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Abstract

We discuss the construction and interpretation of observables in quantum theories with

worldline diffeomorphism invariance, in which a preferred or absolute time parameter is absent.

These theories are also called time-reparametrization invariant, and they can be seen as me-

chanical toy models of quantum gravity. The interest in these models stems from the necessity

of understanding the so-called problem of time in a theory of quantum gravitation: how can the

dynamics of quantum states of matter and geometry be defined in a diffeomorphism-invariant

way? What is the relevant space of physical states and which operators act on it? How are the

quantum states related to probabilities in the absence of a preferred time? The restriction to

the mechanical case allows us to focus on this problem without further issues that accompany

field-theoretical treatments.

We first analyze the consequences of diffeomorphism invariance in the classical theory, and

we emphasize that it warrants a relational ontology of spacetime. Observers record the evolution

of physical fields in generalized reference frames that are defined from the readings of generalized

clocks and rods, which are themselves physical fields. As the only physical information that

is available in an experiment are the values of the fields and not the spacetime points, one

concludes that observables are relational: the outcomes of experiments can be described or

predicted by determining the values of the fields relative to (or conditioned on) the values of

the generalized clocks and rods (the reference fields that define a generalized reference frame).

The description of the dynamics in terms of relational observables is diffeomorphism invari-

ant, as it does not refer to the underlying abstract spacetime but rather solely to the physical

fields. Technically, relational observables can be seen as diffeomorphism-invariant extensions of

geometrical objects in analogy to gauge-invariant extensions of noninvariant quantities in the

usual gauge (Yang-Mills) theories. We take this analogy seriously and use it as a basis of a

method of construction of invariant operators in the quantum theory. These operators act solely

in the space of solutions to the quantum constraints (i.e., on the space of physical states) and,

as such, they are defined solely in terms of the physical states. Furthermore, we discuss how

the notion of a physical propagator may be used to define a unitary evolution in the quantum

theory, which is to be understood in terms of a generalized clock, as is the classical theory.

We then put forth a set of tentative postulates that dictate how an observer is to make use of

probabilities in the description of the quantum dynamics in a quantum generalized reference

frame. In this way, we emphasize that the dynamics is relational also in the quantum theory,

and we define a notion of relative initial data, which determine the quantum evolution of the

relational observables.

We also discuss under which circumstances the above mentioned formalism can be related

to the use of conditional probabilities in the quantum theory. These probabilities are defined

from the physical states, and we argue that our formalism can be regarded as a generalization of

the well-known Page-Wootters approach. On this subject, we show that the quantum averages

of relational observables can be related to conditional expectation values of worldline tensor

fields. We discuss how our formalism is related to the earlier literature.

We also illustrate the method presented here with conceptually useful examples, such as

the free quantum relativistic particle, the Kasner model, and a closed, recollapsing Friedmann-

Lamâıtre-Robertson-Walker model. We construct the quantum relational observables for these

models and discuss their quantum evolution. In the context of cosmology, we also mention how

the notion of relative initial data may be used to establish a criterion for quantum singularity

avoidance, which we refer to as the conditional DeWitt criterion.



In the interest of making contact with observations, we also examine how our formalism can

be adapted to calculations of quantum-gravitational effects in the early Universe. To this end,

we show that the usual weak-coupling expansion used in the Born-Oppenheimer approach to

quantum gravity leads to a perturbative definition of the inner product on the space of physical

states, with respect to which the dynamics is unitary. This is important because the issue

of unitarity in the Born-Oppenheimer approach has been controversial. Interestingly, we also

show how this perturbatively defined physical inner product corresponds to a quantization of

the classical Faddeev-Popov determinant associated with the choice of background clock that

is used in the weak-coupling expansion. In this way, the usual results of the Born-Oppenheimer

approach coincide with a ‘choice of gauge’, and they can be extended beyond the semiclassical

level of the gravitational field. Time is to be understood relationally in the exact quantum

theory. We apply these results to the calculation of quantum-gravitational corrections to the

primordial power spectra in (quasi-)de Sitter space, comparing the results to the ones previously

obtained in the literature, and discussing the physical interpretation of such corrections.

Lastly, we conclude with some remarks about the relevance and usefulness of the approach

presented here, as well as its limitations. In particular, we mention how the approach may be

useful for the definition and interpretation of observables as diffeomorphism invariants in a full

quantum theory of gravitation, and we offer some comments on possible future directions of

research.



Zusammenfassung

Wir untersuchen die Konstruktion und Interpretation von Observablen in Quantentheorien

mit Weltlinien-Diffeomorphismus-Invarianz, bei der ein bevorzugter oder absoluter Zeitparam-

eter fehlt. Diese Theorien werden auch als invariant unter Zeitreparametrisierung bezeichnet

und können als mechanische Spielzeugmodelle der Quantengravitation angesehen werden. Das

Interesse an diesen Modellen ergibt sich aus der Notwendigkeit, das sogenannte Problem der Zeit

in einer Theorie der Quantengravitation zu verstehen: Wie kann die Dynamik von Quanten-

zuständen von Materie und Geometrie auf diffeomorphismusinvariante Weise definiert werden?

Was ist der relevante Raum physikalischer Zustände und welche Operatoren wirken darauf?

Wie hängen die Quantenzustände mit Wahrscheinlichkeiten zusammen, wenn keine bevorzugte

Zeit vorliegt? Die Beschränkung auf den mechanischen Fall ermöglicht es uns, uns auf dieses

Problem zu konzentrieren, ohne die zusätzlichen Schwierigkeiten einer feldtheoretischen Be-

handlung.

Wir analysieren zunächst die Konsequenzen der Diffeomorphismusinvarianz in der klassis-

chen Theorie und betonen, dass dadurch eine relationale Ontologie der Raumzeit gerechtfertigt

ist. Beobachter zeichnen die Entwicklung physikalischer Felder in generalisierten Referenzrah-

men auf, die durch die Messwerte generalisierter Uhren und Stäbe definiert werden, welche

selbst physikalische Felder sind. Da die einzigen physikalischen Informationen, die in einem Ex-

periment verfügbar sind, die Werte der Felder und nicht die Raumzeitpunkte sind, kommt man

zu dem Schluss, dass Observablen relational sind: Die Ergebnisse von Experimenten können

durch die Werte der Felder relativ zu den Werten (oder bedingt durch die Werte) der gen-

eralisierten Uhren und Stäbe (die Referenzfelder, die einen generalisierten Referenzrahmen

definieren) beschrieben oder vorhergesagt werden.

Die Beschreibung der Dynamik in Bezug auf relationale Observablen ist diffeomorphismus-

invariant, da sie sich nicht auf die zugrunde liegende abstrakte Raumzeit bezieht, sondern auss-

chließlich auf die physikalischen Felder. Technisch gesehen können relationale Observablen als

diffeomorphismusinvariante Erweiterungen geometrischer Objekte angesehen werden, in Analo-

gie zu eichinvarianten Erweiterungen von nicht-invarianten Feldern in den üblichen Eichtheorien

(Yang-Mills Theorien). Wir nehmen diese Analogie ernst und verwenden sie als Grundlage für

eine Methode zur Konstruktion invarianter Operatoren in der Quantentheorie. Diese Oper-

atoren wirken ausschließlich auf den Raum der Lösungen der Quanten-Zwangsbedingungen

(d.h. im Raum der physikalischen Zustände) und sind als solche ausschließlich im Bezug auf

die physikalischen Zustände definiert. Darüber hinaus diskutieren wir, wie der Begriff eines

physikalischen Propagators verwendet werden kann, um eine unitäre Entwicklung in der Quan-

tentheorie zu definieren, die wie die klassische Theorie im Sinne einer generalisierten Uhr zu

verstehen ist. Dann stellen wir eine Reihe vorläufiger Postulate auf, die vorschreiben, wie ein

Beobachter Wahrscheinlichkeiten bei der Beschreibung der Quantendynamik in einem quanten-

generalisierten Referenzrahmen verwenden soll. Auf diese Weise betonen wir, dass die Dynamik

auch in der Quantentheorie relational ist, und definieren einen Begriff relativer Anfangsdaten,

die die Quantenentwicklung der relationalen Observablen bestimmen.

Wir diskutieren auch, unter welchen Umständen der oben erwähnte Formalismus mit der

Verwendung konditionaler Wahrscheinlichkeiten in der Quantentheorie zusammenhängen kann.

Diese Wahrscheinlichkeiten werden aus den physikalischen Zuständen definiert, und wir ar-

gumentieren, dass unser Formalismus als Verallgemeinerung des bekannten Page-Wootters-

Ansatzes angesehen werden kann. Zu diesem Thema zeigen wir, dass die Quantenerwartungswerte

relationaler Observablen mit bedingten Erwartungswerten von (Weltlinien-) tensorfeldern in



Beziehung gesetzt werden können. Wir diskutieren, wie unser Formalismus mit der früheren

Literatur zusammenhängt.

Wir veranschaulichen die hier vorgestellte Methode auch mit konzeptionell nützlichen Beispie-

len wie dem freien quantenrelativistischen Teilchen, dem Kasner-Modell und einem geschlosse-

nen, rekollabierenden Friedmann-Lamâıtre-Robertson-Walker-Modell. Wir konstruieren die

quantenrelationalen Observablen für diese Modelle und diskutieren ihre Quantenentwicklung.

Im Zusammenhang mit der Kosmologie erwähnen wir auch, wie der Begriff der relativen An-

fangsdaten verwendet werden kann, um ein Kriterium für die Vermeidung von Quantensingu-

laritäten festzulegen, das wir als konditionales DeWitt-Kriterium bezeichnen.

Um Kontakt mit Beobachtungen aufzunehmen, untersuchen wir auch, wie unser Formalis-

mus an Berechnungen von Quantengravitationseffekten im frühen Universum angepasst werden

kann. Zu diesem Zweck zeigen wir, dass die im Born-Oppenheimer-Ansatz zur Quantengrav-

itation übliche schwache Kopplungsentwicklung zu einer störungstheoretischen Definition des

inneren Produkts im Raum physikalischer Zustände führt, für die die Dynamik unitär ist. Dies

ist wichtig, da die Frage der unitäre Entwicklung im Born-Oppenheimer-Ansatz kontrovers ist.

Interessanterweise zeigen wir auch, wie dieses störungstheoretisch definierte physikalische innere

Produkt einer Quantisierung der klassischen Faddeev-Popov-Determinante entspricht, die mit

der Wahl der Hintergrunduhr verbunden ist, die für die schwache Kopplungsentwicklung ver-

wendet wird. Auf diese Weise fallen die üblichen Ergebnisse des Born-Oppenheimer-Ansatzes

mit einer ‘Eichwahl’ zusammen, und sie können über das semiklassische Niveau des Gravita-

tionsfeldes hinaus erweitert werden. Die Zeit ist in der exakten Quantentheorie relational zu

verstehen. Wir wenden diese Ergebnisse auf die Berechnung von quantengravitativer Korrek-

turen der Leistungsspektren der kosmischen Hintergrundstrahlung im (quasi) de Sitter-Raum

an, und wir vergleichen die Ergebnisse mit der Literatur. Wir diskutieren auch die physikalische

Interpretation solcher Korrekturen.

Mit einigen Bemerkungen zur Relevanz und Nützlichkeit des hier vorgestellten Formalismus

sowie zu seinen Einschränkungen schließen wir diese Arbeit ab. Insbesondere erwähnen wir,

wie der Ansatz für die Definition und Interpretation von Observablen als invariant unter Dif-

feomorphismen in einer vollständigen Quantentheorie der Gravitation nützlich sein kann, und

schlagen Ansätze für zukünftige Untersuchungen in diesem Feld vor.
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conversations in the last stages of this thesis. Our discussions about possible definitions

of quantum relational observables in general, and for periodic clocks in particular, have

been considerably fruitful.

My time in Cologne would not have been nearly as joyful without my colleagues

from the University of Cologne and especially my friends from the Gravitation and Rel-

ativity group. I could not have asked for better office-mates than Branislav and Yi-Fan.

When I arrived in Cologne, I felt immediately welcome due to Branislav’s enthusiasm

and his passionate approach to research and teaching. Our countless discussions about



Acknowledgments

time, the semiclassical approximation, music, languages, life and the Universe were

fantastic. Thank you, Branislav! Yi-Fan, I have very much enjoyed our many con-

versations throughout the years. Your feedback and sharp questions about my work

have been inestimable. I have also had the pleasure of meeting Nick and Tim, whose

friendship has been a highlight of my time in Germany, and whom I would also like to

thank for occasional discussions on the semiclassical approximation and the definition

of relational observables. In addition, the camaraderie with Alexander Hermanns, Ali

Lezeik, Anirudh Gundhi, Atharva Rawte, Ayesha Khan, Christina Koliofoti, Dennis

Piontek, Dimitrios Gkiatas, Enes Aktas, Mario Montero, Sandeep Suresh Cranganore,

Sebastian Arenas, Shreyas Tiruvaskar, Tatevik Vardanyan and Willem van der Feltz

has made working in the group a most pleasant experience.

This thesis would not have been possible without the generous financial support in

the form of a scholarship provided by the Bonn-Cologne Graduate School of Physics

and Astronomy (BCGS), to which I am very grateful. I would like to thank Dr. Petra

Neubauer-Guenther for helping me with numerous BCGS-related questions and also

with bureaucratic topics. Moreover, I am very thankful to Mariela Boevska and Dr.

Andreas Sindermann for help with several bureaucratic issues over the years. Indeed,

the efficient and thoughtful help of Dr. Petra Neubauer-Guenther, Mariela Boevska

and Dr. Andreas Sindermann is greatly appreciated.

I am also very grateful to Ulrich and Rose-Marie, who made Cologne a second home

for me. Thank you for your kindness, consideration and attention.

Finally, I thank my mother Gisela for her constant and unconditional support, and

my father Cláudio, who always inspired me and will always be in my heart.

vi



Notation, Conventions and

Terminology

• Mathematical symbols:

∅ denotes the empty set.

R denotes the set of real numbers.

C denotes the set of complex numbers.

∈ denotes set membership.

∀ denotes universal quantification, i.e.,

“given any” or “for all”.

= denotes equality.

' denotes an approximate equality.

∝ denotes proportionality.

e denotes Euler’s number.

i denotes the imaginary unit.

(·)∗ denotes complex conjugation – the parenthesis may be

omitted. For example, given a, b ∈ R, (a+ ib)∗ = a− ib.

:= denotes definition. For example, given q ∈ R,

f(q) := q3 or q3 =: f(q) defines the function

f : R→ R , q 7→ q3.

◦ denotes composition of functions, e.g., f ◦ g(q) = f(g(q)).

≡ denotes identities, e.g., f(q) ≡ g(q) if f(q) = g(q) ∀ q;
also denotes equivalence between different notations,

see Conventions below.

≈ denotes Dirac’s weak equalities or on-shell identities,

see Terminology below.

⊗ denotes a tensor product.

d denotes an exterior derivative.

C∞ denotes the class of infinitely differentiable objects

(e.g., functions, manifolds).

{·, ·} denotes a Poisson bracket.

[·, ·] denotes a commutator.
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Notation, Conventions and Terminology

• Conventions:

— The metric signature for Lorentzian manifolds is (−,+, . . . ,+).

— Summation over repeated indices is implied; e.g., AiBi ≡
∑

iA
iBi.

— Local coordinates qi on a C∞-manifold are collectively denoted as q. For

example, if f : Rd → R, then f(q) ≡ f(q1, . . . , qd).

— The letter O is used to denote classical and quantum observables, but also

signifies the error of an approximation; e.g., cosx = 1− x2/2 +O(x4).

— Linear operators that act on a Hilbert space are denoted with a circumflex,

e.g., Ô.

— Unless specified otherwise, a dot denotes differentiation with respect to the

worldline time coordinate; i.e., · ≡ d/dτ .

— The pullback by a diffeomorphism φ is denoted by φ∗ and is not to be confused

with complex conjugation.

• Terminology:

— Given two phase-space functions A(q, p) andB(q, p), if {A,B} = 0, we say that:

A Poisson-commutes with B; B Poisson-commutes with A; A and B Poisson-

commute.

— Given two operators Â and B̂, if [Â, B̂] = 0 we say that: Â commutes with B̂;

B̂ commutes with Â; Â and B̂ commute.

— Identities that hold on the hypersurface defined by the constraints of a con-

strained Hamiltonian system are referred to as weak equalities or on-shell iden-

tities. For instance, if C(q, p) = p is a constraint on a two-dimensional phase

space, then the constraint hypersurface is defined by p = 0. In this case, p ≈ 0,

q + p ≈ q are examples of on-shell identities.

• Abbreviations:
BO Born-Oppenheimer

BRST Becchi-Rouet-Stora-Tyutin

CMB Cosmic Microwave Background

FLRW Friedmann-Lamâıtre-Robertson-Walker

GR General Relativity

HJ Hamilton-Jacobi

QFT Quantum Field Theory

TDSE Time-Dependent Schrödinger Equation

TISE Time-Independent Schrödinger Equation

WDW Wheeler-DeWitt

WKB Wentzel-Kramers-Brillouin
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Introduction

Caminante, son tus huellas

el camino, y nada más;

caminante, no hay camino:

se hace camino al andar.

— Antonio Machado, “Proverbios y cantares XXIX”

in Campos de Castilla, 1912

General relativity (GR) and quantum field theory (QFT) are two extremely success-

ful theories that form the basis of our current understanding of the Universe. Completed

by Albert Einstein over a hundred years ago, GR has withstood all experimental tests

at the time of writing and it remains our best description of spacetime, gravitation and

cosmology. Similarly, QFT is the theoretical framework which underlies the standard

model of particle physics. Both theories have led to various exciting developments,

such as the somewhat recent examples of the discovery of the Higgs boson, the de-

tection of gravitational waves and the first image of a black hole. Nevertheless, both

are currently applied and tested in fairly disjoint domains of validity. Whereas GR is

well-understood at scales ranging from our Solar System to astrophysics and cosmology,

the precise understanding of the gravitational interaction of particles and fields in the

quantum realm is still lacking.

How can we describe gravitation at the quantum level? It could be the case that

gravity is not a quantum phenomenon and, therefore, that the gravitational interaction

of quantum fields must be understood by a different type of theory yet to be fully

developed. Moreover, quantum theory itself may need to be modified at scales where

the gravitational interaction of fundamental fields becomes important. However, as we

currently know of no limitation to the linearity of quantum theory, we shall assume

throughout this thesis that the superposition principle holds at all scales and that

quantum theory is universal. Within this universal framework, it is reasonable to

consider that gravitation is a quantum phenomenon, as all other known interactions

admit a quantum-field-theoretical explanation. Thus, we assume that gravity can (and

should) be quantized.

What should a quantum (field) theory of gravitation achieve? Or, in other words,

what is the question that quantum gravity ought to answer? To paraphrase John
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Archibald Wheeler [1], this may be the most difficult question related to quantum

gravity. Ideally, quantizing gravitation should resolve or clarify long-standing problems

that provide compelling reasons to search for extensions of GR and of the standard

model. For example, due to the Hawking-Penrose singularity theorems [2], we know

that singularities in GR appear under reasonably general assumptions. The initial Big

Bang singularity found in the Friedmann-Lamâıtre-Robertson-Walker (FLRW) cosmo-

logical models and the singularity featured in the Schwarzschild solution are well-known

particular examples. Thus, one expects that singularities would be absent in a more

fundamental account of gravitation, which could be a quantum theory of GR (or of

its classical modifications). Likewise, the standard model of particle physics does not

account for gravity, dark matter or dark energy. The presence of a Landau pole in the

running of the Higgs self-coupling motivates the search for an ultraviolet completion of

the model, which may well be related to the inclusion of quantum gravity.

In this way, there is the expectation that we might improve our understanding of the

origin of the Universe, of the evolution of black holes and of the fundamental interactions

of quantum fields if we properly understand the singularity-resolving quantum nature

of spacetime. Clearly, in order to determine whether these prospects are well grounded,

we must first understand the fundamentals of quantum gravity. What is the theory

about? What does it describe?

I.1 What is general relativity about?

To find clear answers, it is advisable to first ask the corresponding classical questions.

What it GR about? What does it describe? The theory portrays gravitation as geom-

etry and it arguably defines the dynamics of geometry (‘geometrodynamics’ [3]) and of

matter fields in a (partly) relational manner [4]. This assertion is, in fact, a synthesis

of several delicate features of GR, most notably the notions of ‘background indepen-

dence’, ‘general covariance’ and ‘diffeomorphism invariance’. In order to understand

these concepts and what role they might play in the corresponding quantum theory,

we first give a conceptual overview of the classical theory.

I.1.1 Background independence and diffeomorphism invariance

We consider a D-dimensional manifold M, which we refer to as the ‘abstract’ space-

time, and a set of fields Φ defined on M (which we assume to be tensor fields for

simplicity). We then impose a set of laws that determine the histories of physically

allowed configurations of the fields, i.e., the trajectories. The laws are expressed as

differential equations called the field equations. If certain features of M, collectively

denoted as B, are not determined by the physical laws, we consider that they are part

of the definition of the theory and that they serve as a background with respect to

which the dynamics of fields is described [4,5]. In the absence of singularities or closed

time-like curves [6], the background B in GR includes the dimension D and topology

2
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ofM, as well as its differential structure and metric signature [4]. The field equations,

F [Φ|B] = 0, then take the form of relations among the fields Φ given the input of the

background structure B [5].

As the set Φ includes the metric field, one finds that the geometry of the abstract

spacetime M is not fixed by the definition of the theory. Rather, it is a part of the

solution of the field equations. For this reason (and despite the fact that certain features

ofM are fixed, i.e., B 6= ∅), one says that GR is a ‘background-independent’ theory, as

its definition does not rely on a geometry that is given a priori. Nevertheless, it must

be stressed that background independence is a rather subtle notion, one that has been

the source of physical and philosophical debates in the literature [4, 5].

Since one assumes that all dynamical objects Φ are geometric, one may cast the

field equations in a form that is also well-defined geometrically and that has well-defined

transformation properties (e.g., tensorial) under a general coordinate transformation

on M. This form of the equations is called ‘generally covariant’. General covariance

is simply a consequence of formulating the theory in terms of geometric entities such

as tensor fields [7]. However, the field equations of GR satisfy a stronger condition of

invariance. Namely, they have the same form (up to variable relabelings) regardless

of the choice of coordinate system in the abstract spacetime [8]. This is perhaps most

clearly seen if one adopts an ‘active’ point of view, i.e., if one considers diffeomorphisms

instead of (passive) coordinate transformations. In this way, if Φ are solutions to

the field equations, F [Φ|B] = 0, and φ : M → M is a diffeomorphism, then its

action on tensor fields, φ · Φ, also leads to solutions to the same field equations, i.e.,

F [φ ·Φ|B] = 0 [5,8]. Thus, diffeomorphisms are a symmetry of the field equations and

one says that GR is a ‘diffeomorphism-invariant’ theory.

It is important to note that, by using composition as a binary operation, diffeo-

morphisms form a group, which is denoted by Diff(M) [5]. The symmetry group of

the field equations in GR is, in fact, larger than Diff(M). This is due to the fact that

one may generate solutions to the equations by iterating infinitesimal diffeomorphisms

that depend not only on points in M but also on the fields Φ [9, 10]. We refer to such

maps as field-dependent diffeomorphisms. They constitute a local symmetry of the field

equations because they generally vary in spacetime and they lead to a transformation

of the trajectories that maps solutions of the field equations into solutions. We denote

the group of field-dependent diffeomorphisms by Diff(M,Φ).

What is the physical significance of diffeomorphism [or Diff(M,Φ)] invariance? This

question is related to the meaning of coordinate choices in the abstract spacetime M
and, in fact, to the physical interpretation of M itself. Let us first briefly discuss the

meaning of coordinates in §I.1.2 and the construction of associated quantities known

as relational observables in §I.1.3. Subsequently, we analyze the role of diffeomorphism

invariance in the interpretation of M in §I.1.4.
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I.1.2 Intrinsic coordinates

One might expect that coordinates could be interpreted as values to be read from

a set of measuring instruments (‘clocks’ and ‘rods’), which are used to locate events

in a certain region of space and time. If such measuring instruments are themselves

part of the dynamical degrees of freedom, the coordinate system determined by their

readings is called ‘intrinsic’ [11]. More precisely, one could attempt to build an intrinsic

coordinate system from certain combinations χ of the dynamical fields Φ, i.e., one

could seek to unambiguously identify points in M by the values of some ‘reference

fields’ χ. To achieve this, one would need to construct a coordinate chart (U , χ) for an

open subset U ⊂ M and choose the reference fields such that χ is a homeomorphism

from U to an open subset of RD. For consistency, the reference fields should then

be invertible spacetime scalars [12], such that the numerical values of the coordinates

χ would be independent of any arbitrary initial coordinatization, i.e., χ should be

invariant under (passive) coordinate transformations. The χ fields would then play the

role of ‘generalized clocks and rods’ that would define ‘generalized reference frames’.

We refer to (U , χ) as an ‘intrinsic chart’ onM. Likewise, an ‘intrinsic atlas’ is a family

of intrinsic charts, the domains of which cover the abstract spacetime.

The construction of generalized reference frames would give an operational definition

of coordinates, as events would be described in relation to the values of the reference

fields. Alas, for generic situations in GR, it is not possible to find D scalar fields χ

that are invertible everywhere in M such that the generalized reference frames could

be defined globally [8,13]. This means that: (1) there is no preferred coordinate system

in GR; (2) an operational interpretation of coordinates is necessarily an approximate

one and, in general, coordinates are mere arbitrary labels (which, nevertheless, may

aid in the description of the dynamics).

Moreover, it is, in principle, possible to cast any theory in a diffeomorphism-

invariant form [5, 7, 8]. This procedure is sometimes called ‘parametrization’ [6] and

it involves the promotion of a system of coordinate labels to new physical fields, i.e.,

one includes new degrees of freedom, which then define a preferred intrinsic coordinate

system in the diffeomorphism-invariant version of the theory. Likewise, in the inverse

procedure of ‘deparametrization’, a diffeormorphism-invariant theory is redefined in a

non-invariant way. This is achieved by choosing an intrinsic coordinate system that is

set as an ‘absolute’ (fixed) standard of space and time.

Due to the possibility of (de)parametrizing a theory, one might question the sig-

nificance of diffeomorphism invariance in GR. Nevertheless, the above considerations

imply that, as there is no preferred coordinate system or generalized reference frame,

GR cannot be (globally) deparametrized [13] and, thus, diffeomorphism invariance is

a necessary feature. In this way, no global and absolute standard of space and time

can be fixed, which is another aspect of background independence. Although we focus

on GR, similar conclusions can be reached in modified theories of gravity that classi-
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cally extend GR and that do not violate background independence nor diffeomorphism

invariance.

I.1.3 Relational observables

What is observable in a diffeomorphism-invariant theory? Which measurable quantities

can be predicted in GR? One might expect that the tensor fields Φ, understood as so-

lutions to the field equations, are observable quantities because one could measure field

strengths in certain experiments. In particular, one could conceivably measure distances

and time intervals, which are related to the metric field. Although this expectation is

not entirely incorrect, one needs to take into account what are the consequences of the

diffeomorphism symmetry of the field equations to the interpretation of its solutions.

There is a is a well-known analogy between diffeomorphism invariance and usual

gauge symmetries, one that will also be of importance in the quantum theory. In-

deed, as it is a local symmetry, one may treat diffeomorphism invariance analogously

to the gauge symmetries of Yang-Mills theories featured in the standard model of par-

ticle physics. In fact, purely as a matter of terminology, we refer to local symmetry

transformations as ‘gauge transformations’. Likewise, a system that is invariant under

gauge transformations is called a ‘gauge system’. In this broad sense, both Yang-Mills

theories and GR are gauge theories.1

Due to the fact that the field equations of a gauge theory are not deterministic for

all degrees of freedom, it is necessary to construct gauge invariants in order to obtain a

deterministic evolution from a given set of initial data (cf. Chapter 1 and Appendix A).

In this way, physical observables must be invariant under gauge transformations and,

more generally, one may consider equivalence classes of dynamical degrees of freedom

under actions of the gauge group. The case of GR is similar and the ‘gauge group’ is

Diff(M,Φ) [9].

That there is some form of indeterminism in the dynamics of GR was already

noticed by Einstein in the ‘hole argument’ [8, 15]. For example, this can be seen if the

field equations can be formulated as an initial-value problem. In this case, one notes

that Φ and φ · Φ may be solutions to the same initial-value problem if φ is a non-

trivial diffeomorphism that reduces to the identity in a neighborhood of the Cauchy

hypersurface on which the initial data are given [8] (see also the discussion in Chapter 1).

To obtain a unique solution from a given set of initial data, one can follow the example

of usual gauge theories and consider equivalence classes of the solutions Φ under the

actions of diffeomorphisms. Thus, one is led to the view that only Diff(M,Φ)-invariant

quantities are observable.

1Nevertheless, there are marked differences between them. A great deal of research is devoted to
the construction of a theory of gravity that resembles the usual Yang-Mills type of gauge theories, such
as Poincaré gauge theory [14]. We do not discuss this here.
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It is worthwhile to mention how the active and passive views of the symmetry of

the field equations affect the definition of observables. While tensor fields are invariant

under general coordinate transformations (passive view), they are not invariant under

general diffeomorphisms (active view).2 In this way, it would seem that the definition

of observables as Diff(M,Φ) invariants precludes the notion of observable tensor fields

and that it is more restrictive than simply requiring invariance under general coordinate

transformations. Nevertheless, if we consider that one does not measure tensor fields

in any experiment, but rather their components, we should inquire whether either the

passive or active views classify the general components of tensor fields as observable.

The answer is no. As the components of tensor fields depend on a choice of coordinates

or local basis, we conclude that they are generally not observable (invariant) in both

the passive and active views.3

Should we then discard this definition of observables? No. Although seemingly

exotic, Diff(M,Φ) invariants include a more familiar notion of observable quantities,

which is that of the components of the dynamical fields Φ evaluated in a local intrinsic

coordinate system. This partially satisfies the expectation that tensor fields could be

observable, but what one discovers is that the components of tensor fields are only

observable in a relational sense, i.e., if evaluated with respect to a certain choice of

reference fields. This is reasonable because arbitrary coordinate labels do not have, in

general, a physical interpretation. Only intrinsic coordinate choices can be given an

operational meaning. Indeed, by using physical fields as a generalized reference frame,

one intuitively sees that diffeomorphism invariance is guaranteed because one does not

introduce into the theory any arbitrary extraneous parameters, and one works solely

with the dynamical degrees of freedom. In other words, fields that can be measured

in relation to a set of generalized clocks and rods (the reference fields χ) count as

observables, at least in principle.

To see how the relational description of Φ relative to χ is captured by diffeomorphism-

invariant quantities, we first note that, given an intrinsic chart (U , χ), the reference

fields χ can be used to identify a point p ∈ U , which is determined by fixing the co-

ordinate values χ = s. The quantity s ∈ χ(U) denotes a fixed collection of numbers

(the intrinsic coordinate representation of the point p), which is clearly invariant under

diffeomorphisms. More precisely, we can define a collection of constant functions inM,

fp : M → χ(U) ⊂ RD, where fp(p
′) := s (∀p′ ∈ M). The functions fp are invariant

under diffeomorphisms and are defined to be trivial (or tautological) relational observ-

ables, which correspond to the values of χ relative to χ = s.4 Instead of fp, we shall

2For example, vectors in an Euclidean plane are invariant under passive rotations but not under
active ones.

3The images of scalars (functions on M) and the integrals of top differential forms are, however,
invariant in both views, albeit their physical interpretation (e.g., as measurable quantities) may not be
immediately clear. In the rest of this section, in Sec. I.1.4 and, in fact, throughout this thesis, we will
see that, in some circumstances, these objects may be interpreted as ‘relational observables’.

4Incidentally, these tautological values can be measured but not predicted. For this reason, they
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denote these observables by O[χ|χ = s] := s.

More generally, let us schematically denote by Φ|χ the values of the components of

Φ relative to the intrinsic coordinates defined by χ and let us assume that, for each

fixed value of χ = s, there are d ≥ D (not necessarily independent) Φ|χ=s quantities.

Note that, as χ are included among the dynamical fields Φ, the set of values given by

Φ|χ=s includes the trivial relational observables s. The quantities Φ|χ=s depend only

on the dynamics, i.e., they are functions solely of the dynamical fields Φ, and they do

not depend on any arbitrary choice of coordinate labels inM. For this reason, Φ|χ may

be seen as constant scalars in the abstract spacetime. As before, this is made precise

if one defines the functions O[Φ|χ = s] :M→ Rd, O[Φ|χ = s](p) := Φ|χ=s (∀p ∈M).

For each fixed value of s, the constant scalars O[Φ|χ = s] are the relational observ-

ables of the theory (of which the trivial observables O[χ|χ = s] are a particular case).

They are diffeomorphism invariants that correspond to the values of the components

of Φ relative to χ = s. Moreover, the relational observables for different values of s

form a D-parameter family of constant scalars, O[Φ|χ] := {O[Φ|χ = s],∀s ∈ χ(U)},
which may be used to define functions over the image of the reference fields, i.e.,

fΦ|χ : χ(U) → Rd, fΦ|χ(s) := Φ|χ=s. With no risk of confusion, we will also denote

fΦ|χ(s) by O[Φ|χ = s], and the interpretation of relational observables as constant

scalars in M or as functions over the image of χ should be clear from context.5

As is well-known, this construction of relational observables has its parallel in usual

gauge theories. Indeed, if one treats diffeomorphisms as a gauge symmetry, then a

local choice of intrinsic coordinate system (a choice of reference fields) is a ‘gauge

choice’.6 In this way, the components of the fields Φ are ‘gauge-fixed’ if evaluated in

an intrinsic coordinate system, i.e., in relation to the values of reference fields χ. But,

for general gauge theories, gauge-fixed quantities may be seen as a particular type of

gauge invariants.7 The same is true in GR, i.e., the gauge-fixed (relational) observables

are Diff(M,Φ) invariants.

If we consider that every measurement involves a comparison between the values of

some quantities to be measured Φ and some set of generalized clocks and rods χ, then

relational observables O[Φ|χ] provide a representation of the measurement outcomes.

An experiment is completely specified by a pair (χ = s,O[Φ|χ = s]) comprised of

the values of the chosen generalized clocks and rods and the measurement outcomes.

correspond to quantities that are sometime called ‘partial observables’ [16]. However, this terminology
is more frequently used to simply denote the (noninvariant) fields Φ.

5As we will argue that the abstract spacetime is only of an ancillary character, the fact that O[Φ|χ]
is a constant on M is of little relevance and it does not erase the dynamics, which is encoded by the
intrinsic time defined by one of the χ fields. This is the reason why relational observables are sometimes
called ‘evolving constants of motion’ [17].

6The impossibility to globally deparametrize GR is then analogous to the ‘Gribov obstruction’ in
usual gauge theories (cf. Appendix A).

7This holds due to the concept of invariant extensions (cf. Chapter 1 and Appendix A). See, in
particular, equation (A.75).
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In this way, results of local experiments, if expressed relationally, i.e., solely in terms

of the relations between the values of the dynamical fields Φ and the readings of the

generalized clocks and rods, are observable (as expected). For this reason, the gauge-

theoretical definition of observables as invariants is justified, as it not only satisfies the

requirement of a well-posed initial-value problem, but also can, in theory, describe what

is observed empirically.

While it is, in principle, possible to construct more general diffeomorphism invari-

ants, the relational observables have a direct physical interpretation. Nevertheless, as

intrinsic coordinates cannot be constructed globally inM in the most general case, one

also concludes that the relational description necessarily only captures local aspects of

the dynamics (i.e., in the domain of an intrinsic chart or, as we shall see, only in a

region of the physical spacetime).

I.1.4 Physical events

As mentioned above, the diffeomorphism invariance of GR may also have implications

for the interpretation of the abstract spacetime manifold M. The issue is whether

M is considered to be a relevant physical entity in its own right or if it is only of an

auxiliary character, i.e., an ancillary construct used in the description of the dynamics

of fields. Similarly to the concept of background independence, this is a delicate and

much debated topic [4], and one may adopt a variety of views regarding the ontology of

M. We considerM to be a subsidiary object, a choice that motivates the terminology

‘abstract spacetime’. The reason for this is the well-known analogy between diffeomor-

phism invariance and usual gauge symmetries analyzed in the previous section.

As points are not invariant under general diffeomorphisms, the abstract spacetime

M is not observable (according to the gauge-theoretical definition) and, thus, it does not

correspond to the ‘physical spacetime’Mphys. This can be understood as follows. If the

only observable physical quantities are diffeomorphism invariants and, in particular, the

relations among the dynamical fields Φ (e.g., as captured by the relational observables),

then the variations and dynamics (evolution) of Φ should be defined solely in terms of

the fields themselves and their relations. There is no other physically meaningful object.

This means that the field equations, F [Φ|B] = 0, and the notion of events should be

expressible only in terms of the fields. For instance, this is the description one obtains

by using reference fields to define generalized reference frames, as was discussed in the

previous sections.

As there is no preferred generalized reference frame, and in order to describe all

possible relations among fields and their evolution, one can choose to use an abstract

description in which all fields are treated on equal footing, and instead of describing

the variations of Φ relative to χ, one describes the variations of all fields with respect

to a certain number of arbitrary parameters or labels. The number of labels should be

the same as the maximum number of independent reference fields used in a generalized

8
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reference frame. The field equations are then written as differential equations in terms

of D independent arbitrary parameters, which can be regarded as local coordinates

in a manifold. We identify this manifold with the abstract spacetime. Thus, the

abstract spacetimeM is only a ‘parameter manifold’ that facilitates the description of

the dynamics [8]. The notion of a point p ∈ M is then an abstract one (an “abstract

event”). Its purpose (e.g., via its local coordinate representations) is to describe the

variations of the fields Φ. In this view, the background structure of GR (such as

dimension and differential structure) should be (indirectly) extracted from the relations

among the fields or, equivalently, from the field equations, and expressed as properties

of M as an abstraction [8].

One could contest this view by arguing that an operationally meaningful definition

of a point is, in fact, obtained with the use of intrinsic coordinates. In other words,

one might argue that dynamical reference fields “individuate” the points inM through

their role as homeomorphisms that define intrinsic coordinates. This is true, but is it

enough to guarantee that points in M are physical entities in their own right? Could

this be sufficient to grant M the status of a relevant physical object? In principle, the

answer is no. As was argued in the previous section and in the preceding paragraph,

the outcomes of measurements can be represented by relational observables, which are

physical quantities that obey a well-defined, deterministic evolution and that describe

the variations of Φ only with respect to the values of reference fields. The dynamics

(and any discernible physical information) is described entirely by the relations among

the fields, whereas arbitrary coordinate labels or, in fact, the notion of points inM are

not required as a matter of principle, but can be used for convenience.

Can one then relinquish the abstract spacetime from the theory? The answer is a

tentative yes. It is tentative because one must take into account the caveats: (1) in

practical applications, it may be complicated to construct the relational observables

and to dispense with M; (2) if the notion of ‘physical events’ is to be expressed only

in terms of the relations between the fields Φ and other diffeomorphism invariants, one

must devise a way to distinguish physical events solely in terms of the values of fields,

without recourse to domains of (intrinsic) charts in M. This might be challenging if

the fields assume the same values in several different domains.

In what follows, we will see how one can deal with both caveats (to some extent)

by defining physical events and the physical spacetime Mphys, which is the set of all

physical events, in a suitable way. We will argue that: (1) the physical spacetime can

be identified with a notion of ‘physical trajectory’ defined from the solutions of the

field equations; (2) more generally, the relevant object is the equivalence class [M,Φ]

obtained from (M,Φ) under actions of Diff(M,Φ) [4]; (3) this equivalence class may

be interpreted as the pair comprised of the physical spacetime and maps defined on

Mphys.

First, we discuss the notion of the physical trajectory. Let A := {(Ui, χi), i ∈ I} be

9
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a smooth intrinsic atlas in M. For every chart (Ui, χi), the reference fields χi can be

used to identify a point p ∈ Ui, which is determined by fixing the values χi = si. As

before, we assume that there are d ≥ D quantities Φ|χi=si from which the relational

observables O[Φ|χi = si](p) := Φ|χi=si (∀p ∈ M) are constructed (cf. Sec. I.1.3).

Note that, if Φ are solutions to the field equations F [Φ|B] = 0, then O[Φ|χi = si]

(∀si ∈ χi(Ui)) represent the solutions written in the intrinsic chart (Ui, χi). Thus, for

each fixed value of χi = si, the relational observables O[Φ|χi = si] may take different

values for different solutions (e.g., due to different choices of initial conditions8). Let

us assume that the set of all possible values of the observables is an d-dimensional

manifold. More precisely, we assume that the possible independent9 values of Φ|χi=si
(∀si ∈ χi(Ui)) serve as local coordinates in a region of a manifold Q, which we refer to

as the ‘configuration space of independent scalar combinations of the dynamical fields’

or, simply, the ‘configuration space’.

We can then represent a solution to the field equations written in the chart (Ui, χi)
as a map γ̃i : χi(Ui) → Q, γ̃i(si) = O[Φ|χi = si]. As γ̃i(si) includes the trivial

observables O[χi|χi = si] = si, we see that γ̃i(s
′
i) 6= γ̃i(si) if s′i 6= si and, therefore,

γ̃i is injective. The image of γ̃i represents a subset of the physical trajectory, i.e., a

subset of the configuration space defined by all the values Φ|χi=si that are realized in

a solution. If this image is a submanifold in Q, we note that the map γ̃i corresponds

to a parametrized description of this submanifold; i.e., the choice of χi as intrinsic

coordinates inM corresponds to a parametrization of a subset of the physical trajectory.

As χi is invertible on Ui, we may forgo the intrinsic coordinates and consider the

composition γi := γ̃i ◦ χi : Ui → Q, which is also injective and maps a region of M to

a region of the configuration space. Let us denote Vi := γi(Ui) = γ̃i(χi(Ui)). We define

the union of imagesMphys := ∪iVi to be the physical trajectory and we assume that it

is a smooth embedded submanifold in Q. As γi is an injection (and a bijection onto its

image), we see that there is a correspondence between the abstract spacetime M and

the physical trajectory Mphys. For this reason, we define the physical trajectory to be

the physical spacetime, and one may forgo M.

Physical events are then defined to be the elements (points) of the physical space-

time. As Mphys is a subset of Q, physical events are also points q ∈ Q, which can

be specified by d-tuples of scalar combinations of the dynamical fields. These d-tuples

represent ‘coincidences’ among the values of scalars and are sometimes referred to as

‘point-coincidences’ [8]. Is this a reasonable definition of physical events? If we un-

derstand a physical event to be an observable occurrence in the Universe, it should

correspond to the result of an experiment in the sense defined in the previous sec-

8As discussed previously, the indeterminism of the field equations is eliminated by fixing the gauge,
which is equivalent to working with a class of Diff(M,Φ) invariants.

9Note that the values of Φ|χi=si (∀si ∈ χi(Ui)) need not be independent for a given (fixed) solution.
However, we assume that the set of all possible solutions is in one-to-one correspondence with the set
of all possible independent values of Φ|χi=si (∀si ∈ χi(Ui)).
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tion, i.e., it should be specified by a complete set of relational observables O[Φ|χ = s]

(qua measurement outcomes). As a complete set of O[Φ|χ = s] (including the trivial

observables O[χ|χ = s]) is by construction a point inMphys, we conclude that this defi-

nition of physical events is indeed sensible because it can, in theory, describe observable

occurrences.

This definition obviates any reference to the abstract spacetime as a physical object

in its own right. Rather than working with points p ∈ M and intrinsic charts (Ui, χi),
one describes the dynamics in terms of physical events q ∈Mphys. As we have discussed

above, the choice of χi as reference fields is equivalent to a choice of parametrization

of a subset Vi of Mphys via the map γ̃i.

Physical events are, therefore, identified by the concomitant values of certain scalar

combinations of the dynamical fields (the reference fields χi are equal to si and the

components of Φ are equal to O[Φ|χi = si]). In other words, “when and where”

something occurs is defined by the coincidence of values of the reference fields χi, and

“what” occurs is given by the components of Φ relative to χi. This description clearly

distinguishes the set of independent variables (the values si) from the set of dependent

variables (the relational observables, understood as functions of si) on the physical

trajectory. Nevertheless, this distinction is not necessary.

The pair O[(χi,Φ)|χi = si] := (si,O[Φ|χi = si]) specifies an experiment according

to the above discussion, and it is an intrinsic coordinate representation of (p,Φ(p)),

which is a representative of the equivalence class obtained from (p,Φ(p)) under actions

of Diff(M,Φ). Thus, the set O[(χi,Φ)|χi(Ui)] := {(si,O[Φ|χi = si]),∀si ∈ χi(Ui)}
encodes the dynamics of the equivalence class of pairs (Ui,Φ|Ui) under diffeomorphisms

φ : Ui → Ui. Note that the set O[(χi,Φ)|χi(Ui)] is invariant under arbitrary diffeo-

morphisms φ : M → M because the relational observables are constant scalars on

M.

Moreover, since any pair of intrinsic charts (Ui, χi) and (Uj , χj) is smoothly com-

patible by hypothesis, then the transition map χi ◦ χ−1
j : χj(Ui ∩ Uj) → χi(Ui ∩ Uj) is

a diffeomorphism. The map from one set of relational observables to the other may

be obtained from the usual transformation properties of the tensor fields Φ under a

(passive) change of coordinates on Ui ∩ Uj . Indeed, O[Φ|χi] and O[Φ|χj ] are simply

the values of the components of Φ relative to intrinsic coordinate systems defined by

χi and χj , respectively, and the map O[Φ|χi] 7→ O[Φ|χj ] is a bijection that takes one

diffeomorphism invariant to another. For this reason, the sets O[(χi,Φ)|χi(Ui∩Uj)] and

O[(χj ,Φ)|χj(Ui ∩ Uj)] yield equivalent descriptions of the dynamics of the equivalence

class of pairs (Ui∩Uj ,Φ|Ui∩Uj ) under diffeomorphisms φ : Ui∩Uj → Ui∩Uj . In this way,

the dynamics of the equivalence class [M,Φ] is captured by relational observables, but

there is no preferred set O[(χi,Φ)|χi(Ui ∩Uj)]. This corresponds to the fact that there

is no preferred intrinsic coordinate system, which, in turn, corresponds to the freedom

to choose different parametrizations of the physical trajectory, as was discussed above.
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For this reason, we may regard all the field values in a point-coincidence on equal

footing.

Does this notion of physical events avoid the above mentioned caveats? To some

extent, the answer is affirmative. Although the construction of relational observables

may indeed be complicated, the physical trajectoryMphys, as manifold, is independent

of any particular choice of its parametrization or, what is the same, insensitive to the

separation of fields into generalized clocks and rods and nontrivial relational observ-

ables. The physical spacetime only depends on the point-coincidences; i.e., all the field

values considered democratically. Observers, in order to record their experiments, may

choose to work with a set of reference fields, but this is, in principle, a matter of con-

venience and convention. The selection of generalized reference frames simply assists

the description of physical events [8]. As any given choice of parametrization of the

physical trajectory may be applicable only to certain portions ofMphys, local observers

in generalized reference frames can only describe a portion of the physical spacetime.

Thus, one may take the view that it is the set of events, identified by the coincidences

and relations among the Φ fields, that constitutes the physical spacetime, which en-

codes the dynamics of geometry (gravitation) and of matter fields in a diffeomorphism-

invariant fashion. This is why GR is a relational theory (but only partly so, as some

features of M are fixed; i.e., some background elements B are present [4]).

Motivated by the above discussion, and inspired by the words of the poet Antonio

Machado, one could allow oneself an ever so momentary license to proclaim:

Wayfarer, only the physical trajectory

is the spacetime, and nothing more;

Wayfarer, there is no spacetime:

spacetime is made by coincidences.

Evidently, this view is not uncontroversial, and fruitful debates about the ontology

of spacetime, e.g., regarding the notions of ‘relationalism’, ‘spacetime substantivalism’

and ‘structuralism’, can be found in the literature [18].

It may seem that this discussion regarding the nature and definition of the physical

spacetime is not very useful for practical calculations and that it provides only an

interpretational framework. This may be the case in the classical theory. However, some

authors [4,16] are in favor of a relational description of the physical spacetime because,

among other reasons, it seems to provide a suitable interpretation for the observables

and dynamics in quantum gravity, one that guides the concrete calculations. This is a

view that we share and it will be adopted throughout this thesis.

12
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I.2 What quantum gravity ought to be about?

We may now return to the questions asked previously. What is quantum gravity about?

What does it describe? Although the exact answer remains elusive, any candidate the-

ory of quantum gravitation must establish what is the fate of diffeomorphism invariance

and background independence at the quantum level. It may be the case that these fea-

tures emerge semiclassically and that the fundamental quantum structure of spacetime

possesses other symmetries or must be described in a different way. Assuming that

diffeomorphism invariance and background independence should be central features of

quantum gravity is, nonetheless, a conservative and instructive option. In any case, a

proper understanding of the (emergence of the) diffeomorphism symmetry and back-

ground independence in the quantum theory is needed for the computation of quantum

corrections to the classical dynamics of tensor fields interacting with the gravitational

field or, more precisely, to the classical dynamics encoded in the physical spacetime

[M,Φ].

Let us consider the classical pair (M,Φ) of an abstract spacetime (parameter man-

ifold) and a set of tensor fields, which includes the metric field in M. The classical

dynamics is governed by the action S[Φ(x)], which is the sum of the Einstein-Hilbert

action with the action for matter fields. In analogy to the path-integral quantization

of field theories, a first attempt at quantizing gravity would be to define the formal

transition amplitude (‘propagator’) [19]

Z :=

∫
DΦ e

i
~S[Φ(x)] . (I.1)

Heuristically, and in analogy to the usual gauge theories of the Yang-Mills type [20,21],

the diffeomorphism invariance of the classical field equations derived from S[Φ(x)] seems

to imply that one should functionally integrate only over Diff(M,Φ) equivalence classes

to avoid ‘overcounting’ possible observable configurations of the fields. However, aside

from the obvious technical challenge of defining the functional integral in a rigorous

way, the physical interpretation of the amplitude (I.1) is rather obscure. The following

questions may be asked: (1) Does the amplitude (I.1) lead to a probability? If so, of

which event? (2) If (I.1) is a transition amplitude (propagator) analogous to the usual

transition amplitude in quantum mechanics or QFT, what are the in and out states?

(3) With respect to which time variable (if any) are the in and out states defined? (4) Is

the quantum evolution implied by the transition amplitude (propagator) unitary with

respect to some time variable? If not, do probabilities make sense in quantum gravity?

In general, due to the absence of a preferred coordinate system in GR and the

approximate nature of an operational interpretation of coordinates, there seems to

be no global preferred time standard with respect to which the quantum dynamics

encoded by the propagator (I.1) could be defined. This is an aspect of the well-known
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‘problem of time’ in quantum gravity [22–24]. This problem stands in stark contrast to

usual QFT and quantum theory, where a classical metric field (and, therefore, a time

standard) is part of the definition of the theory, i.e., it constitutes a background. Thus,

insisting on background independence and diffeomorphism invariance in the quantum

theory seems to make the notion of unitary time evolution an approximate one, at

best. Consequently, the conservation of probabilities or, in fact, their very definition,

would seem to be challenged in quantum gravity [6]. One sees that the problem of

time is inevitably intertwined with the measurement problem: not only the origin of

probabilities and the Born rule must be explained, but one must now explain how

quantum events are defined and with respect to which time variable (if any) the Born

rule should be applied.

If Z could be defined rigorously, it would define the inner product between a pair of

diffeomorphism-invariant states, Z = (out |in ). The invariance under diffeomorphisms

implies that Z cannot depend on any arbitrary choice of coordinates inM (just as the

classical relational observables) and, in particular, it cannot depend on an arbitrary time

coordinate. This implies that, if Ĥ is the quantum generator of time translations, then

(out |Ĥ|in ) = 0. This can, in fact, be enforced by the stronger condition Ĥ |in 〉 = 0,

which is an example of a quantum constraint equation (cf. Chapter 2). In the context of

quantum gravity, this constraint is called the Wheeler-DeWitt (WDW) equation, which

is a stationary Schrödinger equation, and it is another aspect of the problem of time.

If one attempts to construct a Hilbert space associated with the inner product Z =

(out |in ), the arduous task of constructing and interpreting quantum diffeomorphism-

invariant observables arises. In this way, one could say that quantum gravity is about

(overcoming) the problems of time, measurement and observables.

The lack of a global preferred time parameter has led to the view that quantum

gravity is a ‘timeless’ theory and that time, as the orderer of dynamics, and probability

should both be approximate or emergent concepts. DeWitt has suggested that both

could be phenomenological [25]. That this is a viable option becomes clear in the

so-called ‘Born-Oppenheimer’ (BO) approach to quantum gravity (cf. Chapters 5, 6

and Appendix B), where a ‘semiclassical’ time variable emerges in the limit where

some of the fields Φ, denoted by Φheavy, exhibit a semiclassical dynamics, which is

encoded in appropriate Wentzel-Kramers-Brillouin (WKB) factors in the amplitudes

(wave functions). In this particular case, the semiclassical time can be defined as

a parameter that: (1) labels the (approximately) classical trajectories of Φheavy; (2)

orders the dynamics of the rest of the fields Φ. In the reasoning of the BO approach,

conserved probabilities can only be (approximately) defined if the semiclassical time

emerges. In its absence, the theory is generally considered to be strictly timeless and

amplitudes (wave functions) are not directly tied to probabilities.

While the BO approach addresses the problem of time, one could argue that it does

not offer a complete solution or, if the solution is complete, it is not the only possible

one. Indeed, if the origin of the problem is the insistence on background independence
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and diffeomorphism invariance in the quantum realm, it is reasonable to expect that its

solution will make prominent use of these concepts. As we have seen, one encounters a

kind of problem of time in the classical theory as a form of indeterminism (related to the

hole argument), which is analogous to the indeterminism found in usual gauge theories

for quantities that are not gauge invariant. In principle, the solution to this issue is

to construct the classical physical spacetime [M,Φ], which captures the dynamics in a

diffeomorphism-invariant way. As was discussed in §I.1.4, the physical spacetime is the

physical trajectory, which encodes all the point-coincidences that occur in a solution

to the field equations. However, there are no trajectories in the quantum theory10.

For this reason, both the abstract and the physical spacetimes would then seem to

disappear. The best one can hope for is to define a set of relational Heisenberg-picture

operators, which would be the counterparts of the classical relational observables, and

would describe the measurements performed by local observers. If this can be done, a

notion of quantum relational dynamics becomes available. In particular, the in and out

states should be understood in relational terms. This is the main idea to be pursued

in this thesis (cf. Chapter 2). We will see that states used in the BO approach are a

particular case of states for which a unitarity, relational time evolution is well-defined.

Although it is not obvious whether the traditional Hilbert space formulation of

quantum theory is applicable to a theory constrained by the WDW equation, we will

argue that a straightforward analogy between the classical and quantum theories shows

that one can define a physical Hilbert space (as opposed to a physical spacetime) on

which a notion of quantum relational evolution is available. The ambiguity of unitary

evolution may be seen as an aspect of indeterminacy in gauge theories, and is simply

related to ambiguity in the choice generalized reference frames with which observers

record the evolution of the physical fields.

As there is no external, preferred time parameter, we refer to quantum theories

governed by a WDW constraint as ‘timeless’. However, this timelessness is not strict

(i.e., dynamics is not abolished), but rather a symptom of the underlying relationalism

of the theory. A strict timelessness may be overly restrictive. Although our usual expe-

rience of time is undeniably linked to a classical spacetime, we believe it is worthwhile

to consider what the possible phenomenological consequences of a quantum relational

evolution are.

I.3 What is this thesis about?

Efforts to build and understand quantum gravitation have been ongoing for nearly a

century. From the early insights of Einstein [28] in the days of old quantum theory to

the current sophisticated and elegant approaches [6,29], we presently have a multitude

of theories, each with its distinct advantages and shortcomings. Different approaches

10Unless one considers, for example, the de Broglie-Bohm theory [26,27].
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also rest on different sets of assumptions regarding how quantum gravity is to be built

and which quantities should be quantized: the metric or some related geometric object;

strings; or even some other entity. Nevertheless, the problems of time, measurement

and observables seem to cloud the proper implementation and interpretation of all the

known approaches.

In this thesis, we set out to present a (provisional) formalism for the construction

and interpretation of quantum relational observables and their dynamics. We restrict

ourselves to mechanical models in order to avoid the additional field-theoretical diffi-

culties of regularization and the possibility of anomalies. Although these are important

issues, we consider that they obscure the essence of the problem of time and diffeo-

morphism invariance and their interplay with quantum theory. Our interest is not to

develop the ultimate, most realistic formalism, but rather to work with a framework

which is as simple as possible and yet rich enough to capture the essence of the prob-

lem of time and a possible solution based on relationalism. Thus, we study “timeless

quantum mechanics” in its own right, as a toy model that captures essential features

of gravity (relationalism, diffeomorphism invariance) and quantum mechanics (proba-

bilities, operators, Hilbert space).

I.3.1 Outline of the thesis

In Chapter 1, we discuss the classical theory of mechanics with worldline diffeomorphism

symmetry, which is the analogue of the four-dimensional diffeomorphism symmetry

in GR. We extensively discuss the implications of this symmetry for the notion of

observables and their dynamics. Chapter 2 deals with the quantization of the results of

the previous Chapter. Our focus is on proposing a consistent formalism of construction

and interpretation of quantum relational observables. We believe that the framework we

present is useful to a wide variety of models, and may help us sharpen the appropriate

questions that we can ask in quantum gravity. We also compare our results with

other proposals in the literature. Chapter 3 deals with the simple example of the

free relativistic particle, which clearly illustrates the results of Chapters 1 and 2. In

Chapter 4, we apply our formalism to cosmological toy models and discuss how the

notion of relational quantum dynamics presented in Chapter 2 can be used to discuss

the quantum evolution of model universes and, in particular, to establish a criterion

of avoidance of the classical singularity in the quantum theory. Chapters 5 and 6 deal

with a weak-coupling expansion that can be used to extract quantum-gravitational

corrections to the relational dynamics in the early Universe. The general formalism is

established in Chapter 5 and, in particular, we show how the dynamics obtained via

the weak-coupling expansion procedure corresponds to the quantization of a classical

relational system. Finally, in Chapter 6, we discuss the interpretation and observability

of quantum-gravitational effects, which are embedded in a relational formalism, to a

simple model of cosmological perturbations over a (quasi-)de Sitter universe.
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Chapter 1

Classical Diffeomorphism

Invariance on the Worldline

In this Chapter, we present a general framework for the analysis of mechanical systems

with worldline diffeomorphism symmetry. The formalism presented here can be seen

as a (partly) relational account of classical mechanics, and it is based on a direct

application or extension of methods commonly used in constrained Hamiltonian systems

or, in particular, in gauge theories, which are reviewed in Appendix A.1

1.1 The abstract worldline

As discussed in the Introduction, we start with a pair (M,Φ) comprised of the ab-

stract spacetimeM and of tensor fields Φ defined onM. The restriction to a mechani-

cal model is obtained by considering thatM is a one-dimensional topological manifold

(D = 0 + 1), in which case it is referred to as the ‘abstract worldline’ or simply the

‘worldline’. We assume thatM is equipped with a smooth structure (a maximal smooth

atlas A). An arbitrary choice of local coordinate onM is denoted by τ . More precisely,

we consider an arbitrary chart (U ⊂M, ζ) in A such that ζ : U → ζ(U) ⊂ R, ζ(p) = τ ,

where ζ(U) ⊂ R is an open interval. The corresponding coordinate basis is given by

d/dτ . Given two charts (U1, ζ1), (U2, ζ2) ∈ A, the local coordinate representation of a

map F :M→M is Fζ2ζ1 := ζ2 ◦F ◦ ζ−1
1 : ζ1(U1 ∩F−1(U2))→ ζ2(U2). If the two coor-

dinate maps are the same, ζ2 = ζ1 = ζ, we write Fζ2ζ1 = Fζ . Without risk of confusion,

we will identify F with Fζ2ζ1 or we will write “F in the local coordinate τ” instead of

Fζ . Analogously, the local coordinate representation of a function f : M → R in a

chart (U , ζ) is fζ := f ◦ ζ−1 : ζ(U) → R. We will identify f with fζ or write “f in the

local coordinate τ” instead of fζ .

Let e(τ) be a nonvanishing and continuous worldline scalar density; i.e., one with a

constant sign on ζ(U). Then ωe := e(τ)dτ defines an orientation and it can be seen as

1Part of this Chapter is based on [30,31].
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a ‘volume form’ on M. The quantity

η(U) :=

∫
U
ωe =

∫
ζ(U)

dτ e(τ) (1.1)

is the (signed) volume, more commonly referred to as the ‘proper time’, that corre-

sponds to the region U ⊂M. We may also define the proper time as the antiderivative

of e(τ),

η :=

∫
dτ e(τ) ,

dη

dτ
(τ) = e(τ) . (1.2)

Furthermore, e(τ) can be used to define a notion of distance on the worldline. For

an arbitrary pair of worldline vector fields, V(1,2) = ε(1,2)(τ)d/dτ , one can define the

worldline metric as g(V(1), V(2)) = e2(τ)ε(1)(τ)ε(2)(τ).2 For this reason, we refer to e(τ)

as the ‘einbein’. The transformation

e(τ) = ẽ(τ)Ω(τ) , (1.3)

where Ω(τ) is a nonvanishing worldline scalar (with constant sign), corresponds to a

‘change of einbein frame’.3

In principle, a general tensor field on the worldline is defined as T := T (τ) (⊗αi=1dτ)⊗(
⊗βi=1d/dτ

)
. Under a general coordinate transformation, τ 7→ τ ′, its component trans-

forms as T (τ) 7→ T ′(τ ′) = T (τ) (dτ/dτ ′)α−β. For arbitrary values of α − β, this also

coincides with the general transformation of an arbitrary tensor density in the world-

line. Without loss of generality, we may use the einbein to write the tensor component

in terms of a worldline scalar f(τ),

T (τ) := f(τ) (e(τ))α−β , (1.4)

because e(τ) is nonvanishing.

1.2 Dynamics and gauge symmetry

A concrete choice of the fields Φ and of the dynamics defines the ontology of the (0+1)-

dimensional universe modeled by (M,Φ). For simplicity, let us consider a family of d

scalars denoted by qi(τ) (i = 1, . . . , d), the dynamics of which is obtained by imposing

2This is to be compared to the vielbein formula gµν = eaµe
b
νηab for a general (pseudo-)Riemannian

manifold.
3This is the counterpart of the transformation eaµ = Ωab ẽ

b
µ, gµν = ẽaµẽ

b
ν η̃ab.
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1.2. Dynamics and gauge symmetry

a set of field equations that may be derived by extremizing the action functional

S :=

∫
U
ωL =

∫ b

a
dτ L , (1.5)

where we have defined the interval ζ(U) := (a, b) ⊂ R. We have also defined ωL := Ldτ ;

i.e., the Lagrangian is a worldline scalar density. How can we construct L? First, we

make the simplifying assumption that the dynamics of the scalar fields is described by

differential equations which are, at most, of second order in τ . In this way, we consider

that L depends on q(τ) and, at most, on q̇(τ), where · ≡ d/dτ . Second, we define a

reparametrization to be a change of worldline coordinate, τ 7→ τ ′(τ). A field-dependent

reparametrization is one in which τ ′ has a functional dependence on a solution to the

field equations. This means that it depends on τ and on the boundary conditions, and

we adopt the condensed notation

τ 7→ τ ′(τ) ≡ τ ′(τ ; q(τ), q̇(τ)) ≡ f(τ ; q(a), q(b)) , (1.6)

where f is an arbitrary function. We will often omit the field dependence and simply

write τ 7→ τ ′(τ). We note that (possibly field-dependent) reparametrizations consti-

tute a symmetry if the functional form of the action (1.5) remains the same (up to

a boundary term) under the transformations (1.6) [see also (A.6)]. This means that

these transformations amount to relabeling the arguments of the Lagrangian, whereas

the structure of the action remains the same. What can be said of the functional form

of L in this case?

If L ≡ L(q, q̇; τ) has an explicit time dependence, a reparametrization (1.6) would

not only correspond to a relabeling of the arguments of the Lagrangian, but also to a

change in the structure of the action, as the explicit dependence on τ would generally

acquire a different functional form, τ 7→ τ ′(τ).4 For this reason, in order to guarantee

the form invariance of the action, we discard the possibility of an explicit dependence

on τ in the Lagrangian; i.e., L ≡ L(q, q̇). Furthermore, we note that a scalar-density

potential term, which only depends on q(τ), cannot be constructed solely from worldline

scalars.5 All terms in L must then depend on the velocities, such that the Lagrangian L
must be a ‘generalized kinetic term’, which we denote by L ≡ K(q, q̇). The requirement

4For example, the worldline scalar density K(q̇; τ) = τ q̇, which is the identity function times a veloc-
ity, is mapped to (τ ′+1)dq′/dτ ′ =: K′(dq′/dτ ′; τ ′) [with q′(τ ′) = q(τ(τ ′))] under the reparametrization
τ ′(τ) = τ − 1. In this way, the form of the coefficient of the velocity is changed and the transformation
does not amount to a relabeling of τ by τ ′ and of q(τ) by q′(τ ′).

5Evidently, one can define the worldline one-form V (q(τ))dτ . However, if this one-form is used to
define a scalar-density potential term, then the functional form of the action (1.5) will not be invariant
under (1.6) because the potential term acquires a Jacobian factor dτ/dτ ′ under reparametrizations,
which alters the structure of (1.5). In this way, reparametrizations would not correspond to a mere
relabeling of the physical fields. See also the discussion after (1.9).
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1. Classical Diffeomorphism Invariance on the Worldline

of form invariance of the action then implies that K must satisfy

K
(
q′(τ ′),

dq′

dτ ′
(τ ′)

)
= K

(
q(τ),

dτ

dτ ′
dq

dτ
(τ)

)
=

dτ

dτ ′
K
(
q(τ),

dq

dτ
(τ)

)
(1.7)

under the reparametrization (1.6). This corresponds to the conditions that: (1) K
is a homogeneous function of the velocities; (2) the scalar-density character of K is

derived solely from its field constituents and not from an ad hoc definition (such as in

footnote 5). For every fixed value of τ , we find from (1.7) the relation

K(q(τ), q̇(τ)) =
∂K
∂q̇i

q̇i(τ) , (1.8)

where i = 1, . . . , d and a summation over repeated indices is implied. From (1.8),

we also conclude that the quantities ∂K/∂q̇i are worldline scalars.6 Due to (1.7),

it is straightfoward to verify that the functional form of the action (1.5) is indeed

invariant under the reparametrizations (1.6), without an additional boundary term,

if τ ′(a) = a, τ ′(b) = b. One then says that the action is invariant under (possibly

field-dependent) time reparametrizations that preserve the endpoints.

To construct a potential term V for the scalars, we allow the introduction of the

einbein as an extra degree of freedom, such that

V(q(τ); e(τ)) := e(τ)V (q(τ)) , (1.9)

where V (q(τ)) is a scalar. In this way, we may define L := K − V. Note that the

functional form of the action (1.5) is only invariant under reparametrizations (1.6)

[with τ ′(a) = a, τ ′(b) = b] if e(τ) is considered as a dynamical variable (with its

own field equation). Otherwise, if e(τ) is taken as a ‘background’ element (an en-

tity that is not subject to dynamical law), the functional form of (1.5) may change

under reparametrizations, as the transformations would amount not only to relabeling

the arguments of the Lagrangian [in this case, q(τ) and q̇(τ)], but also to changing its

structure [e.g., the form of the background pre-factor of V (q(τ)); see also footnote 5].

Thus, although e(τ) serves as an auxiliary quantity in the description of the dynamics

of the scalars, it must be considered as an additional physical field. Then, our choice

of fields is Φ(ζ−1(τ)) = (q(τ), ωe = e(τ)dτ).

More generally, we can also allow a dependence on e(τ) in the kinetic term7 and

6In addition to q(τ), the functions ∂K/∂q̇i may depend on scalar combinations of the velocities,
such as q̇i/q̇j or q̇iq̇j/(q̇k)2 (i, j, k = 1, . . . , d).

7Note that, if the only dependence of the Lagrangian on e(τ) is in the potential term, the field
equation for the einbein is the constraint V (q(τ)) = 0. If the kinetic term also depends on e(τ), the
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1.2. Dynamics and gauge symmetry

in the reparametrizations (1.6), τ ′(τ) ≡ τ ′(τ ; q(τ), q̇(τ); e(τ)). Then, the Lagrangian

could have a general functional form L ≡ L(q(τ), q̇(τ); e(τ)). Similarly to (1.8), we find

L(q(τ), q̇(τ); e(τ)) =
∂L
∂q̇i

q̇i(τ) +
∂L
∂e
e(τ) (1.10)

as a consequence of the requirement of form invariance. Thus, L it is a homogeneous

function of q̇(τ) and e(τ). From (1.10), the quantities ∂L/∂q̇i and ∂L/∂e are are

seen to be scalars.8 Although one might attempt to include other types of fields or

different kinds of dynamics [such as higher derivatives of q(τ) or, perhaps, of e(τ)],

this will not be done here, and (1.10) will be sufficient for our purposes [see discussion

preceding (1.19)].

As already mentioned, the action (1.5) with Lagrangian (1.10) and with e(τ) as a

physical field is invariant under the (passive) reparametrizations (1.6) with τ ′(a) = a

and τ ′(b) = b. The action is also invariant under (active) worldline diffeomorphisms

that preserve U . As before, this is a consequence of the fact that the scalar-density

character of L is derived solely from its field constituents. Indeed, let φ :M→M be

a diffeomorphism, then the action (1.5) can be rewritten as

S =

∫
U
ωL =

∫
φ−1(U)

φ∗ωL , (1.11)

where φ∗ is the pullback by φ. Moreover, in the local coordinate τ , we obtain

L(φ∗q(τ), φ∗q̇(τ);φ∗e(τ)) = φ∗L(q(τ), q̇(τ); e(τ)) , (1.12)

in a similar fashion to (1.7). Thus, if φ(U) = U , then (1.11) leads to

S =

∫ b

a
dτ L(q(τ), q̇(τ); e(τ)) =

∫ b

a
dτ L(φ∗q(τ), φ∗q̇(τ);φ∗e(τ)) ; (1.13)

i.e., the functional form of the action is invariant under φ, and the diffeomorphism

amounts to a relabeling of the arguments of the Lagrangian. Thus, the field-dependent

(passive) reparametrizations and (active) diffeomorphisms constitute the gauge (local

symmetry) transformations of the theory [9,10], which can then be seen as a toy model

of GR [32,33].

Let S(τ) := (q(τ), e(τ)) be a solution to the field equations derived from (1.5). Then,

constraint will involve the velocities and, in the canonical theory, the momenta (cf. §1.3.1).
8As in the case of K, the functions ∂L/∂q̇i and ∂L/∂e may depend on scalar combinations of the

velocities and the einbein, such as q̇i/e or q̇iq̇j/(q̇ke) (i, j, k = 1, . . . , d).
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1. Classical Diffeomorphism Invariance on the Worldline

due to (1.13), we note that S ′(τ) = φ∗S(τ) = (φ∗q(τ), φ∗e(τ)) is another solution. We

refer to the equivalence classes of solutions under diffeomorphisms as ‘gauge orbits’.

In this way, we denote the gauge orbit of S(τ) as [S(τ)], and any solution on [S(τ)]

can be written as S ′(τ) = φ∗S(τ) for φ ∈ Diff(M,Φ). We can regard S(τ) as a choice

of ‘origin’ in the gauge orbit. Clearly, this choice is arbitrary, since S(τ) = φ∗0S0(τ)

implies that S ′(τ) = φ∗S(τ) = (φ0 ◦ φ)∗S0(τ) =: φ′∗0 S0(τ). We assume that it suffices

to consider diffeomorphisms that are connected with the identity, which amounts to

the hypothesis that gauge orbits have a trivial topology. In this way, it is useful to

consider the one-parameter family of diffeomorphisms φl : M → M generated by a

vector field V = v(τ)d/dτ , where v(τ) ≡ ṽ(τ ; q(τ), q̇(τ), e(τ)). In the local coordinate

τ , we have φl(τ) = τ(l), where τ(l) is an integral curve of V ; i.e., it is a solution to

dτ(l)/dl = v(τ(l)) with τ(0) = τ , and thus φ0 is the identity. The transformed scalars

and scalar densities are, respectively, given by

q′il (τ) := φ∗l q
i(τ) = qi(τ(l)) ,

ω′l(τ) := φ∗l ω(τ) =
dτ(l)

dτ
ω(τ(l)) ,

(1.14)

and, in particular, the transformed Lagrangian reads [cf. (1.12)]

L(q′l(τ), q̇′l(τ); e′(τ)) =
dτ(l)

dτ
L(q(τ(l)), q̇(τ(l)); e(τ(l))) . (1.15)

Infinitesimal displacements along the integral curves of V can be seen as local time

translations,

τ ′ := τ(δl) = τ + v(τ)δl =: τ + ε(τ) , (1.16)

and the infinitesimal change of worldline scalars and scalar densities is found from (1.14)

to be

δε(τ)q(τ) := δl£V q(τ) = ε(τ)
dq(τ)

dτ
,

δε(τ)ω(τ) := δl£V ω(τ) =
d

dτ
(ε(τ)ω(τ)) ,

(1.17)

where £V is the Lie derivative along V .9 In particular, the change in L is found to be

[cf. (1.10), (1.15) and (1.17)]

δε(τ)L =
d

dτ
(ε(τ)L) . (1.18)

9Note that (1.16) and (1.17) are, respectively, particular cases of the general transformations (A.3)
and (A.4) considered in Appendix A. In this case, there are N = 1 arbitrary functions εi(τ) ≡ ε(τ),
and ε(τ) = ε(τ).
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1.3. The total Hamiltonian

Due to (1.18), the action (1.5) is seen to be invariant up to a boundary term, and the

field equations remain of the same form.10

Incidentally, if one introduces more general worldline tensors as fundamental degrees

of freedom, it is possible to construct potential terms solely from the scalars. For

example, let K(τ) be a field that transforms inhomogeneously as δε(τ)K(τ) = εK̇ + ε.

The Lagrangian LK := −V (q)K̇ + αi(q)q̇
i − V (q), where V (q) and αi(q) are scalars,

then transforms as in (1.18); i.e., its scalar-density character follows solely from its

field constituents [cf. discussion after (1.7)]. In [33], a similar example was considered

in section 4.3.3, where it was noted that LK can be obtained from a Lagrangian of

the form −V (q)q̇1 + αi 6=1(q)q̇i 6=1 [cf. (1.10)] via the field redefinition q1(τ) = K(τ) + τ .

Notice, however, that this redefinition is not to be interpreted as expressing q1(τ) as the

sum of an object K(τ) with the identity function f(τ) = τ , since K(τ) would otherwise

be a scalar; i.e., K(τ) = q1(τ) − τ would imply K ′(τ) = q1′(τ) + τ ′(τ) [cf. (1.16)

and (1.14)]. Rather, the redefinition is to be seen as definition of K(τ) at all points of

the gauge orbit; i.e., K(τ) = q1(τ) − τ implies K ′(τ) = q1′(τ) − τ . This then leads to

the inhomogeneous transformation

δε(τ)K(τ) = K ′(τ)−K(τ) = ε(τ)q̇(τ) = ε(τ)(K(τ) + 1) . (1.19)

As already mentioned, our choice of fields is comprised of the scalars q(τ) and the

einbein e(τ), and we will not consider degrees of freedom such as K(τ).

1.3 The total Hamiltonian

The local symmetry (1.17) implies that the canonical theory is constrained. This is a

general feature of canonical gauge systems (cf. Appendix A).11 The constraints follow

from the fact that the Lagrangian is ‘singular’; i.e., the determinant of its Hessian ma-

trix with respect to the velocities vanishes [34]. Indeed, we find from (1.10) the identity

∂2L/∂ė2 = 0. In this case, some of the field equations do not involve accelerations,

and they constrain the possible values of the fields and velocities. In the corresponding

canonical theory, the possible values of the fields and conjugate momenta are con-

strained, and this signals that not all points of phase space correspond to physically

allowed motions.

10The action (1.5) is, in general, only invariant if ε(a) = ε(b) = 0; i.e., if the diffeomorphisms φl
reduces to the identity at the endpoints. This can be obtained if v(τ) = 0 for τ /∈ ζ(U) = (a, b). If
this is not the case, the action can be made invariant if one adds appropriate boundary terms in the
right-hand side of (1.5), but this will not be done here (see [35] for details).

11However, not all constrained Hamiltonian theories correspond to gauge systems due to the presence
of second-class constraints (cf. §A.2.4).
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1. Classical Diffeomorphism Invariance on the Worldline

1.3.1 General case and gauge indeterminism

To construct the constrained canonical theory, we first define canonical momenta via

the usual Legendre map,

pe :=
∂L
∂ė

= 0 , pi :=
∂L
∂q̇i

(i = 1, . . . , d) . (1.20)

We note that the momenta pi(τ) conjugate to qi(τ) are also worldline scalars because

they are equal to ∂L/∂q̇i (i = 1, . . . , d). The momentum conjugate to the einbein is

constrained to vanish, and thus pe = 0 is a primary constraint of the theory (according

to the terminology used in the Rosenfeld-Dirac-Bergmann algorithm [36–39]; cf. §A.2.3).

We assume this is the only primary constraint.12 It determines a hypersurface in Γ,

the unconstrained phase space of the theory (also called the auxiliary phase space;

cf. §A.2.1). We refer to this hypersurface as the ‘primary constraint hypersurface’ and

we denote it by Σ(1).

The primary constraint implies that one cannot invert pe = ∂L/∂ė to find ė(τ) in

terms of e(τ), pe(τ) and q(τ), p(τ), and ė(τ) remains undetermined. In contrast, it is

possible to invert pi = ∂L/∂q̇i to express the velocities q̇i(τ) in terms of qi(τ), pi(τ) and

e(τ) because no other primary constraints are present. Due to the arbitrariness of ė(τ),

the Legendre transform that defines the canonical Hamiltonian is only well defined on

the primary constraint hypersurface. In this way, the canonical Hamiltonian reads

Hc(q(τ), p(τ); e(τ)) := pi(τ)q̇i(τ)− L(q(τ), q̇(τ); e(τ)) = −∂L
∂e
e(τ) , (1.21)

where a summation over repeated indices is implied. We used (1.10) and (1.20) to

obtain the last equality in (1.21). Thus, the canonical Hamiltonian is a worldline scalar

density (as it should be).

Furthermore, the primary constraint must be conserved by the time evolution if the

dynamics defined by (1.5) is consistent. Using the Euler-Lagrange equation

∂L
∂e

=
dpe
dτ

= 0 , (1.22)

we find that the conservation of pe = 0 leads to a new (secondary) constraint,

C(q(τ), p(τ)) := −∂L
∂e

= 0 . (1.23)

12See the comment on footnote 13.
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1.3. The total Hamiltonian

As ∂L/∂e is a scalar, the secondary constraint cannot depend on e(τ); i.e., it is a

function solely of q(τ) and p(τ). For simplicity, we assume that the Rosenfeld-Dirac-

Bergmann algorithm (cf. §A.2.3) terminates at this stage. This means that demanding

conservation of the secondary constraint does not lead to new constraints. In this way,

the theory only has one primary and one secondary constraint.13 We will see how these

two constraints are related to the gauge symmetry in §1.6. From (1.21) and (1.23),

we note that the canonical Hamiltonian is proportional to the secondary constraint,

Hc(q(τ), p(τ); e(τ)) = e(τ)C.

The dynamics dictated by the canonical Hamiltonian, which is only well-defined on

the primary constraint hypersurface Σ(1), can be determined by considering variations

of q(τ), p(τ), e(τ) and pe(τ) that are tangent to Σ(1) but otherwise arbitrary [33]. Since

Σ(1) is defined by pe = 0, we may take δq(τ), δp(τ) and δe(τ) to be arbitrary, and

δpe = 0. From (1.21) and (1.23), we find

(
∂Hc

∂q

i

+
∂L
∂qi

)
δqi +

(
∂Hc

∂pi
− q̇i

)
δpi + Cδe = 0 , (1.24)

which leads to the equations

q̇i =
∂Hc

∂pi
, ṗi =

∂L

∂qi
= −∂Hc

∂qi
,

C(q(τ), p(τ)) = 0 .

(1.25)

We note that (1.25) are valid on Σ(1); i.e., they hold if pe = 0. Let Σ be the hypersurface

defined by the constraints pe = 0 and C = 0. From (1.25), we can then define the

evolution of any function f(q, p; e, pe; τ) on the auxiliary phase space as follows:

ḟ ≡ df

dτ
=

(
∂f

∂τ
+
∂f

∂qi
q̇i +

∂f

∂pi
ṗi +

∂f

∂e
ė+

∂f

∂pe
ṗe

)
Σ

. (1.26)

The restriction to Σ implies, in particular, that ṗe = −C = 0 [cf. (1.22) and (1.23)].

Moreover, as ė is undetermined, we may define it to be an arbitrary function in the

auxiliary phase space Γ; i.e., ė = λ(q, p; e, pe; τ). Finally, we may recast (1.26) in terms

of the Poisson brackets defined in Γ [cf. (A.24)],

{f, g} :=
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
+
∂f

∂e

∂g

∂pe
− ∂f

∂pe

∂g

∂e
. (1.27)

13Following the comment on footnote 7, if the Lagrangian is of the form K(q, q̇) − eV (q), then a
secondary constraint is V (q) = 0. In this case, further constraints will be present due to the structure
of the kinetic term (cf. §1.3.2). For simplicity, we assume that this is not the case here.
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1. Classical Diffeomorphism Invariance on the Worldline

We find

ḟ ≡ df

dτ
=

(
∂f

∂τ
+ {f,Hc}+ λ{f, pe}

)
Σ

(1.28)

from (1.25). In what follows, identities that are only valid on Σ will be denoted by

Dirac’s weak equality sign ≈ [40] (cf. Notations, Conventions and Terminology

and Appendix A). For example, if f, g, α and β are auxiliary phase-space functions such

that {f, g} = αC + βpe, then we write {f, g} ≈ 0. Similarly, for λ ≡ λ(q, p; e, pe; τ),

we obtain λ{·, pe} ≈ {·, λpe}. Note that we set the constraint functions to zero only

after the Poisson brackets are evaluated. In this way, we can rewrite (1.28) as [see

also (A.41)]

ḟ ≡ df

dτ
≈ ∂f

∂τ
+ e{f, C}+ λ{f, pe} ≈

∂f

∂τ
+ {f,HT } , (1.29)

where we defined

HT (q, p; e, pe; τ) := eC(q, p) + λ(q, p; e, pe; τ)pe . (1.30)

We refer to this function as the total Hamiltonian (cf. §A.2.2), and we note that it is

a combination of the primary and secondary constraints of the theory. Thus, HT ≈ 0;

i.e., HT vanishes on the constraint hypersurface (one also says that it vanishes ‘on

shell’). The total Hamiltonian is a worldline tensor of the same type as Hc and L; i.e.,

it is a scalar density.

In the particular case in which f(q, p; e, pe; τ) = e(τ), we find from (1.29) the con-

dition ė = λ, as expected.14 Due to the arbitrariness of λ, the total Hamiltonian HT

can be seen as an arbitrary extension of the canonical Hamiltonian Hc off the primary

constraint hypersurface.15 A choice of λ corresponds to a choice of this extension and

to a choice of gauge, as we will see in §1.6.

Is the evolution determined by HT (q, p; e, pe; τ) well defined? From (1.27), it is

straightforward to verify that the constraint functions Poisson-commute, {pe, C} = 0,

which means that: (1) the constraint algebra is Abelian; (2) the constraint functions

are first class (cf. §A.2.4). The first property is a special feature of 0 + 1 dimensions,

and the algebra of constraints in higher dimensions (e.g., in GR) is more complicated

(more constraints are present, and they are associated with a non-trivial algebra) [6].

As reviewed in Appendix A, property (2) is related to the gauge symmetry, a topic we

14This result, together with (1.21), (1.23) and (1.30), implies that we can write the total Hamiltonian
in the suggestive form HT = peė + piq̇

i − L. Nevertheless, this is not a proper Legendre transform
because ė = λ is arbitrary.

15See Theorem 1.1 and Appendix 1.A of [33] and the derivation of (A.42) in Appendix A for a
general procedure to extend functions off the constraint hypersurface.
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1.3. The total Hamiltonian

discuss in §1.6. Due to (1.30), the total Hamiltonian weakly Poisson-commutes with

the constraint functions, and thus it is also first class.

In particular, we obtain from (1.29) the equations dC/dτ ≈ 0, dpe/dτ ≈ 0 and

dHT /dτ ≈ 0; i.e., the constraint functions are weakly conserved by the time evolution

or, equivalently, the constraint hypersurface is invariant under time translations because

HT is first class. We conclude from this that the constraints are satisfied at all times

provided the initial data (q(τ0), p(τ0), pe(τ0)) are chosen such that C(q(τ0), p(τ0)) = 0

and pe(τ0) = 0 at an arbitrary instant of time τ0. Thus, the constraints are seen to be

restrictions on the initial values of the fields or, equivalently, on the allowed (physical)

motions. This holds irrespective of the values of e(τ) and λ(q, p; e, pe; τ), and it follows

from the consistency of the theory ensured by the Rosenfeld-Dirac-Bergmann algorithm

(cf. §A.2.3).

As λ is arbitrary, we conclude that the evolution of the einbein and, consequently,

of the scalars q(τ) and p(τ) is also arbitrary [cf. (1.25) and (1.29)]. In this way, the

specification of initial data at an arbitrary coordinate instant τ0 is not sufficient to

determine the physical trajectory, as different solutions associated with the same set of

allowed initial values can be obtained if different choices of λ are made. Equivalently,

one can state that the solutions of the field equations generally depend on arbitrary

functions of time τ . We will see that this kind of indeterminism is related to the

gauge symmetry of the theory (cf. §1.6 and §A.2.5) and that it warrants a discussion

on the definition of observables, the evolution of which is well-defined (cf. §1.7, §1.8

and §A.2.7).

Finally, the evolution (1.29) determined by the total Hamiltonian on the constraint

hypersurface Σ may be derived by extremizing an action [33] as follows: from (1.21),

we can rewrite the action (1.5) as

S =

∫ b

a
dτ

[
pi(τ)q̇i(τ)− e(τ)C(q(τ), p(τ))

]
. (1.31)

The field equation associated with e(τ) is the secondary constraint, and e(τ) is arbi-

trary. The primary constraint has been tacitly solved. However, we can include an

additional field λ(τ) to obtain both the primary constraint and the equation ė = λ

from a variational principle. The modified action reads

S =

∫ b

a
dτ

[
pi(τ)q̇i(τ) + pe(τ)ė(τ)− e(τ)C(q(τ), p(τ))− λ(τ)pe(τ)

]
=:

∫ b

a
dτ

[
pi(τ)q̇i(τ) + pe(τ)ė(τ)−HT (q, p; e, pe;λ)

]
.

(1.32)

In the variational principle associated with (1.32), the variations of the fields are only
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1. Classical Diffeomorphism Invariance on the Worldline

constrained to vanish at the endpoints, but the primary constraint is no longer im-

posed. Rather, it follows as the field equation associated with the arbitrary field λ(τ),

which serves as a Lagrange multiplier. Note that, by considering λ(τ) as one of the

dynamical fields (with its own field equation), the functional form of the action (1.32)

is invariant under diffeomorphisms, which correspond to a relabeling of the arguments

of the Lagrangian [including λ(τ); see footnote and 5 and the discussion after (1.9)].

Furthermore, as already mentioned, we will see in §1.6 that the fixation of a choice of

λ(τ) ≡ λ(q, p; e, pe; τ) (i.e., of a particular extension HT (q, p; e, pe; τ) of the canonical

Hamiltonian) corresponds to fixing the gauge freedom. Finally, in the variational princi-

ple associated to (1.32), e(τ) and λ(τ) are independent fields. The relation ė(τ) ≈ λ(τ)

follows as a field equation, rather than a definition.

1.3.2 A particular case

Let us briefly consider the particular case in which L does not depend on e(τ); i.e.,

the Lagrangian is a function solely of q(τ) and q̇(τ) [it is a generalized kinetic term;

cf. (1.7)]. Then, we do not include the pair (e, pe) in the auxiliary phase space of the

theory. Using ∂L/∂e ≡ 0 in (1.21), we see that the canonical Hamiltonian Hc vanishes

identically [32, 33].16 Moreover, by taking derivatives of (1.21) and using Hc ≡ 0, we

obtain the condition

∂2L
∂q̇i∂q̇j

q̇j = 0 , (1.33)

which implies that the Lagrangian is singular also in this case [34]. Due to (1.33), it is

not possible to invert pi(τ) = ∂L/∂q̇i, and thus the velocities cannot all be expressed in

terms of the configuration variables and momenta. Rather, the momenta pi(τ) obey a

set of primary constraints (cf. Appendix A). As before, we assume that there is only one

primary constraint. Thus, instead of pe = 0, one now finds a primary constraint on the

values of the scalars, C(q, p) = 0. Although the canonical Hamiltonian is zero in this

case, one can still extend it off the primary constraint hypersurface in analogy to (1.30)

[see also (A.42)] if C(q, p) obeys suitable regularity conditions (see §A.2.1 and [33, 34]

for details). Here, these conditions correspond to requiring that the primary constraint

function obeys

∂C

∂qi
dqi +

∂C

∂pi
dpi 6= 0 (1.34)

16In principle, it is possible to obtain a nonvanishing canonical Hamiltonian as a function of q(τ)
and p(τ) if one includes a field that transforms inhomogeneously [cf. discussion preceding (1.19)], but
this will not be done here. See, for example, section 4.3.3 of [33].
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1.3. The total Hamiltonian

on a family of open regions that cover the primary constraint hypersurface [33].17

Notice that there is, in principle, no preferred functional form of C. The constraint

hypersurface can be described by f(C) = 0, where f is a function that obeys f(0) = 0

and df/dC|C=0 6= 0, because f(C) locally obeys (1.34) on the primary constraint

hypersurface provided C also obeys the regularity condition.18

By varying (1.21) with Hc ≡ 0, we obtain

0 = q̇iδpi −
∂L
∂qi

δqi = q̇iδpi − ṗiδqi , (1.35)

where the Euler-Lagrange equations were used to reach the last equality. The variations

δpi and δqi in (1.35) must be tangent to the primary constraint surface Σ(1) defined by

C = 0, where the canonical Hamiltonian is well-defined. Since we assume there are d

scalar fields q(τ), the tangent space TpΣ(1) at a point p in the primary constraint surface

is (2d − 1)-dimensional. Due to (1.34), the vector gradient (∂C/∂qi, ∂C/∂pi) forms a

basis for the orthogonal complement of TpΣ(1). Together with (1.35), this implies that

(−ṗi, q̇i) must be proportional to (∂C/∂qi, ∂C/∂pi). In this way, the following equations

must be satisfied:

q̇i = ω
∂C

∂pi
, −ṗi = ω

∂C

∂qi
, (1.36)

where ω ≡ ω(q, p; τ) is an arbitrary function in the auxiliary phase space Γ. By using

the Poisson brackets (1.27) [without the pair (e, pe)] and (1.36), the evolution of a

function f(q, p; τ) in Γ can then be written as

ḟ ≡ df

dτ
=

(
∂f

∂τ
+ ω{f, C}

)
Σ(1)

≈ ∂f

∂τ
+ {f, ωC} =:

∂f

∂τ
+ {f,HT } ,

(1.37)

where the total Hamiltonian is now defined as

HT (q, p; τ) := ω(q, p; τ)C(q, p) ≈ 0 . (1.38)

17This ensures that one can locally perform a canonical transformation to bring the constraint to
the form C(q, p) = p1. Subsequently, one can repeat the construction given in (A.42) to define the
total Hamiltonian (1.38). Once (1.38) has been constructed, it is not necessary to assume that the
constraint coincides with one of the momenta, and one may invert the local canonical transformation
such that the functional form of C(q, p) is only restricted by regularity condition (1.34).

18It is also possible to describe the constraint hypersurface in a redundant manner [33]. For example,
one can define the hypersurface by the pair of equations C = 0 and C2 = 0. For simplicity, we do not
consider such redundant constructions.
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1. Classical Diffeomorphism Invariance on the Worldline

As only one constraint C(q, p) = 0 is present in this particular case, the constraint

function is trivially first class and Abelian. As before, we conclude that the evolution

generated by the total Hamiltonian (1.38) is indeterministic because ω is arbitrary. The

variational principle in the canonical theory can be written as

S =

∫ b

a
dτ pi(τ)q̇i(τ) , (1.39)

where the primary constraint is tacitly solved. Alternatively, we introduce ω as an

additional field that serves as a Lagrange multiplier. The primary constraint is not

imposed, but it follows as the field equation associated with ω. The modified action

reads

S =

∫ b

a
dτ

[
pi(τ)q̇i(τ)− ω(τ)C(q(τ), p(τ))

]
. (1.40)

Notice that field ω(τ) must be a scalar density, such that the Lagrangian in (1.40) is

well-defined. In this case, we may choose ω(τ)dτ as the volume form and ω(τ) as the

einbein (cf. §1.1), such that (1.40) becomes identical to (1.31). Incidentally, a change

of einbein frame [cf. (1.3)] induces a change in the functional form of the constraint

function,

C =
1

Ω(τ)
C̃ , (1.41)

such that ωC = (ω̃Ω)(Ω−1C̃) = ω̃C̃ is invariant under changes of einbein frame.

Eq. (1.41) is a particular case of the general representation of the constraint function

f(C) with f(0) = 0 and df/dC|C=0 6= 0 [cf. discussion after (1.34)].

As before, the functional form of the action (1.40) is invariant under diffeomorphisms

because ω(τ) is an additional dynamical field, and thus the symmetry transformations

merely relabel the arguments of the Lagrangian. We will see in §1.6 that a choice of

ω(τ) ≡ ω(q, p; τ) corresponds to a fixation of the gauge freedom.19 Moreover, we note

that the total Hamiltonians (1.30) and (1.38) are similar. In fact, we will also see in

§1.6 that (1.38) can be seen as a ‘gauge-fixed’ version of (1.30).

19As we will see in §1.6, the fixed function ω(q, p; τ) is a worldline scalar. This does not contradict the
fact that the multiplier ω(τ) is a scalar density because the fixation of the gauge freedom corresponds
to a definition of the (arbitrary) coordinate τ on the worldline (cf. §1.6). In this way, fixing ω(τ) ≡
ω(q, p; τ) simply corresponds to defining the value of the scalar density for a particular choice of
coordinate.
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1.4. Parametrization of noninvariant models and Jacobi’s principle

1.4 Parametrization of noninvariant models and Jacobi’s

principle

As mentioned in the Introduction, it is possible to elevate a theory that is not dif-

feomorphism invariant to one in which diffeomorphisms are a symmetry of the field

equations through a procedure that is sometimes called parametrization [6]. This con-

sists of promoting the spacetime coordinates to physical fields. In the case of mechanical

theories, we start from a noninvariant action

Snon :=

∫ ηb

ηa

dη L

(
f(η),

df

dη
(η); η

)
, (1.42)

where f(η) denotes a collection of d − 1 worldline scalar fields. The Lagrangian L is

not a scalar density by hypothesis, and thus the action (1.42) is not invariant under

worldline diffeomorphisms. In particular, a reparametrization η 7→ τ(η) [cf. (1.6)] not

only corresponds to a relabeling of the arguments of L, but it also changes the functional

form of the action (1.42) through the introduction of factors of dη/dτ ≡ η̇. For this

reason, the time coordinate η, although arbitrary, acquires a preferred status (e.g.,

Newton’s absolute time).

Let us denote derivatives with respect to the time coordinate η by a subscript; i.e.,

f iη(η) ≡ df i/dη (i = 1, . . . , d− 1). Furthermore, we assume that L is regular; i.e., that

the determinant of its Hessian matrix with respect to fη is not zero. The canonical

momenta with respect to η are defined as πi := ∂L/∂f iη, and it is possible to invert this

relation to find fη in terms of f and π. The canonical Hamiltonian, h(f(η), π(η); η),

may then be defined via the Legendre transform. As L is not a scalar density, the

canonical Hamiltonian will also not have the necessary transformation law to render

the action invariant. Nevertheless, the theory can be redefined in an invariant way if we

perform an arbitrary reparametrization, η 7→ τ(η), and we promote η(τ) to a worldline

scalar field [cf. (1.2)]. The result is

Snon 7→ Spar :=

∫ b

a
dτ η̇(τ)L

(
f̃(τ),

˙̃
f(τ)

η̇(τ)
; η(τ)

)

=:

∫ b

a
dτ L(f̃(τ),

˙̃
f(τ), η(τ), η̇(τ)) ,

(1.43)

where f̃(τ) := f(η(τ)) and a = τ(ηa), b = τ(ηb). The action (1.43) is invariant because

L is a worldline scalar density. As η(τ) is now a physical entity (with its own field equa-

tion), the functional form of the action (1.43) does not change under reparametrizations

that preserve the endpoints. We refer to (1.43) as the parametrization of the nonin-

variant model [6].
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1. Classical Diffeomorphism Invariance on the Worldline

The canonical momenta with respect to τ are

π̃i :=
∂L

∂
˙̃
f i

=
∂L

∂f iη
= πi ,

πη :=
∂L
∂η̇

= L(f, fη; η)− πi
˙̃
f i

η̇
= −h(f, π; η) ,

(1.44)

where a summation over repeated indices is implied. In this way, the momentum

conjugate to η(τ) is constrained to be equal to the Hamiltonian of the noninvariant

model. As h only depends on f(η) and π(η), we cannot invert (1.44) to find η̇(τ) as

a function of the fields and their momenta. For this reason, πη = −h is the primary

constraint of the parametrized theory. From the Euler-Lagrange equation π̇η = ∂L/∂η,

we see that a secondary constraint is present if L and h have an explicit dependence on η.

If this is not the case, then π̇η = 0, and the primary constraint implies that h = const.,

which is consistent with the conservation of the Hamiltonian in the noninvariant model.

From (1.44) and the primary constraint, we also note that L = η̇(πiḟ
i/η̇ − h) =

πiḟ
i + pηη̇. Thus, the Lagrangian L is a generalized kinetic term [cf. (1.8)], and the

parametrized theory is an instance of the particular case analyzed in the previous

section (cf. §1.3.2). The d scalar fields consist of f i(τ) (i = 1, . . . , d − 1) and η(τ);

i.e., q(τ) = (f(τ), η(τ)). The primary constraint, C = πη + h, obeys the regularity

condition (1.34), and the total Hamiltonian is HT = ω(πη + h). In particular, the field

equation for η(τ) is η̇ = ω. As ω is an arbitrary worldline scalar density, we may choose

it as the einbein, in which case η is the proper time [cf. (1.2)]. Thus, the procedure

of parametrization is equivalent to assuming the existence of a worldline scalar that

varies monotonically along the worldline and serves as a global time coordinate. As

was discussed in the Introduction, this corresponds to the assertion that the model

can be globally deparametrized. This is true by construction because the model was

built from a noninvariant action by parametrization. Nevertheless, this is a particular

case of the formalism we present, both in the classical and quantum theories.

It is worthwhile to mention that there is another way to cast a noninvariant theory

in invariant form. Instead of (1.42), let us consider the action

S̃non :=

∫ ηb

ηa

dη L

(
q̃(η),

dq̃

dη
(η)

)
; (1.45)

i.e., we now consider a theory with d scalar fields q̃i(η) (i = 1, . . . , d) and a Lagrangian L

that is not a scalar density and does not depend explicitly on the preferred time η. We

assume that L is regular and, in addition, that the canonical Hamiltonian h(q̃(η), p̃(η))

may equal zero for certain nontrivial field configurations. If these conditions are met, we

can redefine the theory in an invariant form if we perform an arbitrary reparametriza-
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1.4. Parametrization of noninvariant models and Jacobi’s principle

tion, η 7→ τ(η), and we promote e(τ) := η̇(τ) to an auxiliary field that is a worldline

scalar density. The result is

S̃non 7→ S̃par :=

∫ b

a
dτ e(τ)L

(
q(τ),

q̇(τ)

e(τ)

)
=:

∫ b

a
dτ L(q(τ), q̇(τ); e(τ)) ,

(1.46)

where q(τ) := q̃(η(τ)) and a = τ(ηa), b = τ(ηb). In other words, instead of promoting

η(τ) to a physical field, one introduces an arbitrary einbein into the theory. In this

way, it is not necessary to assume the existence of an extra scalar degree of freedom

that serves as a global time parameter, and the resulting Lagrangian L is of the type

considered in §1.2 and §1.3.1. In particular, one finds the primary constraint pe = 0

and the secondary constraint (cf. §1.3.1)

0 = C(q, p) := −∂L
∂e

= −L+
∂L

∂q̃iη

q̇i

e
≡ h(q̃(η), p̃(η)) ; (1.47)

i.e., the canonical Hamiltonian of the noninvariant theory becomes the secondary con-

straint associated with the invariant action. A well-known example of this kind of

parametrization is given by Jacobi’s variational principle, which can be constructed as

follows: we consider that the configuration space of the scalars q̃(η) has the line element

ds2 = Gij(q̃)dq̃
idq̃j and the action (1.45) reads

S̃non :=

∫ ηb

ηa

dη

[
1

2
Gij(q̃(η))

dq̃i

dη

dq̃j

dη
− V (q̃(η)) + Λ

]
, (1.48)

where V (q̃(η)) is a potential term and Λ is a constant that plays the role of a “cosmolog-

ical constant” in this model universe. Upon introduction of the einbein, the invariant

action is [cf. (1.46)]

S̃par =

∫ b

a
dτ

[
1

2e(τ)
Gij(q(τ))

dqi

dτ

dqj

dτ
− e(τ)V (q(τ)) + e(τ)Λ

]
. (1.49)

The secondary constraint, which coincides with the Hamiltonian of the noninvariant

theory, is C(q, p) = 1/2Gij(q)pipj + V (q) − Λ, where Gij(q) are the components of

the inverse configuration-space metric and pi(τ) are the momenta conjugate to qi(τ)

(i = 1, . . . , d). Note that C = 0 corresponds to the conservation of 1/2Gij(q)pipj+V (q)

with value Λ. It is also possible to use the Euler-Lagrange equation for e(τ) to eliminate

the einbein and rewrite the Lagrangian in (1.49) as a generalized kinetic term. Indeed,
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1. Classical Diffeomorphism Invariance on the Worldline

one finds the Euler-Lagrange equation

0 =
∂L
∂e

= − 1

2e2(τ)
Gij(q(τ))

dqi

dτ

dqj

dτ
− V (q(τ)) + Λ , (1.50)

the solution of which reads e(τ) = ±{Gij q̇iq̇j/[2(Λ− V )]}1/2. If we insert this solution

back into (1.49), we obtain

S̃par = ±
∫ b

a
dτ
√

2[Λ− V (q(τ))]Gij(q(τ))q̇i(τ)q̇j(τ) , (1.51)

which is the action considered in Jacobi’s principle [41].20 In particular, the action

of a free relativistic particle with mass m is of the form (1.51) with V (q(τ)) = 0 and

Λ = m2/2. In GR, a similar elimination of the einbein (which coincides with the lapse

function) is possible in principle. The result is the so-called Baierlein-Sharp-Wheeler

action [6,42]. In string theory, the analogues of (1.49) and (1.51) are, respectively, the

so-called Polyakov and Nambu-Goto actions [6].

Clearly, the two parametrization strategies above are related. Assuming the same

form of the Lagrangian L and the same number of scalar fields, one can map (1.46)

into (1.43) by replacing e(τ) = η̇(τ) and promoting η(τ) to a physical field. Conversely,

the action (1.43) is taken to (1.46) if we replace η̇ = e(τ) and consider that e(τ) is an

auxiliary field. In the particular case of Jacobi’s principle, we also note that the total

Hamiltonian associated with (1.49) isHT = e(1/2Gij(q)pipj+V (q)−Λ)+λpe [cf. (1.30)].

As was mentioned in the previous section (§1.3.2) and as will be shown in §1.6, the total

Hamiltonian H ′T = ω(1/2Gij(q)pipj + V (q) − Λ) can be obtained from HT by gauge

fixing. Thus, if we treat Λ as a free (rather than fixed) parameter, then we may formally

set it to Λ = −pη; i.e., we may consider that the cosmological constant is the opposite of

the conserved momentum conjugate to proper time. In this way, one recovers the form

of the total hamiltonian associated with (1.43), H ′T = ω(pη + 1/2Gij(q)pipj + V (q)).

One can then globally deparametrize the theory to obtain a noninvariant model with

canonical Hamiltonian equal to 1/2Gij(q)pipj + V (q). As will be discussed in §2.2,

this is sometimes used as a point of departure for the quantization of theories based

on Jacobi’s principle [43–47], and it can be seen as a particular case of the general

framework presented here.

20One can interpret (1.51) as the ‘arc length’ between two points in a curve (the physical tra-
jectory) in the configuration space of the scalar fields, provided the metric is redefined as G̃ij :=
2[Λ − V (q(τ))]Gij . The coordinate τ is then simply a parametrization of this curve (cf. discussion
in the Introduction).
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1.5. The gauge generator

1.5 The gauge generator

To understand the physical interpretation and dynamical consequences of the arbitrary

auxiliary phase-space function λ in (1.30), we must analyze how the constraints are

related to the gauge symmetry of theory, and what this implies for the notion of ob-

servables. In this section, we examine the connection between the constraint functions

and the gauge transformations. In §1.6, we discuss how the gauge freedom can be in-

terpreted in terms of a notion of ‘generalized frames of reference’. Finally, we address

the definition of observables in §1.7 and §1.8.

First, we note that the transformation laws (1.7) and (1.12) imply that the primary

constraint pe = 0 is invariant under diffeomorphisms,

0 =
∂

∂ė
L(q, q̇; e) =: pe 7→ p′e :=

∂

∂ė′
L(q′, q̇′; e′) = 0 ; (1.52)

i.e., δε(τ)pe = 0. Notice that the pullback of the fields by a general diffeomorphism is

denoted by a prime in (1.52) [cf. (1.14)]. In this way, the gauge transformation of an

auxiliary phase-space function f(q, p; e, pe; τ) reads

δε(τ)f = δexpl.
ε(τ) f +

∂f

∂qi
δε(τ)q

i +
∂f

∂pi
δε(τ)pi +

∂f

∂e
δε(τ)e+

∂f

∂pe
δε(τ)pe

= δexpl.
ε(τ) f +

∂f

∂qi
ε(τ)

dqi

dτ
+
∂f

∂pi
ε(τ)

dpi
dτ

+
∂f

∂e

d

dτ
(ε(τ)e)

= δexpl.
ε(τ) f + ε(τ)

(
∂f

∂qi
∂HT

∂pi
− ∂f

∂pi

∂HT

∂qi
+
∂f

∂e

∂HT

∂pe

)
+ ε̇(τ)e

∂f

∂e

≈ δexpl.
ε(τ) f + ε(τ){f,HT }+ ε̇(τ)e{f, pe}

≈ δexpl.
ε(τ) f + {f, ε(τ)HT + ε̇(τ)epe}

=: δexpl.
ε(τ) f + {f,G} ,

(1.53)

where δexpl.
ε(τ) f corresponds to the transformation of the explicit dependence of f on τ ,21

and we used (1.17) and (1.29) together with the fact that ∂HT /∂e = C+ pe∂λ/∂e ≈ 0.

The quantity G := ε(τ)HT + ε̇(τ)epe is called the ‘gauge generator’ [9, 11, 12, 48].

From (1.53), we conclude that infinitesimal worldline diffeomorphisms can be repre-

sented as on-shell canonical transformations; i.e., they coincide with canonical trans-

21The explicit time dependence of f(q, p; e, pe; τ) could conceivably involve a general worldline ten-
sor. However, since any worldline tensor can be written in terms of a scalar and powers of the einbein
[cf. (1.4)], there is no loss of generality in assuming that the explicit dependence on τ of a general auxil-
iary phase-space function is of scalar type; i.e., δexpl.

ε(τ) f(q, p; e, pe; τ) = ε(τ)∂f/∂τ [cf. (1.16) and (1.17)].

More precisely, given any solution S(τ) to the field equations, in which e(τ) is equal to some function
ω(τ), we can use (1.4) to define an auxiliary phase-space function T (τ)(e/ω)α−β that coincides with
the tensor T (τ) in the solution S(τ), and that has an explicit time-dependence given by the scalar
T (τ)ω(τ)β−α.
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1. Classical Diffeomorphism Invariance on the Worldline

formations in the auxiliary phase space that are restricted to solutions to the field

equations and, in particular, to the constraint hypersurface. For example, the transfor-

mation {e,G} ≈ ε(τ)λ+ ε̇(τ)e only coincides with the correct gauge transformation of

the einbein if restricted to a solution, since then λ(τ) ≈ ė(τ) [cf. discussion after (1.32)],

and we find {e,G} ≈ d(ε(τ)e(τ))/dτ = δε(τ)e(τ) [cf. (1.17)].

As ε(τ) can depend on the fields, we may alternatively define ξ(τ) := ε(τ)e(τ) as an

independent infinitesimal quantity, which is arbitrary but possibly dependent on q(τ)

and p(τ). This amounts to considering diffeomorphisms generated by the vector field

[cf. (1.16)]

V =
ξ(τ)

e(τ)δl

d

dτ
≡ ξ(τ)

δl

d

dη
, (1.54)

where η is the proper time [cf. (1.2)]. In this case, we can rewrite the gauge generator

as

G ≡ G(q(τ), p(τ), pe(τ); ξ(τ)) := ξ(τ)C(q(τ), p(τ)) + ξ̇(τ)pe , (1.55)

where we used (1.30) and the fact that λ ≈ ė(τ) on solutions. The connection between

the constraints and the gauge symmetry is thus clarified by (1.55), as we see that the

generator of on-shell canonical transformations that correspond to gauge transforma-

tions is a combination of the (primary and secondary) first-class constraints of theory.

Indeed, this derivation of the functional form of the gauge generator is a particular

case of the one reviewed in §A.2.5, and (1.55) is an instance of (A.60). Our hypothesis

that only one primary and one secondary first-class constraints are present then corre-

sponds to the assumption that the only gauge (local) symmetry of the theory is given

by worldline diffeomorphisms.

At first, the focus on diffeomorphisms generated by (1.54) may seem restrictive

because ξ(τ) is taken to be an arbitrary function that possibly depends on q(τ) and p(τ)

but not on e(τ). Nevertheless, there is no loss of generality in the description of gauge

transformations of solutions to the field equations. As was emphasized in [9,11,12,49],

the change in a solution q(τ), e(τ) under any infinitesimal diffeomorphism associated

with an arbitrary ε(τ) can be described by the gauge generator (1.55) with ξ(τ) =

ε(τ)e(τ), where e(τ) is understood as a specific (fixed) function given in the solution [49].

As before, we note that {e,G} = ξ̇(τ) coincides with the correct transformation on a

solution, {e,G} = ξ̇(τ) = d(ε(τ)e(τ))/dτ = δε(τ)e(τ).22 As a scalar density of the form

ω(q(τ), p(τ); e(τ)) can be written, without loss of generality, as the product of a scalar

f(q(τ), p(τ); e(τ)) with the einbein, ω = fe, it follows that G generates the correct

transformation of any scalar density (with no explicit time dependence) on shell. In

22The change from the arbitrary functions ε(τ) to ξ(τ) is an instance of the redefinition (A.5). In
this case, the arbitrary functions considered in (A.4) correspond to ξ(τ).
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fact, due to (1.4) (see also footnote 21), one may verify that the correct transformation

of any worldline tensor (with no explicit dependence on τ) is generated by G. Moreover,

it is clear from (1.55) that gauge transformations preserve the constraints: {C,G} ≈ 0

and {pe, G} ≈ 0.

The set of diffeomorphisms generated by vectors of the form (1.54) is a proper

subgroup of Diff(M,Φ) that is often referred to as the ‘Bergmann-Komar group’ [9].

Incidentally, one notes that global translations in τ , which are generated by the vectors

V = εd/dτ with ε = const., are not of the form given in (1.54), and thus are not

elements of the Bergmann-Komar group [49]. Nevertheless, as mentioned above, the

pullback of solutions in phase space by any diffeomorphism can be recovered from the

elements of the Bergmann-Komar group.23 Moreover, it is important to note that, in

contrast to the case of a general coordinate τ , global translations in proper time are of

the form (1.54) (with ξ = const.).

If G generates gauge transformations, then it must map a solution to the field

equations to another solution. To see that this is the case, let f(q, p; e, pe; τ) be an

auxiliary phase-space function that solves (1.29) for a given choice of λ, and define

f ′ := f + δε(τ)f ≈ f + δexpl.
ε(τ) f + {f,G}. Note that, in general, G introduces an explicit

dependence on τ through ξ(τ). In this way, f ′ generally has an explicit time dependence

even if ∂f/∂τ = 0. The time derivative of f ′ reads

ḟ ′ ≈ ḟ +
d

dτ

(
δexpl.
ε(τ) f + {f,G}

)
=
∂f

∂τ
+ {f,HT }+

∂

∂τ
δexpl.
ε(τ) f + {δexpl.

ε(τ) f,HT }

+

{
∂f

∂τ
,G

}
+

{
f,
∂G

∂τ

}
+ {{f,G}, HT } .

(1.56)

It is straightforward to show that (1.56) is equivalent to ḟ ′ ≈ ∂f ′/∂τ + {f ′, HT } (as

it should be). However, we must show that f ′ is a solution to (1.29) in terms of the

transformed variables q′ = q+ δε(τ)q, p
′ = p+ δε(τ)p and e′ = e+ δε(τ)e [cf. (1.14)]. This

means that the total Hamiltonian should also be written as a function of q′(τ), p′(τ)

23As explained in [9, 49, 50], one motivation to consider the Bergmann-Komar group is the require-
ment of ‘Legendre projectability’. This means that one should consider gauge transformations in the
Lagrangian formalism that are projectable under the Legendre map (1.20). A function f(q, q̇; e, ė) is
projectable if it is the pullback of an auxiliary phase space function g(q, p; e, pe) by the Legendre map;
i.e., if f(q, q̇; e, ė) = g(q, p; e, pe)|p=∂L/∂q̇,pe=∂L/∂ė. This implies that f cannot change in the direction
of the null eigenvector(s) of the singular Lagrangian, since ∂f/∂ė = ∂2L/∂ė2∂g/∂pe|pe=∂L/∂ė = 0
(a similar conclusion holds for Lagrangians that are purely kinetic terms, as considered in §1.3.2).
Thus, the infinitesimal transformations δε(τ)e(τ) = ε̇(τ)e(τ) + ε(τ)ė(τ) are not projectable, whereas

δξ(τ)e(τ) = ξ̇(τ) are, since ξ(τ) is taken to be independent of e(τ).
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and e′(τ); i.e., we must use the identity [cf. (1.30)]

H ′T ≈ HT + δexpl.
ε(τ) HT + {HT , G}

≈ HT +
(
δexpl.
ε(τ) λ

)
pe − {G,HT } .

(1.57)

Moreover, for consistency, we demand that ∂f ′/∂τ = 0 if, and only if, ∂f/∂τ = 0. In

other words, we will not include the explicit time dependence induced by G in f ′. This

amounts to the substitution ∂f ′/∂τ 7→ ∂f ′/∂τ + {f ′, ∂G/∂τ}.24 In this way, we can

rewrite (1.56) as

ḟ ′ ≈ ∂f ′

∂τ
+

{
f ′,

∂G

∂τ

}
+ {f ′, H ′T }+

{
f ′, {G,HT } −

(
δexpl.
ε(τ) λ

)
pe

}
≈ ∂f ′

∂τ
+ {f ′, e′C + λpe}+

{
f,
∂G

∂τ
+ {G,HT }+ {λ,G}pe

}
,

(1.58)

where we used the definition of the transformed variables together with (1.57) and the

fact that the pullback of the initial choice of λ leads to δexpl.
ε(τ) λ+ {λ,G}. Subsequently,

we compute

∂G

∂τ
=
∂ξ

∂τ
C +

∂

∂τ

dξ

dτ
pe ,

{G,HT } = {G,λ}pe + {ξ,HT }C − ξ̇C + {ξ̇, HT }pe ,
(1.59)

from which we find

∂G

∂τ
+ {G,HT }+ {λ,G}pe = ξ̈pe +O(2) , (1.60)

where we used (1.29), and the symbol O(2) denotes terms that are quadratic in the

constraints [49], which satisfy {·,O(2)} ≈ 0. Equation (1.60) is an instance of the

general case found in (A.52). Due to (1.60), we may rewrite (1.58) as

ḟ ′ ≈ ∂f ′

∂τ
+
{
f ′, e′C +

(
λ+ ξ̈

)
pe

}
, (1.61)

which motivates us to define the transformed multiplier as

λ′ := λ+ ξ̈ , (1.62)

24Notice that, up to first order in ξ(τ), we can replace f by f ′ in {f, ∂G/∂τ}.
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and, instead of (1.57), we define the transformed total Hamiltonian as H ′T := e′C+(λ+

ξ̈)pe, such that (1.61) becomes ḟ ′ ≈ ∂f ′/∂τ + {f ′, H ′T }. In particular, the multiplier

λ(τ) is an independent field. It transforms according to (1.62), which is consistent with

the fact that λ ≈ ė and λ′ ≈ ė′, since e′(τ) = e(τ)+ξ(τ) implies that ė′(τ) = ė(τ)+ξ̈(τ).

We thus see that any solution f to (1.29) is mapped to another solution, written in

terms of the transformed variables, and the field equations remain of the same form

under the transformation. In this way, G indeed generates gauge transformations.

1.6 Gauge fixing, intrinsic coordinates, and generalized

reference frames

The considerations in §1.5, particularly those following (1.62), lead us to the conclusion

that the arbitrariness of the multiplier λ(τ) in the canonical theory corresponds to

the arbitrariness in the choice of diffeomorphism φ in (1.13), which determines the

functional form of the dynamical variables via the pullback. Notice that, in principle,

the choice of coordinate τ in (1.13) [and (1.32)] is inessential. It is the functional form

of fields, φ∗q(τ), φ∗p(τ) and φ∗e(τ), that is of relevance to the solutions to the field

equations and to the definition of observables, as we will examine in §1.7 and §1.8. A

particular choice of φ can be enforced by imposing extra constraints (in addition to C

and pe) on the dynamical variables that fix their functional form (i.e., their dependence

on τ). These additional constraints are called ‘gauge conditions’ or simply ‘gauges’ (cf.

§A.2.7). In particular, the gauge conditions should fix the multiplier and thus render

the evolution determined by the total Hamiltonian (1.30) well-defined. The process of

choosing a gauge condition and thereby fixing λ is referred to as ‘gauge fixing’ or ‘gauge

fixation’.

Let us consider a gauge condition of the form χ1(q, p; e; τ) = 0. Due to (1.4),

we may assume that any explicit dependence on τ is of scalar type (see comment on

footnote 21). In this way, if we assume that χ1(q, p; e; τ) = 0 can be solved in terms of

the einbein, we may rewrite it as

χ1(q, p; e; τ) := e(τ)− ω(q, p; τ) , (1.63)

where ω(q, p; τ) is a fixed, nonvanishing auxiliary phase-space function with a constant

sign, which is a worldline scalar because it only depends on q(τ), p(τ) and τ [cf. (1.16)

and (1.17)]. As e(τ) is a scalar density, we can only impose χ1 = 0 for a certain class of

charts.25 Below, we will see how this is achieved (see also the comment in footnote 19).

If we impose that (1.63) is satisfied at all instants of time, we obtain another constraint

25Notice that (1.63) corresponds to a fixation of e(τ) irrespective of the chosen einbein frame
[cf. (1.3)]. We tacitly choose Ω(τ) ≡ 1.
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1. Classical Diffeomorphism Invariance on the Worldline

[cf. (1.29)]

0 = χ̇1 ≈ λ− ω̇ , (1.64)

which fixes λ. Let Σ|χ be the subspace of the auxiliary phase space Γ determined by C =

pe = χ1 = 0 (for all instants of time). We can then rewrite the total Hamiltonian (1.30)

as

HT = ωC + ω̇pe + χ1C + χ̇1pe ≡ ωC + ω̇pe +O(2) =: Hgf
T +O(2) , (1.65)

where the symbol O(2) now denotes terms that are quadratic in all the constraint

functions (including χ1, χ̇1) [49], such that {·,O(2)} ≈ 0 on Σ|χ. For this reason, the

evolution determined by HT is well-defined on Σ|χ, where it also coincides with the

evolution determined by the function Hgf
T := ωC + ω̇pe, which we call the ‘gauge-fixed

Hamiltonian’. Notice that, due to (1.29), ω̇ ≈ {ω, ωC} on Σ|χ. In particular, as the

scalars q(τ) and p(τ) Poisson-commute with pe, we find that any function of the form

f(q(τ), p(τ); τ) obeys

df

dτ

∣∣∣∣
Σ|χ

=
∂f

∂τ

∣∣∣∣
Σ|χ

+ {f, ωC}Σ|χ , (1.66)

which is precisely the evolution determined by (1.38). It is in this sense that the

canonical theory presented in §1.3.2 can be seen as a gauge-fixed version of the one

presented in §1.3.1. The gauge freedom associated with the total Hamiltonian (1.38)

corresponds to the freedom in choosing the specific form of the function ω. More

precisely, we note that the condition (1.63) does not completely fix the gauge freedom

associated with the total Hamiltonian (1.30) and the gauge generator (1.55). In other

words, it does not completely fix the functional form of the fields in terms of an arbitrary

coordinate τ [in the chart (U , ζ); cf. §1.1]. This is a consequence of the fact that there

exist diffeomorphisms φ : U → U that preserve the gauge condition (1.63), and thus

a ‘residual’ gauge (local) symmetry remains in theory even after (1.63) is fixed [49].

To see that this is true, we need to show that there exists a one-parameter family of

diffeomorphisms φl such that

χ1(φ∗l q, φ
∗
l p;φ

∗
l e; τ) := φ∗l e(τ)− ω(φ∗l q, φ

∗
l p; τ) = 0 (1.67)

holds if χ1(q, p; e; τ) = 0 is satisfied for a given solution (q(τ), p(τ), e(τ)) to the field

equations obtained from (1.32) [or from (1.13)]. Notice that the explicit time depen-

dence in (1.67) is not transformed [in relation to χ1(q, p; e; τ) = 0] because we are

interested in the possibility that a different solution (φ∗l q(τ), φ∗l p(τ), φ∗l e(τ)) to the field

equations (a different functional form of the fields), written with respect to the same

arbitrary coordinate τ , may still satisfy the gauge condition. This is line with the sym-
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metry exhibited in (1.13). As before, we consider that φl are generated by the vector

field (1.54). In this way, the residual symmetries are found as solutions to the equation

[cf. (1.16), (1.17) and (1.53)]

0 ≈ χ1(φ∗δlq, φ
∗
δlp;φ

∗
δle; τ)− χ1(q, p; e; τ) ≈ {χ1, G} ≈ −{ω,C}ξ(τ) + ξ̇(τ) . (1.68)

It is straightforward to verify that the solution to (1.68) is

ξ(τ) = ξ(τ0) exp

[∫ τ

τ0

dτ ′
(
{ω,C}(τ ′)

)]
, (1.69)

and the initial value ξ(τ0) is arbitrary. The residual gauge transformations are generated

by G = ξ(τ)C+ ξ̇(τ)pe with ξ(τ) given by (1.69). In particular, due to the arbitrariness

of ξ(τ0) and the fact that the value of τ0 may be freely chosen, the residual gauge

transformations of scalars at τ0, δε(τ0)f(q, p; τ) ≈ δexpl.
ε(τ0)f + ξ(τ0){f, C}, encompass all

the gauge freedom of the theory presented in §1.3.2. Indeed, for any value of τ0, ξ(τ0)C

is the gauge generator associated with the total Hamiltonian (1.38). If one repeats

the derivation of (1.61) for this particular case (with ω understood as a multiplier),

one finds that the field equations with respect to τ0 remain of the same form under

the transformations generated by ξ(τ0)C, provided the multiplier is transformed as

ω 7→ ω′ = ω + dξ/dτ0 [instead of (1.62)]. This is consistent with the fact that the

multiplier ω(τ) can be chosen as the einbein in this particular case [cf. (1.40)].

In order to eliminate the residual gauge symmetry, it is necessary to impose an

additional gauge condition. As the einbein has been fixed by (1.63), we consider a

condition on the scalars, χ2(q, p; τ) = 0, which must be chosen so as to remove the

residual diffeomorphisms and to be preserved by the evolution determined by (1.65)

[49]. The residual gauge transformations that preserve χ2(q, p; τ) are solutions to the

equation

0 ≈ χ2(φ∗δlq, φ
∗
δlp; τ)− χ2(q, p; τ) ≈ {χ2, G} ≈ ξ(τ){χ2, C} , (1.70)

where ξ(τ) is given by (1.69). If (1.70) only admits the trivial solution (ξ(τ) = 0), then

the residual symmetry has been eliminated. This corresponds to setting the arbitrary

initial value in (1.69) to zero, ξ(τ0) = 0. We note that (1.70) only admits the trivial

solution if {χ2, C} 6= 0. Furthermore, we now use the symbol Σ|χ to denote the subspace

of the auxiliary phase space determined by C = pe = χ1 = χ2 = 0 (for all instants of

time). The condition χ2(q, p; τ) = 0 is preserved by the evolution in Σ|χ if

0 ≈ ∂χ2

∂τ
+ {χ2, H

gf
T } ≈

∂χ2

∂τ
+ ω(q, p; τ){χ2, C} , (1.71)
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where we used (1.65) and the constraints are imposed only after the Poisson brackets

are computed. If χ2 satisfies (1.71) and {χ2, C} 6= 0, then the set of gauge conditions

(χ1, χ2) completely fixes the gauge freedom of the theory presented in §1.3.1 (and χ2

completely fixes the freedom of the particular case discussed in §1.3.2). In this case,

there are no nontrivial diffeomorphisms that preserve the gauge conditions (χ1, χ2).

Nevertheless, we must still ascertain if these conditions are accessible; i.e., if it is possible

to start with a solution S(τ) = (q(τ), p(τ), e(τ)) to the field equations [written in an

arbitrary chart (U , ζ) in the worldline] for which χ1 6= 0 and χ2 6= 0, and subsequently

perform a well-defined diffeomorphism to reach a solution S0(τ) for which the conditions

are satisfied. In other words, the gauge conditions are accessible if there exists a

diffeomorphism φS that fulfills

0 = χi(φ
∗
Sq, φ

∗
Sp;φ

∗
Se; τ) ,

0 6= χi(q, p; e; τ) ,
(1.72)

for i = 1, 2. If the pair (χ1, χ2) is chosen such that (1.72) has a solution for φS

without a residual gauge symmetry, then we say (χ1, χ2) forms a complete gauge fixing

(cf. §A.2.7).26 Notice, however, that the diffeomorphism φS that solves (1.72) will

generally depend on the arbitrary solution S(τ) = (q(τ), p(τ), e(τ)). For this reason,

the complete gauge fixing induces a map on the gauge orbit of S(τ),

P(χ1,χ2) : [S(τ)]→ [S(τ)]

S(τ) 7→ φ∗SS(τ) = S0(τ)
(1.73)

which projects any solution on the gauge orbit to the solution S0(τ) that satisfies the

gauge conditions. This map is not injective, as different arbitrary solutions are mapped

to the same S0(τ). In this way, we conclude that the transformation (q(τ), p(τ), e(τ)) 7→
(φ∗Sq(τ), φ∗Sp(τ), φ∗Se(τ)), where φS solves (1.72), is not canonical because it is not

invertible, and thus the fixation of the gauge freedom does not preserve the Poisson

brackets.27 This stands in contradistinction to (1.53), which is an on-shell canonical

transformation. The crucial difference between (1.53) and (1.73) is that any worldline

tensor is pulled back by the same diffeomorphism in (1.53). This induces an invertible

map on the gauge orbit, S(τ) 7→ φ∗S(τ); i.e., any solution on [S(τ)] is pulled back

by the same φ, and this simply corresponds to a “displacement” along the orbit. In

contrast, different solutions are “displaced” differently (pulled back by a different φS)

26More precisely, the condition {χ2, C} 6= 0 may only be fulfilled in certain regions of the auxiliary
phase space. The pair (χ1, χ2) only forms a complete gauge fixing when restricted to such regions. See
the comments following (A.71).

27This observation was discussed and clarified in [11], where Pons et al. use a formalism that,
although different from the one we present here, yields results that are equivalent to ours at the
classical level. The quantum theory was not discussed. See also footnote 30.
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in (1.73).

What is then the significance of (1.73)? It corresponds to a choice of origin in the

gauge orbit, as was discussed in the paragraph preceding (1.14). Indeed, any solution

on [S(τ)] = [S0(τ)] can be written as

S(τ) =
(
φ−1
S
)∗ S0(τ) , (1.74)

and the fact that φS differs from one solution to another simply means that it encodes

the “displacement” along the gauge orbit from the origin S0(τ) to S(τ). If S(τ) coin-

cides with S0(τ), then φS is the identity. Moreover, if the choice of origin is changed,

S0(τ) = φ∗0S̃0(τ), then the “displacement” is also changed, φ̃S = φS ◦ φ−1
0 , so as to

keep S(τ) invariant. Conversely, for a fixed choice of origin, the gauge transformation

S(τ) 7→ S̃(τ) = φ∗S(τ) implies that φS 7→ φ̃S = φ−1 ◦ φS , such that the origin is

invariant

φ̃∗S S̃(τ) = φ∗SS(τ) = S0(τ) . (1.75)

This is merely a rewriting of (1.73), and it means that the map P(χ1,χ2) is constant

along the gauge orbit (by definition). As the gauge transformations (1.53) are on-shell

canonical transformations [expressed in terms of the Poisson brackets with respect to

the S(τ) = (q(τ), p(τ), e(τ)) fields as well as pe], one then expects that P(χ1,χ2)(S(τ))

(understood as a function on the auxiliary phase space) weakly Poisson-commutes with

the gauge generator. We will see that this is indeed the case in §1.8. Finally, we note

that the choice of origin on each gauge orbit corresponds to a choice of section ` that

selects a representative in each equivalence class, `([S(τ)]) = S0(τ).

Let us now analyze how a complete gauge fixing (χ1, χ2) can be seen as a definition

of a chart (Uχ, ζ) in the worldline. Notice that (1.71) implies that the gauge condition

χ2 must have an explicit time dependence, ∂χ2/∂τ 6= 0, because {χ2, C} 6= 0 and ω 6= 0.

This well-known fact [49, 51] has important consequences for the definition of observ-

ables and the physical interpretation of the theory, as we will discuss in §1.7. Indeed,

as it depends explicitly on time, we may interpret χ2(q, p; τ) = 0 as a definition of the

arbitrary worldline coordinate τ in terms of the canonical scalars q(τ), p(τ) [49]. To see

this, let us assume that one can solve χ2(q, p; τ) = 0 for its explicit time dependence,

such that we may rewrite this constraint as

χ2(q, p; τ) := χ(q(τ), p(τ))− τ , (1.76)

where χ(q(τ), p(τ)) is a worldline scalar with no explicit dependence on τ . Given

a certain solution to the field equations (with fixed boundary conditions), we may

interpret χ as a function solely of τ , χ(τ) ≡ χ(q(τ), p(τ)). The condition {χ2, C} 6= 0
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is then translated to

0 6= {χ,C} ≈ 1

ω(q, p; τ)
{χ,Hgf

T } ≈
1

ω(q, p; τ)

dχ

dτ
=

dχ

dη
, (1.77)

which is the condition that χ(τ) is invertible (ω 6= 0). Let us then assume that there

exists an interval Iχ = (τ0, τ1) in which χ(τ) is a diffeomorphism; i.e., it is smooth with

a smooth inverse. There may be several such intervals, and they may depend on the

boundary conditions that define the solution to the field equations (cf. footnote 26).

If χ2 = 0 is not fulfilled for the solution in question, we may use (1.72) to reach a

functional form of the fields that enforces this gauge condition. It is straightforward to

see that the solution to 0 = χ(φ∗Sq, φ
∗
Sp)− τ ≡ φ∗Sχ(τ)− τ is simply φS = χ−1; i.e., the

diffeomorphism corresponds to the function that is the inverse of χ(τ).

The above considerations can be used to define a chart (Uχ, ζ) as follows: first, we let

ζ be an arbitrary homeomorphism, and we define Uχ := ζ−1(Iχ), where Iχ is an interval

in which (1.77) holds. Second, we define the composition χ̃ := χ◦ζ : Uχ → χ(Iχ), which

is assumed to be a smooth function. Under an arbitrary diffeomorphism φ : Uχ → Uχ,

we obtain χ̃′ := φ∗χ̃ = χ̃◦φ, such that χ̃′(Uχ) = χ̃(Uχ); i.e., the image of χ̃ is preserved.

If the condition χ̃ = ζ is not satisfied for the given solution to the field equations, we

consider the diffeomorphism φS := ζ−1 ◦χ−1 ◦ζ : Uχ → Uχ,28 such that χ̃′ = χ̃◦φS = ζ.

Although this may be interpreted as the condition that enforces that χ̃′ is equal to an

arbitrarily chosen coordinate map, it may alternatively be seen as the definition of the

coordinate map in terms of a combination of the dynamical fields. The possible values

of the time coordinate τ are elements of the image of this combination, χ̃(Uχ), which

is invariant under diffeomorphisms. In this way, a complete gauge fixing corresponds

to a choice of chart in the worldline.

There may be more than one choice of χ2(q, p; τ) that is compatible with χ1(q, p; e; τ),

in the sense of providing a complete gauge fixing. First, notice it is often more conve-

nient to consider that (1.71) determines which function ω(q, p; τ) can be used in (1.63)

for a given choice of χ2(q, p; τ). For example, we find ω(q, p; τ) ≡ ω(q(τ), p(τ)) ≈
1/{χ,C} from (1.71) for the choice (1.76). Furthermore, let us consider the choices

χ
(1)
2 (q, p; τ) := χ(q, p)− τ and χ

(2)
2 (q, p; τ) := χ(q, p) +O(q, p)− τ where O(q, p) weakly

Poisson-commutes with C. Due to (1.77), both choices determine the same function

ω(q, p; τ) ≡ ω(q(τ), p(τ)) ≈ 1/{χ,C} to be used in (1.63). Therefore, both χ
(1)
2 (q, p; τ)

and χ
(2)
2 (q, p; τ) form a complete gauge fixing in conjunction with χ1(q, p; e; τ). Never-

28Recall that, as we are considering a smooth atlas on M, for any two charts (U1, ζ1) and (U2, ζ2)
with U1 ∩U2 6= ∅, the transition map ζ2 ◦ ζ−1

1 is a diffeomorphism. The local coordinate representation
of φ is φζ2ζ1 = ζ2 ◦ζ−1 ◦χ−1 ◦ζ ◦ζ−1

1 (cf. §1.1), which is a composition of smooth maps, and is therefore
smooth. Its inverse, φ−1

ζ1ζ2
= ζ1 ◦ ζ−1 ◦ χ ◦ ζ ◦ ζ−1

2 , is also smooth. In particular, for the single chart

(Uχ, ζ), we obtain φζ = χ−1, which is itself assumed to be a diffeomorphism, as we discussed in the
preceding paragraph.
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1.6. Gauge fixing, intrinsic coordinates, and generalized reference frames

theless, the coordinate maps that are determined by χ
(1)
2 (q, p; τ) and χ

(2)
2 (q, p; τ) may

be different. It is in this sense that the gauge condition χ1 = 0 can only be imposed in

a certain class of charts, as mentioned before. Likewise, the fixation of the multiplier

λ(τ) through (1.64) corresponds to the definition of a class of charts in the worldline.

The above discussion leads us to the conclusion that a complete gauge fixing yields

an intrinsic definition of the time coordinate, as explained in the Introduction. The

level sets of χ(q(τ), p(τ)) in (1.76) represent of instants of time in the regions of the

auxiliary phase space where {χ,C} 6= 0 [cf. footnote 26 and (1.77)]. In this way,

instants are defined ‘intrinsically’ from the dynamics, and one does not invoke extrinsic

absolute notions of time. The function χ(q(τ), p(τ)) serves as a ‘generalized clock’ with

respect to which the dynamics can be described, and (Uχ, χ̃′ = ζ) is an intrinsic chart

(cf. the Introduction). In general, a function of the dynamical degrees of freedom

that is continuous in M is a generalized clock if it serves as a local coordinate map on

the worldline; i.e., if there exists an open region Uχ ⊂M where χ is a homeomorphism

(invertible with a continuous inverse). Thus, a complete gauge fixing entails a choice

of generalized clock.

In the (0 + 1)-dimensional universe modeled by (M,Φ), experiments consist of

measurements of the dynamical fields at certain instants of time. Different instants are

distinguished solely by the readings of generalized clocks defined from the dynamical

degrees of freedom. Each observer (experimenter) uses a choice of generalized clock to

record the experimental results. Therefore, observers employ complete gauge fixings in

their description of the dynamics. For this reason, we consider that that a complete

gauge fixing defines a ‘generalized reference frame’ with respect to which an experi-

menter makes observations. We will take the following terms as synonyms: complete

gauge fixing; generalized clock; generalized reference frame; intrinsic chart. Moreover,

even though the fixation of the multiplier λ(τ) corresponds to a class of charts (gener-

alized clocks), we will also refer to a choice of λ(τ) as a choice of generalized reference

frame (cf. §A.2.5). The fact that λ(τ) is undetermined signals that the theory does

not depend on a preferred choice of frame. Due to (1.61) and (1.62), we see that G

generates changes of reference frames.

Finally, we note that the number of gauge conditions in a complete gauge fixing (that

are independent at each instant of time) is equal to the number of first-class constraints

(pe = 0 and C = 0). This is a general feature of canonical gauge systems (cf. §A.2.7).

Although conditions of the form (1.63) and (1.76) are well motivated, it is possible

consider more general gauge conditions, which may depend on λ and the canonical

variables, as well as on their time derivatives. We will focus on the so-called ‘canonical

gauge conditions’ (or ‘canonical gauges’), which have the form χ(q, p; e; τ) = 0. From

the above discussion (see also §A.2.7), we conclude that a set of independent canonical

gauge conditions (χ1, χ2) is admissible or forms a complete gauge fixing if: (1) they are

accessible, which means that any arbitrary set of canonical variables can be mapped

to one that satisfies χ(1,2) = 0 by a finite gauge transformation associated with a
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1. Classical Diffeomorphism Invariance on the Worldline

definite choice of ξ(τ); (2) the conditions χ(1,2) = 0 are only preserved by the gauge

transformations that correspond to on-shell identity transformations, which are the

ones determined by ξ(τ) ≈ 0 for all instants of time. Clearly, this only holds if

det

(
{χ1, pe} {χ1, C}
{χ2, pe} {χ2, C}

)
6= 0 . (1.78)

The determinant (1.78) is an instance of (A.70), and it is called the ‘Faddeev-Popov

determinant’ [20, 21]. In the particular case in which χ1 and χ2 are given by (1.63)

and (1.76), respectively, we find that the determinant (1.78) coincides with {χ,C} 6= 0,

as we have previously discussed. As in the case of {χ,C} 6= 0, the determinant (1.78)

may be nonvanishing only in certain regions of the auxiliary phase space, and it may be

impossible to define gauge conditions which globally satisfy (1.78). This impossibility

is the well-known ‘Gribov obstruction’ (cf. §A.2.7), and it implies that complete gauge

fixings (and thus generalized reference frames) are typically local constructions.

1.7 Observables and invariant extensions

We have seen in §1.5 and §1.6 that the arbitrariness of the multiplier λ(τ) is equivalent

to the arbitrariness in the choice of diffeomorphism in (1.13), which in turn corresponds

to a choice of generalized reference frame (complete gauge fixing; intrinsic chart). It

is precisely the arbitrariness in the choice of reference frames that must be addressed

by the definition of observables in gauge theories. Observable quantities must have a

well-defined time evolution, in contrast to the indeterministic character of the evolution

dictated by the total Hamiltonian (1.30) [or (1.38)].

In the usual gauge theories of internal symmetries (such as the Yang-Mills theo-

ries of the standard model of particle physics), in which the gauge freedom does not

involve a definition of the time coordinate nor the functional form of the fields with re-

spect to their time dependence, it is customary to define observables as gauge-invariant

quantities. The reason for this is simple: in these theories, the total Hamiltonian in-

volves a term that does not vanish on the constraint hypersurface, denoted by H0,

and a term δH which is a combination of constraints and involves the arbitrary mul-

tipliers [see (A.47) and (A.66)]. If an auxiliary phase-space function O is gauge in-

variant, it must weakly Poisson-commute with the constraints (cf. Definition A.1),

and thus it weakly Poisson-commutes with δH. In this way, the evolution of a gauge-

invariant function is well-defined because it is independent of the arbitrary multipliers,

Ȯ ≈ ∂O/∂τ + {O, HT } ≈ ∂O/∂τ + {f,H0}.

Is there an analogous result for the case of diffeomorphisms? The answer is yes,

although a few preliminary comments are in order. First, diffeomorphisms constitute

an ‘external’ symmetry, in the sense that they involve a definition of the time coor-
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dinate or the functional form of the fields with respect to their τ dependence, as we

have seen in the preceding sections. Second, the total Hamiltonian is a combination

of the (primary and secondary) constraints [cf. (1.30) or (1.38)], such that it vanishes

on the constraint hypersurface and H0 ≡ 0. In this way, if one requires that observ-

ables weakly Poisson-commute with all the constraints [and, therefore, with the gauge

generator (1.55)], one reaches the apparently unsatisfactory conclusion that the evo-

lution of an observable O is solely encoded in its explicit time dependence [9, 11, 12],

Ȯ ≈ ∂O/∂τ + {O, HT } ≈ ∂O/∂τ . Although this evolutionary law is well-defined (as

it does not depend on arbitrary multipliers), it hardly fits the canonical paradigm of

orbits in phase space generated by a Hamiltonian vector field. Third, it is important to

note that the requirement that O Poisson-commutes with the constraints does not ren-

der it gauge (diffeomorphism) invariant, in contrast to the case of internal symmetries,

because of its explicit time dependence. Indeed, we find from (1.53) the transforma-

tion δε(τ)O = δexpl.
ε(τ) O. Then, if one further requires that O does not have an explicit

dependence on τ , such that it is a diffeomorphism invariant, one reaches the seem-

ingly paradoxical conclusion that only constants can be observed; i.e., one finds Ȯ ≈ 0.

These difficulties with the determination of a well-defined evolutionary law for observ-

ables in a diffeomorphism-invariant theory are collectively referred to as the ‘problem

of time’ [22–24].

It is the opinion of the author of this thesis that the classical problem of time is

nothing but a confusion (or, at best, a matter of semantics), although its quantum coun-

terpart is more serious due to the measurement problem. Let us then analyze a solution

to the classical “problem”, which will inspire us to develop a method of construction

and interpretation of dynamical observables in the quantum theory (cf. §2.5.1, §2.5.2).

We will see that the aforementioned pictures of evolution, Ȯ ≈ ∂O/∂τ or Ȯ ≈ 0, can be

reconciled with the usual picture of orbits generated by a Hamiltonian vector field (in

principle), and that this also informs us on how the quantum theory can be built. The

key is to primarily define observables as quantities that can be, in principle, measured

in an experiment and that have a well-defined time evolution. Their diffeomorphism

invariance (or lack thereof) follows as a secondary quality.

To begin with, let us note that diffeomorphism invariants can be obtained by inte-

grating worldline one-forms ω(τ)dτ over an interval I = (τ0, τ1) ⊂M,

Oω =

∫ τ1

τ0

dτ ω(τ) , (1.79)

as was discussed in [52–56]. Note that the proper time (1.2) and the action (1.5)

are particular examples of such objects. It is straightforward to verify that (1.79) is

invariant under arbitrary diffeomorphisms if the integral converges and appropriate

boundary conditions for ω(τ) are adopted. Alternatively, as in the case of the action

(cf. footnote 10), one could leave the boundary values ω(τ0) and ω(τ1) unspecified
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1. Classical Diffeomorphism Invariance on the Worldline

and add suitable boundary terms to the right-hand side of (1.79). It is also possible to

restrict the (infinitesimal) diffeomorphisms considered by selecting boundary conditions

for ε(τ). For example, one notes from (1.17) that (1.79) remains invariant if ε(τ) and

ω(τ) satisfy periodic boundary conditions, ε(τ0) = ε(τ1), ω(τ0) = ω(τ1). Moreover, if

M is isomorphic to R and ω(τ) is integrable, one could take τ0 → −∞ and τ1 → +∞
and consider the condition lim|τ |→∞ ω(τ)ε(τ) = 0 such that (1.79) is invariant.

The physical relevance of (1.79) is, however, often elusive. As was argued in the

Introduction, the diffeomorphism invariants that have a straightforward physical in-

terpretation are relational observables, which encode the values of the dynamical fields

relative to a choice of generalized clock. Following the arguments in the Introduction

and §1.6, we conclude that one should consider complete gauge fixings, which corre-

spond to the definition of generalized reference frames adopted by an observer in the

description of an experiment. We will see how these gauge fixings lead to diffeomor-

phism invariants.

It is worthwhile to mention that, although the diffeomorphism and reparametriza-

tion invariance of the action (1.5) implies that any arbitrary choice of coordinate map

is permissible, it is crucial that the complete gauge fixing be based on canonical gauge

conditions; i.e., it is paramount that time be defined through a combination of the

canonical fields of the theory. An arbitrary coordinate map has no direct physical in-

terpretation, it is merely a choice of parametrization. In contrast, if time is defined by

(the level sets of) a generalized clock χ, this corresponds to an experimental setup that

can, in principle be realized: the dynamics is described with respect to the evolution of

the clock. In this way, as was remarked in the Introduction and [33], the dynamics

of a gauge theory admits a relational interpretation in the sense that the degrees of

freedom can be understood with respect to (or relative to) a generalized reference frame

(complete gauge fixing).29

Let us then consider an observer who describes experiments and measurements with

respect to a generalized clock χ(q(τ), p(τ)). The observer adopts a complete gauge

fixing defined by the conditions (1.63) and (1.76), with ω(q, p; τ) ≡ ω(q(τ), p(τ)) :=

1/{χ,C} ≈ 1/{χ + O, C}, where O is any auxiliary phase-space function that weakly

Poisson-commutes with C. Note that ω(q(τ), p(τ)) 6= 0 has a constant sign due to

the gauge condition (1.63). The dynamics recorded by the observer can be written in

terms of a solution S(τ) = (q(τ), p(τ), e(τ)) to the field equations written in an arbitrary

frame as S0(τ) = (q′(τ) := φ∗Sq(τ), p′(τ) := φ∗Sp(τ), e′(τ) := φ∗Se(τ)), where φS = χ−1

[cf. discussion after (1.77)]. Thus, the solution S0(τ) = (q′(τ), p′(τ), e′(τ)) satisfies the

gauge conditions, and we say it is ‘gauge-fixed’. In the generalized reference frame of

the observer, any auxiliary phase-space function of the form f ′ := f(q′, p′; e′; τ) evolves

29Notice that, in theory, the generalized reference frame or gauge conditions can be arbitrarily chosen
at each instant. Nevertheless, in a feasible experimental arrangement, one expects that a generalized
clock is used to record the dynamics throughout a certain succession of instants.
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according to

ḟ ′ ≈ ∂f

∂τ

∣∣∣∣
Σ|χ

+ ω(q′, p′){f, C}Σ|χ + ω̇(q′, p′){f, pe}Σ|χ , (1.80)

where we used (1.29) and (1.65) and, as before, all the constraints (including the gauge

conditions or the pullback by φS) are imposed only after the partial time derivative

and the Poisson brackets are evaluated. This is a well-defined evolution law because no

arbitrary multipliers are present [ω(q′, p′) is fixed]. In this way, we assume that (1.80)

is integrable and a choice of initial conditions uniquely determines the solution (see also

the discussion in §1.9.2). As was mentioned in the end of §1.6, the gauge indeterminism

of the evolution law (1.29) is then understood as the indetermination in the choice of

reference frame (there is no preferred frame). This choice is left to the observer. Any ob-

server who employs χ as a generalized clock will record the dynamics according to (1.80),

and the observations will be cast in terms of the solution S0(τ) = (q′(τ), p′(τ), e′(τ)).

In this way, it is reasonable to define any function f ′ = f(q′, p′; e′; τ) as an observable.

There is no “problem” of time for this definition, although there is the need to specify

with respect to which clock χ (or, more precisely, which intrinsic chart) the dynamics is

described. To be clear, we consider that the solution to the classical “problem” of time

is to define observables as gauge-fixed quantities. But how is this definition related

to diffeomorphism invariants? And how can the evolution (1.80) be connected with

the laws Ȯ ≈ ∂O/∂τ or Ȯ ≈ 0? The answer depends on the concept of ‘invariant

extensions’, which we now briefly discuss (see§A.2.6 for a general discussion on gauge

orbits and §A.2.7 for further details on invariant extensions).

First, let us consider a function f : M → M that only has an explicit time

dependence. As it is a scalar, this function is not invariant under diffeomorphisms,

δε(τ)f(τ) = ε(τ)df/dτ [cf. (1.17)]. Nevertheless, for any fixed instant τ = s, we can de-

fine a constant function O[f |τ = s] :M→ R, O[f |τ = s](τ) = f(s) that coincides with

f at τ = s. This constant worldline scalar is trivially invariant, δε(τ)O[f |τ = s] = 0,

and it is called the invariant extension of f(τ) at τ = s.

Second, let us consider an auxiliary phase-space function without explicit time

dependence, f(q(τ), p(τ); e(τ)) ≡ f(S(τ)). Under a gauge transformation, S(τ) 7→
φ∗S(τ), the function is transformed, f 7→ φ∗f ≡ f(φ∗S(τ)). We may regard f(S(τ))

as a function on the gauge orbit [S(τ)], in which case the gauge-fixed function f ′ :=

φ∗Sf = f(φ∗SS(τ)) = f(S0(τ)) corresponds to the image of a single point in the orbit.

Due to (1.74) and (1.75), this point can be seen as an invariant choice of origin in

[S(τ)], and thus f(S0(τ)) is also invariant. More precisely, we can define the constant

map O[f |χ = τ ] : [S(τ)] → [S(τ)], O[f |χ = τ ](S(τ)) := f(S0(τ)), of which the

map (1.73) is a particular case. Notice that the image of O[f |χ = s] is a function on

the worldline that is not necessarily constant. Since O[f |χ = τ ] is constant along the

gauge orbit (by definition) and it coincides with f at the origin S0(τ), it is called the
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1. Classical Diffeomorphism Invariance on the Worldline

invariant extension of f in the gauge φ∗Sχ = τ [33]. Notice that invariance here refers

only to the fact that O[f |χ = τ ] remains the same under changes in the functional

form of the fields S(τ) = (q(τ), p(τ), e(τ)) generated by G [cf. (1.53)], but it does

not concern a possible explicit time dependence that O[f |χ = τ ] may acquire when

expressed in terms of S(τ) (see §1.8 and §1.9.1). For this reason, we expect that

O[f |χ = τ ] (understood as a function in the auxiliary phase space) weakly-Poisson

commutes with the gauge generator, given that the Poisson brackets are written in terms

of the (q(τ), p(τ), e(τ), pe(τ)) fields [cf. (1.27)], but it may have a nonvanishing explicit

time derivative. We will confirm this in §1.8 and §1.9.1. Intuitively, the invariance

under changes in the functional form of the fields generated by G follows from the fact

that, in fixing the generalized reference frame defined by χ, all other frames become

“irrelevant”.

Third, let us now consider the general case of an auxiliary phase-space function

with an explicit time dependence, f(q(τ), p(τ); e(τ); τ) ≡ f(S(τ); τ). Combining the

results of the two previous paragraphs, we conclude that the gauge-fixed observable f ′ =

f(q′(τ), p′(τ); e′(τ); τ) ≡ f(S0(τ); τ) may be promoted to a diffeomorphism invariant at

a fixed instant of time τ = s; i.e., we define its invariant extension as

O[f |χ = s] : M→ R

p 7→ f ′|τ=s = f(S0(s); s) ,
(1.81)

for a fixed value of s. In (1.81), the letter p stands for a point in the worldline,

the coordinate representation of which is τ in the intrinsic chart (Uχ, χ̃′) defined by

the gauge condition (cf. §1.6). In this way, the quantity O[f |χ = s] is a constant

worldline scalar, which is defined from a solution to the field equations. It can also be

understood as a constant function on the gauge orbit [S0(τ)], the image of which is the

constant worldline scalar f(S0(s); s) (as opposed to the function f(S0(τ); τ), which is

not necessarily constant on the worldline). Therefore, it trivially satisfies the invariance

properties: Ȯ[f |χ = s] ≈ 0 and δε(τ)O[f |χ = s] ≈ 0; i.e., it is a diffeomorphism

invariant. In this sense, one recovers the “frozen time” picture Ȯ ≈ 0 mentioned above.

Nevertheless, this picture is hardly illuminating: time is frozen simply because one is

focusing on a single instant. Indeed, the invariant extension encodes the value of the

quantity f ′ in the instant in which the generalized clock χ has the value s.

As it represents f ′ in relation to a (fixed) value of the clock, it is more customary

to refer to O[f |χ = s] as a relational observable [57, 58]. It is also important to

mention that, although gauge invariant, relational observables are gauge-dependent

objects (in the sense explained in Definition A.2). This simply means that their physical

interpretation and functional form refer to a choice of gauge (generalized clock), as

a consequence of the fact that they are extensions of a gauge-fixed quantity f ′ =

f(S0(τ); τ). The gauge dependence of observables is expected because, as already
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mentioned, time is defined intrinsically from the dynamical degrees of freedom (cf. §1.6),

and any observer will perceive the dynamics in a gauge-fixed (i.e., relational) way.

As mentioned in Remark A.3, we use the terms ‘relational’, ‘gauge-fixed’ and ‘gauge

dependent’ as synonyms.

The above discussion implies that the definition of observables as gauge-fixed quan-

tities is reasonable, and it is, in fact, equivalent to a class of diffeomorphism invariants

(the relational observables). However, it seems that emphasizing the invariance aspect

of this definition is a matter of convenience (or even semantics) in the classical the-

ory. One could decide to work solely with (1.80) and its solutions, without mentioning

their equivalence to invariant extensions. This is often done in practical calculations.

Furthermore, it is important to mention that some researchers even argue against the

definition of observables as invariants, as they take the position that an analogy with

gauge theories of internal symmetries is unjustified (see, for instance, the discussions

in [59–61]). Following [59–61], we could simply define observables as worldline tensors,

which are not invariant under general diffeomorphisms. Intuitively, observables would

be quantities that transform “covariantly”. How can we reconcile this with the above

definition of relational observables? There are two points of reconciliation.

The gauge-fixed auxiliary phase-space function f ′ = f(S0(τ); τ) is the component

of a worldline tensor field evaluated in the intrinsic coordinate determined by the gen-

eralized clock. As we have seen, S0(τ) is an invariant along the gauge orbits, and f ′|τ=s

defines a diffeomorphism invariant for each fixed instant s. As we will see in §1.9.1,

however, the family of relational observables (for all instants in the domain of the in-

trinsic chart) does not correspond to a diffeomorphism invariant due to its explicit time

dependence, which recovers the law Ȯ = ∂O/∂τ (see also the discussion in [11, 12]).

Thus, although gauge-fixed observables correspond to invariants at each instant, the

dynamics encoded in the family of observables is clearly “covariant”, and this marks

the first point of contact of the definition of relational observable with the view that

observables should transform “covariantly”.

The second point concerns the tensor character of f ′. It is straightforward to

verify that f ′ = f(q′, p′; e′; τ) transforms as the solution S0(τ) = (q′(τ), p′(τ), e′(τ))

is mapped to another via a diffeomorphism φ0. One finds that the transformation

f ′ 7→ f ′(φ∗0S0(τ);φ0(τ)), where we assumed the explicit time dependence is of scalar

type. However, this transformation merely corresponds to a change of origin in the

gauge orbit, as was argued in the paragraphs that precede (1.14) and follow (1.74),

respectively. Once the new origin is fixed, one can in principle establish its invariance

as in (1.75) and proceed to construct new invariant extensions. This means that the

“covariance” of observables may be assigned to the freedom in choosing the origin in the

gauge orbit or, in particular, in choosing the complete gauge fixing, whereas the invari-

ance refers to the irrelevance of the functional form of the fields S(τ) = (q(τ), p(τ), e(τ))

written in an arbitrary frame. In other words, G generates transformations in the arbi-

trary frame of the solution (q(τ), p(τ), e(τ)), which do not affect f ′ = f(q′, p′; e′; τ). A
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similar remark was made in [9,11,12]. Therefore, the views regarding the definition of

observables discussed above (observables as gauge-fixed quantities; relational observ-

ables; observables as quantities that transform “covariantly”) are, in fact, equivalent.

Despite the equivalence of the above definitions of observables, we will see that the

quantum theory demands (under reasonable assumptions) that observables commute

with the constraint operators. It is, therefore, worthwhile to understand how to con-

struct and interpret objects that Poisson-commute with the constraint functions in the

classical theory before we proceed to quantization. For this reason, the classical analy-

sis of relational observables is worthwhile. In the next section, we discuss a convenient

representation of relational observables.

1.8 Integral representations of relational observables

Let the domain of the intrinsic chart associated with the generalized clock be Uχ. Its

coordinate representation is an interval Iχ = (τ0, τ1) in which χ(q(τ), p(τ)) is invertible.

Therefore, we assume that τ0 and τ1 are chosen such that χ(q(τ), p(τ)) = s only once in

Iχ, and χ(q(τ0), p(τ0)) 6= s, χ(q(τ1), p(τ1)) 6= s by hypothesis. From its definition (1.81),

we then note that we can rewrite the relational observable as

O[f |χ = s] := f(φ∗q(s), φ∗p(s);φ∗e(s); s)

=

∫ τ1

τ0

dτ δ(τ − φ(s))f

(
q(τ), p(τ);

dφ

ds
e(τ); s

)
,

(1.82)

where we recall that φ(s) = χ−1(s), which is the inverse function of χ(s) ≡ χ(q(s), p(s)),

and the Dirac delta distribution (henceforth referred to as ‘Dirac delta’ or ‘delta func-

tion’) is a worldline scalar density defined by

δ(τ) = 0 (τ 6= 0) ,∫ ∞
−∞

dτ δ(τ)f(τ) = f(0) .
(1.83)

We note that (1.82) is of the form (1.79), and it expresses the relational observable

in terms of the solution (q(τ), p(τ), e(τ)) to the field equations written in an arbitrary

frame. The integral formula (1.85) holds for any type of worldline tensor due to (1.4).

Even though O[f |χ = s] satisfies δε(τ)O[f |χ = s] ≈ 0 by construction, it is now

worth verifying that it is indeed a diffeomorphism invariant and, in particular, that it

weakly Poisson-commutes with the constraint functions pe and C. To this end, we first

compute

dφ

ds
=

(
dχ

dτ

)−1

τ=φ(s)

≈ 1

{χ, eC}τ=φ(s)
≈ ω(φ∗q(s), φ∗p(s))

e(φ(s))
(1.84)
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from (1.29) and the fact that φ(s) = χ−1(s). If we substitute (1.84) into (1.82), we find

that O[f |χ = s] does not, in fact, depend on e(τ) and, as a result, {O[f |χ = s], pe} = 0.

Furthermore, we can compute {O[f |χ = s], C} in the following way: given the solution

(q(τ), p(τ), e(τ)) in an arbitrary frame, where e(τ) is some fixed, nonvanishing function

(with constant sign), we can use the properties of the Dirac delta to cast (1.82) into

the useful form

O[f |χ = s] =

∫ τ1

τ0

dτ

∣∣∣∣dχdτ

∣∣∣∣ δ (χ(q(τ), p(τ))− s) f
(
q(τ), p(τ);

dφ

ds
e(τ); s

)
, (1.85)

where dχ/dτ ≈ e(τ){χ,C} [cf. (1.29)]. If we use (1.84), we can rewrite the integrand

in (1.85) as sgn(e)e(τ)g(τ ; s), where sgn(e) = ±1 is constant, e(τ) is a fixed function,

and we have defined

g(τ ; s) ≡ g(q(τ), p(τ); s) := |{χ,C}| δ (χ− s) f (q(τ), p(τ);ω(q(τ), p(τ)); s) . (1.86)

Notice that g(τ0; s) = g(τ1; s) = 0 because of the assumption that χ(q(τ0), p(τ0)) 6=
s and χ(q(τ1), p(τ1)) 6= s. For a fixed value of s, we also obtain dg/dτ ≈ {g, eC}
[cf. (1.29)]. In this way, we find

{O[f |χ = s], C} ≈ sgn(e)

∫ τ1

τ0

dτ {g, eC} ≈ sgn(e)

∫ τ1

τ0

dτ
dg

dτ

= sgn(e) (g(τ1; s)− g(τ0; s)) = 0

(1.87)

from (1.85). Thus, the relational observables indeed weakly Poisson-commute with

the constraint functions pe and C, and thus with the gauge generator [cf. (1.55)]. It is

important to emphasize, as before, that the Poisson brackets are evaluated with respect

to the (q(τ), p(τ), e(τ)) fields instead of the pulled back (gauge-fixed) variables. Thus,

the weak Poisson-commutation property of O[f |χ = s] follows from the fact that the

gauge freedom has been fixed, as was discussed in the paragraphs preceding (1.81).

Finally, we note that O[f |χ = s] has no explicit time dependence for a fixed value of

s, and δexpl.
ε(τ) O[f |χ = s] = 0 is trivially satisfied. Then, δε(τ)O[f |χ = s] ≈ δexpl.

ε(τ) O[f |χ =

s] + {O[f |χ = s], G} ≈ 0; i.e., O[f |χ = s] is a diffeomorphism invariant, as it should

be.

Notice that dχ/dτ ≈ e(τ){χ,C} is proportional to the Faddeev-Popov determinant

[cf. discussion after (1.78)]. Due to the Dirac delta in (1.85), we can replace the

Jacobian factor by its invariant extension; i.e., |dχ/dτ | 7→ ∆χ := |φ∗dχ/dτ |τ=s. If

there is no risk of confusion, we refer to ∆χ itself as the Faddeev-Popov determinant.
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Its inverse can be written as [cf. (A.78)]

∆−1
χ =

∣∣∣∣φ∗dχ

dτ

∣∣∣∣−1

τ=s

=

∫ τ1

τ0

dτ δ(χ(q(τ), p(τ))− s) . (1.88)

Using (1.88), the integral formula (1.85) can be rewritten as

O[f |χ = s] = ∆χ

∫ τ1

τ0

dτ δ (χ(q(τ), p(τ))− s) f
(
q(τ), p(τ);

dφ

ds
e(τ); s

)

=

∫ τ1
τ0

dτ δ (χ(q(τ), p(τ))− s) f
(
q(τ), p(τ); dφ

ds e(τ); s
)

∫ τ1
τ0

dτ δ(χ(q(τ), p(τ))− s)
,

(1.89)

which is an instance of the general formula (A.79). The formula (1.89) expresses the

relational observable as an “average” over the intrinsic chart domain. It is an instance

of a general averaging procedure that can be used in gauge theories [cf. the discussion

after (A.79)].30

In addition to (1.81), we may take (1.82), (1.85), or (1.89) as alternative definitions

of O[f |χ = s]. As important particular cases, we find that the relational observable

associated with the generalized clock itself is trivial, O[χ|χ = s] = s, whereas the

invariant extension of the identity is still the identity; i.e., O[1|χ = s] = 1. This

preservation of the identity is a crucial aspect of the formalism, one that will also be

of importance in the quantum theory, and it is more commonly called the ‘Faddeev-

Popov resolution of the identity’ [20,21] for the generalized clock χ. Due to (1.88), the

resolution of the identity can be expressed as

1 = ∆χ

∫ τ1

τ0

dτ δ(χ(q(τ), p(τ))− s) . (1.90)

We have seen that the relational observables recover the “frozen time” picture of

evolution, Ȯ ≈ 0. In what follows, we will discuss how the law Ȯ ≈ ∂O/∂τ may be

recovered (cf. §1.9.1), as well as a picture of orbits in phase space that are generated

by a suitable Hamiltonian vector field (cf. §1.9.2).

30Instead of using integral formulas such as (1.89), Pons et al. show in [11] that invariant extensions
can be recovered from a limiting procedure for a one-parameter family of canonical transformations.
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1.9 Dynamics of relational observables

1.9.1 Gauge-fixed evolution

As mentioned in §1.7, the relational observable O[f |χ = s] is a worldline constant

that captures a single instant and is, therefore, “frozen” in time. Nevertheless, the

family of all relational observables that refer to the generalized clock χ, O[f |χ(Iχ)] :=

{O[f |χ = s], s ∈ χ(Iχ)}, is clearly dynamical: it encodes the relational evolution of

on-shell worldline tensor fields (i.e., solutions to the field equations) for all the different

instants that are in the domain of the intrinsic chart. For this reason, one sometimes

refers to (the family of) relational observables as ‘evolving constants of motion’ [17].

From the definition (1.81), we see that the family O[f |χ(Iχ)] is equivalent to the

(image of the) gauge-fixed function f ′ = f(q′, p′; e′; τ), which is a solution to (1.80). In

this way, each moment of time in the evolution of f ′ in the generalized reference frame

of the observer is captured by the family of invariant extensions O[f |χ(Iχ)]. As each

member of the family Poisson-commutes with the constraint functions (cf. §1.8), their

evolution is captured by the equation [cf. (1.29)]

d

ds
O[f |χ = s] ≈ ∂

∂s
O[f |χ = s] + {O[f |χ = s], HT } ≈

∂

∂s
O[f |χ = s] , (1.91)

which recovers the law Ȯ ≈ ∂O/∂τ discussed previously. As was mentioned in the

paragraphs that follow (1.81), this explicit time dependence signals that the family

of relational observables is not diffeomorphism invariant in a strict sense, as we may

consider the explicit gauge transformation δε(τ)O[f |χ = τ ] = δexpl.
ε(τ) O[f |χ = τ ]. Strict

invariance is only obtained for a fixed instant τ = s (i.e., for each member of the family).

Can we compute the value of ∂O[f |χ = s]/∂s? The answer is yes. First, let us

note that the partial derivative of the relational observable is not, in general, equal to

relational observable associated with the partial derivative. To see this, consider the

example of the function f(q(τ), p(τ); τ) = χ(q(τ), p(τ)) + τ , which satisfies ∂f/∂τ = 1,

and the associated relational observable is O[∂f/∂s|χ = s] = O[1|χ = s] = 1. In

contrast, we obtain O[f |χ = s] = f(φ∗q(s), φ∗p(s); s) = φ∗χ + s = 2s, such that

∂O[f |χ = s]/∂s = 2 6= 1. Second, let us define the convenient abbreviated notation

fes ≡ f(q(τ), p(τ); e(τ); s). Third, we use the integral formula (1.82) together with (1.84)
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to compute

d

ds
O[f |χ = s] =

d

ds

∫ τ1

τ0

dτ δ(τ − φ(s))f (q(τ), p(τ);ω(q(τ), p(τ)); s)

=

∫ τ1

τ0

dτ

[
fωs

d

ds
δ(τ − φ(s)) + δ(τ − φ(s))

∂fωs
∂s

]
=

∫ τ1

τ0

dτ

[
−fωs

dφ

ds

d

dτ
δ(τ − φ(s)) + δ(τ − φ(s))

∂fωs
∂s

]
=

∫ τ1

τ0

dτ δ(τ − φ(s))

[
dφ

ds

dfωs
dτ

+
∂fωs
∂s

]
,

(1.92)

where we denoted ω ≡ ω(q(τ), p(τ)) for brevity. The integration by parts needed to

reach the last line in (1.92) is permissible because we assume that χ(q(τ0), p(τ0)) 6= s

and χ(q(τ1), p(τ1)) 6= s. Moreover, we obtain

dfωs
dτ

=
d

dτ

∫ ω+1

ω−1
dx δ(x− ω)f(q(τ), p(τ);x; s)

= δ(1)fω+1
s − δ(−1)fω−1

s +

∫ ω+1

ω−1
dx fxs

d

dτ
δ(x− ω) +

∫ ω+1

ω−1
dx δ(x− ω)

dfxs
dτ

=

∫ ω+1

ω−1
dx fxs (−ω̇)

d

dx
δ(x− ω) +

∫ ω+1

ω−1
dx δ(x− ω){fxs , e(τ)C}

= (−ω̇)
[
δ(1)fω+1

s − δ(−1)fω−1
s

]
+

∫ ω+1

ω−1
dx δ(x− ω)

[
{fxs , e(τ)C}+ ω̇

dfxs
dx

]
≈
∫ ω+1

ω−1
dx δ(x− ω) [e(τ){fxs , C}+ ω̇{fes , pe}e=x]

= e(τ){fωs , C}+ ω̇{fes , pe}e=ω ,

such that (1.92) becomes

d

ds
O[f |χ = s]

≈
∫ τ1

τ0

dτ δ(τ − φ(s))

[
dφ

ds
e(τ){fωs , C}+

dφ

ds
ω̇{fes , pe}e=ω +

∂fωs
∂s

]
=

∫ τ1

τ0

dτ δ(τ − φ(s))

[
ω(φ(s)){fωs , C}+

dω

ds
{fes , pe}e=ω +

∂fωs
∂s

]
,

(1.93)

where we used (1.84), and we denoted ω(φ(s)) ≡ ω(φ∗q(s), φ∗p(s)). The derivative

of ω(φ(s)) with respect to s is dω/ds = ω̇|τ=φ(s)dφ/ds ≈ {ω, ωC}τ=φ(s) [cf. (1.29)
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and (1.84)]. Finally, we can rewrite (1.93) in two equivalent ways. The first reads

d

ds
O[f |χ = s]

≈ O
[
∂f

∂s

∣∣∣∣χ = s

]
+ ω(φ(s)){fωs , C}τ=φ(s) +

dω

ds
{fes , pe}τ=φ(s),e=ω(φ(s)) .

(1.94)

By virtue of (1.81) and (1.82), the evolution determined by (1.94) for the family of rela-

tional observables is the same as the evolution dictated by (1.80) for f ′ = f(q′, p′; e′; τ),

as it should be. As the evolution of gauge-fixed observables is well-defined, we see that

the evolution encoded in the family of relational observables is deterministic. Further-

more, we note that the second way to rewrite (1.93) is

d

ds
O[f |χ = s] ≈ O

[
∂f

∂s
+ {f,Hgf

T }
∣∣∣∣χ = s

]
, (1.95)

where Hgf
T is the gauge-fixed Hamiltonian given in (1.65), with ω̇ ≡ {ω, ωC}. Equa-

tion (1.95) is a central result of the classical theory of relational observables. In [11],

Pons et al. used another method to arrive at essentially the same result (at the classi-

cal level). In fact, the same result can be derived for general canonical gauge systems

[see (A.83)]. We also note that (1.95) is expected to be promoted to an operator

equation in the quantum theory in analogy to the Heisenberg picture of the usual (non-

invariant) treatments of quantum mechanics. In §2.5.1, we show that this expectation

is fulfilled and we discuss the notion of time evolution in the quantum theory.

The equivalence of (1.80), (1.94) and (1.95) implies that each can be used as a

description of dynamics in the generalized reference frame associated with the clock

field χ. Nevertheless, in each of these equations, the Poisson brackets are evaluated with

respect to the (q(τ), p(τ), e(τ)) fields instead of the pulled back (gauge-fixed) variables.

One enforces the gauge fixing τ = φ(s), as well as the constraints C = pe = 0, only at

the end of the computation. For this reason, the evolution of observables is captured

by the law Ȯ = ∂O/∂τ [cf. (1.91)], and one does not make use of Poisson brackets of

the invariants themselves; i.e., one does not impose the constraints before evaluating

the brackets. In what follows, we will see how the evolution of gauge-fixed or relational

observables can be captured by brackets of the invariant extensions.

1.9.2 The reduced phase space, the physical Hamiltonian, and the

physical worldline

Due to the presence of constraints, the auxiliary phase space Γ plays only an ancil-

lary role in the theory. All physical motions satisfy the constraints and, therefore, are

defined in the subspace Σ (the constraint hypersurface) of Γ. It is then reasonable to

seek a description of the dynamics that dispenses with the extra structure present in
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the auxiliary phase space. At first, one could attempt to define the theory on Σ or

directly in the space of solutions S(τ). However, we have seen in §1.9.1 that families

of relational observables capture the dynamics in their explicit time dependence, and

that relational observables (for a fixed instant) can be regarded as constant functions

on each gauge orbit [cf. the discussion that follows (1.81)]. For this reason, we can

alternatively understand the relational observables as functions on the space of orbits,

i.e., on the space of equivalence classes [S(τ)] of solutions under the gauge transforma-

tions generated by G. This brings us to the question: can we define a Poisson-bracket

structure and a suitable Hamiltonian vector field on the space of orbits to describe the

dynamics of relational observables? The answer is yes [33]. Let us now analyze how

this can be achieved.

We refer to the space of orbits as the ‘reduced phase space’ or the ‘physical phase

space’, and we denote it by Γphys. We assume that Γphys is a smooth manifold and that

there exists a continuous surjection π from the space of solutions S(τ), which we denote

by F, and the reduced phase space; i.e., π : F → Γphys. We can define the relational

observable O[f |χ = s] as the function

O[f |χ = s] : Γphys → R

[S(τ)] 7→ f ′|τ=s = f(S0(s); s) ,
(1.96)

for each solution S0(τ). Notice that we use the same notation in (1.96) as in (1.81)

without risk of confusion. Thus, there are three views on the relational observables: (1)

they are worldline constants; (2) they are constant functions on the gauge orbits; (3)

they are functions on the reduced phase space. In fact, any function that is invariant

under the transformations generated by G is constant along each gauge orbit and,

therefore, may be seen as a function on Γphys.

To define the Poisson-bracket structure and a Hamiltonian vector field in the re-

duced phase space, it is convenient to adopt a system of local coordinates in Γphys that

are related to the relational observables. We proceed in a series of steps.

First, let S(τ) = (q(τ), p(τ), e(τ)) be a solution to the field equations in an arbitrary

frame, and let χ(q(τ), p(τ)) be a choice of generalized clock. Without loss of generality,

we can suppose that χ(q(τ), p(τ)) = q1(τ) (possibly after a canonical transformation).

We also assume that we can solve the secondary constraint C = 0 for p1(τ), the

canonical momentum conjugate to the clock, to obtain

p1(τ) = −Hσ
χ(q(τ), p(τ)) , (1.97)
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where σ denotes a possible discrete degeneracy of the solution.31 Evidently, the auxil-

iary phase-space function Hσ
χ(q(τ), p(τ)) does not depend on p1(τ). The solutions (1.97)

can be found if 0 6= ∂C/∂p1 = {χ,C}, which is the same condition for the complete

gauge fixing associated with the generalized clock to be admissible [cf. (1.77)]. As al-

ready mentioned, this condition is, in general, only satisfied in a certain region W of

the auxiliary phase space Γ.

Second, let us collectively denote the canonical pairs that are different from (q1, p1)

by (q̄, p̄). Then, a point in the auxiliary phase space reads (q, p, e, pe) = (q1, p1, q̄, p̄, e, pe),

whereas a point on the constraint hypersurface Σ can be written as (q1,−Hσ
χ , q̄, p̄, e, 0)

due to (1.97). We omit the last (vanishing) entry without loss of generality. Moreover,

as discussed in §1.6, the complete gauge fixing associated with φ∗Sχ = τ corresponds to

a choice of origin S0(τ) in each gauge orbit. We can write this gauge-fixed solution as

S0(τ) = (φ∗Sq
1(τ), φ∗Sp1(τ), φ∗S q̄(τ), φ∗S p̄(τ), φ∗Se(τ))

= (τ,−Hσ
χ(φ∗S q̄(τ), φ∗S p̄(τ); τ), φ∗S q̄(τ), φ∗S p̄(τ), ω(φ∗S q̄(τ), φ∗S p̄(τ); τ))

≡ (τ,−φ∗SHσ
χ , φ

∗
S q̄(τ), φ∗S p̄(τ), φ∗Sω)

(1.98)

where we used (1.84) and (1.97) to write

φ∗Se(τ) = ω(φ∗Sq
1(τ), φ∗Sp1(τ), φ∗S q̄(τ), φ∗S p̄(τ)) ≡ ω(φ∗S q̄(τ), φ∗S p̄(τ); τ) .

It is straightforward to see that S0(τ) ∈ Σ|χ ⊂ Σ for each value of τ . As φ∗SH
σ
χ and

φ∗Sω are functions of τ and φ∗S q̄(τ), φ∗S p̄(τ) only, we conclude that the independent

initial values of the solution S0(τ) are given by φ∗S q̄(s), φ
∗
S p̄(s) (for a fixed value of

s), which correspond to (the images of) the relational observables O[q̄|χ = s] and

O[p̄|χ = s]. In this way, a complete set of independent relational observables can be

seen as a set of invariant extensions of initial data [30, 31]. For this reason, we also

refer to φ∗S q̄(s), φ
∗
S p̄(s) as ‘relative initial data’, and we denote Q̄ := (φ∗S q̄(s), φ

∗
S p̄(s)).

We assume, for simplicity, that the space of all possible values of Q̄ is Γ̄ ⊂ R2(d−1).

Furthermore, a general relational observable can be written in terms of the relative

initial data, O[f |χ = s] = f(S0(s); s), due to (1.96) and (1.98). The idea is then to use

the relative initial data as local coordinates in Γphys.

Third, as mentioned after (1.80), we assume that the gauge-fixed field equations

(1.80), (1.94), or (1.95) are integrable, and that a unique solution S0(τ) exists for each

choice of (independent) initial conditions. This means that there exists a bijection Es
between a choice of relative initial data at τ = s and a solution S0(τ); i.e., we define

31For example, the sectors of positive and negative frequencies in the case of the relativistic particle
(see Chapter 3).
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Es(Q̄) = S0 and E−1
s (S0) = Q̄, where S0 : M → R stands for the function given

in (1.98) in the local coordinate τ . In this way, different choices of the initial values

lead to different solutions S0(τ), which are mapped to different gauge orbits by the

surjection π.32 For example, we note that if one performs a global time translation

solely in φ∗S q̄(τ), φ∗S p̄(τ), one reaches the solution

S̃0(τ) = (τ,−φ∗SHσ
χ , φ

∗
S q̄(τ + ε), φ∗S p̄(τ + ε), φ∗Sω) , (1.99)

where ε is a nonvanishing constant and the dependence of φ∗SH
σ
χ and φ∗Sω on φ∗S q̄(τ +

ε), φ∗S p̄(τ + ε) has been suppressed. The solution (1.99) is different from (1.98) because

the initial data differ, and it is not on the same gauge orbit of (1.98) because it does not

correspond to a pullback of S0(τ) (only the relative initial data are globally translated,

but not the clock φ∗Sχ = τ).

Finally, as was mentioned after (1.75), the complete gauge fixing also corresponds

to a choice of section ` : Γphys → F, `([S(τ)]) = S0 such that π ◦ ` : Γphys → Γphys is

the identity. In this way, we can consider the mapping Γphys 3 [S(τ)]
`7→ S0

E−1
s7→ Q̄ ∈ Γ̄

with the inverse Γ̄ 3 Q̄
Es7→ S0

π7→ [S(τ)] ∈ Γphys.
33 Assuming that it is, in fact, a

homeomorphism, we interpret this mapping as a choice of local coordinates in Γphys,

which are the relative initial data. Incidentally, this implies that the dimension of Γphys

is 2(d − 1), which is equal to the number of dimensions of the auxiliary phase space

(2d + 2) minus the number of first-class constraints (2) minus the number of gauge

conditions in a complete gauge fixing (2). This is the standard counting of the number

of physical degrees of freedom in a system without second-class constraints [33]. As the

relational observables O[f |χ = s] can be written in terms of the relative initial data, it

is sufficient to determine the Poisson-bracket structure in these local coordinates.

A straightforward way to simultaneously define the bracket structure and a Hamilto-

nian vector field in Γphys is to analyze the on-shell action, which is obtained from (1.32)

when the paths are restricted to be solutions to the field equations (and, in particular,

they are defined in the constraint hypersurface Σ). We find

Son-shell =

∫ b

a
dτ

[
d∑
i=2

pi(τ)q̇i(τ)−Hσ
χ(q(τ), p(τ))χ̇(τ)

]
, (1.100)

where we used (1.97). Notice that (1.100) coincides with the on-shell value of (1.39).

32It is worthwhile to emphasize that the gauge fixing is a fixation of the functional form of the
fields via the pullback by φS , but it is not a fixation of the independent initial data that label different
solutions.

33Notice that, although ` ◦ π : F→ F is not the identity, we find that E−1
s ◦ ` ◦ π ◦ Es is the identity

because the image of Es is a gauge-fixed solution (the origin of a gauge orbit) by definition.
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Due to (1.11), we can rewrite (1.100) as

Son-shell =

∫ φ−1
S (b)

φ−1
S (a)

ds

[
d∑
i=2

pi(φS(s))
dqi(φS(s))

ds
−Hσ

χ(q(φS(s)), p(φS(s)))

]
. (1.101)

One readily recognizes (1.101) as the usual action of an unconstrained system with

degrees of freedom comprised of the relative initial data Q̄ = (φ∗S q̄(s), φ
∗
S p̄(s)). For a

fixed value of s, this leads to the definition of the Poisson bracket34

{f, g}Γphys
:=

d∑
i=2

(
∂f

∂qi(φS(s))

∂g

∂pi(φS(s))
− ∂f

∂pi(φS(s))

∂g

∂qi(φS(s))

)
(1.102)

for any two reduced phase-space functions f, g in the local coordinates Q̄ in Γphys.

Furthermore, the on-shell action (1.101) also implies that the evolution of φ∗S q̄(s), φ
∗
S p̄(s)

with respect to changes in the value of s is a canonical transformation in Γphys generated

by the vector field {·, φ∗SHσ
χ}Γphys

, where φ∗SH
σ
χ is called the ‘physical’ or ‘reduced’

Hamiltonian. Notice that the functional form of the physical Hamiltonian will generally

differ for different gauge fixings. Moreover, the physical Hamiltonian coincides with

(the image of) a relational observable, φ∗SH
σ
χ = O[Hσ

χ |χ = s], which is the invariant

extension of the on-shell value of −p1(τ). As any relational observable O[f |χ = s] can

be written in terms of the relative initial data, we conclude that, instead of (1.95),

we can describe the evolution of the family of relational observables with respect to

changes in the value of s with the physical Hamiltonian vector field,

d

ds
O[f |χ = s] =

∂

∂s
O[f |χ = s] + {O[f |χ = s],O[Hσ

χ |χ = s]}Γphys
. (1.103)

In this way, the evolution is described solely in terms of brackets of diffeomorphism

invariants.35

Lastly, following the discussion in the Introduction, we define a region γχ of the

‘physical worldline’ Mphys as the image of the solution S0(τ) for a fixed choice of

relative initial data. As S0(τ) is only valid in the intrinsic chart (Uχ, χ̃′) associated

34A similar construction is reviewed in §A.3, where it is explained that the reduced phase space can
also be understood as the quotient space of the constraint hypersurface Σ by the orbits generated by
{·, C} and {·, pe}.

35In fact, the physical Hamiltonian can also be used to define the bijection Es between the relative
initial data at τ = s and the solution S0(τ). For example, suppose that O[Hσ

χ |χ = s] does not explicitly
depend on s for simplicity. Then, given a choice of Q̄ = (φ∗S q̄(s), φ

∗
S p̄(s)), we obtain a trajectory in the

reduced phase space via the invertible mapping Q̄ 7→ Q̄(τ) := exp
(
(τ − s){·,O[Hσ

χ |χ = s]}
)
Q̄, which

can be composed with the map that takes the function (worldline scalar) τ 7→ Q̄(τ) to the (2d+1)-tuple
of functions (worldline scalars) that form τ 7→ S0(τ) [as given in (1.98)]. Notice that, for a fixed gauge
fixing (a fixed choice of origin in each gauge orbit), this map is invertible.
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with the complete gauge fixing, the image is γχ := S0(χ̃′(Uχ)), which is invariant under

diffeomorphisms in M, since χ̃′(Uχ) and S0(τ) are invariant [cf. (1.75) and discussion

after (1.77)]. More precisely, let A be a smooth intrinsic atlas on M. We note that

τ 7→ S0(τ) ∈ Σχ ⊂ Σ is a description of the physical trajectory as a parametrized

curve in the constraint hypersurface, and for any two charts (Uχ1 , χ̃
′
1), (Uχ2 , χ̃

′
2) in A

that are smoothly compatible (with Uχ1 ∩ Uχ2 6= 0), a change of intrinsic coordinates

corresponds to a change of gauge, which induces a change S0(τ) = φ∗0S̃0(τ) in the

origin of the gauge orbit (it also induces a change in the local coordinates of Γphys,

understood as relative initial data). This, in turn, is a reparametrization of the curve

in Σ. As S0(τ) is a (2d+ 1)-tuple of worldline scalars [cf. (1.98)], its image is invariant

under diffeomorphisms, such that γχ is insensitive to diffeomorphisms on the abstract

worldline or changes of gauge conditions. Furthermore, we see from (1.98) that τ 7→
S0(τ) is a bijection onto its image; i.e., it is a bijection between Uχ and γχ. We

then assume that the union ∪Aγχ =: Mphys is a smooth, one-dimensional manifold,

which we define to be the physical worldline. Note that Mphys is constructed from

diffeomorphism-invariant (extensions of) quantities, which are the relational objects

that are accessible to any observer (see also the discussion in the Introduction).

1.10 Hamilton-Jacobi formalism

Before we proceed to the quantum theory, is it useful to discuss one of its closest

classical analogues: the Hamilton-Jacobi (HJ) formalism (cf. §A.3.3). It is defined by

a canonical transformation to the set of independent initial conditions. The generating

function reads F = S(q, P ; e, Pe; τ)−QiPi− e0Pe, where the new canonical coordinates

are (Q,P ; e0, Pe) and S is Hamilton’s principal function. The Lagrangian in (1.32) is

transformed according to piq̇
i + peė − HT = PiQ̇

i + Peė0 −KT + dF/dτ , where λ(τ)

is considered as an arbitrary multiplier. If we require that the new total Hamiltonian

vanishes identically, we find the HJ equations

pi =
∂S

∂qi
, Qi =

∂S

∂Pi
, (1.104)

pe =
∂S

∂e
, e0 =

∂S

∂Pe
, (1.105)

0 =
∂S

∂τ
+HT

(
q,
∂S

∂q
; e,

∂S

∂e
; τ

)
. (1.106)
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1.10. Hamilton-Jacobi formalism

As is well-known, Eq. (1.106) is the classical analogue to the Schrödinger equation.

Using (1.106) and HT = eC + λ(τ)pe, an ansatz for S is found to be

S(q, P ; e, Pe; τ) := W(q, P ) + (Pe − Eτ)

[
e−

∫ τ

dτ ′λ(τ ′)

]
− E

∫ τ

dτ ′
∫ τ ′

dτ ′′λ(τ ′′) ,

(1.107)

where the multiplier λ(τ) is understood as an arbitrary function of τ , and we have

defined W as a solution to

C

(
q,
∂W

∂q

)
= E , (E ∈ R). (1.108)

We can evaluate Hamilton’s principal function on a solution S(τ) = (q(τ), p(τ), e(τ))

to the field equations in order to find its on-shell value, Son-shell. For any given solution

S(τ), we must have pe = 0 and C = 0. Due to (1.105) and (1.108), the primary

constraint implies that ∂S/∂e = 0, whereas the secondary constraint implies that E = 0.

If we impose these conditions on (1.107), we find

Son-shell = W(q(τ), P ) . (1.109)

We thus see that Son-shell has no explicit time dependence; i.e., due to the imposition

of the constraints, we find from (1.106) that ∂Son-shell/∂τ = 0. As we will discuss in

Chapter 2, this has a direct analogue in the quantum theory: physical wave functions

must be independent of τ , which is often interpreted as a lack of quantum dynamics [6].

However, the classical condition ∂Son-shell/∂τ = 0 does not preclude evolution. It simply

implies that the on-shell value of Hamilton’s principal function obeys

d

dτ
Son-shell =

∂Won-shell

∂qi
q̇i ≡ piq̇i ; (1.110)

i.e., W is what is usually referred to as Hamilton’s characteristic function, and it is the

antiderivative of the Lagrangian featured in the actions (1.39) and (1.100),

Won-shell =

∫
dτ piq̇

i . (1.111)

How are the new canonical coordinates (Q,P ; e0, Pe) in the auxiliary phase space

related to the independent initial conditions? First, we note that (1.105) together
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1. Classical Diffeomorphism Invariance on the Worldline

with (1.107) implies

e0 = e−
∫ τ

dτ ′λ(τ ′) , Pe = pe + Eτ . (1.112)

Thus, e0 is simply the initial value of the einbein [cf. (1.30)], which is arbitrary due

to the arbitrariness of the multiplier λ(τ). Moreover, Pe = 0 on shell. Second, to

determine the interpretation of (Q,P ), we note from (1.108) that the HJ analogue

of (1.97) is

p1 =
∂W

∂q1
= −Hσ,E

χ

(
q̄,
∂W

∂q̄
; q1

)
, (1.113)

where we allow a general value of E, although E = 0 for any solution to field equations.

Notice that (1.113) is of the same form as the ordinary time-dependent HJ equation

[cf. (1.106)]. Here, the clock q1 plays the role of time, and W can be seen as Hamilton’s

principal function for the variables (q̄, p̄), even though it is Hamilton’s characteristic

function for the whole system because it has no explicit dependence on τ [cf. (1.109)].

From the discussion in §1.9.2, we know that the invariant extensions of (q̄, p̄) for a

certain value of the generalized clock comprise the independent initial data of the

system, which serve as local coordinates in the reduced phase space. Therefore, we can

choose d− 1 pairs among the (Q,P ) to be (functions of) the relative initial data, i.e.,

the initial values of (q̄, p̄) relative to the clock. Let us denote these pairs by (x, k), such

that (Q,P ) = (x, k; t, h).

What is the interpretation of the remaining pair (t, h)? To find the answer, let us

first note that, in terms of the new canonical coordinates, the Poisson bracket of two

functions in the auxiliary phase space reads

{f, g} =
d∑
i=2

(
∂f

∂xi
∂g

∂ki
− ∂f

∂ki

∂g

∂xi

)
+
∂f

∂t

∂g

∂h
− ∂f

∂h

∂g

∂t
+
∂f

∂e0

∂g

∂Pe
− ∂f

∂Pe

∂g

∂e0
. (1.114)

Moreover, the pairs (x, k) are invariants by definition and may be used as local coordi-

nates in Γphys. Thus, the bracket (1.114) coincides with (1.102) if f and g only depend

on (x, k) and are, therefore, invariants. Subsequently, let us rewrite (1.104) as

pi =
∂W

∂qi
(i = 1, . . . , d) , (1.115)

xj =
∂W

∂kj
(j = 2, . . . , d) , (1.116)

t =
∂S

∂h
. (1.117)
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1.10. Hamilton-Jacobi formalism

Due to (1.113), we assume that we can invert (1.116) and use (1.115) to find

qj ≡ qj(x, k; q1;E, σ) , pj ≡ pj(x, k; q1;E, σ) (j = 2, . . . , d) (1.118)

for fixed values of E and σ. If we fix q1 = s and E = 0, the quantities in (1.118) become

invariants (for a fixed value of s), which coincide with the relational observables. Due

to (1.103), we know that their evolution with respect to s is generated by a physical

Hamiltonian O[Hσ
χ |χ = s], which we assume may be written solely in terms of x, k and

s due to (1.118).

Finally, let us compute (1.117). We note that, without loss of generality, we can

consider that the parameter E in (1.108) is a function of the invariants x, k, as well as

of h and s; i.e., E ≡ E(h, x, k; s). The simplest case is E = h. In general, we assume

that E = E(h, x, k; s) can be inverted for h such that we obtain

h = −Hσ′(E, x, k; s) ,
∂E

∂h
6= 0 , (1.119)

where σ′ is a discrete degeneracy. This means that σ′1 6= σ′2 implies thatHσ′1(E, x, k; s) 6=
Hσ′2(E, x, k; s) for all possible values of (E, x, k) and s. In this way, Eq. (1.119) is anal-

ogous to (1.97) and (1.113). In particular, we may choose Hσ(E, x, k; s) such that its

restriction to E = 0 coincides with the physical Hamiltonian O[Hσ
χ |χ = s], which is the

invariant extension of Hσ
χ . As E coincides with the secondary constraint [cf. (1.108)],

we conclude that h = −Hσ′(0, x, k) is a representation of the hypersurface C = 0.

For later reference, we also assume that the function Hσ′(E, x, k; s) in (1.119) can be

expanded in powers of E,

Hσ′(E, x, k; s) = Hσ′
0 (x, k; s) +Hσ′

1 (x, k; s)E +O(E2) , (1.120)

Hσ′
1 (x, k; s) ≡ −

(
∂E

∂h

)−1

6= 0 . (1.121)

Evidently, for a solution to the field equations, we have the on-shell values E = 0,

h = −Hσ(0, x, k; s) = −Hσ
0 (x, k; s). Using (1.119), Eq. (1.117) then yields

t =
∂S

∂h
= χ− ∂E

∂h

[
τ

(
e−

∫ τ

dτ ′λ(τ ′)

)
+

∫ τ

dτ ′
∫ τ ′

dτ ′′λ(τ ′′)

]
, (1.122)

where

χ ≡ χ(x, k; q1;E, σ) :=
∂W

∂h
(1.123)
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1. Classical Diffeomorphism Invariance on the Worldline

can be considered a function of q1, x, k, E and σ due to (1.118). Moreover, if we

use (1.112) together with (1.2) and ė = λ, we can rewrite (1.122) in terms of proper

time

χ = t+
∂E

∂h
η(τ) , (1.124)

such that χ is a canonical representation of proper time (as an auxiliary phase-space

function) if E = h, and t is its “initial” value, which is arbitrary due to the freedom to

globally shift η. If E 6= h and a more general relation is chosen [cf. (1.119)], then the

interpretation of χ and t is less straightforward (see, however, the comments in §2.5.2).

Nonetheless, if Hσ is chosen to coincide with O[Hσ
χ |χ = s] (at least for E = 0), then

χ is a generalized clock that is conjugate to the physical Hamiltonian, which is the

invariant extension of the on-shell value of p1. In this case, χ is not necessarily equal to

q1 because p1 is not generally invariant and, therefore, equal to its invariant extension.

Nevertheless, one may invert (1.123) to find the evolution of q1 in terms of χ or proper

time [cf. (1.124)]

q1 ≡ q1

(
t+

∂E

∂h
η, x, k;E, σ

)
. (1.125)

This implies that fixing q1 = s corresponds to fixing χ = χ(x, k; s;E, σ). If one in-

serts (1.125) back into (1.118), one may also express the other variables in terms of

proper time.

We have thus seen that relational observables and relative initial data can be re-

covered from the (off-shell) HJ formalism. In particular, the dynamics can be defined

regardless of the condition ∂Son-shell/∂τ = 0. This is important because an analogous

construction of relational observables will be available (under certain circumstances) in

the quantum theory due to its similarity to the HJ formalism, and the τ -independence

of on-shell quantum states will be irrelevant to the definition of the quantum dynamics.

If one wishes to find the classical solution to the field equations using the HJ for-

malism, we suggest the following strategy (which will have its quantum counterpart;

cf. §2.5.5): first, find the solutions (1.118) and (1.125) using the simple choice E = h,

such that χ is a canonical representation of proper time. For a fixed value of χ, these

solutions only depend on invariants (x, k,E, σ), and thus constitute functions on the

reduced phase space if E = 0. Second, a change of functional form of these solutions

via the pullback by a diffeomorphism can be described by the integral formula (1.89),

with which one may obtain the invariants relative to the generalized reference frame of

an arbitrary observer, instead of relative to the value of χ.
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Chapter 2

Quantum Diffeomorphism

Invariance on the Worldline

We now discuss the quantization of the general theory presented in Chapter 1, and

we present a formalism for the construction and interpretation of quantum relational

observables by closely following the analogy with the classical theory and, in particular,

the HJ formalism.1

2.1 The auxiliary Hilbert space

The canonical quantization of the classical system defined by the action (1.32) is ob-

tained by promoting the fields q(τ), e(τ) and their conjugate momenta p(τ), pe(τ) to

self-adjoint operators q̂, ê, p̂, p̂e acting on a Hilbert space H, which we refer to as the

auxiliary Hilbert space in analogy to the auxiliary phase space Γ. The inner product

〈·|·〉 in H is called the auxiliary inner product, and we assume that the secondary con-

straint function is also mapped to an operator Ĉ that is self-adjoint with respect to

〈·|·〉. The dynamics is given by the Schrödinger equation

i~
∂

∂τ
|ψ〉 = ĤT |ψ〉 , (2.1)

where |ψ〉 is a state in H, and [cf. (1.30)]

ĤT := êĈ + λ(τ)p̂e (2.2)

it the total Hamiltonian operator. The multiplier λ(τ) is taken to be an arbitrary

c-number-valued function of τ , and [ê, Ĉ] = 0. The Schrödinger equation (2.1) is the

1This Chapter is based on [30,31,62].

67



2. Quantum Diffeomorphism Invariance on the Worldline

quantum counterpart to (1.106). Furthermore, we can also define the quantum gauge

generator [cf. (1.55)]

Ĝ := ξ(τ)Ĉ + ξ̇(τ)p̂e , (2.3)

where ξ(τ) is an arbitrary c-number-valued function of τ . The quantum gauge orbits are

defined to be solutions to the equation i~δ |ψ〉 = Ĝ |ψ〉 [cf. (A.89)], where δ designates

a variation of the state at a fixed instant of τ .

In this construction, the quantum analogues of the constraint equations have not

yet been imposed. Classically, the primary constraint follows from the extremization

of action (1.32) with respect to the multiplier λ(τ), whereas the secondary constraint

follows from the preservation of the primary in time (ensured by the Rosenfeld-Dirac-

Bergmann algorithm; cf. §A.2.3). In the quantum theory, it seems reasonable to impose

the conditions

p̂e |ψ〉 = 0 , Ĉ |ψ〉 = 0 (2.4)

as analogues of the classical definition of the constraint hypersurface. The condi-

tions (2.4) define the so-called ‘Dirac quantization’ procedure [cf. §A.3.4]. In analogy

to the fact that classical solutions to the field equations must satisfy the constraints, we

define the ‘physical’ or ‘on-shell’ quantum states to be solutions to the conditions (2.4),

and we denote them as |Ψ〉. There are two paramount consequences of this definition.

First, due to (2.3), physical states are automatically gauge invariant; i.e., Ĝ |Ψ〉 = 0.

Second, due to (2.1) and (2.2), physical states are annihilated by the total Hamiltonian,

and thus they are independent of τ , ∂ |Ψ〉 /∂τ = 0.

The independence of on-shell states on the worldline time coordinate τ leads to the

notorious problem of time in the quantum theory, as it seems to indicate an absence

of dynamics. However, we stress that ∂ |Ψ〉 /∂τ = 0 is the quantum counterpart to the

classical condition ∂Son-shell/∂τ = 0. As we have seen in §1.10, this condition does not

mean that there is no evolution, but rather that the evolution is relational. Indeed,

we will see that the quantum evolution can be understood in direct analogy to the

HJ formalism (and its connection to relational observables and relative initial data),

and we will propose a method of construction and interpretation of quantum relational

observables.

2.2 To constrain or not to constrain? Stückelberg’s

approach

Before we proceed to the definition of quantum observables and their dynamics, it is

worthwhile to mention an alternative to the Dirac quantization conditions (2.4) that

is sometimes considered in the literature [43–47]. As was discussed in §1.4, we can

examine a class of theories that can be globally deparametrized due to the introduction
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2.2. To constrain or not to constrain? Stückelberg’s approach

of a “cosmological constant” Λ in the secondary constraint. Concretely, let

C =
1

2
Gij(q)pipj + V (q) (2.5)

be the secondary constraint, and let the primary pe = 0 be tacitly solved. Subsequently,

introduce a “cosmological constant” term, C 7→ CΛ = 1/2Gij(q)pipj + V (q) − Λ. The

idea is to take Λ to be a free parameter instead of a fixed constant. As CΛ is an initial

value constraint, the value of Λ is then determined by the initial conditions on the

scalars q, p (rather than by law).2 In this case, the role of the constraint is simply to

assign a value to a constant (conserved quantity), which may be identified with the

total energy of the system. Indeed, following the discussion at the end of §1.4, we

see that this procedure corresponds to a deparametrization if we formally identify Λ

with the opposite of the momentum conjugate to a proper-time field, such that the

physical Hamiltonian that dictates the dynamics of the scalars is equal to Hphys :=

C = 1/2Gij(q)pipj + V (q) [cf. (2.5)]. If one quantizes Hphys, the result is an ordinary

(unconstrained) quantum theory, governed by the Schrödinger equation i~d |ψ〉 /dτ =

Ĉ |ψ〉.

The above deparametrization procedure results in the same quantum theory that

is obtained if we start with the constraint function (2.5), but instead of imposting the

Dirac condition (2.4), we allow the quantum states to be in arbitrary superpositions

of the eigenstates of Ĉ. In other words, the (secondary) quantum constraint is not

imposed and off-shell states are permitted in the quantum theory. Why is this so? In

the same way that the value of Λ (which is the classical value of C) is a constant of

motion that is taken to depend on the initial conditions of the scalars, the expectation

value (and other correlation functions) of Ĉ depend on the choice of initial quantum

state |ψ〉. For certain peaked states, one can recover, for example, 〈Ĉ〉 = 0. Evidently,

this procedure rests on the assumption that a “free cosmological constant” exists (it is

determined by the initial conditions of the universe) or, equivalently, that a proper-time

field exists, which respect to which a global deparametrization is possible.

This approach to the quantization of a constrained system was originally proposed

by Stückelberg in [43], in the context of the quantization of the free relativistic particle.

In this example, the “cosmological constant” is simply related to the particle’s mass,

Λ = m2/2, which is considered not to be fixed a priori, but rather determined by the

initial position and momentum of the particle. Over the years, Stückelberg’s approach

has been reincarnated in various different proposals [44–47]. Although it is certainly an

interesting approach, it is a particular case of the general framework considered in this

2If Λ is considered as a fixed constant, it acquires the status of law in the sense that it defines the
constraint CΛ, and its value determines which independent initial conditions on the scalars are allowed
by the theory.
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2. Quantum Diffeomorphism Invariance on the Worldline

thesis because it involves a certain choice of worldline time coordinate (complete gauge

fixing) related to proper time, as was also mentioned in §1.4. We will see below that

this choice of time coordinate (and possibly others) can be, in principle, accommodated

in the quantum theory based on Dirac’s conditions (2.4) if one follows the analogy with

the HJ formalism discussed in §1.10.3

2.3 The physical Hilbert space

Our task is now to construct and examine the space of solutions of the Dirac condi-

tions (2.4). Since p̂e and Ĉ commute and are assumed to be self-adjoint operators with

respect to the auxiliary inner product, it is possible to find a system of eigenstates that

is complete and orthonormal with respect to 〈·|·〉; i.e.,

p̂e |pe, E,k〉 = pe |pe, E,k〉 , (2.6)

Ĉ |pe, E,k〉 = E |pe, E,k〉 , (2.7)

〈p′e, E′,k′|pe, E,k〉 = δ(p′e, pe)δ(E
′, E)δ(k′,k) , (2.8)

where k denotes degeneracies4 that can be regarded as local coordinates in the reduced

configuration or momentum space [i.e., they can be chosen to be either of the (x, k) co-

ordinates considered in the HJ formalism, cf. (1.114)], and δ(·, ·) is a Dirac (Kronecker)

delta if the labels are continuous (discrete). Let us denote a basis on the space of

solutions of (2.4) as |k〉 ≡ |pe = 0, E = 0,k〉. This basis can be used to define on-shell,

gauge-invariant states. We find the auxiliary overlap

〈k′|k〉 ≡ 〈pe = 0, E = 0,k′|pe = 0, E = 0,k〉 = δ(0, 0)δ(0, 0)δ(k′,k). (2.9)

As the primary constraint operator p̂e is assumed to have a continuous spectrum, the

corresponding factor δ(0, 0) in (2.9) diverges. This is physically irrelevant because the

physical solutions are those that satisfy the constraints [cf. (2.4)]. The auxiliary Hilbert

space H is taken to be a merely ancillary construct, similarly to the auxiliary phase

space in the classical theory. The divergence in (2.9) is simply a consequence of the

way H was defined. Moreover, if zero is in the continuous part of the spectrum of the

secondary constraint operator, the second δ(0, 0) in (2.9) also diverges. This shows that

the auxiliary inner product is, in fact, inadequate, and we must regularize it in order

to define the norm of physical states.

3It is also worthwhile to mention Komar’s approach [63], in which the Dirac conditions (2.4) are
imposed, but the constraints are not self-adjoint, and the evolution is defined by an operator which is
proportional to the Hermitian conjugate of the constraints.

4We assume that the labels k are independent of pe and E.
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We can define the so-called Rieffel induced inner product (·|·) by requiring that the

states |k〉 are orthogonal (see [64–71]). Thus, we define

〈p′e, E′,k′|pe, E,k〉 =: δ(p′e, pe)δ(E
′, E)(p′e, E

′,k′|pe, E,k) , (2.10)

where, in particular, we obtain

(k′|k) ≡ (p′e = 0, E = 0,k′|pe = 0, E = 0,k) = δ(k′,k) . (2.11)

The induced inner product can be used to define the overlap of arbitrary physical states.

Given the superpositions

|Ψ(1,2)〉 =
∑
k

Ψ(1,2)(k) |k〉 , (2.12)

their induced overlap is

(Ψ(1)|Ψ(2)) =
∑
k

Ψ∗(1)(k)Ψ(2)(k) . (2.13)

If the labels k are continuous, an integration replaces the summation in (2.13). In this

way, the induced inner product can be seen as the physical inner product on the space

of the superpositions (2.12). More precisely, we define the vector space of solutions

of (2.4) that have finite induced norm to be the physical Hilbert space Hphys.

Although the auxiliary Hilbert space and inner product are not physical, it is often

useful to express the induced inner product in terms of 〈·|·〉. Let us examine two possible

ways in which this can be done. First, we define the (improper) projectors

P̂pe,E =
∑
k

|pe, E,k〉 〈pe, E,k| ,

P̂p′e,E′P̂pe,E = δ(p′e − pe)δ(E′, E)P̂pe,E ,

(2.14)

such that physical states satisfy [cf. (2.12)]

P̂pe,E |Ψ(1,2)〉 = δ(pe)δ(E, 0) |Ψ(1,2)〉 . (2.15)
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Notice that |pe, E,k〉 = |pe〉 ⊗ |E,k〉, and we can also define

P̂pe := |pe〉 〈pe| ≡
∑
E,k

|pe, E,k〉 〈pe, E,k| ,
∫

dpeP̂e = 1̂ ,

P̂E :=
∑
k

|E,k〉 〈E,k| ≡
∑
k

∫ ∞
−∞

dpe |pe, E,k〉 〈pe, E,k| ,
∑
E

P̂E = 1̂ ,

(2.16)

where an integral replaces the sum if E is continuous. Let us now adopt the sign •
to denote the action of operators with respect to (·|·), and let us use the short-hand

notation P̂0 ≡ P̂pe=0,E=0. Then, from (2.14), (2.15) and (2.11), we find

P̂0 • |Ψ(1,2)〉 = |Ψ(1,2)〉 ,

P̂0 • P̂0 = P̂0 .
(2.17)

This means that P̂0 is the identity in Hphys. Now suppose that

Ψ(1,2)(k) = 〈pe = 0, E = 0,k|ψ(1,2)〉 ,

for some off-shell states |ψ(1,2)〉. Then, Eqs. (2.12) and (2.13) imply that

|Ψ(1,2)〉 = P̂0 |ψ(1,2)〉 ,

(Ψ(1)|Ψ(2)) =
〈
ψ(1)

∣∣∣P̂0

∣∣∣ψ(2)

〉
.

(2.18)

This establishes a relation between the induced and auxiliary inner products. Inciden-

tally, Eq. (2.18) is related to what is often called the “group averaging” procedure [69].

To see this, let us consider the particular case in which E spans the real line, such that

P̂0 =

∫ ∞
−∞

dpe

∫ ∞
−∞

dE δ(pe)δ(E)
∑
k

|pe, E,k〉 〈pe, E,k|

=
1

(2π~)2

∫
dλdτdpedE e

i
~λp̂ee

i
~ τĈ

∑
k

|pe, E,k〉 〈pe, E,k|

=
1

(2π~)2

∫ ∞
−∞

dλ e
i
~λp̂e

∫ ∞
−∞

dτ e
i
~ τĈ ,

(2.19)

due to the fact that |pe, E,k〉 are a complete system. Then, Eq. (2.18) becomes the
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“group averaging” formula5

(Ψ(1)|Ψ(2)) =

〈
ψ(1)

∣∣∣∣ 1

(2π~)2

∫ ∞
−∞

dλ e
i
~λp̂e

∫ ∞
−∞

dτ e
i
~ τĈ

∣∣∣∣ψ(2)

〉
. (2.20)

Another way to express (·|·) in terms of 〈·|·〉 is obtained is by “gauge fixing” in the

following sense: let us define the states

|e, t,k〉 :=
1√
2π~

∑
E

e−
i
~Et |e, E,k〉 =

∑
E

e−
i
~Et

∫ ∞
−∞

dpe
2π~

e−
i
~ epe |pe, E,k〉 . (2.21)

These states satisfy the properties

〈pe = 0, E = 0,k′|e, t,k〉 =
1

2π~
δ(k′,k) , (2.22)

e
i
~λp̂ee

i
~ τĈ |e, t,k〉 = |e− λ, t− τ,k〉 . (2.23)

The second property is called ‘covariance’ [72–75]. Note that the values of t should

be chosen so as to parametrize the unitary flow of Ĉ [75]. However, depending on

the properties of the spectrum of Ĉ and its unitary flow, it may be impossible to

construct a complete orthonormal system (in the auxiliary Hilbert space H) from the

states |e, t,k〉 [72, 75]. Nevertheless, it is sufficient for our purposes to assume that a

set of states with the properties given in (2.22) and (2.23) exists. Completeness and

orthonormality with respect to the auxiliary inner product are not mandatory due to

the ancillary character of H. Let us then define the operator

µ̂ := (2π~)2
∑
k

|e = e0, t = t0,k〉 〈e = e0, t = t0,k| = 2π~P̂e=e0,t=t0 , (2.24)

for arbitrary values of e0 and t0. Due to (2.22), we see that the induced overlap of two

physical states can be written as

(Ψ(1)|Ψ(2)) = 〈Ψ(1)|µ̂|Ψ(2)〉 , (2.25)

and this yields another relation between the induced and auxiliary inner products.

This can be regarded as a “gauge fixing”, in the sense that the states |e, t,k〉 can be

5If the spectrum of Ĉ is discrete, it may be possible to obtain a formula that is analogous to (2.20),
where the integral over τ is performed over a finite interval. For example, if E spans the integers, we
can integrate τ over the interval (0, 2π).
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2. Quantum Diffeomorphism Invariance on the Worldline

used to define operators that are formally conjugate to the constraints if they form a

complete system [72, 73, 75]. Thus, fixing arbitrary values of e0 and t0 is analogous to

a classical gauge fixing procedure in which one fixes the values of the einbein and of a

canonical representation of proper time [cf. (1.122)]. Even in the case in which the set

of states |e, t,k〉 is not complete and orthonormal (in the auxiliary Hilbert space), we

still consider this analogy to be valid.

2.4 On-shell and invariant operators

The only operators that are physically relevant are those that act solely on Hphys

and, therefore, define linear transformations between physical states. We refer to such

operators as ‘on shell’. A general on-shell operator can be written as

Ô =
∑
k′,k

O(k′,k) |k′〉 〈k|

≡
∑
k′,k

O(k′,k) |pe = 0, E = 0,k′〉 〈pe = 0, E = 0,k| .
(2.26)

Notice that p̂eÔ = Ôp̂e = ĈÔ = ÔĈ = 0. More generally, we can define invariant

operators, which commute with the constraints, as

Ôinv =
∑
E

∑
k′,k

∫ ∞
−∞

dpe Oinv(k′,k; pe, E) |pe, E,k′〉 〈pe, E,k| . (2.27)

Clearly, on-shell operators are obtained from invariants by the relation

Ô = P̂0Ôinv , (2.28)

such that O(k′,k) = Oinv(k′,k; 0, 0). Furthermore, given an operator f̂ that does not

commute with p̂e nor with Ĉ, we can define the invariant

Ôf ;inv :=
∑
E

∫ ∞
−∞

dpe P̂pe,E f̂ P̂pe,E , (2.29)

for which Of ;inv(k′,k; pe, E) = 〈pe, E,k′|f̂ |pe, E,k〉. This is a well-defined operator

if Of ;inv(k′,k; pe, E) < ∞. The associated on-shell operator has the induced matrix
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elements Of (k′,k) = 〈pe = 0, E = 0,k′|f̂ |pe = 0, E = 0,k〉 and can be written as6

Ôf = P̂0 f̂ P̂0 . (2.30)

For our purposes, it will be sufficient to consider operators f̂ that are defined solely from

the scalars q̂ and p̂, which commute with p̂e but not with Ĉ. In this case, f̂ ≡ f(q̂, p̂),

and we define [cf. (2.16)]

Ôf ;inv := 2π~
∑
E

P̂E f̂ P̂E (2.31)

instead of (2.31). The associated on-shell operator is

Ôf = 2π~P̂0 f̂ P̂E=0 = 2π~P̂E=0 f̂ P̂0 (2.32)

instead of (2.30). What is the classical analogue of (2.31) and (2.32)? To find the

answer, let us consider again the particular case in which E spans the real line, such

that (2.31) becomes7

Ôf ;inv := 2π~
∫ ∞
−∞

dE P̂E f̂ P̂E

= 2π~
∫

dEdE′ δ(E′ − E)P̂E′ f̂ P̂E

=

∫
dEdE′dτ e

i
~ τ(E′−E)P̂E′ f̂ P̂E

=

∫
dEdE′dτ P̂E′ e

i
~ τĈ f̂ e−

i
~ τĈ P̂E

=

∫ ∞
−∞

dτ e
i
~ τĈ f̂ e−

i
~ τĈ , (2.33)

where we used (2.16) to reach the last line. Notice that the integrand in (2.33) can

be regarded as an auxiliary Heisenberg-picture operator, that encodes the evolution

of f̂ ≡ f(q̂, p̂) in terms of proper time.8 In this way, Equation (2.33) is a quantum

version of (1.79), where the worldline time coordinate τ is chosen to be the proper

time (1.2), and the integration limits are τ0 → −∞ and τ1 → ∞. For this reason, we

take (2.29), (2.30), (2.31) and (2.32) to be the quantum counterparts to the classical

invariants (1.79) (even in the case in which the spectrum of Ĉ does not coincide with

6In [33], on-shell operators were considered with a different notation and they were called ‘projected
kernels’ (see Eq. 13.32 in [33]).

7See also [30,53].
8The corresponding classical evolution is dictated by the gauge-fixed total Hamiltonian (1.65) with

ω ≡ 1, such that Hgf
T = C. This is referred to as the ‘proper-time gauge’.
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2. Quantum Diffeomorphism Invariance on the Worldline

the reals9).

As we have argued in §1.7, the classical invariants that have a clear physical inter-

pretation are the relational observables. Therefore, we set out to construct quantum

relational observables as on-shell operators of the form (2.30) or (2.32). We present

three closely related methods of construction, and we examine the quantum dynamics

of the ensuing observables.

2.5 Quantum relational observables

We expect that quantum relational observables will satisfy a quantum version of the

classical evolution dictated by (1.95), which is based on the picture of observables evolv-

ing according to an explicit time dependence [cf. (1.91)]. As was argued in §1.9.1, one

evades the classical “problem” of time due to the fact that families of relational ob-

servables encode the gauge-fixed evolution in their explicit dependence on the worldline

time parameter and, as such, these families are not diffeomorphism invariant in a strict

sense (although each member Poisson-commutes with the constraints and is, moreover,

a worldline constant that encodes a fixed instant). In similar way, we will see that one

can construct a family of operators that commute with the constraints [and, therefore,

with the total Hamiltonian (2.2)], the dynamics of which is encoded in their explicit τ

dependence.

Furthermore, it is also reasonable to anticipate that quantum observables will obey

a counterpart of the classical reduced phase-space equation (1.103), which encodes their

evolution in the orbits generated by the physical Hamiltonian. Correspondingly, we will

see that one can, in principle, define a physical propagator in the quantum theory.

2.5.1 Proper-time evolution

Let us begin with the ‘proper-time gauge’ in which the classical, gauge-fixed total

Hamiltonian coincides with C [cf. (1.65) with ω ≡ 1]. More general gauges will be

analyzed in §2.5.2 and §2.5.6. In the proper-time gauge, the classical einbein is equal

to unity [cf. (1.63)], and we consider that the corresponding quantum observable is

simply the identity operator [or, more precisely, the corresponding on-shell operator

is the identity in Hphys, which corresponds to P̂0; cf. (2.17) and (2.28)]. Let us then

take a general operator f̂ ≡ f(q̂, p̂; s) that depends solely on the scalar fields and on a

parameter s together with the “gauge-fixed” measure (2.24) with e0 = 1 and t0 = s to

9As was mentioned in footnote 5, it may be possible to obtain a formula similar to (2.33), where
the integral is performed over a finite interval if the spectrum of Ĉ is discrete. For instance, if E spans
the integers, the integral over τ may be performed from 0 to 2π.
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2.5. Quantum relational observables

define the invariant operator [cf. (2.29)]

Ôinv[f |χ = s] :=
1

2

∑
E

∫
dpe P̂pe,E [f̂ , µ̂]+ P̂pe,E , (2.34)

where [·, ·]+ is the anticommutator. Let us now use the fact that f̂ commutes with p̂e

together with (2.16), (2.21), and (2.24) to rewrite (2.34) as

Ôinv[f |χ = s] := π~
∑
E

P̂E [f̂ , P̂t=s]+ P̂E ,

P̂t=s :=
∑
k

|t = s,k〉 〈t = s,k| .
(2.35)

In the particular case in which the spectrum of Ĉ is R, we can develop (2.35) in a

similar way as (2.33) to obtain

Ôinv[f |χ = s] =
1

2

∫ ∞
−∞

dτ e
i
~ τĈ [f̂ , P̂t=s]+ e−

i
~ τĈ . (2.36)

Finally, we can rewrite (2.36) as10

Ôinv[f |χ = s] :=
1

2

∫ ∞
−∞

dτ e
i
~ τĈ f̂ P̂t=se

− i
~ τĈ + h.c.

=
1

2

∫ ∞
−∞

dτ f̂(τ)P̂t=s−τ + h.c. ,

(2.37)

where we used (2.23). We take P̂t=s−τ to be the quantum analogue of the gauge-

fixing Dirac delta in (1.89), even if the states |t,k〉 are not orthonormal.11 In this

way, Eq. (2.37) is the quantum analogue of (1.89) for the particular case in which

τ0 → −∞, τ1 → ∞, and the generalized clock χ(τ) = t + τ is a canonical representa-

tion of proper time [cf. (1.124)],12 such that the Faddeev-Popov determinant is unity

[cf. (1.88)]. For this reason, we consider that (2.35) is the quantum counterpart to

the classical relational observable (1.89) in the proper-time gauge, even in the case in

which the states |e, t,k〉 do not form a complete orthononormal system in the auxiliary

Hilbert space H and the spectrum of Ĉ does not coincide with R. As was remarked af-

ter (2.23), the requirement of completeness and orthornormality in H is not obligatory

due to its auxiliary character.

10The abbreviation “h.c.” is a short-hand for “Hermitian conjugate”. Here, the term Hermitian
refers to the auxiliary inner product.

11Specifically, P̂t=s−τ =
∑

k

∫
dt δ(t− s+ τ) |t,k〉 〈t,k|.

12Notice that T (τ) = s implies that t = s− τ , which is the condition enforced by P̂t=s−τ .
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2. Quantum Diffeomorphism Invariance on the Worldline

From (2.35), we define the on-shell quantum relational observables in the proper-

time gauge as [cf. (2.32)]

Ô[f |χ = s] = π~P̂0 [f̂ , P̂t=s]+ P̂E=0 . (2.38)

In particular, if f̂ = 1̂, we can use (2.21) and (2.22) to find the quantum Faddeev-Popov

resolution of the identity,

Ô[1|χ = s] = 2π~P̂0P̂t=sP̂E=0 = P̂0 , (2.39)

which is the counterpart of (1.90) because P̂0 acts as the identity in Hphys [cf. (2.17)].

Equation (2.39) also implies that, if f̂ is itself an invariant, then (2.38) becomes

Ô[f |χ = s] = P̂0f̂ ; (2.40)

i.e., the on-shell relational observable associated with an invariant f̂ ≡ f(q̂, p̂) is simply

its restriction to the physical Hilbert space, as expected.

The quantum dynamics of (2.38) can be found by using (2.4), (2.23) and (2.32) to

obtain

Ô[f |χ = s] = π~P̂0 f̂ P̂t=s P̂E=0 + h.c.

= π~P̂0 f̂e−
i
~ (s−t0)Ĉ P̂t=t0 P̂E=0 + h.c.

= π~P̂0 e
i
~ (s−t0)Ĉ f̂e−

i
~ (s−t0)Ĉ P̂t=t0 P̂E=0 + h.c.

= π~P̂0 f̂(s− t0)P̂t=t0 P̂E=0 + h.c. ,

(2.41)

where, in the last line, we defined the auxiliary Heisenberg-picture operator f̂(s−t0) :=

exp(i(s − t0)Ĉ/~)f̂ exp(−i(s − t0)Ĉ/~). If we now differentiate (2.41) with respect to

s, we find

i~
d

ds
Ô[f |χ = s] = π~P̂0

[
i~

d

ds
f̂(s− t0) , P̂t=t0

]
+

P̂E=0

= π~P̂0

[
i~
∂f̂

∂s

∣∣∣∣∣
s−t0

+ [f̂ , Ĉ]|s−t0 , P̂t=t0

]
+

P̂E=0

= Ô
[

i~
∂f

∂s
+ [f̂ , Ĉ]

∣∣∣∣χ = s

]
,

(2.42)
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2.5. Quantum relational observables

which is the quantum version of (1.95) in the proper-time gauge.13

We can also define an analogue of (1.103) in terms of a physical propagator. More

precisely, just as (1.103) expresses the evolution of classical relational observables in

terms of orbits in the reduced phase space Γphys, we now seek a description of the

evolution of quantum relational observables in terms of orbits related to a unitary

flow in Hphys. First, notice that (2.38) is symmetric with respect to the auxiliary inner

product by construction. It is also symmetric with respect to the induced inner product

because, given two physical states |Ψ(1,2)〉 = |pe = 0〉⊗ |Ψ̃(1,2)〉 [cf. (2.12)], we obtain14

|OΨ(1,2)〉 := Ô[f |χ = s] • |Ψ(1,2)〉 = π~ |pe = 0〉 ⊗ P̂E=0[f̂ , P̂t=s]+ |Ψ̃(1,2)〉 ,

(OΨ(1)|Ψ(2)) = (Ψ(1)|OΨ(2)) = π~ 〈Ψ̃(1)|[f̂ , P̂t=s]+|Ψ̃(2)〉 .
(2.43)

If we assume that Ô[f |χ = s] is not only symmetric but, in fact, self-adjoint with

respect to (·|·) (or that a self-adjoint extension can be defined) for all possible values

of s, then we can write its spectral decomposition as

Ô[f |χ = s] =:
∑
f,n

f |f,n; s〉 〈f,n; s| , (2.44)

where the sums are formal and n are degeneracies. The states |f,n; s〉 form a complete

and orthonormal system in Hphys for all possible values of s by hypothesis; i.e., we have

(f ′,n′; s|f,n; s) = δ(f ′, f)δ(n′,n) , (2.45)∑
f,n

|f,n; s〉 〈f,n; s| = P̂0 . (2.46)

Incidentally, Eq. (2.46) is another representation of the Faddeev-Popov resolution of

the identity (2.39).

Given two instants s and s0, we define the physical proper-time propagator to be the

overlap (f,n; s|f0,n0; s0). Formally, this has the correct properties: (1) due to (2.45),

it reduces to the identity kernel function in the limit s → s0; (2) it corresponds to a

unitary transformation in Hphys in the following sense: if we define the physical states

|Ψ〉 :=
∑

f,n Ψ(f,n) |f,n; s0〉 and |Ψ; s〉 :=
∑

f,n Ψ(f,n; s) |f,n; s0〉, where

Ψ(f,n; s) :=
∑
f0,n0

(f,n; s|f0,n0; s0)Ψ(f0,n0) , (2.47)

13Notice that P̂0[f̂ , Ĉ]P̂t=t0 P̂E=0 = P̂0f̂ ĈP̂t=t0 P̂E=0.
14In the particular case in which f̂ = 1̂, the second line of (2.43) coincides with (2.25).
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2. Quantum Diffeomorphism Invariance on the Worldline

then they have the same induced norm

(Ψ; s|Ψ; s) =
∑
f,n

|Ψ(f,n; s)|2

=
∑

f,n,f0,n0,f ′0,n
′
0

Ψ∗(f ′0,n
′
0)
(
f ′0,n

′
0; s0|f,n; s

)
× (f,n; s|f0,n0; s0) Ψ(f0,n0)

=
∑

f0,n0,f ′0,n
′
0

Ψ∗(f ′0,n
′
0)
(
f ′0,n

′
0; s0|f0,n0; s0

)
Ψ(f0,n0)

=
∑
f0,n0

|Ψ(f0,n0)|2 = (Ψ|Ψ)

(2.48)

due to (2.45) and (2.46). We can regard |Ψ; s〉 as the physical Schrödinger-picture state

with initial condition |Ψ; s0〉 = |Ψ〉, and its evolution given by the physical propagator

(f,n; s|f0,n0; s0) is unitary due to (2.48). Moreover, we can write the matrix element

of (2.44) as (
f ′,n′; s0

∣∣∣Ô[f |χ = s]
∣∣∣ f,n; s0

)
=
∑
f ′′,n′′

f ′′ (f ′,n′; s0|f ′′,n′′; s)(f ′′,n′′; s|f,n, s0) ,
(2.49)

which has the form of a kernel function for a (physical) Heisenberg-picture operator.

In this way, we see that the physical proper-time propagator (f,n; s|f0,n0; s0) encodes

the evolution of Ô[f |χ = s] as a unitary flow in the physical Hilbert space, in analogy

to the physical Hamiltonian in (1.103), which encodes the evolution of the classical

observable as an orbit in the reduced phase space.

Before we proceed to discuss other gauges, a few comments regarding (2.45), (2.46),

and the definition of the physical propagator are in order. First, the physical propaga-

tor constructed above may be trivial. For example, as the observable O[1|χ = s] = P̂0

coincides with the identity in Hphys [cf. (2.39)], its spectral decomposition is simply∑
k |k〉 〈k| [cf. (2.14)], and the overlap (k′|k) = δ(k′,k) of its eigenstates is indepen-

dent of s. This does not signal that the evolution cannot be defined in the physical

Hilbert space but rather that the observable in question is constant [cf. (2.44)]. Second,

in the classical case (1.103), it was possible for the observable O[f |χ = s] to exhibit an

explicit time dependence in addition to its variation along the orbits generated by the

physical Hamiltonian vector field. This is also, in principle, possible in the quantum the-

ory, but the physical propagator (f,n; s|f0,n0; s0) constructed above encodes both the

explicit and implicit time dependence of Ô[f |χ = s] [cf. (2.44)] because it is constructed

directly from the spectral decomposition (2.44) and we assume self-adjointness of the
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observable.15 Third, if we compute the propagators from two different observables in

the proper-time gauge, the resulting overlaps may be different. We take them to be

simply different representations of the physical propagator in different bases (complete

orthonormal systems in Hphys, which are determined by the spectral decompositions),

also in the case in which the observables have an explicit time dependence.

The above subtleties regarding the physical propagator are consequences of the fact

that we started with the proper-time gauge but did not quantize a physical Hamiltonian

directly. Alternatively, we could start by defining some invariant operator to be the

quantum physical Hamiltonian, such that, instead of solely the physical propagator, we

could derive explicitly the physical Heisenberg equations that are analogous to (1.103).

A possible formalism for this is discussed next.

2.5.2 Evolution in other gauges

Following the construction of observables in the HJ formalism (cf. §1.10), we can iden-

tify the states |k〉 and |x〉 =
∑

k exp(−ix · k/~) |k〉 /
√

2π~ as the quantum analogues

of the (x, k) coordinates used in (1.114). The counterpart of the h and t coordinates

can be defined as follows. For a moment, let us assume that zero is in the continuous

part of the spectrum of Ĉ, in order to follow the analogy with HJ formalism. We then

define ĥ as the invariant [cf. (2.27)]

ĥ =
∑
k′,k

∫
dEdpe h(k′,k; pe, E) |pe, E,k′〉 〈pe, E,k| , (2.50)

which obeys the symmetry condition h(k′,k; pe, E) = h∗(k,k′; pe, E). As ĥ commutes

with the constraints, it is possible to find a simultaneous eigenbasis |pe, h,n〉 such that

p̂e |pe, h,n〉 = pe |pe, h,n〉 ,

Ĉ |pe, h,n〉 = C(h,n) |pe, h,n〉 ,

ĥ |pe, h,n〉 = h |pe, h,n〉 ,

(2.51)

where C(h,n) ∈ R is the expression of the eigenvalue of Ĉ in terms of the eigenvalue

of ĥ and the degeneracies n. As in the classical theory (cf. §1.10), we may choose

ĥ to be the invariant extension of some operator with respect to a certain previously

defined gauge (e.g., the proper-time gauge analyzed in §2.5.1). In particular, if we

choose ĥ = Ĉ, then we recover the proper-time gauge. In general, we assume that we

15Instead of (2.44), one could consider, in principle, a decomposition in which the eigenvalue f also
has an explicit dependence on s. This is not discussed here. See, however, the developments of §2.5.2.
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can solve C(h,n) = E to find the real solutions

h = −Hσ(E,n) = −Hσ
0 (n)−Hσ

1 (n)E +O(E2) , (2.52)

Hσ
1 (n) 6= 0 , (2.53)

at least if E is in an interval that contains zero. Equation (2.52) is a quantum ana-

logue of (1.119) and (1.120). Notice that the degeneracies n replace the classical (x, k)

coordinates, and we have assumed for simplicity that ĥ does not depend explicitly

on s. Similarly to (1.121), we require that Hσ
1 (n) 6= 0 for all values of n and σ

[cf. (2.53)]. As in the classical case, σ is a possible discrete multiplicity of the solution,

with Hσ′(E,n) 6= Hσ(E,n) (∀E,n) if σ′ 6= σ. If ĥ = Ĉ, then h = E and there is only

one multiplicity sector, which can be formally set to σ = 1. Furthermore, we define

1

N
|pe, E, σ,n〉 := |pe, h,n〉h=−Hσ(E,n) , (2.54)

where N ≡ N (E, σ,n) is a normalization that can be determined by requiring that

the states |σ,n〉 := |pe = 0, E = 0, σ,n〉 be orthonormal in the induced inner product.

Indeed, using the auxiliary inner product [cf. (2.10)], we find

〈p′e, h′,n′|pe, h,n〉 = δ(p′e − pe)δ(h′ − h)δ(n′,n)

= δ(p′e − pe)δ(E′ − E)
(p′e, E

′, σ′,n′|pe, E, σ,n)

N 2
,

(2.55)

where

(p′e, E
′, σ′,n′|pe, E, σ,n) := N 2δσ′,σδ(n

′,n)

∣∣∣∣∂C∂h
∣∣∣∣
h=−Hσ

χ (E,n)

. (2.56)

Notice that δ(h′ − h) vanishes if h′ and h are evaluated in different multiplicity sectors

[cf. the explanation following (2.52)] and, for this reason, we include the Kronecker

delta δσ′,σ in (2.56). If we now choose

N =

∣∣∣∣∂C∂h
∣∣∣∣− 1

2

h=−Hσ
χ (E,n)

, (2.57)

then, in particular, the on-shell states |σ,n〉 satisfy (σ′,n′|σ,n) = δσ′,σδ(n
′,n). More-

over, in a similar way to (2.14) and (2.16), we define

P̂ σpe,E :=
∑
n

|pe, E, σ,n〉 〈pe, E, σ,n| , (2.58)
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P̂ σE :=
∑
n

|E, σ,n〉 〈E, σ,n| =
∫ ∞
−∞

dpe P̂
σ
pe,E , (2.59)

P̂pe,E :=
∑
σ

P̂ σpe,E , (2.60)

which are seen to obey P̂ σ
′

p′e,E
′P̂ σpe,E = δσ′,σδ(p

′
e − pe)δ(E′ − E)P̂ σpe,E as a consequence

of (2.55) and (2.56). Subsequently, we can define the states [cf. (2.21)]

|e, t,n〉 :=

∫
dh√
2π~

e−
i
~ht |e, h,n〉 =

∫
dhdpe
2π~

e−
i
~hte−

i
~ epe |pe, h,n〉 . (2.61)

which satisfy properties similar to (2.22) and (2.23)

〈σ,n′|e, t,n〉 =
N

2π~
e

i
~ tH

σ(0,n)δ(n′,n) , (2.62)

e
i
~λp̂ee

i
~ τĥ |e, t,n〉 = |e− λ, t− τ,n〉 , (2.63)

where we used (2.54). As before, we do not require that these states be complete or

orthonormal in the auxiliary Hilbert space, but we note that |e, t,n〉 = |e〉 ⊗ |t,n〉, and

the label t can be seen as an analogue of the coordinate t that is conjugate to h in the

classical theory [cf. (1.117)].

To define relational observables, we start with the Faddeev-Popov resolution of the

identity [cf. (1.90)]. We take the quantum counterpart of (1.88) to be the on-shell

operator [cf. (2.30)] (
Ω̂σ
t

)−2
:= (2π~)2P̂ σ0 P̂e=1,t=sP̂

σ
0 , (2.64)

where P̂ σ0 = P̂ σpe=0,E=0 and P̂e=1,t=s =
∑

n |e = 1, t = s,n〉 〈e = 1, t = s,n|. Using (2.62),

we then find (
Ω̂σ
t

)−2
:=
∑
n

N 2 |σ,n〉 〈σ,n| . (2.65)

It is straightforward to verify that the operators

(
Ω̂σ
t

)ρ
:=
∑
n

(N )−ρ |σ,n〉 〈σ,n| , (2.66)

satisfy the relations

P̂ σ0 •
(

Ω̂σ
t

)ρ
=
(

Ω̂σ
t

)ρ
• P̂ σ0 =

(
Ω̂σ
t

)ρ
, (2.67)
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Ω̂σ
t •
(

Ω̂σ
t

)−1
=
(

Ω̂σ
t

)−1
• Ω̂σ

t = P̂ σ0 . (2.68)

due to (2.56) and (2.57). In particular, we refer to (2.66) with ρ = 2 as the σ-sector

(on-shell) Faddeev-Popov operator. Equations (2.64), (2.67) and (2.68) lead to

P̂ σ0 = (2π~)2Ω̂σ
t P̂e=1,t=sΩ̂

σ
t , (2.69)

which is the Faddeev-Popov resolution of the identity in the σ-sector of Hphys. Notice

that (2.69) is a counterpart of (1.90). If ĥ = Ĉ, then N = 1 [cf. (2.57)], σ ≡ 1, and

Ω̂σ
t ≡ P̂0, such that (2.69) coincides with (2.39).16

Let us now define the corresponding relational observables. As before, we consider

an operator f̂ that depends solely on the scalars q̂ and p̂. The corresponding on-shell

observable is defined to be

Ô[f |χ = s] :=
(2π~)2

2

∑
σ

Ω̂σ
t [f̂ , P̂e=1,t=s]+Ω̂σ

t . (2.70)

In particular, due to (2.60) and (2.69), we find

Ô[1|χ = s] = P̂0 , (2.71)

as it should be. Furthermore, if the spectrum of Ĉ is not only continuous but coincides

with R, we can define [cf. |pe, E, σ,n〉 = |pe〉 ⊗ |E, σ,n〉]

(
∆̂σ
χ

) 1
2

:=
∑
n

∫
dE

1

N (E, σ,n)
|E, σ,n〉 〈pe, E, σ,n| ,

16It is important to emphasize that the quantum Faddeev-Popov resolution of the identity given
in (2.39) or (2.69) is a key feature of our formalism. In this way, we differ, for example, from the
other method proposed by Marolf in [53], where invariant extensions were defined in a way that did not
invariantly extend the identity operator to the identity inHphys, and thus the Faddeev-Popov resolution
of the identity was not reproduced. In the case of the relativistic particle (to be analyzed in Chapter 3),
the formalism of [53] leads to Ôinv[1|q0 = cs] = sgn(p̂0) 6= 1̂. It is our opinion that reproducing the
Faddeev-Popov resolution of the identity in the quantum theory should be the correct procedure. It is
also worthwhile to note that (2.69) heuristically corresponds to “inserting a gauge condition operator”
into the (auxiliary) inner product. This is a procedure that was suggested in [33,76].
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as well as the invariant observable [cf. (2.27)]

Ôinv[f |χ = s]

:=
(2π~)2

2

∑
σ

∫
dpedE P̂pe,E

(
∆̂σ
χ

) 1
2

[f̂ , P̂e=1,t=s]+

(
∆̂σ
χ

) 1
2
P̂pe,E ,

(2.72)

such that Ω̂σ
t = P̂ σ0

(
∆̂σ
χ

)1/2
and Ô[f |χ = s] = P̂0Ôinv[f |χ = s] [cf. (2.28)]. As f̂

depends only on the scalars, we can develop (2.72) in a similar way as (2.33) and (2.36)

to find

Ôinv[f |χ = s] =

∫ ∞
−∞

dτ e
i
~ τĈ ω̂[f |χ = s] e−

i
~ τĈ , (2.73)

ω̂[f |χ = s] :=
1

2

∑
σ

(
∆̂σ
χ

) 1
2

[f̂ , P̂t=s]+

(
∆̂σ
χ

) 1
2
. (2.74)

Equation (2.73) is a quantum version of (1.89) in the particular case in which τ0 → −∞,

τ1 → ∞, and the generalized clock χ(τ) is conjugate to the invariant h. The initial

value of χ(τ) is t [cf. (1.124)], and we note that P̂t=s is analogous to the gauge-fixing

Dirac delta in (1.89), whereas
(

∆̂σ
χ

) 1
2

corresponds to the square root of the classical

∆χ given in (1.88). Inspired by this particular case, we consider that (2.70) is the

quantum version of the relational observable (1.89) in this particular χ-gauge, regardless

of whether the states |e, t,n〉 form a basis in the auxiliary Hilbert space or the spectrum

of Ĉ coincides with R. However, the derivation of (2.70) required the assumption that

E is a continuous label. If this is not the case, one can, in principle, still fix the proper-

time gauge as in §2.5.1. It may also be possible to derive a similar construction as the

one presented here for more general gauges in the case of a discrete spectrum of Ĉ, but

we do not pursue this, as most examples we will consider feature a continuous spectrum

(see, however, §2.7.2).

What can we say about the evolution of (2.70)? First, let us define the invariant

operator [cf. (2.52)]

Ĥ0 :=
∑
σ

∑
n

∫
dpedE Hσ

0 (n) |pe, E, σ,n〉 〈pe, E, σ,n| , (2.75)

such that [cf. (2.52) and (2.54)]

(
ĥ+ Ĥ0

)
|pe, E, σ,n〉 = E [−Hσ

1 (n) +O(E)] |pe, E, σ,n〉

= ω̂Ĉ |pe, E, σ,n〉 ,
(2.76)
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where we also defined the invariant

ω̂ :=
∑
σ

∑
n

∫
dpedE [−Hσ

1 (n) +O(E)] |pe, E, σ,n〉 〈pe, E, σ,n| . (2.77)

The interpretation of Ĥ0 and ω̂ will be discussed below. Notice that (2.75) and (2.77)

imply that Ĥ0 and ω̂Ĉ commute. Moreover, due to (2.66), we obtain

Ω̂σ
t = Ω̂σ

t e
i
~ τω̂Ĉ = e

i
~ τω̂ĈΩ̂σ

t (2.78)

for any c-number τ . Now, similarly to (2.41), we can use (2.63), (2.76) and (2.78) to

write

Ô[f |χ = s] =
(2π~)2

2

∑
σ

Ω̂σ
t f̂ P̂e=1,t=sΩ̂

σ
t + h.c.

=
(2π~)2

2

∑
σ

Ω̂σ
t f̂e−

i
~ (s−t0)ĥP̂e=1,t=t0e

i
~ (s−t0)ĥΩ̂σ

t + h.c.

=
(2π~)2

2

∑
σ

Ω̂σ
t f̂(s) ˆ̃Pe=1,t=t0Ω̂σ

t + h.c. ,

(2.79)

where we defined

f̂(s) := e
i
~ (s−t0)ω̂Ĉ f̂e−

i
~ (s−t0)ω̂Ĉ , (2.80)

ˆ̃Pe=1,t=t0 := e
i
~ (s−t0)Ĥ0P̂t=t0e−

i
~ (s−t0)Ĥ0 . (2.81)

Notice that, since Ĥ0 only depends on the n labels [cf. (2.75)], Eq. (2.81) simply cor-

responds to a unitarity transformation (change of basis) associated with these labels.

If we now differentiate (2.79) with respect to s, we find

i~
d

ds
Ô[f |χ = s] =

(2π~)2

2

∑
σ

Ω̂σ
t

[
i~

d

ds
f̂(s− t0) , ˆ̃Pe=1,t=t0

]
+

Ω̂σ
t

=
(2π~)2

2

∑
σ

Ω̂σ
t

[
i~
∂f̂

∂s

∣∣∣∣∣
s−t0

+ [f̂ , ω̂Ĉ]|s−t0 ,
ˆ̃Pe=1,t=t0

]
+

Ω̂σ
t

= Ô
[

i~
∂f

∂s
+ [f̂ , ω̂Ĉ]

∣∣∣∣χ = s

]
,

(2.82)

which is the quantum version of (1.95) in the χ-gauge. In this way, we conclude that ω̂

is the quantum analogue of the (invariant extension of the) gauge-fixed einbein, which
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was denoted by ω(φ(s)) in (1.94).17 In particular, if ĥ = Ĉ, then χ coincides with a

canonical representation of proper time. In this case, Eqs. (2.52) and (2.77) imply that

ω̂ = 1̂, as it should be, such that (2.82) coincides with (2.42).

Subsequently, let us note that, if Ĥ0 = 0̂ (which is the case if, for example, ĥ = Ĉ),

then the physical propagator has to be defined from the spectral decomposition of the

relational observables, as was done for the case of the proper-time gauge in §2.5.1.

However, if Ĥ0 6= 0̂, then we can explicitly derive a physical Heisenberg equation

that is the quantum analogue of (1.103). To do so, we note that, in the classical case,

Eq. (1.103) was derived from (1.101), which implies the physical Hamiltonian generates

the evolution of the relative initial data. These data are invariant extensions of objects

that Poisson-commute with the generalized clock χ and its conjugate momentum. In

the quantum case, we therefore consider the case in which f̂ commutes with ĥ, such

that, instead of (2.79), we write

Ô[f |χ = s] =
(2π~)2

2

∑
σ

Ω̂σ
t f̂ P̂e=1,t=sΩ̂

σ
t + h.c.

=
(2π~)2

2

∑
σ

Ω̂σ
t f̂e−

i
~ (s−t0)ĥP̂e=1,t=t0e

i
~ (s−t0)ĥΩ̂σ

t + h.c.

=
(2π~)2

2

∑
σ

Ω̂σ
t e−

i
~ (s−t0)ĥf̂ P̂e=1,t=t0e

i
~ (s−t0)ĥΩ̂σ

t + h.c. .

(2.83)

To cast this equation in a more useful form, we use the fact that (2.52), (2.51), and (2.75)

imply ĥ |σ,n〉 = −Ĥ0 |σ,n〉 = −Hσ
0 (n) |σ,n〉, which leads to

[(
Ω̂σ
t

)ρ
, Ĥ0

]
= 0 , (2.84)

due to (2.66). Thus, Eq. (2.83) becomes

Ô[f |χ = s] =
(2π~)2

2
e

i
~ (s−t0)Ĥ0

∑
σ

Ω̂σ
t f̂ P̂e=1,t=t0Ω̂σ

t e−
i
~ (s−t0)Ĥ0 + h.c. . (2.85)

Therefore, Ĥ0 can be interpreted as the quantum physical Hamiltonian that generates

the evolution of the quantum relational observables with respect to s. In direct analogy

to the derivation of (1.103), we find the “gauge-fixed” Heisenberg equation

d

ds
Ô[f |χ = s] =

∂

∂s
Ô [f |χ = s] +

1

i~
[Ô[f |χ = s], Ĥ0] , (2.86)

17Notice that the evolution determined by the classical gauge-fixed Hamiltonian (1.65) is given by
{f,Hgf

T } = {f, ωC} if f only depends on the scalars.
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from (2.85).18 Incidentally, notice that (2.86) and (2.82) are equivalent. We thus

conclude that, in the case in which Ĥ0 6= 0̂, the physical propagator (for implicit time

evolution) is simply (the kernel function of) exp(−i(s − t0)Ĥ0/~). Due to (2.75), we

see that Ĥ0 is by definition symmetric with respect to the auxiliary inner product and,

because it is invariant, it is symmetric with respect to (·|·). If we further assume that

it is self-adjoint, then the evolution is manifestly unitary.

2.5.3 A useful particular case

At this stage, it is useful to consider a particular case that will be of interest in subse-

quent Chapters. Let us assume for a moment that the states |e, t,n〉 form a complete

orthonormal system in the auxiliary Hilbert space, such that the operator

χ̂ :=
∑
n

∫
dedt t |e, t,n〉 〈e, t, n| (2.87)

is self-adjoint with respect to 〈·|·〉 and can be interpreted as a noninvariant operator

for the generalized clock. Furthermore, let us consider an f̂ that commutes with χ̂ and

that the states |e, t,n〉 are the simultaneous eigenbasis of f̂ and χ̂ (if they are not, then

one can simply redefine them) such that

f̂ :=
∑
n

∫
dedt f(t,n) |e, t,n〉 〈e, t,n| . (2.88)

In this particular case, Eq. (2.88) leads to the decomposition

Ô[f |χ = s] =
∑
σ,n

f(s,n) |σ,n; s〉 〈σ,n; s| , (2.89)

where

|σ,n; s〉 := 2π~ Ω̂σ
t |e = 1, t = s,n〉 . (2.90)

From (2.62) and (2.66), we find that the states |σ,n; s〉 defined above are orthogonal

with respect to the induced inner product for every possible value of s,

(σ′,n′; s|σ,n; s) = δσ′,σδ(n
′,n) . (2.91)

18Recall that we have made the simplifying assumption that ĥ does not depend on s.
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Moreover, the Faddeev-Popov resolution of the identity (2.69) implies that they are

complete. Thus, |σ,n; s〉 are the eigenstates of the relational observable (2.89), which

is self-adjoint with respect to (·|·). In this case, we can define the physical propagator

as (σ′,n′; s′|σ,n; s).

Since the states (2.90) form a complete system, any on-shell state can be written

as

|Ψ〉 =
∑
σ

∑
n

Ψσ(n) |σ,n; s0〉 (2.92)

for a fixed value of s = s0. If we consider the (Schrödinger-picture evolved) state

|Ψ; s〉 =
∑
σ

∑
n

Ψσ(n; s) |σ,n; s0〉 , (2.93)

where

Ψσ(n; s) :=
∑
σ0

∑
n0

(σ,n; s|σ0,n0; s0) Ψσ0(n0) , (2.94)

we find that the completeness and orthogonality of (2.90) for all values of s implies

(Ψ; s|Ψ; s) =
∑
σ

∑
n

|Ψσ(n; s)|2

=
∑

σ0,σ′0,σ

∑
n0,n′0,n

Ψ∗σ′0
(n′0)

(
σ′0,n

′
0; s0|σ,n; s

)
(σ,n; s|σ0,n0; s0) Ψσ0(n0)

=
∑
σ0,σ′0

∑
n0,n′0

Ψ∗σ′0
(n′0)

(
σ′0,n

′
0; s0|σ0,n0; s0

)
Ψσ0(n0)

=
∑
σ0

∑
n0

|Ψσ0(n0)|2 = (Ψ|Ψ) ,

similarly to (2.48). Thus, the norm of |Ψ〉 is conserved in the evolution determined by

the physical propagator (σ′,n′; s′|σ,n; s).

2.5.4 An alternative factor ordering

It is worthwhile to mention that, instead of (2.70), one may choose to adopt an alter-

native factor ordering that has the appealing property that the invariant extension of

an invariant is itself. More precisely, notice that, instead of (2.69), one could write the

quantum Faddeev-Popov resolution of the identity as

P̂ σ0 = 2π~
(

Ω̂σ
t

)2
P̂t=sP̂

σ
E=0

= 2π~P̂ σE=0P̂t=s

(
Ω̂σ
t

)2
,

(2.95)
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such that the quantum observables would be alternatively defined as

Ô(II)[f |χ = s] := π~
∑
σ

(
Ω̂σ
t

)2
P̂t=sf̂ P̂

σ
E=0 + h.c. . (2.96)

Then, given an invariant operator of the form

f̂ :=
∑
σ

∑
n′,n

∫
dpedE fσ(pe, E,n

′,n) |pe, E, σ,n′〉 〈pe, E, σ,n| , (2.97)

where we assume the integrals can be performed, we find Ô(II)[f |χ = s] = P̂0f̂ . This

is, in fact, the result obtained for the proper-time gauge [cf. (2.40)], but for more

general gauges the factor orderings (2.70) and (2.96) will generally differ. Nonetheless,

we will not consider (2.96) in what follows because it is not straightforwardly related

to conditional probabilities, whereas we will see that (2.70) is (cf. §2.7). Since we

consider conditional probabilities to be an appealing and intuitively clear approach to

the quantum dynamics, we will thus favor (2.70).

2.5.5 A strategy

In analogy to the strategy suggested at the end of §1.10, we propose that (integrable)

models with quantum diffeomorphism invariance [in the sense of (2.4)] can be treated

as follows: first, one solves the eigenvalue problem for the constraint operators and

determines the spectrum. Second, the dynamical solutions can be found in the proper-

time gauge following §2.5.1. Third, If the spectrum of Ĉ is continuous, one can use

the method of §2.5.2 to find the dynamical solutions in more general gauges (i.e., with

respect to more general generalized clocks). To do so, it may be useful to choose ĥ

to be the invariant extension of an operator with respect to the previously computed

proper-time gauge. This corresponds to choosing a new generalized clock which is

conjugate to ĥ. This may seem to be a restrictive choice of clock because only clocks

that are conjugate to invariant operators are obtained in this way. However, as every

physically meaningful solution can be expressed in terms of the relational observables

(invariant extensions), this is, in fact, a sufficiently general procedure. We consider

that a quantum choice of gauge is admissible if it is defined from an ĥ operator as

in (2.52) and, in particular, it must obey (2.53), which is the quantum counterpart

to the classical condition (1.77). Moreover, the solution (2.52) should be valid for all

possible values of n, without introducing restrictions on the span of these labels.

Notice that, once the solutions are found in the proper-time gauge, choosing a (new)

ĥ among the observables in this solution (and, therefore, a new clock) is the analogous

procedure of a diffeomorphism of a certain solution S0(τ) in the classical theory, which

corresponds to a change in the origin of the gauge orbit (cf. §1.6). We take this analogy
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seriously, and we further discuss the physical interpretation of the quantum dynamical

solutions (relational observables) and the interrelation between different gauges in §2.6.

2.5.6 A perturbative procedure

There may be situations in which it is difficult or even impossible to determine the

eigenstates of the constraint Ĉ exactly. In Chapters 5 and 6, we will examine the case

in which the on-shell states can be defined in perturbation theory. Although it is, in

principle, still possible to define the induced inner product as in (2.10) or (2.20), and the

observables as in (2.38) or (2.70), these constructions often became complicated in the

perturbative case. For this reason, it is worthwhile to consider similar constructions,

which, as we will see in Chapters 5 and 6, can be defined in perturbation theory via

an iterative procedure. In analogy to the classical Faddeev-Popov resolution of the

identity (1.90) and to our previous quantum definition (2.64), we suggest that the

perturbative inner product for a pair of perturbatively defined on-shell wave functions

Ψ(1,2)(q) be of the form

(
Ψ(1)

∣∣Ψ(2)

)
:=
∑
σ

∫
dq

(
µ̂

1
2
σΨ(1)

)∗
|J |δ(χ(q)− s)µ̂

1
2
σΨ(2) , (2.98)

where dq ≡
∏
i dqi, χ(q) is a configuration space function that serves as a choice

of generalized clock,19 and J is the Jacobian determinant ∂(χ,F )
∂q for the invertible

configuration-space coordinate transformation q 7→ (χ, F ). The label σ is a possible

discrete multiplicity, in analogy to (2.64), whereas µ̂σ is a ‘measure’ [analogous to (2.66)]

that should be determined in perturbation theory and should: (1) ensure that (2.98) is

positive-definite; (2) ensure that (2.98) is conserved relative to changes in s, such that

the dynamics is unitary.

In Chapter 5, it will be proven that a perturbative measure that satisfies the two

criteria above can be defined and, furthermore, that it corresponds to a quantization

of the classical Faddeev-Popov determinant associated with the choice of χ(q) as a

generalized clock [cf. (5.68)], such that it is indeed analogous to the Ω̂σ
t operator defined

in (2.66). It is important to note that similar definitions to (2.98) have been considered

in [33, 51, 76, 77]. In [51], the unitarity of the perturbative theory and its connection

to path integrals were examined in an expansion in powers of ~ (up to the “one-loop”

order ~1). In Chapters 5 and 6, we will not develop perturbation theory relative to

~, but rather relative to a heavy mass scale (e.g., the Planck mass). Moreover, the

previous proposals did not discuss the definition of relational observables.20 Here, we

propose that, in analogy to (2.70), the quantum observables be defined via their matrix

19Although it is possible to choose more general (phase-space) functions as generalized clocks, the
choice of χ(q) will be sufficient in the perturbation theory developed in Chapters 5 and 6.

20See, however, [78] for a related discussion.
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elements as

(
Ψ(1)

∣∣∣Ô[f |χ = s]
∣∣∣Ψ(2)

)
:=
∑
σ

∫
dq

(
µ̂

1
2
σΨ(1)

)∗
f̂ |J |δ(χ(α, φ)− t)µ̂

1
2
σΨ(2) . (2.99)

This definition will be useful in the perturbative formalism of Chapters 5 and 6.

2.6 A tentative set of postulates

Given the preceding formalism for the construction of the physical Hilbert space, the

quantum relational observables and their dynamics, we now require a physical inter-

pretation. As was mentioned in §2.5.5, we take the analogy to classical theory (and,

in particular, the HJ formalism) seriously, which leads us to the conclusions: (1) the

quantum dynamics should be understood in relational terms; (2) observers may choose

generalized clocks which define generalized reference frames, with respect to which they

record the dynamics of the quantum fields. From these determinations, we suggest a

set of tentative postulates below.

2.6.1 Proper-time quantum mechanics

First, the results of §2.5.1 [in particular (2.42)] show that one can, in principle, define

the quantum dynamics relative to the proper-time gauge. Even if no other choices of

generalized clock are available in the quantum theory (e.g., due to the properties of

the spectrum of Ĉ), the possibility of analyzing the proper-time dynamics suggests the

following set of postulates:

1. The quantum state of a diffeomorphism-invariant quantum system corresponds

to a ray in the physical Hilbert space Hphys.

2. Observables are self-adjoint on-shell operators.

3. Observers who employ the proper-time clock (or, more precisely, a clock that keeps

track of proper time) record the dynamics of worldline tensor fields according to

the relational Heisenberg-picture operators [cf. (2.38)].

4. If the system is in the state |Ψ〉, a measurement of f̂ relative to the proper-time

clock results in an eigenvalue f of Ô[f |χ = s] with probability

pΨ(f) =
|(f,n; s|Ψ)|2

(Ψ|Ψ)
, (2.100)

where |f,n; s〉 are the eigenstates of Ô[f |χ = s] [cf. (2.44)].

5. After the measurement, the state of the system is updated to |f,n; s〉.
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The reader will readily notice that these postulates simply correspond to a kind of

“proper-time Copenhagen interpretation”, which clearly is to be taken with a cer-

tain degree of skepticism, as, most notably, the measurement problem is not solved.

Nonetheless, the above set of postulates are admissible in the sense that they can re-

produce the usual results of quantum mechanics if its “preferred” time parameter is

identified with proper time (see, for instance, §2.7.2).

2.6.2 Quantum diffeomorphisms and changes of quantum reference

frames

If more general clocks can be chosen (for example, by following the formalism of §2.5.2),

we can modify the postulates of §2.6.1 as follows. Whereas postulates 1 and 2 are

unaltered, we now suggest:

3. Observers who employ a certain generalized clock record the dynamics of worldline

tensor fields according to the relational Heisenberg-picture operators [cf. (2.70)].

This defines the quantum generalized reference frame associated to the observer’s

choice of clock.

4. If the system is in the state |Ψ〉, a measurement of f̂ relative to the generalized

clock results in an eigenvalue f(s,n) of Ô[f |χ = s] with probability

pΨ(f) =
∑
σ

|(σ,n; s|Ψ)|2

(Ψ|Ψ)
, (2.101)

where |σ,n; s〉 are the eigenstates of Ô[f |χ = s] [although we use the notation

of (2.89), we do not necessarily require that the particular case considered in

§2.5.3 be realized].

5. After the measurement, the state of the system is updated to |σ,n; s〉 in the

generalized reference frame of the observer.

Evidently, these postulates are speculative. However, they are a straightforward ex-

tension of the usual formalism of quantum mechanics. In particular, the update (or

‘collapse’) postulate (the fifth postulate) refers to a specific generalized reference frame.

This raises the question of what the state is perceived to be from the standpoint of other

observers, who might employ different clocks and, therefore, refer their measurements

to different reference frames. First, let us clarify that the update postulate is taken in

the sense of a preparation of the state of the system. Once the system is prepared in

a certain state, different observers in various reference frames might perform different

measurements and, thus, lead to new preparations. Second, since we assume that the

observables are self-adjoint, their eigenstates |σ,n; s〉 form a complete orthonormal sys-

tem with respect to which the components of any on-shell state may be computed. For
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this reason, we suggest that the induced overlap (σ,n; s|Ψ) should be regarded as the

representation of |Ψ〉 in the quantum generalized reference frame associated with the

χ-gauge. This leads to the conclusion that a transformation between quantum refer-

ence frames is simply a change of basis in Hphys. Indeed, let us consider two admissible

gauges, χ̂1 and χ̂2, such that the eigenstates of the corresponding relational observables

are |σ1,n1;χ1〉, |σ2,n2;χ2〉. A state in the reference frame defined by χ̂1 is expressed

in the frame of χ̂2 through the equation21

(σ1,n1;χ1|Ψ) =
∑
σ2

∑
n2

(σ1,n1;χ1|σ2,n2;χ2)(σ2,n2;χ2|Ψ) .

It is important to mention that the study of different notions of quantum reference

frames and “relational quantum clocks” has been a topic of active research [73–75,

79–83]. Noteworthy is the approach of [75, 79–81], which establishes a framework in

which different choices of reference frames can also be related, and in which the direct

quantization of gauge-fixed field equations in different gauges leads to different Hilbert

spaces that can be mapped to one another. Indeed, the main goal of [80] was to connect

the physical Hilbert space constructed from the Dirac quantization procedure [cf. (2.4)]

to the various Hilbert spaces that can be obtained if one quantizes the gauge-fixed

field equations [without explicitly invariantly extending quantities through (1.89), for

example]. The construction of these Hilbert spaces may be involved. They were related

to one another in [80] by isometries called “trivialization maps”.22 The position taken

in [80] was that one can only fully grasp the relationalism of the quantum theory if

both the Dirac quantization and the various gauge-fixed Hilbert spaces are studied

simultaneously and connected via isometries. It is interesting to note that, in a related

early investigation [51], Barvinsky showed that the path integrals related to the physical

Hilbert space of the Dirac quantization program can be related to the path integrals

associated with the various gauge-fixed Hilbert spaces. He also analyzed the canonical

(operator-based) quantum theory semiclassically (at “one-loop” order ~1). Both [51]

and [80] (and the related subsequent articles) can be seen as possible formalisms that

relate different quantum reference frames.

We take a different position in comparison to [80]. In the framework described

here, the Dirac quantization program and its associated physical Hilbert space are

sufficient, and encode all the relational aspects of the quantum theory. There is no

need to consider the various gauge-fixed Hilbert spaces in order to ascertain the different

relational aspects of the theory. Notice that this is just as in the classical case: the

21Notice that the physical propagator (σ,n; s|σ0,n0; s0) is a particular case of the matrix
(σ1,n1;χ1|σ2,n2;χ2), but one changes the value of clock instead of switching clocks.

22These maps are akin to constructions that had been considered earlier in various contexts, such
as those of non-Abelian gauge fields in [84] or quantum canonical transformations in [85].
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relational observables can be seen as functions on the (single) reduced or physical phase

space of the theory (cf. §1.9.2), just as the quantum relational observables are operators

that act on the (single) physical Hilbert space. The different formalisms of [51,74,75,83]

also signal, nevertheless, that it is possible to accommodate various choices of reference

frames in a single Hilbert space (which was referred to as the “Dirac-Wheeler-DeWitt

formulation” and the “perspective-neutral” or “reference-system-neutral” framework

in [51] and [80], respectively). Our formalism provides a concrete realization of this

idea, and it is based solely on standard concepts and techniques used in canonical

gauge systems (cf. Appendix A).

In what follows, we assume that the particular case analyzed in §2.5.3 holds; i.e.,

one can define a self-adjoint χ̂ operator. In this case, we will show how the relational

observables (2.70) can be related to conditional probabilities and, in particular, to

the Page-Wootters formalism, which is one of the most popular approaches to the

quantum mechanics of systems without an external (or preferred) time parameter. We

also comment on the relation of our framework to other formalisms of the literature.

2.7 Conditional probabilities

Assuming the particular case of §2.5.3, let us take another point of view on the quantum

relational dynamics. Instead of working with the invariant observables and the physical

Hilbert space, let us define

pΨ(n|χ = s) =
|〈χ = s,n|Ψ〉|2∑
n |〈χ = s,n|Ψ〉|2

, (2.102)

to be the conditional probability of observing a value of n given that χ̂ is observed

to be equal to s. In (2.102), we denote |χ = s,n〉 ≡ |e = 1, t = s,n〉. The idea is

that the relational theory can be expressed in terms of conditional statements. This is

reasonable because the classical relational observable O[f |χ = s] can be regarded as a

conditional quantity, as they encode the value of f based on the condition that χ = s.

From (2.102), the conditional expectation value of f̂ is defined to be

EΨ[f |χ = s] :=
∑
n

f(s,n) pΨ(n|χ = s)

=

〈
Ψ
∣∣∣f̂ P̂χ=s

∣∣∣Ψ〉〈
Ψ
∣∣∣P̂χ=s

∣∣∣Ψ〉 ,

(2.103)

where we used (2.88) and P̂χ=s ≡ P̂e=1,t=s. To make contact with the formalism based

on the physical Hilbert space, we note that (2.103) can be rewritten in terms of the

95



2. Quantum Diffeomorphism Invariance on the Worldline

induced inner product as [cf. (2.17)]

EΨ[f |χ = s] =

(
Ψ
∣∣∣P̂E=0f̂ P̂χ=sP̂E=0

∣∣∣Ψ)(
Ψ
∣∣∣P̂E=0P̂χ=sP̂E=0

∣∣∣Ψ) . (2.104)

Furthermore, due to (2.33), we also obtain

EΨ[f |χ = s] =

(
Ψ
∣∣∣∫∞−∞ dτ e

i
~ τĈ f̂ P̂χ=se

− i
~ τĈ
∣∣∣Ψ)(

Ψ
∣∣∣∫∞−∞ dτ e

i
~ τĈ P̂χ=se

− i
~ τĈ
∣∣∣Ψ) ,

which resembles the classical formula (1.89). Can we relate the quantum relational

observables (2.70) to conditional quantities? The answer is yes. First, let the quantum

average of an on-shell observable be

〈
Ô
〉

Ψ
:=

(
Ψ
∣∣∣Ô∣∣∣Ψ)

(Ψ|Ψ)
, (2.105)

where |Ψ〉 is the state of the system. Second, notice that the projectors (2.58) can also

be written as [cf. (2.90)]

P̂ σ0 :=
∑
n

|σ,n; s〉 〈σ,n; s| . (2.106)

In this way, the probability that the system is in the σ sector is

pΨ(σ) =
〈
P̂ σE=0

〉
Ψ
. (2.107)

Now, using (2.70), we obtain

〈
Ô[f |χ = s]

〉
Ψ

=
∑
σ

pΨ(σ)

(
Ψ
∣∣∣Ω̂σ

t f̂ P̂χ=sΩ̂
σ
t

∣∣∣Ψ)(
Ψ
∣∣∣Ω̂σ

t P̂χ=sΩ̂σ
t

∣∣∣Ψ) ,

and if we define

|Ψσ〉 := Ω̂σ
t • |Ψ〉 , (2.108)
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then we finally find

〈
Ô[f |χ = s]

〉
Ψ

=
∑
σ

pΨ(σ)

(
Ψσ

∣∣∣P̂E=0f̂ P̂χ=sP̂E=0

∣∣∣Ψσ

)
(

Ψσ

∣∣∣P̂E=0P̂χ=sP̂E=0

∣∣∣Ψσ

)
=
∑
σ

pΨ(σ)

〈
Ψσ

∣∣∣f̂ P̂χ=s

∣∣∣Ψσ

〉
〈

Ψσ

∣∣∣P̂χ=s

∣∣∣Ψσ

〉 .

From (2.103), this leads us to the result

〈
Ô[f |χ = s]

〉
Ψ

=
∑
σ

pΨ(σ)EΨσ [f |χ = s] , (2.109)

which means that the average of Ô[f |χ = s] is equal to a weighted sum of the condi-

tional expectation values of f̂ in each multiplicity sector with respect to the redefined

states (2.108). In particular, if |Ψ〉 is in a definite multiplicity sector σ = σ0, then

pΨ(σ) = δσ,σ0 and the average of the relational observable is identical to a conditional

expectation value. Furthermore, if we require that the state is normalized,

1 = (Ψ|Ψ) =
(

Ψ
∣∣∣P̂ σ0
E=0

∣∣∣Ψ) = 2π~
〈

Ψσ0

∣∣∣P̂χ=s

∣∣∣Ψσ0

〉
, (2.110)

then the representation of |Ψ〉 in the reference frame defined defined by the generalized

clock χ̂ becomes a conditional probability amplitude,

|(σ0,n; s|Ψ)|2 = 2π~| 〈χ = s,n|Ψσ0〉 |2 = pΨσ0
(n|χ = s) , (2.111)

due to (2.102) and (2.110).

It is important to note that (2.109) implies that the quantum relational dynamics

can be described in two equivalent ways. First, one can use the conditional expectation

values of worldline tensor fields in a definite multiplicity sector. This is the ‘gauge-

fixed point of view’. Second, one can use the physical Hilbert space and the quantum

relational observables (2.70), the averages of which manifestly invariant under diffeo-

morphisms. This is the ‘invariant point of view’. These two perspectives were first

discussed in [75] for a particular example that we examine in §2.7.2.

Despite the vast literature on conditional probabilities in timeless quantum me-

chanics [75,86–93] and on the definition of observables [17,33,75,76,78–80,94–98], the

connection between these two topics has only recently been addressed in [99] and [75],

where different formalisms to the one presented here are used. As we have already
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mentioned, our new formalism is, in principle, capable of dealing with general gauge

choices for general (integrable) models, and it follows directly from standard techniques

of canonical gauge systems (cf. Appendix A). Thus, we believe the connection estab-

lished here between our method of construction of quantum relational observables and

conditional probabilities adds to the literature, and further illuminates the interpreta-

tion of the relational character of the quantum dynamics.

Incidentally, Barvinsky also claims that the formalism he presented in [51] is related

to conditional probabilities (cf. page 294 of [51]). Nonetheless, our formalism does

not, in principle, require the restriction to a semiclassical expansion in powers of ~.

Furthermore, the dynamics in [51] was restricted to what we call a definite multiplicity

sector, σ = σ0 and, as a result, a perturbative form of unitarity could be established.

The case here is similar because the averages (2.109) (which evolve unitarily, cf. §2.5.3)

are only equal to conditional expectation values in definite multiplicity sectors. Lastly,

we note that if the perturbative inner product (2.98) is used, then the conditional

probabilities may be defined as

pΨ :=
1

(Ψ |Ψ)

(
µ̂

1
2
σΨ

)∗
µ̂

1
2
σΨ

∣∣∣∣
χ(q)=s

(2.112)

for a definite multiplicity sector, in analogy to (2.109).

2.7.1 Invariant extensions of states

Let us now suppose that one adopts the gauge-fixed point of view and works solely

with conditional probabilities. In this case, it is important to note that definition of

conditional probabilities from on-shell states is ambiguous. To see this, we use the

factorization

〈χ = s,n|Ψ〉 = ξ(s)ψ(s,n) , (2.113)

suggested by Hunter in [100] in the context of Born-Oppenheimer systems (cf. Chap-

ter 5 and Appendix B). We refer to ψ(s,n) as a conditional wave function because the

conditional probabilities (2.102) can be written solely in terms of ψ(s,n),

pΨ(n|χ = s) =
|ψ(s,n)|2∑
n |ψ(s,n)|2

. (2.114)
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The ambiguity in the definition of (2.114) is seen from the fact that it remains invariant,

together with (2.113) under the redefinitions [see also (B.13)]

ξ(s) 7→ eα(s)+iβ(s)ξ(s) ,

ψ(s,n) 7→ e−α(s)−iβ(s)ψ(s,n) ,
(2.115)

with α(s), β(s) ∈ R. What are the consequences of this ambiguity? Consider the

case in which an observer is able to determine the conditional probability distribution

that corresponds to a certain state preparation at an instant s = s0 (cf. §2.6). This

distribution determines all the conditional predictions the observer can make regarding

the relational dynamics and, as a result, it is analogous to the classical relative initial

data. In other words, just as the relational evolution is classically determined by

a choice of relative initial data, the quantum relational evolution (at least for the

particular case of §2.5.3) is determined from a certain conditional distribution at a

moment s = s0. This correspondence leads us to ask: if all that is known is the

conditional distribution, is it possible to relate it to an on-shell state? If so, can we

determine what the (Schrödinger-picture) state will be in the future? Below, we show

that both questions can be answered affirmatively.

First, let us assume that ψ(s0,n) = 〈χ = s0,n|ψ〉 is a conditional wave function

that yields the known conditional distribution via (2.114) (i.e., up to the redefini-

tions (2.115)). Now consider the on-shell state

|Ψσ〉 := (2π~)2Ω̂σ
t • Ω̂σ

t P̂χ=s0 |ψ〉 . (2.116)

Equations (2.90) and (2.91) imply

(2π~)2P̂χ=s0Ω̂σ
t • Ω̂σ

t P̂χ=s0 = P̂χ=s0 , (2.117)

which leads to

P̂χ=s0 |Ψσ〉 = P̂χ=s0 |ψ〉 , (2.118)

which is the same as

〈χ = s0,n|Ψσ〉 = ψ(s0,n) . (2.119)

This means that the on-shell state |Ψσ〉 is an invariant extension of the initial con-

ditional wave function. In other words, Eq. (2.116) produces an invariant state that

coincides with ψ(s,n) at the initial instant. In analogy to the classical theory, we then

refer to |Ψσ〉 [or, in a slight abuse of terminology ψ(s,n)] as the relative initial data for
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the quantum evolution. Notice that the “invariantization” map is a projector,

(2π~)4Ω̂σ
t • Ω̂σ

t P̂χ=s0Ω̂σ
t • Ω̂σ

t P̂χ=s0 = (2π~)2Ω̂σ
t • Ω̂σ

t P̂χ=s0 , (2.120)

where we used (2.117). Furthermore, if we now evaluate

〈χ = s,n|Ψσ〉 =
∑
n0

(σ,n; s|σ,n0; s0)ψ(s0,n0) , (2.121)

we see that, for s 6= s0, the state Ψσ leads to an evolved conditional wave function, and

its evolution is dictated by the physical propagator.

We can interpret the quantum relative initial data (invariant extensions of states)

in a relational manner, similarly to the relational observables. They determine the con-

ditional probability distributions in a diffeomorphism-invariant way, and correspond to

the value of a certain conditional amplitude relative to the value s0 of the generalized

clock. It is worth mentioning that Woodard has suggested the use of an “invarianti-

zation” scheme to obtain solutions to the quantum constraint equation [76], but his

approach did not specify the factor ordering that defines the Faddeev-Popov resolution

of the identity [cf. (2.69)]. In the semiclassical approach of [51], Barvinsky has also

suggested that gauge conditions (here, the generalized clock) should be used in the

fixation of initial data for solutions to the quantum constraints. There have also been

more recent proposals related to ‘G-twirls’ and ‘relativization maps’ that were put forth

in the context of quantum information and quantum foundations [73, 74, 82, 83]. We

will comment on how our formalism is related to them in §2.7.2.

2.7.2 Recovering the Page-Wootters formalism

The Page-Wootters formalism is one of the most actively researched approaches to

timeless quantum mechanics [75, 86–93], and it is based on the use conditional proba-

bilities. For this reason, it is paramount that we verify what the relation between our

method and this approach is. We will see that our formalism can be regarded as a

generalization of the standard Page-Wootters setting.

In most applications of the Page-Wootters formalism, one assumes that the con-

straint Ĉ is of the form

Ĉ ≡ C(q̂, p̂) = C(1)(q̂
1, p̂1) + C(>1)(q̂, p̂) , (2.122)

where the operator C(>1)(q̂, p̂) depends solely on q̂i, p̂i for i > 1. This corresponds

to the situation in which the variables q̂1 and p̂1 describe a “laboratory” (Ĉ(1) is the

“laboratory Hamiltonian”), whereas q̂i, p̂i for i > 1 constitute degrees of freedom of the
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a system (with Hamiltonian Ĉ(>1)) to be studied relative to the standard of time of the

laboratory. In other words, the purpose is to recover the usual Schrödinger equation

for the subsystem based on an external “laboratory” time parameter. The typical

procedure is to choose a variable χ̂ ≡ χ(q̂1, p̂1) that is conjugate to C(1)(q̂
1, p̂1) (and,

therefore, to Ĉ) as a generalized clock, conditioned on which the evolution is analyzed.

In this way, we note that χ̂ corresponds to the “laboratory proper time” and, in fact,

can be identified with the proper-time gauge discussed in §2.5.1 for whole system [in

the particular case in which Ĉ is given by (2.122)].

It is important to mention that a connection between the Page-Wootters conditional

probabilities and an approach to quantum relational observables was first noted in [75]

(see also the earlier remarks in [93,99]) for the constraint (2.122) and generalized clocks

that are formally conjugate to C(1)(q̂
1, p̂1). Specifically, the case of χ̂ as a “covariant

positive-operator valued measure (POVM)” was analyzed in [75]. Here, we will instead

follow the formalism presented in §2.5.1 and §2.5.2.23 Below, we disregard the primary

constraint p̂e, which plays no role in the calculations.

First, we note that Ĉ(1) is an invariant, and we may define ĥ := Ĉ(1) (cf. §2.5.2).

However, we do not need to assume in this case that the spectrum of Ĉ is continuous

because of the simple form given in (2.122). Indeed, let us consider a complete or-

thonormal system of simultaneous eigenstates of Ĉ(1) and Ĉ(>1), which we denote by

|E(1), E(>1),n〉. The counterparts of (2.51) and (2.52) are

Ĉ |E(1), E(>1),n〉 = (E(1) + E(>1)) |E(1), E(>1),n〉 ,

ĥ |E(1), E(>1),n〉 = E(1) |E(1), E(>1),n〉 ,

and h = −H(E,E(>1),n) = E−E(>1).
24 There is only one multiplicity sector (σ ≡ 1).

Notice that, in this case, H0(E(>1),n) = E(>1), and the counterpart of (2.61) reads

|χ,E(>1),n〉 =
1√
2π~

∑
E(1)

e−
i
~E(1)χ |E(1), E(>1),n〉 . (2.123)

If we define P̂E=0 =
∑

E(>1),n
|E(1) = −E(>1), E(>1),n〉 〈E(1) = −E(>1), E(>1),n| and

23After the release of [31] (on which part of this Chapter is based) and its submission by the author
of this thesis for publication, a generalization of [75] to “relativistic settings” appeared in [101]. The
results therein are complementary to the ones presented in [31] and in the beginning of this section
(§2.7), but, in contrast to [31] and §2.7, they are still restricted to a particular class of gauge choices
(which have trivial Faddeev-Popov determinants). In the future, it would be interesting to compare
the formalism presented here to the one proposed in [75,101].

24We assume that E and E(1) are labels of the same type (discrete or continuous) and that the
equation E = E(1) + E(>1) can be solved for E(1). The solution is given by h. For example, if both E
and E(1) are continuous labels, whereas E(>1) is discrete, then the restriction of h to the case in which
E = 0 corresponds to a restriction of h to a set of discrete values given by −E(>1).
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P̂χ=s =
∑

E(>1),n
|χ = s, E(>1),n〉 〈χ = s, E(>1),n|, we can define the relational observ-

ables as in the proper-time gauge [cf. (2.38)]

Ôinv[f |χ = s] = π~
∑
E

P̂E [f̂ , P̂χ=s]+ P̂E ,

Ô[f |χ = s] = π~P̂E=0 [f̂ , P̂χ=s]+ P̂E=0 .

(2.124)

Since there is only one multiplicity sector and the on-shell Faddeev-Popov operator

is the identity in the physical Hilbert space [compare (2.124) to (2.70)], Eq. (2.109)

reduces to 〈
Ô[f |χ = s]

〉
Ψ

= EΨ[f |χ = s] , (2.125)

such that the averages of relational observables coincide with conditional expectation

values.

In particular, if E spans R, we find

Ôinv[qi|χ = s] =

∫ ∞
−∞

dτ q̂i(τ)⊗ P̂χ=s−τ , (2.126)

where

q̂i(τ) := e
i
~ τĈ(>1) q̂ie−

i
~ τĈ(>1) ,

similarly to (2.37). Equation (2.126) is the result of the ‘G-twirl’ employed in [75],25

and it also resembles the “relativization” operation used in [73, 74, 83]. Furthermore,

the dynamics of Ô[qi|χ = s] is found in analogy to (2.86),

d

ds
Ô[qi|χ = s] =

1

i~
[Ô[qi|χ = s], Ĉ(>1)] (i > 1) .

These are simply the standard Heisenberg equations in the nonrelativistic quantum

mechanics for the degrees of freedom q̂i, p̂i. Thus, we see that our formalism is capable of

recovering the standard quantum theory. This is not, however, the standard derivation

of the evolutionary law in the Page-Wootters approach. Usually, one focuses on what

is, in our terminology, the Schrödinger picture for conditional wave functions. Here,

25The G-twirl operation is also sometimes used for spatial frames of reference (associated with
generalized rods) [82].
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this is obtained by noting that (2.123) leads to

i~
d

ds
|χ = s, qi〉 = Ĉ(1) |χ = s, qi〉 , (2.127)

where |χ = s, qi〉 is simply obtained by a change of basis in the space of the q̂i, p̂i degrees

of freedom,

|χ = s, qi〉 = |χ = s〉 ⊗
∑

E(>1),n

|E(>1),n〉 〈E(>1),n|qj〉 . (2.128)

Then, for any on-shell state |Ψ〉, the evolution of the conditional wave function ψ(s, qi) :=

〈χ = s, qi|Ψ〉 [cf. (2.113)] reads

i~
d

ds
ψ(s, qi) =

〈
χ = s, qi

∣∣∣−Ĉ(1)

∣∣∣Ψ〉
=
〈
χ = s, qi

∣∣∣Ĉ(>1)

∣∣∣Ψ〉
= Ĉ(>1)

(
q,

~
i

∂

∂q

)
ψ(s, qi) ,

(2.129)

which is the standard Schrödinger equation (with respect to the value s of the “labora-

tory proper time”). Eq. (2.129) is the usual Page-Wotters derivation. This is consistent

with (2.121), which shows that (invariant extensions of) conditional wave functions (the

quantum relative initial data) evolve according to the physical propagator. In this case,

the propagator can be found by noticing that O[qi|χ = s] can be written in terms of

the states [cf. (2.124)]

|qi; s〉 :=
√

2π~P̂E=0 |χ = s, qi〉 , (2.130)

which yield the expected result

(
q′i; s′|qj ; s

)
= 2π~

〈
χ = s′, q′i

∣∣∣P̂E=0

∣∣∣χ = s, qj
〉

=
∑

E(>1),n

〈q′i|E(>1),n〉 e−
i
~E(>1)(s

′−s) 〈E(>1),n|qj〉

=
〈
q′i
∣∣∣e− i

~ Ĉ(>1)(s
′−s)
∣∣∣ qj〉 (i, j > 1) ,

(2.131)

due to the assumption that the states |E(>1),n〉 are complete and orthonormal in the

space of the q̂i, p̂i degrees of freedom.
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Chapter 3

The Relativistic Particle as an

Archetypical Example

In order to illustrate the formalism of Chapters 1 and 2 with a simple and well-known

example, we now examine how the classical and quantum relational dynamics may

be understood for the free relativistic particle. We emphasize that the dynamics is

relational, both in classical and quantum levels, and we show how to obtain the nonrel-

ativistic limit of (quantum) relational observables. This will serve as a prelude to the

weak-coupling expansion method used in Chapter 5. Moreover, we will analyze other

interesting examples in the context of cosmology in Chapter 4.1

The free relativistic particle is perhaps the most emblematic example of a system

with worldline-diffeomorphism invariance. We first construct the classical relational

observables for a relativistic particle with mass m and we discuss the nonrelativistic

limit. Subsequently, we present the quantization of the system and discuss the quantum

relational observables, their dynamics and their nonrelativistic counterparts. Inciden-

tally, the nonrelativistic limit will also serve to introduce the concept of weak-coupling

expansion, which will be paramount in Chapters 5 and 6.

3.1 Classical theory

3.1.1 Obsevables

The dynamics of a massive relativistic particle is defined by the action [cf. §1.4]

S = −mc
∫ b

a
dτ

√
−ηµν

dqµ

dτ

dqν

dτ
, (3.1)

1This Chapter is based on [30].
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3. The Relativistic Particle as an Archetypical Example

where we assume that the particle moves in a Minkowski spacetime with d+ 1 dimen-

sions [and signature (−,+ · · ·+)]. The d + 1 fields qµ(τ) = (ct,q) serve as the scalars

considered in Chapters 1 and 2. The field equations

q̇µ = ηµνpν

√
−ηρλq̇ρq̇λ , (3.2)

imply the initial value (primary) constraint

C = − p2
t

2c2
+

p2

2
+
m2c2

2
= 0 , (3.3)

where the constants pµ =
(pt
c ,p

)
correspond to the canonical momenta. We can

solve (3.2) in a relational way by expressing the evolution of the fields in terms of

a generalized clock. For example, for an arbitrary worldline coordinate τ , if we choose

t(τ) as the clock, we obtain

q(τ) = q(a)− c2p

pt
(t(τ)− t(a)) (pt 6= 0) , (3.4)

and the boundary values correspond to invariant extensions in the t(τ) gauge,

q(a) = q(τ) +
c2p

pt
(t(τ)− t(a)) , (3.5)

since

δε(τ)

[
q(τ) +

c2p

pt
(t(τ)− t(a))

]
= δε(τ)q(τ) +

c2p

pt
δε(τ)t(τ)

= ε(τ)
√
−ηρλq̇ρq̇λ

[
p− c2p

pt

pt
c2

]
= 0

holds due to (3.2). It is also possible to invariantly extend t(τ) and qj(τ) (j = 2, . . . , d)

with respect to the generalized clock defined by q1(τ). The result is

t(a) = t(τ) +
pt
c2p1

(q1(τ)− q1(a)) ,

qj(a) = qj(τ)− pj
p1

(q1(τ)− q1(a)) (j = 2, . . . , d) ,
(3.6)

with p1 6= 0 (see, however, the discussion in §3.2.5). Since these gauges are conjugate

to invariants, we can follow §1.10 and express the relational evolution in terms of the
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3.1. Classical theory

Poisson brackets

∂q(a)

∂t(a)
= −c

2p

pt
= {pt,q(a)} , (3.7)

∂t(a)

∂q1(a)
= − pt

c2p1
= {p1, t(a)} , (3.8)

with a similar result for qj(a) (j = 2, . . . , d). In §3.2.3 and §3.2.5, the quantum versions

of (3.7) and (3.8) will be derived. We can also rewrite (3.5) and (3.6) via the integral

formula (1.89). For instance,

q(a) = q(τ)|τ=a =

∫ ∞
−∞

dτ δ(τ − a)q(τ)

=

∫ ∞
−∞

dτ

∣∣∣∣ dtdτ

∣∣∣∣ δ(t(τ)− t(a))q(τ)

=

∫ ∞
−∞

dτ |pt|δ(t(τ)− t(a))q(τ) .

(3.9)

Lastly, it is worthwhile to note that the nonrelativistic limit of the invariant extensions

can be obtained by performing an expansion in powers of 1/c2. The result is

q(a) = q(τ)− σp

m
√

1 + p2

m2c2

(t(τ)− t(a))

= q(τ)− σp

m
(t(τ)− t(a)) +O

(
1

c2

)
, (3.10)

t(a) = t(τ)−
σm
√

1 + p2

m2c2

p1
(q1(τ)− q1(a))

= t(τ)− σm

p1
(q1(τ)− q1(a)) +O

(
1

c2

)
, (3.11)

qj(a) = qj(τ)− pj
p1

(q1(τ)− q1(a)) . (3.12)

One readily notices that the above quantities are the Newtonian relational observ-

ables; i.e., they are invariant extensions that encode the relational evolution of the

field q(τ) and t(τ) in the limit in which t(τ) evolves as a “preferred” clock. Moreover,

Eq. (3.11) corresponds to the so-called time-of-arrival observable. It yields the value of

t(τ) (Newtonian time) at which q1(τ) = q1(a) (see [80, 102] and references therein for

a discussion).

3.1.2 On-shell action

In order to understand the nonrelativistic limit in the quantum theory, it is useful to

first discuss the HJ formalism (cf. §1.10). To this end, it is sufficient to consider the

107



3. The Relativistic Particle as an Archetypical Example

on-shell action, which can be computed if we write the constant momenta pµ in terms

of the boundary values qµ(a), qµ(b). Evaluating (3.3) and (3.4) at τ = b, we obtain

pt = −σ
√

p2c2 +m2c4 , σ = ±1 , (3.13)(
1 +

p2

m2c2

)−1

= 1− (q(b)− q(a))2

c2(t(b)− t(a))2
. (3.14)

Notice that sgn(ṫ) = −sgn(pt) = σ = const. due to (3.13) and (3.2), and this implies

that |t(b)− t(a)| = σ(t(b)− t(a)). If we insert the solution (3.4) in (3.1) and use (3.13)

together with (3.14), we find the on-shell action

W (ct(b),q(b); ct(a),q(a)) := Son-shell = − σmc2√
1 + p2

m2c2

(t(b)− t(a))

= −mc2|t(b)− t(a)|

√
1− (q(b)− q(a))2

c2(t(b)− t(a))2

= −mc
√
c2(t(b)− t(a))2 − (q(b)− q(a))2 , (3.15)

which is the well-known result from the special theory of relativity. Equation (3.15)

also solves the HJ constraint [cf. (1.108)]

− 1

2c2

(
∂W

∂t(b)

)2

+
1

2

(
∂W

∂q(b)

)2

+
m2c2

2
= 0 . (3.16)

If we now expand (3.15) in powers of 1/c2,

W (ct(b),q(b); ct(a),q(a)) = −σmc2(t(b)− t(a))

√
1− (q(b)− q(a))2

c2(t(b)− t(a))2

= −σmc2(t(b)− t(a))

[
1− (q(b)− q(a))2

2c2(t(b)− t(a))2

]
+O

(
1

c2

)
=: −σmc2(t(b)− t(a)) + Sσ(t(b),q(b); t(a),q(a)) , (3.17)

we find that

Sσ(t(b),q(b); t(a),q(a)) :=
σm

2

(q(b)− q(a))2

(t(b)− t(a))
+O

(
1

c2

)
. (3.18)
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3.2. Quantum theory

is a solution to the HJ constraint in the Newtonian limit

σ
∂Sσ
∂t(b)

+
1

2m

(
∂Sσ
∂q(b)

)2

= O
(

1

c2

)
(3.19)

at order c0. We note that the structure of the constraint (3.19) is identical to the

ordinary time-dependent HJ equation (1.106), where t(b) plays the role of a “preferred”

time coordinate (with respect to which the system can be globally deparametrized).

This implies that Sσ coincides with the on-shell action of the Newtonian theory. If

we proceed to compute relativistic corrections (higher orders in 1/c2), we find that

Sσ is a solution to a corrected constraint that can be regarded as a “Newtonian” HJ

equation with an effective Hamiltonian, which follows from the expansion of (3.13). In

the quantum theory, the corrected Newtonian HJ equation corresponds to a corrected

Schrödinger equation with an effective quantum Hamiltonian. This is an elementary

example of a general perturbative procedure (‘weak-coupling expansion’) that will be

analyzed in Chapter 5 and applied to the early Universe in Chapter 6.

3.2 Quantum theory

Following the developments of Chapter 2, we first define the auxiliary Hilbert space

H for the relativistic particle and, subsequently, discuss the definition of the induced

inner product. In this case, we can simply define H = L2(Rd+1, dctddq), such that the

auxiliary inner product reads2

〈ψ(1)|ψ(2)〉 =

∫ ∞
−∞

cdt

∫
Rd

ddq ψ∗(1)(ct,q)ψ(2)(ct,q) .

The self-adjoint constraint operator

Ĉ = − 1

2c2
p̂2
t +

1

2
p̂2 +

m2c2

2
, (3.20)

has the eigenstates

〈ct,q|σ,p,mc〉 =
1

(2π~)
d+1

2

exp

(
− i

~
σ
√

p2c2 +m2c4t

)
e

i
~p·q . (3.21)

2It is useful to perform a brief dimensional analysis. The dimensions of the central objects in the

quantum theory are [~] = ML2

T
, [qµ] = L, [pµ] = ML

T
, [|qµ〉] = L−

1
2 , [|pµ〉] = T

1
2

L
1
2M

1
2

, where L,M , and

T are units of length, mass and time, respectively. Furthermore, if 〈ψ|ψ〉 = 1, then [|ψ〉] = 0. Lastly,
notice that Θ(x) (the Heaviside step function) is dimensionless.
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3. The Relativistic Particle as an Archetypical Example

The positive and negative frequency sectors are labeled by σ = ±1, respectively. From

〈σ′,p′,m′c|σ,p,mc〉 =
√

p2 +m2c2δσ′,σδ(p
′ − p)δ

(
m′2c2

2
− m2c2

2

)
, (3.22)

we can define the induced inner product (cf. §2.3) [53,67]

(σ′,p′,mc|σ,p,mc) :=
√

p2 +m2c2 δσ′,σδ(p
′ − p) , (3.23)

and the improper projectors [cf. (2.14), (2.16) and (2.59)]3

P̂σ,m :=

∫
Rd

ddp√
p2 +m2c2

|σ,p,mc〉 〈σ,p,mc| , (3.24)

which have the matrix elements

〈
p′t
c
,p′
∣∣∣P̂σ,m ∣∣∣pt

c
,p

〉
= δ

(
p′t
c
− pt

c

)
δ(p′ − p)

× δ
(
− p2

t

2c2
+

p2

2
+
m2c2

2

)
Θ
(
−σpt

c

)
.

(3.25)

3.2.1 The nonrelativistic limit of the induced inner product

If we now define |ct,q;σ,m〉 := P̂σ,m |ct,q〉, then

(ct′,q′;σ′,m|ct,q;σ,m) = δσ′,σ 〈ct′,q′|P̂σ,m|ct,q〉 . (3.26)

follows from (2.18). This amplitude is the quantum analogue of the on-shell action,

as can be seen from an expansion in powers of ~. Alternatively, we are interested in

an expansion in powers of 1/c2 and in the lowest order (the nonrelativistic limit). A

straightforward calculation yields

(ct′,q′;σ′,m|ct,q;σ,m)

=
δσ′,σ

(2π~)d+1mc

∫
Rd

ddp√
1 + p2

m2c2

e−
i
~σmc

2
√

1+ p2

m2c2
(t′−t)e

i
~p·(q

′−q)

=
δσ′,σ

2π~mc
e−

i
~σmc

2(t′−t)
∫

Rd

ddp

(2π~)d
e−

i
~σ

p2

2m
(t′−t)

3The projector P̂σ,m given in (3.24) has dimensions of
[
P̂σ,m

]
=
(
ML
T

)−2
(inverse momentum

squared). For this reason, if (Ψ|Ψ) = 1, then |Ψ〉 has dimensions of momentum.
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3.2. Quantum theory

× e
i
~p·(q

′−q) +O
(

1

c3

)
=

δσ′,σ
2π~mc

e−
i
~σmc

2(t′−t)Kσ(t′,q′; t,q) +O
(

1

c3

)
, (3.27)

where the pre-factor of 1/(~mc) ensures that the dimensions are correct and

Kσ(t′,q′; t,q) =

(
m

2πi~σ(t′ − t)

) d
2

exp

(
−m(q′ − q)2

2i~σ(t′ − t)

)
(3.28)

is the nonrelativistic propagator that solves the Schrödinger constraint, and it is anal-

ogous to the Newtonian on-shell action defined in (3.18). Moreover, Eq. (3.27) is

analogous to (3.17). We conclude from this that the power series in 1/c2 yields similar

results in the classical and the quantum theory. Although this is certainly expected,

we will see in Chapter 5 that this power series is a particular example of a more general

weak-coupling expansion, and we will see that the analogy between the classical and

quantum theories is not only present in more general models, but also allow us to define

the inner product and unitarity of the gauge-fixed quantum theory, as was discussed

in §2.5.6. A central result will be the connection between the inner product that is

conserved by the evolution given by the corrected version of (3.28) and the classical

Faddeev-Popov determinant.

3.2.2 Quantum relational observables and their relation to the

classical expressions I

As we will be interested in explicitly showing how the quantum relational observables

for the relativistic particle are related to their corresponding classical expressions, we

follow the formalism presented in §2.5.2, which is particularly useful for this purpose.

For convenience, we define the states |ptc ,p;σ,m〉 := P̂σ,m |ptc ,p〉, such that the matrix

elements of on-shell observables read

(
p′t
c
,p′;σ′,m

∣∣∣Ôω∣∣∣ pt
c
,p;σ,m

)
= 2π~

〈
p′t
c
,p′
∣∣∣P̂σ′,mω̂P̂σ,m ∣∣∣pt

c
,p

〉
, (3.29)

and the Faddeev-Popov resolution of the identity is

2π~
〈
p′t
c
,p′
∣∣∣P̂σ′,mω̂[1|χ = s]P̂σ,m

∣∣∣pt
c
,p

〉
= δσ′,σ

〈
p′t
c
,p′
∣∣∣P̂σ,m ∣∣∣pt

c
,p

〉
. (3.30)

Let us begin by considering the classical gauge ct(τ) = cs. As it is conjugate to the

invariant pt/c, the corresponding quantum gauge fixing can be defined from the results
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3. The Relativistic Particle as an Archetypical Example

of §2.5.2, such that we obtain

ω̂ [f(q)|ct = cs] :=
∑
σ=±

∫
Rd

ddq f(q) |σ,q; s〉 〈σ,q; s| , (3.31)

|σ,q; s〉 :=

∣∣∣∣ p̂tc
∣∣∣∣ 1

2

Θ

(
−σp̂t

c

)
|ct = cs,q〉 . (3.32)

One readily notices that (3.32) and (3.31) imply that (3.30) is fulfilled. Indeed, we can

write

2π~
〈
p′t
c
,p′
∣∣∣P̂σ′,mω̂ [1|ct = cs] P̂σ,m

∣∣∣pt
c
,p

〉
= δσ′,σ

∫
Rd

ddq

(2π~)d
Θ

(
−σp

′
t

c

)
Θ
(
−σpt

c

) ∣∣∣∣p′tptc2

∣∣∣∣ 1
2

× e
i
~ s(pt−p

′
t)e

i
~q·(p−p

′)δ

(
− p
′2
t

2c2
+

p′2

2
+
m2c2

2

)
δ

(
− p2

t

2c2
+

p2

2
+
m2c2

2

)
= δσ′,σΘ

(
−σp

′
t

c

)
Θ
(
−σpt

c

) ∣∣∣∣p′tptc2

∣∣∣∣ 1
2

e
i
~ s(pt−p

′
t)δ(p− p′)

× δ
(
− p
′2
t

2c2
+

p2
t

2c2

)
δ

(
− p2

t

2c2
+

p2

2
+
m2c2

2

)
= δσ′,σδ

(
− p2

t

2c2
+

p2

2
+
m2c2

2

)
δ

(
p′t
c
− pt

c

)
δ(p′ − p)Θ

(
−σpt

c

)
= δσ′,σ

〈
p′t
c
,p′
∣∣∣P̂σ,m ∣∣∣pt

c
,p

〉
,

where the result follows from the q integration and (3.25). Similarly, the matrix el-

ement of the relational observable of q̂ in the gauge ct = cs is given by the kernel

function [cf. (3.31)]

2π~
〈
p′t
c
,p′
∣∣∣P̂σ′,mω̂ [q|ct = cs] P̂σ,m

∣∣∣pt
c
,p

〉
= δσ′,σΘ

(
−σp

′
t

c

)
Θ
(
−σpt

c

) ∣∣∣∣p′tptc2

∣∣∣∣ 1
2

e
i
~ s(pt−p

′
t)

[
~
i

∂

∂p
δ(p− p′)

]
× δ

(
− p
′2
t

2c2
+

p′2

2
+
m2c2

2

)
δ

(
− p2

t

2c2
+

p2

2
+
m2c2

2

)
.

(3.33)

Although this may seem slightly complicated, it follows from the theory developed

in §2.5.2, with which we can establish a relation between (3.33) and the corresponding

classical observable (3.5) as follows: we choose a pair of test functions ψ(1,2)

(pt
c ,p

)
that

have compact support in momentum space and satisfy ψ(1,2)(0,p) = 0. For notational
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3.2. Quantum theory

convenience, we also define

ψσ(1,2)(p) := ψ(1,2)

(
−σ
√

p2 +m2c2,p
)
.

The matrix element of the relational observables with respect to the test functions is

[cf. (3.33)]

2π~
∑
σ′,σ

〈
ψ(1)

∣∣∣P̂σ′,mω̂ [q|ct = cs] P̂σ,m
∣∣ψ(2)

〉

=
~
i

∑
σ=±

∫ ddp′ddp
(
ψσ(1)(p

′)
)∗
ψσ(2)(p)

(p′2 +m2c2)
1
4 (p2 +m2c2)

1
4

× e
− i

~ scσ
(√

p2+m2c2−
√

p′2+m2c2
)
∂

∂p
δ(p− p′)

=
∑
σ=±

∫
Rd

ddp√
p2 +m2c2

(
ψσ(1)(p)

)∗
×

[
i~
∂

∂p
+

cp

σ
√

p2 +m2c2
s− i~p

2 (p2 +m2c2)

]
ψσ(2)(p) .

(3.34)

Subsequently, notice that

∂

∂p
ψσ(1,2)(p) =

∂

∂p
ψ(1,2)

(pt
c
,p
)∣∣∣∣ pt

c
=−σ
√

p2+m2c2

+
c2p

pt

∂

∂pt
ψ(1,2)

(pt
c
,p
)∣∣∣∣ pt

c
=−σ
√

p2+m2c2

implies that (3.34) is equal to

2π~
∑
σ′,σ

〈
ψ(1)

∣∣∣P̂σ′,mω̂ [q|ct = cs] P̂σ,m
∣∣ψ(2)

〉
=

∫
dpt
c

ddp ψ∗(1)

(pt
c
,p
)
δ

(
− p2

t

2c2
+

p2

2
+
m2c2

2

)
×
[
i~
∂

∂p
+ i~

c2p

pt

∂

∂pt
− c2p

pt
s− i~

c2p

2p2
t

]
ψ(2)

(pt
c
,p
)
.

In other words, the matrix elements of the relational observable associated with q̂ in

the gauge ct̂ can be obtained if one inserts the operator

i~
∂

∂p
+ i~

c2p

pt

∂

∂pt
− c2p

pt
s− i~

c2p

2p2
t

(3.35)

113



3. The Relativistic Particle as an Archetypical Example

into the induced inner product (·|·) in the momentum space representation of the pair

of test functions ψ(1,2)

(pt
c ,p

)
. One readily verifies that (3.35) commutes with Ĉ and

is symmetric with respect to 〈·|·〉, such that it is symmetric with respect to (·|·). This

is consistent with the developments of §2.5.2. If we identify q(τ) → i~ ∂
∂p , t(τ) →

i~ ∂
∂pt
, t(a) → s, then (3.35) is a symmetric quantization of the classical relational

observable (3.5), as we wanted to show.

3.2.3 Dynamics and nonrelativistic limit I

The dynamics of Ô [q|ct = cs] := 2π~
∑

σ′,σ P̂σ′,mω̂ [q|ct = cs] P̂σ,m can also be as-

certained with the use of the formalism of §2.5.2 and §2.5.3. In particular, we can

use the decomposition (2.89) to conclude that the eigenstates of Ô [q|ct = cs] are

|σ,q; s,m〉 :=
√

2π~
∑

σ′ P̂σ′,m |σ,q; s〉, which lead to

〈 pt
c
,p
∣∣∣σ,q; s,m

〉
=

1

(2π~)
d
2

Θ
(
−σpt

c

) ∣∣∣pt
c

∣∣∣ 1
2

× e−
i
~ spte−

i
~q·pδ

(
− p2

t

2c2
+

p2

2
+
m2c2

2

)
.

(3.36)

Notice that (3.36) can be regarded as eigenstates because they form a complete or-

thonormal system in Hphys, as can be straightforwardly verified. This is essentially a

consequence of the fact that one can solve C(pt,p) = −p2
t /(2c

2) + p2/2 +m2c2/2 = 0

for pt without restricting the values of p and m (cf. discussion in §2.5.5).

It is worth mentioning that an expression resembling (3.36) was also presented

in [103], and it followed from solving the eigenvalue problem of (3.35). Although this is

a valid approach, we stress that, unlike [103], our computation does not require one to

first solve the classical field equations in order to find the classical relational observables,

which are then quantized. Indeed, this may be a difficult procedure for various models.

The formalism presented in Chapter 2 is more general, and it is applicable to any

theory with worldline diffeomorphism invariance for which the spectrum and eigenstates

of Ĉ are known. As we have exemplified above, this formalism avoids the explicit

construction of classical observables, and one only needs to work with on-shell states

(i.e., the solutions to Ĉ |Ψ〉 = 0). Nevertheless, a relation of the quantum observables

to the classical expression can, in principle, be established as in (3.35).

As discussed in §2.5.2 and §2.5.3, the evolution of the states (3.36) with respect to

s is unitary, since

i~
∂

∂s
|σ,q; s,m〉 = p̂t |σ,q; s,m〉 , (3.37)

114
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where p̂t is self-adjoint in Hphys, implies that the observable

Ô[q|ct = cs] =
∑
σ=±

∫
Rd

ddq q |σ,q; s,m〉 〈σ,q; s,m| (3.38)

solves the Heisenberg equation

i~
∂

∂s
Ô[q|ct = cs] =

[
p̂t, Ô[q|ct = cs]

]
, (3.39)

which is the quantum counterpart to (3.7).

In analogy to the classical theory and to (3.27), we can now compute the nonrela-

tivistic limit of (3.38). By expanding (3.36), we obtain

〈ct,q|σ, q̃; s,m〉 =
e−

i
~σmc

2(t−s)
√

2π~mc

∫
Rd

ddp

(2π~)d
e−

i
~σ

p2

2m
(t−s)e

i
~p·(q−q̃) +O

(
1

c
5
2

)
=

e−
i
~σmc

2(t−s)
√

2π~mc
Kσ(t,q; s, q̃) +O

(
1

c
5
2

)
,

where Kσ(t,q; s, q̃) was defined in (3.28). This implies that (3.38) becomes

〈
ct′,q′

∣∣∣Ô[q|ct = cs]
∣∣∣ ct,q〉

=
1

2π~mc
∑
σ=±

e−
i
~σmc

2(t′−t)
∫

Rd
ddq̃ q̃ Kσ(t′,q′; s, q̃)Kσ(s, q̃; t,q) +O

(
1

c3

)
,

which, apart from a WKB phase (cf. (3.27)), coincides with the Newtonian Heisenberg-

picture operator for each σ-sector. Indeed, we can relate this result to the classical

expression (3.10) in a similar fashion to what was done in (3.35). First, we write

Kσ(t′,q′; t,q) = 2π~ 〈t′,q′|P̂ nonrel
σ,m |t,q〉 , (3.40)

where

P̂ nonrel
σ,m =

∫ ∞
−∞

dτ

2π~
exp

[
i

~
τ

(
σp̂t +

1

2m
p̂2

)]
. (3.41)

In this way, we obtain the nonrelativistic observable

1

2π~

∫
Rd

ddq̃ q̃Kσ(t′,q′; s, q̃)Kσ(s, q̃; t,q) =
〈
t′,q′

∣∣∣Ônonrel
σ [q|t = s]

∣∣∣ t,q〉 ,
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3. The Relativistic Particle as an Archetypical Example

with [cf. (3.38)]

1

2π~
Ônonrel
σ [q|t = s] :=

∫
ddq̃ q̃ P̂ nonrel

σ,m |t = s, q̃〉 〈t = s, q̃| P̂ nonrel
σ,m . (3.42)

Second, the matrix element of (3.42) between a pair of compactly-supported test func-

tions ψ(1,2)(pt,p) is found to be

〈
ψ(1)

∣∣∣Ônonrel
σ,m [q|t = s]

∣∣∣ψ(2)

〉
=

∫
dptd

dp ψ∗(1)(pt,p)δ

(
σpt +

p2

2m

){
i~
∂

∂p
− i~

σp

m

∂

∂pt
+
σps

m

}
ψ(2)(pt,p) .

(3.43)

If we make the identifications q(τ) → i~ ∂
∂p , t(τ) → i~ ∂

∂pt
, t(a) → s, then (3.43) is a

symmetric quantization of the classical nonrelativistic observable (3.10). Therefore,

the formalism of §2.5.2 and §2.5.3 that is applied here yields the correct results in the

relativistic theory and in its nonrelativistic limit as well.

3.2.4 Quantum relational observables and their relation to the

classical expressions II

It is now worthwhile to repeat the preceding analysis for the generalized clock q̂1. As it

is conjugate to the invariant p̂1, the formalism of §2.5.2 and §2.5.3 is again applicable,

and we define

|σ, t, qj ; s〉 := |p̂1|
1
2 Θ (σp̂1) |ct, q1 = cs, qj〉 , (3.44)

ω̂
[
1|q1 = cs

]
:=
∑
σ=±

∫ ∞
−∞

dct

∫
Rd−1

dd−1q |σ, t, qj ; s〉 〈σ, t, qj ; s| . (3.45)

The corresponding Faddeev-Popov resolution of the identity in Hphys is [cf. (3.30)]

2π~
〈
p′t
c
,p′
∣∣∣P̂σ′,mω̂ [1|q1 = cs

]
P̂σ,m

∣∣∣pt
c
,p

〉
=
∑
σ′′=±

δ

(
− p2

t

2c2
+

p2

2
+
m2c2

2

)
Θ
(
−σpt

c

)
Θ

(
−σ
′pt
c

)

×Θ(σ′′p′1)Θ(σ′′p1)e
i
~ cs(p1−p′1)|p′1p1|

1
2 δ

(
p′21
2
− p2

1

2

)
δ(pt − p′t)

d∏
j=2

δ(pj − p′j)

=

( ∑
σ′′=±

Θ(σ′′p1)

)
δσ′,σδ(pt − p′t)δ(p− p′)δ

(
− p2

t

2c2
+

p2

2
+
m2c2

2

)
Θ
(
−σpt

c

)
= δσ′,σ

〈
p′t
c
,p′
∣∣∣P̂σ,m ∣∣∣pt

c
,p

〉
.
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3.2. Quantum theory

The relational observable associated with t̂ in the gauge q̂1 is given by the kernel

function

2π~
〈
p′t
c
,p′
∣∣∣P̂σ′,mω̂ [t|q1 = cs

]
P̂σ,m

∣∣∣pt
c
,p

〉
=
∑
σ′′=±

Θ
(
σ′′p′1

)
Θ
(
σ′′p1

) ∣∣p′1p1

∣∣ 1
2

× e
i
~ cs(p1−p′1)

[
~
i

∂

∂pt
δ

(
pt
c
− p′t

c

)] d∏
j=2

δ(pj − p′j)

Θ

(
−σ
′p′t
c

)
Θ
(
−σpt

c

)
× δ

(
− p
′2
t

2c2
+

p′2

2
+
m2c2

2

)
δ

(
− p2

t

2c2
+

p2

2
+
m2c2

2

)
.

(3.46)

If we use this expression to compute the matrix element between a pair of compactly-

supported test functions, we obtain the expected result

2π~
∑
σ′,σ

〈
ψ(1)

∣∣∣P̂σ′,mω̂ [t|q1 = cs
]
P̂σ,m

∣∣ψ(2)

〉
=

∫
dpt
c

ddp ψ∗(1)

(pt
c
,p
)
δ

(
− p2

t

2c2
+

p2

2
+
m2c2

2

)
×
{

i~
∂

∂pt
+ i~

pt
c2p1

∂

∂p1
− pts

cp1
− i~

pt
2c2p2

1

}
ψ(2)

(pt
c
,p
)
,

where ψ(1,2) (0,p) = ψ(1,2)

(pt
c , p1 = 0, pj

)
= 0. In this way, the matrix elements of the

relational observable associated with t̂ in the gauge q̂1 coincide with the insertion of

the operator

i~
∂

∂pt
+ i~

pt
c2p1

∂

∂p1
− pts

cp1
− i~

pt
2c2p2

1

(3.47)

into the induced inner product in the momentum space representation of the pair of

test functions. As before, we identify t(τ) → i~ ∂
∂pt
, q1(τ) → i~ ∂

∂p1
, q1(a) → cs, such

that (3.47) is a symmetric quantization of the invariant extension given in the first line

of (3.6).

3.2.5 Dynamics and nonrelativistic limit II

As in §3.2.3, we write the observable Ô[t|q1 = cs] := 2π~
∑

σ′,σ P̂σ′,mω̂[t|q1 = cs]P̂σ,m

as [cf. (3.38)]

Ô[t|q1 = cs] =
∑
σ=±

∫ ∞
−∞

dct

∫
Rd−1

dd−1q t |σ, t, qj ; s,m〉 〈σ, t, qj ; s,m| , (3.48)
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3. The Relativistic Particle as an Archetypical Example

where

|σ, t, qj ; s,m〉 :=
√

2π~
∑
σ′

P̂σ′,m |σ, t, qj ; s〉 ,

〈 pt
c
,p
∣∣∣σ, t, qj ; s,m〉 =

|p1|
1
2

(2π~)
d
2

Θ (σp1) e−
i
~ csp1

× e−
i
~ tpte−

i
~
∑d
j=2 q

jpjδ

(
− p2

t

2c2
+

p2

2
+
m2c2

2

)
.

(3.49)

Notice that we cannot solve C(pt/c,p) = −p2
t /(2c

2)+p2/2+m2c2/2 = 0 for p1 without

a restriction on the values of the remaining invariants. Indeed, one must make the

resctriction p2
t /c

2 −
∑

j p
2
j − m2c2 ≥ 0 such that p2

1 ≥ 0. Following the discussion

in §2.5.5, this implies that the quantum gauge q̂1 is not well-defined. We will discuss

the consequences of this in the nonrelativistic limit. Nevertheless, it is still possible to

verify that the states (3.49) obey

i~
∂

∂s
|σ, t, qj ; s,m〉 = cp̂1 |σ, t, qj ; s,m〉 , (3.50)

such that the observable (3.48) solves the Heisenberg equation

i~
∂

∂s
Ô[t|q1 = cs] = c

[
p̂1, Ô[t|q1 = cs]

]
, (3.51)

which is the counterpart to (3.8).

To consider the nonrelativistic limit of the observable (3.48) as in §3.2.3, we must

first restrict it a fixed frequency sector by using the operator Θ
(
−σp̂t

c

)
because the

Newtonian theory is defined for a fixed sign of p̂t. We can then consider the expansion

in powers of 1/c2 of the object

〈
ct,q

∣∣∣∣Θ(−σp̂tc
)∣∣∣∣ σ̃, t̃, q̃j ; s,m〉

=

∫
ddp

(2π~)
2d+1

2

e−
i
~σ(t−t̃)

√
p2c2+m2c4√

p2 +m2c2
e

i
~p1(q1−cs)e

i
~
∑d
j=2 pj(q

j−q̃j)Θ(σ̃p1)|p1|
1
2

=
e−

i
~σmc

2(t−t̃)
√

2π~ mc

∫
ddp

(2π~)d
e−

i
~σ

p2

2m
(t−t̃)e

i
~p1(q1−cs)

× e
i
~
∑d
j=2 pj(q

j−q̃j)Θ(σ̃p1)|p1|
1
2 +O

(
1

c3

)
=
√

2π~
e−

i
~σmc

2(t−t̃)

mc

〈
t,q
∣∣∣P̂ nonrel
σ,m Θ (σ̃p̂1) |p̂1|

1
2

∣∣∣ t̃, q1 = cs, q̃j
〉

+O
(

1

c3

)
,
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where P̂ nonrel
σ,m is the projector defined in (3.41). This implies

〈
ct′,q′

∣∣∣∣Θ(−σp̂tc
)
Ôm[t|q1 = cs]Θ

(
−σp̂t

c

)∣∣∣∣ ct,q〉
=

e−
i
~σmc

2(t′−t)

mc

〈
t′,q′

∣∣∣Ônonrel
σ,m [t|q1 = cs]

∣∣∣ t,q〉+O
(

1

c3

)
,

where the nonrelativistic observable is defined as [cf. (3.42) and (3.48)]

Ônonrel
σ,m [t|q1 = cs]

:= 2π~
∑
σ̃=±

∫ ∞
−∞

dt̃

∫
Rd−1

dd−1q̃ t̃ P̂ nonrel
σ,m Θ (σ̃p̂1)

∣∣∣∣ p̂1

m

∣∣∣∣ 1
2

|t̃, q1 = cs, q̃j〉

× 〈t̃, q1 = cs, q̃j |
∣∣∣∣ p̂1

m

∣∣∣∣ 1
2

Θ (σ̃p̂1) P̂ nonrel
σ,m .

(3.52)

Following the derivation of the Faddeev-Popov resolution of the identity in §3.2.4, one

can show that the states in the decomposition (3.52) formally constitute a complete

system in the nonrelativistic physical Hilbert space. However, a straightforward calcu-

lation also shows that these states are not orthogonal, and this is compatible with the

fact that the gauge q̂1 is not well-defined in the sense of §2.5.5.

As before, we can relate (3.52) to the corresponding classical expression by evaluat-

ing its matrix element between a pair of compactly-supported test functions ψ(1,2)(pt,p)

[with ψ(1,2)(pt, p1 = 0, pj) = 0]. As in (3.35), (3.43), and (3.47), we find

〈
ψ(1)

∣∣∣Ônonrel
σ,m [t|q1 = cs]

∣∣∣ψ(2)
〉

=

∫
dptd

dp ψ̄(1)(pt,p)δ

(
σpt +

p2

2m

)
×
{

i~
∂

∂pt
− i~

σm

p1

∂

∂p1
+
σm

p1
cs+ i~

σm

2p2
1

}
ψ(2)(pt,p) .

(3.53)

With t(τ) → i~ ∂
∂pt
, q1(τ) → i~ ∂

∂p1
, q1(a) → cs, Eq. (3.53) is a symmetric quantization

of the nonrelativistic time-of-arrival (3.11).

At this stage, we offer some remarks with the purpose of comparing the above devel-

opments to the earlier literature on the time-of-arrival operator (see, for instance, [80,

102]). The careful discussion in [102] established that it is necessary to regularize this

operator if it is to be self-adjoint. However, the formalism of [102] did not include the

operators pt, i~ ∂
∂pt

, and instead focused on a “reduced” Hilbert space spanned by the

eigenstates of q̂, p̂. The regularization proposed in [102] was later applied in [80] to the

case in which the operators pt, i~ ∂
∂pt

are present; i.e., it was applied to the operator that
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3. The Relativistic Particle as an Archetypical Example

is inserted in (3.53). In the present formalism, we see that the need to regularize stems

from the fact that the states in (3.52) are not orthogonal, which is a signal that the

gauge q̂1 is not well-defined according to the criteria of §2.5.5, as already mentioned.

However, as was stressed in [98], we refrain from adopting such a regularization because

our main focus is on the completeness of the states (in the sense of the Faddeev-Popov

resolution of identity) that is obtained in our method. Furthermore, we take seriously

the analogy with HJ formalism on which the formalism of Chapter 2 is based and the

criteria for well-defined gauges discussed in §2.5.5. Nonetheless, one could apply the

regularization of the time-of-arrival operator to (3.53), and it is certainly possible that

the method described here will require further regularizations in more realistic examples

(see also the discussion in §6.3.7).
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Chapter 4

Homogeneous Classical and

Quantum Cosmology

The simple examples discussed in Chapter 3 are certainly conceptually useful toy mod-

els and serve as a first introduction to the method developed in Chapter 2. However,

in the interest of progressing towards quantum gravity, it is paramount that we con-

sider quantum cosmology, which is the application of the canonical quantization of the

theory of gravitation to the Universe, both in its late-time large-scale structure and in

its early stages (cf. Chapter 6). This extrapolation is compelling because the gravi-

tational interaction is predominant at large scales and, as was mentioned in the the

Introduction, quantum theory appears to be universal. In this way, it is conceivable

that the quantum nature of gravitation influences the origin and (relational) evolution

of the Universe.

For simplicity, and in order to work with tractable equations, it is customary to

perform symmetry reductions [6,105,106], which consist in the imposition of a certain

group of symmetries at the level of the field equations. The ‘reduction’ follows from the

consideration of invariant fields only. In the case of cosmological models, it is customary

to impose homogeneity and, in certain cases, isotropy. We will only consider homoge-

neous models that obey the ‘symmetric criticality principle’ [6, 104–106], for which it

is possible to apply the symmetry reduction directly at the level of the action. In this

way, the critical points of the symmetry-reduced action are in correspondence to the

critical points of the original (e.g., Einstein-Hilbert) action. Moreover, the imposition

of homogeneity implies that the action becomes mechanical. In this case, one refers to

the configuration space of the symmetry-reduced cosmology as ‘minisuperspace’, and

the ensuing theory is a worldline theory of the type considered in Chapters 1 and 2.

Evidently, the quantization of symmetry-reduced models may fail to capture some

crucial aspects of the full field theory. However, not only there are circumstances

in which the reduction provides a reliable truncation or approximation of the theory

(see Chapter 8 of [6], for example), but also the minisuperspace models serve as a

fertile training ground to quantum gravity. Indeed, we consider homogeneous quantum
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4. Homogeneous Classical and Quantum Cosmology

cosmology to be a class of toy models of a theory of quantum gravitation, in which

the general framework developed in Chapter 2 can be applied so as to illustrate how

the definition of quantum relational observables as well as the postulates that were

presented can lead to concrete results concerning the relational quantum dynamics of

the Universe.1

4.1 Singularity avoidance

Before we proceed to the concrete examples of a closed FLRW universe in §4.2 and a

Kasner model in §4.3, it is useful to explain how the quantum relational formalism of

Chapter 2 can be used to determine whether the classical singularity is resolved in the

quantum theory. In the models examined in §4.2 and §4.3, the singularity is reached

when the scale factor of universe vanishes.

Let us denote by s the region of configuration space which corresponds to singular

geometries. A popular criterion for singularity avoidance is that the solutions |Ψ〉 to

the quantum constraint (WDW) equation should satisfy 〈s|Ψ〉 = 0. This is sometimes

called the DeWitt criterion for singularity avoidance (see, for instance, [107]) because

DeWitt proposed it as a boundary condition on the solutions to the WDW equation [25].

This criterion is certainly reasonable, but its meaning is unclear if the theory is not

equipped with a probabilistic interpretation such as the one proposed in §2.6. Indeed,

the criterion is often applied heuristically without a corresponding Hilbert space. For

this reason, we suggest a slight modification that we call the ‘conditional DeWitt cri-

terion’, as we explain below.

4.1.1 The wave function of the universe as relative initial data

Following the discussion in §2.7.1, the on-shell states (solutions to the quantum con-

straint equation) can be interpreted as invariant extensions of conditional wave func-

tions, which are the relative initial data for the relational quantum evolution. In the

case of cosmological models, a choice of on-shell state is usually called a ‘wave function

of universe’. As the physical Hilbert space is not trivial, there are many possible choices

of on-shell states and, therefore, the wave function of the universe is not uniquely de-

termined. For this reason, various proposals for boundary conditions have been put

forth (see [6] for an overview).

We take a different view. According to §2.7.1, we can see the multitude of on-

shell states as possible choices of relative initial data, each of which defines a different

quantum evolution in the generalized reference frame adopted by an observer. Thus,

it is the task of observers to determine what initial conditions should be chosen so as

to describe the quantum universe they record with their generalized clocks and rods.

1This Chapter is based on [30,31].

122



4.2. Closed FLRW model

If the wave function of universe is seen as the relative initial data for the evolution of

our universe, we are led to the question: what choice of initial data implies that there

is no singularity from the perspective of a hypothetical observer in the early Universe?

In other words, if the hypothetical observer uses some physical field as a generalized

clock, is there an instant in which the scale factor vanishes?

To answer the above questions, we suggest that, in analogy to the conventional

DeWitt criterion, one should impose that conditional probabilities vanish in s; i.e.,

pΨ(s|χ = s) = 0, where χ is a generalized clock. We refer to this imposition as the

conditional DeWitt criterion, and we consider that it is a completion of the conventional

one. Clearly, the validity of this criterion rests on the assumption that Born rule is

applicable to the induced overlap of on-shell states. In what follows, we will examine

how this criterion can be used with the formalism of Chapter 2 in concrete examples.

4.2 Closed FLRW model

An instructive example is the model of a closed FLRW universe.2 The simplest matter

field that can be considered in this case is a minimally coupled, homogeneous and

massless scalar field. As is well-known and we will see in what follows, the model

exhibits a classical “recollapse”, in the sense that the scale factor initially increases,

reaches a maximum, and subsequently decreases. The quantization of the model was

discussed by Kiefer in [108], where the behavior of wave packets of solutions to the

quantum constraint equation was analyzed. However, the quantum observables and

the physical Hilbert space were not defined. A general investigation of the definition

of quantum observables and the induced inner product in recollapsing universes was

carried out by Marolf in [109]. Our work differs from [109] mainly in two ways. First,

we establish a connection to conditional probabilities (and relative initial data), which

were not discussed in [109]. Second, as was mentioned in footnote 16 in Chapter 2, the

definition of quantum observables in [109] did not yield the Faddeev-Popov resolution

of the identity. In contrast, the identity O[1|χ = s] = 1 is a defining feature of our

formalism. Thus, it is worthwhile to revisit this FLRW model in order to illustrate how

the formalism presented here can reproduce the quantum observables for a recollapsing

universe, and how their dynamics is connected to conditional probabilities.

4.2.1 Classical theory

The dynamics is defined by the action [6]

S = SM + S∂M , (4.1)

2A flat FLRW model will be discussed in Chapter 6 as the background on which cosmological
perturbations are defined.
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SM =

∫
M

d4x
√
−g
[

1

2κ
R− 1

2
(∇φ)2

]
, (4.2)

S∂M = −1

κ

∫
∂M

d3x
√
h K . (4.3)

Here,M is a region of spacetime, κ = 8πG/c4, and R is the Ricci scalar. Furthermore,

the determinant of the induced metric on the boundary ∂M is denoted by h, whereas

the trace of the extrinsic curvature of the boundary is K.

Given the line element on S3, dΩ2
3 = dχ2 +sin2 χ

(
dθ2 + sin2 θdϕ2

)
, the line element

for the closed FLRW model reads

ds2 = −N2(τ)dτ2 + a2(τ)dΩ2
3 , (4.4)

and it leads to the equalities [6]

√
−g = |N |a3 sin2 χ sin θ , (4.5)

R =
6

N2

[
ä

a
− ȧṄ

aN
+

(
ȧ

a

)2
]

+
6

a2
, (4.6)

K =
3ȧ

aN
. (4.7)

For convenience, we assume that N(τ) > 0. We can then integrate the first term

in (4.6) to obtain the symmetry-reduced action

S = 2π2

∫ τ1

τ0

dτ

(
−3

aȧ2

κN
+

3Na

κ
+
a3

2

φ̇2

N

)
. (4.8)

We can bring (4.8) to simpler form if we work with units in which 6π2/κ = 1/2, and

we consider the redefinitions

a(τ) = eα(τ) ,

N(τ) = e3α(τ)e(τ) ,

φ(τ)→ 1√
2π
φ(τ) .

(4.9)
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4.2. Closed FLRW model

Due to (4.9), we can rewrite (4.8) as

S =

∫ τ1

τ0

dτ

(
− α̇

2

2e
+
φ̇2

2e
+
e

2
e4α

)

=

∫ τ1

τ0

dτ
(
pαα̇+ pφφ̇− e(τ)C

)
,

(4.10)

which is of the form (1.40). The constraint is

C = −p
2
α

2
+
p2
φ

2
− e4α

2
, (4.11)

and the field equations read

α̇ = −e(τ)pα , ṗα = 2e(τ)e4α ,

φ̇ = e(τ)pφ , ṗφ = 0 ,

0 = −p
2
α

2
+
p2
φ

2
− e4α

2
.

(4.12)

These equations can be solved relationally, i.e., by expressing the dynamics in terms of

a generalized clock. By choosing φ(τ) as the clock, the system (4.12) becomes

α̇ = −pα
pφ
φ̇ , ṗα =

2e4α

pφ
φ̇ ,

pφ = σ
√
p2
α + e4α ≡ σ|k| ,

(4.13)

for an arbitrary initial choice of τ , and with σ = ±1. The symbol k in the last equation

of (4.13) is a constant of integration. We can solve (4.13) in terms of the generalized

clock φ(τ) to find

a2(τ) =
|k|

cosh
[
2σ(φ(τ)− s) + arctanh

(
pα|φ(τ)=s

|k|

)] ,
pα(τ) = |k|tanh

[
2σ(φ(τ)− s) + arctanh

(
pα|φ(τ)=s

|k|

)]
.

(4.14)

Notice that |k| can be written in terms of the relative initial data

|k| =
√
p2
α|φ(τ)=s + a4|φ(τ)=s ,
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4. Homogeneous Classical and Quantum Cosmology

due to the last equation in (4.13). The values p2
α

∣∣
φ(τ)=s

and α|φ(τ)=s can be seen as local

coordinates in the reduced phase space (cf. §1.9.2), and they completely determine the

solution (4.14). If we invert (4.14), we find expressions for p2
α

∣∣
φ(τ)=s

and α|φ(τ)=s in

terms of the variables α(τ), φ(τ), pα(τ) and pφ(τ) in an arbitrary worldline coordinate.

These expressions are invariant extensions (relational observables). For instance, the

relational observable associated with the square of the scale factor reads

O[a2|φ = s] := a2
∣∣
φ(τ)=s

=
|k|

cosh
[
2σ(s− φ(τ)) + arctanh

(
pα(τ)
|k|

)] , (4.15)

and one can readily verify that it is a worldline-diffeomorphism invariant (for a fixed

value of s). Indeed, as the on-shell identity

d

dτ

[
2σ(s− φ(τ)) + arctanh

(
pα(τ)

|k|

)]
= 0 (4.16)

holds due to (4.13), we obtain the transformation [cf. (1.17)]

δε(τ) a
2
∣∣
φ(τ)=s

= ε(τ)
d

dτ
a2
∣∣
φ(τ)=s

= 0 .

From (1.89), we know that we can write (4.15) as the integral formula

O[a2|φ = s] = ∆φ

∫ ∞
−∞

dτ δ(φ(τ)− s)a2(τ)

=:

∫∞
−∞ dτ δ(φ(τ)− s)a2(τ)∫∞
−∞ dτ δ(φ(τ)− s)

.

(4.17)

An invariant expression similar to (4.15) is found for pα|φ(τ)=s, but it will not be needed.

Furthermore, as φ(τ) is conjugate to the invariant pφ, we can use the formalism of §2.5.2

to write the evolution of (4.15) in terms of the auxiliary phase-space Poisson brackets,

d

ds
a2
∣∣
φ(τ)=s

= − ∂

∂φ(τ)
a2
∣∣
φ(τ)=s

=
{
pφ, a

2
∣∣
φ(τ)=s

}
.

(4.18)

In §4.2.3, we show that the quantum relational observables satisfy the relational Heisen-

berg equation that is the quantum counterpart of (4.18).
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4.2. Closed FLRW model

Finally, if we evaluate (4.15) for different values of s, we obtain

a2
∣∣
φ=s

=
|k|

cosh

[
2σ(s− s0) + arccosh

(
|k|

a2|φ=s0

)] , (4.19)

which expresses the evolution in terms of the local coordinates in the reduced phase-

space; i.e., the dynamics with respect to s is written solely in terms of the relational

observables. Incidentally, it is clear from (4.19) that the universe expands until the

scale factor reaches a maximum value, after which the universe contracts. This signals

that the classical universe recollapses.

4.2.2 Quantum theory I. The physical Hilbert space

The canonical quantization of (4.11) leads to the operator

Ĉ := − p̂
2
α

2
+
p̂2
φ

2
− e4α̂

2
, (4.20)

which acts as a symmetric operator in the auxiliary Hilbert space L2(R2, dαdφ). Fol-

lowing Chapter 2, the induced inner product and the physical Hilbert space can be

defined from the analysis of the spectrum of Ĉ. Let us then examine the eigenvalue

equation (
~2

2

∂2

∂α2
− ~2

2

∂2

∂φ2
− e4α

2

)
Ψ(α, φ) = EΨ(α, φ) . (4.21)

We will impose the boundary condition limα→∞ΨE,σ,k(α, φ) = 0. Moreover, the eigen-

states can be expressed in terms of modified Bessel functions, which we denote by

Kiν (x). Below, we will use the identities [110]

Kiν(x) = K−iν(x) = Kiν(x) , (4.22)∫
R

dαKiν′

(
e2α

2~

)
Kiν

(
e2α

2~

)
=
π2δ(|ν| − |ν ′|)
4ν sinh(πν)

, (4.23)

Kiν(x) =
1

2

∫ ∞
−∞

dy e−x cosh y cos(νy) . (4.24)

If E ≥ 0, we set E = λ2

2 , and the eigenstates read

〈α, φ|E, σ, k〉 := ΨE,σ,k(α, φ)

= exp

(
i

~
σ
√
k2 + λ2φ

)
K ik

2~

(
e2α

2~

)
,

(4.25)
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where σ = ±1. Similarly, if E ≤ 0, we find

〈α, φ|E, σ, k〉 := e
i
~σ|k|φKiν(λ,k)

(
e2α

2~

)
, (4.26)

where E = −λ2

2 and ν(λ, k) :=
√
k2 + λ2/(2~). The auxiliary inner product of the

eigenstates is

〈E′, σ′, k′|E, σ, k〉 = δ
(
E′ − E

) (
E, σ′, k′|E, σ, k

)
, (4.27)

where

(
E, σ′, k′|E, σ, k

)
=


2π3~3

√
k2+λ2

k sinh(πk2~ )
δσ′,σδ(|k′| − |k|) for E′, E ≥ 0 ,

2π3~3

sinh

(
π
√
k2+λ2

2~

)δσ′,σδ(|k′| − |k|) for E′, E ≤ 0 ,
(4.28)

due to (4.22) and (4.23). In this way, we can normalize the on-shell states

|σ, k〉 := N (k) |E = 0, σ, k〉 (4.29)

according to

N (k) :=

sinh
(
π|k|
2~

)
4π3~3


1
2

. (4.30)

Indeed, if we take the limit in which λ→ 0 in (4.28), we find the induced inner product

(
σ′, k′|σ, k

)
=

1

2
δσ′,σδ(|k′| − |k|) . (4.31)

A superposition of (4.29) is said to be a ‘normalizable on-shell state’ if it is square-

integrable in the induced inner product. The physical Hilbert space Hphys is the vector

space of normalizable on-shell states equipped with (·|·). The improper projector

P̂E=0 :=
∑
σ=±

∫ ∞
−∞

dk |σ, k〉 〈σ, k| (4.32)

acts as the identity in the physical Hilbert space [cf. (2.69)].
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4.2. Closed FLRW model

4.2.3 Quantum theory II. Relational observables

The quantum counterpart of (4.15) can be constructed using the formalism of §2.5.2

because the generalized clock φ is conjugate to an invariant. To this end, we consider

the commuting invariants p̂φ and Ĉα =
p̂2
φ

2 − Ĉ, where Ĉα := p̂2
α/2 + exp (4α)/2. An

orthonormal system of simultaneous eigenstates is defined by the relations

p̂φ |k, pφ〉 = pφ |k, pφ〉 ,

Ĉα |k, pφ〉 =
k2

2
|k, pφ〉 ,

Ĉ |k, pφ〉 =

(
p2
φ

2
− k2

2

)
|k, pφ〉 , (4.33)

such that

〈α, φ|k, pφ〉 := |k|
1
2N (k)e

i
~pφφK ik

2~

(
e2α

2~

)
.

Equation (4.33) leads to [cf. (2.52), (2.54) and (2.57)]

pφ = −Hσ
φ = σ|k| (σ = ±1) ,

|σ, k〉 = |k|−
1
2 |k, pφ〉pφ=σ|k| ,

(4.34)

where |σ, k〉 are given in (4.29). The Faddeev-Popov operator is straightforwardly

computed [cf. (2.66)],

Ω̂σ
φ :=

∫
R

dk |k|
1
2 |σ, k〉 〈σ, k| , (4.35)

and observables can defined as

Ô[f(α)|φ = s] :=
∑
σ=±

∫
R

dαf(α) |σ, α; s〉 〈σ, α; s| , (4.36)

with [cf. (2.90)]

|σ, α; s〉 :=
√

2π~Ω̂σ
φ |α, φ = s〉 . (4.37)

Notice that, due to (4.29) and (4.35), we can rewrite (4.37) as

(
σ′, k′|σ, α; s

)
=
√

2π~δσ′,σN (k′)K ik′
2~

(
e2α

2~

)
|k′|

1
2 e−

i
~σ
′|k′|s . (4.38)
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The Faddeev-Popov resolution of the identity requires that Ô[1|φ = s] coincides with

the identity in the physical Hilbert space [cf. (4.32)], and it means that the states

|σ, α; s〉 form a complete system in Hphys. This can be verified if we use (4.23), (4.30),

and (4.38) to write

(
σ′, k′

∣∣∣Ô[1|φ = s]
∣∣∣σ, k) =

∑
σ′′=±

∫
R

dα
(
σ′, k′|σ′′, α; s

) (
σ′′, α; s|σ, k

)
=

1

2
δσ′,σδ(|k′| − |k|)

= (σ′, k′|σ, k) ,

(4.39)

which coincides with (4.31). Furthermore, the dynamics of the observables (4.36) is

also encoded in the states |σ, α; s〉. Due to (4.25), (4.29), and (4.38), we obtain

(
σ′, k′

∣∣∣∣i~ ∂∂s
∣∣∣∣σ, α; s

)
= σ′|k′|

(
σ′, k′|σ, α; s

)
=
(
σ′, k′ |p̂φ|σ, α; s

)
,

(4.40)

such that the observables (4.36) satisfy the Heisenberg equation [cf. (2.86)]

i~
∂

∂s
Ô[f(α)|φ = s] =

[
p̂φ, Ô[f(α)|φ = s]

]
. (4.41)

If we set f(α) = e2α, then (4.41) is the quantum counterpart of (4.18). The operator

−p̂φ serves as a physical Hamiltonian and determines a unitary evolution in the physical

Hilbert space, since it is an invariant that is also self-adjoint with respect to the auxiliary

inner product.

4.2.4 Quantum theory III. Relational quantum dynamics

Let us illustrate how the relational quantum dynamics of this model universe may be

understood in terms of the gauge-fixed propagation of relative initial data (cf. §2.7.1).

For simplicity, we consider the conditional wave function

〈α, φ = s0|ψ〉 = ψ(α, s0) =

∫
R

dk ψ(k, s0)K ik
2~

(
e2α

2~

)
(4.42)

as the relative initial data at φ = s0. We assume that ψ(k, s0) is even in k. From (2.116)

and (2.121), we can compute the σ-sector invariant extension of (4.42) by using the

130



4.2. Closed FLRW model

σ-sector gauge-fixed propagator (σ, α;φ|σ, α0; s0),

〈α, φ|Ψσ〉 :=

∫
R

dα0 (σ, α;φ|σ, α0; s0)ψ(α0) , (4.43)

Notice that the useful formula

1

2

∑
σ

(σ, α;φ|σ, α0; s0) := π~
∑
σ

〈
α, φ

∣∣∣Ω̂σ
φ • Ω̂σ

φ

∣∣∣α0, s0

〉
= π~

〈
α, φ

∣∣∣|p̂φ|P̂E=0

∣∣∣α0, s0

〉
= 2π~

∫
R

dk N 2|k| cos

[
k

~
(φ− s0)

]
K ik

2~
(x)K ik

2~
(x0) ,

(4.44)

where x ≡ exp (2α)/(2~) and x0 ≡ exp (2α0)/(2~), suggests that it is convenient to

consider the state |Ψ〉 :=
∑

σ |Ψσ〉 /2. Its invariant extension is an on-shell state [i.e.,

a solution to (4.20)] that coincides with (4.42) if φ = s0, and it reads

〈α, φ|Ψ〉 ≡ Ψ(α, φ) =

∫
R

dk ψ(k) cos

[
k

~
(φ− s0)

]
K ik

2~

(
e2α

2~

)
(4.45)

due to (4.23), (4.42), and (4.44). For concreteness, let us set

ψ(k) =
k

~
sin

(
k

~
c0

)
, (4.46)

with c0 ∈ R. This corresponds to the initial data [cf. (4.42)]

ψ(α, s0) = 2πe2α sinh(2c0) exp

[
−e2α

2~
cosh(2c0)

]
, (4.47)

the invariant extension of which is

Ψ(α, φ) = −π~
∑
σ=±

∂

∂c0
exp

{
−e2α

2~
cosh [2σ (φ− s0) + 2c0]

}
(4.48)

due to (4.24) and (4.45). Each term in the sum in (4.48) is a conditional probability

amplitude in a definite σ-sector for an arbitrary value φ = s. Each of these amplitudes

defines a conditional exponential distribution of a2 with mean value

a2
∣∣
mean

=
2~

cosh [2σ (s− s0) + 2c0]
. (4.49)
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Notice that (4.49) is analogous to the classical solution (4.19), and it also leads to a

‘mean recollapse’ given by the condition lims→±∞ a2
∣∣
mean

= 0. Nevertheless, this does

not imply that the singularity is still present. According to the conditional DeWitt

criterion, the singularity is removed because the state (4.48) assigns zero conditional

probabilities to the classical singularity,

lim
α→±∞

pΨ(α|φ = s) = 0 . (4.50)

In other words, given a certain observed value of the scalar field, the probability that

the scale factor vanishes is zero.

4.3 The Kasner model

One of the most elementary yet instructive models of homogeneous quantum cosmology

is the vacuum Bianchi I (Kasner) model, which is the simplest anisotropic cosmology.

The reader is referred to [107, 111, 112] and references therein for a comprehensive

overview and further details regarding anisotropic cosmologies. Here, we examine this

example as another application of our method of construction of relational observables

and, in particular, as another instance of the conditional DeWitt criterion for singularity

avoidance.

4.3.1 Classical theory

To define the Bianchi I model, we start with the symmetry-reduced line element

ds2 = −N2dτ2 + a2
xdx2 + a2

ydy
2 + a2

zdz
2 . (4.51)

For convenience, we choose to work with the ‘Misner variables’ α, β+, β−, which are

defined as

ax = eα+β++
√

3β− ,

ay = eα+β+−
√

3β− ,

az = eα−2β+ .

(4.52)

Notice that α, β+, β− are worldline scalars; i.e., we obtain δε(τ)α = ε(τ)dα/dτ , and

similarly for β+ and β−, for diffeomorphisms generated by a vector field V = v(τ)d/dτ

[cf. (1.17)]. In terms of the Misner variables, the scale factor reads (axayaz)
1
3 = eα.

In this section, we work with units in which 3c6V0/(4πG) = 1 [107]. After the sym-

metry reduction, the Einstein-Hilbert action then acquires the simple form [cf. (1.10)]
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S =
1

2

∫
dτ

e3α

N

(
−α̇2 + β̇2

+ + β̇2
−

)
. (4.53)

The canonical theory is defined by the usual Legendre transformation [cf. §1.3.1]. The

total Hamiltonian reads3

HT =
Ne−3α

2

(
−p2

α + p2
+ + p2

−
)
, (4.54)

where the momenta conjugate to the Misner variables are also worldline scalars. With-

out loss of generality, we can redefine the arbitrary lapse function as N(τ) = e3α(τ)ω(τ),

such that ω(τ) plays the role of the einbein [cf. (1.40)]. In this way, the constraint is

C = −p2
α/2 + p2

+/2 + p2
−/2, which coincides with the limit m → 0 of the mass-shell

constraint of a free relativistic particle in a (2 + 1)-dimensional Minkowski spacetime.

From the total Hamiltonian (4.54) and the field equations (1.29), it is straightforward

to find the trajectories in terms of proper time η =
∫

dτ ω(τ) [cf. (1.2)],

α(η) = α− pαη , pα(η) = pα ,

β±(η) = β± + p±η , p±(η) = p± .
(4.55)

In order to illustrate the discussion about singularity avoidance (cf. §4.1) in the

quantum theory, let us consider the relational observable associated with the scale

factor in the gauge defined by the generalized clock β+(η)/p+(η). We can write this

observable in terms of the proper-time parametrization,

O[eα|β+ − p+s = 0] :=

∫ ∞
−∞

dη |p+| δ (β+(η)− p+(η)s) eα(η) . (4.56)

Due to (4.55), we find

O[eα|β+ − p+s = 0] = exp

(
α+

pα
p+
β+ − pαs

)
. (4.57)

It is straightforward to verify that (4.57) Poisson-commutes with C. We note that

the singularity is reached when the scale factor is zero, which corresponds to the limit

pαs→∞ in (4.57).

3As in Chapter 5, we eliminate the primary constraint pe = 0 for simplicity, and we work with the
partially gauge-fixed theory discussed in §1.3.2. Here, the arbitrariness of the multiplier ω in (1.38)
corresponds to the arbitrariness in the choice of lapse function.
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4.3.2 Quantum theory

The quantum theory can be constructed following the general formalism discussed in

Chapter 2. The particular form of the physical Hilbert space follows from the relativistic

particle construction in Chapter 3. Here, our main interest here is to determine how

the classical singularity may be removed according to the criteria established in §4.1;

i.e., if the relative initial data for the quantum scale factor assign zero probability to

eα = 0.

To begin with, we note that the argument of the Dirac delta in (4.56) corresponds

to a family of gauge conditions labeled by the value of s. Each member is conjugate

to p+, which is an invariant [cf. (4.55)]. In this way, we can use the results of §2.5.2 to

construct the quantum relational observables. Furthermore, a change in the value of s

in χ(η) = β+(η)− p+(η)s is generated by {·, p2
+/2}. For this reason, we can define the

states

|χ, α, β−; s〉 :=

∫
dp+ e−

i
~p+χe−

i
~
p2+
2
s |α, p+, β−〉 , (4.58)

which form an orthonormal system in the auxiliary Hilbert space for a fixed value of

s. Following Chapter 3, we can define the eigenstates of the invariant extension of the

scale factor in the gauge χ = 0 as

|σ, α, β−; s〉 :=
√

2π~
∑
σ′=±

P̂σ′,m=0 |p̂+|
1
2 Θ(σp̂+) |χ = 0, α, β−; s〉 , (4.59)

where P̂σ′,m=0 was given in (3.24). From (4.59), one readily finds the physical transition

amplitude

(
σ′, α′, β′−; s′|σ, α, β−; s

)
= δσ′,σ

∫
dpαdp−dp+

(2π~)2
e

i
~
p2+
2

(s′−s)e
i
~pα(α′−α)

× e
i
~p−(β′−−β−)Θ(σp+)|p+|δ

(
−p

2
α

2
+
p2

+

2
+
p2
−
2

)
= δσ′,σ

∫
dpαdp−
(2π~)2

e
i(s′−s)

2~ (p2
α−p2

−)e
i
~pα(α′−α)e

i
~p−(β′−−β−)

= δσ′,σK(α)(α
′, s′;α, s)K(−)(β

′
−, s

′;β−, s) , (4.60)

where we defined the propagators

K(α)(α
′, s′;α, s) =

[
2π~i(s′ − s)

]− 1
2 exp

(
− (α′ − α)2

2i~(s′ − s)

)
,

K(−)(β
′
−, s

′;β−, s) =
[
2π~i(s′ − s)

]− 1
2 exp

(
−

(β′− − β−)2

2i~(s′ − s)

)
.

(4.61)
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Notice that (4.61) coincide with nonrelativistic propagators, and (4.60) simplifies to

δσ′,σδ(α
′ − α)δ(β′− − β−) in the limit s′ → s. The states (4.59) also allows us to define

the quantum relational observables [cf. (4.56)]

Ô[f(α, β−)|χ(s) = 0] :=
∑
σ=±

∫
dαdβ− f(α, β−) |σ, α, β−; s〉 〈σ, α, β−; s| , (4.62)

such that Ô[eα|χ(s) = 0] is the invariant extension of the scale factor.

Let us now discuss a choice of relative initial data. We define the Gaussian wave

packet

|ψ, σ; s〉 :=

∫
dαdβ− ψ(α)(α)ψ(−)(β−) |σ, α, β−; s〉 ,

ψ(α)(α) :=
[
πA2

]− 1
4 e

i
~p

0
α(α−α0)e−

(α−α0)2

2A2 ,

ψ(−)(β−) :=
[
πB2

]− 1
4 e

i
~p

0
−(β−−β0)e−

(β−−β0)2

2B2 ,

for simplicity. It satisfies (ψ, σ′; s|ψ, σ; s) = δσ′,σ; i.e., it is normalized with respect to

the induced inner product. We find the overalp

(σ′, α′, β′−; s|ψ, σ; s = 0) = δσ′,σ

[∫ ∞
−∞

dα K(α)(α
′, s;α, 0)ψ(α)(α)

]
×
[∫ ∞
−∞

dβ− K(−)(β
′
−, s;β−, 0)ψ(−)(β−)

]
=: δσ′,σψ(α)(α

′; s)ψ(−)(β
′
−; s) ,

(4.63)

from (4.60) and (4.61). In (4.63), we defined

ψ(α)(α; s)

:=

[
π

1
2

(
A− i~s

A

)]− 1
2

e
i
~p

0
α(α−α0+ 1

2
p0
αs) exp

[
−(α− α0 + p0

αs)
2

2A2
(
1− i~s

A2

) ] , (4.64)

ψ(−)(β−; s)

:=

[
π

1
2

(
B +

i~s
B

)]− 1
2

e
i
~p

0
−(β−−β0− 1

2
p0
−s) exp

[
−

(β− − β0 − p0
−s)

2

2B2
(
1 + i~s

B2

) ]
, (4.65)

for convenience. Following §2.6, the overlap (4.63) leads to the transition probability

∣∣(σ′, α′, β′−; s|ψ, σ; s = 0)
∣∣2 = δσ′,σ

∣∣ψ(α)(α
′; s)
∣∣2 ∣∣ψ(−)(β

′
−; s)

∣∣2 ,
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which satisfies

lim
|α′|→∞

∣∣(σ′, α′, β′−; s|ψ, σ; s = 0)
∣∣2 = 0 , (4.66)

due to (4.64) and (4.65). Equation (4.66) yields the probability that a transition oc-

curs between the Gaussian relative initial data (at s = 0) and the eigenstate of the

invariant extension of the scale factor with a vanishing (or diverging) eigenvalue. As

this probability is zero, this is an instance of the conditional DeWitt criterion and we

interpret it as an avoidance of the singularity by the physical quantum dynamics (of

Gaussian wave packets).

Besides this criterion, it is also useful to analyze the behavior of expectation values.

First, we note that the relative initial data |ψ, σ; s = 0〉 is a “minimum uncertainty

wave packet”, as it implies [cf. (4.62)]

∆O[α|χ(s = 0) = 0]∆pα =
~
2
,

∆O[β−|χ(s = 0) = 0]∆p− =
~
2
.

(4.67)

The symbol ∆ denotes the uncertainty of the observables, which is defined as

∆O =

〈(
Ô − 〈Ô〉

)2
〉 1

2

, (4.68)

where 〈·〉 is the average in the induced inner product.

Second, we find the expectation value [cf. (4.62), (4.63)) and (4.64)]

〈
Ô[eα|χ(s) = 0]

〉
=
∑
σ′=±

∫
dαdβ− eα

∣∣(ψ, σ, s = 0|σ′, α, β−; s)
∣∣2

=

∫ ∞
−∞

dα eα
∣∣ψ(α)(α; s)

∣∣2
= exp

[
α0 − p0

αs+
1

4

(
A2 +

~2s2

A2

)]
, (4.69)

which is the quantum counterpart of (4.57). In contrast to the classical value, the

expectation (4.69) is different from zero for all values of s, and it leads to a quantum

bounce. Indeed, the average scale factor has the minimum value

〈
Ô[eα|χ(s) = 0]

〉
min

= exp

[
α0 −

(p0
α)2A2

~2
+
A2

4

]
, (4.70)
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which is realized when

s = sbounce =
2p0
αA2

~2
. (4.71)

In this way, the quantum expectation (4.69) provides an alternative evidence that the

quantum dynamics, at least for the minimum uncertainty relative initial data, may

avoid the classical singularity.

137





Chapter 5

Weak-Coupling Expansion

If the relational quantum dynamics discussed in Chapter 2 and exemplified in Chap-

ters 3 and 4 is to be applied to the early Universe, we must account for the inclusion

of cosmological perturbations, which leads us outside of the scope of the homogeneous

models examined in §4.2 and §4.3. In this case, can we still discuss the quantum theory

in the relational terms of Chapter 2? The answer is yes.

The inclusion of cosmological perturbations, which will be analyzed in Chapter 6,

leads to a description of the early Universe as a Born-Oppenheimer (BO) system, for

which a natural separation of the degrees of freedom into “heavy” and “light” variables

exists. The dynamics of the heavy fields is related to a certain energy scale
√
M ,

whereas the light degrees of freedom are restricted to scales m �
√
M . This suggests

that a perturbative expansion of the field equations in a power series in the ratio m2/M

or, more formally, in 1/M , is possible. We refer to this procedure as a ‘weak-coupling

expansion’. In this Chapter, we analyze this expansion for a general BO system, and

we examine how the relational quantum dynamics can be understood in terms of the

iterative procedure discussed in §2.5.6. A central result is the unitarity of the theory

with respect to the physical inner product, which can be related to a quantization of

the classical Faddeev-Popov determinant associated with a “heavy” generalized clock.

The weak-coupling expansion is a generalization of the expansion in powers of 1/c2

that was analyzed in the classical and quantum theories of the relativistic particle (cf.

Chapter 3).

Below, we will see how the weak-coupling expansion of a BO system selects a “pre-

ferred” class of clocks, which are the possible worldline time variables that describe the

trajectories of the heavy variables when the light degrees of freedom are neglected. For

this reason, the use of the weak-coupling expansion in the quantum theory of a BO

system is sometimes seen as a solution to the problem of time. However, in light of the

formalism presented in Chapter 2, we see that this is not the most general solution,

but rather a particular case (cf. §2.5.6), since it is conceivable that a relational notion

of time is valid beyond the (semi)classical level. In fact, the “preferred” class of clocks

selected by the weak-coupling expansion is a generalization of the nonrelativistic limit
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5. Weak-Coupling Expansion

of a free particle, in which the Newtonian time is selected as a “preferred” orderer of

the dynamics.

The application of the weak-coupling expansion to describe cosmological perturba-

tions defines the ‘BO approach to quantum cosmology’. It provides a way to go beyond

homogeneous quantum cosmology in a perturbative setting. In this cosmological case,

the heavy variables often coincide with the homogeneous background associated with

the Planck mass, whereas the light variables are the cosmological perturbations as-

sociated with energies below the Planck scale (see [62, 98, 113] for further details and

[114–116] for applications of the BO approach).

It is worthwhile to emphasize that, despite the fact that the BO approach is a par-

ticular instance of a more general relational theory, it is nonetheless important for the

phenomenology of quantum gravitation. Indeed, as we will see in Chapter 6, the weak-

coupling expansion in cosmology yields corrections to the usual calculations of QFT

in a fixed background spacetime. For this reason, the BO approach is of paramount

importance to the analysis of quantum-gravitational corrections to phenomena in the

early Universe, such as inflation [114–116].

The weak-coupling expansion is developed below in connection to the formalism of

Chapter 2, and it does not immediately coincide with the traditional BO approach that

is studied in the literature. We dedicate Appendix B to a comparison to the traditional

approach, where we also establish the equivalence of both approaches, and we offer

a critique of the usual formulation of the concept of ‘backreation’ in the traditional

approach.1

5.1 Classical theory

Although the classical description of mechanical BO systems with diffeomorphism in-

variance is a particular case of the theory presented in Chapter 1, it is instructive to

analyze how the weak-coupling expansion is related to a choice of gauge, as this will

guide us in the construction and interpretation of the quantum theory. Let us establish

our notation and assumptions. We consider that the heavy-sector configuration space is

a smooth manifold with an indefinite metric G and local coordinates Qa, a = 1, . . . , n,

whereas the light-sector configuration space is endowed with a positive-definite metric

h(Q) and local coordinates qµ, µ = 1, . . . , d. We use the components of G and its

inverse, Gab and Gab, to lower and raise the heavy-sector indices, while hµν and hµν

raise and lower the light-sector indices. A summation over repeated indices is implied

in the formulae below.

1This Chapter is based on [62,98].
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5.1. Classical theory

The action is taken to be of the form (1.40),2

S =

∫
dτ

(
PaQ̇

a + pµq̇
µ − ω(τ)C

)
, (5.1)

where the constraint has the following functional form:

C = Cg(Q,P ) + Cm(Q; p, q) = 0 ,

Cg(Q,P ) =
1

2M
Gab(Q)PaPb +MV (Q) ,

Cm(Q; p, q) =
1

2
hµν(Q; q)pµpν + Vm(Q; q) .

(5.2)

The subscripts g and m denote the heavy and light sectors, respectively.3 The depen-

dence of the light-sector Hamiltonian, ω(τ)Cm(Q; p, q), on the heavy variables Q is only

parametric. The heavy-sector potential term, V (Q), is assumed to be nonvanishing,

whereas the light-sector potential, Vm(Q; q), is a non-negative C∞-function. The light-

sector canonical variables pµ, q
µ are tacitly associated with an energy scale m such that

m2 �M .

From (5.1), one finds the field equations

Q̇a ≈ ω(τ)

M
Gab(Q)Pb , Ṗa ≈ −ω(τ)

(
1

2M

∂Gcd

∂Qa
PcPd +M

∂V

∂Qa

)
− ω(τ)

∂Cm
∂Qa

,

q̇µ ≈ ω(τ)
∂Cm
∂pµ

, ṗµ ≈ −ω(τ)
∂Cm
∂qµ

,

C = Cg + Cm ≈ 0 ,

(5.3)

which we assume can be (perturbatively) integrated once a complete gauge fixing is

chosen (cf. §1.6). However, it is convenient to consider the HJ equation [cf. (1.108)]

1

2M
Gab(Q)

∂W

∂Qa
∂W

∂Qb
+MV (Q) + Cm

(
Q;

∂W

∂q
, q

)
= 0 (5.4)

because, given a solution W for Hamilton’s characteristic function, we can work with

2In other words, we are working with the partially gauge-fixed theory analyzed in §1.3.2. The
primary constraint pe = 0 has thus been eliminated.

3We adopt this notation because, in minisuperspace cosmological models (cf. Chapters 4 and 6), the
heavy sector usually coincides with the gravitational sector, whereas the light sector is comprised of the
matter variables. Nevertheless, other separations of the degrees of freedom are possible [113,117,118].
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5. Weak-Coupling Expansion

the more compact set of dynamical equations

Q̇a =
ω(τ)

M
Gab(Q)

∂W

∂Qb
,

q̇µ = ω(τ)hµν(Q; q)
∂W

∂qν
,

(5.5)

for a fixed choice of einbein ω(τ). Can we find a solution for W? Although it is

generally complicated to solve (5.4), we can use the fact that m2 � M to perform a

formal perturbative expansion in powers of 1/M ; i.e., we can perform a weak-coupling

expansion. As the lowest power of 1/M in (5.4) is −1, we make a ‘Wentzel-Kramers-

Brillouin (WKB)-like’ ansatz for Hamilton’s characteristic function,

W(Q, q) = M
∞∑
n=0

Wn(Q, q)
1

Mn
=: MW0(Q) + S(Q; q). (5.6)

If we insert (5.6) into (5.4), we can solve for each Wn term perturbatively. In particular,

the lowest-order term is a solution to

1

2
Gab(Q)

∂W0

∂Qa
∂W0

∂Qb
+ V (Q) = 0 , (5.7)

which is the HJ equation solely for the heavy sector. For this reason, MW0 may be

interpreted as a ‘background Hamilton function’, which encodes the dynamics of the

heavy variables in the absence of the backreaction of the light variables (‘no-coupling

limit’). We will see that, given a solution MW0, the dynamics of the higher orders

encoded in S in (5.6) can be understood in terms of the ‘background dynamics’ defined

by MW0.

5.1.1 The background dynamics

In the no-coupling limit, the dynamics of the heavy variables is dictated by the equations

[cf. (5.5)]

Q̇a = N (τ)Gab
∂W0

∂Qb
, (5.8)

whereN (τ) is the ‘background einbein’; i.e., it is a nonvanishing worldline scalar density

(with a constant sign). A complete gauge fixing in this limit entails a fixation of

N (τ). For fixed N (τ) ≡ N (Q(τ)) and W0(Q), we assume that it is possible to find a

holonomic basis
{
B1 = NGab∂W0/∂Q

b,Bi

}
, i = 2, . . . , n in the tangent bundle of the

heavy-sector configuration space. We also make the simplifying assumption that B1
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5.1. Classical theory

is orthogonal to the Bi vector fields.4 Then, the normalization of the basis vectors is

[cf. (5.7)]

GabB
a
1B

b
1 = −2N 2V (Q) = G̃11 ,

GabB
a
1B

b
i = 0 = G̃1i ,

GabB
a
i B

b
j = G̃ij ≡ gij .

(5.9)

We can subsequently use the integral curves of the basis fields to define new coordinates

x = (x1, xi) in the heavy-sector configuration space,

Ba
1 = NGab∂W0

∂Qb
=
∂Qa

∂x1
,

Ba
i =

∂Qa

∂xi
.

(5.10)

More precisely, this corresponds to a foliation of the heavy-sector configuration space

by the level sets of x1(Q); i.e., x1(Q) = s is a hypersurface, on which the induced metric

has components gij = G̃ij . The components of its inverse are denoted by gij . In this

way, x1(Q) plays the role of a background generalized clock.5 This background clock is

more commonly referred to as ‘WKB time’ [119] because it arises from the WKB-like

expansion (5.6).

In what follows, it will be useful to make use of the coordinate transformation (5.10).

In particular, we find [cf. (5.7)]

∂W0

∂x1
= NGab∂W0

∂Qa
∂W0

∂Qb
= −2NV ,

∂W0

∂xi
= Ba

i

∂W0

∂Qa
= 0 .

(5.11)

Moreover, notice that the determinants of G and G̃ are related by
√
|G̃| =

√
|G|B,

where B = detBa
A (A = 1, . . . , n), and the inverse of Ba

A reads

∂xA

∂Qa
=
(
B−1

)A
a

= G̃ABGabB
b
B .

4If B1 is not orthogonal to Bi, then the components G̃1i of the metric given in (5.9) will not vanish,
and there will be additional terms involving G̃1i in the subsequent formulae. Nevertheless, the gauge
fixing procedure, both at the classical and quantum levels, and our forthcoming conclusions regarding
unitarity should not be qualitatively altered by these extra contributions. Moreover, this assumption
is also irrelevant to the application of the formalism to the early Universe discussed in Chapter 6.

5Notice that the first equation in (5.10) corresponds to the evolution law (5.8).
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5. Weak-Coupling Expansion

In this way, we can write the basis vector fields ∂/∂Qa in the new basis,6

∂

∂Qa
=
(
B−1

)A
a

∂

∂xA
= G̃11GabB

b
1

∂

∂x1
+ G̃ijGabB

b
i

∂

∂xj

= − 1

2NV
∂W0

∂Qa
∂

∂x1
+ gijGabB

b
i

∂

∂xj
.

(5.12)

5.1.2 WKB time as a classical choice of gauge

As we move away from the no-coupling limit by including higher orders of 1/M , the

HJ equation (5.7) is no longer a suitable description of the dynamics of the heavy

variables, as the coupling with the light degrees of freedom is now taken into account.

The separation between the background Hamilton function MW0 and the higher orders

encoded in S in (5.6) can be seen as a canonical transformation, in which the momenta

are transformed as follows:

Ba
APa =

∂W

∂xA
7→ ΠA = Ba

APa −M
∂W0

∂xA
=

∂S

∂xA
, (A = 1, . . . , n)

pµ =
∂W

∂qµ
7→ pµ =

∂S

∂qµ
.

(5.13)

If we insert (5.6) into (5.4) and use the coordinates defined in (5.10), we obtain the

following equation for S(Q; q):

∂S

∂x1
+NCm +

N
M
gij

∂S

∂xi
∂S

∂xj
− 1

4MNV

(
∂S

∂x1

)2

= 0 . (5.14)

where we used (5.9) and (5.11). We can solve (5.14) for Π1 = ∂S/∂x1 to find

−Π1 := − ∂S

∂x1
= −2MNV ± 2MN

√
V

(
V +

1

M
Cm +

1

2M2
gij

∂S

∂xi
∂S

∂xj

)
. (5.15)

This is an instance of (1.97). Here, the discrete multiplicity σ is given by the choice

of positive or negative sign in (5.15). Following the discussion §1.9.2 and §5.1.1, we

conclude that (5.15) corresponds to a choice of gauge in which the dynamics of both

the heavy variables and the light degrees of freedom is measured with respect to the

background clock x1(τ). In this way, the (invariant extension of) the right-hand side

of (5.15) is the associated physical Hamiltonian. The corresponding fixation of the

einbein [cf. (1.63)] is found from the equation ẋ1 ≈ {x1, ωC} ≈ 1. This corresponds to

6In [120], the change of basis (5.12) was also considered in perturbation theory, but the authors of
this reference neglected the terms involving Bi.
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[cf. (5.5)]

1

ω
=

1

M
Gab

∂x1

∂Qa
Pb =

1

M
G̃11∂W

∂x1
=

1

N
− Π1

2MN 2V
, (5.16)

where we used (5.11). We can rewrite (5.16) as

ω =
N

1− Π1
2MNV

. (5.17)

5.1.3 Perturbation theory

We can expand the physical Hamiltonian (5.15) and the gauge-fixed einbein (5.17) in

powers of 1/M to describe the dynamics of the light variables qµ, pµ, as well as the

heavy fields xi, in relation to the background clock x1 ≡ χ. The expansion of the

square root in (5.15) yields

Hσ
χ =− 2MNV + σ

(
2MN|V |+NvCm

− N
4M |V |

C2
m +

Nv

2M
gijΠiΠj

)
+O

(
1

M2

)
,

(5.18)

where we used (5.13), and we denoted the discrete multiplicity of (5.15) by σ = ±1,

whereas v := sgn(V ). The choice σ = v leads to the simplification7

Hv
χ = NCm −

N
4MV

C2
m +

N
2M

gijΠiΠj +O
(

1

M2

)
. (5.19)

Incidentally, this is the solution one obtains by solving (5.14) for Π1 = ∂S/∂x1 in an

iterative fashion. The iterative solution (5.19) is the classical analogue of the solution

found in the BO approach in the quantum theory, as we will examine in §5.2. Indeed,

Kiefer and Singh have shown that the term proportional to the square of Cm is obtained

as one of the correction terms in the quantum theory in [120]. In §5.2, we will see how

extra terms with the time derivatives of Cm and V , which were found in [120], arise

in quantum formalism we present. Kiefer and Sigh neglected the term proportional

to gijΠiΠj in [120], but it is worthwhile to emphasize that this term appears, already

classically, as a consequence of the weak-coupling expansion of the physical Hamiltonian

in the formalism presented here.

It is also important to notice that the terms of order 1/M in (5.19) originate from

the heavy-sector kinetic term gijΠiΠj/(2M)−Π2
1/(4N 2MV ) in (5.14). In [178], similar

7Clearly, v may vary across the heavy-sector configuration space. Thus, the choice σ = v is
warranted only in regions of the configuration space in which v is constant.
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terms were obtained and were thought of as “corrections” to the dynamics of the light

sector with respect to the notion of time provided by the heavy variables. We consider

this interpretation to be slightly misleading because the field equations for the light

variables [cf. (5.3)] are not changed in their functional form, only the einbein is fixed

when one chooses to describe the dynamics relative to the background clock [cf. (5.17)].

The terms of order 1/M in (5.19) follow from the formal weak-coupling expansion of the

physical Hamiltonian, but it is not completely accurate to interpret them as corrections

solely to the dynamics of light variables, as they involve the heavy fields xi and Πi,

which are coupled to qµ, pµ at this order.8 In this way, we do not interpret (5.6) as

a separation of Hamilton’s characteristic function into a function for the heavy sector

(MW0) and another for the light sector (S). Rather, Eq. (5.6) can be seen as canonical

transformation [cf. (5.13)]. In the same vein, we note that (5.14) is a HJ equation both

for the heavy and light degrees of freedom. As we adopt the gauge in which x1 is the

worldline time coordinate, S can be seen as Hamilton’s principal function (cf. §1.10)

associated with the reduced phase space comprised of the (invariant extensions of the)

fields qµ, pµ and xi. As these fields are coupled, it is not generally possible to regard S

as dictating the dynamics solely of the light variables.

The expansion of the gauge-fixed einbein (5.17) is also of interest. First, recall

from (1.78) that ω is equal to the inverse Faddeev-Popov determinant. Let us then

use (5.18) to expand (5.16). The result is

1

ω
=
σv

N
+

σCm
2MN|V |

+O
(

1

M2

)
, (5.20)

which can be inverted to yield

ω = σvN − σNCm
2M |V |

+O
(

1

M2

)
. (5.21)

Equations (5.20) and (5.21) are perturbative expressions for the Faddeev-Popov deter-

minant and the gauge-fixed einbein, respectively, for the complete gauge fixing associ-

ated with the background clock x1. For later reference, we also note that the absolute

value of the Faddeev-Popov determinant is

1

|ω|
=

1

|N |

(
1 +

Cm
2MV

)
+O

(
1

M2

)
. (5.22)

While the lowest order (no-coupling limit) examined in §5.1.1 yields the dynamics

8See [98] for a more extensive and detailed discussion of the weak-coupling expansion of the reduced
phase-space field equations.
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5.2. Quantum theory

of the heavy variables in the absence of the light degrees of freedom, we find that the

next order (M0) leads to the dynamics of the qµ, pµ variables in a fixed background

[i.e., for a fixed trajectory of Qa(τ)]. This can be seen in two ways. First, Eqs. (5.15)

and (5.19) lead to

− ∂S

∂x1
= NCm

(
Q; q,

∂S

∂q

)
(5.23)

at order M0. This is simply the time-dependent HJ equation for the light variables in

the background defined by the trajectory of the Qa(τ). Second, using (5.21), the field

equations for qµ and pµ [cf. (5.3)] can be written as

q̇µ = σvN (τ, xi(τ))
∂

∂pµ
Cm(τ, xi(τ); p, q) +O

(
1

M

)
,

ṗµ = −σvN (τ, xi(τ))
∂

∂qµ
Cm(τ, xi(τ); p, q) +O

(
1

M

)
.

(5.24)

These are the equations for the light variables in a fixed background defined by (τ, xi(τ))

and the background einbein σvN (τ, xi(τ)). We note that (5.24) is compatible with the

lowest-order iterative HJ equation (5.23) for σ = v [cf. (5.19)]. The inclusion of higher

orders of 1/M includes corrections to the dynamics of qµ, pµ and xi that originate from

the physical Hamiltonian associated with the background clock. These corrections have

quantum counterparts which may lead to observable signatures. In the next section, we

discuss the quantum theory of mechanical BO systems with diffeomorphism invariance,

paying close attention to the definition of the inner product and unitarity. In Chapter 6,

we apply the method developed here to a model of the early Universe.

5.2 Quantum theory

5.2.1 The auxiliary and physical Hilbert spaces. Conditional

probabilities

The quantum theory can be constructed following the general framework expounded

in Chapter 2. As explained there, we begin with a choice of auxiliary Hilbert space

equipped with an auxiliary inner product 〈·|·〉, with respect to which the constraint

operator is self-adjoint. Clearly, this is related to a certain choice of factor ordering for

the quantum counterpart of (5.2). Let us use the Laplace-Beltrami ordering for both

sectors, such that the quantum constraint becomes Ĉ := Ĉg + Ĉm, where9

ĈgΨ := − 1

2M
√
|Gh|

∂

∂Qa

(√
|Gh|Gab ∂Ψ

∂Qb

)
+MV (Q)Ψ , (5.25)

9For simplicity, we set c = ~ = 1 in this Chapter.
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ĈmΨ := − 1

2
√
h

∂

∂qµ

(√
hhµν

∂Ψ

∂qν

)
+ Vm(Q; q)Ψ . (5.26)

Notice that the determinant factors in (5.25) include the determinant h ≡ det(hµν),

due to its parametric dependence on Q, in addition to G ≡ det(Gab). The Laplace-

Beltrami ordering guarantees that the quantum constraint retains its form under general

coordinate transformations in configuration space [22,23].

The heavy-sector Laplace Beltrami operator is

∇2 :=
1√
|Gh|

∂

∂Qa

(√
|Gh|Gab ∂

∂Qb

)
. (5.27)

Using (5.25) and (5.27), the quantum constraint can then be written as

Ĉ = − 1

2M
∇2 +MV (Q) + Ĉm(Q; p̂, q) . (5.28)

This suggests that we adopt the auxiliary inner product

〈Ψ(1)|Ψ(2)〉 :=

∫
dQdq

√
|Gh|Ψ∗(1)(Q, q)Ψ(2)(Q, q) , (5.29)

where dQ ≡
∏
a dQa and dq ≡

∏
µ dqµ. Notice that Ĉ is symmetric with respect

to (5.29), and we assume that it is possible to choose a self-adjoint extension. Moreover,

the auxiliary inner product (5.29) is invariant under general coordinate transformations

in configuration space.

The definitions of the constraint (5.28) and the auxiliary inner product (5.29) de-

termine the auxiliary Hilbert space. In contrast, the physical Hilbert space is the space

of superpositions of the solutions to ĈΨ = 0 that are square-integrable with respect

to the physical inner product. Here, instead of the induced inner product (2.11), it is

simpler to adopt the definition (2.98), which reads

(
Ψ(1)

∣∣Ψ(2)

)
:=
∑
σ

∫
dQdq

(
µ̂

1
2
σΨ(1)

)∗
|J |δ(χ(Q; q)− s)µ̂

1
2
σΨ(2) , (5.30)

where, as in (2.98), χ(Q; q) is a configuration-space function, J = ∂(χ, F )/∂(Q, q) is

the Jacobian determinant associated with the transformation (Q, q) 7→ (χ, F ), and σ

are the generalized multiplicity sectors. In analogy to the classical theory, in which the

iterative solution of the constraint (5.14) leads to only one multiplicity sector, σ = v

[cf. (5.19)], we will also restrict ourselves to a single multiplicity sector in the quantum

theory because we will only solve the quantum constraint iteratively. As a matter
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of notation (and following the analogy to the classical theory), we denote the single

multiplicity sector considered by σ = v. Moreover, as we discussed in §2.7 [see (2.112)],

the inner product (5.30) (restricted to the σ = v sector) leads to the definition of

conditional probabilities,

pΨ :=
1

(Ψ |Ψ)

(
µ̂

1
2
v Ψ

)∗
µ̂

1
2
v Ψ

∣∣∣∣
χ=s

. (5.31)

To match the classical theory, we are interested in the gauge in which χ(Q; q) = x1(Q);

i.e., the worldline time coordinate is defined by the background clock (WKB time).

In this way, we find that F = (xi, qµ), and (5.31) corresponds to the probability of

observing F = (xi, qµ) given that x1 = s. The measure µ̂v should be defined such

that (5.30) is conserved with respect to s and positive-definite. We will determine it

for the BO system using the weak-coupling expansion of the constraint equation, and

we will establish its relation to the classical gauge-fixed einbein (5.21).

5.2.2 The phase-transformed constraint equation

In order to solve ĈΨ = 0, we resort to a weak-coupling expansion in analogy to the

classical theory. We make the ansatz

Ψ(Q, q) = exp [iMW(Q, q)] , (5.32)

where W(Q, q) is a complex function. The quantum counterpart of (5.6) is given by

the formal expansion

W(Q, q) =

∞∑
n=0

Wn(Q, q)
1

Mn
=:W0(Q) +

1

M
S(Q; q). (5.33)

It is useful to rewrite (5.32) as

Ψ(Q, q) =: exp [iMW0(Q, q)]ψ(Q; q) , (5.34)

where

ψ(Q; q) := exp
[
iS(Q; q)

]
. (5.35)
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We call (5.34) ‘the minimal BO factorization’ or ‘ansatz’.10. Although it is equivalent

to (5.32), it is not, a priori, equal to the traditional BO ansatz that is customarily

applied in nuclear and molecular physics [121–123] and that has inspired some appli-

cations in quantum cosmology [124–126]. In Appendix B, it is shown that the minimal

and traditional BO factorizations are equivalent, and the topics of unitarity and back-

reaction are also discussed.

We also expand the measure µ̂v,

µ̂v =
∞∑
n=0

1

Mn
µ̂n (Q; p̂, q) , (5.36)

and we will determine the two lowest-order coefficients µ̂n (n = 0, 1) in what follows.

If we now insert (5.32) into ĈΨ = 0, we find an infinite number of equations (one for

each order of 1/M). We may also work with (5.34) to extract equations for W0(Q, q)

and ψ(Q; q). The lowest-order equation (order M2) reads

1

2
hµν

∂W0

∂qµ
∂W0

∂qν
= 0 . (5.37)

As h is assumed to be positive-definite, this implies that W0 does not depend on

the light variables; i.e., W0(Q, q) ≡ W0(Q). The next order (order M) yields the

background HJ equation (5.7) for W0. In this way, we can choose W0 to be real and

identify W0(Q) = W0(Q), such that the change of coordinates discussed in §5.1.1 can

be applied. The subsequent orders yield an equation for ψ(Q; q),

iGab(Q)
∂W0

∂Qa
∂ψ

∂Qb
=

[
Ĉm(Q; p̂, q)− i

2
∇2W0

]
ψ − 1

2M
∇2ψ . (5.38)

For a given W0 = W0, we can regard (5.34) as a phase transformation, just as (5.6)

is seen as a canonical transformation in the classical theory [cf. (5.13)]. In this way,

Eq. (5.38) is simply the phase-transformed constraint equation.

Let us apply the change of coordinates of §5.1.1 to bring (5.38) to a more useful

form. First, the term proportional to ∇2W0 can be explicitly computed as follows: we

10In fact, Eq. (5.34) is a particular case of more general ansätze, e.g., of the form {exp [iMW0] +
exp [−iMW0]}ψ. In principle, the selection of a single exponential pre-factor can be a consequence of
decoherence [127].
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differentiate the first equation in (5.10) with respect to the heavy variables to obtain

Gac
∂2W0

∂Qb∂Qc
=

1

N
∂Ba

1

∂Qb
− 1

N
∂

∂Qb
(NGac) ∂W0

∂Qc
. (5.39)

Using (5.10), (5.27) and (5.39), as well as the fact that N has a constant sign, we can

write

N
2
∇2W0 =

1

2

∂Ba
1

∂Qa
− 1

2

∂

∂Qa

(
NGab

) ∂W0

∂Qb
+

N
2
√
|Gh|

∂W0

∂Qa
∂

∂Qb

(√
|Gh|Gab

)
=

1

2

∂Ba
1

∂Qa
− Gab

2

∂N
∂Qa

∂W0

∂Qb
+
NGab

2
√
|Gh|

∂W0

∂Qa
∂

∂Qb

(√
|Gh|

)
=

1

2

∂Ba
1

∂Qa
− 1

2N
∂N
∂x1

+
1

2
√
|Gh|

∂

∂x1

(√
|Gh|

)
=

1

2

∂Ba
1

∂Qa
+

|N |
2
√
|Gh|

∂

∂x1

(√
|Gh|
|N |

)
(5.40)

Subsequently, we recall that
√
|G̃| =

√
|G|B and G̃ = −2N 2V g, where g = det(gij)

[cf. (5.9)]. We also note that the identities

∂Ba
B

∂xA
=

∂2Qa

∂xA∂xB
=

∂2Qa

∂xB∂xA
=
∂Ba

A

∂xB
(5.41)

imply (
B−1

)A
a

∂Ba
A

∂xB
=
(
B−1

)A
a

∂Ba
B

∂xA
=
∂Ba

B

∂Qa
. (5.42)

Thus, Eq. (5.40) becomes

N
2
∇2W0 =

1

2

∂Ba
1

∂Qa
− 1

2

(
B−1

)A
a

∂Ba
A

∂x1
+

|N |

2
√
|G̃h|

∂

∂x1


√
|G̃h|
|N |


=

∂

∂x1
log |2V gh|

1
4 .

(5.43)
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Finally, we use (5.9), (5.10) and (5.43) to rewrite (5.38) as

i
∂ψ

∂x1
+ i

(
∂

∂x1
log |2V gh|

1
4

)
ψ

= N Ĉm(x; p̂, q)ψ − N

2M
√
|G̃h|

∂

∂xi

(√
|G̃h|gij ∂ψ

∂xj

)

− N

2M
√
|G̃h|

∂

∂x1

(√
|G̃h|G̃11 ∂ψ

∂x1

)
.

(5.44)

This is the quantum counterpart of (5.14). Notice that (5.44) is simply the phase-

transformed constraint equation and, as such, it describes the coupled dynamics of the

heavy and light sectors. Its solution, ψ(Q; q), is a phase-transformed physical state,

and it is not a wave function for the light degrees of freedom only. This is analogous

to the remarks posed after (5.19) concerning the classical dynamics. Nevertheless,

the quantum dynamics of the light sector can be analyzed with the use of conditional

probabilities. We note that the conditional probabilities (5.31) depend solely on ψ(Q; q),

pΨ :=

(
µ̂

1
2
v ψ

)∗
µ̂

1
2
v ψ∫ ∏n

i=2 dxi
∏d
µ=1 dqµ

(
µ̂

1
2
v ψ

)∗
µ̂

1
2
v ψ

∣∣∣∣∣∣∣∣
x1=s

, (5.45)

due to (5.36). In this way, ψ̃ := µ̂
1/2
v ψ is a conditional wave function. Besides the

condition x1 = s, one can, in principle, introduce further conditions, such that

pΨ(q|Q) :=

(
µ̂

1
2
v ψ

)∗
µ̂

1
2
v ψ∫

dq

(
µ̂

1
2
v ψ

)∗
µ̂

1
2
v ψ

∣∣∣∣∣∣∣∣
x1=s,xi=yi

, (5.46)

can be interpreted as a probability of observing the light-sector configuration q, given

that the heavy sector has been observed at the configuration x1 = s, xi = yi (collectively

denoted as Q). This will be useful in §5.2.5, where we discuss the recovery of the

quantum dynamics of the light sector in a fixed heavy background, and in Chapter 6,

where we apply this formalism to the early Universe.

Our goal is now to solve (5.44) perturbatively in analogy to the iterative solution

to (5.14). However, before we analyze the weak-coupling expansion of (5.44), it is

worthwhile to discuss the interpretation of terms with imaginary coefficients, such as

the logarithmic term in (5.44), as this will be of relevance to the interpretation of the

perturbative expansion.
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5.2.3 Time-dependent measures and unitarity

Although (5.44) is not a Schrödinger equation, we will see that it leads to an effective

Schrödinger evolution in perturbation theory (as was first discussed in [120]). To better

understand this effective Schrödinger picture, we must consider how it is related to the

definition of the inner product and the concept of unitarity. Let us then analyze the

general Schrödinger equation

i
∂ψ

∂x1
+ iΓ̂ψ = Ĥψ , (5.47)

where Γ̂ is some operator, and Ĥ is a Hamiltonian for the xi and qµ degrees of freedom.

If both Γ̂ and Ĥ are self-adjoint with respect to a certain inner product 〈·|·〉, then

the iΓ̂ factor would violate unitarity with respect to 〈·|·〉. Indeed, such terms will be

present in the perturbative expansion of (5.44), and they have been interpreted as

causes of a violation of unitarity in [120]. However, one can take the position that,

instead of using 〈·|·〉, one should define an inner product (·|·) such that it is conserved

by the evolution described by (5.47). In fact, terms with imaginary coefficients such

as iΓ̂ are indispensable to guarantee unitarity if the measure is time-dependent [128].11

Conversely, let us then see how the (time-dependent) measure can be defined if the

dynamics is dictated by (5.47).

Let us define

〈ψ1|ψ2〉 :=

∫ ∏
i

dxi
∏
µ

dqµf(x, q) ψ∗1(x, q)ψ2(x, q) ≡
∫

df ψ∗1ψ2 ,

(ψ1|ψ2) :=

∫ ∏
i

dxi
∏
µ

dqµf(x, q) ψ∗1(x, q)M̂ψ2(x, q) ≡
∫

df ψ∗1M̂ψ2 ,

(5.48)

where M̂ is an operator to be determined. We assume that it is symmetric with respect

to 〈·|·〉. The symbol df in (5.48) is simply a short-hand notation. The conservation

of (5.48) (unitarity) is given by the condition ∂(ψ1|ψ2)/∂x1 = 0. From (5.47), we find

0 = i
∂

∂x1
(ψ1|ψ2) =

∫
df ψ∗1

{
[M̂, Ĥ]− i[M̂, Γ̂]+ +

i

f(x, q)

∂

∂x1

(
f(x, q)M̂

)}
ψ2 ,

where [·, ·] denotes a commutator, [·, ·]+ is an anticommutator, and we used the as-

sumption that Γ̂ and Ĥ are (at least) symmetric with respect to 〈·|·〉. If the above

condition is to be satisfied for arbitrary solutions of (5.47), then the operator M̂ must

11For example, DeWitt referred to objects of the kind ∂/∂x1 + ∂ log |2V gh|1/4 /∂x1 as ‘conservative
time derivatives’ [128].
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be a solution to the equation

i

f(x, q)

∂

∂x1

(
f(x, q)M̂

)
= i[M̂, Γ̂]+ − [M̂, Ĥ] . (5.49)

If the solution to (5.49) is a positive-definite operator, then the dynamics dictated

by (5.47) is unitary with respect to (·|·). In what follows, we will apply this procedure

to the definition of the perturbative measure (5.36) in the expansion of (5.44), and we

will see how the perturbative measure corresponds to a quantization of the Faddeev-

Popov determinant.

5.2.4 Perturbation theory I

We can now solve (5.44) iteratively. To lowest-order in 1/M , we obtain

i
∂ψ

∂x1
+ i

(
∂

∂x1
log |2V gh|

1
4

)
ψ = N Ĉm(x; p̂, q)ψ +O

(
1

M

)
, (5.50)

which is of the form (5.47) with Γ̂ = ∂ log |2V gh|1/4/∂x1 and Ĥ = N Ĉm. As Ĉm

is symmetric with respect to 〈·|·〉 with f ∝
√
h [cf. (5.48)], it is straightforward to

verify that (5.49) is solved by M̂ = 1̂ if we choose f =
√
|2V gh|. We then define the

lowest-order measure µ̂0 in (5.36) as

µ̂0 ≡ µ̂0 (Q; p̂, q) := fM̂ =
√
|2V gh| , (5.51)

such that the physical inner product (5.30) [cf. (5.45)] reads

(Ψ1|Ψ2) =

∫ ∏
i

dxi
∏
µ

dqµ
(
|2V gh|

1
4ψ1

)∗ (
|2V gh|

1
4ψ2

)
, (5.52)

for x1 = s. Equation (5.52) is manifestly positive-definite, and it is conserved (for gen-

eral values of s) by the dynamics dictated by (5.50) up to order M0. The measure (5.51)

is generally time-dependent; i.e., it depends on the background clock x1. This is the

reason the logarithmic term arises in (5.50). Notice that (5.50) is the quantum counter-

part of (5.23), and its solutions are approximations to the phase-transformed solutions

of the quantum constraint equation at order M0.

5.2.5 Light-sector unitarity. Propagation in a fixed background

Although the solutions ψ(Q; q) to (5.50) are not wave functions for the light degrees

of freedom only, we can describe the conditional dynamics of the light variables us-

ing (5.46). Furthermore, it is also possible to further factorize ψ(Q; q) = ψh(Q)ψl(Q; q),
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such that (5.46) reads

pΨ(q|Q) :=

√
hψ∗l ψl∫

dq
√
h ψ∗l ψl

∣∣∣∣∣
x1=s,xi=yi

+O
(

1

M

)
, (5.53)

due to (5.51). We demand that ψh be a solution to

i
∂ψh
∂x1

+ i

(
∂

∂x1
log |2V g|

1
4

)
ψh = 0 +O

(
1

M

)
; (5.54)

i.e., we impose

ψh(Q) = |2V g|−
1
4 γ(xi(Q)) +O

(
1

M

)
, (5.55)

where γ(xi(Q)) is an arbitrary function. If we further impose
∫ ∏

i dxi γ∗(xi)γ(xi) = 1,

then ψh(Q) satisfies

∂

∂x1

∫ ∏
i

dxi
√

2|V g| ψ∗hψh = 0 +O
(

1

M

)
. (5.56)

In this way, ψh(Q) can be interpreted as a ‘marginal wave function’ [100, 123] for the

heavy variables, the dynamics of which is unitary at order M0 due to (5.56). The

equation for ψl(Q; q) is obtained if we insert ψ(Q; q) = ψh(Q)ψl(Q; q) into (5.50) and

use (5.54). The result is

i
∂ψl
∂x1

+ i

(
∂

∂x1
log |h|

1
4

)
ψl = N (x)Ĉm(x; p̂, q)ψl +O

(
1

M

)
. (5.57)

This is identical to the usual Schrödinger equation for the light degrees of freedom

that propagate in a background defined by fixed values of the heavy variables. In

particular, Eq. (5.57) implies that the (conditional) light-sector dynamics associated

with the conditional probabilities (5.53) is unitary at order M0,

∂

∂x1

∫ ∏
µ

dqµ
√
h ψ∗l ψl = 0 +O

(
1

M

)
. (5.58)

Thus, the solution Ψ to the constraint equation ĈΨ = 0, has been factorized as

Ψ(Q, q) = eiMW0(Q)ψ(Q; q) = eiMW0(Q)ψh(Q)ψl(Q; q) +O
(

1

M

)
. (5.59)
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Notice that background clock is defined from the phase W0, which is generally not the

total phase of the ‘heavy factor’ exp(iMW0(Q))ψh(Q). It is also useful to note that

the factorization (5.59) has been used as the traditional BO ansatz (cf. Appendix B)

in molecular physics [121].

Finally, we can use (5.53) to compute conditional expectation values of light-sector

operators. Given an operator Ô ≡ Ô(x; p̂, q) that is symmetric with respect to the

measure
√
hdq, its conditional expectation value reads

E[O|Q] :=

∫
dq
√
h ψ∗l Ôψl∫

dq
√
h ψ∗l ψl

∣∣∣∣∣
x1=s,xi=yi

+O
(

1

M

)
. (5.60)

This leads to the conditional Ehrenfest equation,12

∂

∂x1
E[O|Q] = E

[
∂Ô

∂x1
+ iN

[
Ĉm, Ô

]
+

[
∂

∂x1
log |h|

1
4 , Ô

]∣∣∣∣∣Q
]

+O
(

1

M

)
, (5.61)

which is to be compared with (5.24). This equation captures the quantum dynamics of

the light-sector in a fixed background of the heavy variables.

5.2.6 Perturbation theory II

Let us resume the iterative solution of (5.44) at order 1/M . We use the lowest-order

result (5.50) to replace the higher derivatives in x1 by factors of ∂ log |2V gh|1/4/∂x1 or

N Ĉm. The result, after a series of relatively tedious steps, is found to be

i
∂ψ

∂x1
+ iΓ̂ψ = Ĥψ = N Ĉmψ −

N
4MV

Ĉ2
mψ

− 1

2M
√

2|V gh|
∂

∂xi

(√
2|V gh|N gij ∂ψ

∂xj

)
+

1

M
Vψ +O

(
1

M2

)
,

(5.62)

which is of the form (5.47) with

Γ̂ :=
∂

∂x1
log |2V gh|

1
4 +

1

2M
√

2|V gh|
∂

∂x1

(
v

√
h

2

∣∣∣ g
V

∣∣∣Ĉm)

− 1

4MV
Ĉm

∂

∂x1
log |2V gh|

1
4 − 1

4MV

(
∂

∂x1
log |2V gh|

1
4

)
Ĉm , (5.63)

12Notice that
(

∂
∂x1

Ô
)
ψ := ∂

∂x1

(
Ôψ
)
− Ô ∂ψ

∂x1
=
[
∂
∂x1

, Ô
]
ψ defines the explicit x1-derivative of the

operator.
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V :=
1

32NV |V gh|

(
∂

∂x1

√
2|V gh|

)2

− 1

2
√

2|V gh|
∂

∂x1

(
1

4NV
∂

∂x1

√
2|V gh|

)
, (5.64)

where v = sgn(V ), as before. Equation (5.62) is the quantum counterpart of (5.19).

The term V/M is a quantum correction that arises as a result of the factor ordering

in (5.25) and (5.26). We also note that it is, in principle, possible to further factorize

ψ(Q; q) = ψh(Q)ψl(Q; q) as in §5.2.5 in order to discuss unitarity of the (conditional)

light-sector dynamics, but we do not pursue this here because (5.62) is sufficient for

our purposes (particularly the application in Chapter 6). See, however, the discussion

in §B.4.2 and §B.4.3.

It is also important to mention that (5.62) was first derived in [120], but the terms in

the second line were not included. Here, they appear as a straightforward consequence

of solving (5.44) iteratively.13 Furthermore, a term similar to the iΓ̂ term in (5.62) was

regarded as a cause of unitarity violation in [120] because ψ(Q; q) was taken to be the

wave function of the light sector equipped with the standard inner product. In contrast,

as we have argued above, we note that ψ(Q; q) is simply the phase-transformed solution

to the constraint equation, and thus it encodes the dynamics of both heavy and light

degrees of freedom. Following the discussion in §5.2.3, we see that (5.62) describes a

unitary dynamics with respect to a measure fM̂ that solves (5.49). We now set out

find fM̂ and we relate it to the classical Faddeev-Popov determinant.

5.2.7 WKB time as a quantum choice of gauge

Let us define µ̂v := fM̂. We consider the expansion M̂ := M̂0+M̂1/M+O(1/M2), such

that µ̂1 = fM̂1 [cf. (5.36)]. From (5.51), we know that f =
√
|2V gh| and M̂0 = 1̂. If

we insert this lowest-order result together with (5.63) in (5.49), we obtain an equation

for M̂1,

i√
|2V gh|

∂

∂x1

(√
|2V gh|M̂1

)
= i

[
M̂1,

∂

∂x1
log |2V gh|

1
4

]
+

+
i√
|2V gh|

∂

∂x1

(
v

√
h

2

∣∣∣ g
V

∣∣∣Ĉm)

− i

[
Ĉm
2V

,
∂

∂x1
log |2V gh|

1
4

]
+

−
[
M̂1,N Ĉm

]
.

(5.65)

13Recall that we have assumed that G̃1i = 0. If this is not the case, then extra terms with xi-
derivatives should be included in (5.62).
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5. Weak-Coupling Expansion

It is straightforward to see that this equation is solved by M̂1 = Ĉm/(2V ). Thus, we

obtain

µ̂v := fM̂ =
√
|2V gh|

(
1 +

1

2MV
Ĉm

)
+O

(
1

M2

)
. (5.66)

It is worthwhile to mention that the author of this thesis has shown in [98] that (5.66)

can also be obtained from the Klein-Gordon inner product, but this does not concern

us here because the Klein-Gordon inner product is indefinite and we focus on positive-

definite products. Incidentally, the measure (5.66) leads to a positive-definite inner

product [cf. (5.30)], given that the condition

∫ ∏
i

dxi
∏
µ

dqµ
√

2|V g|h ψ∗ψ � 1

M

∫ ∏
i

dxi
∏
µ

dqµ
√

1

2

∣∣∣ g
V

∣∣∣h ψ∗Ĉmψ (5.67)

should be fulfilled in perturbation theory and we assume that the eigenvalues of Ĉm

are not negative. Moreover, Eq. (5.66) is also similar to inner products that have been

analyzed in the study of quantum optics in gravitational fields [129].

Using (5.9) and (5.22), we can rewrite (5.66) in terms of a quantum version of the

absolute value of the Faddeev-Popov determinant,

µ̂v =

√
|G̃h|
|N |

(
1 +

1

2MV
Ĉm

)
≡
√
|G̃h| 1̂

|ω|
, (5.68)

such that the physical inner product (5.30) (with σ = v) can be written as

(Ψ1|Ψ2) =

∫ ∏
i

dxi
∏
µ

dqµ
√
|G̃h| Ψ∗1

1̂

|ω|
Ψ2

∣∣∣∣∣
x1=s

. (5.69)

In this way, the background clock x1 (WKB time) corresponds to a quantum choice

of gauge. The gauge-fixed dynamics is unitary up to order 1/M , and it is governed

by the effective Schrödinger equation (5.62). Conditional expectation values of observ-

ables are given by suitable operator insertions in (5.69) [cf. the conditional probabil-

ities (2.112), (5.31) and (5.45)]. Finally, notice that, due to (5.66), Eq. (5.69) can be

written in terms of the conditional wave functions ψ̃(1,2) := µ̂
1/2
v ψ(1,2), such that it

becomes manifestly positive-definite,
∫ ∏

i dxi
∏
µ dqµ ψ̃∗(1)ψ̃(2). Thus, the operator µ̂v

connects the solutions to ĈΨ = 0 to conditional wave functions.14

14Recall from footnote 10 that we only consider a single phase pre-factor Ψ = exp(iMW0)ψ. For
this reason, different conditional wave functions ψ̃(1,2) are connected to different states Ψ(1,2) by the
same phase transformation.
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Chapter 6

Quantum-Gravitational Effects in

the Early Universe

With the formalisms of Chapters 2 and 5, we are now in a position to discuss a possible

treatment of quantum-gravitational effects in the early Universe based on a relational

account of the quantum constraint equation. In §6.1, we give a brief review of the es-

sentials of the classical theory that are necessary for our discussion of the BO approach

to quantum theory and its unitarity.1 We also define the master WDW equation and

the associated conditional probabilities. In §6.2, we apply the formalism of Chapter 5

to obtain a unitary, corrected Schrödinger equation for the cosmological perturbations,

and the ensuing effects on the primordial power spectra are discussed in §6.3. For con-

venience, we set c = ~ = 1. Spacetime is four-dimensional with signature (−,+,+,+).2

6.1 Cosmological perturbations

As the observable universe is approximately homogeneous and isotropic at large scales,

it is reasonable to define the cosmological perturbations on a FLRW background. In

addition, as contributions from spatial curvature are flattened to a large degree during

the period of inflationary expansion, we focus on a flat FLRW model. We also assume

a compact spatial topology for simplicity.

6.1.1 The classical background

The flat FLRW line element reads

ds2 = −N2(τ)dτ2 + a2(τ)dx2 , (6.1)

1Further details regarding the theory of cosmological perturbations can be found in [130], while the
Hamiltonian theory of perturbations in GR is discussed in [131,132] and references therein.

2This Chapter is based on [62].
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6. Quantum-Gravitational Effects in the Early Universe

and the symmetry-reduced action is [6]

S =

∫ τ1

τ0

dτ L3N

(
− 1

2κ

aȧ2

N2
+
a3φ̇2

2N2
− a3V(φ)

)
, (6.2)

where κ = 4πG/3, and L is an arbitrary length scale. Notice that the cosmological

constant has been set to zero, and we define the inflaton as a minimally coupled scalar

field φ(τ) for simplicity. Following [114,115], it is convenient to perform the redefinitions

t 7→ Lt x 7→ Lx ,

a 7→ a

L
N 7→ N

L
,

(6.3)

which imply that the spacetime coordinates become dimensionless, whereas the lapse

function and scale factor now have dimensions of length. We can then rewrite (6.2) as

[cf. (1.40)]

S =

∫ τ1

τ0

dτ

(
− 1

2κ

aȧ2

N
+
a3φ̇2

2N
−Na3V(φ)

)

=

∫ τ1

τ0

dτ
(
paȧ+ pφφ̇−NC

)
,

(6.4)

where the lapse plays the role of the worldline einbein and the initial-value constraint

is

C = − κ

2a
p2
a +

1

2a3
p2
φ + a3V(φ) . (6.5)

The de Sitter (‘no-roll’) limit, which will be sufficient for our analysis, is obtained by

setting φ = const. in the solution to the inflaton field equations,

φ̇ ≈ N

a3
pφ , ṗφ ≈ −Na3∂V

∂φ
. (6.6)

This is equivalent to the conditions

pφ =
∂V
∂φ

= 0 , (6.7)

which imply that the inflaton potential is a constant. In terms of the Hubble parameter

H0 in the de Sitter model [114], we can write

V(φ) :=
H2

0

2κ
. (6.8)
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6.1. Cosmological perturbations

Within the no-roll limit, it is straightforward to find the solution to the constraint (6.5),

pa = −σ0H0

κ
a2 (σ0 = ±1) . (6.9)

Here, the discrete multiplicity sectors are given by σ0 = 1 (expanding universe) and

σ0 = −1 (contracting universe). Using (6.9), the field equation for the scale factor in

the proper-time gauge3 (N(τ) = 1) reads ȧ = σ0H0a(τ), and its solution is the well-

known function a(τ) = a0 exp(σ0H0τ). We also define the conformal time variable for

later reference. We denote it by η [not to be confused with the proper time defined in

Chapter 1; cf. (1.2)]. In the proper-time gauge, we demand η̇ = 1/a(τ), which yields

η(a) = − σ0

H0a
. (6.10)

In terms of the field redefinition

a = a0eα , (6.11)

we can write η = −σ0/(H0a0)e−α, which will be convenient in the quantum theory.

6.1.2 Classical perturbations

We now briefly review the aspects of the classical theory of cosmological perturbations

that will be useful in the quantum theory to be analyzed in §6.1.3.4 Perturbations to

the FLRW metric are given by the perturbed line element

ds2 =a2(η)
{
−(1− 2A)dη2 + 2(∂iB)dxidη

+ [(1− 2ψ)δij + 2∂i∂jE + hij ] dxidxj
}
,

(6.12)

where the spacetime functions A, B, ψ and E comprise the scalar perturbations of

the metric, and the symmetric spatial tensor hij encodes the tensor perturbations.

Notice that (6.12) has been written with respect to a dimensionful conformal time

coordinate, as well as a dimensionful scale factor; i.e., we have temporarily reverted

the redefinitions (6.3). Besides (6.12), there are also the scalar perturbations of the

inflaton, which are denoted by ϕ(η,x).

The expansion of the action reads

S = S0 + δS + δ2S + . . . , (6.13)

3In this context, the proper-time gauge is called the ‘cosmic-time coordinate choice’.
4Further details can be found in [114,115] and the standard references [130–133].
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6. Quantum-Gravitational Effects in the Early Universe

where S0 is the action for the FLRW background [cf. (6.2)], δS is a term that vanishes

if evaluated on a background solution, δ2S is of quadratic order in the perturbations,

and the ellipses denote terms of higher orders. In this way, if we define the perturbed

metric [cf. (6.12)] around a fixed FLRW solution, the field equations for the perturbative

variables on a fixed FLRW background are obtained by varying δS with respect to the

perturbations.

The two polarizations +,× of gravitational waves comprise the physical, indepen-

dent degrees of freedom among the tensor perturbations, which are invariant under

linearized diffeomorphisms in spacetime. In fact, the lowest-order dynamics of the

perturbations is most conveniently described by such invariants, often called ‘master

gauge-invariant variables’ [114]. Another linearized-diffeomorphism invariant is the

Mukhanov-Sasaki variable [114,130]

v := a

{
ϕ+

φ̇

H

[
A+ 2H(B − Ė) +

d

dη
(B − Ė)

]}
. (6.14)

In (6.14), we have denoted · ≡ d/dη andH = ȧ/a. Let us consider the Fourier transform

v(η,x) =

∫
R3

d3k

(2π)
3
2

vk(η)eik·x , (6.15)

where v∗k = v−k. It is also convenient to work with the rescaled Fourier coefficients

v
(+,×)
k :=

a√
12κ

h
(+,×)
k (6.16)

of tensor perturbations. Using (6.15) and (6.16), it is possible to show that δ2S has

the simple form [114,130,134]

δ2S =

∫
dη

∫
d3k

{
v̇kv̇
∗
k − ω2

k;S|vk|2 +
∑

λ=+,×

[
v̇

(λ)
k

(
v̇

(λ)
k

)∗
− ω2

k;T

∣∣∣v(λ)
k

∣∣∣2]}, (6.17)

where the integration over k is performed over half of the Fourier space, and we define

ω2
k;S(η) := k2 − z̈

z
, ω2

k;T(η) := k2 − ä

a
, (6.18)

with k = |k|, z := aφ̇/H. Notice that, at the lowest-order, all the Fourier modes of the

perturbations evolve independently. In order to work with a more compact notation,
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6.1. Cosmological perturbations

we also define

v
(ρ)
k :=


vk for ρ = S ,

v
(+)
k for ρ = + ,

v
(×)
k for ρ = × ,

(6.19)

and

ω2
k;ρ :=

{
ω2
k;S for ρ = S ,

ω2
k;T for ρ = +,× .

(6.20)

In a compact spatial topology, the modes are discrete, and we substitute [114,115]

∫
d3k → 1

L3

∑
k

, (6.21)

where, as mentioned earlier, L is an arbitrary length. We can now repeat the redefini-

tions (6.3) and, in addition, redefine [114,115]

k 7→ 1

L
k , v

(ρ)
k 7→ L2v

(ρ)
k . (6.22)

In this way, we can use (6.19), (6.20) to rewrite the action (6.17) as

δ2S =

∫
dη

∑
k

∑
ρ=S,+,×

[
v̇

(ρ)
k

(
v̇

(ρ)
k

)∗
− ω2

k;ρ

∣∣∣v(ρ)
k

∣∣∣2] . (6.23)

We subsequently decompose the variables v
(ρ)
k in terms of their real and imaginary

parts [134],

v
(ρ)
k =

1√
2

[
v

(ρ)
k;R + iv

(ρ)
k;I

]
, (6.24)

such that the action (6.23) leads to the Hamiltonian

H :=
1

2

∑
k,ρ

∑
j=R,I

{[
π

(ρ)
k;j

]2
+ ω2

k;ρ

[
v

(ρ)
k;j

]2
}
, (6.25)

where the canonical momenta of the perturbations are π
(ρ)
k;j = v̇

(ρ)
k;j (j = R, I). The

Hamiltonian (6.25) will allow us to separately examine the quantum dynamics of each

mode (at the lowest order in the perturbations). Lastly, we will use the notation

q := (k, j, ρ), vq := v
(ρ)
k;j , ωq := ωk;ρ for brevity.
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6. Quantum-Gravitational Effects in the Early Universe

6.1.3 The master Wheeler-DeWitt equation

The canonical quantization of (6.25) defines the QFT of cosmological perturbations on

a curved background given by a classical FLRW model. In the Schrödinger picture, the

wave functions ψ̃ correspond to probability amplitudes that evolve according to

i
∂ψ̃

∂η
= Ĥψ̃ , (6.26)

where the quantum Hamiltonian is

Ĥ :=
∑
q

Ĥq , (6.27)

Ĥq :=
1

2

{
− ∂2

∂v2
q

+ ω2
qv

2
q

}
. (6.28)

As is well-known [134], one can use the Schrödinger equation (6.26) to make the usual

predictions regarding the CMB anisotropy spectrum. Nevertheless, we would like to go

further and analyze: (1) how quantum fluctuations of the unperturbed FLRW metric

(i.e., of the scale factor) may be incorporated; (2) which effects may arise from this

quantization of the background.

A first attempt would be to demand that ψ̃ solves not only the Schrödinger equa-

tion (6.26) for perturbations, but also a separate quantum constraint for the back-

ground, which could be obtained by the standard Dirac quantization of (6.5).5 This is

not, however, the approach we consider. We will follow an alternative route and assume

that a single time reparametrization-invariant system encodes the dynamics (and, in

particular, interactions) of the background and perturbations. This is achieved by the

master WDW equation

{
e−3α

a3
0

[
κ

2

∂2

∂α2
− 1

2

∂2

∂φ2
+ a6

0e6αV(φ)

]
+

e−α

a0
Ĥ

}
Ψ(α, φ, v) = 0 , (6.29)

which combines the Laplace-Beltrami ordered quantization of the background con-

straint (6.5) and the quantum Hamiltonian (6.27). Notice that the vq variables are

5In principle, this approach would have to be accompanied by the quantization of linearized con-
straints, δC, which follow from the term δS of first order in the perturbations that is present in (6.13).
See, for example, [133] for an application of these linearized constraints. Up to second order in the
perturbations, one could then require ψ̃ to satisfy the zeroth-order constraint, Ĉψ̃ = 0, the first-order
constraints, δ̂Cψ̃ = 0, and the second-order Schrödinger equation (6.26). Nevertheless, the master
gauge-invariant variables trivialize the δC constraints, and their quantum theory corresponds to the
quantization of the reduced phase space of the perturbations, albeit not of the background. Thus one
does not need to require δ̂Cψ̃ = 0 if one quantizes the vq variables. See [114] for a discussion and
further references.
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6.1. Cosmological perturbations

collectively denoted by v, and we have included a factor of 1/a = e−α/a0 [cf. (6.11)]

before Ĥ because the Hamiltonian of perturbations is defined with respect to conformal

time, such that it becomes H/a in the proper-time gauge [cf. (6.10)].

In the literature [114, 115, 133], a master WDW equation is commonly solved by

means of a weak-coupling expansion, such as the one analyzed in Chapter 5. Indeed,

one of the advantages of considering the single master WDW equation is that the

weak-coupling expansion of its solutions leads to a systematic derivation of QFT on a

curved background [cf. §5.2.5] and also of corrections to the Schrödinger equation (6.26)

[cf. §5.2.6]. Moreover, Eq. (6.29) directly encompasses the interaction of a quantum

background with the perturbations as a BO system in the sense of Chapter 5 and

Appendix B.

It is necessary to understand the relation between the master WDW equation (6.29)

and a notion of quantum gauge fixing (in the sense of Chapters 1 and 5), and a com-

prehensive analysis of the unitarity of the theory is warranted. We believe that the

present literature lacks a thorough discussion of these topics, both of which can be

tackled with the results of Chapter 5. Indeed, the space of solutions of (6.29) may be

endowed with the physical inner product (5.30), where the generalized clock is now

a function χ(α, φ; v). The conditional probabilities are defined as in (5.31). As the

potential in (6.5) is positive due to (6.8) (v = sgn(a3V(φ)) = 1), we simply denote

µ̂v ≡ µ̂.

In order to concretely discuss the issue of unitarity of the corrected Schrödinger

equation, it is sufficient to consider the de Sitter (no-roll) limit. As in the classical

theory, we impose φ = φ0 = const., and this corresponds to further conditioning the

probabilities; i.e., we define

pΨ :=

(
µ̂

1
2 Ψ
)∗
µ̂

1
2 Ψ
∣∣∣
χ=s,φ=φ0(

Ψ
∣∣∣Ô[Pφ0 |χ = s]

∣∣∣Ψ) , (6.30)

where Ô[Pφ0 |χ = s] is the relational observable defined from the kinematical improper

projector 〈
φ′
∣∣∣P̂φ0

∣∣∣φ〉 := δ(φ′ − φ)δ(φ− φ0) . (6.31)

Following §2.5.6, we can define the matrix element of this observable as

(
Ψ(1)

∣∣∣Ô[Pφ0 |χ = s]
∣∣∣Ψ(2)

)
:=

∫
dαdφdv

(
µ̂

1
2 Ψ(1)

)∗
|J |δ(φ− φ0)δ(χ− s)µ̂

1
2 Ψ(2) ,

(6.32)
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where

dv ≡
∏
q

dvq ≡
∏
k,ρ,j

dv
(ρ)
k;j , (6.33)

and we have restricted (6.32) to the multiplicity sector σ = v = 1. Furthermore, we

also need to impose the supplementary condition ∂Ψ/∂φ = 0 as the quantum analogue

of (6.7). Finally, using (6.8), we can rewrite (6.29) as

[
e−3α

a3
0

(
κ

2

∂2

∂α2
+ a6

0e6αH
2
0

2κ

)
+

e−α

a0
Ĥ

]
Ψ(α, v) = 0 . (6.34)

We note that (6.34) has the form of a quantum constraint of a BO system as described

in Chapter 5, where the coupling parameter is κ = 1/M . The heavy-sector is one-

dimensional and is comprised solely of the scale factor. We can then use the results of

Chapter 5 to establish the unitarity of (6.34) with respect to the physical (gauge-fixed)

inner product. This is the topic of the next section. In §6.3, we discuss how the cor-

rections to the Schrödinger equation may be used to compute (potentially observable)

effects in the primordial power spectra.

Before we continue, it is worth mentioning a simplification that we adopt in the

treatment of Ĥ in (6.34). In general, the quantization of the frequencies ωq in (6.28)

may be rather involved because they are complicated functions of the background de-

grees of freedom and their derivatives [cf. (6.18) and (6.20)]. Therefore, if one attempts

to define them as operators in terms of background fields and their conjugate momenta,

one would face a complicated factor ordering problem.6 This issue can be avoided by

defining conformal time as a configuration-space function [cf. (6.10)], such that ωq could

be defined as configuration-space functions of the background degrees of freedom and of

η, which is itself a function of the scale factor. This simplification is particularly well-

suited for the weak-coupling expansion, and it has also been used in [114–116,135,136].

The de Sitter case becomes especially simple, since the frequencies read [cf. (6.18)

and (6.20)]

ω2
q ≡ ω2

k := k2 − 2

η2(a)
, (6.35)

for a fixed value of σ0 in (6.10). In what follows, we thus identify the frequencies

in (6.34) with functions of a, such that Ĥ only depends on this ‘heavy’ degree of

freedom parametrically.

6Nonetheless, this ordering ambiguity could provide further corrections to the usual description of
QFT on a curved, classical background.
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6.2. Weak-coupling expansion. Unitarity

6.2 Weak-coupling expansion. Unitarity

We can use a weak-coupling expansion in powers of κ (which can be seen as the in-

verse, rescaled Planck mass squared) to find solutions to the constraint (6.34) for the

BO system comprised of the scale factor (one-dimensional ‘heavy sector’) and the per-

turbations (‘light sector’). The light-sector Hamiltonian Ĥ is of order κ0. First, it is

useful to rewrite (6.34) in the following form:

(
κ

2

∂2

∂α2
+ a6

0e6αH
2
0

2κ
+ a2

0e2αĤ

)
Ψ(α, v) = 0 . (6.36)

Equation (6.36) coincides with (5.25) and (5.26) if we formally set Qa = α, G = −1,

V = a6H2
0/2, qµ = vq, Vm = a2

∑
q ω

2
qv

2
q/2, hµν = δµνa2 (for µ, ν ranging over the

vq variables), and h = 1.7 Following §5.2.2, we then consider the minimal BO ansatz

[cf. (5.34)]

Ψ(α, v) = exp

[
i

κ
W(α, v)

]
= e

i
κ
W0(α,v)ψ(α; v) , (6.37)

which was used in the context of quantum cosmology in [113–116,120, 135–140] in the

form given in (5.32) or in the first equality in (6.37). We find that W0 only depends

on α, and it solves the background HJ equation [cf. §5.2.2 and (6.5)]

−1

2

(
∂W0

∂α

)2

+ a6
0e6αH

2
0

2
= 0 , (6.38)

the solution of which is

W0(α) = −σ0a
3
0H0

3
e3α + const. . (6.39)

For convenience, we choose the classically expanding solution with σ0 = 1 [cf. (6.9)].

We note that (6.38) corresponds to the constraint C̃ = −κp2
α/2 + a6H2

0/(2κ), which is

related to the de Sitter limit of (6.5) by a change of einbein frame, C = C̃/a3 [cf. (1.41)].

If we choose conformal time [as defined in (6.10)] to be the background clock and if we

use the constraint C̃, the background einbein or lapse is determined by the equation

7This is a formal identification because the determinant of hµν = δµν/a
2 for µ, ν ranging over the

vq variables is a (divergent) power of the scale factor instead of 1. This power cancels in (5.26) but
not in (5.25), such that the result would not agree with (6.36). Nevertheless, the formal identification
used here simply corresponds to adopting the Laplace-Beltrami ordering solely in the heavy sector,
while the light-sector Hamiltonian is simply Ĉm = a2Ĥ [cf. (6.27)]. As h is a spectator variable in the
derivation of (5.62), this formal identification is allowed and yields the correct result, as can be verified
by a direct computation, which was performed in [62].
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[cf. (6.5)]

1 ≈ N{η, C̃} = −N ∂W0

∂α

∂η

∂α
= a2N , (6.40)

such that N = 1/a2.8 The subsequent orders in perturbation theory are found by

following §5.2.6. At order κ, we find that the phase-transformed wave function ψ(α; v)

is a solution to the corrected Schrödinger equation

i
∂ψ

∂η
+ iΓ̂ψ = Ĥψ − κH2

0η
4

2
Ĥ2ψ + κVψ +O

(
κ2
)
, (6.41)

where we used (5.62) with N = 1/a2, V = a6H2
0/2, h = 1, and Ĉm = a2Ĥ, as well

as (6.10). Furthermore, since the heavy-sector configuration space is one-dimensional

in this case, there is no contribution from the terms involving the xi degrees of freedom

in (5.62), and we have formally set g = 1, gij = 0. The term κV is given in (5.64) and,

in this case, it is only a function of conformal time. Therefore, we can absorb κV into

an order-κ η-dependent phase redefinition of ψ. This is allowed because, as we will see,

the physical inner product is insensitive to phase transformations of ψ, as it should be.

Finally, Γ̂ is given in (5.63) and, in the present case, it reduces to

Γ̂ =
∂

∂η
log |H2

0η
3|−

1
2 +

κ

2
H2

0 |η|3
∂

∂η

(
|η|Ĥ

)
− κH2

0η
4Ĥ

∂

∂η
log |H2

0η
3|−

1
2 . (6.42)

We can use (6.42) together with Ĥ2ψ = iĤ∂ψ/∂η + iĤΓ̂ψ +O(κ) to bring (6.41) to a

form in which the unitarity of the evolution is manifest. First, we multiply both sides

of (6.41) by |H2
0η

3|−1/2 to obtain

i
∂

∂η

(
|H2

0η
3|−

1
2ψ
)

+
iκ

2
H0|η|

3
2

[
∂

∂η

(
ηĤ
)]
ψ +

iκ

2
H0|η|

3
2 |η|Ĥ ∂ψ

∂η

− iκ

2
H0

(
∂

∂η
log |η|−

3
2

)
|η|Ĥψ = Ĥ

(
|H2

0η
3|−

1
2ψ
)

+O
(
κ2
)
,

where, as discussed above, we discarded the κV term. Subsequently, we use the Leibniz

rule to find

i
∂

∂η

[(
1 +

κH2
0η

4

2
Ĥ

)
|H2

0η
3|−

1
2ψ

]
= Ĥ

(
|H2

0η
3|−

1
2ψ
)

+O
(
κ2
)
. (6.43)

8Due to the relation C = C̃/a3 [cf. (1.41)], the change of einbein frame (1.3) implies that the
background lapse associated with C is a3N = a, which is the usual value for the lapse in the conformal
time coordinate [cf. derivation of (6.10)].
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6.2. Weak-coupling expansion. Unitarity

Notice that

µ̂ := |H2
0η

3|−1
(

1 + κH2
0η

4Ĥ
)

+O
(
κ2
)

(6.44)

is an instance of (5.66), and thus it corresponds to a quantum version of the absolute

value of the Faddeev-Popov determinant. Its inverse is µ̂−1 =
(

1− κH2
0η

4Ĥ
)
|H2

0η
3|+

O(κ2). If we define ψ̃ := µ̂1/2ψ, then (6.43) becomes the Schrödinger equation

i
∂ψ̃

∂η
= Ĥeffψ̃ , (6.45)

where the effective (or corrected) Hamiltonian at order κ is

Ĥeff := Ĥ − κH
2
0η

4

2
Ĥ2 +O(κ2) , (6.46)

and it governs the dynamics of cosmological perturbations. Evidently, Eq. (6.46) may

be found by directly applying the weak-coupling expansion to (6.36) instead of using

the general results of Chapter 5. This was shown in [62].

We note that the matrix element (6.32) can now be written as

(Ψ1|Ψ2)dS ≡
(

Ψ(1)

∣∣∣Ô[Pφ0 |χ = s]
∣∣∣Ψ(2)

)
:=

∫
dv ψ̃∗(1)ψ̃(2) , (6.47)

where ψ̃(1,2) = µ̂1/2ψ(1,2) = µ̂1/2 exp(−iW0/κ)Ψ(1,2) is evaluated at η = s and φ = φ0.

Below, we consider arbitrary values of s, and we simply identify s with the variable

η. The constant φ0 will be omitted. The quadratic form (6.47) may be regarded as

the physical inner product in the de Sitter limit. Similarly, the conditional probabili-

ties (6.30) become

pΨ :=
|ψ̃|2

(Ψ|Ψ)dS

, (6.48)

where ψ̃ plays the role of a conditional wave function. Thus, the evolution dictated

by the Schrödinger equation (6.45) is manifestly unitarity (up to order κ) with re-

spect to the physical inner product (6.47), and this guarantees the conservation of

the conditional probabilities (6.48). More precisely, we conclude that Ĥeff is symmet-

ric with respect to (6.47) [cf. (6.27) and (6.28)], and it is formally self-adjoint if the

weak-coupling expansion is well-defined and adequate boundary conditions are chosen

for ψ̃(1,2). Notice that (6.47) is insensitive to (possibly η-dependent) phase transfor-

mations of ψ(1,2) = exp(−iW0/κ)Ψ(1,2) or of ψ̃(1,2) = µ̂1/2ψ(1,2), as mentioned above.

Furthermore, since the heavy sector is one-dimensional here, the inner product (6.47)
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6. Quantum-Gravitational Effects in the Early Universe

establishes the unitarity of the light sector regardless of the choice of factorization

discussed in Appendix B [see (B.30)].

Although we know that the measure (6.44) is related to the Faddeev-Popov deter-

minant via (5.68), it is instructive to verify this explicitly here. First, we rewrite the

inner product (6.47) as

∫
dv ψ̃∗(1)ψ̃(2) =

∫
dv ψ∗(1)µ̂ψ(2)

=

∫
dv Ψ∗(1)|H

2
0η

3|−1
(

1 + κH2
0η

4Ĥ
)

Ψ(2) +O(κ2)

=

∫
dv Ψ∗(1)|G̃|

1
2a2

(
1 + κH2

0η
4Ĥ
)

Ψ(2) +O(κ2) ,

(6.49)

where we used ψ(1,2) = exp(−iW0/κ)Ψ(1,2), G̃ = −2N 2V g [cf. (5.9)], N = 1/a2, V =

a6H2
0/2, and g = 1. Notice that the last line of (6.49) coincides with (5.69) for h = 1

and the measure given in (5.68). Equation (6.49) defines a manifestly positive-definite

inner product with a symmetric measure. Second, we note that the classical Faddeev-

Popov determinant associated with the choice of conformal time as the background

clock and the constraint C̃ is [cf. (1.78) and (6.40)]

1

ω
= {η, C̃} =

κ

H0a0

{
e−α,

p2
α

2

}
= − κ

H2
0a

2
pη , (6.50)

where pη is the canonical momentum conjugate to (6.10) (with σ0 = 1). Using (6.43),

we can then write (6.49) in the alternative form

∫
dv ψ̃∗(1)ψ̃(2) =

∫
dv ψ∗(1)µ̂ψ(2)

=

∫
dv ψ∗(1)|H

2
0η

3|−
1
2

(
1 + κH2

0η
4Ĥ
)
|H2

0η
3|−

1
2ψ(2) +O(κ2)

=

∫
dv ψ∗(1)|H

2
0η

3|−
1
2

(
1 + iκH2

0η
4 ∂

∂η

)
|H2

0η
3|−

1
2ψ(2) +O(κ2)

=

∫
dv Ψ∗(1)|H

2
0η

3|−
1
2 iκH2

0η
4 ∂

∂η
|H2

0η
3|−

1
2 Ψ(2) +O(κ2)

=

∫
dv Ψ∗(1)|G̃|

1
2

(
− κ

H2
0a

3
p̂ηa

)
Ψ(2) +O(κ2) ,

(6.51)

where the momentum operator conjugate to η is defined as

p̂η = −i|G̃|−
1
4
∂

∂η
|G̃|

1
4 (6.52)
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in relation to the metric G̃ [128]. Thus, the last line of (6.51) is a quantum version

of (6.50) with a particular factor ordering. Although the operator inserted in the last

line of (6.51) is not generally symmetric with respect to the light-sector measure dv, we

note from (6.49) and (6.51) that its quadratic form is positive-definite and equivalent to

that of the symmetric operator µ̂ for solutions of the quantum constraint. In this way,

the inner product (6.47) is well-defined and conserved with respect to the background

clock (conformal time).9

We stress that (6.45) has no “unitarity-violating” terms. These terms, which were

found and discussed in [114–116, 120], are absorbed into the Faddeev-Popov mea-

sure (6.44). The formalism presented here shows that this measure consistently follows

from the weak-coupling expansion of the master WDW equation. We thus differ from

the previous literature with respect to the definition and interpretation of the inner

product and the ensuing unitarity of the evolution of conditional wave functions.10

It is also important to note that, at order κ0, the Schrödinger equation (6.45)

coincides with (6.26), and thus QFT in curved spacetime arises from the weak-coupling

expansion of the master WDW equation. Although this is well-known from the earlier

literature, our formalism makes it clear that the QFT wave function(al) is an instance

of a conditional wave function ψ̃ and, therefore, of relative initial data (cf. §2.7.1).

6.3 Corrections to primordial power spectra

We may regard (6.45) as the Schrödinger picture of a QFT on de Sitter space, and

the Hamiltonian operator is Ĥeff. It is then interesting to examine the corresponding

phenomenology: what are the power spectra of perturbations predicted by (6.45)? We

now turn to this calculation, and we will see that the spectra coincide with the usual

results at the lowest order, whereas the order-κ corrections lead to modifications, the

observability of which has to be carefully discussed.

6.3.1 Restriction to a single mode

In the previous literature concerning the BO approach [114–116,135,136,138,140,141], it

is common practice to simplify the calculations by restricting oneself to a single Fourier

mode (or, more precisely, to a single vq mode). Here, we also follow this procedure,

which is at times called a ‘random phase approximation’ [138, 140, 141]. Concretely,

9To the best of our knowledge, this is a new result. It is important to mention that Barvinsky has
discussed the relation between the classical Faddeev-Popov determinant and the physical (gauge-fixed)
inner product by means of perturbation theory in powers of ~ [51], but the relation of the gauge-fixing
procedure to the BO approach was not examined. Here [cf. Chapter 5], we show that the BO approach
is a particular case of the general framework considered in Chapter 2, and we work with perturbation
theory in powers of κ instead of ~.

10Lämmerzahl has discussed a nontrivial definition of the measure in the context of quantum optics
in gravitational fields [129].
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this involves the ansatz

ψ̃(α; v) =
∏
q

ψ̃q (α; vq) , (6.53)

from which we obtain [cf. (6.27) and (6.45)]

Ĥ2ψ̃ =
∑
q

Ĥ2
qψ̃ +

∑
q′ 6=q

ĤqĤq′ψ̃

=
∑
q

Ĥ2
qψ̃ + ψ̃

∑
q′ 6=q

Ĥqψ̃q

ψ̃q

Ĥq′ψ̃q′

ψ̃q′

=
∑
q

Ĥ2
qψ̃ − ψ̃

∑
q′ 6=q

∂ηψ̃q

ψ̃q

∂ηψ̃q′

ψ̃q′
+O(κ) .

(6.54)

The last term in the right-hand side of (6.54) generally diverges, and one would need to

resort to a subtraction scheme, such as the ones considered in [133, 142, 143], in order

to regularize (6.54).11 However, one often assumes that the last term in the right-hand

side of (6.54) can be discarded because the terms with η-derivatives add incoherently.

It is important to emphasize that, in the absence of a detailed subtraction scheme,

this is a formal approximation, which we call the random phase approximation. A

complete account of the regularization of (6.34) in the context of the random phase

approximation is, to the best of our knowledge, currently lacking.12 Notwithstanding,

it is possible to give a heuristic physical interpretation of this approximation. Clearly,

if we neglect the second sum in (6.54), we are discarding interaction terms between the

different modes (the different vq variables). As was argued in [144], this is equivalent to

assuming that such interactions are negligible,13 and that one may concentrate solely

on the effects of the quantization of the de Sitter background on the evolution of a given

mode. Indeed, the presence of a quantum background is the key physical distinction

between the usual QFT in curved spacetime and the master WDW equation.

It is also useful to note that, due to the truncation of the action at quadratic order

in the perturbations (6.13), the master WDW equation (6.34) follows from a quanti-

zation of the classical theory which is only valid if the higher-order O(v3)-terms are

negligible. Consequently, the Schrödinger equation (6.45) provides a reliable account of

the dynamics only in regions of the vq-configuration space where the O(v3)-corrections

can be ignored. In this region, the random phase approximation is reasonable because

11Of particular interest is Sec. IV of [142], in which the BO approach is applied to a WDW equation
with higher-derivative terms, and the adiabatic subtraction procedure is used. Furthermore, a general
overview of the adiabatic subtraction procedure for Schrödinger-picture quantum fields that propagate
on FLRW spacetimes is available in [143].

12It would be interesting to investigate this in the future.
13Somewhat more artificially, one could also consider the case in which only one of vq fields is

classically evolving, such that only this field needs to be quantized.
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6.3. Corrections to primordial power spectra

the second sum in (6.54) includes O(v3)-terms.

In rest of this Chapter, we make the assumption that it is possible to regular-

ize (6.54) with a subtraction scheme, such that the formal random phase approximation

can be applied. In this way, the Schrödinger equation (6.45) reduces to the single-mode

equation [cf. (6.28)]

i
∂ψ̃q

∂η
= Ĥqψ̃q − κ

H2
0η

4

2
Ĥ2

qψ̃q . (6.55)

6.3.2 Relative initial data

Following Chapter 4, we consider that the wave function of the universe should be

interpreted as the relative initial data for its quantum evolution. Clearly, in addition

to the hypotheses that the weak-coupling expansion and random phase approximation

are valid, the choice of relative initial data is a key factor in determining the power

spectra. Due to [cf. (6.37) and (6.53)]

Ψ(α, v) = e
i
κ
W0(α)µ̂−

1
2

∏
q

ψ̃q (η(α); vq) , (6.56)

we see that the wave function of the universe Ψ(α, v) is determined by a choice of state

for each mode ψ̃q, which corresponds to a conditional wave function that describes the

evolution of perturbations relative to the value of conformal time.14

What choice should be made for ψ̃q? Although one can, in principle, choose general

states,15 it is reasonable to fix ψ̃q to coincide with the Bunch-Davies vacuum at the

lowest order. Let us then consider

ψ̃q = Nq(α) exp

{
−1

2
Ωq(α)v2

q −
κ

4
Γq(α)v4

q

}
, (6.57)

where ReΩq(α), ReΓq(α) > 0. The goal is to solve for Nq(α), Ωq(α) and Γq(α) and

to choose boundary conditions such that (6.57) reduces to the Bunch-Davies state at

order κ0.

Although we take the O(v3)-terms to be negligible, such that (6.55) is valid, the

inclusion of the quartic term in (6.57) is needed for consistency. Indeed, Γq(α) will be

seen to affect the power spectra,16 but it does not necessarily lead to non-Gaussianities

14Due to the definition (6.10), this conditioning on η is also equivalent to a conditioning on the
value of the scale factor. Furthermore, there is a formal conditioning on the value of the scalar field φ
[cf. (6.32)] due to the way the de Sitter limit was constructed from a more general inflationary model.

15See, for example, [116] for a discussion on excited states and their relation to the master WDW
equation.

16Moreover, the operator Ĥ2
q in (6.55) includes a term proportional to v4

q.
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in the CMB. The reason for this is that the master WDW equation may have to be

replaced by another constraint, which is derived from another truncation of the classical

theory, in regions where O(v3)-terms are not negligible, as was discussed above. A

similar remark was given in the semiclassical formalism presented in [145].

The equations for Nq(α), Ωq(α) and Γq(α) are found by using the ansatz (6.57)

in (6.55) and discarding terms of order κ2. The result is

i
∂

∂η
logNq =

Ωq

2
+
κH2

0η
4

4
ω2
q −

3κH2
0η

4

8
Ω2
q , (6.58)

i
∂Ωq

∂η
= Ω2

q − ω2
q − 3κΓq −

3κH2
0η

4

2
Ωq

(
Ω2
q − ω2

q

)
, (6.59)

i
∂Γq

∂η
= 4ΩqΓq +

H2
0η

4

2
(Ω2

q − ω2
q)2 . (6.60)

6.3.3 Unitarity

It is worthwhile to explicitly confirm the unitarity implied by the inner product (6.47)

for the evolution of the relative initial data (6.57). If

0 =
i

2

∂

∂η
log

∫ ∞
−∞

dvq |ψ̃q|2 = iIm

〈
i
∂

∂η

〉
(6.61)

holds, then the norm of ψ̃q is conserved. Due to (6.57), we find

〈
i
∂

∂η

〉
=

〈
i
∂

∂η
logNq −

i

2

∂Ωq

∂η
v2
q −

iκ

4

∂Γq

∂η
v4
q

〉
. (6.62)

To compute this expectation value, we note that it suffices to perform a set of Gaussian

integrals because the non-Gaussian term in (6.57) is proportional to κ, and thus its

contribution can be computed in perturbation theory. Using (6.57), (6.58), (6.59) and

(6.60) and neglecting terms of order κ2, we obtain

Im

〈
i
∂

∂η
logNq

〉
=

ImΩq

2
− 3κH2

0η
4

4
(ReΩq)ImΩq ,

Im

〈
− i

2

∂Ωq

∂η
v2
q

〉
= −ImΩq

2
+

9κH2
0η

4

8
(ReΩq)ImΩq −

3κH2
0η

4ImΩq

(
ω2
q + ImΩ2

q

)
8ReΩq

+
3κ(ReΓq)ImΩq

4ReΩ2
q

+
3κImΓq

4ReΩq
,

Im

〈
− i

4

∂Γq

∂η
v4
q

〉
= −3κH2

0η
4

8
(ReΩq)ImΩq +

3κH2
0η

4ImΩq

(
ω2
q + ImΩ2

q

)
8ReΩq

− 3κ(ReΓq)ImΩq

4ReΩ2
q

− 3κImΓq

4ReΩq
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Then, the value of (6.62) is found by adding the three equations above. The result, as

expected, is

Im

〈
i
∂

∂η

〉
= 0 . (6.63)

6.3.4 Power spectra I. Definitions

The conditional correlation function [cf. (6.32), (6.47) and (6.48)]

〈v2
q〉 := EΨ[v2

q|η, φ0] =

(
Ψ
∣∣∣Ô[v2

qPφ0 |η]
∣∣∣Ψ)(

Ψ
∣∣∣Ô[Pφ0 |η]

∣∣∣Ψ)
=

(
Ψ
∣∣v2

q

∣∣Ψ)
dS

(Ψ|Ψ)dS

=

∫
dv ψ̃∗v2

qψ̃∫
dv ψ̃∗ψ̃

(6.64)

reproduces the familiar formula from QFT on curved backgrounds. The power spectrum

of the vq perturbations is then defined in the usual way,

Pv(q) :=
k3

2π2
〈v2

q〉 . (6.65)

Below, we will see that the power spectrum is a function solely of k = |k|, Pv(q) ≡
Pv(k). From (6.53) and (6.57), the conditional correlation function is found to be

〈v2
q〉 =

1

2ReΩq
− 3κReΓq

4(ReΩq)3
. (6.66)

In order to evaluate the power spectrum (6.65), we will consider the superhorizon

limit limkη→0− 〈v2
q〉 because our focus is on large scales. Furthermore, if we expand

Ωq = Ωq;0 + κΩq;1 and neglect terms of order κ2, we can express (6.66) as

〈v2
q〉 =

1 + κδq
2ReΩq;0

, (6.67)

where we defined the correction term

δq = −ReΩq;1

ReΩq;0
− 3ReΓq

2(ReΩq;0)2
, (6.68)

which encodes the deviation from the usual results of QFT on a fixed background.
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The power spectrum of scalar perturbations is usually defined in terms of the co-

moving curvature perturbations [114,115]

ζk :=

√
3κ

ε

v
(S)
k

a
, (6.69)

which are associated with CMB temperature anisotropies, and are defined on a quasi-

de Sitter space characterized by a small but nonzero inflationary slow-roll parameter,

ε = −Ḣ/H2 [with · ≡ d/dτ ; cf. (6.1)]. Their power spectrum is

PS(k) :=
3κ

εa2
Pv(k) =

3κ

εa2

k3

2π2
〈v2

q〉 . (6.70)

Similarly, the power spectrum of tensor perturbations is customarily expressed in terms

of the rescaled Fourier modes
√

2h
(+,×)
k [to be compared with (6.16)],

PT(k) :=
∑

λ=+,×

24κ

a2
Pv(k) =

48κ

a2

k3

2π2
〈v2

q〉 . (6.71)

In general slow-roll models, the correction terms for each spectrum may be different.

This was analyzed in [115], where the would-be unitarity-violating terms were simply

neglected. In the formalism presented here, we have seen that they can be incorporated

into the definition of µ̂ [cf. (6.44)].17 As we have restricted ourselves to the (quasi-)de

Sitter limit, a simplification occurs due to the fact that the frequencies (6.35) coincide,

and (6.67) implies that there is a common correction factor,

PS,T(k) = PS,T;0(k)(1 + κδq) . (6.72)

For this reason, the tensor-to-scalar ratio

r :=
PT(k)

PS(k)
≡
PT;0(k)

PS;0(k)
(6.73)

receives no corrections in this limit.

17It is important to mention that some of the would-be unitarity-violating terms neglected in [114–
116] were, in fact, part of the complex functions ψ̃ and, as such, are not incorporated into µ̂ in our
formalism, but they also do not violate unitarity with respect to the inner product (6.47). This
difference will also lead to discrepancies in the results discussed in §6.3.6.
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6.3.5 Power spectra II. The lowest order

Since the Schrödinger equation (6.45) coincides with the usual QFT Schrödinger equa-

tion (6.26) at the lowest order, the power spectra found from (6.67) at order κ0 must

agree with the well-known results. To see that this is indeed the case, we solve the

lowest-order of (6.59) by means of the replacement

Ωq;0(η) = −i
ẏq(η)

yq(η)
, (6.74)

for which (6.59) becomes

ÿq + ω2
qyq = O(κ) . (6.75)

Due to (6.35), the solution has the well-known form

yq(η) ≡ yk(η) =
A√
2k

e−ikη

(
1− i

kη

)
+

B√
2k

eikη

(
1 +

i

kη

)
. (6.76)

As we require ReΩq;0(η) > 0, we must impose [cf. (6.74)]

B2 −A2 = −i [ẏky
∗
k − ẏ∗kyk] > 0 , (6.77)

which is satisfied if A ∝ sinhϑ and B ∝ coshϑ for ϑ ∈ R. If we now truncate (6.57)

at the lowest order and demand that it coincides with the Minkowski vacuum when

η → −∞ (a → 0), the value of ϑ can be fixed. Indeed, we demand that ϑ = 0 such

that

Ωk;0(η)
η→−∞
' coshϑeikη − sinhϑe−ikη

coshϑeikη + sinhϑe−ikη
k
ϑ=0
= k . (6.78)

Together with (6.76), this leads us to the usual Bunch-Davies results [114]

Ωq;0(η) ≡ Ωk;0(η) =
k3η2

1 + k2η2
+

i

η(1 + k2η2)
(6.79)

and

〈v2
q〉 =

1 + k2η2

2k3η2
+O(κ)

kη→0−

' 1

2k3η2
+O(κ) . (6.80)

177



6. Quantum-Gravitational Effects in the Early Universe

Using κ = 4πG/3 and (6.10), the power spectra and tensor-to-scalar ratio then read

[cf. (6.70) and (6.71)]

PS;0(k) =
3κ

εa2

1

4π2η2
=
GH2

0

πε

∣∣∣∣
k=aH0

, (6.81)

PT;0(k) =
24κ

a2

1

4π2η2
=

16GH2
0

π
, (6.82)

r = 16ε . (6.83)

As the slow-roll parameter ε appears in (6.81), and due to the fact that the perturbations

freeze at horizon crossing (at least if terms of order κ2 are neglected), Eq. (6.81) is

computed at the instant in which k = aH0.

6.3.6 Power spectra III. Corrections

The inclusion of terms of order κ corresponds to the inclusion of the correction term (6.68)

in (6.67). To find this term, we must compute Ωq;1 and Γq. We can solve (6.60)

if we substitute Ωq → Ωq;0 [cf. (6.79)] and if we choose the boundary condition

limη→−∞ Γq = 0, which is consistent with the lowest-order Bunch-Davies solution.

The solution then reads18

Γq(η) =
H2

0η
(
4ik2η2 + 4kη + i

)
e4i arctan(kη)

6 (k2η2 + 1)2

− 8H2
0η

4k3Γ(0,−4ikη)e−4i[kη−arctan(kη)]

3 (k2η2 + 1)2 .

(6.84)

This solution vanishes in the infinite past by virtue of

Γ(0, z)
z→−∞' e−z

z
, (6.85)

and its late-time behavior can be found from the expansion

Γ(0, z) = −γE − log z + z +O(z2) , (6.86)

18Certain computer algebra software present the solution in terms of the exponential integral func-
tion, but we chose to adopt Γ(0, z) (the upper incomplete gamma function) that was also used in the
formalism of [114].

178



6.3. Corrections to primordial power spectra

with the Euler-Mascheroni constant γE . We obtain

ReΓq(η)
η→0−

' k3H2
0η

4

3
[−18 + 8γE + 8 log(4k|η|)] . (6.87)

Subsequently, we must compute Ωq;1. Its equation is obtained if we use Ωq = Ωq;0 +

κΩq;1 in (6.59) and collect all terms of order κ,

i
∂Ωq;1

∂η
= 2Ωq;0Ωq;1 − 3Γq −

3H2
0η

4

2
Ωq;0

(
Ω2
q;0 − ω2

q

)
.

In analogy to the Bunch-Davies vacuum, we will fix the constant of integration by

requiring that limη→−∞ReΩq;1 is well-defined (it does not oscillate).19 The solution is

Ωq;1(η) =
e2i arctan(kη)H2

0η
2

kη + i

[
10i + 6kη − 3ik2η2

2(kη − i)(kη + i)

−4Γ(0,−4ikη)

(kη + i)
e−4ikη − 2Γ(0,−2ikη)

(kη − i)
e−2ikη

]
,

(6.88)

due to (6.79) and (6.84). From (6.85), we see that the required boundary condition is

satisfied,20

lim
η→−∞

ReΩq;1(η) =
3H2

0

2k2
. (6.89)

We can also inspect the late-time limit of (6.88),

ReΩq;1(η)
η→0−

' H2
0η

2
[
5− 2γE + 2 log(2k|η|)− 4 log(4k|η|)

]
, (6.90)

due to (6.86). With (6.87) and (6.90), as well as (6.80), we can finally compute the

correction term (6.68). In the analysis of data concerning the CMB, it is customary to

express the results in terms of a pivot (or reference) scale denoted by k?. For this reason,

in order to make (6.68) comparable to observations, we revert the first transformation

in (6.22) (k → Lk) and we choose L = 1/k?.
21 The correction term can then be written

19This is analogous to a requirement that was made in formalism of [114].
20Incidentally, the reason we fix the boundary condition solely for the real part of Ωq;1 is that its

imaginary part does not alter the conditional correlation function (6.64). In fact, one can verify that
the imaginary part of (6.88) leads to a large phase in (6.57) in the limit η → −∞, which, nonetheless,
does not influence the power spectra.

21Notice that k and k? are now dimensionful, but the result (6.91) is expressed in terms of their
ratio.
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as

δq ≡ δk(η) = H2
0

(
k?
k

)3 [
4− 2γE − 2 log(−2kη)

]
, (6.91)

and it leads to the corrected power spectra [cf. (6.67), (6.70), (6.71)]

PS,T(k) = PS,T;0(k) [1 + κδq]

' PS,T;0(k)

{
1 + κH2

0

(
k?
k

)3 [
2.85− 2 log(−2kη)

]}
.

(6.92)

It is important to emphasize that (6.92) is different from the result presented in [114].

As the constant κ is equal to the inverse, rescaled Planck mass squared used in that

reference, the two results can be easily compared. Apart from a difference in numerical

factors, we also note that the logarithmic term was absent in the earlier treatment. We

now examine the reasons for this discrepancy.

6.3.7 Power spectra IV. Discussion

The disagreement between (6.92) and the earlier literature [114–116, 140] stems from

the fact that these preceding works not only discarded the would-be unitarity-violating

terms that we have incorporated into the definition of µ̂ in (6.44), but they also ne-

glected the imaginary part of terms of order κ in (6.45) and (6.59), which were also

thought to violate unitarity (see also footnote 17). In the present formalism, there

is no need to discard these additional terms, as they are simply part of the complex

conditional wave functions and do not jeopardize the conservation of the norm of ψ̃.

From (6.63), we see that an explicit calculation confirms that the inner product (6.47)

is conserved (assuming that the Hamiltonian (6.46) is self-adjoint by an adequate choice

of boundary conditions for ψ̃). The inclusion of these additional terms resulted in the

different expression (6.92).

The most interesting difference is the logarithmic term. Since the mode k crosses

horizon at an instant defined by aH0 = k, the logarithm essentially counts the number

of e-folds between horizon crossing and the instant η. Therefore, it grows in conformal

time and might invalidate perturbation theory at late times or in the superhorizon limit.

Our results regarding the unitarity of the dynamics of a BO system (cf. Chapter 5 and

§6.2) clearly depend on whether the perturbative expansion in powers of κ = 1/M

is well-defined. Before we discuss if and how this can be guaranteed, let us give an

approximate estimate of the value of (6.91). We can discard the logarithm if the

correction term is computed around horizon crossing, since then log(−kη) ' 0. The

reliability of this evaluation depends on the superhorizon conservation of ζk. We obtain
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κδk ' 1.5κH2
0

(
k?
k

)3

, (6.93)

which implies that there is an enhancement of power at large scales and the spectrum

acquires a scale dependence. This is essentially the result found in [114], apart from

the numerical pre-factor, which was approximately 0.988. There, the upper bound

κH2
0 . 1.7× 10−10 was also derived. Using this result, one could also choose the value

of η at which the correction term is computed such that κδk(η) would not invalidate

perturbation theory. Nevertheless, these are heuristic estimations. Can we go beyond

them?

It may be that a different choice of relative initial data [cf. (6.57)] can avoid the

appearance of terms that grow in conformal time. However, such choice would likely

be more complicated than (6.57), and it should have a reasonable justification [such as

the analogy to the Bunch-Davies state that guided the construction of (6.57)] instead

of being simply engineered. Moreover, it seems reasonable to suppose that a better

understanding of the physics behind (6.92) will be gained by applying the present

formalism to more general slow-roll models and other realistic accounts of the early

Universe. The (quasi-)de Sitter approximation, on which (6.92) is based, may be too

simple.

Finally, although the secular growth of the logarithm is worrisome, it is important

to note that secular terms frequently appear in perturbative QFT calculations in de

Sitter space, for example, in the computation of quantum corrections to correlation

functions or to the late-time structure of the Bunch-Davies state [146–148]. A similar

logarithm was also present in [144], where the master WDW equation was solved in

terms of suitably defined quantum moments. Is there a relation between secular terms

found in the literature and the logarithm in (6.92)? This is conceivable because, in the

literature [146–150], the logarithmic terms follow from the usual perturbation theory in

QFT, whereas the logarithm in (6.92) is a consequence of the weak-coupling expansion,

which is akin to a loop expansion (as was explained in [151]).

An interesting question that is left for future work is whether any of the various

treatments given to the large time-dependent logarithms in de Sitter space QFT can

be adapted to the master WDW equation (6.34). Indeed, the resummation procedures

described in the literature might also be applicable in the formalism presented here. In

particular, in the framework of the dynamical renormalization group [146,147,149,150],

late-time divergences can be subtracted by adequate counterterms that depend on an

arbitrary time scale. In this subtraction procedure, the validity of perturbation theory

may be improved by the resummation of leading time-dependent logarithms. Thus, it

is imaginable that (some of) these schemes could be used in the present formalism in

order to guarantee the validity of the perturbative expansion in powers of κ.
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O.1 Conclusions

Although there are presently various candidate theories of quantum gravitation, each

with its merits and shortcomings, two fundamental issues remain unclear. First, is the

diffeomorphism symmetry emergent or is it an essential feature of the quantum theory?

If it is essential, how should the quantum states be interpreted in a diffeomorphism-

invariant way? Can we meaningfully attribute a probabilistic interpretation to them?

Second, if there is a physical Hilbert space, how can we define and interpret the oper-

ators that act on it? In what sense (if any) can they represent observables?

The search for a (partial) resolution of these issues has spawned numerous interest-

ing proposals, which often combine aspects of quantum field theory, quantum founda-

tions and quantum information science. Regarding the interpretation of the quantum

states, some researchers advocate the use of the consistent or decoherent histories for-

malism to assign probabilities to quantum states also in a diffeomorphism-invariant

setting (see, for instance, [152–156]), while others argue that the de Broglie-Bohm the-

ory [26,27] can meaningfully dissolve the conundrum related to the problem of time in

a theory without a preferred time parameter and, perhaps, explain the origin of prob-

abilities for subsystems of the Universe. Rovelli has also suggested a kind of quantum

relational dynamics in his ‘relational quantum mechanics’ [157]. Most notably, the use

of the solutions to the quantum constraint in the definition of conditional probabilities

has attracted considerable attention in the literature [75,86–93].

Methods of construction and interpretation of observables have also been actively re-

searched. In particular, one can reasonably define classical observables as diffeomorphism-

invariant extensions of geometrical objects [30, 31, 33, 76, 78, 94, 95, 158], which encode

the relational dynamics among the different fields of a theory, as Rovelli has emphasized

in his “evolving constants of motion” description [17, 96, 97]. The invariant extensions

are often also called relational observables [57, 58]. Classically, their interpretation is

clear: as they are invariant extensions of the components of tensor fields in certain

local coordinates, the relational observables capture the value of a field in terms of gen-

eralized clocks and rods; i.e., they yield a prediction for value of field conditioned on

the value that is read on the generalized measuring instruments. This is a conditional

prediction, and it can be taken to represent the outcome of a measurement. But what
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are the corresponding quantum observables? And are they relational in any meaning-

ful sense? Indeed, the appropriate procedure of quantization of these observables has

remained unsettled [58, 79–81, 94, 95]. In other words, the literature currently lacks a

systematic, uncontroversial and model-independent way to define quantum observables

in a diffeomorphism-invariant theory.

In this thesis, we have presented a possible formalism for the systematic construc-

tion and interpretation of relational observables, both in the classical and quantum

theories. We have not solved the measurement problem or the origin of probabilities,

but we have suggested a tentative set of postulates in the quantum theory, which bring

to the forefront the consequences of diffeomorphism invariance for the probabilistic

interpretation as a form of quantum relational dynamics. We have also argued that,

under certain circumstances, the dynamics can be understood in terms of conditional

probabilities, and the averages of observables correspond to conditional expectation val-

ues of geometric objects. This is reasonable because the classical relational observables

are, in a sense, conditional quantities. Thus, our work connects the two fundamental

issues of probabilities and observables in a diffeomorphism-invariant setting.

We have established the general framework in Chapters 1 and 2, and illustrated

the formalism with examples in Chapters 3 and 4. For simplicity and clarity, we have

restricted ourselves to mechanical toy models so as to evade problems with regulariza-

tion and anomalies that might appear in a more general field-theoretical approach, and

yet cloud the conceptual issues related to diffeomorphism invariance and the problem

of time. The general formalism we have presented is, in principle, model independent

and it is applicable to mechanical theories that are integrable, in which the solutions

to the classical field equations and to the quantum constraints can be found (with

the aid of perturbation theory, if needed). Clearly, this formalism is necessarily provi-

sional and not to be seen as a definitive framework, but we believe it clarifies several

conceptual issues at interface of quantum theory and gravitation and, furthermore, it

provides a useful set of tools for various toy models, as illustrated in Chapters 3, 4

and 6. These tools may need to be made more rigorous or refined if applied to more

realistic (field-theoretical) scenarios.

The method presented here is based on the classical Faddeev-Popov gauge-fixing

procedure [20, 21], with which invariant extensions of gauge-fixed quantities (i.e., vari-

ables written in a fixed generalized reference frame) are obtained by writing them in

an arbitrary frame using integral formulae. We have explained how to perform the cor-

responding procedure in the canonical (operator-based) quantum theory, and we have

compared our proposal with the earlier literature. In particular, we emphasize that a

defining feature of our formalism is the operator version of the Faddeev-Popov resolu-

tion of the identity, which implies that the identity operator is invariantly extended to

the identity in the physical Hilbert space. In contrast, in the earlier method of [53],

this was not the case.
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The Faddeev-Popov resolution to the identity is tied to a choice of generalized clock

that defines a generalized quantum reference frame. We have given an explicit formula

for the Faddeev-Popov operator, and we have discussed under what circumstances

one can define a physical propagator that defines a unitary quantum evolution in the

quantum reference frame. Furthermore, changes of well-defined quantum reference

frames can be performed as changes of basis in the physical Hilbert space of the theory.

Under certain circumstances, the interpretation of the generalized reference frame can

be based on conditional probabilities, which express the time parameter measured by

the clock as the condition on which the observations (or more, precisely, probabilistic

predictions) of an experimenter in a certain reference frame are based. In this case,

we have argued that all the dynamical content of the quantum theory is encoded in

conditional wave functions related to the relative initial data of the quantum evolution.

Thus, there can be two points of view: (1) the gauge-fixed point of view, which only

deals with the conditional wave functions; (2) the manifestly invariant point of view,

in which one works with the relational observables.

The method presented here can be regarded as a type of generalization of certain

earlier developments [51,74,75,83]. Indeed, we have shown that our formalism recovers

the well-known Page-Wootters formalism [75,86–93] as a particular case, and that it is

also related to the ‘G-twirl’ operations and ‘relativization maps’ that are often defined

when quantum reference frames are discussed in the quantum foundations and quantum

information science communities (see, for example, [73–75, 82, 83]). The equivalence

between the Page-Wootters approach and the use of a kind of relational observables

was first noted in [75] for a particular class of gauge conditions in certain toy models.

Our results, which use a definition of quantum observables that is, in principle, different,

may be regarded as an extension of [75]. In this way, our formalism, which is based on

standard techniques in the treatment of gauge systems, may also be useful in examples

of interest to these other communities beyond the context of quantum gravity and

cosmology.

It is also worthwhile to emphasize that, due to the method of construction of ob-

servables and the ensuing dynamics dictated by physical propagators, one sees that

the notion of evolution does not disappear in the quantum theory as is frequently

claimed [6, 22, 23]. In this way, the quantum problem of time, which is motivated by

the fact that physical states do not depend on an arbitrary choice of worldline time

coordinate and seem to be “static”, is as illusory as its classical counterpart. Evidently,

one must face this conclusion with a bit of skepticism, as the formalism presented here

is, as already mentioned, provisional, and there are several other attempts at a solution

to the problem of time [22–24]. However, we believe the quantum relational dynamics

described here is reasonable.

In particular, we have seen that the formalism is directly useful in cosmology. We

have considered the canonical quantum cosmology of minisuperspace models in metric

variables. Although this may not be the fundamental variables of quantum gravity, the
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classical limit can be straightforwardly derived in this approach, which is therefore suf-

ficient for illustrating the general framework developed in Chapters 1 and 2. We have

argued that the question of singularity avoidance in cosmology can be related to the

quantum relational dynamics by a conditional form of the DeWitt criterion (cf. §4.1),

and that the quantum gravitational corrections found from the weak-coupling expan-

sion of the master WDW equation can be straightforwardly embedded in a relational

framework.

The calculation of quantum gravitational corrections to the relational dynamics

in the early Universe is of direct interest if one is to produce falsifiable predictions,

as some of the effects may become observable. For this reason, we also consider the

application of the weak-coupling expansion to derive corrections to the primordial power

spectra (cf. Chapter 6) one of the central results of this thesis, as it clarifies how the

notions of the physical inner product and relational observables may be related to the

usual cosmological measurements and observations: all observables are relational, and

the usual primordial correlators and other cosmological observables are understood as

conditional quantities that are expressed relative to the late-time classical values of the

spacetime metric. The corrections found from the weak-coupling expansion take into

account the quantum nature of the spacetime background in the early universe, and the

fundamental diffeomorphism invariance is encoded in the master WDW equation (6.34).

At this stage, it is useful to note that the calculation of primordial quantum gravi-

tational effects is an active topic of research [114–116, 135, 136, 138–140, 144, 159–162],

and that the weak-coupling expansion has been applied in several references in order

to obtain corrections to the primordial spectra [114–116, 135, 136, 140]. What is new

in our approach is the explicit connection described in Chapter 5 between this expan-

sion and the fundamental relational theory based on the physical inner product and

relational observables. We have explicitly shown how the inner product is related to

a quantization of the classical Faddeev-Popov determinant, leading to a clear relation

between the quantum dynamics and the gauge-fixing procedure that defines a quantum

reference frame. To the best of our knowledge, this is a new result. In particular, the

closed-form expression for the classical einbein [cf. (5.17)] had not been previously de-

rived. Furthermore, we have shown that the perturbative quantum dynamics is unitary

with respect to this inner product. This is important because the question of unitarity

in the BO approach has been controversial [114–116, 120, 126, 135, 136, 140, 163]. Our

results show that the traditional BO approach (cf. Appendix B) and weak-coupling

expansion can be regarded as a particular choice of gauge fixing, and they are an in-

stance of a more general relational framework. Although it is presently unclear whether

such a paradigm can describe Nature at the fundamental level, we believe it is worth

investigating its the possible observational consequences.
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O.2 Outlook

There are several possible avenues of further research. First, as our method generalizes

the Page-Wootters formalism, an effort to extend several results that were established in

the literature using the Page-Wotters approach would be worthwhile and might lead to

novel insights. Second, one can extend the calculation of unitary quantum-gravitational

corrections to the primordial spectra to the case of slow-roll inflationary models or more

general accounts of the early Universe, which may shed light on the correction terms,

particularly the secular logarithm in (6.91). Third, as was mentioned in §6.3.7, it may

be possible to adapt some of the resummation techniques from QFT in de Sitter space

to ensure the validity of the weak-coupling expansion and improve perturbation theory.

This is an important topic because a resummation of the large logarithm in (6.91) could

enhance the observability of the corrections by enlarging their overall contribution.

Fourth, a better understanding of the random phase approximation [cf. Sec. 6.3.1]

is needed. It would be interesting to adopt a certain regularization procedure and

verify the exact conditions under which this approximation holds. All of these further

developments would facilitate the computation of well-defined quantum-gravitational

effects in the early Universe that are hopefully observable.

O.2.1 Relative initial data in field theory

It is important to mention what are the implications of our formalism for the construc-

tion of relational observables in the full quantum theory of gravitation. The quan-

tization of diffeomorphism-invariant observables in GR is a very complicated matter

because these objects not only generally have involved functional forms but are also

possibly nonlocal. However, if the method presented in this thesis could be generalized

to field theory, it might be possible to avoid the quantization of complicated invariants.

This follows from the equivalence of the two points of view mentioned above: rather

than evaluating the arduous observables (invariant point of view), one could work with

the conditional probabilities (gauge-fixed point of view), which are frequently simpler

to compute. If this proves to be possible, than the eigenstates of self-adjoint relational

observables would lead to conditional predictions.

This program would require a cautious regularization of the quantum constraints,

and one would need to establish that the quantum theory is indeed not anomalous.

These important tasks are outside of the scope of this thesis. If they can be carried

out, then a field-theoretic generalization of the framework presented here would, in

principle, be feasible. In this case, one would be able to define conditional probabilities

and expectation values of geometrical objects (in the gauge-fixed point of view), without

the need to evaluate their complicated diffeomorphism-invariant counterparts. The

quantum dynamics would be directly encoded in the conditional predictions extracted

from the solution to the quantum constraints, which would be regarded in a relational

manner as the invariant extension of a certain choice of relative initial data. This is a
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fascinating topic that could be pursued in the future.

O.2.2 Whence probabilities?

Lastly, we note that the postulates presented in Chapter 5 assume that the Born rule

is valid for the induced inner product. However, it is not clear whether this rule

should be modified in a diffeomorphism invariant context. Indeed, the measurement

problem becomes even more distressing in this context. However, the possibility to

define physical propagators as in Chapter 5 suggests that, it might be possible to explain

the origin of the Born rule with respect to some (or perhaps many) choice(s) of worldline

time coordinate by considering the Schrödinger equation associated with the physical

propagator. This could be done in an Everettian context (see, for instance, [164]) or,

if one adopts a de Broglie-Bohm perspective, it might even be possible to describe a

quantum relaxation process (following [165]) through which the Born rule emerges. We

leave these topics for another occasion.
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Appendix A

Review of Gauge Systems and

Constrained Dynamics

This appendix deals with the theory of constrained Hamiltonian systems. For simplicity,

we restrict ourselves to mechanical theories and we review only the basic aspects of the

subject that are relevant for the thesis. We mostly follow [6, 33, 34, 48–50], where

additional details can be found.

We begin by defining gauge symmetries and reviewing the two Noether theorems

in §A.1. We show that the Lagrangian of gauge systems is necessarily singular, which

implies that the canonical theory is constrained. The general theory of constrained

dynamics is then examined in §A.2. Finally, we present a construction of the so-called

reduced phase space of a constrained theory and we discuss its quantization in §A.3.

A.1 Gauge symmetries and singular Lagrangians

We define the classical dynamics via the action functional1

S[q(τ)] :=

∫ τ1

τ0

dτ L(q, q̇) , (A.1)

where the time τ is a real-valued parameter [it is a coordinate on a (0 + 1)-dimensional

spacetime]. We assume that the configuration space is a d-dimensional differentiable

manifold Q, on which q(τ) denotes a set of local coordinates for a fixed value of τ . The

corresponding velocities are q̇(τ) ≡ dq/dτ . For a given instant τ = τ0, we interpret

(q(τ0), q̇(τ0)) as local coordinates on the tangent bundle TQ (sometimes called the

velocity phase-space). We will also refer to q(τ) as fields, as they may correspond to

different tensor fields defined on the (0 + 1)-dimensional spacetime. We assume for

1For an extension to field theories, fermionic degrees of freedom and higher-derivative theories,
see [33,34] and references therein.
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simplicity that the Lagrangian depends only q(τ) and q̇(τ), such that it is understood

as a function L : TQ → R. The Euler derivatives of L with respect to q(τ) are defined

as

La :=
∂L
∂qa
− d

dτ

∂L
∂q̇a

, (a = 1, . . . , d) . (A.2)

If we require that the variation of S[q(τ)] is stationary, we find from (A.1) the Euler-

Lagrange equations La = 0.

A.1.1 Noether theorems

The invariance of the action under a set of symmetry transformations has important

physical consequences. In the case of ‘rigid’ symmetries (that do not vary in time),

the invariance implies that a set of charges is conserved. In the case of local (gauge)

symmetries (that vary in time), one finds that the equations of motion obey a set of

‘generalized Bianchi identities’ (‘Noether identities’). This is the content of the two

Noether theorems which we now review. We follow [34] for the proofs.

Let us consider a continuous group of transformations comprised of spacetime co-

ordinate transformations (reparametrizations of τ) and field redefinitions, i.e.,

τ 7→ τ ′ = τ + δτ(τ) ,

q(τ) 7→ q′(τ ′) = q(τ) + δq(τ) ,
(A.3)

where δ denotes infinitesimal changes that correspond to transformations close the iden-

tity. We consider that these transformations are described in terms of N independent

and arbitrary functions εi(τ) for i = 1, . . . , N , such that2

δτ(τ) = T i(τ)εi(τ) ,

δq(τ) =
n∑
j=0

Qi(j)(τ)
djεi
dτ j

(τ) ,
(A.4)

where the functions Qi(j)(τ) may functionally depend on the paths q(τ). Note that it is

possible to adopt different linear combinations of the arbitrary functions εi(τ) without

altering the reparametrization and the field redefinitions given in (A.4) if the functions

T i(τ) and Qi(j)(τ) are also suitably redefined. For example, let us consider the simple

2The (mechanical) field redefinitions in (A.4) are analogous to the familiar gauge transformations
of the vector potential in electromagnetism, δAµ = ∂ε/∂xµ, or the Lie derivatives of the metric field in
general relativity, δgµν = ελ∂gµν/∂x

λ + gµλ∂ε
λ/∂xν + gλν∂ε

λ/∂xµ.
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case in which Qi(j)(τ) = 0 for j > 1. We can then perform the redefinitions

εi(τ) =: M I
i (τ)ε̄I(τ) (I = 1, . . . , N) ,

T̄ I(τ) := T i(τ)M I
i (τ) ,

Q̄I(0)(τ) := Qi(0)(τ)M I
i (τ) +Qi(1)(τ)

dM I
i

dτ
(τ) ,

Q̄I(1)(τ) := Qi(1)(τ)M I
i (τ)

(A.5)

without altering (A.4). We assume that the matrix with elements M I
i (τ) is invertible

and it may also functionally depend on the paths q(τ). It is straightforward to check

that the inverse of (A.5) leads back to the original functions T i(τ) and Qi(j)(τ). If we

restrict the arbitrary functions ε to be constants (independent of τ), then the transfor-

mations can be seen as elements of an N -dimensional Lie group. In this case, we also

restrict the matrix with elements M I
i to be independent of τ .

The transformations (A.4) correspond to a symmetry if we require that the ac-

tion (A.1) retains its functional form under (A.3) up to a boundary term, i.e.,

∫ τ ′1

τ ′0

dτ ′ L
(
q′,

dq′

dτ ′

)
=

∫ τ1

τ0

dτ L(q, q̇) + F (τ1)− F (τ0) . (A.6)

This implies that the Lagrangians differ by the total derivative of some function F (τ),

dτ ′

dτ
L
(
q′,

dq′

dτ ′

)
− L(q, q̇) =

dF

dτ
, (A.7)

or, in infinitesimal form,

∂L
∂qa

δqa(τ) +
∂L
∂q̇a

δ

(
dqa

dτ

)
+ Ldδτ

dτ
=

dF

dτ
. (A.8)

The following properties are assumed of F (τ): (1) it can be written in terms of the

functions ε(τ) and their first n derivatives; (2) F (τ) ≡ 0 if εi(τ) ≡ 0; (3) if ε are

constants, then F (τ) = εiFi(τ) up to first order in εi.

If we define the same-instant variations

δq(τ) := q′(τ)− q(τ) = δq(τ)− q̇(τ)δτ ,

δq̇(τ) := q̇′(τ)− q̇(τ) = δ

(
dq

dτ

)
− q̈(τ)δτ ,

(A.9)
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we can rewrite (A.8) as

∂L
∂qa

δqa(τ) +
∂L
∂q̇a

δq̇a(τ) +
d

dτ
(Lδτ) =

dF

dτ
. (A.10)

Due to

δ

(
dq

dτ

)
=

dδq

dτ
− dq

dτ

dδτ

dτ
, (A.11)

one can easily verify that, in contrast to the variation δ, the same-instant variation δ

commutes with d/dτ . We can then use the Leibniz rule and the definition (A.2) of the

Euler derivatives La to obtain

Laδqa(τ) +
dQN
dτ

= 0 , (A.12)

where the Noether charge is defined as

QN =
∂L
∂q̇a

δqa(τ) + Lδτ − F (τ) . (A.13)

Two important observations can now be made and each will lead to one Noether the-

orem. First, if the Euler-Lagrange equations La = 0 are satisfied, then (A.12) leads

to the conservation of the Noether charge. In the special case of a rigid symmetry, for

which ε are constants, we can rewrite (A.12) as

La
(
q̇aT i −Qi,a(0)

)
=

d

dτ

[
∂L
∂q̇a

(
Qi,a(0) − q̇

aT i
)

+ LT i − F i
]
. (A.14)

Equation (A.14) can be summarized as the

First Noether Theorem. If the action is invariant under an N -dimensional Lie

group, then N linearly independent combinations of the Euler derivatives are total time

derivatives.

Second, by integrating (A.12), we obtain

∫ τ1

τ0

dτ Laδqa(τ) = QN |τ1 − QN |τ0 , (A.15)

where one considers a set of paths in configuration space that are off shell (i.e., one

does not impose La = 0). If one also assumes that ε(τ) and its first n derivatives vanish

at the end points τ0 and τ1, then the Noether charge surface term in (A.15) vanishes
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due to the properties assumed of F (τ). In this case, equation (A.15) can be rewritten

as [cf. (A.4)]

∫ τ1

τ0

dτ εi(τ)

−Laq̇aT i +

n∑
j=0

(−1)j
dj

dτ j

(
LaQi,a(j)

) = 0 , (A.16)

after integrating by parts. Due to the fact that the functions εi(τ) are arbitrary (up to

the chosen boundary conditions), we find from (A.16) the identities

−Laq̇aT i +
n∑
j=0

(−1)j
dj

dτ j

(
LaQi,a(j)

)
= 0 , (A.17)

which are referred to as ‘generalized Bianchi identities’ [34] or ‘Noether identities’ [33].

Equation (A.17) can be summarized as the

Second Noether Theorem. If the action exhibits infinitesimal symmetries that form

an infinite continuous group and are described by N arbitrary functions, then one ob-

tains N independent identities of the Euler derivatives.

In what follows, we consider for simplicity only gauge transformations with n = 1,

i.e., Qi(j)(τ) = 0 for j > 1. Equation (A.17) then becomes

−Laq̇aT i + LaQi,a(0) −
d

dτ

(
LaQi,a(1)

)
= 0 . (A.18)

A.1.2 Gauge systems are singular

The Noether identities (A.18) imply that the Lagrangian of a gauge system is singular3,

i.e., that L satisfies

det
∂2L
∂q̇a∂q̇b

= 0 . (A.19)

Indeed, using (A.2), equation (A.18) can be rewritten as [34]

0 =
∂2L
∂q̇a∂q̇l

q̈lq̇aT i − ∂2L
∂q̇a∂q̇l

q̈l
(
Qi,a(0) − Q̇

i,a
(1)

)
+

∂2L
∂q̇a∂q̇l

...
q lQi,a(1) + . . . , (A.20)

3As is well-known, the converse does not hold, i.e., not all singular systems exhibit gauge sym-
metries. In language of the Hamiltonian formulation to be reviewed next, one says that such systems
possess second-class constraints only (cf. §A.2.4).
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where . . . stands for terms that do not involve the Hessian ∂2L/∂q̇a∂q̇l. As (A.20)

must also hold for off-shell paths q(τ) (i.e., paths that do not satisfy La = 0), we may

take the derivatives of q(τ) at each instant as independent variables. In this way, the

terms in the right-hand side of (A.20) must vanish separately, and we conclude that

q̇aT i, Qi,a(0)− Q̇
i,a
(1) and Qi,a(1) are, if non-vanishing, components of null eigenvectors of the

Hessian.

A.2 Constrained dynamics

A.2.1 Primary constraints

If one is interested in the canonical quantum theory of gauge systems, one must first

understand how to construct a classical Hamiltonian formulation of systems with a

singular Lagrangian. The passage to the canonical theory is obtained from the usual

Legendre transform. One defines the momenta as

pa :=
∂L
∂q̇a

. (A.21)

For regular systems, the Hessian ∂2L/∂q̇a∂q̇l = ∂pb/∂q̇
a is invertible and the pairs (q, p)

serve as local canonical coordinates on the cotangent bundle Γ = T ∗Q (phase space).

The time evolution of a phase-space function f(q, p) is generated by the canonical

Hamiltonian,

Hc(q, p) := paq̇
a − L(q, q̇) , (A.22)

via the equation of motion

ḟ = {f,Hc} , (A.23)

where the Poisson bracket of two phase-space functions f(q, p) and g(q, p) is

{f, g} :=
∂f

∂qa
∂g

∂pa
− ∂f

∂pa

∂g

∂qa
. (A.24)

However, this construction does not hold for singular systems. Due to (A.19), it is not

possible to locally invert (A.21) to express all the velocities q̇ in terms of the coordinates

q and the momenta p. This is a consequence of the fact that the momenta, as defined
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in (A.21), obey a set of identities4

ϕm

(
q,
∂L
∂q̇

)
≡ 0 , (m = 1, . . . ,M) . (A.25)

To see that this is true, one can adopt the following procedure. Let the rank of

∂2L/∂q̇a∂q̇b = ∂pb/∂q̇
a be R < d and assume for simplicity that it is a constant

function of (q, q̇). Then, separate the coordinates (after a coordinate transformation,

if necessary) into q = (qi, qµ) where i = 1, . . . , R and µ = R + 1, . . . , d. Likewise,

p = (pj , pν), where j = 1, . . . , R and ν = R + 1, . . . , d. This separation is constructed

such that the R × R matrix ∂pj/∂q̇
i is invertible and one may locally solve (A.21) for

q̇i to find

q̇i = wi(q, pj , q̇
µ) , (A.26)

where wi are some functions of q, pj and q̇µ. The velocities q̇µ remain unsolved. If we

now insert (A.26) into the definition (A.21) of pν , we obtain5

pν = zν(q, q̇i, q̇µ) = zν(q, wi(q, pj , q̇
µ), q̇µ) = z̃ν(q, pj , q̇

µ) , (A.27)

where zν and z̃ν are some functions. In particular, if we Taylor-expand z̃ν about

q̇µ = q̇µ0 ,

pν = z̃ν(q, pj , q̇
µ
0 ) +

∂z̃ν
∂q̇µ′

∣∣∣∣
q̇µ=q̇µ0

(q̇µ
′ − q̇µ

′

0 ) + . . . , (A.28)

where . . . denotes higher powers of (q̇µ
′− q̇µ

′

0 ), we notice that we must have ∂z̃ν/∂q̇
µ ≡ 0

for all values of q̇µ. Otherwise, ∂z̃ν/∂q̇
µ has a non-zero rank, which implies that the

rank of ∂pb/∂q̇
a is larger than R and we arrive at a contradiction. Thus, we find the

relations

pν = z̃ν(q, pj) , (A.29)

which are called primary constraints. The adjective ‘primary’ is due to the fact that

they follow directly from the form of the Lagrangian and the equations of motion

La = 0 are not used in their definition, whereas they are constraints because they do

not involve velocities and only restrict the possible values of pν .

If we understand the unconstrained pairs (q, p) as local canonical coordinates on

the cotangent bundle Γ = T ∗Q, we may consider that the primary constraints define a

4We assume for simplicity that the identities (A.25) do not depend explicitly on time τ .
5Note that there is no summation over µ in (A.27).
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subspace Σ(1) in Γ. We designate the term ‘primary constraint subspace’ to Σ(1). If we

further suppose the constraints (A.29) define a submanifold that is smoothly embedded

in Γ, we refer to Σ(1) as the ‘primary constraint hypersurface’. As physical motions

must satisfy the constraints at all times, the cotangent bundle Γ plays only an auxiliary

role in the Hamiltonian formulation of singular systems. For this reason, we refer to Γ

as the ‘auxiliary phase space’.6 The ‘physical’ phase space will be considered in §A.3.

Finally, if we define M = d−R and m = ν −R, we may rewrite (A.29) as

ϕm(q, p) = pm+R − z̃m+R(q, pj) = 0 , (m = 1, . . . ,M) . (A.30)

If one substitutes pa = ∂L/∂q̇a, one recovers the identities (A.25) from (A.30). This

construction of the primary constraints is, however, often formal or inconvenient. For

example, one may wish to rewrite (A.29) such that some symmetry of the physical

system under consideration becomes manifest. In fact, as there are many equivalent

ways of defining a hypersurface, one can assume that the functions ϕm have a more

general form than in (A.30) and that they define the primary constraint subspace

implicitly. One may also adopt a redundant description in which the primary constraint

hypersurface is described by M > d−R relations. Then, the equations (A.29) or (A.30)

are regarded as solutions of the general primary constraints

ϕm(q, p) = 0 , (m = 1, . . . ,M ≥ d−R) , (A.31)

which should also reduce to identities [cf. (A.25)] after the substitution pa = ∂L/∂q̇a.

We make the simplifying assumption that no redundant constraints are present, i.e.,

that M = d − R. Moreover, we note that the identities (A.25) are directly related to

the null eigenvectors of the Hessian ∂2L/∂q̇a∂q̇b. Indeed, the equation

0 =
∂

∂q̇a
ϕm

(
q,
∂L
∂q̇

)
=

(
∂ϕm
∂pb

∂pb
∂q̇a

)
p=∂L/∂q̇

(A.32)

implies that V b
(m) = ∂ϕm/∂pb, when evaluated at pa = ∂L/∂q̇a, are a set of M vectors

annihilated by ∂pb/∂q̇
a = ∂2L/∂q̇a∂q̇b. Analogously, the equation

0 =
∂

∂qa
ϕm

(
q,
∂L
∂q̇

)
=
∂ϕm
∂qa

+

(
∂ϕm
∂pb

∂pb
∂qa

)
p=∂L/∂q̇

(A.33)

6The auxiliary phase space is also sometimes called the ‘kinematical’ or ‘unconstrained phase space’,
whereas the unconstrained pairs (q, p) can also be referred to as ‘kinematical variables’ or ‘partial
observables’ [16]. See also the discussion regarding the notion of observables in §1.7.
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implies that ∂ϕm/∂q
a can be determined in terms of a combination of the vectors V b

(m).

If we now assume that the 2d×M matrix ∂ϕm/∂(qa, pb) has finite elements and is of rank

M on the primary constraint hypersurface (known as a ‘regularity condition’ [33, 34]),

then we conclude from (A.33) that V b
(m) are M linearly independent vectors [otherwise

the rank of ∂ϕm/∂(qa, pb) would be less than M ]. The rank-nullity theorem then

implies that V b
(m) span the kernel of ∂pb/∂q̇

a. Consequently, if we can perform the

separation p = (pj , pν) that leads to the explicit solutions (A.29) of the general primary

constraints (A.31), then V ν
(m) = ∂ϕm/∂pν can be seen as an M ×M matrix of rank

less than or equal to M . If its rank were less than M , then it would not be possible to

locally solve the primary constrains for certain combinations of pν , which contradicts the

assumption that (A.29) can be found. Thus, if (A.29) can be found, V ν
(m) is an M ×M

matrix with rank M and, thus, it is invertible. In this case, we can rewrite (A.33) as

∂z̃ν
∂qa

= −V (m)
ν

∂ϕm
∂qa

, (A.34)

where V
(m)
ν :=

[
V ν

(m)

]−1
and a summation over m is implied. A similar result can be

obtained if we differentiate (A.31) with respect to pj ,

∂z̃ν
∂pj

= −V (m)
ν

∂ϕm
∂pj

. (A.35)

Both (A.34) and (A.35) are useful in the construction of the Hamiltonian for the con-

strained system.

A.2.2 The total Hamiltonian

A canonical Hamiltonian can now be defined in Σ(1) through the usual formula (A.22),

where one uses (A.26) and (A.29) as definitions of q̇i and pν . In this way, Hc is

understood as a function of the coordinates q and the momenta pj only. This implies

that

∂Hc

∂pν
= 0 , (A.36)

if pν is regarded as an independent variable. One also notes that Hc does not depend

on the velocities by virtue of (A.21). In particular, it does not depend on the unsolved

velocities q̇µ due to (A.21), (A.26) and (A.29), i.e.,

∂Hc

∂q̇µ
= z̃µ −

∂L
∂q̇µ

= 0 . (A.37)
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Similarly, one finds

∂Hc

∂pj
= q̇j +

∂z̃ν
∂pj

q̇ν ,

∂Hc

∂qa
= − ∂L

∂qa
+
∂z̃ν
∂qa

q̇ν = −ṗa +
∂z̃ν
∂qa

q̇ν ,

(A.38)

where we used the Euler-Lagrange equations La = 0 together with (A.21) in the last

equality. The set of d + R equations given in (A.38) is the analogue in Σ(1) of the

usual Hamilton equations of motion that are defined in Γ for unconstrained theories.

Using (A.34) and (A.35), we can rewrite (A.38) in terms of the more general primary

constrains ϕm,

q̇j =
∂Hc

∂pj
+ um

∂ϕm
∂pj

,

−ṗa =
∂Hc

∂qa
+ um

∂ϕm
∂qa

,

(A.39)

where we defined um := q̇νV
(m)
ν , from which we also obtain

q̇µ = umV µ
(m) =

∂Hc

∂pµ
+ um

∂ϕm
∂pµ

(A.40)

due to (A.36). From (A.39) and (A.40), we conclude that the time evolution of a

function f(q, p) defined on the auxiliary phase space Γ is given by the weak equality

ḟ ≈ {f,HT } , (A.41)

where the Poisson bracket is evaluated on Γ and we defined HT := Hc + umϕm, which

is called the total Hamiltonian. The equation (A.41) is valid due to the weak equal-

ity {·, umϕm} ≈ um{·, ϕm} (i.e., this is an identity that holds on Σ(1)). Furthermore,

whereas the canonical Hamiltonian Hc is only defined on the primary constraint sub-

space Σ(1), the total Hamiltonian HT can be evaluated in the auxiliary phase space Γ

(at least in a neighborhood of Σ(1)). Thus, HT is an extension of Hc off the primary

constraint hypersurface, and both Hamiltonians coincide when evaluated on Σ(1). This

is expressed by the weak equality HT ≈ Hc.

One can also extend other functions besides the canonical Hamiltonian. A function

fc defined on Σ(1) can be extended off the primary constraint subspace in an arbitrary

way. Let f be its extension to Γ. Due to the assumed regularity condition on ϕm, their

independence and the fact that V ν
(m) = ∂ϕm/∂pν is invertible, one can (locally) adopt

the general primary constraints as coordinates on Γ, such that f ≡ f(q, pj , ϕm). As f

is an extension of fc, we have the condition f(q, pj , 0) = fc(q, pj). Then the following
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identity holds7

f(q, pj , ϕm) = fc(q, pj) +

∫ 1

0
dx

d

dx
f(q, pj , xϕm)

= fc(q, pj) + ϕm

∫ 1

0
dx

1

x

∂

∂ϕm
f(q, pj , xϕm)

=: fc(q, pj) + vmϕm ,

(A.42)

where the last line defines the function vm, which is arbitrary due to the arbitrariness

of f . Note that vm might itself depend ϕm′ (m′ = 1, . . . ,M). We then conclude that

f − fc = vmϕm ≈ 0.

A.2.3 The Rosenfeld-Dirac-Bergmann algorithm

The time evolution of functions in the auxiliary phase space dictated by (A.41) is

consistent if the primary constraints are preserved in time, i.e.,

ϕ̇m ≈ {ϕm, Hc}+ um
′{ϕm, ϕm′} ≈ 0 . (A.43)

These equations should be solved to give the form of um
′
. However, it might be the

case that some of the equations (A.43) are independent of um
′

and that they, in fact,

lead to new constraints on the pairs (q, p). The new constraints that are not redundant

with respect to the original set of primary constraints are referred to as secondary

constraints. The adjective ‘secondary’ is used to convey the fact that the equations

of motion are used in their definition. If secondary constraints are present, one must

now ensure that their evolution is consistent by requiring that their time derivative

vanishes on the primary constraint subspace. This may lead to new conditions on the

um
′
-functions or to new secondary (sometimes called tertiary) constraints, which must

be consistent. The iterative process of requiring consistency of the evolution of primary

and secondary constraints (including those that are sometimes called tertiary or that

have higher designations) is the Rosenfeld-Dirac-Bergmann algorithm [9,12,33,34,49].

The procedure stops when the consistency of the evolution of all constraints is obtained.

If it is not possible to ensure the consistency of a constraint, then the theory associated

with the action (A.1) is inconsistent, a possibility which we discard.

Let there be K secondary constraints at the end. It is useful to denote all primary

and secondary constraints with the same notation. Thus, we denote secondary con-

straints as ϕk(q, p) for k = M + 1, . . . ,M +K, such that all constraints can be written

as ϕl(q, p) for l = 1, . . . ,M + K. Furthermore, a number of simplifying assumptions

7See Theorem 1.1 and Appendix 1.A of [33] for details as well as a global construction of this
extension.
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can be made. We assume that: (1) the subspace Σ defined by all constraints (i.e., by

ϕl = 0) is a smooth submanifold embedded in the auxiliary phase space Γ; (2) the ma-

trix ∂ϕl/∂(qa, pb) has finite elements and is of rank M +K on Σ (regularity condition);

(3) the rank of {ϕl, ϕl′} is constant on Σ; (4) there are no redundant constraints among

ϕl(q, p).

What can be said of the form of the functions um that are determined in this

procedure? They must be solutions of the following inhomogeneous system,

{ϕl, Hc}+ um{ϕl, ϕm} ≈ 0 . (A.44)

The general solution of (A.44) reads

um = um(part) + λAumA , (A.45)

where um(part) is a particular solution of (A.44) and umA is a set of linearly indepen-

dent solutions of the corresponding homogeneous equation umA {ϕl, ϕm} ≈ 0. Due to

the hypothesis that {ϕl, ϕl′} has constant rank on the subspace Σ defined by all the

constraints, the number of independent solutions umA is constant on Σ. The coeffi-

cients λ can be taken to be arbitrary functions on the auxiliary phase space. The total

Hamiltonian can now be written as

HT = Hc + umϕm = Hc + um(part)ϕm + λAumAϕm . (A.46)

The notation can be simplified if we define H ′ := Hc+um(part)ϕm and ϕA := umAϕm. We

thus obtain

HT = H ′ + λAϕA , (A.47)

which dictates the time evolution according to (A.41). After the Rosenfeld-Dirac-

Bergmann algorithm is completed and the total Hamiltonian is expressed as in (A.47),

we have a constrained canonical theory with M + K constraints ϕl and a number of

arbitrary functions λ in the most general case. Moreover, by repeating the derivation

of (A.42) for all the constraints (instead of only the primaries), one can extend a

function f |Σ defined on Σ to the auxiliary phase space by f − f |Σ = vlϕl.

A.2.4 First-class and second-class functions. The initial value

problem

It is also useful to introduce the concepts of first-class and second-class functions. A

function f on the auxiliary phase space Γ is said to be first class if it weakly Poisson-
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commutes with all the constraints, i.e., if it satisfies {f, ϕl} = vl
′
l ϕl′ ≈ 0 for l =

1, . . . ,M +K. If f is not first class, then it is said to be second class. Using the Jacobi

identity for Poisson brackets, it is straightforward to see that the Poisson bracket of two

first-class functions is also first class [33]. We note that both H ′ and ϕA defined above

are first class due to (A.44) and the homogeneous equation umA {ϕl, ϕm} ≈ 0. Thus, the

total Hamiltonian is first class. This clarifies the role of the constraints as restrictions

on the possible initial data of physical motions. Indeed, once the initial conditions

(q(τ0), p(τ0)) are chosen at an arbitrary instant of time τ0 such that ϕl(q(τ0), p(τ0)) =

0, then the constraints are satisfied at all times regardless of the choice of arbitrary

functions λ due to the fact that HT is first class.

Let us now assume that it is possible to separate all the constraints ϕl into a set

of first-class constraints CF (F = 1, . . . , NF ) and a set of second-class constraints χS

(S = 1, . . . , NS) such that NF + NS = M + K. In principle, this can be achieved

by the following iterative procedure (see [33] for details). We start with the matrix

{ϕl, ϕl′}, which is assumed to have constant rank on Σ. If det{ϕl, ϕl′} ≈ 0, there exists

a non-trivial solution to vl{ϕl, ϕl′} ≈ 0 and C1 := vlϕl is first class. Subsequently, we

consider the determinant of the matrix of Poisson brackets of all the constraints that are

independent from C1. If this determinant is weakly zero, we can define C2 and repeat

the procedure. The iterations stop when the determinant no longer vanishes weakly,

such that the remaining constraints χS are second class. As the matrix {ϕl, ϕl′} is

antisymmetric, the number NS of second-class constraints must be even. The number

NF of first-class constraints is larger than or equal to the number of arbitrary functions

λ, which is the number of first-class primaries. The first-class constraints then obey

{CF , CF ′} = cF
′′

FF ′CF ′′ +O(χ2) ≈ 0 , (A.48)

for some functions cF
′′

FF ′ . As the Poisson bracket of two first-class quantities is also first

class, the right-hand side of (A.48) cannot depend on χS (S = 1, . . . NS), but in general

may include quadratic (and higher-order) terms of the second-class constraints.

We can in principle eliminate the second-class constraints from the theory by ex-

tending functions f 7→ f + vlϕl in a particular way (for a particular choice of vl).

Indeed, the matrix χSS′ := {χS , χS′} is by construction invertible on Σ. We denote the

inverse by χSS
′
. We now define the function

fD(q, p) := f(q, p)− {f, χS}χSS
′
χS′ , (A.49)

which we refer to as the ‘Dirac extension’ of f(q, p). It is straightforward to verify

that Dirac extensions have the following properties: (1) {fD, χS} ≈ 0; (2) {fD, CF } ≈
{f, CF }; (3) the Poisson bracket of the Dirac extensions of f and g satisfies the weak

equality {fD, gD} ≈ {f, g} − {f, χS}χSS
′{χS′ , g} =: {f, g}D, where {·, ·}D is called
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the ‘Dirac bracket’ of f and g; (4) if f is a first-class function, then fD ≈ f . Conse-

quently, if all (auxiliary) phase-space functions are replaced by their Dirac extensions or,

equivalently, all Poisson brackets are replaced by the Dirac brackets, the second-class

constraints are effectively eliminated from theory, since all Dirac extensions weakly

Poisson-commute with them. If NF > 0, we are thus left with a theory containing

solely first-class constraints and arbitrary functions λ. How are these functions related

to a gauge symmetry? This is what we examine next. In what follows, we tacitly

assume that all functions have been replaced by their Dirac extensions, such that no

second-class constraints need to be considered.

A.2.5 Reference frames and the gauge generator

Due to the presence of the arbitrary functions λ in (A.47), the evolution of a function

f(q, p) defined on the auxiliary phase space [cf. (A.41)] is not deterministic. For a fixed

initial condition f(q(τ0), p(τ0)) specified at a particular instant τ0, different evolutions

are obtained for different choices of λ. We may think of each choice as corresponding to

a ‘generalized reference frame’. Although the evolution is well-defined once a choice is

made, the formalism does not select any preferred frame. Let us consider two choices,

λA(1) and λA(2), and denote the corresponding evolutions as f(q(1,2)(τ), p(1,2)(τ)). The

difference of the function from one frame to the other at a certain instant of time is given

by the same-instant variation δf(q(τ), p(τ)) := f(q(2)(τ), p(2)(τ)) − f(q(1)(τ), p(1)(τ)).

Likewise, we denote δλA := λA(2) − λ
A
(1) and use the symbol {·, ·}(1,2) for the Poisson

bracket taken with respect to the variables in each frame.

As the evolution in each frame is a canonical transformation [generated by HT =

H ′ + λA(1,2)ϕA], we may consider that a change of frame from λA(1) to λA(2) is the

composition of canonical transformations, namely, the evolution of f(q(1)(τ), p(1)(τ))

back to f(q(τ0), p(τ0)) and the evolution of this initial value to f(q(2)(τ), p(2)(τ)) [50].

This motivates us to consider that the change of frame is a canonical transforma-

tion, δf := {f,G}(1), where the generator G ≡ G(q(1)(τ), p(1)(τ), τ) must now be

constructed.

We begin by noting that the constraints must be satisfied in all frames. Thus, we

must have {G,ϕl} ≈ 0 (j = 1, . . . ,M + K), i.e., G must be first class. Furthermore,

due to the fact that δ commutes with d/dτ [cf. (A.11)], we have the equality [50]

{{f,G}(1), HT }(1) +

{
f,
∂G

∂τ

}
(1)

≈ dδf

dτ

= δ
df

dτ
≈ {f,HT }(2) − {f,HT }(1) + δλA{f, ϕA}(1) .

(A.50)

Note that we denoted HT = H ′ + λA(1)ϕA everywhere in (A.50), and we also used the
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equality δλA{f, ϕA}(2) = δλA{f, ϕA}(1) for infinitesimal variations δλA. If we now use

{f,HT }(2) − {f,HT }(1) = δ{f,HT } = {{f,HT }(1), G}(1) (A.51)

together with the Jacobi identity for the Poisson brackets [50], we may rewrite (A.50)

as {
f,
∂G

∂τ
+ {G,HT }(1) − δλAϕA

}
(1)

≈ 0 . (A.52)

As (A.52) holds for any auxiliary phase-space function f(q(τ), p(τ)), it is equivalent to

the equation

∂G

∂τ
+ {G,HT }(1) − δλAϕA = I(q, p, τ) , (A.53)

where I(q, p, τ) is a generator of the identity on the constraint hypersurface (‘on-shell

identity generator’), i.e., it satisfies the conditions [48]

∂I
∂qa

= vjaϕl +O(ϕ2) ,
∂I
∂pa

= ṽj,aϕl +O(ϕ2) , (a = 1, . . . , d) , (A.54)

for certain functions vja and ṽj,a, such that {f, I} ≈ 0 holds for any auxiliary phase-

space function f(q(τ), p(τ)). Note that a linear combination ck(τ)Ik of on-shell identity

generators with coefficients ck(τ) that only depend on time is still an on-shell identity

generator. Let us now use the notation pfcc to denote any (arbitrary) linear com-

bination of primary first-class constraints [50], e.g., δλAϕA ≡ pfcc. We identify the

term ‘primary first-class constraint’ with the expression ‘linear combination of primary

first-class constraints’. We also write

{G,HT }(1) = {G,H ′}(1) + λA(1){G,ϕA}(1) + pfcc . (A.55)

If we assume that G does not depend explicitly on the choice of λA(1), then we obtain

the following conditions on the generator [48–50],

G is first class ,

∂G

∂τ
+ {G,H ′} = pfcc + I(q, p, τ) ,

{G,ϕA} = pfcc + Ĩ(q, p, τ) .

(A.56)

due to (A.53) and (A.55). In (A.56), we have dropped the subscript from the Poisson

bracket, and I, Ĩ are on-shell identity generators. To conform with the first-class con-
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dition, we must have Ĩ ≈ 0. Any auxiliary phase-space function G(q(τ), p(τ), τ) that

fulfils the conditions (A.56) is the generator of a symmetry transformation (it maps

solutions into solutions [50]) and it can also be interpreted as the generator of a change

of generalized reference frames.

As the reference frames are specified by a choice of the arbitrary functions λ, a

change of frame is a symmetry that will generally involve arbitrary functions of time

and, thus, constitute a gauge transformation. Thus, gauge transformations of fields

[cf. (A.4)] can be represented weakly as canonical transformations generated by G in

the auxiliary phase space Γ. Let us consider gauge transformations that are solely field

redefinitions, i.e., which do not involve time reparametrizations. From (A.4) and (A.9)

with T i = 0, we obtain

{q,G} = δq(τ) ≡ δq(τ) =
n∑
j=0

Qi(j)(τ)
djεi
dτ j

. (A.57)

This motivates us to make the ansatz G =
∑n

j=0G
i
(j)d

jεi/dτ
j , where Gi(j) ≡ G

i
(j)(q, p)

are first-class auxiliary phase-space functions. Note that the arbitrary functions ε(τ)

are related to the change δλA in the functions that determine a reference frame through

(A.53). As εi(τ) and its derivatives are independent variables at a fixed instant, one

can use (A.56) to define Gi(j) recursively [48,50]. We find

{Gi(j), ϕA} = pfcc + Ĩi(j) , (j = 0, . . . , n) , (A.58)

as well as

Gi(n) = pfcc + Ii(n) ,

Gi(j−1) = −{Gi(j), H
′}+ pfcc + Ii(j−1) , (j = 1, . . . , n) ,

{Gi(0), H
′} = pfcc + I ′ i(0) .

(A.59)

In this way, we find that Gi(n) is a linear combination of primary first class constraints

(up to an on-shell identity generator) and, therefore, {Gi(n), H
′} is either a linear com-

bination of primary constraints or a secondary constraint. By following this argument

recursively, we conclude from (A.59) that Gi(j) (j = 0, . . . , n − 1) are first-class linear

combinations of primary and secondary constraints (up to on-shell identity generators).

Since the weak equality {f,Gi(j)−I
i
(j)} ≈ {f,G

i
(j)} holds for any auxiliary phase-space

function and for j = 0, . . . , n, we may neglect8 Ii(j) and, analogously, Ĩi(1), I
′ i
(0).

8The specific form of the on-shell identity generators could be relevant for examples involving
the calculation of several nested Poisson brackets of G before evaluating the result on the constraint
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Furthermore, the number of independent choices for Gi(n) is the same as the number

of independent primary first class constraints, which is the number of arbitrary func-

tions λ in the dynamics. Thus, the index i should range over the same set of values

as the index A. In general, we can then define Gi(n) := gi(n),Aϕ
A, where gi(n),A is an

invertible matrix, e.g., gi(n),A = δiA. It is also straightforward to conclude that the

minimum value of n for which the recursive algorithm (A.59) is consistent is equal to

the number of generations of first-class constraints that arise in the Rosenfeld-Dirac-

Bergmann algorithm that are not primary [48]. The corresponding G is then a ‘minimal

gauge generator’ or ‘minimal chain’. By summing minimal chains, one can construct

non-minimal generators [48]. We will only consider minimal generators, which are then

linear combinations of all the independent first-class constraints (that obey the regu-

larity conditions) of the theory. Due to the independence of the arbitrary functions

ε(τ) and their derivatives for a fixed instant and due to the construction (A.59), we

thus find that a minimal gauge generator can be written as

G :=

n∑
j=0

Gi(j)
djεi
dτ j

= vFCF , (A.60)

for some functions vF , at a fixed instant. For example, our earlier simplifying as-

sumption that n = 1 [cf. (A.18)], for which G = εi(τ)Gi(0) + ε̇i(τ)Gi(1), corresponds to

assuming that there is only one generation of secondary first-class constraints if G is

minimal.

A.2.6 Gauge orbits and gauge invariance

Given a (minimal) gauge generator G, we may iterate the infinitesimal transformations

δf = {f,G} to obtain a finite gauge transformation of the auxiliary phase-space func-

tion f(q(τ), p(τ)). Indeed, by integrating δf = {f,G} on the constraint hypersurface,

we obtain a continuous family of gauge-related functions, which may be interpreted as

representations of f(q(τ), p(τ)) in different generalized reference frames. We refer to

the family of gauge-related points in the constraint hypersurface as a ‘gauge orbit’ [33].

A finite gauge transformation corresponds to a ‘finite displacement’ along the gauge

orbit.9

Gauge orbits are weakly equal to the integral curves of the vector field XG := {·, G}
associated with a (minimal) gauge generator. From (A.60), we find XG ≈ vF {·, CF } =:

vFXF at a fixed instant. Due to the assumed independence and regularity conditions on

hypersurface. This will not be considered here.
9We only consider finite gauge transformations that are continuously connected to the on-shell

identity transformation (‘small-gauge transformations’). There may be finite transformations that
are not continuously connected to the identity (‘large-gauge transformations’), but these will not be
analyzed here [33].
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the constraints, the vectors XF are linearly independent and their integral curves can

be considered as independent gauge orbits (at a fixed instant). Moreover, from (A.48)

and the Jacobi identity for the Poisson brackets, we find that the vectors XF obey the

Frobenius integrability condition, i.e., [XF , XF ′ ]f = {f, cF ′′FF ′CF ′′+O(χ2)} ≈ cF ′′FF ′XF ′′f

for any auxiliary phase-space function f . This implies that their gauge orbits can be

used to foliate the constraint hypersurface, i.e., it is possible to find local coordinates

(ξ, t) on Σ such that the integral curves of XF are described by ξr = const. (r =

1, . . . , R := 2d−M −K −NF ), whereas tF (F = 1, . . . , NF ) are the parameters along

the integral curves.

As before, due to the independence and regularity conditions satisfied by the con-

straints, we may adopt ϕl as coordinates on Γ. We notice that both the first-class CF

and second-class χS constraints are collectively denoted by ϕl. In this way, we can lo-

cally extend the coordinate system (ξ, t) on Σ to a system z = (ξ, t, ϕ) on the auxiliary

phase space. More precisely, we extend (ξ, t) to functions in the auxiliary phase space

as follows,

ξr 7→ ξ′r = ξrD + {ξrD, tFD}CF , tF 7→ tFD , (A.61)

where ξrD and tFD are the Dirac extensions of ξr and tF with respect to the second-class

constraints χS [cf. (A.49)]. As tF are the curve parameters, we must have {tFD, CF ′} =

XF ′t
F
D ≈ δFF ′ . Then (A.61) implies that {ξ′r, tFD} ≈ 0. Moreover, as ξ are constant along

the gauge orbits of XF , we obtain XF ξ
′r = {ξ′r, CF } ≈ 0. Thus, ξ′r are first class by

construction. For simplicity, we drop the D subscript of tFD and the prime superscript

of ξ′r in what follows. The z coordinates are then defined as zr := ξr, zR+F := tF ,

zR+NF+F := CF , zR+2NF+S = χS . As these coordinates are generally not canonical,

the Poisson brackets (A.24) become

{f, g} = ωβγ ∂f

∂zβ
∂g

∂zγ
, (A.62)

where f, g are tacitly understood as Dirac extensions of a pair of auxiliary phase-space

functions with respect to the χS constraints. The coefficients ωβγ = {zβ, zγ} are the

components of an invertible antisymmetric tensor that only equals diag(0̂, 1̂,−1̂, 0̂) if

the coordinates are canonical. In particular, we have

ωR+NF+F,R+2NF+S = {CF , χS} ≈ 0 . (A.63)
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By construction, we also obtain

ωr,R+NF+F = {ξr, CF } ≈ 0 , ωr,R+2NF+S = {ξr, χS} ≈ 0 ,

ωR+F,R+NF+F ′ = {tF , CF ′} ≈ δFF ′ , ωR+F,R+2NF+S = {tF , χS} ≈ 0 ,

ωr,R+F = {ξr, tF } ≈ 0 .

(A.64)

These components will be useful for the definition of the symplectic form in the physical

phase space in §A.3. It is also useful to note the relation

XF = {·, CF } = ωβγ ∂CF
∂zγ

∂

∂zβ
≈ ∂

∂tF
, (A.65)

which is a consequence of (A.62), (A.63) and (A.64). Equation (A.65) implies that XF

is tangent to the constraint hypersurface Σ.10

The first relation in (A.64) implies that {ξ,G} ≈ 0 at a fixed instant due to (A.60).

More generally, we can introduce the following definition.

Definition A.1 (Gauge invariance). A function f defined on the auxiliary phase space

is said to be ‘gauge invariant’ if it weakly Poisson-commutes with every gauge generator,

i.e., if {f, CF } ≈ 0 at every instant, which leads to δf = {f,G} ≈ 0. Consequently, the

functional form of f does not change under a general gauge transformation.

Remark A.1. Gauge-invariant quantities are also customarily referred to as ‘Dirac ob-

servables’. This terminology is a priori unrelated to the definition of the physical

observables of a gauge theory (cf. the discussion in §1.7) and it is not to be confused

with the Dirac extensions defined in (A.49).

Remark A.2. From (A.60), (A.62) and (A.64), we conclude that the restriction of a

first-class (and, therefore, gauge-invariant) quantity to the constraint hypersurface can

be written as a function solely of ξ coordinates.

As the total Hamiltonian is first class, it follows from (A.47) and Remark A.2 that

HT = H ′(ξ, ϕ) + λAϕA =: H0(ξ) +H l
1(ξ)ϕl + λAϕA +O(ϕ2) , (A.66)

where, in constrast to λ, the H1 functions are determined (not arbitrary). The evolution

10In general, a vector field X is tangent to Σ if Xϕl ≈ 0 (l = 1, . . . ,M+K). The vector fields XS :=
{·, χS} associated with the second-class constraints are not tangent to Σ because XSϕl = {ϕl, χS} does
not vanish weakly for at least one value of l.
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of the z coordinates is then easily computed from (A.62), (A.63) and (A.64). We find

ξ̇r = {ξr, HT } = ωβγ ∂ξ
r

∂zβ
∂HT

∂zγ
= ωr,r′ ∂HT

∂ξr′
≈ ωr,r′ ∂H0

∂ξr′
,

ṫF = {tF , HT } = ωβγ ∂t
F

∂zβ
∂HT

∂zγ
≈ δFl H l

1 + δFAλ
A ,

ϕ̇l = {ϕl, HT } ≈ 0 .

(A.67)

The last equality holds by construction, due to the Rosenfeld-Dirac-Bergmann algo-

rithm (cf. §A.2.3).

A.2.7 Gauge fixing and invariant extensions

The presence of first-class constraints and arbitrary functions λ in the total Hamilto-

nian (A.47) are distinguishing marks of a gauge symmetry. Depending on the physical

question being asked, it may be useful to impose extra constraints that fix λ and re-

move the arbitrariness of the evolution dictated by (A.41). This procedure is called

‘gauge fixing’ (or ‘gauge fixation’) and the extra constraints are referred to as ‘gauge

conditions’ (or ‘gauges’ for brevity). As is also discussed in Chapter 1, the choice of

gauge conditions can be seen as a choice of the generalized reference frame relative to

which the dynamics (A.41) is analyzed.

In principle, one may choose conditions χ that depend explicitly on time, on the

local coordinates on the auxiliary phase space Γ as well as on the arbitrary functions

λ, and on a number of their time derivatives, i.e.,

χ(q, q̇, . . . , p, ṗ, . . . , λ, λ̇, . . . , τ) = 0 . (A.68)

In particular, gauge conditions χ(q, p, τ) that only depend on time and on the local

canonical coordinates on Γ are referred to as ‘canonical gauge conditions’ (or ‘canonical

gauges’ for brevity). In what follows, we tacitly focus on canonical gauges for simplicity.

We also assume that all the chosen gauge conditions are independent, i.e., that there

are no redundant constraints among the (A.68).

In order for a set of gauge conditions to be admissible, it must satisfy two consistency

requirements [33]. First, the conditions need to be accessible: if we start from an

arbitrary reference frame, i.e., an arbitrary set of local coordinates on Γ and arbitrary

functions λ, it must be possible to reach a set that satisfies (A.68) by a finite gauge

transformation determined by a well-defined choice of the functions ε(τ). Second,

the only gauge transformation that leaves (A.68) invariant is the (on-shell) identity

transformation. In this case, we say that the conditions (A.68) form a complete gauge

fixing.

Once a canonical gauge is fixed, the functions λ are determined by requiring that
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the gauge is preserved by the dynamics, i.e., χ̇ = ∂χ/∂τ + {χ,HT } ≈ 0 [cf. (A.73)

and (A.74)]. How many (independent) conditions are necessary to form a complete

gauge fixing? At first, one might suppose that the number of gauge conditions should

be equal to the number of arbitrary functions λ to be fixed, which is the number of

primary first-class constraints. However, in this case, the consistency conditions

0 ≈ {χ,G} =

n∑
j=0

djεi
dτ j

{
χ,Gi(j)

}
(A.69)

generally lead to a set of differential equations for the ε(τ) functions, but do not de-

termine their initial values. Different choices of the initial values may lead to gauge

transformations that are different from the identity and that preserve the chosen gauge

conditions. In this way, one needs to impose further gauge conditions to fix the initial

values of ε(τ) [49]. Thus, the number of gauge conditions must be sufficient to fix

the values of ε(τ) and their first n time derivatives at every instant of time. As was

discussed in the previous section (§A.2.5), the number of these values is equal to the

number of independent (primary and secondary) first-class constraints in the theory

(for a minimal generator). Therefore, the number of independent gauge conditions

must be equal to NF [33].

Given the (canonical) gauge conditions χF (F = 1, . . . , NF ), equation (A.69) will

reduce to the on-shell identity if the only solution is djεi/dτ
j = 0 (j = 0, . . . , n) at

every instant. This is fulfilled if the determinant of {χF , Gi(j)} is non-vanishing. For a

minimal generator, we obtain the equivalent requirement

det {χF , CF ′} 6= 0 , (A.70)

due to (A.56). Due to (A.65), equation (A.70) is equivalent to

0 6= detXF ′χF ≈ det
∂χF
∂tF ′

. (A.71)

The determinant in (A.70) and (A.71) is called the ‘Faddeev-Popov determinant’ [20,

21]. It is worthwhile to mention that it may be impossible to choose gauge conditions

such that (A.70) is satisfied globally in the auxiliary phase space Γ, and one may have

to admit the possibility that (A.70) or (A.71) is fulfilled only locally, i.e., only in a

certain region of Γ. This problem is referred to as the ‘Gribov obstruction’ or ‘Gribov

problem’ [33]. Due to this obstruction, one sees that the gauge choices (choices of

generalized reference frames) are generally only of an approximate nature.

Let Γ|χ denote the subspace of Γ defined by the canonical gauge conditions and let

Σ|χ represent the intersection of Γ|χ with the constraint hypersurface Σ. Once a set of
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gauge conditions is fixed, we interpret the restriction f |χ of an auxiliary phase-space

function f to Σ|χ as the description of f in a particular reference frame and we refer

to f |χ as a ‘gauge-fixed quantity’ or a ‘gauge-fixed function’.

Let us now adopt the local coordinate system z = (ξ, t, ϕ), for which the Poisson

brackets are given in (A.62). We can then write an auxiliary phase-space function as

f ≡ f(ξ, t, ϕ) and the canonical gauge conditions read χ(ξ(τ), t(τ), ϕ(τ), τ). As a set

of admissible gauges χ defines a single reference frame, it must select a single point

in each gauge orbit. Thus, the conditions χ(ξ(τ), t(τ), ϕ(τ) = 0, τ) = 0 must have a

solution for the t coordinates, i.e., they must imply

tF = tFχ (ξ(τ), τ) , (F = 1, . . . , NF ) , (A.72)

in a region where (A.71) holds. Here, tχ is some function for which χ(ξ(τ), tχ, ϕ(τ) =

0, τ) is identically zero. To see that the solution (A.72) fixes the arbitrary functions λ

in the dynamics, we use (A.67) to obtain

δFl H
l
1 + δFAλ

A ≈ ṫF = ṫFχ . (A.73)

Moreover, by requiring that χ(ξ, tχ, ϕ, τ) ≡ 0 is preserved by the evolution (χ̇ ≈ 0), we

find

ṫFχ ≈

[(
∂χ

∂t

)−1
]F,F ′ (

−∂χF
′

∂τ
− ∂χF ′

∂ξr
ξ̇r
)
. (A.74)

Equations (A.73) and (A.74) imply that the functions λ are now determined in terms

of the functions H1 and tχ or, equivalently, H1 and χ.

Given an auxiliary phase-space function f(ξ(τ), t(τ), ϕ(τ), τ), the corresponding

gauge-fixed quantity is f |χ ≡ f(ξ(τ), tχ, ϕ(τ) = 0, τ). Due to (A.72), one sees that

gauge-fixed quantities only depend on ξ and τ and are, therefore, gauge invariant.

More precisely, we can define the function

O[f |χ](ξ(τ), t(τ), τ) := f(ξ(τ), tχ, ϕ(τ) = 0, τ) ≡ f |χ , (A.75)

which is constant along the gauge orbits. The function O[f |χ] may be seen as a par-

ticular extension of f |χ off of Σ|χ, one that is the same in every reference frame. We

refer to O[f |χ] as the ‘invariant extension of f in the gauge χ’. Although it is defined

as a function on the constraint hypersurface Σ, one can extend O[f |χ] to the auxiliary

phase space in the usual way, O[f |χ] 7→ O[f |χ] + vlϕl, given a choice of vl.

The following simple fact must, however, be emphasized. The functional relation
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between the invariant extension O[f |χ] and its “seed” function f (when both are un-

derstood as auxiliary phase-space functions) in general depends on the chosen gauge

conditions χ [33, 76]. This motivates us to introduce the following notion, which plays

a key role in the definition of observables analyzed in §1.7.

Definition A.2 (Gauge (in)dependence). A function defined on the auxiliary phase

space is said to be ‘gauge dependent’ if its physical interpretation depends on a choice

of canonical gauge conditions. Gauge dependent functions are, therefore, relational

quantities, as they are to be interpreted with respect to a certain reference frame.

Functions that are not gauge dependent are said to be ‘gauge independent’.

Remark A.3. Due to (A.75), one may take the terms ‘relational’, ‘gauge dependent’

and ‘gauge-fixed’ as synonyms.

We stress that the two definitions A.1 and A.2 are distinct. In particular, a function

may be gauge invariant but not gauge independent: its physical interpretation may

refer to a choice of gauge, even though its functional form may not change under

a general gauge transformation. In general, invariant extensions are simultaneously

gauge-invariant and gauge-dependent (relational) quantities. The relevance of gauge-

dependent functions depends on the ontology and the definition of observables of the

theory.

It is frequently more useful to write O[f |χ] in terms of the function f written in an

arbitrary frame, i.e., for an arbitrary value of the t coordinates. This can be achieved

by the formula

O[f |χ] =

∫
dt

∣∣∣∣det
∂χF
∂tF ′

∣∣∣∣ NF∏
F=1

δ(χF (ξ, t, ϕ = 0, τ))f(ξ, t, ϕ = 0) , (A.76)

where we have omitted the τ -arguments of each function for simplicity and we adopted

the shorthand notation dt ≡
∏NF
F ′=1 dtF

′
for the measure of integration over the values

of tF
′

at a fixed instant. The delta functions of χF serve to fix the gauge, whereas the

Jacobian factor
∣∣∣det ∂χF /∂t

F ′
∣∣∣ is included in order to change the variables from t to χ,

which is permissible in regions where (A.71) is satisfied. One can then integrate (A.76)

to recover (A.75). From (A.75) and (A.76), we see that invariant extensions have the

following general properties: (1) they are defined on the constraint hypersurface Σ but

can be extended to the auxiliary phase space Γ; (2) they can be written in terms of

an arbitrary gauge but coincide with f |χ once restricted to Σ|χ; (3) they are gauge

invariant.

As the Jacobian factor in (A.76) is also a function of the (ξ, t) coordinates, we can
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replace it by its gauge-fixed value due to the delta functions, i.e.,

∣∣∣∣det
∂χF
∂tF ′

∣∣∣∣ (ξ(τ), t(τ), ϕ(τ) = 0, τ) 7→ ∆χ :=

∣∣∣∣det
∂χF
∂tF ′

∣∣∣∣ (ξ(τ), tχ, ϕ(τ) = 0, τ) . (A.77)

The quantity ∆χ can be seen as an invariant extension of the Faddeev-Popov determi-

nant given in (A.70) and (A.71). Whenever there is no risk of confusion, we will simply

refer to ∆χ as the Faddeev-Popov determinant. Note that ∆χ also satisfies the identity

∆−1
χ =

∫
dt

NF∏
F=1

δ(χF (ξ, t, ϕ = 0, τ)) =

∣∣∣∣det
∂χF
∂tF ′

∣∣∣∣−1

(ξ, tχ, ϕ = 0, τ) , (A.78)

in regions where the gauge is admissible, i.e., where (A.70) and (A.71) are fulfilled.

Note that we have once again omitted the τ -arguments of each function in (A.78).

Equation (A.78) can also be taken as the definition of ∆χ in terms of an average of

the gauge-fixing delta functions taken over the gauge orbits. Due to (A.78), we can

rewrite (A.76) as

O[f |χ] = ∆χ

∫
dt

NF∏
F=1

δ(χF (ξ, t, ϕ = 0, τ))f(ξ, t, ϕ = 0)

=

∫
dt
∏NF
F=1 δ(χF (ξ, t, ϕ = 0))f(ξ, t, ϕ = 0, τ)∫

dt
∏NF
F=1 δ(χF (ξ, t, ϕ = 0))

.

(A.79)

From (A.76) or (A.79), we see that the invariant extension of the identity function is

still the identity, i.e., O[1|χ] ≡ 1, as it should be. Equations (A.76) and (A.79) make it

clear that invariant extensions can be obtained by writing gauge-fixed functions in an

arbitrary gauge by means of an average taken over the gauge orbits. This motivates us

to consider the more general objects

Oω(ξ(τ), τ) :=

∫
dt ω(ξ(τ), t(τ), ϕ(τ) = 0, τ) , (A.80)

which are averages of functions ω(ξ(τ), t(τ), ϕ(τ), τ) over the gauge orbits. One sees

that (A.79) is a particular case of (A.80). Equation (A.80) yields an invariant if the

following equality is satisfied at each instant,

XFOω =

∫
dt {ω,CF } ≈

∫
dt

∂ω

∂tF
= 0 . (A.81)

Evidently, the validity of (A.81) depends on the region of the gauge orbits over which

one integrates and on the boundary conditions of ω for different values of tF . Both (A.79)
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and (A.81) are considered in the analysis of Chapter 1.

A.3 The reduced phase space and its quantization

As was mentioned in §A.2, the cotangent bundle Γ = T ∗Q plays an auxiliary role in

the Hamiltonian theory of constrained systems because all physical trajectories must be

defined on the constraint hypersurface Σ. Consequently, one might expect that Σ could

play the role of a ‘physical’ phase space. However, this is not true because the constraint

hypersurface does not inherit a well-defined Poisson-bracket structure [33]. This can be

easily seen if we adopt the local coordinates z = (ξ, t, ϕ) in Γ. The components ωβγ of

the symplectic form in Γ are defined by ωβγω
γη = δηβ, where ωγη defines the Poisson

brackets according to (A.62). The induced two-form on Σ then has the components ωβ̄γ̄ ,

where the indices β̄, γ̄ are restricted to run over the values of the coordinates ξ, t only.

If this induced two-form were invertible, one would be able to define a Poisson-bracket

structure from its inverse. However, by using (A.63), (A.64) and (A.65) together with

the antisymmetry of ωβγ , we find that ωβ̄γ̄X
γ̄
F = ωβ̄γ̄ω

γ̄,R+NF+F ≈ ωβ̄γω
γ,R+NF+F =

δR+NF+F
β̄

= 0. In this way, XF are null eigenvectors of the induced two-form on Σ,

which is thus not invertible (see [33] for further details).

Nevertheless, the fact that the constraint hypersurface can be foliated by the integral

curves of XF suggests that we may take the quotient of Σ by the orbits of XF . As is

well-known [33], this quotient space has a well-defined Poisson-bracket structure and,

therefore, it serves as the ‘physical’ phase space of a constrained theory. We will denote

it by Γphys and assume that it is a C∞-manifold. As it is a quotient space, the physical

phase space is also frequently called the ‘reduced phase space’ [33].

The Poisson-bracket structure on Γphys can be derived from the auxiliary phase-

space brackets ωr,r′ = {ξr, ξr′}. Indeed, ξ can be interpreted as local coordinates on

the quotient space. Furthermore, although ξ and ωr,r′ were defined as functions on the

auxiliary phase space, due to the fact that ξ and ωr,r′ are first class, we know from

Remark A.2 (page 207) that the restriction of ωr,r′ to the constraint hypersurface is

a function only of the ξ coordinates and, therefore, the Poisson bracket {f, g}Γphys
:=

ωr,r′ |Σ∂f/∂ξr∂g/∂ξr
′

is well-defined for any pair of functions on Γphys. The induced

two-form on Γphys is then simply given by the components ωr,r′ |Σ, since ωr,r′ω
r′,r′′ =

ωrγω
γr′′ = δr

′′
r due to (A.64).

A.3.1 Dynamics of reference frames in the reduced phase space

The reduced phase space is obtained by identifying all points along the gauge orbits

of XF . Due to (A.60), this corresponds to considering that, at a given instant, all

admissible choices of reference frames correspond to same physical state. In other words,

a point in Γphys corresponds to an equivalence class of reference frames. Furthermore,

functions f(ξ) on the reduced phase space are by construction gauge invariant. Does

one lose information about the dynamics when restricting oneself to Γphys? Are the
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different ‘points of view’ associated with each generalized reference frame lost when

passing to the reduced phase space? The answer is no.

As we have seen in §A.2.7, the choice of gauge conditions, which determines the

reference frame, is in general only admissible locally in the auxiliary phase space due to

the Gribov obstruction. In regions of Γ where (A.70) holds, we may invariantly extend

functions. As we assume that the second-class constraints were previously effectively

eliminated by working with Dirac extensions [cf. (A.49)], the invariant extensionsO[f |χ]

thus weakly Poisson-commute with both the first-class and the second-class constraints

and are, therefore, first class. From Remark A.2 (page 207), we then conclude that

O[f |χ] can be expressed as functions solely of the ξ coordinates. In this way, invariant

extensions of functions in a certain gauge are functions in the reduced phase space.

This holds at a fixed moment of time. But what about the dynamics?

By taking the total time derivative of (A.75), we obtain

Ȯ[f |χ] =

(
∂f

∂τ
+
∂f

∂ξr
ξ̇r +

∂f

∂tF
ṫFχ

)
t=tχ,ϕ=0

. (A.82)

Due to (A.65), (A.66), (A.67) and (A.73), equation (A.82) becomes

Ȯ[f |χ] =

[
∂f

∂τ
+ ωr,r′ ∂f

∂ξr
∂H0

∂ξr′
+ {f, CF }(δFl H l

1 + δFAλ
A)

]
t=tχ,ϕ=0

=
∂f

∂τ

∣∣∣∣
t=tχ,ϕ=0

+ {f,H0 +H l
1ϕl + λAϕA}t=tχ,ϕ=0

=
∂f

∂τ

∣∣∣∣
t=tχ,ϕ=0

+ {f,HT }t=tχ,ϕ=0

= O
[
∂f

∂τ
+ {f,HT }

∣∣∣∣χ] ,

(A.83)

where the functions λ are fixed by (A.73) and (A.74). Equation (A.83) shows that the

time evolution of the invariant extension of a function with respect to a certain gauge

corresponds to the invariant extension of the function’s time evolution with respect to

the same gauge. In this way, the (deterministic) gauge-fixed equations of motion can

be represented in the reduced phase space. Thus, all the dynamical information related

to a certain choice of reference frame (gauge condition) can be, in principle, encoded in

reduced phase-space functions in a gauge-invariant way, i.e., without constraints. This

is the reason the reduced phase space can be regarded as the physical phase space.

One can also describe the evolution of reduced phase-space functions using the

Poisson bracket structure in Γphys as follows. For each instant of time, let Q(τ) =

(q(τ), p(τ)) be a set of local canonical coordinates on the auxiliary phase-space Γ. We

assume that for each point of Γ, there is a neighborhood W in which the coordinate
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transformation Q(τ) ≡ Q(ξ(τ), t(τ), ϕ(τ)) is well defined.11 If we further assume that

a set of gauge conditions χ is admissible in W [cf. (A.70) and (A.71)], we can define

the gauge-fixed functions [cf. (A.75)]

O[Q|χ] = Q(ξ(τ), tχ, ϕ(τ) = 0) ≡ Q|χ , (A.84)

which represent (a portion of) the physical trajectories in a particular reference frame.

The physical trajectories are labeled by the physical initial values O[Q|χ]|τ=0, which

are compatible with the constraints (cf. A.2.4); i.e., they weakly Poisson-commute with

the constraint functions when seen as functions in the auxiliary phase space. We then

assume that the family of tangent vectors Xphys to the physical trajectories (labeled by

the physical initial values) defines a smooth vector field in a region of Γphys. We refer

to this vector field as the ‘physical’ or ‘reduced’ Hamiltonian vector field. Furthermore,

any function Hphys that satisfies

Xphys = {·, Hphys}Γphys
(A.85)

is referred to as the ‘physical’ or ‘reduced’ Hamiltonian, and it describes the gauge-fixed

physical evolution. Note that its definition may be valid only locally in Γphys due to the

Gribov obstruction. Physical Hamiltonians may be defined even in the case in which

there is no non-trivial canonical Hamiltonian and H ′ ≡ 0 (cf. §1.9.2).

A.3.2 Limitations of the reduced phase-space description

The formalism presented in the previous sections of this appendix is, in principle, a

complete account of the classical canonical formulation of constrained (and, in partic-

ular, gauge) systems. The next step is to analyze the quantum theory.

Nevertheless, there is a series of limitations to the practical applicability of the

formalism presented here, in particular concerning the concept of the reduced phase

space Γphys. It may be difficult or even impossible to explicitly construct Γphys, since

this requires the construction of a complete set of gauge-invariant functions ξ, which

are solutions to {ξ, CF } ≈ 0. In practical field-theoretic applications (such as in GR),

the task of defining the ξ coordinates is rather involved. One might attempt to find

a complete set of invariants by using invariant extensions O[f |χ], but this method

is subject to the Gribov obstruction. Moreover, it may be that no set of functions

ξ can serve as canonical coordinates on Γphys for which the Poisson brackets acquire

their canonical form. Due to these and other difficulties, it may be preferable to develop

11More precisely, let (U, φQ) with φQ : U ⊂ Γ → Ũ ⊂ R2d and (V, φz) with φz : V ⊂ Γ → Ṽ ⊂ R2d

be the coordinate charts associated with each coordinate system. We then assume that W := U∩V 6= ∅
and that φz ◦ φ−1

Q is a diffeomorphism, such that the two charts are smoothly compatible.
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other methods of analysis, such as the study of the Becchi-Rouet-Stora-Tyutin (BRST)

cohomology, in which case one enlarges the (auxiliary) phase space (instead of reducing

it) by including extra degrees of freedom related to the so-called ‘ghosts’ (see [33] for

further details).

For the applications in this thesis, however, the analysis of gauge systems based

on the reduced phase space is both sufficient and illuminating, since it clarifies the

definition and physical meaning of the (relational) observables of a gauge theory (cf.

the discussion on the definition of observables presented in §1.7; see also Conclusions

and Outlook for a discussion on possible further developments). Furthermore, as the

relation between reduced phase-space functions and the local canonical coordinates on

the auxiliary phase-space [cf. (A.84)] is of importance in the analysis of Chapter 1 and,

indeed, throughout the thesis, it will be useful to develop a quantum theory that not

only encompasses the reduced phase-space dynamics but also the description in the

auxiliary phase space. This will be the topic of §A.3.4. In §A.3.3, we construct the

Hamilton-Jacobi formalism of the classical theory as a first step towards quantization.

A.3.3 Hamilton-Jacobi formalism

As before, we assume that the second-class constraints have already been eliminated

from the theory [e.g., by using the Dirac extensions (A.49)] and that it is possible

to find canonical coordinates denoted by (qa, pa) for a = 1, . . . d − NS/2 with respect

to which the only remaining constraints CF (F = 1, . . . , NF ) are first class. The

Hamilton-Jacobi canonical transformation is obtained from the generating function F =

S(q, P, τ) − QaPa, where (Q,P ) are the new canonical coordinates. The Lagrangians

for each set of canonical pairs are related by paq̇
a −HT = PaQ̇

a −KT + dF/dτ , where

HT is the total Hamiltonian for an arbitrary choice of the functions λ. The new total

Hamiltonian KT is required to vanish identically. In this way, we obtain the usual

unconstrained Hamilton-Jacobi equations

pa =
∂S

∂qa
, Qa =

∂S

∂Pa
,

0 =
∂S

∂τ
+HT

(
q,
∂S

∂q

)
.

(A.86)

The first two equations can, in principle, be inverted to yield q ≡ q(Q,P ) and p ≡
p(Q,P ). If we now take into account the fact that the momenta p are constrained by

CF (q, p), we obtain the additional requirements

CF

(
q,
∂S

∂q

)
= 0 , (F = 1, . . . , NF ) , (A.87)
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which may be seen as constraints on the new momenta P . In the particular case in

which the first-class constraints are abelian, i.e., in which the functions cF
′′

FF ′ in (A.48)

are identically zero, we may define the first NF new momenta such that CF (q, p) = PF

without loss of generality.12 In this case, equation (A.87) implies that PF = 0. Let us

denote the remaining new momenta as ki := PNF+i (i = 1, . . . , d −NS/2 −NF ). The

restriction of Hamilton’s principal function to the first-class constraint hypersurface,

S(q, k, τ) := S(q, P, τ)|PF=0, no longer depends on PF , and the conjugate variables

tF := QF may be seen as the parameters along the gauge orbits. Moreover, the ki

momenta and their conjugate coordinates xi := QNF+i Poisson-commute with the

constraints PF by construction. Thus, they form a set of 2d− 2NF −NS = 2d−M −
K − NF = R conjugate pairs of gauge-invariant functions that can be used to define

canonical coordinates on the reduced phase space [i.e., we may adopt ξ := (x, k)] [33].

An analogous construction can be made in the quantum theory, where solutions of the

quantum constraint equations can be used to define a basis in the so-called ‘physical’

or ‘reduced’ Hilbert space.

A.3.4 Quantum theory

The quantization of gauge systems is a rich subject. There are many approaches, each

with its advantages and shortcomings. We will focus solely on the canonical (operator-

based) quantum theory and will not discuss path integrals. For a detailed account of

path integrals for constrained and gauge systems, the reader is referred to [33] and

references therein.

Let us assume that the reduced phase space Γphys can be constructed, i.e., that the

limitations discussed in §A.3.2 can be overcome. Then, the quantum theory could be

obtained by promoting the complete set of gauge-invariant functions ξ to operators ξ̂

acting on a Hilbert space Hphys equipped with an inner product (·|·). The ξ̂ operators

should be symmetric with respect to (·|·), i.e., for any pair of states in the domain

of ξ̂, we should obtain (ψ(1)|ξ̂ψ(2)) = (ξ̂ψ(1)|ψ(2)). Furthermore, one assumes that it

is possible to find self-adjoint extensions of ξ̂. We refer to Hphys as the ‘physical’ or

‘reduced’ Hilbert space. This construction of the quantum theory may suffer from

severe factor-ordering ambiguities if the classical coordinates ξ are not canonical, in

which case the quantization of the Poisson bracket structure {·, ·}Γphys
may not be

straightforward. It may also be complicated to promote H ′(ξ, ϕ = 0) [cf. (A.66)] or

Hphys [cf. (A.85)] to self-adjoint (extensions of symmetric) operators due to ordering

ambiguities.

Furthermore, a direct quantization of ξ may leave unclear or unexplored the relation

12Given a set of constraints CF that satisfies (A.48), it is possible to locally adopt an equivalent
description of the constraint hypersurface such that the constraint functions are abelian. This can be
achieved by suitable local redefinitions of the constraint functions or of the canonical coordinates on Γ.
See [33] for details.
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of the quantum dynamics (e.g., of correlation functions of ξ̂) to the auxiliary variables

(q, p) in Γ [cf. (A.84)]. If one adopts a definition of observables in which (q, p) play a

certain (relational) role (cf. discussion on the definition of observables in §1.7, one would

like to express the dynamics of physical correlation functions also in terms of (q, p). For

this reason, it is useful to develop a quantum theory that not only surpasses some of

the difficulties found in a direct quantization of the ξ coordinates, but also encompasses

both the auxiliary and reduced phase-space descriptions. This is, in principle, achieved

by the so-called ‘Dirac quantization’ scheme.

Dirac quantization proceeds in analogy to the construction of the classical canon-

ical theory, in which one first considers constraints in an auxiliary phase space and

subsequently one constructs a reduced phase space. In the corresponding quantum

theory, one starts with an auxiliary Hilbert space and a definition of gauge orbits

and afterwards one considers the definition of a physical (or reduced) Hilbert space of

gauge-invariant states. As explained above (see also Chapter 2), the construction of

the auxiliary Hilbert space may not be merely one of convenience, but it may also be

relevant for the interpretation of conditional probability amplitudes, depending on the

ontology and the definition of observables of the theory.

Before Dirac-quantizing the theory, it is useful (although not necessary [33]) to

eliminate the second-class constraints at the classical level [e.g., by using the Dirac

extensions (A.49)]. As in the Hamilton-Jacobi formalism (cf. §A.3.3), we thus assume

that one can define canonical coordinates (qa, pa) for a = 1, . . . d − NS/2 that are

subject only to first-class constraints CF (F = 1, . . . , NF ). The auxiliary Hilbert space

H can then be obtained via the usual canonical quantization procedure for the variables

(qa, pa). One considers the operators (q̂, p̂), which satisfy the same-instant commutation

relations [q̂a, p̂b] = i~δab (a, b = 1, . . . d − NS/2) and which are self-adjoint (extensions

of symmetric) operators, given a definition of the auxiliary inner product 〈·|·〉 in H.

States in H are referred to as ‘auxiliary’ or ‘kinematical’ states. Given an auxiliary

state |ψ〉, we define its evolution through the Schrödinger equation [cf. (A.86)]

i~
∂

∂τ
|ψ〉 = ĤT |ψ〉 , (A.88)

where ĤT := H ′(q̂, p̂) +λAϕA(q̂, p̂) and we assume that: (1) both H ′(q̂, p̂) and ϕA(q̂, p̂)

are self-adjoint operators with a particular choice of factor ordering; (2) the coefficients

λ are chosen to be arbitrary c-numbers rather than operators in order to avoid ordering

ambiguities.

The operators ϕA(q̂, p̂) are the quantum analogues of the primary first-class con-

straints. In fact, we assume that all classical first-class constraints can be promoted

to operators ĈF ≡ CF (q̂, p̂) that are self-adjoint with respect to the auxiliary inner

product 〈·|·〉 with a certain factor ordering. It must be stressed, however, that the
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first-class condition is not always preserved in the quantum theory. Indeed, it may

be that the Poisson brackets (A.48) acquire quantum corrections, i.e., that one finds

[ĈF , ĈF ′ ] = ĉF
′′

FF ′ĈF ′′ + ~2d̂FF ′ . Here, ĉF
′′

FF ′ is a quantization of the classical functions

cF
′′

FF ′ , whereas the operator d̂FF ′ is independent from ĈF (F = 1, . . . , NF ) and has

no classical counterpart. This operator is called an anomaly and it breaks the gauge

symmetry of the theory [33]. A similar operator may appear in the commutator of

H ′(q̂, p̂) with ĈF (F = 1, . . . , NF ). In the presence of anomalies, the Dirac quanti-

zation procedure is not consistent and one may need to resort to other quantization

methods such as BRST theory [33]. We thus assume that no anomalies are present,

since the corresponding Dirac quantization is sufficient for the applications considered

in this thesis. In this case, we define gauge transformations of auxiliary states as

i~δ |ψ〉 = Ĝ |ψ〉 , (A.89)

where the quantum gauge generator is Ĝ :=
∑n

j=0 Ĝ
i
(j)d

jεi/dτ
j |τ=τ0 ≡ vF ĈF [cf.

(A.60)]. We assume that the arbitrary functions ε and their derivatives are chosen

to be c-numbers rather than operators, which are evaluated at a fixed instant τ = τ0.

Note that (A.88) and (A.89) define the Schrödinger picture of the auxiliary quantum

dynamics and of gauge transformations, respectively. Provided there are no anomalies

and (A.88) and (A.89) are integrable, one can then pass to the Heisenberg picture in

the usual way.

From (A.89), we note that gauge-invariant states |Ψ〉 must be annihilated by the

quantum gauge generator at every instant of time, i.e., Ĝ |Ψ〉 = 0. This then implies

that the quantum first-class constraints need to be fulfilled

ĈF |Ψ〉 = 0 . (A.90)

Equation (A.90) is the quantum analogue of the definition of the classical first-class

constraint hypersurface. States that are annihilated by the constraints at every instant

of time are said to be ‘on shell’. Thus, gauge-invariant states are on shell. Due to the

definition of the quantum gauge generator, the converse is also true: on-shell states are

gauge invariant.

Given a set of linearly independent gauge-invariant states denoted by |k〉, we can

define on-shell operators as

Ô :=
∑
k′,k

O(k′, k) |k′〉 〈k| , (A.91)

for some choice of function O(k′, k). The summation in (A.91) is formal and may be
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replaced by an integration if the k labels are continuous. These operators correspond to

linear transformations of the on-shell states. It is straightforward to verify that (A.91)

defines a gauge-invariant operator, i.e., one that satisfies [Ô, ĈF ] = 0. In fact, on-

shell operators satisfy the stronger condition ÔĈF = ĈF Ô = 0̂. If the set of |k〉
states is complete, i.e., if any gauge-invariant (on-shell) state can be written as a linear

combination of the |k〉 states, then it is sufficient to consider only gauge-invariant

operators that are on-shell, i.e., of the form given in (A.91). In Chapter 2, we extensively

discuss how classical invariant extensions of the form (A.79) can be promoted to on-

shell operators of the form (A.91) in the quantum theory (for the particular case of

theories that are invariant under local time translations).

In contrast to the auxiliary Hilbert space H of kinematical states |ψ〉, we can define

the physical or reduced Hilbert space Hphys as the space of gauge-invariant states that

are square-integrable with respect to a choice of ‘physical’ inner product (·|·). Given a

complete set of linearly independent on-shell states |k〉, their physical inner product can

be defined by regularizing their auxiliary inner product with the insertion of a certain

operator µ̂, i.e., (k′|k) := 〈k′|µ̂|k〉. The ‘measure’ µ̂ is an operator in the auxiliary

Hilbert space and it should be chosen such that: (1) (k′|k) is positive definite and

gauge invariant; (2) there exist superpositions |Ψ(i)〉 of |k〉 that have finite norm and

overlap, i.e., |(Ψ(i)|Ψ(j))|2 < ∞, where i and j are labels on the possibly different

superpositions. More precisely, the gauge-invariance of (k′|k) entails that ĈF should be

realized as a self-adjoint zero operator, i.e., (k′|ĈFk) = (ĈFk
′|k) = 0 for F = 1, . . . , NF .

If 〈k′|k〉 satisfies the two conditions above, then one may choose µ̂ to be the identity

in the auxiliary Hilbert space, i.e., µ̂ = 1̂. In general, however, it is necessary to regu-

larize the inner product of gauge invariant states to guarantee that both conditions are

fulfilled. Let us assume that µ̂ has been fixed and that the complete set of linearly inde-

pendent states |k〉 have been orthonormalized such that (k′|k) = δ(k′, k), where δ(·, ·)
stands for a Kronecker or Dirac delta depending on whether the k labels are discrete or

continuous. In this case, we consider |k〉 to define a basis in the physical Hilbert space

and the on-shell operators (A.91) can be interpreted as quantizations of certain reduced

phase-space functions. For this reason, the Dirac quantization programme is a type of

reduced phase-space quantization. Evidently, the results of the Dirac quantization of a

theory may differ from those obtained by a direct quantization of the reduced phase-

space coordinates ξ, for example, due to factor-ordering ambiguities. Moreover, as the

Dirac quantization starts with the notion of an auxiliary Hilbert space H, it allows

one to relate on-shell operators to auxiliary Hilbert space operators, e.g., through the

projections
∑

k′,k |k′〉 〈k′|Â|k〉 〈k|, where Â acts on H and is not gauge invariant [33].

There are two important particular cases in which µ̂ can be fixed. First, if one

already knows a complete set of gauge-invariant operators ξ̂ that are obtained by the

Dirac quantization of well-defined real-valued functions ξ(q, p) defined in the auxiliary

phase space, then µ̂ should be chosen such that ξ̂ act as self-adjoint operators in the

physical Hilbert space Hphys. Second, in analogy to the Hamilton-Jacobi formalism
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(cf. §A.3.3), if the first-class quantum constraints are abelian, i.e., if [ĈF , ĈF ′ ] = 0 for

F, F ′ = 1, . . . , NF , then it is possible to find a simultaneous orthonormal basis |C, k〉
for the constraints in the auxiliary Hilbert space. The indices k now label degeneracies

of the constraint spectrum, ĈF |C, k〉 = CF |C, k〉 (F = 1, . . . , NF ). One immediately

sees that the gauge-invariant states |k〉 := |C = 0, k〉 define an orthonormal basis in

the reduced Hilbert space if the physical inner product is defined through the formula

[33,66,68,69]

〈C ′, k′|C, k〉 =: δ(C ′, C)(k′|k) , (A.92)

which implies (k′|k) = δ(k′, k). This inner product satisfies the above criteria and is

well-defined even if the zero is in the continuous part of the constraint spectrum. As

is shown in Chapter 2 for the case of local time-translation invariance, the regulariza-

tion (A.92) corresponds to the insertion (k′|k) = 〈k′|µ̂|k〉, where µ̂ is related to any

admissible quantum gauge condition, in analogy to the classical formula (A.79). The

formalism developed in Chapter 2 can be straightforwardly generalized to any system

of abelian quantum constraints.

Once one has defined the physical inner product [e.g., as in (A.92)] and one can

construct on-shell operators (A.91) that act on the physical Hilbert space Hphys, it is

straightforward to compute physical correlation functions. Let us consider Heisenberg-

picture operators Ô(τ) that evolve, e.g., with the total Hamiltonian or with another

on-shell operator that plays the role of the quantized reduced Hamiltonian [cf. (A.85)].

Then, for any pair of gauge-invariant states |Ψ(1)〉 and |Ψ(2)〉, the correlation function of

the time-ordered string Ô := T
∏
i Ô(τi) is computed with the physical inner product,

i.e., one defines 〈Ô〉 := (Ψ(2)|Ô|Ψ(1)).
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Appendix B

The Traditional

Born-Oppenheimer Approach to

the Problem of Time

In this appendix, we offer a critical review of the traditional Born-Oppenheimer (BO)

approach to the problem of time, which is to be contrasted with the approach followed

in Chapter 5.1

B.1 What is the traditional BO approach?

The classical and quantum theories of mechanical systems with local time translation

invariance are discussed at length in Chapters 1 and 2, where it is shown that the

central object in the Dirac-quantized theory is the quantum constraint (or WDW)

equation. As this constraint is a time-independent Schrödinger equation (TISE), one

faces the problem of time in the quantum theory. Which time variable (if any) orders

the dynamics? How is it defined? While this is the topic of Chapter 2, several (partial)

solutions to the problem of time have been proposed in the literature [24].

One of the oldest and most straightforward approaches is the BO approach to the

problem of time. It is based on the BO approximation [124, 166–172] used in nuclear

and molecular physics to analyze the dynamics of a system of electrons and nuclei [121].

The approximation was established in the work of Born and Oppenheimer [173] and its

application to the definition of a time variable from a time-independent equation was

discussed in the work of Mott [174,175].

In its original context, the BO approximation is a combination of a WKB expan-

sion and an adiabatic approximation for a system of electrons and nuclei. Indeed, it is

sometimes possible to consider that the nuclei are approximately described by WKB

1This appendix is based on [62,98].
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factors in the system’s wave function and, therefore, that their dynamics is semiclassi-

cal (in an appropriate sense). In addition, one makes an adiabatic approximation, in

which the dynamics of the electronic wave function is conditioned on the semiclassical

configurations of the nuclei. Concretely, this approximation scheme is controlled by a

perturbative expansion (analogous to the weak-coupling expansion discussed in Chap-

ter 5). In their original article [173], Born-Oppenheimer considered that the electrons

are much lighter than the nuclei, with a mass m much smaller than the average mass

M of the ‘heavy’ nuclei. In this way, they used
(
m
M

) 1
4 as a perturbative parameter to

calculate series developments of the relevant physical quantities. At the lowest order

in the expansion, the nuclear positions are fixed (classical) parameters, conditioned on

which the quantum dynamics of electrons can be described.

The BO approximation can be applied to any system that admits a decomposition

of its degrees of freedom into ‘heavy variables’ (in analogy to the nuclei) and ‘light

variables’ (in analogy to the electrons) [176–178]. The relevance of this procedure to

the problem of time rests upon two properties: (1) the perturbative expansion coincides

with a WKB expansion in the ‘heavy sector’; (2) the quantum dynamics of the ‘light

sector’ is conditioned on the (semiclassical) dynamics of the ‘heavy sector’. Due to

the first property, a notion of (classical) trajectory for the heavy variables is available

at the lowest order, and one may define a ‘semiclassical time’ parameter (also called

‘WKB time’ [119]) as the orderer of the dynamics of the heavy variables. Due to the

second property, the quantum evolution of the light variables is also governed by the

WKB time. Thus, the BO approach avoids the problem of time in the semiclassical

regime, in which WKB time ‘emerges’.

An early derivation of the semiclassical emergence of time is found in [174, 175],

where Mott considered the TISE for a system of α particles and atoms. Mott was able

to derive a time-dependent Schrödinger equation (TDSE) for the atoms by assuming

that α particles behaved semiclassically and by defining a time parameter from their

approximate trajectories. This work has been highly influential and inspired a number

of subsequent analyses [176, 177, 179, 180]. Due to the possibility to derive time from

a timeless equation in this fashion, some researchers, such as Englert [181], Briggs

and Rost [176, 177], and Arce [123], suggest that the TISE should be the fundamental

equation that describes the mechanics of closed quantum systems, whereas the TDSE

would only hold approximately for the light degrees of freedom.

This idea clearly finds its analogue in the WDW equation of quantum gravity. In-

deed, the functional TDSE for matter fields conditioned on a vacuum background was

derived from the quantum constraints by Lapchinsky and Rubakov [182] in a way analo-

gous to Mott’s work. The analogy to the original scheme of Born and Oppenheimer be-

came clear in [183,184], where the solutions to the quantum constraints were expanded

in powers of the gravitational coupling constant (or, equivalently, the inverse Planck

mass), which plays the same role as the perturbative parameter (m/M)1/4 in [173].

Perturbation theory holds if this is a weak-coupling expansion (cf. Chapter 5), i.e., if
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the Planck scale is much larger than other energy scales considered. In this way, the

gravitational field usually corresponds to the heavy variables, while matter fields are

typically the light degrees of freedom. If one computes terms of higher order in the

gravitational coupling constant, one finds corrections to the usual TDSE for matter

fields conditioned on a fixed background [120,137,151,185]. The issue of whether these

corrections are unitary has been debated in the liteature [120, 163] and is discussed in

Chapter 5.

Finally, it is important to note that, if the BO perturbative procedure breaks down,

one can either consider that time cannot be defined and the theory is strictly timeless

or one can attempt to develop another method of discussing the quantum dynamics.

One such method is presented in Chapter 2.

B.2 The semiclassical derivation of time

Let us now critically review the traditional BO approach to the problem of time. The

reader is referred to [6, 98, 176–178] for further details. We consider a set of light

variables qµ (µ = 1, . . . , d) with a typical mass scale m, as well as a set of heavy

variables Qa (a = 1, . . . , n) with a typical scale M � m. The system is described by

the TISE2

− ~2

2M

n∑
a=1

∂2Ψ

∂(Qa)2
+ V (Q)Ψ + ĤS

(
Q;

∂

∂qµ
, qµ

)
Ψ = EΨ , (B.1)

where ĤS is an operator with a parametric dependence on the heavy variables that

furthermore depends on qµ and their associated momenta. It may be interpreted as

the Hamiltonian for the light sector. To solve (B.1), one can make the traditional BO

ansatz

Ψ(Q, q) = ψ0(Q)ψBO(Q; q) , (B.2)

which consists of an exact factorization of the total state Ψ(Q, q) [100, 122, 123, 178,

186–188]. The interpretation of each factor, ψ0 and ψBO, will be considered in what

follows. We can define the BO inner product over the light degrees of freedom [62]

〈ψBO(1)|ψBO(2)〉BO
(Q) :=

∫
dq ψ∗BO(1)(Q; q)µ̂BOψBO(2)(Q; q) , (B.3)

2Evidently, it is possible to consider generalizations of (B.1) (e.g., with a non-trivial configuration
space geometry, cf. Chapter 5).
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where dq ≡
∏
µ dqµ and µ̂BO is a ‘measure’ to be determined (we assume that µ̂BO is

symmetric with respect to the flat inner product, i.e., µ̂†BO = µ̂BO).3 In certain applica-

tions, it may be convenient to write ψBO in terms of a complete orthonormal system with

respect to the BO inner product, i.e., ψBO(Q; q) =
∑

k χk(Q)ψk(Q; q)/ψ0(Q), where

〈ψk|ψ′k〉BO = δ(k, k′). In this case, the total state reads Ψ(Q, q) =
∑

k χk(Q)ψk(Q; q).

We shall not consider this here and we work exclusively with the exact factoriza-

tion (B.2).

Given the ansatz (B.2), we can solve (B.1) as follows. The first step is to define the

‘source’ or ‘backreaction term’ [98,138,140,141,163]

J(Q) :=
~2

2Mψ0(Q)

n∑
a=1

∂2ψ0

∂Q2
a

− V (Q) + E . (B.4)

Equation (B.4) is a TISE for the ψ0 wave function, where J(Q) plays the role of another

potential term. We will see in what follows how this potential is related to a notion

of ‘backreaction’ of the light degrees of freedom onto the dynamics of the Q variables

(cf. Sec. B.3). The second step is to obtain an equation that is to be regarded as an

equation for ψBO. If we use (B.2) and (B.4) in (B.1), the result is

~2

M

n∑
a=1

∂ logψ0

∂Qa
∂ψBO

∂Qa
=
(
ĤS − J

)
ψBO −

1

2M

n∑
a=1

∂2ψBO

∂(Qa)2
, (B.5)

which is usually seen as an equation for ψBO given a solution for ψ0. Finally, we

assume that logψ0(Q) = iMϕ(Q)/~ +O(M0) and we define the ‘phase time’ ∂/∂t :=∑n
a=1 ∂ϕ/∂Q

a∂/∂Qa +O(1/M), such that (B.5) can be written as

i~
∂ψBO

∂t
=
(
ĤS(t)− J

)
ψBO +O

(
1

M

)
, (B.6)

which is a TDSE for ψBO. A few comments are in order. First, equation (B.6) is

only valid when higher order terms in 1/M can be neglected, i.e., when a perturbative

expansion in the inverse ‘heavy mass’ is valid. This is clearly a formal procedure and

all concrete calculations should involve powers of the small ratio m/M or of some other

light mass scale to M , in analogy to the original scheme of Born and Oppenheimer.

Second, the time variable in (B.6) was defined from the lowest-order term in 1/M of

the phase of ψ0. This lowest-order phase time often has a straightforward meaning: it

is the parameter that orders the classical dynamics of the heavy variables. This can

3A ‘flat measure’ (µ̂BO = 1̂) is frequently adopted [124, 126]. However, following the results of
Chapter 5, we argue in §B.4.3 that a more general µ̂BO is implied by the quantum constraint.
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be seen if the expansion in powers of 1/M coincides with the standard ~-expansion

for the heavy sector [182–184], which is the case if the total potential in (B.4) scales

with M . This yields a semiclassical description of the evolution of the heavy degrees of

freedom, in which there is an approximate notion of trajectory that orders the physical

configurations of the Q variables. The lowest-order phase time is nothing but this

order.4 Moreover, due to (B.6), one sees that the dynamics of the heavy sector also

governs the evolution of the q variables (i.e, Q provide a clock for q).

By considering terms of higher orders in 1/M in (B.6), it is possible to compute

corrections to the Schrödinger equation [120,137,151,185]. These corrections are some-

times claimed to violate unitarity [114–116,120], although we will see that the formalism

of Chapter 5 resolves this issue. When higher-order corrections are included in (B.6),

one may either describe the dynamics with respect to the lowest-order phase time or

with respect to a corrected time function that also includes higher orders in 1/M of the

phase of ψ0. This corrected phase time can be tentatively interpreted as the orderer

of the dynamics of Q when quantum corrections and the backreaction of q are taken

into account (see, however, Secs. B.3 and B.4). In the case in which the expansion in

powers of 1/M coincides with a WKB expansion in the heavy sector, the (corrected)

phase time is called WKB time [119].5

It is possible to define more general time functions that, for instance, take into

account some contributions from the amplitude of ψ0 [178, 189]. One may also define

a time function from the phase of the total state Ψ [190–193].6 These alternative

definitions, however, often lack a clear physical interpretation.

B.3 Backreaction

In what sense is J(Q) in (B.4) and (B.6) a backreaction term? Usually [124, 166–168],

the backreaction term is associated with the expectation value of the Hamiltonian for

the light degrees of freedom taken with respect to the BO inner product (B.3). To see

how J(Q) is related to this, we first define the general BO average [cf. (B.3)]

〈Ô〉BO :=
〈ψBO|Ô|ψBO〉BO

〈ψBO|ψBO〉BO

=

∫
dq ψ∗BOµ̂BOÔψBO∫
dq ψ∗BOµ̂BOψBO

, (B.7)

4More precisely, the lowest-order phase time is the parameter along the approximate trajectories
of the Q variables, when these are regarded as parametrized curves in configuration space.

5One may also refer to the lowest-order phase time simply as WKB time. This is what was done
in Chapter 5.

6It is worth mentioning that a notion of quantum trajectories (i.e., at all orders in the semiclassical
expansion) is available in the de Broglie-Bohm approach to timeless quantum systems [26, 27]. In this
approach, time can also be defined from the phase of the total state Ψ, but we do not consider this
here.
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which is a function of the Q variables. Operators that are symmetric with respect to the

BO inner product (B.3) are denoted as ÔBO; e.g., ÔBO := µ̂−1
BOÔ or ÔBO := µ̂

− 1
2

BOÔµ̂
1
2
BO

(with Ô† = Ô). If we take the BO average of (B.5), we find

J(Q) = 〈ĤS〉BO −
~2

M

n∑
a=1

∂ logψ0

∂Qa

〈
∂

∂Qa

〉
BO

− 1

2M

n∑
a=1

〈
∂2

∂(Qa)2

〉
BO

. (B.8)

It is due to (B.8) that we refer to J(Q) as the backreaction term, as J(Q) is now seen to

be related to the BO average (expectation value) of ĤS, which we assume is symmetric

with respect to (B.3). If J(Q) ≡ 0, we consider that there is no backreaction.

What can be said of the other terms in (B.8)? They lead to ‘fluctuation terms’

in (B.5), which are terms of the form (ÔBO−〈Ô〉BO)/M . To see this, let us first note that

the BO averages 〈∂/∂Qa〉BO play the role of the ‘Berry connection’ in standard quantum

mechanics [194, 195] and, in particular, in applications of the BO approximation to

molecular physics [121,122,186,187]. More precisely, we define

〈
∂

∂Qa

〉
BO

(Q) =: Va(Q) + iAa(Q) ; (B.9)

i.e., Va and Aa are, respectively, the real and imaginary parts of 〈∂/∂Qa〉BO. In usual

applications of adiabatic quantum mechanics, one has that Va = 0 and Aa are the

components of the Berry connection. Here, however, Va is so far undetermined and this

will be of importance in the analysis of unitarity in the BO approach (cf. Sec. B.4).

Subsequently, let us define the objects [98,124,126,166–168,196]

D±a :=
∂

∂Qa
±
〈

∂

∂Qa

〉
BO

, (B.10)

which are sometimes referred to as ‘covariant derivatives’ in the particular case in which

Va = 0. If we now insert (B.8) back into (B.4), (B.5) and use the definitions (B.10), we

obtain the equations [6, 124,126,166–168,176,177]

− 1

2M

n∑
a=1

[(
D+
a

)2
+
〈(

D−a
)2〉

BO

]
ψ0 + V ψ0 =

(
E − 〈ĤS〉BO

)
ψ0 , (B.11)

− 1

Mψ0

n∑
a=1

D+
a ψ0D−a ψBO

− 1

2M

[(
D−a
)2 − 〈(D−a )2〉

BO

]
ψBO +

(
ĤS − 〈ĤS〉BO

)
ψBO = 0 , (B.12)

in which the fluctuation terms are explicit. It is important to note that (B.11) and (B.12)
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are equivalent to (B.4) and (B.5), respectively, but the two sets of equations suggest

different perspectives regarding the dynamics. Equations (B.4) and (B.5) constitute a

linear system for ψ0 and ψBO given a choice of J as an independent function of Q. In

this case, the backreaction term is, in principle, freely specifiable and equation (B.8)

restricts the values of the BO averages according to the values of J. This is equivalent to

considering that ψ0 is arbitrary and that the backreaction term J determined by (B.4)

is also arbitrary. The BO factorization (B.2) is merely a redefinition of the total state

Ψ(Q, q).

Alternatively, one may consider that (B.8) is the definition of J and that the BO

averages are unrestricted. In this case, equations (B.11) and (B.12) constitute a non-

linear system for ψ0 and ψBO, which is to be solved self-consistently in an iterative

fashion. The latter view was adopted in [123,124,126,166–168,171,196,197], where the

BO averages in (B.11) and (B.12) were seen as the backreaction from the light degrees

of freedom onto the dynamics of the Q variables. In this view, the interpretation of

ψ0 and ψBO is that they are, respectively, the wave functions of the heavy sector and

of the light degrees of freedom. We stress that this alternative interpretation tacitly

assumes that each sector evolves unitarily by itself, and we will argue in §B.4.3 that this

corresponds to a choice of factorization Ψ = ψ0ψBO. The BO inner product (B.3) is the

inner product for the light sector. The backreaction is also related to the fluctuation

terms, which are usually neglected in the adiabatic approximation [this corresponds to

neglecting terms of order 1/M , as can be seen from (B.11) and (B.12); the fluctuation

terms correspond to corrections of higher orders in 1/M ].

The possibility to adopt the two perspectives above signals that the concept of

backreaction in the traditional BO approach is ambiguous. We briefly analyze the

reasons for this and the corresponding consequences in what follows.

B.4 The ambiguity of backreaction and the issue of

unitarity

The ambiguity of the notion of backreaction in the BO approach has spawned some

debate in the literature. Some authors [198–200] (see also [201]) argue that backreaction

terms in the semiclassical scheme followed by the BO approach are arbitrary because

they depend on the phase of ψ0 [via (B.4)], which is itself arbitrary (as was discussed

above and as we will see below). On the other hand, it is sometimes claimed that

the backreaction term guarantees unitarity of the corrected Schrödinger equation at

all orders in 1/M [126, 163, 171]. How can this be understood? We argue that the

traditional BO approach is equivalent to the formalism of the ‘minimal BO ansatz’

presented in Chapter 5, which motivates us to critique the connection between unitarity

and backreaction.
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B.4.1 Factorization ambiguity and its physical meaning

The ambiguity of the backreaction is, in fact, a consequence of the fact that the tra-

ditional BO exact factorization (B.2) is ambiguous. As was remarked in [163], the

transformations

ψ0(Q) = eγ(Q)+ i
~β(Q)ψ′0(Q) , ψBO(Q; q) = e−γ(Q)− i

~β(Q)ψ′BO(Q; q) (B.13)

do not alter the total state Ψ(Q, q) if γ(Q) and β(Q) are real functions of Q. We also

assume that they are real analytic functions of 1/M . In this way, the derivation of (B.6)

remains the same regardless of the choice of factors in (B.13).

The transformations (B.13) induce a redefinition of the backreaction term. This

can be seen in two ways. First, from the polar decomposition ψ0 = Re
i
~ϑ and (B.13),

we see that the amplitude and phase of ψ0 transform as R = R′eγ and ϑ = ϑ′+β. This

implies that the real and imaginary parts of J [cf. (B.4)],

J(Q) := ReJ(Q) =
1

2M

n∑
a=1

[
~2

R

∂2R

∂(Qa)2
−
(
∂ϑ

∂Qa

)2
]
− V (Q) + E ,

K(Q) := ImJ(Q) =
~

2M

n∑
a=1

(
2

R

∂R

∂Qa
∂ϑ

∂Qa
+

∂2ϑ

∂(Qa)2

)
,

(B.14)

are also redefined,

J = J ′ +
1

2M

n∑
a=1

[
2~2

R′
∂R′

∂Qa
∂γ

∂Qa
+ ~2

(
∂γ

∂Qa

)2

+ ~2 ∂2γ

∂(Qa)2

−2
∂ϑ′

∂Qa
∂β

∂Qa
−
(
∂β

∂Qa

)2
]
,

K = K ′ +
~
M

n∑
a=1

(
∂γ

∂Qa
∂ϑ′

∂Qa
+

1

R′
∂R′

∂Qa
∂β

∂Qa
+

∂γ

∂Qa
∂β

∂Qa
+

1

2

∂2β

∂(Qa)2

)
.

(B.15)

The second way to compute the redefinition of the backreaction term is to use (B.8)

and to note that the BO averages 〈∂/∂Qa〉BO and 〈∂2/∂(Qa)2〉BO also transform un-

der (B.13). Indeed, from (B.9) and (B.13), we find

Va = V ′a −
∂γ

∂Qa
, Aa = A′a −

1

~
∂β

∂Qa
, (B.16)
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and (no summation over the index a is implied)

Re

〈
∂2

∂(Qa)2

〉
BO

= Re

〈
∂2

∂(Qa)2

〉′
BO

− ∂2γ

∂(Qa)2
+

(
∂γ

∂Qa

)2

− 1

~2

(
∂β

∂Qa

)2

+
2

~
∂β

∂Qa
A′a − 2

∂γ

∂Qa
V ′a ,

Im

〈
∂2

∂(Qa)2

〉
BO

= Im

〈
∂2

∂(Qa)2

〉′
BO

− 1

~
∂2β

∂(Qa)2

+ 2

(
1

~
∂γ

∂Qa
∂β

∂Qa
− ∂γ

∂Qa
A′a −

1

~
∂β

∂Qa
V ′a

)
.

(B.17)

Equation (B.16) implies that a choice of β(Q) is related to a choice of Berry phase.

Moreover, Eqs. (B.16) and (B.17) imply that (B.8) retains its form after the redefini-

tions (B.13) are performed. Using (B.10), we also find

D+
a ψ0 = eγ+ i

~β
∂ψ′0
∂Qa

+ eγ+ i
~β

〈
∂

∂Qa

〉′
BO

ψ′0 = eγ+ i
~βD′+a ψ

′
0 ,

D−a ψBO = e−γ−
i
~β
∂ψ′BO

∂Qa
− e−γ−

i
~β

〈
∂

∂Qa

〉′
BO

ψ′BO = e−γ−
i
~βD′−a ψ

′
BO ,

(B.18)

which implies that (B.11) and (B.12) do not change under the transformations (B.13).

Note that 〈ĤS〉BO also remains unaltered under (B.13). The transformation laws (B.17)

can be used together with (B.13) in (B.8) to compute the change in J.

Equations (B.15), (B.17) and (B.18) show that the backreaction term is ambiguous.

That this is a consequence of the arbitrariness of ψ0 [cf. (B.13)] was discussed in [198,

199]. One may go beyond the scope of the traditional BO approach in search of a

well-defined notion of backreaction. For instance, other definitions of backreaction,

which use the concepts of decoherence and Wigner functions, are available [198, 202].

In the context of gravitation, where the gravitational field usually plays the role of the

heavy degrees of freedom, whereas the matter fields comprise the light sector, further

investigations were made in [198, 203, 204] to determine in which circumstances the

expectation value of the Hamiltonian ĤS of matter fields could be used as a source in a

semiclassical theory of gravitation. It was concluded that the distribution of ĤS must

have a peak at its average and that quantum corrections to the classical value of the

energy-momentum tensor must be small in order for such a semiclassical theory to be

well defined.

What is the physical meaning of the factorization ambiguity in the traditional BO

approach? As the (semiclassical) time variable is defined from the phase of ψ0 (cf.

discussion in Sec. B.2), we conclude that the redefinition (B.13) (which leads to ϑ = ϑ′+

β) amounts to redefining the time variable. This is in line with the reparametrization

invariance of the theory. If β(Q) = β0(Q) +O(1/M), then the lowest-order phase time
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is not altered by this transformation [because we assume that ϑ = Mϕ+O(M0)]. It is

also worth noting a point that is seldom emphasized in the literature (see the discussion

in [62]). In the traditional BO approach, a redefinition of Aa (the Berry connection, if

Va = 0) according to (B.16) is tied to a transformation of the (phase) time function.

This is relevant if one wishes to use (B.16) to impose a “gauge condition” on Aa, as

this condition will also be connected to the choice of time in the BO approach. In other

words, the freedom to define the Berry connection is related to freedom of choosing

ψ0, the backreaction term or the time function that parametrizes the dynamics. A

choice of ψ0, J or t is equivalent to a choice of the functions γ(Q) and β(Q) in (B.13).7

For this reason, the two perspectives regarding the dynamics discussed in §B.3 are

equivalent and contain the same arbitrariness. One may consider that ψ0 and the

backreaction are arbitrary, such that the BO factorization is simply a redefinition of

the total state Ψ(Q, q), or one may assume that ψ0 and ψBO are self-consistent solutions

to the nonlinear system of (B.11) and (B.12), where the definition of Va and Aa are

arbitrary [cf. (B.9)].

B.4.2 The traditional and minimal BO factorizations are equivalent

Due to (B.13), one readily notices that we can relate the traditional BO factorization

to the minimal BO ansatz given in Chapter 5 [see (5.34)]. Indeed, given the two

factorizations, we can use (B.13) as definition of γ(Q) and β(Q) as follows:

ψ0(Q) = exp [iMW0(Q)] eγ(Q)+ i
~β(Q) ,

ψBO(Q; q) = ψ(Q; q) e−γ(Q)− i
~β(Q) .

(B.19)

This trivially implies that Ψ = exp(iMW0)ψ = ψ0ψBO. Furthermore, the equivalence

of (B.5) to (5.38) [in the particular case in which the metric of the heavy sector is

Gab = δab and MV (Q) 7→ V (Q)] can be established by inserting (B.19) into (B.5)

and, subsequently, substituting J by the right-hand side of (B.4). For this reason, the

two BO ansätze lead to equivalent results. This correspondence is certainly expected,

but it motivates us to ask: how does the unitary evolution described in Chapter 5

correspond to a unitary evolution of ψBO? In the literature, there has been some

7It is also useful to note that the arbitrariness in the choice of backreaction term J is related to
the applicability of the weak-coupling expansion (i.e., the expansion in powers of 1/M) of (B.5). Since
the choice of backreaction term corresponds to a choice of ψ0 [cf. (B.4)] and to a choice of WKB
time variable, we conclude that a fixation of J determines a ‘background’ trajectory for the heavy
variables [via the integral curves of ∂/∂t =

∑
a ∂ϕ/∂Q

a∂/∂Qa; cf. (5.10)]. It is with respect to this
background trajectory that the weak-coupling expansion is performed, in the sense that the series
expansion in 1/M (and possibly its convergence) depends on how the heavy variables are separated
into a (corrected) phase time and other degrees of freedom, which were denoted by xi in Chapter 5.
Similar remarks were made in [98]. Moreover, Parentani has made a similar observation regarding the
choice of backreaction term and its relation to the expansion, emphasizing that the fixation of the
backreaction and the background trajectory is a ‘background field approximation’ [205].
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controversy regarding the issue of unitarity in the traditional BO approach [114–116,

120]. Therefore, it is important to understand this issue in detail with respect to the

formalism presented in Chapter 5.

B.4.3 Unitarity and conditional probabilities

Let us now examine the issue of unitarity of the equation (B.5). If ĤS is self-adjoint

with respect to the BO inner product (B.3) for some choice of measure µ̂BO, then the

quantum dynamics of ψBO is manifestly unitary at the lowest order [cf. (B.6)]. The

question is whether unitarity can be maintained when corrections of order 1/M are

included. To understand this, it is important to emphasize that there are two separate

issues at play: the unitarity of the evolution of the composite system of heavy and light

degrees of freedom, and the unitarity of the evolution solely in the light sector.

If one adopts the view that ψ0 and the backreaction are arbitrary (cf. §B.3 and

§B.4.1), then (B.5) is equivalent to the TISE (B.1) if a choice of ψ0 is given. Therefore,

as already mentioned, the BO factorization is a redefinition of the total state Ψ(Q, q),

and we conclude that (B.5) is generally an equation for the coupled system of heavy

and light variables instead of an equation solely for the light degrees of freedom. The

fact that it coincides with a Schrödinger equation for qµ variables at the lowest order

[cf. (B.6)] is a consequence of the factorization procedure. This is analogous to what is

shown in Chapter 5, where (5.38) is simply a phase-transformed constraint equation.

In this way, one should establish the unitarity (or lack thereof) at the level of the

coupled system and, subsequently, analyze the light sector in particular. This is not

the usual procedure in the literature, in which one focuses on the second view discussed

in §B.3; i.e., one considers the nonlinear system of (B.11) and (B.12). In this case, the

arbitrariness of Va and Aa [cf. (B.9)] is related to the choice of time variable, as we

have argued in §B.4.1. We will see that the unitarity (or lack thereof) of the evolution

in the light sector follows from a specific choice of Va.

In this context, it must be stressed that unitarity is to be understood with respect

to WKB time. In the customary applications of the BO approximation to problems in

molecular and nuclear physics [121–123,173], an external (“laboratory”) time is present

and, therefore, whether the theory is unitary (with respect to the external time) is

evident from the structure of the total Hamiltonian. Moreover, in these applications,

one also does not construct a relational description of time-independent problems, which

are described by a TISE. Here, on the contrary, we tackle the TISE (B.1) in a relational

way: we define an intrinsic clock from a combination of the degrees of freedom. As

we have seen, the intrinsic clock is defined from the heavy variables perturbatively in

the BO approach. It is then necessary to ascertain whether the dynamics is unitary

relative to the intrinsic clock.

It was established in Chapter 5 that the coupled dynamics of heavy and light degrees

of freedom is unitary, and the physical inner product is related to a quantization of the
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Faddeev-Popov determinant. The equivalence of the minimal BO formalism presented

in Chapter 5 to the traditional BO approach suggests that: (1) the unitarity of the

dynamics does not follow simply from the inclusion of the backreaction term, as this

term is ambiguous and the minimal BO factorization used in Chapter 5 does not rely

explicitly on the concept of backreaction; (2) the BO inner product could be defined in

a similar way to the physical (gauge-fixed) inner product used in (5.30), (5.31), (5.45)

and (5.69). We will see that this is indeed the case and we will critique the claim that

the (arbitrary) backreaction term leads to a unitary dynamics.

To begin with, let us take the results of Chapter 5 to be the most fundamental ones,

as they follow from the general formalism presented in Chapters 1 and 2. In particular,

the physical inner product (5.30) is clearly related to the gauge symmetry of the total

system. Due to the results of §5.2.3, §5.2.4 and §5.2.7, we know that this inner product

is conserved (at least up to order 1/M); i.e., we find

∂

∂t

[∫ ∏
i

dxi
∏
µ

dqµ
(
µ̂

1
2
v ψ1

)∗
µ̂

1
2
v ψ2

]
x1=t

= 0 (B.20)

for any two phase-transformed solutions to the quantum constraint equation. A few

comments are now in order. First, the equivalent result for the BO inner product would

be

∂

∂t

∫
dq ψ∗BO(1)(Q; q)µ̂BOψBO(2)(Q; q) = 0 ; (B.21)

i.e., the conservation of the BO inner product (B.3) of any pair of states ψBO(1) and

ψBO(2). Nevertheless, the condition (B.21) is not the one that is used in the literature

when the issue of unitarity in the traditional BO approach is analyzed [124,126]. Indeed,

the standard approach is to consider only a special case of (B.21), in which one focuses

on only one state, ψBO(1) = ψBO(2). Thus, the unitarity condition becomes

0 = Re

〈
∂

∂t

〉
BO

+
1

2

〈
µ̂−1

BO

∂µ̂BO

∂t

〉
BO

=
n∑
a=1

W a

(
Re

〈
∂

∂Qa

〉
BO

+
1

2

〈
µ̂−1

BO

∂µ̂BO

∂Qa

〉
BO

)

=

n∑
a=1

W a

(
Va +

1

2

〈
µ̂−1

BO

∂µ̂BO

∂Qa

〉
BO

)
,

(B.22)

where W a are the components of the vector ∂/∂t with respect to the basis spanned by

∂/∂Qa and Va was given in (B.9). In (B.22), we have also used the hypothesis that µ̂BO

is symmetric with respect to the flat measure and that it commutes with functions that

only depend on Q. Furthermore, it is important to mention that the standard proof of
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unitarity focuses on a flat measure µ̂BO → 1̂, but we do not impose this condition.

The focus on the condition (B.22), which is weaker than (B.21), brings us to the

second comment: the unitarity condition obtained in Chapter 5 generally holds for

the coupled system of heavy and light degrees of freedom. Indeed, the physical inner

product in (B.20) includes an integration over the heavy variables that are different from

WKB time (which were denoted by xi in Chapter 5). In this way, the dynamics of a

single sector may generally be non-unitary (as an open system). In spite of this, one can

impose unitarity solely in the light sector in terms of the conditional probabilities (5.46),

which describe observations of the light sector conditioned on a configuration of the

heavy variables. We will argue that this is how the unitarity of the traditional BO

approach should be understood; i.e., in analogy to what was done in §5.2.5, we will

see that the quantum dynamics of ψBO can be identified with a conditional evolution,

which describes the light sector in relation to a fixed heavy background.

Third, the parameter t in (B.22) is the WKB time, which can either be the lowest-

order phase time (as was considered in Chapter 5) or it can defined at each order in the

expansion in powers of 1/M (corrected phase time), as was discussed after (B.6). If one

adopts the corrected phase time, it is still, in principle, possible to define a change of

coordinates such as (5.10) in the heavy-sector configuration space. Likewise, one can use

the procedure of §5.2.3 to define the measure µ̂v, with respect to which the dynamics

of ψ(Q; q) in the minimal BO factorization is unitary in relation to the (corrected)

phase time. In this way, there is no qualitative modification of the conclusions of

Chapter 5. Due to the definition of WKB time, we have W a =
∑n

a′=1 δ
a
a′∂ϕ/∂Q

a′ +

O(1/M). If one identifies WKB time with the (corrected) phase time of ψ0, then

W a = 1/M
∑n

a′=1 δ
a
a′∂ϑ/∂Q

a′ , since ϑ = Mϕ+O(M0).

Fourth, the proof of (B.22) should amount to verifying that (B.22) is true for any

choice of ψBO that solves (B.5). This is done in Chapter 6 for the particular example

of primordial fluctuations over a quasi-de Sitter background. However, the standard

proof that is found in the literature [124, 126, 171] makes use of the (frequently tacit)

assumption that Va|µ̂BO→1̂ = 0 or, in other words, that 〈∂/∂Qa〉BO |µ̂BO→1̂ are imagi-

nary and comprise the components of the Berry connection [cf. discussion after (B.9)].

But Va|µ̂BO→1̂ = 0 is a sufficient condition for (B.22) to be satisfied (in the case in

which µ̂BO → 1̂) and, therefore, this assumption makes the standard proof circular.

In fact, by assuming that Va|µ̂BO→1̂ = 0, one is simply making a particular choice of

factorization [cf. (B.13) and (B.16)] rather than proving that (B.22) follows from the

dynamics dictated by (B.5). According to the discussion in §B.3 and §B.4.1, the dy-

namics described by (B.5) is equivalent to the one governed by (B.1), which involves

all degrees of freedom and not only the light variables.

Let us now see how the unitarity of the traditional BO approach can be understood

in relation to (B.20). From the general formalism presented in Chapters 2 and 5, we

see that the fundamental quantities that can be predicted in the quantum theory are
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conditional probabilities. Following (5.46), we conclude that the light sector may be

described by the probabilities

pΨ(q|Q) :=

(
µ̂

1
2
v ψ

)∗
µ̂

1
2
v ψ∫

dq

(
µ̂

1
2
v ψ

)∗
µ̂

1
2
v ψ

∣∣∣∣∣∣∣∣
Q

=

(
µ̂

1
2
v ψBO

)∗
µ̂

1
2
v ψBO∫

dq

(
µ̂

1
2
v ψBO

)∗
µ̂

1
2
v ψBO

∣∣∣∣∣∣∣∣
Q

, (B.23)

which are conditioned on a heavy-sector configuration Q. Notice that: (1) µ̂v is the

same as in (B.20); i.e., it is the measure that is determined in §5.2.7 to be related to

the Faddeev-Popov determinant; (2) we have used (5.36) and (B.19) to obtain the last

equality in (B.23). From (B.23), we see that the conditional probabilities coincide with

those determined by the BO inner product (B.3) if we define

µ̂BO := F(Q)µ̂v(Q; p̂, q) , (B.24)

where F(Q) is an arbitrary positive function of the heavy variables. Due to (5.66), we

see that (B.24) satisfies the assumption that it is symmetric with respect to the flat

measure.

As the light sector is a subsystem, its unitarity is not guaranteed, in contrast to the

unitarity condition (B.20). Nevertheless, we may use (B.19) to define a factorization

in which the denominator of (B.23) (the BO norm of ψBO) is conserved. Indeed, let us

define [cf. (B.3), (B.19) and (B.24)]

G(Q) :=

∫
dq

(
µ̂

1
2
v ψ

)∗
µ̂

1
2
v ψ =

e2γ(Q)

F(Q)

∫
dq

(
µ̂

1
2
BOψBO

)∗
µ̂

1
2
BOψBO

=
e2γ(Q)

F(Q)
〈ψBO|ψBO〉BO .

(B.25)

We obtain 〈ψBO|ψBO〉BO = 1 (for all values of Q and, in particular, for every instant

of WKB time) if we demand that8

e2γ(Q) = F(Q)G(Q) =

∫
dq ψ∗µ̂BOψ . (B.26)

8In particular, the factorization ψ(Q; q) = ψh(Q)ψl(Q; q) used in §5.2.5 can be seen as a par-
ticular case of (B.19). For example, we can define ψh = exp(γ + iβ/~) and ψl ≡ ψBO, such that
exp(iMW0)ψhψl = Ψ [cf. (5.59) and (B.19)]. Just as (B.26) imposes the unitarity condition on the
evolution of ψBO, the function ψh(Q) is chosen in §5.2.5 to guarantee the unitarity in the light sector
at order M0 [cf. (5.58)]. In this case, Eq. (5.53) is an instance of (B.23). If, furthermore, ψh(Q)
is normalizable, it can be interpreted as a marginal wave function for the heavy degrees of freedom
[cf. §5.2.5]. The concept of (normalizable) marginal and conditional wave functions has been used in
molecular physics and nonrelativistic quantum mechanics [100,122,123,186–188].
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This enforces the unitarity of the evolution of ψBO by a particular choice of factorization

[a fixation of γ(Q); cf. (B.19)].9 Using (B.9), (B.13), (B.19) and (B.26), we obtain

∂γ

∂Qa
= Re

〈
∂

∂Qa

〉
BO;ψ

+
1

2

〈
µ̂−1

BO

∂µ̂BO

∂Qa

〉
BO;ψ

= V ′a +
1

2

〈
µ̂−1

BO

∂µ̂BO

∂Qa

〉
BO;ψ

,

(B.27)

where the BO averages are taken with respect to the state ψ. Notice that, due to (B.19)

and to (B.24), we may write

〈
µ̂−1

BO

∂µ̂BO

∂Qa

〉
BO;ψ

=

∫
dq ψ∗

∂µ̂BO

∂Qa
ψ =

∫
dq ψ∗BO

∂µ̂BO

∂Qa
ψBO

=

〈
µ̂−1

BO

∂µ̂BO

∂Qa

〉
BO

.

(B.28)

Thus, we can use (B.16), (B.27) and (B.28) to find that the unitarity condition (B.22)

is indeed satisfied,

Va = V ′a −
∂γ

∂Qa
= −1

2

〈
µ̂−1

BO

∂µ̂BO

∂Qa

〉
BO

. (B.29)

In particular, we obtain Va = 0 if µ̂BO → 1̂, as in the standard proof. Finally, due

to (B.19) and (B.26), we can write

ψBO(Q; q) =
ψ(Q; q)e−

i
~β(Q)√∫

dq ψ∗µ̂BOψ
. (B.30)

Equation (B.30) makes it manifest that the choice of γ(Q) (factorization) given in (B.26)

guarantees that the BO norm of ψBO is equal to 1 at all instants of WKB time. Notice,

however, that this holds only for this particular choice of factorization. In contrast,

the unitarity of the physical inner product [cf. (B.20)] depends only on the choice of

background clock,10 and it shows that conditional wave functions evolve unitarily if the

inner product is defined in a suitable way that follows from the perturbative expansion

of (B.5) [or (5.38)].

9Incidentally, notice that one should not fix F(Q) [instead of γ(Q)] by requiring that (B.22) is
satisfied, as this would lead to a definition of the measure that is dependent on a state [cf. (B.24)] or,
alternatively, it would enforce the unitarity condition only for a certain class of states.

10Time-dependent transformations of the states in (B.20), such as ψ(Q; q) = f(x)ψ′(Q; q), can be
absorbed into a redefinition of the measure µ̂v.
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Regarding the backreaction term, we note that fixing γ(Q) according to (B.26)

amounts to a choice of J, which is otherwise arbitrary [cf. (B.15)] if one takes the

perspective that ψ0 is arbitrary [cf. discussion in §B.3]. Moreover, in the perspective

in which ψ0 and ψBO are to be found by solving (B.11) and (B.12), we note that

equation (B.22) is not a consequence of the equations (B.11) and (B.12). If one takes

the BO average of (B.12), the result is trivial (0 = 0) and it does not fix the value of Va.

On the contrary, the value of Va given in (B.29) has to be posited by using the freedom

to redefine the BO averages 〈∂/∂Qa〉BO [cf. (B.16)]. Therefore, we conclude that it

is not the inclusion of a backreaction terms that yields a unitary dynamics (both for

the coupled system and for the light sector, in particular), contrary to what is usually

claimed.

It is also worthwhile to mention [163], where the expansion of (B.5) in powers of

1/M was considered. There, it was argued that terms that could violate unitarity

(in the sense of yielding to a non-zero value of the right-hand side of (B.22)) could

be discarded if one performed an appropriate state redefinition according to (B.13).11

Nevertheless, one must note that certain would-be unitarity violating terms generally

depend on q and, therefore, they cannot simply be absorbed into ψ0(Q) through the

transformations (B.13). Regardless of this caveat, the key strategy of [163] is to demand

unitarity by choosing γ(Q) in perturbation theory. In this way, this corresponds to the

procedure of defining the particular factorization (B.26), which leads to a choice of the

backreaction term. Rather, in the approach of Chapter 5 (see also Chapter 6), the

would-be unitarity-violating terms are incorporated into the definition of the measure

µ̂v [cf. §5.2.3 and (5.66)].

Finally, we note that the BO averages correspond to conditional expectation values.

Indeed, the average of the operator ÔBO := µ̂
− 1

2
BOÔ(Q; q,−i~∂/∂q)µ̂

1
2
BO reads [cf. (5.46)

and (5.60)]

〈Ô〉BO =

∫
dq ψ∗BOµ̂BOÔBOψBO∫

dq ψ∗BOµ̂BOψBO
=

∫
dq

(
µ̂

1
2
v ψ

)∗
Ôµ̂

1
2
v ψ∫

dq

(
µ̂

1
2
v ψ

)∗
µ̂

1
2
v ψ

≡ E[Ô|Q]. (B.31)

It is important to note that the connection between the BO approach and a concept

of conditional wave functions was first indicated by Hunter in [100] and afterwards by

Arce in [123]. Our formalism differs from the ones presented in [100, 123] due to the

fact that the measure µ̂BO is, in general, different from 1̂, and it is associated with

the regularization of the inner product of the total states Ψ(Q; q) (solutions to the

11It appears that two requirements are made in [163]: (1) ψBO should be an eigenstate of ĤS;
(2) i~∂ψBO/∂t should be independent of q. These conditions need not be enforced in the formalism
presented in this appendix and in Chapter 5.
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constraint equation) via the insertion of the Faddeev-Popov operator (cf. §5.2.7). This

association [cf. (5.66) and (B.24)] is new to the best of our knowledge.

From Chapter 5 and Sec. B.4.2, we thus conclude that the BO approach to the

problem of time can be seen as a particular case of the relational formalism presented

in Chapters 2 and 5 and that it is unitary with respect to a suitably-defined physical

(gauge-fixed) inner product. We can use ψBO to compute conditional expectation values

[cf. (B.31)], which encode the dynamics of the light sector in a fixed background defined

by heavy degrees of freedom (see also §5.2.5).
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[81] P. A. Höhn, Universe 5, 116 (2019). (p. 94 and 184.)

[82] S. D. Bartlett, T. Rudolph and R. W. Spekkens, Rev. Mod. Phys. 79, 555 (2007).

(p. 94, 100, 102, and 185.)

[83] T. Miyadera, L. Loveridge and P. Busch, J. Phys. A: Math. Theor. 49, 185301

(2016). (p. 94, 95, 100, 102, and 185.)

[84] M. Creutz, I. J. Muzinich and T. N. Tudron, Phys. Rev. D 19, 531 (1979). (p. 94.)

[85] A. Anderson, Phys. Lett. B 305, 67 (1993). (p. 94.)

[86] D. N. Page and W. K. Wootters, Phys. Rev. D 27, 2885 (1983). (p. 97, 100, 183,

and 185.)

[87] W. K. Wootters, Int. J. Theor. Phys. 23, 701 (1984). (p. 97, 100, 183, and 185.)

[88] D. N. Page, NSF-ITP-89-18. (p. 97, 100, 183, and 185.)

[89] D. N. Page. In: J. J. Halliwell, J. Pérez-Mercader, and W. H. Zurek (eds.),
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[114] D. Brizuela, C. Kiefer and M. Krämer, Phys. Rev. D 93, 104035 (2016). (p. 140,

160, 161, 162, 163, 164, 165, 166, 167, 171, 176, 177, 178, 179, 180, 181, 186, 227,

and 233.)
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