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Köln
2021



Berichterstatter: Prof. Dr. Andreas Beyer
Prof. Dr. Michael Nothnagel

Tag der mündlichen Prüfung: 22. Juni 2021
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L Lepkes, M Kayali, B Blümcke, J Weber, M Suszynska, S Schmidt, J Borde, K Klonows-
ka, B Wappenschmidt, J Hauke, P Kozlowski, RK Schmutzler, E Hahnen, and C Ernst.
Performance of In Silico Prediction Tools for the Detection of Germline Copy
Number Variations in Cancer Predisposition Genes in 4208 Female Index
Patients with Familial Breast and Ovarian Cancer. Cancers, 13(1):118, 2021.
[Impact Factor (2019): 6.126 ]

Additional co-authored publications (peer-reviewed)

G Neidhardt, J Hauke, J Ramser, E Groß, A Gehrig, CR Müller, AK Kahlert, K Hack-
mann, E Honisch, D Niederacher, S Heilmann-Heimbach, A Franke, W Lieb, H Thiele,
J Altmüller, P Nürnberg, K Klaschik, C Ernst, N Ditsch, F Jessen, A Ramirez, B Wap-
penschmidt, C Engel, K Rhiem, A Meindl, RK Schmutzler, and E Hahnen. Association
Between Loss-of-Function Mutations Within the FANCM Gene and Early-
Onset Familial Breast Cancer. JAMA Oncology, 3(9):1245-1248, 2017. [Impact
Factor (2017): 20.871]

ix
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1 Summary

Multi-gene panel approaches allow for screening for putative disease-causing genetic
factors in several genes simultaneously, while keeping costs, storage requirements, and
computational times comparatively low compared to whole genome or exome sequenc-
ing. Therefore, multi-gene panel sequencing has become a standard approach for the
investigation and diagnosis of various diseases with a hereditary component in clinical
labs wordwide, and several tools have become established for multi-gene panel data pro-
cessing, providing automized, easy-to-use solutions for the detection and annotation of
single nucleotide variants (SNVs) and short insertions and deletions (indels) in exons of
well-established disease-associated genes.

This thesis demonstrates, in the context of personalized risk prediction for familial
breast and ovarian cancer (BC/OC), how bioinformatic analyses that go beyond standard
variant calling with automized workflows, can contribute to an improvement of genetic
testing based on multi-gene panels in clinical diagnostics. These improvements include
multi-gene panel design, variant detection, and variant interpretation.

Since only less than one third of BC/OC cases with a familial burden can be explained
by a germline mutation in confirmed high- to moderate-risk genes, the search for further
genetic risk factors is ongoing, but may be hindered by low mutation prevalences in
the corresponding genes that demand for huge sample sizes in order to achieve sufficient
statistical power. Here, the potential association of pathogenic variants in suspected risk
genes FANCM, BARD1, and BRIP1 with hereditary BC and/or OC was assessed in case-
control studies including well-characterized index patients and geographically matched
female controls. FANCM and BARD1 were confirmed as risk genes for hereditary BC,
and BRIP1 was confirmed as a highly penetrant OC risk gene without pronounced effects
on BC risk. Consequently, coding regions of FANCM and BARD1 should be included
in sequencing targets of multi-gene panels for diagnostic germline testing of individuals
at risk for familial BC, and coding regions of BRIP1 for individuals at risk for familial
OC, respectively.

Recent studies revealed that BC/OC risks are modified by additional genetic factors,
i.e., common SNVs and indels which are usually not even located in coding genomic
regions. Investigation of these BC/OC-associated polymorphisms represents a paradigm
shift in contrast to the analysis of rare (pathogenic) variants. Their effects are not suf-
ficiently large to contribute individually to BC/OC risks, but they can be combined
into polygenic risk scores (PRS), which could achieve clinically useful degrees of risk
discrimination. In collaboration with Julika Borde, I assessed the utility of PRSs for BC
risk prediction in a clinical cohort of females carrying a heterozygous protein-truncating
variant (PTV) in CHEK2 and were independent of former genome-wide association
studies. We found that, based on PRSs, BC risk can be stratified such that CHEK2 PTV
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carriers may have both a BC risk equivalent to that of the general population but, on
the other hand, may also fall into risk groups for which access to intensified prophylactic
measures is recommended. The SNP sets employed in our study each comprise less than
100 loci, and hence, have the potential to be straightforwardly implemented into multi-
gene panel analyses. In addition, SNPs can be used for ethnicity checks and quality
assurance purposes.

Detection of large genomic insertions or deletions, so-called copy number variants
(CNVs), from sequencing data requires read depth-based approaches that go beyond
standard variant calling. In a joint work with Louisa Lepkes, the utility of these in
silico CNV detection approaches for multi-gene panel data in clinical diagnostics was
evaluated, and the prevalence of CNVs in cancer predisposition genes in individuals at
risk for familial BC/OC was assessed. We showed that CNVs constitute a non-negligible
fraction in the spectrum of putative BC/OC-causing variants, namely 1.81% in our study
sample of 4208 female index patients. However, due to high proportions of false positive
predictions, which primarily accumulated at the extremes of the length or GC content
distribution of sequencing targets, wet lab verification of in silico predicted CNVs is
required in the framework of clinical diagnostics.

The third part of the thesis deals with considerations regarding the interpretation of
genetic testing outcomes in the context of genetic counseling. Interpretation of missense
mutations is a particularly challenging task, as their impact to protein function are dif-
ficult to predict and they can therefore often only be classified as variants of uncertain
significance (VUS). Thus, the use of in silico approaches for automated variant classi-
fication has become established in many laboratories. I evaluated the performance of
four in silico prediction tools embedded in the widely-used, commercial Alamut™ Vi-
sual software (Interactive Biosoftware, Rouen, France) and found that all tools under
investigation suffered from poor specificities, resulting in an unacceptable proportion of
variants falsely classified as pathogenic, and that this shortcoming could not be bypassed
by considering the predictions in combination. Thus, clinical consequences should never
be based solely on in silico forecasts, but my findings indicate that in silico prediction
tools provide clues to the benignity of variants.

In collaboration with Dr. Jan Hauke, the determination of variant pathogenicity based
on the comparison of observed variant allele fractions (VFs) in paired blood- and tumor-
derived samples was assessed, considering 208 rare BRCA1/2 germline variants in 181
OC patients. Our results demonstrate that a significantly increased VF in tumor in com-
parison to the corresponding blood-derived sample are insufficient to infer pathogenicity,
but decreased VFs may provide a suitable criterion for the assessment of BRCA1/2 vari-
ants as benign.

In collaboration with Konstantin Weber-Lassalle, I investigated pairwise blood- and
tumor-derived DNA samples of OC patients with the aim to prove the existence of
pathogenic variants in TP53 and PPM1D in blood cells arising from clonal hematopoiesis
(CH) rather than from germline inheritance, and to evaluate the frequency of CH oc-
curences in dependence to the exposure to chemotherapy. We found that CH represents
a frequent event following chemotherapy, affecting 26 out of the 523 OC index patients

2



enrolled in our study sample. Therefore, the possibility of CH always has to be consid-
ered prior to a potential misdiagnosis of Li-Fraumeni syndrome 1, a cancer predisposition
syndrome linked to pathogenic variants in TP53.
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2 Introduction

2.1 Next-generation sequencing

2.1.1 Next-generation sequencing technology

Starting from the first decade of this century, a new class of sequencing methods became
established, which are referred to as second- or next-generation sequencing (NGS). The
advantage of NGS over the previously dominant Sanger sequencing method is its time
and cost efficiency [50]. The term is commonly used in reference to implementations of
cyclic-array sequencing, as provided by the widespread commercial NGS platform Illu-
mina1 [151]. The typical sequencing protocol can be divided into three steps, namely
(1) random fragmentation of input DNA with subsequent ligation of artificial adapter
sequences, (2) separation and clustered amplification of single DNA molecules via poly-
merase chain reaction (PCR), and (3) the sequencing process itself by alternating cycles
of enzyme-driven biochemistry treatment and imaging-based data aquisition [151]. Each
treatment cycle serves for the recognition of one additional nucleotide of the DNA se-
quence per template. Therefore, the starting point of NGS data processing typically
appears as nucleotide sequences – so-called (sequencing) reads – of constant length (i.e.,
read length), corresponding to the number of applied treatment cycles.

Several variations of the sequencing protocol exist. Of particular relevance are paired-
end sequencing and targeted sequencing. For paired-end sequencing, both ends of ampli-
fied DNA fragments are sequenced in opposite orientation. As the (expected) distance of
the resulting paired reads in the donor genome sequence is approximately known, paired
reads showing aberrating insert lengths or are in anomalous orientation can be of use
for the detection of genomic rearrangements [114].

NGS is characterized by an increased base call error rate in comparison to Sanger
sequencing [46, 52], i.e., depending on sequence patterns and read position, a notable
amount of bases (>1 in 105 bases) is expected to be reported incorrectly [90,127,151].

A further challenge of NGS is the amount of data that is generated. Given that
each genomic reference position is covered by several sequencing reads, data storage and
processing have become the typical bottlenecks for NGS applications [37]. For many
purposes, especially in a clinical setting, it is therefore advisable to limit sequencing to
regions of particular interest, e.g., to coding regions or exons only. Thus, costs, storage
requirements and computation times are decreased considerably, and more individuals
can be sequenced in parallel, and with higher throughput [58].

1http://www.illumina.com

4



2.1.2 Next-generation sequencing data processing

Sequencing reads are typically provided in FASTQ format as (compressed) text data
accompanied by character-encoded base quality values referring to the probability of
miscalling per observed nucleotide [30]. In a typical NGS approach, these files contain
millions of reads, for which the information about the originating position in the genome
of interest is lost, and must first be assigned based on the observed sequences. This
analysis step is called read mapping. As the genomes of sequenced individuals are usually
unknown, a so-called reference genome, a consensus among several individuals from the
same species, serves as genome template in the mapping procedure. The first human
reference genome was released in 2003 and covers 99% of the euchromatin, interrupted
by several gaps in the assembly [71]. The reference has been improved several times
since then, not least due to advances in sequencing technology, such as (ultra-)long read
approaches, but also due to more efficient algorithms and enhanced computing capacities.
The current version hg38 (equivalent to GRCh38) was released in 2013 [147], and offered
for the first time centromere sequences, but also its predecessor, hg19 (equivalent to
GRCh37) [28], is still frequently used, especially for practical sequencing applications,
such as in clinical diagnostics.

An exact occurrence of its observed sequence (or its reverse complement) in the refer-
ence genome represents the most likely origin of a sequencing read. But, due to natural
genetic variation and technical artifacts, many reads do not match exactly, and the read
mapping has to be error-tolerant. Hence, the read mapping problem can be defined
as the search for the best sequence alignment between each read and a given reference
genome. Alignment means the arrangement of sequences, i.e., strings over an alphabet Σ
including gaps -, such that the sequences remain unchanged (except for included gaps)
and each element of the sequences can be assigned to an alignment column. Typically,
the optimal alignment is interpreted as the one that would require the fewest number of
edit operations to convert the sequence in one alignment row to the sequence in another
alignment row. In the context of DNA sequencing, the edit operations between two
strings over Σ = {A, C, G, T, -} represent substitutions, insertions and deletions of bases
compared to the reference sequence, and hence, if not caused by technical artifacts,
genomic variation. See Figure 2.1 A for the visualization of mapped reads against an
artificial reference sequence, including four putative genomic variants.

Due to the size of typical reference genomes (hg19: > 3.1× 109 base pairs (bp), hg38:
> 3.2 × 109 bp), and the number of reads to process, exact read mapping is unfeasible
in practice, and heuristics were developed for practical applications. The popular read
mapper Burrows-Wheeler Alignment tool (bwa) [96], and its extensions bwa-mem and
bwa-mem2, are based on backward search with Burrows-Wheeler Transform [95,176].

After read mapping, each base position in the reference genome can be assigned a
read coverage (or synonymously read depth), i.e., the number of reads covering the
respective position in the mapping. In addition, a mapping quality is generally reported
for each read, referring to the confidence that the assigned genomic location is the
true and only plausible read origin. A standard format for represenation, storage and
processing of mapped reads is the SAM (Sequence Alignment Map) format, which is
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Reference 
Contig

Sequencing
Reads

Read
Coverage

##fileformat=VCFv4.2
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=RO,Number=1,Type=Integer,Description="Reference allele observation count">
##FORMAT=<ID=AO,Number=A,Type=Integer,Description="Alternate allele observation count">
##FORMAT=<ID=VF,Number=A,Type=Float,Description="Alternate variant allele fraction">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT SAMPLE
chr3 1322050 . A T . . . GT:DP:RO:AO:VF 0/1:8:3:4:0.5
chr3 1322060 . TC T . . . GT:DP:RO:AO:VF 0/1:9:5:4:0.44
chr3 1322069 . G C . . . GT:DP:RO:AO:VF 1/1:9:1:8:0.89
chr3 1322082 . T TTA . . . GT:DP:RO:AO:VF 0/1:7:3:4:0.57

A

B

GC
CG

Figure 2.1: (A) Schematic representation of mapped reads with read length 30 and (B)
corresponding Variant Call Format (VCF) output, assuming the reference
contig is called chr3. Mapped reads and VCF output represent 4 putative
genomic variants, namely a heterozygous base substitution, a heterozygous
deletion of one base C, a homozygous substitution, and a heterozygous in-
sertion of TA in comparison to the reference sequence. Visualization of read
directions (forward or reverse), base and mapping qualities was omitted.

called BAM (Binary Alignment Map) if binary compressed [97]. SAM/BAM files contain
the obtained sequences for each sequencing read, accompanied by base qualities, as well
as alignments to the reference genome and mapping qualities.

The process of finding genetic variation from mapped reads with respect to the refer-
ence genome is commonly referred to as variant calling, although the term typically refers
only to the identification of single nucleotide variations (SNVs) and short insertions and
deletions (indels). Standard variant calling approaches aim to distinguish true genetic
variation from technical artifacts given the observed base calls in all reads covering a
certain reference position, frequently under consideration of read directions, base and/or
mapping qualities, and can roughly be distinguished into approaches for germline and
somatic variant calling.

Germline variants are usually inherited from the previous generation via sperm cells
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or oocytes, and thus, are present in every cell of the corresponding individual. Somatic
variants arise de novo in the genome, they are passed on to daughter cells during so-
matic cell division, but they are not inherited to descendants. Germline variants appear
either heterozygous or homozygous in autosomes. Hence, germline variant calling is
essentially the task of deciding given the proportion of reads showing a putative alterna-
tive allele, i.e., the variant allele fraction or simply variant fraction (VF), between the
three posssible genotypes homozygous reference allele (VF≈0), heterozygous alternative
allele (VF≈0.5), and homozygous alternative allele (VF≈1). In the context of somatic
variant calling, the assumption that VFs directly map zygotic status is not necessarily
true because the processed DNA does not originate from a single nucleus (except in
single-cell sequencing approaches). Thus, genomic alterations must be assumed to occur
even at much lower VFs than 0.5, making them difficult to distinguish from technical
artifacts [185]. A widespread approach to circumvent this drawback, is variant calling
for matched pairs of DNA samples originating from the same individual but from dif-
ferent tissues, e.g., very often tumor and blood. This strategy allows somatic variants
to be distinguished from germline variants and the joint analysis provide additional ev-
idence in the determination of sequencing artifacts in case the reads of the associated
sample originating from a different tissue also show partially deviating bases at the same
genomic position.

A variety of tools, both commercial and publicly available, exist for the aim of SNV
and indel calling, some of which can be applied for both germline and somatic (single
sample as well as paired sample) variant calling. Common publicly available tools for
germline variant calling are the Genome Analysis Toolkit (GATK) HaplotypeCaller [40]
and FreeBayes [54]. Both approaches create local read assemblies, i.e. alignments of
reads with each other (instead of alignments against a reference sequence), with subse-
quent derivation of the potential original genomic sequence, rather than examining each
genomic locus independently. These local assemblies provide phasing information, i.e.,
assignment of reads and/or genomic alterations to haplotypes, which is incorporated
into the calling procedure to provide additional statistical evidence.

Genetic variations are predominantly stored in standardized text files in Variant Call
Format (VCF). An example for VCF encoding of four variants is shown in Figure 2.1 B.

Identification of genomic alterations affecting more than a few nucleotides, and there-
fore can not be fully covered by multiple overlapping reads in the mapping, requires
different algorithms and the consideration of entities other than for the calling of SNVs
and indels. Such variants are called structural variants (SVs) and are usually defined
as genomic rearrangements, namely deletions, duplications, insertions, inversions, or
translocations, affecting more than 50 bp [10,105,162].

Read depth-based approaches are adapted to the identifcation of copy number vari-
ants (CNVs), i.e. large deletions or duplications having significant effects on observed
read counts or mean read coverages in the affected genomic region. Further, several ap-
proaches have been published for the detection of SVs by inference from discordant read
pairs and/or so-called split reads [7,26,134,162]. Read-pair methods use discordant read
pairs with inconsistent orientation or insert sizes for SV calling, and split read-based
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approaches identify start and stop positions of putative SVs by scanning for partially
mapped reads. Furthermore, assembly-based approaches exist for SV calling, which are
typically hampered by the short read lengths resulting from NGS approaches [162]. As
all of the aforementioned strategies, i.e., read depth-based, read pair, split read and
assembly-based approaches, imply their own intrinsic limitations concerning their abil-
ity for detection of all possible types of SVs, the majority of tools for SV calling make
use of a combination of existing methods.

2.1.3 Targeted next-generation sequencing

Targeted NGS approaches narrow analyses to genomic regions of special interest, and
hence, decrease costs, storage requirements, and computation times per sample signifi-
cantly in comparison to whole genome sequencing (WGS). Thus, more samples can be
sequenced per run and with higher read coverage, which in turn facilitates the reliable
detection of genetic variants [58]. In case the relevant region should not or cannot be fur-
ther restricted, sequencing is often limited to the exons of protein-coding genes, i.e., the
exome. The exact definiton of the targeted region in whole exome sequencing (WES) ap-
proaches usually depends on the commercial kits offered. For humans, they comprise
about 2% of the genome [164,180].

In routine diagnostics, it is often sufficient to limit genetic tests to genes that are
known or assumed to be implicated in a particular phenotype, as provided by so-called
multi-gene panel approaches. This reduces the ressources required per sample even
further compared to WES, and consequently multi-gene panel approaches have become
an established tool for the investigation and diagnosis of a variety of diseases [12,65,81,
122,142,191].

Broadly, there exist two common techniques to target specific genomic regions: ampli-
con-based approaches and hybridization-based capture [82]. Amplicon sequencing relies
on specifically designed paired PCR primers for the genomic regions of interest with a
subsequent additional PCR reaction, and results in reads with identical genomic start
and stop positions, but outstanding read depth [143,192]. For hybridization-based capture
sequencing, customized synthetic oligonucleotide probes are used to capture previously
randomly fragmented DNA and bind it to a solid surface. This allows for the elimina-
tion of dispensable genomic DNA regions prior to amplification and sequencing [82,143].
Hybridization-based capture sequencing results in sequencing reads with randomly dis-
tributed genomic start positions within targeted regions, and more uniformly distributed
patterns of read coverage in comparison to amplicon-based approaches. This is also due
to the fact that putative PCR duplicates, i.e. reads that begin and end at the same
position in the genome, are typically identified and sorted out in NGS data analysis
workflows. In amplicon sequencing, this step is prohibited, since reads originating from
identical primers share start and stop positions by design [82]. The resulting low homo-
geneity of read coverage is challenging for reliable CNV detection with read depth-based
approaches [18]. With regard to SNV and indel calling based on amplicon sequencing
data, technical errors that occur in early PCR cycles, may be copied many times and can
hardly be distinguished from real-world genetic variation, especially if no additional in-
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formation can be derived from further overlapping and/or reverse amplicons. However,
amplicon sequencing is generally more cost-efficient than hybridization-based capture
sequencing (although prices are converging due to the general decline of sequencing
costs [150]), with lower amounts of reads mapping outside target regions, and allows for
the detection of (somatic) variants with extreme low VF [62,143].

2.1.4 Variant annotation

Due to human diversity and the sheer size of the human genome, (targeted) NGS typi-
cally results in a vast number of genomic alterations detected, e.g., output of typical hu-
man WES is expected to consist of 30,000 to 50,000 variants per sample [126]. However,
only the very smallest part of these variants is likely to be associated with a phenotype
of interest (if at all). Therefore, automated filters are required to narrow down the set
of detected variants to these of putative interest for further analysis.

When looking at diseases with a pronounced monogenic component, it can generally
be assumed that causative mutations occur rarely in the general population. Conse-
quently, a commonly applied filter in clinical diagnostics is based on observed minor
allele frequencies (MAFs) in population-specific databases. For example, in the course
of breast and ovarian cancer (BC/OC) risk prediction, the BRCA1/2 Gene Variant
Classification Criteria proposed by the Evidence-based Network for the Interpretation
of Germline Mutant Alleles (ENIGMA) recommend the classification of variants with
MAF > 0.01 as Not Pathogenic per default [4, 125]. Publicly available databases that
are suitable and widely-used sources for the extraction of population-specific MAFs are
listed in Table 2.1. However, rareness is not a sufficient criterion to conclude on the effect
of a genetic variant at the protein or even physiological level. The automated provision
of additional information, i.e., a biological context gaining insights for a variant’s char-
acteristics and its putative effects, is referred to as variant annotation. Straightforward
is the prediction on transcript level, i.e., annotation of affected transcripts (and thus,
implicitly of the gene affected) and the expected consequences at protein level, which
are commonly described using a standardized set of terms based on Sequence Ontol-
ogy (SO) [5, 29, 112]. Without further knowledge, protein-truncating variants (PTVs),
i.e., variants predicted to shorten the coding sequence, in corresponding known risk genes
are most likely clinically relevant. This generally includes frameshift and nonsense vari-
ants, splice site-disrupting variants and deletions with lengths > 50bp [138]. Although
the terms PTV and loss-of-function variant are often used synonymously, possible ef-
fects at the protein level cannot necessarily be predicted at the transcript level alone.
For example, missense variants may be localized in functional domains and thus also
have significant effects on protein function. Common and publicly available annotation
software for predicting the effects of genetic variants at the transcript and/or gene level
are SnpEff [29] and Ensembl Variant Effect Predictor (VEP) [112]. Both tools also pro-
vide the translation from the genome-related VCF format into the transcript- and/or
protein-related variant nomenclature proposed by the Human Genome Variation Society
(HGVS nomenclature) [39], which is widely-used in clinical routine.

Even more challenging than predicting the effect of a variant at the sequence level is

9



Table 2.1: Commonly used databases for the extraction of population-specific minor al-
lele frequencies (MAFs)

Database Description Reference
1000 Genomes Project Low coverage and exome sequencing data for 2504 indi-

viduals from 26 populations
[165]

dbSNP Human single nucleotide variations, microsatellites, and
small-scale insertions and deletions along with publica-
tions, population-specific frequencies, molecular conse-
quences, and genomic and RefSeq mapping information
for both common variations and clinical mutations

[152]

ExAC Gene- and transcript-centric displays of variation, in-
cluding population-specific frequencies and functional
annotation data as well as short read support for vari-
ants called in 60706 individuals

[92]

FLOSSIES Frequencies and profiles of variants in 27 (putative) BC
risk genes in 10000 women (≈7000 European American,
≈3000 African American) who are older than age 70 and
have never had cancer

[3]

gnomAD v2 Includes genetic variation for 15708 whole genomes and
125748 exomes with respect to reference GRCh37/hg19

[73]

gnomAD v3 Includes genetic variation fo 71702 whole genomes with
respect to reference GRCh38

[73]

the in silico prediction of its clinical significance, i.e., typically its categorization into the
five pathogenicity classes Pathogenic, Likely pathogenic, Uncertain significance,
Likely benign, and Benign [129]. Corresponding information can potentially be re-
trieved from the literatue or from disease variant databases such as ClinVar [88] or the
Human Gene Mutation Database (HGMD) [158]. However, these classifications may be
incorrect, based on insufficient evidence, or inconsistent across databases and/or sub-
mitters [132], if the variant of interest is listed at all. Therefore, numerous tools were
developed aiming to predict functional effects and potential clinical significance in sil-
ico on the basis of additional information such as distances between the biochemical
properties of amino acids involved, expected changes in protein 3D structure, and evolu-
tionary conservation, and/or under employment of machine learning approaches trained
on well-characterized variant sets. Hu and colleagues recently provided a comprehensive
listing of available software [69]. However, the reliability of such in silico predictions
remains elusive, and, in particular, their applicability in clinical diagnostics. Thus,
the multifactorial likelihood analysis method [57, 125] has become the recommended
standard for the assessment of variant pathogenicity in cancer syndrome genes. This
approach aims to combine a variety of independent sources of evidence, e.g., in silico
prediction, co-segregation, family cancer history, co-occurence with further pathogenic
variants, case-control information, and tumor pathology, into a product of likelihood
ratios (LRs), but the required input data may usually not be at hand, especially for rare
variants.
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In recent years, genome-wide association studies (GWASs) in large populations iden-
tified single-nucleotide polymorphisms (SNPs), i.e., variants that are present in a suf-
ficiently large fraction (e.g., > 1%) of a population, which can be used as markers for
functional alleles in complex genetic traits [36,42,159,168]. This includes general charac-
teristics such as body size, but also mental disorders such as depression and schizophre-
nia, metabolic diseases such as diabetes, or cancer diseases, among others [42]. Although
significant associations exist, the observed effects are generally too small to contribute in-
dividually to the development of a particular phenotype, but can be combined to overall
estimates of genetic propensity, so-called polygenic risk scores (PRSs) via

PRSi =
N∑
j=1

βjgij with g ∈ {0, 1, 2},

where β is the per-allele log OR and gij is the number of effect alleles in person i for lo-
cus j. Investigation of polymorphisms, which are often localized in non-coding genomic
sequence, represents a paradigm shift in contrast to the analysis of rare (pathogenic)
variants. Besides the improved prediction of genetic predispositions, SNPs can be uti-
lized for several quality checks, e.g., checks for gender, duplicated samples and ethnicity
background.
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2.2 Hereditary breast and ovarian cancer

2.2.1 Hereditary breast cancer

BC is the most commonly diagnosed cancer among women and the leading cause of
female cancer deaths. In 2018, the number of newly diagnosed BC cases worldwide
was estimated to be about 2.1 million [24]. In Germany, about one in eight women
develops BC in her lifetime [139]. BC is a heterogeneous disease whose molecular sub-
types can be distinguished according to the expression of hormonal receptors, namely
estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth fac-
tor receptor 2 (HER2). These subtypes can be approximated clinically into luminal A
(ER- and/or PR-positve, HER2-negative), luminal B (ER- and/or PR-positive, HER2-
positive), HER2-enriched (ER- and PR-negative, HER2-positive), and triple-negative
BC (ER-, PR- and HER2-negative) [67].

Most cases of BC in women occur sporadically and are caused by somatic mutations
acquired in breast tissue with increasing age and depending on environmental influences,
nutritional factors, hormone status and other factors [24, 91]. It is estimated that ap-
proximately 5–10% of all BC diagnoses can be attributed to causal germline mutations
in established risk genes [24]. Among these BC risk genes, BRCA1 and BRCA2 are
frequently affected: Kast and colleagues [74] reported a BRCA1/2 mutation prevalence
of 18.3% in German index patients with familial BC history2. These two genes are also
among the BC risk genes with highest penetrance: Kuchenbaecker and colleagues ascer-
atined lifetime risks (i.e., cumulative risks of developing BC until age 80 years, LTR) of
72% for BRCA1 mutation carriers and of 69% for BRCA2 mutation carriers [83]. The
distinction between risk genes with high, moderate and low penetrance is usually based
on relative risks, i.e., the ratio of LTRs for developing BC (or another disease of interest)
in the presence and absence of a pathogenic variant (or another risk factor) [113]. Genes
with high penetrance are associated with relative risks >4, whereas genes with low pen-
etrance are associated with relative risks <2 [45, 156]. Data on relative risks for BC
often differ widely between studies, due to differences in the composition of the study
samples considered, e.g., in terms of defintion of BC family history, but also because
odds ratios (ORs) are often mistakenly interpreted as relative risks [113,145].

TP53, PTEN, and CDH1 were identified as BC risk genes with high penetrance be-
sides BRCA1/2, but mutations in these genes occur at much lower frequencies, e.g.,
TP53 germline mutations are accounted for <1% of BC cases [65]. TP53 and PTEN
are associated with syndromes that predispose to cancer development in general: TP53
germline mutations cause Li-Fraumeni syndrome 1 (LFS1) and germline mutations in
PTEN are the cause of Cowden syndrome. Short descriptions, associated LTRs and mu-
tation prevalences for BC risk genes with high penetrance are summarized in Table 2.2.
Reported prevalences of pathogenic germline variants in Europeans were estimated based
on Non-Finnish Europeans under exclusion of The Cancer Genome Atlas (TCGA) data
in ExAC [92] by a similar approach as proposed for the identification of population-

2≥2 females with BC, of these ≥1 with BC before the age of 50 years, no relatives with OC and
metachronous BC
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specific frequencies of pathogenic BRCA1/2 mutations by Maxwell et al. [110]. Variants
were considered as pathogenic if they effect frame shifts or nonsense, or were located
+/-2 bp around splice sites with respect to canonical transcripts NM 007294 (BRCA1 ),
NM 000059 (BRCA2 ), NM 004360 (CDH1 ), NM 000314 (PTEN ), and NM 000546
(TP53 ). Further, missense variants and inframe deletions were considered pathogenic
if reported as Pathogenic and/or Likely pathogenic in the ClinVar database [88].
Variants were excluded if they were located upstream or downstream to the last known
pathogenic variant in the corresponding transcript due to ClinVar. It must be em-
phasized that the resulting values are rough estimates, as structural variants were not
considered and potentially pathogenic missense and inframe mutations may not have
been adequately reported in ClinVar.

Further genes were shown to be associated with intermediately increased risks for BC,
i.e., relative risks from 2 to 4 [45], namely ATM, CHEK2, NF1, PALB2, and STK11.
Characteristics including associated LTRs for these BC risk genes with moderate pen-
etrance, are summarized in Table 2.3. Reported prevalences of pathogenic variants are
based on non-Finnish Europeans under exclusion of TCGA data in ExAC [92] consid-
ering RefSeq transcripts NM 000051 (ATM ), NM 001005735 (CHEK2 ), NM 001042492
(NF1 ), NM 024675 (PALB2 ), and NM 000455 (STK11 ) as described above. STK11
germline mutations cause Peutz-Jeghers syndrome and germline mutations in NF1 are
the cause of neurofibromatosis type 1 (NF1). Both syndromes result in a generally
increased risk of cancer [136,175].

The search for genes associated with an increased risk for BC is ongoing, as less than
one fifth of BC cases in individuals with a familial burden of gynaecological tumors3

can be explained by a germline mutation in high risk genes BRCA1 and BRCA2 [74],
and approximately further 6% by a mutation in additional BC risk genes with high to
moderate penetrance [65]. See Table 2.4 for an overview of BC risk genes with low
penetrance and/or genes whose impact on BC risk is suspected. Reported prevalences
of pathogenic variants are based on non-Finnish Europeans under exclusion of TCGA
data in ExAC [92] considering RefSeq transcripts NM 000465 (BARD1 ), NM 032043
(BRIP1 ), NM 020937 (FANCM ), NM 002485 (NBN ), NM 058216 (RAD51C ), and
NM 002878 (RAD51D) as described above.

Determination of additional genes causing a familial burden for BC is complicated by
low mutation prevalences in the corresponding genes and/or comparatively small asso-
ciated effects that demand for huge sample sizes in order to achieve sufficient statistical
power. In addition, there may be interactions between the genes of interest, or risks are
increased exclusively for a particular BC subtype.

3Index patients fulfilling the inclusion criteria of the German Consortium for Hereditary Breast and
Ovarian Cancer (GC-HBOC) for germline testing (see Table 2.7)
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2.2.2 Hereditary ovarian cancer

OC is the eighth most common cancer occurring in women and the second most com-
mon cause of gynaecological-related cancer death worldwide [24]. In 2018, almost 3×105

women worldwide received a diagnosis of OC; in Germany, the annual number of diag-
noses is approximately 7700, making OC approximately ten times less frequent than
BC [24, 139]. The majority of OC cases originate in the epithelial tissue, and initially
causes only unspecific symptoms, which is why the diagnosis is typically made only at
an advanced, metastatic stage. Epithelial OC is currently divided into five main sub-
types: high grade serous (≈70%), endometrioid (≈10%), clear cell (≈10%), low grade
serous (<5%), and mucinous OC (<5%) [66]. With respect to histopathology, epidemio-
logical and genetic risk factors, response to chemotherapy, and prognosis, these subtypes
can be considered as distinct diseases [177].

Besides reproductive, demographic and lifestyle factors, an OC family history is as-
sumed to be the strongest risk factor for the development of OC. Approximately 15
to 25% of unselected OC cases can be attributed to a mutation in a known OC risk
gene [123,178]. BRCA1/2 -associated disease is the most common form of hereditary OC.
Estimated cumulative risks for OC development until the age of 70 years range from 0.35
to 0.59 for BRCA1 germline mutation carriers and from 0.11 to 0.17 for BRCA2 germline
mutation carriers, respectively [14, 108]. Furthermore, germline mutations causing can-
cer predisposition syndromes, namely in STK11 (Peutz-Jeghers syndrome) and MLH1,
MSH2 and MSH6 (Lynch syndrome), are associated with relative risks for OC >4, as
well as mutations in RAD51C and RAD51D. See Table 2.5 for a summarizing overview
of confirmed OC risk genes with high to moderate penetrance. Reported prevalences
of pathogenic variants in Lynch genes were estimated based on Non-Finnish Europeans
under exclusion of TCGA data in ExAC [92] as described in section 2.2.1, considering
RefSeq transcripts NM 000249 (MLH1 ), NM 000251 (MSH2 ), and NM 000179 (MSH6 ).

Similar to hereditary BC, the search for further risk genes causing OC is ongoing.
Their determination is complicated mainly by the fact that OC occurs ten times rarer
than BC, which means that the sample sizes used in gene association studies are often
too small to achieve sufficient statistical power. In addition, different OC subtypes are
typically pooled in these studies (in order to avoid unnecessarily reducing the sample
size), although it can not be excluded that they have different genetic backgrounds [63],
e.g., germline muations in STK11 are primarily associated with non-epthelial OC [38].
Finally, associations for BC-only risk genes may arise due to individuals in the sample,
who, in addition to OC, also display a family history of BC [115]. An overview of
confirmed OC risk genes with low penetrance and suspected OC risk genes is given in
Table 2.6.
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2.2.3 Genetic counseling of women at risk for familial breast and/or ovarian
cancer

Genetic testing has become an integral part of the clinical care of BC/OC patients and
their families since the identification of BRCA1/2 as highly penetrant BC/OC risk genes
in the 90s.

The inclusion criteria for diagnostic germline testing of the German Consortium for
Hereditary Breast and Ovarian Cancer (GC-HBOC), a multicenter consortium of inter-
disciplinary university centers specialized in providing counseling, genetic testing and
preventive measures for persons at risk for familial BC/OC, are shown in Table 2.7.

Nowadays, advances in targeted NGS afford testing for further hereditary predisposi-
tion genes than BRCA1/2, and multi-gene panel approaches have become the standard
in labs providing clincial management of persons with a familial BC/OC burden. In the
Center for Familial Breast and Ovarian Cancer of the Uninversity Hospital of Cologne,
the TruRisk® gene panel is applied for germline testing. The hybridization-based cap-
ture sequencing panel covers coding exons and multiple introns and non-coding exons
of all confirmed BC/OC risk genes, as well as coding exons of additional genes whose
association with BC/OC is under investigation (research genes). The composition of
the TruRisk® gene panel is regularly adapted to the current state of research (see Ta-
ble 2.8 for a densed overview of variations between the different versions), e.g., since
TruRisk® v3, the panel also covers 306 loci of the BRIDGES PRS SNP set implemented
in the CanRisk tool [15] for BC risk prediction.

However, the assessment of individual BC/OC risk is not based solely on genetic
tests, but also includes family history, lifestyle factors and ethnicity [186]. Clinical
management of individuals found to be at high risk for BC focuses on risk reduction and
early diagnosis of cancer, and includes screening with annual mammography or breast
magnetic resonance imaging (MRI), or risk-reducing mastectomy. Chemoprevention,
more specifically treatment with tamoxifen in unaffected BRCA1/2 germline mutations
carriers [78], is under discussion. Concerning OC, regular screening for tumors at early
stage, e.g., via transvaginal ultrasound, is not proven to decrease mortality, so women
at high risk are recommended to undergo bilateral risk-reducing salpingo-oophorectomy
around the age of 40 and after completion of childbearing, or earlier, dependent on the
earliest age of OC diagnosed in their families [6, 11,38].

Clinical decision-making whether preventive measures are offered or not is not neces-
sarily consistent, and corresponding guidelines are subject to continuous revision. For
example, the UK National Health and Care Excellence (NICE) guidelines generally con-
sider an annual mammography for women with an estimated LTR >30%, starting at
the age of 30 years [100,119], whereas the US National Comprehensive Cancer Network
(NCCN) recommends an annual mammography for patients with a LTR >20% starting
earliest at the age of 30 years or at an age that is 10 years younger than the age at
the earliest BC diagnosis in the family, whichever is later [17]. In Germany, intensified
surveillance programs including magnetic resonance imaging of the breast are recom-
mended for patients with a pathogenic BRCA1/2 mutation and patients with a residual
lifetime risk for BC of ≥30% [6]. In any case, before deciding on preventive measures,
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Table 2.7: Inclusion criteria of the German Consortium for Hereditary Breast and Ovarian
Cancer (GC-HBOC) for diagnostic germline testing, as of February 2021 [56].
At least one criterion has to be fullfilled within the family.

≥3 women with BC
≥2 women with BC, 1 with onset below 51 years of age
≥1 woman with BC and ≥1 woman with OC
≥2 women with OC
≥1 woman with OC before the age of 80
≥1 woman with BC before the age of 36
≥1 woman with bilateral BC with onset before the age of 51
≥1 woman with triple-negative BC before the age of 50
≥1 male with BC and 1 woman with BC or OC

Table 2.8: TruRisk® v1–v3 multi-gene panel characteristics, including a description of
the genomic regions covered, number of sequencing targets, overall size of
targeted regions and mean size of targeted regions (MST).

Description No. of Size MST [kbp]
Targets [kbp] (min–max)

v1 coding exons of 10 BC/OC risk genes
(ATM, BRCA1/2, BRIP1, CDH1, CHEK2,
PALB2, RAD51C/D, TP53 ), 6 syndrome-
associated (Lynch, Cowden and Peutz-
Jehghers) and 17 research genes

576 172 0.30 (0.09–5.04)

v2 coding exons of 10 BC/OC risk genes
(ATM, BRCA1/2, BRIP1, CDH1, CHEK2,
PALB2, RAD51C/D, TP53 ), 7 syndrome-
associated (Lynch, Cowden and Peutz-
Jehghers), and 17 research genes; 66 iden-
tifier SNPs

674 200 0.30 (0.12–5.04)

v3 coding exons of 11 BC/OC risk genes
(ATM, BARD1, BRCA1/2, BRIP1, CDH1,
CHEK2, PALB2, RAD51C/D, TP53 ),
7 syndrome-associated (Lynch, Cowden and
Peutz-Jehghers), and 16 research genes; 331
PRS/identifer SNPs

1023 267 0.26 (0.12–5.04)
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the risks of potential interventions, e.g., X-ray exposure through regular mammograms,
the risks and long-term consequences of surgical interventions or increased psychological
stress, must be carefully considered in relation to expected BC/OC risks.

In addition to predicting BC/OC risk for individuals with a familial burden, genetic
germline testing is also gaining importance for those already diagnosed with BC, as it has
been shown that BRCA1/2 germline mutation carriers with triple-negative BC benefit
more from certain, i.e., platinum-based, treatment regimes than noncarriers [25, 173].
A recently published study by Pohl-Rescigno and colleagues suggests that comparable
effects may also be seen for hormone receptor-positive tumors [130].
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3 Aims of the thesis

This thesis aims to assess and improve existing methods for variant detection and variant
classification using multi-gene panels in the framework of genetic counseling for persons
at risk for hereditary BC/OC. There is a threefold objective, namely (1) optimization
of multi-gene panel design, (2) comprehensive variant detection beyond SNVs and short
indels, and (3) more accurate personal risk prediction based on improved variant inter-
pretation.

3.1 Improvement of multi-gene panel design

As in 70% of all index cases of familial BC/OC no pathogenic variants can be iden-
tified in known moderate- to high-penetrant risk genes [65, 74], the search for further
predisposing genetic modificators is ongoing. Multi-gene panels may include genes with
insufficient evidence and/or unclear association in addition to confirmed BC/OC risk
genes. However, the extent of regions covered by a multi-gene panel in a routine diag-
nostic setting should be as limited as possible with regard to the resources required in
terms of sequencing capacity, computing time and storage space. In addition, associa-
tions with BC/OC of putative pathogenic variants in such genes, and hence, the utility
of preventive measures derived from them, are largely unknown. As a result, people
seeking advice are told of the existence of corresponding variants, but no consistent
guidelines exist for further clinical managment. The achievement of sufficient statistical
evidence for the detection of risk genes with moderate penetrance, which may even rarely
be affected by pathogenic mutations, requires large sample sizes as achieved in routine
genetic diagnostics. Here, the potential association of pathogenic variants in suspected
risk genes FANCM, BARD1, and BRIP1 with hereditary BC and/or OC was assessed
in case-control studies including well-characterized index patients and geographically
matched female controls.

In addition, in collaboration with Julika Borde, I examined the utility of PRSs in
personalized BC risk prediction. Established sets of BC susceptibility loci used for PRS
calculations in female BRCA1/2 mutation carriers [84], as well as in women unselected
for BRCA1/2 germline mutation status [109], each comprise less than 100 loci, so that
these PRSs have the potential to be straightforwardly implemented in routine diagnostic
multi-gene panel analyses. However, the performance of PRSs in GWAS-independent
clinical cohorts is poorly studied for moderate penetrant risk genes and thus the clin-
ical implementation of PRSs is pending. Here, the performance of PRSs was assessed
in a GWAS-independent clinical cohort of females carrying a pathogenic alteration in
CHEK2, which is the third most frequently mutated BC risk gene in many European
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countries [99].

3.2 Improvement of variant detection

With the spread of NGS in clinical diagnostics, especially multi-gene panels, commercial
tools have become established that provide easy-to-use, automated solutions for NGS
data processing. These tools, e.g., SOPHiA DDM® (SOPHiA GENETICS, Lausanne,
Switzerland), NextGENe® (SoftGenetics, State College, PA, USA), or JSI SeqPilot
software (Kippenheim, Germany), embed SNV and indel calling in an automated work-
flow, and provide starting from raw sequencing reads listings of variants of putative
relevance in attractive table formats. Due to the typically high read depth in targeted
regions, SNVs and indels can usually be predicted reliably from multi-gene panel data.
Performance of out-of-the-box solutions for the prediction of CNVs, or SVs, which re-
quires adapted computational methods, however, remains questionable [118, 131, 190].
Therefore, reliable detection of CNVs requires long-read sequencing [70] or additional
wet lab approaches such as array comparative genomic hybridization (aCGH) or mul-
tiplex ligation-dependent probe amplification (MLPA) [32, 60, 75, 148]. As these addi-
tional analyses are costly and time-consuming, they are usually applied solely to genes
known to be frequently affected by CNVs, i.e., BRCA1/2 in the context of hereditary
BC/OC [33,72,144], and the prevalence of CNVs in non-BRCA1/2 cancer predisposition
genes is poorly studied. A joint work with Louisa Lepkes therefore was aimed at two
objectives: First, to evaluate the utility of in silico CNV detection approaches adapted
to multi-gene panels in clinical diagnostics, and second, to assess the prevalence of CNVs
in cancer predisposition genes in individuals at risk for familial BC/OC.

3.3 Improvement of variant interpretation

The third part of the thesis deals with considerations regarding the interpretation of
genetic testing outcomes in the course of genetic counseling for hereditary BC/OC.
In particular, the interpretation of missense mutations is a specially challenging task,
as their impact to protein function are difficult to predict and they can therefore of-
ten only be classified as variant of uncertain significance (VUS). Thus, genetic testing
results in uncertainty about the mutation status of corresponding risk genes, and ad-
vice seekers can neither be offered prophylactic measures nor relief. Reliable classifca-
tion is further hindered by the fact that VUS are often extremely rare variants. As
of September 2016, 64.4% of missense VUS in BRCA1/2 reported in the patient reg-
istry of the GC-HBOC, were private, i.e., observed exclusively in one index patient. To
circumvent the problem of missing information on rare genetic variants, the use of in
silico approaches for automated variant classification has become established in many
laboratories. However, studies revealed a diverse picture of the performance of these
applications [59,76,93,104,141,161]. Due to the known specific weaknesses of each pre-
diction tool, a common strategy in clinical practice is to combine the results of various
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approaches, e.g., assuming a disease-causing mutation when at least half of several ap-
proaches classify a variant as damaging. Therefore, I aimed to evaluate the performance
of four in silico prediction tools embedded in the widely-used, commercial Alamut™
Visual software (Interactive Biosoftware, Rouen, France), namely Align-GVGD [163],
SIFT [85], MutationTaster2 [149], and PolyPhen-2 [8], and to study how combinations
of their results may influence the reliability of in silico predictions compared to stand-
alone usage.

Furthermore, in a joint work with Dr. Jan Hauke, I aimed to investigate the impli-
cations of shifts in observed VFs between paired blood and tumor-derived samples for
variant classification of rare BRCA1/2 germline variants. Tumor development caused by
heterozygous germline mutations is generally suggested to be initiated by inactivation
of the wild-type allele in the corresponding risk gene, i.e., loss of heterozygosity (LOH)
due to somatic mutations, deletion of the wild-type allele, or promotor methylation [80].
Loss of the wild-type allele is supposed to be indicated by signifcantly increased VFs in
the tumor- vs blood-derived DNA. Thus, the potential benefit of VF comparison between
blood- and tumor-derived samples for variant classification needs to be examined.

Pathogenic germline variants in TP53, which are mostly missense mutations, cause
LFS1, and are therefore accompanied by extensive medical consequences [51]. However,
TP53 variants may arise de novo, either as somatic mosaicism, such that multiple tissues
exhibit the variant at various level, or represent clonal haematopoiesis (CH), i.e., dele-
terious mutations affecting the hematopoietic stem and progenitor cells exclusively [16].
Occurence of CH is associated with increased age, tobacco use and exposure to radio-
therapy [51]. Furthermore, CH in the TP53 and PPM1D genes has been reported to be
associated with prior exposure to chemotherapy [34]. Differentiation between germline
variants, somatic mosaicism and CH is essential, as CH events in TP53 cause increased
risks of hematologic cancer, but do not cause LFS1 [55,116]. In collaboration with Kon-
stantin Weber-Lassalle, I investigated pairwise blood- and tumor-derived DNA samples
of OC patients with the aim to prove the existence of pathogenic variants in TP53 and
PPM1D in blood cells arising from CH rather than from germline inheritance, and to
evaluate the frequency of CH occurences in dependence to the exposure to chemotherapy.
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4 List of publications

4.1 Main publications

4.1.1 Performance of in silico prediction tools for the classification of rare
BRCA1/2 missense variants in clinical diagnostics.
Ernst et al. (2018) BMC Medical Genomics, 11(1):35

doi:10.1186/s12920-018-0353-y

4.1.1.1 Abstract (excerpt from the original publication)1

Background: The use of next-generation sequencing approaches in clinical diagnostics
has led to a tremendous increase in data and a vast number of variants of uncertain
significance that require interpretation. Therefore, prediction of the effects of missense
mutations using in silico tools has become a frequently used approach. Aim of this study
was to assess the reliability of in silico prediction as a basis for clinical decision making
in the context of hereditary breast and/or ovarian cancer.
Methods: We tested the performance of four prediction tools (Align-GVGD, SIFT,
PolyPhen-2, MutationTaster2) using a set of 236 BRCA1/2 missense variants that had
previously been classified by expert committees. However, a major pitfall in the creation
of a reliable evaluation set for our purpose is the generally accepted classification of
BRCA1/2 missense variants using the multifactorial likelihood model, which is partially
based on Align-GVGD results. To overcome this drawback we identified 161 variants
whose classification is independent of any previous in silico prediction. In addition to
the performance as stand-alone tools we examined the sensitivity, specificity, accuracy
and Matthews correlation coefficient (MCC) of combined approaches.
Results: PolyPhen-2 achieved the lowest sensitivity (0.67), specificity (0.67), accuracy
(0.67) and MCC (0.39). Align-GVGD achieved the highest values of specificity (0.92),
accuracy (0.92) and MCC (0.73), but was outperformed regarding its sensitivity (0.90)
by SIFT (1.00) and MutationTaster2 (1.00). All tools suffered from poor specificities,
resulting in an unacceptable proportion of false positive results in a clinical setting.
This shortcoming could not be bypassed by combination of these tools. In the best
case scenario, 138 families would be affected by the misclassification of neutralvariants
within the cohort of patients of the German Consortium for Hereditary Breast and
Ovarian Cancer.
Conclusion: We show that due to low specificities state-of-the-art in silico prediction
tools are not suitable to predict pathogenicity of variants of uncertain significance in
BRCA1/2. Thus, clinical consequences should never be based solely on in silico forecasts.

1License: https://creativecommons.org/licenses/by/4.0/
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However, our data suggests that SIFT and MutationTaster2 could be suitable to predict
benignity, as both tools did not result in false negative predictions in our analysis.

4.1.1.2 Own contributions

I developed the statistical analysis approach in collaboration with Prof. Dr. M. Nothnagel
(Department of Statistical Genetics and Bioinformatics, Cologne Center for Genomics
(CCG), University of Cologne). I ran all in silico analyses and developed the approach
for gaining an Align-GVGD-independent sample set. I conceptualized and prepared data
visualization. I authored the inital manuscript draft, and I revised and approved the
final version.

4.1.1.3 Contribution of co-authors

Prof. Dr. R. Schmutzler and PD Dr. E. Hahnen (Center for Familial Breast & Ovar-
ian Cancer, Center for Integated Oncology (CIO), Medical Faculty, University Hospital
Cologne) conceptualized the study. PD Dr. C. Engel (Institute of Medical Informatics,
Statistics and Epidemiology (IMISE), University of Leipzig) and Dr. J. Hauke (Center for
Familial Breast & Ovarian Cancer, Center for Integated Oncology (CIO), Medical Fac-
ulty, University Hospital Cologne) collected and curated the input samples and defined
the set of invesitgated VUS. Prof. Dr. M. Nothnagel (Department of Statistical Genetics
and Bioinformatics, Cologne Center for Genomics (CCG), University of Cologne) was in-
volved in the development of the the statistical analysis approach. J. Weber (Center for
Familial Breast & Ovarian Cancer, Center for Integated Oncology (CIO), Medical Fac-
ulty, University Hospital Cologne) derived the results for combined in silico approaches.
Prof. Dr. R. Schmutzler, PD Dr. E. Hahnen and Dr. J. Hauke supported the preparation
of the manuscript. All authors revised the manuscript and gave their approval to the
final version.
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4.1.2 Performance of Breast Cancer Polygenic Risk Scores in 760 Female
CHEK2 Germline Mutation Carriers
Borde et al. (2020) Journal of the National Cancer Institute

doi:10.1093/jnci/djaa203

4.1.2.1 Abstract (excerpt from the original publication)

BACKGROUND: Genome-wide association studies (GWAS) suggest that the com-
bined effects of breast cancer (BC)-associated single nucleotide polymorphisms (SNPs)can
improve BC risk stratification using polygenic risk scores (PRSs). The performance of
PRSs in GWAS-independent clinical cohorts is poorly studied in individuals carrying
mutations in moderately penetrant BC predisposition genes such as CHEK2. METH-
ODS: 760 female CHEK2mutation carriers were included; 561 women were affected with
BC, of whom 74 developed metachronous contralateral BC (mCBC). For PRS calcula-
tions, two SNP sets covering 77 (SNP set 1, developed for BC risk stratification in women
unselected for their BRCA1/2 germline mutation status) and 88 (SNP set 2, developed
for BC risk stratification in female BRCA1/2 mutation carriers) BC-associated SNPs
were used. RESULTS: Both SNP sets provided concordant PRS results at the individ-
ual level (r = 0.91, p < 2.20× 10−16). Weighted cohort Cox regression analyses revealed
significant associationsof PRSs with the risk for first BC. For SNP set1, a hazard ratio
(HR) of 1.71 per standard deviation of the PRS was observed (95%confidence interval
[CI]:1.36 to 2.15, p = 3.87× 10−6). PRSs identify a subgroup of CHEK2 mutation car-
riers with a predicted lifetime risk for first BC that exceeds the surveillance thresholds
defined by international guidelines. Association of PRS with mCBC was examined via
Cox regression analysis (SNP set 1 HR: 1.23, 95%CI:0.86 to 1.78, p=0.26). CONCLU-
SION: PRSs may be used to personalize risk-adapted preventive measures for women
with CHEK2 mutations. Larger studies are required to assess the role of PRSs in mCBC
predisposition.

4.1.2.2 Own contributions

I performed the analysis of the amplicon-based Fluidigm Access Array data, starting
from demultiplexing and mapping up to variant calling and conversion to input data in
TPED format. In collaboration with Dr. K. Kuchenbaecker and Dr. O. Giannakopoulou
(Division of Psychiatry & UCL Genetics Institute, University College of London (UCL))
I developed and implemented the sample and variant quality filters. I performed all sta-
tistical analyses and established the nearest shrunken centroid classifier and inclusion of
a third dimension in multidimensional scaling for ethnicity checks. In collaboration with
Dr. K. Kuchenbaecker, I developed and implemented PRS computations, approximation
of theoretically expected mean values PRS, and the weighted cohort Cox regression
approach for analysis of the association of standardized PRSs with BC risk. I examined
the proportional hazard assumption in age-stratified Cox regression models, computed
age-specific HRs per SD of the PRS, and performed Cox regression for the evaluation
of the association of PRSs and age at first BC diagnosis with mCBC. I conceptualized
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and prepared data visualization. I contributed to the manuscript draft, and revised and
approved the final version.

4.1.2.3 Contribution of co-authors

J. Borde (Center for Familial Breast & Ovarian Cancer, Center for Integated Oncology
(CIO), Medical Faculty, University Hospital Cologne) defined, provided and curated the
input sample including the ascertainment of germline mutation status, the retrievement
of missing phenotype data, and implemented and applied several consistency checks
on patient data. J. Borde designed and applied customized target enrichment employ-
ing a 48.48 amplicon-based panel Access Array system (Fluidigm, San Francisco, CA,
USA) and performed the entire DNA sequencing. J. Borde extracted data from pub-
lic databases dbSNP and LDlink. J. Borde and I prepared the first manuscript draft
in close collaboration. Dr. B. Wappenschmidt (Center for Familial Breast & Ovar-
ian Cancer, Center for Integated Oncology (CIO), Medical Faculty, University Hospital
Cologne), Dr. D. Niederacher (Department of Gynecology & Obstetrics, University Hos-
pital Duesseldorf, Heinrich-Heine University Duesseldorf), Dr. G. Schmidt (Institute of
Human Genetics, Hannover Medical School), PD Dr. A. Quante (Department of Gy-
necology and Obstetrics, Technical University Munich), Dr. J.Horvárth (Institute for
Human Genetics, University Hospital Muenster), Prof. Dr. N. Arnold (Institute of Clin-
ical Molecular Biology, Department of Gynaecology and Obstetrics, University Hospital
of Schleswig-Holstein, Christian-Albrechts University Kiel), Dr. A. Rump (Institute of
Clinical Genetics, Technische Universitaet Dresden), Dr. A. Gehrig (Institute of Human
Genetics, Julius-Maximilians-Universität Würzburg), Dr. J. Hentschel (Institute of Hu-
man Genetics, University of Leipzig Hospitals and Clinics), Dr. U. Faust (Institute of
Medical Genetics and Applied Genomics, University Hospital Tuebingen), V. Dutran-
noy (Institute of Medical and Human Genetics, Charité Universitätsmedizin Berlin),
Prof. Dr. A. Meindl (Department of Gynecology and Obstetrics, Ludwig-Maximilians-
University Munich), M. Kuzyakova (Institute of Human Genetics, University Medical
Center, Georg August University of Göttingen), Dr. S. Wang-Gohrke (Department of
Gynaecology and Obstetrics, University Hospital Ulm), Prof. Dr. B. Weber (Institute of
Human Genetics, University Hospital Regensburg), Dr. C. Sutter (Institute of Human
Genetics, University of Heidelberg), PD Dr. A. Volk (Institute of Human Genetics, Uni-
versity Medical Center Hamburg-Eppendorf), and PD Dr. C. Engel (Institute of Medical
Informatics, Statistics and Epidemiology (IMISE), University of Leipzig) provided sam-
ples and resources. K. Weber-Lassalle, Dr. E. Pohl-Rescigno, and Dr. N. Weber-Lassalle
(Center for Familial Breast & Ovarian Cancer, Center for Integated Oncology (CIO),
Medical Faculty, University Hospital Cologne) were involved in design and establish-
ment of the customized panel sequencing. Dr. K. Kuchenbaecker (Division of Psychiatry
& UCL Genetics Institute, University College of London (UCL)) supervised statistical
analyses. Dr. O. Giannakopoulou (Division of Psychiatry & UCL Genetics Institute,
University College of London (UCL)) provided support for analyses involving PLINK.
Dr. M. Schmidt (Division of Molecular Pathology, Netherlands Cancer Institute) and
Prof. Dr. A. Antoniou (Department of Public Health and Primary Care, Centre for Can-
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cer Genetic Epidemiology, University of Cambridge) gave further advice regarding the
analysis strategy. Dr. A. Lee (Department of Public Health and Primary Care, Centre for
Cancer Genetic Epidemiology, University of Cambridge) provided population-based inci-
dence rates of CHEK2 mutation carriers. The study was supervised and conceptualized
by PD Dr. E. Hahnen (Center for Familial Breast & Ovarian Cancer, Center for Integated
Oncology (CIO), Medical Faculty, University Hospital Cologne), Prof. Dr. R. Schmutzler
(Center for Familial Breast & Ovarian Cancer, Center for Integated Oncology (CIO),
Medical Faculty, University Hospital Cologne), and Dr. K. Kuchenbaecker. The writing
team consisted of PD Dr. E. Hahnen, J. Borde and myself. All authors revised and
approved the final manuscript.
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4.1.3 Performance of In Silico Prediction Tools for the Detection of
Germline Copy Number Variations in Cancer Predisposition Genes in
4208 Female Index Patients with Familial Breast and Ovarian Cancer
Lepkes et al. (2021) Cancers, 13(1):118

doi:10.3390/cancers13010118

4.1.3.1 Abstract (excerpt from the original publication)2

The identification of germline copy number variants (CNVs) by targeted next-generation
sequencing (NGS) frequently relies on in silico CNV prediction tools with unknown sen-
sitivities. We investigated the performances of four in silico CNV prediction tools,
including one commercial (Sophia Genetics DDM) and three non-commercial tools (Ex-
omeDepth, GATK gCNV, panelcn.MOPS) in 17 cancer predisposition genes in 4,208
female index patients with familial breast and/or ovarian cancer (BC/OC). CNV pre-
dictions were verified via multiplex ligation-dependent probe amplification. We iden-
tified 77 CNVs in 76 out of 4,208 patients (1.81%); 33 CNVs were identified in genes
other than BRCA1/2, mostly in ATM, CHEK2, and RAD51C and less frequently in
BARD1, MLH1, MSH2, PALB2, PMS2, RAD51D, and TP53. The Sophia Genetics
DDM software showed the highest sensitivity; six CNVs were missed by at least one of
the non-commercial tools. The positive predictive values ranged from 5.9% (74/1,249)
for panelcn.MOPS to 79.1% (72/91) for ExomeDepth. Verification of in silico predicted
CNVs is required due to high frequencies of false positive predictions, particularly af-
fecting target regions at the extremes of the GC content or target length distributions.
CNV detection should not be restricted to BRCA1/2 due to the relevant proportion of
CNVs in further BC/OC predisposition genes.

4.1.3.2 Own contributions

I was invovled in the conceptualization of the study by introducing the evaluation of
non-commercial CNV detection tools and the evaluation of performance dependent on
sequencing target characteristics. I extracted and processed the hybridization-based
capture input data and ran CNV calling with ExomeDepth, GATK gCNV and pan-
elcn.MOPs. I evaluated in collaboration with J. Weber (Center for Familial Breast
& Ovarian Cancer, Center for Integated Oncology (CIO), Medical Faculty, University
Hospital Cologne) the CNV prediction performance. I extracted the sequencing target
characteristics and did all statistical analyses. I wrote the first manuscript draft, revised
and approved the final manuscript, and served as submitting and corresponding author.

4.1.3.3 Contribution of co-authors

L. Lepkes (Center for Familial Breast & Ovarian Cancer, Center for Integated Oncology
(CIO), Medical Faculty, University Hospital Cologne) provided and curated in collabo-
ration with Dr. B. Blümcke (Center for Familial Breast & Ovarian Cancer, Center for

2License: https://creativecommons.org/licenses/by/4.0/
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Integated Oncology (CIO), Medical Faculty, University Hospital Cologne) the sample
set, and extracted the results of the Sophia Genetics DDM (SOPHiA DDM®) software.
L. Lepkes, M. Kayali, and S. Schmidt (Center for Familial Breast & Ovarian Cancer,
Center for Integated Oncology (CIO), Medical Faculty, University Hospital Cologne) ran
MLPA analyses. J. Weber (Center for Familial Breast & Ovarian Cancer, Center for
Integated Oncology (CIO), Medical Faculty, University Hospital Cologne) was involved
in evaluation of CNV prediction performance. MLPA analyses for BARD1 were run by
Dr. M. Suszynska and Dr. K. Klonowska under supervision of Prof. Dr. P. Kozlowski (In-
stitute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan). Dr. B. Wappen-
schmidt (Center for Familial Breast & Ovarian Cancer, Center for Integated Oncology
(CIO), Medical Faculty, University Hospital Cologne) provided samples. Prof. Dr. P. Ko-
zlowski and Prof. Dr. R. Schmutzler provided resources. The study was supervised by
PD Dr. E. Hahnen and Prof. Dr. R. Schmutzler. All authors revised and approved the
final manuscript.

32



4.2 Additional co-authored publications

4.2.1 Association Between Loss-of-Function Mutations Within the FANCM
Gene and Early-Onset Familial Breast Cancer
Neidhardt et al. (2017) JAMA Oncology, 3(9):1245-1248

doi:10.1001/jamaoncol.2016.5592

4.2.1.1 Abstract (excerpt from the original publication)

Importance Germline mutations in established moderately or highly penetrant risk
genes for breast cancer (BC) and/or ovarian cancer (OC), including BRCA1 and BRCA2,
explain fewer than half of all familial BC and/or OC cases. Based on the genotyp-
ing of 2 loss-of-function (LoF) variants c.5101C>T (p.GIn1701Ter [rs147021911]) and
c.5791C>T (p.Arg1931Ter [rs144567652]), the FANCM gene has been suggested as a
novel BC predisposition gene, while the analysis of the entire coding region of the
FANCM gene in familial index cases and geographically matched controls is pending.
Objectives To assess the mutational spectrum within the FANCM gene, and to deter-
mine a potential association of LoF germline mutations within the FANCM gene with
BC and/or OC risk.
Design, Setting, and Participants For the purpose of identification and character-
ization of novel BC and/or OC predisposition genes, a total of 2047 well-characterized
familial BC index cases, 628 OC cases, and 2187 geographically matched controls were
screened for LoF mutations within the FANCM gene by next-generation sequencing. All
patients previously tested negative for pathogenic BRCA1 and BRCA2 mutations. All
data collection occurred between June 1, 2013, and April 30, 2016. Data analysis was
performed from May 1, 2016, to July 1, 2016.
Main Outcomes and Measures FANCM LoF mutation frequencies in patients with
BC and/or OC were compared with the FANCM LoF mutation frequencies in geo-
graphically matched controls by univariate logistic regression. Positive associations were
stratified by age at onset and cancer family history.
Results In this case-control study, 2047 well-characterized familial female BC index
cases, 628 OC cases, and 2187 geographically matched controls were screened for trun-
cating FANCM alterations. Heterozygous LoF mutations within the FANCM gene were
significantly associated with familial BC risk, with an overall odds ratio (OR) of 2.05
(95% CI, 0.94–4.54; P=.049) and a mutation frequency of 1.03% in index cases. In fa-
milial patients whose BC onset was before age 51 years, an elevated OR of 2.44 (95%
CI, 1.08–5.59; P=.02) was observed. A more pronounced association was identified for
patients with a triple-negative BC tumor phenotype (OR, 3.75; 95% CI, 1.00–12.85;
P=.02). No significant association was detected for unselected OC cases (OR, 1.74; 95%
CI, 0.57–5.08; P=.27).
Conclusions and Relevance Based on the significant associations of heterozygous
LoF mutations with early-onset or triple-negative BC, FANCM should be included in
diagnostic gene panel testing for individual risk assessment. Larger studies are required
to determine age-dependent disease risks for BC and to assess a potential role of FANCM
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mutations in OC pathogenesis.

4.2.1.2 Own contributions

I extracted allele frequencies of observed variants from the ExAC Non-Finnish Europeans
under exclusion of TCGA data [92] as input for variant classification, and revised and
approved the final manuscript.
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4.2.2 Gene panel testing of 5589 BRCA1/2-negative index patients with
breast cancer in a routine diagnostic setting: results of the German
Consortium for Hereditary Breast and Ovarian Cancer
Hauke et al. (2018) Cancer Medicine, 7(4):1349-1358

doi:10.1002/cam4.1376

4.2.2.1 Abstract (excerpt from the original publication)

The prevalence of germ line mutations in non-BRCA1/2 genes associated with heredi-
tary breast cancer (BC) is low, and the role of some of these genes in BC predisposition
and pathogenesis is conflicting. In this study, 5589 consecutive BC index patients neg-
ative for pathogenic BRCA1/2 mutations and 2189 female controls were screened for
germ line mutations in eight cancer predisposition genes (ATM, CDH1, CHEK2, NBN,
PALB2, RAD 51C, RAD51D, and TP53 ). All patients met the inclusion criteria of the
German Consortium for Hereditary Breast and Ovarian Cancer for germ line testing.
The highest mutation prevalence was observed in the CHEK2 gene (2.5%), followed by
ATM (1.5%) and PALB2 (1.2%). The mutation prevalence in each of the remaining
genes was 0.3% or lower. Using Exome Aggregation Consortium control data, we confirm
significant associations of heterozygous germ line mutations with BC for ATM (OR: 3.63,
95%CI: 2.67–4.94), CDH1 (OR: 17.04, 95%CI: 3.5482), CHEK2 (OR: 2.93, 95%CI: 2.29–
3.75), PALB2 (OR: 9.53, 95%CI: 6.25–14.51), and TP53 (OR: 7.30, 95%CI: 1.22–43.68).
NBN germ line mutations were not significantly associated with BC risk (OR: 1.39,
95%CI: 0.73–2.64). Due to their low mutation prevalence, the RAD51C and RAD51D
genes require further investigation. Compared with control datasets, predicted damag-
ing rare missense variants were significantly more prevalent in CHEK2 and TP53 in
BC index patients. Compared with the overall sample, only TP53 mutation carriers
show a significantly younger age at first BC diagnosis. We demonstrate a significant
association of deleterious variants in the CHEK2, PALB2, and TP53 genes with bi-
lateral BC. Both, ATM and CHEK2, were negatively associated with triple-negative
breast cancer (TNBC) and estrogen receptor (ER)-negative tumor phenotypes. A par-
ticularly high CHEK2 mutation prevalence (5.2%) was observed in patients with human
epidermal growth factor receptor 2 (HER2)-positive tumors.

4.2.2.2 Own contributions

I supported the conceptualisation of variant filters and statistical data evaluation. I
applied VF, MAF (based on ExAC Non-Finnish Europeans under exclusion of TCGA
data [92]) and in silico prediction filters [85, 149] to the variant set, and I revised and
approved the final manuscript.
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4.2.3 BRIP1 Loss-Of-Function Mutations Confer High Risk for Familial
Ovarian Cancer, but Not Familial Breast Cancer
Weber-Lassalle et al. (2018) Breast Cancer Research, 20(1):7

doi:10.1186/s13058-018-0935-9

4.2.3.1 Abstract (excerpt from the original publication)3

Background: Germline mutations in the BRIP1 gene have been described as conferring
a moderate risk for ovarian cancer (OC), while the role of BRIP1 in breast cancer (BC)
pathogenesis remains controversial.
Methods: To assess the role of deleterious BRIP1 germline mutations in BC/OC pre-
disposition, 6341 well-characterized index patients with BC, 706 index patients with
OC, and 2189 geographically matched female controls were screened for loss-of-function
(LoF) mutations and potentially damaging missense variants. All index patients met the
inclusion criteria of the German Consortium for Hereditary Breast and Ovarian Cancer
for germline testing and tested negative for pathogenic BRCA1/2 variants.
Results: BRIP1 LoF mutations confer a high OC risk in familial index patients (odds
ratio (OR) = 20.97, 95% confidence interval (CI) = 12.02–36.57, P < 0.0001) and in the
subgroup of index patients with late-onset OC (OR = 29.91, 95% CI = 14.99–59.66, P
< 0.0001). No significant association of BRIP1 LoF mutations with familial BC was
observed (OR = 1.81 95% CI = 1.00–3.30, P = 0.0623). In the subgroup of familial BC
index patients without a family history of OC there was also no apparent association
(OR = 1.42, 95% CI = 0.70–2.90, P = 0.3030). In 1027 familial BC index patients with
a family history of OC, the BRIP1 mutation prevalence was significantly higher than
that observed in controls (OR = 3.59, 95% CI = 1.43–9.01; P = 0.0168). Based on the
negative association between BRIP1 LoF mutations and familial BC in the absence of
an OC family history, we conclude that the elevated mutation prevalence in the latter
cohort was driven by the occurrence of OC in these families. Compared with controls,
predicted damaging rare missense variants were significantly more prevalent in OC (P
= 0.0014) but not in BC (P = 0.0693) patients.
Conclusions: To avoid ambiguous results, studies aimed at assessing the impact of
candidate predisposition gene mutations on BC risk might differentiate between BC
index patients with an OC family history and those without. In familial cases, we
suggest that BRIP1 is a high-risk gene for late-onset OC but not a BC predisposition
gene, though minor effects cannot be excluded.

4.2.3.2 Own contributions

I supported the conceptualisation of variant filters and statistical data evaluation. I
applied VF, MAF (based on ExAC Non-Finnish Europeans under exclusion of TCGA
data [92]), last exon and in silico prediction filters [85, 149] to the variant set, and I
revised and approved the final manuscript.

3License: https://creativecommons.org/licenses/by/4.0/
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4.2.4 Diagnosis of Li-Fraumeni Syndrome: Differentiating TP53 germline
mutations from clonal hematopoiesis: Results of the observational
AGO-TR1 trial
Weber-Lassalle et al. (2018) Human Mutation, 39(12):2040-2046

doi:10.1002/humu.23653

4.2.4.1 Abstract (excerpt from the original publication)

The Li-Fraumeni cancer predisposition syndrome (LFS1) presents with a variety of tu-
mor types and the TP53 gene is covered by most diagnostic cancer gene panels. We
demonstrate that deleterious TP53 variants identified in blood-derived DNA of 523 pa-
tients with ovarian cancer (AGO-TR1 trial) were not causal for the patients’ ovarian
cancer in three out of six TP53 -positive cases. In three out of six patients, deleteri-
ous TP53 mutations were identified with low variant fractions in blood-derived DNA
but not in the tumor of the patient seeking advice. The analysis of the TP53 and
PPM1D genes, both intimately involved in chemotherapy-induced and/or age-related
clonal hematopoiesis (CH), in 523 patients and 1,053 age-matched female control indi-
viduals revealed that CH represents a frequent event following chemotherapy, affecting
26 of the 523 patients enrolled (5.0%). Considering that TP53 mutations may arise from
chemotherapy-induced CH, our findings help to avoid false-positive genetic diagnoses of
LFS1.

4.2.4.2 Own contributions

I was involved in the development of variant filters and applied the VF and annota-
tion filters for the hybridization capture-based NGS-derived variants. I analyzed the
amplicon-based Fluidigm Access Array data, starting with demultiplexing and mapping
up to variant calling. I developed and applied the variant filter criteria, including the de-
termination and application of quality thresholds concerning MAFs, minimum base and
mapping qualities, minimum read depth, and minimum counts of observed alternate nu-
cleotides. I supported the conceptualistaion of statistical data evaluation. I contributed
to the manuscript draft and revised and approved the final manuscript.
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4.2.5 Deleterious somatic variants in 473 consecutive individuals with
ovarian cancer: results of the observational AGO-TR1 study
(NCT02222883)
Hauke et al. (2019) Journal of Medical Genetics, 56(9):574-580

doi:10.1136/jmedgenet-2018-105930

4.2.5.1 Abstract (excerpt from the original publication)

Background For individuals with ovarian cancer (OC), therapy options mainly depend
on BRCA1/2 germline status. What is the prevalence of deleterious somatic variants,
that is, does genetic tumour testing identify subgroups of individuals who also might
benefit from targeted therapy?
Methods Paired analysis of tumour-derived versus blood-derived DNA to determine the
prevalence of deleterious somatic variants in OC predisposition genes (ATM, BRCA1/2,
BRIP1, MSH2/6, PALB2, RAD51C/D and TP53 ) and the PIK3CA and PTEN genes
in individuals with OC (AGO-TR1 study, NCT02222883). Results were complemented
by BRCA1, PALB2 and RAD51C promoter methylation analyses and stratified by his-
tological subtype; 473 individuals were included.
Results The combined analyses revealed that deleterious germline variants in estab-
lished OC predisposition genes (all: 125/473, 26.4%; BRCA1/2 : 97/473, 20.5%), dele-
terious somatic variants in established OC predisposition genes excluding TP53 (all:
39/473, 8.2%; BRCA1/2 : 30/473, 6.3%) and promoter methylation (all: 67/473, 14.2%;
BRCA1 : 57/473, 12.1%; RAD51C : 10/473, 2.1%; PALB2 : 0/473) were mutually exclu-
sive, with a few exceptions. The same holds true for deleterious somatic PIK3CA and/or
PTEN variants (33/473, 7.0%) found to be enriched in endometrioid and clear cell OC
(16/35, 45.7%); 84.3% of the deleterious single-nucleotide/indel germline variants in es-
tablished OC predisposition genes showed significantly higher variant fractions (VFs) in
the tumour-derived versus blood-derived DNA, indicating a loss of the wild-type alleles.
Conclusion Tumour sequencing of the BRCA1, BRCA2, PIK3CA and PTEN genes
along with BRCA1 and RAD51C promoter methylation analyses identified large sub-
groups of germline mutation-negative individuals who may be addressed in interventional
studies using PARP or PI3K/AKT/mTOR inhibitors.

4.2.5.2 Own contributions

I supported the conceptualisation of data analysis and statistical data evaluation. I
extracted VFs and generated variant annotations. I revised and approved the final
manuscript.
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4.2.6 The GPRC5A frameshift variant c.183del is not associated with
increased breast cancer risk in BRCA1 mutation carriers
Klaschik et al. (2019) International Journal of Cancer, 144(7):1761-1763

doi:10.1002/ijc.32016

4.2.6.1 Summary

The above mentioned manuscript is a letter to the editor with respect to a publication
of Sokolenko and colleagues [154]. The authors reported the heterozygous GPRC5A
c.183del variant as a modifier of BC risk in BRCA1 germline mutation carriers. Although
GPRC5A protein expression is dysregulated in mammary tumors in BRCA1 germline
mutation carriers, no association with tumour stage, lymph node status, histological
grading or histological tumour type, or with overall and recurrence-free survival could
be confirmed. Furthermore, no significant accumulation of the heterozygous GPRC5A
c.183del variant in 1707 BC index cases with BRCA1 haploinsufficiency (15/1707; carrier
frequency 0.88%) compared to 3451 BRCA1/2 -negative BC index patients (21/3451;
carrier frequency 0.61%; OR = 1.45, 95%CI:0.75–2.82, p = 0.273) or 3308 geographically
matched controls (26/3308; carrier frequency 0.79%; OR = 1.12, 95%CI:0.59–2.12, p =
0.730) was observed. CRISPR/Cas9-induced GPRC5A knockout using the MDA-MB-
231 cell line, did not reveal any notable differences in BRCA1 expression compared to
that in the GPRC5A proficient cell clones, and did not affect BRCA1 protein levels.
Moreover, investigation of proliferation (PCNA) and apoptosis (caspase3) markers did
not reveal any differences between the GPRC5A knockout and GPRC5A wild type cell
clones.

Therefore, it is suggested that GPRC5A does not function as a modifier of BC risk in
BRCA1 germline mutation carriers.

4.2.6.2 Own contributions

I contributed to curation of the input samples for case-control studies and preparation
of figures. I revised and approved the final manuscript.
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4.2.7 Germline loss-of-function variants in the BARD1 gene are associated
with early-onset familial breast cancer but not ovarian cancer
Weber-Lassalle et al. (2019) Breast Cancer Research, 21(1):55

doi:10.1186/s13058-019-1137-9

4.2.7.1 Abstract (excerpt from the original publication)4

Background: The role of the BARD1 gene in breast cancer (BC) and ovarian cancer
(OC) predisposition remains elusive, as published case-control investigations have re-
vealed controversial results. We aimed to assess the role of deleterious BARD1 germline
variants in BC/OC predisposition in a sample of 4920 BRCA1/2 -negative female BC/OC
index patients of the German Consortium for Hereditary Breast and Ovarian Cancer
(GC-HBOC).
Methods: A total of 4469 female index patients with BC, 451 index patients with OC,
and 2767 geographically matched female control individuals were screened for loss-of-
function (LoF) mutations and potentially damaging rare missense variants in BARD1.
All patients met the inclusion criteria of the GC-HBOC for germline testing and reported
at least one relative with BC or OC. Additional control datasets (Exome Aggregation
Consortium, ExAC; Fabulous Ladies Over Seventy, FLOSSIES) were included for the
calculation of odds ratios (ORs).
Results: We identified LoF variants in 23 of 4469 BC index patients (0.51%) and in
36 of 37,265 control individuals (0.10%), resulting in an OR of 5.35 (95% confidence
interval [CI]=3.17–9.04; P<0.00001). BARD1 -mutated BC index patients showed a sig-
nificantly younger mean age at first diagnosis (AAD; 42.3years, range 24–60years) com-
pared with the overall study sample (48.6years, range 17–92years; P=0.00347). In the
subgroup of BC index patients with an AAD <40years, an OR of 12.04 (95% CI=5.78–
25.08; P<0.00001) was observed. An OR of 7.43 (95% CI=4.26–12.98; P<0.00001)
was observed when stratified for an AAD <50years. LoF variants in BARD1 were
not significantly associated with BC in the subgroup of index patients with an AAD
≥50years (OR=2.29; 95% CI=0.82–6.45; P=0.11217). Overall, rare and predicted dam-
aging BARD1 missense variants were significantly more prevalent in BC index patients
compared with control individuals (OR=2.15; 95% CI=1.26–3.67; P=0.00723). Neither
LoF variants nor predicted damaging rare missense variants in BARD1 were identified
in 451 familial index patients with OC.
Conclusions: Due to the significant association of germline LoF variants in BARD1
with early-onset BC, we suggest that intensified BC surveillance programs should be
offered to women carrying pathogenic BARD1 gene variants.

4.2.7.2 Own contributions

I applied variant annotation, and allele frequency (based on ExAC Non-Finnish Euro-
peans under exclusion of TCGA data [92]) and in silico prediction filters [85,149] to the

4License: https://creativecommons.org/licenses/by/4.0/
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variant set. I was involved in the conceptualisation of statistical data analysis, and I
revised and approved the final manuscript.
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4.2.8 Association of Germline Variant Status With Therapy Response in
High-Risk Early-Stage Breast Cancer: A Secondary Analysis of the
GeparOcto Randomized Clinial Trial
Pohl-Rescigno et al. (2020) JAMA Oncology, 6(5):744-748

doi:10.1001/jamaoncol.2020.0007

4.2.8.1 Abstract (excerpt from the original publication)

Importance The GeparOcto randomized clinical trial compared the efficacy of 2 neoad-
juvant breast cancer (BC) treatment regimens: sequential intense dose-dense epirubicin,
paclitaxel, and cyclophosphamide (iddEPC) vs weekly paclitaxel and nonpegylated lipo-
somal doxorubicin (PM) in patients with different biological BC subtypes. Patients with
triple-negative BC (TNBC) randomized to the PM arm received additional carboplatin
(PMCb). Overall, no difference in pathologic complete response (pCR) rates was ob-
served between study arms. It remained elusive whether the germline variant status of
BRCA1/2 and further BC predisposition genes are associated with treatment outcome.
Objective To determine treatment outcome for BC according to germline variant status.
Design, Setting, and Participants This retrospective biomarker study is a secondary
analysis of the GeparOcto multicenter prospective randomized clinical trial conducted
between December 2014 and June 2016. Genetic analyses assessing for variants in
BRCA1/2 and 16 other BC predisposition genes in 914 of 945 women were performed
at the Center for Familial Breast and Ovarian Cancer, Cologne, Germany, from August
2017 through December 2018.
Main Outcomes and Measures Proportion of patients who achieved pCR (ypT0/is
ypN0 definition) after neoadjuvant treatment according to germline variant status.
Results In the study sample of 914 women with different BC subtypes with a mean
(range) age at BC diagnosis of 48 (21–76) years, overall higher pCR rates were observed
in patients with BRCA1/2 variants than in patients without (60.4% vs 46.7%; odds ratio
[OR], 1.74; 95% CI, 1.13–2.68; P=.01); variants in non-BRCA1/2 BC predisposition
genes were not associated with therapy response. Patients with TNBC with BRCA1/2
variants achieved highest pCR rates. In the TNBC subgroup, a positive BRCA1/2
variant status was associated with therapy response in both the PMCb arm (74.3% vs
47.0% without BRCA1/2 variant; OR, 3.26; 95% CI, 1.44–7.39; P=.005) and the iddEPC
arm (64.7% vs 45.0%; OR, 2.24; 95% CI, 1.04–4.84; P=.04). A positive BRCA1/2
variant status was also associated with elevated pCR rates in patients with ERBB2 -
negative, hormone receptor-positive BC (31.8% vs 11.9%; OR, 3.44; 95% CI, 1.22-9.72;
P=.02).
Conclusions and Relevance Effective chemotherapy for BRCA1/2 -mutated TNBC
is commonly suggested to be platinum-based. With a pCR rate of 64.7%, iddEPC may
also be effective in these patients, though further prospective studies are needed. The
elevated pCR rate in BRCA1/2 -mutated ERBB2 -negative, hormone receptorpositive
BC suggests that germline BRCA1/2 testing should be considered prior to treatment
start.
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4.2.8.2 Own contributions

I carried out in silico CNV prediction, including configuration and run-wise execution of
panelcn.MOPS [131], ExomeDepth [128] and OPaCNAT5 with subsequent filtering for
putative true positive predictions based on sequencing target characteristics. I extracted
allele frequencies of observed variants from the ExAC Non-Finnish Europeans under
exclusion of TCGA data [92] as input for variant classification, and revised and approved
the final manuscript.

5https://bitbucket.org/CorinnaErnst/opacnat/
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4.2.9 Sensitivity and specificity of loss of heterozygosity analysis for the
classification of rare germline variants in BRCA1/2: Results of the
observational AGO-TR1 study (NCT02222883)
Hauke et al. (2020) Journal of Medical Genetics

doi:10.1136/jmedgenet-2020-107353

4.2.9.1 Abstract (excerpt from the original publication)6

Variant-specific loss of heterozygosity (LOH) analyses may be useful to classify BRCA1/2
germline variants of unknown significance (VUS). The sensitivity and specificity of this
approach, however, remains unknown. We performed comparative next-generation se-
quencing analyses of the BRCA1/2 genes using blood- and tumour-derived DNA of 488
patients with ovarian cancer enrolled in the observational AGO-TR1 trial (NCT02222883).
Overall, 94 pathogenic, 90 benign, and 24 VUS were identified in the germline. A signif-
icantly increased variant fraction (VF) of a germline variant in the tumour indicates loss
of the wild-type allele; a decreased VF indicates loss of the variant allele. We demon-
strate that significantly increased VFs predict pathogenicity with high sensitivity (0.84,
95%CI: 0.77-0.91), poor specificity (0.63, 95%CI: 0.53-0.73) and poor positive predic-
tive value (PPV; 0.71, 95%CI: 0.62-0.79). Significantly decreased VFs predict benignity
with low sensitivity (0.26, 95%CI: 0.17-0.35), high specificity (1.0, 95%CI: 0.96-1.00)
and PPV (1.0, 95%CI: 0.85-1.00). Variant classification based on significantly increased
VFs results in an inacceptable proportion of false-positive results. A significantly de-
creased VF in the tumour may be exploited as a reliable predictor for benignity, with
no false-negative result observed. When applying the latter approach, VUS identified in
four patients can now be considered benign.

4.2.9.2 Own contributions

I extracted allele frequencies of observed variants from the ExAC Non-Finnish Europeans
under exclusion of TCGA data [92] as input for variant classification and extracted VF
data. I conceptualized and carried out statistical data analysis and data visualization.
I contributed to the manuscript draft, and revised and approved the final manuscript.

6License: https://creativecommons.org/licenses/by/4.0/
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5 Results

5.1 Breast and/or ovarian cancer risk genes

To assess the association of putative risk genes FANCM, BARD1, and BRIP1 with
BC and/or OC, case-control studies were employed [121, 182, 183]. Heterozygous PTVs
within the FANCM gene were associated with BC in individuals with familial BC history
(OR = 2.05, 95% confidence interval (CI): 0.94–4.54, Pearson’s χ2 test p = 0.049) [121].
The ORs were increased for the subgroups of individuals with age at primary BC diagno-
sis of <51 years (OR = 2.44, 95% CI: 1.08–5.59, p = 0.02), and with triple-negative BC
tumors (OR = 3.75, 95% CI: 1.00–12.85, p = 0.02). No significant association between
OC and the observation of PTVs in FANCM could be observed considering a sample of
628 OC cases.

Considering 706 BRCA1/2 negative OC cases and 2189 controls, PTVs in BRIP1
were signifcantly associated with OC (OR = 20.97, 95% CI: 12.02–36.57, two-sided
Fisher’s Exact test p < 10−4), and the association was even stronger in the subgroup of
255 women with OC diagnosis after the age of 60 (OR = 29.91, 95% CI: 14.99–59.66,
p < 10−4). No significant association of BRIP1 PTVs with familial BC was observed.

Considering 4469 BC index patients and 2767 female control individuals, PTVs in
BARD1 were siginificantly associated with BC (OR = 5.35, 95% CI: 3.17–9.04, two-sided
Fisher’s Exact test p < 10−5) [182]. BARD1 PTV carriers showed a significantly younger
mean age at primary diagnosis (42.3 years, range 24–60 years) compared with the overall
study sample (48.6 years, range 17–92 years; two-sided Student’s t-test p = 3.5× 10−3).
Consistent with this, stronger associations were found for the subgroups with lower age of
disease (age at primary diagnosis <40 years: OR = 12.04, 95% CI: 5.78–25.08, two-sided
Fisher’s Exact test p < 10−5; <50 years: OR = 7.43, 95% CI: 4.26–12.98, p < 10−5).
No BARD1 PTVs were identified in 451 index patients with familial OC.

In summary, these case-control studies confirmed FANCM and BARD1 as risk genes
for hereditary BC, but additional studies including larger sample sets will be required to
establish their potential role in OC pathogenesis. BRIP1 could be shown to represent a
high-risk gene for late-onset OC but not a BC predisposition gene, though minor effects
cannot be excluded. FANCM and BARD1 should be included in diagnostic multi-gene
panel testing for individuals at risk for familial BC, and BRIP1 for individuals at risk
for familial OC.
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5.2 Polygenic risk scores

Association of PRSs with BC risk was assessed with respect to two SNP sets, namely
one set covering 77 SNPs developed for BC risk stratification in women unselected for
their BRCA1/2 germline mutation status [109] and one set covering 88 SNPs developed
for BC risk stratification in female BRCA1/2 mutation carriers [84]. Both SNP sets pro-
vided concordant PRS results at the individual level (Pearson’s correlation coefficient
r = 0.91, p < 2.20× 10−16). Weighted cohort Cox regression analyses revealed statisti-
cally significant associations of standardized PRSs with the risk for BC. Considering the
SNP set for BC risk stratification in women unselected for BRCA1/2 germline muta-
tion status, a hazard ratio (HR) of 1.71 per standard deviation (SD) of the PRS was
observed (95% CI: 1.36–2.15, two-sided Wald test p = 3.87× 10−6). The association of
standardized PRSs with primary BC did not differ between carriers of the c.1100delC
founder mutation and carriers of other PTVs in CHEK2, and the association attenuated
with increasing age. Prediction of absolute cumulative BC risks revealed LTRs for pri-
mary BC at the age of 80 years of 0.13 at the 10th percentile versus 0.33 at the 90th
percentile. It follows that, depending on the PRS, BC risk can be stratified in such a
way that CHEK2 PTV carriers may, on the one hand, have a BC risk corresponding to
the general population but, on the other hand, may fall into risk groups for which access
to intensified screening is recommended. Therefore, PRS calculation should be included
in diagnostic multi-gene panel testing for individuals at risk for familial BC.

5.3 Copy number variant calling

In the study sample of 4208 female patients with familial BC/OC, the commercial
SOPHiA DDM® software predicted 134 CNVs, of which 103 were classified as CNVs
with high confidence and 31 were classified as CNVs with medium confidence [94]. Of
the 134 predicted CNVs, 77 (57.46%) could be verified by MLPA. 33 CNVs were iden-
tified in genes other than BRCA1/2, mostly in ATM, CHEK2, and RAD51C and less
frequently in BARD1, MLH1, MSH2, PALB2, PMS2, RAD51D, and TP53. The overall
CNV prevalence of 1.81% and the CNV prevalence in non-BRCA1/2 genes of 0.76%
in the study sample, demonstrate the need for CNV prediction in genetic testing of
individuals at risk for familial BC/OC, and that it should not be limited to BRCA1/2.

CNV calling with publicly available tools ExomeDepth, GATK gCNV, and pan-
elcn.MOPS with subsequent MLPA verification did not result in the detection of ad-
ditional CNVs, but 4 to 5 verified CNVs were missed by each of these methods. In
conclusion, on multi-gene panel data the SOPHiA DDM® software outperforms the
examined publicly available approaches for in silico CNV detection regarding its sen-
sitivity. However, for 409 sequencing targets, no unambiguous copy number could be
predicted by the SOPHiA DDM® software, and 57 out of 134 predicted CNVs (42.54%)
could not be verified. These findings suggest that the need for improvement of read
depth-based approaches for in silico CNV detection on multi-gene panel data persists,
especially for the purpose of diagnostic gene testing. Wrong predictions and predictions
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with low confidence of the SOPHiA DDM® software accumulate for sequencing tar-
gets with characteristics at the extremes of target length and GC content contributions,
while moderately reduced mappability had no effect on the accuracy of CNV predic-
tions. Therefore, sequencing targets of multi-gene panels should be optimized towards
sequencing target lengths of >200 bp and average GC contents close to 0.5 with respect
to CNV detection.

5.4 In silico prediction of variant pathogenicity

Considering 161 variants whose classification were independent of previous in silico
prediction, sensitivities, i.e., the proportion of correctly predicted variants among all
pathogenic variants, ranged from 0.67 (95% CI: 0.43–0.85) for PolyPhen-2 to 1.00 (95% CI:
0.84–1.00) for SIFT and MutationTaster2 [48]. Specificities, i.e., the proportion of cor-
rectly predicted variants among all benign variants, ranged from 0.67 (95% CI: 0.59–75)
for PolyPhen-2 to 0.92 (95% CI: 0.86–0.96) for Align-GVGD. Consistently, PolyPhen-2
achieved the lowest MCC (0.39). Align-GVGD achieved the highest MCC (0.73), but was
outperformed regarding its sensitivity (0.90, 95% CI: 0.70–0.99) by SIFT and Mutation-
Taster2. All tools suffered predominantly from erroneous predictions of pathogenicity,
and this shortcoming could not be bypassed by their combination. Thus, it has to be
concluded that clinical consequences should never be based solely on in silico forecasts.
However, due to observed negative predictive values (SIFT: 1.00 (95% CI: 0.96–1.00),
MutationTaster2: 1.00 (95% CI: 0.97–1.00)), i.e., the proportion of correctly predicted
variants among all variants predicted benign, it may be assumed that SIFT and Muta-
tionTaster2 could be suitable to predict benignity of VUS in BRCA1/2.

5.5 Implications of observed variant fractions for the
assessment of pathogenicity

Germline variant calling and filtering revealed 208 rare variants in 181 of the 488 OC
patients considered [64]. Of the 94 pathogenic germline variants identified, 79 showed
significantly increased VFs in corresponding tumor samples, with fold changes (FCs)
ranging from 1.15 to 2.05. The VFs between blood and tumor for the remaining 15
class 4/5 variants did not differ significantly (FC range 0.85–1.13). Of the 90 benign
variants identified, 33 showed significantly increased VFs in the tumor with FCs ranging
from 1.22 to 2.02, and 23 showed significantly decreased VFs with FCs ranging from
0.06 to 0.84. Variant classification, i.e., determination of pathogenicity based on the
observation of significantly increased VFs, is hampered by the random distribution of
VFs observed for benign variants. In contrast, observation of significantly decreased
VFs were specific for benign variants and could serve as a suitable criterion for the
classification of variants as benign. Such an approach resulted in a PPV of 1.0 (95% CI:
0.85–1.00) and a positive LR of 49.07 (95% CI: 3.02–795.93) in our sample.
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5.6 Clonal hematopoiesis

In the sample of 523 OC patients, 7 potentially deleterious1 missense mutations in TP53
were observed in blood-derived DNA of 6 patients [181]. The VFs of 3 of these missense
variants, each of which represented the only TP53 mutation in the corresponding patient,
were comparable or decreased in comparion to the VFs observed in the corresponding
tumor samples (range 0.46–0.77), namely close to 0.5 (range 0.49–0.55). In contrast,
the remaining 4 TP53 variants, each of which had a VF considerably lower than 0.5
(namely, 0.34, 0.26, 0.17, and 0.07), were not or only barely detectable (VF<0.01) in the
corresponding tumor samples. However, additional tumor-specific deleterious missense
variants with VFs ranging from 0.39 to 0.63 were found in these patients in TP53,
suggesting that the deleterious TP53 variants identified in blood-derived DNA were not
causal for the development of OC in these cases.

As in a sample of 1053 cancer-free female control individuals with a mean age at blood
draw of 59.3 years (range 19–80 years), no deleterious TP53 variants were identfied, it
can be concluded that age-related CH affecting the TP53 gene represents a rare event,
and the observed CH events in the study sample were rather chemotherapy-induced.
Also, CH events affecting the PPM1D gene were shown to be associated with prior
exposure to chemotherapy [34]. In the study sample of 523 OC patients, 24 (4.6%)
patients carried truncating variants in PPM1D with VF≤0.4, which were not or only
barely detectable in the corresponding tumor-derived DNA. Of these 24 PPM1D-positive
patients, 18 had completed first line platinum-based chemotherapy prior to blood draw,
and in 5 cases, blood was drawn during 1st line chemotherapy. In the control sample of
1053 cancer-free female individuals, one 77-year-old woman carried a nonsense variant
in PPM1D (VF=0.15). Thus, it can be concluded that CH events in TP53 and PPM1D
are primarily induced by exposure to chemotherapy, and less frequently by increased
age. Consequently, to avoid misdiagnosis of LFS1 and resulting unnecessary medical
interventions, non-homozygous deleterious TP53 variants should be confirmed in an
additional tissue, which is not part of the hematopoietic compartment, e.g. tumor,
fingernails, or hair follicles.

1equivalent to the classification as Non-functional in the IARC TP53 database [22] and/or pathogenic
according to the UMD TP53 database (https://p53.fr/tp53-database) and/or the Seshat TP53
variant classification tool [155], as of January to July 2018
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6 Discussion

This thesis aimed to improve multi-gene panel testing in the framework of genetic coun-
seling for persons at risk for familial BC/OC. The results contribute to an improvement
in terms of gene panel design, variant calling and variant interpretation. Many findings,
especially regarding variant detection and interpretation, are thereby also transferable
to multi-gene panel testing with respect to a variety of other diseases with a genetic com-
ponent, including other cancer entities [120,122,137], mental disorders [81], neurological
diseases [12,43], and metabolic diseases [157], among others.

6.1 Implications of case-control studies and polygenic risk
score validation for optimized multi-gene panel design

With the introduction of multi-gene panel sequencing into clinical diagnostics, parallel
screening of multiple disease-associated genes became feasible. Therefore, multi-gene
panels usually cover the (coding) exons and at least 20bp of flanking intronic sequences
of established risk genes. In addition, positions of common genetic variants, which may
also be localized in non-coding genomic regions, can be sequencing targets, if significant
correlations with disease development have been found in GWASs and the corresponding
effects can be summarized into PRSs. Moreover, polymorphisms can be used for ethnicity
checks and quality assurance purposes.

6.1.1 Gene selection for multi-gene panel analyses in genetic counseling of
women at risk for familial breast and ovarian cancer

The genetic landscape of hereditary BC and OC, as far as known at the present time,
is summarized in frequency-risk profiles in Fig. 6.1. Not coincidentally, BRCA1 and
BRCA2 were the first genes to be shown to be associated with the development of
BC/OC, as pathogenic variants within these genes have both high penetrance and preva-
lence, and hence, statistical significance can be achieved for comparatively small sample
sizes. With the collaboration of the GC-HBOC, the search for predisposing genetic
modificators of hereditary BC/OC is ongoing. In addition to the challenge of having
sufficiently large sample sizes to detect risk genes in which pathogenic variants have
low prevalence and/or penetrance, it is often problematic to clearly distinguish whether
genes associated with BC are actually also associated with OC, and vice versa. During
this thesis, FANCM and BARD1 were confirmed as risk genes for hereditary BC, and
BRIP1 was confirmed as highly penetrant OC risk gene without pronounced effects on
BC risk. Hence, coding regions of FANCM and BARD1 should be included in sequenc-
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Figure 6.1: Risk penetrance profiles (adapted from Turnbull et al. [171]) for pathogenic
variants in established risk genes for (left) breast and/or (right) ovarian can-
cer (BC/OC). Reported prevalences were estimated based on non-Finnish
Europeans under exclusion of TCGA data in ExAC [92], as described in
section 2.2.1.

ing targets of multi-gene panels for diagnostic germline testing of individuals at risk for
familial BC, and coding regions of BRIP1 for individuals at risk for familial OC, respec-
tively. Our conclusions were drawn based on the numbers of observed PTVs, that were
assumed to represent pathogenic variants without further evidence. In contrast, missense
mutations, whose pathogenicity usually cannot be conclusively clarified without further
experiments, were not integrated into the calculations, although a high penetrance can-
not be excluded. These limitations are common for gene association studies, as well as
the highly simplifying assumption that all pathogenic variants have a more or less simi-
lar effect on risk. This approach is no longer appropriate, particularly for well-explored
genes, e.g., BC/OC risks of BRCA1/2 germline mutation carriers are well-known to
vary significantly in dependence to their localization in specific regions [83,135,166,167].
A further example of the limitations in the simple distinction of a variant into either
pathogenic or non-pathogenic is the common variant NM 007194:c.470C>T in CHEK2.
Although its significant association with BC has been consistently demonstrated in sev-
eral studies and CHEK2 is a confirmed BC risk gene with moderate penetrance, the
variant contributes only slightly to an increase in BC risk: Han and colleagues reported
OR = 1.58 (95% CI: 1.42–1.75) based on a meta-analysis including 15985 BC cases and
18609 control individuals from eight studies [61]. Consequently, NM 007194:c.470C>T
is not treated as a pathogenic variant within the GC-HBOC [65], but has meanwhile
been integrated into several SNP sets for BC PRS calculation [84,109].

Inclusion of new genes in multi-gene panel analyses leads to the problem that risk
assessment, i.e., determination of the magnitude of a corresponding variant’s modifi-
cation on cancer risk, that determines genetic counseling, is based on little evidence,
and therefore uncertain. Even if several studies exist, and these are based on increas-
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ingly larger case numbers, estimates of cancer risks vary widely between them, primarily
due to biases based on the composition of the underlying study samples with regard to
ethnical background, familial predisposition, BC/OC subtypes, etc. Furthermore, risks
are age-dependent and cannot be directly derived from ORs or HRs. As part of the
development of the ASK2ME web service, Braun and colleagues introduced a statistical
framework for gaining age-specific penetrance risk estimates from such measures, which
is based on the strongly simplifying assumption that these ratios remain constant dur-
ing lifetime [23]. Therefore, our findings have been incorporated into their calculation
of cancer risks associated with mutations in BRIP1 [1]. The assumption of lifelong con-
stancy was also made for relative risks for inclusion of CHEK2 and ATM into the breast
cancer risk prediction model BOADICEA [91].

In addition to confirming risk genes and improving the estimation of associated risks,
the increasing amount of available data also facilitates the reliable exclusion of putative
risk genes and, through the detection of double mutation carriers, also increasingly allows
the investigation of the interplay of multiple risk genes in disease development. This is
exemplified by the work of Klaschik et al. [79], excluding variant NM 003979:c.183del in
GPRC5A as a modifier of BC risk in BRCA1 germline mutation carriers.

6.1.2 Inclusion of polymorphisms for polygenic risk score computation and
quality control

On the basis of a GWAS-independent study sample of female heterozygous CHEK2 PTV
carriers, my colleague Julika Borde and I were able to demonstrate that PRSs improve
personalized BC risk prediction [21]. The SNP sets utilized for PRS calculations in
our study, each comprise less than 100 loci, so that these PRSs have the potential to
be straightforwardly implemented in routine diagnostic multi-gene panel analyses. The
current version of the TruRisk® gene panel even covers slightly more than 300 loci of the
BRIDGES PRS SNP set implemented in the CanRisk tool [15] for BC risk prediction.
However, as of January 2021, the Polygenic Score (PGS) Catalog1, a database for poly-
genic risk scores [87], contains 101 PRSs for BC with numbers of considered loci ranging
from 9 to 6.4× 106 and 7 PRSs for OC risk prediction with numbers of considered loci
ranging from 11 to 36. Furthermore, some of the reported BC PRSs are specific to
certain BC subtypes, raising the question of which SNP set has the greatest utility and
informative value in the context of genetic counseling for individuals at risk for familial
BC/OC. Although several studies confirmed that predictive power of PRSs generally
increase with SNP set size [27], the extent of loci covered by a multi-gene panel should
be as limited as possible with respect to consumed resources in a routine diagnostic set-
ting. Clearly, genotyping of millions of loci is unfeasible. Moreover, Yanes and colleagues
pointed out that the additional SNPs discovered only with increasing power of GWASs,
tend to show smaller effects and therefore also contribute comparatively little to overall
PRS relative to other SNPs [187]. The distributions of effect sizes dependent on SNP set
size for the 101 BC PRSs listed in the PGS catalog are shown in Figure 6.2. In addition,

1https://www.pgscatalog.org
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the performance improvement for larger SNP sets resultig from larger GWASs may also
be caused by downward correction of already known associations (whose effects tend to
be overestimated in smaller studies), rather than solely due to the addition of numerous
loci with unexplained biological causality. Even if future research will have be deter-
mined the best-performing PRS set, its incorporation in BC/OC risk prediction cannot
be readily generalized. A potential pitfall is the assumption of absolute independence of
the PRS with other risk factors, such as germline mutation status and family history.
Exemplary is the SNP rs132390, which is associated with the CHEK2 founder mutation
c.1100delC, and which we therefore had excluded in our study [21]. With regard to
BRCA1/2 mutation carriers, a recent study by Coignard et al. [31] reported that (1)
several SNPs associated with BC risk in the general population are actually associated
with the BRCA1/2 mutation status, and hence do not have effects on BC risk in muta-
tion carriers, (2) in line with Kuchenbaecker et al. [84], average effect sizes of individual
SNPs tend to be smaller for mutation carriers than for the general population, and (3)
SNPs exist that have an effect on BC risk exclusively in BRCA1 or BRCA2 mutation
carriers, but not in the general population.

In addition, the potential of PRSs for risk stratification of PTV carriers is still poorly
known for many risk genes. However, a recent study confirmed the utility of a 86-
SNP PRS for carriers of PTVs in risk genes ATM and PALB2, besides BRCA1/2 and
CHEK2 [53].

The recognition of the contribution of multiple traits to individual disease risks rep-
resents a paradigm shift in both personalized risk predictions as well as the sequencing
strategy in clinical diagnostics. Up to now, multi-gene panel sequencing was applied to
identify single pathogenic variants in index patients, which were then confirmed or ex-
cluded in unaffected relatives by Sanger sequencing. Inclusion of PRSs in risk prediction
now requires sequencing of many loci in each individual.

Besides risk stratification for healthy individuals, polymorphisms have the potential
to be utilized for quality controls, namely checks for duplicated samples and ethnicity
backgrounds. The latter is especially crucial for the interpretation of PRSs, as GWASs
have so far been conducted primarily for populations of European descent, and hence,
can not be generalized to individuals of non-European descent [159]. Turner and col-
leagues pointed out that SNP sets of size ≥ 105 are required to yield reliable kinship
estimates [172]. Usually, so many SNPs are not covered in multi-gene panel analysis
in a clinical diagnostic setting. However, the covered set of independent SNPs should
at least be sufficient to identify duplicates, as exemplified by three monozygotic twin
pairs in our study [21]. Further, we demonstrated how ethnicity stratification based on
identity-by-state (IBS) values, i.e., for a pair of individuals i and j

IBSi,j =
1

N

N∑
k=1

(gi,k − pk)(gj,k − pk)

pk(1− pk)
,

where N is the number of SNPs, gi,k ∈ {0, 0.5, 1} is the genotype of person i at SNP k,
and pk is the frequency of SNP k, can be adapted to smaller SNP set sizes by introducing
nearest shrunken centroid classiers and an additional dimension to the analysis [21].
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Figure 6.2: Effect sizes of single nucleotide polymorphisms (SNPs) in dependence to set
size for 101 breast cancer (BC) polygenic risk scores (PRSs) as listed in the
Polygenic Score (PGS) Catalog, a database for PRSs [87] as of January 2021.
The smallest set consisted of 9 SNPs, while the largest consisted of 6390808
SNPs.
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6.2 Enhancement of variant detection

Louisa Lepkes and I demonstrated in our study that CNVs constitute a non-negligible
fraction in the spectrum of putative BC/OC-causing variants, namely 1.81% of 4208
GC-HBOC index patients were affected by at least one CNV in a cancer-predisposing
gene [94]. More than two-fifths of these CNVs were localized in genes other than
BRCA1/2. Therefore, CNV detection should become standard in genetic testing along-
side calling of SNVs and indels, and should be applied to all genes of interest. However,
consistent with many other studies we have also shown that CNV detection methods
are limited in terms of their sensitivity, but also their specificity. The combined use
of several tools does not sufficiently overcome these problems, as these are in principle
based on the same assumptions and methods, namely that after normalization for inter-
and intra-sample variance, CNVs determine observed read depths of mean read cover-
age per sequencing target in a way that these are approximately halfed or (at least)
doubled in comparison to other samples. Therefore, missed or wrong CNV predictions
frequently accumulate for the same sequencing targets among different approaches. An
improvement of the reliability of in silico CNV detection approaches, as required for
large-scale deployment in clinical diagnostics, depends on the development of more ca-
pable methods. I contribute to these efforts through the development of our inhouse
CNV detection approach OPaCNAT, which is based on the usage of generalized addi-
tive model (GAMs) [49], and has already been applied, for example, in the GeparOcto
study [130]. In a nutshell, my approach models centered read counts along the genomic
positions of a sequencing target as a product of two smooth functions, namely, a generic
background function that contributes to all samples under consideration and a sample-
specific smooth function which is used for final CNV calling. Therefore, in contrast to
other tools, the method takes FCs at several positions per sequencing target into account,
instead of examining only single values per target and sample, such as read counts or
mean read coverage. Due to this different form of input data, OPaCNAT has the poten-
tial to detect CNVs that are consistently missed by conventional approaches, as was the
case in the GeparOcto analyses for a duplication of exon 8 in NM 000059.3 (BRCA2 )
that was missed by the established in silico detection approaches ExomeDepth and
panelcn.MOPS (data not shown). The data generated in collaboration with Louisa Lep-
kes [94], comprising verified CNVs in 17 cancer predisposition genes of 4208 GC-HBOC
index patients, will serve as a comprehensive benchmark for the continued development
of OPaCNAT in the future. Furthermore, we have shown that the reliability of CNV
detection may benefit, in addition to an improvement of the available tools, from an
optimization of the sequencing target regions in terms of GC content and length. Accu-
mulation of false positive CNV predictions at the extremes of the length or GC content
distribution of sequencing targets, as observed for the SOPHiA DDM® software, can
be determined consistently for all tools under investigation, as exemplified in Figure 6.3
for panelcn.MOPS and ExomeDepth. Further examination is required to determine if
the performance of in silico CNV prediction can be noticeably improved by according
re-definition of CNV target regions, e.g., in terms of optimizing GC contents.
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Figure 6.3: False positive (FP, black) and false negative (FN, red) in silico CNV predic-
tions of ExomeDepth (left) and panelcn.MOPS (right) depending on sequenc-
ing target characteristics GC content, length and mappability. ρ: Spearman’s
rank correlation coefficient, p: asymptotic t approximation p value.

However, read depth-based CNV calling approaches are only applicable to deletions
or duplications spanning at least one sequencing target, and thus, have significant ef-
fects on observed read counts, or mean read coverage. Identification of a sample’s entire
mutational spectrum requires the additional application of split read-, read pair- and/or
assembly-based approaches, i.e., SV callers, beyond standard variant calling and read
depth-based CNV detection. Their relevance and standard applicability in routine diag-
nostics, as well as adequate wet lab verification of in silico predicted SVs, e.g., via long
read sequencing, is subject of ongoing research within the GC-HBOC.

6.3 Implications of observed variant fractions and in silico
predictions for variant interpretation

The proportion of VUS, whose clinical relevance to disease risk remains unclear, increases
proportionally with the number of genes tested in a multi-gene panel approach [124], and
assessment of these variants via multifactorial likelihood analysis requires input data,
e.g., on co-segregation, family cancer history, co-occurrence with further pathogenic
variants in the same gene, tumor pathology or case-control ratios, which are usually
not available. During this thesis, I contributed to the recognition that these difficulties
cannot be circumvented by the application of in silico prediction approaches alone, even
when their results are considered in combination [48]. Therefore, this practice should
not be considered for clinical laboratories providing genetic counseling.

However, with the increase of genetic testing and the establishment and extension of
comprehensive, systematic and centralized patient registries, preferably with follow-up
and under continuous counseling, information on multiple individuals with identical VUS
can be pooled. Thus, evidence for improved assessment of rare variants can be achieved.
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Figure 6.4: Log2 fold changes of variants fractions (VFs) observed in blood and corre-
sponding ovary tumor sample for rare variants (MAF < 0.01 with respect to
ExAC Non-Finnish Europeans under exclusion of TCGA data) in OC high
risk genes BRIP1 and RAD51C in 488 OC patients. Variants were pre-
viously classified according to the regulations of the ENIGMA consortium
using the IARC 5-tier variant classification system into classes 1/2 (benign),
3 (VUS), or 4/5 (pathogenic). Statistically signifcant deviations in VF (two-
sided Fisher p < 0.05 after Benjamini-Hochberg correction) are encoded in
orange.

In collaboration with Dr. Jan Hauke, I assessed the determination of variant pathogenic-
ity based on the comparison of VFs between blood and tumor samples considering
208 rare variants in 181 OC patients [64]. Our results demonstrate that significantly
decreased VFs in tumor tissue may provide a suitable criterion for the assessment of
BRCA1/2 variants as benign. We observed that these findings are principally transfer-
able to further OC risk genes besides BRCA1/2, as exemplified for BRIP1 and RAD51C
in Figure 6.4, although the prevalence of pathogenic germline mutations in these genes
was too low to achieve statistical significance in our study sample. Further and larger
studies are required to quantify the utility of these kind of LOH analysis for the classi-
fication of rare germline mutations affecting other genes and tumor entities, i.e., BC.

In collaboration with Konstantin Weber-Lassalle, I demonstrated that before inter-
preting variants in the TP53 risk gene, it must first be clarified whether chemotherapy-
induced and/or age-related CH might be present [181]. A recent study [19] also showed
significant associations of CH with age and chemotherapy exposure in moderate pene-
trant BC risk gene CHEK2, and of CH with age in the also moderate penetrant BC risk
gene ATM. These two genes were not included in our study design, although they are
examined as part of multi-gene panel analyses in clinical diagnostics, because our study
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sample consisted of OC patients. Another limitation of our study was that we could not
associate putative CH events with subsequent occurrence of hematologic cancer. This
was mainly due to the high mortality of ovarian cancer patients. Our results also show
that CH is not exclusively manifested in significantly reduced VFs compared with 0.5, as
we identified 3 putative CH events with VF ≥ 0.4 in the last exon of PPM1D. In addition,
Bolton and colleagues found putative CH events with VFs up to 0.78 [19]. Therefore,
confirmation of nonhomozygous deleteroius variants in ATM, CHEK2, and TP53 in an
additional tissue that is not part of the hematopoietic compartment is recommended
regardless of observed VFs.
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7 Conclusion

This thesis demonstrated that and how genetic counseling based on multi-gene panel
sequencing can be improved by comprehensive bioinformatic analyses as they are cur-
rently not provided by the automated, preferably commercial, solutions for NGS data
processing which are used as standard in many laboratories.

First, ethnicity checks are a prerequisite to be able to evaluate germline variants and
the applicability of PRSs, which were demonstrated to be eligible for personalized risk
prediction.

Second, standard variant calling must be supplemented by approaches for the detection
of large genomic rearrangements to explore the entire spectrum of putative damaging
variants. However, these in silico predictions must always be verified by additional
experiments, since existing methods tend to false positive calls.

Third, current methods for in silico variant annotation are inappropriate for clinical
decision making, but may give an indication of benignity, as well as a significant decrease
of tumor-derived VF in comaprison to germline VF. Before communication of a putative
disease-causing variant, the possibility of CH has to be considered.

With an increasing amount of available data and corresponding research by consortia
such as the GC-HBOC, personalized BC/OC risk prediction will continue to improve
in the coming years, and risk prediction will become more specific to variants than to
affected genes. The PRS will become available for people of non-European ethnicity and
its potential for risk prediction will be further improved by adjustment for tumor subtype,
germline mutation status but also application to specific questions such as the risk of
contralateral BC. With the recognition of the relevance of SVs in BC/OC development,
the corresponding detection methods, both wet and dry, will become more prevalent and
evolve in laboratories, and the contribution of such variants to BC/OC predisposition
will be better understood through the availability of more data. Furthermore, genetic
analyses are becoming increasingly important for personalized therapy decision-making,
e.g., an association of germline mutation status with therapy-induced CH is suspected
and is currently being investigated in one of our research projects at the Center for
Familial Breast and Ovarian Cancer in Cologne.
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