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ABSRTCAT

Transition metal free, difunctionalization of olefins by radical and nucleophile is presented in this
PhD’s work. The combination of benzoyl peroxide with strong Brensted acid HPF¢ allows the
difunctionalizationn of alkenes with radicals derived from thioxanthene, xanthene and
thiophenols together with nitrile and alcohol nucleophiles. Mechanistic studies suggest the acid

promotes the electron transfer step by making BPO as a better electron acceptor.

By using of triarylamine as organo-redox catalyst under transition metal and acid free in
difunctionalization of alkenes was further studied. BPO with catalytic amount of
triarylamine, alkenes can be difunctionalized by a wide range of alkyl radical, generated
from C(sp’)-H or halogenated hydrocarbon, nucleophiles, including nitriles, acetic acid,
alcohols and fluoride. Moreover, the oxidative Ritter reaction of allylic or benzylic C-H bonds

can be also achieved under this reaction system.
Abstrakt

In dieser Doktorarbeit wird {iibergangsmetallfreie, radikal- und nukleophil vermittelte
Difunktionalisierung von Olefinen vorgestellt. Die Kombination von Benzoylperoxid mit starker
Bronsted-Sédure HPFs ermoglicht die Difunktionalisierung von Alkenen mit Radikalen aus
Thioxanthen, Xanthen und Thiophenolen zusammen mit Nitril- und Alkoholnukleophilen.
Mechanistische Studien legen nahe, dass die Séure den Elektronentransferschritt fordert, indem

BPO als besseren Elektronenakzeptor fungiert.

Die Verwendung von Triarylamin als Organo-Redox-Katalysator unter libergangsmetallfreier
und sédurefreier Difunktionalisierung von Alkenen wurde weiter untersucht. BPO mit
katalytischer Menge Triarylamin, kann Alkene difunktionalisieren, durch einen weiten
Bereich von Alkylradikalen, die aus C(sp’)-H oder halogeniertem Kohlenwasserstoff,
Nucleophilen, einschlieBlich Nitrilen, Essigsdure, Alkoholen und Fluorid erzeugt werden.
Dariiber hinaus kann unter diesem Reaktionssystem auch die oxidative Ritter-Reaktion von

allylischen oder benzylischen CH-Bindungen erreicht werden.
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OBJECTIVES OF THIS PhD’s WORK

The radical difunctionalization of olefins is the major topic of my PhD thesis. The goal of my
PhD thesis is to find a method, which can be suitable for different radicals and nucleophiles under

one simple and easy handle reaction condition.

<N
/\. . @ o Nu
ET
Goal of my PhD thesis

The major works in this thesis are two parts, which were already published during my PhD

with PD. Dr. Klu3mann Martin, see the blow for references:
Chapter 1: Liu, S.; Klussmann, M., Chem. Commun., 2020, 56, 1557—1560.

Chapter 2: Liu, S.; Klussmann, M., Org. Chem. Front., 2021, DOI: 10.1039/D1Q0O00259G.

Chapter 1: Acid promoted radical-chain difunctionalization of styrenes

The first project of this dissertation is dealing with a reaction based on metal free, Bronsted acid
promoted radical-chain difunctionalization of styrenes with stabilized radicals and (N,O)-

nucleophiles.

Typical method for difunctionliaztion of olefins by radical and nucleophile needs an
electron transfer step after the radical addition, which could form a carbocation from carbon

centered radical. Followed by trapping with nucleophiles to produce the desired products.

Our group had previously reported the activation of TBHP by strong acid, besides, we noticed
Bao and co-workers’ work on copper-catalyzed difunctionalization of alkenes using benzoyl
peroxide (BPO) as oxidant, and HPFs as additive. However, in their report, the role of acid was

not clear, and the method could only use acetonitrile as radical precursor and nucleophile.
X
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Acid promoted radical-chain difunctionalization of styrenes

The combination of BPO with HPFs, a novel method for the difunctionalization of olefins with
radicals derived from thioxanthene, xanthene and thiophenols together with nitrile and alcohol
nucleophiles was developed. Mechanistic studies showed that the strong Brensted acid plays a

key role in electron transfer step, which could make the BPO as a good electron acceptor.

Chapter 2: Organo-redox-catalysis for the difunctionalization of alkenes and

oxidative Ritter reactions

The second project of this dissertation is dealing with difunctionalization of alkenes by

radicals and nucleophiles catalyzed by an organo-redox triarylamine catalyst.

a) Initiation of radical reactions by reaction of N, N-dimethylanilines with BPO:

0O

| |
N{ o pn N o Q
©/ £ PhT 0T ©/ + Ph)J\ S Ph)l\o'

— oo

BPO
b) Potential re-activation of triarylamines by electron transfer (ET):

Activation of BPO with N, N-dimethylaniline and triarylamines

Xl



Typical method for activation of peroxides needs transition metal. However, an organo-
redox catalyst catalyzed oxidative radical and nucleophile difunctionalization of alkenes is
lack of studies. N,N-Dialkylanilines are well known initiators for peroxides, especially BPO.
The reaction is irreversible. In contrast, we assumed that triarylamines could react as

catalysis, which could form a radical cation salt by ET.

Here, we show that triarylamines can be used as organic redox-catalysts in oxidative radical and
nucleophile difunctionalization of alkenes and oxidative Ritter-reactions. Alkyl radicals,
generated from plain and halogenated hydrocarbons, and nucleophiles, including nitriles, acetic
acid, alcohols and fluoride were successfully used into oxidative difunctionalization of alkenes.
The oxidative allylic and benzylic C-H bonds Ritter reaction could also achieve. Mechanistic

studies suggest that the triarylamines are catalysts and not initiators.

This work: triarylamine organo-redox catalysis: /—\
+.©
]
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Organo-redox-catalysis for the difunctionalization of alkenes and oxidative Ritter reactions
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INTRODUCTION AND BACKGROUND




INTRODUCTION

Olefins are readily available and valuable building blocks in natural products, materials and
pharmaceuticals. Therefore, many olefins have a tremendous demand in industry, such as
ethylene (with a worldwide production over 191.54 million tons in 2019),' propene (with a
worldwide production around 120 million tons in 2018),% and styrene (4.8 million tons in 2020).3
Structurally, olefins contain at least one m bond, which can be either a good electrophiles or
nucleophiles. The conversion of versatile and readily available olefins into more structurally
complex molecules has been a long-standing research topic in modern organic synthesis
methodology for chemists.* Some famous reactions based on the functionalization of olefins have
been well developed, such as the Sharpless dihydroxylation,> Ozonolysis,® Diels-Alder reaction,’

Wacker oxidation,® hydrogenation,’ holohydrins. '

d:P R2
R1

Dihydroxylation Hydrogenation Hydration Ozonolysis
0Os0Oq4 Pd/C, H» H>0, H>SO4 e.g. O3, then Zn, H"
HO, H HO
e
OH H H % ' R
o
R2
Holohydration Epoxidation Wacker oxidation Alkyl halides
e.g. Clz, H20O RCOs3H (mCPBA) PdCl,, CuCl, Oz, H20 HX
c O/Ab o X
Vicinal Dihalides Cyclopropanesation Hydroboration Diels-Alder reaction
e.g. Clz, CCl4 Zn-Cu; CH2l2 BH;3 then H20O2, Base conjugated diene

e S T N O

Scheme 1-1. Selected examples of olefin functionalization



The functionalization of olefins is one the most powerful methods for the construction C-C or C-
X bonds. However, in comparison with the abundant studies on the monofunctionalization of
olefins, the difunctionalization of olefins remains an underdeveloped area.!! The classical
difunctionalization of olefins requires two functional groups incorporate onto a carbon-carbon
double bond, in one step, with high efficiency, which is a challenging but fascinating concept for

the formation of unconventional bonds by designing simple processes. ‘2

R2 / RZ\\

difunctionalization 1 L + simple  monofunctionalization R?
/ - 1 / 1 cheap . —
R underdeveloped area ‘\\ R! ,,' available  @bundant studies Rq_%) or Q

~ -’
\5_—’

O O : functional groups

Scheme 1-2. Monofunctionalization and difunctionalization of alkenes

An interesting method amongst those is radical difunctionalization of olefins (Scheme 1-3).!?
This method enables olefin functionalizing, which is initiated by a radical addition to the carbon-
carbon double bond, forming a new C-centered radical intermediate of type 2. This intermediate
radical 2 can either combine with another radical donor to give the product 3 or be further
oxidized to a carbocation 4. The carbocation 4 can be attacked by nucleophile to give the product

S.

Intermolecular

‘R4 RY R2
radical precursor >_<
R', R3
initiator 3
R2 R4 Rz\‘
_ .R3 L ( \
1 { 1 3 l'
R 1 ‘R 2 R K
R2 © Nu R2
[O] ) < _Nu \ <
R'" R3 R'" R3
4 5

Scheme 1-3. Typical intermolecular radical-mediated difunctionalization of olefins



The difunctionalization of olefins by radicals and nucleophiles is extremely interesting for
chemists in the field of radical chemistry. This protocol allows difuntionalization of olefins with a
wide variety of reagents in high chemo- and regioselectivity, which enables radicals and
nucleophiles to react complementarily.!? Certainly, the intramolecular radical difunctionalization

of olefins can provide a new approach for synthesis of cyclic compound. (Scheme 1-4)

Intramolecular

radical precursor

initiator
'I,‘-\\NUH -R3 2" NuH [O] ,”“\NUH N Nu
\ > '\ . R3 _ ©)] R3 > \\ R3
\__/\ ‘\__/\/ \__/\/ S

Scheme 1-4. Typical intramolecular pathway for difunctionlization of olefins by radical and
nucleophile

Over the past decade, the radical difunctionalization of olefins has made remarkable progress due
to the development of transition metal catalysts, organo-catalysts, photo- or electro chemistry and
other technologies. Although some interesting synthetic methods have been developed towards
this goal, there is as of yet no method with a truly broad substrate scope of both radicals and

nucleophiles, which has spurred our efforts for further research.'*

In the following chapters, an overview of difunctionalization of olefins by radicals and
nucleophiles is given. Radicals that are either carbon- or heteroatom-centered or a wide range of
nucleophiles are described, as well as, some interesting methods such as atom- or group transfer
radical additions. This thesis does not aim to be a comprehensive presentation of all the known
literature but instead highlights the typical cases and some recent examples that best

demonstrate the current state of affairs.



BACKGROUND
Metal-catalyzed radical difunctionalization of olefins

Introduction

Recently, transition metal-catalyzed radical difunctionalization of olefins has progressed
remarkably. In this section, the historical developments and typical reports in the particular area
is highlighted. Due to the tremendous development of novel methods. There have been a number

of excellent reviews written on this subject.!>!315

Overview of different transition metal catalysts

Typically, the initial radicals could be generated by transition metal catalyst through single
electron transfer (SET) with some radical precursors, such as peroxides. The addition of initial
radicals to carbon-carbon double bonds, mostly styrene derivatives are used in the
transformation to form a stabilized benzylic radical 2. Oxidation by the transition metal
intermediate regenerates the catalyst and gives the benzylic carbocation 4, which is then

attacked by the nucleophile to provide the final product 5.

SET

Radical precursor Radical (R*)
/ \ R1\/\

[rm] uv

Nu
® \ / .
R2  NuH L R? R2
s Y et

R2

R R1/\(

R R

5 4 2

Scheme 2-1. Transition metal catalyzed radical difunctionalization of olefins.

Based on this concept, chemists have developed many protocols for the addition of carbon- or

heteroatom-centered radicals with nucleophiles into carbon-carbon double bond by using

transition metal catalysts over the past decade.!>!¢



Transition metal-catalyzed oxidative difunctionalization of olefins

In 2009, Zhang and co-workers firstly reported a copper-catalyzed difunctionalization reaction of
vinylarenes with cyclic ethers in the presence of tert-butyl hydroperoxide (TBHP) (Scheme 2-
2).'7 With the combination of CuBr and TBHP, fert-butyoxyl radical 10 and hydroxyl radical 11
were generated, which can then engage with cyclic ethers 7 in a hydrogen atom transfer (HAT)
step, forming a new carbon centered radical 12. The addition of 12 to alkenes could deliver the
benzylic radical intermediate 13, which reacted with the oxidant to give the final product 8. To
the best of our knowledge, this is the first example of a transition metal catalyzed oxidative
difunctionalization of olefins with unactivated radical precursors. However, this method showed

low reactivity and suffered from a limited substrate scope.

10 mol% CuBr (@] X
XX 1-1.2 equiv TBHP
R~ - o N o
% X~/ 60°C,12har R ] 8
6 X = CH2, (@]
7 30 examples
e Upt0B7%
'BUOOH CUBr , tgyo + + +OH
9 10 11
BuO * + *OH + f\o S r\o
X~/ X~/
10 11 :
12 x/>
N f\ .
R—— + O _— AN 0

=
13

6 12
X
o 0
R—:\ © — X o)
_ R~ 8
13 =

Scheme 2-2. Copper-catalyzed difunctionalization of vinylarenes with cyclic ethers.

Of particular interest for the further development of difunctionalization of vinylarenes with cyclic

ethers, in 2010 and 2012, the group of Wang and Park developed metal-nanoparticles as

18,19

catalysts, which could catalyze the reaction more efficiently leading to higher yields of the

desired products.



In 2013, Li and co-workers reported an iron-catalyzed oxidative 1,2-alkylarylation of activated
alkenes.2’ With the combination of the iron catalyst and a peroxide source, cyclic ethers can be
efficient radical precursors. A cascade radical reaction through radical cycloaddition, single
electron transfer, oxidation and deprotonation to give the desired products was achieved.
However, this reaction needs an organic base, DBU, as a ligand, and moreover the high

temperature limited the application in other fields.

R3
R—r _ .
I\Il @]
R1
14
2013. condition A: 15, FeCl; (10 mol%), TBHP, and benzene, 120 °C, Ar, 12 h

@) S < > o—
N /
O
N N o N
\ \ N\

R*Y—-,

\
7177; 17b 17¢ 17d
e 52% 40% 52%
dr. = 31

Scheme 2-3a. Transition metal-catalyzed 1,2-alkylarylation of activated alkenes

In 2014, the same group developed a palladium-catalyed Heck-type insertion reaction (Scheme 2-
3b).2! the reaction, which required a Ag,COs additive, was proposed to proceed via a radical

pathway, with a key bromine atom transfer step.
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Scheme 2-3b. Palladium-catalyed Heck-type insertion reaction 1,2-alkylarylation of activated

alkenes

Based on this model reaction, different radical precursors have been developed by many research
groups, such as nitriles,”> alkyl halides,® isocyanides,?* hydrazinecarboxamides,> alkyne

halide,?® ketones,?” AIBN,?® as well as other transition metal catalysts.

3
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Scheme 2-4. Summary of radical precursors for functionalizing oxindol-derived structures

In 2014, Nevado and co-workers reported a radical-mediated arylphosphonylation and
arylazidation of activated alkenes.?’ Different a-aryl-f-azido and a-aryl-f-phosphonyl amides
could be formed with excellent yields and highly regioselectivies. One year later, the same group
used the same concept to achieve a stereo-selective synthesis of highly functionalized indanes

and dibenzocycloheptadienes.*

In 2015, Zhu and co-worker reported a copper-catalyzed intermolecular carboetherification of
alkenes using nitriles and alcohols (Scheme 2-5).3! This reaction not only provides a simple
method for the construction of a Csp>-Csp? and a Csp>-O bond in one-step, but also an efficient

way for oxidative difunctionlization of olefins by radicals and nucleophiles.

Cu(OTf)2 (0.2 equiv)
1,10-Phen (0.4 equiv)

> 3
Ar1\’/ . ON L ey DTBP (2 equiv) arl R on
2
AR R R?CH,CN/R*OH AR R
19 20 21 120 °C, 24 h 22
selected examples:
= OMe
1.7 3 7 | oMe Ph CN
R X L ¢R CN S CN
Ph R?
Ph
1 s 61% 5
R'=4-H, R>=Me: 77% R? = Me: 61%
R'=4-OMe, R3 = Me: 76% R? = Et: 45%
R'=4-H, R®=Et: 37% R? = CH,OMe: 75%

Scheme 2-5. Copper-catalyzed the alkoxycyanomethylation of alkenes.



A similar method was reported by Lei’s group in the same year.?? In 2017, Zhu’s group
developed a three-component carboazidation of alkenes,** which used NaNj instead of alcohols
as the nucleophile. In the same year, groups of Li and Luo reported an iron-catalyzed
intermolecular 1,2-difunctionalization of olefins with silanes and nucleophiles.** This protocol
enables silanes as radical precursors, with nucleophiles, such as amines, amides, indoles, pyrroles,
and 1,3-dicarbonyls, which provides a powerful method for the synthesis of silicon-containing

alkane derivatives (Scheme 2-6).

The common concept for these reactions are analogous to those presented above. Peroxides 23
can undergo homolytic cleavage of the O-O bond in the presence of transition a transition metal
catalyst, generating a hydroxy-complex of higher oxidation state and an alkoxy radical 24. 24 can
then abstract a hydrogen atom from 26 through HAT to generate a new radical 27. Addition of 27
to olefins forms a new C-centered radical 2, which is then oxidized to give a carbocation 4 and
regenerate the catalyst. 4 can then be attacked by nucleophiles to form the final products 5. This

concept is a so called oxidative difunctionalization of olefins by radicals and nucleophiles.

H FeCl, (10 mol%) H Si(RY,R
2 DTBP (3 equiv 2 i(R%)2
R\%\R?S * HSIR)R® +  NuH e R%RE‘
1 PhCF Nu”]
R 120 °C, 20 h, Ar R
NuH:

8 0]
/R 0] 0]
RS _R7 N
H p I\ RY R10
H
N H
H |

Scheme 2-6. Iron-catalyzed intermolecular 1,2-difunctionalization of olefins with silanes and

nucleophiles

With the development of transition metal-catalyzed oxidative difunctionalization of olefins,

various radicals have been used, such as C-centered radicals,® N-centered radicals,’®3’ P-

39,40 12,13,15

centered radicals,*® S-centered radicals and others as well as nucleophiles (Scheme 2-

7).

10
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Scheme 2-7. Transition metal-catalyzed difunctionalization of alkenes by radical and nucleophile

In general, peroxides are widely used for radical difunctionalization of olefins, not only because
they are good oxidants but also ideal radical precursors.*' In 2017, Bao and co-workers reported
an oxy-alkylation of alkenes with peroxides.*” In the presence of iron catalyst, several lauroyl
peroxides 28 could react with alkenes. A radical-polar crossover mechanism was proposed. An
alkyl radical 29 was formed by losing CO> in the presence of the iron catalyst with peroxide 28.
Then the alkyl radical 29 reacts with styrene to form a benzylic radical 30, which is oxidized by
iron(IIT) to give a carbocation 31 and iron(Il). The carbocation 31 was then attacked by a
nucleophile to deliver the desired product 32 (Scheme 2-8). The same group also developed a
carboamination of alkenes through a Ritter reaction in the same year.*® By using this
method, primary, secondary, and tertiary alkyl radicals, and aryl radicals can be easily
generated from peroxides, which provides a powerful protocol in difunctionalization of

alkenes, to generate the molecules that are otherwise difficult to access.
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Scheme 2-8. Oxy-alkyation of alkenes with peroxides

In 2018, Zhu and co-workers reported a copper-catalyzed methylative difunctionalization of
alkenes.** By using dicumyl peroxide or di-tert-butyl peroxide (DTBP) as methyl sources, the
difunctionalization of alkenes with different nucleophiles, such as alcohols, carboxylic acids, and
sulfonamides was achieved. This protocol allows methylated ethers, azides, tetrahydrofurans,
tetrahydropyrans, y-lactones, and pyrrolidines with concurrent generation of a quaternary carbon

in good to excellent yields (Scheme 2-9). In 2020, two more nucleophiles TMSN;* and

ArB(OH),*® were applied under similar reaction conditions by Bao’s group.

intermolecular
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R ! X | Ligand R ' ( n
& Olr: DCP/DTBP (4.0 equiv) N3/R0>|V,v|e or iAr X
Ar X I . Ar I
|Ar n ROH/LIN3 1 Me
33 ' ___35__. 120 °C 34 .36 __
M Ph oM QMe
e e
Me
N3 Me N3 Me Me Me
Ph Ph Ph
34a, 81% 34b, 78% 34c, 96% 34d, 73%
HsC,,
o o ° D Mep
Ph Ph N
Ve Ve ph” O Ph" Ts
36a, 82% 36b, 63% 36¢c, 41% 36d, 71%

intramolecular
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Scheme 2-9. Methylative difunctionalization of alkenes

The group of Wang reported a rhenium-catalyzed alkene oxyalkylation with hypervalent iodine
reagents via decarboxylation in 2013.%7 It is the first time that hypervalent iodine reagents 37
have been used as alkylation and oxygenation sources in alkene difunctionalizations. The method
showed a wide substrate scope with excellent regioselectivities (Scheme 2-10). Later, an iron-
catalyzed acyloxyalkylation of styrenes using hypervalent iodine reagents was reported by
Kuninobu’s group in 2017.*® Compared with the previous report, the scope of hypervalent iodine
reagents with various functional groups was expanded. This protocol proceeded in a moderate to

good yields and could also performed on gram scale.

©

0,CR3® Phe
Ph\I/OZCR3 Ph\|”|® 2 \|I||
. — ' 0,crRé 39
0,CR3 0,CR3
37 38
kr C02 + Phl
[Re]' SET [Re]" |
.R3
RL/\ P
., © ; a R
OOCR 0,CR © o
R2 - R1 - . RZ
R1J\(3 /\R|/3 R/\|/3
R R
40 4 2

Scheme 2-10. Rhenium-catalyzed alkene oxyalkylation with hypervalent iodine reagents.

In a short summary, the use of transition metals to catalyze oxidative difunctionalization of
olefins by radical and nucleophile has been investigated by many chemists. Iron and copper
catalysts are frequently used for initiating the radical precursors and electron transfer step. A
wide range of radicals and nucleophiles have been added across alkenes, which provide a general
approach for the preparation of functionalized compounds. However, most of these methods need
high temperatures, prolonged reaction times, and a large excess of the peroxide. Thus, the

development of a redox-neutral method under mild reaction conditions with a board substrate
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scope will enable the rapid construction of molecular complexity in a green and sustainable

manner.

Transition metal-catalyzed trifluoromethylation of olefins

Another approach relies on trifluoromethylation of olefins with CF3 radical has been well studied,
in this section, we aim to make a short summary in order to show the achievements in this area.
In 2012, Buchwald and Zhu reported transition metal-catalyzed trifluoromethylation of olefins.*’
This method provides a mild, versatile and convenient way for oxytrifluoromethylation of
unactivated alkenes. Nucleophiles, such as carboxylic acids, alcohols, and phenols are all suitable
for this reaction. Mechanistic studies suggest that the Togni’s reagent 42 is reduced by the copper
catalyst to generate the CF3 radical 44, followed by radical addition and single electron transfer to
give carbocation intermediate 46 and regenerate the copper catalyst. Subsequent trapping of 46
with the nucleophile leads to the desired products 43. One year later, the same group used chiral
ligands to enable an asymmetric process that delivers similar products with good enantioselective

(Scheme 2-11).3°

) 0O Cu(MeCN)4PFg (10 mol%) -
<" Nu-H ©i/< ligand (20 mol%) " “Nu
[ . @) > !

\ \ CF
NPT |\’ MeCN, 55 °C, 16 h )V ’
41 42 CF, 43

proposed mechanism CF3
I\
B O
[ N 42
‘\\_)\/CFS CUI ©
43 cu'!
"CF3 44
‘I’ NU(_—BH "’-\\NU-H
\\\ ’/\/CF3 ‘\ /\
46 I"-‘Nu-H 41
oyl "\ _~_CF3
45



Scheme 2-11. Oxytrifluoromethylation of unactivated alkenes by CF; radical.

In the same year, the groups of Szaboé and Sodeoka both reported a copper-catalyzed three-

component trifluoromethylation of alkenes.’'>? Their approaches proceed with high regio- and

stereoselectivity, and also a significant breakthroughs as they utilised Umemoto’s reagent® and
Togni’s reagent respectively (Scheme 2-11a).3
a) Szabo and Sodeoka's works
1
N cu' (10 mol%) OCOR
R + Togni's reagent > N CF3
= MeCN, 55 °C, 16 h R—:
=
6 47
I | |
I
o 0] 0] (@) @] @]
CF3 e CF3 0 @ CF3
MeO o OMe
47a 47b 47c 47d
86% 7% 51% 58%
b) Summury of Togni's reagent in difunctionalization of olefins
I @) N
R T CF 3 CF3
T _ N - 0 2 | AN 3 R—' X
o |
R1 3 R CF3 I = =
48 49 50 51
R2 /—CF3 O CF,
R o) X
N R
\ = =
R’ |
- R
A
52 53

Scheme 2-12. CF3 radicals in transition metal-catalyzed difunctionalization of olefins.
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With the development of transition metal-catalyzed trifluoromethylation of olefins with CF3
radicals, there have been a number of developed methods. To summarize, these includes
oxytrifluoromethylation, aminotrifluoromethylation 48,°° allylic trifluoromethylation 49,
cyanotrifluoromethylation 50,>”% carbotrifluoromethylazidation 52,%%° and trifluoromethylation

rearrangement 53 (Scheme 2-11b).61:42

Most of the methods facilitate convenient trifluoromethylation of olefins under mild reaction
conditions with high chemo- or regioselectivties. Owing to the widespread use of olefin
trifluoromethylation, this area has now became an increasingly hot topic for the

difunctionalization of olefins.®?
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Metal-free radical difunctionalization of olefins

Introduction

With the development of difunctionalization of olefins, a common drawback to these methods is
the use of precious or toxic transition metal catalysts. Finding more environmentally friendly and
inexpensive oxidants without needing metal catalysts is extremely important for synthetic
chemists. In this section, the advancements of radical mediates olefin difunctionalization under
metal-free conditions is summarized. Again, a number of the important literatures and reviews

were written on the subject.

Overview of metal-free radical chain-difunctionalization of olefins

Almost every radical chain reaction need an initiator. Thus, the radical difunctionalization of

olefins that proceed through a radical chain mechanism, can be divided by the respective initiator.

nBusSnH
l AIBN

RX nBusSn

nBuzSnX 54
R1J\/ R
R1/\ 56
R1/.\/ R nBuzSnH

55

Scheme 2-13. Azo initiators with Tin hydride reagents for radical chain reactions

Azo initiators, such as azobisisobutyronitrile (AIBN) are well known radical initiators.®*% In the
early developments, most radical chain difunctionalization of olefins relied on tin hydride
reagents combined with AIBN, typically tributyltin hydride.®®®’ The decomposition of azo

compounds leads to the formation of nitrogen and two radicals that undergo hydrogen atom
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transfer from nBusSnH, and delivery the tributyltin radical 54, which then facilitates the atom-
transfer difunctionalization of olefin. However, most tin hydride reagents are toxic, and the tin
byproducts generated are difficult to remove completely, which limites the application in an

industrial setting.

Azo initiators are widely used for enabling atom-transfer radical addition reactions (ATRA).%57?

Kita and co-workers reported atom-transfer radical addition reactions with bromomalononitrile
in 1998.7 Using catalytic quantities of an azo initiator, the desired product was formed under

mild reaction conditions (Scheme 2-14).

NG CcN Azo initiator Br CN
X (5 mol%)
S - on
Br CH,Cl,,25 °C
__________ 6a 5T .88
CN CN CN
N N. O N
><\‘/ \N/’\>< /><\‘/ \N/’\></ e 7(\‘/ \N/’\><O/
CN CN CN
AIBN, 0 59, 45% 60, 95%

Scheme 2-14. Azo initiators in atom-transfer radical addition reactions with bromomalononitrile

Moreover, azo initiators can also be donors of cyano or cyano-containing functional groups. The
incorporation of cyano or cyano-containing functional groups into organic structures is a hot

research topic in organic synthesis.

In 2015, Guo and co-workers developed a simple and metal-free direct
cyanoisopropylation/arylation of N-arylacrylamides or N-alkyl-N-(arylsulfonyl)acrylamides with
AIBN (Scheme 2-15).74
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Scheme 2-15. Metal-free cyanoisopropylation/arylation of alkenes

Together with azo initiators, peroxides are important thermal initiators.”” The peroxides are
easily decomposed into oxyl radicals because of the week O-O bond. A notable example is the
thiol-ene reaction that was reported by Theodor in 1905.7 Using either light, heat or peroxide
initiators, the thiyl radicals 63 were generated through HAT, which then added to the carbon-
carbon double bond to form a new carbon centered radical 64, followed by hydrogen atom
transfer from thiol 62. The thiol ene product 65 and another thiyl radical 63 were formed,
which can subsequently participate in multiple propagation steps. Similarly, thiol-oxygen co-
oxidation of olefins was first reported by Kharasch and co-workers in 1951,”7 as well as the
radical difunctionalization reaction, both of which require UV irradiation or excess peroxides for
initiating. These two type of radical difunctionalization reactions gained prominence in the

late 1990s and early 2000s for their feasibility and wide range of applications (Scheme 2-

16).78 79

R™SH R-SH )

62 > R1J\/S\R * R-S-

l Initiation - J ______ 65 thiol-ene reaction
R-S- * R1/\ E— :R'l/\/S\R ' 64

6 L. _| _____ f] OH
63 66
. . R S\R
Oxidants thiol-oxygen co-oxidation
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Scheme 2-16. Typical thiol-ene reaction and thiol-oxygen co-oxidation of olefins

The formation of carbon-centered radicals often requires homolytic cleavage of a carbon-halogen
bond or carbon-hydrogen bond in the presence of radical initiators. However, both of these two
approaches need higher temperature, which always sufficient in producing useless by-products or

polymerization.®® Thus, appropriate temperature is significant.

In 1945, Kharasch and co-workers reported an atom transfer radical addition, which has become
known as the Kharasch reaction.®!®? In the presence of radical initiators, carbon tetrachloride
adds to olefins, to give the product in good yields. At 100 °C, peroxide 69 undergoes homolytic
cleavage of the O-O bond, and after losing COz, forms a methyl radical, which can engage in the
halogen atom transfer from 67 to generate a new radical 71. 71 then adds to olefins to give a new
C-centered radical 72, which is trapped by an additional equivalent of 67 and generates the
desired product 70 (Scheme 2-17).
@)

M o
0 o T 0
Cl + W —O>
Cl cl Cl
Cl 100 °C,4 h Cl ClI CI 79
67 68

T» . Cl)g'/

co, l
67
i I 20
Cl
C|)J\./ + (I CIW
Cl Cl ClI ¢ Cl ClI
71 70 72

Scheme 2-17. Kharasch addition of trichloracetylchloride to 1-octene
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Although the majority of examples require photoredox or transition metal catalysts, there are a
few published reports under transition metal free conditions.*>®> The major problem is that an
atom transfer radical polymerization (ATRP) reaction is much more favored than atom transfer
radical addition reactions (ATRA). So far, transition metal-free processes are underdeveloped in

the area of olefin difunctionalization.?¢-%

In 2014, Klussmann and co-workers reported an acid-catalyzed oxidative radical addition of
ketones to olefins.®® The resulting y-peroxyketones can be further transformed into various useful
products, such as 1,4-diketones, homoaldol products, and alkyl ketones. This protocol offers a
valuable method for the addition of simple ketones to olefins under metal-free conditions. A
radical chain mechanism was more favored in this reaction. In the presence of a strong Brensted
acid, TBHP reacts with ketone to form 75 and subsequently alkenylperoxide 76. 76 can undergo
facile homolytic bond cleavage, delivering the resonance-stabilized ketone radical 77 and a fert-
butoxyl radical 78. In the presence of ‘BuOOH, a fast equilibrium exists between 77 and the
tertbutylperoxyl radical 78, favoring the latter.®® Addition of 78 to the carbon-carbon double bond
generates 79, which reacts with the peroxy radical 81 to give the final product 74 (Scheme 2-18).

‘BUOOH (4 equiv)

f
O pTsOH (10 mol%) BuoO  R;
AT+ R% 2 R
R MeCN, 50 °C, overnight ~ Ar
6 73 74 O
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0 t [H'] o- 0
)J\ + Bu(;OH o { /& H)J\} + 1BuO -
-2

73a “ 77 78
A o 0Bu
HO OOBu
P AN
-H,0
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'BuO: +  'BUOOH 'BUOH + BuOO*
10 9 81
X
O0Bu
(- . 'Bu0O -
AT — A _— A
;
6 79 © 80 O
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Scheme 2-18. Oxidative radical addition of ketones to olefins

In 2016, Xing and co-workers reported a metal-free, difunctionalization of terminal vinylarenes
with C(sp®)—H bonds alpha to nitriles for the synthesis of y-ketonitriles 82 (Scheme 2-19).%° A
similar mechanism to KluBmann’s work was proposed.®® The highly activated tert-butoxyl
radical 10 or the hydroxyl radical abstracts the a-H atom from the nitrile 20 to generate a
primary alkyl radical 83. Addition of the primary alkyl radical 83 to the carbon-carbon double
bond forms a new benzylic radical 84. 85 is then formed after radical-radical coupling
between the benzylic radical 84 and tBuOO-. Finally, 85 is converted to the desired product 82
in the presence of DBU (Scheme 2-16). A similar method was also reported by the

groups of Li and Duan with aldehydes® or alcohols®? as hydrogen donors.

N NG, R DBU (1 equiv) O CN
R1—! . Y TBHP (4 equiy) e R?
= H neat, 110 °C R'—r
6 20 ~ 82
R? R2
| |
BuO* or *OH + H-CHCN 'BUOH or HOH + -CHCN
10 20 83
~ R2 . R? 81 BUOO  R2
1_|\ \ 'CHCN | AN CN tBuoo. AN CN
R'— _ —_ = R1—| R1_!
6 Z g4 ~ 85
1y 2
BuOO R o R2
DBU
R1_l\ CN N N CN
! _— R
85 ~ 82

Scheme 2-19. Difunctionalization of terminal vinylarenes with alkyl nitriles

Additionally, other TBHP-involved radical difunctionalization of alkenes have been developed

recently.”¢ In 2015, Wang and co-workers reported the difunctionalization of alkenes with 1,Os
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and P(O)-H compounds to synthesize f-iodophosphates, using TBHP as the radical initiator and

oxidant.”’

In 2017, Yu’s group developed a metal-free 1,2-alkylarylation of allylic alcohols with aliphatic
aldehydes.”® Di-tert-butyl peroxide (DTBP) 86 was used as the initiator and oxidant in this
reaction. DTBP was decomposed at 100 °C to form two tert-butoxyl radicals 10, followed by
hydrogen atom transfer and decarbonylation to give the alkyl radical 29. The alkyl radical 29 then
undergoes intermolecular radical addition to the diaryl allylic alcohol 89 to give a new radical
intermediate 90. After radical addition, neophyl rearrangement and oxidation generates the final
product 93 (Scheme 2-20). Similar reactions with different peroxides have also been

published 99,100,101,102

BuO—0OBu 86 OH
l heat IPDTIW OH OH
7 o Co 89 Ph Ph
ety = O
87 88 29 90 91

Scheme 2-20. 1,2-alkylarylation of allylic alcohols with aliphatic aldehydes

In 2020, KluBmann and Liu reported an acid-promoted radical-chain difunctionalization of
styrenes with stabilized radicals and (N,0)-nucleophiles (Scheme 2-21).!% The reaction proceeds
through sequential addition of a radical and a nucleophile, which is suggested to react by a radical
chain mechanism and hence does not requiring a catalyst. An electron transfer step to the benzoyl
peroxide (BPO) oxidant is facilitated by protonation with a strong acid. This reaction will find in

the chapter one of this thesis for a detailed discussion.
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Scheme 2-21. Acid-promoted radical-chain difunctionalization of styrenes

Other oxidants and radical initiators, such as tert-butyl peroxybenzoate (TBPB),!**

(diacetoxyiodo)benzene,!®1%7 tert-butyl nitrite, 191 disulfides!!%!!3 and molecular oxygen!!*!1?

have been successfully utilized for radical difunctionalization of olefins by other research groups.

Later, Alexanian and co-workers reported a metal-free, aerobic dioxygenation of alkenes using
hydroxamic acids in 2010.''® By using hydroxamic acids 94, radical difunctionalization of olefins
was achieved for a wide range of unsaturated substrates and affords dioxygenation products with

differentiated oxygen atom functionalities. One year later, the same group reported an

oxyamination of alkenes with even higher chemo- and regioselectivities (Scheme 2-22).'"7
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Scheme 2-22. Oxyalkylation and oxyaminations of alkenes
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Overview of organocatalytic radical difunctionalization of olefins

In 2008, Macmillan and co-workers developed a carbo-oxidation of alkenes using an amine
organocatalyst.!'® This catalyst 98 was designed and used for what has become known as SOMO
catalysis in difunctionalization of olefins for the first time. This protocol allows the
enantioselective a-homobenzylation of aldehydes using a variety of alkenes (Scheme 2-23). In
2010, the same group used the same catalyst for the enantioselective synthesis of six- and five-
membered carbocycles by cycloaddition from simple aldehydes and olefins with high
enantioselectivies and high yields.!!"” Few years later, the asymmetric synthesis of pyrrolidines

was also reported with similarly high selectivities and yields.!?°

Me O /Z_f\
O . /Z_ﬁ -H20 ‘Bu +N Me
Bu Me

R

- 1e
87 H 98 9 %
. SOMO
aldehyde amine catalyst activated
Me O Me O Me O
TS s oS e
Bu +N Me Ph Bu ltl Me le . Bu KJ Me
R R R
Me O
By rtl Me Nu/H,0 Ph . ,Z—f\
k/\/ H : Bu Me
Ph - N
- 3 R Nu H
102 - 103 98

Scheme 2-23. SOMO amine catalysis for the difunctionalization of olefins

In 2012, Liu and co-workers reported a novel organocatalyzed arylalkylation of activated
alkenes.'”! The dinitrogen compounds 104 play an important role, which may react with

(diacetoxyiodo)benzene to form tert-butyl radical and then the fert-butyl radical promotes this
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radical cyclization. This reaction provides a highly efficient way to synthesize a variety of

oxindoles 18 from simple aryacrylamides 14 (Scheme 2-24).

Cata. 104 (15 mol%)

N f PhI(0,C'Bu), (2.5 equiv)
N0 i
|

CsO,C!Bu (3.0 equiv)

CaCOs (3.0 equiv), DMA, 110°C
14 16 exmaples
up to 86% yield

86% 47%

Scheme 2-24. Organocatalyzed arylalkylation of activated alkenes

The uses of organic small molecules for catalyzing the difunctionalization of olefins has been
further studied since. In 2013, Zhu’s group reported a tetra-n-butylammonium iodide-catalyzed
regioselective difunctionalization of unactivated alkenes.'?? In addition, Wang and co-workers

reported a tetra-n-butylammonium bromide (#BusNBr) catalyzed carbonylation—peroxidation of

tBuOOH Xl or Br fBuoo + H,0
112 X
BuO- BuOOH + ©OH

©
" OH I2/Br2
j\ O g8 0 BULOO O
Ar H tBUO . Ar). /.\)J\ R)\/U\Ar
87 R o5 106
R
or or or o :’_, tBUOO or
O .
i 'BUOH )J\ R/\/O\H/Ar R)\/O\n/ Ar
Ar”~ "OH Arm O- 0 o)

Scheme 2-25. nBusNI-TBHP and nBusNBr-TBHP systems for difunctionaliaztion of olefins
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styrene derivatives.!”> Both nBusNI-TBHP and nBusNBr-TBHP systems have become widely
used for the difunctionlization of olefins because of their high efficiency, lower toxicity and

environmental friendliness (Scheme 2-25).124123

In 2015, Mao’s group reported a catalytic amount of Nal-catalyzed acetamidosulphenylation of
alkenes with nitriles as the nucleophiles.'?® This is the first example where sodium iodide 111
was used as a catalyst for the difunctionalization of alkenes (Scheme 2-26). This protocol is

suitable for a wide range of substrates with excellent yields.

R-O-O—-R 86
Mo,
29 1M1 13 HNJ\
® Ritter reaction
~ S\ —_— S\
R Ph” "7 ph Ph)\/ Ph
PhSI
12 T[O] 114
/\ .
Ph™ ™ S.
PhS * Ph” " ph
63 64a

Scheme 2-26. Nal-catalyzed acetamidosulphenylation of alkenes

Recently, a number of additional iodide-catalyzed radical difunctionalizations of olefins have
been published by other groups.'?>1?"128 However, these reactions are still lacking a truly broad

substrate scope, spurring our efforts of further research.

In 2020, Li’s group reported the first N-heterocyclic carbene (NHC)-catalyzed radical
acylfluoroalkylation of olefins.!?® This protocol was shown to be suitable for various
difluoroalkyl bromides bearing diverse functionalities, such as sulfonyl, ester, amide, and
bromide moieties. Moreover, perfluoroalkylation could also achieved. With this strategy, over
120 examples of fluoroketones were easily accessed from simple feedstock materials.
Mechanistic studies suggested that intermediate 118 reduces of the Togni’s reagent 115 via single
electron transfer to give a fluoroalkyl radical 119 and a persistent ketyl radical. Addition of the

fluoroalkyl radical 119 to styrene produces a benzylic radical 120. Subsequently, a radical—
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radical cross-coupling pathway forms intermediate 121, and the fluoroketone product 117 is

delivered by releasing NHC 116 to finish the catalytic cycle (Scheme 2-27).

1 Rf O
R O NHC 116
~__R3 + )J\ +  [Ry] source - > R3 r 17
115 R?R!
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Scheme 2-27: NHC catalyzed radical acylfluoroalkylation of olefins

During the past decade, organocatalytic radical difunctionalizations of olefins have been explored
by many other groups.'*® However, most reported methods are focus on hypervalent iodine
reagents or catalyzed by iodide. As can be seen, the use of organocatalysts for radical
difunctionalization of olefins are still lacking, which motivates our efforts to develop novel

Processes.



Additional methods for radical difunctionalization of olefins

Introduction

Photo- or electro chemistry has now become a very hot topic in modern organic synthesis. By
using photo- or electro chemistry for olefin difunctionalizations, broad substrate scopes and a
good tolerance of functional groups has been achieved. In this part, different methods relating to

photo or electrochemical conditions will be summarized.

Photochemistry in radical difunctionalization of olefins

In recent years, photoredox catalysis has emerged as an useful tool for radical reactions through
visible-light-induced  single-electron-transfer  (SET) processes.'!  Photoredox-catalyzed
difunctionalization of olefins with various radicals and nucleophiles have now been developed.
Amongst them, the trifluoromethyl radical (-CF3) 44 and difluoromethyl radical (-CF,H) have

become widely used for construction of tri- and difluoromethylated skeletons (Scheme 2-28).

hv
nucleophilic
trapping R\/\
R -
Y ek, CF3 L—CF3
Nu 121
124
R
\./\C Fs —< *CF3
122 Z R 44
L-CF4
00 ol QL e
1 1 A\ 1
1 © ® 1 : S 1
: S 0 s » ©/ CFH 1
CE. 125 42 CF; 126
: Vo |
1 1 1

Umemoto's reagent Togni's reagent Yagupolskii-Umemoto's reagenti

Scheme 2-28: Typical mechanism for the photocatalytic difunctionalization of olefins with

fluoromethylating reagents
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In 2012 and 2013, Akita and co-workers found that CF3 radicals could be generated by a SET

132 133

reduction process by the excited Ir'”~ or Ru

catalyst with Umemoto’s reagent 125 and Togni’s
reagents 42. Oxytrifluoromethylated and aminotrifluoromethylated products were afforded with
broad scope and regioselectivities for both terminal and internal aromatic alkenes. However,

aliphatic alkenes did not produce the corresponding products well (Scheme 2-29).

photoredox Nu

catalyst 2
R1/\/R2 +  CFzreagents + Nu-H Y - R R

Condition A:
[fac-Ir(ppy) 3] (0.5 mol%), Umemote's reagent (1.1 equiv), DCE/ROH (9:1), rt, blue LED

OMe
HO/,, ...CF3
CF3 CF3 OH O
124c 124d
124a 95% 93% 77%
99% (1:10 d.r.) (1:3.4 d.r.) (1:4.6 d.r.)
Condition B:

[Ru(bpy)3](PFg)2 (0.5 mol%), Umemote's reagent (1.0 equiv), CH3CN/H,0, rt, blue LED

o 0
\H/N HNW/
CF3 O CFj O
CF
124f ° 1249 17%40/“
95% 56% 63:31 dr

Scheme 2-29: Oxytrifluoromethylation and aminotrifluoromethylation reactions of olefins

The strategy of using photoredox-catalyzed fluoromethylation of carbon—carbon multiple bonds
has now been seen as a powerful tool for difunctionalization of olefins by radical and
nucleophile. Nucleophiles, such as water, alcohols, carboxylic acids, amides and indole have
all been used successfully.’*"!3* In addition to these methods, which have utilized CF; radical
sources, recent advancements have shown that a number of other radical reagents can be

used for olefin difunctionalization.

30



In 2011, Stephenson and co-workers used photocatalytic intermolecular atom transfer radical
addition to olefins under mild reaction conditions.!3* This protocol was characterized by excellent
yields and broad scope. In the present reaction, the Ir photoredox catalyst
[Ir(dF(CF3)ppy)2(dtbbpy)](PFs) was used. Under the visible light irradiation, the Ir** excited
species reduces the haloalkane 128 to afford the alkyl radical 129. The alkyl radical 129 then
adds to the olefin to give a new C-centered radical 130, which is oxidized via a single electron
transfer step to give the Ir’* catalyst in the ground state and the carbocation intermediate 131.
Subsequent nucleophilic trapping by the halide produces the desired product 129. The author
suggested the involvement of a radical propagation pathway was not excluded completely in the
present reaction (Scheme 2-30). Later, other groups have also reported methods for sulfonyl

137,138

cyanation'*® and sulfonyl halogenation of olefins through atom transfer radical addition with

different photoredox catalysts.
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Scheme 2-30: Atom transfer radical addition to olefins enabled by photoredox catalysis

Visible light-mediated photoredox-catalyzed difunctionalization of olefins via an atom transfer
radical addition reaction is a versatile and efficient process to facilitate the construction of

various structural motifs with many potential applications, !3%140-141
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Another type of photochemistry for olefin difunctionalization reactions is the combination of
photoredox-catalysis and peroxides, which can introduce a nucleophile and a radical into styrene

involving hydrogen atom transfer.

In 2015, Wang and co-workers developed a novel photocatalytic synthesis of sulfonated
oxindoles.'*> TBHP 9 can be reduced by the excited Eosin Y catalyst to give a tert-butyloxy
radical 10, which abstracts a hydrogen atom from the arylsulfinic acid 132 to generate an oxygen-
centered radical 133 that is in resonance with the sulfonyl radical 134. The addition of the
sulfonyl radical 134 to the carbon-carbon double bond affords a new alkyl radical 135. After
intramolecular cyclization, oxidation and deprotonation delivers the final product 138 (Scheme 2-

31).
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Scheme 2-31: Photocatalytic synthesis of sulfonated oxindoles.

In 2017, Sun and co-workers used the same photocatalytic-peroxide reaction conditions for the
synthesis of ester-functionalized pyrido[4,3,2-gh]phenanthridine derivatives.!* In this report, a
N-centered radical was formed, which is the key for the construction of the polyheterocycles.

Recently, KluBmann and Marcel reported the consecutive addition of acyl radicals and N-
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alkylindole nucleophiles to styrenes using photoredox catalysis.!** Different substituted
functional groups on the olefins can be employed, forming quaternary all-carbon centers upon
addition of indoles and benzotriazole to the benzylic position. The combination of TBPB and
iridium photocatalysis forms the benzoate intermediate and a fert-butoxyl radical 10. The tert-
butoxyl radical 10 then abstracts a hydrogen atom from aldehyde 87, thus giving a new radical 88,
which adds to the styrene derivatives. The benzylic radical 105 is then formed. Subsequently,
oxidation by the Ir(IV) species generates carbocation intermediate 139, which is trapped by the
nucleophile to form the final product 140 (Scheme 2-32).
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Scheme 2-32: Photoredox catalysis for the difunctionalization of alkenes with aldehydes and

indoles

In 2019, Li and co-workers reported an intermolecular dialkylation of alkenes with two distinct
C(sp®)-H bonds using photoredox and iron catalysis.'** This protocol provides a powerful method
for the addition of two vicinal alkyl groups across the carbon-carbon double bond via dual
C(sp*)-H functionalization under mild conditions. The reaction has a broad substrate scopes with
respect to the sp carbon-centered radical precursors (such as cycloalkanes, linear alkanes, and

1,4-dioxane) However, the nucleophiles are limited in 1,3-dicarbonyl compounds. The key
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charateristic in this method is that the photoredox catalysis can assist in the single-electron

oxidation step by regulating the redox potentials of the iron intermediates and the reaction partner.

In 2018, Wu and co-workers reported a difunctionalization of alkenes with CO; and silanes or
C(sp*)-H partners under photocatalytic conditions (Scheme 2-33).!4¢ With the combination of
photoredox and HAT catalysis, a broad substrate scope under mild reaction conditions was
achieved. This protocol provides a new method for the difunctionalization of olefins by using
electrophiles rather than nucleophiles, which could lead to a new general olefin
difunctionalization platform. Other methods using CO: as an electrophiles under photoredox

conditions have been reported'*” with P-centered'*® or aryl'*® radicals.
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Scheme 2-33: CO:> and silanes or C(sp*)-H partners for the difunctionalization of alkenes under

photocatalytic conditions
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Electrochemical radical difunctionalization of olefins

In 2014, Xu and co-workers developed an electrochemical intramolecular aminooxygenation of
unactivated alkenes.'>* This protocol enabled the addition of nitrogen-centered radicals to alkenes,
followed by trapping of the cyclized radical intermediates with 2,2,6,6-tetramethylpiperidine-
Noxyl radical (TEMPO) to give the desired aminooxygenation products 150 in high yields and

regioselectivtites (Scheme 2-34).

BU4NBF4,
Na2CO3 (1 equiv)
R. .
NH & TEMPO (2 e_quwo) O/N
\ H-0, CH3CN; 60 °C R J
0”07 -7 RVC anode, Pt cathode N
149 constant current = 10 mA O:< 5
o™ *~_.~
150
/:< /:< 0] /:< 0]
Na Naw— N 3 \ N E\ \
o<1 ) LAY X o=
150c 150d
150a 150b 90% 91%
90% 91%
d.r. > 20:1 d.r.>20.1
RVC anode Pt cathode
Ar< . l
N
L X :
_ '}‘ 0" R e
€< o
\ Ar<
" " “OH*1/2H
2
(u’;f O&I\R

Scheme 2-34: Electrochemical intramolecular aminooxygenation of unactivated alkenes
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In 2018 and 2019, Xu and co-workers reported the addition of diols'>! or diamines'>? to alkenes
under electrocatalytic conditions. These reactions are among the most straightforward and
efficient approaches for the preparation of cyclic structures. Additionally, the oxidizing reagent
free conditions provide a more green and practical method for chemists to get complex organic

molecular (Scheme 2-35).
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Scheme 2-35: Difunctionalization of alkenes with diols or diamines under electrocatalytic

conditions

Xu’s group has also developed various additional electrochemical difunctionalizations of alkenes.
For instance, fluoroalkynylation of aryl alkenes,'> difluoromethylation of electron-deficient

alkenes'>* have been reported.!'>®
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In 2018, the Cantillo group reported a mild, catalyst-free electrochemical oxytrifluoromethylation
of alkenes,'*® based on the concept of paired electrolysis of sodium trifluoromethanesulfinate and
water in an undivided cell. CF3 radicals 44 were generated from oxidation of the CF3SO; anion
156 at the anodic site, meanwhile water acts as the oxidant at the cathode as well as the
nucleophile to provide the hydroxyl groups for the reaction. The electrochemical method is
suitable for substituted terminal and internal alkenes, giving excellent yields for the desired 1-

hydroxy-2-trifluoromethyl compounds 157 (Scheme 2-36).
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Scheme 2-36: Electrochemical oxytrifluoromethylation of alkenes

Recently, Lin’s group is certainly one of the most active in developing electrocatalytic
approaches to enable radical difunctionalization of alkenes.'”’ In 2017, Lin and co-workers
reported an electrochemical manganese-catalyzed diazidation of alkenes.!>® This transformation
provides a useful method to access diaminated products. The anodic oxidation of N3~ furnishes
the N3 radical, which then adds to the alkene in an anti-Markovnikov fashion, forming a C-
centered radical. Finally, the C-centered radical is trapped by another equivalent of N3 radical and
completes the desired diazidation. With the development of electrochemistry in radical
difunctionalization of olefins, various nucleophiles and radicals have been added to carbon-

carbon double bonds successfully (Scheme 2-37).!%
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Scheme 2-37: Summary of difunctionalizations of olefins enabled by electrochemistry

Indeed, electrochemistry has empowered a new area for organic synthesis by avoiding the use of
transition metal catalysts and oxidants for the difunctionalization of olefins. Thus, further

developments in this field are sure to be disclosed in time.
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A difunctionalization of alkenes through sequential addition of a
radical and a nucleophile has been developed, which is suggested
to proceed by a radical chain mechanism not requiring a catalyst.
An electron transfer step to the oxidant benzoyl peroxide is facili-
tated by protonation with a strong acid.

The difunctionalization of alkenes is a powerful transformation
in synthetic organic chemistry. Besides transition-metal cata-
lysed methods that proceed via organometallic intermediates,"
such reactions can be efficiently conducted by addition of free
radicals.” An interesting strategy amongst these is the conse-
cutive addition of a radical and a nucleophile, which requires
an electron transfer (ET) step after the radical addition, in order
to generate a carbocation that could be trapped by a nucleophile
(Scheme 1a).*** Such reactions would enable functionalizing
olefins with a wide variety of reagents in a regioselective manner,
given that radical precursors and nucleophiles mostly react com-
plementarily. Although many synthetically interesting methods
have been developed towards this goal, there is as of yet no
method with a truly broad substrate scope of both radicals and
nucleophiles.*® Most of these methods require the presence
of a transition metal catalyst or reagent to achieve the desired
ET forming the carbocation intermediate, notable exceptions
utilize an organic photocatalyst,” iodide as catalyst® or electro-
chemistry.’

We had previously worked on the activation of tert-butyl
hydroperoxide by Brensted acids, most notably in the presence of
ketones.'® We noticed the work by Zhang, Bao and co-workers, who
reported a copper-catalysed difunctionalization of alkenes using
benzoyl peroxide (BPO) in the presence of HPFs."' Acetonitrile was
both radical precursor and nucleophile and the role of the acid was
not clear, thus it raised our interest for its combination of a
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peroxide and acid and its potential to add radicals and nucleo-
philes to olefins.

Here, we report mechanistic details of the effect of acid
on benzoyl peroxide and a method for difunctionalization of
styrene derivatives with stabilized C- and S-radicals and N- and
O-nucleophiles. The reactions do not require a catalyst but the
presence of a strong Brgnsted acid, and they operate at only
slightly elevated temperature (Scheme 1b).

We found that the combination of BPO with HPF allowed
for the addition of thioxanthene (2a) and acetonitrile to styrene
(1a) without any additional catalyst within two hours at 50 °C
(Table 1, entry 1). The product’s structure (3a) suggested that a
thioxanthenyl radical was added to styrene and subsequently
acetonitrile attacked as a nucleophile in a Ritter reaction."” The
C-radical of thioxanthene had apparently formed by H-atom
transfer (HAT),"® presumably to a benzoyloxyl radical generated
from BPO.

The acid plays a crucial role for the reaction: with lower
amounts, the yield drops significantly (entry 2) and without
acid, no reaction occurs (entry 3; for further results under
changed reaction conditions, see the ESIt). In the presence of
other acids, the product was also formed, but apparently the
yield is correlated with the acid strength. For example, trifluoro-
acetic acid gave only 11% of 3a, while the stronger acids HBF,
and HClO, gave 39% and 51% (entries 4-6). In the absence of
BPO and with other peroxide oxidants, the product was not
formed. Ambient temperature is sufficient for the reaction, but

a) Typical procedure of radical-nucleophile difunctionalization of olefins:

R- A R  Oxidant
P — g —=

b) This work:
R1
o BPO, HPF
‘\\ N 4 (sIC-H o+ N .
_ =" 50°C,26h

Scheme 1 Radical-nucleophile addition of olefins. BPO = Benzoyl peroxide.
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Table 1 Optimization of the reaction conditions?

(0]
BPO (1.5 equiv.) )k O
@ o Me” “NH
S

CHACN (2 ml)

50°C,2h O O
1a 2a 3a
Entry Acid Acid equiv. Yield” (%)
1 HPF (aq., 55%) 1.0 88
2 HPF; (aq., 55%)° 0.1 20
3 — — 0
4 CF;CO,H° 1.0 11
5 HBEF, (aq., 48%) 1.0 39
6 HCIO, (ag., 70%) 1.0 51
74 HPF, (aq., 55%) 1.0 91 (88, 839)

% 1a (0.2 mmol), 2a (0.4 mmol, 2.0 equiv.), BPO (0 3 mmol, 1.5 equiv.),
Acid (0.2 mmol, 1.0 equiv.) in CH;CN (2 ml). ? Yields determined by
"H NMR spectroscopic analysis of the crude reaction mixture relatlve to
internal standard CH3;NO,, y1e1d of isolated product in parentheses With
addition of 1.0 equiv. of water. ¢ Degassed, under argon. ° Performed on a
larger scale, isolating 1.5 g of 3a.

the rate is significantly reduced. Performing the reaction under
strict exclusion of oxygen increased the yield, and the reaction
could also be performed on a larger scale, giving 1.5 g of 3a with
an isolated yield of 83% (entry 7).

The reaction is very likely proceeding via a radical mecha-
nism, as the addition of radical inhibitors reduced the yield
significantly (see the ESI} for details). The acid apparently does
not affect the decomposition of BPO, which has a reported
10 hour half-life temperature of 73 °C.'* As an NMR experiment
revealed, BPO with or without acid did not change when heated
in acetonitrile at 50 °C for two hours (Scheme 2a). However,
in the presence of thioxanthene, benzoic acid was formed in
significant amounts under these conditions, indicating that it
accelerates the peroxide decomposition (Scheme 2b).

While the acid does not accelerate the homolytic cleavage of
BPO, it does change its redox potential. We studied this effect
by cyclic voltammetry (Fig. 1). The reduction of BPO alone was
found to occur at —345 mV, which underwent a shift by
+470 mV in the presence of 0.66 equiv. of HPF,, the relative
amount used under reaction conditions. Other acids also
induced such a shift, but less strong, as is shown here for
trifluoroacetic acid (for other acids, see the ESIT). The reduction
was thus significantly eased by the strong acid HPF, possibly

CH3CN (2 ml)
50 °C, 2 h, Ar
No change
HPF6 (1.0 equiv.)
CH oN @m) No change
3 m
BPO (0.3 mmol) 5050, 2 h, Ar
b)
CH3CN (2 ml)
50 °C,2h, Ar
BPO (0.3 mmol) +
a (0.4 mmol) 0.17 mmol

Scheme 2 Experiments pointing to the reaction mechanism.
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0.0
BPO

10 BPO + HPF;
=<
E
~ 20

3.0 BPO + CF3C02H

-4.0

-5.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

E (V/Ag/AgCl) ——

Fig. 1 Cyclic voltammograms showing the effect of acid addition on the
reduction potential of BPO. Two platinized Pt wires as a counter and
working electrode with a Ag/AgCl electrode as a reference were used. The
cyclic voltammetry (CV) was conducted from —1.0 V to 2.0 V with a scan
rate of 100 mV s~1. BPO (0.3 mmol), acid (0.2 mmol), tetrabutylammonium
hexafluorophosphate (0.1 M) in CH3CN under Ar.

by protonation that turns the now cationic peroxide into a
better electron acceptor.

These results indicate a reaction mechanism that relies on
electron transfer (ET) steps (Scheme 3). Initiating benzoyloxyl
radicals (4) are formed from BPO in the presence of thioxanthene,
possibly by ET to BPO that is facilitated by protonation. These
induce HAT from thioxanthene, generating a new radical (5),
which then adds to styrene, forming the benzylic radical 6. This is
oxidized by BPO in the presence of HPF4, most likely by ET to the
protonated peroxide (7), giving the intermediate carbocation 8,
benzoate and a new benzoyloxyl radical. The cation 8 can react as
an electrophile with acetonitrile, generating the product 3a in the
fashion of a Ritter reaction. Thus, the reaction appears to run by a
radical chain mechanism and can be seen as a case of “electron-
catalysis”."

Based on this working model of the reaction’s mechanism,
other substrates that can initiate such a radical chain by
interaction with BPO'® and that easily form radicals by HAT
to a benzoyloxyl radical should also be employable, as well as
other olefins and alternative nucleophiles.

BPO

Scheme 3 Potential reaction mechanism, shown exemplary for 1a and 2a.
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BPO (1.5 equiv.)
HPFg 55%
(1 equiv.)

— 2 7T

Nitriles (2 ml)

3b, R = Me, 83% 3j, R = Me, 63%

3m,R=Me, 77%

R =Bu, 62% 3k, R=Br, 7% - o
3d, R =F, 96% 31, R = NO,, 33% dn; Ri= B 7%
3e, R=Cl, 84%

3f, R=Br, 81%

3g, R=NO,, 10%

3h, R = CF3, 30%
0%

trans-3q, 30%?

trans-3r, 49%°

3s, R = Me, 92%*
3t, R = Et, 72%°
3u, R="Pr, 81%?

3v, R="Pr, 41%°
3w, R = Bu, 51%*
3x, R = Ph, 40%?

Scheme 4 Substrate scope for the reaction of styrenes and nitriles: 1
(0.2 mmol), 2 (0.4 mmol, 2.0 equiv.), BPO (0.3 mmol, 1.5 equiv.), HPFg
(0.2 mmol, 1.0 equiv.) and nitriles (2 ml), Ar, isolated yield. “Reaction time:
6 hours. ORTEP diagram is drawn with displacement ellipsoids at the 50%
probability level.

As shown in Scheme 4, styrenes with both weakly electron-
donating (Me, ‘Bu) and withdrawing (F, Cl, Br) substituents
on the aromatic ring, regardless of their positions, afforded
the desired products in good yields 62-96% (3b-3f, 3j-3k and
3m-3o0), as did 4-vinylbiphenyl and vinylnaphthalene (3i, 3p).
However, styrene bearing the strongly electron-donating
methoxy substituent did not give the desired product, and the
strongly electron-withdrawing NO, and CF; substituents led to
low yields of 3g, 3h and 3l in 10%, 30% and 33%. Using indene
as olefin gave the product 3q in 30% yield, but it is remarkable
for its high trans-selectivity. A diastereomeric ratio of >21:1
was determined in the crude reaction mixture, but after
purification, we received the pure trans-product 3q. Similarly,
only the trans-product 3r was isolated from the reaction with
E-B-methylstyrene. Strangely, other nitriles besides acetonitrile
did not lead to the expected products with thioxanthene.
However, when we used xanthene as HAT-donor, we could
isolate different amide products by performing the reaction
in different nitriles as solvent. Aliphatic and aromatic nitriles as
well gave the products 3s-3x with good yields after an extended
reaction time of 6 hours. The general structure of these products
was confirmed by X-ray crystallography of product 3e.

Next, the scope with respect to nucleophiles was explored.
Although we tried many substrates (see the ESIt for further
details), only alcohols were successful, and only with thiox-
anthene but not with xanthene (Scheme 5). Reactions of styrene
with various alcohols produced the expected products in good

This journal is © The Royal Society of Chemistry 2020
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BPO (1.5 equiv.)

HPFg 55%
(1 equw
CHacN (1 ml)
R-OH (1 ml)
50°C,2h

Ph

9a: R =Me, 91%
9b: R = Et, 73%
9¢: R = "Pr, 93%
9d: R = "Bu, 92%

9e: R = "Pent, 84%

9g: R=Cy, 28%

9h: R = Bu, 40%

Scheme 5 Substrate scope for the reaction of alcohol nucleophiles: 1a
(0.2 mmol), 2a (0.4 mmol, 2.0 equiv.), BPO (0.3 mmol, 1.5 equiv.), HPFg
(0.2 mmol, 1.0 equiv.), alcohols (1 ml) and CHzCN (1 ml), Ar, isolated yield.

BPO (1.5 equiv.) Me NH

HPFg 55% s
(1 equiv.) ‘ N R
TCHON @ml) g
50°C, 6 h 11
o}
i b bl o )J\ 11g, 53%
_ g g,53%
Me” SNH 11b, R = Me, 45% Me” “NH
)v 11¢, R = Bu, 54% S o
Ph S 11d, R = OMe, 50% o Ph ‘
11e, R=Cl, 42% Me)J\NH i
R 11f, R = Br, 49% |
)\/S Me
Ph
11h, 39%

Scheme 6 Substrate scope for thiylation: 1a (0.2 mmol), 10 (0.4 mmol,
2.0 equiv.), BPO (0.3 mmol, 1.5 equiv.), HPFg (0.2 mmol, 1.0 equiv.) and
CH=CN (2 ml), Ar, isolated yield.

yields, with primary alcohols in generally higher yields (9a-9e,
73-93%) than secondary (9f-9g) and tertiary alcohols (9h).

Thiophenols (10) as HAT-donors with acetonitrile as nucleo-
phile could also be employed successfully in this reaction with
styrene (Scheme 6). While alkyl thiols did not react under those
conditions, products 11 with various differently substituted
thiophenols could be employed. Products of a thiol-ene reaction
were not observed. Similar products like 11 had recently been
reported, being synthesized by an iodide-catalysed radical
reaction® or by ionic reactions also utilizing stoichiometric
amounts of oxidants."”

Substrates not capable of initiating BPO decomposition
obviously fail in this reaction. However, addition of extra initiators
may overcome this limitation. We found that addition of N,N-
dimethylanilines, well-known initiators for BPO,'® enable the
addition of two molecules of acetonitrile to styrene, furnishing
13 (Scheme 7). Although the yields are not as high as with
Cu-catalysts,'* 48% is reached with the use of 10 mol% of the
p-bromo aniline. The product yield is obviously linked to the
initiation rate and electronic properties of the anilines, as
the comparison with more and less electron rich derivatives shows.

In conclusion, a method for the difunctionalization of
styrenes with radicals derived from thioxanthene, xanthene

60 Chem. Commun., 2020, 56, 15571560 | 1559
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o
| BPO (1.5 equiv.) )L
HPFg 55% (1.3 equiv.)
N N, —— e
Ar CHZCN (30 ml) )\A
1a 12 70°C, 18 h Ph CN
(1.0equiv.) (10 mol%) 13
| \ | | |
/N\©\ /N\© /N\©\ /N\©\ /N\©\
CHg Br CN NO,
10% 13 25% 13 48% 13 21%13 11% 13
Scheme 7 Investigating dimethylaniline initiators: 1a (0.5 mmol), BPO

(0.75 mmol, 1.5 equiv.), HPFg (0.66 mmol, 1.3 equiv.), 12 (0.05 mmol)
and CHzCN (30 ml), isolated yield.

and thiophenols together with nitrile and alcohol nucleophiles
was developed. The combination of benzoyl peroxide with
HPF, a strong Breonsted acid, is a key element of the reaction
that does not require transition-metal catalysts, high tempera-
tures or prolonged reaction times. Mechanistic studies suggest
that the acid can promote the electron transfer to the peroxide,
and that the reaction proceeds by a radical chain that is initiated
by interaction of the radical precursor with the peroxide. Addition
of an extra radical initiator can overcome this limitation, which
suggests a way to extend this synthetic strategy.
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of alkenes and oxidative Ritter reactions by C-H
functionalizationt
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Transition metals are the dominant catalysts for redox-reactions between peroxides and organic sub-
strates. Here, we show that triarylamines can act as organic redox-catalysts, enabling oxidative difunctio-
nalization reactions of alkenes and oxidative Ritter-reactions. Styrene derivatives can be functionalized

with alkyl radicals, generated from plain and halogenated hydrocarbons, and with nucleophiles, including
nitriles, acetic acid, alcohols and fluoride. An oxidative Ritter reaction can be conducted between allylic
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Introduction

The difunctionalization of alkenes is a powerful method for
the construction of C-C and C-X bonds."™ A very interesting
type amongst those is the successional addition of a radical
and a nucleophile."” This method enables functionalizing
olefins with a wide variety of reagents in a selective manner,
given that radicals and nucleophiles generally react comple-
mentarily. However, these reactions are still lacking a truly
broad substrate scope, spurring our efforts of further research.
A widely used strategy for generating radicals from simple
substrates is C-H bond cleavage by hydrogen atom transfer
(HAT) to oxyl radicals, which are readily generated from per-
oxides.” The subsequent addition of a nucleophile requires an
electron transfer (ET) step to convert the radical intermediate
into a carbocation. Thus, transition metals are widely used as
redox-catalysts in such reactions, as they can mediate peroxide
0-0 bond cleavage and subsequent ET (Scheme 1a)."*°%™°
Alternative methods for the consecutive addition of radicals
and nucleophiles utilize organic photocatalysts,">"" hyperva-
lent iodine reagents or iodide as catalyst” ™ and
electrochemistry.">'® We are not aware, however, of the use of
an organo-redox catalyst independent of irradiation in such
reactions. Here, we report the use of triarylamines as catalysts

Max-Planck-Institut fiir Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Miilheim an
der Ruhr, Germany. E-mail: klusi@mpi-muelheim.mpg.de

tElectronic supplementary information (ESI) available: Method development,
synthesis, characterization and mechanistic studies. See DOI: 10.1039/
d1qo00259g
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C—H bonds as well as fluorene and acetonitrile. Benzoyl peroxide is the oxidant in both reactions.
Mechanistic studies suggest that the triarylamines are catalysts and not initiators, mediating the reaction
by electron transfer to the peroxide, forming benzoyloxyl radicals, and from C-radical intermediates,

in the activation of peroxides for synthetic radical reactions
(Scheme 1b).

Triarylamines can form stable ammoniumyl radical cation
salts by ET, and variation of the aryl-substituents allows for
fine-tuning of their properties.’” > Both the amines and the
radical cations are widely applied in electro-optical
materials."®2%?* The radical cations can be used as stoichio-
metric single-electron oxidants in chemical reactions,* or in
substoichiometric amounts as initiators of radical chain

a) Radical reactions by transition metal-catalyzed redox-activation of peroxides:

©

R-0-0-R ———= R-0° + R-0-
o v @ j R—H
P R® R
R—OH

b) This work: organo-redox-catalysis

ot
N [NAre] [NAr;]
+ R—H +Nu 0 NaPFq

0. _Ph

Ph)J\O/ \ﬂ/

Scheme 1 Activation of peroxides and formation of carbocations by
redox-catalysis.
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reactions.'””** Both the amines and the radical cations are also
utilized as redox-catalysts in electrochemical®>*® or photoche-
mical reactions,?”?® as well as in aerobic oxidations.??*°
Despite this plethora of applications, we are not aware of
amine-based redox catalysis in the activation of peroxides,
which would open many opportunities for synthetic
applications.

N,N-Dialkylanilines like 1 are well-known to generate rad-
icals from diacylperoxides, especially benzoyl peroxide (BPO,
Scheme 2a).>"*> The reaction is irreversible due to the reactiv-
ity of the ammoniumyl radical cation 2, which readily forms a
C-radical 3, an iminium ion 4 and other products derived
thereof.>>** In contrast, we assumed that triarylamines A
could be suitable candidates for catalysis, as the stable radical
cation salts A+ could be regenerated by ET (Scheme 2b).

We had previously utilized BPO in the addition of thiox-
anthene and similarly facile radical precursors together with
nucleophiles to styrenes, which was rationalized as a radical-
chain reaction.*® The addition of hexafluorophosphoric acid
(HPF,) was found to modulate the redox potential of BPO, and
the addition of N,N-dimethylanilines as initiators allowed
difunctionalization with acetonitrile with moderate success.
We kept working on finding a more efficient method for a
broad substrate scope that would also avoid the use of a strong
acid.

Results and discussion

We found that the addition of cyclohexane and acetonitrile to
styrene (5a) took place in the presence of catalytic amounts of
some triarylamines and NaPFs as an additive, forming the
desired product 6a in good yields (Table 1, entries 1-3). The
most effective amine was 4-iodo-N,N-diphenylaniline (A1),
closely followed by tris(4-methylphenyl)amine (A2) and tris(4-
bromophenyl)amine (A3), other amines were much less
efficient. Without triarylamine, product 6a was not formed
(entry 4) and the addition of NaPF, is indispensable (entry 5).
A reduction in the product’s yield was also seen with other

a) Initiation of radical reactions by reaction of N, N-dimethylanilines with BPO:

N Mo M
1|‘Lh + - O/O\H/Ph e + -
L \ P . \ﬁ&

BPO o
h3 Ph 4

—

O-

b) Potential re-activation of triarylamines by electron transfer (ET):

Ar* /Ar )J\ &
A A T A+

A BPO O

Scheme 2 Activation of BPO with and

triarylamines.

N,N-dimethylaniline
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Table 1 Evaluation of catalysts?

R! R?
A (10 mol%)
BPO (1.5 equnv) NH
0
phe Xy NaPFg (30 mol%) /K/O
5a CH4CN (2 mL)
cyclohexane (10 mL)
70°C,24 h
Entry  Catalyst R R? R® Additive  Yield” (%)
1 Al I H H NaPFg¢ 91 (86)
2 A2 Me Me Me NaPFg 58
3 A3 Br Br Br NaPFg¢ 86
4 — NaPF¢ 0
5 Al I H H — 0

“Reaction conditions: 5a (0.5 mmol), A (0.05 mmol, 10 mol%), CH;CN
(2 mL), cyclohexane (10 mL) BPO (0.75 mmol 1.5 equiv.), additive
(0.15 mmol, 0.3 equiv.). ” Determined by "H NMR spectroscopic ana-
lysis of the crude reaction mixture relative to internal standard 1,3,5-
trimethoxybenzene, isolated yield in parentheses.

additives and oxidants (see the ESIf for a detailed investi-
gation). The product’s structure supported the subsequent
addition of a cyclohexyl radical and acetonitrile as a nucleo-
phile in a Ritter reaction.

With these reaction conditions, we investigated the product
scope by testing other substrates. Using cyclopentane, cyclo-
hexane, cycloheptane, and cyclooctane as radical precursors
with acetonitrile as nucleophile afforded the products 6a-6d in
good yields of 80-86% (Scheme 3). Methylcyclohexane gave a
mixture of regioisomers from which we could isolate 6e, the
major one, in 34% yield. With n-hexane, a mixture of the iso-

A1 (10 mol%)

BPO (1.5 equiv.)
9 R
S oo S, ©”
3 mi
A 70°C, 24 h o

o
&@
6a: 86%
6e: 34%

6i: 41%

o : o

6f: 4% 6h,d.r. = 1.3:1

using CHBr: O

6m: 33%

NH
Br
! N
6n:24%  +6m:21% i 60: 86%

Scheme 3 Scope of radicals.
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meric products 6f-6h was isolated in 80% overall yield, from
which we could isolate the isomer 6f in 4% yield as a pure
compound by column chromatography. With 2-methyl-
pentane, the selectivity for the tertiary C-H bond was relatively
high, allowing for isolation of the major isomer 6i in 41%
yield. With 2,2,4,4-tetramethylpentane, only isomer 6j was iso-
lated, apparently because the methylene group is sterically
shielded, resulting in HAT from a primary C-H bond. The
haloalkanes dichloromethane, chloroform, dibromomethane
and bromoform could also be employed successfully in this
reaction, producing the products 6k-6m. When using bromo-
form, not only 6n was formed by HAT, but also 6m by bromine
atom transfer.*>>® When only acetonitrile was used as solvent,
60 was isolated in 86%.

Styrenes with various substituents on the aromatic ring
afforded the desired products in generally good yields
(Scheme 4). There is no clear electronic substituent effect on
the product yields, also substitution in the ortho position was
not detrimental (71-7n). Only in the case of p-methoxystyrene,
the desired product was only observed in traces (7b).
2-Methylstyrene and stilbene could also be employed, giving

o
A1 (10 mol%) )J\
BPO (1.5 equiv.) NH
il YN . NaPFg (30 mol%)
A CH,CN (2 mL) 7R
5 70°C, 24 h R~ 7
Z

[o} o (o}
Me 7a: 80% MeO 7b: trace F 7c: 50%
NH NH
7e:79% 7f: 61%
Cl Br F5C

7d: 81%
(e}
)LNH NH NH

79: 70% 7h: 63% 7i: 75%
Ph
Cl Me
(o] o o
)J\NH )J\NH )J\NH
7j: 83% 7k: 45% 71:91%
e
Br © CFs
P
NH Me HN
7m: 80% 7n: 62%
Br )OJ\ Me Me )OJ\
NH NH
70: 51%, 7p: 40%,
1:1dr. 2:1dr.
Me Ph

Scheme 4 Substrate scope of substituted styrenes.
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the expected products 7o and 7p in medium yields and as mix-
tures of diastereomers.

Next, the scope with respect to nucleophiles was explored.
As shown in Scheme 5a, different nitrile solvents and cyclo-
hexane delivered the desired amides 8a-8e in good yields of
48%-76%. Similarly, when acetic acid was used, the corres-
ponding acetate 8f was formed in 63% yield. With 1,1-
diphenylethylene, difunctionalization with the «-cyanoalkyl
radical from acetonitrile and alcohols was possible. With
methanol and ethanol, the products 8g and 8h were isolated
in 51% and 41% yields, respectively, however, long-chain alco-
hols showed a low reactivity. Very similar tertiary alcohols had
recently been synthesized by copper-catalysis at higher temp-
erature.>” We also isolated the dimer 9 from unsuccessful tests
of other nucleophiles, supporting the occurrence of radical
intermediate 15.°®%° In nitromethane as solvent, phenyl
groups were incorporated into the products (10a-10c,
Scheme 5b). These likely originated from phenyl radicals,
formed by decarboxylation of the benzoyloxyl radicals.
Acetonitrile and methanol could be used as nucleophiles, and
with triethylamine hydrofluoride even fluoride, albeit in low
yield (10c).

The organo-redox system also proved to catalyze the oxi-
dative Ritter reaction of allylic and benzylic C-H bonds; for

a) A1 (10 mol%) Nu
BPO (1.5 equiv.) R
Ry NaPFg (30 mol%) f
R—— + R-H ——————> R+
5 Nu-H (2 mL) 8
(10mL) 70°C, 24 h
o} o) o)
Et NH Bu NH
8a: 70% 8b: 58% 8c: 60%
o o)
Pent NH Me o
8d: 76% 8f: 48% 89: 63%
8h: R = Me, 51% Ph
8i: R = Et, 41%®
8] R = nPr, trace
Ph
9
b) A1 (10 mol%)

BPO (1.5 equiv.)
NaPFg (30 mol%)

Nu-H (2 mL)
5a CH,NO, (10 mL), 70 °C, 24 h 10

10c: 25%°

Scheme 5 Scope of nucleophiles.

Org. Chem. Front.



Open Access Article. Published on 03 April 2021. Downloaded on 4/8/2021 8:57:54 PM.

{cc) EE| This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

Research Article

a) A3 (20 mol%)
H BPO (3.0 equiv.)
NaPFg (30 mol%)

CH.CN (2 mL), DCE (5 mL)
10 70°C, 24 h 1

11d

from (E)-4-octene: 49% : 40%
from (Z)-4-octene: 16% : 49%

Ma:71% 11b: 72% 11c: 33%

A3 (10 mol%)
BPO (3.0 equiv.)
NaPFg (30 mol%)

CH,CN (2 mL), DCE (5 mL)
12 80 °C, 24 h

Scheme 6 Amination of allylic and benzylic C—H bond.

these reactions, amine A3 was found to be superior to A1l (see
the ESIf for details). As shown in Scheme 6a, cyclohexene and
bicyclo[3.2.1]oct-2-ene delivered the amides 11a and 11b in
71% and 72% yield, respectively. When propionitrile was used,
the corresponding product 11c was isolated in 33% yield. With
(E)-4-octene, 11d and 11e were isolated in 89% yield as a
mixture of two isomers with a ratio of 1:0.8. When (2)-4-
octene was used, the same products were isolated with a ratio
of 1:3. (E)-5-Decene gave the E-isomers 11f and 11g in equi-
molar amounts. When we used 9H-fluorene, the benzylic
methylene group was functionalized, providing the amide 13
in 70% yield (Scheme 6b).

Are the triarylamines efficient initiators of a radical chain
reaction, reacting irreversibly, or are they catalysts, achieving
turnover?*® As mentioned above, N,N-dialkylanilines are well-
known activators of benzoyl peroxide in radical chain reac-
tions;*>' however, they proved to be inefficient for the reactions
presented here (Scheme 7a). Also, the reaction did not proceed
when employing the well know radical initiator azobisisobutyr-
onitrile (AIBN), suggesting that a radical chain mechanism is
not operating. We used two radical cation salts, [(A1+)SbFs"]
and [(A3+)SbCls ], in place of the corresponding triarylamines
under otherwise unchanged reaction conditions (Scheme 7b).
In both cases, comparable yields of 6a were achieved (89% and
84%, resp.). When A3+ was used, its dark blue colour dis-
appeared and 10% of the reduced form A3 could be isolated,
ruling out that the triarylamines are irreversibly consumed
and supporting that both the amine and the oxidized radical
cation salts are involved in a catalytic reaction.
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a) initiator (10 mol%)
BPO (1.5 equiv.)
NaPFy (30 mol%)

A
CH4CN (2 mL)

5a cyclohexane (10 mL) 6a
70°C, 24 h, Ar

\N/ \N/ \N/
@ Y
s
N
Me Br

6a: 0%

)J\NH

6a: trace 6a: trace

A+ (10 mol%)
BPO (1.5 equiv.)
NaPFg (30 mol%)

CH,;CN (2 mL)
5a cyclohexane (10 mL) 6a
70°C, 24 h, Ar

SbFg SbClg
A1+ A3+
| Br
6a: 89% 6a: 84% .

end of reaction

start of reaction

Scheme 7 a) Testing N,N-dimethylanilines and AIBN as initiators; (b)
triarylamine radical cation salts act as catalysts.

After completion of the reaction, the system remains active.
When we added another batch of BPO and styrene to a reac-
tion mixture forming 6a that had gone to completion, a
further 85% of these added substrates were converted to 6a
after another 30 hours. Also, a third batch of substrates could
be converted to product, which further supports that the reac-
tion is catalytic in nature (see the ESIT for details).

We also investigated the system by "H-NMR at the reaction
temperature of 70 °C (Fig. 1). Ca. 40% of BPO on its own had

BPO

— BPOand A1 BzOH

f |

\
AA A\
SO SN e AA s

815 810 805 800 795 7.90 7.85 7.80 7.75 770 7.65 7.60 7.55 7.50 7.45 740 735 7.30
(ppm)

2

\
JRVE AN

815 810 805 800 795 7.90 785 7.80 7.75 770 7.65 7.60 755 7.50 7.45 740 7.35 7.30
H (ppm)

Fig.1 NMR experiments, comparing thermal and Al-induced BPO
decomposition (red and blue lines, resp.); conditions: BPO (0.1 mmol),
Al (10 mol%), CDsCN (0.5 mL), 70 °C.
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Scheme 8 Proposed reaction mechanism: (a) organo-redox-catalysis; (b) effective ET by direct outer-sphere ET or stepwise via Sy2 reaction.

decomposed after 10 h, in line with the reported 10 hours half-
life temperature of 73 °C (red bottom line).*' Benzene and
benzoic acid were formed in roughly equal amounts, indicat-
ing that half of the benzoyloxyl radicals had decarboxylated
before they were quenched by HAT. Adding catalytic amounts
(10 mol%) of A1 accelerated the decomposition of BPO during
the first 2 hours and resulted in forming predominantly
benzoic acid (blue upper line). These results indicate that the
amine catalyses the decomposition of BPO by an effective ET
reaction (see Scheme 7b below and its discussion for details),
forming one molecule each of benzoate - observed as benzoic
acid by NMR - and benzoyloxyl radical. The latter can decar-
boxylate to a phenyl radical and both radicals can react by HAT
reactions from the medium to form benzoic acid and benzene,
respectively. This explains the appearance of significantly
more benzoic acid than benzene, compared to the thermal
decomposition of BPO.

During the difunctionalization reaction, a white precipitate
formed, which we found to be sodium benzoate, in line with
the suggested cleavage of BPO by ET (see the ESI}). All these
results enable us to propose a mechanism for the formation of
difunctionalization products like 6a (Scheme 8a) The peroxide
bond of BPO is cleaved by an ET reaction from the triarylamine
catalyst A, forming the radical cation A+, a benzoate anion and
a benzoyloxyl radical. The presence of NaPF likely helps stabi-
lizing the radical cation A+ in the form of the salt [A1 + |PF4 .
The benzoyloxyl radical can engage with cyclohexane or other
substrates in a HAT reaction, forming a carbon radical 14,
which then adds to styrene, forming the benzylic radical 15.
Oxidation by the ammoniumyl radical cation A+ regenerates
the triarylamine A and forms the carbocation 16, which is
attacked by nucleophiles to provide the final product. To some
extent, the benzoyloxyl radicals decarboxylate, generating
phenyl radicals which can either participate in HAT reactions,
too, or add to styrene, as was shown in Scheme 5b above.

Whether the reaction between the triarylamine A and BPO
proceeds by an outer-sphere ET, directly forming benzoate and
two radicals, or by an Sy2-reaction via N-benzoyloxylammo-
nium salt 17, which in a second step decomposes homolyti-
cally into the same products (Scheme 8b), is at present

This journal is © the Partner Organisations 2021

67

unclear. Both pathways have been suggested for reactions
between diacylperoxides and amines,*>*>™** but the combi-
nation of BPO with the triarylamines used in this study has
not been investigated yet.

Additionally, we studied the redox potentials of several triar-
ylamines and the radical cation A1+ as well as BPO by cylic vol-
tammetry (see the ESIt). The reduction potential of Al was
indeed lower than that of BPO, supporting that A1 can reduce
BPO by ET. However, BPO has the higher oxidation potential of
the two, suggesting that it is the better electron acceptor.
However, we consider these results of separate measurements
as not fully conclusive for the interpretation of the mecha-
nism, since they are not in agreement with the aforementioned
results supporting catalysis by the amine. Furthermore, they
do not take potential interactions in the reaction mixture into
account. For example, the addition of NaPFg is crucial for the
reaction to occur, which indicates an ionic interaction that
might shift the redox potential of the ammoniumyl radical
cation.®* A species like 17 could be involved as electron accep-
tor, or the radical cation A1+ could be transformed into the
actual catalyst in situ by attack at its free para-positions.”’
Thus, we acknowledge that not all details of the present reac-
tions are understood and we are therefore planning more
detailed investigations.

Conclusions

In summary, we have established triarylamines as organo-
redox catalysts for oxidative C-H functionalization reactions,
with p-iodophenyl diphenylamine as the catalyst of choice in
the newly developed method. By using benzoyl peroxide as
oxidant, the difunctionalization of styrenes could be accom-
plished with radicals generated from hydrocarbons by hydro-
gen atom transfer and with nucleophiles, including nitriles,
alcohols, acetic acid and fluoride. Besides, the amination of
allylic and benzylic C-H bonds is also achieved under the
same reaction conditions. The method does not require
irradiation, electrolysis, transition metals nor significantly
elevated temperatures. This application of a relatively simple
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amine might pave the way for further developments of organo-
redox-catalysts, which may thus become another established
class amongst organocatalysts.*’
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General experimental details

Unless otherwise indicated, all reagents and solvents were purchased from commercial distributors and
used as received. Solvents (hexanes, ethyl acetate) used for column chromatography were of technical

grade and used after distillation in a rotary evaporator.

Benzoyl peroxide (BPO) 75% remainder H,O and Hexafluorophosphoric acid solution (HPFg, 55% wt. in
H,0) from Sigma-Aldrich, used directly without further purification.

TLC was used to check the reactions for full conversion and was performed on Macherey-Nagel Polygram

Sil G/UV254 thin layer plates. TLC spots were visualized by UV-light irradiation.

Flash column chromatography was carried out using Merck Silica Gel 60 (40-63 pum). Yields refer to pure

isolated compounds.

'H and ">C NMR spectra were measured with Bruker AV 500 spectrometer. All chemical shifts are given
in ppm downfield relative to TMS and were referenced to the solvent residual peaks.!! '"H NMR chemical
shifts are designated using the following abbreviations as well as their combinations: s = singlet, d =
doublet, t = triplet, q = quartet, m = multiplet. For °C NMR data the following abbreviations are used: p =
primary (CHj3), s = secondary (CH,), t = tertiary (CH), q = quaternary (C).

High resolution mass spectra were recorded with a Bruker APEX III FTICR-MS or a Finnigan SSQ 7000
quadrupole MS or a Finnigan MAT 95 double focusing sector field MS instrument.

The three electrode system was controlled by using a potentiostat/galvanostat (BioLogic VSP, France).
Two platinized Pt wire as a counter and working electrode with a Ag/AgCl electrode as a reference were

used. The cyclic voltammetry (CV) was conducted from -1 V to 0.5 V with a scan rate of 100 mV/s.
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Optimization of reaction conditionslal

SANCS®

Oxidant (1.5 equiv.)
Acid (1.0 equiv.)

CH,CN (2 mL)

Lo
Me)J\NH S

1a 2h O 3a O
Entry  Oxidant Equiv. Acid Equiv. Additive T/°C Yield (%)™
1 BPO (1.5 equiv.) HCI (aq., 38%) 1.0 - 50 7
2 BPO (1.5 equiv.) CF;COOH!™ 1.0 - 50 11
3 BPO (1.5 equiv.) H,SOy4 (aq., 55%) 1.0 - 50 25
4 BPO (1.5 equiv.) HBF, (aq., 48%) 1.0 - 50 39
5 BPO (1.5 equiv.) HCIO, (ag., 70%) 1.0 - 50 51
6 BPO (1.5 equiv.) TfOH! 1.0 - 50 47
7 BPO (1.5 equiv.) HPF; (aq., 55%) 1.0 - 50 88
8 BPO (1.5 equiv.) - - NaPFj 50 <5

(1.0 equiv.)

9 DTBP (1.5 equiv.) HPF; (aq., 55%) 1.0 - 50 0
10 TBPB (1.5 equiv.) HPF; (aq., 55%) 1.0 - 50 0
11 TBHP (1.5 equiv.) HPF, (aq., 55%) 1.0 - 50 0
12 BPO (1.5 equiv.) HPF; (aq., 55%) 1.0 - 100 35
13 BPO (1.5 equiv.) HPF; (aq., 55%) 1.0 - rt. 25
14 BPO (1.5 equiv.) HPF; (aq., 55%) 0.5 - 50 16
15 BPO (1.5 equiv.) HPF; (aq., 55%) 0.1 - 50 20
16 BPO (1.5 equiv.) - - - 50 0
17 BPO (1.0 equiv.) HPF; (aq., 55%) 1.0 - 50 40
18 BPO (0.5 equiv.) HPF; (aq., 55%) 1.0 - 50 18
19 - - HPF, (aq., 55%) 1.0 - 50 0
20" BPO (1.5 equiv.) HPF, (aq., 55%) 1.0 - 50 91 (88)

[a] 1a (0.2 mmol), 2a (0.4 mmol, 2.0 equiv.), Oxidant (0.3 mmol, 1.5 equiv.), Acid (0.2 mmol, 1.0 equiv.)
and CH;CN (2 mL), for 2 hours. [b] Yields were determined by "H NMR spectroscopic analysis of the

crude reaction mixture relative to the internal standard CH;NO,, yield of isolated product in parentheses.

[c] H,O (0.2 mmol, 1.0 equiv.) was added. [d] Degassed, under argon.
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Failed examples for Hydrogen

donors

N
* R-H

1a

BPO (1.5 equiv)
HPFg (55% aq., 1.0 equiv)

CHCN (2 mL), 50 °C, 6 h, Ar

O o

O
oo WA O

SeH IS
b HsiOE; O/ @[ >
0 N

Failed examples for Nucleophiles

Shlceel
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General procedure A: synthesis of N-(1-phenyl-2-(9H-thioxanthen-9-
yl)ethyl)acetamides.

BPO (1.5 equiv.)
S HPF¢ (55% aq., 1.0 equiv.)
NS S CH3CN (2 mL), 50 °C, 2 h, Ar
! 2a 3a-3r
Under argon atmosphere, the thioxanthene 2a (0.4 mmol, 2.0 equiv.), BPO (0.3 mmol, 1.5 equiv.) were

added into a 10 mL glass tube. Then CH3CN (2 mL), alkenes 1 (0.2 mmol), HPF¢ (55% aq., 0.2 mmol, 1.0

equiv.) were added. The reaction mixture was stirred at 50 °C for 2 h under Ar atmospheres. After the

reaction was fully completed, the mixture was cooled to room temperature and concentrated under
reduced pressure to give a crude product. The residue was further purified by silica gel column with iso-
hexane/ethyl acetate (from 10:1 to 1:1) to give the desired products 3a-3r (trans-3q and trans-3r need 6
h).

General procedure B: synthesis of N-(1-phenyl-2-(9H-xanthene-9-
yl)ethyl)amides.

e
BPO (1.5 equiv.) R)J\NH (9]
@ . HPFg (55% aq., 1.0 equiv.)
o Nitriles (2 mL), 50 °C, 6 h, Ar O O

1a 2b 3s-3x

Under argon atmosphere, the xanthene 2b (0.4 mmol, 2.0 equiv.), BPO (0.3 mmol, 1.5 equiv.) were
added into a 10 mL glass tube. Then nitriles (2 mL), styrene 1a (0.2 mmol), HPFs (55% aq., 0.2 mmol,
1.0 equiv.) were added. The reaction mixture was stirred at 50 °C for 6 h under Ar atmospheres. After
the reaction was fully completed, the mixture was cooled to room temperature and concentrated under
reduced pressure to give a crude product. The residue was further purified by silica gel column with

iso-hexane/ethyl acetate (from 10:1 to 1:1) to give the desired products 3s-3x .
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General procedure C: synthesis of 9-(2-methoxy-2-phenylethyl)-9H-
thioxanthenes.

BPO (1.5 equiv.)
O/\ ) HPFs (55% aq., 1.0 equiv.)
s ROH (1 mL) and CH5CN (1 mL)

50 °C, 2 h, Ar

1a 2a

9a-9h

Under argon atmosphere, the thioxanthene 2a (0.4 mmol, 2.0 equiv), BPO (0.3 mmol, 1.5 equiv) were
added into a 10 mL glass tube. Then CH;CN (1 mL), alcohols (1 mL), styrene 1a (0.2 mmol), HPF,
(55% aq., 0.2 mmol, 1.0 equiv) were added. The reaction mixture was stirred at 50 °C for 2 h under Ar
atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature and
concentrated under reduced pressure to give a crude product. The residue was further purified by silica

gel column with iso-hexane/ethyl acetate (100:1) to give the desired products 9a-9h.

General procedure D: synthesis of 9-(2-methoxy-2-phenylethyl)-9H-
thioxanthene N-(1-phenyl-2-(phenylthio)ethyl)acetamides

0
BPO (1.5 equiv.) Me)J\NH
O/\ X «_SH HPFs(55% a0, 1.0 equiv) S
R_O/ CH4CN (2 mL), 50 °C, 6 h, Ar >~
i | R
Z =
1a 10 11a-11h

Under argon atmosphere, the thiophenols 10 (0.4 mmol, 2.0 equiv.), BPO (0.3 mmol, 1.5 equiv.) were
added into a 10 mL glass tube. Then CH;CN (1 mL), alcohols (1 mL), styrene 1a (0.2 mmol), HPF,
(55% aq., 0.2 mmol, 1.0 equiv.) were added. The reaction mixture was stirred at 50 °C for 6 h under
Ar atmospheres. After the reaction was fully completed, the mixture was cooled to room temperature
and concentrated under reduced pressure to give a crude product. The residue was further purified by

silica gel column with iso-hexane/ethyl acetate (from 10:1 to 2:1) to give the desired products 5a-5h.
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General procedure E: synthesis of N-(3-cyano-1-phenylpropyl)acetamide

o)
Initiator (10 mol%) J\
BPO (1.5 equiv.) HN™ Me
X -
©/\ . cHen _HPFo (066 mmol) N
70 °C, Ar
1a 13

Under argon atmosphere, BPO (0.75 mmol, 1.5 equiv., three portions every 2 hours) were added into a
10 mL glass tube. Then CH;CN (30 mL), styrene 1a (0.5 mmol), HPFs (55% aq., 0.66 mmol, 1.32
equiv.) and a N,N-dimethylaniline derivative as initiator (10 mol%, 0.05 mmol) were added. The
reaction mixture was stirred at 70 °C for 18 h under Ar atmospheres. After the reaction was fully
completed, the mixture was cooled to room temperature and concentrated under reduced pressure to
give a crude product. The residue was further purified by silica gel column with iso-hexane/ethyl

acetate (from 10:1 to 1:1) to give the desired products 13.
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Characterization Data

N-(1-phenyl-2-(9 H-thioxanthen-9-yl)ethyl)acetamide (3a, unreported product)

)
Me)J\NH S

Following the general procedure A, white solid (65.3 mg, 91%).

"H NMR (500 MHz, CDCls) § 7.36-7.32 (m, 2H), 7.24-7.09 (m, 11H), 5.39 (d, J = 12.5 Hz, 1H), 4.85-
4.80 (m, 1H), 4.07-4.00 (m, 1H), 2.20-2.09 (m, 2H), 1.80 (s, 3H).

BC NMR (125 MHz, CDCls) d 168.99, 142.05, 137.66, 137.62, 132.53, 132.32, 128.97, 128.71, 128.68,
127.42,127.23,127.10, 126.79, 126.77, 126.71, 126.60, 51.63, 46.77, 38.02, 23.46.

HRMS (ESIpos) (m/z): M calculated for C,3H, NOSNa 382.123605; found 382.123850.

N-(2-(9H-thioxanthen-9-yl)-1-(p-tolyl)ethyl)acetamide (3b, unreported product)
0
Me)l\ NH S

Me I I

Following the general procedure A, white solid (62.0 mg, 83%).

"H NMR (500 MHz, CDCl;) § 7.36-7.31 (m, 1H), 7.20-7.10 (m, 7H), 7.04 (s, 4H), 5.35 (d, J = 8.5 Hz,
1H), 4.78 (dd, J = 15.5 Hz, 7.5 Hz, 1H), 4.05 (dd, J = 15.0 Hz, 5.0 Hz, 1H), 2.24 (s, 3H), 2.14 (t, J=7.5
Hz, 2H), 1.79 (s, 3H).

C NMR (125 MHz, CDCls) § 168.89, 139.04, 137.78, 137.65, 137.12, 132.54, 132.35, 129.39, 128.93,
128.72,127.23, 127.07, 126.67, 126.59, 51.31, 46.69, 37.93, 23.49, 21.06.

HRMS (ESIpos) (m/z): M" calculated for C,,H,;NOSNa 396.139255; found 396.139160.

N-(1-(4-(tert-butyl)phenyl)-2-(9 H-thioxanthen-9-yl)ethyl)acetamide (3¢, unreported product)

?
Me)J\NH S
Bu I I

Following the general procedure A, white solid (51.4 mg, 62%).
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"H NMR (500 MHz, DMSO-d;) 6 8.42 (d, J = 8.5 Hz, 1H), 7.49 (dd, J = 6.5 Hz, 4.0 Hz, 1H), 7.44 (d, J =
7.0 Hz, 1H), 7.40 (d, J= 6.5 Hz, 1H), 7.32-7.23 (m, 7H), 7.00 (d, J = 8.0 Hz, 2H), 4.45-4.40 (m, 1H), 4.18
(dd, J=9.5 Hz, 4.5 Hz, 1H), 2.09-2.04 (m, 1H), 1.92 (s, 3H), 1.85-1.78 (m, 1H), 1.22 (s, 9H).

BC NMR (125 MHz, DMSO-dg) 6 168.95, 149.42, 141.14, 138.65, 137.14, 131.87, 131.72, 129.89,
129.13,127.35, 127.22, 127.18, 127.11, 126.29, 125.48, 50.28, 45.69, 39.13, 34.55, 31.58, 23.26.

HRMS (ESIpos) (m/z): M calculated for C,;H,oNOSNa 438.186205; found 438.186910.

N-(1-(4-fluorophenyl)-2-(9 H-thioxanthen-9-yl)ethyl)acetamide (3d, unreported product)

e
Me)J\NH S
JIORAE

Following the general procedure A, white solid (72.4 mg, 96%).

"H NMR (500 MHz, CDCl3) 6 7.36-7-33 (m, 2H), 7.17-7.09 (m, 8H), 6.90 (t, J = 10.0 Hz, 2H), 5.35 (d, J
=5.0 Hz, 1H), 4.81-4.76 (m, 1H), 4.01 (t, 2H, /= 10.0 Hz, 1H), 2.15-2.11 (m, 2H), 1.80 (s, 3H).

BC NMR (125 MHz, CDCl;) § 169.05, 162.92, 160.97, 137.92 (d, J = 3.75 Hz, 1C), 137.46 (d, J = 8.75
Hz, 1C), 133.46, 132.52, 132.29, 130.12, 128.92, 128.66, 128.45, 128.26, 128.19, 127.28, 127.16, 126.86
(d, J=3.75 Hz, 1C), 126.78, 115.57, 115.40, 51.09, 46.85, 37.92, 23.42.

HRMS (ESIpos) (m/z): M’ calculated for C,3H,0)FNOSNa 400.114184; found 400.114170.

N-(1-(4-chlorophenyl)-2-(9 H-thioxanthen-9-yl)ethyl)acetamide (3e, unreported product)

L
Me)J\NH S
AT T U

Following the general procedure A, white solid (66.0 mg, 84%).

"H NMR (500 MHz, DMSO-dy) ¢ 8.53 (d, J = 5.0 Hz, 1H), 7.55-7.54 (m, 1H), 7.50 (dd, J = 5.0 Hz, 2.5
Hz, 1H), 7.45 (dd, J = 5.0 Hz, 1.5 Hz, 1H), 7.38-7.28 (m, 7H), 7.15 (d, J = 8.5 Hz, 2H), 4.48-4.41 (m,
1H), 4.25 (dd, J=10.0 Hz, 5.5 Hz, 1H), 2.12-2.08 (m, 1H), 1.98 (s, 3H), 1.92-1.86 (m, 1H).

BC NMR (125 MHz, DMSO-ds) 6 169.10, 143.08, 138.40, 136.97, 131.88, 131.73, 131.63, 129.84,
129.20, 128.76, 128.51, 127.42, 127.40, 127.37, 127.30, 127.24, 127.17, 50.24, 45.58, 38.76, 23.20.
HRMS (ESIpos) (m/z): M" calculated for C,3H,0CINOSNa 416.084633; found 416.084760.

80



N-(1-(4-bromophenyl)-2-(9 H-thioxanthen-9-yl)ethyl)acetamide (3f, unreported product)
Following the general procedure A, white solid (70.8 mg, 81%).

)
Me)J\NH S

JO T

"H NMR (500 MHz, DMSO-dq) ¢ 8.53 (d, J = 5.0 Hz, 1H), 7.55-7.53 (m, 1H), 7.50 (d, J = 8.5 Hz, 3H),
7.45 (dd, J= 7.5 Hz, 1.0 Hz, 1H), 7.38-7.28 (m, 5H), 7.09 (d, J = 8.5 Hz, 2H), 4.46-4.41 (m, 1H), 4.25
(dd, J=9.5 Hz, 5.0 Hz, 1H), 2.14-2.08 (m, 1H), 1.97 (s, 3H), 1.92-1.85 (m, 1H).

BC NMR (125 MHz, DMSO-dy) 6 169.11, 143.51, 138.39, 136.96, 131.88, 131.73, 131.67, 129.84,
129.20, 128.89, 127.43, 127.41, 127.37, 127.30, 127.24, 127.17, 120.12, 50.31, 45.57, 38.69, 23.20.
HRMS (ESIpos) (m/z): M calculated for C,3H,0BrNOSNa 460.034131; found 460.034780.

N-(1-(4-nitrophenyl)-2-(9 H-thioxanthen-9-yl)ethyl)acetamide (3g, unreported product)
)
Me)J\ NH S

poaae

Following the general procedure A, light yellow solid (8.0 mg, 10%).

"H NMR (500 MHz, DMSO-d;) 6 8.69 (d, J = 8.0 Hz, 1H), 8.81 (d, J = 8.5 Hz, 2H), 7.57-7.55 (m, 1H),
7.50 (t, J = 16.5 Hz, 8.0 Hz, 2H), 7.40-7.30 (m, 7H), 4.56-4.51 (m, 1H), 4.34 (dd, J = 10.0 Hz, 5.0 Hz,
1H), 2.18-2.12 (m, 1H), 2.01 (s, 3H), 1.94-1.88 (m, 1H).

BC NMR (125 MHz, DMSO-dy) § 169.37, 151.87, 146.76, 138.27, 136.67, 131.90, 131.77, 129.89,
129.22,127.86, 127.53, 127.47, 127.42, 127.36, 127.25, 127.21, 124.12, 50.78, 45.49, 38.33, 23.15.
HRMS (ESIpos) (m/z): M calculated for C,3H,0N,03SNa 427.108684; found 427.109200.

N-(2-(9H-thioxanthen-9-yl)-1-(4-(trifluoromethyl)phenyl)ethyl)acetamide (3h, unreported product)

e
Me)J\NH S
FaC ‘ g

Following the general procedure A, white solid (25.6 mg, 30%).
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"H NMR (500 MHz, DMSO-d;) ¢ 8.64 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.56-7.55 (m, 1H),
7.50-7.47 (m, 2H), 7.37-7.30 (m, 7H), 4.54-4.50 (m, 1H), 4.31 (dd, J = 10.0 Hz, 5.0 Hz, 1H), 2.18-2.14
(m, 1H), 2.00 (s, 3H), 1.92-1.87 (m, 1H).

BC NMR (125 MHz, DMSO-ds) 6 169.27, 148.88, 138.38, 136.79, 131.88, 131.75, 129.89, 129.20,
127.48,127.44,127.39, 127.32, 127.23, 127.18, 125.78, 125.74, 125.71, 50.72, 45.55, 38.61, 23.17.
HRMS (ESIneg) (m/z): H calculated for C4H,0F;NOS 426.114497; found 426.115170.

N-(1-(]1,1'-biphenyl]-4-y1)-2-(9 H-thioxanthen-9-yl)ethyl)acetamide (3i, unreported product)

L
Me)J\NH S

Following the general procedure A, white solid (69.6 mg, 80%).

"H NMR (500 MHz, DMSO-d) d 8.50 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 7.0 Hz, 2H), 7.55 (d, J = 8.0 Hz,
2H), 7.51-7.49 (m, 1H), 7.46-7.42 (m, 4H), 7.35-7.24 (m, 6H), 7.71 (d, J = 8.0 Hz, 2H), 4.51-4.46 (m,
1H), 4.23 (dd, /=10.0 Hz, 5.0 Hz, 1H), 2.15-2.10 (m, 1H), 1.59 (s, 3H), 1.91-1.85 (m, 1H).

BC NMR (125 MHz, DMSO-ds) 6 169.06, 143.34, 140.37, 139.11, 138.55, 137.11, 131.89, 131.75,
129.89, 129.34, 129.19, 127.75, 127.40, 127.37, 127.27, 127.23, 127.21, 127.15, 127.01, 50.46, 45.68,
39.01, 23.27.

HRMS (ESIpos+neg) (m/z): M" calculated for CooH,sNOSNa 458.154905; found 458.154970.

N-(2-(9H-thioxanthen-9-yl)-1-(m-tolyl)ethyl)acetamide (3], unreported product)
0
Me)J\ NH S

RORAE

Following the general procedure A, white solid (50.0 mg, 63%).

"H NMR (500 MHz, DMSO-ds) J 8.43 (d, J = 8.5 Hz, 1H), 7.50-7.48 (m, 1H), 7.45-7.39 (m, 2H), 7.33-
7.23 (m, 5H), 7.14 (t, J="7.5 Hz 1H), 6.98 (d, /= 7.5 Hz, 1H), 6.88-6.86 (m, 2H), 4.42-4.40 (m, 1H), 4.18
(dd, J=10.0 Hz, 5.0 Hz, 1H), 2.24 (s, 3H), 2.09-2.03 (m, 1H), 1.93 (s, 3H), 1.85-1.79 (m, 1H).

BC NMR (125 MHz, DMSO-d,) § 168.95, 144.10, 138.62, 137.81, 137.10, 131.86, 131.71, 129.89,
129.17, 128.69, 127.78, 127.37, 127.24, 127.22, 127.19, 127.13, 123.71, 50.58, 45.66, 39.19, 23.28, 21.49.
HRMS (ESIpos) (m/z): M calculated for C,,H,;NOSNa 396.139256; found 396.139410.
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N-(1-(3-bromophenyl)-2-(9 H-thioxanthen-9-yl)ethyl)acetamide (3k, unreported product)

@)
Me)J\NH S

ROAAe

Following the general procedure A, white solid (67.3 mg, 77%).

"H NMR (500 MHz, DMSO-dy) 6 8.55 (d, J = 8.5 Hz, 1H), 7.55-7.53 (m, 1H), 7.50 (dd, J = 7.5 Hz, 1.0
Hz, 1H), 7.47-7.41 (m, 2H), 7.38-7.25 (m, 7H), 7.10 (d, J = 7.5 Hz, 1H), 4.48-4.39 (m, 1H), 4.28 (dd, J =
9.5 Hz, 5.0 Hz, 1H), 2.14-2.08 (m, 1H), 2.04 (s, 3H), 1.92-1.86 (m, 1H).

BC NMR (125 MHz, DMSO-dy) § 169.17, 146.97, 138.43, 136.86, 131.90, 131.76, 131.06, 130.08,
129.85, 129.22, 129.17, 127.44, 127.42, 127.38, 127.29, 127.22, 127.16, 125.83, 122.12, 50.49, 45.63,
38.80, 23.22.

HRMS (ESIpos) (m/z): M calculated for C,3H,0BrNOSNa 460.034131; found 460.033700.

N-(1-(3-nitrophenyl)-2-(9 H-thioxanthen-9-yl)ethyl)acetamide (31, unreported product)

2,
Me)J\NH S
UTQ

Following the general procedure A, light yellow solid (26.6 mg, 33%).

"H NMR (500 MHz, DMSO-d) ¢ 8.64 (d, J= 8.0 Hz, 1H), 8.05-8.63 (m, 1H), 7.94 (s, 1H), 7.56-7.42 (m,
SH), 7.32-7.25 (m, 5H), 4.56-4.51 (m, 1H), 4.29 (dd, /= 10.0 Hz, 5.5 Hz, 1H), 2.15-2.09 (m, 1H), 1.94 (s,
3H), 1.92-1.88 (m, 1H).

BC NMR (125 MHz, DMSO-ds) 6 169.30, 148.30, 146.30, 138.31, 136.75, 133.66, 131.91, 131.79,
130.41, 129.85, 129.22, 127.47, 127.43, 127.40, 127.34, 127.24, 127.19, 122.28, 121.15, 50.61, 45.57,
38.43, 23.18.

HRMS (ESIpos) (m/z): M calculated for C,3HN,03;SNa 427.108684; found 427.109450.

N-(2-(9H-thioxanthen-9-yl)-1-(o-tolyl)ethyl)acetamide (3m, unreported product)

L,
Me)]\NH S
L, U
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Following the general procedure A, white solid (57.4 mg, 77%).

"H NMR (500 MHz, DMSO-d;) 6 8.57 (d, J = 8.5 Hz, 1H), 7.50-7.48 (m, 1H), 7.43 (d, J = 7.0 Hz, 1H),
7.42 (d, J = 5.0 Hz, 1H), 7.34-7.29 (m, 4H), 7.26-7.20 (m, 2H), 7.10 (t, J = 7.5 Hz, 1H), 7.04-7.00 (m,
1H), 6.97 (d, J=10.0 Hz, 1H), 4.71-4.67 (m, 1H), 4.25 (dd, J = 11.0 Hz, 3.5 Hz, 1H), 2.20-1.97 (m, 4H),
1.70 (s, 3H), 1.62-1.56 (m, 1H).

BC NMR (125 MHz, DMSO-dy) 6 169.11, 142.90, 138.74, 136.57, 134.12, 131.74, 131.66, 130.39,
130.28, 129.04, 127.50, 127.41, 127.24, 127.15, 127.07, 127.00, 126.69, 126.45, 125.22, 46.93, 45.82,
38.62,23.26, 18.01.

HRMS (ESIpos) (m/z): M calculated for C,,H,;NOSNa 396.139255; found 396.139960.

N-(1-(2-bromophenyl)-2-(9 H-thioxanthen-9-yl)ethyl)acetamide (3n, unreported product)

L
Me)J\NH S
L,

Following the general procedure A, white solid (62.0 mg, 71%).

"H NMR (500 MHz, DMSO-d) J 8.69 (d, J = 7.5 Hz, 1H), 7.48-7.45 (m, 2H), 7.41-7.39 (m, 2H), 7.34-
7.28 (m, 6H), 7.25-7.21 (m, 1H), 7.08 (td, /= 15.0 Hz, 7.5 Hz, 2.5 Hz, 1H), 4.81-4.76 (m, 1H), 4.31 (dd, J
=11.5 Hz, 4.0 Hz, 1H), 2.22-2.16 (m, 1H), 2.02 (s, 3H), 1.49-1.43 (m, 1H).

BC NMR (125 MHz, DMSO-d,) § 169.17, 146.97, 138.43, 136.86, 131.90, 131.76, 131.06, 130.08,
129.85, 129.22, 129.17, 127.44, 127.42, 127.38, 127.29, 127.22, 127.16, 125.83, 122.12, 50.49, 45.63,
38.80, 23.22.

HRMS (ESIpos) (m/z): M calculated for C,3H,0BrNOSNa 460.034131; found 460.034720.

N-(1-mesityl-2-(9H-thioxanthen-9-yl)ethyl)acetamide (30, unreported product)

R'=2,4,6-Me
Following the general procedure A, white solid (61.5 mg, 75%).
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"H NMR (500 MHz, DMSO-dy) ¢ 8.42 (d, J = 8.5 Hz, 1H), 7.50-7.48 (m, 1H), 7.44 (dd, J = 8.0 Hz, 1.5
Hz, 1H), 7.40 (dd, J = 10.0 Hz, 5.0 Hz, 1H), 7.33-7.24 (m, 7H), 7.00 (d, J = 8.5 Hz, 2H), 4.45-4.42 (m,
1H), 4.18 (dd, J=9.5 Hz, 4.5 Hz, 1H), 2.10-2.04 (m, 1H), 1.92 (s, 3H), 1.84-1.78 (m, 1H), 1.22 (s, 9H).
BC NMR (125 MHz, DMSO-dg) 6 168.93, 149.43, 141.14, 138.65, 137.14, 131.86, 131.72, 129.89,
129.13,127.36, 127.22, 127.19, 127.12, 126.26, 125.49, 50.27, 45.68, 39.13, 34.56, 31.58, 23.26.

HRMS (ESIpos) (m/z): M" calculated for C,H,;NOSNa.170555; found 424.170840424.

N-(1-(naphthalen-2-yl)-2-(9 H-thioxanthen-9-yl)ethyl)acetamide (3p, unreported product)
0
Me)J\ NH S

Following the general procedure A, white solid (59.7 mg, 73%).

"H NMR (500 MHz, DMSO-d,) J 8.62 (d, J = 8.5 Hz, 1H), 7.91-7.86 (m, 3H), 7.57-7.48 (m, 6H), 7.38-
7.29 (m, 6H), 4.69-4.64 (m, 1H), 4.30 (dd, /= 9.5 Hz, 5.0 Hz, 1H), 2.28-2.21 (m, 1H), 2.04-1.98 (m, 4H).
BC NMR (125 MHz, DMSO-d) ¢ 169.12, 141.52, 138.57, 137.11, 133.26, 132.48, 131.91, 131.77,
129.92, 129.25, 128.51, 128.11, 127.86, 127.42, 127.39, 127.28, 127.23, 127.19, 126.58, 126.12, 125.25,
124.93, 50.83, 45.66, 38.83, 23.30.

HRMS (ESIpos) (m/z): M calculated for C,;H,;NOSNa 432.139255; found 432.139730.

trans-N-(2-(9 H-thioxanthen-9-yl)-2,3-dihydro-1H-inden-1-yl)acetamide (trans-3q, unreported product)

O
o )
NH

Following the general procedure A (reaction time for 6 hours), white solid (22.2 mg, 30%).

"H NMR (500 MHz, DMSO-d) 6 7.69 (d, J = 9.0 Hz, 1H), 7.59 (dd, J = 7.5 Hz, 2.0 Hz, 1H), 7.52 (dd, J
= 6.5 Hz, 1.5 Hz, 1H), 7.50-7.48 (m, 1H), 7.44 (dd, J= 7.0 Hz, 2.0 Hz, 1H), 7.37-7.31 (m, 2H), 7.30-7.24
(m, 2H), 7.16-7.12 (m, 3H), 7.00-7.98 (m, 1H), 5.33 (t, /= 9.0 Hz, 1H), 4.45 (d, J = 9.0 Hz, 1H), 2.93-
2.86 (m, 1H), 2.79-2.74 (m, 1H), 2.39-2.34 (m, 1H), 1.56 (s, 3H).

BC NMR (125 MHz, DMSO-ds) 6 168.90, 144.77, 140.73, 137.22, 132.48, 131.97, 130.30, 129.83,
127.59,127.24, 127.13, 126.95, 126.91, 126.84, 124.53, 123.78, 57.29, 51.70, 47.42, 35.39, 22.76.

HRMS (ESIpos) (m/z): M calculated for Co,H, NOSNa 394.123605; found 394.124240.

85



trans-N-(1-phenyl-2-(9H-thioxanthen-9-yl)propyl)acetamide (¢rans-3r, unreported product)

Following the general procedure A (reaction time for 6 hours), white solid (36.5 mg, 49%).

"H NMR (500 MHz, DMSO-dy) 6 8.09 (d, J = 8.5 Hz, 1H), 7.57-7.55 (m, 1H), 7.48 (dd, J = 7.5 Hz, 1.5
Hz, 1H), 7.37-7.35 (m, 2H), 7.31-7.21 (m, 6H), 7.12 (t, J = 7.5 Hz, 1H), 7.09-6.87 (m, 2H), 4.58 (dd, J =
8.5 Hz, 2.5 Hz, 1H), 4.07 (d, /= 10.0 Hz, 1H), 2.41-2.37 (m, 1H), 2.11 (s, 3H), 0.44 (d, J= 7.5 Hz, 3H).
BC NMR (125 MHz, DMSO-ds) 6 169.90, 143.46, 137.71, 137.67, 132.47, 130.56, 128.49, 127.62,
127.46,127.23, 127.10, 126.97, 126.78, 126.60, 126.12, 53.48, 51.76, 37.80, 23.23, 12.08.

HRMS (ESIpos) (m/z): M" calculated for C,,H,3NOSNa 396.1392563; found 96.139390.

N-(1-phenyl-2-(9 H-xanthen-9-yl)ethyl)acetamide (3s, unreported product)

L
Me)J\NH )

Following the general procedure B, white solid (63.1 mg, 92%).

"H NMR (500 MHz, CDCls) 6 7.24 (d, J = 7.5 Hz, 1H), 7.20-7.10 (m, 8H), 7.08-6.99 (m, 4H), 5.40 (d, J =
8.5 Hz, 1H), 4.95-4.90 (m, 1H), 3.98 (dd, /= 7.0 Hz, 5.5 Hz, 1H), 2.13-2.05 (m, 2H), 1.79 (s, 3H).

BC NMR (125 MHz, CDCls) d 169.06, 152.39, 152.29, 142.25, 128.68, 128.66, 128.21, 127.90, 127.34,
126.41, 125.25, 124.98, 123.50, 123.44, 116.78, 116.62, 50.82, 46.67, 36.86, 23.40.

HRMS (ESIpos) (m/z): M calculated for C,3H,;NO,Na 366.146448; found 366.146620.

N-(1-phenyl-2-(9 H-xanthen-9-yl)ethyl)propionamide (3t, unreported product)
0]
Et)J\NH (@)

Following the general procedure B, white solid (51.4 mg, 72%).

'"H NMR (500 MHz, CDCl;) § 7.26 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.21-7.09 (m, 8H), 7.06-6.99 (m, 4H),
5.35 (d, J = 8.0 Hz, 1H), 4.98-4.93 (m, 1H), 3.96 (t, J = 6.5 Hz, 1H), 2.11-1.97 (m, 4H), 1.01 (t, J= 7.5
Hz, 3H).
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BC NMR (125 MHz, CDCl3) ¢ 172.74, 152.38, 152.27, 142.28, 133.60, 130.16, 128.68, 128.46, 128.20,
127.88, 127.33, 126.43, 125.32, 125.08, 123.50, 123.42, 116.77, 116.60, 50.66, 46.76, 36.85, 29.67, 9.63.
HRMS (ESIpos+neg) (m/z): [M+H]" calculated for C,4H,,NO,Na 358.180154; found 358.179870.

N-(1-phenyl-2-(9 H-xanthen-9-yl)ethyl)butyramide (3u, unreported product)
(o)
”Pr)J\NH 0

Following the general procedure B, white solid (60.1 mg, 81%).

"H NMR (500 MHz, CDCLy) 6 8.45 (d, J = 8.5 Hz, 1H), 7.40 (dd, J = 7.5 Hz, 6.0 Hz, 1H), 7.35-7.29 (m,
5H), 7.23-7.16 (m, 7H), 4.90-4.80 (m, 1H), 4.07 (dd, J = 9.5 Hz, 4.0 Hz, 1H), 2.27-2.18 (m, 2H), 2.07-
2.04 (m, 1H), 1.85-1.70 (m, 1H), 1.66-1.60 (m, 2H), 0.94 (t,J= 7.5 Hz, 3H).

BC NMR (125 MHz, DMSO-dy) § 171.97, 152.09, 152.03, 144.08, 129.60, 129.05, 128.75, 128.46,
128.23,127.11, 126.55, 125.13, 124.05, 123.79, 116.81, 116.53, 49.82, 47.98, 37.95, 36.25, 19.27, 14.15.
HRMS (ESIpos+neg) (m/z): [M+H]" calculated for C,sH,sNO,372.195804; found 372.195770.

N-(1-phenyl-2-(9 H-xanthen-9-yl)ethyl)iso-butyramide (3v, unreported product)
0
"Pr)J\NH o)

Following the general procedure B, white solid (30.4 mg, 41%).

"H NMR (500 MHz, DMSO-dq) ¢ 8.35 (d, J = 8.5 Hz, 1H), 7.40 (dd, J = 7.5 Hz, 2.0 Hz, 1H), 7.32-7.26
(m, 1H), 7.25-7.23 (m, 4H), 7.17-7.10 (m, 7H), 4.81-4.76 (m, 1H), 4.01 (dd, J=9.5 Hz, 4.0 Hz, 1H), 2.06-
2.00 (m, 1H), 1.99-1.74 (m, 1H), 1.12 (d, /= 6.5 Hz, 3H), 1.01 (d, J = 6.5 Hz, 3H).

BC NMR (125 MHz, DMSO-dg) 6 175.97, 152.09, 152.03, 144.12, 129.59, 129.06, 128.78, 128.47,
128.24,127.09, 126.56, 126.48, 125.14, 124.05, 123.81, 116.81, 116.54, 49.64, 48.06, 36.29, 34.58, 20.30,
19.87.

HRMS (ESIpos) (m/z): M" calculated for C,sH,sNO,Na 394.177747; found 394.177150.
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N-(1-phenyl-2-(9H-xanthen-9-yl)ethyl)pivalamide (3w, unreported product)

O
’Bu)J\NH O

Following the general procedure B, white solid (39.2 mg, 51%)).

"H NMR (500 MHz, DMSO-d;) ¢ 8.01 (d, J = 7.5 Hz, 1H), 7.46 (dd, J = 8.0 Hz, 2.0 Hz, 1H), 7.37-7.34
(m, 1H), 7.33-7.28 (m, 4H), 7.22-7.16 (m, 7H), 4.91-4.88 (m, 1H), 4.02 (dd, J = 10.0 Hz, 4.0 Hz, 1H),
2.27-2.21 (m, 1H), 1.85-1.80 (m, 1H), 1.24 (s, 9H).

BC NMR (125 MHz, DMSO-dy) 6 177.34, 152.09, 152.03, 144.34, 129.60, 129.20, 128.69, 128.44,
128.22,126.98, 126.61, 126.46, 125.21, 123.99, 123.80, 116.83, 116.50, 49.87, 47.73, 38.65, 36.42, 27.90.
HRMS (ESIpos+neg) (m/z): [M+H]" calculated for C,sH,7NO, 386.211454; found 386.210940.

N-(1-phenyl-2-(9 H-xanthen-9-yl)ethyl)benzamide (3x, unreported product)
O
P h)J\ NH )

Following the general procedure B, white solid (32.4 mg, 40%).

"H NMR (500 MHz, DMSO-d,) 6 8.94 (d, J = 8.5 Hz, 1H), 7.90-7.88 (m, 2H), 7.56-7.39 (m, 5H), 7.2-
7.20 (m, 7H), 7.17-7.11 (m, 4H), 5.04-5.00 (m, 1H), 4.12 (dd, J = 9.5 Hz, 4.5 Hz, 1H), 2.36-2.30 (m, 1H),
1.90-1.85 (m, 1H).

BC NMR (125 MHz, DMSO-d) J 166.46, 152.14, 152.01, 144.05, 134.99, 131.71, 129.60, 129.21,
128.79, 128.71, 128.67, 128.65, 128.44, 128.24, 127.89, 127.82, 127.21, 126.75, 126.50, 126.44, 125.16,
123.99, 123.82, 116.82, 116.53, 50.76, 47.34, 36.49.

HRMS (ESIpos+neg) (m/z): [M+Na]" calculated for CogH,3NO,Na 428.162098; found 428.162020.

9-(2-methoxy-2-phenylethyl)-9 H-thioxanthene (9a, unreported product)

v, )
o S

Following the general procedure C, white solid (58.6 mg, 91%).
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"H NMR (500 MHz, DMSO-ds) 6 7.51 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.43 (dd, J = 8.0 Hz, 1.5 Hz, 1H),
7.41-7.34 (m, 7H), 7.28-7.23 (m, 2H), 7.11-7.10 (m, 2H), 4.43 (dd, J=10.5 Hz, 5.5 Hz, 1H), 4.07 (dd, J =
10.5 Hz, 3.5 Hz, 1H), 3.08 (s, 3H), 2.01-1.95 (m, 1H), 1.81-1.76 (m, 1H).

BC NMR (125 MHz, DMSO-dy) 6 141.85, 138.77, 137.04, 131.89, 129.90, 129.01, 128.94, 128.07,
127.50, 127.44, 127.19, 127.11, 126.80, 80.67, 56.17, 45.29, 40.80.

HRMS (ESIpos) (m/z): M" calculated for C,,H,OSNa 355.112707; found 355.112750.

9-(2-ethoxy-2-phenylethyl)-9H-thioxanthene (9b, unreported product)

o
t\o S

Following the general procedure C, colorless oil (50.5 mg, 73%).

"H NMR (500 MHz, DMSO-dg) § 7.51 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.43 (dd, J = 7.5 Hz, 1.5 Hz, 1H),
7.40-7.22 (m, 9H), 7.11-7.10 (m, 2H), 4.43 (dd, J = 10.5 Hz, 5.5 Hz, 1H), 3.76 (dd, J = 10.0 Hz, 3.0 Hz,
1H), 3.21-3.13 (m, 2H), 2.00-1.95 (m, 1H), 1.80-1.75 (m, 1H), 1.16 (t, J = 6.5 Hz, 3H).

BC NMR (125 MHz, DMSO-dy) § 142.57, 138.84, 137.13, 131.95, 131.93, 129.87, 128.99, 128.89,
127.91, 127.50, 127.47, 127.40, 127.20, 127.14, 127.07, 126.61, 79.01, 63.73, 45.44, 40.91, 15.79.

HRMS (EI) (m/z): calculated for C»3H»,0S 346.139138; found 346.139318.

9-(2-phenyl-2-propoxyethyl)-9 H-thioxanthene (9¢c, unreported product)

o, O
PI'\O S

Following the general procedure C, colorless oil (67.0 mg, 93%).

"H NMR (500 MHz, DMSO-dj) 6 7.52-7.50 (m, 1H), 7.44 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.40 (dd, J = 7.5
Hz, 1.5 Hz, 1H), 7.36-7.34 (m, 2H), 7.32-7.27 (m, 4H), 7.25-7.21 (m, 2H), 7.11-7.09 (m, 2H), 4.43 (dd, J
=10.5 Hz, 4.5 Hz, 1H), 3.76 (dd, J = 10.0 Hz, 3.0 Hz, 1H), 3.10 (t, J = 6.5 Hz, 2H), 2.01-1.95 (m, 1H),
1.81-1.75 (m, 1H), 1.60-1.53 (m, 2H), 0.93 (t, /= 7.0 Hz, 3H).

BC NMR (125 MHz, DMSO-dy) § 142.58, 138.85, 137.14, 131.93, 131.90, 129.83, 128.99, 128.89,
127.92, 127.53, 127.50, 127.42, 127.21, 127.16, 127.09, 126.64, 79.10, 70.03, 45.45, 41.03, 23.20, 11.31.
HRMS (ESIpos) (m/z): M" calculated for C,4sH,4OSNa 383.144007; found 383.144320.
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9-(2-butoxy-2-phenylethyl)-9 H-thioxanthene (9d, unreported product)

o )
“~o S

Following the general procedure C, Colorless oil (68.8 mg, 92%).

"H NMR (500 MHz, CDCl;) § 7.37-7.35 (m, 1H), 7.28-7.26 (m, 3H), 7.18-7.05 (m, 9H), 4.41 (dd, J =
11.0 Hz, 4.5 Hz, 1H), 3.70 (dd, J = 10.5 Hz, 3.0 Hz, 1H), 3.21-3.17 (m, 1H), 3.12-3.07 (m, 1H), 2.14-2.09
(m, 1H), 1.80-1.74 (m, 1H), 1.59-1.52 (m, 2H); 1.43-1.36 (m, 2H), 0.89 (t, J = 7.0 Hz, 3H).

BC NMR (125 MHz, CDCls) ¢ 142.71, 138.98, 137.10, 132.56, 132.39, 129.60, 128.51, 128.25, 127.28,
127.20, 126.83, 126.68, 126.60, 126.46, 126.38, 126.15, 79.21, 68.32, 45.71, 40.82, 32.33, 19.71, 14.08.
HRMS (EI) (m/z): calculated for C,sH,60S 374.170438; found 374.170248.

9-(2-(pentyloxy)-2-phenylethyl)-9 H-thioxanthene (9e, unreported product)

Following the general procedure C, Colorless oil (65.1 mg, 84%).

"H NMR (500 MHz, DMSO-dj) 6 7.57-7.55 (m, 1H), 7.48 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.44 (dd, J = 7.5
Hz, 1.5 Hz, 1H), 7.40-7.31 (m, 6H), 7.30-7.25 (m, 2H), 7.16-7.14 (m, 2H), 4.46 (dd, J = 10.5 Hz, 5.5 Hz,
1H), 3.80 (dd, J = 10.0 Hz, 3.5 Hz, 1H), 3.17 (t, J = 6.5 Hz, 2H), 2.05-2.00 (m, 1H), 1.86-1.80 (m, 1H),
1.61-1.57 (m, 2H), 1.42-1.31 (m, 5H), 0.94 (t, /= 7.5 Hz, 3H).

BC NMR (125 MHz, DMSO-ds) 6 142.58, 138.83, 137.16, 133.70, 131.96, 131.91, 129.78, 129.51,
129.22, 128.97, 128.88, 127.92, 127.53, 127.49, 127.42, 127.21, 127.16, 127.05, 126.64, 79.13, 68.31,
45.46, 41.01, 29.58, 28.45, 22.43, 14.38.

HRMS (ESIpos) (m/z): M calculated for C,sH,50SNa 411.175307; found 411.175940.

9-(2-isopropoxy-2-phenylethyl)-9H-thioxanthene (9f, unreported product)

Following the general procedure C, colorless oil (49.6 mg, 69%).
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"H NMR (500 MHz, DMSO-ds) 6 7.55 (dd, J = 7.5 Hz, 1.5 Hz, 1H), 7.47 (dd, J = 7.5 Hz, 1.0 Hz, 1H),
7.44-7.41 (m, 2H), 7.39-7.25 (m, 7H), 7.14-7.16 (m, 2H), 4.40 (dd, J=10.0 Hz, 5.0 Hz, 1H), 4.05 (dd, J =
9.5 Hz, 3.0 Hz, 1H), 3.41-3.39 (m, 1H), 2.06-2.00 (m, 1H), 1.82-1.77 (m, 1H), 1.16 (d, J = 6.0 Hz, 3H),
1.05 (d, J= 6.0 Hz, 3H).

BC NMR (125 MHz, DMSO-ds) 6 143.36, 139.06, 137.37, 131.99, 131.95, 130.00, 128.93, 128.85,
127.85, 127.57, 127.49, 127.39, 127.24, 127.11, 126.98, 126.71, 76.05, 68.55, 45.40, 41.36, 23.91, 21.66.
HRMS (EI) (m/z): calculated for C4H,40S 360.154787; found 360.154395.

9-(2-(cyclohexyloxy)-2-phenylethyl)-9 H-thioxanthene (9g, unreported product)

SHeN
(J " U

Following the general procedure C, colorless oil (22.4 mg, 28%).

"H NMR (500 MHz, DMSO-ds) 6 7.50 (dd, J = 7.0 Hz, 1.0 Hz, 1H), 7.43 (dd, J = 7.5 Hz, 1.5 Hz, 1H),
7.39-7.34 (m, 2H), 7.33-7.24 (m, 5H), 7.23-7.20 (m, 2H), 7.12-7.10 (m, 2H), 4.35 (dd, J = 10.0 Hz, 4.5
Hz, 1H), 4.09 (dd, J = 9.5 Hz, 3.0 Hz, 1H), 3.08-3.04 (m, 1H), 2.01-1.95 (m, 1H), 1.90-1-87 (m, 1H),
1.78-1.71 (m, 2H), 1.61-1.56 (m, 2H), 1.45-1.42 (m, 1H), 1.35-1.30 (m, 1H), 1.25-1.03 (m, 4H).

BC NMR (125 MHz, DMSO-dg) 6 143.59, 139.11, 137.51, 132.00, 131.93, 129.82, 129.51, 129.17,
128.88, 128.84, 127.81, 127.60, 127.51, 127.37, 127.24, 127.12, 127.03, 126.64, 75.93, 74.77, 45.44,
41.62,33.72,31.79, 25.78, 24.28, 24.19.

HRMS (EI) (m/z): calculated for C,;H,50S 400.186088; found 400.185978.

9-(2-(tert-butoxy)-2-phenylethyl)-9 H-thioxanthene (9h, unreported product)

Bu. O
Y~o S

Following the general procedure C, colorless oil (30.0 mg, 40%).

"H NMR (500 MHz, DMSO-d;) 6 7.42-7.37 (m, 2H), 7.24-7.14 (m, 11H), 4.19 (dd, J = 7.0 Hz, 5.5 Hz,
1H), 3.99 (dd, J= 7.5 Hz, 6.0 Hz, 1H), 1.92-1.82 (m, 2H), 0.92 (s, 9H).

BC NMR (125 MHz, DMSO-dy) 6 145.65, 138.95, 138.57, 132.18, 132.13, 129.06, 128.93, 128.72,
127.54, 127.48, 127.36, 127.32, 127.20, 127.16, 127.11, 126.86, 74.35, 72.08, 45.23, 42.29, 29.13.

HRMS (EI) (m/z): calculated for C;sH,cOS 374.170438; found 374.170366.
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N-(1-phenyl-2-(phenylsulfinyl)ethyl)acetamide (11a, CAS: 98289-63-5)
0

N

Me NH
S\©
Following the general procedure D, light yellow oil (35.0 mg, 61%).
"H NMR (500 MHz, DMSO-d;) ¢ 8.46 (d, J = 8.0 Hz, 1H), 7.37-7.31 (m, 8H), 7.28-7.25 (m, 1H), 7.22-
7.19 (m, 1H), 4.94 (dd, J=15.5 Hz, 7.5 Hz, 1H), 3.27 (d, /= 7.0 Hz, 2H), 1.85 (s, 3H).
BC NMR (125 MHz, DMSO-ds) 6 169.09, 142.24, 136.41, 129.71, 129.53, 129.02, 128.81, 128.74,

127.69, 127.23, 126.25, 52.34, 38.90, 23.10.
HRMS (ESIpos) (m/z): [M-H] calculated for C;sH;7;NOS 270.095811; found 270.095880.

N-(1-phenyl-2-(p-tolylthio)ethyl)acetamide (11b, CAS: 1820957-34-3)

Following the general procedure D, colorless oil (25.6 mg, 45%).

"H NMR (500 MHz, DMSO-d;) 6 8.44 (d, J = 8.5 Hz, 1H), 7.49-7.25 (m, 7H), 7.14 (d, J = 8.0 Hz, 1H),
4.90 (dd, J=15.0 Hz, 7.5 Hz, 1H), 3.32 (d, /= 7.5 Hz, 2H), 2.82 (s, 3H), 1.85 (s, 3H).

BC NMR (125 MHz, DMSO-dy) § 169.09, 142.36, 135.98, 133.31, 132.54, 130.18, 129.65, 129.02,
128.79, 127.63, 127.19, 52.32, 39.00, 23.11, 21.01.

HRMS (ESIpos) (m/z): M" calculated for C;;H;oQNOSNa 308.107956; found 308.107750.

N-(2-((4-(tert-butyl)phenyl)thio)-1-phenylethyl)acetamide (11c, unreported product)

Following the general procedure D, colorless oil (35.1 mg, 54%).

"H NMR (500 MHz, CDCl3) 6 7.25-7.18 (m, 9H), 5.87 (d, J = 7.5 Hz, 1H), (m, 7H), 5.13 (dd, J = 13.5
Hz, 6.0 Hz, 1H), 3.31-3.21 (m, 2H), 1.87 (s, 3H), 1.22 (s, 9H).

BC NMR (125 MHz, CDCl;) 6 169.53, 149.96, 140.35, 131.85, 130.14, 130.11, 128.72, 128.42, 127.79,
126.58, 126.17, 53.06, 40.24, 34.50, 31.25, 23.28.
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HRMS (ESIpos) (m/z): M calculated for CooHpsOSNa 350.154905; found 350.154770.

N-(2-((4-methoxyphenyl)thio)-1-phenylethyl)acetamide (11d, CAS: 141248-72-8)

Following the general procedure D, colorless oil (30.1 mg, 50%).

"H NMR (500 MHz, CDCl;) § 7.28-7.22 (m, 4H), 7.20-7.15 (m, 3H), 5.93 (d, J = 8.0 Hz, 1H), 5.02 (dd, J
=13.5Hz, 7.0 Hz, 1H), 3.71 (s, 3H), 3.19-3.11 (s, 3H), 1.90 (s, 3H).

BC NMR (125 MHz, CDCl3) d 169.50, 159.25, 140.51, 133.64, 128.71, 127.74, 126.56, 125.42, 114.77,
55.35,52.95, 41.81, 23.33.

HRMS (ESIpos) (m/z): [M] calculated for C;7H;sNO,S 301.113110; found 301.113101.

N-(2-((4-chlorophenyl)thio)-1-phenylethyl)acetamide (11e, CAS: 1883670-31-2)

Following the general procedure D, colorless oil (24.7 mg, 42%).

"H NMR (500 MHz, DMSO-d;) J 8.45 (d, J= 7.5 Hz, 1H), 7.37 (s, 4H), 7.35-7.31 (m, 4H), 7.28-7.25 (m,
4H), 7.28-7.25 (m, 1H), 4.95-4.91 (m, 1H), 3.30-3.24 (m, 2H), 1.84 (s, 3H).

BC NMR (125 MHz, CDCls) 6 169.12, 142.06, 130.89, 130.47, 129.40, 128.82, 127.74, 127.25, 52.20,
38.93, 23.08.

HRMS (ESIpos) (m/z): M’ calculated for C;sH;sCINOSNa 328.053333; found 328.052790.

(0]
Me NH

o

N-(2-((4-bromophenyl)thio)-1-phenylethyl)acetamide (11f, CAS: 1883670-32-3)

r

Following the general procedure D, colorless oil (34.3 mg, 49%).
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'"H NMR 'H NMR (500 MHz, CDCl;) § 7.32-7.34 (m, 2H), 7.28-7.25 (m, 2H), 7.27-7.22 (m, 1H), 7.19-
7.17 (m, 2H), 7.16-7.14 (m, 2H), 5.80 (d, J = 7.5 Hz, 1H), 5.09 (dd, J = 14.0 Hz, 7.0 Hz, 1H), 3.37 (dd, J
=13.5Hz, 6.5 Hz, 1H), 3.20 (dd, J = 13.5 Hz, 6.5 Hz, 1H), 1.92 (s, 3H).

BC NMR (125 MHz, CDCls) 6 169.50, 139.80, 132.06, 131.19, 128.88, 128.09, 126.70, 120.36, 52.94,
39.45, 23.34.

HRMS (ESIpos) (m/z): M calculated for C;¢H;sBrNOSNa 372.002830; found 372.002510.

N-(1-phenyl-2-(m-tolylthio)ethyl)acetamide (11g, CAS: 1883670-29-8)
0]

PN

Me”™ “NH

spaey
Following the general procedure D, colorless oil (30.2 mg, 53%).
"H NMR (500 MHz, DMSO-dq) J 8.45 (d, J = 8.0 Hz, 1H), 7.34-7.31 (m, 4H), 7.27-7.25 (m, 1H), 7.20 (t,
J="1.5Hz, 1H), 7.16-7.13 (m, 2H), 7.01-7.00 (m, 1H), 4.96-4.93 (m, 1H), 3.26 (d, J = 7.5 Hz, 2H), 2.28
(s, 3H), 1.85(s, 3H).
BC NMR (125 MHz, DMSO-dy) § 169.10, 142.25, 138.84, 136.19, 129.71, 129.43, 129.12, 129.02,

128.80, 127.69, 127.24, 126.98, 125.70, 52.40, 38.82, 23.09, 21.35.
HRMS (ESIpos) (m/z): M calculated for C,;H;sNOSNa 308.107955; found 308.107310.

N-(1-phenyl-2-(o-tolylthio)ethyl)acetamide (11h, CAS: 1820957-37-6)
)

Me)J\NH Me
0

Following the general procedure D, colorless oil (20.1 mg, 39%).

"H NMR (500 MHz, DMSO-d,) J 8.47 (d, J = 8.0 Hz, 1H), 7.39-7.37 (m, 1H), 7.36-7.31 (m, 4H), 7.28-
7.25 (m, 1H), 7.16-7.13 (m, 1H), 7.21-7.18 (m, 2H), 7.13-7.10 (m, 1H), 4.94 (dd, J = 15.5 Hz, 7.5 Hz,
1H), 3.26 (d, J= 1.0 Hz, 2H), 2.25 (s, 3H), 1.86 (s, 3H).

BC NMR (125 MHz, DMSO-ds) 6 169.09, 142.30, 136.98, 135.60, 130.46, 128.81, 128.01, 127.70,
127.21,127.13, 126.04, 52.32, 38.55, 23.10, 20.41.

HRMS (ESIpos) (m/z): M calculated for C;;H;yNOSNa 308.107955; found 308.107620.
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N-(3-cyano-1-phenylpropyl)acetamide (13, CAS: 2127514-83-2)

O

M

HN Me
CN

Following the general procedure E, using p-bromo-N,N-dimethylaniline as initiator; isolated as a white
solid (48.5 mg, 48%).

"H NMR (500 MHz, CDCl3) 6 7.38-7.35 (m, 2H), 7.32-7.30 (m, 1H), 7.27-7.26 (m, 2H), 5.90 (d, J = 8.0
Hz, 1H), 5.04 (dd, J = 15.5 Hz, 8.0 Hz, 1H), 2.37-2.31 (m, 2H), 2.27-2.22 (m, 1H), 2.15-2.10 (m, 1H),
1.99 (s, 3H).

BC NMR (125 MHz, CDCLy) ¢ 169.85, 139.83, 129.21, 128.34, 126.55, 119.26, 52.90, 31.66, 23.37,
14.54.

HRMS (ESIpos) (m/z): M calculated for C;,H4N,0 202.110063; found 202.109890.
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X-ray study

Single crystals of 3e were crystallized from CH;CN.

@)
Me)J\NH

Cl l 3e !

Table 1. Crystal data and structure refinement.

Identification code
Empirical formula
Color

Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

CCDC 1957001
Cx;HyCINOS

colourless

393.91 g-mol"

100(2) K

0.71073 A

MONOCLINIC

P2,/n, (no. 14)
a=13.3178(19) A o=90°.
b=9.6266(14) A [=106.661(5)°.
c=15.54512) A 7=90°.
1909.2(5) A

4

1.370 Mg - m?

0.322 mm!

824 ¢
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Crystal size

0 range for data collection
Index ranges

Reflections collected
Independent reflections
Reflections with [>2o(I)
Completeness to 6 = 25.242°
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F?

Final R indices [[>26(])]

R indices (all data)

Largest diff. peak and hole

0.128 x 0.100 x 0.040 mm’

2.381 to 31.679°.
19<h<19,-14<k < 14,-22<1<22
53315

6405 [R. = 0.0286]

int

5548

99.9 %
Gaussian
0.99 and 0.96

Full-matrix least-squares on F?

6405/0/257

1.035

R, =0.0343 wR?=0.0889
R, =0.0413 wR?=0.0930

0.5and-03¢ - A?
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Table 2. Bond lengths [A] and angles [°].

CI(1)-C(19)
S(1)-C(8)
N(1)-C(15)
C(1)-C(2)
C(1)-C(14)
C(2)-C(7)
C(4)-C(5)
C(6)-C(7)
C(8)-C(13)
C(10)-C(11)
C(12)-C(13)
C(15)-C(16)
C(16)-C(21)
C(18)-C(19)
C(20)-C(21)

C(7)-S(1)-C(8)
C(2)-C(1)-C(13)
C(13)-C(1)-C(14)
C(3)-C(2)-C(7)
C(4)-C(3)-C(2)
C(6)-C(5)-C(4)
C(2)-C(7)-S(1)
C(6)-C(7)-C(2)
C(9)-C(8)-C(13)
C(10)-C(9)-C(8)
C(12)-C(11)-C(10)
C(8)-C(13)-C(1)
C(12)-C(13)-C(8)
N(1)-C(15)-C(14)
C(16)-C(15)-C(14)
C(21)-C(16)-C(15)

1.7418(10)
1.7666(11)
1.4632(13)
1.5095(14)
1.5479(14)
1.3983(13)
1.3894(17)
1.3965(15)
1.4003(14)
1.3900(19)
1.3959(15)
1.5184(13)
1.3905(14)
1.3837(15)
1.3931(15)

100.13(5)
111.05(8)
111.19(8)
118.43(9)
121.16(10)
120.06(10)
121.05(8)
120.60(10)
120.77(10)
120.06(11)
119.76(11)
120.18(9)
118.05(10)
108.99(8)
113.53(8)
120.59(9)
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S(1)-C(7)
0(1)-C(22)
N(1)-C(22)
C(1)-C(13)
C(2)-C(3)
C(3)-C(4)
C(5)-C(6)
C(8)-C(9)
C(9)-C(10)
C(11)-C(12)
C(14)-C(15)
C(16)-C(17)
C(17)-C(18)
C(19)-C(20)
C(22)-C(23)

C(22)-N(1)-C(15)
C(2)-C(1)-C(14)
C(3)-C(2)-C(1)
C(7)-C(2)-C(1)
C(5)-C(4)-C(3)
C(5)-C(6)-C(7)
C(6)-C(7)-S(1)
C(9)-C(8)-S(1)
C(13)-C(8)-S(1)
C(9)-C(10)-C(11)
C(11)-C(12)-C(13)
C(12)-C(13)-C(1)
C(15)-C(14)-C(1)
N(1)-C(15)-C(16)
C(17)-C(16)-C(15)
C(21)-C(16)-C(17)

1.7638(11)
1.2366(13)
1.3377(13)
1.5111(14)
1.3946(15)
1.3911(16)
1.3869(17)
1.3941(16)
1.3849(18)
1.3878(17)
1.5312(13)
1.3978(13)
1.3893(14)
1.3793(16)
1.5063(15)

122.68(8)
108.92(8)
121.46(9)
120.08(9)
119.71(11)
119.98(10)
118.34(8)
118.34(8)
120.89(8)
119.95(11)
121.35(10)
121.76(9)
113.85(8)
109.44(7)
120.63(8)
118.68(9)



C(18)-C(17)-C(16) 121.00(9)

C(18)-C(19)-CI(1) 119.27(8)
C(20)-C(19)-C(18) 121.75(9)
C(16)-C(21)-C(20) 120.94(10)
0(1)-C(22)-C(23) 121.39(9)

C(19)-C(18)-C(17)
C(20)-C(19)-CI(1)
C(19)-C(20)-C(21)
O(1)-C(22)-N(1)
N(1)-C(22)-C(23)

118.73(10)
118.97(8)
118.89(10)
123.02(10)
115.59(9)

ORTEP diagram of the X-ray structure of 3e. Displacement ellipsoids are drawn at the 50% probability

level.
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Mechanistic studies:

Radical trapping experiment:

O
BPO (1.5 equiv) )]\
@ . O S O HPFg (1.0 equiv)
CH3CN (2 mL) O O
50 °C, 2 h, Ar
1a (0.2 mmol) 2a (0.4 mmol) radical trap/inhibitor 3a

TEMPO: 15%
2,4 6-tri-tert-butylphenol: 10%

Under the optimization reaction condition, TEMPO or 2,4,6-tri-tert-butylphenol (3.0 equiv.) were added.
After the reaction was fully completed, the mixture was cooled to room temperature and concentrated
under reduced pressure to give a crude product. Yields were determined by 'H NMR spectroscopic
analysis of the crude reaction mixture relative to the internal standard CH;NO,. TEMPO and 2,4,6-tri-tert-
butylphenol reduced the yield significantly, which proves that this reaction might go through the radical

procedure.
Investigation of the initiation step:

These experiments were performed in a Schlenk tube under Ar and analyze directly without any workup.
Yields were determined by '"H NMR spectroscopic analysis of the crude reaction mixture relative to the
internal standard CH;NO,.

CH3CN (2 mL)
> No change
50 °C, 2 h, Ar

BPO (0.3 mmol

O
.0 ) o CH3CN (2 mL)
O + HPFg (55 % in water) > No change
50 °C, 2 h, Ar

BPO (0.3 mmol)
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BPO with or without acid in acetonitrile at 50 °C for 2 h did not change, this acid apparently does not
affect the decomposition of BPO.

O
CH4CN (2 ml)
OH
50 °C 2h, Ar
O 2a (0. 4 mmol) S:0.17 mmol, 21 mg
O/O 0: 0.05 mmol, 6 mg
o} : o

SH
BPO (0.3 mmol) ©/ CH3CN (2 mL) on
50 °C, 2 h, Ar

2c¢ (0.4 mmol)

(0.13 mmol, 15 mg)
In the presence of thioxanthene, xanthene or thiolphenols, benzoic acid was formed in significant amounts
under these conditions, indicating that thioxanthene, xanthene and thiolphenols can accelerate the

peroxide decomposition.

@)
OH

0.17 mmol, 21 mg

CH3CN (2 mL) N
50 °C 2h, Ar

1a (0.2 mmol) BPO (0.3 mmol) 2a (0. 4 mmol)

I
O
+

Polymers

In the absence of acid, the product was not formed, indicating that the electron transfer (ET) steps are

facilitated by the effect of acid.

101



Cyclic Voltammetry of BPO in the presence of different acids

pure electrolyte

0.0

-1.0 -
'g BPO + HCIO,
-2.0
T~BPO + H,S0,
-3.0
BPO + CF,CO,H
-4.0
-5.0

1.0 -0.5 0.0 0.5 1.0 15 20
E (V/Ag/AgCl) ———

Cyclic voltammograms showing the effect of acid addition on the reduction potential of BPO. Two
platinized Pt wires as a counter and working electrode with a Ag/AgCl electrode as a reference were used.
The cyclic voltammetry (CV) was conducted from -1.0 V to 2.0 V with a scan rate of 100 mV/s. BPO (0.3
mmol), acid (0.2 mmol), tBuyNPF¢ (0.1 M) in CH;CN, under a stream of Ar.

The BPO can be reduced at -345 mV. With the addition of the HPFs, the reduction process becomes much
easier. The reduction potential of the BPO is shifted by around 470 mV, which means the acid addition is
favorable for the BPO reduction. Other acid like H,SO,4, HCIO4 and CF;COOH induce a smaller shift.
Apparently, the shift in the reduction potential of BPO is connected with the pKa of the acid.
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Supplementary Methods

General Information

Unless otherwise indicated, all reagents and solvents were purchased from commercial distributors and
used as received. Solvents (hexanes, ethyl acetate) used for column chromatography were of technical
grade and used after distillation in a rotary evaporator.

TLC was used to check the reactions for full conversion and was performed on Macherey-Nagel Polygram
Sil G/UV254 thin layer plates. TLC spots were visualized by UV-light irradiation or used of Phosphomolybdic
acid hydrate after heated.

Flash column chromatography was carried out using Merck Silica Gel 60 (40-63 um). Yields refer to pure
isolated compounds.

'H and 3C NMR spectra were measured with Bruker AV 300 spectrometer, Bruker AV 500 spectrometer,
Bruker AV 600 spectrometer. All chemical shifts are given in ppm downfield relative to TMS and were
referenced to the solvent residual peaks.™! *H NMR chemical shifts are designated using the following
abbreviations as well as their combinations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet.
For 3C NMR data the following abbreviations are used: p = primary (CHs), s = secondary (CH,), t = tertiary
(CH), q = quaternary (C).

High resolution mass spectra were recorded with a Bruker APEX IIl FTICR-MS or a Finnigan SSQ 7000
quadrupole MS or a Finnigan MAT 95 double focusing sector field MS instrument.

Cyclic Voltammetry (CV) were measured with the BAS Epsilon potentiostat.

Benzoyl peroxide (BPO, 75% in H,0) and Sodium hexafluorophosphate (NaPFs) was purchased from Sigma-
Aldrich and used directly without further purification.

Tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBPA-+) was purchased from Sigma-Aldrich and
used directly without further purification.
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Optimization of reaction conditions

Table S1: Optimization of amine catalysts?

catalyst (10 mol%) o]

BPO (1.5 equiv.)
X NaPFg (30 mol%) ANH
oy .
Cyclohexane (10 mL)
CH,CN (2 mL)
5a 70°C,24h 6a

sl cVegNsVey
co oo @ o
2 O domasr

34% A7
Br< : : Br NO, ;
N
N
vy OO0
QL ;
F ON NO;
A9 A10 A11
84% 20% 16%
Br< : : _Br ©
)
JoRSt
Br Br Br |

48% 23%

o
L-O
g
&

A12 A13 A14 A15
39% 13% 0 9%
499 N
N O
\
A16 A17
0 32%

[a] 1a (0.5 mmol, 57 uL), BPO (0.75 mmol, 1.5 equiv.), catalyst (10 mol%), NaPF¢ (0.15 mmol), cyclohexane
(10 mL), CHsCN (2 mL), 70 °C, 24 h. Yields were determined by *H NMR spectroscopic analysis of the crude
reaction mixture relative to internal standard 1,3,5-Trimethoxybenzene.
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Table S2: Optimization of other reaction conditions

catalyst (10 mol%) o

oxidant (1.5 equiv.) /lL
NH

AN additive
Cyclohexane (10 mL)

CH5CN (2 mL)

5a 70°C,24h 6a
Entry Catalyst Oxidant Additive Yield (%)
1 Al BPO NaOTf (30 mol%) 8.4
2 Al BPO NaBF4 (30 mol%) 47
3 Al BPO ‘BusNPFs (30 mol%)
4 Al BPO NaOBz (30 mol%) 0
5 Al BPO NaSbFs (30 mol%) 16
6 Al BPO NaPFs (30 mol%) 91(87) 1!
7 Al BPO NaPF¢ (50 mol%) 88
8 Al BPO NaPFs (10 mol%) 63
9 Al BPO NaPFs (5 mol%) 50
10 A1 (5 mol%) BPO NaPFs (30 mol%) 66
11 A1 (2.5 mol%) BPO NaPFg (30 mol%) 26
12 A1 (1.0 mol%) BPO NaPFs (30 mol%) 23
13 A1 (0.5 mol%) BPO NaPFs (30 mol%) 8
141 Al BPO NaPFg (30 mol%) 89
151d Al BPO NaPFs (30 mol%) 2
16 Al TBHP NaPFg (30 mol%) 0
17 Al TBPB NaPFs (30 mol%) <10
18 Al DTBP NaPFs (30 mol%) <10
19t Al DTBP NaPFg (30 mol%) 32
20 - BPO NaPFs (30 mol%) 0
21 Al - NaPFs (30 mol%) 0
22 Al BPO - 0

[a] 1a (0.5 mmol, 57 uL), BPO (0.75 mmol, 1.5 equiv.), catalyst (10 mol%), additive, cyclohexane (10 mL),
CH3CN (2 mL), 70 °C, 24 h. Yields were determined by *H NMR spectroscopic analysis of the crude reaction
mixture relative to internal standard 1,3,5-Trimethoxybenzene. [b] Isolated yield. [c] 90 °C. [d] 50 °C. [e]
100 °C.

Additive effect: additive is required (compare entries 1-6) and the NaPFs is important for good yields of
product 6a. However, others such as NaBF;, NaSbFs and NaOTf give low yield of 6a, NaOBz and ‘BusNPFg
give no desired products. The concentration of additive seems to be less important, compare entries 6-9.
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Catalyst loading: The lower concentration of catalyst, the lower yields were got.

-: BPO is the best oxidant in this reaction.
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Table S3: Optimization of allylic C-H Ritter reaction

: BPO

catalyst (20 mol%

NaPFg (0.2 equiv.)

CH5CN (5 mL)

) O
)J\NH

1 DCE (5 mL)
70°C, 24 h

Entry Catalyst Oxidant Solvent Yield (%)
1 Al BPO (1.5 equiv.) CHsCN (10 mL) 20
2 Al BPO (2.0 equiv.) CHsCN (10 mL) 25
3 A2 BPO (2.0 equiv.) CHsCN (10 mL) 36
4 A3 BPO (2.0 equiv.) CHsCN (10 mL) 37
5 A3 BPO (2.0 equiv.) CHsCN (5 mL) + CHsNO; (5 mL) 0
6 A3 BPO (2.0 equiv.) CHsCN (5 mL) + THF (5 mL) 0
7 A3 BPO (2.0 equiv.) CHsCN (5 mL) + DCE (5 mL) 71
8/l A3 BPO (2.0 equiv.) CHsCN (5 mL) + DCE (5 mL) 0
9 - BPO (2.0 equiv.) CHsCN (5 mL) + DCE (5 mL) 0

[a] 11 (0.5 mmol), BPO, catalyst (20 mol%), NaPFs (20 mol%), solvent, 70 °C, 24 h. Yields were determined
by H NMR spectroscopic analysis of the crude reaction mixture relative to internal standard 1,3,5-
Trimethoxybenzene. [b] no NaPFs.
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Table S4: Optimization of benzylic C-H Ritter reaction

catalyst (20 mol%) Q
BPO ANH

NaPFg (0.2 equiv.)

. CH4CN (5 mL)
OO e

12 80 °C, 24 h 128

Entry Catalyst Oxidant Tem/ °C Yield (%)
1 A3 BPO (2.0 equiv.) 70 32

2 A3 BPO (3.0 equiv.) 70 43

3 A3 BPO (3.0 equiv.) 80 70

4 A3 BPO (3.0 equiv.) 100 60

5 Al BPO (2.0 equiv.) 80 41

6 A2 BPO (2.0 equiv.) 80 15

716! A3 BPO (2.0 equiv.) 80 0

8 - BPO (2.0 equiv.) 80 0

[a] 12 (0.5 mmol), BPO, catalyst (20 mol%), NaPFs (20 mol%), DCE (5 mL), CHsCN (5 mL), 80 °C, 24 h. Yields
were determined by H NMR spectroscopic analysis of the crude reaction mixture relative to internal
standard 1,3,5-Trimethoxybenzene. [b] no NaPFe.

110



Failed examples:

H-donor: A1 (10 mol%) 0
BPO (1.5 equiv.) )J\
©/\ NaPFg (30 mol%) NH
. H—R > R
CH4CN (2 mL)
H-donor 3%
5a 70°C, 24 h

= :T__ fopfrpon i gl -l o byt _____-__________-_-_-_-_-_-_-_---'-_-5_--_-_-_-_-_.E _________________________________________

v O j i o]

P o i |

] : H |

________________________________________

>:o
o%
/

\
°/
(@]

/

Y

5 //o

Thio-ene reaction product

0O
@
Nucleophiles: A1 (10 mol%)
BPO (1.5 equiv.) Nu
©/\ NaPFg (30 mol%)
* Nu-H (2 mL)
70 °C, 24 h
5a
NH, CN 0
C|/©/ O/ FgcJ\OH HJ\OH \)J\OH /\)J\OH
o 0 RN 9 o o o o
OH
é ©)‘\ )J\/U\OEt EtOMOEt
~N
(6] (0]
OFt
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Reaction procedures

Procedure A: synthesis of N-(2-cyclohexyl-1-phenylethyl)acetamide.

A1 (10 mol%) o

BPO (1.5 equiv.) )J\NH

©/\ NaPFg (30 mol%)
cyclohexane (10 mL)
5a CH3CN (2 mL)
70 °C, 24 h, Ar

6a

Under argon atmosphere, the styrene 5a (0.5 mmol, 57 uL), catalyst A1 (10 mol%, 0.05 mmol, 18.5 mg),
cyclohexane (10 mL), CHsCN (2 mL), BPO (0.75 mmol, 1.5 equiv.) and NaPFs (0.15 mmol, 30 mol%) were
added into a 25 mL glass tube. The reaction mixture was stirred at 70 °C for 24 h under Ar atmospheres.
After the reaction was fully completed, the mixture was cooled to room temperature and concentrated
under reduced pressure to give a crude product. The residue was further purified by silica gel column with
iso-hexane/ethyl acetate (from 10:1 to 1:1) to give the desired products 6a.

General procedure B: synthesis of N-(1-phenylalkyl)acetamides.

o}

A1 (10 mol%)
S _R? BPO (1.5 equiv.) )J\NH
i . NaPFg (30 mol%) -
* CH3CN (2 mL) ;
5 70°C, 24 h,Ar R R?
6b-60; 7a-7p

Under argon atmosphere, the styrenes 5 (0.5 mmol), catalyst A1 (10 mol%, 0.05 mmol, 18.5 mg), R-H (10
mL), CHsCN (2 mL), BPO (0.75 mmol, 1.5 equiv.) and NaPFs (0.15 mmol, 30 mol%) were added into a 25 mL
glass tube. The reaction mixture was stirred at 70 °C for 24 h under Ar atmospheres. After the reaction
was fully completed, the mixture was cooled to room temperature and concentrated under reduced
pressure to give a crude product. The residue was further purified by silica gel column with iso-
hexane/ethyl acetate (from 10:1 to 1:1) to give the desired products 6b-60 and 7a-7p.

General procedure C: synthesis of radicals and nucleophiles addition.

A1 (10 mol%)

BPO (1.5 equiv.) Nu
N T NaPFg (30 mol%) S R
R'— i R—H R
= Nu-H (2 mL) T
70 °C, 24 h, Ar
5 8a-8i
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Under argon atmosphere, the styrenes 5 (0.5 mmol), catalyst A1 (10 mol%, 0.05 mmol, 18.5 mg),
nucleophiles (2 mL), R-H (10 mL), BPO (0.75 mmol, 1.5 equiv.) and NaPFs (0.15 mmol, 30 mol%) were added
into a 25 mL glass tube. The reaction mixture was stirred at 70 °C for 24 h under Ar atmospheres. After the
reaction was fully completed, the mixture was cooled to room temperature and concentrated under
reduced pressure to give a crude product. The residue was further purified by silica gel column with iso-
hexane/ethyl acetate (from 50:1 to 10:1) to give the desired products 8a-8i.

General procedure D: synthesis of phenyl radicals and nucleophiles addition.

A1 (10 mol%)
BPO (1.5 equiv.) Nu
X NaPFg (30 mol%)
Nu-H (2 mL) O

CH3NO, (10 mL)
70 °C, 24 h, Ar

5a 10a-10b

Under argon atmosphere, the styrene 5a (0.5 mmol, 57 pL), catalyst A1 (10 mol%, 0.05 mmol, 18.5 mg),
nucleophiles (2 mL), CHsNO; (10 mL), BPO (0.75 mmol, 1.5 equiv.) and NaPFs (0.15 mmol, 30 mol%) were
added into a 25 mL glass tube. The reaction mixture was stirred at 70 °C for 24 h under Ar atmospheres.
After the reaction was fully completed, the mixture was cooled to room temperature and concentrated
under reduced pressure to give a crude product. The residue was further purified by silica gel column with
iso-hexane/ethyl acetate (from 50:1 to 10:1) to give the desired products 10a and 10b.

Synthesis of (1-fluoroethane-1,2-diyl)dibenzene.
A1 (10 mol%)
BPO (1.5 equiv.) F
©/\ NaPFg (30 mol%)
NEt;*3HF (2 mL) O
5a CH3N02 (10 mL) 14c
70 °C, 24 h, Ar

Under argon atmosphere, the styrene 5a (0.5 mmol, 57 pL), catalyst A1 (10 mol%, 0.05 mmol, 18.5 mg),
NEts-:3HF (2 mL), CHsNO; (10 mL), BPO (0.75 mmol, 1.5 equiv.) and NaPFs (0.15 mmol, 30 mol%) were
added into a 25 mL glass tube. The reaction mixture was stirred at 70 °C for 24 h under Ar atmospheres.
After the reaction was fully completed, the mixture was cooled to room temperature and concentrated
under reduced pressure to give a crude product. The residue was further purified by silica gel column with
iso-hexane/ethyl acetate (from 500:1 to 100:1) to give the desired product 14c in the yield of 26 %.

Synthesis of (1,4-dicyclohexylbutane-2,3-diyl)dibenzene.
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A1 (10 mol%)
BPO (1.5 equiv)

~N NaPFg (30 mol%)
- + NEtg*3HF
70°C,24 h
5a

Under argon atmosphere, the styrene 5a (0.5 mmol), catalyst A1 (10 mol%, 0.05 mmol, 18.5 mg), NEts-3HF
(2 mL), cyclohexane (10 mL), BPO (0.75 mmol, 1.5 equiv.) and NaPFg (0.15 mmol, 30 mol%) were added
into a 25 mL glass tube. The reaction mixture was stirred at 70 °C for 24 h under Ar atmospheres. After the
reaction was fully completed, the mixture was cooled to room temperature and concentrated under
reduced pressure to give a crude product. The residue was further purified by silica gel column with iso-
hexane/ethyl acetate (from 500:1 to 100:1), not giving the desired fluoride but the dimer 9 in the yield of
31%.

General procedure E: oxidative Ritter reaction of allylic C-H bond.

A3 (20 mol%)

NaPFg (30 mol%) o)
H BPO (3.0 equiv.)
R’ NH
MRz CH5CN (5 mL) R1N
10 DCE (5 mL) R2
70°C, 24 h 11a-11g

Under argon atmosphere, the olefins 10 (0.5 mmol), catalyst A3 (20 mol%, 0.05 mmol, 24.1 mg), CH3CN (5
mL), DCE (5 mL), BPO (1.5 mmol, 3.0 equiv.) and NaPFs (0.15 mmol, 30 mol%) were added into a 25 mL
glass tube. The reaction mixture was stirred at 70 °C for 24 h under Ar atmospheres. After the reaction
was fully completed, the mixture was cooled to room temperature and concentrated under reduced
pressure to give a crude product. The residue was further purified by silica gel column with iso-
hexane/ethyl acetate (from 50:1 to 10:1) to give the desired products 11a-11g. By using (Z)-decene as
starting material, (E)-11d and (E)-11c were isolated.

Oxidative Ritter reaction of N-(9H-fluoren-9-yl)acetamide.

(0]
A3 (10 mol%)
NaPFg (30 mol%) )LNH
. BPO (3.0 equiv.)
O oo (0
12 DCE (5 mL)
80 °C, 24 h 13a: 70%
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Under argon atmosphere, the 9H-fluorene 12 (0.5 mmol, 83 mg), catalyst A3 (20 mol%, 0.05 mmol, 24.1
mg), CHsCN (5 mL), DCE (5 mL), BPO (1.5 mmol, 3.0 equiv.) and NaPF¢ (0.15 mmol, 30 mol%) were added
into a 25 mL glass tube. The reaction mixture was stirred at 80 °C for 24 h under Ar atmospheres. After the
reaction was fully completed, the mixture was cooled to room temperature and concentrated under
reduced pressure to give a crude product. The residue was further purified by silica gel column with iso-
hexane/ethyl acetate (from 50:1 to 10:1) to give the desired product 13a.

Synthesis of triarylamine radical cation salt A1+ [

00 O

SbFg

A1 A1+

Al+. To a solution of A1 (185 mg, 0:5 mmol, 1.0 equiv.) in dry CH,Cl, (5 mL) under Ar atmosphere was
added AgSbFs (180.4 mg, 0.525 mmol, 1.05 equiv.) at room temperature. The slightly yellowish reaction
mixture immediately turned dark blue and the reaction was stirred for about one minute. After removal
of insoluble contents by filtration, product A1+ was obtained by precipitation from CH,Cl,/hexanes as a
deep blue powder (275.7 mg, 91%). HRMS (ESI, DCM/CH3CN, positive mode) m/z for CigH14NIe+(M+) calcd.
371.0165, found 371.0163; for SbF¢™(M") calcd. 234.8949, found 234.8949. In the *H NMR, only a very broad
signal around 8.5ppm -6.5 ppm could be observed, and no signal in the 3C NMR. No signals from the
starting material (A1) could be seen, suggesting that the product is the pure ammoniumyl radical cation,
free of the closed-shell starting material.

Synthesis of N-(3-cyano-1-phenylpropyl)acetamide catalyzed by triarylamine radical
cation salts.

(0]

cataylst (10 mol%) )J\NH
©/\ BPO (1.5 equiv.)
CH3CN (12 mL)

5a 70 °C, 24 h, Ar 6a

Under argon atmosphere, the styrene 5a (0.5 mmol, 57 uL), catalyst (10 mol%, 0.05 mmol), CHsCN (12 mL),
BPO (0.75 mmol, 1.5 equiv.), NaPFs (0.15 mmol, 30 mol%) were added into a 25 mL glass tube. The reaction
mixture was stirred at 70 °C for 24 h under Ar atmospheres. After the reaction was fully completed, the
mixture was cooled to room temperature and concentrated under reduced pressure to give a crude
product. 1,3,5-Trimethoxybenzene (10 mg) added as internal standard for NMR, yields base on the NMR
yield.

115



A1+
6ain 89%

SbFg

116

Br Br
TLLT
N

Br
A3+
6ain 84%

SbClg



Cyclic voltammograms

Reduction potential of BPO and A1+

-0.69019 + BPO
Al+
0.0003 -
-0.89195
0.0002
< ~
= 0.0001 N
0.0000
-0.0001 4

-1I.5 ' -1I.O ' -0I.5 ' OTO ' OI.5 ' 1.0 1.5
E V/Ag/AgCl)

Figure 1. Cyclic voltammograms shows the reduction potential of A1+ and BPO. Two platinized Pt
and Carbon wires as a counter and working electrode with a Ag/AgCl electrode as a reference were
used. The cyclic voltammetry (CV) was conducted from -1.5 V to 1.5 V with a scan rate of 200 mV/s
1. A1+ (0.03 mmol) or BPO (0.03 mmol) in 3 mL in CH3CN of LiCIO4 (0.1 M) under Ar.
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A1

0.20 - ' 2:23
A4
0.15- 22
0.10 - A8
<
= 0.05
0.00 - ,
10.05 1 iUV

: : —
0.0 0.2 0.4 OI.6 0!8 1.0 1.2 1.4 1.6 1.8
E VY/Ag/AgCI)

Figure 2. Cyclic voltammogram showing the structure-function relationship on the reduction and
oxidation potential of amine catalysts. Two platinized Pt wires as a counter and working electrode
with a Ag/AgCl electrode as a reference were used. The cyclic voltammetry (CV) was conducted
from 0 V to 1.5 V with a scan rate of 100 mVs1. Triarylamine (0.2 mmol), tetrabutylammonium
hexafluorophosphate (0.1 M) in CH3CN under Ar.
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Mechanistic study

NMR study of BPO and catalyst in CD3CN at 70 °C.

In an NMR tube, BPO (0.1 mmol) was added to CDsCN (0.5 mL) and a first *H-NMR spectrum was measured as a control. The NMR tube was then
heated at 70 °C in an oil-bath and *H-NMR spectra were measured after 2 h and 10 h, respectively, each time by removing the NMR tube from the oil-
bath and measuring the spectra at ambient temperature. See the red line in the scheme below.

NMR studies of BPO decompose in CD3CN

— BPO
— BPO and A1

~
o
°
o
-
o
T
E—
e
=
- T
N

\
‘ A J
UV VN M VU A A

T T T T T T T T T
815 810 805 800 795 790 7.85 7.8 775 770 7.65 7.60 7.55 750 7.45 7.40 735 7.30

1H (ppm)
70°C, 2 h ‘W\_AA/\_JUW
1
\ \ i
AW I\
SV M HJ“‘;,._ﬂi,

T T T T T T T T T T
815 810 805 800 795 790 7.85 7.8 775 770 7.65 7.60 7.55 7.50 7.45 7.40 735 7.30
1H (ppm)

T T T T T T T
815 810 805 800 795 790 7.85 7.8 775 770 7.65 7.60 7.55 7.50 7.45 7.40 7.35 7.30
1H (ppm)
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Table S5: Relative amounts of BPO, BzOH, and PhH for each experiment after 2 h and 10 h

A: BPO only; B: BPO + Al.

Reaction BPO (mmol) BzOH (mmol) PhH (mmol)

Oh 05h 1h 2h 10h Oh 0.5h 1h 2h 10h Oh 05h 1h 2h 10h
A 0.1 0.097 0.087 0.073 0.039 O 0.005 0.017 0.025 0.081 0 0.003 0.021 0.023 0.076
B 0.1 0.088 0.079 0.063 0.041 O 0.0027 0.05 0.079 0.132 0 0.001 0.003 0.01 0.012

BPO (0.1 mmol), catalyst (10 mol%) in 0.5 mL CD3CN.
Amount of BPO, BzOH, and PhH.

NMR vyields based on the integration of BPO.

121



Table S6: % conversion of BPO, BzOH, and PhH for each experiment after 2 h and 10 h

A: BPO only; B: BPO + Al.

Reaction BPO BzOH PhH

Oh 0.5h 1h 2h 10h Oh 05h 1h 2h 10h Oh 05h 1h 2h 10h
A 1 3% 13% 27% 60% 0 2.5% 8.5% 12.5% 40.5% 0 15% 10.5% 11.5% 38%
B 1 12% 21% 37% 59% 0 1.35% 25% 39.5% 66% 0 0.5% 1.5% 5% 6%

BPO (0.1 mmol), catalyst (10 mol%) in 0.5 mL CD3CN.
Amount of BPO, BzOH, and PhH.

% conversion based on the integration of BPO.
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124



PhH (mmol)

0.084 | * BPO
—A— BPO and A1 /*

0.07 ~
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Details of the repetitive cycles experiment

a)

b)

80

[}
o

<,
3
o
—

°
2
e

40

The 1% cycle: 1a (0.5 mmol), A1 (10 mol%), BPO (1.5 equiv.), NaPFs (30 mo%), cyclohexane (10 mL),
CH3CN (2 mL), 70 °C, 24 h. Yield: 90%. Determined by *H NMR spectroscopic analysis of the crude
reaction mixture relative to internal standard 1,3,5-trimethoxybenzene.

The 2™ cycle: 1a (0.5 mmol), A1 (10 mol%), BPO (1.5 equiv.), NaPFs (30 mo%), cyclohexane (10 mL),
CH3CN (2 mL), 70 °C, after 24 h, 1a (0.5 mmol) and BPO (1.5 equiv.) were added again, keep the
reaction at 70 °C for another 30 h. Yield: 85%. Determined by *H NMR spectroscopic analysis of
the crude reaction mixture relative to internal standard 1,3,5-trimethoxybenzene.

The 3™ cycle: 1a (0.5 mmol), A1 (10 mol%), BPO (1.5 equiv.), NaPFs (30 mo%), cyclohexane (10 mL),
CH3CN (2 mL), 70 °C, after 24 h, 1a (0.5 mmol) and BPO (1.5 equiv.) were added again, after 30 h
at 70 °C, added 1a (0.5 mmol) and BPO (1.5 equiv.) again, keep the reaction at 70 °C for another

38 h. Yield: 55%. Determined by H NMR spectroscopic analysis of the crude reaction mixture
relative to internal standard 1,3,5-trimethoxybenzene.
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P internal standard product

300
the third cycle \
yield: 55% (2.30-0.90-0.85)
100
g g
T T T T T \—. T T T T T T T T T T I\ T T T _100
3.5 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46
1H (ppm)
- 400
the second cycle 300
yield: 85% (1.75-0.90) +200
100
S O i
s S -100
T T T T T T T T T T T T T T T T T T T T
65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46
1H (ppm)
400
) 300
the first cycle
yield: 90% 200
100
~ —r— 0
2 2 -100
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45
1H (ppm)

'H NMR yield for repetitive cycle experiments

127



Anions exchange between PFg¢ and OBz

White participate can be isolated after the reaction cooled down. Washed the white participate three time
with acetonitrile, acetone, and dichloromethane. Analyzing it by HRMS. From MS and HRMS spectral, only
OBz- can be detected. Which means a little amount of NaOBz was formed. Besides, NaOBz is insoluble but
NaPFs is soluble in cyclohexane and acetonitrile.

Triarylamine catalysts react with BPO to form intermediate radical cation A+, which under goes anion
exchange to give more stable radical cation A+’. and NaOBz. This is the reason why the additive NaPFs is
indispensable in this reaction system.

+e +o
NAr; NaPFg NAr;

@OBZ PF6@ + NaOBz
A+ A+

NaOBz
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Characterization Data
N-(2-cyclohexyl-1-phenylethyl)acetamide (6a, CAS: 2400221-26-1)

(@)

A

Following the general procedure A, white solid (105.5 mg, 86%)

1H NMR (500 MHz, DMSO-ds) & 8.27 (d, J = 8.6 Hz, 1H), 7.39-7.30 (m, 4H), 7.28-7.22 (m, 1H), 4.92 (td, J =
9.2, 5.8 Hz, 1H), 1.88 (s, 3H), 1.84-1.59 (m, 6H), 1.50 (ddd, J = 13.8, 8.1, 5.8 Hz, 1H), 1.35-1.13 (m, 4H),
0.98-0.94 (m, 2H);

13C NMR (125 MHz, DMSO-ds) 6 168.73, 144.98, 128.66, 126.95, 126.75, 50.17, 44.66, 34.39, 33.51, 32.54,
26.56, 26.23, 26.09, 23.13.

HRMS (ESIpos) (m/z): calculated for Ci6H23NO 245.1774; found 245.1774.

N-(2-cyclopentyl-1-phenylethyl)acetamide (6b, unreported product)

O

)J\NH

Following the general procedure B, white solid (97.0 mg, 84%).

1H NMR (500 MHz, DMSO-ds) 6 8.29 (d, J = 8.6 Hz, 1H), 7.43-7.32 (m, 4H), 7.30-7.22 (m, 1H), 4.83 (td, J =
8.5, 6.0 Hz, 1H), 1.88 (s, 3H), 1.75 (ddq, J = 16.3, 11.4, 5.7 Hz, 4H), 1.62-1.57 (m, 3H), 1.55-1.43 (m, 2H),
1.24-1.09 (m, 2H).

13C NMR (125 MHz, DMSO-ds) 6 168.71, 144.76, 128.65, 126.99, 126.84, 52.28, 43.39, 37.14, 32.62, 32.53,
25.19, 25.04, 23.16.

HRMS (ESIpos) (m/z): calculated for CisH2:NO 231.1617; found 231.1617.

N-(2-cycloheptyl-1-phenylethyl)acetamide (6c, unreported product)
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)J\NH

Following the general procedure B, white solid (111.6 mg, 86%).

1H NMR (500 MHz, DMSO-ds) & 8.28 (d, J = 8.6 Hz, 1H), 7.41-7.29 (m, 4H), 7.29-7.24 (m, 1H), 4.89 (td, J =
9.1, 5.6 Hz, 1H), 1.88 (s, 3H), 1.73-1.69 (m, 2H), 1.67-1.35 (m, 11H), 1.29-1.18 (m, 2H).

13C NMR (125 MHz, DMSO-ds) & 168.75, 144.94, 128.67, 126.95, 126.77, 50.75, 45.25, 35.73, 34.79, 33.67,
28.56, 28.53, 26.20, 26.08, 23.13.

HRMS (ESIpos) (m/z): calculated for C17H2sNO 259.1930; found 259.1930.

N-(2-cyclooctyl-1-phenylethyl)acetamide (6d, unreported product)

0]

A

Following the general procedure B, white solid (107.5 mg, 80%).

1H NMR (500 MHz, DMSO-ds) & 8.24 (d, J = 8.6 Hz, 1H), 7.35-7.25 (m, 4H), 7.23-7.18 (m, 1H), 4.85 (td, J =
9.0, 4.9 Hz, 1H), 1.83 (s, 3H), 1.66-1.17 (m, 17H).

13C NMR (125 MHz, DMSO-ds) 6 168.74, 144.94, 128.67, 126.96, 126.78, 50.69, 45.13, 33.61, 32.67, 31.03,
27.42,27.19, 26.29, 25.31, 25.16, 23.12.

HRMS (ESIpos) (m/z): calculated for CigH,7NO 273.2087; found 273.2087.

N-(2-(1-methylcyclohexyl)-1-phenylethyl)acetamide (6e, major product from the reaction with
methylcyclohexane, unreported product)

O

)J\NH
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Following the general procedure B, white solid (44.0 mg, 34%).

1H NMR (600 MHz, DMSO-ds) & 8.25 (d, J = 8.8 Hz, 1H), 7.31-7.24 (m, 4H), 7.20-7.16 (m, 1H), 4.93 (td, J =
9.0, 3.5 Hz, 1H), 1.78 (s, 3H), 1.74 (dd, J = 14.4, 9.1 Hz, 1H), 1.48 (dd, J = 14.4, 3.5 Hz, 1H), 1.46-1.17 (m,
10H), 0.89 (s, 3H).

13C NMR (125 MHz, DMSO-ds) 6 168.16, 146.39, 128.71, 126.80, 126.64, 49.17, 49.08, 38.11, 38.03, 33.32,
26.39, 25.56, 23.23, 21.99, 21.94.

HRMS (ESIpos) (m/z): calculated for C37H2sNO 259.1930; found 259.1930.

N-((1R, 35)-3-methyl-1-phenylheptyl)acetamide (6f, unreported product)

0]

A

a1z

Following the general procedure B, colorless oil (5 mg, 4.1%).

1H NMR (600 MHz, DMSO-ds) 6 8.23 (d, J = 8.8 Hz, 1H), 7.33-7.27 (m, 2H), 7.29-7.24 (m, 2H), 7.20 (tt, J =
7.2, 1.5 Hz, 1H), 4.83 (q, J = 8.80, 8.5, 7.0 Hz, 1H), 1.80 (s, 3H), 1.71-1.55 (m, 1H), 1.50-1.43 (m, 1H), 1.38-
1.88 (m, 8H), 0.86-0.82 (m, 5H).

13C NMR (151 MHz, DMSO-ds) 6 168.06, 144.05, 128.14, 126.50, 126.38, 50.33, 43.66, 35.20, 28.95, 28.18,
22.58, 22.21, 19.56, 13.87.

HRMS (ESIpos) (m/z): calculated for Ci6H2sNO 247.1930; found 247.1931.

N-((1S,3S5)-3-methyl-1-phenylheptyl)acetamide (68, unreported product); N-(3-ethyl-1-
phenylhexyl)acetamide (6h, unreported product)

0O )

ANH )J\NH

6h Gi

6g and 6h are a mixture (6g:6h = 2:2.3) as determined by *H NMR.

Following the general procedure B, colorless oil (94.0 mg, 76%).
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1H NMR (600 MHz, DMSO-ds) & 8.20 (dd, J = 8.7, 3.7 Hz, 1H), 7.32—7.23 (m, 4H), 7.19 (ddt, J= 8.7, 5.4, 1.6
Hz,1H), 4.89-4.78 (m, 1H), 1.83-1.78 (m, 2H), 1.66 (ddd, J = 13.3, 10.5, 4.4 Hz, 0.37H), 1.56 (dp, J = 14.0,
4.3Hz, 0.43H), 1.47 (dtd, J = 13.6, 6.3, 3.7 Hz, 0.38H), 1.41 (d, J = 5.5 Hz, 0.16H), 1.34-1.25 (m, 1H), 1.29—
1.15 (m, 7H), 1.14-1.07 (m, 0.3H), 0.91-0.82 (m, 3H), 0.82-0.77 (m, 1H), 0.75 (t, J = 7.2Hz, 1H).

13C NMR (151 MHz, DMSO-ds) & 168.83, 168.73, 168.69, 145.12, 144.86, 144.81, 128.66, 126.92, 126.74,
50.73, 50.67, 50.53, 44.54, 41.02, 40.99, 36.90, 35.37, 35.09, 35.02, 34.63, 29.68, 29.02, 25.88, 24.93,
23.10,22.89, 19.51, 19.47,19.21, 14.83, 14.72, 14.46, 10.87, 10.41.

HRMS (ESIpos) (m/z): calculated for Ci6H2sNO 247.1930; found 247.1929 and 247.1930.

N-(3,3-dimethyl-1-phenylhexyl)acetamide (6i, Major product from the reaction with iso-hexane,
unreported product)

(0]
NH

Following the general procedure B, colorless oil (50.6 mg, 41%)

H NMR (600 MHz, DMSO-ds) & 8.23 (d, J = 8.6 Hz, 1H), 7.36=7.21 (m, 3H), 7.17 (ddt, J = 7.2, 5.3, 1.4 Hz,
1H), 4.89 (td, J = 9.1, 4.1 Hz, 1H), 1.78 (s, 3H), 1.72-1.65 (m, 1H), 1.45 (dd, J = 14.3, 3.6 Hz, 1H), 1.22-1.08
(m, 4H), 0.86-0.79 (m, 9H).

13C NMR (151 MHz, DMSO-ds) 6 168.18, 146.24, 128.69, 126.81, 126.64, 49.60, 48.53, 44.83, 33.46, 27.91,
27.89,23.21,17.18, 15.33.

>N NMR (61 MHz, DMSO-ds) 6 -247.5.

HRMS (ESIpos) (m/z): calculated for Ci6H2sNO 247.1930; found 247.1930.

N-(4,4,6,6-tetramethyl-1-phenylheptyl)acetamide (6], unreported product)

O

A

Following the general procedure B, colorless oil (40.4 mg, 28%).
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1H NMR (500 MHz, DMSO-ds) & 8.28 (d, J = 8.6 Hz, 1H), 7.40-7.30 (m, 4H), 7.27 (t, J = 7.0 Hz, 1H), 4.72 (q,
J = 8.1 Hz, 1H), 1.88 (s, 3H), 1.73-1.57 (m, 2H), 1.34 (ddd, J = 13.4, 11.4, 5.5 Hz, 1H), 1.26-1.10 (m, 3H),
1.02-0.84 (m, 15H).

13C NMR (125 MHz, DMSO-ds) 6 186.76, 144.47,128.62, 127.02, 126.93, 53.98, 53.75, 41.33, 34.65, 32.46,
32.28,31.74,29.42, 29.27, 23.14.

HRMS (ESIpos) (m/z): calculated for Ci19H31NO 289.2400; found 289.2401.

N-(3,3-dichloro-1-phenylpropyl)acetamide (6k, unreported product)

(o}

)J\NH Cl

Cl

Following the general procedure B, white solid (53.9 mg, 45%).

1H NMR (500 MHz, DMSO-de) 6 8.42 (d, J = 8.5 Hz, 1H), 7.40-7.30 (m, 4H), 7.29-7.25 (m, 1H), 6.07 (dd, J =
8.6, 4.5 Hz, 1H), 5.02 (ddd, J = 10.0, 8.4, 4.7 Hz, 1H), 2.68-2.62 (m, 1H), 2.49-2.44 (m, 1H), 1.86 (s, 3H).

13C NMR (125 MHz, DMSO-d6) § 169.15, 142.44, 129.01, 127.71, 126.83, 72.30, 50.55, 49.79, 23.20.

HRMS (ESIpos) (m/z): [M+H]* calculated for C11H13Cl.NO 246.0446; found 246.0447.

N-(3,3,3-trichloro-1-phenylpropyl)acetamide (6l, unreported product)

0]

N
NH CI Cl

Cl

Following the general procedure B, white solid (102.8 mg, 74%).

1H NMR (500 MHz, DMSO-ds) & 8.60 (d, J = 8.6 Hz, 1H), 7.40-7.33 (m, 4H), 7.29-7.26 (m, 1H), 5.35 (td, J =
8.4, 3.4 Hz, 1H), 3.34 (dd, J = 15.2, 3.4 Hz, 1H), 3.09 (dd, J = 15.2, 3.4 Hz, 1H), 1.86 (s, 3H).

13C NMR (125 MHz, DMSO-de) 6 168.66, 142.75, 129.05, 127.76, 126.99, 98.40, 59.51, 51.02, 23.25.

HRMS (ESIpos) (m/z): calculated for C11H12CIsNO 278.9978; found 278.9977.
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N-(3,3-dibromo-1-phenylpropyl)acetamide (6m, unreported product)

)

)J\NH Br

Br

Following the general procedure B, colorless oil (54.7 mg, 33%).

H NMR (600 MHz, DMSO-ds) 6 8.36 (d, J = 8.4 Hz, 1H), 7.35-7.28 (m, 2H), 7.28-7.22 (m, 2H), 5.87 (dd, J =
9.0, 4.7 Hz, 1H), 4.94 (ddd, J = 9.7, 8.3, 4.8 Hz, 1H), 2.79 (ddd, J = 14.6, 9.8, 4.7 Hz, 1H), 2.63 (ddd, J = 14.6,
9.0, 4.8 Hz, 1H), 1.82 (s, 3H).

13C NMR (125 MHz, DMSO-de) 6 169.13, 142.31, 128.99, 127.67, 126.79, 52.09, 51.55, 44.73, 23.17.

HRMS (ESIpos) (m/z): [M+Na]* calculated for C11H13Br,NONa 355.9256; found 355.9253.

N-(3,3,3-tribromo-1-phenylpropyl)acetamide (6n, unreported product)

0]

)J\NH Br

Br
Br

Following the general procedure B, colorless oil (49.2 mg, 24%) (Mixed with 21% of 6p).

1H NMR (500 MHz, DMSO-ds) & 8.68 (d, J = 8.4 Hz, 1H), 7.46-7.39 (m, 3H), 7.38-7.29 (m, 2H), 5.29 (ddd, J
=9.7,8.3,4.8 Hz, 1H), 3.71 (dd, J = 15.4, 8.1 Hz, 1H), 3.36 (d, J = 2.8 Hz, 1H), 1.92 (s, 3H).

13C NMR (125 MHz, DMSO-ds) § 186.61, 142.60, 128.52, 127.14, 126.34, 63.81, 53.44, 38.59, 23.37.
HRMS (ESIpos) (m/z): [M+Na]* calculated for C;11H1,BrsNONa 433.8361; found 433.8359.
N-(3-cyano-1-phenylpropyl)acetamide (60, CAS: 2127514-83-2)

(0]
HN Me

CN

Following the general procedure B, white solid (86.8 mg, 86%).
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'H NMR (500 MHz, CDCls) 6 7.38-7.35 (m, 2H), 7.32-7.30 (m, 1H), 7.27-7.26 (m, 2H), 5.90 (d, J = 8.0 Hz, 1H),
5.04 (dd, J = 15.5 Hz, 8.0 Hz, 1H), 2.37-2.31 (m, 2H), 2.27-2.22 (m, 1H), 2.15-2.10 (m, 1H), 1.99 (s, 3H).

13C NMR (125 MHz, CDCl3) 6§ 169.85, 139.83, 129.21, 128.34, 126.55, 119.26, 52.90, 31.66, 23.37, 14.54.

HRMS (ESIpos) (m/z): M* calculated for C1,H14N20 202.1100; found 202.1098.

N-(2-cyclohexyl-1-(p-tolyl)ethyl)acetamide (7a, unreported product)

0O

)J\NH

Following the general procedure B, colorless oil (103.6 mg, 80%).

1H NMR (500 MHz, DMSO-ds) & 8.16 (d, J = 8.6 Hz, 1H), 7.20-7.07 (m, 4H), 4.82 (td, J = 9.0, 6.1 Hz, 1H),
2.27 (s, 3H), 1.81 (s, 3H), 1.77-1.49 (m, 6H), 1.43 (ddd, J = 13.8, 7.9, 6.1 Hz, 1H), 1.26-1.06 (m, 4H), 0.97—
0.81 (m, 2H).

13C NMR (125 MHz, DMSO-ds) & 168.61, 141.89, 135.93, 129.20, 126.70, 49.85, 44.62, 34.37, 33.44, 32.63,
26.56, 26.22, 26.10, 23.14, 21.09.

HRMS (ESIpos) (m/z): [M+Na]* calculated for C;11H13Br,NONa 333.9436; found 333.9434.

N-(2-cyclohexyl-1-(4-fluorophenyl)ethyl)acetamide (7¢c, unreported product)

O

)J\NH

F
Following the general procedure B, colorless oil (65.7 mg, 50%).

H NMR (500 MHz, DMSO-dg) 6 8.28 (d, J = 8.5 Hz, 1H), 7.49-7.30 (m, 2H), 7.18 (t, J = 8.9 Hz, 2H), 4.91 (td,
J=9.1,5.9 Hz, 1H), 1.88 (s, 3H), 1.84-1.55 (m, 6H), 1.49 (ddd, J = 13.8, 8.1, 5.9 Hz, 1H), 1.3 =1.11 (m, 4H),
1.02-0.88 (m, 2H).

13C NMR (125 MHz, DMSO-ds) 6 168.76, 141.14 (d, J = 3.75 Hz, 1C), 128.65 (d, J = 6.25 Hz, 1C), 115.44,
115.27,49.55, 44.53, 34.37, 33.44, 32.52, 26.55, 26.22, 26.07, 23.12.
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HRMS (ESIpos) (m/z): calculated for C12H22FNO 263.1679; found 263.1681.

N-(1-(4-chlorophenyl)-2-cyclohexylethyl)acetamide (7d, unreported product)

0]

)J\NH

Cl
Following the general procedure B, colorless oil (113.0 mg, 81%).

1H NMR (500 MHz, DMSO-ds) & 8.31 (d, J = 8.4 Hz, 1H), 7.56-7.11 (m, 4H), 4.90 (td, J = 9.1, 5.9 Hz, 1H),
1.88 (s, 3H), 1.84 —1.55 (m, 6H), 1.48 (ddd, J = 13.8, 8.1, 5.9 Hz, 1H), 1.32-1.12 (m, 4H), 1.04-0.85 (m, 2H).

13C NMR (125 MHz, DMSO-ds) 6 168.85, 144.01, 131.46, 128.67, 128.63, 49.68, 44.33, 34.35, 33.44, 32.49,
26.54, 26.21, 26.06, 23.10.

HRMS (ESIpos) (m/z): [M+Na]* calculated for C16H,2CINONa 302.1282; found 302.1278.

N-(1-(4-bromophenyl)-2-cyclohexylethyl)acetamide (7e, unreported product)

0O

)J\NH

Br
Following the general procedure B, colorless oil (127.6 mg, 79%).

1H NMR (500 MHz, DMSO-ds) & 8.31 (d, J = 8.4 Hz, 1H), 7.55 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 4.88
(td, J=9.1, 5.9 Hz, 1H), 1.88 (s, 3H), 1.82—1.57 (m, 6H), 1.48 (ddd, J = 13.8, 8.1, 5.9 Hz, 1H), 1.36-1.06 (m,
4H), 1.03-0.81 (m, 2H).

13C NMR (125 MHz, DMSO-ds) 6 168.86, 144.45, 131.55, 129.07, 119.93, 49.75, 44.28, 34.34, 33.44, 32.49,
26.53, 26.20, 26.06, 23.09.

HRMS (ESIpos) (m/z): calculated for Ci6H2,BrNO 323.0879; found 323.0883.
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N-(2-cyclohexyl-1-(4-(trifluoromethyl)phenyl)ethyl)acetamide (7f, unreported product)

0O

)LNH

FsC
Following the general procedure B, colorless oil (95.5 mg, 61%).

H NMR (500 MHz, DMSO-ds) & 8.35 (d, J = 8.2 Hz, 1H), 7.68 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 4.92
(td, J=9.2, 5.6 Hz, 1H), 1.84 (s, 3H), 1.78-1.54 (m, 6H), 1.45 (ddd, J = 13.8, 8.3, 5.6 Hz, 1H), 1.31-1.08 (m,
4H), 0.99-0.78 (m, 2H).

13C NMR (125 MHz, DMSO-ds) 6 169.05, 127.57, 127.54, 125.63 (q, J = 30, 15 Hz, 1C), 50.11, 44.22, 34.33,
33.50, 32.28, 26.53, 26.20, 26.03, 23.06.

HRMS (ESIpos) (m/z): calculated for C17H,2FsNO 312.1580; found 312.1584.

N-(1-(4-(chloromethyl)phenyl)-2-cyclohexylethyl)acetamide (7g, unreported product)

0]

K

Cl

Following the general procedure B, colorless oil (102.5 mg, 70%).

1H NMR (500 MHz, DMSO-ds) & 8.29 (d, J = 8.5 Hz, 1H), 7.42 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.2 Hz, 2H), 4.91
(td, J = 9.1, 6.0 Hz, 1H), 4.79 (s, 2H), 1.88 (s, 3H), 1.82-1.59 (m, 6H), 1.50 (ddd, J = 13.8, 8.1, 5.9 Hz, 1H),
1.35-1.14 (m, 4H), 1.04-0.89 (m, 2H).

13C NMR (125 MHz, DMSO-ds) 6 168.82, 145.25, 136.30, 129.29, 127.06, 49.97, 46.53, 44.45, 34.36, 33.47,
32.52, 26.55, 26.21, 26.07, 23.11.

HRMS (ESIpos) (m/z): calculated for C17H24CINO 293.1540; found 293.1542.

N-(1-([1,1'-biphenyl]-4-yl)-2-cyclohexylethyl)acetamide (7h, unreported product)
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)J\NH

Ph
Following the general procedure B, white solid (101.1 mg, 63%).

1H NMR (500 MHz, DMSO-ds) & 8.32 (d, J = 8.5 Hz, 1H), 7.78—7.61 (m, 3H), 7.52 (t, J = 7.7 Hz, 2H), 7.42 (dd,
J=7.9,2.7 Hz, 3H), 4.96 (td, J = 9.1, 5.9 Hz, 1H), 1.90 (s, 3H), 1.84-1.62 (m, 6H), 1.55 (ddd, J = 13.8, 8.1, 5.9
Hz, 1H), 1.38-1.12 (m, 4H), 1.06-0.91 (m, 2H).

13C NMR (125 MHz, DMSO-ds) 6 168.80, 144.24, 140.50, 138.95, 129.37, 127.73, 127.39, 127.06, 49.92,
44.51, 34.40, 33.51, 32.56, 26.57, 26.23, 26.09, 23.16.

HRMS (ESIpos) (m/z): [M+Na]* calculated for C;2H,;NONa 344.1984; found 344.1987.

N-(2-cyclohexyl-1-(m-tolyl)ethyl)acetamide (7i, unreported product)

0O

)J\NH

Following the general procedure B, colorless oil (97.1 mg, 75%).

14 NMR (500 MHz, DMSO-ds) & 8.23 (d, J = 8.6 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 7.18-6.77 (m, 3H), 4.88 (td,
J=9.2,5.7 Hz, 1H), 2.34 (s, 3H), 1.87 (s, 3H), 1.82—1.57 (m, 6H), 1.48 (ddd, J = 13.8, 8.2, 5.7 Hz, 1H), 1.32—
1.14 (m, 4H), 1.04-0.86 (m, 2H).

13C NMR (125 MHz, DMSO-ds) & 168.69, 144.95, 137.66, 128.57, 127.59, 127.38, 123.84, 50.09, 44.69,
34.39, 33.54, 32.51, 26.57, 26.23, 26.09, 23.15, 21.57.

HRMS (ESIpos) (m/z): calculated for C37H2sNO 259.1930; found 259.1930.
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N-(1-(3-bromophenyl)-2-cyclohexylethyl)acetamide (7], unreported product)

0

)J\NH

Br
Following the general procedure B, colorless oil (133.8 mg, 83%).

14 NMR (500 MHz, DMSO-ds) 6 8.33 (d, J = 8.5 Hz, 1H), 7.52 (d, J = 1.3 Hz, 1H), 7.46 (ddd, J = 5.7, 3.6, 2.0
Hz, 1H), 7.36-7.30 (m, 2H), 5.15-4.60 (m, 1H), 1.89 (s, 3H), 1.82-1.59 (m, 6H), 1.48 (ddd, J = 13.7, 8.3, 5.5
Hz, 1H), 1.33-1.13 (m, 4H), 1.06—-0.88 (m, 2H).

13C NMR (125 MHz, DMSO-ds) & 168.96, 147.97, 130.94, 129.90, 129.41, 126.00, 122.11, 49.89, 44.40,
34.38, 33.51, 32.37, 26.54, 26.22, 26.05, 23.10.

HRMS (ESIpos) (m/z): calculated for Ci6H22BrNO 323.0879; found 323.0881.

N-(2-cyclohexyl-1-(3-(trifluoromethyl)phenyl)ethyl)acetamide (7k, unreported product)

0]

)J\NH

CF4
Following the general procedure B, colorless oil (70.4 mg, 45%).

1H NMR (500 MHz, DMSO-ds) & 8.41 (d, J = 8.4 Hz, 1H), 7.72-7.57 (m, 4H), 5.00 (ddd, J = 10.1, 8.3, 5.4 Hz,
1H), 1.90 (s, 3H), 1.82—1.62 (m, 6H), 1.50 (ddd, J = 13.8, 8.5, 5.4 Hz, 1H), 1.37-1.13 (m, 4H), 1.05-0.89 (m,
2H).

13C NMR (125 MHz, DMSO-dg) 6 169.07, 146.63, 131.05, 129.82, 123.82 (d, J = 4.25 Hz, 1C), 123.09 (q, J =
364, 17 Hz, 1C), 50.02, 44.40, 34.41, 33.54, 32.31, 26.53, 26.22, 26.05, 23.08.

HRMS (ESIpos) (m/z): calculated for C37H2,FsNO 313.1647; found 313.1649.

N-(2-cyclohexyl-1-(o-tolyl)ethyl)acetamide (71, unreported product)
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)J\NH

Following the general procedure B, colorless oil (117.8 mg, 91%).

1H NMR (500 MHz, DMSO-ds) & 8.30 (d, J = 8.4 Hz, 1H), 7.40-7.31 (m, 1H), 7.21 (td, J = 8.0, 3.0 Hz, 1H),
7.19-7.11 (m, 2H), 5.15 (ddd, J = 10.4, 8.2, 3.7 Hz, 1H), 2.36 (s, 3H), 1.87 (s, 3H), 1.75-1.49 (m, 5H), 1.46—
1.34 (m, 2H), 1.26-1.16 (m, 3H), 1.03-0.96 (m, 2H).

13C NMR (125 MHz, DMSO-ds) 6 168.73, 143.57, 134.54, 130.38, 126.67, 126.50, 125.75, 46.29, 44.07,
34.56, 33.92, 32.25, 26.56, 26.27, 26.08, 23.08, 19.18.

HRMS (ESIpos) (m/z): calculated for C17H2sNO 259.1930; found 259.1931.

N-(1-(2-bromophenyl)-2-cyclohexylethyl)acetamide (7m, unreported product)

0]

)J\NH

Br
Following the general procedure B, colorless oil (129.2 mg, 80%).

1H NMR (500 MHz, DMSO-de) & 8.45 (d, J = 8.3 Hz, 1H), 7.60 (dd, J = 8.0, 1.2 Hz, 1H), 7.49—7.38 (m, 2H),
7.21(ddd, J = 8.0, 7.0, 2.0 Hz, 1H), 5.66-5.04 (m, 1H), 1.92—1.90 (m, 4H), 1.78-1.61 (m, 4H), 1.53-1.41 (m,
3H), 1.31-1.16 (m, 3H), 1.00 (t, J = 6.9 Hz, 2H).

13C NMR (125 MHz, DMSO-ds) & 169.06, 144.45, 132.90, 128.93, 128.44, 127.71, 122.38, 49.87, 43.68,
34.58, 34.01, 31.90, 26.54, 26.25, 26.02, 23.06.

HRMS (ESIpos) (m/z): [M+Na]* calculated for C1¢H2,BrNONa 346.0777; found 346.0776.

N-(2-cyclohexyl-1-mesitylethyl)acetamide (7n, unreported product)

_Ac
HN
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Following the general procedure B, white solid (88.9 mg, 62%).

1H NMR (500 MHz, DMSO-de) 6 8.11 (d, J = 7.1 Hz, 1H), 6.77 (s, 2H), 5.21 (ddd, J = 11.2, 7.1, 4.4 Hz, 1H),
2.38 (s, 6H), 2.21 (s, 3H), 1.95-1.88 (m, 1H), 1.86 (s, 3H), 1.83-1.62 (m, 6H), 1.46-1.12 (m, 5H), 1.08-0.84
(m, 2H).

13C NMR (125 MHz, DMSO-ds) 6 168.88, 137.59, 135.63, 135.09, 47.06, 40.91, 34.52, 34.06, 32.13, 26.58,
26.30, 26.10, 22.80, 21.00, 20.73.

HRMS (ESIpos) (m/z): calculated for CigH2sNO 287.2243; found 287.2242.

N-((1S, 25)-1,2-diphenylpropyl)acetamide (1S, 25-70, unreported product)

)J\NH

Following the general procedure B, colorless oil (33.0 mg, 25.5 %).

H NMR (600 MHz, DMSO-ds) & 8.26 (d, J = 9.2 Hz, 1H), 7.31-7.27 (m, 2H), 7.26-7.23 (m, 2H), 7.22-7.18
(m, 1H), 4.59 (dd, J = 10.6, 9.2 Hz, 1H), 1.79 (s, 3H), 1.77-1.54 (m, 5H), 1.47 (d, J = 12.4 Hz, 1H), 1.33-1.06
(m, 5H), 0.91 (td, J = 12.4, 8.9 Hz, 1H), 0.45 (d, J = 7.0 Hz, 3H).

13C NMR (151 MHz, DMSO-ds) 6 168.41, 144.04, 128.52, 127.85, 127.01, 55.58, 42.81, 38.38, 32.10, 27.15,
26.80, 26.78, 26.11, 23.11, 12.53.

HRMS (ESIpos) (m/z): calculated for C37H2sNO 259.1930; found 259.1931.

N-((1S, 2R)-2-cyclohexyl-1-phenylpropyl)acetamide (1S, 2R-70, unreported product)

0]

)J\NH

Following the general procedure B, colorless oil (33.0 mg, 25.5 %)

1H NMR (600 MHz, DMSO-ds) & 8.07 (d, J = 9.2 Hz, 1H), 7.33-7.28 (m, 2H), 7.25-7.16 (m, 3H), 4.88 (dd, J =
9.3, 7.6 Hz, 1H), 1.85 (s, 3H), 1.73-1.59 (m, 4H), 1.57-1.49 (m, 2H), 1.15-0.86 (m, 5H), 0.77 (d, J = 6.9 Hz,
3H).
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13C NMR (151 MHz, DMSO-ds) 6 168.96, 143.90, 128.56, 127.21, 126.86, 54.87, 43.59, 39.13, 31.61, 27.99,
26.73, 26.59, 26.50, 23.11, 11.77.

HRMS (ESIpos) (m/z): calculated for C;7H,sNO 259.1930; found 259.1931.

N-((1S, 2R)-2-cyclohexyl-1,2-diphenylethyl)acetamide (1S, 2R-7p, unreported product, minor component)

)J\NH

Following the general procedure B, colorless oil (21.3 mg, 13.3%).

1H NMR (600 MHz, DMSO-ds) & 8.35 (d, J = 9.3 Hz, 1H), 7.36-6.96 (m, 10H), 5.38 (dd, J = 9.3 Hz, 11.7 Hz,
1H), 3.02 (dd, J = 3.9 Hz, 11.7 Hz, 1H), 1.91-1.81 (m, 5H), 1.67-1.32 (m, 2H), 1.58-1.50 (m, 2H), 1.24-1.22
(m, 1H), 1.11-1.08 (m, 1H), 0.95-0.58 (m, 3H).

13C NMR (151 MHz, DMSO-ds) & 168.47, 143.51, 139.61, 130.28, 128.16, 128.10, 127.75, 126.62, 126.30,
55.85, 53.16, 39.00, 32.60, 27.35, 26.91, 26.75, 26.59, 23.18.

HRMS (ESIpos) (m/z): [M+H]* calculated for Cy;H2sNO 322.2165; found 322.2165.

N-((1S, 2S)-2-cyclohexyl-1,2-diphenylethyl)acetamide (1S, 25-7p, unreported product, major component)

Following the general procedure B, colorless oil (42.6 mg, 26.7%).

1H NMR (600 MHz, DMSO-ds) & 7.94 (d, J = 9.3 Hz, 1H), 7.36-6.96 (m, 10H), 5.37 (dd, J = 9.3 Hz, 10.9 Hz,
1H), 2.91 (dd, J = 4.3 Hz, 10.9 Hz, 1H), 1.75-1.71 (m, 1H), 1.58-1.47 (m, 6H), 1.43-1.42 (m, 1H), 1.14-1.11
(m, 1H), 0.95-0.58 (m, 5H).

13C NMR (151 MHz, DMSO-ds) 6 168.21, 143.61, 139.73, 129.92, 128.67, 127.75, 127.68, 127.27, 126.62,
126.54, 56.73, 53.23, 38.61, 32.67, 27.64, 26.59, 26.38, 26.37, 22.96.
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HRMS (ESIpos) (m/z): [M+H]" calculated for Cy;H27NO 322.2165; found 322.2165.

N-(2-cyclohexyl-1-phenylethyl)propionamide (8a, unreported product)
@]
A

Following the general procedure C, white solid (90.6 mg, 70%).

1H NMR (500 MHz, DMSO-ds) & 8.13 (d, J = 8.6 Hz, 1H), 7.51-7.24 (m, 4H), 7.23-7.17 (m, 1H), 4.88 (td, J =
9.2, 5.8 Hz, 1H), 2.10 (m, 2H), 1.77 — 1.54 (m, 6H), 1.45 (m, 1H), 1.29-1.07 (m, 4H), 0.98 (t, J = 7.6 Hz, 3H),
0.94-0.80 (m, 1H).

13C NMR (125 MHz, DMSO-ds) 6 172.53, 145.09, 128.66, 126.91, 126.71, 50.00, 44.66, 34.47, 33.53, 32.47,
29.04, 26.56, 26.26, 26.13, 10.57.

HRMS (ESIpos) (m/z): calculated for C17H2sNO 259.1930; found 259.1933.

N-(2-cyclohexyl-1-phenylethyl)butyramide (8b, unreported product)

0]

/\)J\NH

Following the general procedure C, white solid (79.1 mg, 58%).

1H NMR (500 MHz, DMSO-ds) & 8.16 (d, J = 8.7 Hz, 1H), 7.35-7.24 (m, 4H), 7.23-7.17 (m, 1H), 4.89 (td, J =
9.5, 5.4 Hz, 1H), 2.09-2.05 (m, 2H), 1.66—1.43 (m, 9H), 1.24-1.11 (m, 4H), 0.94-0.81 (m, 3H).

13C NMR (125 MHz, DMSO-ds) 6 171.64, 145.16 128.64, 126.90, 126.69, 49.91, 44.61, 37.85, 34.49, 33.63,
32.31, 26.55, 26.32, 26.13, 19.29, 13.95.

HRMS (ESIpos) (m/z): calculated for CigH,7NO 273.2087; found 273.2088.

N-(2-cyclohexyl-1-phenylethyl)pentanamide (8¢, unreported product)
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Following the general procedure C, white solid (86.1 mg, 60%).

1H NMR (500 MHz, DMSO-ds) & 8.16 (d, J = 8.6 Hz, 1H), 7.34—7.24 (m, 4H), 7.23-7.18 (m, 1H), 4.89 (td, J =
9.5, 5.4 Hz, 1H), 2.19-2.02 (m, 2H), 1.74 (d, J = 12.8 Hz, 1H), 1.69-1.37 (m, 8H), 1.28-1.22 (m, 3H), 1.15—
1.09 (m, 3H), 1.04-0.86 (m, 2H), 0.85 (t, J = 7.4 Hz, 3H).

13C NMR (125 MHz, DMSO-ds) 6 171.77, 145.16, 128.64, 126.89, 126.67, 49.90, 44.63, 35.60, 34.49, 33.65,
32.31, 28.01, 26.56, 26.13, 22.11, 14.16.

HRMS (ESIpos) (m/z): calculated for Ci1gH2sNO 287.2243; found 287.2242.

N-(2-cyclohexyl-1-phenylethyl)hexanamide (8d, unreported product)

0]

/\/\)J\NH

Following the general procedure C, white solid (114.4 mg, 76%).

1H NMR (500 MHz, DMSO-ds) & 8.16 (d, J = 8.6 Hz, 1H), 7.32=7.25 (m, 4H), 7.23-7.17 (m, 1H), 4.89 (td, J =
9.6, 5.3 Hz, 1H), 2.15-2.03 (m, 2H), 1.75 (d, J = 13.0 Hz, 1H), 1.71-1.35 (m, 8H), 1.37-1.05 (m, 8H), 1.00—
0.88 (m, 1H), 0.85 (t, J = 7.2 Hz, 4H).

13C NMR (125 MHz, DMSO-ds) 6 171.78, 145.18, 128.62, 126.89, 126.67, 49.87, 44.64, 35.83, 34.49, 33.68,
32.28, 31.21, 26.56, 26.35, 26.14, 25.56, 22.32, 14.37.

HRMS (ESIpos) (m/z): calculated for C;0H31NO 301.2400; found 301.2400.

N-(2-cyclohexyl-1-phenylethyl)-2-methoxyacetamide (8f, unreported product)
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Following the general procedure C, white solid (61.7 mg, 48%).

1H NMR (500 MHz, DMSO-ds) & 8.14 (d, J = 8.8 Hz, 1H), 7.31 (d, J = 6.7 Hz, 4H), 7.25-7.18 (m, 1H), 4.95 (td,
J=9.4,5.7 Hz, 1H), 3.81 (d, J = 3.8 Hz, 2H), 3.30 (s, 3H), 1.78-1.37 (m, 7H), 1.29-1.06 (m, 4H), 0.98-0.83
(m, 2H).

13C NMR (125 MHz, DMSO-ds) 6 168.67, 144.63, 128.67, 127.07, 126.93, 71.99, 58.95, 49.85, 43.92, 34.44,
33.50, 32.40, 26.56, 26.25, 26.10.

HRMS (ESIpos) (m/z): calculated for Ci7H2sNO; 275.1879; found 275.1879.

2-cyclohexyl-1-phenylethyl acetate (8g, CAS: 2366999-88-2)

0]

A

Following the general procedure C, colorless oil (77.5 mg, 63%).

14 NMR (500 MHz, DMSO-de) 6 7.46-7.30 (m, 5H), 5.80 (dd, J = 8.8, 5.6 Hz, 1H), 2.09 (s, 3H), 1.83 (ddd, J =
14.4, 8.8, 6.1 Hz, 1H), 1.78-1.57 (m, 6H), 1.31-1.14 (m, 4H), 1.03-0.96 (m, 2H).

13C NMR (125 MHz, DMSO-ds) 6 170.23, 141.58, 128.88, 128.16, 126.67, 73.61, 43.94, 34.08, 33.33, 32.75,
26.45, 26.11, 26.01, 21.41.

HRMS (ESIpos) (m/z): calculated for Ci6H220, 246.1614; found 246.1616.

4-methoxy-4,4-diphenylbutanenitrile (8h, CAS: 1653998-30-1)

Q.
Sl

Following the procedure C, pale yellow solid (64.3 mg, 51%).
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1H NMR (500 MHz, CDCls) & 7.33=7.29 (m, 8H), 7.25-7.21 (m, 2H), 3.05 (s, 3H), 2.79-2.62 (m, 2H), 2.25—
2.03 (m, 2H).

13C NMR (125 MHz, CDCl3) 6 143.40, 128.32, 127.38, 126.76, 120.10, 81.46, 50.37, 31.34, 11.52.

HRMS (ESIpos) (m/z): calculated for Ci7H17NO 252.1382; found 252.1381.

4-ethoxy-4,4-diphenylbutanenitrile (8i, CAS: 1808942-62-2)

O o/
O CN

Following the procedure C, yellow oil (54.5 mg, 41%) .

1H NMR (500 MHz, CDCl3) & 7.33-7.28 (m, 8H), 7.25-7.21 (m, 2H), 3.15 (q, J = 6.9 Hz, 2H), 2.73-2.66 (m,
2H), 2.17-2.10 (m, 2H), 1.21 (t, J = 6.9 Hz, 3H).

13C NMR (125 MHz, CDCls3) § 143.89, 128.27, 127.27, 126.64, 120.18, 81.01, 57.84, 32.02, 15.36, 11.59.

HRMS (ESIpos) (m/z): calculated for C1sH20NO 266.1539; found 266.1544.

N-(1,2-diphenylethyl)acetamide (10a, CAS: 21511-90-0)

A
NH
(C

Following the general procedure D, white solid (118.3 mg, 99%).

1H NMR (500 MHz, DMSO-ds) & 8.42 (d, J = 8.7 Hz, 1H), 7.41-7.34 (m, 4H), 7.33-7.20 (m, 6H), 5.08 (td, J =
8.6, 6.6 Hz, 1H), 3.07-2.87 (m, 2H), 1.82 (s, 3H).

13C NMR (125 MHz, DMSO-ds) 6 168.73, 143.89, 139.19, 129.52, 128.61, 128.46, 127.17, 127.04, 126.53,
54.50, 42.75, 23.08.

HRMS (ESIpos) (m/z): calculated for Ci6H17NO 240.1382; found 240.1386.

(1-methoxyethane-1,2-diyl)dibenzene (10b, CAS: 27820-29-7)
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Following the general procedure D, colorless oil (33 mg, 31%) .

1H NMR (500 MHz, CDCls) § 7.34 (ddd, J = 8.8, 6.4, 0.9 Hz, 2H), 7.29-7.25 (m, 3H), 7.23 (dd, J = 7.9, 6.5 Hz,
2H), 7.20-7.10 (m, 3H), 4.40 (dd, J = 7.9, 5.7 Hz, 1H), 3.07 (s, 3H), 3.02 (dd, J = 13.8, 7.9 Hz, 1H), 2.85 (dd, J
=13.8, 5.6 Hz, 1H).

13C NMR (125 MHz, CDCl;5) § 142.01, 138.90, 129.78, 128.68, 128.39, 127.96, 127.19, 126.43, 84.32. 5650.
44.17.

HRMS (ESIpos) (m/z): [M+Na]* calculated for C1sH1¢0Na 235.1093; found 235.1094.

(1-fluoroethane-1,2-diyl)dibenzene (10c, CAS: 74185-77-6)

Pq

Colorless solid (26.0 mg, 25%)

1H NMR (500 MHz, CDCls) § 7.42-7.21 (m, 8H), 7.20-7.15 (m, 2H), 5.61 (ddd, J = 47.4, 8.1, 4.8 Hz, 1H), 3.27
(ddd, J = 17.5, 14.3, 8.1 Hz, 1H), 3.11 (ddd, J = 28.6, 14.3, 4.8 Hz, 1H).

19F NMR (471 MHz, CDCl3) 6 -153.64 —-193.14 (m).

13C NMR (125 MHz, CDCls) 6 129.53, 128.40, 128.38, 128.36, 126.70, 125.70, 125.65, 94.90 (d, J = 172.5 Hz,
1C), 43.96 (d, J = 23.8 Hz, 1C).

HRMS (ESIpos) (m/z): calculated for Ci4H13F 200.0995; found 200.0995.

(1,4-dicyclohexylbutane-2,3-diyl)dibenzene (9, CAS: 644985-99-9)
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Colorless solid (48.6 mg, 31%)

1H NMR (500 MHz, CDCls) § 7.29 (t, J = 7.5 Hz, 4H), 7.23-7.17 (m, 2H), 7.16-7.10 (m, 4H), 2.79-2.72 (m,
2H), 1.70 (d, J = 12.4 Hz, 2H), 1.52-1.39 (m, 7H), 1.31 (dtd, J = 12.9, 10.7, 10.1, 3.1 Hz, 4H), 1.08-1.03 (m,
2H), 0.98-0.93 (m, 5H), 0.76-0.66 (m, 4H), 0.51 (qd, J = 11.8, 3.7 Hz, 2H).

3CNMR (125 MHz, CDCl3) § 145.02, 128.36, 128.12, 125.82, 49.37,42.33, 34.58, 34.49, 31.69, 26.57, 26.16,
25.94.

HRMS (ESIpos) (m/z): calculated for CagHsg 374.2968; found 374.2964.

N-(cyclohex-2-en-1-yl)acetamide (11a, CAS: 39819-72-2)

Following the general procedure E, colorless solid (49.6 mg, 70%)
O

HNJ\

1H NMR (300 MHz, CDCls) 6 5.81-5.85 (m, 1H), 5.53-5.48(m, 1H), 4.45-4.39 (m, 1H), 1.96—1.90 (m, 2H),
1.90 (s, 3H), 1.89-1.79 (m, 1H), 1.61-1.53 (m, 2H), 1.49-1.40 (m, 1H).

13C NMR (125 MHz, CDCl3) § 169.16, 130.94, 127.64, 44.68, 29.43, 24.79, 23.51, 19.69.

HRMS (ESIpos) (m/z): calculated for CsHisNO 140.1069; found 140.1068.

N-(bicyclo[3.2.1]oct-3-en-2-yl)acetamide (11b, CAS: 1823085-93-3)
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Following the general procedure E, colorless solid (59.4 mg, 72%)

14 NMR (300 MHz, CDCls) & 6.05-5.99 (m, 1H), 5.47 (s, 1H), 5.27-5.22 (m, 1H), 4.06-4.02 (m, 1H), 2.42—
2.33 (m, 2H), 1.90 (s, 3H), 1.83-1.81 (m, 1H), 1.60-1.53 (m, 2H), 1.44-1.22 (m, 3H).

13C NMR (125 MHz, CDCls) 6 168.64, 138.76, 123.26, 52.31, 38.50, 35.41, 32.19, 31.52, 26.63, 23.52.

HRMS (ESIpos) (m/z): calculated for Ci1oH1sNO 165.1148; found 165.1149.

N-(cyclohex-2-en-1-yl)propionamide (11c, CAS: 95973-99-2)

(o]

\)J\NH

Following the general procedure E, colorless solid (25.2 mg, 33%)

H NMR (300 MHz, DMSO-ds) & 7.81 (d, J = 8.0 Hz, 1H), 5.83-5.81 (m, 1H), 5.57-5.49 (m, 1H), 4.30-4.27
(m, 1H), 2.11 (q, J = 7.5, 3.5 Hz, 2H), 2.02-1.99 (m, 2H), 1.80-1.1.76 (m, 2H), 1.60-1.56 (m, 1H), 1.48-1.44
(m, 1H), 1.03 (t, J = 7.5 Hz, 1H).

13C NMR (125 MHz, DMSO-ds) 6 172.57, 129.56, 129.35, 44.26, 29.48, 28.87, 24.86, 20.18, 10.45.

HRMS (ESIpos) (m/z): calculated for CoH1sNO 153.1148; found 153.1149.

(E)-N-(oct-4-en-3-yl)acetamide (11d, CAS: 2308508-60-1)

O

HN)k
W/

Following the general procedure E, colorless solid (41.4 mg, 49%)

1H NMR (600 MHz, DMSO-ds) 6 7.78 (d, J = 10.8 Hz, 1H), 5.55-5.49 (m, 1H), 5.39-5.35 (m, 1H), 4.17—4.11
(m, 1H), 2.03-1.99 (m, 2H), 1.86 (s, 3H), 1.46=1.37 (m, 4H), 0.91 (t, J = 9.0 Hz, 3H), 0.86 (t, J = 9.0 Hz, 3H).
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13C NMR (125 MHz, DMSO-ds) 6 168.61, 131.58, 130.09, 51.99, 34.19, 28.21, 23.17, 22.38, 13.94, 10.86.

HRMS (ESIpos) (m/z): calculated for C10H1sNO 169.1461; found 169.1461.

(E)-N-(oct-5-en-4-yl)acetamide (11e, CAS: 2308508-61-2)

HN)K
/\)\/\/

Following the general procedure E, colorless solid (33.8 mg, 40%)

H NMR (600 MHz, DMSO-ds) 6 7.77 (d, J = 10.2 Hz, 1H), 5.59-5.54 (m, 1H), 5.39-5.34 (m, 1H), 4.26-4.21
(m, 1H), 2.07-2.01 (m, 2H), 1.85 (s, 3H), 1.44-1.40 (m, 2H), 1.32-1.27 (m, 2H), 0.99 (t, J = 9.0 Hz, 3H), 0.90
(t, J = 8.4 Hz, 3H).

13C NMR (125 MHz, DMSO-de) 6 168.52, 131.54, 130.70, 50.04, 37.48, 25.11, 23.17, 19.18, 14.19, 13.99.

HRMS (ESIpos) (m/z): calculated for C10H1sNO 169.1461; found 169.1461.

(E)-N-(dec-5-en-4-yl)acetamide (11f, unreported product)

O

HN)J\
/\)\/\/\/

Following the general procedure E, colorless solid (36.4 mg, 37%)

1H NMR (600 MHz, DMSO-ds) & 7.71 (d, J = 6.0 Hz, 1H), 5.46-5.41 (m, 1H), 5.32-5.27 (m, 1H), 4.18-4.11
(m, 1H), 1.95-1.91 (m, 2H), 1.78 (s, 3H), 1.38-1.30 (m, 2H), 1.28-1.18 (m, 5H), 0.86-0.82 (m, 7H).

13C NMR (125 MHz, DMSO-de) 6 167.98, 131.17, 129.46, 49.56, 36.92, 31.18, 30.85, 22.62, 21.84, 18.61,
13.70, 13.64.

HRMS (ESIpos) (m/z): calculated for C1,H23NO 197.3172; found 197.3171.

(E)-N-(dec-6-en-5-yl)acetamide (11g, CAS: 131317-75-4)
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Following the general procedure E, colorless solid (36.4 mg, 37%)

1H NMR (600 MHz, DMSO-d6) & 7.71 (d, J = 6.0 Hz, 1H), 5.46-5.41 (m, 1H), 5.32-5.27 (m, 1H), 4.18-4.11
(m, 1H), 1.95-1.91 (m, 2H), 1.78 (s, 3H), 1.38-1.30 (m, 2H), 1.28-1.18 (m, 5H), 0.86-0.82 (m, 7H).

13C NMR (125 MHz, DMSO-ds) 6 167.98, 131.40, 129.30, 49.87, 34.45, 33.62, 27.65, 22.62, 21.82, 21.48,
13.86, 13.38.

HRMS (ESIpos) (m/z): calculated for C12H23NO 197.3172; found 197.3171.

N-(9H-fluoren-9-yl)acetamide (13a, CAS: 5424-77-1)

Colorless solid (78.1 mg, 70%)

1H NMR (300 MHz, DMSO-ds) & 8.50 (d, J = 8.4 Hz, 1H), 7.92-7.89 (m, 2 H), 7.57-7.47 (m, 2H), 7.46—7.45
(m, 2H), 7.41-7.36 (m, 2H), 6.07 (d, J = 8.4 Hz, 1H), 2.0 (s, 3H).

13C NMR (125 MHz, DMSO-d¢) § 170.07, 144.86, 139.95, 128.28, 127.54, 124.82, 120.05, 54.02, 22.53.

HRMS (ESIpos) (m/z): calculated for CisH13NO 223.0989; found 223.0997.
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SUMMARY

Based on the importance and attractiveness of oxidative difunctionlization of alkenes in terms of
atom efficiency and potential for greener chemistry, many efforts are now dedicated to the
improvement of metal free, high efficiency, and environmental benign methods. This thesis is

mainly dedicated to this task.

Acid Promoted Radical-Chain Difunctionalization of Styrenes with Stabilized

Radicals and (N,O)-Nucleophiles

Base on previous reports, a novel metal free, acid promoted difunctionalization of alkenes was
developed. This protocol provides a powerful method for difunctionlization of alkenes with

different radicals and nucleophiles under transition metal free conditions.

Under the optimal reaction conditions, oxidative difunctionalization of alkenes with
thioxanthene, xanthene and thiophenols radicals via hydrogen atom transfer, nitrile and alcohols
as nucleophiles were successfully added to the carbon-carbon double bonds. Mechanistic studies
including CV measurement, NMR calculations supported a radical chain mechanism, the acid
does not accelerate the decomposition of BPO, but it changes the oxidation and reduction

potential of BPO, which makes the BPO as a better electron acceptor.

®,H ©
ET j\ PFe
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X

Acid promoted difunctionalization of alkenes
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Organo-Redox-Catalysis for the difunctionalization of alkenes and oxidative

Ritter reactions

We reported an organo-redox catalyst triaylamine in oxidative difunctionalization of alkenes. The
triarylamine could be reduced into a radical cation salts by BPO, which turns into a good single
electron oxidant. Oxidative difunctionalization of alkenes with a wide range of radicals,
generated from C(sp®)-H Hydrocarbon via hydrogen atom transfer, nitriles, alcohols, acetic acid
and fluoride could be used as nucleophiles. Besides, this method could also be used into

oxidative Ritter reaction of allylic and benzylic C-H bonds.

Mechanistic studies support the triarylamine is catalyst rather than radical initiator. The
transformation does not need high temperature, irradiation, electrolysis, transition metals. This
application of triarylamine might pave the way for further developments of organo-redox-

catalysts, which may thus become another established class amongst organocatalysts.
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‘\gb g oHydrogen atom transfer
°Inactivated C(sp®)-H bonds
@ °Different nucleophiles

Organo-Redox-Catalysis for the difunctionalization of alkenes and oxidative Ritter reactions

oOrgano-redox catalyst
oSingle electron transfer
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OUTLOOK

Acid promoted difunctionalization of alkenes

Tolerance of Substrate scope

Continuation of the search for other oxidants under mild reaction conditions to apply to radical

and nucleophile difunctionalization of alkenes is expected to provide a valuable method.

In our initial exploration, we focused on peroxides as oxidants, especially BPO. However,
peroxides are strong oxidants and very dangerous due to its explosion. Besides, BPO can react
with other nucleophiles easily, which limited the scope of other nucleophiles. Moreover, the
substrate scope of radicals is extremely correlated with the peroxides. Thus, find other reaction
conditions suit for oxidative radical and nucleophile difunctionalization of olefins under
transition metal free conditions are significate progress for chemists.

Proof of principle conditions:

Metal free !: -/E)
P PN s Oxidant - R2
AT+ ‘ClgH  +  WNOH R
‘cr8
Desirable improved conditions:
Metal free Nu
2 Oxidant 2
R1/\/R + R3-H + NU® R1J\(R
simple olefins radical precursors R3

radical precursors. C-centered, N-centered, O-centered, P-centered, Si-centered...
Nu: amine, indole, acid...

Outlook for substrate scope

Another continuation of search is the olefins. Most reported methods are based on styrene and its
derivatives. However, simple olefins are less reported due to its lower reactivity. Oxidative
radical difunctionalization of simple olefins is more challengeable, spurring our effort for further

studies.

156



Chiral Brensted acid catalysis approach

One particularly attractive feature of the conditions discussed in this work in the use of the strong
Brensted acid. The products contain two chiral center, by using of chiral Brensted acid instead of
HPFs, might provide an approach to access enantioenriched radical and nucleophile
difunctionalizd products.

Oxidant Nu
2 Chiral Brgnsted acid B
U REH o+ N® R1\(R2

simple olefins radical precursors R3

radical precursors. C-centered, N-centered, O-centered, P-centered, Si-centered...
Nu: amine, indole, acid...

Asymmetric synthesis of oxidative radical and nucleophile mediated

difunctionalization of olefins
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Organo-Redox-Catalysis for the difunctionalization of alkenes and oxidative Ritter
reactions

Tolerance of Substrate scope

In this part, radical precursors, such as cyclohexane, chloroform or acetonitrile need to be used
not only as hydrogen donor sources, but also as solvents. This limitation restricts the substrate
scope of radical precursors. Find a method for dealing with this limitation is significant problem
for chemists. We did initially researches about it. By using acetone as solvent, we can reduce the
use of acetonitrile into 1 mL, giving the product 1810 in 81% yield. This result indicated that
there is possibility to reduce the amount of the hydrogen donor source.

0]

A1 (10 mol%) HNJ\

o
©/\ . CHACN (1 mL) NaPFg (30 mol%) N
Aceton (11 mL)

radical precursors

70 °C, 24 h )
0.5 mmol ’ 1810: 81%

R3-H, radical precursors. C-centered, N-centered, O-centered, P-centered, Si-centered...

The proposed method for substrate scope of radical precursors

Other organic redox reactions catalyzed by triarylamine

In this thesis, the triarylamine showed a good ability in the using of organic redox reactions. So
far, we could only achieve oxidative radical and nucleophile mediated difunctionalization of
alkenes and Ritter reaction of allylic and benzylic C-H bond. In our report, triarylamine should
react with BPO in the first step to form the radical cation, a strong one-electron oxidant, which
can regenerate the triarylamine by electron transfer and deliver the carbocation. Thus, finding
more combination system of oxidant and triarylamine may open a new area of organic-redox

catalysts in organic synthesis methodology.

There are several literatures reported the triarylamine as catalyst under electro-chemistry
conditions.!!?*125) The combination of electrochemistry and redox catalysis using an organic

catalyst allows the electro synthesis to proceed under transition metal- and oxidizing reagent free
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conditions, which providing an efficient and straightforward access to difunctionalization of

olefins with a broad substrate scope and other functional groups.

Ar\i\li,Ar
Ar
Art_Ar
\l\ll e@
.
R1_R2
©
Nu-R' N O - R1* OR2

Use of triarylamine in other organic redox reactions
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