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Abstract. In this article, di↵erent nonlinear domain decomposition methods are applied to non-
linear problems with highly-heterogeneous coe�cient functions with jumps. In order to obtain a
robust solver with respect to nonlinear as well as linear convergence, adaptive coarse spaces are em-
ployed. First, as an example for a nonlinearly left-preconditioned domain decomposition method, the
two-level restricted nonlinear Schwarz method H1-RASPEN (Hybrid Restricted Additive Schwarz
Preconditioned Exact Newton) is combined with an adaptive generalized Dryja–Smith–Widlund
(GDSW) coarse space. Second, as an example for a nonlinearly right-preconditioned domain decom-
position method, a nonlinear FETI-DP (Finite Element Tearing and Interconnecting - Dual Primal)
method is equipped with an edge-based adaptive coarse space. Both approaches are compared with
the respective nonlinear domain decomposition methods with classical coarse spaces as well as with
the respective Newton-Krylov methods with adaptive coarse spaces. For some two-dimensional p-
Laplace model problems with di↵erent spatial coe�cient distributions, it can be observed that the
best linear and nonlinear convergence can only be obtained when combining the nonlinear domain
decomposition methods with adaptive coarse spaces.

Key words. Nonlinear Domain Decomposition Methods, ASPIN, RASPEN, Nonlinear Schwarz
Methods, FETI-DP, Nonlinear FETI-DP, Adaptive Coarse Spaces, AGDSW

AMS subject classifications.

1. Introduction. Nonlinear domain decomposition methods (DDMs) can be
used to improve the nonlinear convergence of Newton’s method applied to a discrete
nonlinear problem

(1.1) F (u) = 0.

Here, u 2 V , V is some finite element space defined on a domain ⌦ ⇢ Rd, d = 2, 3,
and F : V ! R is a given nonlinear function. For simplicity, we restrict ourselves
to scalar problems but the results directly generalize to vector-valued problems. In
general, nonlinear DDMs can be classified into nonlinearly left-preconditioned and
nonlinearly right-preconditioned Newton methods. The latter usually improve the
nonlinear convergence by a nonlinear elimination of certain degrees of freedom, while
nonlinearly left-preconditioned methods, such as ASPIN (Additive Schwarz Precon-
ditioned Inexact Newton) [1, 30] or RASPEN (Restricted Additive Schwarz Precon-
ditioned Exact Newton) [2] methods, are based on a reformulation of the original
nonlinear problem. Let us note that nonlinear FETI [31] (Finite Element Tearing and
Interconnecting) and FETI-DP (FETI - Dual Primal) methods [19, 21] include both,
first, a replacement of the original problem by an equivalent nonlinear saddle point
problem and, subsequently, a nonlinear elimination process. Nevertheless, they are
counted as right-preconditioned methods since only the elimination process improves
the nonlinear convergence significantly. For the discussions in this article on the ef-
fect of adaptive coarse spaces on nonlinear DDMs, we consider examples from both

∗Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands,
a.heinlein@tudelft.nl

†Department of Mathematics and Computer Science, University of Cologne, Weyertal 86-
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classes. The nonlinear hybrid two-level Schwarz approach H1-RASPEN [13] represents
the class of nonlinearly left-preconditioned approaches and Nonlinear-FETI-DP-2 [19]
represents the class of nonlinearly left-preconditioned approaches.

In nonlinear Schwarz methods, the original nonlinear problem (1.1) is replaced
by a modified nonlinear problem

(1.2) G(F (u)) =: F(u) = 0.

The modified nonlinear function F is constructed based on a domain decomposition
approach, and the nonlinear right-preconditioner G is typically only given implicitly.

In contrast, in nonlinear FETI-DP methods, the original nonlinear problem (1.1)
is first replaced by an equivalent saddle point problem A before a nonlinear right-
preconditioner M is applied, which is based on a nonlinear elimination. Hence, we
replace (1.1) by

(1.3) A (M (ũ,�)) = 0,

and the solution u⇤ of the original problem (1.1) can be easily computed from
M (ũ⇤,�⇤), where (ũ⇤,�⇤) is the solution of (1.3).

In this paper, we focus on highly heterogeneous nonlinear problems where the
nonlinear function F depends on coe�cients or material parameters with large jumps.
Typically, these heterogeneities badly influence both the linear and the nonlinear
convergence. In order to retain robustness of linear domain decomposition methods,
adaptive coarse spaces, for example, [16, 29, 8, 7, 3, 34, 5], can be employed. In
these approaches, the coarse space is enriched by coarse basis functions or constraints
which are constructed from certain local eigenfunctions. However, linear domain
decomposition methods cannot improve the nonlinear convergence in a Newton-Krylov
type iteration, which may still be deteriorated due to the heterogeneities.

Here, we will combine the aforementioned nonlinear domain decomposition meth-
ods with corresponding adaptive coarse spaces. First, we employ the two-level RAS-
PEN approach introduced in [14, 13] to incorporate adaptive GDSW (Generalized
Dryja–Smith–Widlund) coarse spaces [9, 7] into the RASPEN method in a multi-
plicative way. In our numerical experiments, we compare this new approach with a
Newton-Krylov approach, where the linearized system is preconditioned by a linear
two-level Schwarz method with the same adaptive GDSW (AGDSW) coarse space.
We also consider two-level RASPEN methods with two di↵erent multiscale finite el-
ement method (MsFEM) [15] type coarse spaces, as introduced in [8, 14, 13]. Fur-
thermore, we will discuss how the adaptive coarse space for FETI-DP and BDDC
(Balancing Domain Decomposition by Constraints) methods first introduced in [29]
can be implemented into the Nonlinear-FETI-DP-2 approach using a transformation
of basis. In our experiments, we compare this approach with a Newton-Krylov-FETI-
DP approach exploiting the same coarse space. Additionally, classical coarse spaces
are considered for comparison. For di↵erent p-Laplacian model problems with highly
heterogeneous coe�cient functions, our numerical results indicate that only the com-
bination of nonlinear DDMs with adaptive coarse spaces yields both robust linear
and robust nonlinear convergence. This observation can be made for both classes,
i.e., nonlinear left- as well as right-preconditioners.

The remainder of this paper is organized as follows: In section 2, we introduce the
H1-RASPEN and Nonlinear-FETI-DP-2 nonlinear DDMs, which form the basis of the
nonlinear adaptive DDMs under consideration. Whereas it is straightforward by con-
struction to exchange the coarse space in H1-RASPEN, we will dedicate subsection 2.3
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to the implementation of arbitrary coarse spaces in nonlinear FETI-DP. Next, in sec-
tion 3, we introduce the AGDSW and the adaptive FETI-PD coarse spaces, which
facilitate robust convergence for highly heterogeneous model problems. We describe
the highly heterogeneous model problems employed in our numerical experiments and
present the respective numerical results in section 4. Finally, we end with a conclusion
in section 5.

2. Nonlinear Domain Decomposition Methods. In order to construct ro-
bust nonlinear domain decomposition methods, we will consider two successful non-
linear left and right domain decomposition preconditioners, that is, H1-RASPEN and
Nonlinear-FETI-DP-2. In section 3, we will then introduce corresponding adaptive
coarse spaces to be used within the nonlinear DDMs. Let us note that our goal is
to demonstrate the general strength of the approach of combining nonlinear DDMs
with adaptive coarse spaces, without attempting to directly compare the two di↵erent
DDMs.

2.1. A hybrid two-level RASPEN method based on a Galerkin prod-
uct. In [13], several two-level RASPEN or ASPIN approaches based on a Galerkin
product have been introduced. In this paper, we will focus on one of those methods,
the H1-RASPEN method, which will be briefly described in this section. To obtain
the H1-RASPEN method, the RASPEN algorithm [2] is enhanced with a multiplica-
tively coupled nonlinear coarse correction. RASPEN itself is a restricted variant of
the ASPEN method, which corresponds to the well-known ASPIN method [1] but uses
exact derivatives, i.e, exact Jacobian matrices. Let us remark that there are several
competing approaches to implement a nonlinear second level in RASPEN type meth-
ods. In [30], an additive coarse space is suggested for ASPIN, and a multiplicative
coarse space using an FAS (full approximation scheme) approach is introduced in [2].

As already mentioned in section 1, all RASPEN type methods are based on a
reformulation of (1.1) using a domain decomposition of the underlying nonlinear PDE.
Specifically, for H1-RASPEN, we define the nonlinear problem

(2.1) G(F (u)) =: Fh,1(u) = 0,

where the nonlinear left-preconditioner G is given implicitly; cf. (1.2). For the def-
inition of Fh,1, we consider a decomposition of ⌦ into nonoverlapping subdomains
⌦i, i = 1, ..., N, and, by adding layers of finite elements, we obtain overlapping sub-
domains ⌦0

i, i = 1, ..., N . We denote the local finite element spaces associated with
the overlapping subdomains by Vi, i = 1, ..., N . With standard restriction operators
Ri : V ! Vi and corresponding prolongation operators Pi := RT

i , we can define
nonlinear local corrections Ti(u) on the overlapping subdomains ⌦0

i by

(2.2) RiF (u� PiTi(u)) = 0, i = 1, ..., N.

Analogously, we can define a nonlinear coarse correction

(2.3) �TF (u� �T0(u)) = 0,

where �T : V ! V0 is the restriction operator to the coarse space V0. For specific
examples of choices for �, we refer to [13], and, for the adaptive GDSW coarse space
used in this article, to subsection 3.1. Note that this approach allows for using various
coarse spaces using a Galerkin product approach; in particular, coarse spaces for
linear Schwarz methods can easily be employed. We will make use of this property to
implement the use of an adaptive coarse spaces.



4 A. HEINLEIN, A. KLAWONN, AND M. LANSER

Using restricted prolongation operators ePi, i = 1, ..., N , which satisfy the usual
partition of unity condition

NX

i=1

ePiRi = I,

we can define the nonlinear reformulation

(2.4) Fh,1(u) :=
NX

i=1

ePiTi(u� �T0(u)) + �T0(u)

of the original nonlinear problem (1.1). Let us remark that (2.4) and (1.1) have the
same solution; see [1, 2].

In the H1-RASPEN method, (2.4) is solved using Newton’s method, i.e., using
the iteration

(2.5) u(k+1) = u(k) �
⇣
DFh,1(u

(k))
⌘�1

Fh,1

⇣
u(k)

⌘
,

with the exact Jacobian

(2.6) DFh,1(u
(k)) = I �

 
I �

NX

i=1

Qi(v
(k)
i )

!⇣
I �Q0(u

(k)
0 )
⌘
.

Here, for a compact notation, we have used the nonlinear Schwarz operators

Qi(u) := Pi (Ri DF (u)Pi)
�1 Ri DF (u), i = 1, ..., N,

and

Q0(u) := �
�
�T DF (u)�

��1
�T DF (u)

introduced in [13]. The di↵erent linearization points are u(k)
0 := u(k) � �T0(u(k))

and v(k)i := u(k)
0 � PiTi(u

(k)
0 ) for i = 1, ..., N . Note that DFh,1(u(k)) is generally

nonsymmetric, such that we will solve (2.5) using the GMRES (generalized minimal
residual) method [33]. For more details on the derivation of DFh,1 or an inexact
version, we again refer to [13]. Let us note that (2.6) has the structure of the Jacobian
of (1.1) preconditioned by a linear hybrid two-level restricted Schwarz preconditioner.
Therefore, using an appropriate coarse space, the condition number of (2.6) is usually
su�ciently small, and a Krylov method can directly be applied to the linearized
system. More precisely, no additional linear preconditioner is necessary.

Let us remark that, in each Newton iteration of the H1-RASPEN method, the
nonlinear coarse problem (2.3) has to be solved for the global coarse correction T0(u(k))
first, and afterwards, all the local nonlinear problems (2.2) have to be solved for the

local corrections Ti(u
(k)
0 ), i = 1, ..., N . This can again be done using Newton’s method

and, for the local problems, completely in parallel. We distinguish between outer
iterations, i.e., global Newton iterations as in (2.5), and inner iterations. The latter
ones split up into local Newton iterations on the subdomain problems to compute the

local nonlinear corrections Ti(u
(k)
0 ) and coarse iterations, i.e., global Newton iterations

on the coarse problem to compute the correction T0(u(k)).
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2.2. Nonlinear FETI-DP. In this section, we provide a brief overview of non-
linear FETI-DP methods and the special case of Nonlinear-FETI-DP-2, which we
consider in our numerical experiments. For more details, see [19, 20, 21]. Here, we
consider nonoverlapping subdomains ⌦i, i = 1, ..., N and corresponding local finite
element spaces Wi, i = 1, ..., N . To derive the aforementioned nonlinear saddle point
system, we first introduce local nonlinear problems on the subdomains

Ki(ui)� fi = 0, i = 1, ..., N,

which are obtained by a finite element discretization, assuming zero Neumann type
boundary conditions on the interface

(2.7) � =
[

i 6=j

(@⌦i \ @⌦j) \ @⌦D.

Here, we denote by @⌦D ✓ @⌦ the part of the boundary where Dirichlet type boundary
conditions are given. Let us remark that we have the identity

F (u) = R
T
K(Ru)�R

T
f,

where W = W1 ⇥ · · · ⇥ WN , Ri : V ! Wi, R =
⇣
R

T
1 , ..., R

T
N

⌘T
, f =

�
fT
1 , ..., fT

N

�T
,

and K(Ru) =
�
K1(R1u)T , ...,KN (RNu)T

�T
. In FETI-DP, the the set of interface

variables is partitioned into dual variables (index set �) and primal variables (index
set ⇧). The primal variables or primal constraints can be subdomain vertices as well
as (weighted) edge or face averages and can be interpreted as the coarse constraints of
FETI-DP. For completeness, the degrees of freedom belonging to nodes in the interior
of the subdomains are collected in the index set I. We now define the space eV of
functions, which are assembled and therefore continuous in all primal variables, but
not on the remaining interface. With the restriction Ř : W ! eV , ũ 2 eV , and the
jump matrix B : W ! range(B), which computes the jump across the interface of
functions from W (see [26, 35] for a detailed definition), we can define

eK(ũ) := ŘTK(Řũ), f̃ := ŘT f.

Introducing Lagrangian multipliers �, we obtain the nonlinear saddle point system

A(ũ,�) :=

✓ eK(ũ) + ŘTBT�� f̃
BŘũ

◆
.

The familiy of nonlinear FETI-DP methods is then defined as solving

A(M(ũ,�)) = 0

with Newton’s method, where M is a nonlinear right-preconditioner; see [21], where
this general framework has been introduced. Let us note that this constitutes the
outer Newton loop of nonlinear FETI-DP. The preconditioner M is usually linear in
�, i.e., M(ũ,�) = (Mũ (ũ,�) , �). In general, Mũ is implicitly defined by a nonlinear
elimination of a subset of variables of ũ and several choices are discussed in [21];
see also [22] for an extension to an adaptively chosen elimination strategy. Here, we
only consider the special case of Nonlinear-FETI-DP-2. In this case, ũ is eliminated
completely and Mũ is defined by

(2.8) eK (Mũ (ũ,�)) + ŘTBT�� f̃ = 0.
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Consequently, in the k-th outer Newton iteration with the iterate (ũ(k),�(k)), equation
(2.8) has to be solved for Mũ

�
ũ(k),�(k)

�
, using again Newton’s method. We refer to

this Newton iteration as the inner iteration of Nonlinear-FETI-DP-2. Let us remark
that, in contrast to H1-RASPEN, a distinction between local and coarse iterations
makes no sense. In particular, in each inner iteration of Nonlinear-FETI-DP-2, all
subdomain problems and the FETI-DP coarse problem have to be solved, that is,
a problem which is globally coupled through the coarse problem. After convergence
of the outer loop against (ũ⇤,�⇤), the solution of the original system (1.1) can be
obtained by computing

u⇤ =
⇣
R

T
R
⌘�1

R
T
ŘMũ(ũ

⇤,�⇤).

Let us finally remark that the Jacobian in each step of the outer Newton iteration
of Nonlinear-FETI-DP-2 is identical to the Jacobian arising in a Newton-Krylov-
FETI-DP approach, applying Newton’s methods to (1.1) and using FETI-DP for the
linear solves; only the right hand side di↵ers. Therefore, applying a linear Dirichlet
preconditioner M�1

D as usual in linear FETI-DP, the linearized system in Nonlinear-
FETI-DP-2 can be solved by any linear FETI-DP implementation, that is, using a
Krylov subspace method to solve the preconditioned FETI-DP system iteratively.
Throughout this article, we use the preconditioned conjugate gradient (pcg) method,
since deriving the considered model problems always results in symmetric and positive
definite Jacobian matrices.

The Dirichlet preconditioner writes

(2.9) M�1
D =

NX

i=1

B(i)
D S(i)B(i)T

D .

Here, S(i) is the Schur complement of DKi(Řiũ
(k)
i ) with respect to the interface,

where DKi(·) is the Jacobian matrix of Ki(·), and Ři and ũ(k)
i are the restrictions

of Ř and, respectively, ũ(k) to subdomain ⌦i. Finally, B(i)
D is the scaled local jump

matrix B(i), with B = (B(1), ..., B(N)) and BD = (B(1)
D , ..., B(N)

D ). For a description
of di↵erent scalings, we refer to [27, 23]. Throughout this paper, we exclusively use
⇢-scaling.

2.3. Implementation of arbitrary coarse spaces in nonlinear FETI-DP.
In the linear case, there are several approaches to enforce complex coarse constraints,
as, e.g., adaptive constraints, in FETI-DP. A coarse constraint always demands con-
tinuity for a (weighted) sum of interface degrees of freedom. For example, for an edge
between two subdomains in two spatial dimensions, the (weighted) sum of all edge
degrees should be identical for both adjacent subdomains.

Here, in the nonlinear case, we consider a transformation of basis approach to
implement arbitrary coarse constraints. We denote the space containing all trans-
formed functions by WT and we assume to have an orthogonal matrix T : WT ! W .
The transformation matrix and the transformed space WT are chosen such that each
coarse constraint corresponds to a single basis function of WT , i.e., to a single degree
of freedom in WT . Computing T is pretty simple by orthogonalizing the chosen coarse
constraints in W against the standard finite element basis of W , that is, orthogonal-
izing the coarse constraints against the identity matrix edge by edge; see [24, 25] for
details. The advantage of this approach is that one can simply enforce the coarse con-
straints in WT by assembling the corresponding basis functions, or, in other words, by
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choosing these degrees of freedom as primal variables. The assembly process can then
again be performed using a simple restriction operator Ř. The obtained primally
assembled space is referred to as eVT in the following. The transformation of basis
approach can also be used to transform the nonlinear FETI-DP saddle point system;
see also [19]. We can define a nonlinear saddle point system in the transformed space
by

AT (ũT ,�) :=

✓ eKT (ũT ) + ŘTTTBT�� f̃
BT ŘũT

◆
,

with ũT 2 eVT and eKT (ũT ) := ŘTTTK(TŘũT ). With the nonlinear preconditioner
MũT , implicitly defined by

(2.10) eKT (MũT (ũT ,�)) + ŘTTTBT�� f̃ = 0,

Nonlinear-FETI-DP-2 is again defined by solving

AT (MũT (ũT ,�),�) = 0

with Newton’s method. Let us remark that the iterates in all inner and outer Newton
steps now fulfill the chosen coarse constraints. Therefore, the specific choice of the
coarse space or the coarse constraints has a direct influence on the nonlinear con-
vergence of Nonlinear-FETI-DP-2 and thus can be interpreted as a nonlinear coarse
space.

The final solution of the original system (1.1) can finally be obtained by

u⇤ =
⇣
R

T
R
⌘�1

R
T
TŘMũT (ũ

⇤
T ,�

⇤).

In practice, it can be quite expensive to explicitly compute the transformation
matrix T for large subdomains, at least in three spatial dimensions. Additionally, the
transformed Jacobian matrix TT DK(·)T tends to be denser than DK(·), especially
in three dimensions when including coarse constraints on subdomain faces. To avoid
these disadvantages, one can replace the linearized systems of both the inner and outer
Newton loops by equivalent linear systems operating in the original finite element
space W or, respectively, eV . In this context, equivalent means that the solutions of a
linearized system in WT can be simply obtained by a multiplication of TT with the
solution of the equivalent system in W and vice versa by a multiplication with T .
Therefore, neither the linear nor the nonlinear convergence is a↵ected by the specific
implementation of the linearized systems but only the computing time. Since we
only consider iteration counts of our MATLAB implementations, we will not go into
further details here; see [18] for a full description of the computationally more e�cient
reformulation used to implement the linearized systems in the inner and outer loop.

3. Adaptive coarse spaces. Classical coarse spaces, such as Lagrangian coarse
spaces for Schwarz methods or vertex and edge-average constraints for FETI-DP and
BDDCmethods, are generally not robust for highly heterogeneous model problems, for
example, with high jumps in the coe�cient function; cf. subsection 4.1. When using
adaptive coarse spaces, which are based on adaptively enriching the coarse space by
additional functions or constraints, robust convergence can be retained. Therefore,
local generalized eigenvalue problems are solved, eigenfunctions are selected based on
a user chosen tolerance TOL, and coarse basis functions or constraints are constructed
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based on these eigenfunctions. Finally, for adaptive GDSW and adaptive FETI-DP,
respectively, we obtain a condition number bound of the form

  C

✓
1 +

1

TOL

◆
or   C (1 + TOL) ,

respectively, where the positive constant C is independent of the coe�cient function
of the problem. Since the tangent problems arising in the Newton iteration of the
nonlinear DDMs described in section 2 are somewhat related to the preconditioned
systems for the respective linear DDMs, we will use the adaptive coarse spaces also
in our nonlinear DDMs.

Note that heuristic approaches, which can be constructed without the solution
of local eigenvalue problems but lack a rigorous condition number bound, such as
the approaches described in [6, 28] for Schwarz methods as well as the frugal coarse
space [12] for FETI-DP and BDDC methods, are not considered here but could be
applied as well.

3.1. Adaptive GDSW coarse space. In order to obtain a robust convergence
of the H1-RASPEN method for highly heterogeneous problems, we employ the adap-
tive GDSW coarse space [9, 7]. As we will observe in section 4, using the AGDSW
coarse space will not only significantly improve the linear convergence but also the
nonlinear convergence of the two-level RASPEN method compared to using coarse
spaces based on MsFEM [15] as suggested in [8, 14, 13]; the MsFEM coarse spaces
do not contain adaptive coarse basis functions. Here, we will briefly recall the con-
struction of the AGDSW coarse space in two dimensions without going into details
about the application in a linear two-level Schwarz method. For more details on the
AGDSW coarse space and a variant with reduced dimension, RAGDSW, we refer
to [9, 7] and [10], respectively.

In order to construct the AGDSW coarse space, we first partition the interface
� of the nonoverlapping domain decomposition into edges and vertices. The coarse
basis functions � will then be constructed in two steps: first, the interface values ��

are defined, and then, the values in the interior of the nonoverlapping subdomains are
computed using energy minimizing extensions

(3.1) �I = �A�1
II AI���.

Here AII and AI� are submatrices of the global matrix

A =


AII AI�

A�I A��

�

with the indices corresponding to the interior degrees of freedom (DOFs) I and the
indices corresponding to the interface DOFs �; following the definition of the inter-
face (2.7), the Dirichlet DOFs are not part of the interface � and therefore as part
of I. Here, we always choose A := DF (u(0)), i.e., the linearization of the original
problem in the initial value of the Newton iteration; see [13] for alternative choices
for A.

The interface values �� of the coarse basis functions are defined di↵erently for
the edges and vertices. The definition for the vertices is very simple: Let v be a
vertex. Then, the corresponding basis function is chosen to be 1 at the vertex and 0
everywhere else on the interface. In order to compute the values of the edge coarse
basis functions, local generalized eigenvalue problems are solve. In particular, let E
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be an edge and ⌦i and ⌦j be the two adjacent nonoverlapping subdomains. Then,
we consider the two matrices

S(i,j)
E := A(i,j)

E E �A(i,j)
E R
�
A(i,j)

RR
��1

A(i,j)
RE

and A(i,j)
EE , where A(i,j) is the Neumann matrix on ⌦(i,j) = ⌦i [ ⌦j , E corresponds

to the DOFs on the (interior) edge E , and R corresponds to all remaining DOFs
of ⌦(i,j). Using these matrices, we solve the generalized eigenvalue problem: find
(⌧E , µE) 2 V h

0 (E)⇥ R such that

✓T S(i,j)
E ⌧E = ��1

E ✓T A(i,j)
E E ⌧E 8✓ 2 V h

0 (E) .(3.2)

Here, V h
0 (E) is the finite element space on the interior nodes of the edge. Now,

let the eigenvalues �E of the eigenvalue problem (3.2) be sorted in nondescending
order. Then, we select all eigenpairs (�E , ⌧E) with �E below a user-chosen tolerance
tolE , and each of the ⌧E defines the interface values for one of the coarse edge basis
functions. Note that a reduced dimension variant, can be obtained by considering

other interface subsets and a slight modification of the right hand side matrix A(i,j)
E E ;

cf. [10] for details.
After extending the interface values of the vertex and edge basis functions in an

energy-minimizing way, i.e., by (3.1), we collect them as columns of the matrix �,
which then span the AGDSW coarse space. As mentioned earlier, if this coarse space is
used in a linear two-level Schwarz preconditioner to solve a two- or three-dimensional
di↵usion or linear elasticity problem, we obtain a condition number bound of the form

  C

✓
1 +

1

tolE

◆

for the preconditioned linear system; cf. [9, 10]. The constant C may depend on the
number of overlapping subdomains each point x 2 ⌦ can belong to. However, all
constants are independent of H, h, and the contrast of the coe�cient function.

In our nonlinear iteration, we reuse the coarse basis functions computed using
the first linearization A := DF (u(0)) and solve the nonlinear coarse problem in each
iteration of the H1-RASPEN approach using this coarse basis.

3.2. An adaptive FETI-DP coarse space. Similar to the previous subsec-
tion, we aim for a robust nonlinear DDM by enhancing the nonlinear FETI-DP coarse
space by certain adaptive constraints. In this section, we give a brief description of
the adaptive coarse space introduced in [29] and first fully analyzed in [23]. First,
we introduce the relevant notation and the eigenvalue problem on an edge. Second,
in (3.4), we give an estimate of the condition number for two-dimensional problems
where all the vertex variables are primal in the initial coarse space. This is exactly the
coarse space we use in our numerical experiments. Let us remark that the adaptive
constraints additionally enhance vertex constraints, i.e., the assembly in the primal
vertices. As already mentioned above, there are several possibilities in the literature
to implement such additional constraints for linear problems. We use a transformation
of basis approach here, which is currently the only possibility to enforce additional or
adaptive constraints in nonlinear FETI-DP methods.

To compute the adaptive coarse constraints, similar to AGDSW, for each edge E
shared by the subdomains ⌦i and ⌦j , a single eigenvalue problem has to be solved.

We first restrict the jump matrix B to this edge. Let BE =
⇣
B(i)

E , B(j)
E

⌘
be the
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submatrix of
�
B(i), B(j)

�
with the rows that consist of exactly one 1 and one �1 and

are zero otherwise. Let BD,E =
⇣
B(i)

D,E , B
(j)
D,E

⌘
be obtained by taking the same rows

of
⇣
B(i)

D , B(j)
D

⌘
. Furthermore, let

Sij =

✓
S(i)

S(j)

◆
,

where S(i) and S(j) are the Schur complements of DK(i)(Řiũ
(k)
i ) and DK(j)(Řiũ

(k)
i ),

respectively, with respect to the interface variables. We further define the operator
PDij = BT

D,EBE .

Then, we solve the local generalized eigenvalue problem: find wij 2 (ker Sij)
?

hPDijvij , SijPDijwiji = µijhvij , Sijwiji 8vij 2 (ker Sij)
? .(3.3)

For an explicit expression of the positive definite right hand side operator on the
subspace (ker Sij)

?, two orthogonal projections are used; see, e.g., [32]. We assume
that R eigenvectors wr

ij , r = 1, ..., R, belong to eigenvalues which are larger than
a given tolerance tol. Then, we enhance the nonlinear FETI-DP coarse space with
the adaptive constraints BDijSijPDijw

r
ij , r = 1, ..., R. Let us remark that, as for the

AGDSW coarse space, we only compute the adaptive coarse space once, and therefore
we use the Jacobian in the initial value DK(Řũ(0)) for the computation of all Schur
complements.

In the linear case, we obtain the condition number bound

(3.4)   N2
Etol

for the preconditioned FETI-DP system if the adaptive constraints are implemented
by, for example, a transformation of basis approach or using a balancing precondi-
tioner. Here, NE is the maximum number of edges of a subdomain and the condition
number bound is thus completely independent of the coe�cient function; see [23] for
a full proof of this condition number estimate in two dimensions.

4. Model Problems and Numerical Results. In this section, we will first
introduce the heterogeneous p-Laplace model problem, which will be considered in
our numerical experiments. The di↵erent settings are then obtained by varying the
coe�cient distribution. Second, we will present numerical results for the nonlinear
adaptive DDMs. We note that our focus is on the comparison of the nonlinear adaptive
DDMs with their respective NK counterparts. We also want to analyze the positive
e↵ects of a well-chosen adaptive coarse space on the convergence of the nonlinear
DDMs in comparison to their original counterparts using traditional coarse spaces.
However, a fair comparison of the nonlinear Schwarz and FETI-DP approaches is
di�cult, and we will refrain from attempting to carry out such a comparison in this
work.

4.1. Model Problems. We consider the nonlinear model problem:

(4.1)
�↵�pu = 1 in ⌦,

u = 0 on @⌦,

with the scaled p-Laplace operator ↵�pu := div(↵|ru|p�2ru). Within this article,if
not stated otherwise, we use p = 4 and a coe�cient function ↵ : ⌦ ! R with jumps.
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Fig. 1: Coe�cient distributions and corresponding solutions of (4.1); subsections
showing 4 or, respectively, 9 subdomains out of the total 36 subdomains; H/h = 32.
Top: three channels cutting through each subdomain; ↵ = 1e3 within the yellow part
and ↵ = 1 within the blue part. Middle: randomly generated coe�cient distribution
with 20% yellow elements (↵ = 1e6); ↵ = 1 in the remaining blue part. Bottom:
shifted boxes around all horizontal edges; ↵ = 1e3 within the yellow part, ↵ = 1
within the blue and light blue part, and p = 2 in the light blue part.

Moreover, we always use the unit square ⌦ = [0, 1] ⇥ [0, 1] as the computational do-
main, a discretization with piecewise lineare finite elements, and a structured domain
decomposition into square subdomains. However, our approaches are not restricted to
this case. We consider three di↵erent heterogeneous coe�cient distributions; see Fig-
ure 1 for a visualization and more details.
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Table 1: Results for two of the model problems, all considered Schwarz methods,
and all corresponding coarse spaces; outer it. gives the number of global Newton
iterations; local it. gives the number of local Newton iterations summed up over
the outer Newton iterations (average over all subdomains); coarse it. gives the
number of nonlinear iterations on the coarse level summed up over the outer Newton
iterations; GMRES it. gives the number of GMRES iterations summed up over the
outer Newton iterations; size cp gives the number of coarse basis functions, i.e., the
size of the coarse problem.

Channels; see Figure 1 (top)
p = 4; H/h = 32; 36 subdomains; overlap � = 1;

without globalization

size outer local coarse GMRES
cp method coarse space it. it. (avg.) it. it. (sum)
145 H1-RASPEN AGDSW 5 27.0 35 77

25 H1-RASPEN MsFEM-D >20 - - -

25 H1-RASPEN MsFEM-E >20 - - -

145 NK-RAS AGDSW >20 - - -

with globalization (INB)

145 H1-RASPEN AGDSW 5 24.8 21 77

25 H1-RASPEN MsFEM-D 15 75.8 62 645

25 H1-RASPEN MsFEM-E 18 83.9 75 852

145 NK-RAS AGDSW 13 - - 207

Random; see Figure 1 (middle)
p = 4; H/h = 32; 36 subdomains; overlap � = 1;

without globalization

size outer inner coarse GMRES
cp method coarse space it. it. (avg.) it. it. (sum)
445 H1-RASPEN AGDSW 5 29.9 38 89

25 H1-RASPEN MsFEM-D >20 - - -

25 H1-RASPEN MsFEM-E >20 - - -

445 NK-RAS AGDSW 20 - - 414

with globalization (INB)

445 H1-RASPEN AGDSW 5 28.5 31 91

25 H1-RASPEN MsFEM-D >20 - - -

25 H1-RASPEN MsFEM-E 11 67.7 67 1097

445 NK-RAS AGDSW 12 - - 238

4.2. Two-level RASPEN. We compare the standard Newton-Krylov-RAS
(Restricted Additive Schwarz) approach with an AGDSW coarse space to the H1-
RASPENmethod using three di↵erent coarse spaces, i.e., the AGDSW adaptive coarse
space and two MsFEM type coarse spaces, MsFEM-D and MsFEM-E; see also [13] for
a definition of the two MsFEM type coarse spaces. As for the AGDSW coarse space,
we use A := DF (u(0)) for the computation of the energy minimizing extensions in
the MsFEM coarse spaces, and we keep these basis functions for the whole nonlinear
iteration. We test all four approaches with or without additional globalization, that
is, we either use the standard Newton method or the inexact Newton backtracking [4]
(INB) method to solve all arising nonlinear problems. More precisely, in the case of
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Table 2: Results for the model problem with randomized coe�cient distribution using
H1-RASPEN with AGDSW coarse space; e↵ect of varying overlap � = 0, 1, 2, 4; outer
it. gives the number of global Newton iterations; local it. gives the number of local
Newton iterations summed up over the outer Newton iterations (average, minimum,
and maximum over subdomains); coarse it. gives the number of nonlinear iterations
on the coarse level summed up over the outer Newton iterations; GMRES it. gives
the number of GMRES iterations averaged up over the outer Newton iterations; size
cp gives the number of coarse basis functions, i.e., the size of the coarse problem.

Random; see Figure 1 (middle)
p = 4; H/h = 32; 36 subdomains; varying overlap � = 0, 1, 2, 4

H1-RASPEN; AGDSW; with globalization (INB)

size size outer local coarse GMRES
overlap cp it. it. (min/max/avg) it. it. (avg)
� = 0 445 5 23/41/30.1 32 21.4

� = 1 445 5 23/40/28.5 31 18.2

� = 2 445 4 19/31/24.2 24 16.3

� = 4 445 7 26/50/32.9 39 13.7

Table 3: Results for the model problem with randomized coe�cient distribution using
H1-RASPEN with AGDSW coarse space; e↵ect of varying tolerance tolE ; outer it.
gives the number of global Newton iterations; local it. gives the number of local
Newton iterations summed up over the outer Newton iterations (average, minimum,
and maximum over subdomains); coarse it. gives the number of nonlinear iterations
on the coarse level summed up over the outer Newton iterations; GMRES it. gives
the number of GMRES iterations summed up over the outer Newton iterations; size
cp gives the number of coarse basis functions, i.e., the size of the coarse problem.

Random; see Figure 1 (middle)
p = 4; H/h = 32; 36 subdomains; varying tolerance tolE = 0.01, 0.1, 0.2; � = 2

H1-RASPEN; AGDSW; with globalization (INB)

size outer local coarse GMRES
tolE cp it. it. (min/max/avg) it. it. (sum)
1e-5 364 6 25/42/30.6 33 113

1e-3 444 4 19/31/24.2 24 65

1e-1 445 4 19/31/24.2 24 65

2e-1 461 4 19/34/24.3 24 64

H1-RASPEN, we use INB to solve all local nonlinear problems, the nonlinear global
problem, and the nonlinear coarse problem; see [13, subsection 7.3] for details on the
INB method and the choice of parameters. Unless stated otherwise, we always use
an overlap of one layer of finite elements in the first level of H1-RASPEN and choose
tolE = 0.1 in the computation of the AGDSW coarse space; note that we did not
optimize this parameter for the best performance. To guarantee a fair comparison,
we choose a relative reduction of 10�6 of the residual F (u(k)) as the stopping critirion
for all tested methods. For all local or coarse solves, we terminate after a relative
residual reduction of 10�3.
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Fig. 2: Convergence behavior of the outer Newton iteration; solid lines represent
methods with globalization (INB), dashed lines without globalization. Top: Prob-
lem with channels; see Figure 1 (top). Bottom: Problem with randomly generated
coe�cient distribution; see Figure 1 (middle). For more details, see also Table 1.

The results for the coe�cient distributions in Figure 1 (top) and Figure 1 (middle)
can be found in Table 1. In both cases, the H1-RASPEN method with the appropriate
coarse space (AGDSW) shows the best nonlinear and linear convergence, even if the
standard Newton method is used instead of INB. All other methods show a much
slower nonlinear convergence; see also Figure 2. Of course, the AGDSW coarse space
is, in general, larger compared to the MsFEM coarse spaces: in both cases, we have
one coarse basis function for each vertex, however, the AGDSW coarse space also
contains additional edge basis functions, which provide robustness with respect to
coe�cient jumps at the edges.



ADAPTIVE NONLINEAR DOMAIN DECOMPOSITION METHODS 15

Let us remark that, for the considered model problems, it is su�cient to compute
the AGDSW coarse basis functions once for the initial Jacobian matrix DF (u(0));
thus, the comparably expensive setup has to be performed only once. Nonetheless,
the condition number of all linearized systems is su�ciently small and the linear and
nonlinear convergence is convincing. However, for di↵erent types of model problems,
it might be necessary to recompute the coarse space in a later stage of the iteration,
e.g., if new nonlinearities evolve, but for many problems this will not be necessary or,
at least, only necessary in a few outer Newton iterations. A heuristic strategy how
to decide when a new computation of the adaptive coarse space is necessary within a
classical Newton-Krylov-FETI-DP approach has been introduced in [17] and can be
simply modified for the use within adaptive nonlinear DDMs.

In Table 2, we provide additional results for a varying width of the overlap �
for the model problem with random coe�cient distribution. As expected, the linear
convergence accelerates with growing �. Unexpectedly, for this specific problem, this
is not the case for the nonlinear convergence, where an optimum is reached for � = 2;
this e↵ect has to be investigated in more detail in the future.

Finally, we also investigate the influence of the tolerance chosen in the local
eigenvalue problems, that is, the influence of the size of the adaptive coarse problem;
see Table 3. As we expected, if the adaptive coarse space gets too small, both,
the linear and nonlinear convergence start to deteriorate. Moreover, as soon as all
necessary basis functions corresponding to bad eigenvalues have been included in the
coarse space, adding additional eigenfunctions does not lead to further significant
improvements in the convergence.

Fig. 3: Convergence behavior of the outer Newton iteration. Problem with shifted
boxes; see Figure 1 (bottom). For more details, see also Table 4.

4.3. Nonlinear FETI-DP. Finally, we compare the standard Newton-Krylov-
FETI-DP (NK-FETI-DP) to the Nonlinear-FETI-DP-2 (NL-FETI-DP-2) method us-
ing two di↵erent coarse spaces, that is, vertex constraints and classical edge averages
as well as vertex constraints (v+e) and adaptive edge constraints (v+a). Let us re-
mark that we do not consider an INB approach to improve the nonlinear FETI-DP
methods. For the inner loop, INB could directly be implemented and has a similar pos-
itive e↵ect on the convergence of the inner loop as previously shown for H1-RASPEN;
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Table 4: Results for both model problems, all considered nonlinear FETI-DP methods,
and all corresponding coarse spaces; outer it. gives the number of global Newton
iterations; inner it. gives the number of inner Newton iterations summed up over the
outer Newton iterations; CG it. gives the number of CG iterations summed up over
the outer Newton iterations; size cp gives the number of coarse basis functions, i.e.,
the size of the coarse problem; v + e stands for vertex and edge average constraints;
v + a stands for vertex and adaptive constraints.

Channels; see Figure 1 (top)
p = 4; H/h = 32; 36 subdomains; tol = 5

size outer inner CG
cp method coarse space it. it. it. (sum)
85 NL-FETI-DP-2 v+e >20 - -

99 NL-FETI-DP-2 v+a 4 29 41

85 NK-FETI-DP v+e >20 - -

99 NK-FETI-DP v+a >20 - -

Shifted boxes; see Figure 1 (bottom)
p = 4; H/h = 32; 36 subdomains; tol = 5

size outer inner CG
cp method coarse space it. it. it. (sum)
85 NL-FETI-DP-2 v+e >20 - -

269 NL-FETI-DP-2 v+a 5 28 77

85 NK-FETI-DP v+e 13 - 477

269 NK-FETI-DP v+a 13 - 279

cf. Table 1. In contrast, for the outer loop, it is rather complicated to find an e�-
cient globalization approach. As for H1-RASPEN, directly applying INB and using
the residual of the nonlinear saddle point problem results in many inner Newton it-
erations, one for each step length tested; see [13] for details. However, in contrast
to H1-RASPEN, simply replacing the residual of the nonlinear saddle point system
by the residual of the original problem (1.1) does not lead to satisfying results since
both residuals di↵er drastically. Discussing more complex globalization strategies for
nonlinear FETI-DP is out of the scope of this article and, as can also be observed
for H1-RASPEN, adding a globalization approach does not seem necessary when an
adaptive coarse space is used.

If not stated otherwise, we always choose tol = 5 in the computation of the
adaptive FETI-DP coarse space. To guarantee a fair comparison, we again choose
a relative reduction of 10�6 of the residual F (u(k)) as the stopping criterion for all
tested methods. Let us note that for, the Nonlinear-FETI-DP-2 approach, we use

u(k) =
⇣
R

T
R
⌘�1

R
T
TŘũ(k)

T to evaluate the global residual of the original problem.

For all inner solves, we use a relative residual reduction of 10�3.
The results for two of the considered model problems can be found in Table 4. In

both cases, the Nonlinear-FETI-DP-2 method with the adaptive coarse space shows
the best nonlinear and linear convergence. All other methods have a much slower
nonlinear convergence behavior; see also Figure 3. Of course, the adaptive coarse
space can be larger compared to the classical FETI-DP coarse space with vertex
constraints and edge averages. As for the H1-RASPEN approach, it is su�cient to
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Table 5: Results for the model problem with shifted boxes using NL-FETI-DP-2 and
varying the tolerance tol in the computation of the adaptive coarse space; outer it.
gives the number of global Newton iterations; inner it. gives the number of inner
Newton iterations summed up over the outer Newton iterations; CG it. gives the
number of CG iterations summed up over the outer Newton iterations; size cp gives
the number of coarse basis functions, i.e., the size of the coarse problem; tol gives
the tolerance used in the computation of the adaptive coarse space; v + e stands for
vertex and edge average constraints; v + a stands for vertex and adaptive constraints.

Shifted boxes; see Figure 1 (top)
p = 4; H/h = 32; 36 subdomains; varying tol

size outer inner CG
tol cp method coarse space it. it. it. (sum)
2 353 NL-FETI-DP-2 v+a 4 18 43

5 269 NL-FETI-DP-2 v+a 5 28 77

10 73 NL-FETI-DP-2 v+a 5 25 112

100 35 NL-FETI-DP-2 v+a >20 - -

compute the adaptive FETI-DP coarse basis functions once for the initial Jacobian
matrix DK(u(0)). Again, the condition number of all linearized systems is su�ciently
small, and both the linear and the nonlinear convergence are robust. Let us again
remark that it might be necessary to recompute the coarse space in a later stage of
the iteration for di↵erent types of model problems.

The adaptive coarse space for the model problem with shifted boxes computed
using a tolerance of tol = 5 is fairly large compared to the classical coarse space.
Choosing a larger tolerance of tol = 10 drastically reduces the size of the coarse space
and leads to similar results; see Table 5 for a comparison of di↵erent tolerances. Let
us remark that, as in the linear case, choosing an optimal tolerance is a nontrivial
task; cf. [11]. Here, we will not further investigate this topic.

5. Conclusion. In summary, our tests for the combination of the H1-RASPEN
method and the AGDSW coarse space on the one hand and the Nonlinear-FETI-
DP-2 method and an edge-based adaptive coarse space on the other hand indicate
that the combination of adaptive coarse spaces and nonlinear domain decomposition
methods has a great potential to improve the robustness and the linear as well as the
nonlinear convergence. Since the setup of the adaptive coarse space may only have
to be performed once, or a few times, during the nonlinear iteration, this approach
greatly enhances the benefit of adaptive coarse spaces. In particular, compared to the
linear case, the high setup costs of adaptive coarse spaces may be compensated more
clearly in the context of nonlinear preconditioning. Of course, scaling tests with a
parallel implementation are necessary for a complete conclusion. An investigation of
the performance of the suggested approaches is planned for the future.
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