
               CONVERSION FROM LINEAR TO 
CIRCULAR POLARIZATION IN FPGA IN REAL TIME

Inaugural-Dissertation

    zur
   Erlangung des Doktorgrades

  der Mathematisch-Naturwissenschaftlichen Fakultät

     der Universität zu Köln

                                                 vorgelegt von

       Koyel Das

       aus Kolkata, West Bengal, Indien
       Köln 2013



Berichterstatter:              Prof. Dr. Andreas Eckart
                                        Prof. Dr. Anton Zensus

Tag der mündlichen Prüfung: 28.06.2013





     CONTENT

ACKNOWLEDGEMENT......................................................................................................................ix

CONTRIBUTIONS IN WORK.............................................................................................................xi

ZUSAMMENFASSUNG .....................................................................................................................xiii

ABSTRACT..............................................................................................................................................1

1. INTRODUCTION................................................................................................................................2

1.1  Motivation to form circular polarization.............................................................................................2
1.2  Realization of circular polarization in analogue systems...................................................................3
1.3  The digital circular polarizer project...................................................................................................6
1.4  Aims  of  the  project...........................................................................................................................8

2. THEORETICAL DEVELOPMENT..................................................................................................9

2.1  Significance  of  theoretical  analysis..................................................................................................9
2.2  Method  overview................................................................................................................................9
2.3 Instrumental phase and gain calibration..........................................................................................10
2.3.1 Phase equalization..........................................................................................................................10
2.3.2  Gain  equalization...........................................................................................................................13
2.4 Windowing.........................................................................................................................................15
2.5 Forming circular polarization...........................................................................................................16
2.6 Performance limitations.....................................................................................................................16
2.7 Phase stability of the analogue receiver chain..................................................................................17
2.8 Expected polarization purity..............................................................................................................19

3. PRELIMINARY TEST OF ALGORITHM.....................................................................................20
 
3.1 Phase and gain equalization and windowing....................................................................................20
3.1.1 Experiment to collect test data........................................................................................................20
3.1.2 Description of spectral characteristics obtained by processing data in MATLAB....................21
3.1.3 Phase equalization...........................................................................................................................24
3.1.4 Gain equalization............................................................................................................................25
3.1.5 Windowing......................................................................................................................................27
3.2 Preliminary questions to be answered...............................................................................................28
3.3 Conclusion..................................................................................................................................... ...29

4. IMPLEMENTATION DETAILS......................................................................................................30
   
4.1 Overview of main logic blocks of the digital circular polarizer......................................................30
4.2  Conclusion.........................................................................................................................................32

5. EXPERIMENTS AND RESULTS....................................................................................................33



5.1 Design logic verification and simulation results................................................................................33
5.1.1 Lab setup for collecting test data....................................................................................................33
5.1.2 Time series obtained from the digital oscilloscope in the experiment...........................................34
5.1.3 Power spectra from the two channels in the experiment..............................................................34
5.1.4 Simulation results from the design logic.........................................................................................35
5.2 Verification of polarization purity.....................................................................................................41
5.2.1 Signal flow through the setup.........................................................................................................42
5.2.2 Measurement details.......................................................................................................................42
5.2.3 Results.............................................................................................................................................45
5.2.4 Discussion.......................................................................................................................................46
5.3  Conclusion.........................................................................................................................................48

6.  APPLICATIONS  IN  RADIO  ASTRONOMY.............................................................................49

6.1 Significance of the digital circular polarizer in radio astronomy.......................................................49
6.2 Different astronomical phenomena generating polarization.............................................................49
6.2.1 Cyclotron and synchrotron emission...............................................................................................49
6.2.2 Plasma frequency and plasma oscillations.....................................................................................50
6.2.3 Zeeman effect..................................................................................................................................50
6.2.4 Thompson scattering.......................................................................................................................50
6.2.5 Brewster  angle  effects...................................................................................................................51
6.3 Depolarization effects........................................................................................................................51
6.3.1 Depolarization due to Faraday rotation..........................................................................................51
6.3.2 Bandwidth depolarization...............................................................................................................51
6.3.3 Beam depolarization.......................................................................................................................51
6.4 Explorations and underlying techniques requiring polarimetric observations in VLBI..................52
6.4.1 Magnetic field studies by the SKA................................................................................................52
6.4.2 Studies of Sgr A*...........................................................................................................................56
6.4.3 Studies of circular polarization in AGN.......................................................................................59
6.4.4  Studies  of  the  Perseus  cluster......................................................................................................61
6.5  Conclusions......................................................................................................................................66

7.  REMAINING TOPICS OF DISCUSSION.....................................................................................68 

7.1 Brief overview of the antenna system in radio telescopes...............................................................68
7.2 Polarization ellipse:  response of radio telescopes  in ideal  cases.................................................68
7.2.1 Retrieving linear polarization in the sky from elliptical response of antenna...............................71
7.3 Polarization ellipse: response from imperfectly oriented dipole elements......................................73
7.4 Analysis of the ellipse in the experiment described in section 5.2...................................................74
7.5 Effects of D-term in the received voltage by the crossed dipole..................................................... 75
7.5.1 Discussion on relation between circular D-terms and ellipticity...................................................76
7.6  Conclusion.......................................................................................................................................  76

FUTURE WORK...................................................................................................................................77 

APPENDICES: 

APPENDIX  A: BASIC POLARIZATION DERIVATIONS...........................................................78



APPENDIX B: DESIGN AND CODE DESCRIPTION OF LOGIC BLOCKS OF CHAPTER 
4................................................................................................................................................................85
APPENDIX C: VHDL CODES OF SELECTED MODULES FROM APPENDIX B..................127

REFERENCES.....................................................................................................................................153

ERKLÄRUNG......................................................................................................................................155
DECLARATION..................................................................................................................................156

LEBENSLAUF.....................................................................................................................................157



                                                          ACKNOWLEDGEMENT

The successful completion of this PhD thesis has entailed a lot of support and cooperation from the 
people who are involved directly or indirectly in my PhD project and also sometimes from the people 
who are not involved in the project at all. First of all, I would like to thank my supervisor, Dr. Alan Roy 
of MPIFR, without whose cooperation, the project wouldn't have been completed. The project's basic 
algorithm, which came from him, seemed to be simple in the beginning but later I and my supervisor 
realized the length of the project taking all technical challenges into account. Alan solved all technical 
problems that were causing road block in the commencement of the project. He has provided the best 
supervision  along  with  being  an  excellent  discussing  partner.  He  has  organized  regular  thesis 
committee meetings to keep everyone, involved in the thesis, informed about the work progress and 
also to plan timing of the remaining work. Since there are too many contributions, in work, on his part, 
I will include a separate paragraph on contributions in work towards my PhD thesis. I would also want 
to thank my official supervisors, Prof. Dr. Andreas Eckart of University of Cologne and Prof. Dr. Anton 
Zensus  of  MPIFR for  being  there  in  my PhD related  matters.  I  simultaneously thank IMPRS for 
funding my PhD projects.

There were many difficult times during the commencement of my PhD and all three of the above 
mentioned people  have  supported  me  in  one  way or  the  other  so  that  the  project  was  completed 
successfully. Andreas Eckart has attended all my thesis committee meetings and his presence in all 
those meetings enhanced my confidence about my performance in the project. I am thankful to Andreas 
Eckart for taking the effort of traveling from Cologne to Bonn to attend my thesis committee meetings. 
I was able to be fully optimistic towards completion of my thesis due to the presence of Andreas Eckart 
in my PhD related matters. 

Anton Zensus has supported my project by being there towards completion of the project. He has also 
attended thesis  committee meetings in the beginning. I thank Anton Zensus and other members of 
IMPRS for selecting me as a PhD student. I am thankful to Anton Zensus for providing me an interrupt 
in work after my mother's demise as it was really necessary when I lost my most beloved one suddenly 
in the mean time of my PhD; my mother's death was the most disastrous happening for me that could  
happen. Anton Zensus provided financial support for my stay in Bonn during the interruption period, 
which was extremely kind. 

Due to the support from Alan Roy, Andreas Eckart and Anton Zensus, I could proceed with my thesis  
writing with ease. My PhD work has helped me to keep my mind away from the feeling of the loss of  
my mother and also helped me to cope with the situation; thanks to Alan for discussing work with me 
continuously throughout my PhD, which kept my mind in the work only. 

After the above mentioned three people who are involved in my thesis, I would thank Dr. Reinhard 
Keller, also involved in my project, for organizing the experiment in my project through members of 
the RF lab and attending my thesis committee meetings sometimes; I would thank Thomas Berenz of  
RF lab for doing the setup in  the experiment  of my project  as per the guidance from Alan. I  am 
extremely thankful to Thomas Berenz for translating the abstract of this thesis to German language as 
required by the university of Cologne. Then I thank Prof. Dr. Brian Corey for taking interest in my

  ix



thesis and also for going through the first draft of this thesis. Then I thank Dr. Dorothea Samtleben who 
reviewed my paper before publication as my internal referee. Next I would thank Dr. Gino Tuccari, also
 involved in my project, for discussing  his  DBBC project and this project with me. Next I would thank
 Dr. Stefan Hochgürtel of the digital lab for answering a few of my questions in the project. I would 
thank Prof. Bernd Klein for attending my thesis committee meetings at crucial times. I would also  
thank Prof. Dr. Rajaram Nityananda for answering three questions and Prof. S. Ananthakrishnan. Also 
thanks to Prof. Dr. John Black and Dr. Gary Smith Jonforsen for their encouragement. Also thanks to 
my father and sister for their support. Also thanks to Simon Pott. Finally, I dedicate my PhD thesis to 
Dr.  Alan  Roy,  Prof.  Dr.  Andreas  Eckart  and Prof.  Dr.  Anton Zensus  for  keeping up their  support 
towards completion of my PhD and to my mother who had given her whole life for my education.

x



                 CONTRIBUTIONS IN WORK

It took a lot of effort on my part and on my supervisor's, Dr. Alan Roy's part to finish this project  
successfully. My supervisor was always there to solve whenever there was a problem in my project. He 
has collaborated with me in the best possible manner towards completion of this PhD thesis. The effort 
started  with  the  verification  and theoretical  justification  of  the  basic  algorithm he  laid  out  to  me 
regarding the digital circular polarizer. I discussed thoroughly with Alan each and every stage of signal 
processing  to  explore  the  exact  steps  of  signal  processing  towards  formation  of  pure  circular 
polarization from two orthogonal linear polarization inputs. I laid out a theoretical justification of his 
algorithm and he went through that and we discussed thoroughly each and every step of the theory. We 
collected data from an experiment described in section 3.1.1 and 5.1 of this thesis for me to check the 
steps  of  the  algorithm.  I  also  played the  main  role  in  defining  the  data  collection  method in  this 
experiment. I as per Alan's suggestion simulated the logic and checked the correctness of the algorithm 
at each stage and also showed the results from each stage to Alan. 

After the theoretical justification was complete, I as per Alan's suggestion proceeded towards firmware 
development where first I had to design logic blocks to convert from two orthogonal linear polarization 
to two hands of circular polarization in real time. After design of each block, corresponding VHDL 
code was written by me. Alan discussed with me during block design suggesting methods sometimes, 
which I implemented. Stefan  Hochgürtel of the digital lab also discussed with me sometimes about the  
block design, which was also useful. After writing the codes for different logic blocks and verifying 
those in simulation, I needed to connect all the blocks together to have the digital circular polarizer  
ready for testing. I also tested the the implementation of the individual blocks in Xilinx ISE with timing 
constraints met so that there is no problem later on in implementing the connected logic. In the design I  
used many logic blocks developed by Xilinx and while connecting them I faced difficulties since I was 
not getting the correct simulation results for one of the Xilinx logic blocks. Alan solved this problem by 
corresponding with Xilinx and correcting the technical problems, which were causing the road block. 
Alan also solved other many more technical problems that were snagging the project. 

After I connected all the logic blocks together, I tested the connected logic in simulation by using self 
generated data streams. After I saw the simulation results were correct, I reported to Alan and we 
decided to test first the complete design using the same data obtained from the experiment described in 
section 3.1.1 and 5.1 of this thesis where I took the leading role. I ran the simulation by using that data  
stream as the input to the digital circular polarizer and checked the correctness of the design in each 
stage. I showed Alan the simulation results from each stage and we discussed the observed facts with 
Alan supervising me in observing details.  We observed together the correctness of the design.  The 
results that validated the design are depicted in section 5.1.4 of this thesis. After we were sure that the 
design logic was correct, we decided to perform the second experiment (given in section 5.2 of this 
thesis) proposed in our theory to validate the algorithm finally. 

We talked to Reinhard Keller for arrangement of the setup for the experiment. Reinhard Keller and 
Thomas Berenz of the RF lab did the setup for us as per Alan's guidance and I noticed all the details of 
the experiment along with discussing with Alan from time to time as Alan guided the experiment. We 
took some measurements. After the data were collected in the way described section 5.2.1 of this thesis, 
we  started  arrangements  for  processing  the  data  using  the  firmware  running  in  a  simulator  for 
verification prior to running the firmware in hardware in the FPGA. The data set was huge and very 
high  computing  power  was  needed  along  with  an  advanced  simulation  tool  (ModelSim).  Alan 
purchased an advanced simulation tool through IMPRS for me that  can handle big designs and that run

  xi



much much faster than the normal simulation tools. I broke the design into two parts; each of the two 
parts was replicated to be fed simultaneously with a part of the data collected to the simulator; all the  
parts of the collected data for all the parts of the replicated designs comprised of equal number of data  
points. I ran the simulation, which required a few days. The details of simulation is given in section 
5.2.2 of this thesis. After simulation was complete I reported to Alan and we started analyzing the 
results with Alan supervising me in finding details. Most of the times during analysis I learned many 
details from Alan and accepted his reasoning after thinking thoroughly through them. The observed 
facts are described under section 5.2.3 of this thesis. 

Then we were sure of the correctness of the algorithm and of the instrument and I proceeded towards 
implementing  the  whole  logic  in  Xilinx  ISE taking  all  constraints  like  the  timing  into  account.  I 
truncated bits in stages of the logic as per Alan's supervision and implemented the whole design with 
all constraints met in Xilinx; then only connecting the design to DBBC and loading of the design in  
FPGAs were remaining. The information on implementation of different parts of the design is given in 
section 4.3 of this thesis. The total time taken to design the digital circular polarizer addressing all 
technical difficulties was nearly one and a half years. Thanks to Alan as without his help the technical 
problems couldn't be solved.

We decided to publish the results and it took around three to four months in writing and polishing the 
paper. I wrote a first draft of the paper and gave that to Alan for corrections. Alan corrected the paper 
and gave me modifications  at  several  places  in  the  paper  until  he found the  paper  was ready for 
submission. He also included about two pages initially written by him with me discussing the detail and 
doing minor modification at one place. The experiment described in the paper (second experiment) and 
its results were written by us with Alan adding details about the experiment as he was the one who took 
the leading role in this experiment. He also added other details at several places in the paper. Along 
with  reviewing  our  paper  thoroughly  and  suggesting  changes,  he  also  suggested  language 
modifications, which I followed. He also contributed towards polishing the paper and I followed his 
suggestions. Dorothea Sambtleben, my internal referee, helped in polishing the paper too. Gino Tuccari 
and Reinhard Keller also reviewed the paper. After the paper was published, I and Alan tried to see if  
we could get FPGA boards (DBBC boards) for loading the firmware but they were unavailable and 
hence we couldn't proceed further. 

Next came thesis writing; Alan taught me the proper style of writing a thesis by teaching the guidelines 
that should be followed like the word limits. He also showed me the writing style in the first chapter  
where I had just written the points only properly in the beginning; he gave modifications again and 
again and I modified accordingly until it reached the level of satisfaction and I got the idea about how 
to write the later chapters and I followed the same way of writing in the rest of the chapters. I have then 
written the rest of the chapters in a way to entail minimum effort on Alan's part in doing corrections. He 
also gave me literature to read for the first and fifth chapters. He has done a thorough correction of all  
the chapters and I have implemented all his corrections. I am thankful to Alan for being there as a  
strong support while I was writing the thesis. Even though I have written the whole thesis, Alan's 
corrections were necessary and his support for completing the thesis was a source of moral strength to 
me. Finally, I am grateful to Alan Roy, Andreas Eckart and Anton Zensus for keeping positive attitude 
about completion of my thesis from the time when nothing were written up; it gave a lot of support to  
me  on the  basis  of  which  I  could  start  writing  it  up.   I  expect  that  the  developed firmware  gets 
implemented successfully in future to be used in radio telescopes.

xii



                       ZUSAMMENFASSUNG 

Zukünftige Radioastronomische Empfänger werden über einen erweiterten Frequenzbereich und damit 
auch  eine  höhere  Bandbreite  (Oktave)  verfügen,  um  die  Empfindlichkeit  zu  steigern  und  mehr 
Flexibilität bei der Auswahl des Frequenzspektrums zu haben. Dies stellt hohe Anforderungen an das 
Design  eines  analogen  Frontends.  Um  bessere  Polarisationseigenschaften  zu  bekommen,  ist  eine 
flacher  Phasenverlauf  über  immer  größere  Bandbreiten  nötig,  was  am  einfachsten  mit  digitalen 
Methoden zu erreichen ist. Hier besitzt man die Möglichkeit eine zirkulare Polarisation mit perfekter 
Polarisationsverteilung  über  eine  vorgegebenen  Bandbreite  zu  formen,  da  mit  digitalen  Mitteln 
einfacher  eine  quadratur  Phasenverschiebung zu  erzeugen ist.  In  analogen Systemen ist  die  nötige 
Phasenverschiebung nicht exakt, sobald man von dem Frequenzpunkt abweicht für den das System 
entworfen  wurde.  Im Gegensatz  dazu  besteht  bei  digitalen  Systemen  die  Möglichkeit,  die  exakte 
Phasenverschiebung  durch  Verrechnung  der  Signalvektroren  jedes  einzelnen  Frequenzpunktes 
innerhalb  des  Frequenzbandes  zu  erzeugen.  Daraus  resultiert  dann  eine  perfekte  quadratur 
Phasenverschiebung  innerhalb  des  kompletten  Bandes.  Der  schnelle  Fortschritt  bei  Field 
Programmable Gate Arrays (FPGA) bringt neben der nötigen Rechenleistung, einem günstigen Preis 
und der Portierbarkeit auch die Möglichkeit zur einfachen und schnellen Rekonfiguration des Systems, 
wodurch das Formen einer zirkularen Polarisation mit digitalen Mitteln auch praktisch sinnvoll wird. 
Dieses System kann dann für breitbandige Polarisationsmessung genutzt werden.

Zirkulare Polarisation wird aus Geometrischen- und Stabilitätsgründen bei der Radiointerferometrie mit 
sehr langen Basislängen (very long baseline interferometry, VLBI) genutzt. VLBI wird häufig bei der 
Untersuchung der Polarisation von Radiowellen verwendet. Die Polarisation dieser Wellen wird durch 
Syncrotron Effekte, Zeeman Effekte innerhalb von Atomen und Molekülen, Zyklotron Strahlung und 
Plasma Schwingungen in der solaren Atmosphäre hervorgerufen. Außerdem findet VLBI Anwendung 
bei Methoden der Synthese der Rotationsmessung, welche verwendet werden kann um die magnetische 
Feldstärke zu ermitteln. Weiterhin kann durch Beobachtung verschiedener Wellenlängen die Richtung 
des  magnetischen  Feldes  bestimmt  werden.  Daher  würde  ein  digital  arbeitender  Polarisator  eine 
Vielzahl von Anwendungen in VLBI Systemen finden.

In dieser  Arbeit  untersuche ich die  Effizienz eines  digitalen zirkularen Polarisators.  Wir  entwarfen 
einen  digitalen  zikularen  Polarisator  in  dem  die  Zwischenfrequenzsignale  eines  Empfängers  mit 
ursprünglich linearer Polarisation abgetastet wurden. Diese wurden nach dem Abtasten in eine zirkulare 
Polarisation gewandelt. Die frequenzabhängige Phasen- und Amplitudendifferenz des Systems wurde 
mit Hilfe eines zugeführten Rauschsignals bestimmt. Dieses wurde auf beide linearen Polarisationen 
gegeben um die Übertragungsfunktion der beiden Polarisationskanäle abzugleichen. Dieser Abgleich 
wurde  mit  512  Frequenzpunkten  über  eine  Bandbreite  von  500  MHz  durchgeführt.  Die  zirkulare 
Polarisation  wurde  durch  eine  quadratur  Phasenverschiebung  und  anschließende  Summation  des 
Signale erzeugt. Hierbei erzeugten wir über das ganze Band eine Polarisationsreinheit von -58 dB, was 
einem D-Wert von 0.0012 entspricht. Dieses D-Wert eine Obergrenze

Diese  Technik  ermöglicht  die  Entwicklung  eines  zirkularen  Polarisators  für  VLBI,  der  mit  einem 
breitbandigen radioastronomischen Empfänger mit linearer Polarisation arbeiten kann
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ABSTRACT      

Radio  astronomical  receivers  are  now  expanding  their  frequency  range  to  cover  large  (octave) 
fractional bandwidths for sensitivity and spectral flexibility, which makes the design of good analogue 
circular  polarizers  challenging.  Better  polarization  purity  requires  a  flatter  phase  response  over 
increasingly wide bandwidth, which is most easily achieved with digital techniques. They offer the abi-
lity  to  form  circular  polarization  with  perfect  polarization  purity  over  arbitrarily  wide  fractional 
bandwidths, due to the ease of introducing a perfect quadrature phase shift. In analogue systems the 
quadrature phase shift is not accurate in the regions away from the design point or frequency. In digital  
systems on the contrary, it is possible to introduce the exact quadrature phase shift vectorially to each  
frequency point  in  the  band thus  producing a  perfect  quadrature  phase  shift  throughout  the  band. 
Further, the rapid improvements in field programmable gate arrays provide the high processing power, 
low  cost,  portability  and  reconfigurability  needed  to  make  practical  the  implementation  of  the 
formation of  circular  polarization digitally.  It  will  be possible  to  carry out  broadband polarization 
observations.

Circular  polarization  is  used  in  very  long baseline  interferometry  (VLBI)  due  to  geometrical  and 
stability considerations.  VLBI is  often used to explore polarization of radio emission,  which often 
occurs due to synchrotron mechanism, Zeeman effect in atoms and molecules, cyclotron radiation and 
plasma oscillations  in  the  solar  atmosphere.  Also  VLBI finds  application  in  methods  like  rotation 
measure synthesis that can be used to find the magnetic field strength and whose multiwavelength 
observations determine the direction of magnetic field.  So a digital  circular polarizer would find a 
considerable application in VLBI systems. 

Here I explore the performance of a circular polarizer implemented with digital techniques. I designed 
a digital circular polarizer in which the intermediate frequency signals from a receiver with native 
linear  polarizations  were sampled and converted  to  circular  polarization.  The frequency-dependent 
instrumental phase difference and gain scaling factors were determined using an injected noise signal 
and applied to the two linear polarizations to equalize the transfer characteristics of the two polarization 
channels.  This equalization was performed in 512 frequency channels over a 500 MHz bandwidth. 
Circular  polarization  was  formed  by quadrature  phase  shifting  and  summing  the  equalized  linear 
polarization signals. I obtained polarization purity of -58 dB corresponding to a D-term of 0.0012 over 
the whole bandwidth. This value of D-term is an upper limit.

This  technique  enables  construction  of  broad-band  radio  astronomy  receivers  with  native  linear 
polarization to form circular polarization for VLBI.
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                                                                                        CHAPTER 1

                               
               INTRODUCTION

In this chapter I provide the initial motivation to form circular polarization digitally in real time, which 
when implemented in practice would allow new receivers to have native linear polarization for broad 
frequency  coverage.  I  simultaneously  discuss  the  realization  of  circular  polarization  in  analogue 
systems giving examples. Then I discuss the problem of obtaining a perfect 90º phase shift required to 
be  introduced  to  the  phase  of  one  of  the  two  linear  polarizations  for  the  formation  of  circular 
polarization in existing analogue systems providing an example from Effelsberg radio telescope and 
finally I describe our developed digital circular polarizer and provide the aims of our project solving 
the problems. 

1.1 Motivation to form circular polarization

Circular polarizers play important roles in modern communication systems including those in radio 
astronomy. To obtain higher sensitivity and frequency coverage for spectral line observations, the radio 
antennas are moving to broad-band feeds and extremely broad bands are most easily realized with 
linearly  polarized  feeds  due  to  the  difficulty  of  producing  90º phase  shift  accurately  over  wide 
bandwidth.  However,  circular  polarization  is  simplest  for  the  application  of  very  long  baseline 
interferometry (VLBI),  which enables astronomical  sources  to  be resolved with sub-milliarcsecond 
synthesized beam widths, since linear dipoles do not generally remain parallel to each other in a global 
array due to different parallactic angles at different stations when observing the same source, causing 
loss  of  coherence  in  the  cross-correlation  products  formed  between  stations.  That  loss  could  be 
recovered  were  one  to  compute  also  the  cross-polarization  cross  correlation  products  to  retain  all 
information (doubling the correlator power needed), or one could rotate the receiver packages at each 
station  to  keep  the  dipoles  parallel  (requiring  mechanical  rotators).  In  contrast,  use  of  circular 
polarization causes the parallactic angle differences between stations to add a simple phase rotation 
angle to the measured visibility, which can be predicted from the known observation geometry and 
subtracted in post-processing.

Circular polarizers with broad bandwidths have been realized in the past with a number of methods. 
Most common are as follows: 1) The septum polarizer originally designed by Davis et. al. (1967) and 
modified by Chen & Tsandoulas (1973); they introduced steps in the septum for better performance in 
terms of axial ratio and input port isolation. 2) Boifot et. al. (1990) is the origin of Boifot junction; they 
presented a broadband OMT (orthomode transducer used to couple out the two linear polarizations 
from waveguide into coax); an isolation better than 50 dB and a return loss less than -20 dB was  
achieved.  3) Linear quad-ridge OMT  followed by a 90º hybrid junction or preceded by a corrugated 
waveguide phase shifter (Simmons 1955); these convert the linears into circular; Simmons provided 
analytical and experimental results of producing a differential 90º phase shift produced by phase delay 
and phase advance of two fundamental modes; it is done by loading the transmission line equivalent 
circuit  of a  rectangular or square waveguide with capacitance and inductance respectively;  Srikant 
(1997) explains that  corrugated phase shifter,  which is  not a polarizer  on its  own, can be used in 
conjunction with an OMT to form circular. 

All are analogue techniques and produce a perfect 90º phase shift and hence perfect polarization purity
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at only one, two, or three frequencies and the phase errors grow larger at frequencies away from  those 
design points, which ultimately limits the bandwidth of the devices. In contrast, digital techniques offer 
the possibility to produce an accurate 90º phase shift over broad bandwidths, but this potential has not 
yet been fully developed. One example is the Westerbork synthesis radio telescope, which converts 
native linear polarization to circular polarization by a combination of analogue and digital techniques 
for  VLBI.  During  down conversion  of  the orthogonal  linear  signals,  the 90º shift  is  added to the 
(analogue)  LO  for  one  polarization.  After  analogue-to-digital  conversion,  the  (2  bit)  signals  are 
summed and differenced to  form circular  polarization,  with a  weight  that  corrects  for the average 
receiver gain differences. The weights are determined by a separate measurement using a calibration 
noise source in each frontend and are updated every 10 s. This system operates on a bandwidth of  20 
MHz, yielding one phase and amplitude correction for each 20 MHz of bandwidth (Boss 2007, private 
communication). The Westerbork system uses the pre-existing correlator and analogue phase rotation in 
the LO system, but most VLBI stations lack this equipment and so another, more general, solution is 
needed.

1.2 Realization of circular polarization in analogue systems

Conventionally, analogue circular polarizers are used to obtain circular polarization and all of them use 
some technique to impart a 90º phase shift between orthogonal linear field components. 

An example is the very compact septum polarizer first devised by Davis et al. (1967). They used a 
sloping septum to obtain the polarization components and their  phase relationships.  Later  Chen & 
Tsandoulas (1973) introduced steps in the septum to avoid reflection off  the discontinuity that the 
septum creates in the waveguide. Here I provide an example of the septum polarizer described by Wade 
(2003), which is realized with a rectangular input waveguide containing both circuit input ports and 
two physically separated waveguide output ports that are physically quadratic (for our application). 
Fig.1.1 illustrates the septum polarizer. A septum polarizer can be considered as an equivalent four port 

Fig. 1.1: Septum polarizer with four ports. Ports 3 and 4 are present in the same waveguide port and is only 
  distinguishable conceptually. Ports 1 and 2 are physically separated (Wade 2003). The radiation enters 
  port 3 and port 4 through a horn antenna in quadrature i.e there is a quadrature phase difference b-
  etween the two circular polarization components and the two linear polarizations are obtained from 
   port 1 and port 2. The thick black lines at the left side of the polarizer are output dipoles to extract the 
   linear polarizations coming out. This septum polarizer responds to circular polarization in the sky and 
   hence is relevant to our application.
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microwave  circuit.  The  two  input  ports  (3,4),  which  are  only  conceptually  distinguisahble,  are 
contained in the same physical rectangular waveguide port and the two output ports (1,2) are physically 
separated  with  a  fin.  Let  us  consider  a  circularly  polarized  wave  comprising  of  two  polarization 
components with a 90º phase difference, entering the aperture (ports 3, 4). One of the components is 
parallel to the septum and the other is perpendicular to the septum. The septum divides the parallel 
component equally, which passes to the two rectangular output waveguides. The septum changes the 
cutoff  frequency  of  the  perpendicular  component  thereby  shortening  the  wavelength  of  the 
perpendicular  component.  This  means  that  the  section  of  the  waveguide  containing  the  septum is 
electrically longer for the perpendicular component as compared to the parallel component.  A path 
difference of λ /4 will render the vertical and horizontal component to be in phase at  the output.  
However, there can still be phase differences as the band deviates from the centre frequency for which 
the septum polarizer is manufactured. The two output ports are isolated from each other. Constructive 
or destructive interference of the field components occurs at either side depending on the sense of  
circular polarization. The operating frequency is near the waveguide cutoff which leads to difference in 
electrical  lengths  between the two components.  A circular  waveguide  can be  used in  place  of  the 
rectangular  waveguide  in  Fig.  1.1 as  the  circular  waveguide  input  is  very useful  especially while 
receiving signals from circular waveguide horn antennas having both LHC and RHC polarizations.

However, it is very difficult to obtain good isolation between the two orthogonal components. Fig. 1.2 
illustrates an orthomode transducer developed by Dunning (2002). Good isolation prevents leakage of 
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Double ridged orthomode transducer 
by Dunning (2002). The two 
orthogonal linear components enter 
the square waveguide through the 
top end. One component, which is 
parallel to the plane of the ridges 
gets concentrated between the 
ridges at the center of the 
waveguide and is removed by a coax 
through one of the fins in the square 
waveguide. The other component 
reaches the square to rectangular 
transition and is removed by another 
coax through a fin in the rectangular 
waveguide. This orthomode 
transducer provides very good 
isolation between two polarizations.

Fig. 1.2:



one polarization component into another thereby facilitating the production of pure circular polarization 
without any ellipticity.  The orthomode transducer developed by Dunning has good isolation between 
two polarizations and low insertion loss suitable for broad band radio astronomy receivers. It takes the 
two orthogonal field components excited at one common port and separates them. In that double ridged 
OMT, one polarization is concentrated between the ridges at the centre of the square waveguide and is 
removed by a coax inserted through one of the fins in that square waveguide. The other polarization is  
unaffected by the ridges and reaches a square to rectangular waveguide transition from where it is 
removed by another coax, which is inserted through one of the fins in the rectangular guide. A 90º 
hybrid could be connected to the output coax ports in order to convert to circular polarization. The 
excellent OMT developed by Dunning has achieved isolation better than 50 dB between ports and an 
insertion loss better than 0.3 dB for a 47 % fractional bandwidth. 

Now, I will proceed to demostrate the difficulty in producing a quadrature phase shift between two 
orthogonal linear polarizations to obtain the circular polarization in existing analogue systems. 

It is extremely difficult to obtain perfect 90º  phase shifts using analogue polarizers. The quadrature 
phase  shift  is  perfect  only near  the  centre  frequency.  Fig.  1.3  shows the  typical  phase  difference 
between the two orthogonal polarization components as measured for the polarizer in the 5 cm receiver 
at Effelsberg. The plot is provided to me by Alan Roy.

This is the phase difference between the two orthogonal components of the circular polarization to 
which the polarizer  responds in the receiving system. It  can be seen from the plot  that  the phase 
difference is around 90º at two frequencies for which the polarizer was optimized and it deviates as we 
move away in frequency towards the edges. The phase difference varies from 90.9º at the centre to    
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   Fig. 1.3  : Phase difference between two orthogonal polarization components for the polarizer in 
       the 5 cm receiver at Effelsberg. The phase difference varies across the band from 88.2º 
          at the lower edge to 85.8º at  the upper edge. It  is around 90.9º near the centre frequency, 

                     90º was chosen to be at two frequencies in order to distribute the errors and broaden the 
                        bandwidth. It is very difficult to obtain exact 90º phase difference over broad bands.



88.2º at the lower band edge and to 85.8º at the upper band edge. Hence it is very difficult to obtain an 
exact 90º phase shift over broad bands. 

After  discussing  the  analogue  techniques  I  will  now  demostrate  our  digital  technique  to  produce 
circular polarization from two linear orthogonal polarization components.

1.3 The digital circular polarizer project

In this project I have tried to form an exact 90º phase shift for a 200 % fractional bandwidth. I have 
tested that the polarizer works for 97 % fractional bandwidth. The aim was to obtain pure circular 
polarizations correcting all system imperfections leading to perfect 90º phase shift, which is one of the 
challenging aims of modern circular polarizers. This project is based on the idea of Alan Roy that if the  
circular polarization is formed in the digital domain then it might be possible to obtain flatter phase 
response over broad bands. I explored this by performing some initial simulations on test data before 
proceeding towards actual instrument development. 

I  have  developed  a  self-contained  digital  processing  system  in  which  the  correlator,  channel 
equalization,  phase  rotation,  gain  scaling,  quadrature  phase  shift  and  summation  to  form circular 
polarization are contained in a stand-alone unit. I and Alan arrived at the basic data flow shown in fig. 
1.4. It accepts two intermediate frequency inputs with orthogonal linearly polarized signals, each of 
500 MHz bandwidth and subdivides the band down to 1 MHz resolution. In each 1 MHz piece it  
measures the phase and amplitude differences between the orthogonally polarized channels using a 
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Block diagram of basic 
dataflow on which the main 
algorithm of “conversion from 
linear to circular polarization” 
is based on. The noise diode 
signal and the sky signal are 
inputs to the analog system 
whose outputs are fed to A/D 
converter for later processing 
by FPGA. The blocks starting 
from ”data rate reduction” to 
“IFFT” are contained in 
FPGAs mounted on the 
DBBC boards in series. The 
outputs from “IFFT” block 
goes to subsequent stages of 
processing in the DBBC for 
VLBI data acquisition. 
Accumulation is performed 
for 8.4 s to obtain good signal 
to noise ratio for accurate 
phase determination.

Fig. 1.4:



calibration  noise  source  in  the  front  end that  is  common to both  polarizations.  It  then  uses  those 
measurements  to  equalize  the   channel   phases   and   amplitudes   during   observations.   After 
equalization  it  introduces  an  ideal 90º phase  shift  into  one  polarization  channel  and  forms  sum 
and  difference outputs  that respond  to  orthogonal  circular  polarizations  at  the  input. I perform an 
FFT to process the data in frequency domain for the simplicity to work in that domain.

We decided to use FPGAs since they have high computing power and are reconfigurable and portable. I 
took sampled time domain data and processed them in MATLAB as a quick preliminary test of the idea  
behind it, which came from my supervisor, before exploring the algorithms in detail. The results are 
shown  later  in  the  thesis.  At  this  point  I  verified  that  the  principle  was  sound  and  that  the 
implementation could begin. The data flow shown in the figure is for each polarization state. 

The signal received by the dipole is sampled using an analogue to digital (A/D) converter for later 
processing in FPGAs (DBBC boards, which are described later in this chapter, connected in series).  
Each eight consecutive samples coming in series at 1024 MHz are converted to eight parallel samples 
at 128 MHz by the data rate reduction block. There are eight FIFOs running in parallel to receive data 
from the data rate reduction block at the rate of 128 MHz to handle the speed of 1024 MHz. Until this  
point the blocks duplicate for the other polarization state. 

After the above mentioned logic there are eight blocks, “block 1” to “block 8” each of which are 
connected to a pair of FIFOs only one of which is shown in the figure. The logic blocks inside these 
blocks are shown in the figure. The FFT performs a Fourier transform on the input polarizations which 
are fed to the two input channels of the FFT (I perform an FFT of 1024 samples to produce spectra with 
1 MHz channel spacing and the whole algorithm involves computation of time separated spectra in the 
frequency domain) and the outputs are decoded and fed to power spectra accumulators and cross power 
spectra accumulators. The accumulators run for 8.4 s with noise diode, which is used as a calibration 
source, on and 8.4 s with noise diode off. The on-state accumulation and the off-state accumulation are 
carried out in separate accumulators. 

In the next block the phase and gain scaling factors are determined and latched to be read out during 
equalization. After equalization of the FFT outputs by the block “phase and gain equalization”, one of 
the two polarizations is 90º phase shifted and the circular power spectra are formed in the next block, 
which are then converted to time domain to feed later stages of DBBC for VLBI data acquisition. There 
is a noise diode control signal generated inside the FPGA (not shown in the figure). It goes high at the  
same time when the on-state accumulator is enabled and it goes low when the off-state accumulator is 
enabled. This signal is brought out of the FPGA and it controls the TTL (transistor-transistor logic) 
signal that controls the switching on and switching off of the noise diode signal. 

After discussing the basic data flow I will now demonstrate the motivation to implement this design in 
FPGAs rather  than  using  the  conventional  orthomode transducers  to  convert  linear  polarization  to 
circular polarization.

Digital systems offer the ability to process continuous data in real time implementing automatic data 
processing algorithms. Data transmitted digitally are more resistant to external interference and hence 
digital devices supersede analogue counterparts at least where speed and signal purity are matters of 
concern. With the advent of logic devices like ASICs and FPGAs, it is possible to implement many 
complex algorithms, which would have been impossible otherwise and they also offer the user ease of 
replication compared to analogue systems. For these reasons our system to produce circular polarizatio-
n generates almost perfect orthogonal field components in real time.
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I have three options for implementation in the digital domain: 1) Software implementation, 2) ASIC 
(application  specific  integrated  circuits)  and  3)  FPGA (field  programmable  gate  arrays).  Practical 
software implementation would require huge computing power to process the data in real time and it is 
difficult to have such computing power at the VLBI stations where I have aimed to form the circular  
polarization in real time. ASICs cannot be reconfigured and reconfiguration can be necessary in the 
future to increase bandwidth. ASICs also have large development and fabrication costs and for our 
application  FPGAs  have  lower  cost.  Thus  the  most  obvious  option  was  to  use  FPGAs.  The 
implementation  in  Xilinx  software  is  complete  with  all  timing  constraints  met  and  hence  all  the 
technical difficulties have been addressed. Also FPGA-based VLBI data acquisition systems, such as 
the Digital Base-Band Converter (DBBC, Tuccari 2004) are being deployed in many radio telescopes. 
The DBBC is a signal conditioning device used in VLBI observations and has ADCs and FPGAs for 
digital downconversion, digital filtering, and outputs 2 bit depth to VLBI recorders. It has the capability 
to sample at a rate of 1024 MHz clock rate. It produces eight parallel digital samples each of eight bits  
as intermediate output signals internal to the DBBC that are contained in eight buses each running at a 
clock rate of 128 MHz. These eight intermediate signals are the inputs of our project, which will also 
be placed inside the DBBC.

I  have  truncated  bits  in  stages  of  the  data  flow in order  to  fit  it  inside the DBBC, as  per  Alan's  
Guidance, which has a predefined number of input output pins. A new DBBC board is being developed 
which would have a Virtex 7 mounted on it. So we have decided to implement the design in Virtex 7, 
which would encompass the bigger parts of the design and fewer number of FPGAs would be required.  
Thus it is best to use the DBBC with Virtex 7 as then the whole logic inside the FPGA will be utilized 
efficiently, that is, less approximations will be required since number of logic elements are much more 
than in Virtex 5 on which the design is already tested. 

1.4 Aims of the project

This thesis acquaints the reader with the theory and derivation for obtaining  instrumental phase and 
gain correction factors and applying them to the two received orthogonal linear polarizations to form 
phase and gain calibrated left  hand circular (LHC) and right hand circular  (RHC) polarizations.  It 
explores limitations of system performance due to the most influential factors, which are the D-terms 
and  receiver  instabilities  and  explores  the  requirement  for  periodic  recalibration  to  remove  their 
detrimental effects on polarization purity. It also demonstrates the preliminary simulation of the idea to 
develop an FPGA based digital circular polarizer. It describes the digital signal processing in FPGA and 
the experimental verification of the technique to show that good polarization purity is obtained. It also 
describes the significance and application of the digital circular polarizer in VLBI in radio astronomy 
and finally visits the remaining topics to be discussed..
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                     CHAPTER 2              

                THEORETICAL DEVELOPMENT

In this chapter I first provide an introductory paragraph on the significance of theoretical analysis. Then 
I provide an overview of the method to convert from linear to circular polarization. Next I describe 
phase and gain equalization after which I provide details on windowing of the resulting phase and gain 
equalization parameters. Then I describe the method to form circular polarization. Next is performance 
limitations due to D-term and temporal instability of receivers and subsequently I provide details on the 
stability of analogue receiver chains in Effelsberg telescope. Next I estimate the resulting polarization 
purity considering the sensitivity of polarization leakage to phase errors as obtained under performance 
limitation due to D-terms and existing phase errors in analogue receiver chains in Effelsberg. Finally I 
provide introductory text on the next chapter.

2.1 Significance of theoretical analysis

After exploring the preliminary idea to form circular polarization digitally, I proceeded to prove that 
this could be implemented in practice. Hence, it  was needed to verify theoretically that the idea is 
sound so that no question is raised on its validity.  All the formulations done by me unless specified are 
shown in order to manifest the understandability and to negate any ambiguity against the idea. The 
digital signal processing shown here encompasses the basis for FPGA implementation confirming that 
FPGA implementation could begin unquestionably. We have also taken into account the performance 
limitations due to D-terms and variability of analogue receiver transfer characteristics. Taking all the 
factors into account we came to the conclusion that excellent polarization purity can be achieved by 
this method. The channel width and the number of channels are variable and can be adapted to one's 
need. We decided to keep the numbers optimum covering 200 % fractional bandwidth (500 MHz) and 
keeping 1 MHz channel width so that the implementation can be done in reasonable number of FPGA 
chips  and simultaneously achieving the goal  to  obtain better  polarization purity than the analogue 
circular polarizers over broad bands.

2.2 Method overview

The noise diode signals during calibration pass through the same x and y receiving chains as does the 
astronomical signal later, and are sampled at IF at 1 GSamples/s (i.e. 500 MHz contiguous Nyquist  
bandwidth). The sampled x(t) and y(t) signals are processed in an FX correlator on the FPGA, which 
transforms to frequency domain with 1 MHz channel widths, cross multiplies each X (ω) spectrum 
against the corresponding Y (ω) spectrum and integrates for 8 s. We chose a spectral resolution of 1 
MHz to allow for possibly rapidly changing channel phase differences with frequency. The result is a  
phase spectrum with low thermal phase noise that represents the phase difference between the x and y 
channels due to the transfer characteristics of the receiver chains. The phase spectrum is used during 
later astronomical observation for equalizing the (frequency-dependent) phase lengths of the  x and  y 
receiver chains. The x and y bandpass amplitude shapes are also equalized, using gains derived during 
calibration from total-power spectra of X (ω) and Y (ω) accumulated during the calibration stage. 
To form circular polarization from native linears during astronomical observations, we need likewise to 
transform the x(t) and y(t) time series to frequency domain in the same manner as during calibration, 
then equalize the transfer characteristics by applying a phase rotation  to each frequency channel of one 
polarization and an amplitude scaling  to each frequency channel of both polarizations in an equalizer  
stage, then simply add or subtract 90º (equivalent to exchanging real and imaginary in the complex 
spectra), and summing to form results that respond to the two hands of circular polarization. 
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 2.3 Instrumental phase and gain calibration

The orthogonal time-domain field components  x(t) and  y(t) received by the crossed dipoles undergo 
unequal phase and amplitude distortions due to different frequency-dependent time delays and gains of 
the two receiving systems through which they pass. The phase and gain calibration aims to compensate  
the transfer characteristics of channel x and channel y to make them identical in x(t) and y(t), reducing 
instrumental  artifacts  to  zero.  This  approach  is  already  used  in  software  for  calibrating  radio 
astronomical data though those operate on stored data rather than in real time. Our effort is to extend it  
to  the  digital  domain  processing  sampled  IF  signals  in  real  time,  calibrating  with  fine  frequency 
channels,  to  enable  formation  of  circular  polarization  in  real  time  with  more  accurate  phase  and 
magnitude  response  than  the  analogue techniques  can  achieve  over  broad bandwidths.  I  have  not 
considered channel non-linearities and multi-path effects. Non-linearity spreads the output spectrum 
beyond the input spectrum by introducing new frequency components and causes amplitude distortion. 
Therefore, radio astronomical receivers have to be designed to be linear. In the presence of strong RFI 
(radio frequency interference) non-linearity does occur and has to  be blanked.  Techniques for RFI 
mitigation are a sizable study in themselves and are beyond the scope of the present work. Nevertheless 
RFI mitigation techniques can easily be implemented in the same digital hardware. For the present 
development I assume linear transfer characteristics and Gaussian signal statistics. We have filtered the 
passband to avoid aliasing and kept signal levels in the linear regime. A linear time invariant system 
causes only pulse dispersion and amplitude scaling. 
 
2.3.1 Phase equalization

Let us consider the noise diode signal during calibration as a broadband source radiating Gaussian 
random signals continuously in time, s(t), and I receive and sample a finite number, N s , of frames of 
time-domain samples each consisting of  N  samples spaced equally in time in two orthogonal linear 
polarization states, x(t) and y(t). Let the sampled time series be represented by x i(t ) and y i(t) and 
the noise diode signal at the sample times be si (t) where i = 1, 2, 3, …., N s . It is convenient to 
transform these time series into the frequency domain since the transfer characteristic of the receiving 
system used for calibration is frequency dependent. The Fourier transform produces N s spectra, each 
consisting  of  N channels. N s depends  on  the  sampling  rate, f s ,  the  number  of  samples  in  a 
spectrum, N, and the total integration time, T integ , as

N s=( f s×T integ )/N                                    (2.1)

Let a time-domain signal have length T 0 , then the corresponding frequency-domain spectrum will 
have channels spaced at an interval f 0 of 1/T 0 frequency units. For a simplified analysis I consider 
one frequency component, the results from which hold good for all other spectral components in the 
band.

The signals x i(t ) and y i(t) are represented by the equations

x i(t )=hx (t )∗(s i(t )+ nxi (t)) ,                                         (2.2)

y i(t)=h y(t )∗( si( t – t xy)+ n yi(t))                              (2.3)

where hx (t ) and h y (t) are the transfer functions of channel x and channel y, t xy is the x-y 
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propagation time difference from the dipoles to the receiver inputs (samplers for a digital receiver), and 
nxi (t) and n yi(t ) are  external  unwanted  signals  (astronomical  sources,  thermal  fluctuations  and 

spurious sources). After transforming to the frequency domain these relations are 

X i(ω)=∣X i(ω)∣e jϕX (ω)                                  (2.4)

 = ∣H X (ω)∣e j θX (ω)[S i(ω)+ N Xi(ω)] , and                      (2.5) 

Y i(ω)=∣Y i(ω)∣e j ϕY (ω)                                   (2.6)

 = ∣H Y (ω)∣e j θY (ω)(S i(ω)e− j ωt xy+ N Yi(ω))                           (2.7)

where ϕX (ω) and ϕY (ω) are  the  phases  of X i(ω) and Y i(ω) respectively  and θX (ω) and 
θY (ω) are  the  phases  of  the  transfer  functions H X (ω) and H Y (ω) respectively.  The  phase 

difference ϕX (ω) - ϕY (ω) is due to the initial and instrumental phase difference between X (ω)
and Y (ω) . 

Now,  let  us  consider  the  samples  of X i(ω) and Y i(ω) at  uniform intervals  of ω0=2π f 0 .  If 
X i(r ω0) and Y i(r ω0) are  the r th (channel  number)  samples  of X i(ω) and Y i(ω)

respectively, where  r= 0, 1, 2, 3,......,  N-1, then equations 2.4, 2.5, 2.6 and 2.7 can be rewritten in 
discrete form (Cooley & Tukey 1965) as

X i(r ω0)=∣X i(r ω0)∣e j ϕX (rω0)                                (2.8)

 = ∣H X (r ω0)∣e j θX (r ω0 )(S i(r ω0)+ N Xi(r ω0))                          (2.9)

Y i(r ω0)=∣Y i(r ω0)∣e j ϕY (r ω0)                               (2.10)

 = ∣H Y (r ω0)∣e j θY(r ω0 )(S i(r ω0)e− j r ω0 K 1T s+ N Yi (r ω0))                    (2.11)

where K 1 is  the  fractional  sample  delay  caused  by t xy and T s is  the  sampling  period.  It  is 
assumed that the system is linear. Thus the transfer function causes only linear distortion and no new 
frequency components are produced. The resulting pulse is dispersed in time and amplitude rescaled. 
The phase difference ϕX (r ω0)−ϕY (r ω0) is obtained from the accumulated cross power spectrum of 

X i(r ω0) and Y i(r ω0) in the frequency domain, which is expressed as

Z (r ω0)=∑i=1

N s Z i (r ω0)                                (2.12)

 = ∑i=1

N s

∣X i(r ω0)∣∣Y i(r ω0)∣e
j (ϕX (r ω0)−ϕY (rω0)).                          (2.13)

Using Eq.(2.9) and Eq.(2.11) in Eq.(2.13) I obtain the product ∣X i(r ω0)∣∣Y i(r ω0)∣e j(ϕX (r ω0 )–ϕY(r ω0 )) , 
which consists of  the summation of the following contributing terms

1. ∣H (r ω0)∣e
j θ(r ω0 )∣S i(r ω0)∣

2 e jr ω0 K 1T s                           (2.14)
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2. ∣H (r ω0)∣e j θ(r ω0 )N Yi
' (r ω0)N Xi(r ω0)                          (2.15)

where ∣H (r ω0)∣e j θ(r ω0 )=∣H X (r ω0)∣∣H Y (r ω0)∣e j (θX (rω0 )−θY (r ω0 )) .

Z i(r ω0) is accumulated for T integ time. Since S i is incoherent with N Xi and N Yi , their cross 
product terms will average to zero in the summation and so are not shown here. We have chosen, in 
practice, 8 s integration time corresponding to 8×106 frames of data so that the thermal fluctuations 
of the noise diode signal that is 5 % of the system temperature are averaged down to a fractional  
fluctuation of 4×10−4 in 1 MHz channels. Thus we attain our objective of measuring the transfer 
characteristic phase to 0.1º precision. At such high levels of precision, the measurement is sensitive to 
corruption by possible external sources or by RFI via the second term Eq. (2.15).  I cancel this effect on 
our measurement of the transfer characteristic, provided the corrupting source remains constant, by 
performing the summation in Eq. (2.13) twice, first in the presence of si (t) (noise diode switched on) 
and second with si (t)=0 (noise diode switched off) and differencing. Hence, considering only the 
first  term (Eq. 2.14) I  obtain the phase difference ϕ between the two polarization signals due to 
instrumental effects and due to any initial phase difference as follows 

ϕ=ϕinstrument+ ϕinitial                                  (2.16)

where, ϕinstrument=θ(r ω0) and ϕinitial=r ω0 K 1T s .  I  have  not  considered  any  frequency  down 
conversion in Eqs.  (2.9) and (2.11).  A down conversion will  cause a frequency shift  in ω by an 
amount ωd where ωd is the mixing frequency. Then the samples of ω in Eqs. (2.9) and (2.11) or

r ω0 will represent the samples of ω−ωd . The equations will remain unchanged except for the 
initial  phase,  which will  now be (r ω0+ ωd)K 1 T s so that the initial  phase is  unaffected by down 
conversion. 

For accurate calibration, ϕinstrument should be measured and used later to correct the signals for the 
effect of ϕinstrument . This should reduce the phase difference to zero, requiring that the initial phase 
difference be zero so that ϕ corresponds to instrumental phase errors only. This requires that the two 
orthogonal dipoles receive signal from a common source placed at a location equidistant from both the 
dipoles,  which  is  accomplished  by  placing  a  noise  source  at  45º  to  the  two  dipoles.  One  could 
alternatively calibrate using a polarized astronomical source instead of the noise diode, and point on 
source and then off source for the two accumulations to be differenced. In the on-source position, the 
dish main beam must be pointed accurately to the source, placing the source on the focal axis. The 
dipoles are located in a plane accurately perpendicular to the focal axis and hence, the dipoles would be 
equidistant from the source to high accuracy, so ϕinitial would be close to zero and can be ignored.

Z (r ω0) gives the angle through which one of the vectors say Y (r ω0) must be rotated to make the 
phase  lengths  of  the  two  polarization  channels  equal.  The  frequency-dependent  rotation  matrix 
elements cosθ(r ω0) and sin θ(r ω0) are  obtained  without  trigonometric  functions  for 
computational efficiency using the relations

cosθ(r ω0)=ℜ(Z (r ω0))/∣Z (r ω0)∣ ,                          (2.17)

sin θ(r ω0)=ℑ(Z (r ω0))/∣Z (r ω0)∣                            (2.18)

Let Y ' (r ω0) be the vector obtained after rotation of vector Y (r ω0) by the phase difference 
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θ(r ω0) . Then the phase difference between X (r ω0) and Y ' (r ω0) reduces to zero or 

ϕX (r ω0)−ϕY ' (r ω0)=0                                (2.19)

as required for a correctly calibrated system phase prior to formation of circular polarization. 

 2.3.2 Gain equalization

The  amplitudes  also  undergo  linear  distortions  due  to  different  gains  in  the  two  channels  due  to 
different  passband  characteristics.  To  compensate  the  amplitude  differences,  all  the  spectral 
components of X i(ω) and Y i(ω) in the passband are scaled to one same level, chosen to be the 
maximum signal level, V max in the passbands of X i(ω) and Y i(ω) . Multiplying Eq. (2.5) with 
its complex conjugate, I obtain the power spectrum ∣X i(ω)∣2 and similarly Eq. (2.7) yields ∣Y i(ω)∣2

.  The  scaling  factors  to  equalize  the  magnitudes  of X i(r ω0) and Y i(r ω0) are  obtained  from 
accumulating ∣X i(r ω0)∣

2 and ∣Y i(r ω0)∣
2 respectively  for T integ to  reduce  thermal  noise 

fluctuations  in  the  measurement  of  the  passband  shapes  and  are  expressed  by the  following  two 
equations:

∣X (r ω0)∣
2=∑i=1

N s

∣X i(r ω0)∣
2                              (2.20)

∣Y (r ω0)∣
2=∑i=1

N s

∣Y i(r ω0)∣
2 .                              (2.21)

Expanding these using Eqs. (2.9) and (2.11) I find that each contains the following contributing terms 
for summation:

1. ∣H X (r ω0)∣
2∣S i(r ω0)∣

2 ,                              (2.22)

 ∣H Y (r ω0)∣
2∣S i(r ω0)∣

2 ,                                   (2.23)

2. ∣H X (r ω0)∣
2∣N Xi(r ω0)∣

2 ,                              (2.24)

 ∣H Y (r ω0)∣
2∣N Yi (r ω0)∣

2                               (2.25)

where ϕN Xi
(r ω0) and ϕN Yi

(r ω0) are the phases of N Xi(r ω0) and N Yi (r ω0) respectively. 

The first  term (Eqs.  2.22  and 2.23)  provides  the  measurement  of  the  bandpass  shape  that  I  seek 
(assuming that the noise diode produces white noise). The second term (Eqs. 2.24 and 2.25) does not  
average to zero to the extent that noise sources other than the noise diode (eg receiver noise, radio 
sources, atmospheric emission, cosmic microwave background, and RFI) are present. I cancel this term, 
provided the corrupting source remains constant,  by performing the summation in  Eqs.  (2.20) and 
(2.21) twice,  first  in  the presence of si (t) (noise diode switched on)  and second with si (t)=0
(noise diode switched off) and differencing. Hence, I am left with only the first term (Eqs. 2.22 and 
2.23) where ∣H X (r ω0)∣

2 and ∣H Y (r ω0)∣
2 are the frequency-dependent amplitude scaling factors. To 

determine the gains g X (r ω0) and gY (r ω0) that scale each X i(r ω0) and Y i(r ω0) to equalize 
the passband amplitudes to the same level, the following two equations are used
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g X (r ω0)=√Pmax/∣X (r ω0)∣

2 ,                             (2.26)

gY (r ω0)=√Pmax /∣Y (r ω0)∣
2 .                             (2.27)

Pmax in  Eqs.  (2.26) and (2.27) is  obtained by comparing all ∣X (r ω0)∣
2 and ∣Y (r ω0)∣

2 of Eqs. 
(2.20) and (2.21) for r = 0,1, 2, 3,......, N-1 and finding the maximum power. The gains in Eqs. (2.26) 
and (2.27) are calculated using accumulated power spectra and are later applied to voltage spectra for 
equalization, which potentially introduces a small inaccuracy since the gains thus obtained are not the 
same as the actual gains obtained by accumulating individual voltage spectra consisting of absolute 
voltages in the denominators. However, if the absolute voltages, ∣X j(r ω0)∣ and ∣Y j(r ω0)∣ , where

j=N s+ 1, N s+ 2,. ..... for the subsequent spectra acquired during observations, are accumulated for 
sufficient integration time then

g X (r ω0)≈V max/∑∣X j(r ω0)∣ , and                          (2.28)
 

gY (r ω0)≈V max/∑∣Y j(r ω0)∣ .                            (2.29)

V max in Eqs. (2.28) and (2.29) is the maximum of all ∑∣X j(r ω0)∣ and ∑∣Y j(r ω0)∣ for 
r = 0,1, 2, 3,......,  N-1. Eqs. (2.28) and (2.29) are also confirmed in numerical simulation. Fig. 2.1 as 
shown below illustrates this.

I have  just plotted the gains for the first channel. But all of them show similar effects. The ratio of gain

Fig. 2.1: Plots for gains using eqn. 2.26 (2.27), that is, power and eqn. 2.28 (2.29), that  
               is, voltage for a single channel of one polarization as a function of integration
               time. Both are approximately same.
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 derived using power and gain derived using voltage is shown in fig. 2.2. The ratio approaches unity as  
the number of samples included in the summation  increases or integration time increases. 

The plots in figures 2.1 and 2.2 are generated in the following steps. 

1) I generated a matrix of random numbers of dimension N×1024 and augmented all the elements 
by 5 to enhance the visibility of the plots. The number 1024 represents number of channels and N is the 
upper limit of the count up to which each channel's element can be incremented. N is taken as 1550.  
Another variable i takes the values from 5 to N, which means that at least 5 numbers pertaining to a  
particular channel should be added and then this number would increase up to N.
 
2) Formula 2.26 (2.27) is compared against 2.28 (2.29) for consecutively increasing integration time or 
count i and the result is shown in fig. 2.1. The two overlapping curves verify that 2.26 (2.27) and 2.28 
(2.29) produces approximately the same results. The plot is for a single channel.
 
3)  Fig.  2.2  shows  the  plot  for 2.26÷2.28 (same  for 2.27÷2.29 )  demonstrating  that  the  two 
equations  2.26  and 2.28  (2.27 and 2.29)  produce  more  and more  identical  results  as  the  count  is 
increased or their ratio tends towards unity.

2.4 Windowing 

A window function is derived for the X j and Y j spectra to truncate the possible analogue filter 
flanks to avoid scaling up, by large factors, signals that have been strongly attenuated by band-limiting 
filters. The window function is conveniently obtained from the ∣Z∣ spectrum since the  Z spectrum 
contains the band common to both  X and  Y spectra thereby providing necessary frequency shift and 
bandwidth  information  for  the  window  function.  Spectral  channels  in  which  the  signal  level 
∣Z (r ω0)∣ is greater than one quarter of the maximum amplitude in the ∣Z∣ spectrum are given unit

Fig. 2.2: Ratio of gains obtained by using eqn. 2.26 (power) and eqn. 2.28 (voltage).  
               It approaches unity with increase in integration time.
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 weight and all others are given zero weight resulting in a frequency shifted rectangular function of unit 
amplitude.  A unit  delta function is added to this since we want to pass undisturbed the DC signal 
produced  by  the  A/D  converter.  This  window  function  is  applied  to  both X j and Y j spectra 
resulting in rectangular band shape for the frequency band that is in common. The effect of the window 
function on the time-domain is to convolve the signal with a sinc function. Since, the frequency spectra 
are  already  band  limited,  the  window  function  does  not  in  itself  introduce  any  new  waveform 
characteristics. Rather it prevents contamination of the waveform that would arise were one to scale up, 
by large factors, frequency channels that had little signal. 
 
2.5 Forming circular polarization 

The gains g X (r ω0) and gY (r ω0) , the rotation parameters sin θ(r ω0) and cosθ(r ω0) , and the 
window  function W (r ω0) are  applied  to  the  spectral  components X j(r ω0) and Y j (r ω0)  
respectively. If Y j

' ' (r ω0) and X j
' (r ω0) are the resulting vectors after calibration then Y j

' ' (r ω0)  
is related to Y j (r ω0) by the product of gain, window function and rotation matrix as follows

∣ℜ(Y j ' ' (r ω0))
ℑ(Y j ' ' (r ω0))∣=g Y (r ω0)W (r ω0)∣cos θ(r ω0) −sin θ(r ω0)

sin θ(R ω0) cosθ(r ω0) ∣×∣ℜ(Y j(r ω0))
ℑ(Y j(r ω0))∣

where ℜ(Y j
' ' (r ω0)) , ℑ(Y j

' ' (r ω0)) and ℜ(Y j(r ω0)) , ℑ(Y j (r ω0)) are  real  and  imaginary 
components of Y j

' ' (r ω0) and Y j (r ω0) respectively. Similarly,

∣ℜ(X j ' (r ω0))
ℑ(X j ' (r ω0))∣=g X (r ω0)W (r ω0)∣ℜ(X j(r ω0))

ℑ(X j(r ω0))∣
The windowed, phase and gain calibrated X j

' (r ω0) and Y j
' ' (r ω0) are added in quadrature (± 90º) 

to obtain RHC and LHC polarizations.

2.6 Performance limitations

In this section we will discuss the implications of possible contamination of phase caused by the cross 
polar component or leakage of unwanted orthogonal polarization component  (D-terms) and by the 
temporal  instability of  receiver  transfer  characteristics  and their  effects  on polarization purity with 
approximate  quantitative  results  to  estimate  those  errors.  we  will  also  discuss  the  requirement  of 
frequent recalibration due to the variations in the transfer characteristics of the receiver by observing 
the drifts in the most sensitive parameters, which are the channel phases. Since the gain fluctuations are 
much smaller than phase fluctuations, we can ignore their effects. 
 
Effect of phase error on polarization purity:

Were one to introduce an imperfect 90º phase shift into one channel when forming circular polarization 
from perfectly orthogonal linearly polarized channels, the output voltages ̄V RHC and ̄V LHC would 
contain  unwanted  contributions  from the  opposite  hand of  polarization.  The derivation  below was 
originally   given   to   me   by  Alan Roy  and I did some modifications and we arrived at the following

   (2.30)

   (2.31)
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derivation together.

̄V LHC=V LHC+ (DLHC V RHC)                              (2.32)

̄V RHC=V RHC+ (DRHC V LHC)                              (2.33)

where DLHC and DRHC are the fractional voltage leakage factors from unwanted polarizations (D-
terms). 

The  larger  the  phase  error,  the  greater  the  contribution  from  the  opposite  hand.  Consider  the 
monochromatic case in which a linearly polarized wave is incident normally on crossed linear dipoles 
with the plane of the electric field oriented at 45º to the two dipoles. Then the voltages in the two 
dipoles are

V x=V 0e j ωt                                     (2.34)

V y=V 0 e j ωt                                     (2.35)

After introducing an imperfect 90º phase shift to the y channel, one has 

V x=V 0e j ωt                                     (2.36)

V̄ y=± j V 0 e j ωt e j ϵ                                  (2.37)

where ϵ is the error in the 90º phase shift. Circular polarization is obtained by summing the x signal 
with the imperfectly phase-shifted y signal, giving

̄V LHC=V 0 e j ωt(1− je jϵ)                                (2.38)

̄V RHC=V 0 e j ωt (1+ je jϵ)                                (2.39)

Had the 90º phase shift been perfect, then ϵ = 0º giving ̄V LHC=V LHC and ̄V RHC=V RHC .
Substituting Eq.(2.38) and Eq.(2.39) into Eqs.(2.32) and (2.33) respectively, with V LHC and V RHC

obtained by setting ϵ=0 , we obtain the dependence of DLHC and DRHC on the phase error, ϵ :

DLHC=−DRHC=[1+ sin ϵ−cosϵ+ j (1– sin ϵ – cosϵ)] /2                    (2.40)

This result is used in section 2.8  for estimating the polarization purity. 
 
2.7 Phase stability of the analogue receiver chain

This section and the following section taken from our paper (Das et. al. 2010) is contributed by Alan 
Roy.  The  phase  and  amplitude  transfer  characteristics  of  the  receiver  chains  for  the  orthogonal 
polarization channels are known to drift with time, due primarily to temperature changes of filters and 
cables used in the receiver chains. Fortunately, most of that change is common to both orthogonal  
polarization channels as the equipment for both channels is housed in close proximity to each other,  
and   the  relative  changes  are   small compared  to  the  total. The effect of drift in the relative transfer
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characteristic  is  a  degradation  of  the  polarization  purity,  since  the  equalizer  weights  that  were 
determined  prior   to an  observation would no longer perfectly correct the channel differences, by  the
 amount  of  the relative drift since that determination was made. This translates into a requirement that 
the equalizer weights be re-determined periodically to ensure that polarization impurity due to drift 
remains below a pre- determined level. We have estimated how often such re-determination would need 
to be made by measuring the relative phase drift in some existing receiver chains at Effelsberg and the 
VLBA. The measurements were made using the VLBI phase calibration system (Thompson 1991), 
which injects a pulse train in the front end and extracts them at the backend data acquisition rack or  
correlator, to monitor the phase length of the whole receiver system, from front end to the samplers. 
The measurements show that indeed the phase changes in the orthogonally-polarized channels track 
each other well (Fig 2.3 top and middle) and there are only occasional outliers, most likely related to 

Top: calibration system phase vs time for a single polarization channel for three different receivers at 
Effelsberg, showing phase changes of typically to over periods of hours. Middle: calibration system 
phase difference between orthogonal polarizations of the same receivers at Effelsberg, for the identical 
experiments as in the top plot with an arbitrary offset. Bottom: structure functions constructed from 
the relative phases presented in the middle plot. These show the rms of the phase difference vs time-
scale.
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phase-locked loop local  oscillator  used in  the analogue base-band converters,  which would not  be 
present in a digital system. The drift in the relative phase is conveniently quantified using a structure 
function analysis,  which converts  the phase difference time series  into the rms phase change as  a 
function of time-scale (Fig 2.3 bottom). The result is that the rms phase difference due to drift is in the 
range 0.5º to 2º on time-scales of 100 s to  9000 s. 

2.8 Expected polarization purity

The polarization purity to be expected from polarization conversion performed at IF can be derived by 
combining the two results from section 2.6 and 2.7 - the sensitivity of polarization leakage to phase 
errors and the typical phase errors in existing analogue receiver chains (0.5º to 2º rms). 

The resulting D term is 0.006 (rms) for a 0.5º  rms phase error, for which one must re-calibrate the 
equalizer every few minutes, rising to 0.025 (rms) for a 2º  rms phase error, which one would obtain 
were one to calibrate the equalizer once and leave it fixed for many hours. These are smaller than the 
leakage D-terms measured for existing radio telescopes, which are commonly 0.05 to 0.15. However, 
the  leakage  in  existing  receivers  is  constant  over  long  periods,  since  it  occurs  primarily  due  to 
tolerances in the manufacture of the analogue polarizers, and so can be calibrated using observations of  
astronomical polarization calibrators. That calibration reduces the effect of the leakage on the resulting 
polarization images by a factor of ten typically, and one typically sees residual polarization artifacts 
that are 0.005 to 0.015 rms times the peak flux density in the images. These values are comparable to  
those expected to be delivered from the digital polarization conversion without use of astronomical D-
term calibration. However, the D-term from IF polarization conversion, though small, is expected to 
drift with time between equalizer re-calibrations due to drift in the relative phase of the orthogonal 
polarization receiver channels. Were one to want to improve on this by using astronomical calibration 
of the residual polarization leakage on time-scales between the equalizer re-calibration, then one must 
be able to derive the D-term from a snapshot observation. Such an algorithm is available and requires  
the use of  an unpolarized calibrator  source.  However,  the changing D-term requires  that  the post-
correlation analysis  software be able to  handle time-varying D-terms.  This will  prevent the use of 
astronomical calibration of the residual polarization leakage, since the D-term calibration in use assume 
that the  leakage is constant on a 12 h time-scale.

Hence, taking all the factors into account viz the theoretical validity of the digital circular polarizer, 
processing feasibility, limitations due to instabilities in the analogue receiving systems I concluded that 
the expected performance in terms of polarization purity of the digital circular polarizer would be better 
than the existing analogue polarizers while talking about broad bands. The next step would be to do a 
quick simulation using some test data and confirm the validity of the algorithm. The main objetive 
would be to observe if we can really make the phase difference due to instrumental polarization zero 
and  equalize  the  gain  with  the  described  methods  in  this  chapter.  The  preliminary verification  in 
simulation is shown in the following chapter.
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                CHAPTER  3

        PRELIMINARY TEST OF ALGORITHM

In this chapter, I will discuss the preliminary tests done to verify the phase equalization method, gain 
equalization method and windowing described in sections 2.3 to 2.5 for calibrating the two channels. I  
will discuss the results obtained from the tests to confirm the validity of our approach towards getting 
pure circular polarization in the end. I first demonstrate the experiment done to collect data for the 
preliminary test. Then I discuss the spectral characteristics of the data obtained at the outputs of the 
experiment, which we would also find in the real experiments. I also discuss processing of the data to  
separate the effects of noise from those of the instrument the steps being the same as described in 
section 2.3. I demonstrate how the instrumental phase difference between the two receiving channels 
could be extracted from the data as explained in section 2.3.1. I then show under phase equalization 
that the method to equalize the phase demonstrated in section 2.3.1 works as expected. Then I show the 
gain equalization method where I first demonstrate how the instrumental gains of the two receiving 
channels, following the method described in section 2.3.2, are obtained. Then I discuss windowing, 
which is also demonstrated in section 2.4. Next, I show the gain equalized and windowed spectra of the 
two channels simultaneously, which shows that gain equalization and windowing works as expected. 
After  this  point  I  provide  the  details  of  some  preliminary  questions  that  were  discussed  before 
proceeding  towards  actual  instrument  development.  Finally  I  conclude  this  chapter  based  on  the 
analysis done to confirm our approach.

3.1 Phase and gain equalization and windowing

Sections 2.3 to  2.5 highlight and describe various stages of conversion from linear polarization to 
circular polarization. Out of these stages I chose to perform preliminary simulation tests for the phase 
and  gain  equalization  methods  (one  needs  to  go  through  sections  2.3  to  2.5  to  have  a  clear 
understanding  of  this  preliminary  test)  to  confirm  their  practical  validity.  Once  phase  and  gain 
equalization were done, adding a 90º phase shift to form circular polarization was trivial and hence was 
also not tested separately. I also included windowing in the test to remain consistent with the steps 
towards forming the circular polarization. The preliminary signal processing steps and the results of 
this section were discussed with Alan Roy and the detailed exploration was done by me.

3.1.1 Experiment to collect test data

Fig. 3.1 shows the experimental setup used for collecting data. A noise source was split and passed 
through two filters. Outputs were taken as  X  (channel 1) and  Y  (Channel 2) channels which were 
sampled with two channels of a digital storage oscilloscope (Tektronix DPO 7254). The noise diode 
consisted  of  an  avalanche  diode  and  RF  amplifiers.  The  power  splitter,  two  filters  and   internal 
resistance of the oscilloscope constituted the external  circuit  and load.  The load resistance of  the 
oscilloscope was 50 ohms. This method of data collection was employed to pass the same signals from 
a common source through two receiving channels as would happen in a practical calibration already 
discussed in section 2.3. Hence, the spectral characteristics obtained at the outputs of the two receiving 
channels would vary due to differences in the the systems through which they passed. Note that the 
sources  of  interference  described  in  section  2.3  (radio  sources,  atmospheric  emission,  cosmic 
microwave  background  and  RFI)  except  the  receiver  noise  (here  receiver  refers  to  all  the  circuit 
elements through which the signal flows) were absent in this case. Hence, I didn't need to cancel the 
effects of those sources of  interference in order to extract the information  on the instrumental gain and
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phase differences; I  would  need  to  do  so  if  calibration  were  done  on  sky. We should also note 
that  the avalanche noise diode generates white  noise in the RF range but  the thermal  fluctuations 
corrupt the amplitudes and phases of the spectrum. So I needed to account only for this receiver noise, 
which was purely random or thermal (as was found and will be discussed later). 

3.1.2 Description of spectral characteristics obtained by processing data in MATLAB

The sampled data from the experiment was saved to be processed in MATLAB to confirm the validity 
of  the  phase  equalization  method  and  the  gain  equalization  method  described  in  section  2.3.  I 
performed an FFT in MATLAB to obtain the frequency spectra of the two channels and continue the 
test in the frequency domain. I covered the 1250 MHz Nyquist bandwidth with ≈ 2.44 MHz spectral-
channel (represents one spectral component) width by using 1024 points FFT for 2500 MHz bandwidth 
(sampling frequency). By doing this I obtained 24 spectra in the frequency domain from the available 
24 frames of the time domain signal for each channel. 

The following plots (fig. 3.2 top left and top right) show the absolute values of the spectra obtained at  
the outputs of the two channels  X and  Y. These were single spectra of channel  X and channel  Y and 
hence they had a lot of noise fluctuations. Most of the plots in the incipient figures show an image of  
the negative frequency components in the upper half region of the 2500 MHz band. This is because of 
the following two reasons: 1) I operated on real data with a complex FFT where a spectrum of a real 
signal follows Hermitian symmetry, which means  ∣X −∣=∣X ∣ and ∢X −=−∢X  . 
2) Because of periodicity of the Fourier spectrum generated by the property of the DFT a spectrum 
repeats itself after every f s (sampling frequency) intervals so do its negative frequency components. 

Thus  the  spectrum  repeated  itself  after  2500  MHz  (1024  points).  To  avoid  overlapping  of  these 
negative frequency components with the signal in the band of interest, one must sample at a frequency 
twice the bandwidth of interest, which I followed. 

The bandshape of channel X (fig. 3.2 top left) and the bandshape of channel Y (fig. 3.2 top right) were 
different since the analogue filters, filter1 and filter2 in fig. 3.1 had different pass-band characteristics. 
Matching spectral components of the two channels (X and Y) would have a unique phase difference and 
a unique gain difference; I wanted to extract the phase difference and the gain difference between them 
due to difference in the transfer characteristics of the two channels. I needed to do this for all spectral 
components in the band of interest, which would provide the variations in the  phase  difference and the
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Block schematic of the experimental setup to obtain sampled time series from the noise diode 
after passing the signal through two channels consisting of two filters using a 2.5 GHz sampling 
oscilloscope.

Fig. 3.1:



gain difference across the band.  I multiplied the X spectrum with the conjugate of Y spectrum to obtain 
the cross-power or Z spectrum (fig. 3.2 bottom shows its magnitude). This spectrum contained the pass-
band common to X and Y spectra and its phase represented the phase difference between channel X and 
channel Y as a function of frequency; the phase difference in this case means phase of X – phase of Y. 

               

This is the same procedure as is used in FX correlators used in radio interferometers such as the VLBA 
and DiFX; the information on phase difference between two channels is extracted from the cross-power 
spectrum. However, as I see from the plots in fig. 3.3, the magnitude spectrum (fig. 3.3 top) and the 
phase spectrum (fig. 3.3 bottom)  zoomed into the pass-band of the cross-power spectrum were highly 
distorted due to noise fluctuations. Since the same signals were passed through the two channels, any 
difference in phases of the two channels would correspond to instrumental phase difference. Further, 
since the two filters had linear phase characteristics, their difference would also have a linear phase 
response  which  was  not  evident  from  the  phase  spectrum. However, I  was  able to see the band 

Unaccumulated magnitude spectra for the channel X (top left), channel Y (top right)  and their 
cross-power spectrum Z (bottom) in the range from 0 MHz-1250 MHz. In each of these spectrum, 
the signal in the upper half of 2500 MHz band that is from 1251 MHz-2500 MHz represented the 
image of the negative frequency components of the spectrum (same explanation holds good for fig. 
3.5, fig. 3.6 and fig. 3.7). The spectra are very noisy due to thermal fluctuations.
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somehow with one spectra.

I observed the fluctuations after switching off the noise diode, which were due to the receiver noise 
since external noise sources were absent, and found that they were random. Hence, I decided not to 
perform any subtraction operation between noise diode on samples and noise diode off samples (see 
section 2.3.1 for details  on the subtraction operation)  to  cancel  the effects  of any stationary noise 
source.  Thus  accumulation  of  a  certain  number  of  Z spectra  could  reduce  the  noise  below  a 
predetermined level  (since accumulation of  N spectra  reduces  the  fluctuations  by N ).  Hence I 
proceeded to perform accumulation of Z spectra. I accumulated 24 Z spectra and the results obtained 
for the magnitude and phase spectra are shown in fig. 3.4 top and bottom respectively.  Alan observed 
the results  with me.  It  is  very clear  by comparing fig.  3.3 and fig.  3.4 that  the responses for  the 
magnitude  and  phase  were  much  refined  after  accumulation  -  the  difference  in  the  pass-band 
characteristics is clearly visible in the phase spectrum that is the linear phase difference is visible as a 
ramp in the pass-band. In order to  nullify  this  extracted   instrumental  phase  difference  between  the

Top: Magnitude of unaccumulated Z spectrum zoomed into the pass-band. Bottom: Phase of the 
same  Z spectrum zoomed into the pass-band. Due to noise fluctuations the spectra are not clearly 
visible.
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two channels,  as described in section 2.3.1, it  is needed to rotate the phase of one channel by the  
amount of this phase difference. I proceeded to do the same and demonstrate this in the following 
subsection.

3.1.3 Phase equalization

In order to equalize the instrumental phases of the two spectra  X and  Y, it was needed to rotate the 
phase of one spectrum with respect to the other by the amount of phase difference shown in fig. 3.4 
(bottom) . The rotation was meant to be done for each spectral channel. Phase rotation of Y was done 
by multiplying vector Y with the rotation matrix in eqn (2.30) whose elements were obtained from the 
Z spectrum as shown in eqs. (2.17) and (2.18). The next plot shows the phase  difference between same

Top: Magnitude of accumulated Z spectrum zoomed into the passband. Bottom: Phase of accumulated 
Z spectrum zoomed into the passband. Band is clearly visible or the spectra are much more refined due 
to reduction in noise after accumulation.
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 X  and  Y  spectra  from  where  the  phase  difference  was extracted, after rotation of Y with respect  to
 X.  I would apply this rotation to any but different Y  in reality acquired during observation and not 
during calibration using same instrument. This was done to confirm if the instrumental phase difference 
went to zero or not. As can be seen from fig. 3.5,  the phase difference after rotation indeed went close 
to zero but not exactly zero due to thermal fluctuations.  Hence I could proceed to implement this 
technique of instrumental phase equalization in FPGA without any uncertainty.

3.1.4 Gain equalization

The next step was to perform gain equalization. This is done as even though the receiver components of 
the two channels are housed in close proximity to each other, there are imperfections and there are 
differences in the magnitude responses of the two systems. So one needs to equalize these magnitude 
responses to calibrate out the differences. Note that I am referring to instrumental gains; since equal 
amplitude  signals  were  passed  through the  two channels,  any difference  in  the  magnitudes  at  the 
outputs of the two channels would represent instrumental gain difference. However, due to thermal 
noise fluctuations I again had to accumulate the 24 available X and Y power spectra (separately). The 
differences  in  the  levels  of  these  accumulated  X and  Y power  spectra  represented  square  of  the 
instrumental  gain  difference  as  a  function  of  frequency channel.  I  performed gain  equalization  as 
follows: I needed to find the amounts by which the two magnitude levels, of any pair of matching 
spectral channels of the two channels, needed to be changed to make them similar. These amounts 
would be  the  new  additional  gains  for  the  two  spectral  channels. The magnitudes could  be 
equalized by raising  the  signal  levels  of  all  the  spectral  channels  to  one  same  level;  this  
common level  could be conveniently taken as the maximum signal level in the pass-bands of the two 
spectra. Hence, I  determined  the  maximum  signal  level  among all the spectral channels  in the pass-

  Fig. 3.5:  Phase difference between X and rotated Y  is zero. Y was rotated by the amount of phase difference  
              between X and Y shown in fig. 3.4 (bottom). 
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bands  of  the  two  accumulated  power  spectra. Then  I found the ratio of this maximum  level  to  the 
signal level of each spectral channel in a power spectra. The square root of this ratio represented the 
new gain as a function of frequency channel obtained for each channel X and channel Y as shown in fig. 
3.6. Refer to fig.  2.1 and fig.  2.2,  where I  showed that the gain obtained by using square root of 
accumulated power spectra would be similar to that obtained by using accumulated magnitude spectra; 
the similarity increases with increase in the number of spectra accumulated. I multiplied these gains to 
the same X and Y spectra from where the gains were extracted.  I did so to verify that all signal levels 
were raised to the same level indicating that instrumental gain differences were reduced to zero. In real  
experiments these gains would be applied to other X and Y spectra acquired during observation. I will 
show the effects of gain equalization (fig. 3.7) together with the effects of windowing in the following 
subsection.

-  

   
  G

ai
n 

X
   

  G
ai

n 
Y

             26

 0                                 Frequency/MHz                             2000

Frequency/MHz                                        1000 0                                 Frequency/MHz                             2000

 Gain of X = square root (maximum power of X and Y / power of X ) 

 Gain of Y = square root (maximum power of X and Y / power of Y ) 

G
ai

n 
X

G
ai

n 
Y

Fig. 3.6: Top:  gain of X channel. Bottom: gain of  Y channel. Each spectral channel gain is obtained from 
the square root of the ratio of maximum amplitude in the pass-bands of X and Y power spectra and 
the magnitude of corresponding power spectral channel.    



3.1.5 Windowing

In order also to have a common pass-band of the two channels, I can pick the band in common, which 
can be conveniently obtained from the Z spectrum. Then I can produce a window function from the Z 
spectrum just to have the common band information. For that I cut down all signals that were less than 
or equal to one quarter of the maximum signal level in the pass-band of Z (magnitude) spectrum and 
then gave unity magnitude to the remaining spectral  components.  After multiplying with the gains 
obtained in 3.1.4 and with the window function thus obtained, the gain equalized and windowed X and 
Y magnitude spectra appear as shown in fig. 3.7.

 

The window function in the time domain is a sinc. This sinc function will be convolved with X and Y 
time series  after  equalization  and inverse FFT. However, since the signal is band-limited, this window 
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Fig. 3.7: Top: gain equalized and windowed |X|  spectrum. Bottom: gain equalized and windowed |Y|   
spectrum. The spectra were obtained by multiplying |X| and |Y| spectra with the corresponding gains 
obtained in fig. 3.6 and with the window function. The window function was obtained by clipping 
off the signals that were less than or equal to one quarter of the maximum signal level in the pass-
band of the Z spectrum and by assigning unity amplitude to the remaining spectral components.



function does not introduce any new characteristics to the waveform. 

All steps of phase, gain equalization and windowing seem to work ideally here. Now I will go into the 
details of the discussion that were done before proceeding towards actual instrument development. 

3.2 Preliminary questions to be answered

The following points were discussed with Alan Roy before proceeding towards final implementation of 
the technique.

Q) What kind of source would we require while calibrating on sky in order that the electric field vector  
be equidistant from the two dipoles so that the signal from them will be totally coherent or correlated? 

A) The vector should be oriented at  45º with respect to the two dipoles. Hence, one should use a 
polarized source for calibration.  

Q) What  would happen if  the channels  have non-linearities  due  to  the  system components  whose 
characteristics vary with temperature?  

A) Let us consider a transfer function h(n) where n is time as discrete variable. A transfer function can 
be approximated by series expansion like the Taylor series, Bessel series, sine series etc. The series 
expansion can be written as

h n=∑
k=1

N

ak f k n

where f k n represents  the  basis  functions  and ak represents  the  expansion  coefficients.  The 
polynomials are generally used for the basis function approximation. The higher order terms of the 
basis functions will  result  in new frequency components. These new frequency components would 
distort the observed signal during calibration. There are several methods available to approximate the 
nonlinear  characteristics  and one  can  use  those  methods to  model  the  non-linearities.  However,  it 
should be noted that the non-linearities may vary with time if the system components are temperature 
sensitive and no particular model will remain consistent, which will make it difficult to correct for its  
effects. Hence non-linearity can cause major difficulty in getting corrected phase and gain. We have 
observed that the Effelsberg system produces no non-linearities and hence I ignored this effect in our 
project.

Q) What would happen if there is time varying radio frequency interference (RFI)? 

A) Following description follows Tuccari (2009): for a radio telescope, RFI is any unwanted signal 
interfering with the signals from the source under observation. The contributions to RFI are generally 
from ground communications, radio telescope equipment and by space communications. The bands 
allocated for radio observations are too narrow and hence the errors on the data from the observations 
should be minimum for the data to be useful. Generally the levels of RFI are much greater than the 
signal levels and thus the RFI can be identified from its level. Sometimes RFI is able to destroy the 
front-end LNAs and hence some filters prior to LNAs are required. There are many filters in use to  
eradicate  the  effects  of  known RFI.  In  VLBI generally  the  RFI  is  uncorrelated  and hence  it  gets 
canceled during  cross-correlation  between  the two stations. It may be possible  to  detect  signal  level 
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change by appropriate algorithm before it enters the low-noise amplifiers and other RF stages and then 
clip off the band affected.

Q) How do D-terms affect measurements? 

A) When there are manufacturing differences in the two dipoles, then they are not positioned accurately 
with respect to each other and then there would be a difference or error in the 90º position angle. In that 
case, the two dipoles will receive a fraction of the orthogonal polarization component. This cross-polar 
component has to be taken into account since it will contaminate the phase of the co-polar component.  
So there is this issue to correct for the effects of D-term or cross-polarization. The idea to minimize this 
already very low D-term is discussed in the conclusion of this thesis. 

Q) I have performed a 1024 point FFT with 1 MHz channel spacing. If we operate the equalizer at 1 
MHz channel spacings, what happens later when the correlator forms much finer frequency spectra? 
Perhaps one might see a sawtooth pattern in phase vs frequency? 

A) Suppose there was a linear phase ramp vs frequency that the equalizer removed by subtracting off a 
phase offset from each frequency channel. Then the phase slope has been corrected in 1 MHz steps and 
not on finer scales, so one might see the uncorrected phase slope within 1 MHz with a step back to zero  
phase at each 1 MHz boundary. Applying a phase gradient vs frequency is equivalent to a fractional-
sample time delay in the time domain. Suppose we correct the phase gradient in a 1024-point spectrum 
then transform it back to time domain, then the effect on that block of 1024 samples is to shift the data 
by a fraction of a sample. Suppose we then correct the next 1024-point spectrum by the same phase 
gradient then transform it back to the time domain then the effect on the second block is the same as on 
the first block; the data is shifted by a fraction of a sample. If the correlator then takes the time series  
and forms a finer  spectrum, say with 0.5 MHz spacing,  then the correlator  must  do a  2048 point 
transform and by using data that have all been shifted by the same fractional sample delay, and so the 
0.5 MHz spectral  points should be correctly corrected.  Thus, one should not expect a sawtooth vs 
frequency in the correlator output as we might have feared. 

3.3 Conclusion

Thus I showed in this chapter that the methods described in sections 2.3 to 2.5 to form pure circular 
polarizations from two orthogonal linear polarizations work as expected. I came to the conclusion that 
the method would yield expected results. Hence, it would be worth taking an effort to develop this  
FPGA  based  circular  polarizer  to  contribute  towards  observational  needs  of  VLBI  broadband 
experiments.
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                                                                     CHAPTER 4

                                                  IMPLEMENTATION OVERVIEW

In this chapter I will provide the overview of the logic blocks that enables formation of two hands of  
circular polarizations from two orthogonal linear polarizations in real time. I will provide an overview 
of the FPGA-based circular polarizer describing the functionality of the comprising logical elements, 
which operate sequentially. In appendix B, which is a crucial part connected to this chapter I will go 
into the details  of  each of these logical  elements  describing the operations  performed to meet  the 
desired functionality along with providing details on timing of the operations. Also in appendix B I 
discuss how the implementation of the developed digital circular polarizer was carried out where I 
show the implementation summary pages generated by the Xilinx software after implementation of the 
logic, which manifests that the implementation was successful. So please refer to appendix B for details 
of the logic blocks in this chapter.

4.1 Overview of main logic blocks of the digital circular polarizer

Fig. 4.1 shows the layout of the logical blocks for converting from linear to circular polarization in real 
time with arrows showing the direction of data flow between the connected logic elements. The digital 
circular polarizer is designed to operate for data sampled at a rate of 1024 Msamples/s. Now I briefly  
describe the functionality of the logic elements in fig. 4.1 and detailed analysis of these elements along 
with the timing of the operations involved will be provided in the next section.

Layout of the logic blocks for converting from linear to circular polarization in real time. The arrows 
depict the direction of dataflow between the connected logic elements.

 Fig. 4.1: 
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1. Clock rate reduction logic: Since  the  sampled  time  series  at  1024 Msamples/s  is  too  fast  for 
processing, serial-to-parallel conversion of the streaming data has been implemented with a factor-eight 
fanout, generating eight parallel sample streams clocked at 128 MHz. This block was developed by 
Gino Tuccari in an earlier DBBC (Digital Base-Band Converter) project. The front-end of the system 
operates with a 1024 MHz sampling rate and the IF bandwidth is 512 MHz. The samples taken at 1024 
MHz in the A/D converter are transferred  in progressive steps in parallel to the next block, to reduce 
the clock rate, still  maintaining a formal sampling clock of 1024 MHz. So in the serial to parallel  
conversion the data are demultiplexed from 1 sample at 1024 MHz to obtain 8 samples transferred in 
parallel  on each clock cycle  at  128 MHz.  This  system is  already commercially available  (Tuccari 
2004). 
Note- All the blocks described below operate at 128 MHz unless specified otherwise. 

 2. Serial frame generator:  This is a central block for enabling serial processing of real time data in 
parallel working at 128 MHz clock rate. To feed the eight identical streaming FFT blocks with frames 
of 1024 real time-domain samples, intermediate logic takes in eight samples in parallel at every clock 
edge and outputs them to one of eight buffers, eight samples in parallel at each clock edge.  Once a 
complete frame of 1024 samples have been loaded into the buffer, the next buffer is selected to receive 
the next 1024 samples.  The first buffer is read out serially into its corresponding FFT block at one 
eighth of the rate (128 MHz) at which it was filled.  Reading from a buffer can start at the latest 128 
clock pulses after writing the first eight samples is complete. In our case it starts two clock pulses after 
writing the first eight samples. The process of writing in one buffer after the previous buffer continues 
cyclically and the style of writing in a buffer and reading from the buffer remains the same and each  
buffer  sends  out  data  serially to  the  corresponding FFT block at  a  rate  of  128 MHz without  any 
overwriting. 

3. FFT:  The serial frame generator for the x polarization and for the y polarization each produce eight 
output lines to feed eight identical FFT blocks that run continuously and independently of each other, 
each processing successive frames of data to keep up with the real-time sampling rate. The FFT is a 
complex transform, but the data are purely real, and so I used the relation for the FFT of two real  
functions simultaneously, to save a factor of two in device resources by feeding the x and y polarization 
data to the real and imaginary channels of each FFT engine input. The streaming pipelined FFT is 
generated conveniently using a  Xilinx  IP core.  It  requires  two's  complement  representation  of  the 
positive integers from the A/D converter. The real and imaginary terms of the  X and  Y spectra are 
retrieved from the FFT real and imaginary output channels by using a decoder at the output of each 
FFT. The method is equivalent to performing separate FFTs of the two real functions, but consumes 
half the space by performing them simultaneously in one transform. 

4. Power  spectra  accumulator: To  calibrate  the  equalizer  weights,  I  used  total-power  spectrum 
accumulators when determining the amplitude scaling factors needed for bandpass calibration and I 
used  cross-correlation  and  accumulation  to  determine  the  phase  difference  between  the  X and  Y 
polarizations in each frequency channel. The accumulators are dimensioned with enough bits to hold 
the accumulation results without overflow. To form the power spectra, each spectrum from each FFT 
(after decoding) is squared, forming |X|² and |Y|², and those are accumulated for nearly 8.4 s, which is 
determined by the goal of having thermal noise fluctuations that contribute at most 0.1º rms phase error 
during  equalization.  To measure  the  (frequency-dependent)  phase  difference  between the  X and  Y 
polarizations, the cross-power spectra Z = XY* are formed and the real and imaginary terms, Zr and Zi, 
are also accumulated for nearly 8.4 s. Each of the four quantities ( |X|², |Y|², Zr and Zi) are accumulated 
in eight pairs of accumulators, one following each FFT (after decoding), with each accumulator being 
paired  to  hold  the  noise  diode  on  and  off  state results separately. After accumulation, the real-time
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processing of the calibration signal is stopped and calculations for the noise diode on and off states are 
performed sequentially on the accumulated results from all eight FFT engines. Differences are formed 
between the accumulators for the noise diode on and off states for each of the four quantities and the 
eight differences are accumulated in a new final accumulator to obtain the final integrated spectrum. 
Thus there are four final accumulators holding integrated spectra of the four quantities, which are read 
to obtain the equalizer gain and phase weights and the window function as described in the next two 
blocks.

Note- The following two blocks operate at two clock frequencies of 128 MHz and 64 MHz as required 
by the operations.

5. Equalization parameters: The phase and gain equalization parameters are calculated by using the 
outputs from the accumulators using equations  (2.17), (2.18) and (2.26), (2.27)  respectively.  The 
division  and square  root  operations  are  implemented  using  the  Xilinx  floating  point  IP core.  The 
floating  point  operations  are  performed  with  a  clock  frequency of  64  MHz due to  the  frequency 
limitations  of  the  IP core.  The resulting  phase and gain  calibration  parameters  are  latched in  two 
respective  registers  for  real-time  equalization  of  the  X and  Y data  streams  during  subsequent 
observations.

6.  Window Function: A window function described in section (2.4) is determined by using outputs 
from the accumulators by following the same steps as in the description; After obtaining the window 
function it is latched along with the equalization parameters.

7. Synchronization: During observations the decoded FFT output samples are read out serially from 
the decoder and the corresponding gain, phase correction factors, and the window function are also 
read  out  serially  from their  respective  latches  and  synchronization  is  required  to  ensure  that  the 
frequency channels of the spectrum and the equalization parameters are aligned. The synchronized 
values are passed to the next stage for phase and gain corrections.

8.  Equalization: From this  block again  real-time  operation  starts.  Phase  and gain  corrections  and 
windowing are applied to each spectral channel of the decoder outputs, which implements equations 
(2.30) and (2.31). The resulting  X and  Y spectra are transferred to the next block for formation of 
circular spectra.

9. Formation of circular polarization: After equalization X and ±90º phase shifted Y are added to form 
the RHC and LHC polarizations. The ± 90º phase shifts of Y are implemented by exchanging the real 
and imaginary components of each spectral channel in the Y spectrum with a sign inversion of the real 
component  for  +90º phase  shift  and of  the  imaginary component  for  -90º phase shift.  This  block 
outputs the real and imaginary parts of the RHC and the LHC.

4.2 Conclusion

The logic demonstrated in this chapter and in appendix B is checked by simulating the design and is 
found to be correct. In the next chapter I will show the simulation results obtained by using data from 
an  experiment.  The  simulations  are  carried  out  without  any  bit  truncation  using  the  design 
demonstrated in appendix B. The implementation that is carried out in the frontend of MPIFR and 
whose summary pages I have shown from fig. B.11 to B.13 have bit truncations; the bit truncations will 
become evident to the user by seeing the VHDL files and comparing with the ones enclosed in the CD 
or by seeing the design depicted in appendix B.
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                                CHAPTER 5                                     

                                EXPERIMENTS AND RESULTS

In this chapter I provide details of two experiments done to verify the design logic of the digital circular 
polarizer  and  to  verify  the  polarization  purity  obtained  from  the  digital  circular  polarizer.  I 
simultaneously discuss the results obtained from the two experiments.

I first provide details on the design logic verification. In this section I first discuss the experimental 
setup to obtain the test data for simulating the design. Then I show the two time series or test data  
obtained from the digital  oscilloscope used to  sample the output  signals  from the two comprising 
channels in the experiment. I also discuss the resulting power spectra of the two channels. Next I show 
the simulation results of the verification; I present the plots obtained at the outputs of significant stages 
of the digital circular polarizer by passing the sampled test data through the design. I also compare 
these plots with mathematically obtained plots. 

Next I provide details on the experiment done to verify the polarization purity obtained from our digital 
circular polarizer. In this section I first describe the signal flow through the experimental setup. Then I 
provide  the  measurement  details,  which  includes  measurement  description,  equalizer  calibration, 
polarization purity measurement and data processing to form circular polarization. Next I discuss the 
simulation results where I show the two circular power spectra obtained at the outputs of the digital  
circular polarizer. I also present the plots manifesting polarization purity and facilitating the derivation 
of numbers like ellipticity and axial ratio. I provide numbers of cross-polarization or D-term and the 
formulas  used  to  obtain  them.  Then  I  discuss  the  discrepancies  in  the  observed response  and the 
expected response from the digital circular polarizer.

Finally, I draw the conclusion from the results obtained in the experiments that it would be possible to 
obtain pure circular polarization over broad bands as required for radio astronomical applications.

5.1  Design logic verification and simulation results 

We conducted a test to verify the design architecture described in chapter 4. I carried out the simulation 
for an ensemble of 24 spectra as that is sufficient to verify the design.

5.1.1 Lab setup for collecting test data

Fig. 5.1 shows the experimental setup. A noise source was split and passed through two filters. Outputs 
were taken as X  (channel 1) and Y  (Channel 2) channels which were sampled with two channels of a

Block schematic of the experimental setup to obtain sampled time series of the noise diode after 
passing it through the two channels consisting of two filters using a 2.5 GHz sampling oscilloscope.

          33

Fig. 5.1: 



digital storage oscilloscope (Tektronix DPO 7254). The noise source consisted of an avalanche diode 
and RF amplifiers. The power splitter, two filters, and internal resistance of the oscilloscope constituted 
the external circuit and load. The load resistance of the oscilloscope was 50 ohms. 

5.1.2 Time series obtained from the digital oscilloscope in the experiment

After passing through the two filters, the two signals were sampled using a Tektronix DPO 7254 digital 
storage oscilloscope. An example of the time series obtained after sampling the signals from the two 
channels is shown below (fig. 5.2 )

The sampling rate was 2.5 Gsamples/s and hence the Nyquist bandwidth was 1.25 GHz. The time 
series thus obtained was converted to 10 bit binary numbers. These 10 bit binary numbers were used as 
test data to verify the functionality of the digital circular polarizer. 

5.1.3 Power spectra from the two channels in the experiment

The following figures (fig. 5.3 top and bottom) show the pass-band for filter1 in channel 1 and for 
filter2 in channel 2. These are the power spectra of the two channels. The fluctuations are statistical 
since the input voltage is random. I performed accumulation of 24 spectra in MATLAB for getting 
these plots. The filter pass-bands are smooth with no such fluctuation. The fluctuations can be reduced 
by accumulating more spectra to reduce the noise by √N  where N is the number of spectra added.
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         Fig. 5.2: Sampled time series from the X and Y channels using the Tektronix DPO 7254 oscilloscope. The 
            sampling rate was 2.5 Gsamples/s producing a Nyquist bandwidth of 1.25 GHz.



5.1.4 Simulation results from the design logic

The verification of the design logic was done by checking correctness at two stages of dataflow in the 
design, which were after phase and gain equalization and after forming circular power spectra. These 
stages of dataflow can be referred from fig. 4.1. The correctness was checked by comparing the design 
logic simulation results against the simulation results in MATLAB without using the design but only 
the algorithm. The results from the two approaches were plotted on top of each other to show that the 
design logic was correct. 

The verification of the logic was carried out in ModelSim, which  is a simulation tool associated with 
Xilinx. ModelSim verifies the functionality of a design by verifying its outputs from known inputs. 
Internal signals in the design can also be viewed and verified. The bigger the design, the longer is the 
simulation run time. The inputs can be forced manually from the ModelSim wave window, which is the 
window for the plots or can be generated and forced into the design by connecting a custom designed 
data  generator  to the inputs of the design and the data pattern being similar to the actual data pattern at 
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Top: Power spectrum from channel 1 in fig. 5.1 named as channel X.  Bottom: Power spectrum from 
channel 2 in fig. 5.1 named as channel Y. These spectra are  obtained after accumulating 24 spectra 
from corresponding channels. 
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the inputs of the design. All the inputs, outputs and internal signals are visible in the wave window of 
ModelSim.  

The simulation was carried out for 24 spectra each of which consisted of 1024 samples. The 24 spectra  
were fed to the design in the same manner as the digital circular polarizer would receive input data 
from the DBBC in real life, that is the data arrangements at the inputs were identical to that in practice.  
A data generator block was created whose output patterns look like the eight parallel 10 bit samples 
coming from the DBBC the samples being those from the time series of fig. 5.2. This data generator 
block was connected to the design to feed the inputs of the serial frame generator, which is the first 
block in the design shown in fig. 4.1. For more details on the functionality of the logic blocks please 
refer to chapter 4. The data passed through the various stages and reached the output terminals of the 
phase and gain equalizer from where the equalization parameters are taken to equalize the phases and 
gains of the two channels to form the two hands of circular polarization.  The results from the outputs 
of phase and gain equalizer and from the outputs of the circular polarizer are compared with those from 
the algorithm in MATLAB. The resulting plots are shown in figures 5.4 to 5.12. 

The curve labelled 'measured value' in the plots shows the result obtained by simulating the design and 
curve labelled 'true value' in the plots shows the result obtained in MATLAB simulation just using the 
algorithm. X represents channel 1 and Y represents channel 2 from fig. 5.4 to fig. 5.12. 

-Plots verifying the design logic

Fig. 5.4 shows the phase difference between the two channels. This is the phase difference after phase 
equalization. It was expected that the phase difference would be 0 rad after equalization but there are 
deviations from 0 rad due to thermal noise fluctuations and due to using small number of spectra for  
accumulation which is not enough to cancel out the thermal noise fluctuations. However, our aim was 
to verify the design logic by comparing its outputs with those from the outputs of the algorithm, which 
is mathematical and the plots show that the two outputs are similar. Fig. 5.5 shows it clearly that the 
results obtained from the design and from the algorithm after phase equalization are identical. Fig. 5.6 
shows the phase difference between the two channels before and after phase equalization and manifests 
how different they are. Thus the phase equalization has worked successfully. For more information on 
phase equalization please refer to section 2.3.1.  

Fig. 5.7 verifies the design logic after gain equalization and windowing of channel X. The plot is for the 
pass-band of channel  X.  Again here the fluctuations  are  due to using small  number of spectra  for 
accumulation, which is not sufficient to reduce the noise fluctuations to 0. Fig. 5.8 shows the difference 
between gain equalized, windowed |X| spectrum and the original |X| spectrum before gain equalization 
and windowing and after accumulation. The fluctuations are much reduced after equalization. Fig. 5.9 
and fig. 5.10 do the same for channel Y as fig. 5.7 and fig. 5.8 do for channel X respectively. Fig. 5.11 
verifies the logic of gain equalized and windowed |X| and gain equalized and windowed |Y| spectra by 
comparing with the plots from the algorithm in MATLAB showing that they are identical. For more  
information on gain equalization and windowing of X and Y spectra please refer to section 2.3.2.

Finally, in fig.5.12 the two hands of circular power spectra are plotted. The minor variations between 
the two spectra are due to thermal noise fluctuations and should reduce with increased integration time 
by accumulating more spectra.
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                                            Phase difference between X and Y

                                   

Fig. 5.4:  Phase difference between the two channels obtained by using the design (measured value) and using 
   MATLAB processed algorithm (true value) are compared. The plots show that they are identical.

 Fig. 5.5:   The two plots of fig. 5.4 are plotted against each other to verify that they are exactly the same.
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       Phase difference between X and Y before and after phase equalization zoomed into pass-band

Fig. 5.7:  Gain equalized and windowed channel X obtained by using the design (measured value) and using 
   MATLAB processed algorithm (true value) are compared. They are similar.
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The phase difference before and after phase equalization is shown. It is clear that  the phase 
difference is very close to zero after equalization. It should be exact zero but due to thermal 
fluctuations there is variation, which reduces with increased integration time.
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Magnitude of accumulated X  spectra before and after gain equalization and windowing. The 
fluctuations are much reduced after equalization and also the pass-band shape is prominent after 
windowing.

Fig. 5.9:   Gain equalized and windowed channel Y obtained by using the design (measured value) and using 
    MATLAB processed algorithm (true value) are compared. They are similar.
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Magnitude of accumulated Y  spectra before and after gain equalization and windowing. The 
fluctuations are much reduced after equalization and also the pass-band shape is prominent after 
windowing.

Magnitudes of gain equalized and windowed |X|  and  |Y|  spectra by using MATLAB processed 
algorithm and by using design are compared by plotting them against each other to show the 
similarity between the two.
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Thus the figures from 5.4 to 5.12 show that the design logic is correct. 

After showing the verification for design logic I now demonstrate the experiment done to verify the 
polarization purity obtained from the digital circular polarizer. I now also show the simulation results 
obtained from the experiment.

5.2   Verification of polarization Purity

We performed the following experiment to measure the polarization purity obtained by this  digital 
technique.  The experiment  was  performed  in  an  anechoic  chamber  by coupling  linearly polarized 
broad-band noise into a circular waveguide by using a directional coupler and receiving with crossed 
linear  dipoles  at  the  end  of  the  waveguide.  However,  the  directional  coupler  coupled  a  linear 
polarization  and  a  fraction  of  polarization  orthogonal  to  the  linear  polarization.  Since  these  two 
orthogonal polarizations had a phase difference, the resultant was elliptically polarized and was the one 
we were dealing with. While doing the setup the cross coupling was estimated to be better than -33.6 
dB. This value of cross-coupling was determined by maximizing power in one dipole (the power in the 
dipole  was  maximized  by aligning  the  major  axis  of  the  elliptical  polarization  parallel  to  it)  and 
measuring the response in the other dipole. That response should have been 0 (no power).  The power 
thus measured in the orthogonal polarization was -33.6 dB relative to or 33.6 dB less than the power in 
the parallel polarization. This cross-coupling thus included the effects of the orthogonal polarization 
coupled by the directional coupler and any imperfection in the 90º position angle between the two 
dipoles. The experimental setup is shown in fig. 5.13.

Right-hand and left-hand circular polarization power spectra after phase and gain equalization and 
windowing. The difference is due to thermal noise fluctuations. These are the outputs from the two 
accumulators each containing the accumulated LHC and RHC power spectrum.

Circular power spectra after equalization and windowing
Po

w
er

/A
rb

itr
ar

y 
U

nit

80                                                                                                                                               200
Frequency/MHz

         41

 Fig. 5.12: 



5.2.1 Signal flow through the setup

The noise generator produced white Gaussian noise and the power spanned from 1160 MHz to 1462 
MHz. The anti-alias filter was used to limit the band from 1.1 GHz to 1.5 GHz. After attenuating the  
signal it was passed through a directional coupler. The directional coupler coupled a fraction of the 
energy into  the  circular  waveguide  through probes  inserted  into  the  waveguide.  The  plane  of  the 
polarization was rotated using rotating joints  in the waveguide and the signal was received by the 
crossed dipoles connected at the end of the waveguide. The crossed dipoles received signals for five 
position angles of the plane of polarization w.r.t the dipoles and the received signal was sampled by a 
digital storage oscilloscope and stored for later processing.

5.2.2 Measurement details

The spectrum of the broad-band noise that was coupled into the waveguide is shown in fig. 5.14.  The 
noise power spanned from 1160 MHz to 1462 MHz (6 dB down from peak), representing a fractional 
bandwidth of 23 %. The power level at the edges of the Nyquist band, at 1000 MHz and 1500 MHz, 
were 37 dB and 30 dB below the peak in the band, and so very little power was aliased from outside the 
band. After receiving this signal with the crossed dipoles, the signal was under-sampled at a sample rate 
of 1000 Msamples/s by the digital oscilloscope, causing digital down conversion to baseband. Since the 
sample rate was slightly less than 1024 Msamples/s used by the design, the frequency channel width in 
this experiment was 0.976 MHz instead of 1 MHz. The input voltage range of -250 mV to +250 mV 
was translated to 0 to 1024 representing 10 bit positive integers before feeding the design for digital 
processing. No special effort was taken to match the complex gain or path length in the two channels  
from the receiving dipoles to the sampling oscilloscope. Thus, the RF band was translated to 160 MHz 

Experimental setup to measure polarization purity in anechoic chamber. The broad-band noise from 
the noise generator was coupled into the circular waveguide through directional coupler and received 
by crossed linear dipoles at the end of the waveguide. The anti-alias filter limits the band and the 
attenuators and gains are for signal level adjustment. The rotating joint rotates the plane of polarization 
in the waveguide w.r.t the crossed dipoles. The power meter measures power in the two dipoles and 
the Tektronix sampling oscilloscope samples the data from the crossed dipoles.

Fig. 
5.13:
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to  462 MHz,  representing  a  fractional  bandwidth  of  97  % that  was  presented  to  the  polarization 
converter.

   

1. Measurement Description:

The outputs of the crossed linear receiving dipoles were sampled with a digital storage oscilloscope for 
4 ms and saved to file for later processing by the design. A rotating waveguide joint allowed us to rotate 
the plane of linear polarization with respect to the crossed receiving dipoles. Any ellipticity of the 
resulting circular polarization would show up as a change in the power in the circular polarization as 
the linear polarization is rotated.

2. Equalizer Calibration:

For equalizer calibration, the linear polarization was aligned at 45º to the two dipoles by connecting the 
dipole outputs to a  two-channel  power meter  and rotated until  equal power was measured in  both 
channels. The resulting powers were  +7.51 dBm and +7.50 dBm and drifted by ±0.14 dBm during the 
measurement,  corresponding to a polarization rotational  position angle uncertainty of 0.9º.  For the 
noise diode off state, the data samples were simply set to zero rather than being measured, since the 
setup in fig. 5.13 was well shielded from RFI, in which case measuring with the noise diode off gives 
almost same results as setting the off-state samples to zero (verified in the previous experiment). The 
signals were sampled by the digital oscilloscope with the noise diode on and processed by the design to  
obtain the equalizer amplitude and phase weights. These were loaded into the equalizer for calibration 
of  subsequent  measurements, and  are  shown  in fig. 5.15. The power spectrum in fig. 5.15 (top right) 
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Power spectrum of the broad-band noise measured at the input to the directional coupler by the 
spectrum analyzer shown in Fig. 5.13. The band was shaped using an anti-aliasing filter to ensure that 
the power level was low below 1000 MHz and above 1500 MHz to avoid aliasing of power from 
outside the third Nyquist zone during the later digital down conversion

Fig. 
5.14:
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differs from the spectrum in fig. 5.14 since the transfer characteristics of the sampled spectrum are 
modified by the frequency response of each component through which the signal is transferred namely 
the directional coupler, circular waveguide, dipoles and the sampling oscilloscope.

 

3. Polarization Purity Measurement:

For polarization purity measurement, the plane of input linear polarization was rotated to five positions 
with respect to the receiving dipoles and the received signals from both dipoles were sampled in each 
position. To adjust the rotational position angle accurately, the plane of input linear polarization was 
rotated to either minimize the power in one of the receiving dipoles (90º, 0º, -90º) or to obtain equal 
power in both dipoles (45º, -45º). The time elapsed between calibrating the equalizer and making all the 
measurements for determining the polarization purity was some 2 h. During this time, some drift in  
components might have occurred, but nevertheless good polarization purity was obtained.

Equalizer weights determined during calibration of the equalizer on the noise diode injected at  the 
two receiving dipoles. Top left: phase difference between X and Y polarization channels. Bottom left: 
gains for X  and Y  polarization channels. Top right: power spectrum of the broad-band noise 
measured at the dipole outputs by the oscilloscope. The frequency range is labeled corresponding to 
the band after digital down conversion from the RF band of 1000 MHz to 1500 MHz to baseband of 
0 MHz to 500 MHz. The gains are approximately the inverse of the square root of the noise 
spectrum at the top right as expected. The gains and phases are set to zero by the window function 
where the power dropped 6 dB below the maximum, which happened below 150 MHz and above 450 
MHz. This is as expected, given the shape of the broad-band noise spectrum.

Fig. 5.15:
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4. Data Processing to Form Circular Polarization:

I processed the data by running the design in software logic simulation, using ModelSim SE on suse 
10.3 Linux machines having 16 GB of RAM and 2.7 GHz clock speed. Processing of 4 ms of data from 
each position required 4 days of elapsed time on a single computer so I processed for each position 20 
sets of 1/20th of the data in parallel, which required one day.

5.2.3   Results

The resulting power spectra in LHC and RHC are shown in fig. 5.16 for one of the five position angles 
of the input linear polarization on top of each other. These show that the gain equalization flattened the  
spectra and that the window function truncated the spectra where the filters roll off. The total power is 
found to change very little with rotation of the input linear polarization, signaling a high purity circular 
polarization. To quantify the purity, I measured the total power in LHC and RHC as a function of 
rotation angle, and show this in fig. 5.17. This shows power level changes of around 1 part in 200 peak-
to-peak over all position angles as a function of rotation angle. 

Power spectral densities for LHC and RHC for a single position angle. The gains flattened the 
spectra and the window function truncated the spectra where the filters roll off giving a definite 
shape to the pass-band.

 Fig. 5.16:

Mean output powers in LHC and RHC as a function of the rotational position angle of the input 
linear polarization. The total power is found to change very little with rotation of the input linear 
polarization, signaling a high purity circular polarization.

Fig. 
5.17:
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We obtained ellipticities of 0.9971 and 0.9976, axial  ratios of 1.0029 and 1.0024, and D-terms of 
0.0014  and  0.0012  meaning  cross-polarizations  of  -57.08  dB  and  -58.42  dB  for  LHC and  RHC 
polarizations respectively. 

Ellipticity and axial ratio:

Ellipticity is calculated from fig. 5.17. as

√minimum power /maximum power ,                                                                                              (5.1)

which gives 0.9971 and 0.9976 for LHC and RHC respectively and axial ratio is the reciprocal of 
ellipticity.

D-term or cross-polarization:

D-term is obtained by using the formula (Perley 2009)

|D| = (1 - ellipticity) / (1 + ellipticity),                                                                                                  (5.2)

which gives 0.0014 and 0.0012 for LHC and RHC respectively. The cross-polar response is simply the 
D-term  in  dB  given  by  20  log  |D|,  which  gives  -57.08  dB  and  -58.42  dB  for  LHC  and  RHC 
respectively. These values for D-terms are upper limits considering measurement errors.

Since the cross coupling of -33.6 dB caused by the directional coupler is more than the obtained cross-
polar  response,  we infer  that  in  the  process  of  phase  and gain  equalization  we have  lowered the 
contribution of D-term to the measured power in the wanted polarization component somehow. The 
uncertainty on the polarization purity measurement has contributions from thermal noise, mechanical 
tolerance in the rotating waveguide joint, and in the repeatability of RF connections that we had to 
disconnect and reconnect during the measurement for connecting alternately the power meter and the 
oscilloscope. These can be estimated from the small changes of the power in the circular polarization 
formed when the input linear polarization was at -90º and at 90º. Those two positions are symmetric 
and  the  resulting  powers  should  be  equal,  regardless  of  the  ellipticity  of  the  transmitting  or  the 
receiving antenna. We found fractional changes of 0.001 in the LHC power and 0.0004 in the RHC 
power between these two position angles. These are comparable to the peak power variations seen as 
we rotated the input linear polarization, and so the polarization leakage measurement is limited by 
mechanical tolerances in the apparatus. The thermal noise contribution was minor - the fractional error 
due to thermal noise fluctuations in the total power measurement was only 0.0006.

5.2.4 Discussion

A small  systematic offset  is  seen between LHC and RHC powers (fig.  5.16).  A small  error in the 
magnitudes of the rotation matrix elements will cause the phase rotation of  Y to introduce an offset 
between  the  LHC and  the  RHC powers.  This  can  happen  since  truncation  error  can  cause  small 
differences in the obtained phase difference and the actual phase difference. The following equations 
show the dependence of the offset on the rotation angle error = yr0r0−x  r0 .

V LHC r0=X ' r0– j Y ' ' r0                                                                       (5.3) 
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= g x (r ω0)∣X (r ω0)∣e j θx(r ω0 )– j g y(r ω0)∣Y (r ω0)∣e jθ(r ω0)e j θY(r ω0 )                     (5.4)
                                                    
= e j θX (r ω0)(g x (r ω0)∣X (r ω0)∣– j g y (r ω0)∣Y (r ω0)∣e j θϵ(r ω0))                                                              (5.5)

Therefore,

∣V LHC (r ω0)∣
2=g x

2(r ω0)∣X (r ω0)∣
2+ g y

2(r ω0)∣Y (r ω0)∣
2                                                     

            + 2gx (r ω0) g y (r ω0)∣X (r ω0)∣∣Y (r ω0)∣sin θϵ(r ω0)     (5.6) 

Similarly,

V RHC r0=X ' r0 jY ' ' r0                                                                                               (5.7)

= g x (r ω0)∣X (r ω0)∣e j θ x(r ω0 )+ j g y (r ω0)∣Y (r ω0)∣e jθ(r ω0)e j θY (r ω0)                                                      (5.8) 

∣V RHC (r ω0)∣
2=g x

2(r ω0)∣X (r ω0)∣
2+ g y

2 (r ω0)∣Y (r ω0)∣
2  

            −2gx (r ω0) g y (r ω0)∣X (r ω0)∣∣Y (r ω0)∣sin θϵ(r ω0)     (5.9)

Hence, the offset between the two power spectra is given by

∣V LHC (r ω0)∣
2−∣V RHC (r ω0)∣

2=4gx(r ω0) g y (r ω0)∣X (r ω0)∣∣Y (r ω0)∣sin θϵ(r ω0)                           (5.10)

for a single channel.
                                                       
The  RHC power  is  almost  flat  across  band but  LHC showed a  small  change with  frequency.  To 
quantify this variation, I took equally spaced points from each power spectrum in the band of interest 
and plotted the deviation of those points from the mean of the respective power spectrum. Fig. 5.18 
shows the deviation of LHC and RHC power spectra from their mean values. The plots are derived 
from LHC and RHC power spectra obtained by applying the equalization parameters to the same data 
samples from which the equalization parameters are obtained to show the deviations caused by bit 
truncation. From around 300 MHz onwards (fig. 5.18 right) the two polarizations deviate differently 
with  increasing  frequency.  This  difference  can  be  explained  in  terms  of  truncation  of  numerical 
precision.  I  have  truncated  bits  at  stages  before  and  after  formation  of  LHC  and  RHC  powers, 
determined by the input signal levels and by the aim to keep phase errors < 0.1º. The truncation error 
will cause offsets in the two circular power spectra shown in eqs. (5.6) and (5.9), to deviate unequally 
from their mean and hence, the deviation can be more in one than the other. I verified in simulations 
that the offsets and the distortions seen in LHC and RHC power spectra increases in proportion to the 
number  of  bits  discarded.  However,  the  effects  are  small  and  we  nevertheless  obtained  good 
polarization purity.

The equalizer applies phase correction on 1 MHz channel spacing, so we must ensure that when the 
VLBI correlator later subdivides the spectrum into finer frequency channels that the phase equalization 
is  smoothly  interpolated  and  does  not  result  in  a  sawtooth  with  1  MHz  spacing.  I  performed  a 
numerical  simulation  that  confirmed  that  when   we   applied   equalizer weights at 1 MHz spacings,
transformed  back  to  time  domain,  then  transformed to frequency domain with 0.5 MHz spacing (by
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 adjoining two 1024 point frames of time domain data) then the intermediate points at  n + 0.5  MHz, 
where  n  is an integer were seen also to have been phase corrected by the equalizer phase.

  

5.3 Conclusion

The design logic is found to be correct and a polarization purity of -58 dB as obtained including all 
limiting factors in the measurement is good. This value of D-term is an upper limit. The method could 
yield almost ideal results, if the measurement limitations were absent. Thus it is verified that the digital  
circular polarizer would produce pure circular polarization over the whole broad band. Hence, it is 
worth deploying this FPGA based firmware in radio telescopes for observational accuracy. 

Left: fractional deviations of LHC and RHC powers from their mean values across the band of 
interest. The spikes at 160 MHz in the two spectra (fig. 5.16) are excluded. Right: same as left, but 
zoomed in to show the trends of the deviations in the two power spectra.

 Fig. 
5.18:
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                                         CHAPTER 6         

APPLICATIONS IN RADIO ASTRONOMY

In this chapter I will first discuss the significance of our digital circular polarizer in radio astronomical 
applications.  Then  I  will  discuss  various  astronomical  phenomena  that  are  associated  with  the 
generation of polarization to provide an overview of the fundamental processes whose explorations 
would be supported by polarization observations with our digital circular polarizer. I will also discuss 
various depolarizing effects, which should be taken into account while interpreting polarization data. 
Next I will go through various interesting and significant VLBI explorations and techniques where our 
digital  circular polarizer would contribute to observing facilities. These include studies of Galactic 
magnetic fields by the Square Kilometer Array (SKA), studies of emission mechanism in Sagittarius 
A* (Sgr A*), studies of circular polarization in active galactic nuclei (AGN) and studies of cluster of 
galaxies like the Perseus cluster providing information on structure formation in the universe. Finally I 
conclude this chapter summarizing the utility of our digital circular polarizer in the described types of 
explorations.

6.1 Significance of the digital circular polarizer in radio astronomy

Polarization studies in radio astronomy are important to understand various fundamental phenomena 
and unveil cosmic source properties. VLBI, which covers a broad spectrum of radio astronomy and 
which facilitates astronomical sources to be resolved with sub-milliarcsecond synthesized beam widths, 
is  simplest  with  circular  polarization  due  to  geometrical  and  stability  considerations,  which  are 
described in section 1.1. 

Also it is convenient to meet the bandwidth requirements for broad-band observations if native linear 
dipoles are used for receiving the signals since circular feeds do not meet the bandwidth requirements 
and hence a method to convert the received linear polarization into circular polarization would find 
significant application in VLBI. The method used by us can produce pure circular polarization for the 
whole  frequency  range  irrespective  of  how  broad  the  band  is  unlike  present  analogue  circular 
polarizers. I have developed the digital circular polarizer for 500 MHz bandwidth with 1 MHz channel 
widths, which can be used for broadband applications.

Before  going  into  the  details  of  various  interesting  VLBI  explorations  which  will  be  supported 
technically  by our  digital  circular  polarizer  alleviating  several  observational  inaccuracies,  I  would 
introduce the mechanisms responsible for producing polarization in the sky so that the reader gets an 
overview of the fundamental processes which can be unveiled by using polarization observations.

6.2 Different astronomical phenomena generating polarization

Polarization of radio emission often occurs due to the cyclotron and synchrotron mechanism, Zeeman 
effect in atoms and molecules, plasma oscillations in the solar atmosphere, Thompson scattering and 
Brewster angle effects. I will now go into the details of how polarization is associated with each of 
these processes. 

6.2.1 Cyclotron and synchrotron emission

In a cyclotron a charged particle acquires high enough energy by crossing an electric field under the 
effect of a  perpendicular  magnetic  field, which  changes  its  direction  to cross the same electric field 
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repeatedly. It gets accelerated and emits an electromagnetic wave.  The oscillating frequency is the 
same  as  the  frequency  of  motion  of  the  charged  particle  under  the  influence  of  the  two  fields. 
Synchrotron  emission  is  a  special  case  of  cyclotron  emission  where  the  magnetic  field  that  is 
responsible for changing the direction of the moving particle and the electric field that is responsible to 
accelerate the particle are synchronized that is they are changed in order to keep the path of the particle 
constant even when it gains energy due to the acceleration. These are laboratory definitions from where 
the terms cyclotron and synchrotron came.

In  nature,  one  gets  cyclotron  radiation  if  the  radiating  electron  has  sub-relativistic  speed,  and 
synchrotron emission if the speed is relativistic under the influence of an acceleration perpendicular to 
its velocity. There is a third kind of emission called cyclo-synchrotron emission which occurs if the 
speed  of  the  electron  is  trans-relativistic  that  is  the  speed  lies  in  between  that  of  cyclotron  and 
synchrotron.  The resulting  emission  spectra  are  different  in  the  three  cases.  Synchrotron  emission 
shows a continuous spectrum while cyclotron emission occurs mostly at the cyclotron frequency with 
small  fraction of energy at  higher harmonics.  In cyclotron the emission is  linearly polarized when 
observed perpendicular to the magnetic field and is circularly polarized when observed parallel to the 
magnetic field. For relativistic speeds like in synchrotron (see Jackson 2009), polarization seen parallel  
to the plane of motion is much stronger in intensity than polarization seen perpendicular to the plane of 
motion. The intensity increases with decrease in angle between the line of sight and plane of motion. 
The polarization  is  mostly linear  and very small  circular  polarization  can  be  seen.  The degree  of 
circular polarization increases with increase in angle between the line of sight and plane of motion 
accompanied with reduced power emission. 

6.2.2 Plasma frequency and plasma oscillations 

For any electromagnetic wave to be able to travel through a plasma, the frequency of the wave must be 
greater than the plasma frequency (arising due to natural oscillations in plasma) otherwise the wave 
number would be purely imaginary and the wave would be attenuated away. For more details refer to 
Griffiths (1997).  Hence,  a plasma is  transparent  to the waves whose frequency is  greater than the 
plasma  frequency  and  is  opaque  to  those  having  a  frequency  lower  than  that  of  it.  The  plasma 
oscillations resulting from the motion of a certain number of charged particles per unit volume results 
in polarized electromagnetic waves though this polarization is different from the polarization of the 
electromagnetic wave traveling through the plasma. 

6.2.3 Zeeman effect

Another phenomenon that can lead to polarization is the Zeeman effect.  In the Zeeman effect,  the 
electron  configurations  having  the  same  energies,  that  give  rise  to  single  spectral  line  in  case  of 
transition between them, reconfigures in the presence of a magnetic field. The magnetic field breaks 
this degeneracy and modifies the energy of the electrons according to their quantum numbers. Hence 
the energies of these configurations are now different instead of being the same. A transition between 
these  states  would  produce  very  closely  spaced  spectral  lines.  The  Zeeman  effect  also  exhibits 
polarization when observed longitudinal or transverse to the magnetic field. For different transitions, 
different polarization states are observed. 

6.2.4 Thompson scattering

Thompson scattering is caused by elastic scattering of electromagnetic wave by a free charged particle 
(it is non relativistic Compton scattering). When  an  electromagnetic  wave  is incident on a particle, it 
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gets accelerated due to the electric field of the wave. The acceleration causes emission of a wave whose 
frequency is same as that of the incident wave. The wave is polarized in the direction of motion of the 
charged particle and the radiation is  perpendicular to the direction of motion.

6.2.5 Brewster angle effects

Polarization  also  results  from  reflection  at  the  Brewster  angle.  When  an  electromagnetic  wave 
encounters  a boundary between two media with different refractive indices then a  fraction of it  is 
reflected and another fraction is transmitted. For polarization parallel to the plane of incidence if the 
angle of incidence is the Brewster angle, then the reflected component is zero. If a wave of arbitrary 
polarization is incident on a medium at the Brewster angle then the reflected wave is totally plane 
polarized  with  the  electric  field  vector  in  the  direction  perpendicular  to  the  plane  of  incidence. 
Polarization due to Brewster angle effects is observed at planetary surfaces. 

After  discussing  various  astronomical  phenomena  that  can  cause  polarization  I  will  now describe 
several  depolarization  effects,  which  are  very  common  in  polarization  studies  and  which  are 
responsible for changing the polarization angles of the observed radiation.

6.3 Depolarization effects

6.3.1 Depolarization due to Faraday rotation

If a linearly polarized wave travels through a lossless plasma in the direction of an existing magnetic 
field, then the phase velocities of the two circular polarization components of the linear polarization 
will be different. This is due to the fact that the magnetic field causes motion of the charged particles  
present in the plasma. These charged particles will move in the same direction as one hand circular 
polarization but opposite to that of the other hand. Hence, the index of refraction for one will be lower 
than that of the other. This difference in the indices of refraction leads to change in phase difference 
between the two circular polarization components which is equivalent to changing the original position 
angle of the linear polarization (a linear polarization with position angle ψ has two circular polarization 
components with phase difference 2ψ), which is called Faraday rotation of the electromagnetic wave. 
Faraday rotation occurring within a source may depolarize the emergent radiation. This is due to the 
fact that radiation emitted from different depths in a source undergoes different amounts of Faraday 
rotation and the percentage polarization of the observed radiation is reduced.

6.3.2 Bandwidth depolarization

Bandwidth  depolarization  occurs  when  the  polarization  angles  change  significantly  across  the 
frequency band and the polarization of the observed emission is reduced. It is given by sinc(2RM λ² 
δν / ν) (e.g. Tabatabaei et al.  2008) where  RM is the rotation measure (slope of polarization angle 
versus wavelength squared), λ is the wavelength of observation, δν is the bandwidth of observation and 
ν is the frequency of observation.

6.3.3 Beam depolarization

If the orientation of the polarization vectors varies within the telescope beam then the percentage of the 
observed polarization is reduced and this effect is called beam depolarization.

Hence  polarization  studies   and   observations   can   provide   information  on   the   above  described 
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astrophysical phenomena. Also observations at different frequencies yield information on the source 
properties.  Now  I  will  proceed  to  go  through  various  significant  VLBI  explorations  that  require 
advanced  techniques  for  correct  interpretation  of  data  and  our  digital  circular  polarizer  would 
contribute towards the technical needs of such explorations. 

6.4  Explorations and underlying techniques requiring polarimetric observations in VLBI 

In this section I will go through significant explorations done by and lying ahead of the astronomy 
community that entailed or entails advanced polarimetric observational methods and techniques. I will 
also go through the methods and techniques facilitating the explorations. The digital circular polarizer 
is developed for observational convenience of these kinds of experiments and to contribute towards 
meeting their scientific goals. 

6.4.1 Magnetic field studies by the SKA

In this section we review “Observations of magnetic fields in the Milky Way and  in nearby galaxies 
with a Square Kilometre Array” studied by Beck at al. (2004). 

Studies of magnetic fields often provide insight to the structure and evolution of galaxies and of the 
interstellar medium in the universe. For instance, the structure of magnetic field provides information 
on  source  distribution  and  the  magnetic  field  topology  of  sources  tells  about  their  origin.  The 
astrophysical processes like Faraday rotation, Zeeman splitting, synchrotron and cyclotron radiation 
occur in the presence of magnetic field and polarization of radio emission is often associated with these 
processes  and  hence  polarization  studies  of  the  galaxies  and  interstellar  medium  can  provide 
information on the configuration of Galactic magnetic fields. 

Rotation measure (RM), which is a measure of change in polarization angle (due to Faraday rotation) 
with respect to change in squared wavelength or RM = Δχ/Δλ² where χ is the polarization angle and λ is 
the corresponding wavelength,  is a stronger technique for exploring magnetic fields in the interstellar 
medium as compared to synchrotron emission or Zeeman effect in the regions away from the sites of  
active star formation. This is due to the fact that synchrotron emission can only be identified in regions  
of high density of cosmic rays and strong magnetic fields and similarly Zeeman effects entail strong 
magnetic  fields.  On the other  hand Faraday rotation occurs due to  dual  refraction of the traveling 
radiation in the plasma in the presence of a magnetic field, which may occur even in diffuse regions 
and the change in position angle of the wave can be detected by multi-frequency and polarimetric 
observations. A change in polarization angle with change in frequency following a common trend will 
indicate the presence of a magnetic field.  Single sources generally show smooth  RM gradients but 
sources  with  complex  distributions  show more  complex  RM distribution.  Further  by  carrying  out 
rotation measure synthesis (described later in section 6.4.4) emissions at different Faraday depths (each 
Faraday depth is responsible for a certain rotation measure) can be observed. 

By following Burn (1966),  Thompson et al. (2001), Beck et al. (2004) and Brentjens et al. (2005), I see 
that the definitions for RM and Faraday depth are inconsistent. What is called as RM in Thompson et al.
(2001) and Beck at al. (2004) is called as Faraday depth in Burn (1966) and Brentjens et al. (2005).  
However since each Faraday depth is responsible to produce a certain RM, accounting for a certain RM 
would mean to account for the corresponding Faraday depth.  So I remain consistent with Beck et al. 
(2004).

RM in rad/m² is defined as
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RM=K∫ B cosne dl
                                                                                                                          

where K ≈ 0.81 rad m-2 pc-1 cm3 μG-1. B,  and ne are the magnetic field strength, angle between the 
magnetic field and line of sight of the observer and number density of thermal electrons respectively. 
The integration is carried along the line joining the source and the observer.

Further,  let  us consider a wave emitted at  a polarization angle 0 corresponding to =0 and is 
observed at a wavelength  . Then the measured polarization angle  is given by

2=0RM 2                                                                                                                         (6.2)

where  is in m, 0 and  are in radians. This is clearly the eqn. of a straight line having a slope 
RM. 

Note- In eqn. (6.2), 2−RM 2 corresponds to derotation of the polarization vector at wavelength
 with respect to the polarization vector at wavelength 0 ( =0 ). If 0 is replaced by 0

2
where 0

2 is a point in 2 axis and 0
2 is the corresponding polarization angle then a derotation 

by an amount 2−RM 2−0
2 , which is equal to 0

2 would mean to derotate 2 with 
respect to the polarization vector at wavelength 0 accounting for the same RM. This description will 
be useful in section 6.4.4.

Measurements of RM will provide information on the direction and strength of magnetic field along the 
line of sight of the observer provided we have some information about the number density of thermal 
electrons. Further we can group diffuse polarized emission measured in narrow bands over a broad 
frequency range to enable Faraday tomography to be carried out where different layers of polarized 
emission  are  penetrated  by  different  frequencies.  Thus  by  multi-frequency  observations  any  field 
structure along the line of sight can be identified uniquely. With large number of channels (required for 
fitting RM) RM synthesis becomes feasible, which is described clearly in section 6.4.4.

If  enough  polarized  sources  can  be  observed  in  the  background  material  then  the  magnetic  field 
geometry and strength in the foreground material can be explored, which is again due to the fact that 
the emissions from different regions in the sky having different backgrounds can be separated and 
contribution to  RM by different regions can be inferred. This will become more clear when I will go 
through the details of RM synthesis in section 6.4.4. For now I will concentrate towards the aims of the 
RM survey,  which  is  planned  to  be  conducted  by  the  SKA project.  SKA will  have  enhanced 
observational  capabilities  with  two orders  of  magnitude  greater  sensitivity  than  the  existing  radio 
telescopes. It will cover large instantaneous field-of-view. It will have an effective collecting area of 
one million square metres, frequency range from 100 MHz to 25 GHz, sensitivity gain of 100 relative 
to the current radio interferometers. It will also have unique polarimetric capabilities. 

SKA plans to create RM grid consisting of nearly placed RM measurements in any direction in the sky. 
To accomplish this goal it is required to increase the density of polarized background radio sources 
dramatically so that the foreground region can be studied. Considering all the technical challenges, it 
will take one year of observation time with 1 h integration time per pointing covering 10,000 deg² of 
the sky. This experiment entails the Stokes parameters be available for broad frequency band. Since the 
density of background polarized sources is expected to be high, this puts an upper limit to the angular 
resolution  to  get   a  clear  picture  of  the  polarized  sky.  Accounting  for  this angular resolution  and 
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an optimum field-of-view there is a need of a certain number of channels with a certain channel width 
to get rid of bandwidth smearing.  There are other issues like bandwidth depolarization, which can be 
accounted for by observing with narrow channels. Also the dynamic range required for detecting faint 
polarized sources is taken into account. To get more information on the specifications please refer to 
Beck et al. (2004)

Now I will go through the details of specific projects that would be supported by the RM measurement 
experiment by the SKA.

-Projects supported by SKA RM measurements

1. Study of Milky Way:

Studies of the Milky Way provide information on the structure and evolution of Galactic magnetic 
fields. However, due to sparse sampling of RMs and due to limited sensitivity this opportunity is not yet 
fully explored.  The proposed SKA Galactic  and extra-Galactic  RM survey will  overcome all  these 
limitations and it will be possible to obtain the full geometry of the Galactic magnetic field. 

Turbulence in the ISM is another topic of interest. Turbulence originates as a results of astrophysical 
processes and enters the ISM. The size of the turbulence can be characterized in terms of its extent in  
space. This size represents the size of its spatial power spectrum. It enters the ISM with a certain spatial 
extent and this  extent decreases monotonically with time before being dissipated as heat.  The size 
varies from scales greater than or equal to 1 kpc to a fraction of an AU before it vanishes completely. It  
is possible to obtain continuous power spectra of turbulence using dense sampling of RM. Fluctuations 
in the magnetic fields are coupled to those in electron density for producing the turbulence but the 
relation is not yet known. It will also be possible to obtain the spatial power spectrum of the turbulence 
in  two dimensions,  which  will  be  a  section  of  the  three  dimensional  turbulence,  as  a  function  of 
Galactic latitude and longitude. However, since different sources lie at different distances along the line 
of sight, information on variation in the third dimension may also be obtained. At high latitudes the 
optical extinction is distinctively less so information on mean electron density can be disentangled from 
that  of mean magnetic field if  information on Hα  emission from diffuse ionized gas coupled with 
dispersion  measures  of  pulsars  present  in  globular  cluster  is  used  with  RM measurements  of 
background sources.

2. Study of Galactic supernova remnants:

The magnetic fields play a major role in studying shocks in SNRs and there are theories that strong 
magnetic fields result in shocks in SNRs. There are many phenomena occurring in SNRs like heating, 
turbulence and acceleration of particles, which can be uncovered by studying magnetic fields. It is 
difficult to know the strength of magnetic fields from RM measurements only though the direction can 
be obtained from the polarization direction. The young adiabatic SNRs have magnetic field strengths 
about or less than 1 mG; since they have small compression ratio, the reason for this field strength is 
unknown. Generally the contribution from the field strength and from the number density of cosmic ray 
electrons are not the same and hence the magnetic field strength can only be inferred if we have some 
additional  information  on  density  of  cosmic  rays  from  other  sources  of  information  like  X-ray 
emission. Also magnetic field strength may be obtained when there is Zeeman-splitting of OH masers, 
which is due to interaction with the shocks. 
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Further SNR shocks inject significant amount of turbulent energy arising from magneto-hydrodynamic 
turbulence to its environment and these can be tested and studied by RM measurements of background 
sources in the vicinity of SNRs. It has been difficult to disentangle the effects of SNRs from their 
complex surroundings until now due to sparse sampling of RMs. SKA RM measurements would yield 
dense RM grid thus alleviating this problem. 

3. Study of Galactic HII regions:

A study of magnetic fields and motion and arrangement of gas molecules in HII regions will provide 
clue to how magnetic fields are affecting the gas flows, its amplification and compression.  This is 
because the densities of HII regions are distributed over a wide range facilitating detailed analysis from 
variable information or data. It will be possible to determine magnetic fields in diffuse regions by RM 
measurements of background sources, which otherwise is very difficult. This is because the effects of 
these diffuse regions on RM of diffuse polarized emission from the Galactic background can easily be 
identified whereas other sources to detect magnetic fields like the Zeeman splitting can only yield 
results for excessively compact regions. It is possible to obtain information on electron density from 
Hα or continuum emission, which when combined with RM measurements can yield the magnetic field 
strength. SKA will be having wide field-of-view thus enabling increase in the number of background 
sources dramatically. Also compression of gas and magnetic fields by ionization fronts and contribution 
of magnetic field towards causing turbulence in the interiors of HII regions can be studied.

4. Study of nearby galaxies:

It is difficult  to measure magnetic field strengths in the regions away from the sites of active star 
formation in the outer parts of galaxies without  RM measurements of polarized background sources. 
With the current available background sources no galaxies beyond M 31 can be mapped. With the 
SKA, the polarized background sources will increase dramatically yielding detailed maps of magnetic 
structure within the fields of M 31, the LMC or the SMC. Smoothing of  RM grid will result in high 
sensitivity to RM measurements and even the weak fields will be detected by the RM measurements of 
SKA.

5. Study of origin of magnetic fields

RM measurements will provide clue to dynamo or primordial field origin. Large scale RM patterns in 
many galaxies indicate an organized direction for the regular magnetic field and hence it cannot be 
caused by compression or expansion in gas flows. The two models for generation of magnetic fields- 
the dynamo model and the primordial field model predict different azimuthal and vertical symmetries 
for the magnetic field. Each such pattern represents a mode and thus each mode has a unique structure 
and orientation of magnetic field lines. In dynamo modes coherent magnetic fields are preserved, which 
are the superposition of modes while the primordial fields are difficult to be preserved due to diffusion 
and reconnection caused by differential rotation as time passes in a galaxy's lifetime.  The conditions 
for excitation of different modes are different. Observations of nearby galaxies made so far reveal a 
mixture of modes, which cannot be determined reliably due to limits on angular resolution and signal to 
noise  ratios  but  SKA will  overcome these  limitations.  The modes  generate  a  Fourier  spectrum of 
azimuthal  RM patterns,  which  can  be  reliably  determined  by  the  SKA since  it  has  the  required 
sensitivity and spatial resolution. Also the weaker polarization emissions will be mapped by the SKA 
RM measurements, which will enable determination of field patterns in diffuse regions. Primordial and 
dynamo models predict different  RM patterns and hence  RM measurements can yield information on 
the mechanism of field origin.
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6.4.2 Studies of Sgr A*

In this section we review “ The linear polarization of Sagittarius A* I. VLA spectro-polarimetry at 4.8 
and 8.4 GHz”,  “The linear polarization of Sagittarius A* II. VLA and BIMA polarimetry at 22, 43 and 
86 GHz”, and “Interferometric detection of linear polarization from Sagittarius A* at 230 GHz” studied 
by Bower et al. (1999a), Bower et al. (1999b) and Bower et al. (2003) respectively.

Synchrotron  emission  from  active  Galactic  nuclei  (AGN)  often  manifests  high  polarization.  So 
observations have been carried out to detect linear polarization from the nearest AGN, Sgr A*, which 
would strongly support synchrotron mechanism as its  radiation process.  Sgr A* is  recognized as a 
massive  black  hole  candidate.  Stellar  proper  motion  studies  indicate  the  presence  of  a  mass  of 

2.6×106 M ⊙ within 0.01 pc of Sgr A*. Also a lack of detected motion of Sgr A* suggests that at 
least 103 M ⊙ is associated with it. High temperature of 109 K and compactness of the radio source 
revealed  by  VLBI  observations  at  millimeter  wavelengths  support  emission  of  cyclo-synchrotron 
radiation. Linear polarization is expected to be the outcome of this cyclo-synchrotron emission that 
produces the radio-millimeter wavelength spectrum. 

Information  that  we  have  are  as  follows:  a  fractional  polarization  of  70  %  is  manifested  by  a 
homogeneous and optically thin synchrotron source under the influence of a uniform magnetic field. 
The fractional polarizations measured in AGN are usually a few percent at wavelength shorter than 6 
cm though sometimes  regions  with  increased  polarization  are  also  observed  in  VLBI polarization 
images. The polarization fractions are observed to increase with frequency in the cores which may be 
due to large RMs in the cores, enhanced visibility of the shocked regions and decreased opacity of the 
synchrotron. Further, observations of AGN have revealed correlation between the evolution of linear 
polarization and total intensity asserting the presence of shocks in the relativistic jets of AGN.  Also 
comparison of the variations in the polarized and total intensity may provide clue to other ongoing 
processes.  Hence  this  information  should  be  used  along  with  the  data  from Sgr  A*  to  unveil  its 
structure and radiation mechanism.

We should also note the effects of depolarization in case of Sgr A* since it is surrounded by thermal 
plasma and the region has high magnetic field strength and high density of electrons which will cause 
Faraday rotation of a polarized signal from it. Faraday rotation may cause depolarization of the emitted 
radiation as it travels through different depths in the interstellar matter. Also large  RMs may cause 
depolarization of a polarized signal from Sgr A* especially when the polarization angle wraps through 
more than one turn, n ambiguities make it difficult to detect RMs through linear least squares fit. 
Further, bandwidth depolarization will occur if the polarization angle rotates by more than one radian 
or if RM exceeds

RM max=/22                                                                                                                       (6.3)

In eqn. (6.3) if  is divided into  channels then a search for RMs exceeding RM max can be 
made. The minimum RM detectable in spectro-polarimetric measurements is around the same as the 
maximum RM for the continuum measurements for the same bandwidth. 

By taking into account all the information stated above, I now go through some relevant observations 
carried out to detect linear polarization from Sgr A* and the inferences drawn from them.
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-Observations to detect linear polarization from Sgr A*

Now I will briefly go through each observation carried out to detect linear polarization from Sgr A*.  In 
these observations the complex visibility data, P = Q + iU was Fourier transformed and mapped with 
respect to 2 ,  which enables detection of large  RMs without sensitivity loss. The rotation of the 
polarization  vector  is  equivalent  to  a  rotation in  the two-dimensional  Stokes  Q and U space.  The 
polarization angle  is given by 

=½ tan−1U /Q                                                                                                                            (6.4)

Since  RM is the slope of  as a function of 2 , a measure of P in the 2 space would yield a 
measure of RM. The polarization angle for zero Faraday rotation (RM = 0), which is also the emitted 
position angle (see eqn. (6.2)) is obtained by extrapolating  with respect to  to yield its value (
0 )  at =0 .  Polarization  fractions  were  obtained  by imaging  Sgr  A*  with  and  without  RM 

corrections. It is the ratio of polarized intensity to the total intensity.

VLA (Very Large Array) polarimetric observations at 4.8 and 8.4 GHz:

Both continuum and spectro-polarimetric observations were made at 4.8 GHz for a bandwidth of 50 
MHz. In the continuum observation, a polarization fraction of 0.1 % was detected for a maximum 
detectable RM of around 104 rad/m2. The spectro-polarimetric observation was made in 8 consecutively 
spaced frequency bands each of which was 6.25 MHz wide and was further divided into 32 frequency 
channels. A polarization fraction of 0.2 % was detected. The range of RM covered was from 104 rad/m2 

to 3.5 × 106 rad/m2.

The spectro-polarimetric observation at 8.4 GHz was carried out in 7 frequency bands each of which 
was 6.25 MHz wide and was divided into 32 frequency channels. A fractional polarization of 0.1 % was 
detected. The range of RM was 2400 ± 37000 rad / m².

Amplitude,  phase  and  polarization  calibrations  were  performed  using  calibrator  sources  and  by 
following standard practices  for  all  these observations.  The measured values  were upper  limits  as 
indicated  by  off-source  peaks  and  residual  instrumental  polarization.  For  detailed  information  on 
calibration refer to Bower et al. (1999)

VLA continuum observations at 22 GHz and 43 GHz:

This showed a polarization fraction of 0.2 % for 22 GHz and 0.3 % for 43 GHz. The bandwidth was 50 
MHz. The maximum RM detectable were 1.3 × 106  rad/m2 and 8.4× 106  rad/m2 respectively.

Amplitude, phase and polarization calibrations were performed using calibrator sources by following 
standard practices. There were polarization errors due to D-term errors, smaller number of antennas and 
poorer  performance  at  these  frequencies.  The  errors  (off-source  peaks)  were  comparable  to  the 
measured fractional polarizations. Hence the measured fractional polarizations were upper limits. For 
detailed information on calibration refer to Bower et al. (1999b).

BIMA (Berkeley-Illinois-Maryland Association) continuum observations at 86 GHz and 90 GHz:

A fractional polarization of around 1 % was inferred from these observations. The bandwidth was 800 
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MHz. The maximum detectable RM was 4.8 × 106  rad/m2.

Amplitude, phase and polarization calibrations were performed using calibrator sources by following 
standard practices. The polarization errors were estimated from the off-source peaks in the polarization 
maps. The measured polarization fraction was an upper limit. For detailed information on calibration 
refer to Bower et al. (1999).

BIMA continuum observation at 230 GHz

A linear polarization of 7.2 % ± 0.6 % was observed at a position angle 139º ± 4º. The bandwidth was 
800 MHz. The detected RM was – 4.5 × 105 rad/m2 ± 1.6 × 105  rad/m2.

The resolution was high enough to isolate the emission from Sgr A* from those of other sources. Phase 
and leakage calibrations were applied following usual methods. Antenna gains were observed to be 
stable so no further amplitude calibration was carried out.  The sources of errors were atmospheric 
coherence  and  antenna  pointing  errors  and  both  of  these  contributed  equally  to  polarized  and 
unpolarized  emissions.  So  polarization  fractions  were  more  reliable  measurements.  Magnitudes  of 
these errors were estimated from observations of calibrator sources with different arrays. For detailed 
information on calibration refer to Bower et al. (2003).

Note:  All  the  above  mentioned  observations  switched  to  circular  polarizations  in  the  receivers  as 
required for reasons already discussed in 1.1.

-Inferences from the results of observations

For dust emission whose typical intensity values and distribution are known to account for the observed 
polarization intensity and polarization fraction at 230 GHz, the dust needs to be significantly clumped 
and highly polarized at the location of Sgr A*, which is extremely unlikely.

Absence of linear polarization at and below 112 GHz (found in another observation) may occur due to 
depolarization as a result of internal field disorder or foreground beam depolarization. 

The  RM variations  observed  in  Galactic  centre  (GC)  region  are  much  less  than  that  required  to 
depolarize Sgr A*. Also the conditions on magnetic field strength and density of electrons necessary to 
depolarize Sgr A* in the GC scattering regions taking all factors like propagation path lengths and 
equilibrium conditions between the magnetic field and thermal components into account are extreme. 
So depolarization  is unlikely to occur in the scattering region.

Absence  of  linear  polarization  at  112  GHz  for  800  MHz  bandwidth  excludes  the  possibility  of 
bandwidth depolarization at 112 GHz since it will require an RM greater than 1×107  rad/m2, which is 
much greater than the measured RM, which is around – 4.3 × 105 rad/m2 ± 1.6 × 105  rad/m2 at 230 GHz. 
The measured RM can be just sufficient to cause angular depolarization by changing the position angle 
by more than 180º at 112 GHz. A fully turbulent accretion region whose scales are comparable to 
source size can depolarize the source at 112 GHz.

Another explanation could be the presence of two sources one of which is polarized and the other 
unpolarized and the polarized source dominates the spectrum above 230 GHz. All models include at 
least two components. 
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There  are  several  models  like  Bondi-Hoyle  accretion  model,  advection-dominated  accretion flows 
(ADAFs) models  and convection-dominated accretion flows (CDAFs) models,  which are trying to 
account for the measured RM and the observed spectrum by different accretion rates. No accretion rate 
determined by these models agreed with the measured RM and the observed spectrum simultaneously. 
That is the measured RM produces accretion rates that are too low to produce the observed spectrum. If 
there are magnetic field reversals and variations from equipartition between particle and field energy 
then a low RM similar to that measured may account for the observed spectrum since the same models 
may produce lower RMs (similar to that measured) for the rms magnetic field than they will do for a 
uniform magnetic field. But as calculated the number of magnetic field reversals required to meet the 
condition is extreme. So ADAFs and CDAFs are implausible. 

There are jet models accounting for increase in polarization fraction with frequency where the emission 
originates from shock accelerated particles near the base of the jet and the order of magnetic field 
increases towards the base of the jet due to the shock. The base of the jet being optically thick is  
transparent to only high frequencies while the regions away from the base being optically thin are 
transparent to all frequencies implying more emission in the high frequency regime.  The position angle 
of 181º ± 2º of the electric field vector implies a north-south direction, which is perpendicular to the 
magnetic field (as in case of synchrotron; see section 6.2) and thus the direction of alignment of the jet 
axis is north-south being perpendicular to the compressed magnetic fields as per these models. In most 
models the jet axis is aligned with the electric field vector. However, an inclination angle for the jet 
axis close to the line of sight is possible since it is not well constrained in case of Sgr A* and since 
highly inclined sources show strongest polarization. Also then the radio/millimeter emission will be 
relativistically beamed resulting in the absence of a visible jet. 

-Other explorations

Along with modeling the radiation process there are other explorations to be carried out like precession 
of the accretion disk causing changes in polarization angle where the precision is resulting from spin of 
associated  black  hole,  polarization  angle  differences  at  different  frequencies  and measurements  of 
polarization fraction as a function of frequency, which will contribute towards constraining or relaxing 
the models.  RM variations with time with time-scales from hours to years will probe changes in the 
accretion or outflow rates. Further, VLBI imaging of polarized emission will also be able to probe 
general relativity effects near the black hole.

Further, strong and variable circular polarization has been detected between 1.4 GHz and 43 GHz with 
no  accompanying  linear  polarization.  There  are  models  accounting  for  this  observation  through 
conversion of linear to circular polarization and the linear polarization being bandwidth-depolarized 
with low energy electrons and through models having plasma modes near a black hole. This topic needs 
further investigations.

6.4.3 Studies of circular polarization in AGN

In this section we review “Circular polarization in AGN” studied by Macquart (2001).

Circular polarization observed in AGN is typically less than 1 %. In order to detect this small circular 
polarization, which is mainly present in the compact regions, high resolution polarimetry is required 
otherwise there would be beam depolarization. VLBA (Very Long Baseline Array) has the required 
high angular  resolution. It  has  also  been  able  to  provide  information  on  the  location of  circular 
polarization    with    respect   to  the  core  and  jets   of  an AGN. With  ATCA  ( Australia  Telescope
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Compact  Array)   it  is  possible to  do  high  precision,  short   time scale   monitoring of  intra-day 
variable (IDV) radio sources thus using source variability information to obtain the angular resolution 
information.  It  can  measure  better  than  0.01  % degree  of  circular  polarization.  Coupled  with  an 
understanding of effects of interstellar scintillation, the IDV monitoring by ATCA has enabled milli-
arcsecond resolution polarimetry.

-Origin of circular polarization

Circular polarization may arise from synchrotron mechanism, cyclotron emission, coherent emission by 
several localized patches, conversion to circular polarization from linear polarization in magnetized 
relativistic plasma and by scintillation effects. However, all these processes require constraints either 
for the generation or for the detection of circular polarization. The constraints can be to decrease the 
angle of magnetic field to the line of sight required to increase the degree of circular polarization but 
that in turn decreases power emitted in case of synchrotron, on the orientation of the plane of motion of 
particles and consideration of only fundamental frequency in case of detection of circular polarization 
in cyclotron and on the geometry of infalling rays with respect to magnetic field coupled with the 
requirement of Faraday rotation or that the incident radiation originates in a region having different 
direction  of  magnetic  field  than  that  in  the  region  where  the  conversion  takes  place  in  case  of 
generation  of  circular  polarization  in  relativistic  magnetized  plasma.  Lastly  there  are  scintillation 
models to account for generation and variability of circular polarization. However, a sign change in the 
circular polarization on a time scale in accordance with the scintillation pattern as expected is  not 
observed. Relaxing some of the assumed constraints of the model would affect both the magnitude of 
the effect and the time scales on which the changes in sign are expected to occur. This theory may 
account for the variable circular polarization seen at cm wavelengths in some AGN and in Sgr A*. 
There are many more specific constraints along with those mentioned that highly complicates these 
issues and it seems these mechanisms would work only under very special cases, which may happen 
but the probability of their existence will decrease along with increase in constraints. None of these 
mechanisms seem to be an obvious one. Now I would proceed to go through the inferences from the 
results obtained from observations carried out to detect circular polarization.

-Inferences from the results of observations

Detection  and  variability  observations  of  circular  polarization  by  VLBA and  ATCA has  provided 
valuable  information  on  the  origin  of  circular  polarization.  Observations  reveal  that  circular 
polarization  in  AGN is  variable.  However,  the  variability  of  circular  polarization  measured  by its 
timescale and magnitude is not same as that of linear polarization or of total intensity. The shorter time 
scales of circular polarization variability as compared to that of total intensity indicate that the circular 
polarization originates from a more compact region compared to the total unpolarized bulk emission. 
However, if this region is too compact then the circular polarization may get beam depolarized even on 
VLBI scales  and  hence  this  topic  needs  further  investigations.  Further  some sources  exhibit  high 
circular polarization, which is not correlated to the extent of linear polarization, which may be due to 
the  fact  that  linear  polarization  gets  Faraday depolarized.  High  circular  polarization  is  tentatively 
associated  with  IDV AGN  as  many  of  these  show  substantial  and  variable  circular  polarization. 
Observations show that the degree of circular polarization is a few percent. Also some sources show 
same handedness of circular polarization for decades and some do not but the reality of these changes 
is not yet fully explored. 

One effect that may account for the variation observed in circular polarization is scintillation. However, 
since it affects circular polarization, linear  polarization  and total intensity equally, the source structure 
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must account for the differences observed. A source model consisting of a polarized and an unpolarized 
component may account for the differences observed if the angular separation between the sources is 
comparable to the angular scale of scintillations since then the fluctuations due to each component are 
uncorrelated. Further, since variability in Stokes V arises from one component and that in Stokes I 
arises  mostly from the other  component,  the  variations  in  V and I  are  uncorrelated  or  marginally 
correlated. The correlation pattern changes due to change in the direction of scintillation velocity with 
respect to the line joining the two components during the course of a year. This is due to Earth's change 
in  velocity  arising  due  to  its  orbital  motion,  which  changes  the  apparent  scintillation  velocity 
significantly. In reality the source structures are more complicated than two component model. It will 
be   useful  to  know  the  power  spectrum  of  source  brightness  distribution  in  each  of  the  Stokes 
parameters to uncover the structural details. Since the power spectrum of the fluctuations observed is 
the product of scintillation power spectrum of a point source that is a known parameter and the power 
spectrum  of  the  source  angular  brightness  distribution,  the  source  structure  (angular  brightness 
distribution) can be obtained.

Since VLBI and scintillation  measurements  indicate  that  circular  polarization originates  from very 
compact regions, high resolution polarimetric imaging techniques are required to detect this polarized 
emission.  Scintillation  imaging  is  the  best  technique  at  cm  wavelengths  to  meet  this  objective. 
Scintillation observations can provide information on the extent of circular polarization and its location 
with respect to the polarized and unpolarized emission. The spectral slope of circular polarization can 
limit the origin of circular polarization since different frequencies can trace different regions. Such 
detection will require high precision polarimetric observations over a broad frequency range. However, 
the complex inhomogeneity and source structure limit this scope.

6.4.4 Studies of the Perseus cluster

In  this  section  we  review  “Faraday  rotation  measure  synthesis”  and  “Diffuse  polarized  emission 
associated with the Perseus cluster” studied by Brentjens et  al.  (2005) and de Bruyn et  al.  (2005) 
respectively.

Polarization studies of clusters can contribute significantly to deriving the magnetic field strength (if 
number density of thermal electrons can be derived by some other means) and structure along with 
facilitating  explorations of particle energy distribution, shocks, jets and various emitting structures and 
modeling polarization generating mechanisms. 

Polarization studies of clusters can provide information on structure formation in the universe. Current 
simulations for structure formation indicate that small masses collapsed and the larger masses accreted 
smaller ones growing bigger in size. The outcome of these kinds of processes is huge amount of gas 
flows, which produce shocks at their intersections. These shocks can be identified by studying different 
structures in a cluster for example the cluster relic sources, which are bubbles of magnetized plasma are 
dormant due to their very low electron densities owing to adiabatic expansion of the bubble and are  
visible only at very low frequencies. The electrons in the bubble may get energized by a structure 
formation  shock  that  compresses  the  bubble  adiabatically.  The  compression  will  reconfigure  the 
magnetic field and may result in polarized emission. Also highly polarized radio sources in the outskirts 
of galaxies may provide information on shocks at the common boundary between clusters and super-
cluster  filaments  accreting  into  them.  Polarization  studies  of  the  Perseus  cluster  can  provide 
information on thermal gas, relativistic gas and magnetic fields. Low frequency observations can yield 
information on low density regions if they are under the influence of a magnetic field since low gas 
densities and low temperatures   result   in   reduced   emission  in  the  high  frequency  regime.
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 However, low frequency observations  are  limited  by  off-axis  instrumental polarization, ionospheric 
Faraday rotation, internal depolarization, bandwidth  depolarization  and  beam  depolarization. Hence 
these  factors  need  to be accounted for to make correct estimates.

In studying Perseus cluster Brentjens and de Bruyn used a very novel technique called rotation measure 
synthesis (RM synthesis), which is also derived by them. They carried out this technique in the image 
plane (to go to the image plane from the visibility data please refer to Thompson et al. (2001) or any 
standard textbook on radio-synthesis imaging). The advantage of this technique is different structures 
can be identified at different Faraday depths (we should note that each Faraday depth is responsible for 
a certain RM and hence it seems okay to even replace RM with Faraday depth. If an RM is not caused 
by  a  certain  assumed  Faraday  depth  then  the  emissions  corresponding  to  that  RM will  not  add 
coherently in the assumed Faraday depth otherwise they will) for a large field of view and also the 
morphology of the structures  can provide information on their  origin.  Now I will  go through this 
technique for clear understanding of the observations that follow.

In  RM synthesis  a  range  of  values  of  Faraday depths  are  assumed.  Each  value  of  Faraday depth 
constitute an  RM frame consisting of many pixels in two dimensions of the sky coordinates. An RM 
cube is constructed by placing the RM frames in parallel with the third dimension being the Faraday 
depth. A Faraday depth of  causes a Faraday rotation of 2 for a wavelength  . In the k th  
RM frame the ith frequency channel's polarization vector in each pixel (one pixel here represents one 
measured spectrum in the two dimension of sky coordinates. This is obtained by collapsing the pixels 
corresponding to a certain location of sky coordinates in different channel images. One pixel has one 
data point in each channel image. Hence after collapsing each pixel will have N data points where N is 
the number of channels) is derotated by an amount of k i

2 , where k is the Faraday depth of the
k th frame and i is the wavelength of the ith frequency channel, to determine the polarization 

angles at a Faraday depth k . Note that this derotation corresponds to placing all polarization vectors 
in their positions with respect to =0  polarization vector accounting for a Faraday depth k . If 
the  derotation  is  with  respect  to  some other  polarization  vector  at =0 then  the  corresponding 
amount  of  derotation will  be k i

2−0
2 ,  which  is  the general  and practiced form (see  the text 

following eqn. (6.2)). The concept of 0
2 will become more clear in the text that follows. Thus the 

emissions originating at a particular Faraday depth will add coherently in the associated RM frame and 
all other emissions will add only partly coherently reducing the sensitivity to emissions not originating 
at  the assumed Faraday depth.  After  derotation and addition in  each pixel,  each  RM frame shows
F k , which is the reconstructed Faraday dispersion function or reconstructed polarized surface 

brightness per unit Faraday depth, for the assumed Faraday depth ( k ). In order to get the general 
formulations of RM synthesis I will first write the quantities in terms of continuous variables  and
 and then I will show the corresponding discrete functions for the practical cases.

F  , where ~ represents observed quantities, is given by 

F =K ∫
−∞

∞

P 2e−2i2

d 2                                                                                                         (6.5)

where the observed polarized surface brightness

P 2=P 2W 2                                                                                                                       (6.6)
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where P 2 is  the  actual  polarized  surface  brightness  and W 2 is  the  weighting  function 
corresponding  to  the  beam  in  the 2 domain. Thus  the   Faraday dispersion  function in the   
domain is the Fourier transform of polarized surface brightness  in  the 2 domain. Then I can write 
by Fourier transforming eqn. (6.6)

F =F ∗R                                                                                                                         (6.7)

where R is  the  Fourier  transform  of  the  weighting  function W 2 normalized  to  unity  at 
=0 or

R=K∫
−∞

∞

W 2e−2i2

d 2                                                                                                         (6.8)

It is also known as the rotation measure transfer function (RMTF). K is the normalization factor given 
by 

K=1/∫
−∞

∞

W 2d 2                                                                                                                         (6.9)

Eqs. (6.5) and (6.8) correspond to the case  when the response of RMTF is parallel to the polarization 
vector  at =0 and  all  other  polarization  vectors  are  derotated  to  their  positions  relative  to  the 
polarization vector at =0 at a Faraday depth  . However, if derotation is with respect to some 
other vector at =0 then eqs. (6.5) and (6.8) are generalized respectively as

F =K ∫
−∞

∞

P 2e−2i2−0
2d 2                                                                                                  (6.10)

and

R=K∫
−∞

∞

W 2e−2i2−0
2 d 2                                                                                                  (6.11)

In eqs. (6.10) and (6.11) all  vectors are derotated to their positions with respect to the position of 
polarization  vector  at =0 accounting  for  a  Faraday  depth  .  No  information  is  lost  by 
derotating with respect to polarization vector at =0 and not with respect to =0 . The response 
of the entire main peak of the RMTF should be parallel to the polarization vector at =0 .  Hence, 
the value of 0  should be such that the orthogonal response of the RMTF at =0 is minimized 
and it is found by setting the derivative of imaginary part (orthogonal response) of the RMTF to 0 at
=0 . This is reasonable since at =0 , there is no Faraday rotation. In this way 0

2 is obtained 
as

0
2=∫

−∞

∞

W 22 d 2∣∫
−∞

∞

W 2d 2                                                                                                (6.12)

Or, 0
2 needs to be the weighted average of all 2 . 

Until now all equations are in terms of continuous variables. Now I will return to the original case 
where the RM frames represent the Faraday depth samples of the Faraday dispersion  function  and  are
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 obtained  by  Fourier  transforming  the  sampled  polarized  surface  brightness function in the squared 
wavelength domain. Eqs. (6.5),  (6.6),  (6.7),  (6.8),  (6.9),  (6.10),  (6.11)  and  (6.12)  can  be rewritten 
respectively in discrete form as

F k =K∑
i=1

N
P i

2e−2i ki
2

(for rotation with respect to =0 vector)                                      (6.13)

P i
2=P i

2W i
2                                                                                                                      (6.14)

F k =F∗Rk                                                                                                                        (6.15)

Rk =K∑
i=1

N

W i
2e−2ik i

2

(for rotation with respect to =0 vector)                                     (6.16)

where K=∑
i=1

N

W i
2                                                                                                                      (6.17)

F k=K∑
i=1

N
P i

2e−2ik  i
2−0

2  (for rotation with respect to =0 vector)                               (6.18)

Rk =K∑
i=1

N

W i
2e−2ik  i

2−0
2  (for rotation with respect to =0 vector)                              (6.19)

and

0
2=∑

i−1

N

W i
2i

2∣∑
i=1

N

W i
2                                                                                                            (6.20)

After describing the method of RM synthesis, I will now go through the observations and the inferences 
drawn.

-Spectro-polarimetric observation of Perseus cluster with WSRT

RM frames for a range of Faraday depths from -300  rad/m² to +300  rad/m² were constructed out of 
which 126 images were used for the construction of the RM cube. Several features were observed in 
different  RM frames. Observation was carried out for 80 MHz bandwidth centred at 350 MHz. The 
band was divided into 8 independently tunable bands of  10 MHz each.  These bands were further 
divided into 64 channels. 

To reduce side lobes and increase spectral resolution, Hamming tapering was used and to reject RFI, 
combinations  of  odd-even  channels  were  used.  There  were  some  problems  due  to  ionospheric 
fluctuations and calibration was done on a channel by channel basis taking ionospheric models into 
account. Total intensity was self calibrated. The focus was only in the inner 3º of the cluster, which was 
not affected by pointing errors. On-axis polarization calibration was done using a calibrator source  to 
align  the  phases  of  the  two  orthogonal  polarizations.  Leakage  corrections  were  done  with  an 
unpolarized calibrator source. The   main   sources   of   errors   were  off-axis instrumental polarization
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leakages, which  cause  spurious  polarization  signals  in  the  location  of  strong sources and falls with 
increase in RM (  ) values  especially  when the polarization is frequency independent causing them 
to add incoherently at large  RMs, multiplicative errors in the uv plane that results into convolution 
patterns in the  image  plane,  polarized  grating  lobes  from  Cas A although  it was  insignificant and 
instrumental  artifacts  giving  rise  to  structures  like  the  detected  whiskers  whose intensity fell  with 
increase in distance from 3C 84. All these sources of errors were easily detected to isolate them from 
signals of celestial origin. For detailed information on calibration refer to de Bruyn et al. (2005).

-Detected features and inferences from the observation

Celestial  signals were clearly identified in the  RM cube frames covering a wide range of Faraday 
depths between 0  rad/m² and 90  rad/m².  At low Faraday depths from 0  rad/m²  ≤  ≤ 15 rad/m² 
diffuse structures with slowly varying polarization angles of the order of several tens of arcmins were 
observed and at high Faraday depths from 30 rad/m² ≤  ≤ 90 rad/m² distinct large structures with 
sizes of the order of a degree and having granularity in the polarization angles of the order of few 
arcmins were observed. No significant emission was detected between 15 rad/m² to 30 rad/m². 

The diffuse emission at low  was inferred to be produced by the Galactic foreground as similar RM 
was observed  in  another  observation  of  a  source  located  at  around same latitude  (l)  but  opposite 
longitude (b).  Thus the low  emission was inferred to be originating from the Galactic foreground.

High  emissions showed richer spatial structures. A weak front-like structure was observed at φ = 
30 rad/m²  extending from ≈3h16m , ≈40º24 ' to ≈3h10m , ≈41º36 ' .  A stronger  linear 
feature with a slight change in the polarization angle was observed at  42 rad/m². A bright circular 
doughnut  like  structure  of  diameter  around  7'  was  observed  at ≈3h15m 35s , ≈41º42.3 ' .  A 
lenticular feature lying southwest of the doughnut was observed at φ = 52 rad/m². The position angle of 
the lens was similar to that of the linear feature. Bright extended emission was shown by φ = 60 rad/m², 
φ = 69 rad/m² showed mottled emission centered around the area between NGC 1275 (3C 84) and 
NGC 1265 (both of these sources lie within the Perseus cluster and a pictorial representation can be 
found in de Bruyn et al. (2005)). At φ = 78 rad/m² significant emission was observed- a horizontal bar 
at ≈3h 20m , ≈42º25 ' lying north east of NGC 1265. This emission faded towards the cluster. 
No structure could be detected beyond φ = 100 rad/m² at the observing resolution of 2' to 3'.

Total intensity counterparts for the features observed in the polarized intensity maps were not detected. 
They attributed this to the fact that the sensitivity in Stokes I (1.5 mJy/beam) was significantly poorer  
than that in P (0.1 mJy/beam). This manifested a high polarization percentage.

In order to determine the location of high  emission from RM measurements snapshot observations 
of other fifteen background sources, all of which avoid the Perseus cluster along the line of sight except 
two, were taken. Except three of these sources (excluded for their complex brightness distribution) all 
others showed a smooth spatial  RM gradient with the  RM values increasing towards the east.  This 
gradient was clearly due to the Galactic foreground. The  RM was 0 rad/m² just west of the Perseus 
cluster where the front, lens and the doughnut were located. The background sources which showed 
this 0 rad/m² RM just avoid the Perseus cluster along the line of sight. The RM of the diffuse emission 
from the  Galactic  background  is  around  10  rad/m².  So  for  the  total  integrated  RM towards  these 
background sources to end up to 0 rad/m², a screen of -10 rad/m² is needed somewhere in our galaxy 
along  the  same  line  of  sight  which  might  be  possible. However across 2º diameter area of the high 
 emission,  an  RM  of  60 rad/m²  was  observed. The  estimated  contribution  from  the  Galactic 
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foreground   towards   this  region   of the Perseus cluster is around 10 rad/m² to 20 rad/m². Subtracting
 the contribution  from  the  Galactic foreground this showed an  RM of 40 rad/m² to 50 rad/m² in 
excess. This emission was observed  to  be  terminated  at 1.5º  from  the  pointing centre which  may 
be associated with beam attenuation  though chances  are  less. So in order  to compensate for this RM 
if caused by our Galaxy, a screen of RM = - 40 rad/m² was required  towards these background sources 
but no such emitting screen was found in the  RM cube. Other arguments were given to negate the 
possibilities of 40 rad/m² originating from cloud in the Perseus arm of our galaxy that just covered the 
Perseus cluster or from north and east of the cluster centre. In the first case the argument was based on 
the comparison of the observed Hα surface brightness with Hα surface brightness that would be caused 
by the number density of electrons corresponding to  RM of 40 rad/m² for an assumed approximate 
magnetic field strength and path length. The second possibility was ruled out by considering the fact 
that the emission from the north and east of the cluster centre showed a considerable drop in surface 
brightness much before primary beam attenuation initiates. Thus they concluded that the high 
emission was associated with the Perseus cluster of galaxies.

They also considered the possibility of  Thompson scattering where  they excluded the core whose 
activity being new cannot cause the Thompson echo to reach us. They only considered the 3C 84 30''  
component and the halo for Thompson scattering. This emission can be there and can be detected if the 
polarized intensity is more than the sensitivity of the telescopes but for the high  emission from the 
large scale structures like the lens to be caused by Thompson scattering, the luminosity 3 million to 6 
million years ago should be a factor 100 to 500 higher and the density of electrons should be at least 5  
× 10-4 cm-3at a distance of 1 Mpc to 2 Mpc from the cluster. Both these conditions are implausible. 
Further, excess RMs of 20 rad/m² and  60 rad/m² were shown by NGC 1275 and IC 310 respectively. A 
value of excess 60 rad/m²  indicated that IC 310 is located deep within the cluster. The excess 40 rad/m² 
was interpreted to be located at the periphery near NGC 1275. 

The morphology of the observed linear structures resembled relics of shock fronts. In order to avoid 
depolarization, these structures must be located at the periphery in the near side of the cluster. Similar 
alignment of the front and the lenticular structure indicated their co-location. Further the structure of 
the doughnut was similar to the structure and topology of the magnetic field in a pre-shock bubble. A 
blob was also detected to the north of NGC 1265 whose curved shape resembled the curvature of the 
emission from NGC 1265 indicating the possibility of the blob being associated with a previous phase 
of activity in NGC 1265 and thus being its detached bubble.

Exploration of other clusters and detection of similar structures would provide clue to their origins. 
Observation over a wide range of frequencies would enable determination of internal plasma density 
and internal magnetic field structure. Further, emissions at low frequencies would be detected by SKA 
and LOFAR enabling detection of cosmological shock waves below 500 MHz.

After discussing various new findings and several associated future goals in section 6.4, I will now 
proceed to conclude this chapter where I will describe the benefits of using our digital circular polarizer 
in these kinds of observations.

6.5 Conclusions

Thus we see that  these kinds of observations rely mostly on polarimetric techniques.  It  is  vital  to  
measure the polarization magnitudes and angles for each frequency channel in a broad-band with high 
precision as in case of RM measurements. In VLBI presently linear to circular polarization conversion 
is  done  using  analogue  techniques  but  the  quadrature  phase  shift  is not perfect for the frequencies 
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away  from  the  design  points (see fig. 1.3), which  means  that  the  phase  difference between the two 
linear  polarizations  is  not  90º  for  the  whole  band.  Hence,  only  at  the centre frequency the phase 
difference  between  the  two  hands  of  circular  polarization  will  correspond  to  the  angle  of  linear 
polarization  in  the  sky  (a  linear  polarization  with  position  angle  ψ  has  two  circular  polarization 
components with phase difference 2ψ) whereas the phase difference at any other frequency away from 
the  centre  frequency  will  not  correspond  to  the  polarization  angle  in  sky  thus  requiring  further 
corrections to be applied. In our case we obtain pure circular polarization for the whole band and hence 
for  each  frequency channel,  the  phase  difference  between  two  hands  of  circular  polarization  will 
provide the angle of linear polarization in the sky. Further, this digital circular polarizer can be used in  
any frequency range having a total bandwidth of 500 MHz so the same unit can be used for different 
frequency observations unlike the analogue polarizers designed for a certain centre frequency and a 
frequency  range.  It  will  also  be  possible  to  detect  circular  polarization  with  equal  ease  and 
measurements of circular polarization with high precision for broad bandwidths as required in case of 
scintillation imaging (refer  to section 6.4.3) would be possible.  Thus this  digital  circular  polarizer 
would contribute significantly towards accurate polarization measurements for broad-bandwidths.  It 
should also be noted that even though I have implemented the method for a 500 MHz bandwidth with 1 
MHz channel width, this method can be adapted to one's need. 
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                                                                     CHAPTER 7

                                        REMAINING TOPICS OF DISCUSSION

In this chapter I will discuss about the polarization ellipse in detail. First I will provide a brief overview 
of the antenna system used in the radio astronomy receivers. Then I will discuss the polarization ellipse 
as  a  response  of  the  antenna  having  all  ideal  characteristics  that  is  when  the  orientation  of  the 
component dipoles of a crossed dipole are purely orthogonal and also there is no leakage of voltage or 
power from one dipole to another. I will go into the details of the general equation of the ellipse whose 
major axis or minor axis is oriented at an angle with respect to the dipole elements. Then I will see if I  
can arrive at the linear polarization whose antenna response due to presence of cross-polarization is an 
ellipse. Next I will discuss the response of a crossed dipole whose component dipoles are not in exact 
quadrature or they are not purely orthogonal. Next I will discuss the ellipse in our experiment described 
in section 5.2. Next I will discuss the effects of D-terms in the antenna responses and then I will discuss 
the  relationship  between  ellipticity  and  D-term used  in  eqn (5.2).  Finally  I  conclude  this  chapter 
summarizing the important details 

7.1 Brief overview of the antenna system in radio telescopes

The antennas in the radio telescopes are mounted with crossed dipoles to receive electric fields. Each 
dipole is connected to a transmission line at the receiving end and is flared out in the other end that is in 
space. A balun is used to connect a dipole with the transmission line. The whole antenna circuit (an 
equivalent  circuit  comprising  of  the  antenna  and  other  elements  of  the  receiver  or  transmitter) 
comprises of a source voltage, a source impedance and a load impedance connected in series, which is 
called the Thevenin's  equivalent circuit.  The load impedance is  the free space impedance plus the 
antenna impedance, which may consist of reactive elements also. The load impedance closes the circuit 
by including the free space intercepted by flared out dipoles. The antenna circuit is reciprocal that is it  
behaves identically in the transmit and receive mode. In the receive mode there is no source voltage but 
a voltage same as the source voltage as in the transmit mode is generated if the transmitted electric field 
resembles totally with the electric field being received. Now I will discuss the polarization ellipse that 
is the response of antennas in radio telescopes and is of special interest since it is always present in all  
radio telescopes and causes deviations from the real signal being received or transmitted. Hence it must 
be a known quantity to deal with the observables during calibration of the amplitudes and phases of the 
received signal.

7.2 Polarization ellipse: response of radio telescopes in ideal cases

Now I will discuss the polarization ellipse and while discussing I will remain in the receive mode of the 
antenna.  Whenever  a  crossed dipole  in  an antenna is  in  the receive  mode of  a  linear  polarization 
oriented at an angle  with respect to the horizontal or  X  dipole, the dipoles generate a response 
orthogonal to the same linear polarization called the cross-polar response; this cross-polar response has 
a phase difference say  with the linear (wanted) polarization. The phase difference between the 
wanted polarization and the cross polarization is possibly dependent on the orientation of the wanted 
polarization with respect to the dipoles and magnitude of the wanted polarization coupled with the 
receiver characteristics to produce the orthogonal or cross-polar component. This is because different 
orientations of the linear (wanted) polarization, with respect to the dipoles, having different magnitudes 
produce different phase differences between the wanted and the cross-polar component.

Thus  in    space  I  have  two  orthogonal  polarizations  with  a  phase  difference  and   whose
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 amplitudes  are  also  unequal. Neither  of  the  two polarizations as discussed already is aligned with  
either dipole as is required for the general case. So I would have received two components of the linear 
polarization if the cross-polar response were not there as

X ' t =A cos0 t cos                                                                                                                    (7.1)

and

Y ' t =A cos0 t sin                                                                                                                     (7.2)

where  A  is the amplitude of the linear polarization,  X'(t)  and  Y'(t)  are the components of the linear 
polarization  for  X  and  Y  dipole  respectively  at  time t; 0 is  the  angular  frequency  considered. 
However, since the cross-polar response is there an elliptical polarization is formed in space and the X 
and  Y dipole do intercept at distinct two points in the ellipse. Instead of receiving the signals in eqs 
(7.1) and (7.2), I receive the following two components  in the X and Y dipoles respectively:

X ' ' t =B cos0 t                                                                                                                            (7.3)

and

Y ' ' t =C cos 0 t                                                                                                                (7.4)

Where  B  and  C are the amplitudes received by  X and  Y  dipoles respectively and  is the phase 
difference between the signals received by X and Y dipoles. So the components in eqs (7.3) and (7.4) 
are received by the X and Y dipoles at time t instead of the components of linear polarization (eqs (7.1) 
and (7.2) respectively). These are the components of the ellipse that are intercepted by the  X and  Y 
dipoles in space. The quantities B and C are not the same as A cos and A sin respectively. The 
major  axis,  minor  axis  and  the  orientation  of  the  major  or  minor  axis  will  be  dependent  on  the 
parameters B, C and  . The dependence is given for B ≠ 0, C ≠ 0  and ≠ 0  as

a2=[B2C2± B2C 22 – 4 B2 C2sin 2]/2                                                                            (7.5)

where a is the semi major axis. The semi minor axis b can be found from the relationship

1/b2=1/B2sin21/ C 2sin2−1/a2                                                                                  (7.6)

and the angle of inclination of the major axis  with respect to  X axis can be obtained from the 
following equation by using the values of a and b obtained from eqs (7.5) and (7.6). In the following 
equation =cos .

 =±[a 1−b2/B2sin2]/a2−b2                                                                                           (7.7)

Note that all semi major axis, semi minor axis and the orientation of the ellipse are dependent on all the 
parameters viz. B, C and  . A change in the orientation of the ellipse changes the phase difference 
between the two received components of X and Y and also the magnitudes of X and Y.  The derivation 
for obtaining these parameters that are  a, b and  from the parameters B, C and  is given in 
section A.3; the parameter  A in section A.3 is replaced by B here,  the parameter  B in section A.3 is 
replaced by C here; the parameter  in section A.3 is replaced by  here. 
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At  this  point  I  would  want  to analyze the effects of rotation of the same ellipse with respect to the
receiving dipoles in terms of the magnitudes of the received components and the phase difference 
between them. Combination of eqs (7.3) and (7.4) by eliminating any term containing 0t I arrive at 
the following equation of ellipse:

(After replacing  in eqn (A.23),  A by  B here, B by  C here and   by  here, I arrive at the 
following equation)

Y ' ' 2t =C 2sin2 – C2/B2 X ' ' 2t 2C /B X ' ' t Y ' ' t cos                                         (7.8)

or, Y ' ' 2t −2C /B X ' ' t cosY ' ' t −C 2sin2C2/B2 X ' ' 2 t =0                        (7.9)

Eqn (7.9) is a quadratic equation of Y''(t) when X''(t) is given. Y''(t) is given by

Y ' ' t =[2C /B X ' ' t cos±2C /B X ' ' t cos2 – 4 −C2 sin2C 2/B2 X ' ' 2t ]/ 2
 

                                                                      
I know X''(t) ranges from -B to +B. 

In MATLAB I assume the following values of B, C and  in table 7.1 to observe the values of a, b 
and  .

                CASE                      B                      C
  



1 5 3 /12

2 5 3 /4

3 2 4 /4

I take X''(t) from - 6 to 6 (more than what X''(t) assumes) in steps of 0.1 to get corresponding Y''(t). The 
plot in fig. 7.1 is obtained for the three ellipses for the three cases. The ellipse produced in the first 

 (7.10)

Fig.7. 1:

Table 7.1: Three cases showing three different values of B, C and Δχ of eqn (27).
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Three ellipses corresponding to the three 
cases in table 1. The red colour showing 
case 1 with B = 3, C= 5 and Δχ = π/12; 
blue colour showing case 2 with B = 3, 
C = 5 and Δχ = π/4; green colour 
showing case 3 with B = 2, C = 4 and 
Δχ = π/4. In the plot the X and Y  axes 
are not equally spaced; there is a little 
difference in spacing. Still placing a 
protractor, to measure angles, at the 
lower tip of the major axis of each 
ellipse, the angle of inclination can be 
confirmed. It is almost same what we 
calculated in table 7.2. The little 
difference is due to unequally spaced 
axes.



case is red in colour in the plot; the ellipse produced in the second case is blue in colour in the plot;  the 
ellipse produced in the third case is green in colour in the plot.

The magnitudes of the semi major axis, semi minor axis and the orientation of each ellipse can be 
determined using the eqs (7.5), (7.6) and (7.7) by putting in the values of B, C and  for each case. 
And the corresponding values are given in table 7.2:

            CASE              a                  b             

1 5,79 0,67 30.55º
2 5,5 1,92 26.48º
3 4,27 1,32 68.34º

From the plot from case 1 and case 2 I see that if I keep the values of B and C the same and just change 
value of  then both the ellipse and its orientation changes; in other words the ellipse in case 2 has 
different major axis, minor axis and orientation with respect to the coordinates when compared to the 
ellipse in case 1 even when case 1 and case 2 have same values of B and C; if I keep  same as in 
case 2 and case 3 changing the values of B and C then also I arrive at a different ellipse at different 
orientation. Now the question is how to arrive at the same ellipse at different orientations? I have the 
three equations eqs (7.5), (7.6) and (7.7) for the two axes and the orientation of the ellipse. I need to 
determine those values of B, C and  for which a and b remains constants and only   changes, 
which  can  be done.  As I  have  already mentioned change in  orientation  of  an  ellipse  changes  the 
magnitudes of the received components in the X and Y dipoles and also the phase difference between 
the received components.

7.2.1 Retrieving linear polarization in the sky from elliptical response of antenna

So until now I have discussed the general equation of the polarization ellipse. Now suppose I want a 
desired X polarization and then I will orient X dipole parallel to the original linear polarization vector in 
the sky. As already stated due to the elliptical response of the antenna, the antenna will see the ellipse in 
response to the desired linear polarization vector; the ellipse will have maximum power along its major 
axis  and I  can consider  this  major  axis as the wanted signal  if  the minor  axis  is  negligibly small 
(discussed in section 7.4), which I am not considering now. 

Orienting the X dipole along the major axis means having the original linear polarization make an angle 
with the  X dipole; the major axis will have a different amplitude as compared to the original linear 
polarization when intercepted by the  X dipole.  The wave due to this major axis has the maximum 
amplitude among all other component waves of the ellipse. The Y dipole will receive the minor axis, 
which has a phase difference of 90º with respect to the major axis in the X dipole. I have a power loss 
from the original linear polarization component into its orthogonal counterpart. I will now proceed to 
the general case where the two dipoles intercept at two distinct points of the ellipse not the major and 
minor axes specifically as described in this paragraph, which will include this specific case also. In the 
general case the original linear polarization is inclined to the dipoles at any arbitrary angle and I will 
see  if  I  can  arrive  at  the  magnitude  and  orientation of  the original  linear  polarization, which was

Table 7.2: Three cases showing three different obtained values of a, b and α  corresponding to the three cases   
                 in table 1 respectively obtained by putting values of B, C and Δχ in eqs (7.5), (7.6) and (7.7) for the    
                 corresponding case.

   71



having no orthogonal counterpart as depicted by eqs (7.1) and (7.2), from the elliptical response. In 
this  section since the two dipoles are exactly orthogonal, there is no voltage or power leakage from one 
dipole to another and also for now I am ignoring other external effects responsible for voltage or power 
leakage from one dipole to another. So now I have the  X and  Y  dipoles intercepting two arbitrarily 
distinct points of the ellipse. 

If the polarization is oriented at an angle  as depicted by eqs (7.1) and (7.2) and I have to detect the 
angle of inclination of the polarization then it really becomes difficult as the orientation of the ellipse 
produced is really not the orientation of the linear polarization unless the ellipse is highly elongated 
along the major axis (described later in section 7.4) where  approximate the major axis as the wanted 
linear polarization. Let the components received by the X and Y dipoles be described by eqs (7.3) and 
(7.4) respectively then the intercepted X and Y components will have the phase difference  . One 
may cross-correlate  the signals  in  X and  Y dipoles   to   get  the lag  at  which  the cross-correlation 
coefficient is maximum; this lag multiplied by the frequency  under  consideration  will  determine  the  
phase difference between the X and Y components and  then  this lag needs to be compensated to keep 
the X and Y signals in phase. I am proceeding to see if it is possible to detect the correct magnitude of  
the linear polarization and the correct orientation of the linear polarization with respect to the X dipole 
from the information that I have from the elliptical polarization.

From eqs (7.1) and (7.2) I see that the linear polarization with magnitude A and making an angle   
should have magnitudes A coscos0 t at time t in the  X dipole and A sincos0t at time t in 
the Y dipole if there is no power leakage from the linear polarization to its orthogonal counterpart. But I 
receive B cos0 t and C cos0 t at  time  t in  the  X  and  Y  dipoles  respectively.  The  total 
power  in  the  linear  polarization  should  be  the  same  as  the  total  power  in  the  received  elliptical 
polarization. Total power would mean power in the X receiving chain + power in the Y receiving chain. 
have already compensated the phase difference between the received X signal and the received Y signal 
by compensating the lag or by reducing the phase difference between the X''(t) and Y''(t) to zero.

Now I  want  to  determine  the  total  power  in  the  linear  polarization  and  in  the  received  elliptical 
polarization. I find the power spectrum in the frequency domain, which involves multiplication of the 
absolute value of the spectrum with itself. Hence, first taking the Fourier transform of eqs (7.1) and 
(7.2) I arrive at the two following frequency domain signals respectively

X ' =Acos−00                                                                               (7.11)

and

Y ' =Asin−00                                                                                 (7.12)

So the power in eqn (7.11) is 

2A 2cos2 ψπ2                                                                                                                                  (7.13)

and the power in eqn (7.12) is 

2A2sin2 ψπ2 .                                                                                                                                  (7.14)
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Hence the total power is the summation of powers in eqs (7.13) and (7.14), which is 

= 2A2π2                                                                                                 (7.15) 

Similarly by taking the Fourier transform of eqs (7.3) and (7.4) I obtain the following two frequency 
domain signals respectively.

X ' ' =B−0−0                                                                                         (7.16)

and

Y ' ' =C e j−0e− j0                                                                         (7.17)

Therefore the power from X''(t) and Y''(t) is obtained by summing the powers of eqs (7.16) and (7.17), 
which is 

= 2B2 π2+ 2C2 π2                                                                                                                             (7.18)

The power in eqn (7.15) and the power in eqn (7.18) must be equal and hence I obtain

A2=B2C 2                                                                                                                                    (7.19)

So I have got the information on the magnitude of linear polarization from the elliptical polarization. 
However, the orientation of the linear polarization remains unknown. I have now the linear polarization

A cos0t without  any information  on its  orientation.  I  am able  to  obtain  the  parameters  of  the 
elliptical polarization that are its major axis, minor axis and angle of orientation of major axis from eqs  
(7.5),  (7.6)  and (7.7).  There are  many software packages  available  which can simulate  a  practical 
antenna by incorporating the same transfer characteristics in terms of the two orthogonal responses as 
the real antenna and thus producing the same radiation pattern in response to an electric field as would 
the real antenna; in that case I need not take measurements on the telescope to determine radiation 
patterns all the time. I can simulate the effects of rotation of the linear polarization A cos0 t with 
respect to the X dipole and see if I can arrive at the received elliptical polarization. This would mean to 
model  the  antenna  characteristics  in  terms  of  its  two  orthogonal  responses.  However,  if  the  two 
orthogonal responses of the antenna are totally indeterminable then I cannot obtain the orientation of 
the original linear polarization from the ellipse. If the responses are time varying then I may radiate

A cos0t at different orientations to one of the dipoles during the same experiment when the ellipse 
is being received to see if I arrive at the received ellipse; for this measurement the antenna needs to be 
switched  to  transmit  mode.  The  relationship  between  the  voltage  amplitude  and  the  electric  field 
amplitude must be used to obtain the desired magnitude  A of the transmitted linear polarization. The 
relation can be found in Kildal (2000) or other antenna fundamental textbooks.

7.3 Polarization ellipse: response from imperfectly oriented dipole elements

Until now I have been discussing the components of elliptical polarization received by a crossed dipole 
whose component dipoles are perfectly orthogonal and there is no leakage from one dipole to other.  
The situation becomes more difficult when the component dipoles are not exactly orthogonal to each 
other  as  then  I do not receive the two orthogonal components of the elliptical polarization but two 
components, which  are  the  components  of  two  different coordinate systems. Here also I exclude the
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effects of leakage of one polarization state into another. However, since the two dipoles are not the 
components  of  a  single  coordinate  system,  the  signal  received  by  one  dipole  of  the  unwanted 
coordinate will have a component of signal in the other dipole of the wanted coordinate. This will be 
clear in the following description.

Let us consider an imperfect crossed dipole whose coordinates are X and Y new where the orthogonal 
counterpart  of  X is  Y and  the orthogonal  counterpart  of Y new is X new.  So X new and  Y are  not 
physically  present  as  dipole  elements.  Now  I  will  consider  the  case  of  receiving  the  elliptical  
polarization whose  X  and  Y components  are  represented by eqs.  (7.3)  and (7.4).  So I  will  always 
measure two signals in the X and Y new dipoles. For now I will not consider leakage of signal from one 
dipole to another, which arises due to several random physical reasons. Now I will just consider the 
effects  of  imperfectly  oriented  dipoles  without  any  arbitrarily  added  D-term.  Let  us  rewrite  the 
equations for the X and Y components of the ellipse for visual ease.

X ' ' t =B cos0 t                                                                                                                           (7.3)

and

Y ' ' t =C cos 0 t                                                                                                               (7.4)

Now in this case the signal Y''(t) (eqn (7.4)) is not received at all since I do not have a dipole oriented 
in the direction of Y .

If I know the angle of imperfection of the crossed dipole that is the angle between Y and Y new or X 
and X new , which is  (say) then I can express the signal in Y new dipole for the same frequency 
component as

Y new ' ' t =X ' ' t sinY ' ' t cos                                                                                           (7.20)

and I am receiving this signal. So in order to get the orthogonal counterpart of the signal received in the 
X dipole, which is an imaginary (not physically present) Y dipole, I need to find Y''(t). 

Y ' ' t =[Y new ' ' t −X ' ' t sin]/cos                                                                                        (7.21)

Y new ' ' t  is a measured quantity, X''(t) is also measured and  is known so I should be able to get 
Y''(t) in principle, which is the required other component of the elliptical polarization. 

Note that I could also take the signal component of Y new dipole as genuine and find the orthogonal 
component  of  its  signal Y new ' ' t  that  is X new ' ' t  .  That  would had given the same ellipse in 
terms of X new ' ' t  and  Y new ' ' t  with the orientation of the ellipse with respect  to X new and

Y new coordinates. 

7.4 Analysis of the ellipse in the experiment described in section 5.2

In  the  experiment  described  in  section 5.2,  we  obtained  an  ellipse  as  a  response  produced in the
waveguide  to  be  received  by  the  crossed  dipole. Let  us  consider here that the dipole elements are
orthogonal  for  simplicity.  Then  the  equations  (7.3) and (7.4)  are  received  by  the  X  and Y dipoles
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respectively. The ellipse produced inside the circular waveguide was highly elongated. I will show here 
that for such an elongated ellipse where the minor axis and thus semi minor axis b→0, the major axis 
mimics a linear polarization oriented at an angle of orientation of the major axis.

From eqn (7.6) I have 1/b2=1/B2sin21/ C 2sin2−1/a2

or, b2=B2 a2C 2sin2/a2 C 2B2 a2 – B2 C2sin2                                                             (7.22)

or, b=BaC sin/a2 C2B2 a2 – B2 C2 sin2                                (7.23)

In the limit b→0, the quantity BaC sin → 0 . Now the major axis a is not zero and hence B and C 
are also not zero that is a ≠ 0, B ≠ 0 and C ≠ 0; that is the system is designed in such a manner that the 
major axis is there and the minor axis tends to zero and thus semi minor axis   b→0. Then from eqn 
(7.23) I have sin→ 0 , which also means that ≈n where n is 0, 1, 2, 3,.... and for these 
values of  , cos≈1 .  So the signal received by the  Y  dipole in eqn (7.4) is  modified as

Y ' ' t ≈C cos0 t and the orientation of the major axis or of the equivalent linear polarization is
tan−1C /B . Thus we could work with the highly elongated ellipse in place of a linear polarization. 

The currents induced in the two dipoles by this ellipse was in phase.

7.5 Effects of D-term in the received voltage by the crossed dipole

The real world is not so simple and there are several physical processes occurring near the antenna or  
inside the antenna circuits, which give rise to coupling of voltages from one dipole to another. Note that 
I have the contribution to the leakage or to the D-terms due to the presence of nearby objects to the 
antenna which receives a fraction of a polarization state and then radiates back to the dipole receiving 
the  orthogonal  polarization  state;  this  phenomenon  of  leakage is  valid  even when the  dipoles  are 
perfectly orthogonal to each other; leakage due to this phenomenon is totally random to be modeled at 
all.

Leakage from one dipole to another can also happen due to mutual induction when the dipoles are not 
exactly  orthogonal  and the  inductance  of  the  coil  is  not  zero,  which  is  generally  the  case  as  the 
inductance is not tuned out for all frequency components. If the dipoles were orthogonal then there will 
be no mutual coupling of magnetic flux. The induced voltages in a dipole due to mutual inductance 
corrupts the phases of the voltage being received by the dipole. The amount of coupling due to mutual 
inductance from one dipole to the next for both the dipoles are the same. Finally, the leakages happen 
back and forth that is from one dipole to the next and then back to the previous dipole and so on. The 
very general equations of the signals received by the X  and Y dipoles that includes the effects of D-
terms are given in all literature of radio astronomy covering the basics of D-terms as

X t =X t DX Y t                               (7.24)

Y t=Y t DY X t                                           (7.25)

Where X t  and Y t are the received signals from X and Y dipoles respectively and X(t) and Y(t) 
are the signals without D-terms corresponding to X and Y dipoles respectively. So I only receive these 
two  terms  in the LHS of eqs (7.24) and (7.25)  from the antenna. Since there are a redundant number 
of    such   equations    formed   from   the   too   many   values   of X t  and Y t  ,  I   get    many
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solutions for the D-terms. Similar equations in terms of LHC and RHC  are there, which are already 
provided in chapter 2, namely eqs (2.32) and (2.33) respectively. Until now there is no model that can 
solve for the D-terms from the above equations. Note that DLHC and DRHC in eqn (2.32) and (2.33) 
have  different  values  when  compared  to DX and DY of  the  same  case.  I  will  call DLHC and

DRHC as circular D-terms and DX and DY as linear D-terms.  

7.5.1 Discussion on relation between circular D-terms and ellipticity

We have shown in eqn (5.1)  for  the  RHC and for  the LHC that  is  for  the  two hands of  circular  
polarizations,  the  ellipticity,  ,  is  defined  as √minimum power /maximum power where  power 
(mean power) is measured for different orientations of the dipoles with respect to the received plane of 
electric field. Now I will provide the reasons for the validity of eqn (5.2) provided by Perley, which can 
also be written as

=1−∣D∣/ 1∣D∣     (7.26)

Where D is DLHC for desired LHC and is DRHC for a desired RHC. The derivation (follows Kildal 
(2000)) of eqn (7.26) follows as below:

=Emin /Emax   (7.27)

where Emax is  the  maximum electric  field  magnitude  in  the  polarization  ellipse  and Emin is  the 
minimum electric field magnitude in the polarization ellipse. Therefore,

=∣Edesired∣−∣Ecross− polar∣/∣Edesired∣∣Ecross− polar∣   (7.28)

where Edesired is  the electric  field of  the  desired circular  polarization  and E cross−polar is  the other 
undesired component of circular polarization.

Dividing numerator and denominator of RHS of eqn (7.28) by Edesired I get

=1−∣D∣/ 1∣D∣ where ∣D∣=∣Ecross−polar∣/∣Edesired∣ .  Thus  eqn  (7.26)  is  proved.  For  a  desired 
LHC (or RHC) the Edesired is the electric field of LHC (or RHC) and E cross− polar is the undesired 
component of RHC (or LHC). Eqn. (7.26) is not valid for linear D-terms.

7.6 Conclusion

In this chapter I visited the ellipse produced as a response from the antennas in the radio telescopes. I  
discussed  various  properties  of  the  ellipse  and  saw  in  7.2.1  that  with  additional  simulations  or 
experiments it is possible to derive the original signal, which is a linearly polarized wave from the 
elliptical response. However, if the ellipse is highly elongated, that is its major axis >>  minor axis and 
the minor axis tends towards zero, then we can work with linear polarization approximation of the 
elliptical polarization, that is the major axis is equivalent to a linearly polarized signal. I also discussed 
the relation between D-term and ellipticity. Thus the remaining topic after 6 chapters of this thesis, 
which was the elliptical response of the antennas in radio telescopes and in our experiment described in 
section 5.2, is complete in this chapter. Next I will provide future work and three appendices: appendix 
A, appendix B, appendix C and the references.
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         FUTURE WORK

Though this technique to convert to two hands of circular polarizations from two orthogonal linear 
polarizations was demonstrated using logic simulator in software, it has been implemented using Xilinx 
software  generating  firmware  that  can  be  loaded  into  FPGAs.  The  details  on  the  design  and 
implementation can be found on chapter 4 of this thesis. An implementation on the digital baseband 
converter (Tuccari, 2008) is in preparation, which will make this technique available for use at many 
radio observatories for VLBI, and with minor extension, for measuring Stokes parameters. This could 
enable the sensitive search for circular polarization in active galactic nuclei. As demonstrated in chapter 
6, the polarizer can be used to explore all phenomena generating linear or circular polarizations. It is 
very essential  to obtain the angle of linear polarization correctly to determine rotation measures; a 
polarization angle oriented at an angle ψ will produce two hands of circular polarization having equal 
magnitudes and phase difference 2 ψ (derivation provided in section A.4); thus from the measurements 
of phase difference between the two circular polarizations produced by our digital circular polarizer, we 
can arrive at the inclination of the linear polarization. Also circular polarization can be detected with 
equal ease as the linear polarization. Later measurements at the telescope should confirm that excellent 
polarization purity is achieved in real applications, as it was in the anechoic chamber.  One can also  
confirm the stability of the transfer characteristics and decide on a re-calibration interval for operational 
use.  One can also characterize the typical phase response of receivers and confirm that the choice of 1 
MHz frequency spacing is well matched to the existing systems. The effect of RFI on the system can be 
explored,  to give recommendations on tolerable RFI levels and required performance of mitigation 
strategies. The trend in next-generation receivers for radio astronomy is to move the samplers as close 
as possible to the front end, which will benefit this system of polarization conversion since the time 
variable path length changes due to analogue cables and filters and amplifiers will be much reduced, 
yielding even better polarization purity.
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APPENDIX  A: BASIC POLARIZATION DERIVATIONS

Polarization arises due to spin of photons. A photon can assume two states of spin angular momentum 
given  by ±2 h/ 2 with  the 2h/ 2 state  corresponding  to  LHC  and −2h/ 2
corresponding to RHC. A photon is generally in superposition of these two states and the sense of 
polarization will depend on the relative proportion of the two states being superposed. There are three 
cases of polarization arising due to the superposition of the two states. One is linear polarization, the 
other is circular polarization and the third is elliptical polarization. Here I derive the equations of a 
straight line, circle and ellipse from them respectively at all times which means the equations are valid 
at all times of wave propagation. Lastly I show the conversion from circular to linear polarization and 
vise versa. The derivations are as follows. 

A.1 Equation of straight line from equation of linear polatization

In this section and in the following sections t is an instant of time and ω is angular frequency chosen.
The X and Y components of linear polarization with amplitude A and orientation θ w.r.t X axis are

X t =Acos t cos x                                                                                                                    (A.1)

Y t=Acos t sin y                                                                                                                     (A.2)

Therefore, Y t=X t /cos ×sin                                                                                             (A.3)

where X (t) and Y(t) are magnitudes of X t  and Y t  respectively.

or, Y t /X t =tan                                                                                                                       (A.4)

or, Y t =tan×X t                                                                                                                       (A.5)

Eqn.  (A.5)  is  the  equation  of  a  straight  line  with  slope tan  or  Y polarization  is  related  to  X 
polarization by this identity at ant time t.

A.2 Equation of circle from equation of circular polarization

Now I will derive the equation of a circle from the X and Y components of circular polarization.

The X and Y components of circular polarization are

X t =Acos t x                                                                                                                            (A.6)

Y t=Acos  t±/2 y                                                                                                                (A.7)

Where A is the amplitude of X and Y components. Equating the magnitudes of eqn (A.7) I have

Y t=Acos  t±/2                                                                                                                   (A.8)

      = ±Asin t                                                                                                                               (A.9)
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From eqn (A.6) after equating the magnitudes sin t=1−X 2t /A2

Therefore, Y t =±A1−X 2t /A2                                                                                              (A.10)

                       = ±A2−X 2t                                                                                                       (A.11)

Squaring both sides of eqn (A.11) I have 

Y 2t =A2 – X 2t                                                                                                                          (A.12)

or, X 2t Y 2t =A2                                                                                                                     (A.13)

Eqn (A.13) is the equation of a circle at any time t. 

A.3 Equation of ellipse from equation of elliptical polarization

Finally, I will derive the equation of ellipse from the X and Y components of elliptical polarization. The 
derivation follows for phase difference ≠ 0 between received X  and Y with amplitudes A and B 
respectively where A ≠ 0 and B ≠ 0.

X t =Acos t x                                                                                                                          (A.14)

Y t =B cos  t± y                                                                                                              (A.15)

Equating the magnitudes of both sides in eqn (A.15)

Y t=B [cos t cos∓sin t sin]                                                                                     (A.16)

From eqn (A.14) after equating magnitudes I get sin t=1 – X 2t / A2 and cos t=X t /A and 
hence using these in eqn(A.16) I get

Y t=B [ X t /Acos∓1 /AA2−X 2t sin]                                                             (A.17)

or, Y t=B X t /Acos∓B /AA2−X 2 t sin                                                           (A.18)

or, ±B /AA2−X 2t sin=B X t /Acos– Y t                                                       (A.19)

Squaring both sides of eqn (A.19) I get

B2/ A2 sin2 A2 – X 2 t =B2 X 2t/A2cos2Y 2t – 2B /A X t Y t cos       (A.20)

 or, B2 sin2−B2/A2 X 2t  sin2=B2 X 2t / A2cos2Y 2t 

                                                                 −2B /A X t Y t cos                                        (A.21)

or, B2 sin2=B2 X 2t /A2cos2B2/ A2 X 2t sin2Y 2t −2 B/ A X t Y t cos
  (A.22) 
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or,  B2 sin2=B2/A2 X 2t Y 2t −2 B/AX t Y t cos                                            (A.23)

or, X 2t / A2sin2Y 2t /B2 sin2−2X t Y t / ABcos/sin2=1       (A.24)

which is the equation of an ellipse..

The equation of an ellipse whose major and minor axes coincide with those coordinates which make an 
angle  with the Cartesian coordinate system X and Y  (rotating X/Y by angle   counterclockwise) 
is given by

X t cos −Y t sin2/a2 X t sin Y t cos 2/b2=1  (A.25) 

where a is semi major axis and  b is semi minor axis.  This form eqn (A.25) is taken from Kalman 
(2008)

then

cos2/a2sin2/b2 X 2t – 2cossin1/a2 –1/b2 X t Y t 

sin2/a2cos2/b2Y 2t =1                                                                                                 (A.26)

Comparing eqn(A.26) with eqn(A.24) I have 

cos2/a2sin2/b2=1/A2sin2  

sin2/a2cos2/b2=1/B2sin2                                                                                           (A.28)

and 

cos sin1/a2 – 1/b2=cos/ ABsin 2                                                                          (A.29)

Thus  eqs  (A.27),  (A.28)  and  (A.29)  have  three  unknowns  a,  b  and  .  So  solving  these  three 
equations would yield the values of a, b and  in terms of A, B,  and thus the semi major, semi 
minor and angle of inclination of ellipse can be determined in terms of  A, B,  . 

Solution with major steps of calculations:

Let cos= then sin=1−2 .  Therefore  eqs  (A.27)  and  (A.28)  becomes  the  following 
respectively.

2/a21−2/b2=1/ A2sin2                                                                                              (A.30)

1−2/a22/b2=1/ B2 sin2                                                                                              (A.31)

Adding eqs (A.30) and (A.31) I get

1/a21 /b2=1/ A2 sin21/B2sin2                                                                              (A.32)

      (A.27)
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Eqn (A.29) turns into

21−21/a2 –1 /b2=cos/AB sin2                                                                        (A.33)

Squaring eqn (A.33) I get

2 – 4a2−b22/a4 b4=cos2/A2 B2 sin4                                                                   (A.34)

From eqn (A.30) I get

=±[a 1−b2/ A2sin2]/a2−b2                                                                                         (A.35)

In eqn (A.34) let us solve first for the term 4 by putting value of ζ fron eqn (A.35) then

4=22=a2 – a2b2/ A2sin22/ a2−b22                                                                         (A.36)

2=a2 – a2 b2/ A2 sin2/a2−b2                                                                                       (A.37)

By solving eqn (A.34) by putting values of 2 and 4 from eqs (A.37) and (A.36) respectively I 
arrive at the following equation

1/a2[A2 sin2 – A4sin4/b2a2 A2sin2/b2 – a2] /A2=cos2/B2                          (A.38)

Now let us solve for the terms A4 sin4/b2 and a2 A2sin 2/b2 of eqn (A.38) to eliminate b 
by writing these terms in terms of a, which can be done by using eqn (A.32)

So I get

A4 sin4/b2=A4 sin41/ A2sin21/B2sin2−1/a2                 (A.39)

            = A2 sin2 A4/B2sin 2 –  A4sin 4/a2                    (A.40)

and

a2 A2sin2/b2=a2 A2 sin21 /A2 sin21/B2sin2−1/a2                             (A.41)

                               =  a2a2 A2/B2 – A2sin 2                                                                         (A.42)

By replacing with the obtained expressions in eqs (A.40) and (A.42) for the terms A4 sin4/b2

and a2 A2sin2/b2 respectively in eqn (A.38) I get

1/a2[−A2 sin2/B2A2 sin 4/a2a2/B2 – sin2]=cos2/B2                               (A.43)

By solving eqn (A.43) I arrive at the following equation, which is a quadratic equation of a2

sin2a4 – a2sin 2A2B2A2 B2 sin4=0                                                                    (A.44)
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In eqn (A.44) let

g=−sin 2A2B2                                                    (A.45)

f =sin 2                                                                                                                                   (A.46)
and

h=A2 B2sin 4                                                                                                                           (A.47)

Therefore, the quadratic eqn (A.44) becomes

f a4g a2h=0                                                                                                                          (A.48)

or,

a2=[−g± g2−4fh ]/ 2f                                                                                                               (A.49)

or, a2=[ A2B2± A2B22 – 4 A2 B2sin2]/2                                                                     (A.50)

and a is given by square root of eqn (A.50).  The parameter  b can be found by putting the obtained 
value of a in eqn (A.32) and the parameter ζ ( cos ) can be found by putting the obtained values of 
a and  b in eqn (A.35). I see that  a changes with change in  , which means the ellipse changes 
when the phase difference between the X and Y polarization components is changed. 

A.4 Conversion from circular polarizations to linear polarization and vice versa

Conversion  from two circular  polarizations  of  opposite  hands  having equal  magnitudes  and phase 
difference 2−1  to a linear polarization whose angle of orientation will be 2−1/2 is shown 
in the following derivation.

From Kildal (2000), the two hands of circular polarization directions are given in terms of unit vectors. 
The RHC polarization direction is given by  x – j y /2  and the LHC polarization direction is given 
by   x j y/2 . 

An LHC polarization with amplitude A and phase 1 in vector form is given as

A e j1 x j y /2                                                                                                                         (A.51)

Now an RHC polarization with amplitude A and phase 2 in vector form is given as

A e j2 x – j y / 2                                                                                                                         (A.52)

adding them both I get 

[A e j 1 x j yAe j2 x – j y ]/2                                                                                             (A.53)

= A/2 [ x e j1e j2 j y e j1−e j2]                                                                                         (A.54)
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= A/2 [ x e j1e j2 y e j/21−e j  /22]                                                                            (A.55)

 
A/2 x [cos1 jsin 1cos 2 j sin2]

A/2 y [cos / 21 j sin/21−cos /22− j sin/22]                           (A.56)

 = A /2 x [cos 1cos2 jsin1sin2]

A/2 y [cos/21−cos /22 j sin /21−sin /22]                              (A.57)

= A /2 x [2 cos 12/2×cos1−2/2 j 2 sin12/ 2×cos 1−2/2]

A/2 y [2sin 12/2×sin 2−1/2 j 2cos 12/2×sin 1−2/2]        (A.58)

= A /2 [2 x cos1−2/2 cos 12/2 jsin 12/2]

A/2[2 y sin1−2/ 2−cos 12/2− j sin12/2]                                                   (A.59)

=  2 Ae j 12 /2[ x cos 2−1/2 ysin 2−1/2]                                                                    (A.60)

Thus from eqs (A.53) and (A.60) I see that if I have two opposite hands of circular polarization with 
equal amplitudes and phase difference 2−1 (from eqn (A.53) ) then the vectorial addition of these 
two  circular  polarizations  would  yield  a  linear  polarization  as  in  eqn  (A.60)  with  position  angle
2−1/2 . This is also in accordance with the satement in TMS (Thompson et al. 2001) that ”A 

linearly  polarized  wave  with  position  angle  can  be  decomposed  into  right  and  left  circularly 
polarized waves of equal amplitudes and phase difference 2 .”

Note- By the convention given in  IEEE, the tip  of the vector of the electric  field in RHC rotates  
clockwise when looked in the direction of propagation of wave.

Now I will find out how to get the magnitudes and phases of the two initial circular polarizations from 
the linear polarization in eqn (A.60).

I  take  the  X component  that  is 2 Ae j 12 /2[cos 2−1/2] and  Y  component  that  is 
2 Ae j 12 /2[sin 2−1/2] of eqn (A.60) and form X ± jY. First I will see if X – jY really gives the 

magnitude and phase of one hand of circular polarization or not.

X − jY=2 A cos2−1/ 2cos 12/2 j sin12/2

                − j2 A sin2−1/2 cos 12/2 j sin12/2                                             (A.61)

= 2 A[cos 2−1/2 cos 12/2sin 2−1/2 sin12/2 ]

    j2 A[cos 2−1/2 sin12/2−sin2−1/ 2cos 12/2 ]                                      (A.62)

=
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=  2 A[cos 1 jsin 1]                                                                                                          (A.63)

= 2 Ae j1                                                                                                                                     (A.64)

Thus I see from eqn (A.64), which is obtained by forming X – jY where X and Y are the components of 
linear  polarization  in  eqn  (A.60),  I  arrive  at  the  phase  of  the  starting   LHC   that   is   of

A e j1 x j y /2 (given in eqn (A.51)) and I  also obtain the magnitude ( 2 A )  as twice the 
magnitude of the LHC, which is A/2 . Similarly X + jY formed using X and Y components of the 
linear polarization in eqn (A.60) will yield the magnitude of the RHC (eqn(A.52)) multiplied by 2 and 
the phase of the RHC. 
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APPENDIX B: DESIGN AND CODE DESCRIPTION OF LOGIC BLOCKS OF CHAPTER 4

B.1 Individual block details

In this section I provide all the details involved in the individual blocks and in their connections along 
with providing details on the timing of operations and of dataflow. While demonstrating the VHDL 
implementation  I  describe  the  simulated  logic,  which  has  different  bit  widths  since  for  the 
implementation  I  truncated  the  bit.  I  enclose  a  CD  containing  the  main  design  without  any  bit  
truncation  and  its  details  will  be  provided  at  the  end of  this  chapter.  The  implemented  design  is 
available in the frontend of MPIFR. Further, until simulation was complete I knew that each input 
sample will have 10 bit since that was originally told to me and hence the main/simulated design has 10 
bit input samples. However, after I finished simulation, I was told that each input sample will have 8 bit 
(probably changed to 8 bit from 10 bit) and since I had already finished the simulation, I only changed 
to 8 bit while implementing the design. The blocks in B.1.1 and in B.1.2 and all connections between 
them duplicate and the two copies work in parallel one for each polarization state. Further the blocks  
from B.1.1 to B.1.3 are contained in a single module named as dout2acmf in the VHDL code and can 
be found in the enclosed CD.

B.1.1 Clock rate reduction logic 

The details of this block are published by Tuccari (2004) and are not repeated here. The outputs from 
this block are passed to the next block as inputs.

B.1.2  Serial Frame Generator 

Note- All elements operate at 128 MHz whether mentioned or not.

This block is discussed with Alan Roy. From the previous block 8 samples come in at a rate of 128 
MHz, which is equivalent to 1 sample coming in at 8×128 = 1024 MHz. It is possible in our case to 
keep the incoming sample rate the same (1024 MHz) by dividing into 8 identical stages each operating 
at 128 MHz with certain time delay between them predecided by the incoming data rate. So I divided 
into 8 stages having the same serial data processing elements. The serial frame generator enables this 
division by sending 8 data lines to the 8 stages. The following method is used to feed without any 
sample loss the 8 FFTs all of which require time-domain frames to be fed serially sample by sample. 

I have chosen to do 1024 point FFT to obtain a spectral resolution of 1 MHz. So one spectrum or frame 
has  1024 points  or  samples.  Time-domain frames  with samples  coming in serially need to  be fed 
continuously to each FFT at 128 MHz. So I take 1024 words deep register that stores the 8 incoming 
samples together at one clock pulse and sends out one sample at one clock pulse and as evident I need 
eight such registers each to feed one FFT. A total of 128 clock pulses are required to fill in a register  
whereas 1024 clock pulses are required to read out the same register. So the data rate at the output of 
the register is reduced to 1/8 times the input data rate. However, the data from a location has to get out 
before or at the same time the next data for that location arrives otherwise the existing sample in that 
location would be overwritten. It can be shown that if writing in the eight registers occur consecutively 
and cyclically and if the reading operation in each register starts at the latest 128 clock pulses after 
writing of first 8 samples is complete, then there is no overwriting. Each register receives a data frame 
whose serial number is the serial number of existing data frame in the register incremented by 8. Each 
register sends out data serially at a rate of 128 MHz to be processed serially by the corresponding FFT 
and the successive blocks. 
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B.1.2.1 Simple case illustration

Now  I  will  go  into  the  details  of  a  simple  identical  case,  which  employs  the  same  method.  To 
generalize the method I represent the operating clock frequency by M (128 in our case); I represent the 
sampling rate by S (1024 in our case), which also represents the number of samples in a frame being 
consistent with our case; I represent the number of incoming samples by N (8 in our case), such that 
M×N = S; the units remain the same. So if N samples are coming in parallel at M frequency units then 
our objective is to transfer frames continuously in N lines (sequence of frames doesn't matter) at a rate 
of 1 sample at  M frequency units without any data loss. To do so I would need  N registers each of 
which is S words deep operating at M frequency units and the delay between any consecutive register 
would be M number of clock pulses. 
Now let us take the case when S = 8, N = 2 and M = 4. So in this case there are 2 registers each 8 words 
deep and 2 samples arrive at one clock pulse (4 MHz) maintaining the incoming data rate of 8 MHz. 
The writing and reading operations occur as follows: 

I begin with frame number 1, which represents the frame arriving with the start of the serial frame 
generator.  Here I  start  with the clock pulse with the start  of  writing operation in  the serial  frame 
generator. Writing operation starts with the designated first register. Here I will start reading M clock 
pulses after I start writing in a register, which is the maximum delay I can incur between the start of 
read and write operation in a register without any overwriting; this delay can vary from 1 to M and the 
upper limit is picked up to show that the numbers from 1 to M are safe for this delay. So the delay is 4 
clock pulses here in the following demonstration.

Clock cycles 1, 2, 3, 4 (writing of first frame in the first register):  first register is written. Writing in 
the first register starts by filling first two locations simultaneously at one clock pulse with the first two 
respective and parallel samples of the first frame. The next two locations get the next two samples in 
the next  clock pulse in the same way and so on.  So in the fourth clock pulse seventh and eighth 
locations are written. Thus writing of the first frame is complete and the register is full. 

Clock cycles 5, 6, 7, 8 (writing of second frame in the second register):  second register is written. 
The second frame enters this register the same way as the first frame enters the first register. It gets  
filled in the eighth clock pulse. So writing of the second frame is complete. 

Clock cycles 5, 6, 7, 8, 9, 10, 11, 12 (reading of first frame from the first register): first register is 
read out. The samples are read out consecutively at a rate one sample per clock pulse starting from the 
first sample/location. So in the twelfth clock pulse the last sample of first frame leaves.

Clock cycles 9, 10, 11, 12, 13, 14, 15, 16 (reading of second frame from the second register): 
second register is read out as the first register. So in the sixteenth clock pulse the last sample of the 
second frame leaves.

Clock cycles 9, 10, 11, 12 (writing of third frame in the first register): The process of writing in the 
first register repeats and again it is written with frame number 3. In clock pulse number 9 first and  
second locations of first register which are empty then are written. In clock pulse number 10 third and 
fourth locations which are empty then are written. In clock pulse number 11 fifth and sixth locations, 
which are empty then are written and in clock pulse number 12 seventh and eighth locations are written 
with the eighth sample of third frame entering at the same time when the eighth sample of first frame is  
leaving and the two can occur in one clock pulse with no overwriting. So  it  is  only  the last sample of
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third frame that enters when the last sample of first frame leaves the buffer. All other samples of third 
frame enter after the corresponding samples of first frame have left being totally safe.

Clock cycles 13, 14, 15, 16 (writing of fourth frame in the second register):  The process of writing 
in the second register repeats and again it is written with frame number 4 with no overwriting as is 
shown above for second time writing of first register. So it is only the last sample of fourth frame that 
enters when the last sample of second frame leaves the buffer. All other samples of fourth frame enter 
after the corresponding samples of second frame have left being totally safe.

Clock cycles 13, 14, 15, 16, 17, 18, 19, 20 (reading of third frame from the first register): The 
process of reading from the first register repeats and the last sample of the third frame leaves the first 
register in the twentieth clock pulse (in twentieth clock pulse last sample of fifth frame also enters and 
all other samples of fifth frame enter after the corresponding samples of third frame have left ). 

Clock cycles 17, 18, 19, 20, 21, 22, 23, 24 (reading of fourth frame from the second register): The 
process of reading from the second register repeats and the last sample of the fourth frame leaves the  
second register in the twenty fourth clock pulse (in twenty fourth clock pulse last sample of sixth frame 
also enters and all other samples of sixth frame enter after the corresponding samples of fourth frame 
have left).

If x is the serial number of any frame input to a register then at its output this frame will be followed by 
a frame having serial number x + 2. I have shown two rounds of writing in and reading from each of 
the two registers. I see that each of the two registers are reading out frames serially sample by sample 
and continuously at the operating clock frequency maintaining the incoming data rate without any data 
loss due to overwriting. If I continue then there will be several such rounds and I get continuous frames 
with samples arriving serially at the outputs of the two registers.

Now if I extend this concept to the case when  S =1024 MHz, M = 128 MHz and N = 8 samples, which 
is our case then I will get eight output lines each from one of the eight registers sending out continuous 
frames of time-domain samples at the rate of one sample per clock pulse. If x is the serial number of 
any frame input to a register then at its output this frame will be followed by a frame having serial 
number x + 8 (x + N for the general case). Further, in our case I can start reading a register 128 (M for 
the general case) clock pulses after I have started writing in the register but I start reading a register 2 
clock pulses after I start writing in that register being totally safe. Now I will go into the design details of 
this block. I will describe the logic implemented in VHDL. I will also provide details on the timing of the signals  
in the logic elements of the block.

B.1.2.2 VHDL  implementation 

The following figure  (fig.  B.1)  shows the  layout  of  the  top  module  of  the  serial  frame generator  
implemented in VHDL. It is named as doutf2. The layout shows the components and the signals in the 
top module with their names. One can find the same names in the VHDL code.

Note : In this module and in the following modules whenever I refer to an operation occurring at a  
clock pulse, I mean the operation occurs at the rising edge of the clock pulse. All signals are initialized  
to 0 in binary in this module and in the following ones unless stated otherwise.

Module doutf2 (refer to fig. B.1):
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Inputs:

clock: system clock running at 128 MHz.
We: 1 bit user defined active-high control signal to start doutf2.
X/Y: Represents a group of 8 parallel input lines getting data from the 8 parallel output lines from the 
'clock rate reduction' logic corresponding to X/Y polarization. The line numbers are mapped 1 to 1 with 
those of the 'clock rate reduction' logic block. Each line receives one sample and is configured with 10 
bit.

Outputs:

rQ1-rQ8/iQ1-iQ8: 8 output lines corresponding to X/Y polarization. Each line is configured with 11 bit 
with 0 in the MSB (concatenated to MSBs of X/Y respectively) representing positive integers in two's 
complement form.

Component modules:

1. dfftdatn2: With the first clock pulse after we goes high, the present X and Y samples are transferred 
simultaneously to sdata1 (10 bits for each sample) and sdata2 (10 bits for each sample) respectively. In 
the same clock pulse next X and Y samples arrive and get transferred to sdata1 and sdata2 respectively 
in the following clock pulse. This continues as in any sequential logic.

2. control_n:  With the first clock pulse after we goes high sel, which is a 3 bit control signal generated 
by control_n enters its first state (“000”) out of 8 states. Its state gets incremented by 1 after every 128 
clock pulses after we is high.  The signal re1 (1 bit) goes high two clock pulses after we goes high. The 
signals from re1-re8 (1 bit each) go high with a delay of 128 clock pulses between any two consecutive 
signals.

3. counter_7bitac: This is a 7 bit up counter. It starts counting from 0 from the next clock pulse after  
we goes high. The count gets incremented every clock pulse. This count is used as the signal s1 (7 bit).

4. counter_10bitac: This is a 10 bit up counter. There are 8 such counters as shown in the figure each 
triggered/initiated by one of the lines from re1-re8 in the same way as we triggers counter_7bitac. The 
signals read_address1-read_address8 (each 10 bit) get the counts from the counters triggered by re1-
re8 respectively in the same way as s1 gets the count in counter_7bitac.

5. data_demuxtest: This is the central block of a serial frame generator. I will discuss one of the two 
such blocks shown in fig. B.1 as both operate parallely. Each operate for one polarization channel. So I 
go into the details of the one getting sdata1 corresponding to X polarization channel only. This block 
has 8 buffers each having 1024 locations and each location is configured with 10 bit width. Each state 
of sel discussed earlier is used to select a buffer in data_demuxtest. 

As we goes high, sel (used for writing only) enters “000” state in the next clock pulse, which means to 
select the first out of 8 buffers in data_demuxtest; the consecutive states of sel select the consecutive 
buffers. Since sel remains in this state for 128 clock pulses, the first buffer remains selected for these 
128 clock pulses. 

The first 8 samples appear in sdata1 one clock pulse after we goes high and at the same time first write 
address for  writing  in  the  first  8  locations  in  the  selected  buffer appears in the bus s1. Thus in the 
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following clock pulse or after two clock pulses after we goes high these 8 samples in sdata1 enter the 
first 8 locations and it is then when next 8 samples also appear in sdata1 and when sl increments by 1 
pointing the next 8 locations. In following clock pulse these next 8 samples enter the next 8 locations 
and this continues until sel changes its state to “001” selecting the second buffer and the whole process 
of writing repeats for the second buffer and then for the third buffer and goes on cyclically. 

The doutf2  module in the VHDL code of the digital circular polarizer. This module implements the 
serial frame generators for both X and Y polarizations. The names of the components shown are same 
as in the VHDL code. X  and Y  signals in the figure are inputs to doutf2  corresponding to X and  Y 
polarization channels respectively. The signals rQ1 to rQ8 are outputs  corresponding to X polarization 
and the signals iQ1 to iQ8 are outputs  corresponding to Y polarization from doutf2. The clock  in the 
figure represents the input clock and the signal we is a user defined control signal. All other signals are 
internal to the module; the signals in the LHS of each component in the figure represent the inputs to 
that component and the signals in the RHS of each component represent the outputs from that 
component. 

Fig. B.1:

/ rQ1

/ rQ8

/ iQ1

/ iQ8
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The signal re1 goes high two clock pulses after we goes high. One clock pulse after re1 (used for first 
buffer only) goes high, the first read address for reading the first buffer appears in  read_address1 
pointing  the first  location with  “0000000000”;   the  consecutive states  of read_address1  select  the 
consecutive locations in the first buffer. In the next clock pulse after the first read address appears, the 
output line Q1 of the first buffer receives the first sample from the first location and in the same clock 
pulse read_address1 increments by 1 pointing the next (second) location in the buffer. In the following 
clock pulse after the second read address (read_address1 = “0000000001”) has appeared, Q1 receives 
the second sample with the first sample moving forward and read_address1 again gets incremented by 
1 pointing the third location. Thus Q1 receives  one  sample per clock pulse with samples proceeding to
one of the FFT blocks. 

The signal re2 goes high to read from the second buffer 128 clock pulses after re1 goes high as there is 
a delay of 128 clock pulses between writing operations in consecutive buffers cyclically. Similarly re3 
follows re2, re4 follows re3 and so on and reading from all  buffers  occur  in  the  same  way. 

The  signal  rQ1  is  the  output  line  from  the  first  buffer after concatenating 0 in the MSB of Q1 
(representing the two's complement form of Q1), rQ2 is from the second buffer,...., rQ8 from the eighth 
buffer. So rQ1 to rQ8 each sends continuous frames at the rate of one sample (11 bit) per clock pulse to 
the corresponding FFT block. There is a delay of two clock pulses between starting the write operation 
for a frame and starting the read operation for the same frame in a buffer. 

So I am getting 8 output lines (rQ1-rQ8) corresponding to X polarization and 8 output lines (iQ1-iQ8) 
corresponding to  Y  polarization from doutf2. The lines  rQ1  and  iQ1 feed the first out of 8 identical 
stages, rQ2 and iQ2 feed the second,...., rQ8 and iQ8 feed the eighth. Each of the stages has an FFT as 
the first processing element receiving the corresponding two output lines from doutf2.  So as evident 
from the timing discussed in B.1.2.2, rQ1/iQ1 to rQ8/iQ8 start sending data with a delay of 128 clock 
pulses between any two consecutive lines and hence the 8 identical stages must also start with a delay 
of 128 clock pulses between any two consecutive stage. Starting the digital circular polarizer starts the 
first stage and 128 clock pulses later the second stage starts and so on. The  doutf2 block starts two 
clock pulses after the digital circular polarizer starts and rQ1/iQ1 starts sending data four clock pulses 
after doutf2 starts and thus 6 clock pulses after the digital circular polarizer starts. The eight stages are 
named  as  combunitfft1,  combunitfft2,....,combunitfft8 in  the  VHDL code.  Now  I  will  proceed  to 
describe one of the 8 stages (combunitfft1).

B.1.3 FFT to accumulators of first out of eight stages

Now I describe the first stage out of eight stages receiving two parallel outputs from the first of the  
eight pairs of output lines of the previous block where each pair corresponds to the X and Y from the 
two corresponding simultaneous buffers. The two output lines feed the FFT block described below 
sample by sample at a rate of 128 MHz.

1. FFT 

A streaming pipelined FFT is used to process the serially arriving time frames. For details of this block 
refer to Xilinx documentation for FFT version 5. 

I feed the incoming real data for the X and Y polarizations to the real and imaginary channels of the 
FFT respectively since I can thus perform FFT of the two real functions simultaneously. After a certain 
delay the FFT starts sending outputs sample by sample at a rate of 128 MHz and thus frame by frame. 
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However, at the outputs of the FFT I get a combination of X and Y with the real channel representing
X rF , K  – Y iF , K  and imaginary channel representing X i F , K Y rF , K  where K, which 

is also transferred in an output line, represents the index of frequency-domain sample number of a 
frame F; the outputs X rF , K – Y i F , K  , X i F , K Y r F , K  and K are parallel; the value of 
K in any data line increments by 1 every clock pulse representing the next sample in a frame and 
repeats every 1024 clock pulses; the value of F in any data line remains the same for 1024 clock pulses 
from the time (clock pulse) this value initiates and after those 1024 clock pulses it increments by 8 
representing    a     new    frame;   X rF , K  ,  X i F , K  ,   Y rF , K     and    Y i F , K 
represent the real and imaginary parts of X(F,K) and Y(F,K) respectively. So I need to extract the real 
and imaginary parts of the X and Y polarizations from their combination at the outputs of the FFT. The 
following logic block is used to extract the real and imaginary parts of X and Y.

2. Decoder

This receives the inputs X rF , K  –Y iF , K  say R(F,K), X i F , K Y rF , K  say I(F,K) and K 
simultaneously at the same clock pulse from the FFT. So it needs to extract, from the inputs R(F,K) and 
I(F,K), the output quantities X rF , K  , X i F , K  , Y rF , K  and  Y i F , K  simultaneously 
and transfer these extracted quantities without any sample loss. These four quantities are extracted by 
implementing the following four equations respectively:

X rF , K =RF , K /2RF ,1024−K /2                                                                                 (B.1)

X i F , K =I F , K /2− I F , 1024−K /2                                                                                   (B.2)

Y rF , K = I F , K /2I F ,1024−K / 2                                                                                   (B.3)

−Y iF , K =RF , K /2−RF , 1024−K /2                                                                               (B.4)

So the decoder needs to transfer  R(F, K),  R(F, 1024-K),  I(F, K) and  I(F, 1024-K) in parallel with the 
values of F and K changing as described earlier and this is accomplished the following way.

There are two units one working to transfer R(F, K), R(F, 1024-K) and the other to transfer I(F, K), I(F,  
1024-K). Both the units work identically and parallely. Hence, I will only go into the details of one of 
them and I pick up the one transferring R(F, K) and R(F, 1024-K) simultaneously.

This unit has two buffers each having 1024 locations. One clock pulse after this unit starts, the spectral 
data point R(N, 0), where N represents the first frame from the FFT, arrives at its input and it is then 
when first buffer gets selected for writing. In the next clock pulse (two clock pulses after this unit 
starts), R(N,0) enters the location with address 0 (address is pointed by K, which is 0 then) in the first 
buffer with R(N,1) at the input and one clock pulse after R(N,0) has entered the buffer, R(N,1) enters the 
buffer in location whose address is 1 and this continues until  R(N,1023) enters 1024th location with 
address 1023 filling the first buffer. When  R(N,1023) enters the first buffer, the second buffer gets 
selected for writing in the same way and the first buffer for reading with R(N+8, 0) at the input. Hence 
one clock pulse after R(N+8, 0) arrives at the input, it gets written in the location 0 of the second buffer 
and R(N,0)  and R(N, 1024-0)=R(N,0) from the first buffer are read out. In this way while writing of 
R(N+8,  K) is  happening  in  the  second  buffer,  parallel  reading  of  R(N,  K) and  R(N,1024-K) are 
happening from the first buffer. When R(N+8, 1023) enters 1024th location of the second buffer, first 
buffer is again selected for writing and the second buffer for reading with R(N+16, K) at the input. So 
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from the next clock pulse after frame  N+8 has fully entered second buffer,  R(N+8, K) and  R(N+8,  
1024-K) are read out from the second buffer with R(N+16, K) entering the first buffer parallely. In this 
way when one buffer is written, the other buffer is read out and this continues cyclically. Thus at the 
output I get R(F, K) and R(F, 1024-K) with values of F and K changing as usual.

So from two such units I obtain R(F, K), R(F, 1024-K), I(F, K), I(F, 1024-K) in parallel to implement the 
four  equations  (B.1),  (B.2),  (B.3)  and  (B.4)  simultaneously  to  obtain X rF , K  , X i F , K  ,

Y rF , K  and Y i F , K  in  parallel  and  transfer  these  extracted  quantities  without any sample
loss.

Each of these four parallel outputs from the decoder passes to the next two parallel elements (one for 
cross-power  spectra  accumulation  and the other for power spectra accumulation); I also transfer the
 K  in  an  output line in parallel with the four outputs. The next two blocks demonstrate the cross-
power spectra accumulation and the power spectra accumulation respectively.

3. Cross-power spectra accumulation

This block receives the parallel inputs X rF , K  , X i F , K  , Y rF , K  , Y i F , K  and K at 
128 MHz from the decoder. It cross multiplies X(F, K) and Y(F, K) to obtain Z(F, K) (cross-power) that 
is Z rF , K  and Z i F , K  where Z rF , K  is the real part and Z i F , K  is the imaginary part 
of  Z(F,  K); Z rF , K  and Z i F , K  are  obtained  parallely  in  two  lines;  K is  also  transferred 
parallely  with  each  of  them. Z rF , K  and Z i F , K  are  accumulated  parallely  and  separately 
frame by frame which means to add Z rF , K  / Z i F , K   for a particular K but different F. So the 
output  of  accumulation  will  have  1024  results  corresponding  to  1024  different  values  of  K.  The 
accumulation process of both Z rF , K  and Z i F , K  are identical so I will describe only one for 
neatness. So let us take the case of accumulating Z rF , K  , which is described as follows.

The line transferring Zr F , K  from the output of cross multiplication is further broken into two 
lines.  The  first  line  is  active  (transferring Zr F , K  )  while  first  1048576  frames  (I  need  to 
accumulate  1048576 frames)  of Z r are  being transferred  and during  this  time the  second line  is 
inactive (transferring zeros). So the first line is active for 1048576×1024 clock pulses, counting from 
the clock pulse when Z r F , K  starts appearing at the output of complex multiplication, after which 
this line becomes inactive and the second line becomes active. Or, the second line is active when next  
1048576 frames of Zr are being transferred. So the second line remains active for 1048576×1024 
clock pulses, counting from clock pulse when the next frame after the first  1048576 frames of Z r

have appeared at the output of the complex multiplication, after which this line becomes inactive. So 
the first 1048576 frames of Zr , which correspond to the noise diode on state, are transferred through 
one  line;  the  next   1048576  frames  of Z r ,  which  correspond  to  the  noise  diode  off  state,  are 
transferred through the other line. Further K is transferred in parallel to each of the two lines.

There  are  two  accumulators  for  accumulating Zr F , K  ,  one  getting  input  from  the  line 
corresponding to the noise diode on state and the other getting input from the line corresponding to the 
noise diode off state. The two accumulators also receive  K along with Zr F , K  . So the first line 
transfers Z rF , K  to the location with address  K of the on-state accumulator, to get added to the 
present data (initially 0) in that location. In this way Z rF , K  for a particular K accumulates in time 
in the location with address K of the on-state accumulator until the first line input to this accumulator 
becomes  inactive   and   the   second   line   becomes active to transfer Zr F , K  to the location with 
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address K of the off-state accumulator, to get added to the present data (initially 0) in that location. In 
this way Zr F , K  for a particular K accumulates in time in the location with address K of the off-
state accumulator until the second line input to this accumulator becomes inactive. As evident each 
accumulator  has  1024  locations  each  for  one  frequency  channel.  Thus  once  1048576  frames  are 
accumulated in each of the two accumulators, the accumulation of Zr F , K  stops and the results are 
ready to be read out. Similarly Z i F , K  gets accumulated in another pair of accumulators with the 
on-state accumulators/off-state accumulators of both working in parallel. 

4. Power spectra accumulation

This block receives the parallel inputs X rF , K  , X i F , K  , Y rF , K  , Y i F , K  and K at 
128 MHz from the decoder.  It  forms power |X(F, K)|² and |Y(F, K)|²;  |X(F,  K)|² and |Y(F, K)|²  are 
obtained  in  parallel  in  two  lines; K  is  also  transferred  in parallel  with each  of  them. Both powers 
|X(F, K)|² and |Y(F, K)|² are accumulated in parallel and separately  frame  by frame which means to add 
|X(F, K)|²/|Y(F, K)|² for a particular  K but different  F. So the output of accumulation will have 1024 
results  corresponding  to  1024  different  values  of  K. The accumulation  process  of  both  |X(F, K)|² 
and  |Y(F,  K)|²  are  identical  so  I  will  describe  only  one  for  neatness.  So  let  us  take  the  case  of 
accumulating |X(F, K)|², which is described as follows.

The line transferring |X(F, K)|² from the output of power formation is further broken into two lines. The 
first line is active (transferring |X(F, K)|² ) while first 1048576 frames (I need to accumulate 1048576 
frames) of  |X|²  are being transferred and during this  time the second line is  inactive (transferring 
zeros). So  the first line is active for 1048576×1024 clock pulses, counting from the clock pulse  when 
|X(F, K)|² starts appearing at the output of power formation, after which this line becomes inactive and 
the second line becomes active. Or, the second line is active when next  1048576 frames of  |X|²  are 
being transferred. So the second line remains active for 1048576×1024 clock pulses, counting from the 
clock pulse when next frame after the first 1048576 frames of |X|² have appeared at the output of power 
formation,  after  which  this  line  becomes  inactive.  So  the  first  1048576  frames  of  |X|²,  which 
correspond  to  the noise diode on state, are transferred  through  one line; the next  1048576 frames of 
|X|² , which correspond to the noise diode off state, are transferred through the other line. Further K is 
transferred in parallel with each of the two lines.

There are two accumulators for accumulating |X(F, K)|², one getting input from the line corresponding 
to the noise diode on state and the other getting input from the line corresponding to the noise diode off  
state. The two accumulators also receive K along with |X(F, K)|². So the first line transfers |X(F, K)|² to 
the location with address K of the on-state accumulator, to get added to the present data (initially 0) in 
that location. In this way |X(F, K)|² for a particular K accumulates in time in the location with address K 
of the accumulator until the first line input to this accumulator becomes inactive and the second line 
becomes active to transfer |X(F, K)|² to the location with address K of the off-state accumulator, to get 
added  to  the  present  data  (initially  0)  in  that  location.  In  this  way  |X(F,  K)|²  for  a  particular  K 
accumulates in time in the location with address  K of the off-state accumulator until the second line 
input to this accumulator becomes inactive. As evident each accumulator has 1024 locations each for 
one frequency channel. Thus once 1048576 frames are accumulated in each of the two accumulators, 
the accumulation of |X(F, K)|² stops and the results are ready to be read out.

Similarly  |Y(F,  K)|²  gets  accumulated  in  another  pair  of  accumulators  with  the  on-state 
accumulators/off-state accumulators of both (|X(F, K)|²  and |Y(F, K)|² ) working parallely. 
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Note- Outputs from the power formation and cross-power formation appear parallely. The on-state/off-
state  accumulators  of  the  quantities Zr F , K  , Z i F ,K  ,  |X(F,  K)|²  and  |Y(F,  K)|²  operate 
parallely.

B.1.3.1 VHDL implementation

The module containing FFT to accumulators for the first stage out of eight identical stages is named as 
combunitfft1. So I will now go into the details of combunitfft1. The remaining seven stages are named
as combunitfft2, combunitfft3, combunitfft4, combunitfft5, combunitfft6, combunitfft7 and combunitfft8. 
The  only  difference  between   these  blocks  is   the  timing  to  start   the  read  operation  from  the
 accumulators. The signal controlling the read operation in each stage takes care of the time when the 
read operation of the previous stage has stopped, that is read operation of a stage starts two clock pulses 
after the read operation of the previous stage has stopped. The read operation of the first stage starts 
two clock pulses after writing in all eight stages has stopped. I now go into the details of combunitfft1.

Module combunitfft1 (refer to fig. B.2)

Inputs:

clk: 128 MHz input clock.
ce: 1 bit user defined control signal to start combunitfft1.
blank: 1 bit user defined control signal to pause accumulation by commanding to start transfer of zeros 
to the accumulators.
rout, imout: 11 bit data (all positive) in two's complement form from the first output lines of the serial  
frame generators corresponding to the X and Y polarizations respectively.

Outputs: 

oacr, oaci, oacmx, oacmy: 69 bit Z r F , K  , Z i F ,K  , ∣X F , K ∣2 , ∣Y F , K ∣2 respectively 
after subtraction of off-state accumulator results from on-state accumulation results.
indexr, indexi, indexx, indexy: 10 bit indices of data in oacr, oaci, oacmx and oacmy respectively.
weoutr,  weouti,  weoutx,  weouty:  1 bit  control  signal  that controls writing of read data  oacr,  oaci, 
oacmx, oacmy to the four respective accumulators. (There are four final accumulators for accumulating 
oacr, oaci, oacmx, oacmy respectively from the eight identical stages.).

Bidirectional lines:

sstart: 1 bit control signal connected to start of Xilinx FFTv5.
sfwd_inv_we: 1 bit control signal connected to fwd_inv_we of Xilinx FFTv5.

Component modules:

1.  fftdecacmcontrolfb:  It  is  started by  ce.  One clock pulse after  ce goes high,  sfwd_inv_we  (1 bit 
fwd_inv_we of Xilinx FFT) goes high and it remains high for one clock pulse after which it goes low.  
At the same clock pulse when fwd_inv_we goes low, sstart (1 bit start of Xilinx FFT) goes high. The 
signal sstart remains high for one clock pulse after which it goes low. This square wave pulse of sstart 
repeats every 1024 clock pulses required to initiate FFT block for the corresponding time frame. For 
details  on  the  relation between sstart and initiation of FFT block please refer to Xilinx documentation 
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for FFT v5. 2173 clock pulses after  sstart is high for the first  time,  reset1 (1 bit  reset of the two 
decodervar1s) goes high since after 2174 clock pulses after sstart is high, FFT outputs start appearing 
to  enter  the  two  decodervar1s with  the  real  channel  of  the  FFT  (X  polarization)  entering  one 
decodervar1 and the imaginary channel of the FFT (Y polarization) entering the other  decodervar1. 
1025 clock pulses after reset1 goes high, decout_acmin (1 bit control signal to start xacmf11024 and

Fig. B.2:Top module  combunitfft1  depicting dataflow from FFT to the subtraction operation between the on-
state accumulation results and off-state accumulation results. The lines in the L.H.S represent the 
inputs to the logic blocks and the lines in the R.H.S represent the outputs from the logic blocks in the 
figure.

 indx1

 indy1
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modxyf1024)  goes  high  and  it  remains  high  for  1048576  × 1024  × 2  +  2  clock  pulses  to  allow 
accumulation in the on-state and off-state accumulators consecutively after which it  goes low. The 
signal reade (1 bit) goes high two clock pulses after decout_acmin goes low to start reading from the 
four accumulators and reade remains high for 1026 clock pulses. (This reade is only for the first out of 
eight identical stages. Other reade signals for the rest seven stages takes care when the reade signal of 
the previous stage has stopped to start reading).

2. fft_row: The signals of this block ce, sfwd_inv_we, rfd, sstart, fwd_inv, sdv, done, clk, busy, edone,  
rout, sxk_im, xn_index, sxk_re, imout, xk_index are connected to ce, fwd_inv_we, rfd, start, fwd_inv, dv,  
done, clk, busy, edone, xn_re, xk_im, xn_index, xk_re, xn_im, xk_index of Xilinx FFTv5 respectively.

3. decodervar1:  As shown in fig. B.2 there are two such modules working in parallel one receiving 
sxk_re corresponding to R(F, K) generating quantities in eqs (B.1) and (B.4) as outputs and the other 
receiving sxk_im corresponding to I(F, K) generating quantities in eqs (B.2) and (B.3) as outputs. So I 
discuss below only the one receiving sxk_re whose details is shown in fig. B.3.

Inputs:

clock: 128 MHz clock , clk of combunitfft1.
reset: 1 bit control signal to start decodervar1, reset1 of combunitfft1.
address: 10 bit address line, xk_index of combunitfft1 representing K of input data. 
datain: 22 bit data line, sxk_re of combunitfft1 representing R(F, K).

Outputs:

dout1: 22 bit output line, rNpn of combunitfft1 representing RF , K / 2R F ,1024−K /2 .
dout2: 22 bit output line, rNmn of combunitfft1 representing RF , K / 2−R F ,1024−K /2 .
index: 10 bit index line representing K of the data in dout1 and dout2, indreo of combunitfft1.

decodercontrol1024:  It generates  s1 (1 bit) and  s2  (1 bit). Counting from the next clock pulse after 
reset goes high, the state of s1 toggles  every 1024 clock pulses. In the next clock pulse after reset goes 
high s1 starts with state '0'. The signal s2 is the inverted version of s1.

dffdec: It delays a signal by one clock pulse. There are 1024 such elements connected in series with the 
first element getting reset as its input. So the reset is delayed by n clock pulses by the n elements where 
n = 1, 2, 3, …., 1024. When n = 1, output is reset1(0), when n =2, output is reset1(1) and so on. Thus 
when n =1024, output is reset1(1023).

counter_t1024: This is a 10 bit up counter initiated by reset1(1023). It starts counting from 0 one clock 
pulse after  reset1(1023) goes high with the count incrementing by 1 every clock pulse. The signal 
addressi (10 bit) represents this count.

dffadd1: It is started by reset1(1023).  It delays addressi by one clock pulse and sends it as index (10 
bit).
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decode_inputs210241:  This is the central element of decodervar1. It has two buffers each having 1024 
locations  and each location  is  22 bit  wide.  It  is  started  by  reset.  Inputs  datain and  address starts 
appearing one clock pulse after reset goes high and it is then when s1, which is used to select between 
the two buffers for writing, enters '0' state selecting the first buffer for writing and s2, which is used to 
select between the two buffers for reading, enters '1' state selecting the second buffer (empty or filled 
with zeros then) for reading; state '0' of  s1/s2 selects first buffer and state '1' of s1/s2 selects second 
buffer. 

So the first buffer is written starting from the next clock pulse after its selection sample by sample as  
demonstrated under decoder of B.1.3 with a sample entering the location pointed by the corresponding 
value in  address. Reading need not start in the second buffer the next clock pulse after its first time 
selection after  reset goes high since being empty it  doesn't  need to be read then;   hence I  do not 
generate the read address, addressi (representing K of data to be read out), used for reading the buffers 
until the first frame from the FFT has entered the first buffer. Reading is initiated by  reset1(1023), 
which controls the generation of addressi the next clock pulse it goes high. When the last sample of this 
first frame enters the last location of the first buffer, s1 toggles to '1' state selecting the second buffer 
for writing with the first sample of the next frame and its address at the inputs,  datain and  address 
respectively; it is then when  s2 toggles to '0' selecting first buffer for reading sample by sample as 
demonstrated  under  decoder  of  B.1.3;  the  two  output  lines  dataout1 and  dataout2 get  data 
simultaneously from the locations pointed by  addressi and  1024-addressi respectively in  the clock 
pulse following selection of the buffer to be read. So as required and already demonstrated,  addressi 
starts appearing (and continues to appear after that in its way) when the last sample of the first frame 
from the FFT enters the last location of the first buffer or 1025 clock pulses after reset goes high. 

So while the second buffer is being written (sample enters a location), the first buffer is being read out 
(sample goes out of a location) sample by sample; reading from a buffer and writing in the other  buffer

 Fig. B.3:

  s2

 decodercontrol1024

 counter_t1024

decoderop1024

Logic details of the block 
decodervar1. Two such 
blocks are required to extract 
X and Y polarization from their 
combination at the outputs of 
the FFT. The input line 
address  represents the index 
(of samples) coming out from 
the FFT and the input line 
datain  represents the 
corresponding data coming 
out in the real channel from 
the FFT (the imaginary 
channel of the FFT feeds 
another identical and parallel 
decodervar1). This block is 
used to extract the real part of 
X polarization and imaginarypart of Y polarization from the input data (the other decodervar1  working similarly extracts real part 
of Y and imaginary part of X from its input data). The output lines dout1 and dout2 output real part of 
X polarization (real part of Y in the other case) and imaginary part of Y polarization (imaginary part of 
X in the other case) respectively.

   s1
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corresponds to the same sample number/location number in a frame/buffer. In this way writing and 
reading in a buffer after another continues cyclically and I get in the two output lines  dataout1 and 
dataout2, R(F, K) and R(F, 1024-K) respectively and in parallel.

decoderop1024:  This  unit  takes  dataout1 and  dataout2 from  decode_inputs210241 as  two parallel 
inputs, forms  (dataout1 + dataout2)/  2 and  (dataout1 - dataout2)/  2 in parallel  and sends them as 
outputs  dout1 and dout2 respectively. Thus dout1 and  dout2 represent  R(F,K)/2 + R(F,1024-K)/2 and 
R(F,K)/2 – R(F,1024-K)/2 respectively. There is no delay in generating these outputs since the logic is 
combinatorial. As can be figured out the index represents the K of data in dout1/dout2.

As already stated two decodervar1 work in parallel one sending quantities in eqs (B.1) and (B.4) and 
the other sending the quantities in eqs (B.2) and (B.3) and I get all four of them in parallel.

Note: The outputs from the other decoder are named as  iNpn and  iNmn in  combunitfft1 (fig.  B.2) 
corresponding to I(F,K)/2 + I(F,1024-K)/2 and I(F,K)/2 – I(F,1024-K)/2 respectively.

4. xacmf11024 (refer to fig. B.4): 

Inputs:

clk: 128 MHz clock, clk of combunitfft1.
reset: 1 bit active high control signal to start xacmf11024, decout_acmin of combunitfft1.
reade: 1 bit active high control signal to start reading from the constituting accumulators,  reade of 
combunitfft1.
blank: 1  bit  active  high  user  control  signal  to  pause  accumulations  for  certain  duration  when 
xacmf11024 is in running condition. This duration refers to the time required to change the pointing of 
telescope to the source from the calibrator, blank of combunitfft1.
xr and xi: Real (rNpn of  combunitfft1) and imaginary (iNmn of  combunitfft1) parts of X polarization 
(representing X(F, K)) from decodervar1 respectively. Each is 22 bit wide.
yr and yi: Real (iNpn of  combunitfft1) and imaginary (rNmn of  combunitfft1) parts of  Y polarization 
(representing Y(F, K)) from decodervar1 respectively. Each is 22 bit wide.
Indexi: 10 bit index of samples in xr/xi/yr/yi, indreo of combunitfft1.

Outputs:

oacr1,  oacr2,  oaci1,  oaci2:  69  bit  output  lines  from  the  accumulators  accumulating Z rF , K   
corresponding to noise diode on state, Z rF , K  corresponding to noise diode off state, Z i F , K   
corresponding  to  the  noise  diode  on  state  and Z i F , K  corresponding  to  noise  diode  off  state 
respectively, acmr1, acmr2, acmi1, acmi2 respectively of combunitfft1.
indexr1, indexr2, indexi1, indexi2:  10 bit output lines representing indices of data in  oacr1, oacr2, 
oaci1 and oaci2 respectively. Same names in combunitfft1.

Component modules:

cscombf1024n: It is started by reset. It generates two signals reset3 (1 bit) and reset4 (1 bit). The signal 
reset3 goes high one clock pulse after reset goes high and remains high for 1048576×1024 + 2 clock 
pulses after which it goes low. The signal reset4 goes high two clock pulses before reset3 goes low and 
it remains high for  1048576×1024 + 2 clock pulses after which it goes low.
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complex_multiplier1024: It is started by reset. Its inputs xr, xi, yr, yi and indexi start arriving one clock 
pulse after  reset goes high.  It  multiplies the complex quantities  xr + jxi and  yr + jyi (since -yi is 
received as evident from eqn (B.4)) to form the cross power zr1 + jzi1 where zr1 (45 bit) represents

Z rF , K  and zi1 (45 bit) represents Z i F , K  . Both zr1 and  zi1 are obtained in parallel at its 
outputs three clock pulses after reset goes high that is the input-output latency is two clock pulses. The 
output indices indor is transferred in parallel with zr1 and indoi is transferred in parallel with zi1. This 
block also takes in the input blank, which when active transfers zeros in the output lines.

dff1: This element delays a 1 bit signal by one clock pulse. There are 3 such elements two of which are 
used to delay reset by two clock pulses to produce reset2 (1 bit). 

clockdividerac30: This element combined with the third dff1 generates a signal sel2 (1 bit). It is started 
by reset2 which goes high one clock pulse after reset3 goes high. Counting from the next clock pulse 
after  reset2 goes high,  sel2 toggles every 1048576×1024 clock pulses. In the next clock pulse after 
reset2 goes high, sel2 starts with '0'.

demux4ac1024:  There are  two such units  working in parallel,  one for transferring  zr1 another for 
transferring zi1. Since the operation of both are identical I will go into the details of only one that is the 
one for transferring  zr1 as follows: It receives  zr1 and  indor from the  complex_multiplier1024. It is 
started by reset1. If reset1 is '1' then if sel2 is '0' then the output lines zr11 and indor1 get the inputs zr1 
and indor respectively and the output lines zr12 and indor2 receive zeros. If reset1 is '1' and if sel2 is '1'
 then the output lines zr12 and indor2 get the inputs zr1 and indor respectively and the output lines zr11 
and indor1 receive zeros. The   data  arrive  2  clock  pulses  after reset1  goes  high  and  the output is 
received  the  same  clock  pulse  the  input  arrives  the  logic  being  combinatorial.  In  the  other  unit 
receiving zi1, all the above description is applicable with zr1, indor, zr11, zr12, indor1, indor2 replaced 
by  zi1,  indoi,  zi11,  zi12,  indoi1 and  indoi2 respectively. The remaining input/output signal lines are 
common to both.

acm1024: There are four such units of which two work to accumulate zr11 and zr12 respectively and 
the other two work to accumulate zi11 and zi12 respectively. Accumulation process of zi11 and zi12 is 
same as accumulation process of zr11 and zr12 respectively, which also means zi11 and zr11 (zi12 and 
zr12) are accumulated in parallel. So I will only go into the details of accumulation of zr11 and zr12.

Accumulation of zr11 in one acm1024: zr11 and indor1 starts appearing two clock pulses after reset3 
goes high. The signal reset3  is the write enable to initiate writing in this accumulator. One clock pulse 
after  zr11 appears, it gets added to the contents in the location pointed by indor1 (representing  K of 
zr11 and  of  the  location  where  zr11 enters).  Consecutive  zr11 get  added  to  the  contents  of  the 
corresponding location (pointed by indor1) one by one as described under topic 3 of B.1.3. Since I need 
to accumulate  1048576 spectra,  reset3  must remain high for  1048576 × 1024 (number of samples 
entering  the  accumulator)  +  2  (delay  between  reset3  going  high  and zr11  appearing  as  already 
mentioned) = 1073741826 clock pulses as it does (see cscombf1024n). So writing in this accumulator 
stops when reset3 goes low. The signal reade is there, which when active enables reading in the output 
line oacr1 and the index appearing in the output line indexr1.
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Accumulation of  zr12 in another  acm1024: It is started by reset4. The signal  zr12 arrives two clock 
pulses after  reset4 goes high (at the same time when  reset3 goes low). This is also when  sel2 has 
toggled to 1 sending output in zr12. So zr12 is written in this accumulator following the same way as 
zr11 has been written with indor2 pointing the location for writing in this accumulator. So reset4 (as 
reset3) also  remains  high  for  1048576 × 1024 + 2  clock pulses to accumulate  1048576 spectra. The
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Fig.B.4
:

Logic block xacmf11024, which receives the real and imaginary parts of the X  and  Y  polarization 
named as xr, xi, yr and yi respectively in the figure from the two decodervar1s described under the 
previous block detail of combunitfft1.  It cross multiplies X  and Y  polarizations and accumulates the 
resulting Z spectrum for both on and off states of the noise diode. The accumulation results are read 
when desired. The four acm1024  in the figure are four accumulators whose signals to the right are 
the outputs of this block. The signals to the RHS of the blocks in the figure are outputs from those 
blocks and the signals to the LHS of the blocks are the inputs to those blocks. The signal clk  in the left 
most bottom corner is the clock (128 MHz), which feeds all the logic elements in the figure.



signal  reade  is  there,  which  when  active  enables  reading  in  the  output  line oacr2  and  the  index 
appearing in the output line indexr2.

Accumulation of zi11 in a third acm1024: zi11 is accumulated in parallel with zr11. All operations for 
accumulating  zi11 in  this  accumulator  remain  the  same  as  for  zr11 in  its  accumulator  with  the 
input/output lines zr11, indor1, oacr1, indexr1 replaced by zi11, indoi1, oaci1, indexi1 respectively and 
all other input/output lines to these accumulators are common to both. 

Accumulation of zi12 in the fourth acm1024:  zi12 is accumulated in parallel with zr12. All operations 
for  accumulating zi12 in  this  accumulator  remains  same as  for   zr12 in  its  accumulator  with  the 
input/output lines zr12, indor2, oacr2, indexr2 replaced by zi12, indoi2, oaci2, indexi2 respectively and 
all other input/output lines to these accumulators are common to both.

The common  reade signal to all the above accumulators, when high initiates reading from the four 
accumulators in parallel.

5. modxyf1024: 

Note:  The  layout  for  modxyf1024  is  similar  to  the  layout  sown  in  fig.  B.4  with  the  
complex_multiplier1024 responsible to cross multiply X and Y to produce real and imaginary parts of  
Z is replaced by power multiplier to produce X and Y powers correspondingly.

Inputs:

clk: 128 MHz clock, clk of combunitfft1.
reset: 1 bit active high control signal to start modxyf1024, decout_acmin of combunitfft1.
reade: 1 bit active high control signal to start reading from the constituting accumulators,  reade  of 
combunitfft1.
blank: 1  bit  active  high  user  control  signal  to  pause  accumulations  for  certain  duration  when 
modxyf1024 is in running condition. This duration refers to the time required to change the pointing of 
telescope to the source from the calibrator, blank of combunitfft1.
xr and xi: Real (rNpn of  combunitfft1) and imaginary (iNmn of  combunitfft1) parts of X polarization 
(representing X(F, K)) from decodervar1 respectively. Each is 22 bit wide.
yr and yi: Real (iNpn of  combunitfft1) and imaginary (rNmn of  combunitfft1) parts of  Y polarization 
(representing Y(F, K)) from decodervar1 respectively. Each is 22 bit wide.
Indexi: 10 bit index of samples in xr/xi/yr/yi, indimo of combunitfft1.

Outputs:

oacmx1,  oacmx2,  oacmy1,  oacmy2:  69  bit  output  lines  from  the  accumulators  accumulating
∣X F , K ∣2  corresponding to noise diode on state, ∣X F , K ∣2 corresponding to noise diode off 

state, ∣Y F , K ∣2  corresponding to the noise diode on state and ∣Y F , K ∣2 corresponding to noise 
diode off state respectively, acmx1, acmx2, acmy1, acmy2 respectively of combunitfft1.
indexr1, indexr2, indexi1, indexi2: 10 bit output lines representing indices of data in oacmx1, oacmx2, 
oacmy1 and oacmy2 respectively, indx1, indx2, indy1, indy2 respectively of combunitfft1.

Component modules:
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cscombf1024n: It is started by reset. It generates two signals reset3 (1 bit) and reset4 (1 bit). The signal 
reset3 goes high one clock pulse after reset goes high and remains high for 1048576×1024 + 2 clock 
pulses after which it goes low. The signal reset4 goes high two clock pulses before reset3 goes low and 
it remains high for1048576×1024 + 2 clock pulses after which it goes low.

mod_xy_square: It is started by reset. Its inputs xr,  xi,  yr,  yi and indexi start arriving one clock pulse 
after reset goes high. It forms xr² + xi² power (named as zr1) and yr² + yi² power (named as zi1)where 
xr² + xi² (45 bit) represents ∣X F , K ∣2 and  yr² + yi² (45 bit) represents ∣Y F , K ∣2 . Both xr² + 
xi² and yr² + yi² are obtained in parallel at its outputs three clock pulses after reset goes high that is the 
input-output latency is two clock pulses. The output index indor (obtained from indexi) is transferred in 
parallel with xr² + xi² and the output index indoi (obtained from indexi) is transferred in parallel with 
yr² + yi². This block also takes in the input blank, which when active transfers zeros in the output lines.

dff1: This element delays a 1 bit signal by one clock pulse. There are 3 such elements two of which are 
used to delay reset by two clock pulses to produce reset2 (1 bit). The reset delayed by one clock pulse 
is reset1.

clockdividerac30: This element combined with the third dff1 generates a signal sel2 (1 bit). It is started 
by reset2 which goes high one clock pulse after reset3 goes high. Counting from the next clock pulse 
after  reset2  goes  high, sel2  toggles  every  1048576×1024  clock  pulses. In the next clock pulse after
 reset2 goes high, sel2 starts with '0'.

demux4ac1024: There  are  two  such  units  working  in  parallel,  one  for  transferring  zr1 (xr² + xi²) 
another for transferring zi1 (yr² + yi²). Since the operation of both are identical I will go into the details 
of only one that is the one for transferring zr1 as follows: It receives zr1 and indor (index of zr1) from 
the mod_xy_square. It is started by reset1. If reset1 is '1' then if sel2 is '0' then the output lines zr11 and 
indor1 get the inputs  zr1 and  indor respectively and the output lines  zr12 and  indor2 receive zeros 
(zr11 receive on state xr² + xi²). If reset1 is '1' and if sel2 is '1' then the output lines zr12 and indor2 get 
the inputs  zr1 and  indor respectively (zr12 receives off-state  xr² + xi²) and the output lines zr11 and 
indor1 receive zeros. The data arrive 2 clock pulses after reset1 goes high and the output is received the 
same clock pulse the input arrives the logic being combinatorial. In the other unit receiving zi1, all the 
above description is applicable with zr1,  indor,  zr11,  zr12,  indor1, indor2 replaced by zi1, indoi, zi11 
(on-state yr + yi²), zi12 (off-state yr + yi²), indoi1 and indoi2 respectively. The remaining input/output 
signal lines are common to both.

acm1024: There are four such units of which two work to accumulate zr11 and zr12 respectively and 
the other two work to accumulate zi11 and zi12 respectively. Accumulation process of zi11 and zi12 is 
same as accumulation process of zr11 and zr12 respectively, which also means zi11 and zr11 (zi12 and 
zr12) are accumulated in parallel. So I will only go into the details of accumulation of zr11 and zr12.

Accumulation of zr11 in one acm1024: zr11 and indor1 starts appearing two clock pulses after reset3 
goes high. The signal reset3  is the write enable to initiate writing in this accumulator. One clock pulse 
after zr11 appears, it gets added to the contents in the location pointed by indor1 (representing K of 
zr11 and  of  the  location  where  zr11  enters).  Consecutive  zr11 get  added  to  the  contents  of  the 
corresponding location (pointed by indor1) one by one as described under topic 3 of B.1.3. Since I need 
to accumulate  1048576 spectra,  reset3  must remain high for  1048576 × 1024 (number of samples 
entering  the  accumulator)  +  2  (delay  between  reset3 going  high  and zr11 appearing  as  already 
mentioned)   = 1073741826    clock    pulses    as    it    does (see cscombunitf1024n). So writing in this
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 accumulator stops when reset3 goes low. The signal reade is there, which when active enables reading 
in the output line oacmx1 and the index appearing in the output line indexr1.

Accumulation of  zr12 in another  acm1024: It is started by reset4. The signal  zr12 arrives two clock 
pulses after reset4 goes high (at the same time when reset3 goes low-two clock pulses after reset4 goes 
high).  This  is  also  when  sel2 has  toggled  to  1  sending output  in  zr12.  So  zr12 is  written  in  this 
accumulator following the same way as  zr11 has been written with  indor2 pointing the location for 
writing in this accumulator. So  reset4  (as  reset3) also remains high for  1048576  × 1024 + 2 clock 
pulses to accumulate  1048576 spectra. The signal reade is there, which when active enables reading in 
the output line oacmx2 and the index appearing in the output line indexr2.

Accumulation of zi11 in a third acm1024: zi11 is accumulated in parallel with zr11. All operations for 
accumulating  zi11 in  this  accumulator  remain  the  same  as  for  zr11 in  its  accumulator  with  the 
input/output lines zr11, indor1, oacmx1, indexr1 replaced by zi11, indoi1, oacmy1, indexi1 respectively 
and all other input/output lines to these accumulators are common to both.

Accumulation of zi12 in the fourth acm1024:  zi12 is accumulated in parallel with zr12. All operations 
for accumulating  zi12 in this accumulator remain the same as for zr12 in its accumulator with the 
input/output lines zr12, indor2, oacmx2, indexr2 replaced by zi12, indoi2, oacmy2, indexi2 respectively
 and all other input/output lines to these accumulators are common to both.

The common  reade signal to all the above accumulators, when high initiates reading from the four 
accumulators in parallel.

6. dff1: This is a delay flip flop to delay reade by one clock pulse to yield sreade.

7. aon_aoff: There are four such units for the four quantities Z rF , K  , Z i F , K  , ∣X F , K ∣2

, ∣Y F , K ∣2 .  The  inputs  corresponding  to  the  four  quantities  are  acmr1,  acmi1,  acmx1,  acmy1 
respectively from noise diode on-state accumulators and  acmr2,  acmi2,  acmx2,  acmy2 respectively 
from off-state accumulators. The indices of the four quantities input to these units are indexr1, indexi1, 
indx1, indy1 respectively. Each of these units performs subtraction between the on-state accumulation 
results and off-state accumulation results. The output after subtraction comes out two clock pulses after 
sreade goes high. The signal sreade is connected to the output signal weoutr/ weouti/ weoutx/ weouty 
(each for one of the four quantities). So the outputs appear as oacr/ oaci/ oacmx/ oacmy with indices 
indexr/ indexi/ indexx/ indexy two clock pulses after  weoutr/ weouti/ weoutx/ weouty goes high.

B.1.4 Combination of eight identical stages

Each Zr , Z i , ∣X∣2 and ∣Y∣2 from  the  accumulators  of  8  identical  stages  (of  FFT  to 
accumulators in B.1.3) are further accumulated in a single accumulator to yield four final accumulated 
quantities Z r K  , Z i K  , ∣X K ∣2 and ∣Y K ∣2 respectively.  The  parameter  F is  missing 
since it has no meaning after accumulation. Since the accumulation process is described once I will see  
the detailed operation that is accumulation of 8 stages for each quantity under VHDL description of this 
stage only.

B.1.4.1 VHDL implementation

Module dout2acmf (from serial frame generator to accumulators):
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Inputs:

clk: 128 MHz input clock.
ce: 1 bit user control signal to start dout2acmf.
X/Y: Represents a group of 8 parallel input lines getting data from the 8 parallel output lines from the 
'clock rate reduction' logic corresponding to  X/Y polarizations. The line numbers are mapped 1 to 1 
with those of the previous block. Each line receives one sample and is configured with 10 bit. These are 
also the inputs to doutf2.
blank: Same signal (1 bit user defined) in combunitfft1 also passed to combunitfft2 to combunitfft8.

Outputs:

oacr,  oaci:  69 bit  outputs from the final accumulators accumulating Zr F , K  (on-state-off-state) 
from 8 stages and Z i F ,K  (on-state-off-state) from 8 stages respectively.
oacmx, oacmy:  69 bit outputs from the final accumulators accumulating ∣X F , K ∣2 (on-state-off-
state) from 8 stages and ∣Y F , K ∣2 (on-state-off-state) from 8 stages respectively.
indexr, indexi: 10 bit indices of data in oacr and oaci respectively.
Indexx, indexy: 10 bit indices of data in oacmx and oacmy respectively.

Component modules:

1. combunitfft1 to combunitfft8: As already manifested that each of the eight identical stages receive a 
pair of inputs from the serial frame generator (doutf2) corresponding to X and Y polarization. First pair 
of output lines from doutf2 corresponding to X and Y polarizations is received by combunitfft1, second  
pair by combunitfft2 and so on. Two clock pulses after the first stage starts doutf2 is started. The data 
appears at the inputs of the FFT of the first stage 6 clock pulses after the start of the first stage or 4 
clock  pulses  after  doutf2 starts. Other stages follow the same process with a delay of 128 clock pulses 
between the start of two consecutive stages with a stage delayed by 128 clock pulses with respect to the 
previous stage. In the topmost module dout2acmf, combunitfft1 has the input/output names as clk, ce0,  
blank,  rout0,  imout0,  oacr0,  oaci0,  oacmx0,  oacmy0,  indexr0,  indexi0,  indexx0,  indexy0,  weoutr0,  
weouti0, weoutx0, weouty0, sstart0, sfwd_inv_we0 respectively as compared to the input/output names 
given under combunitfft1 in B.1.3.1. The second stage combunitfft2 has the corresponding names with 0 
replaced by 1 in the R.H.S of the names in  combunitfft1. The third stage has 0 replaced by 2, fourth 
stage  has  0  replaced  by 3  and  so  on.  The  rest  are  common  to  all  the  8  stages.  The  reading  of 
accumulators  for  a  particular  quantity  among Z r F , K  (on-off  state), Z i F ,K  (on-off  state),
∣X F , K ∣2 (on-off state), ∣Y F , K ∣2 (on-off state) for 8 stages takes place consecutively that is 

reading of second stage starts two clock pulses after reading of first stage and so on.

2. cufftdout: It is started by ce0. A signal resdout is generated two clock pulses after ce0 goes high. The 
signals ce1 to ce8 are generated with ce1 delayed by 128 clock pulses as compared to ce0,  ce2 delayed 
by 128 clock pulses as compared to ce1 and so on.

3. doutf2: The details of this block is already given in B.1.2.2. The corresponding input/output lines are 
named as clk, resdout, X/Y, rout0 - rout7/imout0 - imout7 respectively.

4. mux4ac8: There are four such units each for transferring one of the four quantities Zr F , K  (on-
off state), Z i F ,K  (on-off state), ∣X F , K ∣2 (on-off state), ∣Y F , K ∣2 (on-off state) from all 8
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stages (combunitfft1 to combunitfft8) consecutively. I will only go into the details of transferring 
Zr F , K  (on-off state) from all the 8 stages that is transferring oacr0 to oacr7 and the transfer of 

the rest viz. oaci0 to oaci7, oacmx0 to oacmx7, oacmy0 to oacmy7 will not be described as they follow 
the same process. So the mux4ac8 for Zr F , K  (on-off state) generates a signal selo1, which goes 
high when any of the signals from weoutr0 to weoutr7 is high and otherwise selo1 is low. The output 
data line from this block receives data from the lines  oacr0 to oacr7. The selection  between  oacr0 to 
oacr7 to enter the output line is made by checking the high state of  weoutr0 to  weour7 respectively. 
Thus the output data line always receives the data two clock pulses after the corresponding signals 
weoutr0 to  weour7 is  high.  The  output  data  line  is  named  as  doutr.  The  indices  of  the  data  are 
transferred in parallel from the lines indexr0 to indexr7 to the line waddr.  The output data and indices 
of the rest three units are douti, doutx, douty and waddi, waddx, waddy with selo1 replaced by selo2,  
selo3, selo4 respectively. The four units work in parallel.

5. readacm: This block generates a signal reade8ac two clock pulses after weoutr7/ weouti7/ weoutx7/  
weouty7 goes low as then writing in the final accumulators stop. The status of weoutr7 is only checked 
to generate this signal. 

6. acm10248plus: There are four such units working in parallel to accumulate doutr, douti, doutx and 
douty respectively with write enables selo1, selo2, selo3 and selo4 respectively. The write addresses of 
the four units are waddr, waddi, waddx and waddy respectively. The accumulation process is the same 
as  acm1024  under xacmf11024  or modxyf1024.  The  signal  reade8ac starts  reading  from the  four 
accumulators in parallel to pass the outputs or contents of the accumulators to the next stages. The four 
output  lines  are  oacr,  oaci,  oacmx  and  oacmy respectively with indices  indexr,  indexi,  indexx and 
indexy respectively.
 
B.1.5  Equalization parameters for formation of circular polarization

Now I will go into the details of how the phase and gain equalization parameters and window function 
are obtained and how they are then applied to the real time X and Y polarization channels. The outputs 
from the  stage  B.1.4  (the  VHDL module  dout2acmf)  and the  outputs  from the  stage  B.1.3  block 
decoder (VHDL module decodervar1 (two of them))  are the inputs to this stage. I will also describe 
the formation of circular polarization. In this section first I will describe the window function then 
rotation parameters and then gain parameters and finally formation of circular polarization.

1. Window function

I have already described the accumulation of cross power spectra and power spectra of channel X and Y 
in section B.1.4. The real and imaginary parts of cross power that are Z r F , K  and Z i F ,K   and 
two power spectra that are ∣X F , K ∣2 and ∣Y F , K ∣2 where F is the frame number and K is the 
channel number, gets accumulated in four separate accumulators. Let the outputs from the four final 
accumulators  of  the  stage  B.1.4  (module  dout2acmf) be Z rK  , Z i K  , , ∣X K ∣2 and
∣Y K ∣2 respectively  since  after  accumulation  the  parameter  F does  not  exist  the  frames  being 

averaged together. The window function is produced from the absolute value of the accumulated cross 
power that is mentioned above and it does so as described in detail in the next paragraph; the window 
function has zero magnitude where the magnitude of the cross power is less than one quarter of the 
maximum magnitude in the band of cross power and the window function has a magnitude one where 
the magnitude of the cross power is more than or equal to one quarter of the maximum magnitude in 
the band of cross power; it is generated as described below.
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Each of the quantities Z rK  , Z i K  , , ∣X K ∣2 and ∣Y K ∣2 is the result of accumulation of 8 
stages  (on-off  state  for  each  stage).  The  window  function  gets  the  parallel  inputs Z rK  and

Z i K  from dout2acmf  in two data lines with the value of K for each of the two parallel data lines 
incrementing by 1 per clock pulse as usual representing a new sample. Each of the quantities Z rK 
and Z i K  is written in a buffer having 1024 locations corresponding to 1024 values of  K  at 128 
MHz clock rate consecutively by writing one sample per clock pulse starting from the location having 
address 0 pointed by the value of K (K= 0). Z rK  and Z i K  enters the location pointed by K and 
hence it takes 1024 clock pulses to write 1024 samples of Z rK  and Z i K   . Note that a sample 
enter the buffer one clock pulse after the sample arrives in the data line. Writing in this pair of first 
buffers take place at 128 MHz clock rate in parallel. 

After  writing of Z rK  and Z i K  are finished,  these buffers  are  ready to be read out  and the 
reading starts after a certain number of clock pulses. Reading from these buffers occurs  in parallel at 
64 MHz clock rate and each buffer sends out samples serially at 64 MHz starting from the sample in  
the location with address 0 and going down to address 1023 by just incrementing the read address by 1 
per clock pulse. Reading happens one clock pulse after the read address appears to point to the location 
for reading. Note at this point that the process of writing in a buffer and reading from a buffer using the  
value of K for pointing to the location to be written or read out and the timing between arrival of data in 
its data line and writing in a location or between pointing a location to be read and data appearing at the 
output line remains the same all the time; so this will not be described in future (this though has been 
described in previous logic blocks like in B.1.3: decoder). Thus Z rK  and Z i K  are passed in 
parallel to the next stage to form ∣Z K ∣2 at the rate of 64 MHz. 

The resulting ∣Z K ∣2 is written in another buffer at 64 MHz clock rate. After  writing  is finished in 
this second buffer, the maximum among all the entered values is determined by comparing them. The 
comparison is done at 64 MHz clock rate. For comparison a temporary register is taken holding the 
value  0  initially.  The  content  of  this  register  is  compared  with  the  stored ∣Z K ∣2 consecutively 
starting from K = 0 with ∣Z K ∣2 replacing the content of the register if ∣Z K ∣2 is greater than the 
present content of the register. Thus after determining the maximum among all the entered ∣Z K ∣2 , 
again the stored ∣Z K ∣2 is compared with this obtained maximum starting from  K = 0 and if the
∣Z K ∣2 is greater than or equal to the 1/4th of the found maximum then a 1 is returned at the output 

W(K) (window function) else if ∣Z K ∣2 is less than 1/4th of the maximum found then a 0 is returned 
to W(K). Thus W(K) is either 0 or 1 and is passed serially for K = 0 to K =1023 through its data line at 
64 MHz clock rate. The serially arriving W(K) is written into another buffer having 1024 locations for 
1024 values of K and thus is latched and ready to be read at 128 MHz clock rate when required.

2. Rotation parameters:

The rotation parameters function gets the parallel inputs Z r K  and Z i K  from the stage B.1.4 
(module  dout2acmf).  Individual Zr K  or Z i K  are  transferred  serially;  I  have  discussed  until 
now many times that value of  K in any data line increases by 1 per clock pulse representing a new 
sample of the quantity being transferred in the data line; in future I will not further demonstrate serial  
transfer of any quantity in a data line as that is evident by now. Each of the quantities Z r K  and

Z i K  is written in a buffer having 1024 locations for 1024 values of K. After writing of Z r K 
and Z i K  at 128 MHz clock rate are finished, these buffers are ready to be read out and the reading 
starts after a certain number of clock pulses. 

106



Reading from these buffers occur in parallel  at 64 MHz clock rate.  Thus Zr K  and Z i K  are 
passed  in  parallel  to  the  next  stage  to  form ∣Z K ∣2 at  the  rate  of  64 MHz.   Then this  arriving
∣Z K ∣2 is converted to the floating point format and let us call that ∣Z K ∣float

2 , which is passed 
further  on.  Note  that  conversion  to  floating  point  format  and square  root  and division  operations 
described next  use  Xilinx  floating  point  IP core.  Square  root  of ∣Z K ∣float

2 is   taken  to   obtain 
∣Z K ∣float .   Similarly Z r K  and Z i K  are also converted to floating point format to produce
Z rK  float and Z i K  float respectively, which are passed in parallel further on. It is evident that it 

takes more time to obtain ∣Z K ∣float than to obtain Z rK  float and Z i K  float . However, for our 
purpose  these  three  quantities  should  arrive  in  parallel  and  hence Z rK  float and Z i K  float are 
delayed  equally  by  the  difference  in  the  number  of  clock  pulses  between  their  generation  and 
generation  of ∣Z K ∣float .  Then  the  divisions Z rK  float ÷ ∣Z K ∣float = cosK  float and

Z i K  float ÷ ∣Z K ∣float = sinK  float are performed in parallel to obtain the rotation parameters 
shown in the matrix of eqn. 2.30 (  is the phase difference between the X and Y channels). 

Then cosK  float and sinK  float are  converted  to  fixed  point  representation cosK  and
sinK  respectively; the conversion of the two quantities happen in parallel. The floating point 

conversion of the quantities Z rK  , Z i K  and ∣Z K ∣2 were carried out since the square root 
and division operations require the usage of the Xilinx floating point IP core, which takes floating point 
inputs and produces floating point outputs. All floating point operations are carried out at 64 MHz 
clock  rate.  Each  of  the  quantities cosK  and sinK  is  written  in  a  buffer  having  1024 
locations  at  64  MHz clock  rate  for  1024  values  of  K.  Thus  1024  values  of  each cosK  and

sinK  are  latched  in  the  respective  locations  of  a buffer to be read when required at 128 MHz 
clock rate. 

3. Gain parameters:

The gain parameters function gets the parallel  inputs ∣X K ∣2 and ∣Y K ∣2 from the stage B.1.4 
(module dout2acmf). Each of the quantities ∣X K ∣2 and ∣Y K ∣2 is written in a buffer having 1024 
locations for 1024 values of K. Writing in this pair of first buffers take place at 128 MHz clock rate. 
After parallel writing of ∣X K ∣2 and ∣Y K ∣2 are finished in their respective buffers, the maximum 
among all the entered values of each ∣X K ∣2 and ∣Y K ∣2 is determined by comparing them. The 
comparison is done at 64 MHz clock rate. For comparison a temporary register is taken in each of the 
two cases  for ∣X K ∣2 (case 1) and ∣Y K ∣2 (case 2) holding the value 0 initially.  In  case1 the 
content of the register is compared with the stored ∣X K ∣2 , or in case 2 with the stored ∣Y K ∣2

consecutively starting from K  = 0 with ∣X K ∣2 (in case 1) or ∣Y K ∣2 (in case 2) replacing the 
content  of  the register  if ∣X K ∣2 (in  case 1) or ∣Y K ∣2 (in  case 2)  is  greater  than the present 
content of the register. 

Thus after determining the maximum say P1max or P2max . among all the values of ∣X K ∣2 or
∣Y K ∣2  in case 1 or case 2, the two buffers are ready to be read out and the reading starts after a  

certain number of clock pulses. Reading from these buffers occurs at  a  rate  of  64 MHz clock rate.  
Thus ∣X K ∣2 , ∣Y K ∣2 , P1max , P2max are  read  and  passed  in  parallel  to  a  stage  where

P1max and P2max are compared and whichever is greater is transferred to the output terminal of this 
stage and renamed as Pmax at the  output  terminal;  the  inputs ∣X K ∣2 and ∣Y K ∣2 to  this stage
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are also transferred in parallel to Pmax through other two output lines; in this stage it is checked if
∣X K ∣2 or ∣Y K ∣2 = 0 as then a 1 is transferred to the corresponding output line for that value of 

K; each of the three parallel outputs from this stage Pmax , ∣X K ∣2 and ∣Y K ∣2  is sent to one of 
the three similar stages to convert from fixed point representation to floating point representation using 
Xilinx floating point IP core.  The outputs from the three parallel and similar stages for converting from 
fixed point to floating point formats are Pmaxfloat , ∣X K  float∣

2 and ∣Y K  float∣
2 . These outputs are 

paired  as Pmaxfloat , ∣X K  float∣
2 and Pmaxfloat , ∣Y K  float∣

2 for  next  two  parallel  and  identical 
stages;  one  stage  performs Pmaxfloat ÷ ∣X K  float∣

2 to  produce g x
2 K  float and  the  other  stage 

performs Pmaxfloat ÷ ∣Y K  float∣
2 to  produce g y

2 K  float ;  each  of  these  two  parallel  quantities
g x

2 K  float and g y
2 K  float is transferred to one of the two parallel and identical stages performing 

square root operation of the input quantity. So at the outputs of these two stages (which perform square  
root operation of the input quantity) I obtain g x K  float and g y K  float respectively. 

Now each g x K  float and g y K  float is  transferred  to  one  of  the  two  identical  and  parallel  next 
stages that convert from floating point representation to fixed point representation and at the outputs of  
these  two stages  I  obtain g x K  and g y K  respectively,  which  are  fixed  point  quantities.  The 
quantities g x K  and g y K  are  obtained  in  parallel.  The  floating  point  conversion  of  the 
quantities were carried out since the square root and division operations require the usage of the Xilinx 
floating  point  IP core,  which  takes  floating  point  inputs  and  produces  floating  point  outputs.  All 
floating point operations are carried out at 64 MHz clock rate. Each of the quantities g x K  and

g y K  is written in a buffer having 1024 locations at 64 MHz clock rate. Thus 1024 values of each
g x K  and g y K  are  entered  in  the respective locations of a buffer being latched and to be read

 when required at 128 MHz clock rate. 

4. Formation of circular polarization

From this point again real time operation starts with a clock frequency of 128 MHz. After obtaining the 
equalization parameters as stated above, I now divide into 8 stages each receiving inputs from one of 
the 8 decoders from 8 identical stages of FFT to accumulators (described in B.1.3, VHDL modules 
from combunitff1 to combunitfft8 respectively representing 8 identical stages). These 8 stages work 
with a delay of 128 clock pulses between any two consecutive stage starting from the first one as is the 
case in our design. I will only discuss one of the 8 identical stages. The stage receives X rF , K  ,

X i F , K  , Y rF , K  and Y i F , K  in parallel from the corresponding decoder (thus these X 
and Y  are the ones  acquired during observation).  Each of  the equalization parameters cosK  ,

sinK  , g x K  and g y K  is read from their latches at a rate of 128 MHz to be multiplied 
with  W(K),  which is also read in parallel, from its latch at a rate of 128 MHz, with the equalization 
parameters,  to  obtain  windowed  equalization  parameters cosw K  , sinw K  , g xwK  and

g yw K  respectively.  After  multiplication each of these quantities are entered in  a buffer having 
1024 locations for 1024 values of K. Thus 1024 values of each of these quantities are stored in a buffer 
and hence there are four buffers holding the four quantities. The inputs X rF , K  , X i F , K  ,

Y rF , K  and Y i F , K  are delayed in such a way and the quantities cosw K  , sinw K  ,
g xwK  and g yw K  are  read  from  their  buffers  in  such  time  that  all  the  eight  quantities
X rF , K  , X i F , K  , Y rF , K  , Y i F , K  , cosw K  , sinw K  , g xwK  and
g yw K  are aligned in terms of K that is all are parallel. These parallel quantities are then passed to a 

stage to equalize phase and gain of  X and  Y  channels and form circular polarization. To accomplish 
phase and gain equalization and formation of  circular polarization, following operations are performed
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in a stage: 

X rnewF ,K =g xwK ×X r F , K                                                                                        (B.5)

X inew F , K =g xwK ×X iF , K                                                                                                   (B.6)

Y rnewF ,K =g yw K ×Y rF , K ×cosw K −g ywK ×Y iF , K ×sinw K                          (B.7)

Y inew F , K =g ywK ×Y r F , K ×sinw K g ywK ×Y iF , K ×cosw K                           (B.8)

The quantities in the left hand side of eqs (B.5) to (B.8) are the phase and gain equalized real and 
imaginary parts  of  X and  Y polarizations  respectively and are  obtained in  parallel.  The  following 
operations are performed using these quantities to form circular polarization.

LHC rF , K =X rnew F , K Y inewF , K                                                                                      (B.9)

LHC iF , K =X inew F , K – Y rnewF ,K                                                                                     (B.10)

RHC rF , K =X rnew F , K – Y inew F , K                                                                                    (B.11)

RHC i F ,K =X inew F , K Y rnewF ,K                                                                                    (B.12)

where LHC r , LHC i , RHC r and RHC i are  real  and  imaginary  parts  of  LHC  and  RHC 
respectively and are obtained in parallel.

B.1.5.1 VHDL implementation

Now I will go into the VHDL implementation of B.1.5.

Module circularacm2plustest:

Inputs:

clock: 128 MHz input clock.
reset: 1 bit control signal to start circularacm2plustest.
blank: 1 bit control signal which when active pauses accumulation by transferring zeros.
rez, imz: 31 bit inputs representing oacr, oaci (38 LSBs truncated) from acm10248plus of dout2acmf 
(B.1.4.1) respectively.
addressin: 10 bit indices of rez and imz (same as indexr of acm10248plus of dout2acmf). 
modx2, mody2: 69 bit inputs representing oacmx, oacmy from acm10248plus of  dout2acmf (B.1.4.1) 
respectively.
sindx: 10 bit index of modx2 and mody2 (same as indexx of acm10248plus of dout2acmf). 

Outputs:

LHCreal1-LHCreal8, LHCimag1-LHCimag8: 8 output  lines  each  48  bit  wide representing real and 
imaginary parts of LHC respectively.
RHCreal1-RHCreal8, RHCimag1-RHCimag8: 8 output  lines  each   48 bit wide representing real and
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imaginary parts of RHC respectively.
Indexout1-indexout8: 8 output lines representing 10 bit indices of LHCreal1-LHCreal8 or LHCimag1-
LHCimag8 or RHCreal1-RHCreal8 or RHCimag1-RHCimag8 respectively.

Component modules:

1. signalreade:  It is started by reset. It generates a signal  reade (1 bit) 8000 clock pulses after reset 
goes high. The signal  wenable (1 bit) is generated 3 clock pulses after reade is high. This  wenable 
signal remains high for 1026 clock pulses after which it goes low.

2. zwindowtop1nc (refer to fig. B.5): 

Inputs: 

clock: 128 MHz input clock. The clock of circularacm2plustest.
reset: 1 bit control signal to start zwindowtop1nc. The reset of circularacm2plustest.
reade:  1 bit  control  signal  to  start  reading from the  last  stage  buffer  of  this  block.  The  reade of 
circularacm2plustest.
rez, imz: 31 bit inputs representing the rez, imz of circularacm2plustest respectively.
addressin: 10 bit index of rez and imz.  The addressin of circularacm2plustest. Not used.

Outputs:

Q2: 2 bit output from the last stage buffer of this block. A signal swinfunc of circularacm2plustest.
index: 10 bit index of Q2. A signal sindexwin of circularacm2plustest.

Component modules:

clockdiv2: It takes in the clock clock (128 MHz) and generates a 64 MHz clock named clock1.

zwindow1csc: It generates a signal enable (1 bit) 1030 clock1 pulses after another signal enableo (1 bit) 
generated in the next block goes high. This signal  enable remains high for 1026  clock1 pulses after 
which it goes low.

zwindow1 (refer to fig. B.6):

Inputs:

rez, imz: The rez, imz of zwindowtop1nc respectively.
clock: 128 MHz input clock.
clock1: 64 MHz input clock. The clock1 of zwindowtop1nc.
reset: 1 bit control signal to start zwindow1. The reset of zwindowtop1nc.
enable: 1 bit control signal. The enable of zwindowtop1nc.
reade:   1 bit  control signal  to start  reading from the last  stage buffer of this  block.  The  reade of 
zwindowtop1nc.

Outputs:

enableout: 1 bit output signal same as enableo of zwindowtop1nc to control generation of enable.
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Q2:  2  bit  output  from  the  last  stage  buffer  representing  the  window  function.  The  Q2 of 
zwindowtop1nc.
index: 10 bit index of Q2. The index of zwindowtop1nc.

Component modules: 

testcs1n1024: It is started by reset. It generates the signals sreset1 (1 bit), sreade (1 bit) and senable (1 
bit). The signal sreset1 goes high with reset and remains high for 1025 clock pulses after which it goes 
low. 3 clock1 pulses after sreset1 is low, sreade goes high and remains high forever. One clock1 pulse 
after sreade is high, senable goes high and remains high forever. The signal senable is enableout.

windowarraygtop2:  There are two such elements working in parallel one for holding and transferring 
rez and the other for holding and transferring imz. Each consists of a buffer having 1024 locations each 
of which is 31 bit wide. I will only discuss the one for  rez. The signal sreset1 enables writing in the 
buffer. One clock pulse after sreset1 goes high, rez appears at its inputs and one more clock pulse later 
writing of rez in the buffer starts with 1024 values of rez entering 1024 consecutive locations starting 
from the first location. In 1025 clock pulses after  sreset1  goes high, writing in the buffer finishes. 
Reading from the buffer is enabled by sreade and the data from the buffer is transferred consecutively 
starting from the first location to the output line s3 (31 bit) 2 clock1 pulses after sreade is high at a rate 
of 64 MHz (reading is triggered by clock1). The output line representing the index of s3 is kept open as 
that is a redundant signal when index of  s4 (corresponding signal of  s3 of the other buffer for  imz) 
named as addressin (10 bit) is passed. All the signals for the other buffer remain the same except rez, 
s3 and open (index of s3) replaced by imz, s4 and addressin respectively.
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The top module zwindowtop1nc 
for window function.  This logic 
receives the inputs from the 
dout2acmf block, which are the 
final accumulated real and 
imaginary parts of the Z spectrum 
named as rez and imz respectively 
in the figure. The block zwindow1 
generates the window function to 
be latched and read in the line  Q2 
when required with  index line 
representing the index of Q2. The 
signal lines to the left of the blocks 
and on the top of the blocks in the 
figure represent inputs to those 
blocks and the signal lines in the 
RHS of the blocks represent the 
outputs from those blocks.

    Fig. B.5:



squaremz1: It is started by senable. The input clock is clock1.  The signals s3, s4 and addressin are the 
inputs  to  this  block,  which  arrive 1 clock1  pulse  after senable goes high. It forms rez² + imz² that is
 ∣Z∣2 , which is transferred to its output line s2 (64 bit) with the index of s2 appearing in the output 
line s1 (10 bit) in parallel to s2. The input-output latency is 3 clock1 pulses.

cs31024: It is started by senable with input clock clock1. It generates a signal reset1 (1 bit) 3 clock1 
pulses after  senable  goes high. This signal  reset1 remains high for 1025 clock1 pulses after which it 
goes low.

acmwin1: It consists of two buffers each having 1024 locations (66 bit wide). Writing in the first buffer 
is enabled by reset1 and s2 and s1 arrive at its inputs one clock1 pulse after reset1 is high. The signal 
s2 (changed to  66  bit  signed Boolean)  is  written  in  the  location  pointed  by  s1 in  the  first  buffer 
consecutively starting from the first location; this writing starts two  clock1 pulses after  reset1 goes 
high. It takes 1025 clock1 pulses to write s2  in this buffer after  reset1  goes high. The signal  enable, 
which is  generated 1030  clock1 pulses after  senable  goes high is  then used to trigger  finding the 
maximum among all the entered  s2  in the buffer. The maximum is found in the following way: A 
temporary register of 66 bit is taken initialized to 0 and in the next clock1 pulse after enable is high, its 
value is compared with the value in the first location of the buffer containing s2. If the value of the data 
in the first location is greater than the contents of the register then the register gets the data from the 
first location else it keeps its previous value thus updating of the register after comparison is done. In  
the next clock1 pulse after comparing with first location and updating the register, its value is compared 
with the value in the second location of the buffer containing s2. If the value of the data in the second 
location is greater than the present contents of the register then the register gets the data from the 
second location else it keeps its previous value and so on and each time the register content is updated 
to get the maximum after all 1024 comparisons are finished. The signal enable remains high for 1026 
clock1 pulses enough to find the maximum (it takes 1024 clock1 pulses to find the maximum). In the 
1025th clock1 pulse after enable is high this buffer is triggered to be read.

Reading happens consecutively starting from the first location of the buffer at 64 MHz. The output line
(2 bit) of the buffer receives  a  value of 1 if  the read data is greater than or equal to 1/4 th of the found 
maximum and receives a 0 if the read data is less than 1/4th of the found maximum. This 2 bit output 
data is written in another buffer (last) having 1024 locations each 2 bit wide at 64 MHz. Writing in this 
last  buffer  is  triggered  by a  signal  which  goes  high one  clock1 pulse  after  the  previous  buffer  is 
triggered to be read as the 2 bit output data from the previous buffer arrives two clock1 pulses after the 
buffer is triggered to be read. This signal triggering the writing in this buffer remains high for 1025 
clock1 pulses as required to fill in the buffer. Then the buffer is ready to be read at the rate of 128 MHz 
using the clock  clock with the output line  Q2 sending the read data (the window function) and the 
output line index representing the index of Q2. The reading will be enabled by the signal reade.
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cs31024

  Fig. B.6: Detailed view of  zwindow1 (fig. 4.5). This block is the central to form |Z|²  from the last stage 
accumulators of Z in dout2acmf and obtain the window function by replacing those values of  |Z|² 
by 1, which are greater than or equal to 1/4th  of the maximum of all 1024  |Z|² and by replacing 
those values of  |Z|² by 0, which are less than 1/4th of the maximum of all 1024  |Z|². The window 
function thus obtained is latched to be read when required. The signal lines in the LHS and on the 
top of the logic blocks in the figure represent input lines to those blocks and the signal lines in the 
RHS of the blocks in the figure represent the output lines from those blocks. The inputs to this 
block as discussed in 4.5 are  rez  and imz  and the output (window function) from this block is Q2 
with its index in the output line index.
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3. rotparam2top1c (refer to fig. B.7):

Inputs:

clock: 128 MHz input clock.
reset: 1 bit control signal to start rotparam2top1c. Same as reset in circularacm2plustest.
reade:  1 bit  control  signal  to  start  reading from the  last  stage  buffer  of  this  block.  The  reade of 
circularacm2plustest.
zr, zi:  31 bit inputs same as rez, imz respectively of circularacm2plustest.

Outputs:

cosn,  sinn:  22  bit  outputs  representing Zr K  / ∣Z K ∣ and Z i K  / ∣Z K ∣ respectively. 
Signals named as scosn and ssinn in circularacm2plustest.
index1,  index2:  10  bit  indices  of  cosn and  sinn respectively.  These  terminals  are  open  in 
circularacm2plustest.

Component modules: 

clockdiv2: It takes the clock clock (128 MHz) as input and generates clock1 (64 MHz).

rotparam2 (refer to fig. B.8*) 

*Note- Two blocks of rotparam2 are not shown in the figure (fig. B.8) to keep neatness and since they  
are buffers that I have described many times.

The module  rotparam2top1c. It takes 
the inputs zr and zi which are the outputs 
from the two final accumulators of the 
module dout2acmf   holding real and 
imaginary parts of the Z spectrum 
respectively. This block produces zr/|Z| 
= cosθ and zi/|Z| = sinθ, which form the 
elements of the rotation matrix (read 
section 4.2.5, 2). |Z| is the absolute value 
of the Z  spectrum. The signals to the 
LHS of the logic blocks in the figure 
represent the input lines to those blocks 
and the signals in the RHS of the logic 
blocks in the figure represent the output 
lines from those blocks.

      Fig. B.7:
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Inputs:

clock: 128 MHz input clock.
clock1: 64 MHz input clock. Same as clock1 of rotparam2top1c.
reset: 1 bit control signal to start rotparam2. Same as reset of rotparam2top1c.
reade: 1  bit  control  signal  to  start  reading from the  last  stage  buffer  of  this  block.  The  reade of 
rotparam2top1c.
zr, zi: 31 bit inputs same as zr and zi respectively of rotparam2top1c.

Outputs: 

cosn,  sinn:  22  bit  outputs  representing Zr K  / ∣Z K ∣ and Z i K  / ∣Z K ∣ respectively. 
Same as cosn and sinn of rotparam2top1c.
enableout: 1 bit control signal generated in rotparam2. Not used in rotparam2top1c.
index1,  index2: 10  bit  indices  of  cosn and  sinn respectively.  Same  as  index1 and  index2 of 
rotparam2top1c.

The figure shows the blocks from squaremz  to fl2fxparam  of the module  rotparam2  under 
rotparam2top1c  (sec 4.2.5.1). The blocks before squaremz  and after  fl2fxparam are not shown in 
the figure since they consist of only registers and few control signals, which are easy to understand. 
The clock clock1  feeds the module. The outputs from the buffer or register before squaremz are s1 
and s2, which are real and imaginary parts of input Z spectrum respectively. This block generates the 
rotation parameters cost and sint (where t has the same meaning as θ in 4.2.5, 2), which are stored in 
a buffer to be read when required. All operations shown in the figure are done at 64 MHz clock rate. 
And the operations not shown that are writing in the first buffer before squaremz and reading from the 
last buffer after fl2fxparam occur at 128 MHz clock rate. The number beside  L inside the blocks in 
the figure represent the latency of that block in number of clock pulses. The signals to the LHS of the 
logic blocks in the figure represent the input lines to those blocks and the signals in the RHS of the 
logic blocks in the figure represent the output lines from those blocks.

Fig. B.8:

clock1
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Component modules:

testcs1n1024: This block is started by reset and generates a signal sreset1 (1 bit), which goes high with 
reset and remains high for 1025 clock (128 MHz) pulses. Three clock1 pulses after sreset1 goes low, 
sreade (1 bit) goes high and remains high forever. One clock1 pulse after sreade is high, enable (1 bit) 
goes high and remains high forever. The output enableout gets the signal enable.

dffx: There are 154 such elements connected in series with the first element getting enable named as 
enable1 (0) as its input. Each element delays its input by one clock1 pulse. The delayed signals from 
the elements are named as enable1 (1), enable1 (2),....., enable1(154) respectively.

windowarraygtop2: It consists of a buffer of 1024 locations and each location is 31 bit wide. There are 
two such elements working in parallel one for storing and transferring zr and the other for storing and 
transferring zi. I will only go into the details of the one used for zr. The signal zr arrives at its input one 
clock pulse after sreset1 goes high and enters the buffer 2 clock pulses after sreset1 goes high. Writing 
in the buffer with arriving zr occurs consecutively at each clock pulse starting from the first location. 
Writing finishes in 1025 clock pulses after sreset1 goes high and it is also when sreset1 goes low. Three 
clock1 pulses after writing is finished, the buffer is triggered to be read by the signal sreade at  the  rate 
of  64  MHz  using  the clock clock1. Reading happens consecutively starting from the first
 location. The output data from this block appears in the line s1 (31 bit) two clock1 pulses after sreade 
is high. The line representing the index of s1 is open since it is not used. The corresponding signals to 
zr,  s1, open (10 bit index of s1) for the other windowarraygtop2 are zi, s2, open (10 bit index of s2). 
The rest of the signals are common to both.

squaremz: It is started by enable. The input clock to this block is clock1. The signals s1 and s2 arrive at 
its inputs in parallel one clock1 pulse after enable goes high. It forms zr² + zi² that is s1² + s2², which is 
transferred as output. The first output appears 4 clock1 pulses after enable goes high or the input-output 
latency is 3 clock1 pulses. In case s1² + s2² is 0, a 1 is returned at the output line. The output is named 
as s3 (64 bit).

mzsquare: Xilinx floating point v4 IP core is used to generate this component. The signal s3 is input to 
this block and is connected to the input terminal A of the IP core. The signal enable is used to start this 
block and is connected to the input line CE of the IP core. The input clock to this block is clock1 and is 
connected to CLK of the IP core. The operation fixed to float is selected in the IP core since I want to 
represent s3 as a floating point binary. For details on the  conversion from fixed to float please refer to 
Xilinx  documentation  on  floating  point  v4  IP core.  This  block  generates  the  output  s4 (RESULT 
terminal of the IP core), which is floating point representation of s3 having an exponent width 8 and a 
fraction width 64. So the total width of s4 is 72. The input-output latency is 7 clock1 pulses.

sqrt:  This element is generated by Xilinx floating point v4 IP core. It is used to obtain ∣Z K ∣ by 
taking  the  square  root  of  s4. The  signal  s4  is  connected  to the input terminal A of the IP core. The
 function square root is selected in the IP core. The input clock to this block is clock1 and is connected 
to  CLK of the IP core. This block generates output ∣Z K ∣ by taking the square root of s4  and the 
output is named as s5  (72 bit floating point representation with 8 bit exponent and 64 bit fraction), 
which is the terminal RESULT of the IP core. For details on the square root operation please refer to 
Xilinx documentation on floating point v4 IP core. Input-output latency is 68 clock1 pulses.

delayzr: It takes s1 as its input with the input clock clock1. The signal enable is used to start this block. 
This block delays s1 by 72 clock1 pulses to produce s8 (31 bit).
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delayzi: This block works in parallel to delayzr. It takes s2 as its input with the input clock clock1. The 
signal enable is used to start this block. This block delays s2 by 72 clock1 pulses to produce s9 (31 bit).

zfixd2float:  This block is generated by Xilinx floating point v4 IP core. There are two such blocks 
working in parallel one to convert s8 into floating point number and the other to convert s9 to floating 
point number. I will discuss both as for  s8  in case 1 and s9  in case 2. Input clock is  clock1 to these 
blocks and is connected to CLK of the two IP cores. Each of the inputs s8 in case 1 and  s9 in case 2 is 
connected to the input terminal A of the corresponding IP core. The function fixed to float is selected in 
the two IP cores. The outputs from the blocks are s6 in case 1 and s7 (each s6 and s7 is 72 bit floating 
point representation with 8 bit exponent and 64 bit fraction) in case 2 and each output is connected to 
the output terminal RESULT of the corresponding IP core. Input-output latency is 6 clock1 pulses.

div: This block is generated by Xilinx floating point v4 IP core. There are two such elements working 
in parallel one getting the input s6 and s5 to obtain s6 ÷ s5 and the other getting the inputs s7 and s5 to 
obtain s7 ÷ s5. I will only discuss the one getting the inputs s6 and s5. The function divide is selected in 
the IP core. The signal s6 is connected to the input terminal A of the IP core, which is the dividend and 
signal s5 is connected to the input terminal B of the IP core, which is the divisor. The input clock to this 
block is clock1 and it is connected to CLK of the IP core. The signal enable1(79) is used to start this 
block  and  is  connected  to  CE of  the  IP  core. The output is  s6 ÷ s5 = cos (72 bit floating point
 representation with 8 bit exponent and 64 bit fraction) and is connected to the output terminal RESULT 
of the IP core. For details on the division operation please refer to Xilinx documentation on floating 
point v4 IP core. Input-output latency is 68 clock1 pulses. The corresponding signals to s6, s5 and cos 
in the other identical element are s7, s5 and sin respectively. All other signal are common to both.

fl2fxparam: This block is generated by Xilinx floating point v4 IP core. There are two such elements 
working in parallel one to receive  cos  and convert it  to fixed point representation and the other to 
receive sin and convert it to fixed point representation. I will discuss both as case 1 for cos and case 2 
for sin. The input clock to each of these blocks is clock1 and is connected to CLK of each IP core. Each 
of the signals  cos  and  sin is  connected to  the input  terminal  A  of the corresponding IP core.  The 
function float to fixed is selected in the two IP cores. The floating point represented cos in case 1 or sin  
in case 2 is converted to fixed point represented cost in case 1 or sint (each cost and sint is 2 bit integer 
and  20 bit  fraction  so  the  total  width  is  22  bit)  in  case  2  .  For  more  details  on  the  fixed  point 
representation please refer to Xilinx documentation on floating point v4 IP core. Each output cost and 
sint is connected to the output terminal RESULT of the corresponding IP core. Input-output latency is 7 
clock1 pulses.

testcsn1024: It is started by enable1(153). The input clock is clock1. It generates sreset (1 bit), which 
goes high with enable1(153) and remains high for 1025 clock1 pulses.

windowarraytop1: There  are  two  such  elements  working in parallel one receiving cost and the other
receiving sint. I  will  discuss the one receiving cost. It consists of a buffer having 1024 locations and 
each  location  is 22 bit  wide. The signal cost arrives at its input one clock1 pulse after sreset goes high 
and from the next  clock1 pulse or after two  clock1 pulses after sreset  goes high, arriving  cost starts 
entering the buffer at each clock1 pulse consecutively starting from the first location. So the buffer is 
written at 64 MHz clock rate. In 1025 clock1 pulses after sreset is high, writing in the buffer stops and 
it is ready to be read using the read enable signal reade.  This reade signal when high will trigger 
reading of data from the buffer at each clock pulse consecutively starting from the first location using 
the  clock  clock (128 MHz) in  the  output  line cosn (22 bit). The output line index1 (10 bit) represents
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the index of cosn. The signals in the other windowarraytop1 corresponding to the signals cost, cosn and 
index1 in this windowarraytop1 are sint, sinn and index2 respectively. All  other signals are common to 
both.

4. gxytop2n1c (refer to fig. B.9):

Inputs:

clock: 128 MHz input clock.
reset: 1 bit control signal to start gxytop2n1c. Same as reset of circularacm2plustest.
sdat1,  sdat2:  31 bit  data  corresponding to ∣X K ∣2 and ∣Y K ∣2 from the  final  accumulators  in 
dout2acmf. These are modx2 and mody2 respectively of circularacm2plustest.
sindx: 10 bit index of sdat1 and sdat2 respectively. Same as sindx of circularacm2plustest.
reade:  1 bit  control  signal  to  start  reading from the  last  stage  buffer  of  this  block.  The  reade of 
circularacm2plustest.

Outputs:

gxout,  gyout:  22 bit  gains of  X  and Y  channels respectively.  Signals named as  sgxout  and  sgyout  
respectively in circularacm2plustest.
xindex,  yindex:  10  bit  indices  of  gxout and  gyout respectively.  These  terminals  are  open  in 
circularacm2plustest.

The figure shows the  module gxytop2n1c. 
This block takes in the inputs sdat1 and sdat2 
which are the outputs from the last stage 
power spectra accumulators of dout2acmf  
that are the power spectra of X  and Y 
channels respectively. This block obtains the 
gain parameters for X  and Y  channels from 
these inputs. The gain parameters are the 
gains by which the absolute values of X and Y 
channels must be raised to equalize the 
channels' magnitude responses. The outputs 
are gxout (gain of X channel) and gyout (gain 
of Y channel) with their indices in xindex  and 
yindex  respectively. The signals to the LHS 
of the logic blocks in the figure represent the 
input lines to those blocks and the signals in 
the RHS of the logic blocks in the figure 
represent the output lines from those blocks. 
Ports having same signal names are 
interconnected.

    Fig. 
B.9:
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Component modules:

clockdiv2: It takes the clock clock (128 MHz) as input and generates clock1 (64 MHz).

csgxydat1:  It is started by reset. It generates a signal  sreset1 (1 bit), which goes high with  reset  and 
remains high for 1025 clock pulses. It also generates a signal  senable1  (1 bit) 2 clock pulses after 
sreset1 goes low. This signal senable1 remains high forever.

gxy1 (refer to fig. B.10):

Inputs:

clock: 128 MHz input clock
clock1: 64 MHz clock. Same as clock1 of gxytop2n1c.
D1, D2: 31 bit inputs. Same as sdat1 and sdat2 respectively of gxytop2n1c.
write_address: 10 bit address of D1 and D2. Same as sindx of gxytop2n1c.
we: 1 bit control signal to start writing in the first stage buffer of gxy1. Same as sreset1 of gxytop2n1c.
enable:  1 bit  control  signal  to  trigger  finding of  maximum of all  1024  D1  or 1024 D2.  Same as 
senable1 of gxytop2n1c.
re: 1 bit control signal to start reading from the last stage buffer of gxy1. Same as reade of gxytop2n1c.

Outputs:

swe1: 1 bit output signal. Not used in gxytop2n1c.
gxout, gyout: 22 bit gains of X and Y channels respectively. Same as gxout and gyout respectively of 
gxytop2n1c.
xindex, yindex: 10 bit indices of gxout and gyout respectively. Same as xindex and yindex respectively 
of gxytop2n1c

Component modules:

dff1:  There are 1108 such modules connected in series each delaying its 1 bit input by one  clock1 
pulse. A signal e(0) gets the signal  enable and is the input to the first  dff1. The outputs from all the 
elements starting from the first one are e(1), e(2), e(3), …, e(1108) respectively.

acm_mag1: There are two such elements working in parallel one receiving D1 and the other receiving 
D2. I will only discuss the one receiving  D1. It consists of a buffer having 1024 locations and each 
location is 31 bit wide. The input D1 arrives 1 clock pulse after we goes high and one clock pulse after 
D1 arrives,  D1 starts  entering  the  buffer  consecutively at  each  clock pulse  starting  from the  first 
location; the location is pointed by the write_address arriving in parallel with D1. In 1025 clock pulses 
after we is high, writing in the buffer stops. One clock1 pulse after enable goes high, the entered values 
of D1 in the buffer are compared to determine the maximum value among them. The maximum is 
found in the following way: A temporary register of 31 bit is taken initialized to 0 and in the next  
clock1 pulse after enable is high, its value is compared with the value in the first location of the buffer 
containing D1. If the value of the data in the first location is greater than the contents of the register  
then the register gets the data from the first location else it keeps its previous value thus updating the 
register  after  comparison is  done.  In the next  clock1  pulse after comparing with first  location and 
updating  the  register,  its  value  is  compared  with  the  value  in  the  second  location  of  the  buffer  
containing D1. If the value of the data in the second location is greater than the present contents  of  the
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register then the register gets the data from the second location else it keeps its previous value and so 
on and each time the register content is updated to get the maximum after all 1024 comparisons are 
finished.  Thus the temporary register contains the maximum value of D1. Obtaining the maximum in 
the register takes 1024 clock1 pulses after enable goes high and in 1024th clock1 pulse after enable is 
high, reading from the buffer is triggered and 2 clock1 pulses after reading is triggered, the data from 
the buffer starts appearing in the line  smx2 (31 bit) with the stored maximum appearing in another 
parallel line sxmax2 (31 bit). The index line representing the index of smx2 is kept open. The signals 
corresponding to  D1,  smx2,  sxmax2,  open (10  bit  index of  smx2)  of  this  acm_mag1  in  the  other 
acm_mag1 are D2, smy2, symax2, sind (index of smy2) respectively. All other signals are common to 
both.

comparexy: It is started by e(1025). Its inputs  smx2, smy2, sxmax2, symax2 and sind start appearing 
one clock1 pulse after e(1025) goes high. The signal sxmax2 is compared with symax2 and whichever 
is greater is passed to the output line amax2 (31 bit). The signals smx2, smy2 and sind are transferred in 
parallel to the output lines mx2 (31 bit), my2 (31 bit) and index (10 bit) respectively. The outputs start 
appearing in parallel 2 clock1 pulses after e(1025) goes high. If smx2 =0 or smy2 = 0 then a 1 is passed 
to the output line mx2 or my2.

xfx2fl:  This block is generated by Xilinx floating point v4 IP core. There are three such elements 
working in parallel one receiving amax2, another mx2 and the third receiving my2. I will discuss them 
all as the one for amax2 (case1), for mx2 (case 2) and for my2 (case 3). All three blocks are started by 
e(1026) and the input amax2 in case 1 or mx2 in case 2 or my2 in case 3 arrives one clock1 pulse after 
e(1026) goes high. Each amax2, mx2 and my2 is connected to the input terminal A of the corresponding 
IP core. The signal e(1026) is connected to the CE of the three IP cores and clock1 is connected to CLK 
of the three IP cores. The function fixed to float is selected in the three IP cores. These three IP cores 
convert  the  input  quantity  from fixed  point  representation  to  floating  point  representation.  So the 
floating point outputs are amax2f in case 1, mx2f in case 2 and my2f  in case 3 (in all three cases the 
outputs are 39 bit wide with 8 bit exponent and 31 bit fraction). The input-output latency is 6 clock1 
pulses. For details on the fixed to float operation please refer to Xilinx documentation on floating point  
v4 IP core. 

divg: This block is generated by Xilinx floating point v4 IP core. It is started by e(1032).  There are 
two such elements working in parallel one receiving  amax2f, mx2f and the other receiving  amax2f,  
my2f. I will discuss them both as the one for receiving mx2f in case 1 and the other for my2f in case 2. 
The signal amax2f is connected in each case to the terminal A of the corresponding IP core and is the 
dividend in both cases. Each of the signals mx2f  and my2f  is connected to the input terminal B of the 
corresponding IP core and are the divisors. The signal e(1032) is connected to CE of the two IP cores 
and clock1 is connected to CLK of the two IP cores. The function divide is selected in the two IP cores. 
The blocks perform divisions amax2f ÷ mx2f (case 1) and amax2f ÷ my2f (case 2) and the outputs are 
gx2 and gy2 (each output is 39 bit wide float with 8 bit exponent and 31 bit fraction) respectively. The 
input – output latency is 35 clock1 pulses. The output line DIVIDE_BY_ZERO of the IP core is also 
generated but not used. For details on the division operation please refer to Xilinx documentation on 
floating point v4 IP core. 

sqrtgxy: This block is generated by Xilinx floating point v4 IP core. It is started by e(1067). There are 
two such modules working in parallel one receiving  gx2 and the other receiving  gy2. I will discuss 
them both as the one for gx2 in case 1 and the other for gy2 in case 2. The input gx2 or gy2 appears one 
clock1 pulse after e(1067) goes high. Each of the inputs gx2 and gy2 is connected to the input terminal 
A of the corresponding IP core. The signal e(1067) is connected to CE of both the IP cores and clock1 is
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Fig.B.10:The details of the component module 
gxy1  of the module gxytop2n1c  (fig. 
4.9). This block takes in the inputs  D1 
and D2  which are the outputs from the 
last stage power spectra accumulators 
of dout2acmf  that are the power 
spectra of X  and Y channels 
respectively. This block generates the 
gain parameters, which are stored in 
windowarraygtop1  to be read in the 
lines gxout and gyout  when required 
with the indices appearing in xindex 
and yindex
 respectively. All operations 
shown in the figure are done 
at 64 MHz clock rate. The 
number beside L in some 
blocks in the figure 
represents the latency of that 
block in number of clock 
pulses. The signals to the 
LHS of the logic blocks in 
the figure represent the input 
lines to those blocks and the 
signals in the RHS of the 
logic blocks in the figure 
represent the output lines 
from those blocks. Ports 
having same signal names 
are interconnected
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connected  to  CLK  of  both  the  IP cores. The function square root is selected in the IP cores. The two 
blocks perform  gx2 (case 1) and  gy2 (case 2) to obtain outputs gx2f and gy2f (each output is 39 
bit wide float with 8 bit exponent and 31 bit fraction) respectively, each of which is connected to the 
RESULT terminal  of  the  corresponding IP core.  The input-output  latency is  35  clock1 pulses.  For 
details on the square root operation please refer to Xilinx documentation on floating point v4 IP core.

gxyfl2fx:  This block is generated by Xilinx floating point v4 IP core. There are two such modules 
working in parallel one receiving gx2f and the other receiving gy2f. I will discuss both as the one for 
gx2f in case 1 and the other for gy2f in case 2. The input clock is clock1 and is connected to CLK of 
both  the  IP cores.  Each  of  the  inputs  gx2f  and  gy2f  is  connected  to  the  input  terminal A  of  the 
corresponding IP core. The signal e(1102) is used to start these blocks and is connected to CE of both 
the IP cores. The function float to fixed is selected in the two IP cores. The inputs  gx2f  and gy2f are 
converted to fixed point format producing outputs  gxf and gyf  (each output is 22 bit wide with 5 bit 
integer  and  17  bit  fraction)  respectively.  Each  of  the  outputs  is  connected  to  the  output  terminal 
RESULT of the corresponding IP core. The input-output latency is 6 clock1 pulses.

cs21024: It is started by e(1108). The input clock is clock1. It generates a signal we1 (1 bit), which goes 
high with e(1108) and remains high for 1025 clock1 pulses after which it goes low. This signal we1 is 
connected to the output signal swe1.

windowarraygtop1: There are two such modules working in parallel one receiving  gxf and the other 
gyf. So I will only discuss the one receiving gxf. This block consists of a buffer having1024 locations 
and each location is 22 bit wide. The block is started by we1. The input gxf starts appearing one clock1 
pulse  after  we1  goes  high  and  starts  entering  the  buffer 2 clock1  pulses  after we1 is high. Writing
 happens consecutively at each clock1 pulse starting from the first location and hence in 1025th clock1 
pulse after we1 is high, the buffer is written completely. The buffer is then ready to be read anytime. 
Reading will happen at 128 MHz clock rate 2 clock pulses after the read enable signal re  goes high. 
The data from the buffer will then appear at the output line  gxout at each clock pulse consecutively 
starting from the first location. The other output line xindex will receive the index of gxout in parallel. 
The  signals  corresponding  to  gxf,  gxout  and  xindex  of  this  module  are  gyf,  gyout and  yindex 
respectively in the other module. All other signals are common to both.

5. equalizeparamswin: It is started by the signal reade. Two clock pulses after reade (which performs 
read operation from the last stage buffers in the blocks from 2 to 4.of B.1.5.1) is high, swinfunc, scosn,  
ssinn,  sgxout,  sgyout  and sindexwin  appear  as  the  inputs  to  this  block.  It  performs  the  following 
multiplications: sgxout  × swinfunc = sgxf  (22 bit),   sgyout  × swinfunc = sgyf  (22 bit),   scosn  × 
swinfunc = scosnf (22 bit),   ssinn  × swinfunc = ssinnf  (22 bit).  The results  or  the outputs  of  all 
multiplications are obtained in parallel. The input sindexwin  representing the indices of the inputs is 
transferred to the output line sindexep (10 bit), which is parallel to the outputs showing their index at 
any clock pulse. Input-output latency is 2 clock pulses or the output arrives 4 clock pulses after reade is 
high.

6. resetdecaddtest: It is started by wenable (obtained in block number 1 of B.1.5.1). 2055 clock pulses 
after wenable is high, testadd (1 bit) is generated (goes high).

7. deceqdat8_24: It is started by reset. It gets the outputs from the two decodervar1s as its inputs: 8 
lines for each real and imaginary parts of X polarization and 8 lines for each real and imaginary parts of 
Y polarization; There are also 8 lines of indices corresponding to 8 lines of X polarization and 8 lines of 
indices corresponding to 8 lines of Y polarization. These  inputs  arrive  one clock pulse after reset goes
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high These inputs are transferred to the following output lines: 8 output lines corresponding to 8 input 
lines for real parts of X polarization: xre1, xre2, xre3, …, xre8 (all 22 bit) respectively; 8 output lines 
corresponding to 8 input lines for real parts of  Y polarization:  yre1, yre2, yre3, …, yre8  (all 22 bit) 
respectively; 8 output lines corresponding to 8 input lines for imaginary parts of X polarization: xim1,  
xim2,  xim3,  …,  xim8 (all  22  bit)  respectively;  8  output  lines  corresponding  to  8  input  lines  for 
imaginary  parts  of  Y  polarization: yim1, yim2, yim3, …, yim8 (all 22 bit) respectively; this block also
 transfers  8  lines  of  indices  of  X  or  Y  polarization  to  the  output  lines  addressdec1, addressdec2,
 addressdec3, …, addressdec8 ( all 10 bit). The outputs having same numbers beside them are parallel. 
Input-output latency is one clock pulse.

Important - Now I have 8 lines for each real and imaginary parts of X polarization,  8 lines for each 
real and imaginary parts of Y polarization and  8 lines for indices corresponding to the 8 lines for real 
X, or real Y or imaginary X or imaginary Y. I will now deal with only first group of parallel inputs that 
are  xre1, xim1, yre1,  yim1 and  addressdec1  (consecutive groups have a delay of 128 clock pulses 
between them starting from the first one). The other 7 groups will feed similar stages as the first group 
with a delay of 128 clock pulses between the consecutive stages starting from the first stage.

8) (i)  passdecdat:  It  is  started by the signal  testadd.  It  gets  the inputs  xre1, xim1, yre1,  yim1 and 
addressdec1. It checks when addressdec1 has all 1s for the first time and in that clock pulse it generates 
a signal spassxy1 (1bit). The inputs xre1, xim1, yre1, yim1 and addressdec1 corresponding to the next 
clock pulse after spassxy1 is high (addressdec1 then starts with address 0) are transferred to the output 
lines sxr1,sxi1,syr1,syi1 and saddrout1 respectively 2 clock pulses after spassxy1 goes high.

(ii) eqparramarraytop: There  are  four  such  modules  working  in parallel one receiving sgxf, another
 receiving  sgyf, the third receiving  scosnf and the fourth receiving  ssinnf. So I will only go into the 
details of the one receiving sgxf and the rest will follow from there. This block consists of a buffer of 
1024 locations and each location is 22 bit wide. It is started by wenable. One clock pulse after wenable 
goes high, the inputs  sgxf and  sindexep starts appearing and two clock pulses after  wenable is high, 
sgxf starts  entering  the  buffer  at  each  clock  pulse  in  the  location  pointed  by  sindexep that  is 
consecutively starting from the first location. So in 1025 th clock pulse after wenable is high, writing in 
the buffer stops. The signal spassxy1 acts as read enable to the buffer. The data from the buffer starts 
appearing in the output line gxoutf1 2 clock pulses after spassxy1 goes high. Reading happens per clock 
pulse consecutively starting from the first location of the buffer. The output line indexgx1 represents the 
index of gxoutf1. The signals corresponding to sgxf, gxoutf1 and indexgx1 in the other three modules 
are:  second  module:  sgyf,  gyoutf1 and  open respectively;  third  module:  scosnf,  cosnf1 and  open 
respectively; fourth module: ssinnf, sinnf1 and open respectively. All other signals are common to the 
four modules.

(iii) xycircular: It is started by spassxy1. Its inputs sxr1, sxi1, syr1, syi1, saddrout1, gxoutf1, gyoutf1,  
cosnf1 and sinnf1 arrive 2 clock pulses after spassxy1 goes high. It performs the following operations 
for phase and gain equalization:  sxr1  × gxoutf1, sxi1  × gxoutf1, syr1× gyoutf1  × cosnf1 – syi1  × 
gyoutf1 × sinnf1, syr1× gyoutf1 × sinnf1 + syi1 × gyoutf1 × cosnf1 yielding new real X (xreal1 say), 
imaginary X (ximag1 say), real Y (yreal1 say) and imaginary Y(yimag1 say) respectively and in parallel. 
Next step is formation of circular polarization from these new  X  and  Y, which is done as follows: 
LHCreal1  (real part of LHC) =  xreal1 + yimag1;  LHCimag1 (imaginary part of LHC) =  ximag1 – 
yreal1;  RHCreal1  (real  part  of  RHC) =  xreal1  –  yimag1;  RHCimag1 (imaginary part  of  RHC) = 
ximag1 + yreal1.    The outputs  LHCreal1,  LHCimag1, RHCreal1  and  RHCimag1  are parallel  and 
appear 8 clock pulses after spassxy1 goes high. The output index indexout1 is also passed in parallel 
with the corresponding outputs.
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Note- The components in (8) are replicated 7 times for the remaining 7 stages with the number 1 beside 
the signals replaced by 2, 3, 4,..., 8 for the cases from 2 to 8 respectively. The rest of the signals are  
common to all. So in total there are 15 components with 9 to 15 being replications of 8 as mentioned 
above.

B.2 Implementation information

After  discussing  the  design  of  the  digital  circular  polarizer  in B.1, I will now show the summary 
pages generated by implementing different parts of the design to be connected later. Each of these parts 
is able to fit inside a Virtex 5 on a DBBC Core2 board. Fig. B.11 shows the implementation summary 
page of doutf2 (B.1.2.2), fig. B.12 shows the implementation summary page of 8 times replication of 
B.1.3.1 that is the modules from combunitfft1 to combunitfft8 are implemented in a single device. Fig. 
B.13 shows the implementation summary page for the components from 1 to 4 of B.1.5.1. Components 
from 5 to 7 are implemented in a small device and components from 8 to 15 are implemented in pairs 
in  small  devices,  which  are  not  shown  since  they  consist  of  trivial  logic  only  and  easy  to  be 
implemented. I also carried out formation of circular power spectra and accumulation and it can be 
found in the design file as well as in the implementation file. Since the accumulation process is similar 
to the one shown in B.1.3.1 block 4, I have not shown it here.

B.2.1 Implementation summary pages

The window  on the  top left of the implementation summary pages (fig. B.11 to fig. B.13) has the  
name  of  the  project  highlighted  in  blue. The window on the bottom left shows the steps completed  
that are  Synthesize- XST, Implement Design, which consists of  Translate, Map and  Place and Route. 
The yellow exclamation beside these means successful operation with warnings (can be overlooked) 
and a green check beside them means successful operation without any warning. The window on the 
top right shows the status of the project: the Project File provides the name of the file containing the 
project; Module Name provides the name of the module implemented; Target Device provides the name 
of the Xilinx device on which the module is implemented;  Product Version shows the version of the 
software ISE; Design Goal shows the parameter of emphasis, which can be timing performance or area 
performance or both (balanced);  Current Status shows the status of the project, which is  Placed and 
Routed showing that implementation is complete;  Errors show number of errors while implementing 
the  module;  Warnings show  the  number  of  warnings  while  implementing  the  module  (it  can  be 
overlooked); Routing Results show the routing status of the signals; Timing Constraints show whether 
all timing constraints are met or not; Final Timing Score represents a zero if all timing constraints are 
met else it provides a number. The bottom right window shows the logic usage in the device. The  
figures from B.11 to B.13 start from the next page.

Note- I enclose a CD with two zip files. One named as circular1.zip having B.1.5.1 and the other 
named  as  dout.zip  having  B.1.4.1.  After  unzipping  the  files  the  project  files  to  be  opened  are 
circular24.ise and dout128m.ise respectively.
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Fig B.11: Implementation summary page of doutf2 (4.2.2.2)

Fig. B.12: Implementation summary page for combunitfft1 to combunitfft8 that is 8 times replication of 4.2.3.1
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Fig. B.13: Implementation summary page for the components from 1 to 4 of 4.2.5.1.



             APPENDIX C: VHDL CODES OF SELECTED MODULES FROM APPENDIX B

In this appendix I have put the codes of those blocks (described in appendix B) in our design, which 
perform the most crucial operations.  It is not possible to keep all codes as per the data flow in the 
project as that would cover around 140 to 150 pages; All codes are in the ISE (Xilinx) projects in the  
CD enclosed with the thesis whose details is given in end of section B.2.1 of the thesis. Also the codes  
generating control signals are not shown as they are easy to understand. Though almost all of the codes 
are specific to the design and written by me, the codes in this appendix are worth keeping at one place 
for reference of the corresponding block. I will  provide the reference of the blocks in appendix B 
before their codes and also write the signal names under the block descriptions corresponding to the 
inputs  and outputs  of  the codes.  The signal  names of  a  module  in  the  code is  different  than  that 
described in appendix B whenever the signal is called from a top module comprising it; this is similar 
to the case where a routine calls a function and the names of the input or output parameters in the 
function are different than that used in the routine. Here the top module comprising a block takes the 
place of the routine or caller function and the block takes the place of the called function. 

C.1  Block data_demuxtest (p 87, section B.1.2.2, block 5)

All signal names in the code are the same as in the block described under section B.1.2.2, block 5 with  
input sdata in the code replaced by sdata1  in the block. In this and in the following descriptions the 
term 'block' refers to the description in appendix B and the code refers to the presented code.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
package registerytst is
subtype WORD8 is STD_LOGIC_VECTOR (9 downto 0); 
type mem08 is array (7 downto 0) of WORD8; 
type packet128 is array (127 downto 0) of mem08; 
type mem1024 is array (1023 downto 0) of WORD8;   
end registerytst;  
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.registerytst.all;
entity data_demuxtest is
port( clock,re1,re2,re3,re4,re5,re6,re7,re8,we: in std_logic;
      sel : in std_logic_vector(2 downto 0) :="000";
      write_address: in std_logic_vector(6 downto 0);
read_address1,read_address2,read_address3,read_address4,read_address5,read_address6,read_address7
,read_address8 : in std_logic_vector(9 downto 0);

   sdata : in mem08:=(others=>(others=>'0'));
      Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8 : out std_logic_vector(9 downto 0):=(others=>'0')
     ); 

end data_demuxtest;     
architecture archi of data_demuxtest is
signal soutputx1,soutputx2,soutputx3,soutputx4,soutputx5,soutputx6,soutputx7,soutputx8 : 
packet128:=(others=>(others=>(others=>'0')));
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signal sinputx1,sinputx2,sinputx3,sinputx4,sinputx5,sinputx6,sinputx7,sinputx8 : mem1024:= 
(others=>(others=>'0'));
begin  
u0: for i in 1 to 128 generate
u1: for j in 0 to 7 generate
sinputx1((i*j) + ((i-1)*(8-j))) <= soutputx1(i-1)(j);
sinputx2((i*j) + ((i-1)*(8-j))) <= soutputx2(i-1)(j);
sinputx3((i*j) + ((i-1)*(8-j))) <= soutputx3(i-1)(j);
sinputx4((i*j) + ((i-1)*(8-j))) <= soutputx4(i-1)(j);
sinputx5((i*j) + ((i-1)*(8-j))) <= soutputx5(i-1)(j);
sinputx6((i*j) + ((i-1)*(8-j))) <= soutputx6(i-1)(j);
sinputx7((i*j) + ((i-1)*(8-j))) <= soutputx7(i-1)(j);
sinputx8((i*j) + ((i-1)*(8-j))) <= soutputx8(i-1)(j);
end generate;
end generate;

PROCESS (clock,we,sdata,write_address,sel)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN
if sel = "000" then
 soutputx1(to_integer(unsigned(write_address)))<= sdata; 

         elsif sel = "001" then
          soutputx2(to_integer(unsigned(write_address)))<= sdata; 
         elsif sel = "010" then
          soutputx3(to_integer(unsigned(write_address)))<= sdata; 
         elsif sel = "011" then
          soutputx4(to_integer(unsigned(write_address)))<= sdata; 
         elsif sel = "100" then
          soutputx5(to_integer(unsigned(write_address)))<= sdata; 
         elsif sel = "101" then
          soutputx6(to_integer(unsigned(write_address)))<= sdata; 
         elsif sel = "110" then
          soutputx7(to_integer(unsigned(write_address)))<= sdata; 
         elsif sel = "111" then
          soutputx8(to_integer(unsigned(write_address)))<= sdata; 

end if; 
END IF;
END IF;

END PROCESS;
PROCESS 

(clock,re1,re2,re3,re4,re5,re6,re7,re8,read_address1,read_address2,read_address3,read_address4,read_a
ddress5,read_address6,read_address7,read_address8,sinputx1,sinputx2,sinputx3,sinputx4,sinputx5,sinp
utx6,sinputx7,sinputx8)

BEGIN
IF (clock'event AND clock = '1') THEN

IF (re1 = '1') THEN
   Q1<=sinputx1(to_integer(unsigned(read_address1)));

end if;
if re2 = '1' then
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   Q2<=sinputx2(to_integer(unsigned(read_address2)));
end if;
if re3 = '1' then

   Q3<=sinputx3(to_integer(unsigned(read_address3)));
end if;
if re4 = '1' then

   Q4<=sinputx4(to_integer(unsigned(read_address4)));
end if;
if re5 = '1' then

   Q5<=sinputx5(to_integer(unsigned(read_address5)));
end if;
if re6 = '1' then

   Q6<=sinputx6(to_integer(unsigned(read_address6)));
end if;
if re7 = '1' then

   Q7<=sinputx7(to_integer(unsigned(read_address7)));
end if;
if re8 = '1' then

   Q8<=sinputx8(to_integer(unsigned(read_address8)));
end if;

--    index <= read_address;
END IF;

END PROCESS;
end archi;

C.2 Block decode_inputs210241 (p 97, section B.1.3.1, block 3's component )

All the signal names in the code are same as that described in the block except  reset1(1023) in the 
block replaces resett in the code; s1 and s2 in the block replace sel1 and sel2 respectively in the code; 
addressi in the block replaces address1 in the code.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
USE ieee.numeric_std.ALL;
use ieee.std_logic_unsigned.all;
use work.myram2.all;
ENTITY decode_inputs210241 IS
PORT

(
clock,reset,resett,sel1,sel2 : in std_logic;
datain : in std_logic_vector(DATA_WIDTHd-1 downto 0):=(others=>'0');
address,address1 : in std_logic_vector(ADDRESS_WIDTHd-1 downto 0);
dataout1,dataout2 : out std_logic_vector(DATA_WIDTHd -1 downto 0):=(others=>'0')

);
END decode_inputs210241;

ARCHITECTURE archi OF decode_inputs210241 IS
SIGNAL ram_block1,ram_block2 : RAM1:= (others => (others=>'0'));
signal address2,address3 :  std_logic_vector(ADDRESS_WIDTHd downto 0);

    129



signal s3 : std_logic :='0';
BEGIN
     
    address2 <= s3 & address;
    address3<= s3 & address1;

PROCESS (clock,reset,sel1,datain)   
BEGIN
   if (reset='1') THEN

IF (clock'event AND clock = '1') THEN
   if (sel1 = '0') then 

 ram_block1(to_integer(unsigned(address2))) <= datain;
elsif (sel1 = '1') then
 ram_block2(to_integer(unsigned(address2))) <= datain;   
end if; 
END IF;
end if;

END PROCESS;
PROCESS (clock,sel2,resett,ram_block1,ram_block2,address3)
BEGIN

IF (clock'event AND clock = '1')and(resett='1') THEN
if (sel2 = '0') then 

         if(address3 ="00000000000") then
   dataout1<=ram_block1(to_integer(unsigned(address3)));
   dataout2<=ram_block1(to_integer(unsigned( address3)));

else
dataout1<=ram_block1(to_integer(unsigned(address3)));

   dataout2<=ram_block1(to_integer(unsigned("10000000000" - address3)));
end if;

   elsif ( sel2 = '1') then
if(address3 ="00000000000") then

   dataout1<=ram_block2(to_integer(unsigned(address3)));
   dataout2<=ram_block2(to_integer(unsigned( address3)));

         else
   dataout1<=ram_block2(to_integer(unsigned(address3)));  
   dataout2<=ram_block2(to_integer(unsigned("10000000000" - address3)));

end if;
end if;
end if;

END PROCESS;

END archi;

C.2.1 Packages used in  C.2

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;
package myram2 is
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constant ADDRESS_WIDTHd : integer := 10;
constant DATA_WIDTHd : integer := 22;
TYPE RAM IS ARRAY(0 TO 2 ** ADDRESS_WIDTHd - 1) OF std_logic_vector(DATA_WIDTHd - 
1 DOWNTO 0);
TYPE RAM1 IS ARRAY(0 TO 2 ** ADDRESS_WIDTHd) OF std_logic_vector(DATA_WIDTHd - 1 
DOWNTO 0);

end myram2;

C.3 Block complex_multiplier1024 (p 99, section B.1.3.1 block 4's component)

All the input and output names in the code are the same as that in the block except  zr, zi, indexor,  
indexoi in the code are replaced by zr1, zi1, indor and indoi in the block description.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;
entity complex_multiplier1024 is
port(xr,xi,yr,yi : in std_logic_vector(21 downto 0):=(others=>'0');
     zr,zi : out std_logic_vector(44 downto 0):=(others=>'0');
     clk,reset : in std_logic;

  blank : in std_logic:='0';
     indexi : in std_logic_vector(9 downto 0);
     indexor,indexoi : out std_logic_vector(9 downto 0));
end complex_multiplier1024;
architecture archi of complex_multiplier1024 is
signal sxr,sxi,syr,syi : signed(21 downto 0):=(others=>'0');
signal szr1,szr2,szi1,szi2 : signed(44 downto 0):=(others=>'0');
signal sindr,sindi : std_logic_vector(9 downto 0);
begin 
sxr <= signed(xr);
sxi <= signed(xi);
syr <= signed(yr);
syi <= signed(yi);    
process(clk,reset,sxr,sxi,syr,syi,blank,szr1,szr2,indexi,sindr)
begin
if reset = '1' then
if (clk'event and clk = '1') then
if blank = '0' then    
   szr1 <= resize((sxr * syr),45);
   szr2 <= resize((sxi * syi),45);
elsif blank = '1' then
   szr1 <=(others=>'0');
   szr2 <=(others=>'0');
end if;  
   sindr <= indexi;
   zr <= std_logic_vector(szr1 - szr2);
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   indexor <= sindr;
 end if;
 end if;
 end process;
process(clk,reset,sxr,sxi,syr,syi,blank,szi1,szi2,indexi,sindi)
begin
if reset = '1' then
if (clk'event and clk = '1') then
if blank = '0' then    
   szi1 <= resize((sxr * syi),45);
   szi2 <= resize((sxi * syr),45);
elsif blank = '1' then
   szi1 <=(others=>'0');
   szi2 <=(others=>'0');
end if;  
   sindi <= indexi;
   zi <= std_logic_vector(szi2 + szi1);
   indexoi <= sindi;
 end if;
 end if;
 end process;
 end archi; 

C.4 Block demux4ac1024 (p 99, section B.1.3.1 block 4's component)

The inputs and outputs in the code din, indexin, sel, reset, dout1, dout2, index1, index2 are the same as 
zr1, indor, sel2, reset1, zr11, zr12, indor1 and indor2 respectively in the block description.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
use work.myram1024.all;
entity demux4ac1024 is
port(din : in std_logic_vector(44 downto 0):=(others=>'0');
     indexin : in std_logic_vector(ADDRESS_WIDTH - 1 downto 0);
     sel,reset : in std_logic;
     dout1,dout2 : out std_logic_vector(44 downto 0):=(others=>'0');
     index1,index2 : out std_logic_vector(ADDRESS_WIDTH - 1 downto 0));
end demux4ac1024;
architecture archi of demux4ac1024 is
begin
process(sel,din,indexin,reset)
begin
case (reset) is
when '1' =>    
case(sel) is
when '0' => dout1 <= din;
            index1 <= indexin;
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            dout2<= (others=>'0');
            index2 <= (others=>'0');
when '1' => dout2 <= din;
            index2 <= indexin;
            dout1 <= (others=>'0');
            index1 <= (others=>'0');
when others => null;
end case;
when others => null;
end case;
end process;
end archi;     

C.5 Block acm1024 (p 99, section B.1.3.1 block 4's component)

There are four such identical units described in p99, under section B.1.3.1. We will only relate the 
signals of the first unit as the corresponding signals in the other units with respect to the first unit is  
known under the block description so they can be related with the signals in the code. The inputs and 
outputs in the code clock, D1, write_address, we, re, Q2 and index are the same as clk, zr11, indor1,  
reset3, reade, oacr1 and indexr1 respectively of the first acm1024 described.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
use work.myram1024.all;
entity acm1024 is
port(
      clock : IN  std_logic;

D1       : IN  std_logic_vector(44 DOWNTO 0):=(others => '0');
write_address  : IN  std_logic_vector(ADDRESS_WIDTH - 1 DOWNTO 0);
---read_address : IN  std_logic_vector(ADDRESS_WIDTH - 1 DOWNTO 

0);
we          : IN  std_logic;
re    : IN  std_logic;
Q2    : OUT std_logic_vector(DATA_WIDTH - 1 DOWNTO 

0):=(others=>'0');
   index       : out std_logic_vector(ADDRESS_WIDTH - 1 downto 0)
);

end acm1024;
architecture acm1024 of acm1024 is
component counter_10bitac  
port(clk,reset:in std_logic;
     q1: out std_logic_vector(9 downto 0));
end component;
component testacm1024 
PORT

(
clock : IN  std_logic;
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D1       : IN  std_logic_vector(44 DOWNTO 0):=(others => '0');
write_address  : IN  std_logic_vector(ADDRESS_WIDTH - 1 DOWNTO 0);
read_address,read_address1 : IN  std_logic_vector(ADDRESS_WIDTH 

- 1 DOWNTO 0);
we          : IN  std_logic;
re    : IN  std_logic;
Q2    : OUT std_logic_vector(DATA_WIDTH - 1 DOWNTO 

0):=(others=>'0');
index       : out std_logic_vector(ADDRESS_WIDTH - 1 downto 0)

);
END component;
signal read_address : std_logic_vector(ADDRESS_WIDTH - 1 DOWNTO 0);
signal s1: std_logic_vector(9 downto 0);
begin
u0:counter_10bitac port map(clock,we,s1);    
u1:testacm1024 port map(clock,D1,write_address,read_address,s1,we,re,Q2,index);
u2:counter_10bitac port map(clock,re,read_address);  
end acm1024;    
---data and write address should arrive 2 clock pulses after we goes high.

C.5.1 Component of acm1024: counter_10bitac 

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity counter_10bitac is 
port(clk,reset:in std_logic;
     q1: out std_logic_vector(9 downto 0));
end counter_10bitac;
architecture counter_10bit of counter_10bitac is
signal count,s1: std_logic_vector(9 downto 0):="0000000000";
signal b: std_logic_vector(9 downto 0) :="0000000001";
begin
process_count: process(clk,reset,count)
begin
    if(reset = '0') then

 count <= "0000000000";
 s1 <= "0000000000";

    elsif(reset ='1') then                     
      if(clk'event and clk='1') then
          s1<= "0000000000";
          count<= (count+b);
          s1<= count;
      end if;
    end if;
end process;
q1<=s1;
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---q2<= "111" - s1;
end counter_10bit; 

C.5.2 Component of acm1024: testacm1024

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
USE ieee.numeric_std.ALL;
use ieee.std_logic_unsigned.all;
use work.myram1024.all;
ENTITY testacm1024 IS
PORT

(
clock : IN  std_logic;
D1       : IN  std_logic_vector(44 DOWNTO 0):=(others => '0');
write_address  : IN  std_logic_vector(ADDRESS_WIDTH - 1 DOWNTO 0);
read_address,read_address1 : IN  std_logic_vector(ADDRESS_WIDTH 

- 1 DOWNTO 0);
we          : IN  std_logic;
re    : IN  std_logic;
Q2    : OUT std_logic_vector(DATA_WIDTH - 1 DOWNTO 

0):=(others=>'0');
index       : out std_logic_vector(ADDRESS_WIDTH - 1 downto 0)

);
END testacm1024;

ARCHITECTURE archi OF testacm1024 IS
SIGNAL D1s,D2s : signed(68 downto 0):=(others=>'0');
signal Q1          :std_logic_vector(DATA_WIDTH - 1 DOWNTO 0):=(others=>'0');
SIGNAL ram_temp : RAM:= (others => (others=>'0'));
BEGIN
D1s <= resize(signed(D1),69);
D2s <= resize(signed(Q1),69);

PROCESS (clock,we,D1s,D2s,write_address,read_address1,ram_temp)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN
 ram_temp(to_integer(unsigned(write_address)))<= D1s + D2s;    
 Q1 <= std_logic_vector(ram_temp(to_integer(unsigned(read_address1))));

END IF;
END IF;

END PROCESS;
PROCESS (clock,re,read_address,ram_temp)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (re = '1') THEN

   Q2<=std_logic_vector(ram_temp(to_integer(unsigned(read_address))));
   index <= read_address;
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END IF;
END IF;

END PROCESS;

END archi;

C.5.3 Packages used in C.5

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
USE ieee.numeric_std.ALL;
use ieee.std_logic_unsigned.all;

package myram1024  is
    
constant ADDRESS_WIDTH : integer := 10;
constant DATA_WIDTH : integer := 69;
TYPE RAM IS ARRAY(0 TO 2 ** ADDRESS_WIDTH - 1) OF signed(DATA_WIDTH - 1 
DOWNTO 0);

end myram1024;

C.6 Block mod_xy_square (p 102, section B.1.3.1 block 5's component)

All the input and output names in the code are same as that described under the block except modxsq,  
modysq, indexor, indexoi in the code are replaced by zr1, zi1, indor and indoi respectively in the block 
description.

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use ieee.std_logic_unsigned.all;
entity mod_xy_square is
port(xr,xi,yr,yi : in std_logic_vector(21 downto 0):=(others=>'0');
     modxsq,modysq : out std_logic_vector(44 downto 0):=(others=>'0');
     clk,reset : in std_logic;

  blank : in std_logic:='0';
     indexi : in std_logic_vector(9 downto 0);
     indexor,indexoi : out std_logic_vector(9 downto 0));
end mod_xy_square;
architecture archi of mod_xy_square is
signal sxr,sxi,syr,syi : signed(21 downto 0):=(others=>'0');
signal smodxsq1,smodxsq2,smodysq1,smodysq2 : signed(44 downto 0):=(others=>'0');
signal sindr,sindi : std_logic_vector(9 downto 0);
begin 
sxr <= signed(xr);
sxi <= signed(xi);
syr <= signed(yr);
syi <= signed(yi);    
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process(clk,reset,sxr,sxi,syr,syi,blank,smodxsq1,smodxsq2,indexi,sindr)
begin
if reset = '1' then
if (clk'event and clk = '1') then
if blank = '0' then    
   smodxsq1 <= resize((sxr * sxr),45);
   smodxsq2 <= resize((sxi * sxi),45);
elsif blank = '1' then
   smodxsq1 <=(others=>'0');
   smodxsq2 <=(others=>'0');
end if;  
   sindr <= indexi;
   modxsq <= std_logic_vector(smodxsq1 + smodxsq2);
   indexor <= sindr;
 end if;
 end if;
 end process;
process(clk,reset,sxr,sxi,syr,syi,blank,smodysq1,smodysq2,indexi,sindi)
begin
if reset = '1' then
if (clk'event and clk = '1') then
if blank = '0' then    
   smodysq1 <= resize((syr * syr),45);
   smodysq2 <= resize((syi * syi),45);
elsif blank = '1' then
   smodysq1 <=(others=>'0');
   smodysq2 <=(others=>'0');
end if;  
   sindi <= indexi;
   modysq <= std_logic_vector(smodysq2 + smodysq1);
   indexoi <= sindi;
 end if;
 end if;
 end process;
 end archi; 

C.7 Block mux4ac8 (p 104, section B.1.4.1 block 4)

The inputs and outputs in the code  din1- din8, indexin1 - indexin8,  sel1 - sel8, selo, dout and indexout 
are same as oacr0 – oacr7, indexr0 – indexr7, weoutr0 – weoutr7, selo1, doutr, waddr respectively in 
the block description.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
use work.myram1024.all;
entity mux4ac8 is
port(din1,din2,din3,din4,din5,din6,din7,din8 : in std_logic_vector(68 downto 0):=(others=>'0');
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     indexin1,indexin2,indexin3,indexin4,indexin5,indexin6,indexin7,indexin8 : in 
std_logic_vector(ADDRESS_WIDTH - 1 downto 0);
     sel1,sel2,sel3,sel4,sel5,sel6,sel7,sel8 : in std_logic:='0';

  selo : out std_logic:='0';
     dout : out std_logic_vector(68 downto 0):=(others=>'0');
     indexout : out std_logic_vector(ADDRESS_WIDTH - 1 downto 0));
end mux4ac8;
architecture archi of mux4ac8 is
signal sel :  std_logic_vector(7 downto 0):=(others=>'0');
begin
sel(0) <= sel1;
sel(1) <= sel2;
sel(2) <= sel3;
sel(3) <= sel4;
sel(4) <= sel5;
sel(5) <= sel6;
sel(6) <= sel7;
sel(7) <= sel8;
process(sel,din1,din2,din3,din4,din5,din6,din7,din8,indexin1,indexin2,indexin3,indexin4,indexin5,inde
xin6,indexin7,indexin8)
begin
case(sel) is
when "00000000" => dout <= (others=>'0');
                   indexout <= (others=>'0');

       selo <= '0';
when "00000001" => dout <= din1;
                   indexout <= indexin1;
                   selo <= '1';
when "00000010" => dout <= din2;
                   indexout <= indexin2;
                   selo <= '1';
when "00000100" => dout <= din3;
                   indexout <= indexin3;
                   selo <= '1';
when "00001000" => dout <= din4;
                   indexout <= indexin4;
                   selo <= '1';
when "00010000" => dout <= din5;
                   indexout <= indexin5;
                   selo <= '1';
when "00100000" => dout <= din6;
                   indexout <= indexin6;
                   selo <= '1';
when "01000000" => dout <= din7;
                   indexout <= indexin7;
                   selo <= '1';
when "10000000" => dout <= din8;
                   indexout <= indexin8;
                   selo <= '1';
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when others => null;
end case;
end process;
end archi;     

C.8 Block  acmwin1 (p 112, section B.1.5.1 under component of  zwindow1 (p 110),  which is  a 
component of block 2 (p 110))

The inputs and outputs in the code  clock, clock1, D1, write_address,  we, enable, reade, Q2 and index 
are same as clock1, clock, s2, s1, reset1, enable, reade, Q2, index respectively in the block description.

library ieee;

use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
use work.ramwin.all;
entity acmwin1 is
port(
      clock,clock1 : IN  std_logic;

D1       : IN  std_logic_vector(63 DOWNTO 0):=(others => '0');
write_address  : IN  std_logic_vector(ADDRESS_WIDTHW - 1 DOWNTO 0);
we          : IN  std_logic;
enable,reade : IN  std_logic;
Q2    : OUT std_logic_vector(1 DOWNTO 0):=(others=>'0');

      index       : out std_logic_vector(ADDRESS_WIDTHW - 1 downto 0)
);

end acmwin1;
architecture acmwin of acmwin1 is
component counter_10bitac  
port(clk,reset:in std_logic;
     q1: out std_logic_vector(9 downto 0));
end component;
component testwin 
PORT(

clock : IN  std_logic;
D1       : IN  std_logic_vector(63 DOWNTO 0):=(others => '0');
write_address  : IN  std_logic_vector(ADDRESS_WIDTHW - 1 DOWNTO 0);
read_address   : IN  std_logic_vector(ADDRESS_WIDTHW - 1 DOWNTO 0);
we          : IN  std_logic;
re,enable   : IN  std_logic;
Q2    : OUT std_logic_vector(1 DOWNTO 0):=(others=>'0');
index       : out std_logic_vector(ADDRESS_WIDTHW - 1 downto 0)

);
END component;
component dff1 
port(d: in std_logic; 
     clk : in std_logic;
     q : out std_logic:='0');
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end component;
component windowarraytopn1 
port(
      clock,clock1 : IN  std_logic;

D1       : IN  std_logic_vector(1 DOWNTO 0):=(others => '0');
write_address  : IN  std_logic_vector(ADDRESS_WIDTHW - 1 DOWNTO 0);
we          : IN  std_logic;
re : IN  std_logic;
Q2    : OUT std_logic_vector(1 DOWNTO 0):=(others=>'0');

      index       : out std_logic_vector(ADDRESS_WIDTHW - 1 downto 0)
);

end component;
signal Q2s : std_logic_vector(1 DOWNTO 0):=(others=>'0');
signal read_address,index1 : std_logic_vector(ADDRESS_WIDTHW -1 downto 0);
signal re : std_logic;
signal e : std_logic_vector(1025 downto 0):=(others=>'0');
begin
    e(0) <= enable;
    re <= e(1024);
u1:testwin port map(clock,D1,write_address,read_address,we,re,enable,Q2s,index1);
u : for i in 0 to 1024 generate
u2: dff1 port map(e(i),clock,e(i+1));
end generate;
u3: counter_10bitac port map(clock,re,read_address);
u4: windowarraytopn1 port map(clock,clock1,Q2s,index1,e(1025),reade,Q2,index);
end acmwin;    

C.8.1 Component of acmwin1: testwin 

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
USE ieee.numeric_std.ALL;
use ieee.std_logic_unsigned.all;
use work.ramwin.all;
ENTITY testwin IS
PORT

(
clock : IN  std_logic;
D1       : IN  std_logic_vector(63 DOWNTO 0):=(others => '0');
write_address  : IN  std_logic_vector(ADDRESS_WIDTHW - 1 DOWNTO 0);
read_address   : IN  std_logic_vector(ADDRESS_WIDTHW - 1 DOWNTO 0);
we          : IN  std_logic;
re,enable   : IN  std_logic;
Q2    : OUT std_logic_vector(1 DOWNTO 0):=(others=>'0');
index       : out std_logic_vector(ADDRESS_WIDTHW - 1 downto 0)

);
END testwin;

ARCHITECTURE archi OF testwin IS
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SIGNAL D1s: signed(65 downto 0):=(others=>'0');
SIGNAL ram_temp : RAM:= (others => (others=>'0'));
signal result : signed(DATA_WIDTHW - 1 DOWNTO 0):=(others=>'0');
signal i : std_logic_vector(ADDRESS_WIDTHW - 1 downto 0):="0000000001";
signal count : std_logic_vector(ADDRESS_WIDTHW - 1 downto 0):="0000000001";
signal Q3 : std_logic_vector(DATA_WIDTHW - 1 DOWNTO 0):=(others=>'0');

BEGIN
D1s <= resize(signed(D1),66);

PROCESS (clock,we,D1s,write_address,ram_temp)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN
 ram_temp(to_integer(unsigned(write_address)))<= D1s;    
END IF;
END IF;

END PROCESS;
PROCESS (clock,re,result)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (re = '1') THEN
Q3 <= std_logic_vector(result);
if ram_temp(to_integer(unsigned(read_address)))(65 downto 0) >= 

resize(signed(Q3(65 downto 4)),66) then
Q2 <= std_logic_vector(to_signed(1,2));
elsif ram_temp(to_integer(unsigned(read_address)))(65 downto 0) < 

resize(signed(Q3(65 downto 4)),66) then
Q2 <= (others=>'0');
end if;

   index <= read_address;
END IF;
END IF;

END PROCESS;
PROCESS(clock,enable,result,ram_temp,i)

 begin
 if(clock'event and clock = '1') then
 if (enable='1') then
 if ram_temp(to_integer(unsigned(i)))(65 downto 0)> result then  
 result <= ram_temp(to_integer(unsigned(i)))(65 downto 0);
 else
 result <= result;
 end if;
 end if;
 end if;
 end process;

process(clock,enable,count)  
begin
if (clock'event and clock = '1') then
if (enable = '1') then
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count <= count + "0000000001";
if count = "1111111111" then
    count <= "0000000001";
end if;
i <= count;    
end if;
end if;
end process; 

 end archi;

C.8.2 Component of acmwin1: dff1

library ieee;
use ieee.std_logic_1164.all;
entity dff1 is
port(d: in std_logic; 
     clk : in std_logic;
     q : out std_logic:='0');
end dff1;
architecture dff of dff1 is
begin
process(clk)
begin
if(clk='1') and (clk'event) then
q<=d;
end if;
end process;
end dff;

C.8.3 Component of acmwin1: windowarraytopn1

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
use work.ramwin.all;
entity windowarraytopn1 is
port(
      clock,clock1 : IN  std_logic;

D1       : IN  std_logic_vector(1 DOWNTO 0):=(others => '0');
write_address  : IN  std_logic_vector(ADDRESS_WIDTHW - 1 DOWNTO 0);
we          : IN  std_logic;
re : IN  std_logic;
Q2    : OUT std_logic_vector(1 DOWNTO 0):=(others=>'0');

      index       : out std_logic_vector(ADDRESS_WIDTHW - 1 downto 0)
);

end windowarraytopn1;
architecture windowarraytop of windowarraytopn1 is
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component counter_10bitac  
port(clk,reset:in std_logic;
     q1: out std_logic_vector(9 downto 0));
end component;
component windowarrayn1 
PORT

(
clock,clock1 : IN  std_logic;
D1       : IN  std_logic_vector(1 DOWNTO 0):=(others => '0');
write_address  : IN  std_logic_vector(ADDRESS_WIDTHW - 1 DOWNTO 0);
read_address : IN  std_logic_vector(ADDRESS_WIDTHW - 1 DOWNTO 0);
we          : IN  std_logic;
re : IN  std_logic;
Q2    : OUT std_logic_vector(1 DOWNTO 0):=(others=>'0');

      index       : out std_logic_vector(ADDRESS_WIDTHW - 1 downto 0)
);

END component;

--signal Q3 : std_logic_vector(DATA_WIDTHW - 1 DOWNTO 0):=(others=>'0');
signal read_address : std_logic_vector(ADDRESS_WIDTHW -1 downto 0);
begin
    
u1:windowarrayn1 port map(clock,clock1,D1,write_address,read_address,we,re,Q2,index); 
u2: counter_10bitac port map(clock1,re,read_address);
end windowarraytop;    

C.8.3.1 Component of windowarraytopn1: windowarrayn1

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
USE ieee.numeric_std.ALL;
use ieee.std_logic_unsigned.all;
use work.ramwin.all;
ENTITY windowarrayn1 IS
PORT

(
clock,clock1 : IN  std_logic;
D1       : IN  std_logic_vector(1 DOWNTO 0):=(others => '0');
write_address  : IN  std_logic_vector(ADDRESS_WIDTHW - 1 DOWNTO 0);
read_address : IN  std_logic_vector(ADDRESS_WIDTHW - 1 DOWNTO 0);
we          : IN  std_logic;
re : IN  std_logic;
Q2    : OUT std_logic_vector(1 DOWNTO 0):=(others=>'0');

      index       : out std_logic_vector(ADDRESS_WIDTHW - 1 downto 0)
);

END windowarrayn1;

ARCHITECTURE archi OF windowarrayn1 IS
SIGNAL ram_temp : RAM2:= (others => (others=>'0'));
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SIGNAL i : std_logic_vector(9 downto 0):="0000000000";

BEGIN
PROCESS (clock,we,D1,write_address,ram_temp)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN
 ram_temp(to_integer(unsigned(write_address)))<= signed(D1);    
END IF;
END IF;

END PROCESS;
PROCESS (clock1,re)
BEGIN

IF (clock1'event AND clock1 = '1') THEN
IF (re = '1') THEN

   Q2<=std_logic_vector(ram_temp(to_integer(unsigned(read_address))));
   index <= read_address;

END IF;
END IF;

END PROCESS;

END archi;

C.8.4 Packages used in C.8

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
USE ieee.numeric_std.ALL;
use ieee.std_logic_unsigned.all;

package ramwin  is
    
constant ADDRESS_WIDTHW : integer := 10;
constant DATA_WIDTHW : integer := 66;
constant DATA_WIDTH1W : integer := 31;
TYPE RAM IS ARRAY(0 TO 2 ** ADDRESS_WIDTHW - 1) OF signed(DATA_WIDTHW - 1 
DOWNTO 0);
TYPE RAM1 IS ARRAY(0 TO 2 ** ADDRESS_WIDTHW) OF signed(DATA_WIDTHW - 1 
DOWNTO 0);
TYPE RAM2 IS ARRAY(0 TO 2 ** ADDRESS_WIDTHW) OF signed(1 DOWNTO 0);

end ramwin;

Note that the counter_10bitac used in several places under C.8 is already given inC.5.1.

C.9  Block  acm_mag1 (p  119,  section  B.1.5.1,  under  component  of  gxy1 (p  119),  which  is  a 
component of block 4 (p 118))

The inputs  and outputs in the code  clock, clock1, D1, write_address,  we, enable,  Q2, Q3 and index in
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 the code are same as clock, clock1, D1, write_address, we, enable, smx2, sxmax2, open respectively in 
the block description.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
use work.ramacm.all;
entity acm_mag1 is
port(
      clock,clock1 : IN  std_logic;

D1       : IN  std_logic_vector(30 downto 0):=(others => '0');
write_address  : IN  std_logic_vector(ADDRESS_WIDTHac - 1 DOWNTO 0);
--read_address : IN  std_logic_vector(ADDRESS_WIDTHac - 1 DOWNTO 0);
we          : IN  std_logic;
enable : IN  std_logic;
Q2    : OUT std_logic_vector(DATA_WIDTH1ac - 1 DOWNTO 

0):=(others=>'0');
   Q3    : OUT std_logic_vector(DATA_WIDTH1ac - 1 DOWNTO 

0):=(others=>'0');
      index       : out std_logic_vector(ADDRESS_WIDTHac - 1 downto 0)

);
end acm_mag1;
architecture acm_mag of acm_mag1 is
component counter_10bitac  
port(clk,reset:in std_logic;
     q1: out std_logic_vector(9 downto 0));
end component;
component testacm_mag1
PORT

(
clock,clock1 : IN  std_logic;
D1       : IN  std_logic_vector(30 downto 0):=(others => '0');
write_address  : IN  std_logic_vector(ADDRESS_WIDTHac - 1 DOWNTO 0);
read_address,read_address1 : IN 

std_logic_vector(ADDRESS_WIDTHac - 1 DOWNTO 0);
we          : IN  std_logic;
re,enable : IN  std_logic;
Q2    : OUT std_logic_vector(DATA_WIDTH1ac - 1 DOWNTO 

0):=(others=>'0');
Q3    : OUT std_logic_vector(DATA_WIDTH1ac - 1 DOWNTO 

0):=(others=>'0');
index       : out std_logic_vector(ADDRESS_WIDTHac - 1 downto 0)

);
END component;
component dff1 
port(d: in std_logic; 
     clk : in std_logic;
     q : out std_logic:='0');
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end component;
signal read_address : std_logic_vector(ADDRESS_WIDTHac -1 downto 0);
signal re : std_logic;
signal s1: std_logic_vector(9 downto 0);
signal e : std_logic_vector(1024 downto 0):=(others=>'0');
begin
e(0) <= enable;
re <= e(1024);
u0:counter_10bitac port map(clock,we,s1);    
u1:testacm_mag1 port map(clock,clock1,D1,write_address,read_address,s1,we,re,enable,Q2,Q3,index);
u : for i in 0 to 1023 generate
u2: dff1 port map(e(i),clock1,e(i+1));
end generate;
u3: counter_10bitac port map(clock1,re,read_address);
end acm_mag;    

C.9.1 Component of acm_mag1:  testacm_mag1

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
USE ieee.numeric_std.ALL;
use ieee.std_logic_unsigned.all;
use work.ramacm.all;
ENTITY testacm_mag1 IS
PORT

(
clock,clock1 : IN  std_logic;
D1       : IN  std_logic_vector(30 downto 0):=(others => '0');
write_address  : IN  std_logic_vector(ADDRESS_WIDTHac - 1 DOWNTO 0);
read_address,read_address1 : IN 

std_logic_vector(ADDRESS_WIDTHac - 1 DOWNTO 0);
we          : IN  std_logic;
re,enable   : IN  std_logic;
Q2    : OUT std_logic_vector(DATA_WIDTH1ac - 1 DOWNTO 

0):=(others=>'0');
Q3    : OUT std_logic_vector(DATA_WIDTH1ac - 1 DOWNTO 

0):=(others=>'0');
index       : out std_logic_vector(ADDRESS_WIDTHac - 1 downto 0)

);
END testacm_mag1;

ARCHITECTURE archi OF testacm_mag1 IS
SIGNAL D1s : signed(30 downto 0):=(others=>'0');
SIGNAL ram_temp : RAM:= (others => (others=>'0'));
signal result : signed(DATA_WIDTH1ac - 1 DOWNTO 0):=(others=>'0');--(RAM1:= (others => 
(others=>'0'));
signal i,count : std_logic_vector(ADDRESS_WIDTHac - 1 downto 0):="0000000001";
BEGIN
D1s <= resize(signed(D1),31);

   146



PROCESS (clock,we,D1s,write_address,read_address1,ram_temp)
BEGIN

IF (clock'event AND clock = '1') THEN
IF (we = '1') THEN
 ram_temp(to_integer(unsigned(write_address)))<= D1s;    
END IF;
END IF;

END PROCESS;
PROCESS (clock1,re,result,read_address)
BEGIN

IF (clock1'event AND clock1 = '1') THEN
IF (re = '1') THEN

   Q2<=std_logic_vector(ram_temp(to_integer(unsigned(read_address))));
   index <= read_address;

Q3 <= std_logic_vector(result);
END IF;
END IF;

END PROCESS;
 PROCESS(clock1,enable,result,ram_temp,i)
 begin
 if (enable='1') then
 if(clock1'event and clock1 = '1') then
 if ram_temp(to_integer(unsigned(i)))> result then  
 result <= ram_temp(to_integer(unsigned(i)));
 else
 result <= result;
 end if;
 end if;
 end if;
 end process;

 process(clock1,enable,count)  
begin
if (enable = '1') then
if (clock1'event and clock1 = '1') then
count <= count + "0000000001";
if count = "1111111111" then
    count <= "0000000001";
end if;
i <= count;    
end if;
end if;
end process; 

end archi;

C.9.2 Packages used in C.9

library IEEE;
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use IEEE.STD_LOGIC_1164.ALL;
USE ieee.numeric_std.ALL;
use ieee.std_logic_unsigned.all;

package ramacm  is
    
constant ADDRESS_WIDTHac : integer := 10;
constant DATA_WIDTHac : integer := 31;
constant DATA_WIDTH1ac : integer := 31;
TYPE RAM IS ARRAY(0 TO 2 ** ADDRESS_WIDTHac - 1) OF signed(DATA_WIDTHac - 1 
DOWNTO 0);
TYPE RAM1 IS ARRAY(0 TO 2 ** ADDRESS_WIDTHac) OF signed(DATA_WIDTHac - 1 
DOWNTO 0);
TYPE RAM2 IS ARRAY(0 TO 2 ** ADDRESS_WIDTHac) OF signed(1 DOWNTO 0);

end ramacm;

Note the other components of C.9 (acm_mag1) are already given in C.5.1 (counter_10bitac) and C.8.2  
(dff1).

C.10 Block xycircular (p123, block 8 (iii)) 

The inputs and outputs in the code  clock, reset, xr, xi, yr, yi, indexin, gxw, gyw, coszw, sinzw, LHCreal,  
LHCimag,  RHCreal, RHCimag and indexout in the code are same as clock, spassxy1, sxr1, sxi1, syr1,  
syi1,  saddrout1,  gxoutf1,  gyoutf1,  cosnf1,  sinnf1,  LHCreal1,  LHCimag1,  RHCreal1,  RHCimag1,  
indexout1  respectively in the block description.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
entity xycircular is
port(clock,reset : in std_logic;

  xr,xi,yr,yi : in std_logic_vector(21 downto 0):=(others=>'0');
     indexin : in std_logic_vector(9 downto 0);

  gxw,gyw,coszw,sinzw : in std_logic_vector(21 downto 0):=(others =>'0');
  LHCreal,LHCimag : out std_logic_vector(47 downto 0):=(others=>'0');
  RHCreal,RHCimag : out std_logic_vector(47 downto 0):=(others=>'0');
  indexout : out std_logic_vector( 9 downto 0));

end xycircular;
architecture archi of xycircular is       
component  phasegaineq 
port(clock,reset : in std_logic;
     xr,xi,yr,yi : in std_logic_vector(21 downto 0):=(others=>'0');

  indexin : in std_logic_vector(9 downto 0);
     gxw,gyw,coszw,sinzw : in std_logic_vector(21 downto 0):=(others =>'0');

  indexout : out std_logic_vector(9 downto 0);
  xro,xio,yro,yio : out std_logic_vector(47 downto 0):=(others => '0'));
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end component;
component phaseshift90 
port(clock,reset : in std_logic;

  indexin : in std_logic_vector(9 downto 0);
     indexout : out std_logic_vector(9 downto 0);   
     xr,xi,yr,yi : in std_logic_vector(47 downto 0):=(others=>'0');

  LHCreal,LHCimag : out std_logic_vector(47 downto 0):=(others=>'0');
  RHCreal,RHCimag : out std_logic_vector(47 downto 0):=(others=>'0'));

end component;
signal sindex :  std_logic_vector(9 downto 0);
signal sxr,sxi,syr,syi :  std_logic_vector(47 downto 0):=(others => '0');
begin
u1: phasegaineq port map(clock,reset,xr,xi,yr,yi,indexin,gxw,gyw,coszw,sinzw,sindex,sxr,sxi,syr,syi);
u2: phaseshift90 port 
map(clock,reset,sindex,indexout,sxr,sxi,syr,syi,LHCreal,LHCimag,RHCreal,RHCimag);
end archi;

C.10.1 Component of xycircular: phasegaineq

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
entity phasegaineq is
port(clock,reset : in std_logic;
     xr,xi,yr,yi : in std_logic_vector(21 downto 0):=(others=>'0');

  indexin : in std_logic_vector(9 downto 0);
     gxw,gyw,coszw,sinzw : in std_logic_vector(21 downto 0):=(others =>'0');

  indexout : out std_logic_vector(9 downto 0);
  xro,xio,yro,yio : out std_logic_vector(47 downto 0):=(others => '0'));

end phasegaineq;
architecture archi of phasegaineq is
signal syro,syio,sxrodly,sxiodly : signed(63 downto 0):=(others=>'0');
signal sxr,sxi,syr,syi,sgxw,sgyw,scoszw,ssinzw,sphdummy : signed(15 downto 0):=(others=>'0');
signal sxro,sxio,syro1,syro2,syio1,syio2: signed(63 downto 0):=(others=>'0');
signal sxro1,sxro2,sxio1,sxio2,syro11,syro12,syro21,syro22,syio11,syio12,syio21,syio22 : signed(31 
downto 0):=(others=>'0');
signal sindexin1,sindexin2,sindexin3,sindexin4 : std_logic_vector(9 downto 0);
constant K : signed(15 downto 0):=(others=>'0');
constant K1 : signed(15 downto 0):= "0000000000000001";
constant phdummy : signed(21 downto 0):="0100000000000000000000";
begin
process(clock,reset,xr,xi,gxw,sxr,sxi,sxro,sxio,sgxw)
begin
if (clock'event and clock = '1') then
if (reset = '1') then
sxr <= resize(signed(xr(21 downto 7)),16);
sxi <= resize(signed(xi(21 downto 7)),16);
sgxw <= resize(signed(gxw(21 downto 7)),16);
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sphdummy <= resize(phdummy(21 downto 7),16);
sxro1 <= sxr * sgxw;
sxro2 <=  K1 * sphdummy;                                        ---K1 should be 16 bit unity
sxro <= sxro1 * sxro2;
sxio1 <= sxi * sgxw;
sxio2 <= K1 * sphdummy;
sxio <= sxio1 * sxio2;
sxrodly <= sxro;---(47 downto 0);
sxiodly <= sxio;---(47 downto 0);
end if;
end if;
end process;
process(clock,reset,yr,yi,gyw,coszw,sinzw,syro,syio,sgyw,syro11,syro12,syro21,syro22,syio11,syio12,s
yio21,syio22)
begin
if(clock'event and clock = '1') then
if(reset = '1') then
syr <= resize(signed(yr(21 downto 7)),16);
syi <= K - resize(signed(yi(21 downto 7)),16);
sgyw <= resize(signed(gyw(21 downto 7)),16);
scoszw <= resize(signed(coszw(21 downto 7)),16);
ssinzw <= resize(signed(sinzw(21 downto 7)),16);
syro11 <= syr * sgyw;
syro12 <= K1 * scoszw;
syro1 <= syro11 * syro12;
syro21 <= syi * sgyw;
syro22 <= K1 * ssinzw;
syro2 <= syro21 * syro22;
syio11 <= syr * sgyw;
syio12 <= K1 * ssinzw; 
syio1 <= syio11 * syio12;
syio21 <= syi * sgyw;
syio22 <= K1 * scoszw;
syio2 <= syio21 * syio22;
syro <= syro1 - syro2;
syio <= syio1 + syio2;
end if;
end if;
end process;
process(clock,reset,indexin,sindexin1,sindexin2,sindexin3)
begin
if(clock'event and clock = '1') then
if(reset = '1') then
sindexin1 <= indexin;
sindexin2 <= sindexin1;
sindexin3 <= sindexin2;
sindexin4 <= sindexin3;
end if;
end if;
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end process;
yro <= std_logic_vector(syro(47 downto 0));
yio <= std_logic_vector(syio(47 downto 0));
xro <= std_logic_vector(sxrodly(47 downto 0));
xio <= std_logic_vector(sxiodly(47 downto 0));
indexout <= sindexin4;
end archi;

C.10.2 Component of xycircular: phaseshift90

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
entity phaseshift90 is
port(clock,reset : in std_logic;

  indexin : in std_logic_vector(9 downto 0);
     indexout : out std_logic_vector(9 downto 0);   
     xr,xi,yr,yi : in std_logic_vector(47 downto 0):=(others=>'0');

  LHCreal,LHCimag : out std_logic_vector(47 downto 0):=(others=>'0');
  RHCreal,RHCimag : out std_logic_vector(47 downto 0):=(others=>'0'));

end phaseshift90;
architecture archi of phaseshift90 is
signal syRL,syiL,syrR,syiR,xrLR,xiLR : signed(47 downto 0) :=(others=>'0');
signal sindexout : std_logic_vector(9 downto 0);
constant K : signed(47 downto 0) := (others=>'0');
begin
process(clock,reset,xr,xi)
begin
if (clock'event and clock = '1') then
if reset = '1' then
xrLR <= signed(xr);
xiLR <= signed(xi);
sindexout <= indexin;
end if;
end if;
end process;
process(clock,reset,yr,yi)   
begin
if(clock'event and clock = '1') then
if reset = '1' then
syrL <= signed(yi);
syiL <= K - signed(yr);
syrR <= K - signed(yi);
syiR <= signed(yr);
end if;
end if;
end process;
process(xrLR,xiLR,syrL,syiL,syrR,syiR,clock,reset)
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begin
if(clock'event and clock = '1') then
if reset = '1' then
LHCreal <= std_logic_vector(xrLR + syrL);
LHCimag <= std_logic_vector(xiLR + syiL);
RHCreal <= std_logic_vector(xrLR + syrR);
RHCimag <= std_logic_vector(xiLR + syiR);
indexout <= sindexout;
end if;
end if;
end process;

end archi;

Important note: All these codes along with the whole design is there in the CD enclosed in this thesis  
and the description of the contents of the CD is already given in p 124 under Note.
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