
 

 

 

Functional characterization of the transcription 

factor YjjQ in Escherichia coli 

 

 

 

I n a u g u r a l ‐ D i s s e r t a t i o n 

zur 

Erlangung des Doktorgrades 

der Mathematisch‐Naturwissenschaftlichen Fakultät 

der Universität zu Köln 

 

 

vorgelegt von 

Katrin Dreck 

geb. in Troisdorf 

 

 

 

 

 

Köln, den 6. Mai 2013 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Berichterstatter: Prof. Dr. Karin Schnetz 

 Prof. Dr. Jürgen Dohmen 

 

Tag der mündlichen Prüfung: 8. Juli 2013  



Contents 

Zusammenfassung .......................................................................................................................... 1 

Abstract ........................................................................................................................................... 3 

1. Introduction ........................................................................................................................... 4 

1.1 Escherichia coli .................................................................................................................. 4 

1.2 Biofilm formation .............................................................................................................. 6 

1.3 Regulation of extracellular matrix production in Escherichia coli .................................... 8 

1.3.1 Curli protein fibers ..................................................................................................... 9 

1.3.2 Cellulose polysaccharide fibrils................................................................................ 11 

1.3.3 A pivotal role for c‐di‐GMP ...................................................................................... 12 

1.3.4 Additional regulation provided by small regulatory RNAs ...................................... 14 

1.4 FixJ/NarL‐type transcription factors of Escherichia coli ................................................. 16 

1.5 The FixJ/NarL‐type transcription factor YjjQ .................................................................. 19 

1.6 Aim of this thesis ............................................................................................................ 21 

2. Results ................................................................................................................................. 22 

2.1 Characterization of dimerization properties between FixJ/NarL‐type transcription 

factors in E. coli ............................................................................................................... 22 

2.1.1 The “Bacterial Adenylate Cyclase Two‐Hybrid” (BACTH) system ............................ 22 

2.1.2 The cI‐α bacterial two‐hybrid system ...................................................................... 26 

2.1.3 The LexA‐based bacterial two‐hybrid system ......................................................... 28 

2.2 Analysis of microarray data regarding genes affected by YjjQ ....................................... 32 

2.3 Morphotype expression in E. coli ................................................................................... 37 

2.3.1 Phenotypic analysis of E. coli strains defective in curli and/or cellulose     

production ............................................................................................................... 38 

2.3.2 Phenotypic analysis of E. coli strains defective in the yjjQ locus ............................ 41 

2.3.3 Phenotypic analysis of E. coli strains expressing YjjQ .............................................. 42 

2.4 Biofilm formation of E. coli K‐12 is impaired following YjjQ expression ........................ 46 

2.5 Motility of E. coli K‐12 and UPEC strain 536 is repressed by YjjQ .................................. 49 

2.6 Investigation of UPEC adhesion with the help of in vitro model systems ...................... 52 

2.6.1 Adhesion assay ........................................................................................................ 53 



2.6.2 Microscopic visualization of E. coli adhesion .......................................................... 58 

3. Discussion ............................................................................................................................ 66 

3.1 YjjQ is a pleiotropic repressor in E. coli .......................................................................... 66 

3.2 Morphotype analysis ...................................................................................................... 68 

3.3 Biofilm assay ................................................................................................................... 69 

3.4 Motility assay .................................................................................................................. 71 

3.5 Investigation of UPEC adhesion with the help of in vitro model systems ...................... 72 

3.6 Putative functions of YjjQ in E. coli ................................................................................. 73 

4. Material and Methods ......................................................................................................... 77 

4.1 Material........................................................................................................................... 77 

4.1.1 Bacterial strains, plasmids, and oligonucleotides ................................................... 77 

4.1.2 Media, buffers and antibiotics................................................................................. 86 

4.1.3 Eukaryotic cell culture items ................................................................................... 88 

4.2 Methods .......................................................................................................................... 89 

4.2.1 Standard molecular techniques ............................................................................... 89 

4.2.2 Cell culture‐related techniques ............................................................................... 97 

5. Appendix ............................................................................................................................ 101 

5.1 Comparison of yjjQ nucleotide sequences and deduced amino acid sequences of 

different E. coli strains .................................................................................................. 101 

5.2 Summary of the microarray data analysis .................................................................... 103 

5.3 Description of putative YjjQ target loci identified by the microarray .......................... 109 

6. References ......................................................................................................................... 125 

Abbreviations .............................................................................................................................. 146 

Figure Index ................................................................................................................................. 148 

Table Index .................................................................................................................................. 149 

Danksagung ................................................................................................................................. 150 

Erklärung ..................................................................................................................................... 151 

Lebenslauf ................................................................................. Fehler! Textmarke nicht definiert. 

 



 

1 

Zusammenfassung 

YjjQ ist ein Transkriptionsfaktor des FixJ/NarL‐Typs, der in kommensalen und pathogenen E. coli 

wie enterohämorrhagischen Escherichia coli (EHEC), uropathogenen E. coli (UPEC) sowie in 

Citrobacter und Enterobacter konserviert ist. YjjQ wurde zuvor mit bakterieller Virulenz, 

Motilität und Adhäsion in Zusammenhang gebracht. Eine Microarray Analyse durchgeführt in 

E. coli K‐12 und dem UPEC Stamm CFT073 zeigte, dass yjjQ‐Überexpression in einer 

signifikanten Repression von mehreren Loci resultiert. 

Einer der durch yjjQ‐Überexpression wesentlich reprimierten Loci ist der bcs‐Locus 

verantwortlich für die Synthese von Cellulose. Dieses Exopolysaccharid ist eine 

Hauptkomponente der bakteriellen Extrazellulären Matrix (ECM). Weitere Bestandteile der 

ECM sind adhäsive amyloide Fasern genannt Curli. Die ECM erleichtert Zell‐Zell‐ und Zell‐

Oberfläche‐Kontakte, wodurch sie erheblich zur Bildung von Biofilmen beiträgt. Diese 

Oberflächen‐assoziierten multizellulären Gemeinschaften repräsentieren den vorherrschenden 

Lebensstil von Bakterien. Wildtyp Enterobacteriaceae, die Cellulose und Curli co‐exprimieren, 

weisen eine markante Kolonienmorphologie auf Congo Rot Indikatorplatten auf welche als 

“red, dry and rough” (rdar) Morphotyp bezeichnet wird. 

Eine vermeintliche Repression des bcs‐Locus durch YjjQ legt nahe, dass dieser 

Transkriptionsfaktor die Zusammensetzung der ECM beeinträchtigt. Aus diesem Grund wurde 

die Auswirkung der Expression von YjjQ auf den Morphotyp von Wildtyp und mutierten UPEC 

536 Stämmen untersucht. YjjQ schwächt den rdar Morphotype deutlich ab. Um den Einfluss von 

YjjQ auf die Biofilm‐Bildung von E. coli K‐12 und UPEC 536 Stämmen zu analysieren wurde ein 

Biofilm Assay durchgeführt. Bakterielle Adhäsion an Polystyrol wird wesentlich durch YjjQ 

reprimiert. Diese Daten implizieren, dass YjjQ als ein Suppressor von multizellulärem Verhalten 

und möglicherweise Adhäsion in Enterobacteriaceae fungiert. 

Ein weiterer mutmaßlicher durch YjjQ negativ regulierter Locus ist flhDC, welcher den 

Hauptregulator der flagellären Motilität kodiert. Dies weist darauf hin, dass YjjQ bakterielle 

Motilität negativ kontrolliert. Aus diesem Grund wurde die Wirkung von YjjQ auf die Motilität 

von E. coli K‐12 und UPEC 536 Stämmen untersucht. Dies zeigte, dass Motilität erheblich durch 

YjjQ reprimiert wird. Dies weist darauf hin, dass dieses Protein neben der Inhibition der Biofilm‐
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Bildung auch ein Suppressor der flagellären Motilität ist. Diese neu identifizierten Funktionen 

von YjjQ legen nahen, dass dieser Transkriptionsfaktor ein wichtiger Regulator ist, der in das 

Netzwerk, welches Adhäsion versus Motilität kontrolliert, involviert ist. 

  



 

3 

Abstract 

YjjQ is a FixJ/NarL‐type transcriptional regulator conserved in commensal and various 

pathogenic bacteria such as enterohaemorrhagic Escherichia coli (EHEC), uropathogenic E. coli 

(UPEC) as well as Citrobacter and Enterobacter. YjjQ was previously implicated to play a role in 

bacterial virulence, motility, and adhesion. Microarray analysis performed in E. coli K‐12 and 

UPEC strain CFT073 revealed that yjjQ overexpression results in significant downregulation of 

multiple loci. 

One of the putative loci considerably repressed by YjjQ is the bcs locus dedicated to cellulose 

synthesis. This exopolysaccharide is a major component of the bacterial extracellular matrix 

(ECM). Additional ECM constituents are adhesive amyloid fibers called curli. The ECM facilitates 

cell‐cell and cell‐surface contacts thereby largely contributing to biofilm formation. These 

surface‐associated multicellular communities represent the prevalent bacterial lifestyle. Wild‐

type Enterobacteriaceae co‐expressing cellulose and curli exhibit a distinctive colony 

morphology on Congo Red indicator plates called the red, dry and rough (rdar) morphotype. 

Putative repression of the bcs locus by YjjQ suggests that this transcription factor may affect 

ECM composition. Therefore the effect of YjjQ expression on the morphotype of wild‐type and 

mutant UPEC 536 strains was investigated. YjjQ was found to considerably weaken the rdar 

morphotype compared to the control. To examine the influence of YjjQ on biofilm formation of 

wild‐type and mutant E. coli K‐12 and UPEC 536 strains a biofilm assay was performed. YjjQ 

substantially represses bacterial adhesion to polystyrene. These data suggest that YjjQ acts as a 

suppressor of multicellular behavior and possibly adhesion of Enterobacteriaceae. 

Another putative target locus negatively regulated by YjjQ is flhDC encoding the master 

regulator of flagellar motility. This implies that YjjQ may impinge upon bacterial motility. 

Therefore the impact of YjjQ on motility of wild‐type and mutant E. coli K‐12 and UPEC 536 

strains was investigated. YjjQ was found to substantially repress motility suggesting that 

besides inhibiting biofilm formation, it also acts as a suppressor of flagellar motility. These 

newly identified functions of YjjQ indicate that this transcription factor may be an important 

regulator involved in the network controlling adhesion versus motility. 
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1. Introduction 

Escherichia coli is one of the most commonly used model organisms in molecular biology and a 

valuable tool in biotechnology. Naturally occurring E. coli may encounter many detrimental 

conditions such as desiccation, starvation or acid stress. Therefore bacteria have to be prepared 

to react appropriately to these threads by mounting immediate responses. One universal 

survival strategy of bacteria confronted with stress is the formation of biofilms. These adhesive 

multicellular consortia offer plenty of benefits. Bacteria enclosed in a biofilm are protected 

against virtually all kinds of aggressions from the outside world. The biofilm lifestyle can be 

attributed to pronounced gene regulation governed in large part by transcription factors. In this 

way these regulatory proteins account for the broad success of bacteria in withstanding 

external assaults. In this thesis, the role of the FixJ/NarL‐type transcription factor YjjQ is 

investigated in E. coli with a focus on biofilm formation. 

 

 

1.1 Escherichia coli 

The family of Enterobacteriaceae is a large group of gram‐negative bacteria consisting of 

multiple species such as Salmonella spp., Klebsiella ssp., Yersinia spp., and Escherichia spp. 

(Sanderson, 1976). Escherichia coli co‐exists as a symbiotic organism in vertebrates, being most 

prevalent in mammals including humans. It inhabits the lower gastrointestinal tract thereby 

constituting the normal gut flora of warm‐blooded animals (Hartl & Dykhuizen, 1984). The non‐

pathogenic E. coli strain K‐12 was isolated in 1922 from a stool sample of a patient convalescent 

from diphtheria and is since then used routinely in microbiological and genetic research 

(Bachmann, 1972). 

The gastrointestinal tract, due to its trait of being a comfortable ecological niche for microbes, 

is prone to be infected with a variety of well‐adapted pathogenic bacteria. Among the intestinal 

pathogenic E. coli found in humans are enteropathogenic E. coli (EPEC), enterohaemorrhagic 

E. coli (EHEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), enteroinvasive 

E. coli (EIEC) and diffusely adherent E. coli (DAEC), all of them causing severe diarrhea (Kaper et 

al., 2004). However, extraintestinal pathogenic E. coli (ExPEC) that colonizes tissues and organs 

other than the gut can elicit serious diseases as well. ExPEC include neonatal meningitis‐causing 
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E. coli (NMEC), uropathogenic E. coli (UPEC), and avian pathogenic E. coli (APEC) (Smith et al., 

2007). APEC evokes systemic infections in domesticated birds causing high mortality in poultry 

such as chickens and turkeys (Mokady et al., 2005). APEC strains are very similar to the 

reference UPEC strains as evident by comparison of their genome (Johnson et al., 2007, Moulin‐

Schouleur et al., 2007). 

UPEC is the primary cause of community‐acquired and nosocomial urinary tract infections 

(UTIs), one the most common bacterial infections in humans at all. Especially women suffer 

from UTIs and will probably experience more than one infection in their lifetime because UTIs 

have a high rate of recurrence (Bower et al., 2005). UPEC employs a diverse repertoire of 

virulence factors, as it harbors more genes encoding iron acquisition systems (e.g. 

siderophores), adhesins (e.g. type 1 fimbriae), and secreted toxins (e.g. α‐hemolysin, cytotoxic 

necrotizing factor 1, and autotransporters) than E. coli K‐12 laboratory strains and commensal 

isolates (Wiles et al., 2008). These virulence‐associated genes are usually organized in 

pathogenicity islands that have been acquired by horizontal gene transfer (Hacker & Kaper, 

2000, Gal‐Mor & Finlay, 2006). 

UPEC has evolved a number of strategies to evade the defense system of the host (Hunstad & 

Justice, 2010). In the course of an UTI, UPEC invades urothelial host cells and establishes 

biofilm‐like intracellular bacterial communities (IBCs) (Anderson et al., 2004). UPEC 

preferentially colonizes the bladder causing uncomplicated cystitis, but it can also ascend 

through the ureters into the kidneys, causing acute pyelonephritis. Severe cases of 

pyelonephritis can lead to renal failure or the entrance of UPEC into the bloodstream thereby 

causing systemic infections such as sepsis (Sivick & Mobley, 2010). 

Two sequenced UPEC strains frequently used in molecular research are the human 

pyelonephritis isolates CFT073 (O6:K2:H1) and 536 (O6:K15:H31) (Welch et al., 2002, 

Brzuszkiewicz et al., 2006). A conventional mode of bacterial classification is based on different 

cell surface structures. By this method pathogenic E. coli are categorized into so‐called 

serotypes. The O groups characterize the lipopolysaccharide (LPS) moiety of the cell wall. The K 

groups characterize capsular polysaccharides. The H groups characterize proteinaceous 

components belonging to flagella (Orskov et al., 1977). These surfaces structures elicit immune 



1. Introduction 

6 

responses in the host and therefore represent antigenic determinants. Furthermore, they also 

largely contribute to biofilm formation. 

 

 

1.2 Biofilm formation 

The ability to adapt quickly to various surroundings is essential for bacteria as they are exposed 

to constantly changing environmental conditions. This adaptation involves modification of 

signal transduction mechanisms that communicate information from the outside into the cell. 

Most of these mechanisms ultimately result in alteration of transcription in order to achieve the 

most favorable lifestyle under the given circumstances. The two main bacterial lifestyles are the 

planktonic lifestyle and the biofilm lifestyle. Planktonic bacteria are freely swimming and 

therefore highly motile. But the planktonic lifestyle occurs on the single cell level which 

represents a rather unfavorable bacterial existence. In contrast to the planktonic lifestyle which 

is rarely found in nature, the majority of bacteria has a strong tendency towards a surface‐

associated mode of growth (Zobell, 1943). On that account biofilms represent the prevalent 

bacterial lifestyle in most ecosystems. 

Biofilms are characterized by the formation of cellular communities with coordinated behavior 

that thrive on different surfaces and interfaces. This process depends on the production of a 

cohesive conglomeration of versatile biopolymers by the bacteria themselves. This vast array of 

exopolysaccharides, secreted proteins, and cell‐surface adhesins is collectively termed the 

extracellular matrix (ECM; also termed EPS for extracellular polymeric substance) (Branda et al., 

2005, Flemming & Wingender, 2010). 

Aggregation of bacterial cells belonging to different species facilitates acquisition of new 

genetic traits, which enhances the genetic diversity of these bacteria (Davey & O'Toole, 2000). 

Such multi‐species biofilms prevail in natural settings, whereas single‐species biofilms play a 

fundamental role in a variety of infections (e.g. Pseudomonas aeruginosa in cystic fibrosis) (see 

chapter 5.3). Biofilms are the cause of numerous persistent and chronic infections, as they 

often are resistant to antimicrobial agents (Mah & O'Toole, 2001). Subinhibitory concentrations 

of antibiotics can actually lead to biofilm formation in the first place (Hoffman et al., 2005). 
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Reduced susceptibility of biofilm bacteria to drugs is a crucial problem for treatment of these 

infections (Ito et al., 2009). 

Biofilm formation is first of all dependent on the specific attributes of each particular bacterial 

strain as well as on the properties of the surface being colonized. Beyond that, manifold 

environmental cues such as temperature, osmolarity, pH, and nutrient, iron as well as oxygen 

availability exert a considerable influence on biofilm formation (O'Toole et al., 2000). Further 

signals stimulating sessility can also be produced and secreted by the bacteria themselves. 

These so‐called autoinducers accumulate extracellularly thereby correlating with population 

density. At high concentrations, autoinducers trigger signal transduction cascades that lead to 

biofilm formation. This mechanism of cell‐cell communication in bacteria is called quorum 

sensing (López et al., 2010). 

Structural organization and the formation of differentiated microcolonies are hallmarks of 

biofilms. A biofilm forms as a sequence of defined stages beginning with the reversible 

attachment of bacterial cells to a surface. In the next stage the ECM is produced resulting in 

committed attachment. After that the early biofilm shape develops followed by the maturation 

into an elaborated architecture. The final step is the release of individual cells or whole groups 

of cells from the biofilm (Stoodley et al., 2002). Under laboratory conditions, the characteristic 

biofilm architecture can be observed on special indicator plates as rugose or wrinkled colony 

morphology. Bacteria expressing biofilm determinants display a peculiar phenotype called the 

red, dry, and rough morphotype (Römling, 2005) (see chapter 2.3). 

The decision for a sedentary lifestyle is a complex course of events that involves all levels of 

gene regulation. Synthesis and assembly of adhesive structures are costly and have to be 

coordinated with the expression of motility structures. For instance, the transition from motility 

to adhesion requires down‐regulation of flagellar motility at the transcriptional, post‐

transcriptional, protein activity and protein degradation levels. Consequently, adhesion and 

motility can be considered as mutually exclusive cellular states. This is reflected in a distinctive 

inverse regulation of the pathways leading to the development of either adhesion or motility 

(Pesavento et al., 2008). Extrinsic stimuli detected by specialized cell surface receptors are 

transmitted via signaling cascades to transcriptional regulators. These mediators consequently 
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target the adequate genes to be either activated or silenced under the conditions perceived. If 

transition to a community‐based lifestyle is triggered, expression of motility‐associated genes is 

downregulated while expression of genes encoding adhesion structures is upregulated. 

The model described above represents a simplistic version of biofilm formation because 

adhesion and the biofilm lifestyle are not synonymous terms. It was shown that motility is an 

important process especially during the early stages of biofilm formation (Pratt & Kolter, 1998). 

However, this correlation is strongly dependent on the growth conditions of the bacteria. 

Furthermore, synthesis and activity of flagella influences the elaborated architecture of mature 

biofilms in E. coli (Wood et al., 2006). Besides transcription factors, the bacterial second 

messenger 3',5'‐cyclic dimeric guanosine monophosphate (c‐di‐GMP) embodies a pivotal 

regulator of the transition between bacterial lifestyles. Moreover, small regulatory RNAs 

(sRNAs) contribute largely to modulating the output of signal transduction pathways leading to 

biofilm formation. The involvement of c‐di‐GMP and sRNAs in the regulation of ECM production 

is described in the chapters 1.3.3 and 1.3.4, respectively. 

 

 

1.3 Regulation of extracellular matrix production in Escherichia coli 

The extracellular matrix (ECM) is a complex structure of different constituents that enables 

bacteria to interact adequately with their environment. The ECM alone can account for over 

90% of the dry mass of a biofilm and therefore plays an important role for its structural 

integrity. In Enterobacteriaceae, a large part of the ECM is made up of protein appendages 

called curli and the polysaccharide cellulose, but water is by far the prevalent component. The 

highly hydrated matrix embeds bacterial cells in a tightly packed network which confers 

mechanical and chemical protection and enhances resistance to environmental stresses. In 

addition to providing a survival advantage in the face of hostile conditions, the ECM also 

facilitates cell‐cell and cell‐surface contacts (Branda et al., 2005, Flemming & Wingender, 2010). 
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1.3.1 Curli protein fibers 

Curli are the major proteinaceous constituents of the bacterial ECM (Larsen et al., 2007). These 

amyloid fibers consist of extremely stable β sheet‐rich polymers with adhesive properties that 

promote cell aggregation and community behavior, both processes being prominent features of 

biofilms. But curli not only provoke interactions between individual bacteria, they also support 

attachment to various biotic and abiotic surfaces which also contributes largely to biofilm 

formation (Blanco et al., 2012, Prigent‐Combaret et al., 2000). Moreover, curli have been 

implicated to play roles in host colonization, invasion, and pathogenesis (Barnhart & Chapman, 

2006). Curli fibers of E. coli are classified as functional amyloids because they serve at least one 

specific purpose for the organism (Epstein & Chapman, 2008, Wang & Chapman, 2008). But 

amyloid structures can also be found within deposits of misfolded proteins causing harm in 

human tissues and organs like the brain. For that reason amyloids are associated with 

neurodegenerative diseases such as Alzheimer’s and Parkinson’s, so‐called amyloidoses (Chiti & 

Dobson, 2006). 

In Enterobacteriaceae there are two homologous but inconsistently designated operons 

dedicated to curli expression. Nevertheless the protein products of the csg (curlin subunit gene) 

operons in E. coli and the agf (thin aggregative fimbriae) operons in S. typhimurium exert 

analogous functions (Römling et al., 1998). The csgDEFG operon encodes proteins required for 

curli assembly (Hammar et al., 1995) (Figure 1). The FixJ/NarL‐type transcription factor CsgD in 

turn activates transcription of the csgBAC operon wherein csgA codes for the predominant 

structural component of extracellularly polymerized curli (Chapman et al., 2002). The csgBAC 

operon is repressed by the global repressor H‐NS (Arnqvist et al., 1994). CsgD plays a critical 

role in ECM production because besides inducing curli gene expression, it indirectly modulates 

cellulose synthesis by activating the protein YaiC responsible for c‐di‐GMP synthesis (Römling et 

al., 2000) (see chapter 1.3.3). CsgD therefore represents a master regulator of ECM production. 

In addition, CsgD directly represses transcription of operons involved in flagella synthesis by 

binding to a site in the regulatory region that overlaps with the binding site for the master 

regulator of flagellar motility (Ogasawara et al., 2011). This is just one example for the 

exceptionally complex reciprocal regulation of motility and adhesion. 
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The regulation of curli expression is responsive to different environmental conditions such as 

temperature and salt concentration of the growth medium. In general, E. coli laboratory strains 

like K‐12 derivatives have poor adhesive capacities because of low curli expression levels. Curli 

are maximally expressed at temperatures below 37°C in media without salt (Olsén et al., 1989, 

Bokranz et al., 2005). But when E. coli is grown as a biofilm, it is also able to produce curli at 

37°C which enhances adherence to epithelial host cells (Kikuchi et al., 2005). It is speculated 

that curli expression below 37°C is an adaptation mechanism of bacteria to survival outside an 

animal host (Prigent‐Combaret et al., 2000, Olsén et al., 1993). 

 

 

 

Figure 1: Regulation of csg gene expression in E. coli leading to curli synthesis. 
Transcription of the csgDEFG operon is stimulated by the second messenger c‐di‐GMP produced by 
YdaM. Expression of the FixJ/NarL‐type transcription factor CsgD induces transcription of the csgBA 
operon. Export and subsequent polymerization of CsgA and CsgB leads to extracellular assembly of curli. 

 

The csgD promoter is the central part of one of the most complex signaling networks found in 

the E. coli genome. This intricate regulation involves an extensive interplay of positive as well as 

negative regulators (Ogasawara et al., 2010). The csgD promoter is directly bound or indirectly 

affected by at least 10 different transcriptional regulators such as the general stress sigma 

factor RpoS, the global repressor H‐NS, and the global transcriptional regulator Cra (Olsén et al., 

1993, Römling et al., 1998). CsgD itself modulates RpoS expression thereby indirectly affecting 

expression of other RpoS regulon target genes (Gualdi et al., 2007). Cra induces biofilm 

formation in E. coli by activating curli synthesis. Transcription of the csgDEFG operon is 

regulated by Cra which binds to the promoter region (Reshamwala & Noronha, 2011). 
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Furthermore, various two‐component systems (TCSs) affect curli gene expression. These 

systems constitute signaling pathways that regulate fundamental processes including cell 

differentiation, stress responses, and biofilm formation triggered by extrinsic stimuli (Majdalani 

& Gottesman, 2005, Gao & Stock, 2009). Curli synthesis in E. coli is under positive control of the 

EnvZ‐OmpR two‐component system (Vidal et al., 1998, Prigent‐Combaret et al., 2001). The 

response regulator OmpR modulates curli gene expression in response to osmolarity by binding 

to the csgD promoter in E. coli and S. typhimurium (Jubelin et al., 2005, Gerstel et al., 2006). 

Moreover, the CpxAR (Dorel et al., 1999) and the RcsCDB two‐component systems (Vianney et 

al., 2005) negatively regulate curli expression in E. coli (see chapter 1.4). 

 

 

1.3.2 Cellulose polysaccharide fibrils 

Cellulose is one of the most abundant organic macromolecules in nature as it constitutes the 

primary structural element of cell walls in higher plants (Ross et al., 1991, Whitney & Howell, 

2013). Beyond being produced by fungi, algae, and plants, cellulose was identified in 

S. typhimurium as the second principal constituent of the bacterial ECM (Zogaj et al., 2001, 

Solano et al., 2002). The investigation of further Enterobacteriaceae family members confirmed 

its presence in a variety of other species (Zogaj et al., 2003). 

The homopolymer cellulose is composed of covalently β‐1,4‐linked linear D‐glucose monomer 

chains. Bundles of many glucan chains are aligned in the same orientation to form highly 

organized insoluble fibrils. This parallel arrangement confers considerable strength and 

resilience to the cellulose fibrils (Ross et al., 1991). The fluorescent dye Calcofluor White binds 

to cellulose and can therefore be used to visualize cellulose expressing bacteria in liquid culture 

or on solid medium (Zogaj et al., 2001, Solano et al., 2002). 

Cellulose synthesis is mediated by the bacterial cellulose synthesis (bcs) locus comprising the 

operons yhjRbcsQbcsABZC and bcsEFG (Figure 2). The bcs genes appear to be transcribed 

constitutively in S. typhimurium and natural E. coli isolates (Zogaj et al., 2001). The bcsA gene 

codes for the catalytic subunit of cellulose synthase located in the inner membrane of the 

bacterial cell wall (Römling, 2002). It presumably catalyzes cellulose polymerization from the 

precursor molecule uridine diphosphate (UDP)‐glucose and facilitates translocation of the 
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polymer across the inner membrane (Whitney & Howell, 2013, Ross et al., 1991). The BcsA 

protein possesses a specialized C‐terminal domain designated PilZ which serves as binding 

domain for c‐di‐GMP. Cellulose synthesis is therefore linked to the second messenger which is 

central in controlling the switch between motility and sessility (discussed in the next chapter) 

(Amikam & Galperin, 2006, Ryjenkov et al., 2006). 

 

 

 

Figure 2: Regulation of cellulose synthesis in E. coli. 
The FixJ/NarL‐type transcription factor CsgD induces transcription of yaiC. Expression of YaiC is 
stimulated by the second messenger c‐di‐GMP produced by YdaM. BcsA, the catalytic subunit of 
cellulose synthase, is expressed from the bcsABZC operon. The activity of BcsA is stimulated by binding 
of c‐di‐GMP produced by YaiC leading to cellulose production. 

 

 

1.3.3 A pivotal role for c-di-GMP 

The bacterial second messenger c‐di‐GMP was discovered as an allosteric activator of cellulose 

biosynthesis in Gluconacetobacter xylinus (Ross et al., 1987). c‐di‐GMP‐mediated pathways are 

highly abundant signal transduction mechanisms in many bacteria (Jenal & Malone, 2006). It 

was shown that c‐di‐GMP stimulates transcription of the ECM master regulator csgD (Figure 1) 

and yaiC (Figure 2), encoding a c‐di‐GMP synthesizing enzyme itself, in E. coli (Weber et al., 

2006). The presence of c‐di‐GMP produced by YaiC is in turn compulsory for activation of BcsA 

and therefore for cellulose synthesis (Figure 2). Moreover, c‐di‐GMP constrains bacterial 

motility via binding to the PilZ domain of YcgR, a protein that interacts with motor proteins at 

the flagellar basal body in E. coli (Fang & Gomelsky, 2010, Boehm et al., 2010). High c‐di‐GMP 
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levels further provoke cellulose accumulation in Salmonella which interferes with motility by 

impeding flagellar rotation through steric hindrance (Zorraquino et al., 2013). 

The turnover of c‐di‐GMP in bacteria is mainly regulated by enzymes harboring the GGDEF and 

EAL protein motifs, respectively (Tal et al., 1998). These ubiquitous effector domains represent 

antagonists in c‐di‐GMP metabolism (Figure 3). The diguanylate cyclase (DGC) activity of the 

GGDEF motif is responsible for the synthesis of c‐di‐GMP from two GTP molecules (Ryjenkov et 

al., 2005). EAL domain proteins act as phosphodiesterases (PDEs) that catalyze hydrolysis of c‐

di‐GMP to linear pGpG (Schmidt et al., 2005). GGDEF and EAL domain proteins represent two of 

the largest protein superfamilies of bacteria, especially in Gram‐negative bacteria (Römling & 

Amikam, 2006). 

 

 

 

Figure 3: The transition between the two main bacterial lifestyles is ruled by c‐di‐GMP. 
High c‐di‐GMP levels are a consequence of diguanylate cyclase (DGC) activity which results in biofilm 
formation. Low c‐di‐GMP levels are a consequence of phosphodiesterase (PDE) activity which results in 
the planktonic lifestyle. 

 

Diguanylate cyclases and phosphodiesterases inversely regulate the transitions between 

sessility and motility and have opposite effects on several modes of multicellular behavior in 

S. typhimurium and E. coli. High c‐di‐GMP concentrations increase adherence to solid surfaces 

while low concentrations of c‐di‐GMP favor swarming and swimming (Simm et al., 2004). 

The importance of c‐di‐GMP signaling in the pathway regulating ECM production is emphasized 

by the fact that in E. coli, the two key DGCs YdaM and YaiC are expressed in a strict hierarchical 

manner thereby ensuring a chronologically defined sequence of events that culminates in 

biofilm formation (Weber et al., 2006) (Figure 4). Thus the regulatory cascade responsible for 

adhesion and biofilm formation is very fine‐tuned and underlies a tight control which 
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guarantees spatially and temporally confined signaling. This quality is greatly reinforced by 

intensive signal relaying through small regulatory RNAs (discussed in the next chapter). 

 

 

 

Figure 4: Integration of the different signal transduction pathways inducing biofilm formation in E. coli. 
The FixJ/NarL‐type transcription factor CsgD and the second messenger c‐di‐GMP activate the 
expression of curli and cellulose, the two major components of the bacterial extracellular matrix. 

 

 

1.3.4 Additional regulation provided by small regulatory RNAs 

Besides the tremendous complexity of the dynamic interactions of transcription factors with 

the csg regulatory region on the DNA, the csgD mRNA acts as a counterpart on the RNA level 

through the action of small regulatory RNAs (sRNAs). sRNAs are non‐coding RNAs that exert 

their regulatory function by annealing to target mRNAs (Waters & Storz, 2009). The RNA‐

binding protein Hfq aids in base‐pairing of sRNAs to mRNAs by promoting sRNA stability and 

sRNA‐mRNA duplex formation. Hfq‐dependent sRNAs mostly impair translation or stability of 

their target mRNAs (Storz et al., 2004). 

The 5’ untranslated region (UTR) of csgD mRNA serves as regulatory hub of post‐transcriptional 

signal integration (Boehm & Vogel, 2012, Chambers & Sauer, 2013, Van Puyvelde et al., 2013). 

In E. coli, csgD mRNA is repressed by five sRNAs that preferentially anneal upstream of the 

ribosome binding site (RBS) thereby interfering with translational initiation (Figure 5). 

Transcription of these sRNAs is triggered by various input signals such as cell surface stress or 

oxidative stress (Jørgensen et al., 2012). For instance, induction of the sRNA RprA via the 
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RcsCDB two‐component system results in repression of the ECM master regulator CsgD and of 

the diguanylate cyclase YdaM in E. coli. RprA base‐pairs to the csgD and ydaM mRNAs in an Hfq‐

depending manner (Mika et al., 2012). 

 

 

 

Figure 5: Expression of the FixJ/NarL‐type transcription factor CsgD in E. coli is repressed by sRNAs. 
Translation of the csgD mRNA is repressed by the binding of at least five different sRNAs. 

 

In conclusion, signal transduction inducing biofilm formation via the activation of the FixJ/NarL‐

type transcription factor CsgD is exceptionally complex. Activities of transcription factors, the 

second messenger c‐di‐GMP, and sRNA regulators are integrated at both transcriptional and 

post‐transcriptional gene expression levels. 
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1.4 FixJ/NarL-type transcription factors of Escherichia coli 

Transcription factors are proteins that are essential for regulating gene expression in 

prokaryotes and eukaryotes. In most cases, these proteins act by binding to regulatory regions 

on the DNA thereby affecting gene transcription. In this way the interplay of various 

transcription factors largely determines the cellular fate. 

The FixJ/NarL family of transcriptional factors comprises 19 members in E. coli K‐12 

(www.uniprot.org). Most of them are similar in size with a length of about 200 amino acids. 

FixJ/NarL‐type transcription factors can be classified into three groups according to their 

domain structure (Table 1). The largest group consists of ten proteins that harbor a C‐terminal 

DNA‐binding domain with a helix‐turn‐helix (HTH) LuxR‐type motif (Henikoff et al., 1990). The 

ECM master regulator CsgD (see chapter 1.3.1) and YjjQ, whose function has been addressed in 

this work, belong to this group of proteins. In the eight proteins of the second group, the N‐

terminus constitutes a receiver domain. Phosphorylation of a conserved aspartate residue in 

the receiver domain enables these proteins to act as signal transducers in two‐component 

systems (TCSs) (Gao et al., 2007, Gao & Stock, 2009). A well‐studied representative of the 

second group is the response regulator RcsB (Majdalani & Gottesman, 2005). The third group 

consists of only one member, YahA, which is composed of an N‐terminal DNA‐binding domain 

with a HTH LuxR‐type motif and a C‐terminal EAL domain responsible for c‐di‐GMP degradation 

(Schmidt et al., 2005) (see chapter 1.3.3). 

Oligomerization of regulatory proteins is a common feature of many signaling pathways 

involved in diverse cellular processes. Within the E. coli K‐12 FixJ/NarL‐type transcription factor 

family, RcsB is known to homodimerize in order to exert its regulatory functions (Majdalani et 

al., 2002, Schwan et al., 2007). Furthermore, some FixJ/NarL‐type transcription factors 

heterodimerize with RcsB to regulate expression of genes distinct to the ones targeted by 

homodimers (Vianney et al., 2005, Francez‐Charlot et al., 2003). This combinatorial diversity 

amplifies the possibility to modulate transcription of numerous genes with a comparably small 

repertoire of transcriptional regulators. In addition, heterodimers can act as activators in some 

cases but can also behave as repressors under certain circumstances. This specificity adds 
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another level of complexity to the sophisticated gene regulation pathways provided by 

FixJ/NarL‐type transcription factors (Figure 6). 

The best‐studied candidate for dimerization within the FixJ/NarL‐type transcription factor 

family is the response regulator RcsB. It represents the key player of the RcsCDB TCS and is 

conserved in Enterobacteriaceae (Huang et al., 2006). In E. coli, RcsB homodimers activate 

transcription of the small regulatory RNA RprA that stimulates translation of the general stress 

sigma factor RpoS (σ38) (Majdalani et al., 2002, Battesti et al., 2011) and inhibits biofilm 

formation through an increase in RpoS levels and repression of CsgD (Mika et al., 2012, 

Ferrières et al., 2009). RcsB positively controls the expression of type 1 fimbriae in E. coli 

(Schwan et al., 2007) (see chapter 5.3) and of Mat fimbriae in neonatal meningitis‐causing 

E. coli (Lehti et al., 2012b). Fimbrial adhesin proteins are important factors in bacterial virulence 

and biofilm formation (Van Houdt & Michiels, 2005, Klemm et al., 2010). 

For the regulation of other target genes, it is known that RcsB cooperates with the unstable 

auxiliary protein RcsA. RcsB/RcsA heterodimers activate transcription of the wca/cps genes 

responsible for capsular polysaccharide synthesis in E. coli (Stout et al., 1991). The wca locus, 

formerly called cps, constitutes a putative biofilm determinant (Danese et al., 2000). 

Furthermore, they activate transcription of the yjbEFGH operon which is also involved in 

production of exopolysaccharides and affects colony morphology in E. coli (Ferrières et al., 

2007). In contrast, RcsB/RcsA heterodimers negatively regulate transcription of flhDC coding for 

the master regulator of flagellar motility in E. coli (Francez‐Charlot et al., 2003). Moreover, the 

csgBA and csgDEFG operons are repressed in E. coli by RcsB/RcsA heterodimers resulting in 

inhibited curli synthesis and adherence (Vianney et al., 2005, Ferrières & Clarke, 2003, Carter et 

al., 2012) (see chapter 1.3.1). 

In E. coli, RcsB/BglJ heterodimers activate expression of the pleiotropic regulator LeuO 

(Stratmann et al., 2012) as well as of the bgl (aryl‐β,D‐glucoside) operon by relieving H‐NS‐

mediated repression (Venkatesh et al., 2010). Recently, Castanié‐Cornet and coworkers 

reported the formation of RcsB/GadE heterodimers in E. coli under acid stress conditions 

(Castanié‐Cornet et al., 2010). 
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Figure 6: Regulation of cellular pathways by FixJ/NarL‐type transcription factors in E. coli. 
RcsB/BglJ heterodimers activate expression of the bgl operon responsible for alternative carbon source 
utilization and of the pleiotropic regulator LeuO. RcsB/GadE heterodimers mediate acid stress 
responses. RcsB homodimers promote adhesion via stimulation of the formation of type 1 fimbriae. In 
contrast, RcsB homodimers suppress biofilm formation via repression of CsgD by the sRNA RprA. The 
ECM master regulator CsgD promotes curli expression and cellulose synthesis. RcsB/RcsA heterodimers 
suppress biofilm formation via repression of curli expression. Moreover, RcsB/RcsA heterodimers 
promote capsule formation via stimulation of the synthesis of capsular polysaccharides. RcsB/RcsA 
heterodimers suppress flagellar motility via repression of the master regulator of flagellar motility. 
Targets of YjjQ are unknown. 

 

The LexA‐based bacterial two‐hybrid system (Dmitrova et al., 1998) was used previously in our 

laboratory to analyze RcsB heterodimerization properties with the other 18 FixJ/NarL‐type 

transcription factors in E. coli K‐12 (laboratory data, unpublished) (see chapter 2.1.3). The same 

method was applied to investigate homodimerization of all FixJ/NarL‐type transcription factors 

in E. coli K‐12. The results from the β‐galactosidase assays indicated that YjjQ forms 

homodimers as well as weak heterodimers with RcsB under the conditions tested (Table 1). 

Furthermore, the findings suggested that CsgD forms a homodimer under the conditions 

tested. 
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Table 1: Dimerization properties and domain structure of the FixJ/NarL‐type transcription factors in 
E. coli K‐12. 
 

HTH LuxR‐ 
type proteins 

Length 
(amino acids) 

TCS 
Homodimer 
formation1 

Heterodimer formation 
with RcsB1 

Domain 
composition 

YjjQ 241 ‐ + +/‐ 

 

BglJ 225 ‐ ‐ + 

CsgD 216 ‐ + ‐ 

MalT 901 ‐ + ‐ 

SdiA 240 ‐ + ‐ 

YhjB 200 (predicted) + ‐ 

DctR 176 ‐ ‐ + 

GadE 175 ‐ ‐ + 

MatA 196 ‐ ‐ + 

RcsA 207 ‐ ‐ + 

EvgA 204 EvgSA + + 

 

FimZ 210 ‐ + +/‐ 

NarL 216 NarQX + +/‐ 

NarP 215 NarQX + +/‐ 

RcsB 216 RcsCDB + n.a. 

UhpA 196 UhpBA + +/‐ 

UvrY 218 BarA‐UvrY + +/‐ 

YgeK 210 (predicted) ‐ ‐ 

YahA 362 ‐ + +/‐  
 
1 determined with the LexA‐based bacterial two‐hybrid system (Table 2) (laboratory data, unpublished). 

+: strong interaction; ‐: no detectable interaction; ?: weak interaction. 

 HTH LuxR‐type motif;  Response regulatory motif (receiver domain);  EAL motif 

 

 

1.5 The FixJ/NarL-type transcription factor YjjQ 

YjjQ is a transcriptional regulator conserved in commensal and several pathogenic bacteria such 

as enterohaemorrhagic E. coli (EHEC) and uropathogenic E. coli (UPEC). Transcription of yjjQ 

was reported to be induced in M9 minimal medium (Li et al., 2008). Mutation of yjjQ was 

shown to attenuate virulence of avian pathogenic E. coli (APEC) possibly due to impaired iron 

uptake (Li et al., 2008). In a screen for genes involved in the repression of motility in UPEC 

strain CFT073 constitutively expressing type 1 fimbriae, yjjQ emerged as putative candidate 
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(Simms & Mobley, 2008). Transposon mutagenesis performed on a phase‐locked ON 

fimbriation variant (see chapter 5.3) of CFT073 followed by a screen for mutants with restored 

swimming motility revealed a disruption in yjjQ due to a Tn5 insertion. This finding implies that 

YjjQ may impinge upon bacterial motility (Simms & Mobley, 2008). However, the putative role 

of this transcription factor in motility was not further analyzed. 

In E. coli, YjjQ is encoded in an operon together with BglJ, another member of the FixJ/NarL‐

type transcription factor family (Figure 7). Adjacent to the yjjQ-bglJ operon, the yjjP gene is 

situated coding for a membrane protein of unknown function. The yjjP-yjjQ-bglJ locus is 

silenced by the abundant histone‐like nucleoid‐associated protein H‐NS (Stratmann et al., 

2008). H‐NS greatly contributes to the organization and compaction of bacterial chromatin 

thereby maintaining nucleoid structure (Ali et al., 2013). But beyond that H‐NS also acts as a 

global repressor that affects transcription of about 5% of the E. coli genes (Hommais et al., 

2001, Dorman, 2004). For that reason YjjQ is assumed not to be expressed under laboratory 

conditions (Stratmann et al., 2008). 

In addition to H‐NS‐mediated regulation, expression of the yjjQ-bglJ operon in E. coli underlies 

regulation by the LysR‐type transcription factor LeuO. This protein is a pleiotropic regulator of 

multiple loci including genes related to the stress response and pathogenicity of 

Enterobacteriaceae (Shimada et al., 2011a, Stratmann et al., 2012). LeuO expression is 

repressed by H‐NS (Klauck et al., 1997, Chen et al., 2001) and is increased under nutrient 

starved conditions (Majumder et al., 2001) as well as during transition into stationary growth 

phase (Fang et al., 2000). It modulates transcription of yjjP lying upstream of yjjQ-bglJ in 

divergent orientation. Furthermore, LeuO is a transcriptional activator and putative H‐NS 

antagonist at the yjjQ-bglJ operon (Stratmann et al., 2008) (Figure 7). At this locus, LeuO may 

compete with H‐NS for DNA binding in the promoter region. Expression of yjjQ-bglJ will be 

activated depending on the outcome of this competition. 

BglJ is able to heterodimerize with the FixJ/NarL transcription factor RcsB. As stated before, 

RcsB/BglJ heterodimers activate transcription of leuO in E. coli (Stratmann et al., 2012) (see 

chapter 1.4). In this way this regulatory circuit constitutes a double positive feedback loop. 
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Figure 7: Regulation of the yjjQ-bglJ promoter region in E. coli. 
The nucleoid‐associated protein H‐NS represses transcription of yjjQ and bglJ via binding to the 
intergenic region of YjjP and the yjjQ-bglJ operon. In contrast, the LysR‐type transcription factor LeuO 
induces transcription of the yjjQ-bglJ operon. 

 

Microarray analysis performed in E. coli K‐12 and UPEC strain CFT073 revealed that YjjQ 

overexpression results in significant downregulation of more than 20 loci partly associated with 

pathogenicity and biofilm formation (laboratory data, unpublished). One of the loci 

substantially repressed by YjjQ is the flhDC locus encoding the master regulator of flagellar 

motility (see chapter 5.3). Another YjjQ target is the bcs locus mediating cellulose synthesis in 

bacteria (Table 3). This exopolysaccharide is known to play a fundamental role in biofilm 

formation and adhesion processes (Zogaj et al., 2001, Saldaña et al., 2009). A detailed 

description of this locus can be found in chapter 1.3.2. Therefore, the transcription factor YjjQ 

may be involved in regulating motility as well as biofilm formation and adhesion in 

Enterobacteriaceae. 

 

 

1.6 Aim of this thesis 

So far, the role of the FixJ/NarL‐type transcription factor YjjQ in gene regulation remains 

elusive. Putative target genes of YjjQ in E. coli were identified in a microarray, but not further 

characterized, and the status of YjjQ in signal transduction pathways remains to be established. 

In this study, the role of YjjQ is investigated in E. coli K‐12 and the UPEC strains CFT073 and 536. 

Since only very little is known about this protein the aim is to figure out novel functions of YjjQ. 
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2. Results 

2.1 Characterization of dimerization properties between FixJ/NarL-type transcription 

factors in E. coli 

Within the FixJ/NarL‐type transcription factor family of E. coli K‐12, some members are known 

to homodimerize and/or heterodimerize in order to exert their regulatory functions (Majdalani 

& Gottesman, 2005) (see chapter 1.4). In our laboratory the interaction of the response 

regulator RcsB with other FixJ/NarL‐type transcription factors present in E. coli K‐12 was already 

analyzed (Venkatesh et al., 2010). But additional and so far unknown interactions between 

further FixJ/NarL‐type transcription factors may occur. Within the framework of my project I 

investigated whether more dimer pairs exist. To characterize the dimerization properties 

between different FixJ/NarL‐type transcription factors in E. coli K‐12, bacterial two‐hybrid 

assays were performed. 

 

 

2.1.1 The “Bacterial Adenylate Cyclase Two-Hybrid” (BACTH) system 

Initially I used the BACTH system (Karimova et al., 1998) to examine dimerization of hybrid 

FixJ/NarL‐type transcription factors. This method is based on the interaction‐mediated 

reconstitution of enzyme activity. Adenylate cyclase is responsible for the synthesis of the 

second messenger 3',5'‐cyclic adenosine monophosphate (cAMP). The catalytic domain of 

adenylate cyclase from Bordetella pertussis encoded by cyaA consists of two complementary 

fragments, T18 and T25 (Figure 8). These two fragments are fused to the proteins of interest 

and expressed in a reporter strain lacking endogenous adenylate cyclase activity (cyaA
‐). 

Heterodimerization of the hybrid proteins results in functional complementation between T18 

and T25 and, consequently, in cAMP synthesis. cAMP binds to the cAMP receptor protein (CRP; 

also termed CAP for catabolite activator protein) generating a cAMP/CRP complex that 

activates transcription of catabolic operons such as lac and mal. Thus, the bacteria become able 

to utilize lactose or maltose and accordingly exhibit Lac+ or Mal+ phenotypes on the respective 

indicator plates. Via this mechanism the interaction of proteins can be distinguished 

phenotypically on two types of growth medium (Karimova et al., 1998) (Figure 8). 
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Figure 8: Principle of the bacterial adenylate cyclase two‐hybrid (BACTH) system. 
In the BACTH system the E. coli strain BTH101 (cyaA

-) is used. (A) Interaction of the T18 and T25 
fragments of the adenylate cyclase catalytic domain induces synthesis of the second messenger cAMP. 
(B) The catalytic domain of adenylate cyclase is not active when T18 and T25 are physically separated. 
(C) Interaction between the hybrid proteins via dimerization of X and Y results in restored catalytic 
activity and consequently cAMP synthesis. (D) cAMP forms a complex with the dimeric transcription 
factor CRP, depicted in blue, which binds to the DNA‐binding site for the cAMP/CRP complex 
represented by the blue box and initiates transcription of the reporter genes (Karimova et al., 1998). 

 

Eight FixJ/NarL‐type transcription factors were chosen for the BACTH assays: BglJ, DctR, EvgA, 

GadE, MatA, RcsA, RcsB, and YjjQ. This selection includes EvgA known to be a global response 

regulator in the EvgAS TCS (Nishino et al., 2003), three proteins that our group is interested in 

(BglJ, RcsB, and YjjQ), and four proteins that were shown to be unable to form homodimers 

(DctR, GadE, MatA, and RcsA) (laboratory data, unpublished) (Table 1). Each gene was cloned 

into the plasmids pUT18C and pKT25. The resulting plasmids pKEKD1‐16 encoded fusions of the 

proteins of interest to the C‐termini of T18 and T25 (T18‐X and T25‐Y) each under the control of 

an IPTG‐inducible lac promoter, respectively (Table 13). The rcsA and rcsB genes were 

additionally cloned into the plasmids pUT18 and p25‐N. The resulting plasmids pKEKD17‐20 

encoded fusions of RcsA and RcsB to the N‐termini of T18 and T25 (X‐T18 and Y‐T25) each 

under the control of an IPTG‐inducible lac promoter, respectively (Table 13). Interaction of 

hybrid leucine zippers encoded by the plasmids pUT18C‐zip and pKT25‐zip was measured as 

positive control (Karimova et al., 1998). Since it is known that RcsB forms homodimers as well 

as heterodimers with RcsA (Majdalani & Gottesman, 2005) (see chapter 1.4), these 
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combinations were used as additional control for the functionality of the system. The hybrid 

proteins were co‐expressed in the adenylate cyclase (cyaA)‐deficient E. coli strain BTH101. If X 

and Y interact, T18 and T25 should catalyze cAMP synthesis that is in turn manifested as 

transcriptional activation of the catabolic lac and mal reporter operons. 

In E. coli, expression of lacZ encoding β‐galactosidase is positively controlled by cAMP/CRP 

(Kolb et al., 1993). Cleavage of the chromogenic lactose analogue X‐gal by β‐galactosidase leads 

to the formation of a blue product. Hence, bacteria expressing interacting hybrid proteins form 

blue colonies on LB agar plates in the presence X‐gal, while cells expressing non‐interacting 

proteins remain white. The maltose regulon is induced by the FixJ/NarL‐type transcription 

factor MalT. Expression of MalT in E. coli is likewise controlled by cAMP/CRP (Chapon & Kolb, 

1983) and thus adenylate cyclase‐deficient bacteria are unable to utilize maltose. Therefore 

they form white colonies on MacConkey agar plates containing maltose, while adenylate 

cyclase‐proficient bacteria form red colonies indicating successful complementation of the 

catalytic domain. For this reason there is a direct correlation between cAMP synthesis and the 

phenotype of bacterial colonies on these kinds of indicator media. 

The corresponding recombinant plasmids were transformed into E. coli strain BTH101 (cyaA
‐) 

leading to co‐expression of the T18 and T25 hybrid proteins. BTH101 transformant strains were 

selected overnight either on LB X‐gal agar plates with the appropriate antibiotics at 28°C, or on 

maltose MacConkey agar plates with the appropriate antibiotics at 37°C. To obtain phenotypes 

on LB X‐gal agar plates, protein expression from the plasmids required induction by IPTG. For 

that reason this growth medium was supplemented with 0.2 mM IPTG. On maltose MacConkey 

agar plates, the presence of IPTG did not make a difference for the phenotype. As expected, 

transformants of the positive control expressing the T18‐zip and T25‐zip hybrid proteins 

displayed Lac+ and Mal+ phenotypes (blue and red colonies) whereas transformants of the 

negative control expressing T18 and T25 displayed Lac‐ and Mal‐ phenotypes (white colonies) on 

the respective indicator plates (Figure 9). For most of the tested combinations of hybrid 

FixJ/NarL‐type transcription factors, the BACTH system yielded Lac‐ and Mal‐ phenotypes. 

Although RcsB is known to homodimerize (Majdalani & Gottesman, 2005), even co‐expression 

of RcsB‐T18 and RcsB‐T25 resulted in only scattered blue or red staining with the vast majority 
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of colonies being white (Figure 9). It seems that the BACTH system is not sensitive enough to 

analyze interactions between FixJ/NarL‐type transcription factors. Since no further dimer pairs 

could be detected irrespective of the growth conditions, I tested another bacterial two‐hybrid 

system using a quantitative approach in form of the β‐galactosidase assay. 

 

 

 

Figure 9: Homodimerization of RcsB‐T18 and RcsB‐T25 hybrid proteins analyzed with the BACTH system 
in E. coli. 
RcsB homodimerization was examined using the BACTH system by co‐expression of the hybrid proteins 
in the reporter strain BTH101 (cyaA

‐) grown on two types of indicator media. Co‐expression of T18‐zip 
with T25‐zip (positive control) causes Lac+ and Mal+ phenotypes, respectively. Co‐expression of T18 with 
T25 (negative control) causes Lac‐ and Mal‐ phenotypes, respectively. Co‐expression of RcsB‐T18 with 
RcsB‐T25 causes Lac‐ and Mal‐ phenotypes as well, respectively. The following plasmids were used: 
pKT25‐zip and pUT18‐zip for the positive control, p25‐N and pUT18 for the negative control, p25‐N‐RcsB 
(pKEKD20) and pUT18‐RcsB (pKEKD18) for homodimerization analysis. Phenotypes as observed after 2 
days of growth on LB agar plates supplemented with 40 µg/ml X‐gal and 0.2 mM IPTG at 28°C or on 
MacConkey plates supplemented with 1% maltose at 37°C. 
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2.1.2 The cI-α bacterial two-hybrid system 

The cI‐α bacterial two‐hybrid system (Dove & Hochschild, 2004) is based on the activation of a 

transcription initiation complex. One of the proteins of interest is tethered to DNA by the DNA‐

binding domain of the phage λ repressor cI (λcI) (Figure 10). The other one is linked to the N‐

terminal domain of the alpha subunit (α‐NTD) of RNA polymerase. The promoter used in this 

method contains a binding site for the λcI repressor in its upstream regulatory region. 

Interaction between the DNA‐bound fusion protein and the RNA polymerase subunit fusion 

protein stabilizes the binding of RNA polymerase to the promoter, thus activating transcription 

of a lacZ reporter. With this system protein interaction can be measured quantitatively in a β‐

galactosidase assay. 

 

 

 

Figure 10: Principle of the cI‐α bacterial two‐hybrid system. 
In the cI‐α bacterial two‐hybrid system, the α‐NTD‐Y fusion protein, depicted in purple, assembles with 
RNA polymerase, depicted in green. The dimeric λcI‐X fusion protein, depicted in pink, binds to the DNA‐
binding site for the λcI repressor represented by the pink box. Interaction between the hybrid proteins 
via dimerization of X and Y leads to the formation of a transcription initiation complex on the promoter 
that induces expression of the reporter gene (Dove & Hochschild, 2004). 

 

In order to test the suitability of the cI‐α bacterial two‐hybrid system I ran a test for 

homodimerization of RcsB hybrid proteins (Figure 11). For that reason the rcsB gene was cloned 

into the plasmids pAC λcI‐β 831‐1057 and pBR α‐β 831‐1057. The resulting plasmids pKEKD23 

and pKEKD24 encoded fusions of RcsB to the C‐termini of λcI and α‐NTD each under the control 

of an IPTG‐inducible lacUV5 promoter, respectively (Table 13). Positive control plasmids 

pAC λcI‐β 831‐1057 and pBR α‐σ70 D581G expressed the interacting proteins β 831‐1057 and 

σ70 D581G. Negative control plasmids pAC λcI and pBR α expressed the non‐interacting proteins 

λcI and α‐NTD. The hybrid proteins are co‐expressed in E. coli strain FW102 carrying the lacZ 
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reporter on the F’‐plasmid under the control of an IPTG‐inducible lacUV5 promoter. If λcI‐RcsB 

and α‐NTD‐RcsB interact, the initiation of transcription at the hybrid promoter should result in 

lacZ expression that is in turn manifested as β‐galactosidase synthesis. 

 

 

 

Figure 11: Homodimerization of λcI‐RcsB and α‐NTD‐RcsB hybrid proteins analyzed with the cI‐α 
bacterial two‐hybrid system in E. coli. 
RcsB homodimerization was examined using the cI‐α bacterial two‐hybrid system by co‐expression of 
the hybrid proteins in the lacZ reporter strain FW102 followed by β‐galactosidase assays. Co‐expression 
of λcI‐β 831‐1057 and α‐σ70 D581G (positive control) results in elevated β‐galactosidase activities in an 
IPTG‐dependent manner. Co‐expression of λcI and α‐NTD (negative control) only generates basal level β‐
galactosidase activities. Co‐expression of λcI‐RcsB and α‐NTD‐RcsB also generates basal level β‐
galactosidase activities. The following plasmids were used: pAC λcI‐β 831‐1057 and pBR α‐σ70 D581G for 
the positive control, pAC λcI and pBR α for the negative control, λcI‐RcsB (pKEKD23) and α‐NTD‐RcsB 
(pKEKD24) for homodimerization analysis. Miller unit values represent averages calculated from at least 
two independent experiments. Cultures for β‐galactosidase assays were grown overnight in LB with 
antibiotics +/‐ IPTG at 37°C; exponential cultures were inoculated from the overnight cultures to an 
OD600 of 0.05 and grown with antibiotics +/‐ IPTG to an OD600 of approx. 0.5 at 37°C. 

 

The corresponding recombinant plasmids were transformed into E. coli strain FW102 leading to 

co‐expression of the hybrid proteins induced by two different concentrations of IPTG (Figure 

11). FW102 transformants of the positive control expressing β 831‐1057 and σ70 D581G exhibit 

increased β‐galactosidase activities dependent on IPTG (Figure 11). Transformants of the 
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negative control expressing λcI and α‐NTD exhibit only basal level β‐galactosidase activities 

independent of IPTG. Co‐expression of λcI‐RcsB and α‐NTD‐RcsB also generates basal level β‐

galactosidase activities irrespective of the IPTG concentration. The RcsB transformants did not 

provide elevated β‐galactosidase activities compared to the negative control (Figure 11). Thus, 

no RcsB homodimerization could be detected using the cI‐α bacterial two‐hybrid system under 

the growth conditions applied. For that reason I continued with the LexA‐based bacterial two‐

hybrid system. 

 

 

2.1.3 The LexA-based bacterial two-hybrid system 

The LexA‐based bacterial two‐hybrid system (Dmitrova et al., 1998) is based on the interaction‐

mediated reconstitution of a functional repressor. The method specifically detects 

heterodimerization of proteins by the use of two derivatives of the dimeric LexA repressor with 

different DNA binding specificities. The two proteins of interest are fused to a wild‐type and a 

mutant LexA DNA‐binding domain consisting of the N‐terminal amino acids 1 to 87 (Figure 12). 

Their association is measured by the repression of a sulA promoter‐lacZ reporter gene fusion 

with a hybrid operator containing a wild‐type half‐site and a mutated half‐site. The assay thus 

allows monitoring selectively the interaction of two heterologous proteins even if one or both 

partners are able to form homodimers. 

The LexA two‐hybrid system was successfully used for interaction analysis of RcsB with other 

FixJ/NarL‐type transcription factors in E. coli K‐12 (Venkatesh et al., 2010) (Table 1). But it has 

the disadvantage that interaction of proteins is reflected as repression of the lacZ reporter. 

Therefore the proteins need to be expressed at high levels which in some cases results in 

reduced bacterial growth. 

For the wild‐type LexA constructs I used the same eight FixJ/NarL‐type transcription factors that 

have been chosen for the BACTH assays: BglJ, DctR, EvgA, GadE, MatA, RcsA, RcsB, and YjjQ. 

The corresponding genes were cloned by former laboratory members. For the mutant LexA 

constructs only RcsB, BglJ, EvgA, and GadE were used. Plasmids harboring rcsB and bglJ were 

already available. The remaining genes evgA and gadE were cloned into the plasmid pKES189. 

The resulting plasmids pKEKD21 and pKEKD22 encoded fusions of EvgA and GadE to the C‐
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terminus of the mutant LexA(1‐87)408 DNA‐binding domain each under the control of an IPTG‐

inducible lacUV5 promoter, respectively (Table 13). 

 

 

 

Figure 12: Principle of the LexA‐based bacterial two‐hybrid system. 
(A) In the LexA‐based bacterial two‐hybrid system, the two proteins of interest X and Y are fused to LexA 
derivatives (WT and 408) that are able to dimerize but possess different DNA binding specificities. (B) In 
the absence of heterodimers, the reporter gene is transcribed since the hybrid lexA operator 
represented by the colored boxes is not occupied. (C) Interaction between the fusion proteins via 
heterodimerization of X and Y leads to the formation of a functional dimeric repressor, which binds to 
the hybrid lexA operator and blocks the sulA promoter thereby repressing transcription of the reporter 
gene (Dmitrova et al., 1998). 

 

Interaction of LexA(1‐87)WT‐Fos and LexA(1‐87)408‐Jun encoded by the plasmids pMS604 and 

pDP804, measured before (Venkatesh et al., 2010), was used as positive control reference 

value. The corresponding recombinant plasmids were transformed into E. coli strain S3440 

(ΔrcsB) leading to co‐expression of LexA(1‐87)WT‐X and LexA(1‐87)408‐Y induced by IPTG. If X and Y 

interact, the dimeric repressor becomes functional and should bind to the hybrid lexA operator 

thereby blocking the sulA promoter. This binding should lead to a repression of lacZ reporter 

transcription that is in turn manifested as reduced β‐galactosidase activities. 

The results of the experiments are summarized in Figure 13. 
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Figure 13: Dimerization analysis of selected hybrid FixJ/NarL‐type transcription factors using the LexA‐based bacterial two‐hybrid system in E. coli. 
Dimerization of (A) RcsB, (B) BglJ, (C) EvgA, and (D) GadE with other FixJ/NarL‐type transcription factors was examined using the LexA‐based bacterial 
two‐hybrid system by co‐expression of the hybrid proteins in the lacZ reporter strain S3440 (ΔrcsB) followed by β‐galactosidase assays. Fold repression 
values of β‐galactosidase activities (indicated on top) were calculated from the averages of uninduced versus IPTG‐induced samples from at least two 
independent experiments (indicated on the bottom). Fold repression values labelled with 1 represent interactions that were shown previously in E. coli 
strain S3442 (ΔrcsB Δ(yjjP-yjjQ-bglJ)) (Venkatesh et al., 2010). Fold repression values labelled with 2 represent interactions that were shown previously 
(laboratory data, unpublished). Fold repression values labelled with 3 represent interactions that were shown previously in E. coli strain S3442 
(laboratory data, unpublished). The following plasmids were used: LexA(1‐87)WT‐Fos (pMS604), LexA(1‐87)WT‐RcsB (pKEMK17), LexA(1‐87)WT‐BglJ (pKEAP30), 
LexA(1‐87)WT‐EvgA (pKEMK15), LexA(1‐87)WT‐GadE (pKEMK16), LexA(1‐87)WT‐RcsA (pKES192), LexA(1‐87)WT‐YjjQ (pKEAP27), LexA(1‐87)WT‐MatA (pKEMK4), LexA(1‐

87)WT‐DctR (pKEMK1), LexA(1‐87)408‐Jun (pDP804), LexA(1‐87)408‐RcsB (pKEAP28), LexA(1‐87)408‐BglJ (pKEAP29), LexA(1‐87)408‐EvgA (pKEKD21), LexA(1‐87)408‐GadE 
(pKEKD22). Cultures for β‐galactosidase assays were grown overnight in LB with antibiotics +/‐ 1 mM IPTG at 37°C; exponential cultures were inoculated 
from the overnight cultures to an OD600 of 0.05 and grown with antibiotics +/‐ 1 mM IPTG to an OD600 of approx. 0.5 at 37°C. 
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As shown in Table 2, I measured a 7.2‐fold repression of reporter gene expression by RcsB/BglJ 

heterodimers which confirms previous data (Venkatesh et al., 2010, Stratmann et al., 2012). 

Although an interaction of RcsB with GadE is already published (Castanié‐Cornet et al., 2010), 

the proteins seem to form only weak heterodimers with fold‐changes of 3.2 and 2.6. Most of 

the other heterodimer combinations repressed the system only to a minor extent (0.9‐ to 1.3‐

fold). BglJ and GadE do not interact since both combinations, LexA(1‐87)WT‐BglJ with LexA(1‐87)408‐

GadE and LexA(1‐87)WT‐GadE with LexA(1‐87)408‐BglJ, did only cause a small fold‐change in 

repression. Furthermore, both proteins did not interact with RcsA, YjjQ, MatA, and DctR. 

Strikingly, nearly all repression levels generated with EvgA, either with the wild‐type or the 

mutated 408 fusion, are higher than the ones of the other fusion proteins (1.4‐ to 3.5‐fold) 

(Table 2). In order to find out if this phenomenon is an unspecific effect, the interaction of 

LexA(1‐87)408‐EvgA with LexA(1‐87)WT‐Fos was tested. It was expected that EvgA does not interact 

with Fos and therefore expression of the reporter gene would not be repressed. However, this 

combination also resulted in a slightly elevated repression compared to the samples of BglJ or 

GadE heterodimers. Therefore the values obtained with EvgA need to be normalized differently 

and are not likely to represent an actual repression. 

 
Table 2: Summary of the FixJ/NarL‐type transcription factor dimerization analyses obtained with the 
LexA two‐hybrid system in E. coli. 
 

 LexA(1‐87)WT
1 

LexA(1‐87)408
1 RcsB BglJ EvgA GadE RcsA YjjQ MatA DctR Fos 

RcsB 8.62 8.72 7.63 3.23 8.14 3.74 8.73 11.53 – 

BglJ 7.2  3.5 1.0 1.1 1.14 0.9 0.9 – 

EvgA 3.3 2.3  2.0 2.1 2.4 2.0 1.4 2.3 

GadE 2.6 1.3 3.0  1.1 1.1 1.1 1.0 – 

Jun – – – – – – – – 18.72 
 
1 Interactions of hybrid proteins were investigated in E. coli strain S3440 (ΔrcsB) unless otherwise 

indicated. Fold repression values were generated using β‐galactosidase assays. 
2 Interactions were shown previously in E. coli strain S3442 (ΔrcsB Δ(yjjP-yjjQ-bglJ)) (Venkatesh et al., 

2010). 
3 Interactions were shown previously (laboratory data, unpublished). 
4 Interactions were shown previously in E. coli strain S3442 (laboratory data, unpublished). 
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So far, all heterodimer pairs occuring within the FixJ/NarL‐type transcription factor family 

include the response regulator RcsB. Most of the other FixJ/NarL‐type transcription factors such 

as CsgD, MalT, and EvgA are capable of homodimer formation (Table 1). The three best 

documented RcsB heterodimer combinations are RcsB/RcsA (Vianney et al., 2005, Francez‐

Charlot et al., 2003), RcsB/BglJ (Venkatesh et al., 2010, Stratmann et al., 2012), and RcsB/GadE 

(Castanié‐Cornet et al., 2010) (see chapter 1.4). In addition, dimerization analysis using the 

LexA‐based bacterial two‐hybrid system implicated the putative formation of further RcsB 

heterodimer pairs (laboratory data, unpublished). This is the case for RcsB/EvgA, RcsB/MatA, 

and RcsB/DctR heterodimers (Figure 13 and Table 2). 

In conclusion, all interactions tested using the LexA‐based bacterial two‐hybrid system did not 

yield further heterodimer pairs beyond those previously described. The project was thereupon 

focussed on the investigation of YjjQ on the basis of a microarray data analysis. 

 

 

2.2 Analysis of microarray data regarding genes affected by YjjQ 

To identify genes regulated by the FixJ/NarL‐type transcription factor YjjQ in E. coli a microarray 

was performed (laboratory data, unpublished). For this microarray the yjjP-yjjQ-bglJ locus was 

deleted in E. coli strain K‐12 and UPEC strain CFT073, resulting in the strains S3922 (BW30270 

Δ(yjjP-yjjQ-bglJ)::KD3) and KEC394 (CFT073 Δ(yjjP-yjjQ-bglJ)::KD3), respectively. The two strains 

were transformed with the plasmid pKERV17 expressing YjjQ derived from E. coli K‐12 under 

the control of an IPTG‐inducible tac promoter (Table 13). pKERV17 contains the yjjQ gene fused 

to the epsilon Shine‐Dalgarno sequence (εSD) derived from the leader of gene 10 in phage T7. 

This sequence constitutes a part of the RBS on the mRNA and greatly enhances translation 

efficiency (Olins et al., 1988). For that reason the microarray strains presumably expressed very 

high protein levels of YjjQ. The empty vector (pKES169) was used as a control. After induction of 

YjjQ expression, RNA was isolated and analyzed with the Affymetrix GeneChip E. coli Genome 

2.0 Array at the Cologne Center for Genomics (CCG), University of Cologne, Germany. The array 

included the E. coli strain K‐12 (MG1655 laboratory strain), UPEC strain CFT073, and two EHEC 

strains that remained unprobed. 
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A summary of the original microarray data can be found in the appendix (see chapter 5.2). In 

E. coli K‐12 Δ(yjjP-yjjQ-bglJ), about 200 genes were differentially regulated following YjjQ 

overexpression with a factor greater than +/‐ 2. In UPEC strain CFT073 Δ(yjjP-yjjQ-bglJ), YjjQ 

overexpression resulted as well in differential regulation of about 200 genes with a factor 

greater than +/‐ 2. In both bacterial strains the proportion of downregulated genes was much 

bigger than the one of the upregulated genes. This observation implies that YjjQ seems to act 

mainly as a repressor. 

To determine the genes that are affected most by YjjQ a threshold was set at a fold change 

value of +/‐ 5. Within this range, 31 genes in K‐12 and 44 genes in CFT073 were downregulated. 

In E. coli K‐12 as well as CFT073 the repressed genes are organized in 20 loci. Twelve of these 

putative YjjQ target loci are present in both strains whereas the other eight loci seem to be 

repressed in a strain‐specific manner. YjjQ also showed an activating effect on the expression of 

some genes. Three genes in E. coli K‐12 and one gene in CFT073 genes were upregulated more 

than 5‐fold. 

Table 3 lists all 33 loci differentially regulated by YjjQ in E. coli K‐12 and CFT073 with the 

respective fold change values within the threshold and, if known, a brief description of their 

gene products. The gene cra does not lie within the range but is included in the selection 

because it is a global regulator of many genes. Table 4 lists the 25 putative YjjQ target loci with 

known function including a simplified functional classification. A detailed description of the 

functions of the encoded proteins and the relationship between the different putative YjjQ 

targets is given in the appendix (see chapter 5.3). 

According to Table 4, YjjQ is a putative negative regulator of flagellar motility, adhesion, ECM 

production, biofilm formation, acid stress, and energy metabolism. In the following 

experiments performed to elucidate these putative functions of YjjQ in E. coli, the focus was set 

on the flhDC locus and the bcs locus encoding the master regulator of flagellar motility and 

proteins mediating the synthesis of the exopolysaccharide cellulose, respectively. 

  



2. Results 

34 

Table 3: Putative target loci most strongly regulated by YjjQ in E. coli K‐12 and UPEC strain CFT073 
identified by microarray data analysis. 
 

Target locus 
Fold change1 

Gene product function 
K‐12 CFT073 

adiY adiC ‐39.6 ‐29.3 Arginine‐dependent acid resistance 

cbpAM ‐25.3 ‐8.0 DNA‐binding co‐chaperone system 

cra ‐3.4 ‐1.9 Catabolite repressor/activator 

csrB ‐11.3 ‐5.2 Pleiotropic sRNA (regulator of CsrA) 

dctR ‐5.1 ‐3.7 FixJ/NarL‐type transcription factor 

dcuB ‐5.1 ‐1.9 C4‐dicarboxylate transporter 

fimB ‐2.7 ‐6.7 Type 1 fimbriae regulatory protein 

flhDC 1.02 ‐9.8 Master regulator of motility 

frdABCD ‐3.5 ‐5.9 Fumarate reductase enzyme complex (FRD) 

gfc ‐53.13 not present Group 4 capsule formation 

iap ‐5.8 ‐3.9 Alkaline phosphatase isozyme conversion 

kpsMT kslAB not present ‐6.4 ABC‐transporter group 2 capsule 

mdtJI ‐31.1 ‐13.7 Spermidine exporter 

nanCMS ‐11.5 1.1 Sialic acid (Neu5Ac) metabolism 

ompC ‐36.6 ‐17.2 Osmoporin 

panD ‐11.4 ‐10.4 L‐Aspartate‐α‐decarboxylase 

rcnB ‐5.0 ‐5.2 Cobalt and nickel resistance 

ucpA ‐22.0 ‐8.7 Furan resistance (oxidoreductase?) 

uspF ‐6.4 ‐10.6 Universal stress protein 

yfiRNB ‐23.4 ‐7.8 Biofilm formation/motility control 

yhjR bcsQABZC 

bcsEFG 

‐15.5 

‐9.0 

‐12.9 

‐7.9 
Cellulose synthesis 

zur ‐5.9 1.0 Regulation of zinc uptake 

c0411 not present ‐8.4 

Unknown function 

c1618 c1617 ymgD ‐3.2 ‐21.4 

ybhL ‐26.8 ‐19.3 

ydgD ‐6.7 ‐4.7 

yfdY ‐5.3 ‐7.8 

ymiA yciX ‐23.3 ‐10.4 

yqfB ‐4.0 ‐5.1 

yrbL ‐5.9 ‐2.9 

fruBKA 7.3 ‐1.1 Fructose metabolism 

spy 3.5 6.0 ATP‐independent periplasmic chaperone 

zinT 7.6 2.3 Zinc‐ and cadmium‐binding protein 

 
1 Indicated are the fold change values for individual genes or for the first gene in an operon. 
2 E. coli K‐12 strain S3922 (BW30270 Δ(yjjP-yjjQ-bglJ)::KD3) is non‐motile. 
3 The gfc operon is not expressed in E. coli K‐12 due to an IS1 insertion element (see chapter 5.3). 
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Table 4: Overview of the putative YjjQ target loci in E. coli. 
 

Target locus1 Gene product function Functional classification Positive and negative regulation of the locus Cellular systems affected 

adiY adiC 
Arginine‐dependent 
acid resistance 

AdiY: Transcriptional regulator 
AdiC: Membrane protein of the 
bacterial cell wall 

General: H‐NS 
TCSs: RcsCDB, EvgAS 
Else: ? 

Acid resistance 

cbpAM 
DNA‐binding co‐ 
chaperone system 

Other 
General: Lrp 
TCSs: ? 
Else: ? 

Nucleoid structure, 
protein quality control 

cra 
Catabolite repressor/ 
activator 

Transcriptional regulator 
General: ? 
TCSs: ? 
Else: Polyamines 

Energy metabolism, 
curli expression 

csrB 
Pleiotropic sRNA 
(regulator of CsrA) 

sRNA ? 

Biofilm formation, 
pathogenicity, 
c‐di‐GMP metabolism, 
motility, 
energy metabolism 

dctR 
FixJ/NarL‐type 
transcription factor 

Transcriptional regulator 
(indirect YjjQ target?) 

General: H‐NS, AdiY 
TCSs: RcsCDB, EvgAS 
Else: ? 

Acid resistance, 
pathogenicity 

dcuB 
C4‐dicarboxylate 
transporter 

Membrane protein of the 
bacterial cell wall 

General: FNR, cAMP/CRP 
TCSs: DcuSR 
Else: ? 

Energy metabolism 

fimB 
Type 1 fimbriae 
regulatory protein 

Other 
General: NanR, H‐NS, Lrp, LrhA, IHF 
TCSs: EnvZ‐OmpR, RcsCDB 
Else: ? 

Adhesion, 
pathogenicity 

flhDC 
Master regulator 
of motility 

Transcriptional regulator 
General: H‐NS, cAMP/CRP, LrhA, CsrA, IHF 
TCSs: EnvZ‐OmpR, RcsCDB 
Else: sRNAs 

Motility, 
pathogenicity, 
curli expression 

frdABCD 
Fumarate reductase 
enzyme complex (FRD) 

Membrane protein of the 
bacterial cell wall 

General: FNR 
TCSs: DcuSR 
Else: ? 

Energy metabolism, 
motility 

fruBKA Fructose metabolism 
FruA, FruB: Membrane proteins of 
the bacterial cell wall 
(indirect YjjQ target?) 

General: Cra, cAMP/CRP 
TCS: ? 
Else: ? 

Energy metabolism 

gfc 
Group 4 capsule 
formation 

Membrane protein of the 
bacterial cell wall 

? 
Biofilm formation, 
pathogenicity 

iap 
Alkaline phosphatase 
isozyme conversion 

Other ?  
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Target locus1 Gene product function Functional classification Positive and negative regulation of the locus Cellular systems affected 

kpsMT 
ABC‐transporter 
group 2 capsule 

Membrane protein of the 
bacterial cell wall 

? 
Biofilm formation, 
pathogenicity 

mdtJI Spermidine exporter 
Membrane protein of the 
bacterial cell wall 

? 
Polyamine homeostasis, 
protein synthesis 

nanCMS 
Sialic acid (Neu5Ac) 
metabolism 

Membrane protein of the 
bacterial cell wall 

General: NanR, cAMP/CRP 
TCSs: EnvZ‐OmpR, CpxAR 
Else: ? 

Pathogenicity 

ompC Osmoporin 
Membrane protein of the 
bacterial cell wall 

General: H‐NS, Lrp, IHF 
TCSs: EnvZ‐OmpR, CpxAR 
Else: sRNAs 

Nutrient uptake 

panD L‐Aspartate‐α‐decarboxylase Other ? β‐Alanine metabolism 

rcnB 
Cobalt and nickel 
resistance 

Other 
General: RcnR 
TCSs: ? 
Else: ? 

Metal homeostasis 

spy 
ATP‐independent 
periplasmic chaperone 

Other 
General: ? 
TCSs: CpxAR, RcsCDB 
Else: ? 

Protein quality control, 
curli formation 

ucpA 
Furan resistance 
(oxidoreductase?) 

Other 
(indirect YjjQ target?) 

General: Cra, cAMP/CRP, IHF 
TCSs: ? 
Else: ? 

Furan resistance 

uspF Universal stress protein Other ? 
Adhesion, 
motility 

yfiRNB 
Biofilm formation/ 
motility control 

Membrane protein of the 
bacterial cell wall 

? 
Biofilm formation, 
pathogenicity, 
c‐di‐GMP metabolism 

yhjR bcsQABZC 

bcsEFG 
Cellulose synthesis 

Membrane protein of the 
bacterial cell wall 

? 
Biofilm formation, 
adhesion 

zinT 
Zinc‐ and cadmium‐ 
binding protein 

(indirect YjjQ target?) 
General: Zur 
TCSs: ? 
Else: ? 

Metal homeostasis, 
pathogenicity, 
curli expression 

zur 
Regulation of zinc 
uptake 

Transcriptional regulator ? 
Metal homeostasis, 
pathogenicity 

 
1 A detailed discussion of each locus listed here including references can be found in the appendix (see chapter 5.3). 
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2.3 Morphotype expression in E. coli 

The bcs locus mediates cellulose synthesis in bacteria. The exopolysaccharide cellulose is a 

principal component of the ECM. The yhjRbcsQbcsABZC and bcsEFG operons were found to be 

substantially repressed by the transcription factor YjjQ in a microarray (see chapter 2.2). 

Putative repression of the bcs locus by YjjQ implies that this protein may affect ECM 

composition. This interference would probably be reflected in colony morphology. Wild‐type 

Enterobacteriaceae co‐expressing cellulose and curli exhibit a distinctive morphotype termed 

red, dry and rough (rdar) when grown on media supplemented with Congo Red (also called 

rugose or wrinkled) (Römling, 2005). The diazo dye Congo Red specifically stains amyloid fibers 

such as curli (Hammar et al., 1995). Furthermore, it is a pH indicator that changes its color from 

blue at pH 3 to red at pH 5. The rdar morphotype can be used as a scale for multicelluar 

behavior as there is an evident correlation between highly structured morphologies and the 

ability to produce an ECM. Mutants lacking components of the ECM produce attenuated colony 

morphologies with less elaborated architectures. 

Regulation of red, dry and rough (rdar) morphotype expression has mainly been studied in 

S. typhimurium and natural E. coli isolates (Römling, 2005). Wild‐type strains express both the 

bcs (cellulose) and the csg (curli) loci resulting in the rdar morphotype on LB Congo Red agar 

plates (Zogaj et al., 2001) (Table 5). In strains deficient for bcsA, the catalytic subunit of 

cellulose synthase, cellulose production is abolished. Biofilm formation is slightly reduced and 

the morphotype changes to brown, dry and rough (bdar). In strains deficient for csgA, the 

predominant structural component of curli, curli production is abrogated. Biofilm formation is 

severely inhibited and the morphotype changes to pink, dry and rough (pdar). In mutant strains 

lacking csgD encoding the ECM master regulator, the morphotype is called smooth and white 

(saw). The same applies for bcsA csgA double mutant strains (Table 5). Mutants of csgD as well 

as bcsA csgA double mutants lack all signs of biofilm formation such as auto‐aggregation in 

liquid culture or adherence to glass (Zogaj et al., 2001). 
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Table 5: Characterization of S. typhimurium and natural E. coli isolates regarding multicellular behavior. 
 

Genotype1 
Curli 

expression 

Cellulose 

production 

Biofilm 

Formation2 
Morphotype on Congo Red plates2 

wild‐type + + +++ red, dry and rough (rdar) 

ΔbcsA + ‐ ++ brown, dry and rough (bdar) 

ΔcsgA ‐ + + pink, dry and rough (pdar) 

ΔcsgD 
‐ ‐ ‐ smooth and white (saw) 

ΔbcsA ΔcsgA 
 
1 bcsA encodes the catalytic subunit of cellulose synthase. csgA encodes the predominant structural 

component of curli. csgD encodes the ECM master regulator controling cellulose and curli synthesis. 
2 (Zogaj et al., 2001). 

 

 

2.3.1 Phenotypic analysis of E. coli strains defective in curli and/or cellulose production 

First I investigated the colony morphologies of the wild‐type E. coli K‐12 strain MG1655 (S3836) 

and of the wild‐type UPEC strains CFT073 and 536 on LB Congo Red agar plates. This indicator 

medium was applied for every morphotype analysis (Römling, 2001). UPEC strain 536 exhibited 

the red, dry and rough (rdar) morphotype at 28°C (Figure 14) which made it a suitable strain to 

investigate the morphotypes of diverse mutants in more detail. 

UPEC strain CFT073 displayed the smooth and white (saw) morphotype at 28°C and 37°C 

(Figure 14). This strain was previously shown to neither produce curli (as estimated by Congo 

Red binding) nor cellulose (as estimated by Calcofluor White binding) (Hancock et al., 2007). 

When grown at 28°C, E. coli K‐12 strain MG1655 (S3836) showed a colony morphology that did 

not resemble any morphotype described for S. typhimurium and natural E. coli isolates. The 

colonies were round and had an almost smooth appearance. They were overall brown‐colored 

indicating that at least one ECM component might be expressed (Figure 14). Morphotype 

expression of CFT073 and of MG1655 was not further analyzed and the subsequent 

experiments were continued using UPEC strain 536. 
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Figure 14: Morphotype analysis of wild‐type E. coli strains. 
Morphotype expression of wild‐type E. coli K‐12 strain MG1655 (S3836) and wild‐type UPEC strains 
CFT073 and 536 was investigated on indicator plates. The rdar morphotype of 536 indicates co‐
expression of curli and cellulose. The saw morphotype of CFT073 indicates that neither curli nor 
cellulose is expressed. The colony morphology of MG1655 does not resemble any morphotype 
previously described. Small parts of single colonies were resuspended in water and diluted as indicated. 
1 µl of each dilution was spotted on LB Congo Red agar plates. Morphotypes as observed after 7 days of 
growth at 28°C. 

 

To recapitulate the morphotypes described for S. typhimurium and natural E. coli isolates in 

UPEC strain 536, csgA, csgD and/or bcsA deletion mutants were constructed by λ‐Red mediated 

recombination (Datsenko & Wanner, 2000) (Figure 15). For this purpose the chromosomal 

sequences of the target genes or loci were replaced with a chloramphenicol resistance gene. 

For the construction of double mutant strains, the resistance cassette of a mutant deficient for 

the first gene was excised by Flp recombination (Cherepanov & Wackernagel, 1995). This 

chloramphenicol‐sensitive strain was then transduced using EB49 phages (Battaglioli et al., 

2011) grown on a strain in which the second gene was already replaced with a chloramphenicol 

resistance gene. 

For morphotype analysis of csgA, csgD and/or bcsA deletion mutants, the strains were grown 

on LB Congo Red agar plates for eight days at 28°C. The colony morphologies obtained in UPEC 
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536 mutants matched the morphotypes described for other natural E. coli isolates (Figure 15 

and Table 6). 

 

 

 

Figure 15: Deletions of the genes responsible for curli and cellulose production alter the morphotype of 
UPEC strain 536. 
Morphotype expression of UPEC 536 wild‐type and 536 deletion mutant strains was investigated on 
indicator plates. Wild‐type 536 displays the rdar morphotype indicating co‐expression of curli and 
cellulose. Deletion of bcsA encoding the catalytic subunit of cellulose synthase results in the bdar 
morphotype. Deletion of csgA encoding the predominant structural component of curli results in the 
pdar morphotype. Deletion of csgD encoding the ECM master regulator and deletion of a combination 
of bcsA and csgA results in the saw morphotype indicating that neither curli nor cellulose is expressed. 
Morphotypes as observed after 8 days of growth at 28°C on LB Congo Red agar plates. Scale bar: 1 cm. 

 

Deletion of the cellulose gene bcsA caused the brown, dry and rough (bdar) morphotype. It was 

characterized by the formation of a round colony with a white center and a brown‐colored rim 

(Figure 15). In addition, the formation of concentric bands on the colony surface was detected 

in this mutant. Deletion of the curli gene csgA caused the pink, dry and rough (pdar) 

morphotype reflected by a pink colony with an undulated rim. Irregular spokes emanating from 

the center of the colony resulted in the wrinkled appearance termed dry and rough. Strains 

lacking the ECM master regulator csgD or a combination of csgA and bcsA generated white 
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colonies of round shape representing the smooth and white (saw) morphotype. The colonies of 

all mutant strains tested were about half the size of the red, dry and rough (rdar) colonies 

occurring in the wild‐type UPEC strain 536 (Figure 15). 

 

 

2.3.2 Phenotypic analysis of E. coli strains defective in the yjjQ locus 

The bcs locus is dedicated to the synthesis of the exopolysaccharide and principal ECM 

component cellulose in bacteria. Putative repression of this locus by the transcription factor 

YjjQ implies that this protein may affect ECM composition and therefore colony morphology. To 

analyze the effects of bglJ, yjjQ-bglJ and yjjP-yjjQ-bglJ mutations on the morphotype of UPEC 

strain 536, several deletion mutants were constructed by λ‐Red mediated recombination 

(Datsenko & Wanner, 2000) (Figure 16). 

 

 

 

Figure 16: Deletions of the yjjQ locus genes do not alter the morphotype of UPEC strain 536. 
Morphotype expression of UPEC 536 wild‐type and deletion mutant strains was investigated on 
indicator plates. 536 ΔbglJ, Δ(yjjP-yjjQ-bglJ) and Δ(yjjQ-bglJ) strains exhibit the rdar morphotype. 
Morphotypes as observed after 8 days of growth at 28°C on LB Congo Red agar plates. Scale bar: 1 cm. 
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For morphotype analysis of the mutants deleted in the yjjQ locus, the strains were grown on LB 

Congo Red agar plates for eight days at 28°C. Deletions of bglJ, the yjjQ-bglJ operon and the 

yjjP-yjjQ-bglJ locus seem to have no effect on colony morphology since all strains displayed the 

red, dry and rough (rdar) morphotype (Figure 16). Color, structure as well as size of the colonies 

were indistinguishable from the wild‐type indicating that deletion of yjjQ does not impinge 

upon ECM composition (Figure 16 and Table 6). 

 
Table 6: Morphotype analysis of different UPEC 536 strains. 
 

Strain name Genotype1 Morphotype 
Curli 

expression2 

Cellulose 

production2 

536 wild‐type rdar + + 

KEC478/484 ΔbcsA::KD3/::FRT bdar + ‐ 

KEC479/485 ΔcsgA::KD3/::FRT pdar ‐ + 

KEC481/488 ΔcsgD::KD3/::FRT saw ‐ ‐ 

KEC491/496 ΔbcsA::FRT ΔcsgA::KD3/::FRT saw ‐ ‐ 

KEC492+493/495 ΔcsgA::FRT ΔbcsA::KD3/::FRT saw ‐ ‐ 

KEC482/487 Δ(yjjP-yjjQ-bglJ)::KD3/::FRT rdar + + 

KEC483/486 Δ(yjjQ-bglJ)::KD3/::FRT rdar + + 

KEC489/494 ΔbglJ::KD3/::FRT rdar + + 
 
1 The first strain mentioned carries a chloramphenicol resistance gene derived from plasmid pKD3 and 

the second strain carries a FRT site due to excision of the resistance gene via Flp mediated 
recombination. Details on the construction of the strains are given in Table 12. 

2 bcsA encodes the catalytic subunit of cellulose synthase. csgA encodes the predominant structural 
component of curli. csgD encodes the ECM master regulator controling cellulose and curli synthesis. 

 

 

2.3.3 Phenotypic analysis of E. coli strains expressing YjjQ 

To further investigate the influence of the transcription factor YjjQ on the morphotype of UPEC 

strain 536, overexpression and complementation studies were performed. For this purpose the 

wild‐type strain as well as Δ(yjjP-yjjQ-bglJ) and Δ(yjjQ-bglJ) strains were transformed with the 

respective plasmids expressing YjjQ under the control of an IPTG‐inducible tac promoter (Figure 

17). The yjjQ gene was either preceded by the native Shine‐Dalgarno sequence (pKEKD30) or by 

the epsilon Shine‐Dalgarno sequence (εSD) (pKEKD25) (Table 13). εSD is known to greatly 

enhance translation efficiency (Olins et al., 1988). For that reason pKEKD30 transformants 
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expressed moderate protein levels of YjjQ while pKEKD25 transformants presumably expressed 

very high YjjQ levels. The empty vector (pKESK22) was used as a control. 

Plasmids pKEKD30 and pKEKD25 encode yjjQ originating from the UPEC strains 536 and CFT073, 

respectively, whereas yjjQ encoded by the plasmid pKERV17 used in the microarray originates 

from E. coli K‐12. The gene products differ in a single amino acid at position 129 which is 

alanine in E. coli K‐12 and serine in both UPEC strains. The concerned position is located in the 

middle of the protein upstream of the C‐terminal DNA‐binding domain. A comparison of the 

yjjQ sequence between E. coli K‐12 and the UPEC strains 536 and CFT073 can be found in the 

appendix (see chapter 5.1). 

For morphotype analysis the strains were grown on LB Congo Red agar plates for eight days at 

28°C. 536 transformants of the vector control pKESK22 generated the red, dry and rough (rdar) 

morphotype independent of IPTG (Figure 17). IPTG‐induced YjjQ expression in the wild‐type 

from plasmid pKEKD30 yielding moderate protein levels reproducibly weakened the rdar 

morphotype compared to the vector control. The colonies were still red‐colored but clearly 

attenuated regarding the dry and rough appearance. IPTG‐induced YjjQ expression from 

pKEKD30 in the Δ(yjjP-yjjQ-bglJ) and Δ(yjjQ-bglJ) strains generated comparable results (Figure 

17). The rdar morphotypes were weakened following complementation as in the wild‐type 

background. Similar to the deletion mutant strains, the colonies of transformant strains treated 

with IPTG were smaller than the rdar colonies occurring in the control. 
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Figure 17: YjjQ expression alters the morphotype of UPEC strain 536. 
Morphotype expression of UPEC 536 transformants was investigated on indicator plates. 
Overexpression of yjjQ in wild‐type 536 leads to an attenuation of the rdar morphotype. 
Complementation of mutant 536 strains carrying yjjQ locus deletions leads to an attenuation of the rdar 
morphotype as well. Morphotypes as observed after 8 days of growth at 28°C on LB Congo Red agar 
plates supplemented with 0.2 mM IPTG and 25 µg/ml kanamycin. Scale bar: 1 cm. 

 

Uninduced expression of YjjQ from pKEKD25 yielding high protein levels provoked colony 

morphologies that resembled the attenuated red, dry and rough (rdar) morphotype of IPTG‐

induced pKEKD30 transformants (Figure 18). Induction of YjjQ expression from pKEKD25 

resulted in red‐colored colonies of a round shape with a white rim and an almost smooth 

surface. The peculiar morphotypes of the pKEKD25 transformant can probably be attributed to 

the consequences of an excessive YjjQ protein level. The plasmid pKEKD25 contains yjjQ fused 

to εSD which means that the YjjQ concentration in this strain reached highly unphysiological 

levels that may be deleterious for cell metabolism. 
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Figure 18: Morphotype analysis of UPEC 536 strains expressing different amounts of YjjQ. 
Morphotype expression of UPEC 536 transformants was investigated on indicator plates. Basal level 
expression of yjjQ from plasmid pKEKD30 carrying the native Shine‐Dalgarno sequence results in the 
rdar morphotype. IPTG‐induced expression of yjjQ from pKEKD30 results in the attenuated rdar 
morphotype. Basal level expression of yjjQ from plasmid pKEKD25 carrying the epsilon Shine‐Dalgarno 
sequence results in the attenuated rdar morphotype as well. IPTG‐induced expression of yjjQ from 
pKEKD25 results in a strongly impaired morphotype. The blue color of the LB Congo Red agar plates may 
result from an acidic pH. Morphotypes as observed after 8 days of growth at 28°C on LB Congo Red agar 
plates +/‐ 0.2 mM IPTG and 25 µg/ml kanamycin. Scale bar: 1 cm. 

 

In conclusion, these data suggest that YjjQ acts as a suppressor of multicellular behavior and 

possibly adhesion of Enterobacteriaceae. The mechanism by which this suppression is achieved 

is unknown at this point. 
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2.4 Biofilm formation of E. coli K-12 is impaired following YjjQ expression 

The microarray performed in E. coli K‐12 and UPEC strain CFT073 detected several putative 

target loci of the transcription factor YjjQ associated with multicellular behavior (Table 3). In 

addition to the bcs locus encoding proteins that mediate cellulose synthesis, expression of the 

flhDC locus encoding the master regulator of flagellar motility was downregulated as well. The 

exopolysaccharide cellulose is a principal component of the ECM and therefore represents a 

biofilm determinant (Zogaj et al., 2001, Solano et al., 2002). Motility is important especially 

during the early stages of biofilm formation (Pratt & Kolter, 1998) and for the development of 

the elaborated architecture of mature biofilms (Wood et al., 2006). 

To investigate whether YjjQ has an impact on biofilm formation in E. coli K‐12 strain BW30270 

and UPEC strain 536, a biofilm assay was performed. This assay is based on the staining of 

adherent organic material to polystyrene (Merritt et al., 2005). BW30270 is a K‐12 derivative 

that is supposed to possess poor adhesive capacities because of low curli expression (see 

chapter 1.3.1). Wild‐type cells were transformed with the respective plasmids expressing YjjQ 

under the control of an IPTG‐inducible tac promoter. The yjjQ gene was either preceded by the 

native Shine‐Dalgarno sequence (pKEKD30 and pKEKD31) or by the epsilon Shine‐Dalgarno 

sequence (εSD) (pKERV17 and pKEKD25) (Table 13). εSD is known to greatly enhance translation 

efficiency (Olins et al., 1988). Plasmids pKEKD31 and pKERV17 encode yjjQ originating from 

E. coli K‐12 whereas yjjQ encoded by the plasmids pKEKD30 and pKEKD25 originates from the 

UPEC strains 536 and CFT073, respectively. The empty vector (pKESK22) was used as a control. 

The capacity of bacteria to form a biofilm can easily be assessed in a microtiter plate format 

(Merritt et al., 2005). The biofilm assay is carried out with samples in quadruplicates. 

Uninduced and IPTG‐induced E. coli K‐12 BW30270 as well as UPEC 536 transformants were 

grown in each of four wells of two 96‐well microtiter plates in the presence of kanamycin. To 

rule out that components of the growth medium cause any unspecific staining, a LB control was 

included. The plates were incubated for 24 hours at 37°C and for 48 hours at 28°C, respectively. 

The wells were washed once and then stained with 0.1% crystal violet solution. After that the 

wells were washed twice and the plates were air‐dried. Finally 30% acetic acid was added to 

each stained well to solubilize the dye. 
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Generally, the quadruplicates showed similar results with only few outliers. UPEC strain 536 

hardly produced any biofilms at 28°C and 37°C as reflected by very weak staining (data not 

shown). Biofilm formation of E. coli K‐12 strain BW30270 was faint at 37°C (data not shown) but 

strong at 28°C (Figure 19). Transformants of the vector control pKESK22 generated stable 

biofilms independent of IPTG. Basal level expression of YjjQ from pKEKD30 and pKEKD31 

yielding moderate protein levels did not affect biofilm formation as the extent of the staining 

was indistinguishable from the control. Induction of YjjQ expression with 0.2 mM IPTG resulted 

in impaired biofilm formation (Figure 19 A). Surprisingly, induction with 1 mM IPTG had no 

impact compared to the uninduced samples (Figure 19 B). This implies that YjjQ efficiently 

represses biofilm formation on polystyrene at 28°C when expressed at physiological levels. 

Basal level expression of YjjQ from pKEKD25 and pKERV17 yielding high protein levels led to a 

strongly reduced biofilm formation compared to the control. However, induction of YjjQ 

expression with 0.2 mM IPTG provoked partially increased biofilm formation (Figure 19 A) and 

induction with 1 mM IPTG caused slightly enhanced biofilm formation (Figure 19 B). The 

behavior of the pKEKD25 and pKERV17 transformant strains can probably be attributed to the 

consequences of excessive YjjQ protein levels described earlier. 

The results obtained from the biofilm assay are consistent with those from the morphotype 

analysis. In UPEC strain 536, YjjQ seems to suppress multicellular behavior as its expression 

decreased the red, dry and rough (rdar) morphotype. Accordingly, adherence of E. coli K‐12 to 

polystyrene is suppressed as well. However, it is not clear why UPEC strain 536 has a reduced 

capability of biofilm formation in the microtiter plate assay irrespective of the temperature. 

 



2. Results 

48 

 

 

Figure 19: Biofilm formation of E. coli K‐12 at 28°C is repressed by YjjQ. 
The influence of YjjQ expression on the biofilm formation of E. coli K‐12 strain BW30270 was 
investigated using the biofilm assay. Lane 1 shows the growth medium control and lane 2 shows the 
vector control. Lanes 3 to 6 show BW30270 transformants harboring plasmids expressing YjjQ under the 
control of an IPTG‐inducible tac promoter. Transformants of the vector control pKESK22 generated 
stable biofilms in an IPTG‐independent manner (panel A and B lane 2). Basal level expression of YjjQ 
from plasmids pKEKD30 and pKEKD31 carrying the native Shine‐Dalgarno (nSD) sequence did not affect 
biofilm formation (panel A and B lanes 3 and 4). Induction of YjjQ expression from pKEKD30 and 
pKEKD31 with 0.2 mM IPTG results in impaired biofilm formation (panel A lanes 3 and 4). Induction of 
YjjQ expression from pKEKD30 and pKEKD31 with 1 mM IPTG had no impact on biofilm formation (panel 
B lanes 3 and 4). Basal level expression of YjjQ from plasmids pKEKD25 and pKERV17 carrying the epsilon 
Shine‐Dalgarno sequence leads (εSD) to strongly reduced biofilm formation (panel A and B lanes 5 and 
6). Induction of YjjQ expression from pKEKD25 and pKERV17 with 0.2 mM IPTG results in partially 
enhanced biofilm formation (panel A lanes 5 and 6). Induction of YjjQ expression from pKEKD25 and 
pKERV17 with 1 mM IPTG causes slightly increased biofilm formation (panel B lanes 5 and 6). Strains 
were grown in LB medium +/‐ IPTG and 25 µg/ml kanamycin at 28°C for 48 hours. Samples were 
analyzed in quadruplicates. 
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2.5 Motility of E. coli K-12 and UPEC strain 536 is repressed by YjjQ 

One of the loci substantially repressed by the transcription factor YjjQ in the UPEC strain 

CFT073 derivative KEC394 is the flhDC locus encoding the master regulator of flagellar motility 

(Table 3). In E. coli K‐12 strain S3922 (BW30270 Δ(yjjP-yjjQ-bglJ)::KD3) no regulation of flhDC 

was detected probably because this strain is defective in motility as was realized when the 

microarray was already performed. To investigate whether YjjQ has an impact on motility in 

E. coli K‐12 strain T1241 (BW30270 ilvG+) and UPEC strain 536, a motility assay was performed. 

Strain T1241 is known to be motile. The motility capacity of UPEC strain 536 was unknown and 

needed to be tested. For that reason the 536 wild‐type strain was included in the motility assay. 

Wild‐type cells were transformed with the respective plasmids expressing YjjQ under the 

control of an IPTG‐inducible tac promoter. The yjjQ gene was either preceded by the native 

Shine‐Dalgarno sequence (pKEKD30 and pKEKD31) or by the epsilon Shine‐Dalgarno sequence 

(εSD) (pKERV17 and pKEKD25) (Table 13). Plasmids pKEKD31 and pKERV17 encode yjjQ 

originating from E. coli K‐12 whereas yjjQ encoded by the plasmids pKEKD30 and pKEKD25 

originates from the UPEC strains 536 and CFT073, respectively. The empty vector (pKESK22) 

was used as a control. 

For assessment of motility the strains were grown on LB soft agar plates for five to six hours at 

37°C. The influence of YjjQ on motility was inferred from comparison of the swarm radii 

between the control and strains expressing YjjQ. In E. coli K‐12 strain T1241, transformants of 

the vector control pKESK22 exhibited motility independent of IPTG (Figure 20 A). Basal level 

expression of YjjQ from plasmids pKEKD30 and pKEKD31 yielding moderate protein levels led to 

a motility pattern that was indistinguishable from the control (+/‐ 1 mm). Induction of YjjQ 

expression with 0.2 mM IPTG eliminated motility (Figure 20 B and C). Basal level expression of 

YjjQ from plasmids pKEKD25 and pKERV17 yielding high protein levels led to a loss of motility 

compared to the control. As expected, induction of YjjQ expression with 0.2 mM IPTG made no 

difference since motility was already absent in the uninduced strains (Figure 20 D and E). 

Wild‐type UPEC strain 536 turned out to be motile as well (Figure 21 A). Transformants of the 

vector control pKESK22 exhibited motility independent of IPTG (Figure 21 B). Basal level 

expression of YjjQ from pKEKD30 and pKEKD31 led to a motility pattern that was 
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indistinguishable from the control. Induction of YjjQ expression with 0.2 mM IPTG strongly 

suppressed motility (Figure 21 C and D). Basal level expression of YjjQ from pKEKD25 and 

pKERV17 led to a decrease of motility. Induction of YjjQ expression with 0.2 mM IPTG 

eliminated motility (Figure 21 E and F). 

These data suggest that YjjQ in deed negatively regulates motility of E. coli via repression of the 

flagellar flhDC locus. The results indicate that this locus, previously identified as a putative YjjQ 

target in the microarray of UPEC strain CFT073, is an actual YjjQ target. 

 

 

 

 

 

 

Figure 20: Motility of E. coli K‐12 is 
repressed by YjjQ. 
The influence of YjjQ expression on the 
motility of E. coli K‐12 strain T1241 was 
investigated using the motility assay. 
Panel A shows the vector control. 
Panels B to E show transformants 
harboring plasmids expressing YjjQ 
under the control of an IPTG‐inducible 
tac promoter. Transformants of the 
vector control pKESK22 exhibited 
motility in an IPTG‐independent 
manner (panel A). Basal level 
expression of YjjQ from plasmids 
pKEKD30 and pKEKD31 carrying the 
native Shine‐Dalgarno sequence (nSD) 
did not affect motility (left panel B and 
C). IPTG‐induced YjjQ expression from 
pKEKD30 and pKEKD31 eliminated 
motility (right panel B and C). Basal 
level expression as well as IPTG‐
induced YjjQ expression from plasmids 
pKEKD25 and pKERV17 carrying the 
epsilon Shine‐Dalgarno sequence (εSD) 
leads to a loss of motility (panels D and 
E). Strains were grown on LB soft agar 
plates +/‐ IPTG and 25 µg/ml 
kanamycin at 37°C for five hours. 
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Figure 21: Motility of UPEC strain 536 is 
repressed by YjjQ. 
The influence of YjjQ expression on the 
motility of UPEC strain 536 was 
investigated using the motility assay. 
Panel A shows the wild‐type and panel 
B shows the vector control. Panels C to 
F show transformants harboring 
plasmids expressing YjjQ under the 
control of an IPTG‐inducible tac 
promoter. Wild‐type 536 as well as 
transformants of the vector control 
pKESK22 exhibited motility in an IPTG‐
independent manner (panels A and B). 
Basal level expression of YjjQ from 
plasmids pKEKD30 and pKEKD31 
carrying the native Shine‐Dalgarno 
sequence (nSD) did not affect motility 
(left panel C and D). IPTG‐induced YjjQ 
expression from pKEKD30 and pKEKD31 
with 0.2 mM IPTG strongly suppressed 
motility (right panel C and D). Basal 
level expression of YjjQ from plasmids 
pKEKD25 and pKERV17 carrying the 
epsilon Shine‐Dalgarno sequence (εSD) 
leads to a decrease of motility (left 
panel E and F). Induction of YjjQ 
expression from pKEKD25 and pKERV17 
with 0.2 mM IPTG eliminated motility 
(right panel E and F). Strains were 
grown on LB soft agar plates +/‐ IPTG 
and +/‐ 25 µg/ml kanamycin at 37°C for 
six hours. 
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2.6 Investigation of UPEC adhesion with the help of in vitro model systems 

The microarray performed in E. coli K‐12 and UPEC strain CFT073 detected several putative 

target loci of the transcription factor YjjQ associated with adhesion (Table 3). These loci include 

the bcs locus encoding proteins that mediate the synthesis of cellulose which is a principal 

component of the ECM and therefore represents a biofilm determinant. Adhesion capacities of 

bacteria to eukaryotic cells can be assessed by the use of adhesion assays. These assays are 

in vitro cell culture‐based infection models. To examine the influence of the major ECM 

components curli and cellulose as well as of YjjQ on the adhesion capacity of UPEC to potential 

host cells, an adhesion assay was established. Using this assay, infections of urothelial 5637 

cells with wild‐type and mutant UPEC strains 536 and CFT073 were performed. 

The effects of deletions of csgA encoding the predominant structural component of curli, csgD 

encoding the ECM master regulator controling cellulose and curli synthesis, and bcsA encoding 

the catalytic subunit of cellulose synthase have been studied before (Saldaña et al., 2009). 

These authors reported that single mutations in csgA, csgD or bcsA in EHEC O157:H7 and EPEC 

O127:H6 had no dramatic impact on cell adherence. However, double csgA bcsA mutants were 

observed to be less adherent than the single mutants or wild‐type strains to human colonic HT‐

29 epithelial cells or to bovine colon tissue in vitro. Overexpression of CsgD in a csgD mutant, 

but not in the csgA or bscA single mutants, was shown to increase adherence to HT‐29 cells in 

the EPEC and EHEC strains tested. Based on their findings they reasoned that simultaneous 

overexpression of curli and cellulose enhances bacterial adherence to eukaryotic cells (Saldaña 

et al., 2009). 
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2.6.1 Adhesion assay 

The classical adhesion assay is a frequently used in vitro model system to determine adhesion 

capacities of bacteria to eukaryotic cells (Elsinghorst, 1994, Eto et al., 2007). In collaboration 

with D. Gürlebeck (AG Wieler, FU Berlin) I have accomplished an adhesion assay with UPEC 

strain CFT073 on the canine kidney cell line MDCK. CFT073 Δ(yjjP-yjjQ-bglJ)::KD3 (KEC394) was 

transformed with plasmids either expressing yjjQ preceded by the epsilon Shine‐Dalgarno 

sequence (εSD) or bglJ. The empty vector (pKESK22) was used as a control. The three 

transformant strains as well as the parent strain were plated on LB agar plates supplemented 

with kanamycin. On the assay day, single colonies of all four strains were used to inoculate LB 

medium. These cultures were grown to an OD600 of 2 to 3 in the presence of 1 mM IPTG and 

25 µg/ml kanamycin. 1 ml of each culture was pelleted by centrifugation and resuspended in 

1 ml cell culture medium. The cell count of the MDCK cells was determined and the OD600 of the 

CFT073 suspensions was measured. The inoculum was calculated to adjust the desired MOI 

value of 1. From the respective preparatory cultures, the inoculums were diluted in cell culture 

medium and vortexed briefly. The medium was aspirated from the cell culture plate and the 

inoculum was added. The plate was centrifuged to synchronize the infection and then 

incubated for one hour. The inoculum was aspirated and the samples were washed three times 

with PBS. For cell lysis Triton X100 in PBS was added to the plate. After a short incubation the 

lysates were harvested, serial dilutions were made and the two highest dilutions were plated in 

duplicates on LB agar plates. On the next day the colonies were counted and the evaluation of 

the obtained values as a graphical representation was done. CFT073 complemented with YjjQ 

showed a 6.7‐fold decrease in adhesion compared to the wild‐type whereas complementation 

with BglJ only had a marginal influence (data not shown). This experiment was only performed 

once so that the data were not reproduced. 

As stated before, YjjQ may affect adhesion through an inhibiton of ECM production via 

repression of the bcs locus mediating cellulose exopolysaccharide synthesis. Curli and cellulose 

have been demonstrated to act synergistically to promote adherence of EHEC and EPEC 

(Saldaña et al., 2009). In order to find out if this oberservation is transferable to other E. coli 

species, I intended to reproduce the data in a UPEC model system. To investigate if defective 
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curli and/or cellulose production has consequences on the adhesion capacity of UPEC strain 

CFT073, the deletion mutant strains ΔbcsA (KEC466/467), ΔcsgA (KEC468/469) ΔcsgD 

(KEC470/471), and ΔbcsA ΔcsgA (KEC472) were constructed by λ‐Red mediated recombination 

(Datsenko & Wanner, 2000) (Table 11). Eukaryotic cells were infected with the CFT073 wild‐

type and deletion mutant strains using a modified protocol. The MDCK cell line was replaced 

with the epithelial carcinoma cell line 5637 derived from the human urinary bladder (CLS cell 

lines service, Eppelheim). Instead of using colonies from plates for the inoculation of the 

preparatory cultures, overnight cultures were grown in cell culture medium. Accordingly, the 

preparatory cultures were grown in cell culture medium as well. This procedure omits the 

centrifugation and resuspension step. Furthermore, the preparatory cultures were grown to 

exponential phase with an OD600 of 0.5 instead of using stationary growth phase cells. 

In each experiment, wild‐type UPEC CFT073 (KEC375) adhered the least efficiently compared to 

all deletion mutants, which is in contrast to the previous observations (Saldaña et al., 2009). 

Adherence of the deletion mutant strains to 5637 cells is increased between 2.2‐fold and 2.9‐

fold in average compared to the wild‐type (Figure 22). The fact that CFT073 neither produces 

curli nor cellulose (Hancock et al., 2007) was unknown by the time the adhesion assays were 

performed. For that reason the data concerning the mutants with defective curli and/or 

cellulose production are obsolete and are not discussed in more detail. 

In an attempt to find out if YjjQ negatively affects adhesion, I infected urothelial 5637 cells with 

UPEC strain CFT073. Infection was carried out with wild‐type CFT073 as well as with a 

transformant strain harboring the plasmid pKEKD25 expressing YjjQ derived from UPEC under 

the control of the IPTG‐inducible tac promoter. The yjjQ gene was preceded by the epsilon 

Shine‐Dalgarno sequence (εSD) which is known to greatly enhance translation efficiency (Olins 

et al., 1988). Therefore expression of YjjQ from pKEKD25 yields high protein levels. The empty 

vector (pKES169) was used as a control. Adherence of the transformant expressing YjjQ was 

increased 3.8‐fold in average compared to the wild‐type (Figure 23). Transformants of the 

vector control pKES169 showed even a 12.7‐fold increase in adhesion to 5637 cells. This is in 

contradiction to the preliminary result obtained from the adhesion assay performed in Berlin 

where CFT073 complemented with YjjQ showed a 6.7‐fold decrease in adhesion compared to 
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the wild‐type. The adhesion assay system I used could not support the observation previously 

made regarding the negative role of YjjQ on adhesion. However, the experimental conditions, 

the genetic background of the parent strain as well as the plasmid encoding yjjQ were different. 

Despite these differences that may account for the opposite results, the classical adhesion 

assay was abandoned because it entails many other disadvantages as summarized below. 

After having performed the adhesion assay several times it emerged that the reproducibility 

cannot be guaranteed as illustrated by the high standard deviations. Since the number of 

colonies differs substantially between the assays, only the samples of one single experiment 

can be correlated reliably to each other. The strong discrepancies between the colony numbers 

may result from the necessity to use high dilutions of the samples to generate single colonies. 

For titer determination of adherent bacteria, the colony numbers are multiplied with the 

dilution factor which results in a wide error margin. Moreover, it is not possible to distinguish 

between bacteria that adhere to eukaryotic cells and bacteria that adhere unspecifically to the 

surface. To be able to give a definite statement on the function of YjjQ in adhesion, its 

mechanisms of action need to be studied in much greater detail. For that reason I switched to a 

microscopy‐based approach. 
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Figure 22: Adhesion of wild‐type and deletion mutant UPEC CFT073 strains to 5637 cells. 
Bacterial adhesion was analyzed with the adhesion assay. Urothelial 5637 cells were infected with UPEC 
CFT073 strains with different genetic backgrounds. CFT073 wild‐type was used as reference for the 
calculation of changes in adhesion. The wild‐type strain adheres the least efficiently of all strains tested. 
Deletion of bcsA encoding the catalytic subunit of cellulose synthase results in a 2.2‐fold increase in 
adhesion. Deletion of csgA encoding the predominant structural component of curli results in a 2.7‐fold 
increase in adhesion. Deletion of csgD encoding the ECM master regulator results in a 2.9‐fold increase 
in adhesion. Deletion of a combination of bcsA and csgA results in a 2.8‐fold increase in adhesion. The 
bars represent the average fold‐changes calculated from four (WT, ΔbcsA, ΔcsgA, ΔcsgD) or two (ΔbcsA 
ΔcsgA) experiments, respectively. On the X‐axis the individual values per experiment are indicated. 
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Figure 23: Influence of YjjQ on the adhesion of UPEC CFT073 to 5637 cells. 
Bacterial adhesion was analyzed with the adhesion assay. Urothelial 5637 cells were infected with UPEC 
CFT073 strains with different genetic backgrounds. CFT073 wild‐type was used as reference for the 
calculation of changes in adhesion. The wild‐type strain adheres the least efficiently of all strains tested. 
Overexpression of YjjQ preceded by the epsilon Shine‐Dalgarno sequence results in a 3.8‐fold increase of 
adhesion. Transformants of the vector control showed a 12.7‐fold increase in adhesion. The bars 
represent the average fold‐changes calculated from two (WT, +YjjQ) or one (vector control) experiment, 
respectively. On the X‐axis the individual values per experiment are indicated. The following plasmids 
were used: YjjQUPECεSD (pKEKD25) and vector control (pKES169). 
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2.6.2 Microscopic visualization of E. coli adhesion 

An extended variation of the classical adhesion assay is the microscopy‐based adhesion assay. 

This approach allows the microscopic visualization of fluorescently labelled bacteria and 

eukaryotic cells. Both methods serve the purpose to determine adhesion capacities of UPEC to 

potential host cells, but the microscopic approach further allows monitoring of immediate 

interactions of the bacteria with the eukaryotic cells. Another crucial advantage is the 

possibility to distinguish bacteria that adhere to the surface from bacteria that are associated to 

eukaryotic cells. For that reason the degree of adhesion can be calculated as adherent bacterial 

cell per eukaryotic cell compared to adherent bacteria in total. For the microscopy‐based 

adhesion assay, UPEC strain 536 was chosen as strain to be used because 536 expresses both 

curli and cellulose as illustrated by the rdar morphotype (Figure 14). 

In order to gain a fluorescent UPEC 536 parent strain, a genetic construct was cloned 

comprising the constitutive PL promoter, the epsilon Shine‐Dalgarno sequence (εSD), a green 

fluorescent protein (GFP) reporter, and a selectable resistance gene. The final fluorescence 

reporter construct is depicted in Figure 24. 

 

 
 

Figure 24: Fluorescence reporter construct in UPEC 536 strains used for the microscopy‐based adhesion 
assay. 
Chromosomal lacA was replaced with the depicted promoter‐reporter fusion containing the constitutive 
PL promoter from phage λ, the epsilon Shine‐Dalgarno sequence εSD, the reporter gene gfp, and the 
chloramphenicol resistance gene cat which is flanked by FRT sites. The promoter‐reporter fusion was 
introduced into the chromosome of wild‐type 536 by λ‐Red mediated recombination using the lacA 
homology regions HR2 and HR1. 
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The PL promoter was amplified from phage λ DNA and was subsequently cloned in the presence 

of plasmid pFDX334 encoding cI‐857, a thermolabile mutant allele of the λcI repressor (George 

et al., 1987). This protein represses PL at 28°C, a condition that was needed for cloning of the 

otherwise constantly active promoter. The GFP reporter variant gfp-mut1 (Cormack et al., 

1996) preceded by εSD originated from plasmid pKEIB16 (Table 13). The chloramphenicol 

resistance gene (cat) was flanked by Flp recombinase target (FRT) sites which allow excision of 

cat via Flp‐mediated recombination. The PL promoter and the chloramphenicol resistance gene 

were encompassed by regions homologous to upstream and downstream sequences of the 

chromosomal target gene lacA (Figure 24). These lacA homology regions termed HR1 and HR2 

were generated by annealing of phosphorylated complementary oligonucleotides. The reporter 

cassette was introduced into the 536 chromosome by λ‐Red mediated recombination according 

to Datsenko and Wanner thereby generating strain KEC490 (536 ΔlacA::PLgfp‐KD3) (Datsenko & 

Wanner, 2000). 

To examine the influence of the major ECM components curli and cellulose as well as of YjjQ on 

the adhesion capacity of UPEC to potential host cells, several fluorescent deletion mutant 

strains were constructed. For the construction of these strains the UPEC 536 mutant collection 

generated for the morphotype analysis was used. The deletion mutant strains with excised 

resistance cassettes (KEC484‐488, KEC494‐496) were transduced with phage EB49 (Battaglioli et 

al., 2011) from phages grown on the fluorescent UPEC 536 parent strain ΔlacA::PLgfp‐KD3 

(KEC490) (Table 12). By selecting chloramphenicol‐resistant clones, fluorescent 536 mutant 

strains (KEC497‐504) harboring deletions of the genes responsible for curli and/or cellulose 

production as well as of genes belonging to the yjjQ locus were generated (Table 12). 

UPEC 536 ΔlacA::PLgfp‐KD3 (KEC490) was used to establish the staining and the experimental 

conditions for the microscopy‐based adhesion assay (Figure 25). Urothelial 5637 cells were 

grown to 60‐80% confluence so that the bacteria could in principal adhere to an abiotic surface 

represented by the glass cover slip as well as a biotic surface represented by the eukaryotic 

cells. The infection procedure is the same as the one of the classical adhesion assay and 

includes a centrifugation step. After infection, 5637 cells were stained with 2.5 µg/ml CellMask 

Orange in cell culture medium for 1 min. Samples were fixed with 1 ml 4% para‐formaldehyde 
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in PBS for 15 min at 37°C and then mounted with Fluoroshield including DAPI. Figure 25 

demonstrates that under the same experimental conditions, UPEC 536 appears to localize to 

the glass surface as well as to associate with eukaryotic cells. 

 

 
 

Figure 25: Image of fixed human urinary bladder carcinoma 5637 cells infected with the UPEC 536 GFP 
reporter strain KEC490. 
Microscopy samples were treated with CellMask Orange staining the plasma membrane of urothelial 
5637 cells, and afterwards fixed with 4% para‐formaldehyde in PBS. Samples were mounted with 
Fluoroshield containing DAPI staining nucleic acids of the eukaryotic nucleus and of the bacterial 
chromosome. The image was taken with the widefield DeltaVision RT microscope (Applied Precision, 
Inc.) and processed with the softWoRx 5.5 image analysis software. 

 

Infections of urothelial 5637 cells with reporter strains with defective curli and/or cellulose 

production were analyzed by microscopy and compared to UPEC 536 ΔlacA::PLgfp‐KD3 

(KEC490). Two incubation times with defined MOI values were used for all assays. Samples 

infected with a MOI of 30 were incubated for 30 min while samples infected with a MOI of 2 

were incubated for two hours. The fluorescent E. coli K‐12 strain T66 (Plac::gfp-mut1 ΔlacZYA‐

kan) was intended to serve as a negative control because E. coli K‐12 laboratory strains are 

supposed to produce only low amounts of adhesive structures. The overall number of T66 cells 

was indeed reduced compared to KEC490 (Table 7 and Figure 26). But the fact that T66 cells 

could be detected at all suggests that the bacteria, irrespective of the strain, do not actively 

adhere but instead may be forced onto the surface by centrifugation. This assumption is 
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underlined by the fact that if the centrifugation is omitted, almost no bacteria can be detected 

(data not shown). In addition, only very low amounts of bacteria could be detected in general 

compared to the applied MOI (Table 7). As already observed with the classical adhesion assay, 

the standard deviations were again very high. 

To investigate the influence of YjjQ expression on bacterial adhesion, UPEC 536 ΔlacA::PLgfp‐

KD3 (KEC490) was transformed with the plasmid pKEKD30 expressing YjjQ under the control of 

an IPTG‐inducible tac promoter. The yjjQ gene was preceded by the native Shine‐Dalgarno 

sequence and therefore expression of YjjQ from pKEKD30 yields moderate protein levels. The 

empty vector (pKESK22) was used as a control. For both infection conditions, expression of YjjQ 

from pKEKD30 resulted in bacterial cell numbers that were very similar to those found in the 

wild‐type strain (Table 8 and Figure 27). Cell numbers of transformants of the vector control 

pKESK22 were elevated compared to the wild‐type and the YjjQ transformants. The adhesion 

capacity of a UPEC 536 reporter strain harboring a deletion of the yjjP-yjjQ-bglJ locus was also 

assessed (536 Δ(yjjP-yjjQ-bglJ)::FRT ΔlacA::PLgfp‐KD3). Surprisingly, the cell numbers of this 

deletion mutant strain were even more increased than those of the vector control 

transformants (Table 8 and Figure 27). 

In summary, neither the classical adhesion assay nor the microscopy‐based adhesion assay 

were sufficient to analyze UPEC adhesion to urothelial cells adequately. These results illustrate 

that conclusions deduced from adhesion assays need to be evaluated very critical. All data 

published based on adhesion assays should be supported by other methods that guarantee 

higher reliability and reproducibility. 
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Table 7: Adhesion of wild‐type UPEC 536 and E. coli K‐12 GFP reporter strains to 5637 cells. 
 

UPEC 536 strain/ 
K‐12 strain1 

Triplicate 
No 

5637 
nuclei2 

co‐localized 
bacteria2 

glas‐attached 
bacteria2 

total bact./ 
1000 cells 

co‐loc. bact./ 
1000 cells 

Average 
total bact./ 
1000 cells 

Stdev 
total 

Stdev% 
total 

Average 
co‐loc. bact./ 

1000 cells 

Stdev 
co‐loc. 

Stdev% 
co‐loc. 

KEC490 
ΔlacA::PLgfp‐KD3 

2h MOI=2 

1 483 85 69 319 176 172 115 67% 105 56 54% 

2 424 42 25 158 99 (9% of MOI) 
  

(5% of MOI) 
  

3 1207 47 0 39 39 
      

KEC490 
ΔlacA::PLgfp‐KD3 
30min MOI=30 

1 794 152 30 229 191 430 146 34% 221 30 13% 

2 582 122 163 490 210 (1% of MOI) 
  

(1% of MOI) 
  

3 531 139 165 573 262 
      

T66 
Plac::gfp-mut1 
ΔlacZYA‐kan 

2h MOI=2 

1 1191 50 0 42 42 46 24 52% 46 24 52% 

2 458 35 0 76 76 (2% of MOI) 
  

(2% of MOI) 
  

3 1063 20 0 19 19 
      

T66 
Plac::gfp-mut1 
ΔlacZYA‐kan 

30min MOI=30 

1 509 17 46 124 33 209 64 31% 67 25 37% 

2 514 47 96 278 91 (1% of MOI) 
  

(0% of MOI) 
  

3 853 65 127 225 76 
      

 
1 Bacterial cultures were grown overnight to stationary phase in cell culture medium. 
2 The raw data was obtained with the help of the Volocity 6.1.1 image analysis software either by automatic (5367 nuclei) or maunal (bacteria) 

counting. 
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Figure 26: Adhesion of UPEC 536 as well as of E. coli K‐12 GFP reporter strains to 5637 cells. 
Urothelial 5637 cells were infected with the UPEC 536 strain KEC490 (ΔlacA::PLgfp‐KD3) and the E. coli K‐12 strain T66 (Plac::gfp-mut1 ΔlacZYA‐
kan). Bacterial adhesion was analyzed with the microscopy‐based adhesion assay. Although T66 shows reduced adhesion compared to KEC490 it 
is able to adhere unspecifically to the surface as well as co‐localized with 5637 cells. The chart depicts the calculated averages of total adherent 
bacteria per 1000 eukaryotic cells and of co‐localized adherent bacteria per 1000 eukaryotic cells including the standard deviations. Infection 
was carried out using the conditions indicated on the X‐axis.  
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Table 8: Influence of YjjQ on the adhesion of UPEC 536 GFP reporter strains to 5637 cells. 
 

UPEC 536 
strain1 

Triplicate 
No 

5637 
nuclei2 

co‐localized 
UPEC2 

glas‐attached 
UPEC2 

total UPEC/ 
1000 cells 

co‐loc. UPEC/ 
1000 cells 

Average 
total UPEC/ 
1000 cells 

Stdev 
total 

Stdev% 
total 

Average 
co‐loc. UPEC/ 

1000 cells 

Stdev 
co‐loc. 

Stdev% 
co‐loc. 

KEC490 
ΔlacA::PLgfp‐KD3 

2h MOI=2 

1 740 136 2 186 184 96 72 75% 93 71 76% 

2 770 9 0 12 12 (5% of MOI) 
  

(5% of MOI) 
  

3 614 52 3 90 85 
      

KEC490 
ΔlacA::PLgfp‐KD3 
30min MOI=30 

1 617 84 21 170 136 73 69 95% 60 54 89% 

2 763 22 0 29 29 (0% of MOI) 
  

(0% of MOI) 
  

3 697 11 2 19 16 
      

KEC490 
+ YjjQ 

2h MOI=2 

1 859 43 0 50 50 96 96 100% 80 74 92% 

2 452 82 22 230 181 (5% of MOI) 
  

(4% of MOI) 
  

3 551 5 0 9 9 
      

KEC490 
+ YjjQ 

30min MOI=30 

1 833 44 4 58 53 71 39 55% 60 31 51% 

2 564 57 13 124 101 (0% of MOI) 
  

(0% of MOI) 
  

3 802 22 3 31 27 
      

KEC490 
+ vector control 

2h MOI=2 

1 561 57 11 121 102 143 105 73% 117 82 70% 

2 413 93 23 281 225 (7% of MOI) 
  

(6% of MOI) 
  

3 823 21 1 27 26 
      

KEC490 
+ vector control 
30min MOI=30 

1 581 76 125 346 131 303 156 52% 132 36 28% 

2 618 54 4 94 87 (1% of MOI) 
  

(0% of MOI) 
  

3 481 85 141 470 177 
      

KEC500 
Δ(yjjP-yjjQ-bglJ) 

2h MOI=2 

1 545 83 1 154 152 237 64 27% 233 60 26% 

2 903 224 0 248 248 (12% of MOI) 
  

(12% of MOI) 
  

3 666 198 8 309 297 
      

KEC500 
Δ(yjjP-yjjQ-bglJ) 
30min MOI=30 

1 734 54 82 185 74 527 415 79% 230 149 65% 

2 524 97 52 284 185 (2% of MOI) 
  

(1% of MOI) 
  

3 480 207 326 1110 431 
      

 
1 Bacterial cultures were grown overnight to stationary phase (KEC490 ΔlacA::PLgfp‐KD3 and KEC500) or to exponential phase in the presence of 

1 mM IPTG (KEC490 + YjjQ and KEC490 + vector control) in cell culture medium. 
2 The raw data was obtained with the help of the Volocity 6.1.1 image analysis software either by automatic (5367 nuclei) or maunal (UPEC) 

counting. 
The following plasmids were used: YjjQUPECnSD (pKEKD30) and vector control (pKESK22).  
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Figure 27: Influence of YjjQ on the adhesion of UPEC 536 GFP reporter strains to 5637 cells. 
Urothelial 5637 cells were infected with four UPEC 536 strains with different genetic backgrounds. Bacterial adhesion was analyzed with the 
microscopy‐based adhesion assay. 536 transformants expressing YjjQ adhered to the same extent than the wild‐type 536 strain. Transformants 
of the vector control showed enhanced adhesion compared to wild‐type and YjjQ transformants. The 536 strain KEC500 carrying a deletion of 
the yjjQ locus showed increased adhesion compared to the vector control. The chart depicts the calculated averages of total adherent bacteria 
per 1000 eukaryotic cells and of co‐localized adherent bacteria per 1000 eukaryotic cells including the standard deviations. The following 
plasmids were used: YjjQUPECnSD (pKEKD30) and vector control (pKESK22). Infection was carried out using the conditions indicated on the X‐axis. 
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3. Discussion 

In this study novel functions of the previously uncharacterized FixJ/NarL‐type transcription 

factor YjjQ were identified. Microarray data analysis revealed that YjjQ constitutes a 

transcriptional repressor of multiple loci in E. coli K‐12 and UPEC. Furthermore, it was shown 

that YjjQ represses motility in E. coli K‐12 and UPEC. This effect can be attributed to YjjQ‐

mediated repession of the master regulator of flagellar motility. Moreover, YjjQ was 

demonstrated to repress morphotype expression in UPEC and biofilm formation in E. coli K‐12. 

These findings provide the basis for further experiments in order to elucidate the role of YjjQ in 

bacterial physiology, behavior, and pathogenicity. 

 

 

3.1 YjjQ is a pleiotropic repressor in E. coli 

To identify genes regulated by the transcription factor YjjQ in E. coli K‐12 and UPEC strain 

CFT073 a microarray was performed. One of the most important findings inferred from the 

microarray data analysis is the fact that YjjQ seems to act mainly as a transcriptional repressor. 

The putative YjjQ target genes are involved in various unrelated pathways, but several loci can 

be linked to the regulation of biofilm formation. For instance, some of the affected gene 

products play roles in adhesion processes (bcs, fimB), capsule synthesis (gfc, kpsMT), and 

motility control (flhDC). 

Five genes encoding transcriptional regulators are negatively affected by YjjQ: adiY involved in 

acid resistance, the catabolite repressor/activator protein cra involved in energy metabolism, 

the FixJ/NarL‐type transcription factor dctR involved in acid resistance and pathogenicity, the 

pleiotropic motility regulator flhDC, and zur involved in zinc uptake (only in K‐12) (see chapter 

2.2). Strikingly, a large part of the genes downregulated by YjjQ encode membrane proteins 

that are located in the outer membrane (OM) and/or the inner membrane (IM) of the bacterial 

cell wall. This is the case for the 10 loci listed in Table 9. This suggests that YjjQ may have a 

substantial influence on the composition of mainly the inner membrane and thereby on cell 

wall integrity. 
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Table 9: Putative YjjQ target loci encoding membrane proteins of the bacterial cell wall in E. coli K‐12 and 
UPEC strain CFT073. 
 

Target locus1 Gene product function Cell wall location 

adiC arginine‐agmatine antiporter IM 

bcsA cellulose synthase IM 

mdtJI spermidine exporter IM 

ompC osmoporin OM 

yfiN yfiB DGC and lipoprotein IM and OM 

dcuB fumarate‐succinate antiporter IM 

gfc group 4 capsule formation OM/IM 

nanC Neu5Ac‐specific porin OM 

frdABCD fumarate reductase IM 

kpsMT capsular polysaccharide ABC‐transporter IM 
 
1 Fold repression values are given in Table 3. 

 

There are two possible mechanisms by which YjjQ‐mediated repression of target genes could 

be achieved. On the one hand YjjQ could bind directly to sequences in the target gene 

promoters via its HTH DNA‐binding domain. This direct interaction could in turn interfere with 

the binding of activating transcription factors or with RNA polymerase itself thereby preventing 

transcription. On the other hand YjjQ could act indirectly by repressing the expression of 

transcriptional regulators. This mechanism seems likely for the putative target gene ucpA since 

YjjQ downregulates expression of Cra, a known transcriptional activator of this gene, in E. coli K‐

12 (Sirko et al., 1997) (Table 4). Moreover, Cra is a negative regulator of the fruBKA operon 

(Ramseier et al., 1993). Repression of Cra by YjjQ is therefore reflected in the elevated 

expression of fruBKA (Table 4). Interestingly, a Cra‐binding site was determined on the yjjP 

open reading frame by a SELEX approach (systematic evolution of ligands by exponential 

enrichment). Thus, YjjQ and BglJ are putative members of the transcription factor network 

organized in the Cra regulon (Shimada et al., 2011c). 

Other examples for a putative indirect influence of gene expresion by YjjQ are the 7.6‐fold 

upregulation of zinT and the 5.1‐fold downregulation of dctR in E. coli K‐12. The zinT gene is 

repressed by Zur, a transcription factor known to regulate zinc uptake in E. coli (Patzer & 

Hantke, 2000, Graham et al., 2009). Elevated expression of zinT can be explained by the 
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downregulation of its repressor Zur by YjjQ in E. coli K‐12 (Table 4). Repression of dctR may also 

be an indirect effect through YjjQ‐mediated repression of its transcriptional activator AdiY (Krin 

et al., 2010a) (Table 3). Beyond the modes of YjjQ action described here, other mechanisms 

such as protein‐protein interactions that are not detected by the microarray method may occur 

as well. Furthermore, additional YjjQ target loci that are not represented on the Affymetrix 

GeneChip E. coli Genome 2.0 Array probably exist. 

Regarding the microarray data analysis, one should keep in mind that this method does not 

provide a quantification of immediate transcriptional activity on individual promoters. Many 

indirect effects resulting from a complex interplay of small regulatory RNAs (Yus et al., 2012, 

Lalaouna et al., 2013), RNA‐degrading enzymes (Arraiano et al., 2010), RNA‐binding proteins 

such as Hfq and CsrA (Nogueira & Springer, 2000), and other effectors like polyamines (Igarashi 

& Kashiwagi, 2010) affect mRNA synthesis, stability, and processing. The extent of the actions of 

these additional positive or negative regulators on the transcriptome remain unconsidered. In 

addition, the test strain used in the microarray was transformed with the plasmid pKERV17 

containing yjjQ fused to the epsilon Shine‐Dalgarno sequence (εSD), a genetic element known 

to greatly enhance translation efficiency. But this also means that the YjjQ concentration in the 

test strain reached highly unphysiological levels that may be deleterious for cell metabolism 

including transcription events. For these reasons more direct approaches need to be applied in 

the future to validate the microarray data. 

 

 

3.2 Morphotype analysis 

The red, dry and rough (rdar) morphotype exhibited by Enterobacteriaceae reflects co‐

expression of cellulose and curli and represents an indicator for community behavior. 

Phenotypic analysis of yjjQ‐deficient UPEC 536 strains revealed that deletion of this gene has no 

impact on colony morphology. The wild‐type strain as well as the ΔbglJ, Δ(yjjQ-bglJ), and Δ(yjjP-

yjjQ-bglJ) mutant strains exhibited indistinguishable rdar morphotypes on LB Congo Red agar 

plates after eight days of growth at 28°C. These results were anticipated since YjjQ is virtually 

not expressed in vivo due to H‐NS‐mediated repression (Stratmann et al., 2008). In contrast, 

overexpression and complementation with YjjQ from the plasmid pKEKD30 yielding moderate 
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protein levels leads to a pronounced suppression of the rdar morphotype (Figure 17). The 

colonies were smaller and less wrinkly compared to the control. The phenotype obtained from 

the overexpression and complementation experiments suggests that YjjQ acts as a suppressor 

of multicellular behavior. The mechanism by which this suppression is achieved is not 

understood. YjjQ‐mediated repression of the bcs locus dedicated to cellulose synthesis could 

not be confirmed by promoter‐lacZ fusions (see below, chapter 3.6). The effects of YjjQ on 

morphotype expression may be implemented via a different route than regulation of the bcs 

promoters. 

As stated before, microarray data analysis revealed YjjQ‐mediated downregulation of Cra in 

E. coli K‐12. This global transcriptional regulator was shown to be involved in biofilm formation 

through the regulation of curli synthesis (see chapter 1.3.1). E. coli K‐12 strains carrying a cra 

mutation form colorless colonies on indicator plates due to abolished Congo Red‐binding 

(Reshamwala & Noronha, 2011). Accordingly, the csgDEFG operon was found to be 2.8‐fold 

downregulated by YjjQ in K‐12. In addition, another locus associated with ECM production, the 

ydaM gene encoding a diguanylate cyclase responsible for c‐di‐GMP synthesis, was 2.5‐fold 

downregulated by YjjQ in K‐12. No differential regulation of these loci was detected in UPEC 

strain CFT073. This is consistent with the observation that CFT073 neither produces curli nor 

cellulose (Hancock et al., 2007). YjjQ‐mediated regulation of the two loci in UPEC strain 536 is 

not known. One possibility to examine gene repression by YjjQ in 536 would be the 

performance of qRT‐PCR on the putative target genes identified in the microarray. 

Nevertheless, the results from the morphotype analysis imply a role for YjjQ in biofilm 

formation and possibly adhesion. 

 

 

3.3 Biofilm assay 

In Enterobacteriaceae, curli as well as cellulose production are essential factors required for 

biofilm formation and adhesion (Zogaj et al., 2001, Saldaña et al., 2009). The capacity of E. coli 

laboratory strains to form stable biofilms is controversial. E. coli strains lacking curli expression 

and/or cellulose synthesis may possess a yet uncharacterized collection of surface adhesins 
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with different binding specificities that are expressed only under certain environmental 

conditions (Beloin et al., 2008). 

Curli expression is maximally induced in media without salt within a temperature range of 26°C 

to 30°C (Olsén et al., 1989, Bokranz et al., 2005). This observation was confirmed by the biofilm 

assay in which E. coli K‐12 strain BW30270 showed much stronger biofilm formation at 28°C 

than at 37°C (see chapter 2.4). Plasmidic expression of YjjQ induced by 0.2 mM IPTG 

considerably repressed adherence of E. coli K‐12 strain BW30270 to polystyrene at 28°C (Figure 

19). The effect of YjjQ on biofilm formation of UPEC strain 536 could not be examined with this 

method because this strain hardly produced any biofilms in microtiter plates at 28°C and 37°C. 

Most wild‐type E. coli K‐12 derivatives produce curli levels that are insufficient for proper 

adherence even though the curli genes are fully functional (Vidal et al., 1998). The concerned 

strains have lost the environmental control of the csg operons e.g. by temperature or 

osmolarity due to mutations in regulatory genes like rpoS or in the csgD promoter itself. 

Therefore they depend on an inactivating mutation of a repressor like H‐NS (Olsén et al., 1993) 

or an activating mutation of an activator like the osmoregulatory response regulator OmpR to 

induce curli synthesis (Gualdi et al., 2007, Vidal et al., 1998). In contrast, most natural E. coli 

isolates have an inherent capacity to form biofilms on different biotic and abiotic surfaces. 

UPEC strain 536 belongs to this group as illustrated by the formation of the red, dry and rough 

(rdar) morphotype on LB Congo Red agar plates. However, 536 did not produce a biofilm on 

polystyrene irrespective of the growth temperature. A possible explanation could be the use of 

LB as growth medium instead of a medium with a reduced salt content. If this fact is in deed the 

cause of the observed biofilm defect, it would emphasize the strong dependence of biofilm 

formation on the growth conditions of different bacterial strains. 

Besides curli and cellulose, biofilm formation is largely influenced by other substances as well. 

Additional ECM constituents are e.g. colanic acid, extracellular DNA (eDNA), and poly‐β‐1,6‐N‐

acetyl‐D‐glucosamine (PGA) (Branda et al., 2005, Flemming & Wingender, 2010). The structure 

of the exopolysaccharide colanic acid resembles the group 1 capsule of E. coli (Whitfield, 2006). 

Its biosynthesis locus underlies transcriptional control by the RcsCDB TCS (Majdalani & 

Gottesman, 2005). Colanic acid is essential for E. coli K‐12 biofilm formation (Danese et al., 
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2000). High‐level expression of colanic acid interferes with adhesion of UPEC to various surfaces 

(Hanna et al., 2003). 

A substantial amount of eDNA can be found within the ECM of many bacterial species. It is 

assumed to play structural and protective roles for the biofilm community. eDNA might derive 

from lysed host cells as well as from lysed bacterial cells or it might be actively released from 

bacteria via secretion of outer membrane vesicles. Treatment of biofilms with DNAse I results in 

decreased viability of bacteria and reduced tolerance to environmental factors (Whitchurch et 

al., 2002, Tetz & Tetz, 2010). 

The polysaccharide adhesin PGA stabilizes E. coli biofilms by promoting abiotic surface binding 

and intercellular cohesion (Wang et al., 2004). The pgaABCD transcript is destabilized by the 

RNA‐binding protein CsrA (Wang et al., 2005) (see chapter 5.3). Translation of pgaA mRNA is 

activated by McaS (Thomason et al., 2012), a small regulatory RNA that also targets csgD and 

flhDC mRNAs (see chapter 5.3). PGA production is allosterically activated by c‐di‐GMP which 

binds to the PGA synthesis machinery thereby promoting enzyme activity (Steiner et al., 2013). 

In the microarray, pgaA expression was found to be downregulated by YjjQ 3.1‐fold in E. coli K‐

12 and 2.9‐fold in UPEC strain CFT073. The possible manipulation of the three described 

substances by YjjQ and how this manipulation may affect morphotype expression remains 

unknown. 

 

 

3.4 Motility assay 

YjjQ was previously implicated to play a role in the negative regulation of motility in UPEC strain 

CFT073 since transposon mutants with restored swimming motility carried a disruption in yjjQ 

(Simms & Mobley, 2008). This putative involvement of YjjQ in the repression of motility was 

confirmed by the microarray data analysis in UPEC strain KEC394 (CFT073 Δ(yjjP-yjjQ-

bglJ)::KD3). In this strain, the flhDC locus encoding the master regulator of flagellar motility was 

9.8‐fold downregulated by YjjQ. The fact that there was no differential regulation of flhDC 

expression in E. coli K‐12 can be explained by the properties of the used strain. The microarray 

was performed in E. coli K‐12 strain S3922 (BW30270 Δ(yjjP-yjjQ-bglJ)::KD3) which is non‐
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motile. The flhDC locus is assumed not to be expressed and YjjQ therefore has no influence on 

S3922 motility. 

Altered swimming behavior assessed with a motility assay does not give any information about 

what level of the flagellar regulon is affected as a consequence of expression of the protein of 

interest. A reduced motility could result from impaired flagella synthesis or from paralysis of 

existing flagella. The microarray performed in UPEC strain CFT073 detected YjjQ‐mediated 

repression of the flagellar regulon at the top of the hierarchy. flhDC is a class I operon whose 

expression is necessary to trigger the transcriptional cascade activating classes II and III. 

Therefore it is reasonable to argue that the reduced motility of transformant strains 

overexpressing YjjQ is due to repression of flagella synthesis rather than activity. To test this 

hypothesis, the activity of promoter‐lacZ fusions was examined in the presence of YjjQ (see 

below, chapter 3.6). Transcription from the flhDC promoter was repressed by moderate YjjQ 

protein levels. This implies that the transcriptional repressor YjjQ directly binds to the flhDC 

promoter region thereby suppressing motility. 

A possible approach to clarify if YjjQ actually represses motility by targeting flhDC is a 

mutagenesis study. Putative binding sites of YjjQ in the flhDC regulatory region could be 

mutated in an E. coli strain expressing YjjQ and then used in a motility assay. This strain should 

be motile because YjjQ‐mediated repression is lost due to the disrupted sequence. If this is the 

case, YjjQ does in deed target the flhDC promoter and not one of the later expressed class II or 

class III flagellar promoters. 

 

 

3.5 Investigation of UPEC adhesion with the help of in vitro model systems 

In order to assess the adhesion capacities of different E. coli strains, two types of adhesion 

assays were performed. Both methods were used to examine the effects of defective curli 

and/or cellulose production as well as of YjjQ expression on the adherence of UPEC to 

eukaryotic cells. Deletion of the genes responsible for curli and/or cellulose production was 

expected to cause severe adhesion defects because these two main ECM components largely 

contribute to biofilm formation. Since YjjQ was found to substantially repress the bcs locus 



3. Discussion 

73 

dedicated to the synthesis of the exopolysacchriade cellulose in both E. coli strains tested 

(Table 3), overexpression of YjjQ was as well anticipated to reduce bacterial adhesion. 

For the classical adhesion assay the UPEC strain CFT073 was used, a strain that was previously 

shown to neither produce curli nor cellulose (Hancock et al., 2007). That is why deletion of 

bcsA, csgA and/or csgD should have no effect on the adherence of CFT073 to urothelial 5637 

cells. But as described in chapter 2.6.1, deletion of these genes as well as overexpression of YjjQ 

increased the overall colony numbers of CFT073. The reason for this phenomenon remains 

elusive. Possibly other adhesion factors such as different types of fimbriae mediate increased 

adherence in the deletion mutant strains, but this hypothesis is highly speculative. 

The microscopy‐based adhesion assay was supposed to replace the adhesion assay because it 

offers several advantages. For this method the UPEC strain 536 was used, a strain that exhibits 

the red, dry and rough (rdar) morphotype indicating co‐expression of curli and cellulose. 

Therefore deletion of the genes responsible for curli and/or cellulose production was supposed 

to reduce the adhesion capacity of this strain. Furthermore, since overexpression of YjjQ led to 

a pronounced attenuation of the rdar morphotype in 536, YjjQ expression was likewise 

expected to alter adherence of this strain. Despite the successful establishment of the assay 

protocol, this method failed to provide an improved system for the analysis of UPEC adhesion. 

It seems that the types of adhesion assays that include a centrifugation step in the procedure 

only detect bacteria that were forced onto the surface by centrifugation. For that reason also 

the second cell culture‐based model system used to investigate adhesion of UPEC to eukaryotic 

cells was abandoned. 

 

 

3.6 Putative functions of YjjQ in E. coli 

In the course of this study the transcription factor YjjQ was identified as a repressor of both 

motility and adhesion at the same time. YjjQ emerged as a negative regulator of flagella (flhDC) 

and a putative negative regulator of type 1 fimbriae (fimB), cellulose synthesis (bcs), capsule 

synthesis (gfc, kpsMT), acid stress (adiY adiC, dctR), and energy metabolism (cra, dcuB, 

frdABCD) (Table 4). It affects at least one of the three bacterial surface proteins strongly 

associated with biofilm formation: flagella, type 1 fimbriae, and curli (Prüß et al., 2006). The 
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flhDC operon seems to be an actual YjjQ target as demonstrated in the motility assay. 

Regulation of some of the putative YjjQ target genes identified in the microarray such as ucpA, 

fruBKA, zinT, and dctR may result from indirect regulation via the repression of their 

transcriptional activators and repressors (see above, chapter 3.1). Therefore, it would be 

interesting to analyze YjjQ‐mediated repression of the transcriptional regulators adiY, cra, dctR, 

flhDC, and zur (see chapter 3.1) in more detail. However, for the majority of the putative target 

genes identified in the microarray, the relation to YjjQ remains to be established. 

Analysis of the regulation of the loci presumably repressed by YjjQ revealed that this protein 

has several targets in common with global transcription factors and TCSs. Some of these targets 

are repressed by H‐NS and are regulated by the osmoregulatory response regulator OmpR as 

well as by the FixJ/NarL‐type response regulator RcsB. OmpR is a negative regulator of flagella 

(Shin & Park, 1995) as well as type 1 fimbriae (Schwan et al., 2002) and a positive regulator of 

curli (Vidal et al., 1998). RcsB is a negative regulator of flagella (Francez‐Charlot et al., 2003) as 

well as curli (Vianney et al., 2005) and a positive regulator of type 1 fimbriae (Schwan et al., 

2007). In this way the EnvZ‐OmpR TCS and the RcsCDB TCS are involved in controlling the switch 

between motility and sessility. YjjQ could represent another important protein responsible for 

fine‐tuning the transition between the planktonic and the biofilm lifestyle. In doing so, YjjQ 

seems to counteract the functions of some other FixJ/NarL‐type transcription factors (Figure 

28). Therefore YjjQ may represent an antagonist limiting some of the activities of RcsB 

homodimers and heterodimers and possibly of other family members such as CsgD. 

In our laboratory efforts were already made in order to revise the microarray data with more 

specific methods. Chromosomal lacZ reporters of selected putative YjjQ target promoters were 

constructed in an E. coli K‐12 strain deleted for yjjP-yjjQ-bglJ. These strains were transformed 

with the plasmids pKERV17 (YjjQK‐12εSD) and pKEKD31 (YjjQK‐12nSD) (Table 13), respectively, and 

the influence of high and moderate YjjQ expression levels on the transcriptional activity was 

analyzed with β‐galactosidase assays (Groß, 2013). Surprisingly, transcription from the adiY 

promoter, the gene showing the highest regulation by YjjQ in the microarray in both E. coli 

strains, is not decreased following plasmidic YjjQ expression under the experimental conditions 

applied. The same is true for several other putative YjjQ target loci including the cellulose 
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biosynthesis operons, bcsABZC and bcsEFG. However, the promoter region of flhDC is an actual 

YjjQ target as reflected by reduced transcriptional activity. 

 

 

 

Figure 28: Putative functions of the FixJ/NarL‐type transcription factor YjjQ in E. coli. 
YjjQ putatively suppresses energy metabolism via repression of the catabolite repressor/activator 
protein Cra, the sRNA and CsrA antagonist CsrB, the C4‐dicarboxylate transporter DcuB, and the 
Fumarate reductase enzyme complex FRD. YjjQ putatively suppresses acid stress responses via 
repression of the Arginine‐dependent acid resistance system (AdiY AdiC) and of the FixJ/NarL‐type 
transcription factor DctR. In parallel, YjjQ may be involved in the repression of several biofilm 
determinants. YjjQ putatively suppresses adhesion via repression of the FimB recombinase mediating 
type 1 fimbriation. YjjQ putatively suppresses ECM production via repression of the cellulose 
biosynthesis locus. YjjQ putatively suppresses biofilm formation via repression of capsule formation (Gfc 
in E. coli K‐12, KpsMT in UPEC CFT073). In fact, YjjQ suppresses motility via repression of the master 
regulator of flagellar motility FlhDC. 

 

A motif search using the MEME suite program was performed in regions encompassing the 

transcription start sites of the genes suppressed in the β‐galactosidase assays (Groß, 2013). This 

approach yielded a putative DNA‐binding motif for YjjQ in the flhDC and ompC promoter 

regions. YjjQ binding in the promoter regions of these target loci could interfere with the 

binding of other transcriptional regulators. In the case of the flhDC promoter, the putative YjjQ 

binding site is located at the transcription start site. Thus, YjjQ binding could prevent access of 
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the RNA polymerase to the promoter. In the case of the ompC promoter, the putative YjjQ 

binding site lies upstream of the transcription start site. It overlaps with one of three OmpR 

binding sites, an osmoregulatory response regulator known to be involved in the regulation of 

the ompC locus (Yoshida et al., 2006) (see chapter 2.2). 

The computed DNA‐binding motif is partly palindromic which strongly supports the notion of 

YjjQ being active as a homodimer (Groß, 2013). Further experiments to elucidate the functions 

of YjjQ could include mutagenesis of this putative DNA‐binding motif. 
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4. Material and Methods 

4.1 Material 

4.1.1 Bacterial strains, plasmids, and oligonucleotides 

Escherichia coli K‐12 strains used in this study are listed in Table 10, uropathogenic Escherichia 

coli strains are listed in Table 11 and Table 12, respectively. Plasmids are summarized in Table 

13, and sequences of oligonucleotides are given in Table 14. Strains were stored as 

dimethylsulfoxide (DMSO) stocks at ‐80°C. 

 

 

Table 10: Escherichia coli K‐12 strains 
 

Strain Relevant genotype Reference/Construction 

BTH101 F‐, cya‐99, araD139, galE15, galK16, rpsL1 (Str r), hsdR2, mcrA1, mcrB1 

(stored as S4135) 

(Karimova et al., 1998) 

BW23474 F‐, Δ(argF‐lac)169, ΔuidA4::pir‐116, recA1, rpoS396(Am)?, endA9(del‐

ins)::FRT, rph‐1, hsdR514, rob‐1, creC510 

CGSC # 7838 (stored as T585) 

(Haldimann et al., 1998) 

BW30270 MG1655 rph+, CGSC # 7925 (motile) (stored as S3839) Coli Genetic Stock Center #7925 

DH5α supE44 ΔlacU159 (Φ80 lacZΔM15) hsdR17 recA1 endA1 gyrA96 thi‐1 relA1 

(stored as S103) 

(Xia et al., 2011) 

FW102 CSH142 strepR / F´ Kan OL2‐62 lac (Stored as S3773) (Whipple, 1998) 

MG1655 K‐12 wild‐type (stored as S3836) (Guyer et al., 1981) 

S3440 attB::(SpecR lacIq rrnB‐T1 PsulA lexA‐Op408/wt lacZ) sulA3 lexA71::Tn5 

ΔrcsB::FRT 

(Venkatesh et al., 2010) 

S3442 attB::(SpecR lacIq rrnB‐T1 PsulA lexA‐Op408/wt lacZ) sulA3 lexA71::Tn5 

Δ(yjjP‐yjjQ‐bglJ)::FRT ΔrcsB::FRT 

(Venkatesh et al., 2010) 

S3922 BW30270 Δ(yjjP‐yjjQ‐bglJ)::KD3‐cm, non‐motile laboratory collection 

T1241 BW30270 ilvG+ (motile) laboratory collection 

T66 BW30270 Plac::gfp‐mut1 ΔlacZYA‐kan, non‐motile laboratory collection 

XL1‐Blue F’::Tn10 (TetR) proA+B+ lacIq Δ(lacZ)M15 / recA1 endA1 gyrA96 (NalR) thi‐1 

hsdR17 (rk–mk–) glnV44 relA1 lac (stored as S3984) 

(Xia et al., 2011) 
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Table 11: Uropathogenic Escherichia coli CFT073 strains 
 

Strain Relevant genotype Reference/Construction
a
 

CFT073 UPEC 

obtained from Dr. U. Dobrindt, Würzburg (stored as KEC375) 

(Welch et al., 2002) 

KEC394 CFT073 Δ(yjjP‐yjjQ‐bglJ)::KD3 laboratory collection 

KEC466 CFT073 ΔbcsA::KD3 KEC465 × PCR T445/T446 (pKD3) 

KEC467 CFT073 ΔbcsA::KD4 KEC465 × PCR T445/T446 (pKD4) 

KEC468 CFT073 ΔcsgA::KD3 KEC465 × PCR T449/T450 (pKD3) 

KEC469 CFT073 ΔcsgA::KD4 KEC465 × PCR T449/T450 (pKD4) 

KEC470 CFT073 ΔcsgD::KD3 KEC465 × PCR T453/T454 (pKD3) 

KEC471 CFT073 ΔcsgD::KD4 KEC465 × PCR T453/T454 (pKD4) 

KEC472 CFT073 ΔbcsA::KD3 ΔcsgA::KD4 KEC466+pKD46 × PCR T449/T450 (pKD4) 

 

a) Construction of UPEC CFT073 strains by λ‐Red mediated recombination (x PCR) briefly described 

below was performed as described previously (Datsenko & Wanner, 2000). 
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Table 12: Uropathogenic Escherichia coli 536 strains 
 

Strain Relevant genotype
b
 Reference/Construction

a
 

536 UPEC 

obtained from Dr. U. Dobrindt, Würzburg (stored as KEC293) 

(Brzuszkiewicz et al., 2006) 

KEC478 536 ΔbcsA::KD3 KEC475 × PCR T445/T446 (pKD3) 

KEC479 536 ΔcsgA::KD3 KEC475 × PCR T449/T450 (pKD3) 

KEC481 536 ΔcsgD::KD3 KEC475 × PCR T453/T454 (pKD3) 

KEC482 536 Δ(yjjP-yjjQ-bglJ)::KD3 KEC475 × PCR S783/S676 (pKD3) 

KEC483 536 Δ(yjjQ-bglJ)::KD3 KEC475 × PCR T578/S676 (pKD3) 

KEC484 536 ΔbcsA::FRT KEC478 × pCP20 

KEC485 536 ΔcsgA::FRT KEC479 × pCP20 

KEC486 536 Δ(yjjQ-bglJ)::FRT KEC483 × pCP20 

KEC487 536 Δ(yjjP-yjjQ-bglJ)::FRT KEC482 × pCP20 

KEC488 536 ΔcsgD::FRT KEC481 × pCP20 

KEC489 536 ΔbglJ::KD3 KEC475 × PCR S675/S676 (pKD3) 

KEC490 536 ΔlacA::PLgfp‐KD3 KEC475 × PCR T683/T684 (pKD3) 

KEC491 536 ΔbcsA::FRT ΔcsgA::KD3 KEC484 × EB49[KEC479] 

KEC492 536 ΔcsgA::FRT ΔbcsA::KD3 KEC485 × EB49[KEC478] 

KEC493 536 ΔcsgA::FRT ΔbcsA::KD3 KEC485 × EB49[KEC478] 

KEC494 536 ΔbglJ::FRT KEC489 × pCP20 

KEC495 536 ΔcsgA::FRT ΔbcsA::FRT KEC492 × pCP20 

KEC496 536 ΔbcsA::FRT ΔcsgA::FRT KEC491 × pCP20 

KEC497 536 ΔbcsA::FRT ΔlacA::PLgfp‐KD3 KEC484 × EB49[KEC490] 

KEC498 536 ΔcsgA::FRT ΔlacA::PLgfp‐KD3 KEC485 × EB49[KEC490] 

KEC499 536 Δ(yjjQ-bglJ)::FRT ΔlacA::PLgfp‐KD3 KEC486 × EB49[KEC490] 

KEC500 536 Δ(yjjP-yjjQ-bglJ)::FRT ΔlacA::PLgfp‐KD3 KEC487 × EB49[KEC490] 

KEC501 536 ΔcsgD::FRT ΔlacA::PLgfp‐KD3 KEC488 × EB49[KEC490] 

KEC502 536 ΔbglJ::FRT ΔlacA::PLgfp‐KD3 KEC494 × EB49[KEC490] 

KEC503 536 ΔbcsA::FRT ΔcsgA::FRT ΔlacA::PLgfp‐KD3 KEC496 × EB49[KEC490] 

KEC504 536 ΔcsgA::FRT ΔbcsA::FRT ΔlacA::PLgfp‐KD3 KEC495 × EB49[KEC490] 

 

a) Construction of UPEC 536 strains by λ‐Red mediated recombination (x PCR), by Flp mediated 

recombination (x pCP20), or by phage transduction (x EB49) briefly described below were performed 

as described previously (Datsenko & Wanner, 2000, Cherepanov & Wackernagel, 1995, Battaglioli et 

al., 2011). 

b) UPEC 536 strain KEC490 and its descendants KEC497 to KEC504 harbor gfp-mut1 (Cormack et al., 

1996) derived from pKEIB16 (Table 13). 
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Table 13: Plasmids 
 

Plasmid Features/Use
c
 Reference 

pDOC‐G sacB bla neo 

template plasmid with GFP tag for Gene Doctoring 

(Lee et al., 2009) 

pFDX334 p15A‐ori, neo, cI‐857 

DH5α transformant stored as strain T1155 

Rak laboratory, Freiburg 

pCP20 cI857 λ‐PR flp in pSC101 repts bla cat (Cherepanov & Wackernagel, 1995) 

pKD3 FRT‐cat ‐ FRT oriRγ bla (Datsenko & Wanner, 2000) 

pKD4 FRT‐neo ‐ FRT oriRγ bla (Datsenko & Wanner, 2000) 

pKD46 araC Para γ‐β‐exo in pSC101 repts bla 

CFT073 transformant stored as strain KEC465 

536 transformant stored as strain KEC475 

KEC478 transformant stored as strain KEC480 

(Datsenko & Wanner, 2000) 

pKES286 pKD3 with MCS laboratory collection 

pDP804 PlacUV5 (lacO1) lexA408‐Jun bla, positive control for LexA two‐

hybrid 

(Venkatesh et al., 2010) 

pMS604 PlacUV5 (lacO1) lexAwt‐Fos tet, positive control for LexA two‐

hybrid 

(Venkatesh et al., 2010) 

pAC λcI PlacUV5, p15A‐ori, cat, negative control for cI‐α two‐hybrid (Dove & Hochschild, 2004) 

pAC λcI‐β 831‐1057 PlacUV5, p15A‐ori, cat, cloning vector for cI‐α two‐hybrid (Dove & Hochschild, 2004) 

pBR α PlacUV5, pBR‐ori, bla, negative control for cI‐α two‐hybrid (Dove & Hochschild, 2004) 

pBR α‐β 831‐1057 PlacUV5, pBR‐ori, bla, cloning vector for cI‐α two‐hybrid (Dove & Hochschild, 2004) 

pBR α‐σ70 D581G PlacUV5, pBR‐ori, bla, positive control for cI‐α two‐hybrid (Dove & Hochschild, 2004) 

p25‐N N‐terminal fusion to the T25 fragment for BACTH, Plac neo (Karimova et al., 1998) 

pKT25 C‐terminal fusion to the T25 fragment for BACTH, Plac neo (Karimova et al., 1998) 

pKT25‐zip positive control for BACTH 

the T25 fragment of CyaA fused to a Leu‐zipper, Plac neo 

(Karimova et al., 1998) 

pUT18 N‐terminal fusion to the T18 fragment for BACTH, Plac bla (Karimova et al., 1998) 

pUT18C C‐terminal fusion to the T18 fragment for BACTH, Plac bla (Karimova et al., 1998) 

pUT18C‐zip positive control for BACTH 

the T18 fragment of CyaA fused to a Leu‐zipper, Plac bla 

(Karimova et al., 1998) 

pKEAP27 lexA‐WT(1‐87)‐yjjQ, PlacUV5 tet (Venkatesh et al., 2010) 

pKEAP28 lexA‐408(1‐87)‐rcsB, PlacUV5 bla (Venkatesh et al., 2010) 

pKEAP29 lexA‐408(1‐87)‐bglJ, PlacUV5 bla (Venkatesh et al., 2010) 

pKEAP30 lexA‐WT(1‐87)‐bglJ, PlacUV5 tet (Venkatesh et al., 2010) 

pKEIB16 lacIq tacOP gfp‐mut1 bla laboratory collection 

pKEMK1 lexA‐WT(1‐87)‐dctR, PlacUV5 tet laboratory collection 

pKEMK4 lexA‐WT(1‐87)‐matA, PlacUV5 tet laboratory collection 

pKEMK15 lexA‐WT(1‐87)‐evgA, PlacUV5 tet laboratory collection 

pKEMK16 lexA‐WT(1‐87)‐gadE, PlacUV5 tet laboratory collection 

pKEMK17 lexA‐WT(1‐87)‐rcsB, PlacUV5 tet (Venkatesh et al., 2010) 
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Plasmid Features/Use
c
 Reference 

pKERV17 lacI
q Ptac (εSD) yjjQ (K‐12) p15A‐ori neo laboratory collection 

pKES169 lacI
q, Ptac, p15A‐ori, neo 

vector control for pKEKD25 transformant used in the 

adhesion assay 

laboratory collection 

pKES192 lexA‐WT(1‐87)‐rcsA, PlacUV5 tet (Venkatesh et al., 2010) 

pKESK22 lacI
q, Ptac, p15A‐ori, neo 

vector control for pKERV17, pKEKD25, 30, 31 transformants 

(Stratmann et al., 2008) 

pKEKD1 pUT18C‐bglJ for BACTH, Plac bla 

XL1‐Blue transformant stored as strain T432 

this work 

pKEKD2 pUT18C‐dctR for BACTH, Plac bla 

XL1‐Blue transformant stored as strain T428 

this work 

pKEKD3 pUT18C‐evgA for BACTH, Plac bla 

XL1‐Blue transformant stored as strain T429 

this work 

pKEKD4 pUT18C‐gadE for BACTH, Plac bla 

XL1‐Blue transformant stored as strain T430 

this work 

pKEKD5 pUT18C‐matA for BACTH, Plac bla 

XL1‐Blue transformant stored as strain T433 

this work 

pKEKD6 pUT18C‐rcsA for BACTH, Plac bla 

XL1‐Blue transformant stored as strain T434 

this work 

pKEKD7 pUT18C‐rcsB for BACTH, Plac bla 

XL1‐Blue transformant stored as strain T431 

this work 

pKEKD8 pUT18C‐yjjQ for BACTH, Plac bla 

XL1‐Blue transformant stored as strain T435 

this work 

pKEKD9 pKT25‐bglJ for BACTH, Plac neo 

XL1‐Blue transformant stored as strain T460 

this work 

pKEKD10 pKT25‐dctR for BACTH, Plac neo 

XL1‐Blue transformant stored as strain T464 

this work 

pKEKD11 pKT25‐evgA for BACTH, Plac neo 

XL1‐Blue transformant stored as strain T465 

this work 

pKEKD12 pKT25‐gadE for BACTH, Plac neo 

XL1‐Blue transformant stored as strain T466 

this work 

pKEKD13 pKT25‐matA for BACTH, Plac neo 

XL1‐Blue transformant stored as strain T467 

this work 

pKEKD14 pKT25‐rcsA for BACTH, Plac neo 

XL1‐Blue transformant stored as strain T461 

this work 

pKEKD15 pKT25‐rcsB for BACTH, Plac neo 

XL1‐Blue transformant stored as strain T462 

this work 

pKEKD16 pKT25‐yjjQ for BACTH, Plac neo 

XL1‐Blue transformant stored as strain T463 

this work 

pKEKD17 pUT18‐rcsA for BACTH, Plac bla 

XL1‐Blue transformant stored as strain T549 

this work 

pKEKD18 pUT18‐rcsB for BACTH, Plac bla 

XL1‐Blue transformant stored as strain T550 

this work 

pKEKD19 p25‐N‐rcsA for BACTH, Plac neo 

XL1‐Blue transformant stored as strain T551 

this work 
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Plasmid Features/Use
c
 Reference 

pKEKD20 p25‐N‐rcsB for BACTH, Plac neo 

XL1‐Blue transformant stored as strain T552 

this work 

pKEKD21 pKES189‐evgA for LexA two‐hybrid, PlacUV5 bla 

XL1‐Blue transformant stored as strain T726 

this work 

pKEKD22 pKES189‐gadE for LexA two‐hybrid, PlacUV5 bla 

XL1‐Blue transformant stored as strain T670 

this work 

pKEKD23 pAC‐λ‐cI‐β‐rcsB for cI‐α two‐hybrid, PlacUV5 cat 

XL1‐Blue transformant stored as strain T756 

this work 

pKEKD24 pBR‐α‐β‐rcsB for cI‐α two‐hybrid, PlacUV5 bla 

XL1‐Blue transformant stored as strain T797 

this work 

pKEKD25 lacI
q Ptac (εSD) yjjQ (CFT073) p15A‐ori neo 

XL1‐Blue transformant stored as strain T933 

CFT073 transformant stored as strain KEC473 

536 transformant stored as strain KEC476 

this work 

pKEKD26 gfp‐mut1 (εSD) from pKEIB16 in pDOC‐G 

XL1‐Blue transformant stored as strain T1007 

this work 

pKEKD27 PL gfp‐mut1 (εSD) in pKEKD26 

XL1‐Blue pFDX334 co‐transformant stored as strain T1026 

this work 

pKEKD28 PL gfp‐mut1 (εSD) lacA HR2 in pKEKD27 

XL1‐Blue transformant stored as strain T1057 

this work 

pKEKD29 PL gfp‐mut1 (εSD) lacA HR2+HR1 in pKEKD28 

XL1‐Blue pFDX334 co‐transformant stored as strain T1065 

XL1‐Blue transformant stored as strain T1070 

this work 

pKEKD30 lacI
q Ptac yjjQ (536) p15A‐ori neo 

XL1‐Blue transformant stored as strain T1105 

this work 

pKEKD31 lacI
q Ptac yjjQ (K‐12) p15A‐ori neo 

XL1‐Blue transformant stored as strain T1113 

this work 

pKEKD32 PL gfp‐mut1 (εSD) in pKES286 

BW23474 pFDX334 co‐transformant stored as strain T1153 

this work 

 

c) Plasmid pFDX334 encodes the temperature‐sensitive λ‐cI‐857 repressor that represses the PL 

promoter of phage λ at low temperatures (George et al., 1987). Plasmids pKERV17 and pKEKD25 

harbor yjjQ from E. coli strain K‐12 and UPEC strain CFT073, respectively, preceded by the enhanced 

epsilon Shine‐Dalgarno sequence (εSD) derived from the leader of gene 10 in phage T7 (Olins et al., 

1988). Plasmids pKEKD30 and pKEKD31 harbor yjjQ from UPEC strain 536 and E. coli strain K‐12, 

respectively, preceded by the native Shine‐Dalgarno sequence. Plasmids pKEKD26 to pKEKD29 and 

pKEKD32 encode gfp-mut1 (Cormack et al., 1996) derived from pKEIB16 and preceded by εSD. 
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Table 14: Oligonucleotides 
 

Oligo Sequence
d Target/application 

S116 TGGCACGACAGGTTTCCCGA sequencing of pKEKD25, 30, 31 

S117 CTTTATGCTTCCGGCTCGTA sequencing of pKEKD21, 22, 27, 28 

S123 TGTGGAATTGTGAGCGGATA sequencing of pKEKD26 

S258 TCATTTATTCTGCCTCCCAGAGC cloning of pKEKD24; 

sequencing of pKEKD23 

S323 ggcccATATGTTGCCAGGATGCTGCAA cloning of pKEKD25, NdeI site 

S358 CGGTATCAACAGGGACACCAGGATTTATTTATTCT sequencing of pKEKD32 

S675 ACAGCCGAATTAAGAAGAGAAATGTCGCACTCATAGAAAAATGCGTCgtg

taggctggagctgcttcg 

bglJ deletion in UPEC 536 

S676 GAAATGAAAGCACTGCCGGGGAAGTAAACCCGGCATCATGCGGATTAca

tatgaatatcctccttagttcctattcc 

bglJ/(yjjQ-bglJ)/(yjjP-yjjQ-bglJ) deletions 

in UPEC 536 

S707 GAATGACATCACCTTCCTCCACC sequencing of pKEKD21, 22 

S783 GAGGATCATATCCTGCGCCAACGCTAACAGAAATTCGATCAgtgtaggctgg

agctgcttcg 

(yjjP-yjjQ-bglJ) deletion in UPEC 536 

S786 CCAGGTAATGATTTACAGCGGCAAG analysis of lacA replacement in UPEC 

KEC490, 497‐504 

S795 AACACCATCGCAAAGCCGAC analysis of (yjjP-yjjQ-bglJ) deletion in 

UPEC KEC482 

S873 TTCTGACACATGCAGTGGAGTTGTT analysis of (yjjQ-bglJ) deletion in UPEC 

KEC483 

S920 TGCCAGCGTTATCGCTTACC analysis of bglJ/(yjjQ-bglJ)/(yjjP-yjjQ-bglJ) 

deletions in UPEC KEC482, 483, 489 

T24 GAAAAGTGCCACCTGACGTCTAA sequencing of pKEKD1‐8 

T95 cagtctagattaTGAGTGCGACATTTCTCTTCTTAATTC cloning of pKEKD25, 30, 31, XbaI site 

T106 cagggatcctctagaTTAGTCTTTATCTGCCGGACTTAAGGTCAC cloning of pKEKD23, BamHI + XbaI site 

T123 AGCGCAACGCAATTAATGTGAGTTAGCTCA sequencing of pKEKD17‐20, 26 

T124 TCGCTATTACGCCAGCTGGCGAAAG sequencing of pKEKD9 

T204 TGGCGCTGGGCTTCACCTT analysis of lacA replacement in UPEC 

KEC490, 497‐504; sequencing of KEC490 

T292 GCGAGGGCTATGTCTTCTACGA sequencing of pKEKD1‐8 

T293 gatatctagaaGAACACAGCCGAATTAAGAAGAGAA cloning of pKEKD1, XbaI site 

T294 gataggtaccTTAATAGGGATGCAACACATTACTTGTT cloning of pKEKD1, KpnI site 

T295 gatatctagaaTTTCTTATAATTACCAGGGATACGATGTT cloning of pKEKD2, XbaI site 

T296 gataggtaccTCACACCAGATAATCAATATGCTGATG cloning of pKEKD2, KpnI site 

T297 gatatctagaaAACGCAATAATTATTGATGACCATCC cloning of pKEKD3, XbaI site 

T298 gataggtaccTTAGCCGATTTTGTTACGTTGTGC cloning of pKEKD3, KpnI site 

T299 gatatctagaaATTTTTCTCATGACGAAAGATTCTTTTC cloning of pKEKD4, XbaI site 

T300 gataggtaccCTAAAAATAAGATGTGATACCCAGGGTG cloning of pKEKD4, KpnI site 

T301 gatatctagaaACATGGCAAAGTGATTACAGTAGGG cloning of pKEKD5, XbaI site 
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Oligo Sequence
d Target/application 

T302 gataggtaccTTACTGAACCAACTTATATATTTTTGAGTACAGC cloning of pKEKD5, KpnI site 

T303 gatatctagaaTCAACGATTATTATGGATTTATGTAGTTACAC cloning of pKEKD6, 17, 19, XbaI site 

T304 gataggtaccTTAGCGCATGTTGACAAAAATACC cloning of pKEKD6, KpnI site 

T305 gatatctagaaAACAATATGAACGTAATTATTGCCGA cloning of pKEKD7, 18, 20, XbaI site 

T306 gataggtaccTTAGTCTTTATCTGCCGGACTTAAGG cloning of pKEKD7, KpnI site 

T307 gatatctagaaTTGCCAGGATGCTGCAAAA cloning of pKEKD8, XbaI site 

T308 gataggtaccCTATGAGTGCGACATTTCTCTTCTTAAT cloning of pKEKD8, KpnI site 

T363 GTCGTAGCGGAACTGGCG sequencing of pKEKD17, 18 

T364 ATCAATGTGGCGTTTTTTTCCTT sequencing of pKEKD19, 20 

T365 gataggtaccgcGCGCATGTTGACAAAAATACCA cloning of pKEKD17, 19, Acc65I site 

T366 gataggtaccgcGTCTTTATCTGCCGGACTTAAGGTC cloning of pKEKD18, 20, Acc65I site 

T407 gatactcgagAACGCAATAATTATTGATGACCATCC cloning of pKEKD21, XhoI site 

T408 gataagatctTTAGCCGATTTTGTTACGTTGTGC cloning of pKEKD21, BglII site 

T409 gatactcgagATTTTTCTCATGACGAAAGATTCTTTTC cloning of pKEKD22, XhoI site 

T410 gataagatctCTAAAAATAAGATGTGATACCCAGGGTG cloning of pKEKD22, BglII site 

T420 ATGGAACACAGCCGAATTAAGAAGAG analysis of bglJ deletion in UPEC KEC489 

T426 gatagcggccgcaAACAATATGAACGTAATTATTGCCGA cloning of pKEKD23, NotI site 

T427 GGGATAGCGGTCAGGTGTTTTT cloning of pKEKD24; 

sequencing of pKEKD23 

T428 GGAAACCAACGGCACAATCG sequencing of pKEKD24 

T429 TACCCACGCCGAAACAAGC sequencing of pKEKD24 

T430 TGTCCTACTCAGGAGAGCGTTCAC sequencing of pKEKD29 

T445 CGGTGGTTGCTTATCCCGCCGGTCAACGCACGGCTTATCgtgtaggctggagc

tgcttcg 

bcsA deletion in UPEC CFT073 and 536 

T446 CTTTTCATCGCGTTATCATCATTGTTGAGCCAAAGCCTGcatatgaatatcctc

cttagttcctattcc 

bcsA deletion in UPEC CFT073 and 536 

T447 GATTTTGCTCCGCCTGGG analysis of bcsA deletion in UPEC 

KEC466, 467, 478, 491‐493 

T448 CGATGGCTGAATGTCTGGCA analysis of bcsA deletion in UPEC 

KEC466, 467, 478, 491‐493 

T449 ATCCGATGGGGGTTTTACATGAAACTTTTAAAAGTAGCAGCAgtgtaggctg

gagctgcttcg 

csgA deletion in UPEC CFT073 and 536 

T450 TTTCATACTGATGATGTATTAGTACTGATGAGCGGTCGCGTTcatatgaata

tcctccttagttcctattcc 

csgA deletion in UPEC CFT073 and 536 

T451 TGCCAACGATGCCAGTATTTC analysis of csgA deletion in UPEC 

KEC468, 469, 472, 479, 491‐493 

T452 TGGTGTACATATCCCCTTGCTGG analysis of csgA deletion in UPEC 

KEC468, 469, 472, 479, 491‐493 

T453 AAAAAGCGGGGTTTCATCATGTTTAATGAAGTCCATAGTATTgtgtaggctg

gagctgcttcg 

csgD deletion in UPEC CFT073 and 536 

T454 TTATCGCCTGAGGTTATCGTTTGCCCAGGAAACCGCTTGTGTcatatgaata

tcctccttagttcctattcc 

csgD deletion in UPEC CFT073 and 536 
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Oligo Sequence
d Target/application 

T455 ATCACTAAAGGCTCGGTAAAAATCAT analysis of csgD deletion in UPEC 

KEC470, 471, 481 

T456 ATCCATTAGTTTTATATTTTACCCATTTAGG analysis of csgD deletion in UPEC 

KEC470, 471, 481 

T534 gataggtaccAATAATTTTGTTTAACTTTAAGAAGGAGATATACA cloning of pKEKD26, Acc65I site 

T535 gataaccggtTTATTTGTATAGTTCATCCATGCCATG cloning of pKEKD26, AgeI site 

T536 gataggtaccTCATGGTGGTCAGTGCGTCC cloning of pKEKD27, Acc65I site 

T537 gataggatccCTCTCACCTACCAAACAATGCCC cloning of pKEKD27, 32, BamHI site 

T542 TTCTACGTGTTCCGCTTCCTTTA sequencing of pKEKD27 

T559 AATTCCGCCTTATCCGACCAACATATCAGGGCGGAATGATCGCATAAG cloning of pKEKD28, lacA homology 

region, 5’‐phosphate, EcoRI + BamHI site 

T560 GATCCTTATGCGATCATTCCGCCCTGATATGTTGGTCGGATAAGGCGG cloning of pKEKD28, lacA homology 

region, 5’‐phosphate, EcoRI + BamHI site 

T561 TCGAGTATTTCAAAGATTTTAAAGTTGAGTCTTCAGTTTAAATAAG cloning of pKEKD29, lacA homology 

region, 5’‐phosphate, XhoI + SalI site 

T562 TCGACTTATTTAAACTGAAGACTCAACTTTAAAATCTTTGAAATAC cloning of pKEKD29, lacA homology 

region, 5’‐phosphate, XhoI + SalI site 

T578 TAAGGATAATTTATTCGCTTAATCTATTAATTTGCTGGGAATATTTAAGGg

tgtaggctggagctgcttcg 

(yjjQ-bglJ) deletion in UPEC 536 

T608 gatagaattcAGACAGTGGATGTGGAGGAAATATG cloning of pKEKD30, 031, BamHI site 

T621 gataggatccaccggtTTATTTGTATAGTTCATCCAT cloning of pKEKD32, BamHI + AgeI site 

T683 TTATTTAAACTGAAGACTCAACTTTAAAATCTTTGAAATAgtgtaggctggag

ctgcttcg 

lacA replacement in UPEC 536 

T684 CGCCTTATCCGACCAACATATCAGGGCGGAATGATCGCAGGATCCCTCTC

ACCTACCAAACA 

lacA replacement in UPEC 536 (modified 

Datsenko‐Wanner), BamHI site 

 

d) Oligonucleotides are given in 5’ to 3’ direction. Matching parts to the indicated targets are printed in 

upper case, non‐matching parts in lower case letters. Sites for restriction endonucleases are 

underlined and Datsenko‐Wanner primer parts are printed in bold. Oligonucleotides were 

synthesized by Life Technologies (Invitrogen), Karlsruhe, Germany, or Sigma‐Aldrich, Taufkirchen, 

Germany. 
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4.1.2 Media, buffers and antibiotics 

LB medium 

10 g Bacto tryptone, 5 g Bacto yeast extract, 5 g NaCl, ad 1 l H2O 
 

LB agar plates 

LB medium with 1.5% (w/v) Bacto agar 
 

LB X‐gal agar plates 

LB medium with 1.5% (w/v) Bacto agar, 40 µg/ml X‐gal 
 

5‐Brom‐4‐chlor‐3‐indoxyl‐β‐D‐galactopyranoside (X‐gal) 

Stock: 20 mg/ml in Dimethylformamide 

Use: 40 µg/ml for plates 
 

Maltose/lactose MacConkey agar plates 

40 g Difco MacConkey agar base, ad 1 l H2O, after autoclaving add 1% maltose or lactose (filter 

sterilized) 
 

Isopropyl‐β‐D‐thiogalactopyranoside (IPTG) 

Stock: 100 mM in H2O (filter sterilized) 

Use: 0.2 mM for plates; 1 mM for cultures 
 

LB soft agar plates 

LB medium with 0.25% (w/v) Bacto agar 
 

L broth medium 

10 g Bacto tryptone, 5 g Bacto yeast extract, 0.5 g NaCl, ad 1 l H2O 
 

L broth agar plates 

L broth medium with 1.5% (w/v) Bacto agar 
 

L broth top agar 

L broth medium with 0.7% (w/v) Bacto agar 
 

Phage buffer 

10 mM Tris‐HCl [pH 7.4], 10 mM MgSO4, 0.01% (w/v) Gelatin 
 

SOB medium 

20 g Bacto tryptone, 5 g Bacto yeast extract, 0.5 g NaCl, 1.25 ml 2M KCl, adjust pH to 7.0 with 

NaOH, ad 1 l H2O, after autoclaving add 10 ml 1 M MgCl2 
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SOC medium 

Add 19.8 ml 20% Glucose to 1 l SOB 
 

TE buffer 

10 ml 1 M Tris‐HCl [pH8.0], 2 ml 0.5 M EDTA (ethylenediaminetetraacetic acid), ad 1 l H2O 
 

TEN buffer 

20 mM Tris‐HCl [pH 7.5], 1 mM EDTA, 50 mM NaCl 
 

50x TAE buffer 

242 g Tris, 100 ml 0.5 M Na2EDTA [pH 8.0], 57.1 ml glacial acetic acid, ad 1 l H2O 
 

Cellulose indicator plates (without salt) 

10 g Bacto tryptone, 5 g Bacto yeast extract, 15 g Bacto agar, 50 µg/ml Fluorescent Brightener 

28 (Calcofluor White), ad 1 l H2O 
 

Morphotype indicator plates (without salt) 

10 g Bacto tryptone, 5 g Bacto yeast extract, 15 g Bacto agar, ad 1 l H2O, after autoclaving add 

2% (w/v) Congo Red solution 
 

Congo Red solution 

2 mg/ml Congo Red, 1 mg/ml Brilliant Blue G, dissolve in 70% (v/v) ethanol 
 

Z buffer, pH 7.0 

60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, 100 µg/ml chloramphenicol 
 

2‐Nitrophenyl β‐D‐galactopyranoside (ONPG) buffer 

4 mg/ml in 0.1 M phosphate buffer [pH 7.0] (60 mM Na2HPO4 + 40 mM NaH2PO4) 
 

10x phosphate‐buffered saline (PBS) buffer, pH 7.4 

2 g KCl, 80 g NaCl, 17.8 g Na2HPO4 • 2H2O, 2.4 g KH2PO4, ad 1 l H2O 

 

Antibiotic Stock solution Storage temperature Final concentration 

ampicillin 50 mg/ml in 50% Ethanol ‐20°C 50 µg/ml 

chloramphenicol 30 mg/ml in Ethanol ‐20°C 15 µg/ml 

kanamycin 10 mg/ml in H2O 4°C 25 µg/ml 

streptomycin 50 mg/ml in H2O ‐20°C 50 µg/ml 

tetracyclin 5 mg/ml in 70% Ethanol ‐20°C 12 µg/ml 
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4.1.3 Eukaryotic cell culture items 

5637 human urinary bladder carcinoma cell line (CLS cell lines service, Eppelheim) 
 

RPMI 1640, with Phenol Red + GlutaMAX (contains a stabilized L‐glutamine source) 
 

Fetal Bovine Serum (FBS), EU‐Approved, Standard (sterile‐filtered) 
 

0.25% Trypsin with EDTA 4Na + Phenol Red 
 

1x Phosphate‐buffered Saline (PBS) [pH 7.2] 
 

Cell lysis solution 

0.1% Triton x‐100 in 1x PBS 
 

Gentamicin protection assay (GPA) solution 

Stock: 50 mg/ml gentamicin sulfate salt in H2O 

Use: 100 µg/ml in cell culture medium 
 

Plasma membrane staining solution 

Stock: 5 mg/ml CellMask Orange in DMSO 

Use: 2.5 µg/ml in cell culture medium 
 

Cell fixation solution 

4% para‐formaldehyde in 1x PBS (filter sterilized) 
 

Mounting medium 

Fluoroshield + DAPI 

 

  



4. Material and Methods 

89 

4.2 Methods 

4.2.1 Standard molecular techniques 

Standard molecular techniques like agarose gel electrophoresis, polymerase chain reaction (PCR), 

and cloning work were carried out according to published protocols (Ausubel, 2005). Supplies 

such as enzymes or kits were purchased from Fermentas (St. Leon‐Rot, Germany), Promega 

(Madison, WI, USA), 5PRIME (Hamburg, Germany), and Qiagen, (Hilden, Germany). Supplies for 

bacterial growth media were purchased from Becton, Dickinson, and Company, Sparks, USA. 

Sequencing was either performed at the Cologne Center for Genomics (CCG), University of 

Cologne, Germany, using the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) 

or at GATC Biotech AG, Konstanz, Germany. Sequences were analyzed using Vector NTI 11 

software (Invitrogen). 

 

Preparation of chemo‐competent cells 

Overnight cultures were grown in LB medium with appropriate antibiotics and at the respective 

temperature with shaking. From the overnight cultures 200 µl were used to inoculate 50 ml LB 

medium with appropriate antibiotics. The cells were grown at the respective temperature with 

shaking to an optical density at a wavelength of 600 nm (OD600) of 0.3 and then harvested on 

ice. After that the culture was washed in 25 ml cold 0.1 M CaCl2 followed by incubation on ice 

for 20 min. Finally the cells were centrifuged and the pellet was resuspended in 2 ml cold 0.1 M 

CaCl2. 50 µl of these cells were used immediately for one transformation. Alternatively the cells 

were frozen for long term storage. For this purpose sterile glycerol was added to a final 

concentration of 15%. The cells were incubated on ice for 1 hour and aliquots of 110 µl were 

stored at ‐80°C. 

 

Transformation 

Chemo‐competent cells were either used directly or thawed slowly on ice. 25 ng plasmid DNA 

or half of a ligation sample were prepared on ice and TEN buffer was added to a final volume of 

25 µl. Then 50 µl of chemo‐competent cells were added and the sample was mixed gently. The 

mixture was incubated on ice for 20 min. Next a heat shock was performed at 42°C for 2 min 

followed by incubation on ice for 10 min. After that 500 µl LB medium was added, the mixture 
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was transferred into a culture tube and incubated for 1 hour at 37°C with shaking. Finally 

various amounts were plated on selective LB agar plates and incubated overnight at the 

respective temperature. 

 

Phenotypic analysis on indicator plates 

BACTH assays (Karimova et al., 1998) were analyzed by two different phenotypic assays. The 

adenylate cyclase (cyaA)‐deficient E. coli strain BTH101 was tested for revertants by streaking 

on LB X‐gal streptomycin agar plates and incubating overnight at 37°C. An overnight culture of 

one Lac‐ or Mal‐ single colony was stored as DMSO stock at ‐80°C (50 µl of DMSO, 1.5 ml of LB 

overnight culture). From this stock chemo‐competent cells were prepared. For blue/white‐

screens competent BTH101 were co‐transformed with the respective plasmids and selected 

overnight on LB X‐gal agar plates with the appropriate antibiotics containing 0.2 mM IPTG and 

lacking IPTG at 28°C. For red/white‐screens competent BTH101 were co‐transformed with the 

respective plasmids and selected overnight on MacConkey agar plates supplemented with 1% 

maltose as well as with the appropriate antibiotics at 37°C. 

 

β‐galactosidase assay 

The β‐galactosidase assay was used to measure promoter activities of lacZ reporter strains in 

the LexA‐based and the cI‐α bacterial two‐hybrid assays. The method was performed as 

described previously (Miller, 1992). Briefly, overnight cultures were grown in LB medium with 

appropriate antibiotics and either supplemented with 1 mM IPTG or without IPTG at 37°C with 

shaking. On the next day the OD600 of a five‐fold dilution of the overnight cultures was 

measured. Then exponential cultures in LB medium containing 1 mM IPTG and lacking IPTG 

were inoculated to an OD600 of 0.05 to 0.1 and grown at 37°C with shaking to an OD600 of 0.5. 

After that, the cultures were harvested on ice and three appropriate dilutions were set up in Z 

buffer as duplicates. To make the cells permeable one drop 0.1% (w/v) sodium dodecyl sulfate 

and two drops chloroform were added to all samples. Samples were pre‐incubated for 10 min 

at 28°C, and then β‐Galactosidase activities were determined by adding 200 µl of the substrate 

ONPG followed by incubation at 28°C. The reaction was stopped by adding 0.5 ml 1 M Na2CO3 
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and the color change was measured at OD420. The assays were performed with at least three 

independent cultures and activity was determined according to the following formula: 

1 Miller unit (MU) = [OD420 x dilution factor x 1000]/[OD600 x time (min)]. 

 

Oligonucleotide annealing 

Annealing of two oligonucleotides was performed with 2 µl of complementary primers with a 

concentration of 10 pmol/µl. For formation of a DNA Ligase‐mediated phosphodiester bond 

with the vector backbone the primers were ordered modified with a phosphoryl group at the 5’ 

end. To the primer mixture 1 µl 2 M NaCl and 15 µl TE buffer were added. In the final volume of 

20 µl both primers had a concentration of 1 pmol/µl. This mixture was incubated at 95°C for 

5 min. After that the sample was allowed to slowly cool down to room temperature. To 

generate a primer concentration of 50 ng the sample was diluted appropriately and 1 µl of this 

dilution was used for ligation. 

 

Preparation of electro‐competent cells 

Overnight cultures were grown in SOB medium with appropriate antibiotics and at the 

respective temperature with shaking. From the overnight cultures 200 µl were used to 

inoculate 50 ml SOB medium with appropriate antibiotics. The cells were grown at the 

respective temperature with shaking to an OD600 of 0.6 to 0.7 followed by incubation on ice for 

1 hour. After that the culture was washed first in 50 ml cold sterile water, second in 25 ml cold 

sterile water, and third in 2 ml cold sterile 10% glycerol. Finally, the pellet was resuspended in 

200 µl cold sterile 10% glycerol. 40 µl of these cells were used immediately for one 

transformation. Alternatively the cells were frozen for long term storage. For this purpose the 

cells were incubated on ice for 1 hour and aliquots of 40 µl were stored at ‐80°C. 

 

Electroporation 

Electroporation was used to introduce PCR fragments into recipient strains for chromosomal 

gene deletion and to introduce E. coli K‐12‐derived plasmids into UPEC strains. Electro‐

competent cells were either used directly or thawed slowly on ice. 0.5 µl DNA were added to 

one aliquot of cells, mixed and incubated for 10 min on ice. The mixture was transferred into a 

pre‐chilled cuvette with a 0.1 cm electrode gap and pulsed at 1.8 kV for 3 sec. After that 1 ml 
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SOC medium was added, the mixture was transferred into a culture tube and incubated for 

1 hour at 37°C with shaking. Finally, various amounts were plated on selective LB agar plates 

and incubated overnight at 37°C. 

 

Gene deletion by λ‐Red mediated recombination 

Deletion of chromosomal genes was performed as described previously (Datsenko & Wanner, 

2000). This system is based on the λ‐Red mediated recombination between a linear DNA 

fragment and the chromosomal locus to be deleted. The basic strategy is to replace the 

chromosomal sequence with a selectable antibiotic resistance gene that is generated by PCR 

using primers with 30 to 50 base extensions homologous to the target gene. 

Electro‐competent cells were transformed with pKD46 and selected overnight on LB ampicillin 

agar plates at 28°C. Plasmid pKD46 carries a temperature‐sensitive origin of replication and 

encodes the λ‐Red system under the control of an arabinose‐inducible promoter. Of these 

transformants electro‐competent cells were generated from cultures grown at 28°C in SOB 

medium supplemented with ampicillin and 10 mM L‐arabinose. Furthermore, a PCR using 20 ng 

of pKD3 or pKD4 as template was performed. Plasmids pKD3 and pKD4 encode the antibiotic 

resistance genes chloramphenicol and kanamycin flanked by Flp recombinase target (FRT) sites, 

respectively. For amplification of the PCR product primers were used that included homology 

regions to the chromosomal target gene as well as to the respective resistance gene. This PCR 

generated a fragment carrying the chloramphenicol or kanamycin resistance gene flanked by 

regions homologous to upstream and downstream sequences of the target gene. In addition, 

the FRT sites flanking the resistance gene subsequently allow its excision. The following PCR 

program with 30 cycles was applied for four samples with each 40 µl: 

 

Step Temperature Time 

1 initial denaturation 94°C 4 min 

2 denaturation * 94°C 45 sec 

3 annealing * 55°C 30 sec 

4 elongation * 72°C 3 min 

5 final elongation 72°C 10 min 

6 storage 4°C hold 
 

* Steps 2 to 4 were repeated 29 times. 
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The PCR fragments were purified by agarose gel electrophoresis and eluted in water. The 

eluates were pooled to yield a concentration of approx. 100 ng/µl. The pKD46 transformants 

were transformed with 1 µl of the PCR fragment. Five times 100 µl of the transformants were 

plated and selected overnight at 37°C on LB chloramphenicol or kanamycin agar plates, 

respectively. Single colonies were re‐streaked on LB chloramphenicol or kanamycin agar plates 

and incubated overnight at 37°C. Finally the presence of the resistance gene insertion was 

examined by PCR and subsequent agarose gel electrophoresis. In parallel, ampicillin sensitivity 

was assessed by streaking on selective agar plates to check for loss of pKD46. Overnight 

cultures of the deletion strains were stored as DMSO stocks at ‐80°C. 

 

Resistance cassette excision by Flp recombination 

Flp recombination was performed as described previously (Cherepanov & Wackernagel, 1995). 

Electro‐competent deletion strains were transformed with pCP20 and selected overnight on LB 

ampicillin agar plates at 28°C. Plasmid pCP20 carries a temperature‐sensitive origin of 

replication and encodes Flp recombinase. Flp mediated removal of the chromosomal resistance 

gene leaves one FRT site on the chromosome. Single colonies of putative transformants were re‐

streaked on LB agar plates and incubated overnight at 42°C. Ampicillin sensitivity was assessed 

by streaking on selective agar plates to check for loss of pCP20. Chloramphenicol or kanamycin 

sensitivity, respectively, was tested as well by streaking on selective agar plates. Clones sensitive 

for both antibiotics were examined by PCR and subsequent agarose gel electrophoresis. 

Overnight cultures of the deletion strains were stored as DMSO stocks at ‐80°C. 

 

Generation and propagation of UPEC phage lysates 

For generation of a single plaque lysate of phage EB49, 200 µl of a 536 overnight culture were 

mixed with 4 ml L broth top agar. The mixture was poured evenly onto fresh L broth agar 

plates. After that 5 µl of 10‐fold serial dilutions of the initial EB49 phage stock (Battaglioli et al., 

2011) ranging from 100 to 10‐10 were spotted on the overlay plates and incubated overnight at 

room temperature. On the next day the phages were isolated from single plaques by picking 

into one plaque with a pipette tip. The material was resuspended in 100 µl phage buffer and 

stored at 4°C. 
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50 µl of the isolated EB49 were mixed with 200 µl of a 536 overnight culture and 4 ml of L broth 

top agar. The mixture was poured evenly onto fresh L broth agar plates and incubated 

overnight at room temperature. On the next day the top agar was harvested and the phages 

were extracted with chloroform. The mixture was centrifuged to remove all remnants of soft 

agar. The upper phases were extracted with chloroform again by vortexing and centrifuging. 

The supernatants containing the phages were collected and stored at 4°C. 

For titer determination, 200 µl of a 536 overnight culture were mixed with 4 ml L broth top 

agar. The mixture was poured evenly onto fresh L broth agar plates. After that 5 µl of 10‐fold 

serial dilutions of the EB49 lysate ranging from 10‐1 to 10‐12 were spotted on the overlay plates 

and incubated overnight at room temperature. On the next day the plaques were counted to 

determine the overall titer of the stock according to the following formula: 

Plaque forming units (PFUs)/ml = (number of plaques x dilution factor)/volume of the spot. 

 

Phage transduction 

Phage transduction was performed as described previously (Battaglioli et al., 2011). EB49 

transduction was used to generate UPEC double mutant strains and UPEC fluorescence reporter 

strains. MOIs ranging from approx. 1 x 10‐5 phage/cell to 1 x 102 phage/cell were used in each 

transduction. 100 µl of high‐titer EB49 were mixed with 500 µl of overnight cultures of the 

recipient 536 strain. Sodium citrate was added to a final concentration of 50 mM. After 

incubation at 37°C for 1 hour with shaking the mixtures were pelleted and resuspended in 

500 µl L broth. 100 µl were plated and selected on L broth chloramphenicol agar plates. 100 µl 

of the overnight cultures, EB49 alone as well as phage buffer supplemented with sodium citrate 

were plated as controls. Sample and control plates were incubated overnight at 37°C. Single 

colonies of putative transductants were re‐streaked on L broth chloramphenicol agar plates to 

get rid of contaminating phages and incubated overnight at 37°C. Finally the presence of the 

antibiotic resistance gene insertion was examined by PCR and subsequent agarose gel 

electrophoresis. Overnight cultures of the transduced strains were stored as DMSO stocks at ‐

80°C. 
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Morphotype analysis 

The Morphotype analysis was performed as described previously (Römling, 2001). The bacterial 

strains to be examined were streaked on respective LB agar plates and incubated overnight at 

37°C. On the next day small parts of two separate single colonies of each strain were 

resuspended in 100 µl sterile water and vortexed briefly. 10‐fold serial dilutions were made and 

1 µl of the 10‐4 and 10‐5 dilutions of both clones was spotted in the middle of LB Congo Red agar 

plates. In the case of plasmidic expression, Congo Red kanamycin agar plates containing 

0.2 mM IPTG and lacking IPTG were used. The plates were incubated for 8 days at 28°C and 

photographed afterwards. 

 

Motility assay 

E. coli K‐12 strain T1241 or UPEC strain 536 was transformed with the respective plasmids and 

selected overnight on LB kanamycin agar plates at 37°C. LB soft agar kanamycin plates either 

supplemented with 0.2 mM IPTG or without IPTG were poured. In the case of pre‐induction, 

overnight cultures were inoculated with single colonies and grown in LB medium supplemented 

with 1 mM IPTG or without IPTG and appropriate antibiotics at 37°C with shaking. From these 

cultures, 3 µl were spotted in the middle of plates containing 0.2 mM IPTG or lacking IPTG. If no 

pre‐induction was performed, a small part of a single colony of each transformant was 

resuspended in 100 µl sterile water and vortexed briefly. 3 µl of these suspensions were 

spotted in the middle of one plate containing 0.2 mM IPTG and one lacking IPTG. The plates 

were incubated for five to six hours at 37°C and photographed afterwards. Swimming radii 

were measured and compared between transformants and control. 

 

Biofilm assay 

The biofilm assay was performed as described previously (Merritt et al., 2005). Electro‐

competent UPEC strain 536 and chemo‐competent E. coli K‐12 were transformed with the 

respective plasmids and selected overnight on LB kanamycin agar plates at 37°C. Overnight 

cultures were grown in LB kanamycin medium either supplemented with 1 mM IPTG or without 

IPTG at 37°C with shaking. The cultures were diluted 100‐fold in LB kanamycin medium as well 

as LB kanamycin medium containing 1 mM IPTG and lacking IPTG. 100 µl of the diluted cultures 
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and of an LB negative control were grown in each of four wells of two 96‐well microtiter plates 

with lid (flat bottom, polystyrene, non‐tissue culture treated). The plates were incubated for 48 

hours at 28°C and for 24 hours at 37°C, respectively. The bacterial suspension was removed by 

pipetting and the wells were washed once with 150 µl water. Then 150 µl 0.1% (w/v) crystal 

violet solution was added and the samples were stained for 10 min at room temperature. After 

that, the dye was removed by pipetting and the wells were washed twice with 200 µl water to 

remove any crystal violet not specifically staining the adherent bacteria. The plates were 

inverted and tapped vigorously on paper towels to remove any excess liquid. After the plates 

were air‐dried, 200 µl of 30% (v/v) acetic acid was added to each stained well. The dye was 

solubilized by covering the plates and incubating for 15 min at room temperature. 

 

Fluorescence microscopy 

Microscopy of bacterial strains transformed with a plasmidic reporter encoding GFP‐mut1 

(Cormack et al., 1996) was performed with the AxioVision microscope (Zeiss). Overnight 

cultures of the strains to be examined were diluted to an OD600 of approx. 0.5 and vortexed 

briefly. Glass slides were coated with 500 µl of hot 1% agarose dissolved in water and covered 

with large cover glasses. After the agarose was cooled and solid the cover glasses were 

removed. 2 µl of the samples were spotted on the surface and covered with a small cover glass. 

Microscopy was performed using the 100‐fold magnifying object lens with oil and varying 

exposure times. 
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4.2.2 Cell culture-related techniques 

Supplies for eukaryotic cell culture were purchased from Life Technologies (Invitrogen), 

Karlsruhe, Germany, and Sigma‐Aldrich, Taufkirchen, Germany. 

 

Preparation of cell culture medium 

The recommended medium for cultivation of 5637 cells is composed of RPMI 1640 medium 

supplemented with L‐glutamine and FBS. Each new 500 ml RPMI 1640 + GlutaMAX medium 

bottle was supplemented with 50 ml of heat‐inactivated FBS and mixed gently. The resulting 

RPMI 1640 + GlutaMAX containing 10% FBS is the cell culture medium that was used for all 

applications. 

 

Cell counting 

Determination of the cell count was performed for freezing of cells, adhesion assays, and for 

the preparation of microscopy samples. For cell counting a regular Neubauer counting chamber 

with a chamber factor of 104 was used. The cell count was calculated according to the following 

formula: Cells/ml = mean value of cells x 104 (x dilution factor). 

 

Freezing and thawing of cells 

For cell freezing, aliquots of 3 x 106 cells in 1.5 ml cell culture medium supplemented with 10% 

DMSO were filled in 2.0 ml cryovials. The Nalgene freezing container was used for gentle 

freezing at ‐80°C. On the next day the cryovials were transferred into a liquid nitrogen tank for 

long term storage. For cell thawing, each cryovial was placed in a water bath at 37°C. After 

thawing the cells were seeded immediately into a small flask containing pre‐heated cell culture 

medium. On the next day cell passage was performed. 

 

Cell passage 

5637 cells were obtained from CLS Cell Lines Service GmbH (Eppelheim) at a passage number of 

44. Cells were splitted every two to three days and grown to 90‐100% confluence. The old cell 

culture medium was aspirated and the cells were washed once with PBS. After that 

trypsine/EDTA was added to detach the cells from the flask bottom. When the detachment 

process was finished cell culture medium was added to inactivate trypsin/EDTA. Cells were then 
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harvested, centrifuged and the supernatant was discarded. The cell pellet was resuspended in a 

defined volume of fresh cell culture medium. For a 2‐day cultivation, cells were seeded in a 1:7 

ratio. For a 3‐day cultivation, cells were seeded in a 1:14 ratio. Cells were used up to a passage 

number of approx. 80. 

 

Adhesion assay 

The method was performed as described previously (Elsinghorst, 1994). 2.5 x 105 cells/ml were 

seeded in 6 wells per strain of a 12‐well cell culture plate and grown to confluence by 

incubating overnight at 37°C with 5% CO2. Furthermore, bacterial overnight cultures were 

inoculated in cell culture medium with appropriate antibiotics. On the next day the infection 

was performed. First the cell count of the eukaryotic cells was determined and the OD600 of the 

bacterial overnight cultures was measured. Exponential cultures in cell culture medium with 

appropriate antibiotics were inoculated to an OD600 of 0.1 and grown at 37°C with shaking to an 

OD600 of 0.5. In the case of overexpression studies the exponential cultures were grown to an 

OD600 of 0.3. Then 1 mM IPTG was added for induction of expression and the cultures were 

grown to an OD600 of 0.5. After that the volume of the bacterial suspension (inoculum) was 

calculated to adjust the desired multiplicity of infection (MOI) value (MOI = 1 means 1 bacterial 

cell per 1 eukaryotic cell). From the respective preparatory cultures, either the stationary 

overnight cultures or fresh exponential cultures induced with IPTG, the inoculums were diluted 

in cell culture medium and vortexed briefly. The medium was aspirated from the plate and 1 ml 

inoculum were added per well. The plate was centrifuged to synchronize the infection and then 

incubated for one to two hours at 37°C with 5% CO2. The inoculum was aspirated and the 

samples were washed three times with 1 ml PBS. For cell lysis 1 ml 0.1% Triton X100 in PBS was 

added and the plate was incubated for 10 min at 37°C with 5% CO2. Finally the lysates were 

harvested, serial dilutions were made and the two highest dilutions were plated in duplicates 

on LB agar plates. The inoculum suspensions were diluted and plated as well because the 

infection samples need to be referred to the suspensions they originated from. On the next day 

the colonies were counted and the evaluation of the obtained values as a graphical 

representation was done. 
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Bacterial infection of eukaryotic cells 

Triplicates of 5 x 105 cells/ml were seeded on autoclaved round cover slips in a 6‐well cell 

culture plate and grown overnight at 37°C with 5% CO2. Furthermore, bacterial overnight 

cultures were inoculated in cell culture medium with appropriate antibiotics. On the next day 

the infection was performed. First the OD600 of the bacterial overnight cultures was measured. 

Exponential cultures were grown and induced as described for the adhesion assay unless 

otherwise indicated. After that the inoculum was calculated to adjust the desired MOI value. 

From the respective preparatory cultures, either the stationary overnight cultures or fresh 

exponential cultures induced with IPTG, the inoculums were diluted in cell culture medium and 

vortexed briefly. The medium was aspirated from the plate and 2 ml inoculum were added per 

well. The plate was centrifuged to synchronize the infection and then incubated at 37°C with 

5% CO2. After 30 min and two hours the inoculum was aspirated and the samples were washed 

three times with 3 ml PBS. Optional a gentamicin protection assay (GPA) was performed. Finally 

the samples were stained, fixed and mounted for microscopy. 

 

Gentamicin protection assay (GPA) 

The GPA was performed for determination of invasion frequencies of bacteria into eukaryotic 

cells. Gentamicin is a host membrane‐impermeable bactericidal antibiotic that kills any 

extracellular bacteria. Cell culture medium was supplemented with 100 µg/ml gentamicin and 

vortexed briefly. The PBS was aspirated and 2 ml gentamicin medium was added per well. The 

cell culture plate was incubated for two hours at 37°C with 5% CO2. After that the medium was 

aspirated and the samples were washed three times with 3 ml PBS. Finally the samples were 

stained, fixed and mounted for microscopy. 

 

Staining, fixation and mounting procedure 

A new 6‐well cell culture plate was prepared with 2.5 µg/ml CellMask Orange in cell culture 

medium for staining of the eukaryotic plasma membrane and with 1 ml 4% para‐formaldehyde 

in PBS for fixation. In addition, PBS for washing and sterile water for removal of salt is supplied 

within this plate. First the cover slip was removed from the old 6‐well plate with the help of 

sterile tweezers. Then it was transferred into the staining solution and incubated for 1 min at 
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37°C. The sample was washed once with PBS, transferred into the fixation solution and 

incubated for 15 min at 37°C. After that the sample was washed twice with PBS. A glass slide 

was prepared with a drop of the mounting medium Fluoroshield which includes the nucleic acid 

stain DAPI. The cover slip was removed from the PBS and dipped twice into water. The residual 

water was absorbed with a paper towel and the cover slip was placed upside down on the 

mounting medium. The samples were dried for 5 min at room temperature and then stored 

overnight in the dark at 4°C. 

 

Fluorescence microscopy 

Microscopy of stained 5637 cells infected with bacterial reporter strains carrying a 

chromosomal integration of GFP‐mut1 was performed with the widefield DeltaVision RT 

microscope (Applied Precision, Inc.) using the 40‐fold magnifying object lens with oil on three 

fluorescence channels. The green FITC (Fluoresceinisothiocyanat) channel was used for imaging 

of GFP which has an excitation wavelength of 488 nm and an emission wavelength of 507 nm. 

The red TRITC (Tetramethylrhodaminisothiocyanat) channel was used for imaging of CellMask 

Orange which has an excitation wavelength of 554 nm and an emission wavelength of 567 nm. 

The blue DAPI (4′,6‐Diamidin‐2‐phenylindol) channel was used for imaging of DAPI which has an 

excitation wavelength of 360 nm and an emission wavelength of 460 nm. 16 continuous images 

of each sample were processed with the corresponding softWoRx 5.5 image analysis software 

to generate one composite image. These images were evaluated with the help of the Volocity 

6.1.1 image analysis software (Perkin Elmer). Eukaryotic nuclei were counted by measuring 

DAPI stained objects within a certain intensity threshold and with defined size parameters. GFP‐

fluorescent bacteria adherent to glass were distinguished from bacteria that co‐localize with 

FITC staining. 
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5. Appendix 

5.1 Comparison of yjjQ nucleotide sequences and deduced amino acid sequences of 

different E. coli strains 

 

Plasmids pKEKD31 and pKERV17 encode yjjQ originating from E. coli K‐12 whereas yjjQ encoded 

by the plasmids pKEKD30 and pKEKD25 originates from the UPEC strains 536 and CFT073, 

respectively (Table 13). 

Numbers in brackets indicate the first nucleotide position in one sequence line and asterisks 

indicate stop codons. Divergences in the nucleotide sequence are highlighted in yellow with the 

aberrant nucleotide depicted in red and bold. The affected amino acid is highlighted in green. 

 
      nt position  1        10        20        30        40        50        60   
 aa sequence K-12  MetLeuProGlyCysCysLysAsnGlyIleValIleSerLysIleProValMetGlnAlaGly 
    yjjQ K-12 (1)  ATGTTGCCAGGATGCTGCAAAAATGGAATTGTTATCAGTAAAATACCTGTTATGCAAGCAGGG 
  yjjQ CFT072 (1)  ATGTTGCCAGGATGCTGCAAAAATGGAATTGTTATCAGTAAAATACCTGTTATGCAAGCAGGG 
     yjjQ 536 (1)  ATGTTGCCAGGATGCTGCAAAAATGGAATTGTTATCAGTAAAATACCTGTTATGCAAGCAGGG 
 aa sequence UPEC  MetLeuProGlyCysCysLysAsnGlyIleValIleSerLysIleProValMetGlnAlaGly 
 

      nt position        70        80        90        100       110       120     
 aa sequence K-12  LeuLysGluValMetArgThrHisPheProGluTyrGluIleIleSerSerAlaSerAlaGlu 
   yjjQ K-12 (64)  TTAAAAGAGGTCATGAGGACTCACTTCCCTGAATATGAAATAATATCCAGCGCCTCTGCGGAG 
 yjjQ CFT072 (64)  TTAAAAGAGGTCATGAGGACTCACTTCCCTGAATATGAAATAATATCCAGCGCCTCTGCGGAG 
    yjjQ 536 (64)  TTAAAAGAGGTCATGAGGACTCACTTCCCTGAATATGAAATAATATCCAGCGCCTCTGCGGAG 
 aa sequence UPEC  LeuLysGluValMetArgThrHisPheProGluTyrGluIleIleSerSerAlaSerAlaGlu 
 

      nt position     130       140       150       160       170       180        
 aa sequence K-12  AspLeuThrLeuLeuGlnLeuArgArgSerGlyLeuValIleAlaAspLeuAlaGlyGluSer 
  yjjQ K-12 (127)  GACCTTACCTTATTACAATTACGTCGTTCCGGATTAGTCATTGCTGATTTAGCCGGTGAAAGT 
yjjQ CFT072 (127)  GACCTTACCTTATTACAATTACGTCGTTCCGGATTAGTCATTGCTGATTTGGCCGGTGAAAGT 

   yjjQ 536 (127)  GACCTTACCTTATTACAATTACGTCGTTCCGGATTAGTCATTGCTGATTTAGCCGGTGAAAGT 
 aa sequence UPEC  AspLeuThrLeuLeuGlnLeuArgArgSerGlyLeuValIleAlaAspLeuAlaGlyGluSer 
 

      nt position  190       200       210       220       230       240       250 
 aa sequence K-12  GluAspProArgSerValCysGluHisTyrTyrSerLeuIleSerGlnTyrArgGluIleHis 
  yjjQ K-12 (190)  GAAGATCCACGTTCTGTTTGTGAACATTATTATTCTTTAATCTCACAATATCGGGAAATTCAC 

yjjQ CFT072 (190)  GAAGATCCACGTTCCGTTTGTGAGCATTATTACTCTTTAATCTCACAATATCGGGAAATTCAC 
   yjjQ 536 (190)  GAAGATCCACGTTCCGTTTGTGAGCATTATTACTCTTTAATCTCACAATATCGGGAAATTCAC 
 aa sequence UPEC  GluAspProArgSerValCysGluHisTyrTyrSerLeuIleSerGlnTyrArgGluIleHis 
 

      nt position         260       270       280       290       300       310    
 aa sequence K-12  TrpValPheMetValSerArgSerTrpTyrSerGlnAlaValGluLeuLeuMetCysProThr 
  yjjQ K-12 (253)  TGGGTTTTCATGGTGTCACGCTCCTGGTATTCCCAGGCAGTAGAACTGCTCATGTGCCCTACG 

yjjQ CFT072 (253)  TGGGTTTTCATGGTGTCACGCTCCTGGTATTCCCAGGCAGTAGAATTGCTCATGTGCCCTACG 
   yjjQ 536 (253)  TGGGTTTTCATGGTGTCACGCTCCTGGTATTCCCAGGCAGTAGAATTGCTCATGTGCCCTACG 
 aa sequence UPEC  TrpValPheMetValSerArgSerTrpTyrSerGlnAlaValGluLeuLeuMetCysProThr 
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      nt position      320       330       340       350       360       370       
 aa sequence K-12  AlaThrLeuLeuSerAspValGluProIleGluAsnLeuValLysThrValArgSerGlyAsn 
  yjjQ K-12 (316)  GCGACGTTATTGTCTGATGTTGAACCCATTGAGAATCTGGTCAAGACCGTACGTTCCGGCAAT 
yjjQ CFT072 (316)  GCGACGTTATTGTCTGATGTTGAACCCATTGAGAATCTGGTCAAGACCGTACGTTCCGGCAAT 
   yjjQ 536 (316)  GCGACGTTATTGTCTGATGTTGAACCCATTGAGAATCTGGTCAAGACCGTACGTTCCGGCAAT 
 aa sequence UPEC  AlaThrLeuLeuSerAspValGluProIleGluAsnLeuValLysThrValArgSerGlyAsn 
 

      nt position   380       390       400       410       420       430       440 
 aa sequence K-12  ThrHisAlaGluArgIleSerAlaMetLeuThrSerProAlaMetThrGluThrHisAspPhe 
  yjjQ K-12 (379)  ACGCACGCAGAGCGTATCAGCGCCATGCTGACCTCCCCGGCAATGACTGAAACTCATGATTTT 

yjjQ CFT072 (379)  ACGCACTCAGAGCGTATCAGCGCCATGCTGACCTCTCCGGCGATGACTGAAACTCATGATTTT 
   yjjQ 536 (379)  ACGCACTCAGAGCGTATCAGCGCCATGCTGACCTCTCCGGCGATGACTGAAACTCATGATTTT 
 aa sequence UPEC  ThrHisSerGluArgIleSerAlaMetLeuThrSerProAlaMetThrGluThrHisAspPhe 
 

      nt position          450       460       470       480       490       500   
 aa sequence K-12  SerTyrArgSerValIleLeuThrLeuSerGluArgLysValLeuArgLeuLeuGlyLysGly 
  yjjQ K-12 (442)  AGCTATCGCTCCGTCATTCTCACTCTTTCAGAGCGCAAGGTACTGCGGCTATTAGGTAAAGGA 
yjjQ CFT072 (442)  AGCTATCGCTCCGTCATTCTCACTCTTTCAGAGCGCAAGGTACTGCGGCTATTAGGTAAAGGA 
   yjjQ 536 (442)  AGCTATCGCTCCGTCATTCTCACTCTTTCAGAGCGCAAGGTACTGCGGCTATTAGGTAAAGGA 
 aa sequence UPEC  SerTyrArgSerValIleLeuThrLeuSerGluArgLysValLeuArgLeuLeuGlyLysGly 
 

      nt position       510       520       530       540       550       560      
 aa sequence K-12  TrpGlyIleAsnGlnIleAlaSerLeuLeuLysLysSerAsnLysThrIleSerAlaGlnLys 
  yjjQ K-12 (505)  TGGGGCATCAACCAGATAGCTTCATTGCTTAAGAAAAGTAATAAAACTATCAGCGCCCAAAAA 

yjjQ CFT072 (505)  TGGGGCATCAACCAGATAGCTTCATTGCTTAAGAAAAGTAATAAAACTATTAGCGCCCAAAAA 
   yjjQ 536 (505)  TGGGGCATCAACCAGATAGCTTCATTGCTTAAGAAAAGTAATAAAACTATTAGCGCCCAAAAA 
 aa sequence UPEC  TrpGlyIleAsnGlnIleAlaSerLeuLeuLysLysSerAsnLysThrIleSerAlaGlnLys 
 

      nt position    570       580       590       600       610       620       630 
 aa sequence K-12  AsnSerAlaMetArgArgLeuAlaIleHisSerAsnAlaGluMetTyrAlaTrpIleAsnSer 
  yjjQ K-12 (568)  AACAGTGCGATGCGTCGACTGGCAATTCACAGCAACGCTGAAATGTATGCATGGATAAATAGC 
yjjQ CFT072 (568)  AACAGTGCGATGCGTCGACTGGCAATTCACAGCAACGCTGAAATGTATGCATGGATAAATAGC 
   yjjQ 536 (568)  AACAGTGCGATGCGTCGACTGGCAATTCACAGCAACGCTGAAATGTATGCATGGATAAATAGC 
 aa sequence UPEC  AsnSerAlaMetArgArgLeuAlaIleHisSerAsnAlaGluMetTyrAlaTrpIleAsnSer 
 

      nt position           640       650       660       670       680       690  
 aa sequence K-12  AlaGlnGlyAlaArgGluLeuAsnLeuProSerValTyrGlyAspAlaAlaGluTrpAsnThr 
  yjjQ K-12 (631)  GCGCAGGGTGCAAGAGAACTTAACTTGCCTTCTGTTTATGGAGATGCCGCAGAATGGAACACA 
yjjQ CFT072 (631)  GCGCAGGGTGCAAGAGAACTTAACTTGCCTTCTGTTTATGGAGATGCCGCAGAATGGAACACA 
   yjjQ 536 (631)  GCGCAGGGTGCAAGAGAACTTAACTTGCCTTCTGTTTATGGAGATGCCGCAGAATGGAACACA 
 aa sequence UPEC  AlaGlnGlyAlaArgGluLeuAsnLeuProSerValTyrGlyAspAlaAlaGluTrpAsnThr 
 

      nt position        700       710       720   726 
 aa sequence K-12  AlaGluLeuArgArgGluMetSerHisSer*** 
  yjjQ K-12 (694)  GCCGAATTAAGAAGAGAAATGTCGCACTCATAG 
yjjQ CFT072 (694)  GCCGAATTAAGAAGAGAAATGTCGCACTCATAG 
   yjjQ 536 (694)  GCCGAATTAAGAAGAGAAATGTCGCACTCATAG 
 aa sequence UPEC  AlaGluLeuArgArgGluMetSerHisSer*** 

 

One nucleotide of the yjjQ sequence (nt 177) differs among the UPEC strains but it has no 

influence on the protein level. This is also true for seven yjjQ nucleotides (nts 204, 213, 222, 



5. Appendix 

103 

298, 414, 420, 555) that differ between K‐12 and both UPEC strains. Only the nucleotide 

variation at position 385 is reflected in the YjjQ protein. 

 

 

5.2 Summary of the microarray data analysis 

On the following pages, a schedular summary of the microarray data is given (Table 15). Loci 

affected by YjjQ are ordered by their genome positions in E. coli strain K‐12 and UPEC strain 

CFT073, respectively. Arrows pointing to the left or right indicate the chromosomal orientation 

of the genes and bidirectional arrows represent intergenic regions. Probes that are aligned left 

or right are strain‐specific and probes with justified positions matched in both bacterial strains. 

Genes depicted in bold are the ones which are regulated by YjjQ and loci depicted in red are 

regulated in both bacterial strains. Boxes around two or more genes indicate putative 

transcription units. Within the columns, green indicates upregulated genes, light red indicates 

unregulated and slightly regulated genes, and red indicates downregulated genes having a fold 

repression value of 5 and more. 
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Table 15: Summary of the microarray data analysis. 
 

K12 

probe ID 

CFT073 

probe ID 

K12 

name 

CFT073 

name 

K12 

position 

CFT073 

position 

K12 

acc. No. 

CFT073 

acc. No. 
synonyms K12 CFT073 

 

1760828_s_at 
 

cra 
 

88,028→89,032 
 

b0080 
 

serR?, fruR, 
fruC, shl 

‐3,4 ‐1,9 
 

1760840_s_at yadE 145,081 155,286 b0130 C0159 
 

‐1,2 1,2 
 

1765227_s_at panD 146,314←146,694 156,519←156,899 b0131 C0160 
 

‐11,4 ‐10,4 
 

1767264_s_at c0161 
 

156,867→157,052 C0161 ‐1,0 1,1 
 

1764265_s_at 
 yadD 147,870 158,117 b0132 C0162  

‐1,1 ‐1,1 

 1762622_at 1,2 ‐1,2 

 

1767188_s_at 

 

c0410 
 

390,151 

 

C0410 

 

‐1,0 ‐4,0 

 1767640_s_at 

 

c0411 
 

391,165→392,154 C0411 

 

1,2 ‐8,4 

 

 

1761753_at 

 

c0412 
 

393,247 

 

C0412 

 

1,2 ‐2,0 

 1763938_s_at moaE 818,518 841,916 b0785 C0867 chlA5 1,1 1,0 
 

1764111_s_at ybhL 819,107→819,811 842,424→843,209 b0786 C0868 

 

‐26,8 ‐19,3 
 

1759186_s_at 

 

c0869 
 

843,141←843,272 C0869 

 

‐11,4 ‐2,9 

 1764422_s_at 

 
ybhM 820,729 844,128 b0787 C0870 

 

‐1,5 ‐1,0 

 1763070_at 

 

‐1,1 ‐1,4 

 1760441_s_at ompF ↔ asnS 
 

986,226↔986,807 
 ‐ ‐6,4 ‐1,9 

1768665_s_at 

 

gfcA↔ insAB‐4 ↔ cspH 
 

1,049,767↔1,050,182 
 ‐ 

  

‐53,1 1,0 

 
 

gfc regulatory region 
   ymcD   

1764937_s_at torD 1,061,022 1,096,506 b0998 C1134 

 

1,1 1,2 

 1761834_s_at cbpM 1,061,773←1,062,078 1,097,494←1,097,799 b0999 C1135 yccD ‐10,1 ‐4,9 

 1767087_s_at cbpA 1,062,078←1,062,998 1,097,799←1,098,719 b1000 C1136 

 

‐25,3 ‐8,0 

 1759330_at yccE 

 

1,063,259→1,064,515 
 

b1001 

 

‐1,1 1,1 

 1760217_s_at 
agp 1,066,049 1,100,210 b1002 C1137 

1,1 1,0 

1759895_at 

 

‐1,1 1,0 

 1765428_at c1615 
 

1,459,716 C1615 1,1 ‐1,3 
 

 

1766969_s_at 

 

ymgD 
 

1,460,301←1,460,636 

 

C1616 

 

‐1,9 ‐9,9 

 1763277_s_at c1617 
 

1,460,640←1,460,984 C1617 ‐2,4 ‐12,0 

 

1761557_s_at 

 

c1618 
 

1,460,986←1,461,159 

 

C1618 

 

‐3,2 ‐21,4 

 1763523_s_at 

 

c1619 
 

1,461,903 C1619 

 

‐1,0 1,0 

 1765835_s_at cysB 1,331,879 1,578,166 b1275 C1742 

 

‐1,2 1,1 

 1761738_s_at ymiA 1,333,184→1,333,312 1,579,435→1,579,599 b4522 C1743 yciX_1 ‐23,3 ‐10,4 

 1764922_s_at yciX 1,333,315→1,333,482 1,579,581→1,579,769 b4523 C1744 yciX_2 ‐28,6 ‐10,1 

1760881_s_at acnA 1,336,530 1,582,803 b1276 C1745 

 

‐1,2 ‐1,5 
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K12 

probe ID 

CFT073 

probe ID 

K12 

name 

CFT073 

name 

K12 

position 

CFT073 

position 

K12 

acc. No. 

CFT073 

acc. No. 
synonyms K12 CFT073 

 

no probe ynaE 
 

1,432,015 
 

b1375 

 
 ‐   ‐  

 

 

1766831_at 

 

c1820 
 

1,652,469 

 

C1820 
 

1,2 ‐1,8 
 

1760228_s_at uspF 1,433,209←1,433,643 1,652,926←1,653,432 b1376 C1821 yzzL, ynaF ‐6,4 ‐10,6 
 

1761418_s_at 
1766178_s_at 

ompN 1,434,917 1,654,634 b1377 C1822 ynaG 
‐1,0 
‐1,3 

‐1,2 
‐1,1 

 no probe ydgU 1,669,801 
 

b4601 
 

 ‐   ‐  
 

1759761_s_at ydgD 1,669,984→1,670,805 1,832,655 b1598 C1990 
 

‐6,7 ‐4,7 

 1763040_s_at mdtI 1,670,844←1,671,173 1,833,515←1,833,844 b1599 C1991 ydgE ‐8,8 ‐7,3 

1759134_s_at mdtJ 1,671,160←1,671,525 1,833,831←1,834,196 b1600 C1992 ydgF ‐31,1 ‐13,7 

 1766227_s_at mdtJ ↔ tqsA ydgF ↔ c1993 1,671,599↔1,671,906 1,834,270↔1,834,577 ‐ ‐  
‐16,3 ‐11,4 

1761399_s_at tqsA 1,672,971 1,835,642 b1601 C1993 ydgG ‐1,6 ‐2,5 

 1763982_s_at motA 
 

2,125,705 C2305 1,0 ‐1,2 
 

 

1760305_s_at 

 

flhC 
 

2,126,718←2,127,296 

 

C2306 

 

1,1 ‐6,0 
 

1764028_s_at c2307 
 

2,126,795←2,126,941 C2307 1,1 ‐5,0 
 

 

1762824_s_at 

 

flhD 
 

2,127,299←2,127,658 

 

C2308 

 

1,0 ‐9,8 

 1760336_s_at yecG 
 

2,128,857 C2309 1,0 ‐1,3 

1765972_s_at rcnR 2,183,818 2,476,196 b2105 C2632 yohL 1,1 ‐1,0 

 1761374_s_at rcnA 2,183,939 ‐> 2,184,763 2,476,589→2,477,413 b2106 C2633 yohM ‐1,2 ‐1,0 

 1759340_s_at rcnB 2,184,982 ‐> 2,185,320 2,477,452→2,477,970 b2107 C2634 yohN ‐5,0 ‐5,2 

1765584_s_at yehA 2,185,402 2,479,086 b2108 C2635 

 

1,1 ‐1,1 

 1759114_s_at apbE 2,308,501 2,597,422 b2214 C2756 yojK, yojL ‐1,4 1,2 
 

 

1766378_s_at 

 

c2757 
 

2,598,529→2,599,623 

 

C2757 

 

‐29,7 ‐13,0 

 1768937_at 
ompC 2,309,668←2,310,771 2,598,589←2,599,716 b2215 C2758 meoA, par 

‐36,6 ‐1,1 

 

1760091_s_at 1,1 ‐17,2 

 1762699_at micF 2,311,106→2,311,198 
 

b4439 stc 2,4 1,2 
 

1762895_s_at rcsD 2,311,510→2,314,182 2,600,455→2,603,127 b2216 C2759 
yojP, yojQ, 

yojN 
1,0 1,1 

 
1767513_s_at rcsB 2,314,199→2,314,849 2,603,099→2,603,794 b2217 C2760 1,0 1,1 

 
1768567_s_at rcsC 2,317,850 2,606,729 b2218 C2761 

 

1,1 1,1 

 1769181_at 
ypdI 2,492,720 2,777,081 b2376 C2912 

 

‐1,0 ‐1,1 

 1761386_at 1,2 ‐1,2 

 

1761982_s_at 

 

c2913 
 

2,777,341←2,777,478 

 

C2913 

 

‐4,1 ‐4,1 

 1766480_s_at yfdY 2,493,072←2,493,314 2,777,433←2,777,675 b2377 C2914 ‐5,3 ‐7,8 
 

1759732_s_at lpxP 2,494,587 2,778,948 b2378 C2915 ddg 1,0 ‐1,1 
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K12 

probe ID 

CFT073 

probe ID 

K12 

name 

CFT073 

name 

K12 

position 

CFT073 

position 

K12 

acc. No. 

CFT073 

acc. No. 
synonyms K12 CFT073 

 

1762292_s_at 
 cysP 2,540,534 2,822,447 b2425 C2959 

 

1,4 1,2 

 

 

1764785_at 

 

1,1 1,3 

 1761380_s_at 
 ucpA 2,541,854←2,542,645 2,823,621←2,824,568 b2426 C2960 yfeF 

‐22,0 ‐8,7 

 

 

1759310_at ‐1,4 ‐3,6 

 1761757_at murR 

 

2,542,774←2,543,631 
 

b2427 yfeT ‐1,0 ‐1,2 

 1760563_at 

 
murQ 2,544,691 2,825,588 b2428 C2961 yfeU 

1,1 ‐1,2 

 1763853_at 1,2 1,3 

 1759305_s_at yfiL 2,739,382 3,004,042 b2602 C3123 

 

‐1,7 ‐1,3 

 1761363_s_at yfiR 2,739,897→2,740,415 3,004,572→3,005,090 b2603 C3124 

 

‐23,4 ‐7,8 

 1759798_s_at yfiN 2,740,405→2,741,631 3,005,080→3,006,306 b2604 C3125 ‐8,2 ‐5,8 

1764972_s_at yfiB 2,741,647→2,742,129 3,006,322→3,006,804 b2605 C3126 

 

‐4,7 ‐5,1 

 1767377_s_at rplS 2,742,552 3,007,228 b2606 C3127 1,5 ‐1,0 
 

1765655_s_at 

 

cysD 
 

2,873,443 
 

b2752 

  

‐1,3 ‐1,6 

 1768783_s_at iap 
 

2,874,603→2,875,640 
 

b2753 

 

‐5,8 ‐3,9 

 1763303_at 

 

cas2 

 

2,876,875 
 

b2754 

 

ygbF ‐1,2 ‐1,0 

 1760515_s_at yqcC 2,921,806 3,198,930 b2792 C3358 

 

‐2,2 ‐1,1 

 1763312_at csrB 2,922,178←2,922,537 
 

b4408 
 

 

‐11,3 ‐5,2 

 1766050_s_at syd 2,923,302 3,199,552 b2793 C3359 ydr 1,3 ‐1,0 

 
1768062_s_at 

 
npr 

 
3,345,988 

 
b3206 

 
yhbK, ptsO, 

rpoR 
‐1,1 ‐1,2 

 
1762003_s_at yrbL 

 

3,346,474→3,347,106 
 

b3207 
 

‐5,9 ‐2,9 

 1760539_s_at 

 

mtgA 

 

3,347,831 
 

b3208 

 

mgt, yrbM 1,0 1,1 

 1767449_s_at 

 

yqfA 
 

3,339,343 C3480 

 

‐1,2 ‐1,1 

 

 

1759347_s_at 

 

yqfB 
 

3,340,166←3,340,477 

 

C3481 

 

‐4,0 ‐5,1 

 1764949_at 

 

bglA 
 

3,341,955 C3482 

 

‐1,7 ‐3,0 

 1759844_at kpsS 
 

3,518,804 C3691 1,1 ‐1,8 

 

1763650_at 

 

c3692 
 

3,520,204←3,521,199 

 

C3692 

 

1,0 ‐5,9 

 1768579_at c3693 
 

3,521,205←3,522,233 C3693 1,3 ‐7,6 

 

1767211_at 

 

c3694 
 

3,522,336←3,526,136 

 

C3694 

 

‐1,1 ‐6,5 

 1763972_at 

 

c3695 
 

3,526,190←3,527,425 C3695 

 

‐1,0 ‐7,6 

 

 

1769247_at 

 

c3696 
 

3,527,441←3,527,848 

 

C3696 

 

1,1 ‐8,2 

 1764875_at 

 

kpsT 
 

3,527,848←3,528,519 C3697 

 

1,2 ‐6,0 

 
 

1759111_at 

 

kpsM 
 

3,528,516←3,529,292 

 

C3698 

 

1,1 ‐6,4 

 1763318_at 

 

yghD 
 

3,531,002 C3699 

 

1,1 1,1 
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K12 

probe ID 

CFT073 

probe ID 

K12 

name 

CFT073 

name 

K12 

position 

CFT073 

position 

K12 

acc. No. 

CFT073 

acc. No. 
synonyms K12 CFT073 

 

no probe yhiS_2 

 

3,651,239 
 

G0‐10683 
 

 ‐   ‐  
 

 

1764896_at 

 

c4303 
 

4,083,123 

 

C4303 

 

‐1,1 1,3 

 1768627_s_at slp 3,651,984→3,652,550 4,083,657→4,084,256 b3506 C4304 
 

‐4,4 ‐4,8 
 

 

1768080_s_at 

 

c4305 
 

4,084,297→4,084,470 

 

C4305 

 

‐6,3 ‐6,2 

 1763257_s_at dctR 3,652,706→3,653,236 4,084,409→4,084,939 b3507 C4306 yhiF ‐5,1 ‐3,7 
 

1762733_s_at yhiD 3,653,925 
 

b3508 yhhE ‐3,6 ‐1,1 

 

1763313_s_at 

 

chuS 
 

4,086,024 

 

C4307 

 

1,0 1,2 

 1760302_s_at yhjK 3,681,653 4,122,353 b3529 C4341 
 

1,1 1,4 
 

1768459_s_at 

bcsC 3,683,723←3,687,196 4,124,423←4,127,896 b3530 C4342 yhjL 

‐1,3 ‐4,6 
 

1760359_s_at ‐1,3 ‐1,4 

 

1760034_at 1,2 ‐4,9 

 1766619_s_at bcsZ 3,687,178←3,688,284 4,127,878←4,128,990 b3531 C4343 bcsC, yhjM ‐1,3 ‐5,8 
 

1760246_s_at 

 
bcsB 3,688,291←3,690,630 4,128,991←4,131,417 b3532 C4344 yhjN 

‐1,8 ‐1,8 

 1759665_at ‐1,0 ‐10,0 

1760799_s_at 

 
bcsA 3,690,641←3,693,259 4,131,341←4,134,007 b3533 C4345 yhjP, yhjO 

‐1,3 ‐1,2 

 1763161_at 1,1 ‐5,5 

 1766617_s_at 
1762034_s_at 

bcsQ 3,693,256←3,693,984 4,133,956←4,134,708 b3534 C4346 yhjQ 
‐8,9 
‐2,8 

‐13,9 
‐11,6 

 1766976_s_at yhjR 3,694,020←3,694,208 4,134,720←4,134,908 b3535 C4347 
 

‐15,5 ‐12,9 

1764728_s_at yhjR ↔ bcsE yhjR ↔ yhjS 3,694,212↔3,694,480 4,134,913↔4,135,180 ‐ ‐ 
 

‐39,5 ‐14,3 
 

1760595_s_at bcsE 3,694,481→3,696,052 4,135,181→4,136,752 b3536 C4348 yhjS ‐9,0 ‐7,9 
 

1763715_s_at bcsF 3,696,049→3,696,240 4,136,749→4,136,940 b3537 C4349 yhjT ‐8,7 ‐7,5 
 

1767568_s_at bcsG 3,696,237→3,697,916 4,136,937→4,138,616 b3538 C4350 yhjU ‐7,6 ‐6,5 
 

1763059_s_at ldrD 3,698,110 4,138,944 b4453 C4351 
 

‐1,1 1,3 
 

1765253_s_at yjbJ 
 

4,257,260 
 

b4045 

 

‐1,3 ‐1,4 

 1763405_s_at 

 

zur 

 

4,257,511←4,258,026 
 

b4046 

 

yjbK, znuR ‐5,9 1,0 

 1760801_at yjbL 
 

4,258,344 
 

b4047 

 

1,0 1,0 

 1760951_s_at 
eptA 4,331,970 4,892,483 b4114 C5119 yjdB 

‐1,4 ‐1,1 

 

1759422_at 1,0 ‐1,5 

 1764522_s_at adiC 4,333,717←4,335,054 4,894,230←4,895,567 b4115 C5120 yjdD, yjdE ‐7,2 ‐6,5 

1766003_s_at adiY 4,335,191←4,335,952 4,895,704←4,896,465 b4116 C5121 

 

‐39,6 ‐29,3 
 

1767254_s_at adiA 4,338,544 4,899,071 b4117 C5122 ‐1,5 ‐1,3 
 

1760826_s_at 

 

yjdF 

 

4,342,952 
 

b4121 

  

1,0 1,1 
 

no probe fumB 4,343,703←4,345,349 
 

b4122  ‐   ‐  
 

1761781_s_at 

 

dcuB 

 

4,345,427←4,346,767 
 

b4123 

 

genF ‐5,1 ‐1,9 
 

1762536_s_at dcuR 

 

4,348,057 
 

b4124 yjdG ‐1,5 ‐1,5 
 

   
            



5. Appendix 

108 

K12 

probe ID 

CFT073 

probe ID 

K12 

name 

CFT073 

name 

K12 

position 

CFT073 

position 

K12 

acc. No. 

CFT073 

acc. No. 
synonyms K12 CFT073 

 

1766770_s_at 

 

blc 
 

4,985,910 C5237 

 

‐1,2 1,1 
 

1765348_s_at ampC 
 

4,986,532←4,987,698 C5238 ‐1,4 ‐1,3 
 

1760339_s_at 

 

frdD 
 

4,987,728←4,988,117 C5239 

 

‐4,2 ‐8,1 
 

 

1759219_s_at 

 

frdC 
 

4,988,098←4,988,493 

 

C5240 

 

‐4,4 ‐8,4 
 

1765110_s_at 

 

frdB 
 

4,988,504←4,989,238 C5241 

 

‐3,8 ‐8,0 

 1767636_s_at frdA 
 

4,989,231←4,991,039 C5242 ‐3,5 ‐5,9 
 

 

1760368_s_at 

 

yjeA 
 

4,992,341 

 

C5243 

 

‐1,3 ‐1,2 
 

1767832_at yjhR 4,533,038 
 

b4308 
 

‐1,2 1,0 
 

 

1759876_at 

 

c5386 
 

5,131,079 

 

C5386 

 

1,4 ‐1,0 
 

1759095_s_at nanS 4,534,637←4,535,617 5,131,337←5,132,317 b4309 C5387 yjhS ‐16,8 1,2 
 

1763294_s_at nanM 4,535,682←4,536,788 5,132,382←5,133,596 b4310 C5388 yjhT ‐9,5 1,3 
 

1761867_s_at nanC 4,536,808←4,537,524 5,133,508←5,134,233 b4311 C5389 yjhA ‐11,5 1,1 
 

 

1769280_at 

 

c5390 
 

5,135,022←5,135,429 

 

C5390 

 

‐1,0 ‐1,2 
 

1769163_s_at fimB 4,538,980→4,539,582 5,135,689→5,136,291 b4312 C5391 pil ‐2,7 ‐6,7 
 

1760084_s_at fimE 4,540,656 5,137,365 b4313 C5392 hyp, pilH ‐1,2 ‐1,6 
 

1765480_s_at psuK/pscK 

 

2,256,377 
 

b2166 yeiC ‐1,1 ‐1,1 

 1764331_s_at fruA 2,257,741←2,259,432 
 

b2167 ptsF 4,6 ‐1,1 

1759218_s_at 

 

fruK 

 

2,259,449←2,260,387 
 

b2168 

 

fpk, fruF 5,6 ‐1,1 

 1759178_s_at fruB 2,260,387←2,261,517 
 

b2169 fpr, fruF 7,3 ‐1,1 

1766196_s_at 

 

setB 

 

2,263,066 
 

b2170 

 

yeiO 1,1 1,2 

 1766127_s_at yedZ 
 

2,039,142 
 

b1972 
 

 

‐1,1 ‐1,1 

 1764146_s_at 

 
zinT 

 

2,039,399→2,040,049 
 

b1973 
 

yodA 7,6 2,2 

 1767635_s_at yodB 
 

2,040,392 
 

b1974 
 

 

1,2 ‐1,1 

 1767519_s_at ydjR  
1,978,845 C2141 ves ‐1,0 1,3 

1766996_s_at 

 
c2142 1,978,973→1,979,461 C2142 

 

1,3 3,7 

 
 

1764483_s_at 

 
spy  

1,978,985←1,979,470 
 

C2143 

 

3,5 6,0 

 1760113_s_at 

 
ydjS  

1,979,800 
 

C2144 astE ‐2,1 1,2 
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5.3 Description of putative YjjQ target loci identified by the microarray 

In the following chapter a detailed description of the functions of the proteins encoded by the 

putative YjjQ target genes in K‐12 as well as CFT073 is given in alphabetical order (except for 

the bcs locus, see chapter 1.3.2.). 

 

adiY adiC (39.6‐fold repression in K‐12, 29.3‐fold repression in CFT073) 

The transcriptional regulator AdiY and the arginine‐agmatine antiporter AdiC are involved in the 

arginine‐dependent acid resistance in bacteria. In E. coli, overexpression of AdiY induces 

transcription of adiA encoding arginine decarboxylase (Stim‐Herndon et al., 1996). AdiA 

catalyzes the synthesis of agmatine from arginine. The exchange of intracellular agmatine 

against extracellular arginine is mediated by AdiC. 

The transcriptional regulator AdiY is repressed by H‐NS. When expressed, AdiY also affects 

expression of some genes related to the glutamate specific pathway (e.g. dctR) and to general 

acid resistance in E. coli (Krin et al., 2010a). The arginine decarboxylase AdiA plays a critical role 

in pH homeostasis. This enzyme increases the pH by removing acidic carboxyl groups and 

releasing CO2 from its substrate arginine thereby generating agmatine. The antiporter AdiC 

maintains cell viability under extreme acid stress conditions (Iyer et al., 2003, Gong et al., 2003). 

Its activity depends on the arginine concentration and on the pH. AdiC catalyzes electrogenic 

transport at neutral pH but the uptake rate is much greater at low pH (Fang et al., 2007). 

Furthermore, AdiC is involved in YdeO‐induced acid resistance (Masuda & Church, 2003). AdiC 

expression is elevated following overexpression of the FixJ/NarL‐type transcription factor EvgA 

in E. coli (Masuda & Church, 2002). The nucleoid‐associated protein HU activates expression of 

adiA and adiC in E. coli resulting in the induction of arginine‐dependent acid resistance (Bi et al., 

2009). Moreover, both genes are repressed by H‐NS and activated by RcsB/GadE heterodimers 

(Krin et al., 2010a, Krin et al., 2010b). 

 

cbpAM (25.3‐fold repression in K‐12, 8.0‐fold repression in CFT073) 

The curved DNA‐binding protein CbpA is a major nucleoid‐associated protein as well as co‐

chaperone in bacteria (Ueguchi et al., 1994). In E. coli, CbpA is co‐expressed with the CbpA 
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modulator protein CbpM (Chae et al., 2004). CbpA and CbpM together modulate the activity of 

the DnaK/DnaJ chaperone system. 

Chaperone proteins mediate a wide variety of cellular processes including nascent polypeptide 

folding, translocation across membranes, targeting for degradation, disassembly of 

macromolecular aggregates, and induction of conformational changes that affect biological 

functions. The chaperone DnaK is the major 70‐kDa heat shock protein (Hsp70) of E. coli. It 

enables cell growth under stress conditions such as heat shock and hypothermia. Hsp70 

chaperones are present in all bacteria and in all eukaryotes. Their activity is regulated by co‐

chaperones of the Hsp40 family in an ATP‐dependent manner. The Hsp40 protein DnaJ is a co‐

chaperone of DnaK in E. coli and both proteins are involved e.g. in reactivation of heat‐

inactivated proteins (Genevaux et al., 2007, Qiu et al., 2006, Kampinga & Craig, 2010). 

The cbpAM operon is transcriptionally controlled by RpoS and Lrp (Chenoweth & Wickner, 

2008). Under some conditions, CbpA acts as a functional homolog of DnaJ in E. coli. CbpA binds 

native substrates and targets them for recognition by DnaK (Chae et al., 2004). Despite the 

similarities between CbpA and DnaJ, CbpM targets selectively CbpA (Chenoweth et al., 2007, 

Bird et al., 2006). The binding sites of CbpM and DnaK on CbpA overlap so that DnaK and CbpM 

compete for binding to CbpA (Sarraf et al., 2010). CbpA binds nonspecifically to DNA but with a 

high affinity for curved stretches (Ueguchi et al., 1994). It forms large aggregates upon DNA 

binding and dimerization of CbpA is required for DNA binding (Cosgriff et al., 2010). CbpM is 

unable to bind DNA but is able to disrupt CbpA‐DNA aggregates (Chintakayala & Grainger, 

2011). Interaction of CbpA with CbpM inhibits both the co‐chaperone activity and the DNA‐

binding activity of CbpA. 

 

cra (3.4‐fold repression in K‐12) 

The catabolite repressor/activator protein Cra is a global regulator in bacteria controlling the 

expression of numerous genes associated with energy metabolism. Cra guides the direction of 

carbon flux in E. coli and consequently influences the rates of utilization of various carbon 

sources. It primarily functions by selecting a fermentative pathway or an oxidative pathway of 

carbon metabolism depending on the physiological conditions (Ramseier, 1996). 
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Cra was initially characterized as a transcriptional repressor of the fruBKA operon encoding 

fructose‐specific enzymes and was therefore called FruR (Geerse et al., 1986, Chin et al., 1987) 

(see fruBKA). Cra is a LacI/GalR‐type transcriptional regulator and it possesses an N‐terminal 

HTH DNA‐binding domain and a C‐terminal carbohydrate‐binding domain. Cra mediates 

responses to carbon availability by activating the expression of genes encoding biosynthetic and 

oxidative enzymes that are normally subject to catabolite repression. In parallel, Cra represses 

the expression of genes encoding glycolytic enzymes that are subject to catabolite activation 

(Ramseier, 1996, Saier & Ramseier, 1996). This repressive effect is reversed by carbohydrate 

catabolites that bind to Cra and displace it from its operator sites in the target operons. 

Catabolite activation thus generally occurs whenever Cra represses transcription, while 

catabolite repression occurs whenever Cra activates transcription. The mechanism of Cra action 

is independent of the cAMP/CRP control system (Chin et al., 1987). In E. coli, Cra synthesis is 

increased by polyamines (Terui et al., 2007) (see mdtJI). Furthermore, Cra activates 

transcription of the csgDEFG operon thereby inducing curli synthesis in E. coli (Reshamwala & 

Noronha, 2011) (see chapter 1.3.1). 

 

csrB (11.3‐fold repression in K‐12, 5.2‐fold repression in CFT073) 

The pleiotropic small regulatory RNA CsrB exerts its functions by modulating the activity of the 

RNA‐binding protein CsrA (carbon storage regulator) in bacteria. CsrA is a global regulator 

playing a role in carbohydrate metabolism and pathogenicity. This post‐transcriptional, mostly 

negative regulator binds to target mRNAs and modulates their stability and translation 

(Timmermans & Van Melderen, 2010, Lucchetti‐Miganeh et al., 2008). CsrA itself activates 

expression of the sRNA CsrB in E. coli (Gudapaty et al., 2001). 

CsrA suppresses biofilm formation in E. coli (Jackson et al., 2002, Wang et al., 2005). With a few 

exceptions, CsrA negatively regulates c‐di‐GMP metabolism in E. coli and S. typhimurium (Jonas 

et al., 2008, Jonas et al., 2010). Positive roles of CsrA are e.g. promoting flagellar motility in 

E. coli (Wei et al., 2001, Yakhnin et al., 2013) and controlling virulence factor expression in EPEC 

(Bhatt et al., 2009). The sRNA CsrB binds to CsrA thereby building a multi‐subunit 

ribonucleoprotein complex. CsrB competes with cellular mRNAs for CsrA binding. This 

sequestration of CsrA by CsrB antagonizes its activity in mediating mRNA decay (Liu et al., 
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1997). This could explain the fact that CsrB acts as an activator of biofilm formation (Jackson et 

al., 2002, Weilbacher et al., 2003). The FixJ/NarL‐type transcription factor UvrY is a response 

regulator in the BarA‐UvrY TCS. Activation of this TCS in E. coli leads to an overproduction of 

CsrB (Suzuki et al., 2002). 

 

dctR (5.1‐fold repression in K‐12) 

The FixJ/NarL‐type transcription factor DctR may act as a negative transcriptional regulator of 

dctA encoding a transporter for C4‐dicarboxylates in E. coli (Boogerd et al., 1998). It is 

implicated to play a role in glutamate‐dependent acid resistance and in YdeO‐induced acid 

resistance in E. coli (Masuda & Church, 2003). DctR‐regulated gene products protect E. coli 

against the pH‐dependent toxic effects of lactic, succinic, and formic acids (Mates et al., 2007). 

DctR is encoded within an acid fitness island together with the FixJ/NarL‐type transcription 

factor GadE. The dctR gene is repressed by H‐NS and activated by AdiY (see adiY adiC) as well as 

RcsB/GadE heterodimers (Krin et al., 2010a, Krin et al., 2010b). DctR expression in E. coli is 

elevated following overexpression of EvgA, another FixJ/NarL‐type transcription factor (Masuda 

& Church, 2002). 

The attachment of EHEC to intestinal epithelial cells depends on the presence of the locus of 

enterocyte effacement (LEE) region. This locus includes genes encoding a type 3 secretion 

system and adhesion factors that play principal roles in bacterial adherence to host cells. DctR 

negatively regulates adherence and type 3 secretion in EHEC. It is presumed to serve as a 

negative regulator of LEE‐encoded gene expression at the RNA level (Tatsuno et al., 2003). 

 

dcuB (5.1‐fold repression in K‐12) 

DcuB is an antiporter mediating uptake of C4‐dicarboxylates, e.g. fumarate, L‐malate or 

aspartate, against succinate. C4‐dicarboxylates play an important role in carbon metabolism of 

E. coli (Janausch et al., 2002). L‐Malate and aspartate are converted to fumarate and are then 

metabolized by fumarate respiration. The product succinate is not further catabolized in 

anaerobic growth and excreted by DcuB (Kleefeld et al., 2009). 

Expression of dcuB depends on FNR (fumarate nitrate reductase regulator) which activates 

expression of genes of anaerobic respiration, and on cAMP/CRP (Golby et al., 1998). In addition, 
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dcuB expression requires transcriptional activation by the DcuSR TCS (Zientz et al., 1998, Golby 

et al., 1999). The sensor kinase DcuS is activated by phosphorylation in the presence of C4‐

dicarboxylates. Subsequently the phosphate group is transferred to DcuR. This response 

regulator activates expression of target genes including the fumarate reductase genes 

(frdABCD) and dcuB. Being both, a C4‐dicarboxylate carrier and a cosensor for DcuS, DcuB is a 

bifunctional protein in E. coli with transport as well as regulatory functions (Kleefeld et al., 

2009). 

 

fimB (6.7‐fold repression in CFT073) 

The FimB recombinase is the major type 1 fimbriae (or type 1 pili) inversion protein in E. coli 

that acts as a switch regulating fimbriation. Type 1 fimbriae are the most common fimbrial 

adhesins produced by many UPEC and commensal E. coli isolates. They play a fundamental role 

in adhesion to mucosal surfaces, colonization of the urinary tract, and invasion into bladder 

epithelial cells (Bahrani‐Mougeot et al., 2002, Eto et al., 2007). For instance, the FimH type 1 

fimbrial adhesin of UPEC mediates adhesion to mannose residues on urothelial host cells (Chen 

et al., 2009). 

Expression of type 1 fimbriae in E. coli is under phase‐variable control. The orientation of an 

invertible DNA segment in the chromosome, the fim switch (fimS), determines the state of 

fimbriation. The fimB gene encodes a protein showing homology to members of the integrase 

family of site‐specific recombinases (Dorman & Higgins, 1987). FimB modulates transcription of 

the fimbrial subunit gene fimA by repositioning of fimS harboring the fimA promoter (fimAp). 

FimB binds to inverted repeats flanking the invertible segment thereby switching the system 

from the ON to the OFF phase and back again at equal rates (McClain et al., 1991). 

Expression of fimB is dependent on growth media, temperature, pH as well as salt 

concentration (Gally et al., 1993, Olsen et al., 1998, Schwan et al., 2002). In E. coli, inversion 

requires the presence of at least one of two redundant accessory proteins, Lrp or IHF (Dove & 

Dorman, 1996, Corcoran & Dorman, 2009). The LysR‐type transcription factor LrhA represses 

structural as well as regulatory type 1 fimbrial genes (Blumer et al., 2005, Lehnen et al., 2002). 

Expression of fimB is also repressed by H‐NS in E. coli (O'Gara & Dorman, 2000) and by the 

osmoregulatory response regulator OmpR in UPEC (Schwan et al., 2002). The FixJ/NarL‐type 
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transcription factor RcsB promotes fimbriation in E. coli by affecting the orientation of the 

invertible element through the control of fimB transcription (Schwan et al., 2007). Moreover, 

expression of fimB, similar to the adjacent nanCMS operon, is modulated by NanR (see 

nanCMS). The fimB gene is likewise repressed by NanR, but in this case repression is dependent 

on the presence of sialic acid (El‐Labany et al., 2003, Sohanpal et al., 2004). Constitutive 

expression of type 1 fimbriae by phase‐locked ON variants of E. coli K‐12 and UPEC strain 

CFT073 leads to a decrease in chemotaxis and swimming motility (Lane et al., 2007b). 

 

flhDC (9.8‐fold repression in CFT073) 

The flhDC locus encodes the master regulator of flagellar motility in bacteria. E. coli is a 

peritrichously flagellated bacterium with five to ten asymmetrically distributed flagella 

protruding from its surface (Ping, 2010). Flagella are fundamental motility structures that play 

important roles in bacterial behavior and pathogenesis. For instance, in UPEC they facilitate the 

ascension from the bladder into the kidneys (Schwan, 2008, Lane et al., 2007a). 

In E. coli and S. typhimurium, the genes of the regulon coordinating flagella synthesis are 

divided into three hierarchical subsets: class I (early), class II (middle), and class III (late) 

(Kutsukake et al., 1990). More than 50 genes belong to this vast regulon, most of them being 

organized in operons. Their expression occurs as a transcriptional cascade and is therefore 

temporally regulated (Chilcott & Hughes, 2000). Class I is represented by only two genes 

forming the flhDC operon. The class I promoter is a crucial point at which numerous regulatory 

signals have input on the decision whether to initiate or prevent flagella biosynthesis. Similar to 

the csgD promoter, many global transcriptional regulators have been implicated in positively 

and negatively regulating its expression (Soutourina & Bertin, 2003). For instance, expression of 

flhDC in E. coli and S. typhimurium is sensitive to environmental and cell state sensors like 

cAMP/CRP (Yokota & Gots, 1970, Soutourina et al., 1999). Moreover, the 5’ UTR of flhDC mRNA 

is bound by at least five sRNAs, one of them activating (Thomason et al., 2012) and the other 

four repressing flhDC expression (De Lay & Gottesman, 2012). Despite of their counteractive 

properties, csgD and flhDC mRNAs have partially overlapping sRNA regulator repertoires. Base‐

pairing of the sRNAs OmrA and OmrB to both mRNAs upstream the RBS interferes with 

translational initiation. In contrast, the cAMP/CRP‐controlled sRNA McaS promotes flagella 
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synthesis but suppresses curli synthesis (Chambers & Sauer, 2013, Boehm & Vogel, 2012, Van 

Puyvelde et al., 2013) (see chapter 1.3.4). 

The master regulator of flagellar motility is a heterohexameric protein consisting of four FlhD 

protomers and two zinc‐binding FlhC protomers (Wang et al., 2006). FlhD4C2 is the 

transcriptional activator for class II genes encoding proteins involved in the formation of the 

flagellar hook and basal body. It interacts with the α‐CTD of RNA polymerase thereby activating 

transcription from class II promoters (Liu et al., 1995). In addition, the alternative sigma factor 

FliA (σ28) (Ohnishi et al., 1990) and the anti‐σ28 factor FlgM (Gillen & Hughes, 1991) are class II 

proteins in S. typhimurium. Class I and class II promoters are activated by σ70‐RNA polymerase 

whereas transcription of class III promoters is dependent on σ28‐RNA polymerase (Liu & 

Matsumura, 1995). σ70 is the housekeeping sigma factor of RNA polymerase which mediates 

most transcription events, including those of all essential genes in E. coli. Class III genes encode 

proteins involved in flagellar filament and cap formation as well as chemotaxis proteins 

(Chilcott & Hughes, 2000). The DNA‐binding protein FliZ, encoded in a class II operon together 

with FliA, interferes with RpoS (σ38) activity in E. coli thereby inhibiting curli synthesis 

(Pesavento et al., 2008). In this way expression of the two alternative sigma factors RpoS and 

FliA is reciprocally regulated (Pesavento & Hengge, 2012). 

H‐NS is necessary for the biogenesis as well as motor function of flagella in E. coli (Bertin et al., 

1994). The ycgR gene encoding a c‐di‐GMP‐binding PilZ domain protein belongs to class III of 

the flagellar regulon and is associated with H‐NS‐dependent motility (Ko & Park, 2000b). The 

LysR‐type transcription factor HdfR binds to the flhDC promoter region and negatively regulates 

its transcription. HdfR expression is in turn repressed by H‐NS. Thus, activation of the flhDC 

operon by H‐NS is mediated indirectly through the repression of the negative regulator HdfR 

(Ko & Park, 2000a). Another LysR‐type transcription factor, LrhA, suppresses the flhDC operon 

and thereby flagellar motility as well (Lehnen et al., 2002). Beyond that, LrhA is known to 

repress RpoS stability, type 1 fimbriae synthesis, and biofilm formation (Blumer et al., 2005). 

The DnaK/DnaJ Hsp chaperone system is required for flagella synthesis in E. coli (Shi et al., 

1992) (see cbpAM). The DnaK/DnaJ machinery is involved in activating the FlhD4C2 complex into 

a transcriptional regulator in S. typhimurium (Takaya et al., 2006). The enzyme fumarate 
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reductase (FRD) modulates flagellar motility in E. coli dependent on its substrate fumarate 

(Cohen‐Ben‐Lulu et al., 2008) (see frdABCD). The global regulatory RNA‐binding protein CsrA 

promotes flagellar motility in E. coli by binding to the flhDC transcript thereby enhancing its 

stability (Wei et al., 2001, Yakhnin et al., 2013) (see csrB). The FixJ/NarL‐type transcription 

factor MatA, the activator of mat fimbriae expression, represses flhDC transcription in E. coli 

thereby promoting bacterial adhesion (Lehti et al., 2012a). In Addition, flhDC expression may be 

modulated by IHF (Shin & Park, 1995). Flagella expression in E. coli is negatively regulated by 

the osmoregulatory response regulator OmpR. This repression is mediated by a direct 

interaction of phosphorylated OmpR with the flhDC promoter (Shin & Park, 1995). Moreover, 

the RcsCDB TCS negatively regulates expression of the flhDC operon in E. coli by binding of the 

RcsB/RcsA heterodimer to its promoter (Francez‐Charlot et al., 2003). 

 

frdABCD (5.9‐fold repression in CFT073) 

In E. coli, the fumarate reductase enzyme complex (FRD) catalyzes the reduction of fumarate to 

succinate in the final step of anaerobic respiration. The C4‐dicarboxylate fumarate therefore 

represents the terminal electron acceptor for oxidative phosphorylation. Fumarate respiration 

results in the generation of a proton potential and drives ATP synthesis and growth of bacteria 

(Kleefeld et al., 2009). 

FRD of E. coli is a membrane‐bound complex composed of four polypeptides. FrdA and FrdB 

provide the catalytic component whereas FrdC and FrdD account for the membrane anchor 

(Cecchini et al., 2002). The frd genes comprise an operon and FNR activates its transcription in 

response to anaerobiosis. The frdABCD operon is coordinately regulated by the presence of 

alternate electron acceptors since its transcription is affected by oxygen, nitrate, and fumarate 

(Jones & Gunsalus, 1985, Jones & Gunsalus, 1987). Expression of the frd genes in E. coli is also 

controlled by the DcuSR TCS (Zientz et al., 1998) (see dcuB). 

Fumarate modulates flagellar motility in E. coli by altering the direction of flagellar rotation 

(Prasad et al., 1998, Montrone et al., 1998). The structural element responsible for this action is 

the switch of the flagellar motor. The effects of fumarate on motility are transmitted via a 

reversible interaction between FRD and the flagellar switch in E. coli (see flhDC). FRD, an 
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enzyme known to be active primarily under anaerobic conditions therefore has important 

functions under aerobic conditions as well (Cohen‐Ben‐Lulu et al., 2008). 

 

fruBKA (7.3‐fold activation in K‐12) 

The permease FruAB is part of the fructose‐specific phosphotransferase system (PTS). FruAB is 

located in the inner membrane of the bacterial cell wall where it mediates uptake of fructose 

(Postma et al., 1993). The fruK gene encodes 1‐phosphofructokinase, an enzyme that is 

essential for the utilization of fructose as carbon source. During transport, fructose is 

phosphorylated by the PTS in a phosphoenolpyruvate (PEP)‐dependent reaction to fructose‐1‐

phosphate. 1‐Phosphofructokinase catalyzes the ATP‐dependent phosphorylation of fructose‐1‐

phosphate to fructose‐1,6‐bisphosphate, a central metabolite during glycolysis in most bacterial 

cells (Buschmeier et al., 1985). The fruBKA operon is repressed by Cra (Ramseier et al., 1993) 

and activated by the cAMP/CRP complex (Shimada et al., 2011b). 

 

gfc (53.1‐fold repression in K‐12) 

The gfc locus is required for polysaccharide secretion and assembly of the bacterial capsule. 

Capsules are protective surface‐enveloping structures that represent virulence factors in 

bacteria. The gfc locus is absent from the genome of UPEC strain CFT073. E. coli K‐12 contains 

an intact gfc locus but does not express it because of the presence of an IS1 insertion element 

in its promoter region (Peleg et al., 2005, Shifrin et al., 2008). 

E. coli produces two serotype‐specific surface polysaccharides: the LPS O antigen and the 

capsular polysaccharide K antigen. Polysaccharide capsules of E. coli are classified into four 

groups (Whitfield & Roberts, 1999, Whitfield, 2006). The gfcABCDE-etp-etk operon mediates 

assembly of the group 4 capsule. E. coli contains paralogs of the gfcABCD genes called yjbEFGH 

(Sathiyamoorthy et al., 2011). Overexpression of yjbEFGH altered colony morphology and led to 

increased production of exopolysaccharide. The expression of this operon is controlled by 

RcsB/RcsA heterodimers (Ferrières et al., 2007). Moreover, yjbEFGH is induced by osmotic 

stress and suppressed by RpoS (Ionescu & Belkin, 2009). 
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iap (5.8‐fold repression in K‐12) 

iap encodes a proteolytic enzyme with aminopeptidase activity catalyzing the conversion of 

alkaline phosphatase isozyme 1 into isozymes 2 and finally 3 in E. coli (Ishino et al., 1987, 

Nakata et al., 1978). Alkaline phosphatase is an example for an enzyme whose catalytic activity 

is dependent on a zinc cofactor. It mediates cleavage of a phosphomonoester in the presence 

of H2O to alcohol and inorganic phosphate. 

 

kpsMT (6.4‐fold repression in CFT073) 

The kpsMT operon is involved in capsule synthesis in E. coli. Together the KpsM and KpsT 

proteins constitute an ABC‐transporter catalyzing the export of group 2 capsular 

polysaccharides (Reizer et al., 1992). 

The kps gene cluster in E. coli comprises three functional regions (Boulnois et al., 1987). The 

whole cluster is absent in K‐12 laboratory strains and commensal isolates, but UPEC strains 

CFT073 and 536 express all regions (Buckles et al., 2009). Region three accommodates the 

kpsMT operon which encodes two proteins for the energy‐dependent translocation of capsular 

polysaccharides to the cell surface (Kröncke et al., 1990). It is best studied in the E. coli 

serotypes K1 and K5 which therefore represent model systems for group 2 capsule synthesis 

(Whitfield, 2006). KpsM is an integral membrane protein and functions as a carrier mediating 

transport of polysaccharides across the inner membrane. KpsT is a peripheral inner membrane 

protein that harbors conserved ATP binding fold sequences. KpsT couples ATP hydrolysis to the 

early stages of the transport process (Smith et al., 1990, Pavelka et al., 1991). KpsMT may 

recognize the nascent polysaccharide and coordinate synthesis with translocation (Bliss & 

Silver, 1996). 

 

mdtJI (31.1‐fold repression in K‐12, 13.7‐fold repression in CFT073) 

The MdtJI complex belongs to the small multidrug resistance (SMR) family of exporters. In 

prokaryotes spermidine is one of the prevailing polyamines (Igarashi & Kashiwagi, 2010). MdtJI 

catalyzes the excretion of excess spermidine in E. coli thereby enhancing cell viability (Higashi et 

al., 2008). 
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Polyamines are essential for normal cell growth in prokaryotes and eukaryotes. In both 

organisms, cellular polyamine levels rise concomitantly with the proliferation rate (Igarashi & 

Kashiwagi, 2010). Polyamines interact with acidic substances like nucleic acids. In E. coli, about 

90% of the spermidine content is associated with RNA (Miyamoto et al., 1993). Spermidine 

itself increases the level of mdtJI mRNA. In this way this polyamine contributes to the relief 

from toxicity by its own overaccumulation (Higashi et al., 2008). Polyamines promote protein 

synthesis in several ways. In E. coli, they increase the synthesis of e.g. the nucleoid‐associated 

protein and global repressor H‐NS, adenylate cyclase, the global transcriptional regulator Cra, 

and the general stress sigma factor RpoS at the level of translation (Yoshida et al., 2004, 

Igarashi & Kashiwagi, 2006, Terui et al., 2007). Since these four proteins are directly involved in 

transcription events, the synthesis of many mRNAs is regulated indirectly by polyamines. 

 

nanCMS (11.5‐fold repression in K‐12) 

The Nan system is involved in N‐acetylneuraminic acid (Neu5Ac) metabolism in E. coli. The nanC 

gene encodes an outer membrane porin responsible for Neu5Ac uptake (Giri et al., 2012). The 

nanM gene encodes an epimerase for conversion of Neu5Ac isomers (Severi et al., 2008). The 

nanS gene encodes an esterase catalyzing deacetylation of Neu5Ac (Rangarajan et al., 2011). 

Neu5Ac is the most common sialic acid, a structurally complex group of nine‐carbon 

monosaccharides with unique physiochemical properties (Vimr et al., 2004). Expression of sialic 

acid catabolic operons in E. coli is repressed by NanR in the absence of the inducer sialic acid 

(Kalivoda et al., 2003). Furthermore, nanCMS expression may depend on cAMP/CRP 

(Condemine et al., 2005). Polymers of sialic acid are primary constituents of capsules thereby 

constituting virulence factors of certain pathogenic bacteria. Sialic acid catabolism regulated by 

NanR plays an important role for biofilm formation of UPEC as the capsule is a key element of 

the IBC matrix (Anderson et al., 2010). 

Sialic acids cap the terminal positions of glycan chains on mammalian cell surface proteins and 

lipids generating glycoconjugates with biologically diverse features. Bacteria obtain sialic acids 

either by de novo biosynthesis or by acquisition from the environment, i.e. by scavenging 

directly from the host. Many bacterial pathogens decorate their surfaces with sialic acid to 

interact specifically with different host tissues. Incorporation of sialic acid into the bacterial cell 
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wall further allows pathogens to disguise themselves as host thereby circumventing the 

immune response (Severi et al., 2007, Vimr, 2013). 

When the general porins OmpC and OmpF are absent (see ompC), the NanC channel is the only 

entry route for Neu5Ac into bacterial cells. Expression of nanC is activated by the EnvZ‐OmpR 

and the CpxAR TCSs (Condemine et al., 2005). In E. coli, nanC expression and expression of the 

adjacent divergently transcribed fimB gene is coordinately controlled by shared regulatory 

elements. This intricate regulation may be the reason for the exceptional length of the nanC-

fimB intergenic region (Sohanpal et al., 2007, Condemine et al., 2005). 

 

ompC (36.6‐fold repression in K‐12, 17.2‐fold repression in CFT073) 

OmpC is one of the major outer membrane porins in bacteria. In E. coli, OmpC forms a 

transmembrane β‐barrel that assembles as homotrimer or heterotrimer with its paralog OmpF. 

These aqueous channels allow passive diffusion of hydrophilic molecules including nutrients 

across the outer membrane (Nikaido, 1994, Nikaido, 2003). 

Due to its small pore size, OmpC may restrict the influx of toxins and antibiotics (Delcour, 2009, 

Pages et al., 2008). Although known to be involved in rather nonspecific uptake processes, 

OmpC has been implicated in protein export (Prehna et al., 2012). Moreover, OmpC plays a role 

in arginine‐ and lysine‐dependent acid resistance (Bekhit et al., 2011). Polyamines can inhibit 

porin function thereby decreasing outer membrane permeability. This mechanism may protect 

bacteria from acid stress (Iyer & Delcour, 1997, Yohannes et al., 2005). 

Expression of OmpC and OmpF in E. coli is reciprocally regulated by medium osmolarity. For 

that reason these proteins are referred to as osmoporins. The response regulator OmpR is able 

to bind to the promoter regions of both osmoporin genes. At high medium osmolarity, 

phosphorylated OmpR represses ompF expression but activates ompC expression (Yoshida et 

al., 2006, Lan & Igo, 1998). Activation of the CpxAR TCS likewise results in a decrease in ompF 

expression and an increase in ompC expression (Batchelor et al., 2005). Thus, a complex 

interplay of the EnvZ‐OmpR TCS and the CpxAR TCS occurs on the ompC promoter, similar to 

the one found on the csgD promoter (see chapter 1.3.1). 

The integration host factor (IHF) represses ompC expression in two ways, indirectly by 

influencing the expression of OmpR and directly by binding to the ompC regulatory region 
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thereby inhibiting transcription (Huang et al., 1990). Moreover, the leucine‐responsive 

regulatory protein (Lrp) (Ferrario et al., 1995), the sRNA MicC (Chen et al., 2004), and H‐NS 

(Pratt et al., 1996) repress ompC transcription. 

 

panD (11.4‐fold repression in K‐12, 10.4‐fold repression in CFT073) 

The panD gene encodes L‐Aspartate‐α‐decarboxylase in E. coli. The native enzyme catalyzes the 

cleavage of aspartate to β‐alanine and CO2 (Williamson & Brown, 1979, Cronan, 1980). β‐

Alanine is required for the generation of an essential precursor for Coenzyme A and acyl‐carrier 

protein biosynthesis (Ramjee et al., 1997, Kennedy & Kealey, 2004). In E. coli, PanD is activated 

by the putative N‐acetyltransferase PanZ (Nozaki et al., 2012). 

 

rcnB (5.0‐fold repression in K‐12, 5.2‐fold repression in CFT073) 

The periplasmic protein RcnB is involved in cobalt and nickel resistance in bacteria. Cobalt and 

nickel are essential trace elements in prokaryotes and eukaryotes because they serve as 

cofactors of several enzymes (Kobayashi & Shimizu, 1999, Kaluarachchi et al., 2010). 

In E. coli, expression of RcnB is activated by cobalt and nickel and is negatively regulated by the 

metalloregulator RcnR. Cobalt and nickel are toxic in excess causing growth arrest and cell 

death. The only identified mechanism of resistance to these substances in E. coli is executed by 

the RcnA efflux pump (Rodrigue et al., 2005). RcnB is coexpressed with RcnA. Since RcnB does 

not bind cobalt or nickel directly, its role is most likely to modulate the efflux of nickel mediated 

by RcnA. In this way RcnB is critical for maintaining a proper cobalt and nickel homeostasis in 

E. coli (Blériot et al., 2011). Nickel was reported to promote biofilm formation in E. coli K‐12 as 

subinhibitory concentrations of nickel activate the expression of the csg genes encoding curli 

(Perrin et al., 2009). 

 

spy (6.0‐fold activation in CFT073) 

The spheroplast protein Y (Spy) is a homodimeric chaperone that acts independently of energy 

cofactors such as ATP (Quan et al., 2011). Moreover, Spy is a potent inhibitor of curli formation 

in E. coli (Evans et al., 2011). It was identified as a periplasmic protein whose expression is 

induced by spheroplast formation in E. coli (Hagenmaier et al., 1997). Expression of spy is 

stimulated by copper (Yamamoto & Ishihama, 2005) and zinc (Yamamoto et al., 2008) mediated 
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by the TCSs CpxAR (Raivio et al., 2000) and BaeSR (Raffa & Raivio, 2002), respectively. 

Furthermore, Spy is a putative member of the RcsCDB TCS (Hagiwara et al., 2003). During the 

periplasmic passage of the curli subunit protein CsgA, Spy prevents premature intracellular 

polymerization of amyloid fibers by maintaining CsgA in a soluble form. Overexpression of Spy 

decreases curli formation which is reflected in reduced Congo Red binding (Evans et al., 2011). 

 

ucpA (22.0‐fold repression in K‐12, 8.7‐fold repression in CFT073) 

UcpA (“upstream of cysP”) is a putative oxidoreductase that is involved in furan resistance in 

E. coli (Wang et al., 2012). It shows significant sequence homology with members of the short‐

chain dehydrogenases/reductases (SDR) family (Sirko et al., 1997). 

Furans such as furfural inhibit growth of biocatalysts like ethanologenic E. coli. Furan addition 

to E. coli fermentations results in an initial period of slow growth during which furans are 

reduced to less toxic alcohols. NADH is abundant during fermentation as electron donor (Wang 

et al., 2012). In an effort to identify additional NADH‐dependent furfural reductases in 

ethanologenic E. coli, ucpA was found to be induced in the presence of furfural. Expression of 

ucpA confers furan tolerance although it does not directly metabolize furfural using NADH 

(Wang et al., 2012). The potential binding sites for three global regulatory proteins were 

identified in the ucpA promoter region. CRP and Cra are required for full activation of ucpA 

transcription while IHF negatively affects the expression of ucpA (Sirko et al., 1997). 

 

uspF (6.4‐fold repression in K‐12, 10.6‐fold repression in CFT073) 

The universal stress protein UspF is an ATP‐binding protein in E. coli (Saveanu et al., 2002). 

Expression of UspF is increased under carbon‐limited conditions (Raman et al., 2005). It confers 

slight resistance against oxidative stress and streptonigrin, an antibiotic whose toxicity is 

dependent on intracellular iron concentrations. Deletion of uspF results in reduced fimbriae‐

dependent adhesion and enhanced motility (Nachin et al., 2005). This effect of UspF on 

fimbriation may result from different dimerization states of the protein (Nachin et al., 2008). 

 

yfiRNB (23.4‐fold repression in K‐12, 7.8‐fold repression in CFT073) 

The conserved Yfi system represents a signaling module that regulates c‐di‐GMP levels of 

bacteria in response to so far unknown environmental signals. YfiN is an active membrane‐
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integral DGC whose activity is repressed by YfiR, a periplasmic protein, and stimulated by the 

outer‐membrane lipoprotein YfiB (Malone et al., 2010, Malone et al., 2012). 

The gram‐negative pathogen Pseudomonas aeruginosa is responsible for chronic airway 

infections occurring in cystic fibrosis. During long‐term lung colonization, P. aeruginosa adapts 

by the formation of slow‐growing persistent isolates termed small colony variants (SCVs). SCVs 

are strongly linked to c‐di‐GMP and are characterized by e.g. enhanced exopolysaccharide 

production (Malone et al., 2010, Malone et al., 2012). The yfiRNB locus was found to be related 

to the SCV morphotype in P. aeruginosa. The primary targets of c‐di‐GMP produced by YfiN are 

two exopolysaccharide systems. Up‐regulation of these systems confers resistance against 

phagocytosis. The Yfi system constitutes an important regulatory system involved in 

P. aeruginosa biofilm formation and in vivo persistence (Malone et al., 2010). The mechanism 

of action of this system is a subject of current research (Malone et al., 2012). Moreover, the Yfi 

system decreases early biofilm formation and motility in E. coli (Sanchez‐Torres et al., 2011) and 

functions as positive regulator of biofilm formation and type 3 fimbriae expression in 

Klebsiella pneumoniae (Wilksch et al., 2011). 

 

zinT (7.6‐fold activation in K‐12) 

ZinT is a zinc‐ and cadmium‐binding protein involved in maintaining metal homeostasis. 

Expression of zinT is induced during zinc shortage. ZinT possesses a high affinity binding site 

that can accommodate preferentially Zn2+ or alternatively Cd2+ (Graham et al., 2009). The 

metalloregulatory transcription factor Zur is a repressor of zinT transcription. ZinT contributes 

to the ZnuA‐mediated recruitment of zinc but is subordinated to ZnuA (see zur). Unbound ZinT 

can be secreted to the extracellular space where it might sequester environmental zinc 

(Gabbianelli et al., 2011). Mutation of zinT leads to the suppression of biofilm formation as zinc 

deficiency inhibits curli expression in EHEC. Furthermore, zinT mutants become elongated and 

assume a filamentous form. Therefore, ZinT is required for curli‐mediated attachment of EHEC 

to host cells and for maintaining the normal shape of EHEC cells under zinc‐depleted conditions 

(Lim et al., 2011). 
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zur (5.9‐fold repression in K‐12) 

The metalloregulatory transcription factor Zur controls zinc uptake in E. coli. Zinc is 

indispensable for all living cells because it serves as a structural or catalytic cofactor in a large 

number of proteins such as RNA polymerase (King et al., 2004), ribosomal proteins (Hensley et 

al., 2011), chaperone proteins (Kim et al., 2001), and zinc finger proteins (Wagner et al., 2011). 

Putative zinc‐binding proteins account or about 5% of the total proteome in E. coli (Andreini et 

al., 2006). 

The ATP‐binding cassette (ABC)‐transporter ZnuABC constitutes a high‐affinity transport system 

for Zn2+. Zur dimers repress the znu gene cluster by direct binding to the znu operator thereby 

leading to a cessation of Zn2+ import. Zur occupies its binding site only in the presence of zinc or 

other divalent metal cations like cobalt. When E. coli suffers from zinc deprivation, derepression 

of the ZnuABC uptake system induces zinc acquisition (Patzer & Hantke, 1998, Patzer & Hantke, 

2000). ZnuABC affects virulence‐associated phenotypes of UPEC strain CFT073 such as biofilm 

formation and swimming motility (Gunasekera et al., 2009) and it imparts a competitive 

advantage during UTI in the murine model (Sabri et al., 2009). 
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Abbreviations 

ABC‐transporter ATP‐binding cassette‐transporter 

APEC avian pathogenic E. coli 

ATP adenosine triphosphate 

BACTH bacterial adenylate cyclase two‐hybrid system 

bdar brown, dry and rough (morphotype) 

cAMP 3',5'‐cyclic adenosine monophosphate 

c‐di‐GMP 3',5'‐cyclic dimeric guanosine monophosphate 

CRP cAMP receptor protein 

DGC diguanylate cyclase 

DMSO dimethylsulfoxide 

ECM extracellular matrix 

eDNA extracellular desoxyribonucleic acid 

EDTA ethylenediaminetetraacetic acid 

EHEC enterohaemorrhagic E. coli 

EPEC enteropathogenic E. coli 

ExPEC extraintestinal pathogenic E. coli 

FBS fetal bovine serum 

FRT (site) Flp recombinase target site 

GFP green fluorescent protein 

GPA gentamicin protection assay 

HR homology region 

HTH helix‐turn‐helix 

IBC intracellular bacterial community 

IM inner membrane of the bacterial cell wall 

IPTG isopropyl‐β‐D‐thiogalactopyranoside 

LEE locus of enterocyte effacement 

LPS lipopolysaccharide 

MOI multiplicity of infection 

MU Miller unit 

Neu5Ac N‐acetylneuraminic acid (sialic acid) 

nm nanometer 

NMEC neonatal meningitis‐causing E. coli 

nSD native Shine‐Dalgarno sequence 

nt nucleotide 
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OD optical density 

OM outer membrane of the bacterial cell wall 

ONPG 2‐nitrophenyl β‐D‐galactopyranoside 

PBS phosphate‐buffered saline 

PCR polymerase chain reaction 

pdar pink, dry and rough (morphotype) 

PDE phosphodiesterase 

PFU plaque forming unit 

PGA poly‐β‐1,6‐N‐acetyl‐D‐glucosamine 

RBS ribosome binding site 

rdar red, dry and rough (morphotype) 

saw smooth and white (morphotype) 

spp. species pluralis 

sRNA small regulatory ribonucleic acid 

TCS two‐component system 

UPEC uropathogenic E. coli 

UTI urinary tract infection 

UTR untranslated region 

WT wild‐type 

X‐gal 5‐brom‐4‐chlor‐3‐indoxyl‐β‐D‐galactopyranoside 

εSD epsilon Shine‐Dalgarno sequence 
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