin modules, is Kashiwara’s crystal bases the-
ory, introduced in [30]. Roughly speaking, crystal bases can be viewed as bases at q = 0 and
they contain structures of edge-colored oriented graphs satisfying a set of axioms, called the
crystal graphs. These crystal graphs have certain useful properties, for instance characters
of Uq(g)-representations can be computed and the decomposition of tensor products of rep-
resentations into irreducible ones can also be determined from the crystal graphs, to name
just a few. It is thus an important problem to find explicit realizations of crystal graphs.
There are many such realizations of crystal graphs for irreducible representations for Uq(g),
combinatorial and geometrical, elaborated during the last decades, by way of example we
refer to ([32],[33],[35],[37]).
Crystal bases for irreducibleU

′

q(g) representations (quantum affine algebra) might not always
exist. A certain subclass of these representations, that draw a lot of attraction during the
last decades, are the so called Kirillov-Reshetikhin modules KR(m,ωi, a), where i is a node
in the classical Dynkin diagram and m is a positive integer. It was first conjectured in

[26], that KR(m,ωi, a) admits a crystal basis and was proven in type A
(1)
n in [29] and in all

non-exceptional cases in [41],[42]. We denote this crystal by KRm,i and call it a Kirillov-
Reshetikhin crystal.

In [III] we gave an explicit realization of Kirillov-Reshetikhin crystals for the affine type A
(1)
n

via polytopes. The results were the following:
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The polytope introduced in [18] for all dominant integral An weights λ can be understood for

λ = mωi as a subset of Ri(n−i+1). We denote the intersection of this polytope with Z
i(n−i+1)
+

by Bm,i. We defined certain maps on Bm,i, among others the Kashiwara operators, and
proved that this becomes a classical crystal of type An. As a set, we can identify Bm,i with
certain blocks of height n− i+ 1 and width i

where the boxes are filled, under some assumptions, with some non-negative integers (see
[III] ,[Definition 2.1]).
Subsequently we have constructed certain local A2 isomorphisms on our underlying poly-
tope Bm,i and proved that the so called Stembridge axioms are satisfied. These axioms
precisely characterize the set of crystals of representations in the class of all crystals. Our
first important result was therefore:
The polytope Bm,i is as an An crystal isomorphic to B(mωi) (the one obtained from Kashi-
wara’s crystal bases theory), i.e.

Bm,i ∼= B(mωi), as {1, · · · , n}-crystals.

As a consequence we obtain that the classical crystal structure we gave coincide with the
classical KR crytal structure because in [46] it was shown that, as a {1, · · · , n}-crystal, KRm,i

is isomorphic to B(mωi).
A promotion operator pr on a crystal B of type An is defined to be a map satisfying several
conditions, namely that pr shifts the content, pr ◦ ẽj = ẽj+1 ◦ pr, pr ◦ f̃j = f̃j+1 ◦ pr for all

j ∈ {1, · · · , n−1} and prn+1 = id, where ẽj and f̃j respectively are the Kashiwara operators.
If the latter condition is not satisfied, but pr is still bijective, the map pr is called a weak
promotion operator (see also [2]). The advantage of such (weak) promotion operators is
that we can associate to a given crystal B of type An a (weak) affine crystal by setting

f̃0 := pr−1 ◦ f̃1 ◦ pr, and ẽ0 := pr−1 ◦ ẽ1 ◦ pr.
On the set of all semi-standard Young tableaux of rectangle shape, which is a realization of
B(mωi), Schtzenberger defined a promotion operator, called the Schtzenberger’s promotion
operator [45], by using jeu-de-taquin.
In [46] it is shown that the affine crystal constructed from B(mωi) (realized as a set of semi-
standard Young tableaux) using Schtzenberger’s promotion operator is isomorphic to the
Kirillov-Reshetikhin crystal KRm,i. As a result, it was of strong interest to define a bijective
map on our polytope satisfying the properties of a promotion operator. In ([III],[Section 6])
we defined a map via an algorithm consisting of i steps, and showed that this map satisfies
the conditions for a promotion operator and thus provided an explicit realization of Kirillov-

Reshetikhin crystals for the affine type A
(1)
n via polytopes. The algorithm can be implemented

easily and hence provides a new method to calculate KR crystals with the computer.

Acknowledgements: First, I would like to thank my supervisor Peter Littelmann. This
work would not be possible without his guidance and valuable support. I would like to thank
Ghislain Fourier for all helpful discussions and cooparation during my studies. Special thanks
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LOCAL WEYL MODULES FOR EQUIVARIANT MAP ALGEBRAS

WITH FREE ABELIAN GROUP ACTIONS

GHISLAIN FOURIER, TANUSREE KHANDAI, DENIZ KUS, AND ALISTAIR SAVAGE

Abstract. Suppose a finite group Γ acts on a scheme X and a finite-dimensional Lie
algebra g. The associated equivariant map algebra is the Lie algebra of equivariant regular
maps from X to g. Examples include generalized current algebras and (twisted) multiloop
algebras.

Local Weyl modules play an important role in the theory of finite-dimensional represen-
tations of loop algebras and quantum affine algebras. In the current paper, we extend the
definition of local Weyl modules (previously defined only for generalized current algebras
and twisted loop algebras) to the setting of equivariant map algebras where g is semisimple,
X is affine of finite type, and the group Γ is abelian and acts freely on X. We do so by defin-
ing twisting and untwisting functors, which are isomorphisms between certain categories of
representations of equivariant map algebras and their untwisted analogues. We also show
that other properties of local Weyl modules (e.g. their characterization by homological prop-
erties and a tensor product property) extend to the more general setting considered in the
current paper.

Contents

Introduction 8
1. Equivariant map algebras and their irreducible representations 11
2. Twisting and untwisting functors 14
3. Local Weyl modules 19
4. Characterization of local Weyl modules by homological properties 21
References 25

Introduction

Partially because of their importance in the theory of quantum affine Lie algebras, loop alge-
bras g⊗C[t, t−1], where g is a semisimple Lie algebra, have been the subject of intense study
over the last two decades. Their representation theory is particularly interesting because
the category of finite-dimensional representations is not semisimple. In [3, 8], it was shown
that the irreducible objects in these categories are highest weight in a suitable sense, and a
classification was given in terms of these highest weights, which are n-tuples of polynomials,
where n is the rank of g. In [9], it was shown that to each such n-tuple of polynomials π,

2010 Mathematics Subject Classification. 17B10, 17B65.
The first and the third author were partially sponsored by the DFG-Schwerpunktprogramm 1388 “Darstel-

lungstheorie”. The research of the fourth author was supported by a Discovery Grant from the Natural
Sciences and Engineering Research Council of Canada.
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there exists a unique largest highest weight module W (π) of highest weight π. The modules
W (π), called (local) Weyl modules by analogy with the modular representation theory of (the
positive characteristic version of) g, have the property that any finite-dimensional highest
weight module of highest weight π is a quotient of W (π).
Weyl modules for loop algebras also play an important role in the representation theory of
quantum affine algebras. In particular, under a natural condition on their highest weight,
the irreducible finite-dimensional representations of quantum affine algebras specialize at
q = 1 to representations of the loop algebras. In this limit, the representations are no longer
irreducible, but are quotients of the corresponding local Weyl module. It was conjectured
(and proved for g = sl2) in [9] that all local Weyl modules are obtained as q = 1 limits of
irreducible finite-dimensional modules of quantum affine algebras. In particular, this con-
jecture implies that the local Weyl modules are the classical limits of the standard modules
defined by Nakajima in [15] and further studied by Varagnolo and Vasserot in [19].
In [9], Chari and Pressley defined the global Weyl modules associated to dominant integral
weights of g. These are the largest integrable highest weight modules of the given highest
weight and were conjectured to be free modules for a certain commutative algebra. This
motivated a series of papers [1, 6, 7, 11, 15, 16] on local Weyl modules which computed their
dimension and character, identified them with tensor products of Demazure modules, and
eventually lead to the proof of this conjecture as well as the aforementioned conjecture that
all local Weyl modules are q = 1 limits of irreducible finite-dimensional modules of quantum
affine algebras (for an arbitrary simple g).
In [10], Feigin and Loktev extended the notion of global Weyl modules to the setting of
generalized current algebras g⊗A, where A is a commutative associative unital algebra over
the complex numbers. In the case that A is the coordinate ring of an affine variety, they also
extended the definition of local Weyl modules and obtained analogues of some of the results
of [9]. In particular, they proved that these modules are finite-dimensional and that every
local Weyl module is the tensor product of local Weyl modules associated to a single point
(a property which is also true for finite-dimensional irreducible modules).
Motivated by the methods used to study the BGG-category O for semisimple Lie algebras,
a functorial approach to the study of the Weyl modules for generalized current algebras was
adopted in [4]. There it was shown that, via homological properties, one can naturally define
more general Weyl modules for the Lie algebra g⊗A, where A is a commutative associative
unital algebra over the complex numbers. This is done by defining the Weyl functor from a
suitable category of modules for a commutative algebra Aλ (these modules play the role of
highest weight spaces) to the category of integrable modules for g⊗A with weights bounded
by a dominant integrable weight λ of g. Under the condition that A is finitely generated, it
was shown that every local Weyl module is finite-dimensional. Furthermore, the translation
of the universal property of the Weyl module into the language of homological algebra yielded
a simplified proof of the tensor product property.
The algebras mentioned above all are “untwisted”. There are natural twisted versions of
loop algebras, related to the twisted affine Lie algebras. More precisely, the twisted loop
algebras are fixed point subalgebras of untwisted loop algebras g⊗C[t, t−1] under the action
of certain finite-order automorphisms. Extending the ideas of [9], local Weyl modules for
the twisted loop algebras were defined and studied in [5], where it was realized that they
can be identified with suitably chosen local Weyl modules for untwisted loop algebras. It
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is thus natural to ask if twisted versions of local Weyl modules exist when one moves from
loop algebras to the more general setting of generalized current algebras.
The twisted analogues of generalized current algebras are equivariant map algebras. Suppose
X = SpecA is an affine scheme and g is a finite-dimensional Lie algebra, both defined over
an algebraically closed field of characteristic zero, and that Γ is a finite group acting on both
X (equivalently, on A) and g by automorphisms. Then the equivariant map algebra (g⊗A)Γ

is the Lie algebra of equivariant algebraic maps from X to g. In the current paper, we will
assume that g is semisimple, X is of finite type, Γ is abelian, and Γ acts freely on X. Even
with these restrictions, equivariant map algebras are a large class of Lie algebras that include
the above mentioned examples of (twisted) loop algebras and generalized current algebras
as well as many others.
A complete classification of the irreducible finite-dimensional representations of an equivari-
ant map algebra was given in [18]. Let X∗ denote the set of finite subsets of Xrat, the set of
rational points of X, that does not contain two points in the same Γ-orbit. For x ∈ X∗, we
have a surjective evaluation map

evΓ
x
: (g⊗ A)Γ → gx =

⊕

x∈x g.

An evaluation representation is a representation of the form ρ ◦ evΓ
x
, where ρ =

⊗

x∈x ρx
for representations ρx : g → EndVx, x ∈ x. In the setup of the current paper, the clas-
sification of [18] says that all irreducible finite-dimensional representations are evaluation
representations. We define the support of an irreducible finite-dimensional representation to
be

⋃

(Γ · x), where the union is over the x ∈ x such that ρx is nontrivial. For an arbitrary
finite-dimensional representation, we define its support to be the union of the supports of
its irreducible constituents. This support depends only on the isomorphism class of the
representation.
For an equivariant map algebra, one is not assured of the existence of a semisimple fixed point
subalgebra gΓ or a Cartan subalgebra of (g⊗A)Γ in the classical sense. Since past approaches
to the study of Weyl modules for twisted loop algebras rely heavily on the representation
theory of gΓ, this is a major obstacle to generalizing such techniques to the more general
setting of equivariant maps algebras. Furthermore, owing to the unavailability of the classical
notion of weights for (g⊗A)Γ-modules, the notion of highest weight modules is not clear in
this context. For these reasons, new techniques are needed.
Let F and FΓ denote the category of finite-dimensional (g ⊗ A)-modules and (g ⊗ A)Γ-
modules respectively. For x ∈ X∗, let Fx (respectively FΓ

x
) denote the full subcategory of

F (respectively FΓ) consisting of modules with support contained in x (respectively Γ · x).
Motivated by [5, 14, 18] we define, for each x ∈ X∗, mutually inverse isomorphisms of
categories

Fx

Tx //
FΓ

x

Ux

oo

called twisting and untwisting functors (see Theorem 2.10). These functors allow us to move
back and forth at will between the theory of finite-dimensional representations of equivariant
map algebras (satisfying the assumptions of the current paper) and the corresponding theory
for generalized current algebras. In particular, to any irreducible finite-dimensional (g⊗A)Γ-
module V , we can associate a twisted local Weyl module as follows. Let x ∈ X∗ contain one
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point in each Γ-orbit in the support of V . Then UxV is an irreducible finite-dimensional
(g⊗A)-module, to which is associated an (untwisted) local Weyl module W . We then define
the local Weyl module associated to V to be TxW , and one can show that this definition is
independent of the choice of x (see Proposition 3.6).
Apart from their role in the definition of the twisted local Weyl modules, the twisting and
untwisting functors also allow us to use the characterization of local Weyl modules by homo-
logical properties given in [4] to give a similar characterization of twisted local Weyl modules.
However, some subtlety is involved here. The homological characterization given in [4] in-
volves certain categories of highest weight modules. Since the Cartan subalgebra of g is not
necessarily preserved by the action of the group Γ, such methods do not immediately carry
over to the twisted setting. In order to circumvent this problem, we replace the usual order
on weights by another partial order arising from a suitably defined height function on the
weight lattice. Our modified homological characterization is equivalent to the one given in
[4], but has the advantage that it carries over to the twisted versions.
There are several natural questions arising from our treatment of local Weyl modules for
equivariant map algebras. For instance, can one define global Weyl modules (see [4, 9]) and
is there an analogue of the algebra Aλ defined in [4]? Can one extend the results of the
current paper to the case where the group Γ does not act freely on X? It would also be
interesting to further examine the relationship between the twisting and untwisting functors
defined here and connections between the representation theory of twisted and untwisted
quantum affine algebras appearing in the literature (see, for example, [12]).
The paper is organized as follows. In Section 1 we recall the definition of equivariant map
algebras and certain results on their finite-dimensional irreducible representations. We intro-
duce the twisting and untwisting functors in Section 2 and prove that they are isomorphisms
of categories. In Section 3 we recall the results on local Weyl modules for generalized current
algebras and then introduce the notion of local Weyl modules for equivariant map algebras.
We also show there that they satisfy a natural tensor product property. Finally, in Section 4
we give a characterization of the local Weyl modules by homological properties.

Acknowledgements: The authors would like to thank E. Neher for useful discussions. The
first, third, and fourth authors would also like to thank the Hausdorff Research Institute for
Mathematics and the organizers of the Trimester Program on the Interaction of Representa-
tion Theory with Geometry and Combinatorics, during which the ideas in the current paper
were developed. The fourth author would like to thank the Institut de Mathématiques de
Jussieu and the Département de Mathématiques d’Orsay for their hospitality during his
stays there, when some of the writing of the current paper took place.

1. Equivariant map algebras and their irreducible representations

In this section, we review the definition of equivariant map algebras and the classification of
their irreducible finite-dimensional representations given in [18]. Let k be an algebraically
closed field of characteristic zero and A be unital associative commutative finitely generated
k-algebra. We let X = SpecA, the prime spectrum of A (so X is an affine scheme of
finite type). A point x ∈ X is called a rational point if A/mx

∼= k, where mx is the ideal
corresponding to x. We denote the subset of rational points of X by Xrat. Since A is
finitely generated, we have Xrat = maxSpecA. Suppose Γ is a finite abelian group acting
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on X (equivalently, on A) and on a semisimple Lie algebra g by automorphisms. Let g⊗ A
be the Lie k-algebra of regular maps from X to g. This is a Lie algebra under pointwise
multiplication. The equivariant map algebra (g ⊗ A)Γ consists of the Γ-fixed points of the
canonical (diagonal) action of Γ on g⊗A. Thus (g⊗A)Γ is the subalgebra of Γ-equivariant
maps. In the current paper, we are interested in the case that Γ acts freely on X, by which we
mean that it acts freely on Xrat. We shall assume this is the case for the entirety of the paper.
Following the usual abuse of notation, we will use the terms ‘module’ and ‘representation’
interchangeably.

Remark 1.1. We could consider the more general case where g is finite-dimensional reduc-
tive. However, then (g⊗A)Γ ∼= ([g, g]⊗A)Γ⊕ (Z(g)⊗A)Γ as Lie algebras, [17, (3.4)], where
[g, g] is semisimple and Z(g) is the centre of g (and so (Z(g)⊗A)Γ is an abelian Lie algebra).
The representation theory of (g⊗ A)Γ thus essentially “splits” and so it suffices to consider
the case of g semisimple. See [17] for details.

We denote by X∗ the set of finite subsets x ⊆ Xrat for which Γ · x ∩ Γ · x′ = ∅ for distinct
x, x′ ∈ x. For x ∈ X∗, we define gx =

⊕

x∈x g. The evaluation map

evΓ
x
: (g⊗ A)Γ → gx, evΓ

x
(α) = (α(x))x∈x,

is a Lie algebra epimorphism [18, Cor. 4.6]. To x ∈ X∗ and a set {ρx : x ∈ x} of (nonzero)
representations ρx : g → Endk Vx, we associate the evaluation representation evΓ

x
(ρx)x∈x of

(g⊗ A)Γ, defined as the composition

(g⊗ A)Γ
evΓ

x−−→ gx
⊗

x∈x
ρx

−−−−−→ Endk
(
⊗

x∈x Vx
)

.

If all ρx, x ∈ x, are irreducible finite-dimensional representations, then this is also an ir-
reducible finite-dimensional representation of (g ⊗ A)Γ, [18, Prop. 4.9]. The support of an
evaluation representation V =

⊗

x∈x Vx, abbreviated SuppV , is the union of all Γ · x, x ∈ x,
for which ρx is not the one-dimensional trivial representation of g.
Fix a triangular decomposition g = n− ⊕ h ⊕ n+ and a set of simple roots for g. Let P
and Q be the corresponding weight and root lattices respectively, and let P+ denote the
set of dominant integral weights. For λ ∈ P+, let V (λ) be the corresponding irreducible
representation of g of highest weight λ. In this way we identify the set of isomorphism
classes of irreducible finite-dimensional g-modules with P+.
It is well known that Aut g ∼= Int g⋊Out g, where Int g is the group of inner automorphisms
of g and Out g is the group of diagram automorphisms of g. The diagram automorphisms
act naturally on P , Q, and P+. If ρ is an irreducible representation of g of highest weight
λ ∈ P and γ is an automorphism of g, then ρ ◦ γ−1 is the irreducible representation of g of
highest weight γOut · λ, where γOut is the outer part of the automorphism γ (see [2, VIII,
§7.2, Rem. 1]). So the group Γ acts naturally on each P+ via the quotient Aut g ։ Out g.
Let E denote the set of finitely supported functions ψ : Xrat → P+ and let EΓ denote the
subset of E consisting of those functions which are Γ-equivariant. Here the support of ψ ∈ E
is

Suppψ = {x ∈ Xrat | ψ(x) 6= 0}.

If x ∈ X∗ and ρx, ρ
′
x are isomorphic representations of g for each x ∈ x, the evaluation

representations evΓ
x
(ρx)x∈x and evΓ

x
(ρ′x)x∈x are isomorphic. Therefore, for x ∈ X∗ and repre-

sentations ρx of g
x for x ∈ x, we define evΓ

x
([ρx])x∈x to be the isomorphism class of evΓ

x
(ρx)x∈x.
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For ψ ∈ EΓ, we define evΓψ = evΓ
x
(ψ(x))x∈x, where x ∈ X∗ contains one element of each Γ-orbit

in Suppψ. By [18, Lem. 4.13], evΓψ is independent of the choice of x. If ψ is the map that is

identically 0 on X, we define evΓψ to be the isomorphism class of the trivial representation of

(g⊗A)Γ. We say that an evaluation representation is a single orbit evaluation representation
if its isomorphism class is evΓψ for some ψ ∈ EΓ whose support is contained in a single Γ-orbit.
For all of the above notation, we drop the superscript Γ when Γ = {1}. For instance, for a
finite subset x ⊆ Xrat, evx : g⊗ A→ gx is the corresponding evaluation map. Similarly, for
ψ ∈ E , evψ is the corresponding isomorphism class of representations of g⊗ A.

Proposition 1.2 ([18, Th. 5.5]). The map

EΓ → SΓ, ψ 7→ evΓψ, ψ ∈ EΓ,

is a bijection, where SΓ denotes the set of isomorphism classes of irreducible finite-dimensional
representations of (g ⊗ A)Γ. In particular, all irreducible finite-dimensional representations
of (g⊗ A)Γ are evaluation representations.

Remark 1.3. The classification of irreducible finite-dimensional representations given in
[18] is much more general than Proposition 1.2. In particular, it applies in the case that g
is any finite-dimensional Lie algebra, Γ is any finite group (i.e. not necessarily abelian), and
the action of Γ is arbitrary (i.e. Γ need not act freely on X). In this generality, all irreducible
finite-dimensional representations are tensor products of evaluation representations and one-
dimensional representations. However, under the more restrictive assumptions of the current
paper, (g⊗A)Γ is a perfect Lie algebra (i.e. [(g⊗A)Γ, (g⊗A)Γ] = (g⊗A)Γ) and so (g⊗A)Γ

has no nontrivial one-dimensional representations, [17, Lem. 6.1].

Definition 1.4 (Notation for irreducibles). For ψ ∈ EΓ, we let VΓ(ψ) denote the correspond-
ing irreducible representation of (g ⊗ A)Γ (that is, VΓ(ψ) is some irreducible representation
in the isomorphism class evΓψ). For ψ ∈ E , we let V (ψ) denote the corresponding irreducible
representation of g⊗ A.

Example 1.5 (Untwisted map algebras). When the group Γ is trivial, (g⊗ A)Γ = g⊗ A is
called an untwisted map algebra, or generalized current algebra. These algebras arise also for
a nontrivial group Γ acting trivially on g or on X. In the first case we have (g⊗A)Γ ∼= g⊗AΓ,
and in the second (g⊗ A)Γ = gΓ ⊗ A.

Example 1.6 (Multiloop algebras). Fix positive integers n,m1, . . . ,mn. Let

Γ = 〈γ1, . . . , γn : γmi

i = 1, γiγj = γjγi, ∀ 1 ≤ i, j ≤ n〉 ∼= Z/m1Z× · · · × Z/mnZ,

and suppose that Γ acts on g. Note that this is equivalent to specifying commuting auto-
morphisms σi, i = 1, . . . , n, of g such that σmi

i = id. For i = 1, . . . , n, let ξi be a primitive
mi-th root of unity. Let X = (k×)n and define an action of Γ on X by

γi · (z1, . . . , zn) = (z1, . . . , zi−1, ξizi, zi+1, . . . , zn).

Then

(1.1) M(g, σ1, . . . , σn,m1, . . . ,mn) := (g⊗ A)Γ

is the multiloop algebra of g relative to (σ1, . . . , σn) and (m1, . . . ,mn).
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Definition 1.7 (g-weights). We can identify g with the subalgebra g ⊗ k ⊆ g ⊗ A. In this
way, any (g ⊗ A)-module V can be viewed as a g-module. We will refer to the weights
of this g-module as the g-weights of V (assuming V has a weight decomposition, e.g. V is
finite-dimensional). For a g-weight λ, we let Vλ denote the corresponding weight space of V .

2. Twisting and untwisting functors

In this section, we define isomorphisms between certain categories of modules for (untwisted)
map algebras g ⊗ A and their equivariant analogues (g ⊗ A)Γ. This isomorphism will be
our key tool in defining local Weyl modules in the equivariant setting and proving their
characterization via homological properties.
Recall that for a point x ∈ Xrat, mx denotes the corresponding maximal ideal of A. For
η : Xrat → N = Z≥0 with finite support, define

(2.1) Iη =
∏

x∈Supp η m
η(x)
x .

For a finite subset x ⊆ X, we define Ix = Iη, where η(x) = 1 for x ∈ x and η(x) = 0 for
x 6∈ x. It is straightforward to check that g ⊗ Iη is an ideal of g ⊗ A and so we have a
generalized evaluation map

evη : g⊗ A։ (g⊗ A)/(g⊗ Iη) ∼=
⊕

x∈Supp η g⊗ (A/m
η(x)
x ) ∼=

⊕

x∈Supp η(g⊗ A)/(g⊗m
η(x)
x ),

evη(α) =
⊕

x∈Supp η(α + (g⊗m
η(x)
x )).

Let

evΓη : (g⊗ A)Γ →
⊕

x∈Supp η(g⊗ A)/(g⊗m
η(x)
x )

denote the restriction of evη to (g⊗ A)Γ. Clearly

ker evΓη = (ker evη) ∩ (g⊗ A)Γ = (g⊗ Iη) ∩ (g⊗ A)Γ = (g⊗ Iη)
Γ.

Recall that X∗ is the set of finite subsets of Xrat that do not contain two points in the same
Γ-orbit.

Lemma 2.1. If η : Xrat → N satisfies Supp η ∈ X∗, then

(g⊗ Iη)
Γ = (g⊗ Ĩη)

Γ, where Ĩη =
∏

x∈Supp η

∏

γ∈Γ m
η(x)
γ·x .

Proof. Since Ĩη ⊆ Iη, we have (g ⊗ Ĩη)
Γ ⊆ (g ⊗ Iη)

Γ. Suppose α ∈ (g ⊗ Iη)
Γ. Then for each

x ∈ Supp η and γ ∈ Γ, we have

α ∈ (g⊗ Iη)
Γ ⊆ g⊗ Iη ⊆ g⊗mη(x)

x =⇒ α = γ · α ∈ γ(g⊗mη(x)
x ) = g⊗mη(x)

γ·x .

Thus

(g⊗ Iη)
Γ ⊆ g⊗

⋂

x∈Supp η

⋂

γ∈Γ m
η(x)
γ·x = g⊗ Ĩη,

since the ideals mγ·x are relatively prime. Thus (g⊗ Iη)
Γ ⊆ (g⊗ Ĩη)

Γ. �

Proposition 2.2. If η : Xrat → N satisfies Supp η ⊆ X∗, then the map evΓη is surjective and
hence induces an isomorphism

(g⊗ A)Γ/(g⊗ Iη)
Γ ∼=
−→ (g⊗ A)/(g⊗ Iη).
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Proof. It suffices to show that for arbitrary a ∈ g, f ∈ A, x ∈ Supp η, there exists α ∈ (g⊗A)Γ

such that

α− (a⊗ f) ∈ g⊗mη(x)
x , α ∈ g⊗mη(y)

y ∀ y ∈ Supp η \ {x}.

Let n = maxy∈Supp η η(y) and let ξ be an n-th root of −1. Since the action of Γ on X is free,
we can choose f1 ∈ A such that

f1(x) = 0, f1(γ · x) = ξ ∀ γ ∈ Γ, γ 6= 1, f1(γ · y) = ξ ∀ γ ∈ Γ, y ∈ Supp η \ {x}.

Then f1 ∈ mx. So

fn1 ∈ mn
x, fn1 (γ · x) = −1 ∀ γ ∈ Γ, γ 6= 1, fn1 (γ · y) = −1 ∀ γ ∈ Γ, y ∈ Supp η \ {x}.

Hence

1 + fn1 ∈ 1 +mn
x, 1 + fn1 ∈

∏

γ∈Γ, γ 6=1 mγ·x

∏

γ∈Γ
y∈Supp η\{x}

mγ·y.

Recall that for any ideal I of A, the set 1 + I is closed under multiplication. Thus

(1 + fn1 )
n ∈ 1 +mn

x, (1 + fn1 )
n ∈

∏

γ∈Γ, γ 6=1 m
n
γ·x

∏

γ∈Γ
y∈Supp η\{x}

mn
γ·y,

and so, setting f2 = f(1 + fn1 )
n, we have

f2 ∈ f +mn
x, f2 ∈

∏

γ∈Γ, γ 6=1 m
n
γ·x

∏

γ∈Γ
y∈Supp η\{x}

mn
γ·y.

Define

α =
∑

γ∈Γ γ · (a⊗ f2) =
∑

γ∈Γ(γ · a)⊗ (γ · f2) ∈ (g⊗ A)Γ.

Since γ ·my = mγ·y and Γ acts freely on X, we have

γ · f2 ∈ mn
x ⊆ mη(x)

x ∀ γ ∈ Γ, γ 6= 1.

Thus

α + g⊗mη(x)
x = (a⊗ f2) + g⊗mη(x)

x = a⊗ f + g⊗mη(x)
x .

We also have

γ · f2 ∈ mn
y ⊆ mη(y)

y ∀ γ ∈ Γ, y ∈ Supp η \ {x},

and so

α ∈ g⊗mη(y)
y ∀ y ∈ Supp η \ {x}.

�

Let Ξ be the character group of Γ. This is an abelian group, whose group operation we will
write additively. Hence, 0 is the character of the trivial one-dimensional representation, and
if an irreducible representation affords the character ξ, then −ξ is the character of the dual
representation.
If Γ acts on an algebra B by automorphisms, it is well-known that B =

⊕

ξ∈ΞBξ is a Ξ-

grading, where Bξ is the isotypic component of type ξ. It follows that (g⊗A)Γ can be written
as

(2.2) (g⊗ A)Γ =
⊕

ξ∈Ξ gξ ⊗ A−ξ,

since g =
⊕

ξ gξ and A =
⊕

ξ Aξ are Ξ-graded and (gξ ⊗ Aξ′)
Γ = 0 if ξ′ 6= −ξ. The

decomposition (3) is an algebra Ξ-grading.
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Lemma 2.3 ([17, Lem. 4.4]). Suppose a finite abelian group Γ acts on a unital associative
commutative k-algebra A (and hence on X = SpecA) by automorphisms. Let A =

⊕

ξ∈ΞAξ
be the associated grading on A, where Ξ is the character group of Γ. Then the following
conditions are equivalent:

(1) Γ acts freely on X, and
(2)

∏n

i=1 Iξi = (In)∑n
i=1

ξi for all ξ1, . . . , ξn ∈ Ξ and any Γ-invariant ideal I of A. Here
Iξ = I ∩ Aξ for ξ ∈ Ξ.

For a Lie algebra L, define Ln, n ≥ 1, by

L1 = L, Ln = [L,Ln−1], n > 1.

The following proposition, combined with Proposition 2.2, will allow us to define and deduce
properties of finite-dimensional modules for equivariant map algebras from the corresponding
notions for untwisted map algebras.

Proposition 2.4. Every finite-dimensional (g⊗ A)Γ-module is annihilated by (g⊗ Iη)
Γ for

some η : Xrat → N with Supp η ⊆ X∗.

Proof. Suppose V is a finite-dimensional (g⊗A)Γ-module annihilated by (g⊗ Iη)
Γ for some

finitely supported η : Xrat → N. By Lemma 2.1, we can find η′ : Xrat → N with Supp η′ ⊆ X∗

and (g⊗ Iη′)
Γ ⊆ (g⊗ Iη)

Γ. Thus it suffices to prove that every finite-dimensional (g⊗ A)Γ-
module is annihilated by some (g⊗ Iη)

Γ.
We first prove by induction that for any Γ-invariant ideal I of A,

(2.3)
(

(g⊗ I)Γ
)m

= (g⊗ Im)Γ ∀ m ≥ 1.

The result is trivial for m = 1. Assume it is true for some m ≥ 1. Then
(

(g⊗ I)Γ
)m+1

=
[

(g⊗ I)Γ,
(

(g⊗ I)Γ
)m]

=
[

(g⊗ I)Γ, (g⊗ Im)Γ
]

(by the induction hypothesis)

=
[

⊕

ξ∈Ξ gξ ⊗ I−ξ,
⊕

τ∈Ξ gτ ⊗ (Im)−τ

]

=
∑

ξ,τ∈Ξ[gξ, gτ ]⊗ I−ξ(I
m)−τ

=
∑

ξ,τ∈Ξ[gξ, gτ ]⊗ (Im+1)−ξ−τ (by Lemma 2.3)

=
⊕

ξ∈Ξ gξ ⊗ (Im+1)−ξ (since g is semisimple)

= (g⊗ Im+1)Γ.

Thus (4) holds.
Now let V be a finite-dimensional (g⊗ A)Γ-module. Then there exists a filtration

0 = V0 ⊆ V1 ⊆ · · · ⊆ Vn = V,

such that Vi/Vi−1 is an irreducible finite-dimensional (g ⊗ A)Γ-module for 1 ≤ i ≤ n. By
Proposition 1.2, each Vi/Vi−1 is an evaluation module. Let ηi : Xrat → N be the characteristic
function of the support of Vi/Vi−1. Then (g ⊗ Iηi)

Γ · (Vi/Vi−1) = 0. In other words, (g ⊗
Iηi)

Γ · Vi ⊆ Vi−1.
Let ν =

∑n

i=1 ηi and η = nν. We claim that (g⊗ Iη)
Γ · V = 0. Since Iη = Inν , it follows from

(4) that
(

(g⊗ Iν)
Γ
)n

= (g ⊗ Iη)
Γ. Because Iν ⊆ Iηi , we have (g ⊗ Iν)

Γ · Vi ⊆ Vi−1 for all
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1 ≤ i ≤ n. Therefore
(g⊗ Iη)

Γ · V =
(

(g⊗ Iν)
Γ
)n

· V = 0. �

For functions η, η′ : Xrat → N with finite support, we write η ≤ η′ if η(x) ≤ η′(x) for all
x ∈ Xrat. Clearly

η ≤ η′ =⇒ Iη ⊇ Iη′ =⇒ g⊗ Iη ⊇ g⊗ Iη′ .

Thus, for η ≤ η′, we have natural projections

(g⊗ A)/(g⊗ Iη′) ։ (g⊗ A)/(g⊗ Iη), (g⊗ A)Γ/(g⊗ Iη′)
Γ
։ (g⊗ A)Γ/(g⊗ Iη)

Γ.

Lemma 2.5. If η, η′ : Xrat → N are such that η ≤ η′ and Supp η′ ⊆ X∗, then the diagram

(2.4) (g⊗ A)Γ/(g⊗ Iη′)
Γ

∼= //

����

(g⊗ A)/(g⊗ Iη′)

����
(g⊗ A)Γ/(g⊗ Iη)

Γ
∼= // (g⊗ A)/(g⊗ Iη)

is commutative, where the horizontal maps are the isomorphisms induced by evaluation as
in Proposition 2.2.

Proof. This is clear from the fact that both compositions in the diagram are induced from
the composition

(g⊗ A)Γ →֒ g⊗ A։ (g⊗ A)/(g⊗ Iη).

�

Suppose V is a finite-dimensional (g ⊗ A)Γ-module. By Proposition 2.4, there exists a
function η : Xrat → N, Supp η ⊆ X∗, such that (g⊗ Iη)

Γ annihilates V . Therefore the action
of (g⊗ A)Γ on V factors through (g⊗ A)Γ/(g⊗ Iη)

Γ and the composition

g⊗ A։ (g⊗ A)/(g⊗ Iη) ∼= (g⊗ A)Γ/(g⊗ Iη)
Γ → EndV

defines an action of (g⊗ A) on V . We denote the resulting (g⊗ A)-module by V η.

Lemma 2.6. Suppose V is a finite-dimensional (g⊗A)Γ-module that is annihilated by (g⊗
Iη)

Γ and (g ⊗ Iη′)
Γ for functions η, η′ : Xrat → N such that Supp η ∪ Supp η′ ⊆ X∗. Then

V η = V η′ as (g⊗ A)-modules.

Proof. Let τ = η+η′. It is clear that (g⊗Iτ )
Γ annihilates V . Since Supp τ = Supp η∪Supp η′,

it follows from Lemma 2.5 that the diagram

(g⊗ A)/(g⊗ Iη)
∼= // (g⊗ A)Γ/(g⊗ Iη)

Γ

((PPPPPPPPPPPPP

g⊗ A

77 77oooooooooooo

// //

'' ''OOOOOOOOOOOO
(g⊗ A)/(g⊗ Iτ )

∼= //

OOOO

����

(g⊗ A)Γ/(g⊗ Iτ )
Γ //

OOOO

����

EndV

(g⊗ A)/(g⊗ Iη′)
∼= // (g⊗ A)Γ/(g⊗ Iη′)

Γ

66nnnnnnnnnnnnn

commutes, where the three isomorphisms in the middle are the inverses of the isomorphisms
of Proposition 2.2 induced by evaluation. It follows that V η = V τ = V η′ as (g ⊗ A)-
modules. �
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Definition 2.7 (Categories F , FΓ, Fx, and FΓ
x
). Let F and FΓ be the categories of finite-

dimensional representations of g⊗A and (g⊗A)Γ respectively. For x ∈ X∗, define Fx (resp.
FΓ

x
) to be the full subcategory of F (resp. FΓ) consisting of those representations whose

irreducible constituents all have support contained in x (resp. Γ · x).

Definition 2.8 (Twisting functor). We have a natural twisting functor T : F → FΓ defined
by restricting from g ⊗ A to (g ⊗ A)Γ. For any x ∈ X∗, we have the induced functor
Tx : Fx → FΓ

x
.

Definition 2.9 (Untwisting functor). Fix x ∈ X∗. By Proposition 2.4, every module V ∈ FΓ
x

is annihilated by some (g ⊗ Iη)
Γ with Supp η ⊆ x. By Lemma 2.6, the modules V η are

independent of the choice of η. The untwisting functor Ux : FΓ
x
→ Fx is defined to be the

functor that, on objects, maps V to V η. Now suppose V,W ∈ FΓ
x
and β : V → W is a

morphism in FΓ
x
. Since FΓ

x
is a full subcategory of FΓ, β : V → W is a morphism in FΓ,

which means that it is a homomorphism of (g ⊗ A)Γ-modules. Choose η : Xrat → N with
support contained in x such that (g ⊗ Iη)

Γ annihilates both V and W . Then the action of
(g ⊗ A)Γ on V and W factors through (g ⊗ A)Γ/(g ⊗ Iη)

Γ. By definition, it follows that β
is also a homomorphism of (g ⊗ A)-modules from V η to W η. We define Ux(β) to be this
homomorphism. One easily sees that Ux respects composition of morphisms and hence is a
well-defined functor.

For a Γ-invariant subset Y of Xrat, let YΓ denote the set of subsets of Y containing exactly
one point from each Γ-orbit in Y . For ψ ∈ EΓ and x ∈ (Suppψ)Γ, define

ψx : Xrat → P+, ψx(x) =

{

ψ(x) if x ∈ x,

0 if x 6∈ x.

Theorem 2.10. For x ∈ X∗, the twisting and untwisting functors have the following prop-
erties.

(1) The twisting functor T maps the isomorphism class evψ for ψ ∈ E, Suppψ ⊆ X∗, to
the isomorphism class evΓ

ψΓ for ψΓ ∈ EΓ, where

ψΓ(x) =
∑

γ∈Γ γ · ψ(γ−1 · x), x ∈ Xrat.

(2) The untwisting functor Ux maps the isomorphism class evΓψ, ψ ∈ EΓ. to the isomor-
phism class evψx

.
(3) The functors Tx and Ux are mutually inverse isomorphisms of categories.

Proof. Part (1) follows immediately from the definition of the evaluation representations
given in Section 1.
Now suppose x ∈ X∗ and V ∈ FΓ

x
is irreducible and corresponds to ψ ∈ EΓ. Let ρ =

(
⊗

x∈x ρx
)

◦ evΓ
x
be the corresponding representation. Then ρ factors through (g⊗A)Γ/(g⊗

Ix)
Γ and so Ux(V ) is the (g⊗ A)-module given by the composition

g⊗ A։ (g⊗ A)/(g⊗ Ix)
∼=
−→ (g⊗ A)Γ/(g⊗ Ix)

Γ ∼= gx
⊗

x∈x
ρx

−−−−−→ EndV.

Since this is precisely the evaluation representation
(
⊗

x∈x ρx
)

◦ evx of g⊗A, which is in the
isomorphism class evψx

, Part (2) follows.
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Suppose V ∈ Fx. Then V is annihilated by some g⊗ Iη and the action of g⊗A on UxTx(V )
is given by

g⊗ A։ (g⊗ A)/(g⊗ Iη)
∼=
−→ (g⊗ A)Γ/(g⊗ Iη)

Γ ∼=
−→ (g⊗ A)/(g⊗ Iη) → EndV,

where the two isomorphisms are mutually inverse. Thus UxTx(V ) = V . One easily verifies
that UxTx is also the identity on morphisms and is therefore the identity functor on Fx.
Similarly, TxUx is the identity functor on FΓ

x
. This proves Part (3). �

Remark 2.11. Theorem 2.10 allows one to translate any reasonable question in the rep-
resentation theory of finite-dimensional modules for equivariant maps algebras, where Γ is
abelian and acts freely on X, to a corresponding question for untwisted map algebras (gener-
alized current algebras). For instance, it can be used to reduce the computation of extensions
between irreducible finite-dimensional (g⊗A)Γ-modules to the case of extensions of (g⊗A)-
modules, which were considered in [13]. In this way, one can give an alternate proof of [17,
Prop. 6.3].

3. Local Weyl modules

In this section, we define the local Weyl modules for equivariant map algebras. We begin by
reviewing the local Weyl modules for untwisted map algebras.
Fix a triangular decomposition g = n− ⊕ h⊕ n+. Then we have a triangular decomposition
of the untwisted map algebra

g⊗ A = (n− ⊗ A)⊕ (h⊗ A)⊕ (n+ ⊗ A).

Let {ei, hi, fi}i∈I denote a set of Chevalley generators of g compatible with its triangular
decomposition. In particular, the fi generate n−.

Definition 3.1 (Untwisted local Weyl module). Given ψ ∈ E , the (untwisted) local Weyl
module W (ψ) is the (g⊗A)-module generated by a nonzero vector wψ satisfying the relations

(n+ ⊗ A) · wψ = 0,(3.1)

(fi ⊗ 1)λ(hi)+1 · wψ = 0, i ∈ I, where λ = wtψ :=
∑

x∈x ψ(x),(3.2)

α · wψ =
(

∑

x∈Suppψ ψ(x)(α(x))
)

wψ, α ∈ h⊗ A.(3.3)

Proposition 3.2. (1) [4, Th. 2] For every ψ ∈ E, W (ψ) is a finite-dimensional (g⊗A)-
module.

(2) [4, Prop. 5] Let V be any finite-dimensional (g ⊗ A)-module generated by a nonzero
element v ∈ V such that

(n+ ⊗ A) · v = 0 and (h⊗ A) · v = kv.

Then there exists ψ ∈ E such that the assignment wψ 7→ v extends to a surjective
homomorphism W (ψ) ։ V of (g⊗ A)-modules.

For a subset Y ⊆ Xrat, let

IY = {f ∈ A | f(x) = 0 ∀ x ∈ Y }.
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For ψ ∈ E , we define Iψ = ISuppψ. Note then that Iψ = Iη as in (2) for

η : Xrat → N, η(x) =

{

1 if x ∈ Supp(ψ),

0 if x 6∈ Supp(ψ).

Proposition 3.3. (1) [4, Prop. 9] If ψ ∈ E with wtψ = λ ∈ P+, then

(g⊗ INψ ) ·W (ψ) = 0 ∀ N ≥ λ(hθ),

where θ is the highest root for g and hθ is the corresponding coroot.
(2) [4, Th. 3] If ψ, ψ′ ∈ E such that Suppψ ∩ Suppψ′ = ∅, then

W (ψ + ψ′) ∼= W (ψ)⊗W (ψ′)

as (g⊗ A)-modules.
(3) [4, Lem. 6] For ψ ∈ E , V (ψ) is the unique irreducible quotient of W (ψ) (see Defini-

tion 1.4).

Remark 3.4. In the case that A is the coordinate algebra of an affine algebraic variety,
Proposition 3.2 and parts (1) and (2) of Proposition 3.3 are proven in [10] (Theorems 1, 2,
and 5, and Proposition 7).

We now turn our attention to the equivariant map algebras. For a (g ⊗ A)-module U , let
ρU : g⊗ A→ Endk U be the corresponding representation.

Lemma 3.5. Suppose ψ ∈ EΓ and x ∈ (Suppψ)Γ. Then, for γ ∈ Γ,

ρW (ψx) ◦ γ
−1 ∼= ρW (ψγ·x),

where γ · x = {γ · x | x ∈ x}.

Proof. Let W (ψx)
γ be the (g⊗A)-module corresponding to the representation ρW (ψx) ◦ γ

−1.
Recall that we identify g with the subalgebra g⊗k of g⊗A. Thus, via restriction, we can view
W (ψx) and W (ψx)

γ as g-modules. Recall that W (ψx) is a finite-dimensional g-module with
wtW (ψx) ⊆ λ − Q+, where λ =

∑

x∈x ψ(x). It follows that W (ψx)
γ is a finite-dimensional

g-module with wtW (ψx)
γ ⊆ γ · λ − Q+. Furthermore, the γ · λ weight space of W (ψx)

γ is
one-dimensional since the λ weight space of W (ψx) is one-dimensional.
We also know thatW (ψx) has unique irreducible quotient V (ψx). By the definition of EΓ, we
have that ρV (ψx) · γ

−1 ∼= ρV (ψγ·x). Thus W (ψx)
γ has unique irreducible quotient V (ψγ·x). Let

v ∈ W (ψx)
γ be a nonzero vector of weight γ ·λ and let U be the smallest (g⊗A)-submodule of

W (ψx)
γ containing v. If U 6= W (ψx)

γ, then U is contained in the unique maximal submodule
of W (ψx)

γ. But this contradicts the fact that the unique irreducible quotient of W (ψx)
γ has

a nonzero γ · λ weight space. Therefore U = W (ψx)
γ and so v is a cyclic vector. It then

follows from Proposition 3.2(2) that W (ψx)
γ is isomorphic to a quotient of W (ψγ·x). By

symmetry, W (ψγ·x) is also isomorphic to a quotient of W (ψx)
γ. Since these modules are

finite-dimensional, we conclude that W (ψx)
γ ∼= W (ψγ·x). �

Proposition 3.6. Suppose ψ ∈ EΓ and x,x′ ∈ (Suppψ)Γ. Then the restriction to (g⊗A)Γ-
modules of the Weyl modules W (ψx) and W (ψx′) for g ⊗ A are isomorphic (as (g ⊗ A)Γ-
modules).
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Proof. We first prove the result in the case that the support of ψ consists of a single Γ-orbit.
Suppose x, x′ ∈ Suppψ. Then there exist a unique γ ∈ Γ such that x′ = γ ·x. By Lemma 3.5,
we have

ρW (ψx) ◦ γ
−1 ∼= ρW (ψx′ )

.

Since the restriction of the automorphism γ−1 to (g ⊗ A)Γ is trivial, it follows immediately
that the restrictions of ρW (ψx) and ρW (ψx′ )

to (g ⊗ A)Γ are isomorphic. The general result
where the support of ψ is a union of Γ-orbits now follows from Proposition 3.3(2). �

Definition 3.7 (Twisted local Weyl module). For ψ ∈ EΓ, we define WΓ(ψ) to be the
restriction to (g ⊗ A)Γ-modules of the Weyl module W (ψx) for g ⊗ A, for some choice
of x ∈ (Suppψ)Γ. In other words, WΓ(ψ) := T(W (ψx)). By Proposition 3.6, WΓ(ψ) is
independent of the choice of x (up to isomorphism). We call WΓ(ψ) the (twisted) local Weyl
module of (g⊗ A)Γ associated to ψ.

Lemma 3.8. For ψ ∈ EΓ and x ∈ (Suppψ)Γ, we have Ux(WΓ(ψ)) = W (ψx) andUx(VΓ(ψ)) =
V (ψx).

Proof. By definition, WΓ(ψ) = Tx(W (ψx)). Thus, by Theorem 2.10, we have

Ux(WΓ(ψ)) = UxTx(W (ψx)) = W (ψx).

The proof of the second statement is analogous (see the proof of Theorem 2.10(2)). �

Proposition 3.9 (Tensor product property). If ψ, ψ′ ∈ EΓ have disjoint support, then
WΓ(ψ + ψ′) ∼= WΓ(ψ)⊗WΓ(ψ

′).

Proof. Choose x ∈ (Suppψ)Γ and x′ ∈ (Suppψ′)Γ. Then x ∩ x′ = ∅ and, by Proposi-
tion 3.3(2), we have W (ψx + ψ′

x′) ∼= W (ψx)⊗W (ψ′
x′). Since x ∪ x′ ∈ (Supp(ψ + ψ′))Γ, the

proposition follows after restricting to (g⊗ A)Γ-modules. �

4. Characterization of local Weyl modules by homological properties

In this section, we show that the local Weyl modules are characterized by homological
properties, extending results of [4] to the equivariant setting.
For λ ∈ P , write λ =

∑

i∈I kiαi, ki ∈ Q, as a linear combination of simple roots, and define

htλ :=
∑

i∈I ki.

Recall the usual partial order on P given by

λ ≥ µ ⇐⇒ λ− µ ∈ Q+.

It is clear that

λ > µ =⇒ htλ > htµ.

Since Γ acts on P+ via diagram automorphisms, it preserves the set of positive roots. There-
fore, for ψ ∈ EΓ, we have

∑

x∈Xrat
htψx(x) =

∑

x∈Xrat
htψx′(x) for all x,x′ ∈ (Suppψ)Γ.

Definition 4.1 (Height function on EΓ). Define the height of ψ ∈ EΓ to be

htψ =
∑

x∈Xrat
htψx(x) for some x ∈ (Suppψ)Γ.

By the above discussion, this definition is independent of the choice of x.
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For a finite-dimensional (g⊗A)Γ-moduleM and ψ ∈ EΓ, let multψM denote the multiplicity
of evΓψ in M . In other words, multψM is the number of (irreducible) composition factors of

M in the isomorphism class evΓψ.

Definition 4.2 (Maximal weight module). We call a finite-dimensional (g⊗A)Γ-module M
a maximal weight module of maximal weight ψ if multψM = 1 and, for all ϕ 6= ψ,

multϕM 6= 0 =⇒ htϕ < htψ.

Lemma 4.3. The local Weyl module WΓ(ψ) is a maximal weight module of maximal weight
ψ.

Proof. If Γ = {1}, the result follows from the fact that the g-weights ofW (ψ) lie in wtψ−Q+

by Definition 3.1. Suppose now Γ 6= {1} and let ψ ∈ EΓ. Then for any x ∈ (Suppψ)Γ,
we have, by Lemma 3.8, Ux(WΓ(ψ)) = W (ψx). By Proposition 3.3(1), we have that all
constituents of W (ψx) have support contained in x. Thus

multϕW (ψx) 6= 0 =⇒ V (ϕ) ∈ Fx.

By Theorem 2.10 and Lemma 3.8, we then have

multϕWΓ(ψ) = multϕx
W (ψx).

Thus, for ϕ 6= ψ (hence ϕx 6= ψx),

multϕWΓ(ψ) 6= 0 =⇒ multϕx
W (ψx) 6= 0

=⇒ wtϕx < wtψx

=⇒ htϕ = htϕx < htψx = htψ,

where the second implication follows again from the fact that the g-weights of W (ψx) lie in
wtψx −Q+ by Definition 3.1. �

Recall that, for ψ ∈ E , we have wtψ =
∑

x∈Xrat
ψ(x). It is clear that wtψ is the maximal

g-weight occurring in V (ψ). We have the following characterization of untwisted local Weyl
modules in terms of homological properties.

Proposition 4.4 ([4, Prop. 8]). Let M be a maximal weight (g ⊗ A)-module of maximal
weight ψ. Then M ∼= W (ψ) if and only if

HomF(M,V (ϕ)) = 0 and Ext1F(M,V (ϕ)) = 0

for all ϕ ∈ E with wt(V (ϕ)) ⊆ (wtψ −Q+) \ {wtψ}.

We want to reformulate this theorem and generalize it to the case of equivariant map algebras.

Theorem 4.5. Let M be a maximal weight (g ⊗ A)Γ-module of maximal weight ψ. Then
M ∼= WΓ(ψ) if and only if

(4.1) HomFΓ(M,VΓ(ϕ)) = 0 and Ext1FΓ(M,VΓ(ϕ)) = 0 ∀ ϕ ∈ EΓ with ht(ϕ) < ht(ψ).

Proof. We first prove the theorem in the case Γ = {1}, where it is a slightly modified version
of Proposition 4.4. In this case (g ⊗ A)Γ = g ⊗ A and WΓ(ψ) = W (ψ). We first want to
show that W (ψ) satisfies

HomF(W (ψ), V (ϕ)) = 0 and Ext1F(W (ψ), V (ϕ)) = 0
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for all ϕ ∈ E with ht(ϕ) < ht(ψ). Since the group Γ is trivial, all finite-dimensional (g⊗A)-
modules are also g-modules via the identification of g with g ⊗ k ⊆ g ⊗ A. Thus we have
weight space decompositions as g-modules.
Let λ = wtψ. Since htϕ < htψ, we have λ /∈ wt(ϕ)−Q+ and so V (ϕ)λ = 0. Since W (ψ) is
generated by W (ψ)λ, this implies HomF(W (ψ), V (ϕ)) = 0.
Now suppose we have an extension of (g⊗ A)-modules

(4.2) 0 → V (ϕ) → E → W (ψ) → 0.

Let wλ be the preimage in E of a maximal weight vector ofW (ψ). Since λ /∈ wt(ϕ)−Q+, we
have dimEλ = 1, and so wλ is unique up to nonzero scalar multiple. Also, (n+ ⊗A) ·wλ = 0
and so we have an exact sequence

(4.3) 0 −→ U −→ U(g⊗ A) · wλ −→ W (ψ) −→ 0

where U is a g ⊗ A-module with Uλ = 0. Since wt(U(g ⊗ A) · wλ) ⊆ λ − Q+, we have
wt(U) ⊆ (λ−Q+)\{λ}. Thus Proposition 4.4 implies that (11) splits, which in turn implies
that (10) splits. Thus E is the trivial extension. Therefore Ext1F(W (ψ), V (ϕ)) = 0.
On the other hand, suppose M satisfies (9). We claim that M also satisfies the properties
characterizingW (ψ) as given in Proposition 4.4. Let ϕ ∈ E with wt(V (ϕ)) ⊆ (λ−Q+)\{λ}.
Then wtϕ < λ, hence ht(ϕ) < ht(ψ). The claim then follows from (9). Hence the theorem
is true for Γ = {1}.
Now consider the case of arbitrary Γ. Let ϕ ∈ EΓ with ht(ϕ) < ht(ψ). We would first like
to show that

HomFΓ(WΓ(ψ), VΓ(ϕ)) = 0 and Ext1FΓ(WΓ(ψ), VΓ(ϕ)) = 0.

Let τ ∈ HomFΓ(WΓ(ψ), VΓ(ϕ)) be nonzero. Then τ is surjective since VΓ(ϕ) is irreducible,
and so VΓ(ϕ) is isomorphic to a quotient of WΓ(ψ). By Proposition 2.4 there exists η,
Supp η ⊆ X∗, such thatWΓ(ψ) (hence also VΓ(ϕ)) is annihilated by (g⊗Iη)

Γ. Let x = Supp η.
Then

HomFΓ(WΓ(ψ), VΓ(ϕ)) ∼= HomFΓ
x

(WΓ(ψ), VΓ(ϕ)).

Now, by Theorem 2.10 and Lemma 3.8, we have

HomFΓ
x

(WΓ(ψ), VΓ(ϕ)) ∼= HomFx
(W (ψx), V (ϕx)).

Since htϕx = htϕ < htψ = htψx, we conclude HomFx
(W (ψx), V (ϕx)) = 0 since we know

the theorem is true in the untwisted case. Thus τ = 0 and so HomFΓ(WΓ(ψ), VΓ(ϕ)) = 0.
Now let

(4.4) 0 → VΓ(ϕ) → E → WΓ(ψ) → 0

be an extension of (g ⊗ A)Γ-modules with htϕ < htψ. Since E is finite-dimensional, by
Proposition 2.4 there exists η, Supp η ⊆ X∗, such that (g⊗ Iη)

Γ · E = 0. But this implies

(g⊗ Iη)
Γ ·WΓ(ψ) = 0 and (g⊗ Iη)

Γ · VΓ(ϕ) = 0.

Thus (12) is an exact sequence in FΓ
x

for x = Supp η and hence, by Theorem 2.10 and
Lemma 3.8,

(4.5) 0 → V (ϕx) → UxE → W (ψx) → 0
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is a short exact sequence in Fx. Since htϕx = htϕ < htψ = htψx, (13) splits by the fact
that the theorem is true in the untwisted case. Then Theorem 2.10 implies that (12) splits.
So Ext1FΓ(WΓ(ψ), VΓ(ϕ)) = 0.
On the other hand, suppose M satisfies (9). We would like to show that M ∼= WΓ(ψ). Fix
x ∈ (SuppM)Γ. Then M ∈ FΓ

x
and so UxM is a module in Fx. By Theorem 2.10 and

Lemma 3.8, it suffices to show that UxM ∼= W (ψx). SinceM is a maximal weight module of
maximal weight ψ, we have Suppψ ⊆ SuppM , hence x∩ (Suppψ) ∈ (Suppψ)Γ and UxM is
a maximal weight module of maximal weight ψx. In particular, this implies that the g-weight
space of UxM of weight wtψx is one-dimensional.
Let mψ be a nonzero element of (UxM)wtψx

. We claim that UxM is cyclic and generated
by mψ. Indeed, if this were not the case, then the submodule generated by v, where v is in
a g-complement of U(g⊗A) ·mψ would have an irreducible quotient V (ϕ), with htϕ < htψ
and Suppϕ ⊆ x. Then Tx(V (ϕ)) = VΓ(ϕ

Γ) would be an irreducible object of FΓ
x
. Again by

Theorem 2.10, we would have

HomFx
(UxM,V (ϕ)) 6= 0 =⇒ HomFΓ

x

(M,VΓ(ϕ
Γ)) 6= 0,

which contradicts (9) since htϕΓ = htϕ < htψ. By Proposition 3.2(2), UxM is a quotient
of W (ψx). It remains to show that it is not a proper quotient. We have (UxM)µ = 0 for all
µ > λ, so (n+ ⊗ A) ·mψ = 0, which implies we have an exact sequence

0 → U → W (ψx) → UxM → 0

with U an object of Fx satisfying Uλ = 0 and wt(U) ⊆ λ−Q+. Applying Tx, we have

(4.6) 0 → TxU → WΓ(ψ) →M → 0.

Now applying HomFΓ
x

(−, VΓ(ϕ)), for ϕ ∈ EΓ with Suppϕ ⊆ x, to the short exact sequence
(14), we obtain the long exact sequence

0 → HomFΓ
x

(M,VΓ(ϕ)) → HomFΓ
x

(WΓ(ψ), VΓ(ϕ)) → HomFΓ
x

(TxU, VΓ(ϕ))

→ Ext1FΓ
x

(M,VΓ(ϕ)) → · · ·

By (9), we have

HomFΓ
x

(WΓ(ψ), VΓ(ϕ)) = HomFΓ(WΓ(ψ), VΓ(ϕ)) = 0 and

Ext1FΓ
x

(M,VΓ(ϕ)) = Ext1FΓ(M,VΓ(ϕ)) = 0

when htϕ < htψ. Thus HomFΓ
x

(TxU, VΓ(ϕ)) = 0, whenever htϕ < htψ. Since all irreducible
subquotients VΓ(ϕ) of TxU satisfy Suppϕ ⊆ x and htϕ < ψ, we have TxU = 0 and hence
U = 0. Thus the theorem follows. �

The following corollary is a twisted version of Proposition 3.2(2). Condition (15) below
should be thought of as a twisted analogue of the condition in Proposition 3.2(2) that M is
cyclicly generated by the vector v.

Corollary 4.6. Let M be a maximal weight (g⊗A)Γ-module of maximal weight ψ ∈ EΓ such
that

(4.7) HomFΓ(M,V (ϕ)) = 0

for all ϕ ∈ EΓ with htϕ < htψ. Then M is a quotient of WΓ(ψ).
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Proof. This follows from the proof of Theorem 4.5. �
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DEMAZURE MODULES AND WEYL MODULES: THE TWISTED

CURRENT CASE

GHISLAIN FOURIER AND DENIZ KUS

Abstract. We study finite–dimensional respresentations of twisted current algebras and
show that any graded twisted Weyl module is isomorphic to level one Demazure module
for the twisted affine Kac-Moody algebra. Using the tensor product property of Demazure
modules, we obtain, by analyzing the fundamental Weyl modules, dimension and character
formulas. Moreover we prove that graded twisted Weyl modules can be obtained by taking
the associated graded modules of Weyl modules for the loop algebra, which implies that
its dimension and classical character are independent of the support and depend only on
its classical highest weight. These results were known before for untwisted current algebras
and are new for all twisted types.

1. Introduction

Weyl modules for loop algebras g⊗ C[t, t−1], where g is a simple complex Lie algebra, have
gained a lot of attraction during the last two decades. Starting with the analysis of finite–
dimensional irreducible modules for quantum affine algebras ([9]), which are highest weight
modules in a certain sense. It was natural to ask for maximal finite–dimensional modules
with these highest weights since contrary to the theory of simple complex Lie algebras, the
category of finite–dimensional modules is not semi–simple. In the same paper it was con-
jectured, that the classical limit q = 1 of these irreducible modules specialize to modules
for the loop algebra satisfying some universal properties, the so called local Weyl modules.
In a series of papers ([1], [6], [8], [15], [24], [25]) the character and dimension of these Weyl
modules were computed. In the proofs, these modules were identified with Weyl modules
for the current algebra g⊗ C[t]. Using the tensor product property ([9]) and some pullback
maps, the study was reduced to analyzing graded Weyl modules for g ⊗ C[t], where the
grading is induced by the grading of C[t].
One major step in the analysis of the graded Weyl modules is their identification with level
one Demazure modules for simply–laced algebras ([6], [15]). With the tensor product prop-
erty for Demazure modules ([14]) and the computation for fundamental Weyl and Demazure
modules ([6], [14]), the character and dimension formulas were proven. In the non simply–
laced case, Weyl modules admit a filtration by Demazure modules and via this filtration, the
dimension and character formula were proven ([25]). One should mention that these results
can also be deduced from the results in [1], [24], but there is no written proof so far in the
literature.
Local Weyl modules for current and loop algebras can be parametrized by finitely supported
functions from C (resp. C∗) to P+, the set of dominant integral weights for g. To each func-
tion one can associate a weight, which is the sum of all images, hence in P+. To summarize

2010 Mathematics Subject Classification. Primary 17B10; Secondary 17B65.
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the results above, the dimension and character of a local Weyl module are independent of
the support of the parametrizing function and depend only on its weight. The graded local
Weyl module of weight λ is parametrized by the function of weight λ with support in the
origin only. We can also reformulate this result in terms of the global Weyl module, which
is a projective module in a certain category and in general infinite–dimensional. The results
on local Weyl modules are equivalent to the statement, that the global Weyl module is a
free module for a certain commutative algebra Aλ.
There are several ways to generalize the notion of local Weyl modules. By replacing C[t, t−1]
with a commutative, associative algebra ([4],[12]) one can define local and global Weyl mod-
ules as before, obtain similar tensor product properties, but character and dimension formulas
are known only in certain cases. Even for a case as simply looking as g = sl2 and C[t1, . . . , tn]
with n ≥ 4 there is no dimension formula known.
Another way of generalizing local Weyl modules is to look at twisted current and loop alge-
bras. Given a complex simple Lie algebra g and a commutative algebra A (= C[t],C[t, t−1]),
both equipped with the action of a finite group Γ (Γ = Z/mZ) by automorphism, one can
extend this action to g ⊗ A. The fixpoint Lie algebra (g ⊗ A)Γ is called the twisted cur-
rent algebra (resp. twisted loop algebra). The twisted current algebra is a subalgebra of
the twisted affine Kac-Moody algebra associated to g, while the twisted loop is obtained by
taking the quotient by the central element of the subalgebra without derivation [2].
Local Weyl modules for the twisted loop algebra were introduced and studied in [5]. It was
proven, that every Weyl module is the tensor product of Weyl modules located in a single
point only. So to obtain dimension and character formulas it was sufficient to compute them
for Weyl modules with support in a single point. The main theorem in [5] states that every
Weyl module for the twisted loop algebra is isomorphic to the restriction of a Weyl mod-
ule for the untwisted loop algebra. So all interesting information can be deduced from this
isomorphism. In [16] the aforementioned global Weyl modules will be defined and studied
for twisted loop algebras as well. It will be shown, that the twisted global Weyl module is
a submodule of the untwisted global Weyl module, viewed as a module for the twisted loop
algebra by restriction. The results about twisted local Weyl module translate again into the
freeness of the twisted global Weyl module as a module for a certain commutative algebra
AΓ

λ.
In [13] the notion of local Weyl modules was generalized to certain equivariant map alge-
bras. Given X an affine scheme and g a finite–dimensional Lie algebra, both defined over
an algebraically closed field and Γ a finite group acting on X and g by automorphisms,
the equivariant map algebra is the Lie algebra of equivariant maps from X to g. In [13]
several restrictions to this general case were assumed, the group action on X had to be free
and abelian. But under these assumptions, again the tensor product property was proven.
Furthermore it was shown, that every Weyl module for the equivariant map algebra is iso-
morphic to the restriction of a Weyl module for the algebra of maps from X to g.
In this paper we are considering the gap in the computation of dimension and character
formulas for local Weyl modules of twisted current algebras. For twisted and untwisted loop
and current algebras, dimension formulas for all local Weyl modules are known except for
graded local Weyl modules for the twisted current algebra. Let Γ be the finite group of
non–trivial diagram automorphism of a simple Lie algebra g, so Γ is of order 2 or 3 and g

of type A,D,E. In terms of equivariant map algebras, the affine scheme would be X = C
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and Γ = 〈ξ〉, where ξ is the multiplication by a primitive 2nd or 3rd root of unity. We see
immediately that 0 is a fix point, so the group action is not free. In this setting, the results
of [13] do not apply at the origin.
The goal of this paper is to compute a dimension and character formula for the local Weyl
module located in 0 (the graded local Weyl module) of the twisted current algebra. The
main tool are, as in [15] and [25], Demazure modules.
There are two cases to be considered, the first one is:

Theorem. Let g be not of type A2l and λ ∈ P+
0 , then the local graded (g ⊗ C[t])Γ-Weyl

module W Γ(λ) is isomorphic to a Demazure module of level 1.

In the proof we will use the sl2 ⊗ C[t] and the (sl3 ⊗ C[t])Γ cases (proven in [6],[9], resp.
Section 7). A tensor product property for Demazure modules was proven in [14], so to
obtain a character formula for Weyl modules it is sufficient to determine the fundamental

local Weyl modules, as done in Section 5. Concluding we were able to prove an analogous
result to [5], [13], that the dimension of the local Weyl module does not depend on the
support but only on the highest weight.

Theorem. For g not of type A2l and λ ∈ P+
0 , the local graded (g ⊗ C[t])Γ-Weyl module is

isomorphic to the associated graded module of the restriction of a local Weyl module for
g⊗ C[t, t−1].

In the second case, we assume that g is of type A2l, then the fixpoint algebra g0 is of type
Bl. Here with our methods, one can only determine the local Weyl module for weights λ,
where λ(α∨

l ) is odd. In this case there is an identification with Demazure modules as before,
so the graded local (g⊗C[t])Γ-Weyl module is isomorphic to a Demazure module of level 1.
Furthermore we are able to show the following:

Theorem. Let λ = λ1 + λ2 ∈ P+
0 , where λ2(α

∨
l ) is odd, and a ∈ C∗. Then

W Γ(λ) ∼= gr(Wa(λ1)⊗W Γ(λ2)),

where Wa(λ1) is the local Weyl module for g⊗C[t, t−1], supported in a with highest weight
λ1.

In the case where λ(α∨
l ) is even the dimension and character of the local Weyl modules

remains uncomputed, the identification with Demazure modules fails. We can state here a
conjecture only

Conjecture. Let λ ∈ P+
0 , then the graded local Weyl module is isomorphic to the associated

graded module of the restriction of a local Weyl module for g⊗ C[t, t−1]. The dimension of
a local Weyl module of highest weight λ is independent of the support of the module.

The structure of the paper is as follows, in Section 2 are basics and notations for affine Kac-
Moody algebras recalled, in Section 3 for twisted current algebras. In Section 4 Demazure and
Weyl modules are defined. In Section 5 we identify Demazure modules with Weyl modules
and determine the “smallest” Weyl modules. In Section 6 we show that every graded Weyl
module of the twisted current algebra can be obtained by taking the associated graded of the
restriction of a untwisted loop module. In Section 7, the case g = sl3 is treated seperately,
since it is used in some of the proofs of the other cases.
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2. The affine Kac-Moody algebras

2.1. Notation and basic results. In this section we fix the notation and the usual technical
padding. Let g = g(A) be a simple complex Lie algebra of rank l associated to a Cartan
matrix A of finite type, denote I = {1, . . . , l}. We fix a Cartan subalgebra h in g and a Borel
subalgebra b ⊇ h. Denote Φ ⊆ h∗ the root system of g, and, corresponding to the choice of
b, let Φ+ be the set of positive roots and let Π = {α1, . . . , αl} be the corresponding basis of
Φ.

For a root β ∈ Φ let β∨ ∈ h be its coroot. The basis of the dual root system (also called the
coroot system) Φ∨ ⊂ h is denoted Π∨ = {α∨

1 , . . . , α
∨
l }. The Weyl group W of Φ is generated

by the simple reflections si = sαi
associated to the simple roots.

Let P =
⊕l

i=1 Zωi be the weight lattice of g and let P+ =
⊕l

i=1 Z≥0ωi be the subset of
dominant weights. The group algebra of P is denoted Z[P ], we write χ =

∑
aµe

µ (finite
sum, µ ∈ P , aµ ∈ Z) for an element in Z[P ], where the embedding P →֒ Z[P ] is defined by

µ 7→ eµ. Further we denote by Q =
⊕l

i=1 Zαi (respectively Q+ =
⊕l

i=1 Z≥αi) be the root
(respectively positive root) lattice and let {x±

i , hi|i ∈ I} be a set of Chevalley generators of
g.

Let ĝ be the affine Kac–Moody algebra (twisted or untwisted) corresponding to the Cartan

matrix Â = (ai,j). Note that, if ĝ is a untwisted affine Kac–Moody algebra associated to g:

ĝ = g⊗C C[t, t−1]⊕ Cc⊕ Cd.

Here d denotes the derivation d = t d
dt

and c is the canonical central element. Recall that the
Lie bracket is defined as

[x⊗ tm + λc+ µd, y ⊗ tn + νc+ ηd] = [x, y]⊗ tn+m + µny ⊗ tn + ηmx⊗ tm +mδm,−n(x, y)c.

We assume ĝ is arbitrary (possibly twisted) and we fix a Cartan subalgebra ĥ in ĝ and a Borel

subalgebra b̂ ⊇ ĥ, Π = {α0, . . . , αl} the set of simple roots, Π∨ = {α∨
0 , . . . , α

∨
l } the set of

simple coroots. Denote by Φ̂ the root system of ĝ and let Φ̂+ be the subset of positive roots.

We denote by P̂ the weight lattice of ĝ and let P̂+ be the subset of dominant weights. The

Weyl group Ŵ of Φ̂ is generated by the simple reflections si = sαi
associated to the simple

roots. Further we fix vectors w = (a0, . . . , al)
t, v = (a∨0 , . . . , a

∨
l ), such that vÂ = Âw = 0. v

and w are here uniquely determind up to scalars. Then it is known that the center of ĝ is
1-dimensional and is spanned by the canonical central element

c =
l∑

i=0

a∨i α
∨
i .
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Define further

δ =
l∑

i=0

aiαi; θ = δ − a0α0

and d ∈ ĥ which satisifes the following conditions

αi(d) = 0, for i = 1, . . . , l; α0(d) = 1.

Clearly the elements α∨
0 , . . . , α

∨
l , d form a basis of ĥ. We have a non–degenerate symmetric

bilinear form 〈·, ·〉 on ĥ defined in ([19], Chapter 6)

(2.1)





〈α∨
i , α

∨
j 〉 =

aj
a∨j
ai,j i, j = 0, . . . , ℓ

〈α∨
i , d〉 = 0 i = 1, . . . , ℓ

〈α∨
0 , d〉 = a0

a∨0
〈d, d〉 = 0.

This Ŵ -invariant form induces a map

ν : ĥ −→ ĥ∗, ν(h) :

{
ĥ → C
h′ 7→ 〈h, h′〉

With the notation as above it follows for i = 0, . . . , l:

ν(α∨
i ) =

ai
a∨i

αi

Let Λ0, . . . ,Λl be the fundamental weights in P̂+, then for i = 1, . . . , l we have

(2.2) Λi = ωi +
a∨i
a∨0

Λ0.

With this we have P̂ =
∑l

i=0 ZΛi + Z(δ/a0) and P̂+ =
∑l

i=0 Z≥0Λi + Z(δ/a0).

2.2. Realisation of twisted affine algebras. In this paper we are mainly interested in
twisted affine Kac-Moody algebras, which can be realised as fixed point subalgebras of so-
called twisted graph automorphisms. Let g be a finite dimensional simple Lie algebra and
σ : g → g be a graph automorphism of order m. In particular

m =

{
2, if g of type A2l, A2l−1, Dl+1 or E6

3, if g is of type D4

Let ξ be a primitivemth root of unity, then it is well-known that there exists a decomposition
of g into eigenspaces. We obtain:

g = g0 ⊕ · · · ⊕ gm−1,

whereby gj = {x ∈ g|σ(x) = ξjx}, j = 0, · · · ,m − 1. The fixed point algebra g0 is again
a simple complex Lie algebra of type Cl, Bl, F4 or G2 and the eigenpaces are irreducible
g0-modules.

Remark 2.1. Let a be a subalgebra of g such that σ(a) = a, then we get a analogue decom-
position

a = a0 ⊕ · · · ⊕ am−1.
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So if g = n⊕ h⊕ n− is a triangular decomposition of g, we obtain

gj = nj ⊕ hj ⊕ (n−)j for all 0 ≤ j ≤ m− 1.

Now we can extend σ to a automorphism of the corresponding untwisted affine algebra given
by

σ(x⊗ ti) = ξ−iσ(x)⊗ ti for x ∈ g

σ(c) = c; σ(d) = d.

The twisted affine algebra is realized as the fixed point subalgebra

ĝ ∼=
⊕

k∈Z

(g0 ⊗ tmk)⊕ · · · ⊕
⊕

k∈Z

(gm−1 ⊗ tmk+(m−1))⊕ Cc⊕ Cd

=
m−1⊕

j=0

⊕

k∈Z

(gj ⊗ tmk+j)⊕ Cc⊕ Cd.

Using the above notation we can conclude

ĥ = h0 ⊕ (Cc+ Cd) ĥ∗ = (h0)
∗ ⊕ (Cδ + CΛ0).

We have the following table, which describes the various possibilities for g, g0, ĝ and the
eigenspaces g1, g2.

m g g0 ĝ g1 g2 Dynkin diagram of ĝ

2 A2 A1 A
(2)
2 V (4ω1) / ◦

0
◦
1

2 A2l, l ≥ 2 Bl A
(2)
2l V (2ω1) / ◦

0
⇒ ◦

1
− · · · − ◦

l−1
⇒ ◦

l

2 A2l−1, l ≥ 2 Cl A
(2)
2l−1 V (ω2) / ◦

1
−
◦0
|
◦
2
− · · · − ◦

l−1
⇐ ◦

l

2 Dl+1, l ≥ 3 Bl D
(2)
l+1 V (ω1) / ◦

0
⇐ ◦

1
− · · · − ◦

l−1
⇒ ◦

l

2 E6 F4 E
(2)
6 V (ω1) / ◦

0
− ◦

1
− ◦

2
⇐ ◦

3
− ◦

4

3 D4 G2 D
(3)
4 V (ω2) V (ω2) ◦

1
⇛ ◦

2
− ◦

0

We put a “0” on (almost) everything related to g0, e.g. denote by Φ0 ⊆ (h0)
∗ the root system

of g0. The recently defined element δ is the imaginary root in Φ̂+ and θ is the highest short

root of the root system of g0 if Â is of type A
(2)
2l−1, D

(2)
l+1, E

(2)
6 , D

(3)
4 . In the remaining twisted

cases θ−α1 is the highest root of the root system of g0. For more details we refer to ([2],[19]).

Remark 2.2. The untwisted Kac-Moody algebras ĝ = g ⊗C C[t, t−1] ⊕ Cc ⊕ Cd can also be
realised as fixed point algebras for any automorphism of order 1. We have g0 = g and the
eigenspaces are the zerospaces. In this case θ is the highest root of g.
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2.3. The extended affine Weyl group. Now we give a description of the Weyl group Ŵ
of the affine Kac-Moody algebra ĝ. The Weyl group is generated by fundamental reflections

s0, . . . , sl, which act on ĥ∗ by

si(λ) = λ− λ(α∨
i )αi, λ ∈ ĥ∗.

Since δ(α∨
i ) = 0 for all i = 0, . . . , l, the Weyl group Ŵ fixes δ. Another well-known description

of the affine Weyl-group is the following. Let W0 be the subgroup of Ŵ generated by
s1, . . . , sl, i.e. W0 can be identified with the Weyl group of the Lie algebra g0, since W0

operates trivially on (Cδ + CΛ0). Further let

(2.3) M =
l∑

i=1

Zαi if Â symmetric or m > a0

or

(2.4) M = ν(
l∑

i=1

Zα∨
i ) otherwise.

For an element µ ∈ M let tµ be the following endomorphism of the vector space ĥ∗:

(2.5) Λ = λ+ bΛ0 + rδ 7→ tµ(Λ) = Λ + Λ(c)µ− (〈Λ, µ〉+ 1

2
〈µ, µ〉Λ(c))δ

Obviously we have tµ ◦ tµ′ = tµ+µ′ , denote tM the abelian group consisting of the elements

tµ, µ ∈ M . Then Ŵ is the semidirect product Ŵ = W0×tM .

The extended affine Weyl group Ŵ ext is the semidirect product Ŵ ext = Ŵ×tL, where L =
ν(
⊕l

i=1 Zω
∨
i ) is the image of the coweight lattice. The action of an element tµ, µ ∈ L, is

defined as above in (2.5). Let Σ be the subgroup of Ŵ ext stabilizing the dominant Weyl

chamber Ĉ:
Σ = {σ ∈ Ŵ ext | σ(Ĉ) = Ĉ}.

Then Σ provides a complete system of coset representatives of Ŵ ext/Ŵ , so we can write in

fact Ŵ ext = Σ×Ŵ .
The elements σ ∈ Σ are all of the form

σ = τit−ν(ω∨
i ) = τit−ωi

,

where ω∨
i is a minuscule fundamental coweight. Further, set τi = w0w0,i, where w0 is the

longest word in W0 and w0,i is the longest word in Wωi
, the stabilizer of ωi in W0.

2.4. Weight space decomposition and roots. Remember that the Borel subalgebra for
the twisted case is given by:

b̂ = ((h0⊕n0)⊗1)⊕
⊕

k∈N>0

(g0⊗tmk)⊕
⊕

k∈N

(g1⊗tmk+1)⊕· · ·⊕
⊕

k∈N

(gm−1⊗tmk+(m−1))⊕Cc⊕Cd.

Furthermore we remember that gj is a irreducible g0-module for all j, so one can obtain the
following weight space decomposition

gj =
⊕

α∈(h0)∗

(gj)α
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Proposition 2.3. hj = (gj)0; (n−)j =
⊕

α∈Φ−
h0
(gj)α; nj =

⊕
α∈Φ+

h0
(gj)α, 0 ≤ j ≤

m− 1.

Let (Φ0)s be the set of short roots and (Φ0)l be the set of long roots of g0 and Φj = {α ∈
(h0)

∗|(gj)α 6= 0} − {0}, then we get

gj = hj ⊕
⊕

α∈Φj

(gj)α = hj ⊕
⊕

α∈Φ+
j

(gj)α ⊕
⊕

α∈Φ−
j

(gj)α,

whereby dim(gj)α = 1 for all α ∈ Φj, hence (gj)±α = CX±
α,j for α ∈ Φ+

j and we have the
following table [2]:

g g0 Φ1 Φ2 Dynkin diagram of g0
A2 A1 (Φ0) ∪ {2α : α ∈ Φ0} / ◦

1

A2l, l ≥ 2 Bl (Φ0) ∪ {2α : α ∈ (Φ0)s} / ◦
1
− ◦

2
− · · · − ◦

l−1
⇒ ◦

l

A2l−1, l ≥ 2 Cl (Φ0)s / ◦
1
− ◦

2
− · · · − ◦

l−1
⇐ ◦

l

Dl+1, l ≥ 3 Bl (Φ0)s / ◦
1
− ◦

2
− · · · − ◦

l−1
⇒ ◦

l

E6 F4 (Φ0)s / ◦
1
− ◦

2
⇐ ◦

3
− ◦

4

D4 G2 (Φ0)s (Φ0)s ◦
1
⇛ ◦

2

3. The twisted current algebra C(ĝ)

In this section we will define the twisted current algebra C(ĝ) and certain subalgebras, which
will be needed in the following sections. The main object of this paper will be

C(ĝ) :=
m−1⊕

j=0

⊕

k≥0

(gj ⊗ tmk+j).

The algebra C(ĝ) can be realized by taking the fixpoints under the group of automorphisms
Γ restricted to the current algebra, in detail (g⊗C[t])Γ ∼= C(ĝ), hence it is called the twisted
current algebra.

In order to give an explicit basis of C(ĝ) we use the embedding gj →֒ g for all 0 ≤ j ≤ m−1,
so that we can realize the generators of the weight spaces (gj)±α as elements in g. This is
already described in [2],[5] and [19] if α is a simple root and can be continued to arbitrary
α ∈ Φ0: Let (α̃1, · · · , α̃m) be a m-element orbit of σ on Φ and x±

α̃i
∈ g be root vectors such

that σ(x±
α̃i
) = x±

α̃j
, where j ≡ i+ 1 mod m. Then we obtain

(
m−1∑

i=0

(ξi)jx±
σi(α̃1)

) ∈ (gj)±α̃1h0
, 0 ≤ j ≤ m− 1.

In ([2], Chapter 18.4) it is shown that the weight spaces of gj are spanned by such elements
for all m-element orbits (α̃1, · · · , α̃m). So the weight spaces (gj)±α can be described as
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follows: There has to be a root α̃, such that α̃h0 = α and

(3.1) CX±
α,j = C(

m−1∑

i=0

(ξi)jx±
σi(α̃)

)

We set further

(3.2) Chα,j = C(
m−1∑

i=0

(ξi)jhσi(α̃))

At this point we have adapted our notation while we denote by hα,0 the coroot of a root
α ∈ Φ0.

Lemma 3.1. Assume ĝ is of type A
(2)
2l−1, D

(2)
l+1, E

(2)
6 or D

(3)
4 . If α is a long root then we get

an canonical isomorphism

sl2 ⊗ C[t] ∼= 〈X±
α,0 ⊗ tms, hα,0 ⊗ tms|s ∈ N〉C =: sl2,α ⊗ C[tm]

and if α is short we have

sl2 ⊗ C[t] ∼= 〈X±
α,j ⊗ tms+j, hα,j ⊗ tms+j|s ∈ N , 0 ≤ j ≤ m− 1〉C =: sl2,α ⊗ C[t].

Proof. Since the Lie algebra 〈X±
α,0, hα,0〉C is canonically isomorph to sl2 the first isomorphism

is given by
x± ⊗ ts 7→ X±

α,0 ⊗ tms

h⊗ ts 7→ hα,0 ⊗ tms.

To verify the second isomorphism we define

x± ⊗ ts 7→ X±
α,j ⊗ ts, if s ≡ j mod m

h⊗ ts 7→ hα,j ⊗ ts, if s ≡ j mod m

To show that this map is an homomorphism of Lie algebras we need to check

(3.3) [X+
α,i1

, X−
α,i2

] = hα,i1+i2 mod m, [hα,i2 , X
±
α,i1

] = ±2X±
α,i1+i2 mod m

Since we require α to be a short root, we know that the weight space (gj)±α, 0 ≤ j ≤
m − 1 is non-zero and therefore we can use the description in (3.1), (3.2) with α̃, such
that σ(α̃) 6= α̃. More than this, a case by case consideration shows σj(α̃)(σi(α̃)∨) = 0 and

σj(α̃) − σi(α̃) is not a root for i 6= j, e.g. in type D
(2)
l+1 we have for an arbitrary short

root αi + · · · + αl of Bl, that α̃ = αi + · · · + αl and therefore σ(α̃) − α̃ = αl+1 − αl is
not a root and σ(α̃)(α̃∨) = α̃(σ(α̃)∨) = 0. The proof in the other cases is similar. We set
X±

α,j = (
∑m−1

i=0 (ξi)jx±
σi(α̃)

), hα,j = (
∑m−1

i=0 (ξi)jhσi(α̃)). The required equations in (3.3) are

now immediate. �

If ĝ is of type A
(2)
2l we obtain a similar result

Lemma 3.2. Assume ĝ is of type A
(2)
2l and α be a long root then we get an canonical

isomorphism

sl2 ⊗ C[t] ∼= 〈X±
α,j ⊗ tms+j, hα,j ⊗ tms+j|s ∈ N , 0 ≤ j ≤ m− 1〉C =: sl2,α ⊗ C[t]

and if α is a short root, then we get an canonical isomorphism

C(A
(2)
2 ) ∼= 〈X±

α,j ⊗ tms+j, X±
2α,1 ⊗ tms+1, hα,j ⊗ tms+j|s ∈ N, 0 ≤ j ≤ m− 1〉C.



DEMAZURE MODULES AND WEYL MODULES: THE TWISTED CURRENT CASE 35

Proof. The proof of the first isomorphism is similar to Lemma 3.1 and to justify the second
isomorphism we will demonstrate how to realize the elements hα,j, X

±
α,j, X

±
2α,1 as elements in

A2l. Let α = αi + · · ·+αl be an arbitrary short root of type Bl and α̃ = αi + · · ·+αl be the
root considered as a root in type A2l, i.e. the restriction to h0 equals α. It is easy to see that
σ(α̃) 6= α̃, σ(α̃)− α̃ is not a root of A2l and continuing σ(α̃)(α̃∨) = α̃(σ(α̃)∨) = −1. We set

X±
α,j = (ξ)j

√
2(x±

α̃ + ξjx±
σ(α̃)) ∈ (gj)±α

X±
2α,1 = [x±

α̃ , x
±
σ(α̃)] ∈ (g1)±2α

hα,j = 2δ0,j(hα̃ + ξjhσ(α̃))

Now, knowing the embedding in A2l, it is straighforward to check the required relations. �

3.1. Filtration on C(ĝ). The Lie algebra C(ĝ) has a natural grading and an associated
natural filtration F •(C(ĝ)), where F s(C(ĝ)) is defined to be the subspace of g-valued poly-
nomials with degree smaller or equal s. One has an induced filtration also on the enveloping
algebra U(C(ĝ)) and therefore an induced filtration on arbitrary cyclic U(C(ĝ))-modules W
with cyclic vector w. Denote by Ws the subspace spanned by the vectors of the form g.w,
where g ∈ F s(U(C(ĝ))), and denote the associated graded C(ĝ)–module by gr(W )

gr(W ) =
⊕

i≥0

Wi/Wi−1, where W−1 = 0.

4. Demazure modules and Weyl modules

4.1. Definition of Demazure modules. For a dominant weight Λ ∈ P̂+ let V (Λ) be the

irreducible highest weight module of highest weight Λ. Given an element w ∈ Ŵ , fix a

generator vw(Λ) of the line V (Λ)w(Λ) = Cvw(Λ) of ĥ–eigenvectors in V (Λ) of weight w(Λ).

Definition 4.1. The U(b̂)–submodule Vw(Λ) = U(b̂).vw(Λ) generated by vw(Λ) is called the
Demazure submodule of V (Λ) associated to w.

Remark 4.2.

(1) Since ĥ acts by multiplication with a scalar on vw(Λ), the Demazure module Vw(Λ) is
a cyclic U(n̂)–module generated by vw(Λ).

(2) The modules Vw(Λ) are finite–dimensional although V (Λ) is infinite–dimensional.

To associate more generally to every element σw ∈ Ŵ ext = Σ×Ŵ a Demazure module,
recall that elements in Σ correspond to automorphisms of the Dynkin diagram of ĝ, and
thus define an associated automorphism of ĝ, also denoted σ. For a module V of ĝ let σ∗(V )
be the module with the twisted action g ◦ v = σ−1(g)v. Then for the irreducible module of

highest weight Λ ∈ P̂+ we get σ∗(V (Λ)) = V (σ(Λ)).

So for σw ∈ Ŵ ext = Σ×Ŵ we set

(4.1) Vσw(Λ) := Vσwσ−1(σ(Λ)).

We are mainly interested in g0-stable Demazure modules. For i ∈ I0 we have X−
αi,0

vw(Λ) = 0
if and only if w(Λ)(α∨

i ) ≤ 0. Consequently we can see that Vw(Λ) is g0-stable if and only if
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w(Λ)(α∨
i ) ≤ 0 for all i ∈ I0. Assume that ω(Λ) = −λ+ kΛ0 + iδ, then Vw(Λ) is stable under

g0 if and only if λ ∈ P+
0 . We define a set

X = {(λ, k, i) ∈ P+
0 × (1/a∨0 )Z>0 × (1/a0)Z | ∃!Λ ∈ P̂+ : w0(λ) + kΛ0 + iδ ∈ Ŵ (Λ)},

where w0 is the longest word in W0. Let (λ, k, i) ∈ X and ω ∈ Ŵ , such that ω(Λ) =
w0(λ) + kΛ0 + iδ. Then by the above computation we get the g0-stability of the Demazure
module Vw(Λ) and we denote

Vw(Λ) = D(k, λ)[i].

Remark 4.3.

(1) The g0 stable Demazure modules are in fact C(ĝ)-modules.

(2) For any Λ ∈ P̂+ and i ∈ (1/a0)Z, we have V (Λ) ∼= V (Λ + iδ), as C(ĝ)-modules.
Therefore we get

D(k, λ)[i] ∼= D(k, λ)[i+ n],

which justifies the notation D(k, λ) as a C(ĝ)-module.

Remark 4.4. Whenever we speak about D(k, λ) we will assume that (λ, k) ∈ X. If ĝ is not of

type A
(2)
2l (l ≥ 1) the set X is given by X = P+

0 ×Z>0×Z and else we have P+
0 ×Z>0×Z ( X.

4.2. Demazure character formula. Let β be a real root of the root system Φ̂. We define
the Demazure operator:

Dβ : Z[P̂ ] → Z[P̂ ], Dβ(e
λ) =

eλ − esβ(λ)−β

1− e−β

Lemma 4.5.

(1) For λ, µ ∈ P̂ we have:

(4.2) Dβ(e
λ) =





eλ + eλ−β + · · ·+ esβ(λ) if 〈λ, β∨〉 ≥ 0
0 if 〈λ, β∨〉 = −1
−eλ+β − eλ+2β − · · · − esβ(λ)−β if 〈λ, β∨〉 ≤ −2

(2) Let χ, η ∈ Z[P̂ ]. If Dβ(η) = η, then

(4.3) Dβ(χ · η) = η · (Dβ(χ)).

Proof. For (1) see ([10], (1.5)–(1.8)) and for (2) see ([14], (2.2)). �

Since Dαi
(1 − eδ) = (1 − eδ) for all i = 0, . . . , n, (4.3) shows that the ideal Iδ = 〈(1 − eδ)〉

is stable under all Demazure operators Dβ. Thus we obtain induced operators (we still use
the same notation Dβ)

Dβ : Z[P̂ ]/Iδ −→ Z[P̂ ]/Iδ, eλ + Iδ 7→ Dβ(e
λ) + Iδ.

In the following we denote by Di, i = 0, . . . , n the Demazure operator Dαi
corresponding

to the simple root αi. Recall that for any reduced decomposition w = si1 · · · sir of w ∈ Ŵ
the operator Dw = Di1 · · ·Dir is independent of the choice of the decomposition (see [21],
Corollary 8.2.10). We have the following important theorem:

Theorem 4.6 ([21] Chapter VIII).

CharVw(Λ) = Dw(e
Λ).
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We will need the following elementary proposition:

Proposition 4.7. Let λ∨
1 , λ

∨
2 be two dominant coweights, and set λ∨ = λ∨

1 + λ∨
2 . Then

(1) Dt−ν(λ∨1 )
Dt−ν(λ∨2 )

= Dt−ν(λ∨)

(2) Dt−ν(λ∨1 )
Dω0 = Dt−ν(λ∨1 )ω0

4.3. Properties of Demazure modules. Since Vw(Λ) = U(b̂) · vw(Λ), there exists an Ideal

J ⊆ U(b̂), such that Vw(Λ) ∼= U(b̂)/J . So the Demazure module can be described by
generators and relations, which was done in [23]. We give here a reformulation for the
twisted affine case:

Proposition 4.8 ([23]). Let Λ ∈ P̂+ and let w be an element of the affine Weyl group

of ĝ. The Demazure module Vw(Λ) is as a U(b̂)-module isomorphic to the cyclic module,
generated by v 6= 0 with respect to the following relations.
For β ∈ Φ+

j , 0 ≤ j ≤ m− 1 we have:

(X+
β,j ⊗ tms+j)kβ+1.v = 0 where s ≥ 0, kβ = max{0,−〈w(Λ), (β + (ms+ j)δ)∨〉}

(X−
β,j ⊗ tms+j)kβ+1.v = 0 where s > −δj,{1,··· ,m−1}, kβ = max{0,−〈w(Λ), (−β + (ms+ j)δ)∨〉}

(h⊗ tms+j).v = δj,0δs,0w(Λ)(h)v ∀h ∈ hj, where s ≥ 0, d.v = w(Λ)(d).v, c.v = w(Λ)(c)v

Corollary 4.9. As a module for C(ĝ) the Demazure module D(k, λ) is isomorphic to the cyclic
U(C(ĝ))–module generated by a vector v 6= 0 subject to the following relations:
For β ∈ Φ+

j , 0 ≤ j ≤ m− 1 we have:

nj ⊗ tjC[tm].v = 0

(X−
β,j ⊗ tms+j)kβ+1.v = 0 where s ≥ 0, kβ = max{0, 〈λ, β∨〉 − 2(ms+ j)

〈β, β〉 ka∨0 }

(h⊗ tms+j).v = δj,0δs,0λ(h)v ∀h ∈ hj, where s ≥ 0

Proof. The proof is similar to the one given in ([15] Corollary 1). �

Remark 4.10. Since the defining relations of D(k, λ) respect the grading of C(ĝ), D(k, λ) is
a graded module.

In [14] it was shown by using the Demazure operator, that D(k, λ) decomposes as a g (resp.
g0) module into a tensor product of ”smaller” Demazure modules. We give here the result
for the twisted affine case:

Theorem 4.11. [14] Let λ∨ = λ∨
1 + λ∨

2 + . . . + λ∨
r be a sum of dominant coweights. Then

for m ≥ 0 we have an isomorphism of g0-modules between the Demazure module V−λ∨(mΛ0)
and the tensor product of Demazure modules:

V−λ∨(mΛ0) ≃ V−λ∨
1
(mΛ0)⊗ V−λ∨

2
(mΛ0)⊗ · · · ⊗ V−λ∨

r
(mΛ0).

Remark 4.12. This theorem holds for any special vertex k of the twisted affine diagram.
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4.4. Definition of local Weyl modules. The representation theory of twisted current
algebras is particularly interesting because the category of finite–dimensional representation
is not semisimple. It makes sense to ask for the ”maximal” finite–dimensional cyclic repre-
sentations in this class, which leads to the definition of local Weyl modules. Please see [4]
or [16] for the explanation of the term ”local” in contrast to the term ”global”.

Let λ =
∑l

i=1 miωi ∈ P+
0 be a dominant integral weight for g0. Then we define the local

graded Weyl module W Γ(λ) in terms of generators and relations:

Definition 4.13. Let λ =
∑l

i=1 miωi be a dominant integral weight for g0. Define W Γ(λ)
to be the U(C(ĝ))-module generated by an element wλ with the relations:

(4.4) nj ⊗ tjC[tm].wλ = 0, 0 ≤ j ≤ m− 1

(4.5) (h⊗ tms+j).wλ = δj,0δs,0λ(h)wλ ∀h ∈ hj, where s ≥ 0

(4.6) (X−
β,0 ⊗ 1)λ(β

∨)+1wλ = 0, for all positive roots β of g0

Remark 4.14. Note that the modules W Γ(λ) are graded modules since U(C(ĝ)) is graded by
the powers of t and the defining relations are graded, particulary we have

W Γ(λ) ∼=
⊕

s∈Z+

W Γ(λ)[s],

where W Γ(λ)[s] is a g0-module by identifying g0 with g0 ⊗ 1 ⊆ C(ĝ).

4.5. Properties of Weyl modules.

Proposition 4.15.

(1) We have

W Γ(λ) =
⊕

µ∈(h0)∗

W Γ(λ)µ

and W Γ(λ)µ 6= 0 only if µ ∈ λ − Q+
0 . Further we get W Γ(λ)µ 6= 0 if and only if

W Γ(λ)w(µ) 6= 0 for all w ∈ W0.
(2) As a g0 module W Γ(λ) and W Γ(λ)[s] decompose into finite–dimensional irreducible

representations of g0.
(3) Let µ be a dominant integral weight, such that λ − µ is as well dominant integral.

Then there exists a canonical homomorphism W Γ(λ) → W Γ(µ)⊗W Γ(λ−µ) mapping
wλ to wµ ⊗ wλ−µ.

Proof. It sufficies to show that for every v ∈ W Γ(λ)µ the module U(g0).v is finite dimensional,
since this proves the non-trivial statements in part (1) and (2). Part (3) is clear from the
defining relations. Given v ∈ W Γ(λ)µ we obtain U(g0).v = U((n−)0)U(n0).v. From part
(1) we obtain that U(n0).v is finite dimensional. By the PBW-theorem U((n−)0) is spanned
by monomials, so it suffices to show that X−

β,0 ∈ (n−)0 acts nilpotently on v. Assume that

v ∈ U(C(ĝ))wλ and the action of (n−)0 on C(ĝ), which is given by the Lie bracket is locally
nilpotent. We obtain with

(X−
β,0 ⊗ 1)λ(β

∨)+1wλ = 0, (X−
β,0)

N(u.wλ︸︷︷︸
=v

) =
N∑

k=0

(
N

k

)
((X−

β,0)
ku)(X−

β,0)
N−kwλ
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that X−
β,0 acts nilpotently on v, which finally implies that U(g0).v is finite dimensional. �

Remark 4.16. W Γ(λ) is finite–dimensional. This will be an immediate consequence of The-
orem 5.1 and Corollar 7.4.

By definition we obtain some obvious maps between Weyl modules and certain Demazure
modules.

Corollary 4.17. Let λ be a dominant integral weight for g0. Then for all k ∈ (1/a∨0 )Z>0, such
that (λ, k) ∈ X, the Demazure module D(k, λ) is a quotient of the Weyl module W Γ(λ).

Proof. This follows immediately by comparing the relations for the Weyl module in Defini-
tion 4.13 and the relations for the Demazure module in Corollary 4.9. �

In this paper we want to show, that the map between Weyl and Demazure modules is in
fact an isomorphism. This is already known for untwisted current algebras of simply-laced
type ([6],[9],[15]). We recall the result for g = sl2 here only, since this will be heavily used
throughout this paper.

Theorem 4.18. For g = sl2 and nω ∈ P+, we have an isomorphism of sl2 ⊗ C[t]-modules

W (nω) ∼= D(1, nω).

5. Connection between Weyl modules and Demazure modules

In this section we will show, that almost all Weyl modules are isomorphic to certain Demazure
modules, e.g. the map in Corollary 4.17 is in fact an isomorphism.

Theorem 5.1. Suppose ĝ is of type A
(2)
2l−1, D

(2)
l+1, E

(2)
6 or D

(3)
4 , then we have an isomorphism

of C(ĝ)-modules

W Γ(λ) ∼= D(1/a∨0 , λ).

If ĝ is of type A
(2)
2l and λ =

l∑
i=1

miωi be a dominant weight, such that ml is odd, we have an

isomorphism of C(ĝ)-modules

W Γ(λ) ∼= D(1/a∨0 , λ).

Proof. By Corollary 4.17 we know already that the Demazure module is a quotient of the
Weyl module. By comparing the defining relations in Corollary 4.9 and in Definition 4.13, we
see that to prove that this map is an isomorphism, it is sufficient to show that the generator
of the Weyl module is subject to the following relations:
For all 0 ≤ j ≤ m− 1, β ∈ Φ+

j :

(5.1) (X−
β,j ⊗ tms+j)kβ+1.wλ = 0, where s ≥ 0, kβ = max{0, 〈λ, β∨〉 − 2(ms+ j)

〈β, β〉
1

a∨0
a∨0 }.

Assume ĝ is not of type A
(2)
2l , then (5.1) is equivalent to :

(5.2)

(X−
β,j ⊗ tms+j)kβ+1.wλ = 0, where s ≥ 0, kβ =

{
max{0, 〈λ, β∨〉 − s}, if β is long

max{0, 〈λ, β∨〉 − (ms+ j)}, if β is short

Let β ∈ Φ+
0 be a long root and V = U(sl2,β ⊗ C[tm]).wλ ⊆ W Γ(λ) be the sl2,β ⊗ C[tm]-

submodule. Further letW (〈λ, β∨〉ω) be the sl2⊗C[t]-Weyl module, which is by Theorem 4.18
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isomorphic to the sl2 ⊗C[t]-Demazure module D(1, 〈λ, β∨〉ω). Since wλ is a cyclic generator
for V and satisfies obviously the defining relations of W (〈λ, β∨〉ω) we obtain by Lemma 3.1
a surjective homomorphism:

W (〈λ, β∨〉ω) ∼= D(1, 〈λ, β∨〉ω) ։ V ⊆ W Γ(λ).

In particular, wλ satisfies the defining relations of D(1, 〈λ, β∨〉ω), which contain the relation

(x− ⊗ ts)max{0,〈λ,β∨〉−s}+1.v = 0 ∀s ∈ N,

therefore again by Lemma 3.1 we obtain

(X−
β,0 ⊗ tms)max{0,〈λ,β∨〉−s}+1.wλ = 0

Now suppose β is a short root and consider the sl2,β⊗C[t]-submodule V = U(sl2,β⊗C[t]).wλ ⊆
W Γ(λ). By the same reasons as above and Lemma 3.1 we get an surjective homomorphism

W (〈λ, β∨〉ω) ∼= D(1, 〈λ, β∨〉ω) ։ V ⊆ W Γ(λ),

and therefore wλ satisfies again the relations of D(1, 〈λ, β∨〉ω). Using the isomorphism in
Lemma 3.1 we obtain:

(X−
β,j ⊗ tms+j)max{0,〈λ,β∨〉−(ms+j)}+1.wλ = 0, ∀s ∈ N, 0 ≤ j ≤ m− 1,

which proves (5.2).

To prove the theorem it remains to consider the case where ĝ is of type A
(2)
2l . We have

(λ, 1/2, 0) ∈ X, in particulary we have D(1/a∨0 , λ) = Vω0tλ−ωl
(Λl). In order to use again

Corollary 4.9 we reformulate (5.1) into
(5.3)

(X−
β,j⊗tms+j)kβ+1.wλ = 0, s ≥ 0, kβ =





max{0, 〈λ, β∨〉 − (ms+ j)}, if β is long
max{0, 〈λ, β∨〉 − 2(ms+ j)}, if β is short

max{0, 〈λ, β∨〉 − 1/2(ms+ 1)}, if β = 2α, α is short

We will prove case by case that the generator of W Γ(λ) satisfies the relations in (5.3). For
long roots the proof is similar to the other cases by using Lemma 3.2. So let β be a short
root and 〈X±

β,j ⊗ tms+j, X±
2β,1 ⊗ tms+1, hβ,j ⊗ tms+j〉C the Lie algebra which is isomorphic

to C(A
(2)
2 ) by Lemma 3.2. We consider the submodule U(C(A

(2)
2 )).wλ ⊆ W Γ(λ), which is

trivially a quotient of the A
(2)
2 -Weyl moduleW Γ(〈λ, β∨〉ω). In Section 7 Theorem 7.1 we prove

(independent of Section 1-6) that W Γ(〈λ, β∨〉ω) ∼= D(1/2, 〈λ, β∨〉ω). The proof is finished

with the observation, that the defining relations for A
(2)
2 -Demazure module D(1/2, 〈λ, β∨〉ω)

contain the relations

(X−
β,j ⊗ tms+j)max{0,〈λ,β∨〉−2(ms+1)}+1.w = 0,

(X−
2β,1 ⊗ tms+1)max{0,1/2(〈λ,β∨〉−(ms+1))}+1.w = 0.

�
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5.1. Fundamental Weyl modules. In the previous section we have seen that Weyl mod-
ules are isomorphic to certain Demazure modules. Since most of the Demazure modules have
a nice tensor product decomposition, see Theorem 4.11, we can transfer this result to most

Weyl modules (only the A
(2)
2l case needs more work). Using this decomposition, to compute

the dimension and character of Weyl modules it is enough to describe the g0 decomposition
of fundamental Weyl modules W Γ(ωi).

Theorem 5.2. Let ω1, · · · , ωl be the fundamental weights in P+
0 . Viewed as a g0-module

the fundamental Weyl modules decomposes into the direct sum of irreducible g0-modules as

follows:

• if ĝ is of type A
(2)
2l

W Γ(ωi) ∼= V (ωi),

W Γ(2ωl) ∼= V (2ωl)

• if ĝ is of type A
(2)
2l−1

W Γ(ωi) ∼=
⊕

sī+···+si=1

V (sīωī + · · ·+ si−2ωi−2 + siωi),where ī ∈ {0, 1} and i = ī mod 2

• if ĝ is of type D
(2)
l+1

W Γ(ωi) ∼=
⊕

s1+···+si≤1

V (s1ω1 + · · ·+ siωi), i 6= l

W Γ(ωl) ∼= V (ωl)

• if ĝ is of type E
(2)
6

W Γ(ω1) ∼=
⊕

s≤1

V (sω1)

W Γ(ω2) ∼= V (0)⊕ V (ω1)
⊕2 ⊕ V (ω2)⊕ V (ω4)

W Γ(ω3) ∼= V (0)⊕2 ⊕ V (ω1)
⊕4 ⊕ V (ω2)

⊕3 ⊕ V (ω4)
⊕3 ⊕ V (2ω1)⊕ V (ω1 + ω4)⊕ V (ω3)

W Γ(ω4) ∼=
⊕

s1+s4≤1

V (s1ω1 + s4ω4)

• if ĝ is of type D
(3)
4

W Γ(ω1) ∼= V (0)⊕ V (ω1)⊕ V (ω2)
⊕2

W Γ(ω2) ∼=
⊕

s≤1

V (sω2)

Proof. If ĝ is of type A
(2)
2l−1 or D

(2)
l+1 the decomposition rule is immediate from Theorem 5.1

and Theorem 2 in [14]. By same reasons the theorem is true for i = 2 if ĝ is of type D
(3)
4 and

for i = 1, 4 in type E
(2)
6 . For i = 1 one can check t−w1 = w0s0s2s1s2s0 and therefore with the

Demazure character formula we get

Dt−w1
(eΛ0) = Dw0(e

0 + 2eω2 + eω1) ⇒ W Γ(ω1) ∼= Vt−ω1
(eΛ0) ∼=G2 V (0)⊕ V (ω1)⊕ V (ω2)

⊕2,
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which proves the claim for type D
(3)
4 .

So it remains to consider the nodes i = 2, 3 in type E
(2)
6 and the general case in type A

(2)
2l .

In [7] Kirillov-Reshetikhin modules KR(sωi) respectively KRσ(sωi) for the twisted version
are defined. By inspecting the defining relations it follows that KR-modules of level 1 (e.g.
s = 1) are precisely fundamental Weyl modules, in particular

W (ωi) ∼= KR(ωi) and W Γ(ωi) ∼= KRσ(ωi).

Since the decomposition of KR-modules are known as g respectively g0-modules
(see [3],[7],[18] or [20] for instance) we obtain the predicted decomposition for i = 2, 3 in

type E
(2)
6 and for the general case in type A

(2)
2l .

It remains to consider W Γ(2ωl), so let 〈X±
αl,j

⊗ tms+j, X±
2αl,1

⊗ tms+1, hαl,j ⊗ tms+j|s ∈ N, 0 ≤
j ≤ m − 1〉C be the Lie algebra which is by Lemma 3.2 isomorphic to C(A

(2)
2 ). Then we

obtain a surjective homomorphism

W Γ(2ω) ։ U(C(A
(2)
2 )).w2ωl

⊆ W Γ(2ωl).

In Section 7 we will show that the A
(2)
2 -Weyl moduleW Γ(2ω) is an irreducible sl2-module and

hence (X−
αl,0

⊗ t2).w2ωl
= (X−

2αl,1
⊗ t).w2ωl

= (X−
αl,1

⊗ t).w2ωl
= 0. So W Γ(2ωl) is isomorphic

to the Kirillov-Reshetikhin module KRσ(2ωl), hence the decomposition is known by [7]. �

Such a similar decomposition is already known for the untwisted fundamental Weyl modules
W (ωi), see [3] or [14] for instance. This fact motivates us to compare the dimension of twisted
and untwisted fundamental Weyl modules. For notational reasons, we have to extend certain
linear functions h0 −→ C to functions on h. So let µ ∈ P+

0 (with µ(α∨
l ) ∈ 2Z≥0 if g is of type

A2l). We define the extension, by abuse of notation also denoted by µ, on a basis of h by:

µ(hi) =





µ(α∨
i ) if g is not of type A2l

0 if i /∈ I0
(1− δi,l

2
)µ(α∨

i ) if g is of type A2l

Since there might be a confusion in notation in the A2l and the l-th fundamental weight case
only, we will use this identification in the remaining of the paper without further comment.

Lemma 5.3. Let ω1, · · · , ωl be the fundamental weights in P+
0 . We set ǫ = (1 + δi,l) if g is

of type A2l and ǫ = 1 else, then we obtain

dimW Γ(ǫωi) = dimW (ǫωi), 1 ≤ i ≤ l.

Proof. Using Theorem 5.2, Theorem 2 in [14] and Lecture 24 in [17], we obtain the following
straightforward calculations:

• if ĝ is of type A
(2)
2l , (g, g0) = (A2l, Bl):

dimW Γ(ǫωi) =

(
2l + 1

i

)
= dim(Vg(ωi)) = dimW (ǫωi)

• if ĝ is of type A
(2)
2l−1, (g, g0) = (A2l−1, Cl):

dimW Γ(ωi) =

(
2l

ī

)
+

i−ī
2∑

j=1

(
2l

ī+ 2j

)
−
(

2l

ī+ 2j − 2

)
=

(
2l

i

)
= dimW (ωi)
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• if ĝ is of type D
(2)
l+1, (g, g0) = (Dl+1, Bl):

dimW Γ(ωi) =

{
2i, if i = l

1 +
∑i

j=1

(
2l+1
j

)
, i 6= l

=

{
2i, if i = l

∑ i−pi
2

j=0

(
2l+2
pi+2j

)
, i 6= l

=

{
dimVg(ωl), if i = l

dim(Vg(ωi)⊕ Vg(ωi−2)⊕ · · · ⊕ Vg(ωpi)), i 6= l
= dimW (ωi)

• if ĝ is of type E
(2)
6 , (g, g0) = (E6, F4):

dimW Γ(ω1) = 27 = dimVg(ω1) = dimW (ω1)

dimW Γ(ω2) = 378 = dim(
⊕

s2+s6=1

Vg(s2ω2 + s6ω6)) = dimW (ω2)

dimW Γ(ω3) = 3732 = dim(Vg(0)⊕ Vg(ω4)
⊕2 ⊕ Vg(ω1 + ω6)⊕ Vg(ω3)) = dimW (ω3)

dimW Γ(ω4) = 79 = dim(
⊕

s4≤1

Vg(s4ω4)) = dimW (ω4)

• if ĝ is of type D
(3)
4 , (g, g0) = (D4, G2):

dimW Γ(ω1) = 29 = dim(Vg(ω1)⊕ Vg(0)) = dimW (ω1)

dimW Γ(ω2) = 8 = dim(Vg(ω2)) = dimW (ω2)

�

6. Connection between twisted and untwisted Weyl modules

In this section we will show that the Weyl modules W Γ(λ) can be realized as associated
graded modules of certain untwisted Weyl modules for the loop algebra g ⊗ C[t, t−1]. So
consider for a ∈ C∗ the Lie algebra homomorphism ϕa defined as follows:

ϕa : g⊗ C[t] −→ g⊗ C[t], x⊗ tm 7→ x⊗ (t+ a)m.

For a g⊗ C[t]-module W we denote by Wa be the module obtained by pulling back W
through ϕa, i.e. x ⊗ ts acts by x ⊗ (t + a)s. Further we denote by W be the module W
considered as a C(ĝ)-module, obtained by the embedding

C(ĝ) →֒ g⊗ C[t].

For the definition of the associated graded modules in the following theorem, we refer to
Section 3.1:

Theorem 6.1. Let λ =
∑l

i=1 miωi be a dominant g0-weight. If ĝ is a twisted Kac-Moody

algebra not of type A
(2)
2l we get an isomorphism of C(ĝ)-modules:

W Γ(λ) ∼= gr(Wa(λ)).

If ĝ is of type A
(2)
2l and λ = λ1 + λ2 ∈ P+

0 , such that ml and λ2(α
∨
l ) are odd we get an

isomorphism of C(ĝ)-modules:

W Γ(λ) ∼= gr(Wa(λ1)⊗W Γ(λ2)).
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Proof. Let ĝ be not of type A
(2)
2l , by combining [5] and [13] it follows, that Wa(λ) is a cyclic

C(ĝ) module. Therefore the associated graded is again cyclic and it remains to observe, that
the image of the highest weight generator w satisfies for j ∈ {0, . . . ,m− 1} and hj ∈ hj the
relations

(hj ⊗ tms+j).w = 0, (s, j) 6= (0, 0)

(h0 ⊗ 1)w = λ(h0)w.

Thus we obtain a surjective homomorphism

(6.1) W Γ(λ) ։ gr(Wa(λ)).

In order to compare the dimension of these modules we exploit the tensor product decompo-
sition of W Γ(λ) as a g0-module by combining Theorem 5.1 and Proposition 4.11. We obtain
the following :

(6.2) W Γ(λ) ∼= W Γ(ω1)
⊗m1 ⊗ · · · ⊗W Γ(ωl)

⊗ml as g0-modules.

An analogue decomposition was proven in [15] for untwisted Weyl modules for the current
algebra of a simply-laced simple Lie algebra and is generalized in [25] for the non simply-laced
case. From this it follows immediately

dim gr(Wa(λ)) = dimW (λ) =
l∏

i=1

(dimW (ωi))
mi .

Hence by Lemma 5.3 we check that (6.1) is in fact an isomorphism.

From now on, we assume that ĝ is of type A
(2)
2l . Since Wa(λ1) and W Γ(λ2) are cyclic C(ĝ)-

modules it follows with the usual arguments of [13] and the Chinese remainder theorem,
that the tensor product is cyclic as well. Therefore we obtain similar to (6.1) a surjective
homomorphism

(6.3) W Γ(λ) ։ gr(Wa(λ1)⊗W Γ(λ2)).

With the aim to compare the dimension on both sides we notice

dim gr(Wa(λ1)⊗W Γ(λ2)) = dimW (λ1) dimW Γ(λ2) =
l∏

i=1

(dimW (ωi))
λ1(α∨

i ) dimW Γ(λ2).

Our goal now is to prove the following tensor product decomposition:

(6.4) W Γ(λ) ∼=g0 W
Γ(ω1)

⊗m1 ⊗ · · · ⊗W Γ(ωl−1)
⊗ml−1 ⊗W Γ(2ωl)

⊗k−1 ⊗W Γ(ωl),

where ml = 2k−1 since the proposition is a immediate consequence of (6.4) and Lemma 5.3.
To prove (6.4) we investigate the character of W Γ(λ). By Theorem 5.1 and Theorem 4.6 we
obtain

CharW Γ(λ) = CharVω0tλ−ωl
(Λl) = Dω0tλ−ωl

(eΛl).

Suppose that V (µ) is a irreducible Bl-module, such that the coefficient nl is even, whereby

µ =
∑l

i=1 niωi. The first step will be to show that CharV (µ) is stable under the Demazure
operators Di, i = 0, . . . , l. The character of a finite dimensional g0-module is stable under the
Weyl group W and hence stable under Di, i = 1, . . . , l. It remains to consider the case i = 0.
Note that α0 = δ−2θ = δ−θ where θ = α1+· · ·+αl is the highest short root of Bl. We define

maps sθ : (h0)
∗ → (h0)

∗, sθ(λ) = λ − λ(θ
∨
)θ and sθ : (h0)

∗ → (h0)
∗, sθ(λ) = λ − λ(θ∨)θ.
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Since θ
∨
= 2(α∨

1 + . . . + α∨
l−1) + α∨

l and θ∨ = α∨
1 + . . . + α∨

l−1 +
1
2
α∨
l we get clearly sθ = sθ.

Thus ν is a weight in V (µ) if and only if sθ(ν) is a weight. Assume ν ∈ (h0)
∗ is a weight,

hence ν = µ−Q+
0 and therefore 〈ν, α∨

0 〉 = 〈ν, (δ− θ)∨〉 = 〈ν,−θ∨〉 ∈ Z. We have proved that
D0 can be defined on CharV (µ) and D0 = D−θ. We obtain

D0(CharV (µ)) = D−θ(CharV (µ)) = CharV (µ)

In a second step we prove that the characters are the same by using induction on
∑l−1

i=1 mi+
(k − 1). So if the sum is 1 we have to show

Dω0tωi
(eΛl) = CharW Γ(ωi + ωl) = e

1
2
Λ0Char (Vg0(ωi)⊗ Vg0(ωl)), i < l

Dω0t2ωl
(eΛl) = CharW Γ(3ωl) = e

1
2
Λ0Char (Vg0(2ωl)⊗ Vg0(ωl)).

In other words, we have to figure out the g0-module decomposition ofW Γ(ωi+ωl) respectively
W Γ(3ωl). By Lemma 4.15(2) we already know that there exists such a decomposition and
since the modules are finite–dimensional every g0-submodule is a direct summand. So our
assignment is to find all highest weight vectors, first beginning with the highest weight vectors
living inW Γ(ωi+ωl)[1]. Suppose α ∈ Φ1, such that (X−

α,1⊗t).w is a highest weight vector, i.e.
the element is non-zero and the upper triangular part of g0 acts by zero. We want to restrict
the choice of α to one possible case. Note that α is of the form αj+ · · ·+αl or 2(αj+ · · ·+αl),
1 ≤ j ≤ l or of the form αp+ · · ·+αq respectively αp+ · · ·+αq−1+2(αq+ · · ·+αl), p, q ≤ l−1.
If α is a short root, we obtain from Lemma 3.2

(6.5) W Γ(〈ωi + ωl, α
∨〉ω) ։ U(〈X±

α,j ⊗ tms+j, X±
2α,1 ⊗ tms+1, hα,j ⊗ tms+j〉C ∼= C(A

(2)
2 )).w,

wherebyW Γ(〈ωi+ωl, α
∨〉ω) is the Weyl module for type A

(2)
2 . So if j > i in the representation

of α as a sum of simple roots we get 〈ωi + ωl, α
∨〉 = 1. In Section 7 it is shown that

W Γ(ω) is irreducible and therefore (X−
α,1 ⊗ t).w = (X−

2α,1 ⊗ t).w = 0. Now assume j < i and

(X−
αj+···+αl,1

⊗t).w 6= 0 is a highest weight vector. Hence 0 = (X+
αj+···+αi−1,0

⊗1)(X−
αj+···+αl,1

⊗
t).w = (X−

αi+···+αl,1
⊗ t).w, which is a contradiction to (6.3). In almost the same manner one

sees that (X−
2(αj+···+αl),1

⊗ t).w cant’t be a highest weigth vector. If α is a long root, we get

with Lemma 3.2

W (〈ωi + ωl, α
∨〉ω) ։ U(sl2,α ⊗ C[t]).w,

whereby W Γ(〈ωi + ωl, α
∨〉ω) is the Weyl module for the current algebra sl2 ⊗ C[t]. So if

α = αp+ · · ·+αq we obtain again 〈ωi+ωl, α
∨〉 ≤ 1 and therefore (X−

α,1⊗ t).w = 0. Let α be

of the form αp + · · ·+αq−1 +2(αq + · · ·+αl), such that i ≥ p and (X−
α,1 ⊗ t).w is a non-zero

highest weight vector. Therefore the upper triangular part acts by zero, especially

0 = (X+
αq+···+αl,0

⊗ 1)(X+
αp+···+αi−1,0

⊗ 1)(X−
αp+···+αq−1+2(αq+···+αl),1

⊗ t).w

= (X+
αq+···+αl,0

⊗ 1)(X−
αi+···+αq−1+2(αq+···+αl),1

⊗ t).w = (X−
αi+···+αl,1

⊗ t).w,

which is again a contradiction to (6.3). Hence the only possibility to get a highest weight
vector of degree one is to apply (X−

αi+···+αl,1
⊗ t) on w. Clearly we have by Section 7

(X−
αi+···+αl,1

⊗ t)2.w = (X−
αi+···+αl,1

⊗ t2s+1).w = (X−
αi+···+αl,0

⊗ t2s).w = 0 for s ≥ 1, because

in (6.5) we have 〈ωi + ωl, (αi + . . .+ αl)
∨〉 = 3. Thus one can check that (X−

αi+···+αl,1
⊗ t).w

satisfies the relations (4.4), (4.5) in Definition 4.13 and has weight ωi−1 + ωl with respect to
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h0. Hence the calculations above show on the one hand that (X−
αi+···+αl,1

⊗ t).w is really a
highest weight vector but on the other hand we get more than this, namely a surjective map

W Γ(ωi−1 + ωl) ։ U(C(A
(2)
2l ))(X

−
αi+···+αl,1

⊗ t).w

Since W Γ(ωi +ωl)[1] ∼=g0 Vg0(ωi−1 +ωl) ∼= U(g0)(X
−
αi+···+αl,1

⊗ t).w we obtain W Γ(ωi +ωl) =

U(g0).w ⊕ U(C(A
(2)
2l ))(X

−
αi+···+αl,1

⊗ t).w ∼=g0 Vg0(ωi + ωl)⊕W Γ(ωi−1 + ωl)/I, for some ideal
I. Using (6.3) one can check that the ideal is zero and therefore by induction we prove our
claim, because for i = 1 we get

Char (Vω0tω1
(Λl) ∼= Vω0s0s1...sl(Λl)) = Dω0D0 . . . Dl(e

Λl)

= Dω0(e
Λl + eΛl−αl + · · ·+ eΛl−αl−···−α1 + eΛl+ω1)

= e
1
2
Λ0Char (Vg0(ω1 + ωl)⊕ Vg0(ωl)) = e

1
2
Λ0Char (Vg0(ω1)⊗ Vg0(ωl))

Exactly the same way one can prove the existence of a surjective map

W Γ(ωl−1 + ωl) ։ U(C(A
(2)
2l ))(X

−
αl,1

⊗ t).w

Furthermore a more simple calculation shows W Γ(3ωl)[1] ∼=g0 Vg0(ωl−1+ωl) ∼= U(g0)(X
−
αl,1

⊗
t).w. Hence W Γ(3ωl) ∼=g0 Vg0(2ωl) ⊗ Vg0(ωl), which proves finally the initial step. So let∑l−1

i=1 mi + (k − 1) > 1 and mi, i < l or k − 1 such that one of them is bigger or equal to 1.
Using Proposition 4.7 we get in the first case

Dω0tλ−ωl
(eΛl) = Dt−ωi

Dω0tλ−ωl−ωi
(eΛl)

= Dt−ωi
(e

1
2
Λ0Char (Vg0(ω1)

⊗m1 ⊗ · · · ⊗ Vg0(ωi)
⊗mi−1 ⊗ · · · ⊗ Vg0(2ωl)

k−1 ⊗ Vg0(ωl)))

= Char (Vg0(ω1)
⊗m1 ⊗ · · · ⊗ Vg0(ωi)

⊗mi−1 ⊗ · · · ⊗ Vg0(2ωl)
k−1)Dt−ωi

(e
1
2
Λ0Char (Vg0(ωl)))

= e
1
2
Λ0Char (Vg0(ω1)

⊗m1 ⊗ · · · ⊗ Vg0(ωi)
⊗mi ⊗ · · · ⊗ Vg0(2ωl)

k−1 ⊗ Vg0(ωl)).

In the second we obtain

Dω0t2(k−1)ωl
(eΛl) = D−t2ωl

Dω0t2(k−2)ωl
(eΛl) = D−t2ωl

(e
1
2
Λ0Char (Vg0(2ωl)

⊗k−2 ⊗ Vg0(ωl)))

= Char (Vg0(2ωl)
⊗k−2)D−t2ωl

(e
1
2
Λ0Char (Vg0(ωl))) = e

1
2
Λ0Char (Vg0(2ωl)

⊗k−1 ⊗ Vg0(ωl)).

�

As an immediate consequence of Theorem 6.1 and its proof we obtain explicit dimension
formulas for Weyl modules. Such formulas for Weyl modules, as already mentioned, were
previously known for untwisted current algebras (see [6],[15] or [25]).

Corollary 6.2. Let λ =
∑l

i=1 miωi be a decomposition of a dominant weight λ ∈ P+
0 .

(1) If ĝ is a twisted affine Kac-Moody algebra not of type A
(2)
2l (l ≥ 1), then

dimW Γ(λ) =
l∏

i=1

(dimW Γ(ωi))
mi =

l∏

i=1

(dimW (ωi))
mi .
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(2) If ĝ is of type A
(2)
2l and ml = 2k − 1, then

dimW Γ(λ) =
l−1∏

i=1

(dimW Γ(ωi))
mi(dimW Γ(2ωl))

k−1 dimW Γ(ωl)

= (
l−1∏

i=1

(
2l + 1

i

)mi

)

(
2l + 1

l

)k−1

2l.

6.1. Constructions from arbitrary local Weyl modules. In the previous section we
investigate the connection between untwisted and twisted Weyl modules. We have seen that
the twisted ones can be realized as associated graded modules of certain untwisted Weyl
modules located in a single point. In this section we generalize this result using untwisted
Weyl modules located in a finite number of points.

LetW 1, · · · ,W k be finite–dimensional, graded and cyclic modules with cyclic vectors w1, . . . , wk

for the current algebra and further let W be a given cyclic graded C(ĝ)-module (possibly
trivial) with cyclic vector w.

Proposition 6.3. Let ai ∈ C∗, 1 ≤ i ≤ k be non-zero complex numbers, such that ami 6= amj
for i 6= j, then W 1

a1
⊗ · · · ⊗W k

ak
⊗W is a cyclic U(C(ĝ))-module, particulary we get

W 1
a1
⊗ · · · ⊗W k

ak
⊗W = U(C(ĝ)).(w ⊗ w)

Proof. As W i are finite–dimensional and graded, there exists a sufficiently large Ni such that
x⊗ ts acts trivially for s ≥ Ni. Thus the ideal Ji := g⊗ (t− ai)

NiC[t] acts trivially on W i
ai
.

We define η : C∗ → N, ai 7→ Ni, then Supp η do not contain two points in the same Γ-orbit
and therefore similar to the proof of Theorem 6.1 we obtain that W 1

a1
⊗ · · · ⊗W k

ak
is a cyclic

U(C(ĝ))-module. The rest is a application of the Chinese remainder theorem. �

Remark 6.4. We can consider arbitrary g-modules V (λi), λi ∈ P+, 1 ≤ i ≤ k as graded and
cyclic g⊗ C[t]-modules, where the action is given by

x⊗ f(t).v = f(0)x.v, x ∈ g, f ∈ C[t].

Hence if W i = V (λi), it is already shown in [22] or in a more general setting of equivariant
map algebras in [26], that the tensor product in Proposition 6.3 is irreducible. Moreover it
is known that all finite–dimensional irreducible modules are tensor products of evaluation
modules.

In [13] local Weyl modules for equivariant map algebras were defined and a tensor product
property was proven. It was shown that if W i is an untwisted graded Weyl module, then
W i

ai
is an local Weyl module for C(ĝ) supported in the point ai. The tensor product property

gives that Wa1(λ1)⊗ · · · ⊗War(λr) is a local Weyl module for C(ĝ). It was shown that every

local Weyl module of C(ĝ) can be obtained in this way. The following corollary, in A
(2)
2l again

the odd-case is considered only, shows that the dimension and g0 character is independent
of the support of the local Weyl module.

Corollary 6.5. Let λ = λ1 + · · ·+ λr be a decomposition of a dominant weight λ ∈ P+
0 into

dominant weights and let a1, . . . , ar ∈ C∗ s.t. ami 6= amj for i 6= j.
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(1) If ĝ is a twisted affine Kac-Moody algebra not of type A
(2)
2l , then we have an isomor-

phism of C(ĝ)-modules:

W Γ(λ) ∼= gr(Wa1(λ1)⊗ · · · ⊗War(λr))

(2) If ĝ is of type A
(2)
2l and λi(α

∨
l ) ∈ 2Z≥0 for 1 ≤ i ≤ r − 1 and λr(α

∨
l ) is odd, then we

get an isomorphism of C(ĝ)-modules:

W Γ(λ) ∼= gr(Wa1(λ1)⊗ · · · ⊗War−1(λr−1)⊗W Γ(λr))

Proof. By Proposition 6.3 the right hand side in (1) respectively (2) is cyclic. Hence it
is easy to obtain a surjecive map of C(ĝ)-modules, which is by Theorem 6.1 clearly an
isomorphism. �

Remark 6.6. As mentioned in the introduction, Weyl modules are defined in [13] in a more
general way, with support in C. And they are parametrized by finitely supported functions

from C to P+. With this corollary we have shown in all cases except the even case in A
(2)
2l ,

that the dimension and g0 character of a local Weyl module depends only on its g0 maximal
weight and NOT on the support of its parametrizing function. Concluding one might be
able to show that the global Weyl module is a free module for a certain algebra, which might
be part of a forthcoming publication.

Remark 6.7. The same construction of an associated graded module out of finite–dimensional,
graded and cyclic g⊗C[t]-modules is defined in [11] and is called the fusion product. In the
twisted case the same construction fails, since for this, one would need a pullback map like

m−1∑

j=0

(xj ⊗ tms+j) ∈ C(ĝ) 7→
m−1∑

j=0

(xj ⊗ (t+ a)ms+j) /∈ C(ĝ).

Therefore we have constructed in our results associated graded C(ĝ)-modules out of modules
coming from g⊗ C[t], which represent an analogue of fusion products.

6.2. Summary of the results. As a conclusion we summarize our results: Let λ =
m1ω1 + · · ·+mlωl be a dominant weight of g0 and ǫ = 0 if l is odd and ǫ = 1 else, then

• if ĝ is of type A
(2)
2 (n is odd)

W Γ(nω) ∼= gr(W (ω1)
⊗(k−1) ⊗W Γ(ω)) ∼= Vs1t(n−1)ω

(Λ1)

• if ĝ is of type A
(2)
2l (ml is odd)

W Γ(λ) ∼= gr(W (ω1)
⊗m1 ⊗ · · · ⊗W (ωl−1)

⊗ml−1 ⊗W (ωl)
⊗(k−1) ⊗W Γ(ωl)) ∼= Vω0tλ−ωl

(Λl)

• if ĝ is of type A
(2)
2l−1

W Γ(λ) ∼= gr(W (ω1)
⊗m1⊗· · ·⊗W (ωl)

⊗ml
) ∼=

{
Vω0tλ(Λ0), if m1 + 3m3 + · · ·+ (l − ǫ)ml−ǫ is even

Vω0tλ−ω1
(Λ1), else

• if ĝ is of type D
(2)
l+1

W Γ(λ) ∼= gr(W (ω1)
⊗m1 ⊗ · · · ⊗W (ωl)

⊗ml
) ∼=

{
Vω0tλ(Λ0), if ml is even
Vω0tλ−ωl

(Λl), else
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• if ĝ is of type E
(2)
6

W Γ(λ) ∼= gr(W (ω1)
⊗m1 ⊗ · · · ⊗W (ωl)

⊗ml
) ∼= Vω0tλ(Λ0)

• if ĝ is of type D
(3)
4

W Γ(λ) ∼= gr(W (ω1)
⊗m1 ⊗ · · · ⊗W (ωl)

⊗ml
) ∼= Vω0tλ(Λ0)

7. Proofs for the type A
(2)
2

In this section our attention is dedicated to the twisted Kac-Moody algebra A
(2)
2 . In the

previous sections we claim that the results hold already for A
(2)
2 , so to complete our work it

misses to verify the follwing main result of this section.

Theorem 7.1. Let n be an odd integer, then the Weyl module W Γ(nω) is isomorphic to the

Demazure module D(1/2, nω) ∼= Vs1t(n−1)ω
(Λ1).

7.1. Properties of W Γ(nω) and minimal powers.

Lemma 7.2. Let Iσ be the left ideal in U(C(A
(2)
2 )) generated by nj⊗tjC[tm], (hα,0⊗t2r), (hα,1⊗

t2r−1), r ≥ 1, 0 ≤ j ≤ m− 1. Then for every k ∈ N+ there exists a non-zero scalar ck, c̃k ∈ C
such that

(1)

(7.1) (X+
α,0 ⊗ 1)2k−1(X−

2α,1 ⊗ t)k =

{
ck(X

−
α,1 ⊗ tk) mod Iσ, if k is odd

ck(X
−
α,0 ⊗ tk) mod Iσ, if k is even

(2)

(7.2) (X+
2α,1 ⊗ t)k−1(X−

2α,1 ⊗ t)k = c̃k(X
−
2α,1 ⊗ t2k−1) mod Iσ

Proof. The first equation is a simple reformulation of Lemma 3.3 (iii) in [5]. We will prove
the second equation by induction. For k = 1 we get trivially c̃k = 1. Suppose that (2) is
already true for all p ≤ k, then

(X+
2α,1 ⊗ t)k(X−

2α,1 ⊗ t)k+1 = (X+
2α,1 ⊗ t)(X+

2α,1 ⊗ t)k−1(X−
2α,1 ⊗ t)k(X−

2α,1 ⊗ t)

= c̃k(X
+
2α,1 ⊗ t)(X−

2α,1 ⊗ t2k−1)(X−
2α,1 ⊗ t) + (X+

2α,1 ⊗ t)J(X−
2α,1 ⊗ t), for some J ∈ Iσ

≡ −1

2
c̃k(hα,0 ⊗ t2k)(X−

2α,1 ⊗ t) mod Iσ

≡ 2c̃k(X
−
2α,1 ⊗ t2k+1) mod Iσ

�

Corollary 7.3. Let n ∈ N, such that n = 2k if n is even and n = 2k− 1 if n is odd. Then we
have

(1) (X−
2α,1 ⊗ t)kwn = 0

(2)

{
(X−

α,0 ⊗ tk)wn = (X−
α,1 ⊗ tk+1)wn = 0, if k is even

(X−
α,0 ⊗ tk+1)wn = (X−

α,1 ⊗ tk)wn = 0, if k is odd

(3) (X−
2α,1 ⊗ t2k−1)wn = 0
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Proof. Clearly part (2) and (3) are deductions of Lemma 7.2 and part (1). Assume now
(X−

2α,1⊗ t)kwn is non-zero element in W Γ(nω)[k] of weight −2kω if n is even and (−2k−1)ω

if n is odd and recall that W Γ(nω)[k] is an integrable sl2-module, i.e. Proposition 4.15 is
applicable. That means W Γ(nω)[k]2kω 6= 0 respectively W Γ(nω)[k](2k+1)ω 6= 0, but both are
impossible, which proves part (1). �

Corollary 7.4. For all n ∈ N the modules W Γ(nω) are finite–dimensional.

Proof. Proposition 4.15 implies that W Γ(nω)µ 6= 0 only if µ ∈ nω −Q+
0 and suppose that

W Γ(nω) ∼=
⊕

µ∈P+
0

V (µ)nµ

is the decomposition of W Γ(nω) into irreducible g0-modules. Note that the number of
elements in P+

0 with the property µ ∈ nω − Q+
0 is finite. The corollary follows if we prove

that dimW Γ(nω)µ < ∞, since this implies nµ < ∞. That the dimension can‘t be infinity is
a direct consequence of Corollary 7.3. �

As in the other cases we show that the Weyl modules are in connection with certain associated
graded modules:

Proposition 7.5. Let n ∈ N, such that n = 2k if n is even and n = 2k−1 if n is odd. Then

we get a surjective map respectively an isomorphism of U(C(A
(2)
2 ))-modules

W Γ(nω)

{
։ gr(Wa1(ω1)⊗ · · · ⊗Wak(ω1)), if n is even

∼= gr(Wa1(ω1)⊗ · · · ⊗Wak−1
(ω1)⊗W Γ(ω)), if n is odd

The map is given by wn 7→ wω1 ⊗ · · · ⊗ wω1︸ ︷︷ ︸
k

if n is even and wn 7→ wω1 ⊗ · · · ⊗ wω1︸ ︷︷ ︸
k−1

⊗wω

otherwise.

Remark 7.6. We will proof the isomorphism claimed in the odd case in Section 7.2 and
remind that the surjectivity of the maps in Proposition 7.5 follows by weight reasons.

Corollary 7.7. We obtain,

dimW Γ(nω) ≥
{

3
n
2 , if n is even

3
⌈n
2 ⌉

2, if n is odd

In Corollar 7.3 we proved that we can explicitly specify an integer, such that the elements
with higher powers of t act by zero. In the next we will refute the question, if there exists a
smaller integer with same property. To show this one can use the help of associated graded
modules defined in Section 6 and Proposition 7.5.

Lemma 7.8. Let n ∈ N like in Corollar 7.3. Then we have,




(X−
α,0 ⊗ t2r)wn 6= 0, (X−

α,1 ⊗ t2r+1)wn 6= 0, for all r < k
2
if k is even

(X−
α,0 ⊗ t2r)wn 6= 0, (X−

α,1 ⊗ t2s+1)wn 6= 0, for all r < k+1
2
, s < k−1

2
if k is odd

(X−
2α,1 ⊗ t2r+1)wn 6= 0, if r < k − 1

Before we are in position to prove our main result of this section we will formulate another
necessary proposition:
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Proposition 7.9. Let n ∈ N as in Corollar 7.3, then we have surjective homomorphisms

W Γ((n− 2)ω) ։

{
U(C(A

(2)
2 ))(X−

α,1 ⊗ tk−1)wn, if k is even

U(C(A
(2)
2 ))(X−

α,0 ⊗ tk−1)wn if k is odd

W Γ((n− 4)ω) ։ U(C(A
(2)
2 ))(X−

2α,1 ⊗ t2k−3)wn

Proof. The proof is straightforward with Corollary 7.3. �

7.2. Proof of Theorem 7.1.

Proof. Note that Proposition 7.5 is a direct consequence of Theorem 7.1 and the Demazure
character formula (see Theorem 4.6), since this provides us

dimW Γ(nω) = dimVs1t(n−1)ω
(Λ1) = dimV

(s1s0)
⌈n
2 ⌉s1

(Λ1) = 3⌈
n
2
⌉2.

We already know by Corollary 4.17 that the Demazure module D(1/2, nω) is a quotient
of the Weyl module W Γ(nω). So by Corollary 4.9 it remains to show that the following
relations holds:

(7.3) (X−
α,0 ⊗ t2r)max{0,n−4r}+1wn = 0

(7.4) (X−
α,1 ⊗ t2r+1)max{0,n−2(2r+1)}+1wn = 0

(7.5) (X−
2α,1 ⊗ t2r+1)max{0,k−r−1}+1wn = 0.

By Corollary 7.3 we can assume that the maximums are non-zero and further suppose that
(X−

α,0⊗t2r)n−4r+1wn 6= 0, hence W Γ(nω)(n−2(n−4r+1))ω[2r(n−4r+1)] 6= 0. By Proposition 7.9
and Proposition 4.15 (1) we get that

W Γ(nω)(n−2j)ω[l] = 0

for all l with

l >

{
(k − 1) + · · ·+ (k − j) = jk − j(j+1)

2
, if 0 ≤ j ≤ k

(k − 1) + · · ·+ (k − (n− j)) = (n− j)k − (n−j)((n−j)+1)
2

, if k < j ≤ n

Hence,

2r(n− 4r + 1) ≤
{

jk − j(j+1)
2

, if 0 ≤ j ≤ k

(n− j)k − (n−j)((n−j)+1)
2

, if k < j ≤ n
,

with j = (n−4r+1), which contradicts 2r < k. Exactly the same argumentation shows also
(7.4) and (7.5) �

Remark 7.10. An inspection of the proof of Theorem 7.1 shows, that the condition, n is odd,
is not needed. Thus the relations (7.3), (7.4), (7.5) holds also in W Γ(2kω), but it is easy
that they are not enough. For instance in W Γ(6ω) we have already (X−

α,0⊗ t2)2w6 = 0, while

relation (7.3) gives (X−
α,0 ⊗ t2)3w6 = 0.
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Birkhäuser Boston, Boston, MA, 2002.

[19] Victor G. Kac. Infinite-dimensional Lie algebras. Cambridge University Press, Cambridge, third edition,
1990.

[20] Michael Steven Kleber. Finite dimensional representations of quantum affine algebras. ProQuest LLC,
Ann Arbor, MI, 1998. Thesis (Ph.D.)–University of California, Berkeley.

[21] Shrawan Kumar. Kac-Moody groups, their flag varieties and representation theory, volume 204 of
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REALIZATION OF AFFINE TYPE A KIRILLOV-RESHETIKHIN
CRYSTALS VIA POLYTOPES

DENIZ KUS

Abstract. On the polytope defined in [6], associated to any rectangle highest weight, we
define a structure of an type An-crystal. We show, by using the Stembridge axioms, that this
crystal is isomorphic to the one obtained from Kashiwara’s crystal bases theory. Further we
define on this polytope a bijective map and show that this map satisfies the properties of a
weak promotion operator. This implies in particular that we provide an explicit realization

of Kirillov-Reshetikhin crystals for the affine type A
(1)
n via polytopes.

1. Introduction

Let g be a affine Lie algebra and U
′

q(g) be the corresponding quantum algebra without
derivation. The irreducible representations are classified in [4],[5] in terms of Drinfeld poly-
nomials. A certain subclass of these modules, that gained a lot of attraction during the last
decades, are the so called Kirillov-Reshetikhin modules KR(m,ωi, a), where i is a node in
the classical Dynkin diagram and m is a positive integer. One of the main tools for studying
such representations is Kashiwara’s crystal bases theory [12]. This theory was originally
defined for representations for Uq(g), however it can be nonetheless defined in the setting of
U

′

q(g) modules, respecting that crystal bases might not always exist. It was first conjectured

in [9], that KR(m,ωi, a) admits a crystal bases and this was proven in type A
(1)
n in [11]

and in all non-exceptional cases in [19],[20]. We denote this crystal by KRm,i and call it a
Kirillov-Reshetikhin crystal.
A promotion operator pr on a crystal B of type An is defined to be a map satisfying several
conditions, namely that pr shifts the content, pr ◦ ẽj = ẽj+1 ◦ pr, pr ◦ f̃j = f̃j+1 ◦ pr for all

j ∈ {1, · · · , n−1} and prn+1 = id, where ẽj and f̃j respectively are the Kashiwara operators.
If the latter condition is not satisfied, but pr is still bijective, then the map pr is called a
weak promotion operator (see also [1]). The advantage of such (weak) promotion oparators
are that we can associate to a given crystal B of type An a (weak) affine crystal by setting

f̃0 := pr−1 ◦ f̃1 ◦ pr, and ẽ0 := pr−1 ◦ ẽ1 ◦ pr.
On the set of all semi-standard Young tableaux of rectangle shape, which is a realization
of B(mωi) the Uq(An)-crystal associated to the irreducible module of highest weight mωi,
Schützenberger defined a promotion operator pr, called the Schützenberger’s promotion op-
erator [22], which is the analogue of the cyclic Dynkin diagram automorphism i 7→ i + 1
mod (n + 1) on the level of crystals, by using jeu-de-taquin. Given a tableaux T over the
alphabet 1 ≺ 2 · · · ≺ n + 1, pr(T ) is obtained from T by removing all letters n + 1, adding
one to each entry in the remaining tableaux, using jeu-de-taquin to slide all letters up and

2010 Mathematics Subject Classification. 81R50; 81R10; 05E99.
The author was sponsored by the ”SFB/TR 12 - Symmetries and Universality in Mesoscopic Systems”.
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finally filling the holes with 1’s (see also Section 6). One of the combinatorial descriptions

of KRm,i in the affine A
(1)
n type was provided by Schimozono in [23]. It was shown that, as

a {1, · · · , n}-crystal, KRm,i is isomorphic to B(mωi) and the affine crystal constructed from
B(mωi) using Schützenberger’s promotion operator is isomorphic to the Kirillov-Reshetikhin
crystal KRm,i. The two ways of computing the affine crystal structure, one given by [11] and
the other by [23], are shown to be equivalent in [21]. Another combinatorial model in this
type without using a promotion operator is described in [16]. In this paper, we introduce a

new realization of Kirillov-Reshetikhin crystals of type A
(1)
n .

In [6] the authors have constructed for all dominant integral An weights λ a polytope in

Rnn−1
2 and a basis of the irreducible An module of highest weight λ and have shown that the

basis elements are parametrized by the integral points. For λ = mωi we can understand this

polytope in Ri(n−i+1) and denote the intersection of this polytope with Zi(n−i+1)
+ by Bm,i. We

define certain maps on Bm,i and show that this becomes a crystal of type An. As a set, we
can identify Bm,i with certain blocks of height n− i+ 1 and width i

,

where the boxes are filled, under some assumptions, with some non-negative integers (see
Definition 2.1). The crystal Bm,i has no known explicit combinatorial bijection to other
combinatorial models of crystals induced by representations, such as the Young tableaux
model [14] or the set of certain Nakajima monomials [18], which makes an isomorphism
very complicated. Using the realization of crystal bases via Nakajima monomials, we can
construct certain local A2 isomorphisms on our underlying polytope Bm,i and prove that
the so called Stembridge axioms are satisfied. These axioms precisely characterize the set
of crystals of representations in the class of all crystals. Our first important theorem is
therefore the following:

Theorem A. The polytope Bm,i is as an An crystal isomorphic to B(mωi).

In order to obtain an (weak) affine crystal structure we define a map pr on Bm,i, which is
given by an algorithm consisting of i steps (see (6.1)), and show that this map satisfies the
conditions for a weak promotion operator. In particular, this implies that this map pr is the
unique promotion operator on Bm,i ∼= B(mωi) and the polytope becomes an affine crystal.
To be more precise, we prove the following main theorem of our paper:

Theorem B. The associated affine crystal Bm,i using pr is isomorphic to the Kirillov-
Reshetikhin crystal KRm,i.

Our paper is organized as follows: in Section 2 we fix some notation and present the main
definitions, especially the definition of our polytope. In Section 3 we equip our main object
with a crystal structure. In Section 4 Nakajima monomials are recalled and in Section 5
Theorem A is proven. Finally, in Section 6 the promotion operator is defined by an algorithm
and the corresponding affine crystal is identified with the KR crystal, proving Theorem B.
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2. Notation and main definitions

Let g be a complex affine Lie algebra of rank n and fix a Cartan subalgebra h in g and
a Borelsubalgebra b ⊇ h. We denote by Φ ⊆ h∗ the root system of the Lie algebra, and,
corresponding to the choice of b let Φ+ be the subset of positive roots. Further, we denote by
Π = {α0, · · · , αn} the corresponding basis of Φ and the basis of the dual root system Φ∨ ⊆ h

is denoted by Π∨ = {α∨
0 , · · · , α

∨
n}. Let g = n+ ⊕ h⊕ n− be a Cartan decomposition and for

a given root α ∈ Φ let gα be the corresponding root space. For a dominant integral weight
λ we denote by V (λ) the irreducible g-module with highest weight λ. Fix a highest weight
vector vλ ∈ V (λ), then V (λ) = U(n−)vλ, where U(n−) denotes the universal enveloping
algebra of n−. For an indetermined element q we denote by U

′

q(g) be the corresponding
quantum algebra without derivation. The irreducible representations are classified in [4],[5]
in terms of Drinfeld polynomials. One of the major goals in representation theory is to find
nice expressions for the character of objects in the category Oq

int (see [10]). From the theory
of crystal bases, introduced by Kashiwara in [12], we can compute the character of a given
module M as follows:

chM =
∑

µ

♯(Bµ)e
µ,

whereby (L,B) is the crystal bases of M (see also [10]). From now on let g be the affine Lie
algebra

A(1)
n = sln+1 ⊗ C[t, t−1]⊕ Cc⊕ Cd,

with index set Î = {0, 1, · · · , n} ⊇ I = {1, · · · , n}. Note that the classical positive roots are
all of the form

αi,j = αi + αi+1 + · · ·+ αj, for 1 ≤ i ≤ j ≤ n.

Further let P =
⊕

i∈I Zωi be the set of classical integral and P+ =
⊕

i∈I Z+ωi be the
set of classical dominant integral weights. In order to realize the crystal graph of the so
called Kirillov-Reshetikhin modules KR(m,ωi, a), for i ∈ I,m ∈ Z+, we will define now
the underlying combinatorial model in this paper, which we will denote by Bm,i. For more
details regarding KR-modules we refer to a series of papers ([2],[3],[7]).

2.1. The polytope Bm,i. In this subsection we will define the set Bm,i, our main object in
this paper and discuss its combinatorics which is crucial for the realization of KR-crystals.

Definition. Let Bm,i be the set of all following patterns:
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a1,i a2,i . . . ai−1,i ai,i

a1,i+1 a2,i+1 . . . ai−1,i+1 ai,i+1

...
...

...
...

...

a1,n a2,n . . . ai−1,n ai,n

filled with non-negative integers, such that
∑k

s=1 aβ(s) ≤ m for all sequences

(β(1), . . . , β(k)), k ≥ 1

satisfying the following: β(1) = α1,i, β(k) = αi,n and if β(s) = αp,q then the next element in
the sequence is either of the form β(s+ 1) = αp,q+1 or β(s+ 1) = αp+1,q.

Example.

1 0
2 1
0 1

∈ B5,2, but
1 0 0
0 1 3
1 0 1

/∈ B5,3.

Remark 2.1.1.

(1) For any element in Bm,i the columns are numbered from 1 to i and the rows are
numbered from i to n.

(2) A sequence

b = (β(1), . . . , β(k)), k ≥ 1

satisfying the rule from Definition 2.1 is called a Dyck path. The notion of a Dyck
path occurs already in [6]. We will denote the set of all such paths by D.

(3) In [16], a combinatorial model to describe the KR-crystals is developed. The parametriza-
tion of the edges is given in terms of non-negative integral matrices satisfying certain
conditions based on the classical Robinson-Schensted-Knuth algorithm. These con-
ditions can be translated into the Dyck path rule.

Remark 2.1.2. Note that the name “polytope” is justified, since Bm,i reflects the integral
points of some polytope in Ri(n−i+1):

Bm,i ∼= {(ar,s) ∈ Ri(n−i+1)|

k∑

s=1

aβ(s) ≤ m, for all b ∈ D } ∩ Zi(n−i+1)
+ .

What we want to show now is that the set Bm,i carries an (affine) crystal structure. Moreover,
our goal is to show that this is exactly the crystal graph of the KR-module KR(m,ωi, a), i.e.
we have an isomorphism of crystals. The strongest indication that this conjecture might be
true is the following modified result due to [6].

Theorem 2.1.1.

dimV (mωi) = ♯Bm,i
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3. Crystal Structure on Bm,i

With the purpose to show that we have a crystal structure on Bm,i, which is induced from
a module we will first chop all necessary conditions of an abstract crystal. Let us start by
giving the definition:

3.1. Abstract crystals.

Definition. Let Î be a finite index set and let A = (ai,j)i,j∈Î be a generalized Cartan matrix
with the Cartan datum (A,Π,Π∨, P, P∨). A crystal associated with the Cartan datum

(A,Π,Π∨, P, P∨) is a set B together with the maps wt : B → P , ẽl, f̃l : B → B ∪ {0}, and

ǫl, ϕl : B → Z ∪ {−∞} satisfying the following properties for all l ∈ Î:

(1) ϕl(b) = ǫl(b) + 〈α∨
l ,wt(b)〉

(2) wt(ẽlb) = wt(b) + αl if ẽlb ∈ B

(3) wt(f̃lb) = wt(b)− αl if f̃lb ∈ B
(4) ǫl(ẽlb) = ǫl(b)− 1, ϕl(ẽlb) = ϕl(b) + 1 if ẽlb ∈ B

(5) ǫl(f̃lb) = ǫl(b) + 1, ϕl(f̃lb) = ϕl(b)− 1 if f̃lb ∈ B

(6) f̃lb = b′ if and only if ẽlb
′ = b for b, b′ ∈ B

(7) if ϕl(b) = −∞ for b ∈ B, then f̃lb = ẽlb=0.

Further a crystal B is said to be semiregular if the equalities

ǫl(b) = max{k ≥ 0|ẽkl b 6= 0}, ϕl(b) = max{k ≥ 0|f̃k
l b 6= 0}

hold.

Hence our aim is to define the Kashiwara operators f̃l and ẽl, which will act on the set Bm,i

for all l ∈ {0, · · · , n}, such that the properties in Definition 3.1 are fulfilled. Furthermore we
will show that Bm,i becomes a semiregular crystal. Our strategy is as follows: first we are
going to define a classical crystal structure on Bm,i, which in particular means that we define
the Kashiwara operators for all l ∈ {1, · · · , n}. Subsequently, we show that this is precisely
the crystal graph of the irreducible module V (mωi) and then we exploit the existence of
Schützenberger’s promotion operator to define the Kashiwara operators for the node 0. For
more details regarding the Schützenberger promotion operator we refer to [22] or Section 6.

3.2. Crystal Structure on Bm,i. As already mentioned, our aim in this section is to define
the maps wt, ẽl, f̃l, ǫl, ϕl for all l ∈ I as in the Definition 3.1, such that the properties (1)-(7)
are fulfilled. The classical crystal structure described in [16] is induced by the tensor product
rule, whereby we describe the structure explicitly. So let A be an arbitrary element in Bm,i,
then we define

(3.1) wt(A) = mωi −
∑

1≤p≤i,i≤q≤n

ap,qαp,q.

In order to define what the Kashiwara operators are, we need much more spadework. In the
following we define some useful maps and integers, such that these integers will completely
determine the rule at which “place” the action is given. So we define the maps ϕl, ǫl :
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Bm,i −→ Z≥0 for all l ∈ I by:

(3.2) ϕl(A) =







m−
∑i−1

j=1 aj,i −
∑n

j=i ai,j, if l = i
∑pl+(A)

j=1 aj,l−1 −
∑pl+(A)−1

j=1 aj,l, if l > i
∑n

j=pl
−
(A) al+1,j −

∑n

j=pl
−
(A)+1 al,j, if l < i

(3.3) ǫl(A) =







ai,i, if l = i
∑i

j=ql+(A) aj,l −
∑i

j=ql+(A)+1 aj,l−1, if l > i
∑ql

−
(A)

j=i al,j −
∑ql

−
(A)−1

j=i al+1,j, if l < i,

whereby

(3.4) pl+(A) = min{1 ≤ p ≤ i|

p
∑

j=1

aj,l−1 +
i∑

j=p

aj,l = max
1≤q≤i

{

q
∑

j=1

aj,l−1 +
i∑

j=q

aj,l}}

(3.5) ql+(A) = max{1 ≤ p ≤ i|

p
∑

j=1

aj,l−1 +
i∑

j=p

aj,l = max
1≤q≤i

{

q
∑

j=1

aj,l−1 +
i∑

j=q

aj,l}}

(3.6) pl−(A) = max{i ≤ p ≤ n|

p
∑

j=i

al,j +
n∑

j=p

al+1,j = max
i≤q≤n

{

q
∑

j=i

al,j +
n∑

j=q

al+1,j}}

(3.7) ql−(A) = min{i ≤ p ≤ n|

p
∑

j=i

al,j +
n∑

j=p

al+1,j = max
i≤q≤n

{

q
∑

j=i

al,j +
n∑

j=q

al+1,j}}.

Remark 3.2.1. Note that the integers (3.2)-(3.3) for l 6= i and (3.4)-(3.7) depend only on
two given columns or two given rows of A. Therefore one can define these integers for any
given two columns or rows a and b and denote them alternatively by p±(a,b),q±(a,b) and
ǫ(a,b), ϕ(a,b) respectively. For instance we will use in some places the notation q−(al, al+1)
instead of (3.7), if al and al+1 is the l-th column and (l + 1)-th column respectively of A,
and ǫ(al, al+1) instead of (3.3).

The first fact we want to note about these maps is the following lemma:

Lemma 3.2.1. The map ϕl is uniquely determined by the map ǫl and conversely the map ǫl
is uniquely determined by the map ϕl. Particularly we have

ϕl(A) = ǫl(A) + 〈α∨
l ,wt(A)〉.

Proof. Assume A is an arbitrary element and let pl+(A), p
l
−(A), q

l
+(A), q

l
−(A) be the integers

described in (3.4)-(3.7). Since the statement is obvious for l = i we presume l 6= i. Then,
because of

pl+(A)
∑

j=1

aj,l−1 +
i∑

j=pl+(A)

aj,l =

ql+(A)
∑

j=1

aj,l−1 +
i∑

j=ql+(A)

aj,l
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and
pl
−
(A)

∑

j=i

al,j +
n∑

j=pl
−
(A)

al+1,j =

ql
−
(A)

∑

j=i

al,j +
n∑

j=ql
−
(A)

al+1,j,

it follows that

(3.8)

ql+(A)
∑

j=pl+(A)+1

aj,l−1 −

ql+(A)−1
∑

j=pl+(A)

aj,l =

pl
−
(A)

∑

j=ql
−
(A)+1

al,j −

pl
−
(A)−1
∑

j=ql
−
(A)

al+1,j = 0.

Therefore, if l > i we arrive at

ǫl(A) =
i∑

j=ql+(A)

aj,l −

i∑

j=ql+(A)+1

aj,l−1 =
i∑

j=pl+(A)

aj,l −

i∑

j=pl+(A)+1

aj,l−1

=

pl+(A)
∑

j=1

aj,l−1 −

pl+(A)−1
∑

j=1

aj,l − (
i∑

j=1

aj,l−1 −
i∑

j=1

aj,l) = ϕl(A)− 〈α∨
l ,wt(A)〉

and if l < i we obtain again with (3.8)

ǫl(A) =

pl
−
(A)

∑

j=i

al,j −

pl
−
(A)−1
∑

j=i

al+1,j = ϕl(A)− 〈α∨
l ,wt(A)〉.

Thus the map ǫl is already determined by ϕl and conversely as well. �

For the purpose of constructing an object in the category of crystals we define the Kashi-
wara operators by the following rule: let A be an arbitrary element of Bm,i filled as in
Definition 2.1, then f̃lA and ẽlA respectively is defined to be 0 if ϕl(A) = 0 and ǫl(A) = 0 re-

spectively. Otherwise the image of A under f̃l and ẽl respectively arises from A by replacing
certain boxes, namely
(3.9)

f̃lA =







replace ai,i by ai,i + 1 , if l = i

replace apl+(A),l−1 by apl+(A),l−1 − 1 and apl+(A),l by apl+(A),l + 1 , if l > i

replace al,pl
−
(A) by al,pl

−
(A) + 1 and al+1,pl

−
(A) by al+1,pl

−
(A) − 1 , if l < i

(3.10)

ẽlA =







replace ai,i by ai,i − 1 , if l = i

replace aql+(A),l−1 by aql+(A),l−1 + 1 and aql+(A),l by aql+(A),l − 1 , if l > i

replace al,ql
−
(A) by al,ql

−
(A) − 1 and al+1,ql

−
(A) by al+1,ql

−
(A) + 1 , if l < i.

To be more accurate we should denote the Kashiwara operators by mf̃l and mẽl respectively.
However almost all Kashiwara operators, except mf̃i, are by the next lemma independent of
m. Therefore the notation f̃l and ẽl respectively is justified. If there is no confusion we will
also denote mf̃i by f̃i.
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Lemma 3.2.2. Let m, d ∈ Z+ and A ∈ Bm,i ∩ Bd,i, then we have

mf̃lA = df̃lA and mϕl(A) = dϕl(A) for all l 6= i ,

mẽlA = dẽlA and mǫl(A) = dǫl(A) for all l .

Proof. A short investigation of (3.2),(3.3),(3.9) and (3.10) shows that they depend only on

the filling of A with the exception of ϕi and f̃i. �

Remark 3.2.2.
It is not clear, why these operators are well-defined. Particulary we shall show in the next
lemma that the images are always contained in Bm,i.

Lemma 3.2.3. For all l ∈ I and A ∈ Bm,i we have f̃lA, ẽlA ∈ Bm,i.

Proof. Assume that the element f̃lA and ẽlA respectively is not contained in Bm,i, then by
definition there exists a Dyck path (β(1), . . . , β(k)), such that

(3.11)
k∑

s=1

aβ(s) > m.

This would be an impossible inequality if l = i; therefore we suppose that l > i, since the
proof for l < i is similar. By an inspection of the action of the Kashiwara operator f̃l we can
conclude directly that (3.11) must be of the following form:

(3.12)
k∑

s=1

aβ(s) =
t∑

s=1

aβ(s) + az,l−1 +

pl+(A)
∑

j=z

aj,l + 1 +
k∑

s=t+pl+(A)−z+3

aβ(s),

with an integer z ∈ {1, · · · , i} strictly smaller than pl+(A) and some t ∈ {1, · · · , k}. We get

k∑

s=1

aβ(s) > m ≥
t∑

s=1

aβ(s) +

pl+(A)
∑

j=z

aj,l−1 + apl+(A),l +
k∑

s=t+pl+(A)−z+3

aβ(s)

and consequently

z∑

j=1

aj,l−1 +
i∑

j=z

aj,l =

pl+(A)
∑

j=1

aj,l−1 +
i∑

j=pl+(A)

aj,l,

which is a contradiction to the choice of pl+(A). An inspection of the action with ẽl requires
that (3.11) must be of the form:

k∑

s=1

aβ(s) =
t∑

s=1

aβ(s) +
z∑

j=ql+(A)

aj,l−1 + 1 + az,l +
k∑

s=t+z−ql+(A)+3

aβ(s),

with an integer z ∈ {1, · · · , i} strictly greater than ql+(A). Hence, together with

k∑

s=1

aβ(s) > m ≥
t∑

s=1

aβ(s) +
z∑

j=ql+(A)

aj,l + aql+(A),l−1 +
k∑

s=t+z−ql+(A)+3

aβ(s),
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we have again a contradiction to the choice of ql+(A), namely

z∑

j=1

aj,l−1 +
i∑

j=z

aj,l =

ql+(A)
∑

j=1

aj,l−1 +
i∑

j=ql+(A)

aj,l.

�

Consequently, we have several well-defined maps which we need so as to prove our main
result of Section 3. Before we state our theorem, we proof the following helpful lemma:

Lemma 3.2.4. Let A be an element in Bm,i, then we have

ǫl(A) = max{k ≥ 0|ẽklA 6= 0}, ϕl(A) = max{k ≥ 0|f̃k
l A 6= 0}.

Proof. As usual we proof only ϕl(A) = max{k ≥ 0|f̃k
l A 6= 0} for l > i because l = i is

trivial and the proof in the other cases are very similar. We will proceed by induction on
pl+(A). If pl+(A) = 1 the proof is obvious so assume that pl+(A) > 1 and let r := min{w ∈

Z+|p
l
+(f̃

w
l A) < pl+(A)}. Then we obtain by the definition of pl+(A) on the one hand

r − 1 <

pl+(A)
∑

j=pl+(f̃r
l
A)+1

aj,l−1 −

pl+(A)−1
∑

j=pl+(f̃r
l
A)

aj,l

and on the other hand, using the definition of pl+(f̃
r
l A), we get

r ≥

pl+(A)
∑

j=pl+(f̃r
l
A)+1

aj,l−1 −

pl+(A)−1
∑

j=pl+(f̃r
l
A)

aj,l.

Hence the above inequality is actually a equality and by the induction hypothesis we can
conclude

max{k ≥ 0|f̃k
l A 6= 0} = r + ϕl(f̃

r
l A) = r +

pl+(f̃r
l
A)

∑

j=1

aj,l−1 −

pl+(f̃r
l
A)−1

∑

j=1

aj,l = ϕl(A).

�

Now we are in position to state and to proof one of our main results in this paper, namely:

Theorem 3.2.1. The polytope Bm,i together with the maps given by (3.1), (3.2), (3.3),
(3.9) and (3.10) becomes an abstract semiregular crystal.

Proof. The idea of the proof is to check step by step the properties (1)-(7) described in
Definition 3.1, whereby (2),(3) and (7) are obvious and (1),(4),(5) and the semiregularity
are obvious with Lemma 3.2.1 and Lemma 3.2.4. Thus it remains to prove the correctness
of condition (6), whereby we verify as usual the statement only for l > i:

• f̃lA = A′ if and only if ẽlA
′ = A for A,A′ ∈ Bm,i
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Let pl+(A) as in (3.4) and let ql+(f̃lA) as in (3.5). The assumption ql+(f̃lA) > pl+(A) gives

ql+(f̃lA)
∑

j=1

aj,l−1 +
i∑

j=ql+(f̃lA)

aj,l >

pl+(A)
∑

j=1

aj,l−1 +
i∑

j=pl+(A)

aj,l,

which is a contradiction to the maximality. The assumption ql+(f̃lA) < pl+(A) gives

ql+(f̃lA)
∑

j=1

aj,l−1 +
i∑

j=ql+(f̃lA)

aj,l ≥

pl+(A)
∑

j=1

aj,l−1 +
i∑

j=pl+(A)

aj,l,

which is a contradiction to the minimality of pl+(A). Now suppose similar as above that
pl+(ẽlA) > ql+(A), then

pl+(ẽlA)
∑

j=1

aj,l−1 +
i∑

j=pl+(ẽlA)

aj,l ≥

ql+(A)
∑

j=1

aj,l−1 +
i∑

j=ql+(A)

aj,l,

which is a contradiction to the maximality of ql+(A) and pl+(ẽlA) < ql+(A) provides analo-
gously

pl+(ẽlA)
∑

j=1

aj,l−1 +
i∑

j=pl+(ẽlA)

aj,l >

ql+(A)
∑

j=1

aj,l−1 +
i∑

j=ql+(A)

aj,l,

which is a contradiction to the maximality. Hence pl+(A) = ql+(f̃lA) and q
l
+(A) = pl+(ẽlA),

which proves the theorem. �

Corollary 3.2.1. The crystal Bm,i is connected.

Proof. It is immediate that for A ∈ Bm,i with ẽlA = 0 for all l ∈ I, we must have ap,q = 0
for all 1 ≤ p ≤ i ≤ q ≤ n. Hence, for arbitrary elements A and B there exists always a
couloured path from A to B. �

4. Tensor products and Nakajima monomials

In this section, we want to recall tensor products of crystals and investigate the action of
Kashiwara operators on tensor products. Furthermore, we want to introduce a crystal, the
set of all Nakajima monomials, such that we can think of B(λ), where λ is a dominant
integral An weight, as a set of certain monomials. This theory is discovered by Nakajima
[18], and generalized by Kashiwara [13] and will be important in the following sections.

4.1. Tensor product of crystals. Suppose that we have two abstract crystals B1, B2 in
the sense of Definition 3.1, then we can construct a new crystal which is as a set nothing
but B1 × B2. This crystal is denoted by B1 ⊗ B2 and the Kashiwara operators are given as
follows:

f̃l(b1 ⊗ b2) =

{

(f̃lb1)⊗ b2, if ϕl(b1) > ǫl(b2)

b1 ⊗ (f̃lb2), if ϕl(b1) ≤ ǫl(b2)
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ẽl(b1 ⊗ b2) =

{

(ẽlb1)⊗ b2, if ϕl(b1) ≥ ǫl(b2)

b1 ⊗ (ẽlb2), if ϕl(b1) < ǫl(b2).

Further, one can describe explicitely the maps wt,ϕl and ǫl on B1 ⊗ B2, namely:

wt(b1 ⊗ b2) = wt(b1) + wt(b2)

ϕl(b1 ⊗ b2) = max{ϕl(b2), ϕl(b1) + ϕl(b2)− ǫl(b2)}

ǫl(b1 ⊗ b2) = max{ǫl(b1), ǫl(b1) + ǫl(b2)− ϕl(b1)}.

A very important point in representation theory is to determine crystal bases for irreducible
modules over quantum algebras. This leads to many combinatorial models, discovered in
a series of papers ([14],[15],[17]). Since this paper has the goal of determining the crystal
graph of KR modules, we will only mention in the following remark how we could compute
crystal bases for V (λ) using tensor products of polytopes.

Remark 4.1.1. Remember that we have already a crystal structure on the sets Bm,i for all
i = 1, · · · , n and by the above considerations also on

Bm1,1 ⊗ · · · ⊗Bmn,n.

It means we are considering patterns

with the following crystal structure: let us take such a pattern A := (A1, · · · , An) and fix
l ∈ I, then we assign to A a sequence of - ‘s followed by a sequence of +‘s

seq(A) := (−, · · · ,−
︸ ︷︷ ︸

ǫl(A1)

,+, · · · ,+
︸ ︷︷ ︸

ϕl(A1)

,−, · · · ,−
︸ ︷︷ ︸

ǫl(A2)

,+, · · · ,+
︸ ︷︷ ︸

ϕl(A2)

, · · · ,−, · · · ,−
︸ ︷︷ ︸

ǫl(An)

,+, · · · ,+
︸ ︷︷ ︸

ϕl(An)

)

and cancel out all (+,−)-pairs to obtain the so called ℓ-signature

(4.1) ℓ-sgn(A) := (−, · · · ,−,+, · · · ,+).

Using the ℓ-signature ℓ-sgn(A) of A, we can describe the Kashiwara operators. Assume the
left-most + in the ℓ-signature corresponds to Ai and the right-most − corresponds to Aj,
then

f̃l(A1A2 . . . An) = A1 . . . Ai−1(f̃lAi)Ai+1 . . . An

ẽl(A1A2 . . . An) = A1 . . . Aj−1(ẽlAj)Aj+1 . . . An.

Hence we have defined a new crystal, and with Theorem 5.2.1 it is clear from standard
arguments that the connected component of 0 (all boxes filled with 0) is isomorphic to the
crystal B(λ).
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4.2. Nakajima monomials. For i ∈ I and n ∈ Z we consider monomials in the variables
Yi(n), i.e. we obtain the set of Nakajima monomials M as follows:

M := {
∏

i∈I,n∈Z

Yi(n)
yi(n)|yi(n) ∈ Z vanish except for finitely many (i, n)}

With the goal to define the crystal structure on M, we take some integers c = (ci,j)i 6=j such
that ci,j + cj,i = 1. Let now M =

∏

i∈I,n∈Z Yi(n)
yi(n) be an arbitrary monomial in M and

l ∈ I, then we set:

wt(M) =
∑

i

(
∑

n

yi(n))ωi

ϕl(M) = max{
∑

k≤n

yl(k)|n ∈ Z}

ǫl(M) = max{−
∑

k>n

yl(k)|n ∈ Z}

and

nl
f = min{n|ϕl(M) =

∑

k≤n

yl(k)}

nl
e = max{n|ǫl(M) = −

∑

k>n

yl(k)}

The Kashiwara operators are defined as follows:

f̃lM =

{

Al(n
l
f )

−1M, if ϕl(M) > 0

0, if ϕl(M) = 0

ẽlM =

{

Al(n
l
e)M, if ǫl(M) > 0

0, if ǫl(M) = 0,

whereby

Al(n) := Yl(n)Yl(n+ 1)
∏

i 6=l

Yi(n+ ci,l)
〈α∨

i ,αl〉.

The following two results due to Kashiwara [13] are essential for the process of this paper:

Proposition 4.2.1. With the maps wt, ϕl, ǫl, f̃l, ẽl, l ∈ I, the set M becomes a semiregular
crystal.

Remark 4.2.1. A priori the crystal structure depends on c, hence we will denote this crystal
by Mc. But it is easy to see that the isomorphism class of Mc does not depend on this
choice. In the literature c is often chosen as

ci,j =

{

0, if i > j

1, else
or ci,j =

{

0, if i < j

1, else.

Proposition 4.2.2. Let M be a monomial in M, such that ẽlM = 0 for all l ∈ I. Then the
connected component of M containing M is isomorphic to B(wt(M)).
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5. Stembridge axioms and isomorphism of crystals

By using the description of crystal graphs by certain monomials and maps on these, we want
to show that our set Bm,i satisfies the so called Stembridge axioms stated in [24]. These
axioms give a local characterization of simply-laced crystals which are helpful if one could
not find a global isomorphism. Since we could not find an isomorphism from Bm,i to the set
of all monomials describing B(mωi), we will identify only certain A2-crystals. Let us first
recall a slightly modified result from [24].

5.1. Stembridge axioms. The basic idea of the following proposition is to give a simple
set of local axioms to characterize the set of crystals of representations in the class of all
crystals. In particular, with these axioms one can determine whether or not a crystal is the
crystal of a representation.

Proposition 5.1.1. Let g be a simply-laced Lie algebra and B be a connected crystal graph,
such that the following conditions are satisfied:

(1) If ẽlb is defined, then ǫj(ẽlb) ≥ ǫj(b) and ϕj(ẽlb) ≤ ϕj(b) for all j 6= l.

(2) If ẽl, ẽjb are defined and ǫj(ẽlb) = ǫj(b), then ẽlẽjb = ẽj ẽlb and ϕl(b
′

) = ϕl(f̃jb
′

),
where b

′

= ẽlẽjb = ẽj ẽlb.
(3) If ẽl, ẽjb are defined and ǫj(b)− ǫj(ẽlb) = ǫl(b)− ǫl(ẽjb) = −1, then ẽlẽ

2
j ẽlb = ẽj ẽ

2
l ẽjb

and ϕl(b
′

)− ϕl(f̃jb
′

) = ϕj(b
′

)− ϕj(f̃lb
′

) = −1, where b
′

= ẽlẽ
2
j ẽlb = ẽj ẽ

2
l ẽjb.

(4) If f̃l, f̃jb are defined and ϕj(f̃lb) = ϕj(b), then f̃lf̃jb = f̃j f̃lb and ǫl(b
′

) = ǫl(ẽjb
′

),

where b
′

= f̃lf̃jb = f̃j f̃lb.

(5) If f̃l, f̃jb are defined and ϕj(b)−ϕj(f̃lb) = ϕl(b)−ϕl(f̃jb) = −1, then f̃lf̃
2
j f̃lb = f̃j f̃

2
l f̃jb

and ǫl(b
′

)− ǫl(ẽjb
′

) = ǫj(b
′

)− ǫj(ẽlb
′

) = −1, where b
′

= f̃lf̃
2
j f̃lb = f̃j f̃

2
l f̃jb.

Then B is a crystal graph induced by a representation.

5.2. Isomorphism of A2 crystals. We want to make full use of the above mentioned result
to prove the following main theorem of this section:

Theorem 5.2.1. We have an isomorphism of crystals

Bm,i ∼= B(mωi).

Proof. Assume |j − r| = 1, i.e. r = j + 1 and let A be an arbitrary element in Bm,i.
Since Bm,i is a connected crystal we cancel all arrows with colour s 6= j, j + 1 and denote
the remaining (j, j + 1)-connected graph containing A by Z(j,j+1)(A). We define a map
Ψ : Z(j,j+1)(A) ∪ {0} −→ M∪ {0} by mapping 0 to 0 and B to:







Y1(i)
m−

∑n
s=i bi,n

∏i

k=1 Y2(k)
bk,iY2(k + 1)−bk,i+1

∏i

k=1 Y1(k + 1)−bk,i , if j = i

Y2(n− 1)m−
∑i

s=1 bs,i
∏n

k=i Y1(k)
bi,n+i−kY1(k + 1)−bi−1,n+i−k

∏n

k=i Y2(k)
−bi,n+i−k , if j = i− 1

∏i

k=1 Y1(k)
bk,j−1Y1(k + 1)−bk,j

∏i

k=1 Y2(k)
bk,jY2(k + 1)−bk,j+1 , if j > i

∏n

k=i Y1(k)
bj+1,n+i−kY1(k + 1)−bj,n+i−k

∏n

k=i Y2(k)
bj+2,n+i−kY2(k + 1)−bj+1,n+i−k , if j + 1 < i.
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We are claiming that Ψ is an A2
∼= sl3(j, j + 1) crystal isomorphism. Note that Ψ has the

following properties:

• wt(Ψ(B)) = wt(B)

• ϕl(Ψ(B)) = ϕl(B), ǫl(Ψ(B)) = ǫl(B). The proof is a case-by-case consideration, for in-
stance if l = j > i, then

ϕl(Ψ(B)) = max{
r∑

s=1

bs,j−1 −

r−1∑

s=1

bs,j|1 ≤ r ≤ i} = ϕl(B),

because the maximum occurs at least at r = pl+(B).

• Ψ commutes with the Kashiwara operators: by Lemma 3.2.4 and the above computations
we can conclude that Ψ commutes with all f̃l, ẽl acting by zero on B. So assume f̃lB = B̂ and
ẽlB = B̂ respectively. Our aim is to prove Ψ(B̂) = Al(n

l
f )

−1Ψ(B), Ψ(B̂) = Al(n
l
e)Ψ(B). This

is again a case-by-case consideration, for instance if l = j+1 < i we have nl
f = n+ i−pl−(B)

and

Ψ(B̂) =
n∏

k=i

Y1(k)
b̂j+1,n+i−kY1(k + 1)−b̂j,n+i−k

n∏

k=i

Y2(k)
b̂j+2,n+i−kY2(k + 1)−b̂j+1,n+i−k

=
n∏

k=i,k 6=nl
f

Y1(k)
bj+1,n+i−k

n∏

k=i

Y1(k + 1)−bj,n+i−k

n∏

k=i,k 6=nl
f

Y2(k)
bj+2,n+i−kY2(k + 1)−bj+1,n+i−k

× Y1(n
l
f )

b
j+1,pl

−
(B)

+1
Y2(n

l
f )

b
j+2,pl

−
(B)

−1
Y2(n

l
f + 1)

−b
j+1,pl

−
(B)

−1

= Y1(n
l
f )Y2(n

l
f )

−1Y2(n
l
f + 1)−1Ψ(B) = Al(n

l
f )

−1Ψ(B).

Hence Ψ is a strict crystal morphism.

• Ψ is bijective: since Z(j,j+1)(A) is connected and Ψ is a crystal morphism we get that
Im(Ψ) is connected and contains at least, and therefore by Proposition 4.2.2 one highest
weight monomial, say of weight µ. So the image is isomorphic, again by Proposition 4.2.2
to the sl3(j, j + 1) crystal B(µ). Let T ∈ Z(j,j+1)(A) be a highest weight element, such that

ẽi1 · · · ẽisA = T , then the restriction of Ψ to G = {f̃j1 · · · f̃jsT |j1, · · · , js ∈ {j, j + 1}} is an
isomorphism. However, we have Z(j,j+1)(A) = G.

Therefore, we can conclude that A satisfies the Stembridge axioms for all j, r ∈ I with
|j − r| = 1, whereby the other relations are easily verified. �

Summerizing we have defined a set Bm,i which is by Theorem 3.2.1 a crystal and by Theo-
rem 5.2.1 actually the crystal B(mωi). In the following we want to collect some known facts

about KR-crystals and define the Kashiwara operators f̃0, ẽ0 on our underlying polytope.

6. The promotion operator

The existence of KR-crystals of type A
(1)
n was shown in [11] and a combinatorial description

was provided in [23] and [16], where the affine crystal structure in the latter work is given
without using the promotion operator. The existence of KR-crystals for non-exceptional
types can be found in [19],[20] and further a combinatorial description is provided in [8].



68 DENIZ KUS

Summerizing the results for type A
(1)
n , a model for KR-crystals is given by the set of all

semi-standard Young tableuax of shape λ = mωi with affine Kashiwara operators

(6.1) f̃0 := pr−1 ◦ f̃1 ◦ pr, and ẽ0 := pr−1 ◦ ẽ1 ◦ pr,

whereby pr is the so called Schützenbergers’s promotion operator [22], which is the analogue
of the cyclic Dynkin diagram automorphism on the level of crystals. The promotion operator
on the set of all semi-standard Young tableaux over the alphabet 1 ≺ 2 · · · ≺ n + 1 can be
obtained by using jeu-de-taquin. Particulary let T be a Young tableaux, then we get pr(T )
by removing all letters n + 1, adding 1 to each letter in the remaining tableaux, using jeu-
de-taquin to slide all letters up and finally filling the holes with 1’s. Our aim now is to
define the Schützenberger promotion operator on our polytope Bm,i, to obtain a polytope
realization of these crystals. Before we are in position to define such a map we will first
state an important result due to [1]. For simplicity we write wt(A) = (r1, · · · , rn+1), if
wt(A) =

∑n+1
j=1 rjǫj, whereby ǫj : sln+1 −→ C is the projection on the j-th diagonal entry.

Proposition 6.0.1. Let Ψ : B(mωi) −→ B(mωi) be a map, such that

(1) Ψ shifts the content, which means if wt(A) = (r1, · · · , rn+1), then wt(ψ(A)) =
(rn+1, r1, · · · , rn)

(2) Ψ is bijective

(3) Ψ ◦ f̃j = f̃j+1 ◦Ψ, Ψ ◦ ẽj = ẽj+1 ◦Ψ for all j ∈ {1, · · · , n− 1},

then Ψ = pr.

In particular, using Theorem 5.2.1, this means that it is sufficient to define a map on Bm,i

satisfying the conditions (1)-(3). The computation of this map, which we will denote already
by pr, will proceed by an algorithm consisting of i steps, where each step will give us a column
of pr(A). We denote by pr(ar,s) the entries of pr(A) and by aj and pr(aj) respectively the
j-th column of A and j-th column of pr(A) respectively for j = 1, · · · , i and mostly we
assume the notation explained in Remark 3.2.1. In order to state the algorithm we denote
further by (aj)

≥l the column obtained from aj by canceling all entries between i and l − 1.
For instance if aj is the j-th column of some A ∈ Bm,4 we have

(aj)
≥5 = 5

0
, if aj =

3
5
0
.

If i = 1, then it is obvious that the map pr defined by

pr(a1,j) =

{

m−
∑n

r=1 a1,r, if j = 1

a1,j−1, else

satisfies the conditions (1)-(3). So for n ≥ i ≥ 2 we will use the following algorithm to
compute pr:

6.1. Algorithm. For given A ∈ Bm,i we implement the following steps to compute pr(A):

(1) Consider the (i − 1)-th and i-th column of A and compute inductively the integers
i ≤ li−1

1 < li−1
2 < · · · < li−1

ti−1
= n, whereby

li−1
j = q−((ai−1)

>li−1
j−1 , (ai)

>li−1
j−1)
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and where we undestand li−1
0 = i− 1. The i-th column of pr(A) is then given by:

pr(ai,r) =







ǫ(ai−1, ai), if r = i

ǫ((ai−1)
≥r, (ai)

≥r), if r − 1 ∈ {li−1
1 , · · · , li−1

ti−1−1}

ai,r−1, else.

Further define a new column

(6.2) âi−1,r =







ai−1,r + ai,r − ǫ((ai−1)
>r, (ai)

>r), if r ∈ {li−1
1 , · · · , li−1

ti−1−1}

ai−1,n + ai,n, if r = n

ai−1,r, else.

(2) With the aim to determine the (i − 1)-th column of pr(A) repeat step (1) with the
(i− 2)-th column of A and the new defined column (6.2). Using the integers i ≤ li−2

1 <
li−2
2 < · · · < li−2

ti−2
= n compute the (i− 2)-th column as in step (1).

(3) Repeat step (2) as long as all columns, except the first one, from pr(A) are known.
(4) The first column of pr(A) is given as follows:

pr(a1,r) =

{

m−
∑n

j=i ai,j −
∑i

j=2 pr(aj,i), if r = 1
∑i

j=1 aj,r−1 −
∑i

j=2 pr(aj,r), if r > 1.

Remark 6.1.1.

(1) A priori it is not clear, why the entries in the first column are non negative integers.
This will be our first step and is proven in Proposition 6.1.1.

(2) As well it is not clear, why the image of pr lies in Bm,i. With the purpose to prove the
well-definedness of pr we will show first for any A ∈ Bm,i that pr ◦ ẽjA = ẽj+1 ◦pr(A)
holds for j = 1, · · · , n− 1, where the equation can be understood by Lemma 3.2.2 as
a equation independently from the knowledge where pr(A) lives.

Example. i) We pick one element A (see below) in B3,3 and follow our algorithm. In the
first step we get l21 = 3 < l22 = 4 < l23 = 5 which gives us the third column:

A =
1 1 1
2 0 0
0 0 0

 

• • 1
• • 0
• • 0

The new column is given by

2
0
0 . So following step two we get again l11 = 3 < l12 = 4 <

l13 = 5 and hence

1 1 1
2 0 0
0 0 0

 

• • 1
• • 0
• • 0

 

• 1 1
• 2 0
• 0 0

So our last step gives us

pr(A) =
0 1 1
1 2 0
2 0 0
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Another example in B4,3 is described below:

1 1 0
0 1 1
0 0 0

 

• • 2
• • 0
• • 0

 

• 1 2
• 0 0
• 0 0

 

0 1 2
2 0 0
2 0 0

ii) Now we pick an element in B7,4, namely

1 0 1 1
0 1 3 2
1 0 2 0

and get l31 = 5 < l32 = 6, l21 = 4 < l22 = 5 < l23 = 6 and l11 = 4 < l12 = 5 < l13 = 6. The
new columns after the first step and second step respectively are given by

1
3
2

and
0
4
2

respectively.

Thus, step by step we obtain the columns of pr(A):

1 0 1 1
0 1 3 2
1 0 2 0

 

• • • 3
• • • 1
• • • 2

 

• • 0 3
• • 1 1
• • 0 2

 

• 1 0 3
• 0 1 1
• 1 0 2

 

0 1 0 3
1 0 1 1
3 1 0 2

Proposition 6.1.1. For any A ∈ Bm,i the first column of pr(A) consists of non-negative
integers and moreover

m−

n∑

r=i

pr(a1,r) =
i∑

r=1

ar,n.

Proof. We will prove this statement by induction on i. Assume i = 2 and let l11 < l12 < · · · <
l1t1 be the integers decribed in the algortihm. The first entry in the first column is exactly

m−

n∑

r=2

a2,r − ǫ(a1, a2) = m−

l11∑

r=2

a1,r −
n∑

r=l11

a2,r ≥ 0,

and the other entries in the first column of pr(A) are either of the form a1,k or of the form

a1,l1
k
+ a2,l1

k
− ǫ((a1)

>l1
k , (a2)

>l1
k), for some k. However, by the definition of l1k we know that

a2,l1
k
+ · · · + a2,l1

k+1−1 ≥ a1,l1
k
+1 + · · · + a1,l1

k+1
, which gives us a2,l1

k
≥ ǫ((a1)

>l1
k , (a2)

>l1
k). Thus

all entries in the first column are non negative integers. Now we will show that for all
j ∈ {0, · · · , t1 − 1}

m−
n∑

r=2

pr(a1,r) =

l1j+1∑

r=l1j+1

a1,r +
n∑

r=l1j+1

a2,r −
n∑

r=l1j+2

pr(a1,r)
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holds and proceed by upward induction on j. The j = 0 case is obvious and assuming that
j > 0 we obtain by using the induction hypothesis

m−

n∑

r=2

pr(a1,r) =

l1j∑

r=l1j−1+1

a1,r +
n∑

r=l1j

a2,r −
n∑

r=l1j−1+2

pr(a1,r)

=

l1j∑

r=l1j−1+1

a1,r +
n∑

r=l1j

a2,r −

l1j+1
∑

r=l1j−1+2

pr(a1,r)−
n∑

r=l1j+2

pr(a1,r)

= a1,l1j +
n∑

r=l1j

a2,r − pr(a1,l1j+1)−
n∑

r=l1j+2

pr(a1,r)

=

l1j+1∑

r=l1j+1

a1,r +
n∑

r=l1j+1

a2,r −
n∑

r=l1j+2

pr(a1,r),

which finishes the induction. According to this we complete the initial step, since

m−

n∑

r=2

pr(a1,r) =

l1t1∑

r=l1t1−1+1

a1,r +
n∑

r=l1t1

a2,r −
n∑

r=l1t1−1+2

pr(a1,r) = a1,n + a2,n.

Now let i > 2 and consider an element B ∈ Bm,i−1, constructed as follows. The first (i− 2)-
columns of B are the same as the ones from A and the (i−1)-th column is precisely the new
obtained column in (6.2), which we get if we apply step (1) of the algorithm to A. In other
words, we erase the i-th column of A and replace the (i− 1)-th column of A by

bi−1,r =







ai−1,r + ai,r − ǫ((ai−1)
>r, (ai)

>r), if r ∈ {li−1
1 , · · · , li−1

ti−1−1}

ai−1,n + ai,n, if r = n

ai−1,r, else

and obtain B. One can easily check that B ∈ Bm,i−1, where Bm,i−1 is the polytope associated
to the Lie algebra An−1. Particulary we claim the following: if we glue the i-th column of
pr(A) to pr(B) the resulting element is again pr(A), i.e.

pr(A) = pr(B)pr(ai).

By the definition of the algorithm the claim is obvious for all columns except the first one.

Because of that let bi . . . bn be the transpose of the first column of pr(B) and ai . . . an

be the transpose of the first column of pr(A). We would like to start with the evidence of
bi = ai. We have

bi = m−

li−1
1∑

s=i

ai−1,s −
n∑

s=li−1
1

ai,s −
i−1∑

s=2

pr(as,i),

ai = m−
n∑

s=i

ai,s −
i∑

s=2

pr(as,i),
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since the sum over all entries of the (i−1)-th column of B equals to
∑li−1

1
s=i ai−1,s+

∑n

s=li−1
1
ai,s.

However, this implies

bi − ai = pr(ai,i) +

li−1
1 −1
∑

s=i

ai,s −

li−1
1∑

s=i

ai−1,s = pr(ai,i)− ǫ(ai−1, ai) = 0.

If r > i we have

br =
i−2∑

s=1

as,r−1 −

i−1∑

s=2

pr(as,r) +

{

ai−1,r−1 + ai,r−1 − ǫ((ai−1)
≥r, (ai)

≥r)

ai−1,r−1

,

ar =
i∑

s=1

as,r−1 −
i∑

s=2

pr(as,r) =
i∑

s=1

as,r−1 −
i−1∑

s=2

pr(as,r)−

{

ǫ((ai−1)
≥r, (ai)

≥r)

ai,r−1

,

and thus the difference is once more zero. So by induction we can assume that the first row
of pr(B) consists of non-negative integers, and hence by our claim the first row of pr(A) as
well. Furthermore the sum over the entries in the last row of B coincides with the sum over
the entries in the last row of A and thus

m−
n∑

r=i

pr(a1,r) =
i∑

r=1

ar,n.

�

At this point we take Lemma 3.2.2 and Remark 6.1.1 (2) up and emphasize that the action of

f̃i on pr(A), A ∈ Bm,i, is on one condition in the sense of the following lemma independent
from the fact where pr(A) lives. We will need this result several times in the remaining
proofs.

Lemma 6.1.1. Suppose that A ∈ Bm,i, pr(A) ∈ Bs,i for some s ≥ m and ϕi−1(A) 6= 0, then

mf̃i acts on pr(A) and therefore sf̃ipr(A) = mf̃ipr(A).

Proof. The sum over all entries in the i-th column of pr(A) equals to the sum over all entries
in the (i− 1)-th column of A and that is why

i−1∑

r=1

pr(a1,r) +
n∑

r=i

pr(ai,r) = m− 〈hi−1,wt(A)〉 − ǫi−1(A)

= m− ϕi−1(A) < m.

�

6.2. Main proofs. This section is dedicated to the verification of the conditions (1)-(3).
Initially we remark that the cases j = i− 1 and j = i in part (3) of Proposition 6.0.1 will be
considered separately, which is the aim of the next proposition:

Proposition 6.2.1. For j = i− 1, i and all A in Bm,i we have

pr(ẽjA) = ẽj+1pr(A).
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Proof. We presume j = i− 1 and ẽi−1A 6= 0, since the condition ẽi−1A = 0 forces ǫi−1(A) =
pr(ai,i) = ǫi(pr(A)) = 0. So let l1, · · · , lt be the integers from step (1) if we apply the
algorithm to A and let l′1, · · · , l

′
t′ be the integers obtained from step (1) if we apply our

algorithm to ẽi−1A. If l
′
1 = l1, then the algorithm gives us immediately ẽipr(A) = pr(ẽi−1A).

So suppose that l1 > l′1 and let d maximal such that l′d < l1. Then, using the definition of
l1, we get on the one hand l′d+1 = l1 and on the other hand

ai−1,l′
d
+1 + · · ·+ ai−1,l1 − 1 = ai,l′

d
+ · · ·+ ai,l1−1,

which means that pr(ẽi−1A) would not change if we skip l′d. By repeating these arguments
we can get rid of all l′d such that l′d < l1 and consequently we can calculate pr(ẽi−1A) by using
the sequence l′d+1 = l1 < l′d+2 = l2 < · · · < l′t′ = lt. To be more accurate we can conclude
ẽipr(A) = pr(ẽi−1A).
Now let j = i and in that additional separated case we will prove the required equation by
induction on i. For the initial step we assume that i = 2 and investigate the first two rows
of pr(A) where these are of one of the two following forms:

• ǫ1(A)

a1,2 a2,2

or
• a1,2

y pr(a2,3)

with y = a1,2 + a2,2 − pr(a2,3) > a1,2,

whereas the first case appears if and only if either q1−(A) > i or q1−(A) = i and a2,2 = pr(a2,3).
In that case, since ǫ1(A) ≥ a1,2, we have q3+(A) = 2 which means among other things that
ǫ3(pr(A)) = 0 if ǫ2(A) = a2,2 = 0. Furthermore, if ẽ2A 6= 0, we actually have q1−(ẽ2A) > i
provided q1−(A) > i and q1−(ẽ2A) = q−((a1)

>i, (a2)
>i) provided q1−(A) = i and a2,2 = pr(a2,3).

Thus pr(ẽ2A) arises from pr(A) by replacing ǫ1(A) by ǫ1(A) + 1 and a2,2 by a2,2 − 1, which
proves the claim in that case. Otherwise the second case appears and there, because of
a2,2 > pr(a2,3), we have ẽ2A 6= 0, q3+(A) = 1 and q1−(ẽ2A) = i. So the algorthm provides us
the first two rows of pr(ẽ2A):

•+ 1 a1,2

y − 1 pr(a2,3)

,

where the remaining entries coincide. As a consequence we get in both cases ẽ3pr(A) =
pr(ẽ2A) so that we can devote our attention to the induction step by observing the element
B from the proof of Proposition 6.1.1. Suppose first that ẽiA 6= 0 and let Bei be the element
obtained by same construction out of ẽiA. We remember that the connection between pr(A)
and pr(B) was pr(A) = pr(B)pr(ai). By induction we can conclude among other things

ǫi(pr(B)) = ǫi−1(B) =

{

ai−1,i + ai,i − ǫ((ai−1)
>i, (ai)

>i) if qi−1
− (A) = qi−1

− (ẽiA) = i,

ai−1,i, else.

The first opportunity forces pr(ai,i) = ai−1,i, pr(ai,i+1) = ǫ((ai−1)
>i, (ai)

>i) < ai,i where
the second one forces pr(ai,i) = ǫi−1(A) ≥ ai−1,i, pr(ai,i+1) = ai,i. Moreover we have
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qi+1
+ (pr(A)) ∈ {i, qi+(pr(B))} and further we claim the following:

(6.3) qi+1
+ (pr(A)) = qi+(pr(B)) if and only if qi−1

− (A) = qi−1
− (ẽiA) = i

Proof of (6.3): We start by supposing qi−1
− (A) = qi−1

− (ẽiA) = i and get

ǫi+1(pr(A)) ≥ ǫi(pr(B))− pr(ai,i) + pr(ai,i+1) = ai,i > pr(ai,i+1),

which implies qi+1
+ (pr(A)) 6= i. For the converse direction let qi−1

− (A) = qi−1
− (ẽiA) = i be

incorrect, then another easy estimation

ǫi(pr(B))− pr(ai,i) + pr(ai,i+1) = ai−1,i − ǫi−1(A) + ai,i ≤ ai,i

implies qi+1
+ (pr(A)) = i and thus (6.3).

Assume firstly that qi−1
− (A) = qi−1

− (ẽiA) = i which implies Bei = ẽi−1B and that the i-th
row of pr(ẽiA) coincides with the i-th row of pr(A). According to (6.3) the gluing process
commutes with the Kashiwara action. To be more precise

pr(ẽiA) = pr(Bei)pr(ai) = (ẽipr(B))pr(ai) = ẽi+1(pr(B)pr(ai)) = ẽi+1pr(A).

Lastly we assume that qi−1
− (A) = qi−1

− (ẽiA) = i is not fulfilled which implies immedi-
ately that pr(ẽiA) arises from pr(A) by replacing pr(ai,i) by pr(ai,i) + 1 and pr(ai,i+1)
by pr(ai,i+1) − 1. After that we finished our proof for all A with ẽiA 6= 0, since (6.3)
implies exactly qi+1

+ (pr(A)) = i. Although the ideas of the proof of the remaining case
ẽiA = ai,i = 0 are similar we will give it nevertheless for completeness. By the reason of
0 = ai,i ≥ ǫ((ai−1)

>i, (ai)
>i) we must necessarily have ǫi(B) = ai−1,i, pr(ai,i) = ǫi−1(A) ≥

ai−1,i, pr(ai,i+1) = 0 and together with ǫi(pr(B)) − pr(ai,i) = ai−1,i − ǫi−1(A) ≤ 0 we find
ǫi+1(pr(A)) = 0. �

Hereafter we consider the remaining nodes:

Proposition 6.2.2. The map pr described in the algorithm satisfies the condition

pr ◦ ẽj = ẽj+1 ◦ pr for all j ∈ {1, · · · , n− 1}.

Proof. By Proposition 6.2.1 it is sufficient to verify the above stated equation for all j < i−1
and j > i, where we start by assuming that j < i− 1 and for simplicity we set q := qj−(A).
The basic idea of the proof is to compare permanently pr(A) with pr(ẽjA) and reduce all
assertions to the following claim:

Claim 1:

i) Let ẽjA 6= 0, then there exists an integer z, such that pr(ẽjA) arises out of pr(A), if we
replace pr(aj+1,z) by pr(aj+1,z)− 1 and pr(aj+2,z) by pr(aj+2,z) + 1

ii) qj+1
− (pr(A)) = z

Note that the claim will give us the proposition for all j < i − 1, such that ẽjA 6= 0. We
want to emphasize here that in the proof of the claim we will also prove the statement of
Proposition 6.2.2 if ẽjA 6= 0 is not satisfied.

Proof of Claim 1: For simplicity we denote by at = ai . . . an the transpose of the j-th

column of A and by bt = bi . . . bn the transpose of the (j+1)-th column of A. Further we

will denote by ct = ci . . . cn the transpose of the new column (6.2) which we obtain after
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applying (i− j− 2) steps of our algorithm to A. For instance, if j = i− 2, then c is precisely
the i-th column of A. With the aim to obtain the (j + 2)-th column of pr(A), we apply our
algorithm to the columns b and c and since there is no confusion we omit all superfluous
indices and denote by l1, · · · , lt the integers described in the algorithm and suppose that

lr < q ≤ lr+1, where we understand again l0 = i − 1. Denote by (c′)t = c′i . . . c
′
n the

transpose of the (j + 2)-th column of pr(A) and by (b′)t = b′i . . . b
′
n the transpose of the

new obtained column after (i−j−1) steps of our algorithm. Hence these columns, expressed
in terms of the entries of b and c, are of the following form:

(b′)t =
bi bi+1 . . . bls−1 b′ls bls+1 . . . bn+cn

s = 1, · · · , t− 1

(c′)t =
xl0 ci . . . cls−1 xls cls+1 . . . cn−1

s = 1, · · · , t− 1,

whereby xls = bls+1 + · · ·+ bls+1 − cls+1 − · · · − cls+1−1 and b′ls = bls + cls − xls .

With the goal to prove Claim 1 we need several minor results listed in Claim 1.1.

Claim 1.1.: Let s := m1 = q−(a,b
′), · · · ,mp be the integers obtained from the algorithm

if we compare a with b′ and let as before lr < q ≤ lr+1. We presume further that k is either

(6.4) min{1 ≤ k ≤ r|

lr+1∑

r=lk+1

br =

lr+1−1
∑

r=lk

cr}

or if the minium does not exist we set k = r + 1. Then we have

i) s ≤ q and if s < q then in fact s ≤ lk−1

ii) q ∈ {m1, · · · ,mp} and ♯{x|lk−1 < mx < q} = 0
iii) ǫj+1(pr(A)) = ǫj(A)

iv) qj+1
− (pr(A)) ≤ lk−1 + 1

Proof of Claim 1.1.: Suppose s ≤ q in Claim 1.1.(i) is not fulfilled and let lp < s ≤ lp+1.
Then by observing the entries of b′ we see that the sum D := ai + · · ·+ as + b′s + · · ·+ b′n is
of the following form:

D =
s∑

r=i

ar +

lp+1∑

r=s

br +
n∑

r=lp+1

cr.

But

D ≤

q
∑

r=i

ar +

lp+1∑

r=q

br +
n∑

r=lp+1

cr ≤

q
∑

r=i

ar +

lr+1∑

r=q

br +
n∑

r=lr+1

cr =

q
∑

r=i

ar +
n∑

r=q

b′r,

where the second last inequality is a consequence of the definition of q, particularly
∑s−1

r=q br ≥
∑s

r=q+1 ar and the last inequality is by the definition of lr+1, namely
∑lp+1−1

p=lr+1
cp ≥

∑lp+1

p=lr+1+1 bp.
Consequently we obtain a contradiction to the definition of s and thus

(6.5) q ≥ s = q−(a,b
′).
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Before we start with the proof of the second statement in (i) we would like to emphasize the
following result: for all j ∈ {k, · · · , r}

(6.6)

lr+1∑

r=lj+1

br =

lr+1−1
∑

r=lj

cr and b′lj = blj hold.

Let us start by proving the first part of (6.6) by induction, where the initial step is by the
choice of k obvious. So assume that the first part of (6.6) holds for j. Using the definition
of lj we must have

∑s

r=lj+1 br −
∑s−1

r=lj+1 cr ≤ clj for all s > lj and since lj+1 is the “place”

where
∑s

r=lj+1 br −
∑s−1

r=lj+1 cr is maximal we have, together with the induction hypothesis,

only one opportunity, namely
∑lj+1

r=lj+1 br =
∑lj+1−1

r=lj
cr. Hence the first part of (6.6) is proven.

We proved also implicitly the second part which we can see as well as a corollary of the first
part, namely we get for all j ∈ {k, · · · , r}

lr+1∑

r=lj+1

br −

lr+1−1
∑

r=lj

cr =

lr+1∑

r=lj+1+1

br −

lr+1−1
∑

r=lj+1

cr = 0 ⇒

lj+1∑

r=lj+1

br =

lj+1−1
∑

r=lj

cr

which forces b′lj = blj . Because of (6.6) we verified part (i) of Claim 1.1. since the assumption
lk−1 < s < q would end in a contradiction, namely in

D < D +

q
∑

r=s+1

ar −

q−1
∑

r=s

br = D +

q
∑

r=s+1

ar −

q−1
∑

r=s

b′r =

q
∑

r=i

ar +
n∑

r=q

b′r.

As a corollary of Claim 1.1. (i) we obtain that

(6.7) q ∈ {m1, · · · ,mp} and ♯{x|lk−1 < mx < q} = 0,

because if q = s we are done and if not we get with the definition of m2 and similar
calculations as in the proof of Claim 1.1. (i) that q ≥ m2 = q−((a)

>s, (b′)>s) and in the
case of q > m2 we have m2 ≤ lk−1. If q = m2 we are done and if not we repeat these
arguments until we get (6.7). For the completion of Claim 1.1. it remains to verify (iii) and
(iv), whereas we start with

(6.8) ǫj+1(pr(A)) = ǫj(A).

Note that the transpose of the (j + 1)-th column of pr(A) is given by

zm0 b′i . . . b′ms−1 zms
b′ms+1 . . . b′n−1

s = 1, · · · , p− 1,

whereby zms
= ams+1 + · · ·+ ams+1 − b′ms+1 − · · · − b′ms+1−1. Hence any sum

h∑

r=i

pr(aj+1,r) +
n∑

r=h

pr(aj+2,r),

for some i ≤ h ≤ n such that mj−1 < h ≤ mj and lp < h ≤ lp+1, is of the form

(6.9)

mj∑

r=i

ar −

mj−1
∑

r=h

b′r +

lp+1∑

r=h

c′r −
n∑

r=lp+1+1

br
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and the expression
h∑

r=i

pr(aj+1,r)−
h−1∑

r=i

pr(aj+2,r)

can be written as

(6.10)

mj∑

r=i

ar −

mj−1
∑

r=h

b′r −

h−1∑

r=lp+1

c′r −

lp∑

r=i

br.

Assume that h is minimal such that (6.9) is maximal, then since b′k ≥ bk for all k = i, · · · , n
we have

ǫj+1(pr(A)) =

mj∑

r=i

ar −

mj−1
∑

r=h

b′r −

h−1∑

r=lp+1

c′r −

lp∑

r=i

br

≤

mj∑

r=i

ar −

mj−1
∑

r=h

br +

{

−bi · · · − blp , if h = lp + 1

clp+1−1 + · · ·+ ch−1 − bi · · · − blp+1 , else

≤

mj∑

r=i

ar −

mj−1
∑

r=i

br ≤ ǫj(A).

The second last inequality is by the reason of ch−1 + · · ·+ clp+1−1 < bh + · · ·+ blp+1 , which is
valid by the definition of lp+1 and h−1 6= lp. For the converse direction we investigate (6.10)
with h = lk−1 + 1, whereby we can presume with (6.7) that q ∈ {m1, · · · ,mp}, say q = mj,
and lk−1 < h ≤ lk, mj−1 < h ≤ mj. In addition we recall from the definition and (6.6) that
b′k = bk for k = h, · · · , q− 1 and obtain the reverse estimation, which will finish the proof of
Claim 1.1. (iii):

ǫj+1(pr(A)) ≥

q
∑

r=i

ar −

q−1
∑

r=h

b′r −
h−1∑

r=lk−1+1

c′r −

lk−1∑

r=i

br

=

q
∑

r=i

ar −

q−1
∑

r=h

br − bi · · · − bh−1

=

q
∑

r=i

ar −

q−1
∑

r=i

br = ǫj(A).

With these calculations we get among other things also qj+1
− (pr(A)) ≤ lk−1 + 1, because

ǫj+1(pr(A)) =
∑lk−1+1

r=i pr(aj+1,r) −
∑lk−1

r=i pr(aj+2,r) and qj+1
− (pr(A)) is minimal with this

property.

Now we return to the goal to convince ourselves from Claim 1 and fix some notation for
ẽjA. Let eja and ejb respectively be the j-th and (j + 1)-th column respectively of ẽjA.

We denote by (ejc
′)t =

ejc
′
i . . . ejc

′
n the transpose of the (j + 2)-th column of pr(ẽjA) and

by (ejb
′)t =

ejb
′
i . . . ejb

′
n we will denote the transpose of the new obtained column after

applying (i − j − 1) steps of the algorithm to ẽjA. For the purpose of determining ejc
′ we
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compare ejb with c and let n1, · · · , ny be the integers defined in the algorithm. Suppose
again that k is as in (6.4). If the minimum does not exist, then the integers do not change,
i.e. t = y, nh = lh for h = 1, · · · , t and otherwise k is the minimal integer such that
nk 6= lk. A short calculation by using (6.6) shows that the new sequence of integers is given
by n1 = l1, · · · , nk−1 = lk−1, nk = lr+1, · · · , nk+t−r−1 = lt and hence

ejc
′
h = c′h for h 6= lk−1 + 1 and ejc

′
lk−1+1 = c′lk−1+1 + 1

and

ejb
′
h = b′h for h 6= lk−1, q and ejb

′
lk−1

= b′lk−1
− 1, ejb

′
q = b′q + 1.

As a next step we compare the columns eja with ejb
′ and determine the sequence of integers

from step (1) of the algorithm, say m1, · · · ,mx. One can observe similar to (6.5) that
m1 = q−(eja, ejb

′) ≤ q and as a corollary we obtain again q ∈ {m1, · · · ,mx}. Accordingly
we have the following situation:

m1 < m2 < · · · < mx0 ≤ lk−1 < mx1 < · · · < mxn
= q < · · · < mx

and since by (6.7) there is no 1 ≤ h ≤ p such that lk−1 < mh < q we have

m1 < m2 < · · · < mj−1 ≤ lk−1 < q = mj < · · · < mp.

The integer mxn−1 in the aforementioned sequence m1 < · · · < mx has firstly the property
lk−1 < mxn−1 < q and secondly mxn−1 is maximal with this property. Using the definition of
q we obtain

bmxn−1
+ · · ·+ bq−1 = amxn−1+1 + · · ·+ aq − 1

and as a consequence we get with (6.6) that the resulting new obtained column (6.2) does
not change if we skip mxn−1 . Repeating these arguments we can get rid of all integers greater
than lk−1 and less than q appearing in the sequence. Now it is obvious to see that we can
replace the integer sequence m1, · · · ,mx by m1, · · · ,mp if we apply our algorithm to eja and
ejb

′. Thus we get two facts: the first fact is that the new obtained column at which we arrive
by applying the algorithm to eja and ejb

′ is the same as the one if we apply the algorithm
to a and b′. The second fact is that the (j + 1)-th column of pr(ẽjA) is almost the same as
the (j + 1)-th column of pr(A) except the (lk−1 + 1)-th entry is one smaller. Consequently,
we proved part (i) of Claim 1. Now part (ii) of Claim 1 is also proven since (6.8) forces
qj+1
− (pr(A)) ≥ z = lk−1 + 1, because otherwise we get ǫj+1(pr(ẽjA)) = ǫj+1(pr(A)) which is
a contradiction to

ǫj+1(pr(ẽjA)) = ǫj(ẽjA) = ǫj(A)− 1 = ǫj+1(pr(A))− 1.

Consequently we proved our proposition for all j < i − 1. From now on we would like to
show

(6.11) ẽj+1pr(A) = pr(ẽjA) for all j > i.

If A is any element in Bm,i such that ϕ1(A) = · · · = ϕi−1(A) = 0, then it is easy to see that
the image under pr is given by

pr(ar,s) =







ǫr−1(A), if s = i, r > 1

m−
∑n

p=i a1,p, if s = i, r = 1

ar,s−1, else.
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Note that ẽjA = 0 implies ẽj+1pr(A) = 0 and otherwise, using the Stembridge axioms
which are fulfilled by Theorem 5.2.1 for all elements in Bm,i, we obtain ϕ1(ẽjA) = · · · =
ϕi−1(ẽjA) = 0 and therefore by applying the algorithm to ẽjA and comparing pr(ẽjA) with
pr(A) we have ẽj+1pr(A) = pr(ẽjA). So we proved our proposition for all A, such that
ϕ1(A) = · · · = ϕi−1(A) = 0. Now let A be arbitrary and write wt(A) as a linear combination
of simple roots wt(A) =

∑

j∈I kjαj ∈
∑

j∈I Qαj, and define

ht(wt(A)) :=
∑

j∈I kj.

Our proof will proceed by induction on ⌈ht(wt(A))⌉, whereby ⌈·⌉ denotes the ceiling function.
If the height is minimal we have the lowest weight element in Bm,i which satisfies obiously
(6.11). If ϕ1(A) = · · · = ϕi−1(A) = 0, then we are done by the above considerations
and if not let 1 ≤ l ≤ i − 1 be any integer so that ϕl(A) 6= 0. By induction we gain

ẽj+1pr(f̃lA) = pr(ẽj f̃lA) and by earlier calculations, together with Lemma 3.2.2, Lemma 6.1.1

and Proposition 6.2.1, we can verify pr(A) = pr(ẽlf̃lA) = ẽl+1pr(f̃lA) ⇒ f̃l+1pr(A) =

pr(f̃lA). Thus, by using the Stembridge axioms, we can finish the proof of (6.11) since

ǫj+1(pr(A)) = ǫj+1(f̃l+1pr(A)) = ǫj+1(pr(f̃lA)) = ǫj(f̃lA) = ǫj(A)

and

f̃l+1ẽj+1pr(A) = ẽj+1f̃l+1pr(A) = ẽj+1pr(f̃lA) = pr(ẽj f̃lA)

= pr(f̃lẽjA) = f̃l+1pr(ẽjA).

�

At this point we are in position to state our main theorem:

Theorem 6.2.1. The map pr described in the algorithm is Schützenberger’s promotion
operator.

Proof. Let A ∈ Bm,i, then we erase all arrows with colour n and denote by Z(1,··· ,n−1)(A) the
connected component containing A. Let B be the {1, · · · , n − 1} highest weight element.
Then by an immediate inspection of the definiton we must have br,s = 0 for all (r, s) except
(r, s) = (i, n), which in particular means

pr(br,s) =

{

m− bi,n, if r = 1, s = i

0, else.

Thus we have pr(ẽi1 · · · ẽisA) = pr(B) ∈ Bm,i, with some i1, · · · is ∈ {1, · · · , n − 1}. We
claim actually that pr(A) lives in Bm,i and we will prove this statement by induction on
n := ♯{ir|ir = i − 1}. Suppose that pr(A) ∈ Bp,i for some p ≥ m. If n = 0 we obtain by
Lemma 3.2.2

pr(A) = pf̃is+1 · · ·p f̃i1+1pr(B) = mf̃is+1 · · ·m f̃i1+1pr(B) ∈ Bm,i,

which proves the initial step. Now we assume that l = min{1 ≤ l ≤ s|il = i − 1} and
pr(ẽil+1

· · · ẽisA) ∈ Bp,i for some p ≥ m. Then we get

pr(ẽil+1
· · · ẽisA) = pf̃il+1 · · ·p f̃i1+1pr(B) = pf̃il+1 mf̃il−1+1 · · ·m f̃i1+1pr(B).
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So by the induction hypothesis it is sufficient to prove that

(6.12) pf̃il+1 mf̃il−1+1 · · ·m f̃i1+1pr(B) ∈ Bm,i,

but since ϕi−1(ẽil · · · ẽisA) 6= 0 we can conclude with Lemma 6.1.1 that (6.12) holds:

pf̃il+1 mf̃il−1+1 · · ·m f̃i1+1pr(B) = mf̃il+1 mf̃il−1+1 · · ·m f̃i1+1pr(B) ∈ Bm,i.

According to that we have the well-definedness of pr, i.e. pr : Bm,i −→ Bm,i. The condition
(1) of Proposition 6.0.1 is obviously fulfilled by construction and Proposition 6.1.1 and con-
dition (3) is exactly Proposition 6.2.2 and the following simple calculation: by the reason of
condition (1) of Proposition 6.0.1 and part (1) of Definition 3.1 we can assume without loss

of generality that f̃jA 6= 0 and thus

pr(A) = pr(ẽj f̃jA) = ẽj+1pr(f̃jA).

So the proof of part (2) of Proposition 6.0.1 will finish our main theorem. Note that for the
bijectivity it is enough to prove the surjectivity. So let A ∈ Bm,i be an arbitrary element
and let B the highest weight element in Z(2,··· ,n)(A). Then it is obvious to see that B has
the property br,s = 0 if (r, s) 6= (1, i) and according to this B has a pre-image, say C. For
instance one can choose C as follows:

cr,s =

{

0, (r, s) 6= (i, n)

m− b1,i, if r = i, s = n.

Therefore, since B = ẽi1 · · · ẽisA with i1 · · · is ∈ {2, · · · , n}, we have

A = f̃is · · · f̃i1B = f̃is · · · f̃i1pr(C) = pr(f̃is−1 · · · f̃i1−1C).

�

Remark 6.2.1. If we follow the results from [1] we can compute the inverse map of pr by
composing n times pr. In particular

pr−1 = prn.

We would like to finish our paper with drawing a KR-crystal graph of type A
(1)
2 .



REALIZATION OF AFFINE TYPE A KR-CRYSTALS VIA POLYTOPES 81

Example. The KR-crystal B3,2 of type A
(1)
2 looks as follows:

0 2

1 1

2 0

0 3

3 0

2 1

1 0

0 0

0 1

1 2

2

1

1

0

0

1

1

0

0

2

2

2

0

2

1

1

2

0
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Discussion
The results presented in this thesis deal in principal with the representation theory of equi-
variant map algebras and combinatorial representation theory, especially crystal theory. It
generalizes many results known before for representations of specific equivariant map alge-
bras as (twisted) loop and (twisted) current algebras and opens a huge area of research in
representation theory.
For instance, one would like to extend the results of local Weyl modules for more general
equivariant map algebras where the action of the finite group Γ is not necessarily free. In
the case where g is a simple complex Lie algebra of type A,D,E and Γ is the finite group of
order 2 or 3 of non-trivial diagram automorphism of g we have seen that we need a different
approach to local Weyl modules. The techniques described in [I] are not applicable. The
main reason therefor is that the isomorphism

(g⊗ A)Γ/(g⊗ Iη)
Γ ∼=
−→ (g⊗ A)/(g⊗ Iη),

which we used in the case where the action of the group Γ is free, does not hold in general.
In order to provide an example, we consider the Lie algebra of type A2 and Γ the finite
group of order 2, then there exists no isomorphism as in the above sense because otherwise
we would obtain a 2-dimensional representation of A2. More precisely, let V (ω) be the 2-
dimensional irreducible A1 representation. Then we can extend the action of A1 on V (ω) to

an A
(2)
2 action by letting

sl2 ⊗ t2C[t2]⊕ V (4ω)⊗ tC[t2]

to act by zero. This construction provides an irreducible (sl3 ⊗ C[t])Γ-module (cf. [40])
which yields a irreducible 2-dimensional representation for A2, provided such a Lie algebra
isomorphism exists.
Nevertheless local Weyl modules for the equivariant map algebra associated to these data
can be computed, provided either g is not of type A2l or the weights have to fulfill an “odd”
property (see [II]). They are identified with the corresponding affine Demazure modules and
an explicit construction from untwisted Weyl modules which generalize the fusion product
is given. Therefore dimension and character formulas were computed in [II].

For the remaining local Weyl modules of type A
(2)
2l where the highest weight is “even” we

have a conjecture, namely that the local Weyl modules are isomorphic to associated graded
modules of the restrictions of local Weyl modules for loop algebras. This conjecture would
follow from a dimension argument, which is for the twisted local Weyl module of highest

weight 2k for the twisted Lie algebra A
(2)
2 exactly dimW Γ(2k) = 3k. A simple case-by-case

calculation proves the conjecture for k = 1, 2, 3, 4.
In order to prove the conjecture we can not apply the standard techniques to identify the
module W Γ(2k) with a Demazure module and use subsequently the Demazure character
formula to compute its dimension. We explain for k = 2 why such an identification with
Demazure modules is not possible.

Let Ŵ be the Weyl group of the twisted Lie algebra and let w be an arbitrary Weyl group
element, i.e. w is of the form w = s1t2pω for some integer p. For an arbitrary dominant
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integral weight Λ = aΛ0 + bΛ1 we obtain

w(Λ) = (a+
b

2
)Λ0 − (4ap+ 2bp+ b)ω.

That means that the complete list of Demazure modules of classical highest weight 4ω
consists of D(1, 4) and D(2, 4). Together with the Demazure character formula

chD(1, 4) = D1D0(e
Λ0) = eΛ0 + eΛ0−α0(1 + e−α1 + e−2α1 + e−3α1 + e−4α1)

and

chD(2, 4) = D1(e
4Λ1) = e4Λ1(1 + e−α1 + e−2α1 + e−3α1 + e−4α1),

we realize that the level one Demazure module is of dimension 6 and the level two Demazure
module is of dimension 5. Thus the twisted local Weyl module is in general not a Demazure
module.
For the untwisted local Weyl modules for non simply-laced algebras it is shown that every
local Weyl module has a Demazure flag [38]. Hence one would expect from these results that
W Γ(2k) has a Demazure flag, however, again the k = 2 case yields a counterexample.
From that point of view, it is very interesting to investigate these modules for other equivari-
ant map algebras where the action is not free. The results from [II] give us hope to be able
to compute dimensions and characters for other algebras. For instance, another interesting
algebra to look at and to study local Weyl modules is the generalized Onsager algebra. Let
X = C

∗, g be a simple Lie algebra, and Γ = Z/2Z be a group of order 2 generated by 1 and
σ. For a set of Chevalley generators {ei, fi, hi} let Γ by the standard Chevalley involution
(see [4]), i.e.

σ(ei) = −fi, σ(fi) = −ei, σ(hi) = −hi.

Let σ act on C
∗ by z 7→ z−1. Then, the generalized Onsager algebra O(g), considered by G.

Benkart and M. Lau, is given by

O(g) := (g⊗ C[t])Γ.

The action of Γ on the variety C
∗ is not free (Γ−1 = Γ) and thus the question what local Weyl

modules (dimensions and characters) might be for these algebras is still open. The advantage
of working with the Onsager algebra is mainly the fact that the fixed point subalgebra g0 is
in almost all cases semi-simple. We have the following table (see, for example, [27, Chapter
X, 5, Tables II and III]).

g g0

Al sol+1

Bl, l ≥ 2 sol+1 ⊕ sol
Cl, l ≥ 2 gll
Dl, l ≥ 4 sol ⊕ sol
E6 C4

E7 A7

E8 D8

F4 C3 ⊕ A1

G2 A1 ⊕ A1
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The best way to avoid the question whether there exists a semisimple fixed point subalgebra
or not is to use the homological chracterization of local Weyl modules proved in [I] as a
general definition. This way of introducing yields a list of many other open questions:

• Can one describe local Weyl modules via generators and relations?
• Does a tensor product property hold?
• Is the dimension independent of the support of Ψ?
• What does it mean for the global Weyl module?

Beside studying local Weyl modules for equivariant map algebras where the action is not
free, one can look at equivariant map algebras where the target space is an arbitrary finite-
dimensional Lie algebra and Kac-Moody algebra respectively. Even the classification of the
irreducible representations of an equivariant map algebra where g is replaced by an Kac-
Moody algebra is still an open question. For more details we refer to [39]. As a result one
major part of forthcoming work would be to answer these questions satisfactorily.
Kirillov-Reshetikhin modules, a certain subclass of simple finite-dimensional representations
of quantum affine algebras, have been studied extensively due to their application in mathe-
matical physics (cf.[1],[6],[10],[24],[28]). One way of studying their structure is by looking at
the classical limits which can be regarded as graded modules for the current algebra g⊗C[t].
The generalization of these algebras to the setting of equivariant map algebras seems to be
quite challenging, not to mention the computation of graded character formulas. An in-
teresting generalization for multicurrent algebras of these modules is worked out in [3] and
a recursion formula for their graded character formula is provided. Here the multicurrent
algebra can be regarded as a map algebra corresponding to the data X = C

n and Γ = {1}.
Likewise in combinatorial representation theory Kirillov-Reshetikhin crystals, crystal bases
of KirillovReshetikhin modules have been studied extensively (cf. [23],[34],[41],[42],[43],[44]).
We recall that it was first conjectured in [26] that these modules admit a crystal bases and

this was proven in type A
(1)
n in [29] and in all non-exceptional cases in [41],[42]. For the affine

type A
(1)
n a well studied realization of these crystals is given in terms of Young tableaux of

rectangle shape, and the affine crystal structure is defined via a promotion operator by using
jeu-de-taquin.
For nonexceptional affine types, where the KR-crystals are realized by Young tableaux as
classical crystals, the affine crystal structure is given by using so-called±-diagrams ([23],[43]).

For instance in type D
(1)
n the affine crystal structure is

f0 = σ ◦ f1 ◦ σ, e0 = σ ◦ e1 ◦ σ,

where σ is the crystal analogue of the Dynkin automorphism that interchanges the 0 and
1 node. In particular, the map σ is defined on ±-diagrams, which parametrize the Dn−1

highest weight elements in the KR-crystal (see [43, Definition 4.3]).
For papers dealing with Kirillov-Reshetikhin crystals over twisted affine algebras we refer for
instance to [31],[36].
In the following we collect and discuss several important open questions which will be part
of the forthcoming work in the branch of combinatorial representation theory.

• Can one give a more explicit realization of Kirillov-Reshetikhin crystals for all types
where the existence is proven?

• Can this realization be given in terms of polytopes?
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In our results we showed that for the affine type A
(1)
n the answer is positive. We described a

polytope, such that the subset of integral points is a affine crystal isomorphic to the Kirillov-

Reshetikhin crystal. The answer for all other types is still not known, however for type C
(1)
n

a natural candidate for the polytope is given in [19]. The initial problem for type Cn is
the fact that the KR-crystals are on the one hand not irreducible anymore and on the other
hand the components appearing in a decomposition into crystals corresponding to irreducible
representations are of the form B(λ) for more general λ‘s as in the An case (for An we have
only λ = mωi). Thus it becomes much more difficult to define Kashiwara’s crystal operators
on the union of Cn-polytopes. As a matter of interest we give the decomposition of the
KR-crystal for all other classical types (see [6], [23]).

• For type Bn we have for 1 ≤ i < n

Bm,i =
⋃

∑
j mi−2j=m

B(

⌈ i
2
⌉∑

j=0

mi−2jωi−2j)

and for i = n

Bm,n =
⋃

mn+
∑

j 2mn−2j=m

B(

⌈n
2
⌉∑

j=0

mn−2jωn−2j)

• For type Cn:

Bm,i =
⋃

∑
j mj=m

mj=0 mod 2,i 6=j

mi=m mod 2

B(
i∑

j=0

mjωj)

• For type Dn:

Bm,i =
⋃

∑
j mi−2j=m

B(

⌈ i
2
⌉∑

j=0

mi−2jωi−2j) 1 ≤ i < n− 1,

where ω0 = 0.
Because of the above decomposition of KR-crystals into classical irreducible crystals corre-
sponding to irreducible representations, a very interesiting question arises:

• Assume that it is possible to realize the KR-crystals as a union of polytopes. Are
these polytopes parametrizing a PBW-type basis of irreducible finite-dimensional
representations?

Recall that for type An the polytope we used is given more generally in [18]. It is shown that
the set of integral points is parametrizing a PBW-type basis of V (λ) for arbitrary dominant
integral highest weight λ. A similar construction is also provided for the symplectic Lie
algebra in [19] where the integral points are identified with basis elements of V (λ).
Provided that one has (partially) solved the above mentioned questions, a very popular goal
in combinatorial representation theory is to find connections to other known combinatorial
models. Therefore,

• What is the connection to other combinatorial models? Is it possible to give an
explicit crystal isomorphism between these?
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Even for type An the KR-crystal, realized as a polytope, has no known explicit combinatorial
bijection to other combinatorial models of crystals induced by representations, such as the
Young tableaux model or the set of certain Nakajima monomials. Only for type A2 we can
describe the bijection to the Young tableux model explicitly as follows.
For i = 1:

a
b

7→ 1 · · · 1 2 · · · 2 3 · · · 3

where the number of 1’s is m− a− b, the number of 2’s is a and the number of 3’s is b.
For i = 2:

b c 7→ 1 1 · · · 1 1 2 2 · · · 2 2
2 · · · 2 3 · · · 3

where the number of 1’s ism−b, the number of 2’s in the first row and second row respectively
is b and m− c− b respectively and the number of 3’s is c+ b. We should mention that the
above crystal morphism to Young tableaux can be extended to the more general polytope
from [18], which is defined by distinguishing many cases. A first step to pursue these aims
is to generalize the above mentioned crystal morphism to an arbitrary rank.
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