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Abstract

The human brain is characterized by its folded structure, being the most folded
brain among all primates. The process by which these folds emerge, called gyrogenesis,
is still not fully understood. The brain is divided into an outer region, called gray
matter, which grows at a faster rate than the inner region, called white matter. It
is hypothesized that this imbalance in growth – and the mechanical stress thereby
generated – drives gyrogenesis, which is the focus of this thesis.

Finite element simulations are performed where the brain is modeled as a non-linear
elastic and growth is introduced via a multiplicative decomposition. A small section
of the brain, represented by a rectangular slab, is analyzed. This slab is divided into
a thin hard upper layer mimicking the gray matter, and a soft substrate, mimicking
the white matter. The top layer is then grown tangentially, while the underlying
substrate does not grow. JuFold, the software developed to perform these simulations,
is introduced, and its design is explained. An overview of its capabilities, and examples
of simulation possibilities are shown. Additionally, one patent-leading application of
JuFold in the realm of material science showcases its flexibility.

Simulations are first performed by minimizing the elastic energy, corresponding
to the slow growth regime. Systems with homogeneous cortices are studied, where
growth initially compresses, and then buckles the cortical region, which generates
wavy patterns with wavelength proportional to cortical thickness. After buckling, the
sulcal regions (i.e. the valleys of the system) are thinner than the gyral regions (i.e.
the hills). Introducing thickness inhomogeneities along the cortex lead to new and
localized configurations, which are strongly dependent not only on the thickness of the
region, but also on its gradient. Furthermore, cortical landmarks appear sequentially,
consistent with the hierarchical folding observed during gestation. A linear stability
theory is developed based on thin plate theory and is compared with homogeneous
and inhomogeneous systems.

Next, we turn to more physically stringent dynamic simulations. For slow growth
rate and time-constant thickness, the results obtained through energy minimization
are recovered, justifying previous literature. For faster growth, an overshoot of the



wavenumber and a broad wavenumber spectrum are observed immediately after buck-
ling. After a relaxation period, where the average wavenumber decreases and the
wavenumber spectrum narrows, it is observed that the system stabilizes into a finite
spectrum, whose average wavelength is smaller than that expected from energy mini-
mization arguments.

Cortical inhomogeneities are further explored in this new regime. Systems with
inhomogeneous cortical thickness are revisited, with e�ects similar to the homogeneous
cortex (i.e., results are consistent between the slow growth and the quasistatic regimes,
and overshoot is observed in the fast growth regimes). Systems with inhomogeneous
cortical growth are simulated, with this new type of inhomogeneity inducing fissuration
and localized folding. The interplay between these two inhomogeneities is studied, and
their interaction is shown to be nonlinear, with each inhomogeneity type inhibiting
the folding e�ects of the other. That is, the folding profile of each individual region
emerges as a result of the local inhomogeneity, and the system does not display an
intermediate behavior. Finally, these results are compared with an extended linear
stability theory.

Taken together, our simulations and analytical theory expose new phenomena pre-
dicted by an incremented buckling hypothesis for folding and show a series of new
avenues which could give rise to the important cortical features in the mammalian
brain, especially those related to higher-order folding.



Zusammenfassung

Das menschliche Gehirn zeichnet sich durch seine gefaltete Struktur aus und ist
das am stärksten gefaltete Gehirn unter allen Primaten. Der Prozess, durch den
diese Falten entstehen, genannt Gyrogenese, ist noch nicht vollständig verstanden.
Das Gehirn ist in einen äußeren Bereich, die so genannte graue Substanz, und einen
innenliegenden Bereich, die so genannte weiße Substanz, die langsamer wächst als der
äußere Bereich, unterteilt. Der Fokus dieser Arbeit basiert auf der Hypothese, dass
dieses Ungleichgewicht im Wachstum und die dadurch erzeugte mechanische Spannung
die Gyrogenese antreibt.

Es werden Finite-Elemente-Simulationen durchgeführt, bei denen das Gehirn als
nichtlineares elastisches Medium modelliert wird und das Wachstum über eine mul-
tiplikative Zerlegung eingeführt wird. Ein kleiner Ausschnitt des Gehirns, dargestellt
durch eine rechteckige Platte, wird analysiert. Diese Platte besteht aus einer dünnen
harten oberen Schicht, die die graue Substanz nachahmt, und einem weichen Substrat,
das die weiße Substanz nachahmt. Die obere Schicht wächst tangential, während das
Substrat nicht wächst.

JuFold, die Software, die zur Durchführung dieser Simulationen entwickelt wurde,
wird vorgestellt und ihr Aufbau erläutert. Es wird ein Überblick über die Möglichkeiten
der Software gegeben und es werden Beispiele für Simulationsmöglichkeiten gezeigt.
Zusätzlich wird anhand einer patentierten Anwendung von JuFold im Bereich der
Materialwissenschaften die Flexibilität der Software demonstriert.

Die Simulationen werden zunächst unter Minimierung der elastischen Energie durchge-
führt, was dem Regime des langsamen Wachstums entspricht. Es werden Systeme mit
homogenem Kortex untersucht, bei denen das Wachstum den Kortex zunächst kom-
primiert und danach einknickt, was wellenförmige Muster mit einer zur kortikalen
Dicke proportionalen Wellenlänge erzeugt. Nach dem Einknicken sind die sulkalen
Regionen (d.h. die Täler des Systems) dünner als die gyralen Regionen (d.h. die
Hügel). Die Einführung von Dickeninhomogenitäten entlang des Kortexes führt zu
neuen und lokalisierten Konfigurationen, die nicht nur von der Dicke der Region, son-
dern auch von dessen Gradienten stark abhängig sind. Zudem entstehen kortikale
Landmarken sequentiell, was mit der hierarchischen Faltung während der Gestation



übereinstimmt. Es wird eine lineare Stabilitätstheorie entwickelt, die auf der Theorie
der dünnen Platten basiert und mit homogenen und inhomogenen Systemen verglichen
wird.

Als nächstes wenden wir uns physikalisch stringenteren dynamischen Simulationen
zu. Für langsame Wachstumsraten und zeitlich konstante Dicke werden die durch
Energieminimierung erhaltenen Ergebnisse reproduziert, was die bisherige Literatur
rechtfertigt. Bei schnellerem Wachstum werden unmittelbar nach dem Knicken ein
Überschwingen der Wellenzahl und ein breites Wellenzahlspektrum beobachtet. Nach
einer Relaxationsperiode, in der die mittlere Wellenzahl abnimmt und das Wellen-
zahlspektrum schmaler wird, wird beobachtet, dass sich das System in einem endlichen
Spektrum stabilisiert, dessen Wellenlänge kleiner ist als die man basierend auf Grün-
den der Energieminimierung erwartet.

Kortikale Inhomogenitäten werden in diesem neuen Regime weiter erforscht. Sys-
teme mit inhomogener kortikaler Dicke werden erneut untersucht, mit ähnlichen Ef-
fekten wie beim homogenen Kortex (d.h. die Ergebnisse sind konsistent zwischen dem
langsamen Wachstumsregime und dem quasistatischen Regime; ein Überschwingen
wird im schnellen Wachstumsregime beobachtet). Es werden Systeme mit inhomo-
genem kortikalem Wachstum simuliert, wobei diese neue Art von Inhomogenität Risse
und lokalisierte Faltung induziert. Das Zusammenspiel zwischen diesen beiden In-
homogenitäten wird untersucht und es wird gezeigt, dass ihre Interaktion nichtlinear
ist, wobei jeder Inhomogenitätstyp die Falte�ekte ds anderen hemmt. Das heißt, das
Faltungsprofil jeder einzelnen Region entsteht als Ergebnis der lokalen Inhomogenität
und das System zeigt kein Übergangsverhalten. Schließlich werden diese Ergebnisse
mit einer erweiterten linearen Stabilitätstheorie verglichen.

Zusammengenommen zeigen unsere Simulationen und die analytische Theorie neue
Phänomene auf, die von einer inkrementellen Knickhypothese für die Faltung vorherge-
sagt werden, und sie zeigen eine Reihe von neuen Wegen auf, die zu den wichtigen
kortikalen Merkmalen im Säugetiergehirn führen könnten, insbesondere zu denen, die
mit der Faltung höherer Ordnung zusammenhängen.



“All models are wrong, but some are useful.”

— George Box, Robustness in the strategy of
scientific model building [1].
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Chapter 1

Introduction

1.1 History

The brain is one of the most important organs in mammals, being the control center of
many of the activities necessary for continued survival. At the same time, it is among
the organs we know the least about. Understanding the inner workings of the human
brain is one of the main challenges of the 21st century [2, 3].

The systematic study of the morphological properties of the brain started long ago,
in the Antiquity. The Edwin Smith Papyrus, written around 1600 BCE, is one of the
earliest human records on surgery. In this papyrus, we find the earliest mention of the
folded nature of the brain [4],

“If thou examinest a man having a gaping wound in his head, penetrating to
the bone, smashing his skull, (and) rending open the brain of his skull, thou
shouldst palpate his wound. Shouldst thou find smash which is in his skull
[like] those corrugations which form in molten copper, (and) something
therein throbbing (and) fluttering under thy fingers, like a weak place of
an infant’s crown before it becomes whole (...)”

These corrugations are one of the most striking features of the human brain, already
being prominent in the works of early anatomists, such as Andreas Vesalius [6] in the
sixteenth century, or Willis in the seventeenth [7] (see Fig. 1.1). They are broadly
divided into two categories. The gyrus (plural, gyri) is an outward fold, whose crown
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Figure 1.1: (Upper row) Section of the Edwin Smith papyrus. The first written
mention of the brain is highlighted in red (Taken from [4], under license CC BY 4.0).
(Lower row) Two illustrations by Vesalius, showing some of the first anatomically
accurate drawings of the brain [5]. Taken from [6] under Public Domain.

is relatively circular, and the sulcus (plural, sulci) is an inward fold, dividing two
adjacent gyri. In vivo, the sulci are often hidden by the neighboring contacting gyri.

Throughout the centuries, these folds have been mapped and classified (see Fig. 1.2) [8,
9]. In the current day, such maps are widely available, and their study is part of the
fundamental education of physicians and neuroscientists around the world. In modern
days, the advent of Magnetic Resonance Imaging (MRI) [10] has enabled researchers
to conduct in vivo anatomy, allowing for much larger sample sizes when studying the
anatomy of the brain, as well as the automated digital evaluation of geometrical and
physiological measurements, such as curvature and blood flow. Despite the wide avail-
ability of gyral maps, the understanding of how these foldings emerge, a process called
gyrogenesis, is still not fully understood, neither at the mechanical [11] nor at the
genetic level [12].
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Figure 1.2: (Upper row) “Diagrams of human cerebrum from left lateral (A) and
medial (B) aspects, and in transverse section”. Adapted with permission from [13].
©1990, Springer Science Business Media New York. (Lower row) Similar diagrams,
using MRI data. The cortical surface is colored according to its curvature.
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1.2 Basic anatomy

(a) (b)

Figure 1.3: (a) Silver stained histological image of human brain, showing the cortical
gray matter and white matter, as well as parts of the hypothalamus, thalamus (darker
regions on the lower center), and cerebellum (adapted from Jülich BigBrain [14]). (b)
Simplified view of the cerebrum, distinguishing only between gray matter (in purple),
and white matter (in pink).

There are many ways to divide the brain, with varying complexity and granular-
ity [9, 15, 16]. For the purposes of this work, only a very rough parcellation is required,
where the brain can be divided into the brain stem, the cerebellum, and the cerebrum.
Our work will be focused on the folding of the last of these (pictured in Fig. 1.2). The
cerebrum is the largest region of the brain and houses many important substructures,
like fiber tracts, many capsules, etc (see Fig. 1.3 (a)). However, the simplest – and
for this work, most useful – division of the cerebrum is simply between its cortex and
the bulk. The cortical region of the cerebrum is characterized by a high density of
neuronal bodies, which darkens once stained, giving it the name of gray matter. The
bulk of the cerebrum is mostly abscent of neuronal bodies, giving it a clearer color1.
This region, named white matter, is composed largely of structural cells, called glia.
Axons belonging to the neurons in the gray matter cross through the white matter,
connecting distant parts of the brain and forming fiber tracts of aligned neurons.

The simulations in this work take a simplified view of the brain, taking into consid-
eration only the division between cortical gray matter (from here on simply denoted as

1It is possible to find special regions with high neuronal densities, which are called deep gray
matter, but due to ther distance to the cortex, their limited influence on folding is ignored.
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“gray matter” or “cortex”) and “white matter” or “bulk” (see Fig. 1.3 (b)). Histologi-
cal sections are often stained with haematoxylin and eosin [17], which has a distinctive
purple-pink color. Following this conventional color scheme, the gray matter is shown
in purple and the white matter is shown in pink throughout this work.

1.3 Neuroembryology

Despite the simplified view used in the simulations, it is essential to understand the
microscopic processes that occur in the gray and white matter before and during
gyrogenesis in order to build a biologically-plausible physical model of folding of the
cerebrum. Additionally, the knowledge of the macroscopic features provides the target
which this work aims to emulate.

The discussion will now branch into two. Firstly, the microscopical processes par-
allel to gyrogenesis are presented. Secondly, the folding process is analysed through
the lenses of macroanatomy.

1.3.1 Cellular development of the brain

At a microscopical level, the brain tissue is composed of roughly two classes of cells:
neuronal and glial cells. They are responsible for markedly di�erent functions. The
first acts as the wiring of the nervous system, processing, and transmitting electrical
signals. The latter performs all other functions in the brain, such as structural support,
homeostasis, removal of pathogens, among others. Additionally some of the glia also
aid in the control and processing of neuronal information [18]. Interestingly, the human
brain contains approximately the same amount of each of these two classes of cells,
both in number of cells, and in total volume [19, 20]. Thus, both cells contribute to
the mechanical properties of the human brain.

In the abridged exposition below, the folding process is divided into two main
steps, the migration step, and the neuronal di�erentiation step. Naturally, each of
these is composed of a multitude of more specialized steps, which are well studied and
categorized. See Refs. [21–23] for reviews on the topic.

At the seventh gestational week, the cortex is divided into several zones. The
marginal zone (MZ) is the outermost region at this point, surrounding the subplate
(SP), intermediate zone (IZ), the subventricular zone (SVZ), and the ventricular zone
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Figure 1.4: Early development and neurogenesis, from gestational week 4 to 28. During
early development (before week 6), the neuroepithelial cells divide symetrically, while
in neurogenesis, the division is assymetric. During neurogenesis, pyramidal neurons
migrate from the ventricular region inside the brain towards the surface. As cells divide
assymetrically and migrate to the cortex, the ventricular zone depletes and shrinks.
Taken from [21] under License CC BY 4.0.
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(VZ), the inner most region. As the brain continues to develop, the VZ, characterized
by an abundance of dividing interneurons, fades as they migrate towards the outer
regions of the cortex. This neuronal migration happens in waves. In each successive
wave, the juvenile neurons migrate to layers VI to I, filling the deeper layers first. This
process is called “inside out layering”. The neural migration is facilitated by astroglial
cells, which act as sca�olds for the migrating neurons. The migrating interneurons
emerge from neural stem cells in the VZ through two processes. First, the neural stem
cells transition to form radial glial cells, which then divide asymmetrically generating
one neuron and a new radial glial cell. Interestingly, the cells in the VZ are topo-
graphically organized in sync with their final configurations, i.e., neighboring cells in
the ventricular zone will also neighbor each other once migration is done. The migra-
tion processes occur while the brain is still smooth and unfolded [21]. The migrating
cells are not yet fully developed, and will specialize and connect during the 22nd week
of gestation, and around gestational week 23 folding starts to be observed.

For the specialization of the neurons, a large number of processes at the cellular
level are necessary, such as neuronal di�erentiation and dendrogenesis, neuronal ori-
entation, and synaptogenesis, among many others [13]. Put together, these processes
lead to an increase in the surface area, and thickness of the cortical plate. These two
quantities do not mature at the same rate. Instead, the thickness maturates at a much
earlier stage: It has been shown that the brain cortex of 2 year-old children are as
thick as those of adults, while only having 2/3 of the area [13].

1.3.2 Anatomy of folding

Until about the 8th week, the brain is smooth, with the first folds start appearing
around the third gestational month [24, 25]. The major folds develop first, with the
Sylvian and saggital fissures emerging during the third month. During the following
months of gestation, the other gyri emerge, with a well defined time course [26]. Most of
the folding is already in place at time of birth, with the peak of gyrification occurring in
the second gestational trimester. Folding, however, is a continuous process, continuing
well into childhood [27].

Traditionally, the gyri are classified into three broad groups. The folds emerging
first are denoted primary and are very similar across di�erent individuals, being also
characterized by wider gyri and deeper sulci [13]. The folds emerging later, called
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secondary and tertiary, are shallower, narrower, and more variable than those that
precede them [28–31].

During gyrogenesis, the brain undergoes massive growth. The brain volume in-
creases six- to sevenfold between the 28th and the 60th weeks of development, with a
similar increase in cortical area (see Fig. 1.5 (b) and (c)). Both the area and volume
increasing almost linearly is not what would be expected from isometric coe�cient,
which predicts a scaling coe�cient of 2/3, i.e., A ∝ V 2�3. Already in the mid-19th
century, it was noted that the brain does not grow in an isometric fashion [32]. Re-
cent experiments have further confirmed that this scaling is not observed during brain
development, reporting scaling coe�cients between 0.8 and 0.9 [33, 34], a noticeable
increase from the 2�3 scaling predicted by isometric scaling. This scaling is made
possible through folding.

One of the main quantifiers of folding is called the Gyrification Index (GI) [35, 36].
The GI of a given brain is measured as the ratio between the total surface area of the
cortex and the exposed area. In that way, the GI of a lissencephalic (i.e., smooth)
brain is 1.0, while gyrencephalic (i.e., folded) brains have a higher GI, with typical
values in human around 2.62 [36].

It comes as little surprise that increases in volume and area are accompanied by a
marked increase in the Gyrification Index (see Fig. 1.5 (d)). As such, the folding of
the brain allows more surface to fit within a given hull.

1.3.3 Inhomogeneities in the brain

There are important spatial and temporal di�erences in the physical properties of the
developing brain. For instance, di�erent regions present di�erent amounts of tangential
cortical expansion [23, 40]. This expansion is caused by biomolecular processes in the
outer part of the subventricular zone, which causes a proliferation of intermediate
radial glial cells, which then migrate to the cortex.

While it is well known that the folded cortex has inhomogeneous cortical thickness,
with the sulci being thinner than surrounding gyri, large thickness di�erences have
been observed in the smooth brain, e.g., ferret brains at post-conceptual age P2 are

2The gyrification index is by no means the sole way to quantify gyrification, with a review and
comparison between this and other quantities being available in Ref. [37].
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Figure 1.5: “Brain morphological changes from pregnancy to adulthood. Cortical sur-
face reconstructions are presented for a preterm newborn at 28 weeks of postmenstrual
age, term-born infants at 1 and 4 months of age, and a young adult (a). Around birth,
cerebral development is characterized by important increases in brain size (b), cortical
surface area (c), and folding index (d) ratio between inner cortical surface area and the
area of the closed surface) as measured in preterm and full-term newborns and infants
(adapted from Ref. [31]).”. In this figure, the Gyrification Index is called “Folding
Index”. Adapted from [38], under license CC-BY.

still smooth3 and exhibit regions with thin cortices surrounded by much thicker regions
(see Fig. 1.6). Indeed measurements have shown a 2.5 fold increase in cortical thickness
over a length of 2 mm [39]. Further, rheological experiments have shown that elastic
properties also vary spatially during development, and undergo a notable sti�ening
during maturation [41, 42]. These inhomogeneities have been hypothesized to cause
the stereotypical development of the mammalian brain [12].

3Ferret brains start to fold at post-conceptual day 6 [41].
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(a) (b) (c)

Figure 1.6: “4’,6-diamidino-2-phenylindole (DAPI) staining of the occipital cortex in
the ferret brain at di�erent post-conceptual days (P), exhibiting the cortical structure
(a) before folding, (b) at the onset of folding and (c) halfway through folding. Scale
bar indicate 1mm.” Asterisks indicate the prospective visual area A17. Notice the
areas of thin cortex surrounded by thicker cortex in the upper right sides of (a) and
(b). Adapted from Ref. [39] ©Reillo at al, 2011.

1.4 Conditions related to folding

Table 1.1: A few examples of cortical malformations that a�ect folding. Further details
and discussions on these conditions can be obtained in Refs. [13, 43–47].

Name Short description
Lissencephaly Lack of folding
Polymicrogyria Many small gyri, shallow sulci
Pachygiria Overly large gyri
Ulegyria Shrunken and flattened brain
Schizogyria Periodically interrupted or cracked cortical surface
Hemiatrophy Shrinking of one of the sides of the brain
Heteroptera Misplaced nodules of gray matter
Porencephaly Cavities in the cortex

Many misfolding conditions have been identified (see Table 1.1). Among these,
polymicrogyria is one of the most common [45, 51]. Polymicrogyria is characterized
by a large number of small and irregular gyri, divided by shallow sulci. There are
several degrees of polymicrogyria. Sometimes, only small regions of the cortex are
a�ected 1.7 (a)), while in other cases, the whole cortex is covered in microgyri. Two
other striking misfdoling conditions are lissencephaly – the complete or partial lack
of folding of the brain (Fig. 1.7 (b))–, and pachygyria – the appearance of large gyri
on the brain (Fig. 1.7 (c)). These misfoldings are rare conditions. Lissencephaly,
for instance, occurs in only 1 in 85,000 births [46]. Cortical misfoldings are closely
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(a)

(b) (c)

Figure 1.7: (a) Example of pachygyria (left) on a new-born Churra lamb. Compare
with the control brain, on the right. Taken from [48] under CC-BY License. (b)
Example of lissencephalic human brain. Adapted from [49] under CC-BY License.
(c) Schematic representation of a human brain a�ected by polymicrogyria. Adapted
from [50], with permission. ©2018 Elsevier Inc.
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related to other symptoms. Epilepsy, for instance, is a common occurrence in those
a�ected by cortical malformations. These malformations have also been associated
with varying degrees of mental retardation, seizures, developmental delays, cerebral
palsy, and failure to thrive [52].

The origin of these diseases have not been fully understood. Many of these condi-
tions have been linked to genetics [45], and often manifest as over- or undermigration of
neurons to the cortex. Such lack or excess of neurons may lead to mechanical changes,
for instance, a change in the cortical thickness, or the softening of the brain tissue.

1.5 Hypotheses of folding

1.5.1 Skull constraints

One of the earliest, and maybe most intuitive, hypothesis regarding folding is that
it is created through the constraints imposed by the skull onto the cerebrum, thus
forcing it to fold in order to fit within the cranial cavity [28]. While perhaps one of
the evolutionary incentives, it is not mechanically sound, as the skull does not ossify
until after the brain stops growing. Indeed, evidence suggests that the pressure of the
growing brain dictates the size of the skull, not vice-versa. In pathological cases, such
as megaencephaly, the size of the skull is conformant to the shape of the brain [13,
44], and even in healthy individuals the gyral crowns are imprinted on the internal
side of the skull [53], indicating that the skull is being shaped by the brain. In the
seminal work by Barron [54], the progenitor skull tissue was removed from a sheep
fetus. After the specimen’s birth, brain folds were still observed, even in the abscence
of the skull. Simulations suggest that the skull could be responsible for the flatness of
the gyral crowns, but is not determinant for the folding of the simulated brain [55].

1.5.2 Blood vessels

Another early hypothesis for folding was that the vascularization is one of the drivers
of folding. Reichert, in 1861, argued folding would lead to a better entrance of the
pial blood vessels into the pial surface [56], an argument echoed by Ranke [57] and
Cunningham [58]. A similar argument was made by Kükenthal and Ziehen regarding
the lymphatic system [59]. One of the main arguments in favour of this hypothesis
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was the coincidence between the onset of vascularization with the onset of cortical
expansion [60]. This idea was already rejected by the early 20th century, based on
the existence of folding in internal structures as well of the cortical surface [60]. This
rejection is put most strongly by Welker, who, based on findings that mechanical e�ects
of the blood vessels on the cortex are secondary and superficial, states “No longer is
it believed that major blood vessels induce fissuration during development” [13].

1.5.3 Structural connectivity

(a) (b) (c) (d)

Figure 1.8: “Tension-mediated folding of cerebral cortex. a, Early in development,
neurons (black) migrate to the cortical plate along radial glial cells (red), di�erentiate
and emanate axons. b, Many axons reach specific target structures before the onset of
cortical folding. Tension (arrows) would pull strongly interconnected regions together
and allow weakly interconnected regions to drift apart. c, This leads to outward
folds that separate strongly interconnected regions, and inward folds that separate
weakly interconnected regions. Connections with subcortical structures (not shown)
may also influence cortical folding, although to a lesser degree because the tangential
force components are smaller. d, Cortical folding causes shearing that tends to stretch
the radial axis (broken lines). Compensatory tangential forces (small arrows) would
tend to thicken the deep layers along outward folds and the superficial layers of inward
folds, making their constituent cells (green) taller and thinner. The converse should
occur in superficial layers of outward folds and deep layers of inward folds. Additional
tangential force components associated with axons in the white matter (thick arrows)
should enhance these e�ects on deep layers and counteract them in superficial layers.”
Adapted by permission from [61] Nature-Springer, Nature, ©1997.

One common hypothesis in the field is based on the tension generated by the axons
crossing the white matter. Neurons, as many other biological materials, are active
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materials, meaning that they are in a permanent state of non-equilibrium [62]. As such,
they can respond to external stimuli in complex ways. For instance, when analysed in
vitro, neurons were observed to impart constant tension upon the substrate [63]. They
behave as a complex viscoelastic material: when under intermittent stretches, neurons
behave as a simple elastic, while under resting strain, the neurons increase in length,
leading to a decrease in the tension observed, until equilibrium is again reached [63]. In
contrast to passive materials such as rubbers and polymers which have their materials
spread out, the neuronal response to tension is to grow [64], reaching a new rest length.
As such, once compressed the neurons do not shrink [63].

Based on these arguments, van Essen posited that the internal wiring of the brain
could be one of the main drivers of folding [61]. In this hypothesis, the tug-of-war
between the cortical expansion and the tension of the neurons connecting di�erent
parts of the brain creates the gyri. Inhomogeneities in the axonal density keeps well-
connected areas closer, while allowing areas with few connections to drift apart. As
such, this hypothesis would explain two important factors about the morphology of
the brain: its folding and its compact wiring.

While widely accepted, this hypothesis went untested for a long time [22]. One of
the predictions derived from this hypothesis was that the whole gyrus would be under
tension during development. Recently, Xu et al. [41] performed a series of experiments
where incisions were performed in developing ferret brains, and the resulting displace-
ments were measured. These experiments showed that while there is indeed tension on
the brain, it was located too deep in the white matter. Instead, the center of the gyrus
was observed to be under compression, rather than the tension predicted by the axonal
traction hypothesis. The status of this hypothesis is currently disputed, with many
in favor of the buckling hypothesis (see Sec. 1.5.4). However, recently improvements
have been made to this theory, where the smectic organization of axonal bundles, and
the cerebral cortex is then modeled as a layered liquid crystal [65], which results in
stresses consistent with the experimental data.

1.5.4 Di�erential growth

Opposed to the tension based hypothesis, in the buckling hypothesis it is compressive
stresses in the cortex that leads to folding. In this thesis, we will mainly follow this
hypothesis, and consequentially explore its variants in more detail in Sec. 1.6.
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Figure 1.9: “(A) Proposed two-layered spherical model in the initial state before buck-
ling (Symbols are defined in the text.) (B) Illustration of a segment of buckled surface
predicted by the mechanical anaysis of the model in (A). The surface shown here, with
the wavelength of buckling (l

√
2) equal in both x- and y-directions, is only one of an

entire set of possible solutions.” In this figure, t1 and t2 denote the thickness of corti-
cal layers, and ‡1 and ‡2 denote the stress on these layers. Adapted with permission
from [66]. ©1975, American Association for the Advancement of Science.

As mentioned previously, the brain is divided into two main regions: The gray
matter, and the white matter. The former is subdivided into a number of layers,
typically six (see Sec. 1.3.1). In 1975, Richman et al [66] argued that a mismatch
between the growth of these layers could generate enough stress that the whole cere-
bral cortex would buckle. Richman analytically calculated the corresponding energy
minimum of this mismatched system, and observed that the resulting conformation is
a wavy structure, whose wavelength depends on the ratios between the sti�ness of the
cortical layers as well as geometrical quantities, such as the thickness of the cerebral
cortex. Given the then-current estimates for the cortical thickness, the theory required
a large sti�ness ratio between the gray and white matter materials, in the order of
10 [11]. These ratios disagree with data from rheological experiments, which indicate
a value closer to unity [11]. While more accurate estimates of the cortical thickness
lead closer-to-real estimates of the wavelength [67], some issues still linger.

Firstly, this hypothesis only generates the primary folding of the cortex. Secondly,
the shape of the gyri is not as those observed in the mammalian brain. Namely,
the mammalian brain presents smooth gyri and cusped sulci, while the postbuckling
conformations look like a smooth wave [68]. Thirdly, the folds of the brain, specially
the primary gyri and sulci, are highly reproducible between di�erent individuals [28],
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for which no mechanism was originally proposed. Lastly, the buckling hypothesis
depends on the gray matter being at least moderately sti�er than the white matter.
Currently, there is no consensus on that, with experiments indicating that the gray
matter is indeed sti�er than the white matter [42, 69, 70], and vice-versa [71–73].

Another buckling-based model was put forth by Mota et al. [74], where the cortex
is modeled as a thin sheet, which is then compacted, in a process similar to the
production of a ball out of a sheet of paper. This model was shown to accurately
predict the relation between the total cortical surface, cortical thickness and exposed
area, and consequentially, GI. This model, however, exacerbates the morphological
issues in the Richman model. The creases appear at random, and the shape of the
folding is not at all similar to those in the brain [22].

1.6 State of the art
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Figure 1.10: Number of citations of the original article proposing the buckling hypoth-
esis [66], per year. Data retrieved from Web of Science on 2020-Jun-23. The asterisk
indicates incomplete yearly data.

In recent years, there has been renewed interest in the buckling hypothesis (see
Fig. 1.10). A slight modification to the proposal by Richman has gained wide accep-
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tance, where no longer the di�erence between the growth in di�erent cortical layers
leads to buckling. Rather the di�erence between the cortex and the underlying white
matter generates the buckling stress [68, 75, 76].

One of the earlier e�orts in this new wave was that of Toro and Burnod [75].
They introduced a simple but rich model, where an elastic ring connected through a
substrate to a hard core grows and folds. The ring and the substrate within are split
into a moderate number of quadrilaterals, with a single layer for the ring, and another
layer for the substrate. In this model, the ring is intended to mimic the growth process
happening in the cortex, while the substrate mimics the white matter underneath.

The reference area of the cortical ring is grown logistically, while both the substrate
and the ring are allowed to accommodate deformations plastically. In this model,
folding happens in three steps. Firstly, the brain grows symmetrically, while unfolded.
On the second step folding becomes energetically favorable, and the ring buckles.
Lastly, there is an accommodation of the folds, where the folds migrate around the
perimeter of the ring, and sometimes, merge into a larger fold (see Fig. 1.11). It was
also observed that the post-buckling thickness was non-uniform, with the gyri being
slightly thicker than the sulci. The e�ects of geometrical and mechanical di�erences
in brain folding were studied, where it was noted that the curvature, inhomogeneities
in the sti�ness of the cortex, and its growth rate are important folding determinants.

Figure 1.11: “Development of convolutions in the model. (...) Screenshots of the
model at 500 iteration steps (radial elements are not drawn to avoid burden). Initially
the model expands symmetrically without developing convolutions, then convolutions
develop, and finally the convolutions are accommodated in the cortical layer.(...)”.
Taken with permission, from [75]. ©Roberto Toro 2005.

The main shortcomings of this model come from its simplicity. While inspired
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by the rheology of the brain, it uses first order approximations of the viscoelastic
properties of cephalic material. Furthermore, as the cortex is modeled as a monolayer
of simulation cells, tangential displacements are severely restricted. As such, while
it does reproduce important aspects of gyrogenesis, it does not break the sinus-like
folding patterns predicted by Richman forty years prior [66].

Figure 1.12: “E�ects of cortical growth rate on wavelength, subcortical growth, and
stress in the cortical folding model with a compressive target stress in the outer core.
Columns: radial growth Gr; tangential growth Gt (...)”. �G indicates the ratio between
the growth rate of the cortex, and the stress response rate of the white matter. Adapted
under permission from [77]. ©2013 IOP Publishing Ltd.

A few years later, Bayly et al. used a more sophisticated model, where the brain
material is now modeled using the more complex framework of continuum mechan-
ics [77]. In this framework, the material properties of the brain can be more directly
connected with experimental data. The viscoelastic aspect of the white matter was
introduced through a homeostatic growth law, where regions with stress smaller than
a target stress shrink, while those above the target stress grow. The cortical material,
however, was modeled as a purely elastic material, which grows with no regards to the
current stress or strain.

It was noted that the rate by which the white matter responds to stress was impor-
tant in the determination of the folding wavelength, with wavelengths consistent with
those obtained experimentally (see Fig. 1.12). In contrast to the works of Richman et
al., large sti�ness contrasts between the white and gray matter were not necessary in
the model, where as both the gray and the white matter had the same elastic properties
(see Fig. 1.12). The predicted stress fields obtained computationally were consistent
with those obtained experimentally in the developing ferret brain [41].

In 2014, Tallinen et al. realised fully three-dimensional simulations of the grow-
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Unfolding

Folding

(a)

(b)

Figure 1.13: (a) Results of growth on spherical sections. In this experiment, the left
configuration corresponds to a healthy brain. The middle configuration presents a
thinner cortex in one patch, leading to results reminiscent of polymicrogyria. On
the right, a thickned cortex leads to results similar to pachygiria. Taken under non-
commercial license from [68]. ©Tallinen et al. (b) Process of unfolding and refoling a
numerical brain. ©2016, Springer Nature

ing brain. In this work, they allowed the cortex of an elastic sphere to grow, and
obtained fascinating folding patterns [68]. From this homogenous cortex, a realistic
folding pattern emerges, with folds that are, at first sight, strikingly similar to those
found in the mammalian brain. However, upon close scrutiny, it is noted that misses
some important aspects of folding, such as the hierarchical folding, and reproducible
directionality of the folds. The e�ects of the skull were also studied, and it was noted
that it was not required for realistic folding characteristics of the brain (see Fig 1.13
(a)).

They built on top of the these simulations a few years later, where a virtual brain
was shrunken, and then grown back to its original volume [78]. Many features of the
original brain were observed in the configuration resulting from the growth of the fetal
brain obtained numerically (see Fig 1.13 (b)).

Budday’s group has been doing intensive research on the details of brain folding.
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These works have shown a large number of interesting phenomena predicted by the
buckling hypothesis. They model the gray matter similarly to Bayly [77], where the
gray matter is modeled as a hyperelastic material growing autonomously, while the
white matter grows only in response to stress. However, they use the simplifying
assumption that the white matter always grows volumetrically. That is, even stretches
in a single direction would lead to growth along all three axes.

In one of the earlier works, it was shown that successive bucklings are prime candi-
dates for drivers of higher order folding [79]. This is in contrast to what was observed
in the earlier works by Toro et al. [75], who observed the smooth emergence of higher
order folds, which are not consistent with the idea of multiple buckling processes, where
they performed three dimensional simulations of ellipsoids [76]. In previous works in
rectangular domains, it was observed that the wavenumber of the post-buckling config-
uration depends on the mechanical parameters – Young Modulus and Poisson ratio –
and the cortical thickness of the grown layer [80, 81]. It was shown that the curvature
is also important in the determination of the folding wavelength of the folds. This
helps explain the variations between the folding conformations of di�erent species,
where spherical brains have uniform folds, while elongated brains fold primarily in the
longitudinal direction [28]. Another work conducted in the same lab studied the e�ects
of sti�ness and growth inhomogeneity, which indicated that in addition to secondary
and tertiary buckling, structures reminiscent of the higher order folding also emerge
due to growth and sti�ness inhomogeneities in the brain [82].

The works highlighted so far dealt mostly with the purely mechanical aspects that
might drive folding, and have not studied how growth emerges, nor the interplay
between growth factors and folding. Since the seminal work by Turing [83], one of
the leading frameworks in morphogenesis has been the Reaction-Di�usion paradigm,
where the concentration of growth factors are explicitly modeled. One of the most
common formulations of this idea is called the Gray-Scott reaction-di�usion model,
modeling two reagents with concentrations u and v

ˆu

ˆt
=ru∇2

u − uv
2 + f(1 − u)

ˆv

ˆt
=rv∇2

v + uv
2 − (f + k)v,
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where r{u,v} describe the di�usion rate of the reagents, k represents the conversion
rate between the two reagents, and f represents the rate of the process consuming
the reagents. This two-component model is known to create a plethora of di�erent
patterns, depending on the rate of reaction and feeding of each component [84] (see
Fig. 1.14).

Figure 1.14: The various patterns predicted by the Gray-Scott model. Taken under
permission, from [84]. ©1993 by the American Association for the Advancement of
Science.

These models were applied to the brain by Lefèvre et al. where the two components
are posited to be activators and inhibitors of growth [49], the former of which leads
to an increase in the cortical area. These simulations were conducted on spherical
manifolds, where the formation of complex labyrinths, and in some cases, isolated
spots, reminiscent of polymicrogyria were observed. These results were refined by Hinz
et. al., where isogeometric analyses was also employed in addition to the finite element
analyses employed by Lefèvre et al. [85], leading to the ability to create smoother
resolutions, indicating the possibility of even larger and detailed simulations in the
future.
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Figure 1.15: “An isometric view comparison of the hemispherical model, left, and
hemi-ellipsoidal model, right”. The arrow on the left indicate a structure resembling
an emergoing central sulcus. Taken with permission, from [86]. ©2017 Elsevier Ltd.

Verner and Garikipati [86] conducted a similar investigation to Lefèvre, which ac-
counted for both mechanical distortions and di�usion of the growing factor. They
modeled the cell density through a reaction-di�usion-advection equation, which is
numerically more amenable. This model was employed on ellipsoidal shells and cor-
roborated the importance of geometry, showing that structures resembling the central
sulcus emerge once the eccentricity of the initial manifold is large enough. It was ob-
served that neglecting the cell density migration inhibits the formation of the localized
central sulcus (see Fig. 1.15). Such feature highlights the importance of inhomogeneity
in the formation of localized structures, as the removal of cell migration from their
model leads to homogeneous growth, and therefore, to non-localized structures.

1.7 Summary and Objectives

In this chapter, many of the characteristics of the mammalian brain were introduced,
and the processes it undergoes were outlined. Emphasis was put on those processes
that are thought to be relevant for gyrogenesis. Some of the hypotheses regarding the
drivers of folding were introduced. Out of the various hypotheses proposed throughout
the centuries, the buckling hypothesis has received special attention in the contem-
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porary literature. Current models of brain development derived from the buckling
hypothesis can reproduce the coarser aspects of gyrogenesis, but important features
are still missing. The importance of these features is derived from their ability to
distinguish between healthy and unhealthy development.

This work aims to help understand the folding process of the brain using simulation
tools. The mechanistic approach, where the stresses and strains are seen as drivers
of the morphogenesis will be used. Two aspect of folding will be explored in detail.
Firstly, the e�ects of inhomogeneities in the cortex will be analysed, both in isolation
and in union.

Another important aspect of folding is the interplay between the timescales of the
various processes during growth. As shown in Sec. 1.3, folding is a complex pro-
cess involving many steps, each with their own timescales. The importance of these
timescales is probed by performing simulations with various growth rates, and per-
forming comparisons both among themselves, and with systems obtained using the
quasistatic approximation.

The source of the probed inhomogeneities will not be target of further discussion
– they will be assumed to exist a priori. However, it is important to keep in mind the
literature body showing that the inhomogeneities are possibly a natural consequence of
the di�usion and reaction of growth agents throughout the brain during development
and were observed in cortical and subcortical structures [39, 40] (see Subsec 1.3.3 for
more details).

1.8 Structure of this thesis

The remainder of this thesis is organized as follows. In Chapter 2, the theory of con-
tinuum mechanics, with focus on nonlinear elasticity, and the finite element method
are developed. They are used to obtain the equations which will be calculated nu-
merically. The Newton-Raphson root finding algorithm and the Verlet algorithm are
adapted for the case at hand. In Chapter 3, the software package developed during
this thesis, JuFold, is presented. Its overall design is described, as well as a gallery of
examples. Chapter 4 studies how homogeneous and inhomogeneous systems develop
in the slow growth regime. We show that inhomogeneities in the thickness of corti-
cal layer of these systems is enough to generate conformations similar to those in the
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mammalian brain. In Chapter 5 dynamical simulations are introduced. The relative
time scales of growth and relaxation are analysed. Inhomogeneities in growth rate are
introduced in isolation, and the interplay between di�erent inhomogeneities is studied.
Finally, Chapter 6 provides a summary of the results obtained, a provides an outlook
for possible new research.



Chapter 2

Theory & methods

2.1 A short introduction to nonlinear elasticity

The current theory of nonlinear elasticity is the combined result of the work of many
people, being an elegant, wide, and diverse field. Here we present a brief overview of
the topic, covering solely the topics directly required for the critical understanding of
the results in this work. Good introductions to the topic can be found in [87, 88],
while more advanced accounts can be found in [89–91].

2.1.1 Configurations, coordinates, the gradient deformation
tensor

The key to the undertanding of nonlinear elasticity is to keep in mind that there
are two configurations, and therefore, two sets of coordinates to work with. First,
there is the original configuration, denoted by B0 ⊂ R3. This is the configuration that
the body would assume without external forces or contraints, being thus stress-free.
Once forces and constraints act on the body, it assumes the deformed configuration,
denoted by B ⊂ R31. As an example, a bar supported on its sides is shown in Fig. 2.1.
Without external forces, the bar is flat. Once forces act on it, the bar assumes a curved
configuration.

In this work, capital letters will denote entities on the original configuration, and
1In Sec. 2.2, a third, grown, configuration is introduced, which is the result of internal process

that change the original configuration and produce a new stress-free configuration.
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Figure 2.1: Sketch of a supported bar under a traction field (e.g., gravity), represented
by arrows pointng down. The original configuration B0 is represented on the left. Once
forces act on this body, it deforms into the configuration B, as sketched on the right
side

minuscule letters will denote entities on the deformed configuration, with minor excep-
tions indicated in the text. For instance, the coordinates of the original configuration
are denoted by X = (Xx, Xy, Xz), while the deformed coordinates are denoted by
x = (xx, xy, xz). More formally, the deformed coordinates are given by a mapping
x = „(X) from the original into the deformed coordinates, with the B0 being the do-
main of this mapping, and B, its range. The displacement u(X) is defined as the
di�erence between the coordinates on each configuration, u(X) = x −X.

It is possible to work in any of the two coordinates, with equivalent results. This
work stays mostly in the original (also called material or Lagrangian) configuration.
For completeness, the deformed configuration is also called spatial or Eulerian. The
functional form of many quantities in the two configurations can be connected using
the gradient deformation tensor

F = ∇0x = ˆx
ˆX

. (2.1)

Equivalently, it is possible to write this tensor in terms of the displacement field u
as F = ˆu�ˆX + I. It is worth the e�ort to understand the action of the gradient
deformation tensor F on a small line in the original configuration dX. Multipling F
with this di�erential yields

FdX = ˆx
ˆX

dX (2.2)

and by the application of the chain rule,

FdX = dx. (2.3)
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That is, F takes a small line in the original configuration, and returns its corresponding
line in the new configuration. Similarly, it is possible to push any quantity forward
and backward between the two configurations. However, the way to perform these
operations is specific to each quantity. For instance, to push the element of area, the
following equation is used

da = JF−1
dA, (2.4)

where J = det(F). Pushing quantities forwards and backwards between the two config-
urations is a common operation. So common, in fact, that there is a specific notation
for both of these operations. „∗[A] and „−1∗ [A] are called the push forward (from B0

to B) and pull back (vice-versa) respectively, for any given quantity A. For instance,
the pushing forward and backward of the di�erential line is written as dx = „∗[dX]
and dX = „−1∗ [dx]. This notation allows us to focus on the big picture, and hide details
that, while important, might distract from the main point.

2.1.2 Strain

Comparing the displacement of two di�erent bodies can often be misleading, as the
sizes involved can be widely di�erent. Large displacements on a large body can be
created by small local deformations, while the same displacement on a much smaller
body can only be created by large local deformations. In order to develop a universal
theory that is independent of the dimensions of the body being studied, the strain,
rather than the displacement should be used. In the small displacement regime, the
strain is defined by the tensor ‘ij = 1

2 � ˆui
ˆxj
+ duj

dxi
�, where ui is the i-th component of the

displacement. This definition carries the following advantages

1. It is independent of the length of the body;

2. It is invariant under solid-body displacement;

3. It is zero when the deformed and original configurations coincide.

While advantageous for its simplicity, the infinitesimal strain tensor ‘ is often not
appropriate, as it is not invariant under rotation and does not distinguish between the
strain measured in the material and spatial coordinates. New strain tensors need to
be built that bridges those gaps.
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Upon deformation, the length of a small vector dx in deformed coordinates relates
to its original length by

dx ⋅ dx = „∗[dX ⋅ dX] = dX ⋅ (FT F) ⋅ dX = dX ⋅C ⋅ dX (2.5)

where the tensor C = FT F is called the right Cauchy-Green tensor, which has the
property of pushing lengths from the original into the deformed configurations. A
similar procedure can be followed by pulling the length dx ⋅ dx from the deformed to
the original coordinates, obtaining in the process left Cauchy-Green tensor b = FFT .

Being based on the gradient deformation tensor, both of the Cauchy-Green tensors
are length-independent and translationally invariant. In order to prove that they are
also frame-indi�erent2, the Polar Decomposition theorem is invoked, which states that
for a given matrix it is possible to obtain a decomposition such that

F =UR or F =RV. (2.6)

These are called the left and right polar decompositions, respectively. Here, R is a
rotation tensor, and U and V are symmetric tensors. As all the rotational information
is in encoded into R, it is clear that both the Cauchy-Green tensors are rotationally
invariant, as the information is eliminated in the products RT R and RRT . It is now
possible to define the strain tensors

E = 1
2(C − I) and e = 1

2(I − b−1). (2.7)

which have the same properties as the infinitesimal strain tensor ‘, and solve its
shortcoming. These are called the material and the spatial strain tensors3. In the
limit of small displacements, both forms of the strain tensor approach the usual linear
strain tensor ‘.

These two are some of the most commonly used strain tensors. However, other
choices are possible, and useful in specific situations [93]. For instance, the Hencky
strain E0 = log U has several applications in hypoelasticity [94]. Even the properties

2In continuum mechanics, tensors are often defined as a linear transformation [87], in contrast to
fields more closely connected di�erential geometry, where tensors are defined as quantities obeying
certain transformation rules [92]. In continuum mechanics, quantities that do obey these transforma-
tions are called objective tensors.

3It is possible to push the material strain tensor to its spatial correspondent with e = „∗[E] =
F−T EF−1, and vice-versa.
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required in the current section are somewhat opinionated, i.e., length-independence,
frame-indi�erence, zero when configurations coincide. There are various schools of
thought on how to define a strain tensor, and which properties they should obey. See
Ref. [94] for a discussion on the di�erent ways to define the strain tensor.

2.1.3 Hyperelasticity and energy density

Up to this point, no particular material has been described, and only some fundamental
definitions necessary for the development of the theory have been laid down. Indeed,
the equations stated so far are valid for any material, be it a steel bar or a human
brain. The material properties of the studied system are finally introduced via the
energy density function �, which will indicate the energy cost for a given deformation
in a given material.

We restrict that analyses to materials and deformations where the energy density
depends only on the initial and deformed states, with no regards on the history of
the deformation. Such materials are called hyperelastic. For an isotropic material, the
same properties are required for the energy functional as were for the strain tensor.
Thus, it is natural to write the energy density in terms of the strain tensors, E or
e, or at least of the Cauchy-Green deformation tensors C or b. In the hyperelstic
regime, the internal energy U is then a functional of the deformations, calculated by
integrating a energy density � over the whole body,

U[u(X)] = �
B0

�(E(u))dV. (2.8)

The energy density then defines the type of material used. It is worth emphasizing
that the energy density function is an input to the theory of nonlinear elasticity, and
must either be obtained experimentally, or derived from thermodynamical arguments.
The usual linear elastic material, which will be generalized shortly, is represented by
the following energy density

�L(‘) = ⁄

2 (tr(‘))2 + µ‘ ∶ ‘. (2.9)

where µ and ⁄ are called the Lamé parameters, and ‘ ∶ ‘ = ‘ij‘ij denotes the double dot
product. As the infinitesimal strain tensor ‘ is not rotationally invariant, nor is �L.
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This can be fixed by exchanging the infinitesimal strain tensor by the material strain
tensor. This operation yields a similar, but rotationally invariant, energy density

�SK(E) = 1
2⁄(trE)2 + µE ∶ E, (2.10)

called the St. Venant-Kirchho� energy density. Similarly to its infinitesimal counter-
part, this energy density function fails to describe most materials when the strain is
larger than a few tenths of a percent. When larger strains are involved, it is common
to use the so called Neohookean models. The common feature in this family is the
term

�NH(C) = µ

2 (trC − 3). (2.11)

This model, however, presupposes that the system is completely incompressible [95].
While such restriction is often useful in analytical works, it can be detrimental in com-
putational approaches, as it can lead to volumetric locking [96]. There are several
ways to extend this equation to allow for compressibility. A common choice in the
literature is

�CNH(C) = µ

2 (trC − 3 − 2 log J) + ⁄

2 (log J)2. (2.12)

This formulation has the advantage of converging to the St. Venant-Kirchho� energy
density in the low strain regime, and being well studied in the literature. We will use
this density throughout this work, as it has been shown to properly model the elastic
properties of the brain tisse [76, 97].

As can be noticed in Eqs. 2.10 and 2.12, the elastic properties of a homogeneous
material are often parametrized by two values. So far, the Lamé parameters, µ and
⁄, were introduced. However, in linear elasticity, several combinations are possible,
with the specific pair used depending on the context. For instance, the sti�ness of the
material is often given in terms of the Young Modulus E, or the bulk modulus K,
while its compressibility is given by the Poisson ratio ‹.

In this work, the pairs (⁄, µ) and (E, ‹) are used most often. For the small defor-
mation regime, it is possible to convert the two pairs as [98]
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⁄ = E‹(1 + ‹)(1 − 2‹) , µ = E

2(1 + ‹) (2.13)

or conversely,

E = µ(3⁄ + 2µ)
⁄ + µ

, ‹ = ⁄

2(⁄ + µ) . (2.14)

These equations are not complete once compressibility is introduced. When comparing
elastic tensors yielded by the compressible Neo-Hookean energy density (Eq. 2.12) with
those yielded by the St. Venant-Kirchho� energy density (Eq. 2.10), a correction term
emerges, which leads to the following dependencies [87]

⁄
′ = ⁄

J
, µ

′ = µ − ⁄ log(J)
J

and thus

‹
′ = 1

2
⁄

⁄[1 − log(J)] + µ
, E

′ = µ − 3⁄ log(J)
J

2µ + ⁄(3 − 2 log(J))
µ + ⁄(1 − log(J)) .

2.1.4 Langrangian, stress, and equations of motion

Nonlinear elasticity does not deal with forces directly, but rather with body force
densities (acting on the material bulk) and traction densities (acting on the surface).
In order to avoid naming conflicts, an exception to the uppercase-lowercase rule is
made. The body force and traction densities are named f ext

0 and text

0 , respectively, in
material coordinates, and f ext and text in spatial coordinates. The total energy of the
system system is given by two terms, the internal energy due to deformations (shown
in Sec. 2.1.3) U and the kinetic energy K

U = �
B0

�(F(u))dV, K = �
B0

1
2fl0u̇ ⋅ u̇dV. (2.15)

For a given displacement u, the work performed by conservative and constant external
forces is given by

W = �
B0

f ext

0 ⋅ udV + �
ˆB0

text

0 ⋅ udA. (2.16)
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It is now possible to build the Lagrangian functional L as

L =K − (W +U). (2.17)

Due to the field approach taken in this work, the usual version of the Euler-Lagrange
must be generalized, as the Lagrangian is now a functional over the displacement,
itself a vectorial field. It is thus necessary to introduce a new derivative, known as
the directional derivative [87, 89]. The definition and properties of this derivative are
explained in Appendix A. In this framework, the Euler-Lagrange equation reads

ˆ

ˆt
DL(u, u̇)[0, ”v] −DL(u, u̇)[”v, 0] = 0 (2.18)

Applying the generalized version of the Euler-Lagrange equation is, for the most
part, direct. The exception being the derivative of the internal energy,

�
B0

D�(F(u))[”v]dV

which deserves some attention. In particular, it is advantageous to rewrite this in
terms of a stress tensor. This procedure is performed in Appendix. A.3, with result

�
B0

D�(F(u))[”v]dV = �
B0

P ∶ ∇0”vdV. (2.19)

The tensor P = ˆ�(F)
ˆF is called the first Piola-Kirchho� stress tensor, and it measures

the stress in the original coordinates. As such, it is a two-point tensor, linking a unit
vector in material coordinates to a traction in spatial coordinates. Contrary to the
standard Cauchy stress tensor, the first Piola-Kirchho� stress tensor is not necessarily
symmetric. This relation forms the constitutive equation for the modelled material.

The force components of the equation of motion now reads

DL(u, u̇)[”v, 0] = �
B0

P ∶ ∇0”vdV +�
B0

f ext

0 ⋅ ”vdV + �
ˆB0

text

0 ⋅ ”vdA, (2.20)
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Using the properties of the divergent operator ∇0⋅, it is possible to further decom-
pose the forces into

P ∶ ∇0”v = ∇0 ⋅ (P ⋅ ”v) − (∇0 ⋅P) ⋅ ”v. (2.21)

The weak form of the equation of motion is then found to be4

�
B0

fl0
ˆ2u
ˆt2 = �B0

(∇0 ⋅P) ⋅”vdV −�
B0

f ext

0 ⋅”vdV −�
ˆB0

(P ⋅N) ⋅”vdA−�
ˆB0

text

0 ⋅”vdA (2.22)

where the vector N is the normal vector to the surface ˆB0. It is possible to find the
local (i.e., strong) version of the equations of motion using the arbitrariness of the
domain and of the direction of the derivative, as

fl0
ˆ2u
ˆt2 = ∇0 ⋅P − f ext

0 (2.23)

P ⋅N = text

0 .

This is called the Cauchy equation of motion in material coordinates. A similar pro-
cedure can be followed in the deformed coordinates to obtain

fl
ˆ2u
ˆt2 = ∇ ⋅ ‡ − f ext (2.24)

‡ ⋅ n = text
.

where ‡ is the usual Cauchy stress tensor, f ext are the external forces in deformed
coordinates, fl is the density in the deformed configuration, and n is a unitary vector.
These two stress tensors are linked by the following identity

‡ = PFT

J
, (2.25)

where J = det(F)5. For the brain, we also assume a dissipation in form of an external
4The advective term vdfl

dt is small compared with the other terms in the equation, and has been
ignored, in line with other works in the field [68, 78]. See Ref. [99] for a further discussion.

5Similarly to the strain tensors, there are many more possibilities for stress tensors than the two
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force � = −µˆu
ˆt

.

2.1.5 Quasistatic approximation

Forces applied to elastic materials induce shockwaves. The amplitudes of these shock-
waves then decrease in time due to internal friction and drag. For simple elastics,
these are the two important timescales of the system: the vibration period of elastic
waves, and the time it takes for the energy to dissipate into heat. Growing materials
in particular, have a third time scale induced by the growth process.

The interplay between the various timescales is complex, and are investigated and
discussed in Ch. 5. To understand the e�ects of growth alone, in Ch. 4 it is supposed
that the time scale of growth is much larger than the timescales of dissipation and
vibration. In this regime, only the equilibrium state matters. This is to say, the only
relevant deformations u are those that

0 = ∇0 ⋅P − f ext

0 ⇒ ∇0 ⋅P = f ext

0 . (2.26)

This is called the equilibrium equation. In e�ect, this is equivalent to an energy
minimization procedure. In order to solve this equation, it is necessary to use a
nonlinar solver, as detailed in Sec. 2.4.1.

2.2 Growth

To model brain folding, it is essential to add the growth process to our theoretical
roster. The growth framework first laid by Rodriguez and his collaborators will be
used [100], where an additional configuration is introduced between the original and
the deformed coordinates (see Fig. 2.3). This new configuration is called the grown
configuration, and does not necessarily need to be consistent with boundary conditions.
For instance, it can be discontinuous or have a topology distinct from the original
system. If this is the case, the system will present some sort of residual stress, which
is consistent with multiple experiments in grown systems [101–103].

mentioned in this section. Each of them have their advantages and disadvantages, but for the topics
discussed in this thesis, the ones introduced here will su�ce. For further discussion on other stress
measures, we refer the reader to the references in the beginning of this chapter.
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In mathematical terms, the gradient deformation tensor F is decomposed in two
parts,

F = FeFg, (2.27)

where the deformation due to growth is completely contained in the growth tensor
Fg, while the mechanical quantities (i. e., energy, forces, etc) are derived based on the
elastic tensor Fe. The energy and forces are calculated only from the tensor Fe. Thus,
the hyperelastic energy density is redefined as

� = �(Fe) (2.28)

The extension of the first Piola-Kirchho� tensor to the grown regime is more subtle.
In order to arrive at the correct formulation of the tensor, it is important to pay
attention to the configuration on which integrations are being performed, especially
when these integrations were performed in the stress-free configuration. During the
exposition in Sec. 2.1.3, this corresponds to the original configuration, B0. Once growth
is introduced, this is no longer the case. Rather, the stress-free configuration is given
by the grown configuration. That, is the total energy and the first Piola-Kirchho�
tensor are found to be

U = �
Bg

�(Fe(u))dVg, and Pe = ˆ�(Fe)
ˆFe

, (2.29)

where Bg describes the grown configuration. It is, however, numerically advantageous
to integrate the equations of motion in the original domain. As such, the first Piola-
Kirchho� is found to be, in the original bodies,

P = ˆ�(Fe)
ˆF

Jg = ˆ�(Fe)
ˆFe

F−T

g
Jg, (2.30)

where the Jacobian Jg = det(Fg) emerges due to the change in the integration domain.
It is instructive to understand the e�ects of applying Fg in a few simple situations.

In Fig. 2.2, for instance, the e�ects of applying two distinct, but spatially constant,
growth tensors Fg to an initially square block are shown. In the absence of external
forces or constraints, it is intuitive to understand what will happen. As, by construc-
tion, the energy density reaches a minimum when Fe = I, the system naturally will
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deform such that F = Fg, leading to the shapes seen in Fig. 2.2.

Figure 2.2: E�ects of application of the constant growth tensors shown inside the
figure. On left, the rectangle’s height doubled, while on the left, the height is kept
constant and the width is doubled.

When the growth tensor is not constant, but presents some sort of spatial depen-
dency, it is harder to intuit the displacement of the system. One of those situations
is shown in Fig. 2.3, where the top layer grows, but the underlying material stays the
same size. As there can be no topological changes (i.e., no discontinuities, holes, etc),
a compromise must be reached: neither the top layer can grow to its desired size, nor
can the substrate avoid any deformation. Thus, a mushroom-shaped configuration is
reached. As the elastic component of the deformation Fe cannot equal the identity at
every point, residual stress is observed in the system, where the top layer is compressed
by the bottom layer, and vice-versa.

Fg Fe

Gray 
Matter

White
Matter

Figure 2.3: E�ects of application of the growth tensors shown inside the figure. From
left to right, the original, grown, and final configurations are shown. On the grown
configuration Bg the top layer grows tangentially by a factor a.

Now all the theory necessary to deal with growing elastic materials has been laid.
However, Eqs. 2.23 and 4.2 can only be analytically solved in very simple configura-
tions, under equally simple boundary and growth conditions. Rather, it is necessary



2.3. THE FINITE ELEMENT METHOD 39

to give a numerical treatment to relevant equations. The finite element method used
in this work is developed in the next section.

2.3 The finite element method

Finding a solution for the equations above is, in general, non-trivial. Even in relatively
simple boundary conditions, the nonlinearity of the system impedes the success of most
of the standard analytical methods to solve partial di�erential equations. Even more
so in non trivial boundary conditions, as will be the case for the systems in this thesis.
Thus, computational tools are needed to solve the equilibrium equations.

For the simulations in this work, the finite element method (FEM) [104], also com-
monly called finite element analyses, is used. FEM is a numerical method for solving
di�erential equations, specially those with complex boundaries. It was originally aimed
at aeronautical applications [105, 106], but nowadays it is an important tool in many
fields of computational physics and engineering, having been applied, for instance, in
fluid dynamics [107], electrodynamics [108], and naturally, biomechanics [109], among
many others.

In this section a general introduction to the method is presented, as well as the
derivation of the main equation which will be used throughout the text. As a toy
example, the FEM equation for the one-dimensional Poisson equation is developed in
Appendix B. This example allows the reader to understand the method, and compare
the solutions obtained numerically and analytically.

There are three main steps in the finite element method. First, the di�erential
equations are replaced by an equivalent integral equation, but whose solution is less
restricted. This process is called solving a problem in a weak sense. “Weakness”
is properly defined later in this text. Second, the sought-after function is expanded
in a base of well known functions, where integration might be easier. Third, these
solutions are obtained on a set of simpler geometries and assembled into the required
boundaries, however complex they may be. These ideas are expanded in the order
proposed above.
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2.3.1 Weak forms

In many physical situations it is not necessary, or even possible, to find a proper
function that solves a given partial di�erential equation (PDE). The PDEs in these
situations are too restrictive in their conditions. Instead, it is possible to search for
a distribution that solves the equation. In general solutions u for a linear operator P

given f are sought such that
Pu = f, u ∈ K (2.31)

subject to some boundary conditions. Here K is the Banach space6 of the functions
that obey the boundary conditions prescribed. We expand on common choices and
handling of di�erent boundary conditions in Sec. 2.3.4. In the terminology of PDEs,
P is a partial di�erential operator, and f is a function. The weak form of equation is
obtained by not requiring the strong equality above, but rather equality in the internal
products

�Pu, v� = �f, v� (2.32)

where the operator �⋅, ⋅� is the internal product of the Banach space K. This equality
must hold true for every function v ∈ K. The canonical choice of internal product for
functions defined in a domain � is

�u, v� = �
�

u
∗
vd�, (2.33)

where ∗ indicates complex conjugation. Other choices of internal products are also
possible, leading to di�erent formulations of the finite element method [104]. In e�ect,
the di�erential equation has been replaced by its integral form, creating the possibility
of reducing the derivative order of the solution u, as partial integrations are performed
to transfer those to the test function v.

This is a rather abstract treatment, and while the proof and analyses of the method
depends on non-trivial mathematics, the actual e�ort involved in obtaining the weak
form is comparatively small. An example of such a calculation is provided in Ap-
pendix B.1.

6A Banach space is a vectorial space augumented by a complete metric induced by its norm [110].
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2.3.2 Function expansion

While the weak form of the di�erential equation tends to be easier to solve than its
strong form, it still requires both the solution of a possibly di�cult integral equation,
and the proof that the equality in Eq. 2.32 holds for every element in K. Both of these
issues are solved by expanding the solution in a base of K

u(x) = ∞�
i=0

uiÂi(x) (2.34)

where ui are expansion coe�cients. The appropriate base to perform the expansion
will depend on the specific problem. Common choices include the Lagrange interpo-
lating polynomials, sinusoidal functions, or various others interpolating polynomials.
Introducing the expansion Eq. 2.34 into Eq. 2.32 leads to

∞�
j=0

uj �PÂj, v� = �f, v� . (2.35)

By construction, Eq. 2.35 is valid for every v(x). Thus, it is possible to expand
the test function as well v(x) = ∑i viÂi(x)

∞�
i=0,j=0

�PÂj, Âi� viuj = ∞�
i=0
�f, Âi� vi. (2.36)

As the interpolating functions Âi are linearly independent, the equality above holds
for every term in the sum over index i, leading to

∞�
j=0
�PÂj, Âi�uj = �f, Âi� . (2.37)

By enforcing this equality for every element of the base {Âi}, the equality is shown
to be valid for every element in the space K. Thus, instead of calculating the integral
over every element of the possibly infinite space K, integrals only need to be calculated
for the elements in the base, and the results of their application to the operator P . As
P might be a complicated operator, the integration must be performed numerically.
However, often the basis {Âi} is composed of polynomials, which often allows for exact
integration (up to numerical error) using Gaussian quadrature [111]. Once the values
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of these integrations are calculated, they are gathered into the linear equation

∞�
i=0

Bijuj = li, (2.38)

where Bij = �Âi, PÂj� = �PÂj, Âi�∗ and li = �f, Âi�, which can be recast into the matrix
form

Bu = l (2.39)

where B is called the sti�ness matrix, and l the force vector. Solving the linear
equation is equivalent to solving Eq. 2.32 and the original problem. Naturally, in its
current form, an infinite number of terms needs to be solved, which is not practical.
The solution is approximated to a finite number of terms, which are then solved in
finite time. See Appendix B.2 for a numerical example.

2.3.3 Discretization of space

The integration process in Eq. 2.37 is direct in one dimension, as was the case in
Sec. B.2 , or in simple domains. However, it is easy to see that it can be very complex,
depending on the boundaries of the problem, especially in higher dimensions. In the
hypothetical experiment shown in Fig. 2.4 (a), the mathematical description of the
domain necessary for the integration is di�cult, let alone the integration itself.

The last insight for FEM is that space can be discretized into smaller sections where
it is easy to perform the integrations required. Each of these simpler subdomains is
called an element or cell, and the set of all cells is called the mesh. Common choices
of cells shapes are triangles and quadrangles (in two dimensions), or tetrahedra and
octahedra (in three dimensions), or a mixture of both. A possible meshing of the heat
experiment is shown in Fig. 2.4 (b).

In each element, a family of functions to interpolate the solution is chosen. A
typical choice, also used here are the Lagrange interpolating polynomials, shown in
Fig. 2.5. They are defined as

Â
(1)
i
(x) = c

(1)
i

xi+1 − x

xi+1 − xi

�(x; xi, xi+1), (2.40)

Â
(2)
i
(x) = c

(2)
i

x − xi

xi+1 − xi

�(x; xi, xi+1) (2.41)
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Figure 2.4: (a) Schematic of hypothetical experimental setup consisting of two heat
baths connected through channels of varying sizes. The left side is kept at a hot
temperature TH , while the right is kept at a cold temperature TC . (b) Sample meshing
of the domain of the hypothetical experiment.

The expansion of the solution into thus reads

„e(x) = ∞�
i=1

2�
l=1

c
(n)
i

Â
(n)
i
(x), (2.42)

where the xi are the points of the discretization, ci are coe�cients to be determined,
and �i is the signal function defined by

�(x; xi, xi+1) =
���������

1, if xi ≤ x < xi+1,

0, otherwise
(2.43)

Due to the requirement that the function be continuous, the condition c
(2)
i
= c
(1)
i+1

is imposed for every i and due to the signal function �, the final matrix has a special
banded structure, which greatly simplifies the solution of the final linear equation.

The generalization of the procedures in this section for higher dimensions are, for
the most part, direct. Integrals are calculated over a surface (in two dimensions) or a
volume (in three dimensions), derivatives are replaced by vectorial operators, such as
the divergence, etc. However, one point that deserves some attention is the procedure
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Figure 2.5: Example of first order Lagrange polynomials over three cells in the real
line. The functions in each cell are denoted by a distinct color.

to build a high dimensional analogue for the base of functions, and how to build on
top of the one-dimensional families. Both of these processes are easier performed when
the mesh is composed of quadrangles and octahedra, as it is possible to expand the
dimensionality of the domain by a direct product of functions. For instance, in two
dimensions,

‡i(x, y) = Âi(x)Âi(y). (2.44)

This family, {‡i}, is used for bidimensional scalar problems, such as the general-
ization of the Poisson equation used in Appendix B. In order to deal with vectorial
problems, such as those in nonlinear elasticity, the range of the basis is expanded as

�2i = ��
‡i(x, y)

0
�
� �2i+1 = ��

0
‡i(x, y)

�
� . (2.45)

The main strength of the current approach is that it is readily extensible to any
number of dimensions, both in the domain as well as in the range of the problem.
However, depending on the structure of the problem at hand, it is not always possible
to use this simple extension. The Maxwell equations, for instance, are particularly
pernicious due to its large null space. Thus, they demand a specialized set of basis
functions, such as the Nedelec family [112]. This is not an issue in the simulations
performed in this work, where the procedure outlined in this section is used to extend
the Lagrange family of functions.
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2.3.4 Boundary conditions

Often, the physical process modeled by a given di�erential equation must fulfill certain
conditions. For instance, a metal bar might be clamped on its sizes, fixing its displace-
ment and orientation at these points, while experiments dealing with heat might have
their temperatures or heat flux specified by the experimental apparatus. Each of these
conditions has a di�erent treatment.

When the value of the solution is fixed at certain points, the boundary condition
is called of Dirichlet type. Explicitly, at a boundary �, the solution u is given as

u = a on � (2.46)

for some constant vector a. In the examples above, Dirichlet conditions are imposed
when the temperature is fixed in the heat experiment, or when the displacement sides
of a metal bar are specified. When the solution of the di�erential equation is vector-
valued, it is possible to have partial Dirichlet conditions, on which the boundary is
allowed to vary into some directions, but not others. For instance, it is possible to
set ux(x = 0, y) = ux(x = L, y) = 0, therefore fixing the x component of the displace-
ment, while leaving the y component free to vary. This type of boundary condition is
commonly called sliding condition.

In the Neumann boundary condition, rather than fixing the solution, its derivatives
are fixed

du
dX
= b on �. (2.47)

These are often used to specify rotations in the borders of the system when dealing
with mechanical problems. Another often used boundary condition is the specification
of tractions, where

∇0 ⋅P = g on �. (2.48)

As the name implies, this boundary condition prescribes a traction on the boundaries
of the body.

Once the system is cast into a weak form, these distinctions between the various
types of boundary conditions change. Rather than classifying into the ones above,
boundary conditions are classified as essential and natural boundary conditions. Their
di�erence is set by whether they need to be imposed in the solution, or whether
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they naturally appear in the derivation of the weak form, respectively. Furthermore,
once the approximations in Eq. 2.34 are introduced, the natural conditions are only
approximately satisfied, while the essential conditions are satisfied exactly [104].

Often, Dirichlet conditions turn into essential conditions, while Neumann condi-
tions often turn into natural conditions. This is not a necessary condition. It is possible
to embed Dirichlet using penalty-based [113] or Nietsche’s method [114], for instance.

2.3.5 Further considerations

For completeness, it is important to acknowledge that there is not a single finite element
method formulation. The derivation above implicitly follows the Ritz method, where
a quadratic functional

I(u) = 1
2B(u, u) − l(u) (2.49)

is minimized, leading to a linear system as presented in Eq. 2.37. There are many other
possible formulations, which yield di�erent approximations. A common approach is
to define the residual

R = Pu − f (2.50)

which is then minimized in a weighted-integral sense. Each set of weights will define a
di�erent linear equation, returning di�erent – but similar – solutions. Perhaps the most
common approach is using the interpolating functions {„i} as the weights, the so-called
Bubnov-Galerkin method. If the equation at hand admits a bilinear weak form, the
solution derived from this method will be the same as in the Ritz method. Another
method derived from the weighted-integral approach is the Collocation method, on
which the weight functions are the Dirac distributions centered at a given set of points.
This method is beneficial in that it makes the calculations of the integrals trivial.
However, it can di�cult to use accurately, as the choice of the points on which to fix
the solution is crucial to final accuracy of the calculated solution.

Furthermore, in the development of the FEM method, the linear nature of the
operator P was used. The governing equations obtained in Sec. 2.1 are not necessarily
linear, and must be treated di�erently.
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2.4 Finite element formulation of nonlinear elastic-
ity

In Sec. 2.3, we explored some generic aspects of the Finite Element Method. This
method is now specialized to the two cases explored in this work. In Ch. 4, energy
minimization is performed, which yields an nonlinear boundary value problem, while
in Ch. 5 dynamical systems are studied, which are modeled as an initial value problem.
Thus, the finite element method needs to be approached from slightly di�erent angles
for each of these problems.

2.4.1 Energy minimization and the linearization procedure

Static problems can be formulated as a function minimization procedure, where for
every growth tensor Fg, the potential energy of the system is minimized. The system
is grown in small steps, with an increase in the entries of Fg. Then, with the growth
tensor Fg fixed, Eq. 2.51 is iterated until convergence is reached. The growth tensor is
further increased, and the process starts anew. To find the configuration that leads to
the energy minimum, the system is iterated over putative solutions using the Newton
Method, as explained below. As is often the case, the minimization problem is recast
as a root-finding problem, where the zeros of the objective function’s derivative are
sought.

There are many nonlinear root finders to choose from. Here, the Newton-Raphson
solver [115] is used. An introduction to the Newton-Raphson method, as well as a
comparison with the steepest descent method can be found in Appendix C. In the
remainder of this subsection, the algorithm is adapted for the nonlinear elasticity
equations.

We define the state vector u is defined as a vector encoding the displacement of
every point in the discretized mesh as u = (u(1)x , u

(1)
y , . . . , u

(N)
x , u

(N)
y )T . In the notation

of nonlinear elasticity, the adapted version of Eqs. C.1 and C.3 now read

D
2
U(uk)[”v, ”u]pk = −DU(uk)[”v] (2.51)

uk+1 = uk + pk
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The procedure to calculate D2U(u)[”v, ”u] is analogous to the calculation of Eq. 2.19,
with result

D
2
U(u)[”v, ”u] = �

B0

∇0”u ∶ A ∶ ∇0”vdV, (2.52)

with A = ˆP
ˆF , called the material tangent modulus tensor. Notice that this is a fourth

order tensor, collecting 34 = 81 entries. Following the same procedure as delineated in
Subsections 2.3.2 and 2.3.3 – expanding u into a suitable basis of complete functions,
discretizing space, and choosing ”v and ”u as members of the function base {�i} –
yields

Kpk = r (2.53)

uk+1 = uk + pk, (2.54)

where the tangent matrix K and residual vector r are introduced such that

Kij = �
B0

∇0�i ∶ A ∶ ∇0�jdV and ri = �
B0

P ∶ ∇0�idV +�
B0

f ext

0 ⋅�idV +�̂
0

text

0 ⋅�idA.

(2.55)
At every step of the nonlinear solver, the linear problem in Eq. 2.53 is solved using
the LU decomposition [111].

2.4.2 Dynamical simulations and equation of motion

When the timescales of growth is comparable to that of elastic response, it is necessary
to consider inertial e�ects of the system, leading to a time-dependent problem. The
procedure to solve this problem starts by recalling the Cauchy equation of motion
Eq. 2.23, as

fl
D2u
Dt2 = ∇0 ⋅P − f ext

0 − µv.

This second-order di�erential equation is equivalent to a pair of DEs

ˆu
ˆt
= v and (2.56)
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fl
ˆv
ˆt
= ∇0 ⋅P − f ext

0 − µv, (2.57)

where the vector v denotes the velocity of the body at this point, and the factor friction
term −µv has been introduced. In order to follow the same procedure as in Sec. 2.3, the
supposition that it is possible to decouple the temporal components from the spatial
components is made7. Thus the displacement and velocity vectors are expanded in
the basis {�j} as

u = N�
j

Uj(t)�j(X) and v = N�
j

Vj(t)�j(X) (2.58)

which then applied to Eqs. 2.4.2 and 2.57 yields

N�
j

�j

ˆUj

ˆt
= N�

j

Vj�j (2.59)

fl

N�
j

�j

ˆVj

ˆt
= ∇0 ⋅P − f ext

0 − µ

N�
j

�jVj, (2.60)

As before, it is necessary to evolve the coe�cients {Ui},{Vi}. As, by definition,
{�i} forms a base, the terms of the sum in Eq. 2.59 are linearly independent. These
terms are then written as

ˆUj

ˆt
= Vj. (2.61)

In order to simplify the di�erential equation describing the evolution of the velocity
coe�cients {Vi}, Eq. 2.60 is replaced by its weak form

fl�
B0

N�
j

�i ⋅�j � ˆ

ˆt
+ µ

fl
�VjdV = �

B0

�i ⋅ (∇0 ⋅P − f ext

0 )dV (2.62)

or equivalently

N�
j

Mij � ˆ

ˆt
+ µ

fl
�Vj = gi (2.63)

7This is a common supposition when developing dynamical finite element formulations. The
complementary idea, where the basis depends on both space and time is possible, but reasonably
more complex, and not as well studied [104].
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where
Mij = fl�

B0

�i ⋅�jdV and gi = �
B0

�i ⋅ (∇0 ⋅P − f ext

0 )dV. (2.64)

The M is called the mass matrix. The reason for this nomenclature becomes clear
once the system of equations is assembled,

Mij

ˆVj

ˆt
= gi −Mij

µ

fl
Vj (2.65)

ˆUj

ˆt
= Vj. (2.66)

As it can be seen, the mass matrix M plays the inertial role in the equations. At
every time step the linear system in Eq.2.65 needs to be solved. This will prove to not
be an issue, as the mass matrix has a few properties that alleviate the computational
e�ort. First and foremost, the mass matrix does not depend on the current configu-
ration. Therefore, it is possible to compute its entries during the initialization of the
program and reuse the results throughout the simulation. Second, it is a symmetric
definite positive matrix. This permits the usage of very fast iterative solvers [116],
such as Gradient Descent (GD).

The equations of motion can now be iterated with standard solvers for initial value
problems. In this work, the Verlet method is used. This is a classical algorithm,
first introduced in the studies of thermodynamic systems [117], but has since found
widespread usage. This is for two reasons. Firstly, it has a sympletic structure, which
allows for better energy conservation. Secondly, it has second-order time accuracy
despite requiring a single force calculation. Thus, it provides a good balance between
speed and accuracy.

Due to the friction in the system, the Verlet algorithm is not be self-consistent if
used in our systems. It is possible to extend the original formulation to fix this issue,
as explained in Ref. [118]. The procedure is shown in Algorithm 1, where AD

i
denotes

the accelerations due to dissipative forces, AC

i
denotes acceleration due to conservative

forces, and ”t denotes the time step. The operations are understood to be broadcast
over the index i.
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Algorithm 1 Modified Verlet
Vi ← Vi + (AC

i
+AD

i
)”t�2

Ui ← Ui + Vi”t

Calculate gi using Eq. 2.64
Solve ∑j MijA

C

j
= gi using GD

Calculate AD

i
= −µVi

V̄i ← Vi +AC

i
”t�2

while Vi not self-consistent do
Vi ← V̄i +AD

i
”t�2

Calculate AD

i
= −µVi

end while
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Chapter 3

JuFold – A Finite Element
Simulation Framework

Several works in the field of brain folding were discussed in Ch. 1. Many of them have
common characteristics: they use nonlinear elasticity in order to model the large de-
formations that the brain undergoes during development; growth is modelled through
the multiplicative decomposition proposed by Rodriguez et al. [100]; the elastic equa-
tions are solved using the Finite Element Method (FEM). JuFold is a high perfor-
mance Finite Element framework for the simulation of growing materials based on the
deal.II [119, 120] the library. It was developed as part of this research project, and it is
one of the cornerstones of this work. All simulational results presented in the following
chapters are based on JuFold. By coalescing several common tools necessary for the
simulation of growing materials, it allows quick experimentation with di�erent models.
For instance, due to its modular nature, it is straightforward to change growth rules
or hyperelastic density function, or even to implement new ones.

Thus, this chapter is dedicated to explaining its structure and design. Sec. 3.1 con-
tains an overview of a common structure for software developed with JuFold. Sec. 3.2
exposes the utilities in JuFold that aid in the implementation of the simulations.
Sec. 3.3 introduces the implementation decisions of JuFold in more detail, including
parallelization strategy, and components. Sec. 3.4 shows a few examples of JuFold
usage, some of which are further explored in Chs. 4 and 5. Finally, Sec. 3.5 exposes
one specific subproject powered by JuFold.
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3.1 Structure of JuFold

The current section outlines the major steps during a typical FEM simulation using
JuFold. These are meant only as an overview, and they are often subdivided into many
substeps. There are two main parts in this structure. Firstly there is the initialization
procedure, where memory allocations one-o� subprocedures are perfomed. Second,
there is the solution procedure, where the system is iterated several times, until a
solution or some stop condition is reached. Normally, most of the simulation runtime
is spent on this step. Fig. 3.1 gives an overview of this structure, including a number of
its substeps and provides a mapping between the general structure and the important
entry points in JuFold.

3.1.1 Initialization stage

The first steps in the simulation are mostly setting up the stage for the main calculation
including setting up boundary conditions, allocating vectors, populating these vectors,
etc. These are all one-o� steps, meaning that they are not a major contributor to the
runtime of the simulation. However, a few of these warrant a closer look.

3.1.1.1 Mesh generation

An important step is to generate the mesh on which the simulation will be performed.
For simple geometries, as the ones used in this work, it is preferable to generate the
mesh programmatically. It is common that FEM libraries have a collection of often-
used meshes bundled with the library. Once the mesh reaches a certain degree of
complexity, it is often advantageous to use specialized software to design the mesh.
For instance, a free and open source software for mesh generation is Gmsh [121]. These
meshes can then be exported to a file, which is then imported into JuFold.

3.1.1.2 Boundary conditions

Complementary to the mesh generation, one must define the boundary conditions.
In JuFold, this is done in two steps. First, the boundary IDs are set on the cells of
the mesh. Second, the boundary conditions are set. The most common boundary
conditions in continuum mechanics are outlined in Sec. 2.3.4.
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Advance state
advance_state()

Start Read input
parameter()

Create mesh
create_mesh()

Initialize states
setup_system()

Setup BCs
setup_boundary()

Iteration
 algorithm

Calculate
forces

Postprocessing
output_extras()

Fill cell data
populate_data()

Save?
Yes

Exit?

Terminate

Yes

No

No Write to file
output_results()

Grow
growth_on_cell()

Figure 3.1: Flow of JuFold simulations with specific API function in italics. The
initialization steps are shown in red, and the main loop of the simulation is shown
in green. Often several steps of the iteration algorithm, as well as force and tensor
calculations, are needed in order to perform a single state update. In addition to the
usual steps taken by most FEM software, JuFold adds a growth step.
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Essential boundary conditions are implemented in the code through constraints in
the solution, by fixing degrees-of-freedom to certain values. These are encoded into
a constraint matrix, which is created at the beginning of the simulation. Once this
matrix is built, it is possible to operate on the reduced system (see App. B.3). While
the most common use of the constraint matrix is to implement the simple constraints
required by the essential conditions, it is possible to add all kinds of linear constraints
to this matrix.

Natural boundary conditions, on the other hand, do not require any special ma-
chinery, as they are embedded into the weak form of the equation of interest (see
Sec. 3.1.2.1).

3.1.2 Main loop

The following functions, in contrast with the previous subsection, perform the bulk of
the computation. Thus, utmost care needs to be taken to be sure they are e�cient and
scalable. One of these steps in particular, the calculation of the forces, energy, elastic
tensors, etc, is often the bottleneck of many applications, sometimes consuming up to
80%-90% percent of the total computing time of the application.

3.1.2.1 Computation of forces, stresses, etc

During this step, some auxiliary quantities are calculated. What these are depends
on the specific algorithm used. For instance, in the dynamical simulations it would
mean the forces acting upon the system, both of dissipative and conservative nature,
while in energy minimization problems the residual and the elastic tensors might be
calculated instead.

Normally these quantities depend on the local state of each cell and on their his-
tories. For instance, the stress tensors are calculated at every point of the cell, using
only its displacements. These local quantities are then assembled into large matrices
and vectors representing their global equivalent1. Naturally, this step is deeply con-
nected to the iteration step, often being called several times in succession in order to

1These global matrices, in particular, may require a lot of RAM. One technique used to alleviate
this issue is called matrix-free FEM, which builds the components of the matrix on-the-fly, as required
by solvers. While more economical in terms of memory, their implementation is somewhat complex.
See Ref. [122] for more details.
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determine how to proceed.

3.1.2.2 Iteration step

The way to advance the state of the system depends on the problem at hand, and
must be implemented by the user. The idea of this function is that it takes the system
from one state and propagate it to a di�erent state. In order to aid the user in the
implementation of this step, simple examples are bundled with JuFold which solve the
two most common classes of problems, which the user can then tailor to their own
application. The first example solves the elastostatic problem which tends to draw
from numerical optimization, where the system does not abide by Newton’s laws for
its evolution, but simply follow cues in the potential surface. Thus, during the run
of the algorithm, the evolution between two steps is perhaps non-physical, which is
allowed as long as the final state represents an energy minimum. The problem is solved
using the Newton-Raphson method, described in Sec. 2.4.1. The second example solves
the elastodynamical problem, where the system follows the equations prescribed by
Newton’s 2nd law, leading to an initial value problem, which is solved by the modified
Verlet algorithm introduced in Sec. 2.4.2.

3.1.2.3 Analyses

The displacements are normally the raw results of the simulation. Often they are
indeed the objective of the simulation, but rarely they are the sole quantity of interest.
Instead, it is common to calculate derived quantities, such as the local stress, energy,
volume change, among others. Whether such calculations are performed during or
after the simulation depends on the available storage and CPU time. Performing these
calculations at runtime carries two main advantages. First, certain analyses demand
the computation of a cohort of tensors, which have already been calculated as part
of the iteration step. Caching these calculations, allows further analyses be carried
out in a computer less powerful than the one used to perform the simulation itself.
Second, the results are bundled in the same file. Using softwares like Paraview [123]
or VisIt [124], it is possible to compare several quantities side-by-side, which is useful
when trying to make sense of the results obtained. The downside of this approach is
that it has the potential to grandly increase the storage requirements of simulation
data.
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3.2 Utilities

While the calculation of the state is unique to each problem, many of its subcompo-
nents are common to all problems in continuum mechanics. For instance, the energy
density used is dictated by the material simulated, not by the specific computational
implementation. Several of these useful utilities are bundled with JuFold. We go over
the most prominent of them in the section below, but minor utilities – such as the code
for the calculation of the deformation gradient matrix F, postprocessing, interpolation
of nonuniform parameters, among others – are also implemented in JuFold.

3.2.1 Energy density

One of the main components of continuum mechanics is the energy density and its
associated constitutive equation, as mentioned in Sec. 2.1.3. JuFold has a few energy
densities already implemented, which can be chosen at compile time (see Table 3.1).
Should the user require a constitutive equation that is not already implemented in
JuFold, it is possible to extend the code with minimal e�ort.

Table 3.1: Energy densities implemented in JuFold. The operation ��F�� = √F ∶ F
denotes the norm of the matrix, as induced by the double internal product, and d

denotes the dimension of the simulation.

Name Density Equation Reference
St. Venant-Kichho� Â = µ tr(E2) + ⁄�2 tr(E)2 [125]
Neohookean - 1 Â = µ�2 [��F��2 − d − 2 log(J)] + ⁄ log(J)2�2 [87]
Neohookean - 2 Â = µ�2 [��F��2�J2.0�d − d] + ⁄(J − 1)2�2 [78]
Neohookean - 3 Â = µ�2 [��F��2 − d − log(��F�� + 1)] + ⁄(J − –)2�2 [126]

– = 1 + µ

⁄
− ⁄

µ

4

These energies are implemented in JuFold through a template interface. Their
concept is composed of three main functions, each being individually responsible for
the calculation of energy, PK1 tensor, and elastic tensor. This modularization helps
to keep the code complexity under control, and most importantly, allows for the reuse
of the code dealing with the numerical calculation of the weak form and the assembly
of the relevant matrices and vectors.
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3.2.2 Collision detection

The folds in the human brain tend to be closely touching in-vivo (see, for instance,
Figs. 1.1 and 1.2). In order to simulate this situation, it is necessary to handle self-
collisions in the mesh. Collision is traditionally divided into two steps, detection and
handling [127]. In the first of these steps, as the name implies, the software detects
collisions between the various cells in the mesh. Information on these collisions is then
used in the second step, where the collisions are resolved.

Collision detection is further divided in two steps. In the first step, called broad
phase, the easily falsifiable collisions are eliminated using a less robust – but faster
– algorithm. In JuFold, the broad phase is performed by encapsulating each cell in
the mesh in a circle (a sphere in 3D) containing the whole cell. Collisions between
these circles are then detected, which is computationally inexpensive. If the circles
collide, these cells are forwarded to the more narrow collision phase. Otherwise, these
cells are discarded from the list of possible collisions. In the second phase, called
the narrow phase, the remaining collision possibilities are calculated using a slower
– but thorough – algorithm. The narrow phase is conducted by the calculation of
the winding number [128], where for each vertex of a given cell pA

i
, we detect if it

is contained in any other cell, leading to a positive winding number. If the winding
number is non-zero, a collision is flagged. This division grandly speeds the collision
detection, as it allows for the weeding out of many false positives at a small cost.

The collision handling step is, once again, problem-dependent, and must be im-
plemented by the user. In the implementation used in Chs. 4 and 5, a spring-like
repulsive energetic term is added to the weak form solved, as introduced in Ref. [129].

3.2.3 Internal state saving and loading

High-performance computing (HPC) systems normally have tight constraints regarding
the runtime of any given instance of a program2. Often, the necessary runtime of
simulations is longer than that. Thus, a mechanism to save the internal state of the
program for later recovery is a necessary feature.

JuFold writes the system state to the disk, including all the cell data, at regular
2For instance, on the High-Performance Computing systems of the Jülich Supercomputing Center

at the Research Center Jülich and at the RWTH Aachen University – JURECA and CLAIX – used
in this work, programs were allowed to run for a maximum of 24 hours.
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intervals set by the user. The state is saved in a number of JSON files, which has the
advantage of being plain text, thus easily readable. This scheme is, prima facie, storage
heavy, and with lots of redundant data. JuFold compresses these files in memory and
saves them into a compressed format, thereby grandly reducing the size of the files
written to the disk. The gunzip compression was chosen because of its availability,
speed, e�ectiveness, and most importantly, many text editors are able to transparently
decompress, edit, and recompress the gunzip file.

Besides getting around the hard requirements set by HPC systems, having such
capabilities are useful in debugging, as it is easier to analyse the internal state of
the program when unexpected behaviour occurs. Should the necessity arise, it is also
possible to restart and run the program for a longer time than previously expected.

3.2.4 Linear multistep integrator

Due to its dependency on other quantities, integrating the growth equation can be
complex. In order to get around this issue, they are integrated independently of the
other components of the state, using information from previous steps via the Adams-
Bashford (AB) method [130]. The user can select the order of the algorithm, with up
to fourth order being available.

It is only possible to use the n-th order of the algorithm once at least n − 1 time
steps have been iterated. JuFold automatically scales the order of the AB algorithm
to handle this constraint. That is, in the first step, the first order method is used, in
the following step the second order is used, and so on until the maximum order chosen
by the user is reached.

3.2.5 Mesh generation

Through deal.II, JuFold includes many standard meshes and tools to modify that
mesh. Additionally, the user also has the option to have the mesh as an input to
the program, instead of creating it programmatically every time. This is especially
useful when modeling complex systems, such as when the description of the mesh is
not an assembly of simple geometrical shapes. The only limitation for JuFold is that
the meshes must be composed solely of quadrilaterals and hexahedra. This is not the
default mesh type for most computer-assisted design programs, which tend to output
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meshes composed of triangles and tetrahedra. In Gmsh specifically, it is possible to
directly create meshes with the necessary conditions [131, 132]. For other software, it
is possible to convert from triangular/tetrahedral meshes to quadrilateral/hexahedra
meshes using the tethex tool [133].

3.3 Implementation details

JuFold is developed using C++ and Message Passing Interface (MPI) [134, 135], based
on the deal.II library. It is optimized to run in several nodes of a supercomputer, but
is also suitable for smaller-scale simulations running on a local workstation. In this
section, some higher-level design decisions regarding JuFold are discussed. A brief
introduction to the actual usage of JuFold is found in Appendix D,

3.3.1 Performance considerations

In C++, virtual functions and templates can both be used to provide the needed
flexibility to deal with di�erent systems. Which one to use will depend on context,
compiler, and platform. The discussion of when to use each is somewhat technical.
In short, the fundamental idea of both templates and virtual functions is that the
programmer can define an interface which can be overloaded by the user. For the
computer, the di�erence between the two is when to search for the overloaded function.
The overload resolution of templates is performed at compile time. This allows for a
greater speed of the final program, as the compiler has access to the function, and can
perform further optimization. This comes at the cost that compilation takes longer,
and that templates can be more di�cult for understand, as only the latest version of
C++ has mechanisms for the formal specification of template interfaces3. Also, once
templates are introduced, compiler messages get more complex, with the problem
being compounded for every new template added. All of these make the usage of
templates di�cult to beginners. We thus reserve the usage of templates for interfaces
which are used in the innermost loops of our code, where performance is of essence,
while keeping their complexity to a minimum.

3This version of C++, called C++20, was released not long before the writing of this thesis, and
still lacks widespread adoption.
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Virtual functions, on the other hand, are similar to any other method in a class,
and have been part of object oriented programming for many decades now. Their
overload resolution, however, happens during runtime. This can lead to lower per-
formance4. It is also easier to provide a default implementation of a virtual function
than of a templated function without resorting to too much boilerplate code. We use
virtual functions for long-running functions, which are called comparatively few times.
For instance, the main method of JuFold is a virtual function, while the functions
calculating the stress are templated, as they are called in tight loops.

3.3.2 Parallelization strategy

The Message Passing Interface (MPI) is a long running standard in high-performance
computation [134, 135]. This standard defines a distributed memory model, where
each process is only able to access its own assigned memory, and synchronization must
be performed explicitly through message passing. High-quality libraries implementing
this standard are commonplace in clusters and supercomputers, with open source im-
plementations, such as OpenMPI5 [137], also available in consumer-grade computers.

JuFold uses MPI to parallelize simulations. It partitions the system’s degrees-
of-freedom between the various MPI-processes, which then performs the calculations
needed for each degree-of-freedom in their domain which are then globally assem-
bled for further usage. The partitioning ideally minimizes the “surface” between two
partitions, thereby minimizing the inter-process communication. Graph partitioning
algorithms, such as parallel multilevel partitioning [138] tend to lead to close-to-ideal
mesh partitions, with one of the de facto standards being the open source library
(Par)METIS [139].

As with all the rest of JuFold, the final user is in control of how the partitioning
process occurs. By default, JuFold will partition the system in stripes, one for each
process. This is not necessarily optimal for the general case, but tends to perform well

4In technical terms, the virtual functions are implemented as arrays of addresses to the actual
implementations, called a vtable. Thus, once a virtual function is called, there is an indirection in
the CPU cache, leading to lower performance. This is compounded by the lack of optimization at
compile time, as the compiler does not have any information on the internal structure of the callee,
possibly leading to missed optimization. That said, in some situations it is possible to elide the virtual
function, and no performance costs are incurred.

5Not to be confused with OpenMP. OpenMPI is an implementation of the MPI standard, while
OpenMP is a di�erent parallelization standard, with its own set of implementations [136].
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nonetheless. It is, however, often optimal for systems with enabled collision detection,
as it leads to an ideal level of load balancing in the collision detection step.

MPI gives JuFold the flexibility to run concurrently in more than one node at
any given time, possibly granting access to large amounts of processors and memory.
The latter point is especially useful for energy minimization simulations, where the
nonlinear root-finder must solve the linear problem in Eq. 2.53, which can be memory-
intensive.

3.3.3 Other libraries

JuFold leverages the capabilities of other libraries. Most importantly, we used the
deal.II library [119, 120] to handle the Finite Element components. Indeed, many of
JuFold’s capabilities are leveraged from this library. Further, the parallelization of
the linear algebra components were done through the PETSc (Portable, Extensible
Toolkit for Scientific Computation) library [140–142].

3.4 Gallery

To demonstrate the scope of JuFold, a few examples of usage are briefly shown in
Fig. 3.2. In (a) and (b), the typical systems simulated in the following chapters
are shown, where a bilayered rectangular slab has its top layer grown. Fig. 3.2 (c)
shows a system similar in spirit but distinct in implementation, where the varied
cortical property is no longer geometrical but mechanical, with softer regions shown
in yellow, and sti�er regions in blue. Similarly to what is seen in Sec. 4.1.6.2, the
softer regions deform more than the harder parts. The boundaries were left open,
making the expansion of the gray matter constrained only by the underlying white
matter. Fig. 3.2 (d) extends the ideas in Sec. 4.1.6.1 to the sphere. This system is
thus composed of a solid sphere as the white matter, and a thin growing crown as
the gray matter. The only di�erence between the simulations in Fig. 3.2 (a) and (d)
is merely the meshing, something that can be easily changed in JuFold. Together,
Fig. 3.2 (c) and (d) showcase the dimensional independence of JuFold.

Another goal of JuFold was to be modular. In Figs 3.2 two cases where growth
has been disabled are shown. It is possible to adapt JuFold for such cases with ease.
In (c), energy minimization is used to simulate the e�ects of a bacteria walking over
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(a) (b)

(c) (d)

(e)

(f)

Figure 3.2: Gallery of example usages of JuFold. (a) System with homogenous top
layer, as studied in Sec. 4.1.6.1 and throughout Ch. 5. (b) System with inhomoge-
nous cortical thickness, as studied in Sec. 4.1.6.2. (c) Three dimensional system with
inhomogeneities in its Young modulus. (d) Spherical simulation with a thin growing
shell and an purely elastic core. (e) Example of idealized experiement, on which a
bacteria crawls on top of an elastic substrate. (f) Elastodynamics example where a
non-growing system is initially moving towards the left and is suddenly clamped to
the bottom.
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an elastic substrate, while in (d), elastodynamics is implemented through the Verlet
algorithm for a soft material bouncing around after momentum is transferred in a
short impulse.

3.5 Structured surfaces
JuFold has found use in other fields, in addition to brain folding. In particular, we
have also applied it to the production of structured surfaces. In this project, a slab
of PDMS gel is stretched and a mask in applied to the top layer of the slab. This
slab is then exposed to O2. The resulting plasma interacts with the ligant in the
PDSM gel, leading to the glassification of the exposed surface [143], while keeping the
surface protected by the mask intact. The glassification process changes the stress-
free configuration to that with extended lengths. Once the imposed stretch is released,
microscopic structures are created through buckling. This process is summarized in
Fig. 3.3 (a).

Di�erent masking procedures generate distinct folding patterns and depending on
the application, it is possible to tailor the mask in order to obtain specific patterns.
We believe that this approach has the potential to produce microchannel chips in a
cheap and quick manner. This process has been written into a patent application,
“Herstellung strukturierter Oberflächen” numbered 10 2020 118 555.3. At the time of
writing of this thesis, patent approval is still pending.

As part of the writing of said patent, a few patterns have been identified. For
instance, the application of a rectangular mask generates a channel once the stretch is
removed (see Fig 3.3 (b)). Complementary, a cross-shaped mask leads to the formation
of a channel crossing (see Fig. 3.3 (c)). Another interesting configuration emerges when
the mask is composed of a single circle, which leads to a hilly configuration, which
can be used as a mixing zone (see Fig. 3.3 (d)). These structures can be seen as the
building blocks of, for instance, microfluidics chips, which can then be aggregated and
customized to the necessities of each individual experiment.
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(a)

Figure 3.3: (a) Sketch of glassification process. (b-d) Simulations of unstretching
following masking. In all simulations, a Young modulus ratio of rE = 300 was used.
Red indicates harder regions, with softer regions in blue.



Chapter 4

Energy Minimization simulations

Brain development happens over the span of weeks and months, with inertial e�ects
becoming less pronounced. In such a long timescale, the quasi-static is often used,
where for each choice of the growth tensor Fg, the potential energy of the system is
minimized. Section 4.1 comprises the bulk of this chapter, reproducing the content of
our article “The role of thickness inhomogeneities in hierarchical cortical folding”, pub-
lished in NeuroImage [144]. In this article two distinct classes of systems are studied.
First, the focus will be on the detailed study of the relatively simple, but surprisingly
rich, case when the cortical thickness is initially constant in space. Secondly, how the
competition between various distinct thicknesses induces new cortical conformations is
discussed. Varying thickness is enough to create deep sulci, as well as structures sim-
ilar to higher-order folding observed in the mammalian brain. These two systems are
then analysed in light of linear stability theory. Section 4.2 presents further analyses
that were not included in the paper.

4.1 The role of thickness inhomogeneities in hier-
archical cortical folding

4.1.1 Abstract

The mammalian brain cortex is highly folded, with several developmental disorders
a�ecting folding. On the extremes, lissencephaly, a lack of folds in humans, and
polymicrogyria, an overly folded brain, can lead to severe mental retardation, short
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life expectancy, epileptic seizures, and tetraplegia. Not only a specific degree of folding,
but also stereotyped patterns are required for normal brain function. A quantitative
model on how and why these folds appear during the development of the brain is
the first step in understanding the cause of these conditions. In recent years, there
have been various attempts to understand and model the mechanisms of brain fold-
ing. Previous works have shown that mechanical instabilities play a crucial role in
the formation of brain folds, and that the geometry of the fetal brain is one of the
main factors in dictating its folding characteristics. However, modeling higher-order
folding, one of the main characteristics of the highly gyrencephalic brain, has not been
fully tackled. The simulations presented in this work are used to study the e�ects of
thickness inhomogeneity in the gyrogenesis of the mammalian brain in silico. Finite-
element simulations of rectangular slabs are performed. These slabs are divided into
two distinct regions, where the outer egion mimics the gray matter, and the inner
region the underlying white matter. Di�erential growth is introduced by growing the
top region tangentially, while keeping the underlying region untouched. The brain
tissue is modeled as a neo-Hookean hyperelastic material. Simulations are performed
with both, homogeneous and inhomogeneous cortical thickness. Our results show that
the homogeneous cortex folds into a single wavelength, as is common for bilayered
materials, while the inhomogeneous cortex folds into more complex conformations.
In the early stages of development of the inhomogeneous cortex, structures reminis-
cent of the deep sulci in the brain are obtained. As the cortex continues to develop,
secondary undulations, which are shallower and more variable than the structures ob-
tained in earlier gyrification stage emerge, reproducing well-known characteristics of
higher-order folding in the mammalian, and particularly the human, brain.

4.1.2 Introduction

One of the most striking features of the human brain is its highly folded structure.
Indeed, neuroscientists have for a long time pondered about its importance and ori-
gin [145, 146]. The study of layered systems has been extensively conducted in the
field of engineering, where it was used to model the buckling of sandwich-type pan-
els [147], the Earth’s crust [148, 149], etc. These works, however, deal mostly with
sti� materials and large sti�ness ratios. In recent years, there has been a surge in
the number of works dealing with soft materials, with special focus in bio-compatible
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applications [150, 151] which provide an important tool in the understanding of the
role of mechanics in the folding of the mammalian cortex.

Still, gyrogensis is not fully understood neither at the level of mechanical [152] nor
molecular processes [153] One of the main hypotheses to explain the convoluted nature
of the cortex, commonly called the di�erential tangential growth hypothesis [154] posits
that brain folding is created by a mismatch of growth rates in the cortical plate and
the white matter substrate, which leads to buckling. This hypothesis has formed the
core of many new models of brain folding [155–158]. The main contention with the
di�erential growth hypothesis, however, is its requirement of a large di�erence between
the sti�ness of the two regions [152]. In order to obtain the wavelengths compatible
with the gyral width of the human brain, the initial form of the di�erential growth
hypotheses requires the sti�ness ratio between the gray and white matter to be in the
order of 10 [154]. This is a major hurdle, as currently there is no consensus if the
gray matter is indeed sti�er than the white matter, and if so, by how much. There
is a solid body of evidence supporting the two possibilities, i.e., that the gray matter
is indeed sti�er than the white matter [159–161], and vice-versa [162–164]. A second
issue with the di�erential growth hypotheses is the shape of the sulci. This model
results in smooth sinusoidal patterns, while the brain is characterized by smooth gyri
and cusped sulci [68].

Much work has been done to solve the issues with di�erential growth, especially
on the sulci formation. For instance, [68, 165] performed large simulations to under-
stand how the geometry of the cerebrum and constraints imposed by skull a�ect the
cortical folding, where they showed that the size and shape of the folds are dictated
by the geometry of the early fetal brain. Other hypotheses have also been proposed
to explain cortical gyrification. Another widely discussed hypothesis conjectured that
axonal traction is the driver of folding [166]. Reaction-di�usion models, where the
concentration and di�usion of growth-activator chemicals are explicitly modeled, have
also been suggested as a way to explain both the gyrogenesis process, as well as the
growth profile itself [167, 168].

Despite all these e�orts, an aspect of brain folding that still remains elusive is the
phenomenon of hierarchical folding, an important feature of the brain development,
which must be included in order to understand the driving forces behind the complex
folding patterns observed in the human brain.
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Recent studies have analyzed the influence of growth and sti�ness inhomogeneities
along the cortex. [157] studied the e�ect of inhomogeneities of the geometry, me-
chanical properties and growth on gyrification. Simulating both sharp and gradual
inhomogeneities, their model produced higher-order folding. Budday et al. [82, 159]
performed similar inhomogeneity studies on rectangular geometries. Their simulations
also produced structures with resemblance to higher-order folding. However, these pre-
vious works did not show the complex spectrum of folding present in the human brain,
presenting either simple wavy patterns, or a combination of very few wavemodes.

Histological experiments have shown that the cortical thickness is no longer ho-
mogenous, even at a young age. In the experiments of [169] it can be observed that
the cortical thickness is inhomogenous in the ferret brain as early as the second post-
conceptual day (P2), long before folding, which occurs between P6-P21 [158]. Indeed,
in the beginning of the folding process, it is possible to find regions with cortical thick-
ness as thin as 0.34 mm surrounded by regions regions with cortices as thick as 0.86
mm, representing a 2.5-fold increase over a distance of approximately 2 mm [169].

Many works have shown that thickness of cortex of the brain strongly impacts
the width and structure of brain folds [154, 156, 157, 170–172], but evidence on how
competition between the di�erent thicknesses in the cortex a�ect folding has been
lacking. In this paper, the di�erential tangential growth hypothesis is augmented with
an inhomogeneous cortical thickness field, yielding realistic folded structures, which
could help explain formation of the deep sulci in the mammalian brain, hierarchical
folding, as well as its consistent localization, in line with the works highlighted in the
previous paragraphs. Additionally, the configurations obtained in this work have a
wider gamut of shapes for the sulci and gyri than those obtained previously, which
more closely reproduce those shaped found in the human brain.

4.1.3 Material and methods

We analyze two-dimension systems composed of two regions: A purely elastic, non-
growing, softer substrate in the lower region, mimicking white matter, and a growing
sti�er region on the top, emulating the cortical gray matter (see Fig. 4.1). The simu-
lations are performed using a custom written finite element method code to solve the
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White
Matter

Gray 
Matter

Fg

FeF=FeFg

Figure 4.1: (Color online) Schematic representation of the model. The purple re-
gion atop mimics the gray matter and is grown tangentially, while the pink substrate
underneath mimics the white matter and does not grow. Growth is mathematically
represented by the growth tensor Fg, which can be discontinuous. In order to keep
the compatibility with the attachment constraints between the gray and white matter,
the system is subject to residual stress, described in this framework by the Fe tensor.

continuum mechanics equations1.

4.1.4 Theoretical background

Due to the large-strain, nonlinear nature of the human brain, the framework of con-
tinuum mechanics [177] is used. In order to distinguish between the original and
deformed configurations, the following notation is introduced: The vector X denotes
the coordinates of the original configuration, x the coordinates of the deformed con-
figuration, and u = x −X denotes the displacement field. The deformation gradient
tensor is written as

F = ˆu
ˆX
+ I,

where I is the identity matrix. Growth is introduced using Rodriguez theoretical
framework [178], where the deformation gradient tensor F is decomposed into F = FeFg

(see Fig. 4.1), where Fe describes the elastic part of the deformation and Fg the
growth contribution. The energy and stress are calculated from the elastic part of

1The simulations were written using the deal.II library [173, 174], and parallelized using MPI via
PETSc [175, 176].
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the deformation gradient tensor alone. Thus, in this framework, the energy-density is
defined in terms of Fe.

The brain tissue is modeled by the compressible Neo-Hookean energy-density func-
tion [177]

Â(Fe) = µ

2
�tr(FT

e
Fe) − 2 log(Je) − 2� + ⁄

2 log2(Je) (4.1)

where Je = det(Fe), and µ and ⁄ are the Lamé parameters. This energy-density family
has been shown to appropriately model the brain tissue [179, 180].

Due to the relatively long time scale of cortical development when compared to
the elastic response of brain tissue, the quasi-static approximation is used. At every
value of Fg the displacement field u is calculated, obeying the equilibrium equation

∇ ⋅P = 0, (4.2)

where P is the first Piola-Kichho� (PK1) stress tensor. The functional form of this
tensor depends slightly on which configuration the weak form of Eq. 4.2 is integrated.
In the stress-free configuration – i.e., the grown configuration – the PK1 tensor is
obtained as

Pe = ˆÂ

ˆFe

.

It is, however, numerically advantageous to perform the integration in the original,
undeformed configuration. In such case, the total deformation tensor F is thermody-
namic conjugate to the stress, yielding the following PK1 tensor

P = ˆ�
ˆF

Jg = ˆ�
ˆFe

F−T

g
Jg, (4.3)

where the Jacobian Jg = det(Fg) is introduced due to the change in integration domain.
Both, Eq. 4.2 and Eq. 4.3 retrieve the functional form of their classical continuum

mechanics counterparts in the limits of no growth, i.e., Fg = I. The values of ⁄ and µ

are chosen such that in the linear (i.e., small strain) regime, the Young moduli ratio
between the gray matter (GM) and the white matter (WM) is rE = EGM�EWM = 3,
consistent with previous models [179] and the Poisson ratio ‹ = 0.35 on both regions.
Due to the nonlinear nature of Eq. 4.1, the value of the Poisson ratio ‹ and Young
modulus are dependent on the current displacement in the system. Specifically, they
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depend on the determinant Je [177] as

‹ = 1
2

⁄

⁄[1 − log(Je)] + µ
,

and
E = µ − 3⁄ log(Je)

Je

2µ + ⁄(3 − 2 log(Je))
2µ + ⁄(1 − log(Je)) .

Notably, the energy-density in Eq. 4.1 has no inherent length scale. Thus, only the
ratios between the elastic moduli are important for the phenomena presented in this
paper.

4.1.5 Simulation details

The cortical ribbon grows linearly, i.e., the growth tensor is described by

Fg(◊g) = ◊gI + (1 − ◊g)X̂y ⊗ X̂y,

where X̂y indicates the unit vector pointing the in the y-axis and the growth parameter
◊g measures the degree of elongation in the cortex. For instance, at ◊g = 2 the gray
matter would have expanded to twice its lateral size if it were not constrained. To
mimic di�erential growth, ◊g is varied in the interval [1.0, 2.5] in the gray matter
region, while it is kept at unity in the white matter region. The growth parameter ◊g

is increased in small steps of 0.01.
At every growth step, Eq. 4.2 is solved using the finite element method, with

boundary conditions of zero displacement on the bottom surface Xy = 0 and zero
stress on the top surface Xy = Lb. In order to minimize boundary e�ects, periodic
boundary conditions are imposed on the sides of the surface, Xx = 0 and Xx = Lb. The
box lengths Lb will be specified in each section. The system being two dimensional,
corresponds to an infinite system in the z-axis, with the constraint of no displacements
in the z-axis.

Due to the nonlinear nature of the energy described in Eq. 4.1, the divergence
of the first Piola-Kichho� stress tensor will also be nonlinear. To find the roots of
this function, the Newton method augmented by a backtracking algorithm [177, 181]
is used. In order to avoid overlaps, collisions are detected and resolved using the
approach introduced by [129]. As any collisions will be initiated in the cortical region,
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calculations are optimized by only detecting collisions in the gray area elements. This
generates no artifacts, as due to the structure of the mesh, collisions are resolved before
any white matter elements are involved.

In order to allow the system to overcome metastable states, a small force field
pointing in the y-direction is introduced. The forces are drawn from a uniform random
distribution between [−7 × 10−2, 7 × 10−2)×EGM . Each simulation has been repeated
three times with di�erent seeds. No significant di�erence is observed between runs
with di�erent seeds, or when the forces are doubled or halved.

4.1.6 Results

4.1.6.1 Homogeneous thickness of cortical ribbon
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Figure 4.2: (Color online) Spatial averages of several observables in the system with
initial thickness T = 0.250 cm, as a function of the growth parameter ◊g. (Top)
Dependence of the average thickness with growth are shown, as well as the average
cortical thickness of the sulci and the gyri, as defined in the text. (Center) Contour
length of the top region of the system. (Bottom) Squared curvature of the system are
shown, respectively. This last quantity is specially useful to characterize the onset of
folding, as shown in Sec. 4.1.6.2.

We analyze the folding of a slab with constant cortical thickness T throughout, in
the range [0.1, 0.5]cm. In this case, it is expected that the system will fold into well
defined wavelengths, with no localization [182]. In order to avoid finite-size e�ects, the
simulation box is set to Lb = 100cm� ⁄F , where ⁄F is the folding wavelength.

4.1.6.1.1 Evolution of folding
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Initially (i.e., for little growth) even though the growth happens tangentially, the
cortex does not increase in length, but rather in thickness due to the confinement and
resulting stress (see Fig. 4.2). Eventually, at a critical growth ◊C

g
, the stress exceeds the

critical buckling threshold, and the system buckles in a well defined, almost sinusoidal
wave pattern (see Fig. 4.3). As growth continues, the wavelength and the average
thickness of the folds remain almost unchanged, while the amplitude increases. Our
study confirms previous results showing that the thickness of the cortex is no longer
homogeneous after buckling. Sulci (regions of positive curvature) are significantly
thinner than gyri (regions of negative curvature), as indicated by the relative drop
”, which is calculated as the percentual di�erence between a local minimum and its
surrouding maxima. As growth continues post buckling, the di�erence in thickness
continues to increase.

(a) T = 0.10cm (b) T = 0.20cm (c) T = 0.30cm (d) T = 0.40cm 

Figure 4.3: (Color online) Folded system for the thickness indicated within the figure.
In order to improve visualization, only the region y > 95cm is shown here. The relative
drops are (a) ” = 0.17 (b) ” = 0.28 (c) ” = 0.29 (d) ” = 0.37.

4.1.6.1.2 Folding wavelength

In each simulation the Fourier transform of the function uy(Xx) (i.e., the displace-
ment in the y direction as a function of the material coordinates) is calculated along the
top region of the system. The folding wavenumber and wavelength are then obtained
as

kF = argmax
k

hk ⁄F = 2fi

kF

, (4.4)

where hk is the coe�cient of Fourier expansion for the mode with wavenumber k.
That is, the folding wavenumber and wavelength are those associated with the largest
amplitude. Consistently with analytical predictions and with previous works in the lit-
erature, the folding wavelength increases linearly with initial thickness T (see Fig. 4.4).
The linear dependency can be obtained from simple dimensional analysis: As the elas-
tic equations have no inherent length scale, the cortical thickness is the only relevant
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length scale, as long as system size is not limiting. Thus, changing the homogeneous
cortical thickness can be seen as a change of measurement units, or progressive zoom-
ing in on the same base system (see Fig. 4.5). It is possible to estimate the slope for
a linear elastic substrate through analytical calculations as [182]

⁄F (T ) = fi �2
3
(3 − 4‹)rE(‹ − 1)2 �

1�3
T ≈ 6.17T. (4.5)

Such slope presents a weak dependence on the sti�ness ratios between the gray and
white matter, obeying a cubic root power law. Thus, the specific value of the ratio rE

plays only a minor role in the determination of the folding wavelength.
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Figure 4.4: (Colors Online) Weighted wavelength of the system as function of the
cortical thickness T . The orange circles indicate extrapolation results, while the broken
blue lines represent the linear fit ⁄F = 6.49T cm with R2 = 0.94.

4.1.6.2 Inhomogeneous thickness of cortical ribbon

The cortical thickness of the brain is spatially inhomogeneous. In order to emulate
this inhomogeneity, a variable cortical thickness T (Xx) is introduced. Specifically, as
a generic form of thickness variation, a sinusoidal thickness variation of the form

T (Xx) = A sin(2fiXx�Lt) + T0
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T = 0.05cm

T = 0.20cm
T = 0.10cm

Figure 4.5: (Color online) Schematic representation of scaling of the system. Due
to the lack of inherent length scale in the elastic equations, systems with thicker
cortices can be seen as subregions of systems with thinner cortices. Here, each broken
rectangle highlights a region which is equivalent to a system with the cortical thickness
T indicated within the figure.

is chosen. This inhomogeneity introduces two new length scales beyond the base
thickness T0: the inhomogeneity amplitude A and the period of the inhomogeneity Lt.
Thus, in contrast to the previous results, it is possible to choose any one of the three
as the fixed length scale, and vary the remaining two independently. In this study,
the thickness period Lt = 10 cm is chosen as the fixed scale. The folding pattern for
a di�erent periodicity L′

t
can be obtained by rescaling the spatial quantities by L′

t
�Lt,

or a suitable power thereof.
Note that any form of thickness variation can be written as a sum of sinusoidal

variations. When deformations are small, even the resulting folding patterns can be
obtained by simple superposition. In the brain, however, deformations are large and
nonlinear, and each thickness field must be studied independently.

Simulations are performed for base thickness in the same range as before, [0.1,
0.5] cm, and for each T0, the amplitude A was varied in the range [0, 0.9] × T0. The
inhomogeneity creates a much more localized deformation, thereby reducing possible
artifacts created by finite-size e�ects. Thus, in order to maximize computational
e�ciency, the simulation box is chosen as Lb = Lt.

4.1.6.2.1 Shape of folding

If the natural folding wavelength ⁄F of the local thickness is much smaller than the
periodicity length, the system behaves essentially like the homogeneous systems stud-
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ied in Section 4.1.6.1, i.e., the folding wavelength obeys Eq. 4.5, with T = T (Xx). Here,
the system folds into well defined waves, but with the spatially dependent wavelength
commensurate with the cortical thickness of the underlying region (see Fig. 4.6 (a),
(c)). Accordingly, these systems also present the constant length - constant thickness
stress-relief mechanism.

T0 = 0.144cm

T0

A = 0.5 

T0

A = 0.9 

(a) (b)

(c) (d)

T0 = 0.278cm

Figure 4.6: (Color online) Simulations with varying inhomogeneity amplitudes A. The
simulations have a base thickness T0 as indicated within the figure. The relative drops
are (a) ” = 0.29 (b) ” = 0.40 (c) ” = 0.48 (d) ” = 0.68.

However, when the folding wavelength becomes comparable with the periodicity
length, a second form of folding arises, characterized by complex folding patterns.
In these conformations, several wavemodes are simultaneously obtained (see Fig. 4.6
(b), (d)), presenting similarities with the further regions of the gyrencephalic brain.
See Supplementary Fig. E.1 for growth evolution over all simulated parameters, and
Supplementary Fig. E.2 for their thicknesses and thickness gradients.

This new shape has distinct developmental steps, which di�er from those described
in Sec. 4.1.6.1. For small growth, an initially flat system (see Fig. 4.7 (a)) forms
a single, deep, sulcus in an otherwise planar cortex, in the region surrounding the
thickness minimum (see Fig. 4.7 (b)). The depth of this sulcus soon saturates, and
due to the underlying white matter, it is energetically favorable to form additional
sulci rather than to increase the depth of the existing sulcus as growth continues (see
Fig. 4.7 (c)). The maturation of the new sulci occur concurrently with the formation
of shallow sulci in the regions of highest thickness (see Fig. 4.7 (d)).

It is expected that the folding starts on the region of thinnest cortex. In the limit
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(a) �g = 1.0 (b) �g = 1.5 (c) �g = 1.75 (d) �g = 2.0

Figure 4.7: (Color online) Growth evolution of system with T0 = 0.322cm and A = 0.174
cm. The growth parameters are indicated within the figure. The relative drops are
(a) ” = 0.23 (b) ” = 0.40 (c) ” = 0.54 (d) ” = 0.55.

of small deformations, the system can be analysed by the theory of thin plates. In
this domain, the bending rigidity depends on the cube power of the thickness of the
plate [183]. Thus, the large di�erences in thickness create a stress imbalance in the
region, leading to the buckling of the region with small thickness. This is specially
noticeable in the formation of the deep sulci observed in Fig. 4.7. Here, the thick parts
of the cortex compress laterally, which leads to stress condensation in the thin parts of
the cortex. The thin region has then to absorb the compression of the whole system.

4.1.6.2.2 Dependency on sti�ness ratio
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Figure 4.8: Growth evolution of systems with T0 = 0.322 cm and A = 0.174 cm for
various choices of sti�ness ratio rE, as indicated within the figure.

As noted in Sec. 4.1.2, the relative sti�ness between the white and gray matter
regions is not settled. In order to gauge the influences of the Young modulus ratios
between the gray and white matter rE, a series of simulations were performed using
the same geometry as used in Fig. 4.7. Namely, they had base thickness T0 = 0.322cm,
and inhomogeneity amplitude A = 0.174cm. The sti�ness ratio was chosen in the range
rE ∈ [1, 10], with results show in Fig. 4.8. Across all analysed sti�ness ratios rE the
system behaves similarly to the system show in Fig. 4.7, with a leading sulcus forming
during early during the simulation, followed by several surrounding sulci at later steps.
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The influences of the Young modulus ratio on the shape of the simulated cortices are
two-folded. First, higher cortical sti�ness works as an stabilizer to the the deep sulci
forming around the region of least thickness, with sti�er cortices showing deeper sulci.
Second, by sti�er cortices, fold at an earlier stage.

4.1.6.2.3 Linear stability analyses

The simulations are in qualitative agreement with the results from linear stability
analysis. The details how this theory is applied to our model are outlined in 4.1.9. In
short, the lowest-energy mode of a bilayer system is calculated, where we introduce a
thin plate as the top region and an elastic substrate underneath. The upper plate has
a sinusoidally varying bending rigidity

Ÿ(x) = Ÿ0 + Ÿ1 sin�2fi

L
x� ,

where L is the periodicity length. The system is then subject to a spatially constant
compressive surface tension “. The bending rigidity plays a similar role in this model
as the thickness plays in the simulations, and the surface tension plays a similar role
to growth.

According to the analytical model, homogeneous systems (i.e., Ÿ1 = 0) will fold into
a single, well-defined wavenumber, as expected (see Fig. 4.9 (a)) [184]. However, as
the bending rigidity ratio Ÿ1�Ÿ0 is increased, the folding gets more localized around
the bending rigidity minimum. This phenomenon is qualitatively consistent with what
was observed in the simulations. For the case with Ÿ1�Ÿ0 = 0.9, for instance, the linear
stability analysis predicts the formation of a deep sulcus surrounding the bending
rigidity minimum, similarly to the finite-element simulations (see Fig. 4.7 (b)). The
analytical model predicts that as the cortical plate gets more compressed, the system
develops secondary sulci, as can be noticed in region x�L ≈ 0.25 in the system with
“ = −1000Ÿ0�L (see Fig. 4.9 (b))

4.1.6.2.4 Comparison with histological sections

It is possible to compare the structures obtained to histological sections of the
human brain, as shown in Fig. 4.10. The results from our simulations present a
striking similarity to some regions of the human cortex, showing a wide range of sulcal
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Figure 4.9: (Color online) Analytical prediction of vertical displacements ÷. (a) Vary-
ing bending rigidity ratios at buckling point. (b) Varying values of surface tension “,
while the bending rigidity ratio is kept constant as Ÿ1�Ÿ0 = 0.5. For “ > −286.08Ÿ0�L, no
buckling is predicted. Note the appearance of higher order folding for “ < −1000Ÿ�L2.
In both cases, the e�ective Young Modulus used was Ê = 2000Ÿ0�L3. As the curves
are normalized, the predicted displacements can only be compared within the same
curve, but not between curves calculated with distinct parameters.
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Figure 4.10: Illustrative comparison between simulation results (top) and sections
of the cortex (bottom; adapted from HBP BigBrain [185]). Dashed boxes indicate
regions of interest. From left to right, the simulations are performed with T0 = 0.189
cm , A = 0.102 cm (” = 0.45); T0 = 0.500 cm, A = 0.180 cm (” = 0.40); T0 = 0.367 cm,
A = 0.198 cm (” = 0.66). In the same order, extracts of the left superior parietal lobule
(sagittal plane, ” = 0.36), the right postcentral gyrus (coronal, ” = 0.54), and the right
posterior middle temporal gyrus (coronal, ” = 0.61) are shown. Due to the arbitrary
choice in the value of Lt, the thicknesses between the simulation and the histological
section are not quantitatively comparable.

depths and widths, in qualitative agreement with the ones observed in regions with
higher-order folding. For instance, the superior parietal lobe presents a plethora of
small, shallow folds, similar to those observed in the simulations with thin cortices.
Regions presenting a more complex folding pattern, such as the postcentral gyrus,
or the posterior middle temporal gyrus are reproduced by simulations with thicker
cortices. Furthermore, the gyral height-to-width ratio resulting from the simulations
are similar to those observed in the histological sections. Obviously, these similarities
in structure can also stem from very di�erent causes, and only more detailed modeling
accompanied with experimental data will be able to identify true causality.

4.1.6.2.5 Onset of buckling

Next, we turn our attention to the onset of buckling, i.e. the critical amount
of growth ◊C

g
above which the system starts to fold, broadly indicating when the

constant-length regime ceases, and the constant-thickness starts. The critical growth
◊C

g
is defined somewhat arbitrarily as the growth where the averaged squared curvature
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Figure 4.11: (Color online) Critical growth ◊C
g

for the emergence of folding for various
combinations of cortical thickness and inhomogeneity amplitudes.

of the system reaches 2cm−2. The results do not change considerably for choices of
critical curvature square �C2� in the range [1, 3]cm−2. The transition points are shown
in Fig. 4.11, where it is possible to observe that the critical growth ◊C

g
is strongly af-

fected by interplay between the inhomogeneity amplitude and the base thickness of the
cortical plate, with a noted decrease in the value of ◊C

g
as the inhomogeneity amplitude

A increases. In light of these results and of the di�erences between the folding of thin
and thick systems (see Fig. 4.6), we conjecture that the relevant parameter to cortical
convolution is not solely the ratio between the maximal and minimal thickness, but
that the local gradient of the cortical thickness also plays a fundamental role.

4.1.7 Conclusion

We have analyzed the e�ects of the cortical inhomogeneity in the formation of brain
folds. To this end, two closely related systems were studied. First, analyses was carried
out by simulating a rectangular bilayer slab where the neocortex grows tangentially.
It was observed that the folding pattern follows well-defined wavelengths, which de-
pended on the thickness of neocortex, consistent with previous work [156, 157, 182,
186]. According to Bok’s principle, the thickness di�erences between the sulci and gyri
are created as a consequence of the curvature of the brain. During gyrogenesis, the
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high curvature in the sulci spreads the cortical mantle, decreasing its thickness. The
gyral crowns are not a�ected as strongly due to their relatively small curvature [187].
Our simulations are consistent with this principle, showing that an initially homo-
geneous cortex can develop cortical inhomogeneities through buckling, coherent with
prior observations on homogeneous systems [157, 188–190].

Second, the e�ects of wavelength competition were studied through the introduc-
tion of inhomogeneities in the cortical thickness. In these systems, phenomena closely
related to the mammalian gyrogenesis, such as the emergence of hierarchical folding
in systems with thick cortices, were observed. Indeed, the results shown here indicate
that inhomogeneities in the cortical thickness might play an important role in the local-
ization and formation of hierarchical folding patterns of the brain. Specifically, it was
shown that these inhomogeneities are su�cient to break the simple wave-like patterns
observed in the homogeneous system. Further, our observations indicate that thickness
inhomogeneity leads to earlier folding compared to systems with homogeneous cortical
thickness. When comparing simulations with similar minimal-to-maximal thickness
ratios, those with small (when compared with the inhomogeneity wavelength) base
thickness folded in simple wavy patterns, similar to those in the homogenous cortex,
while those with large base thickness folded into more realistic patterns. Taken to-
gether, these results indicate that large gradients in cortical thickness are necessary
to create the complex structures found in the mammalian brain. Lastly, the results
obtained in silico are consistent with those obtained from analytical models derived
from thin plate theory.

Similar approaches have been taken in other studies, where other cortical inhomo-
geneities such as sti�ness and growth, were studied both in circular [157] and rect-
angular [82] geometries. These studies found e�ects similar to those outlined above.
Namely, these other kinds of inhomogeneity also led to the departure from wave-like
conformations, and to the earlier onset of folding. However, inhomogeneities in cortical
thickness lead to more complex configurations, a wider variety in the gyral shapes, and
many more sulci per inhomogeneity period, despite the equally large inhomogeneity
gradients in these works. The reason for this di�erence can be readily understood in
energetical terms, as the potential energy in Eq. 4.6 depends linearly on the Young
modulus, and arguably on the growth, while presenting a cubic dependency on the
thickness. Therefore, cortical thickness gradients are amplified when compared to
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other types of inhomogeneity.
Besides inhomogeneities along the cortex, other mechanisms have been proposed

as a driver for higher order folding. For instance, [79] has proposed a sequence of
bucklings as a candidate to explain such phenomenon. These other mechanisms are
not incompatible with the one presented here. Indeed, it seems likely that several are
at play in the real cortex.

The computational model used to explain the hierarchical folding patterns of the
mammalian brain is very general, utilizing only the fundamental elastic nature of
brain tissue. The absolute values of the elastic moduli play no role, with only their
ratios being important. This model is agnostic to all sorts of structural properties of
the brain, such as its volume, eccentricity, functional connectivity, etc. The results
derived here are applicable to the brains of other mammalians, after a suitable scaling
of the thickness, growth, and periodicity lengths.

While the comparisons presented here focus mostly on smaller regions of the human
brain, larger simulations are required to gauge the influence of thickness inhomogeneity
on the full brain. We conjecture that the application of a biologically derived thickness
field can lead to the formation of the deep sulci obtained in the mature human brain.

Based on our current results, the mutual influence of the di�erent kinds of inho-
mogeneity (e.g., thickness and growth) can also be studied. The simulations in this
work were performed in a flat domain. However, the curvature intrinsic to the mam-
malian brain has been shown to a�ect folding [157, 179]. Thus, models on which the
e�ects of curvature and each type of inhomogeneity are studied together are necessary
to provide predictions which can be tested against histological sections of developing
mammalian brains.

We have shown the consequences of cortical thickness inhomogeneities to brain
folding. What drives the development of these inhomogeneities is still a matter of
ongoing research. Features of a given brain area, such as its cortical thickness are
related to its function [191].

Evidence suggests that the generation of the cortical thickness in these regions are
dictated by a genetic map, which induce a large abundance of progenitor cells in some
regions, and a depletion in others [192]. Such di�erences in growth have been shown to
create thicknesses inhomogeneities in the cortex [157]. Biomolecular and mechanical
factors contribute to this stereotypy [153, 193], and, based on our current approach,
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could additionally be included in future models of brain folding.

Experimental results have shown that axons grown in response to stress [194–196].
In contrast with the growth model utilized in the current work, a model taking into
account stress-dependent growth would e�ectively induce viscoelastic characteristics
onto the white matter [197]. Indeed, it has been shown that viscoelastic properties
can a�ect the buckling wavelength of bilayered systems [148, 155]. Thus, it would be
interesting to further refine the current model with the viscoelastic characteristics of
growing tissues in general [197], and of the brain in particular [198].

Finally, structural connectivity, i.e., axons within the white-matter fiber tracts,
have been conjectured to be one of the drivers of folding [166]. How they would influ-
ence the conformations found in this work could be investigated further to understand
the mutual influence of di�erential growth and axonal tension in gyrogenesis.

This paper’s focus was the developing brain, but in virtue of generality of the model
used, its results are extensible to other fields. For instance, it has been shown that
microscopic corrugated surfaces give rise to hyperhydrophobic surfaces, in the so called
Lotus e�ect [199, 200]. Our results can provide further insight into the self assembly
of these corrugations, and in the control of their properties.

Soft layered systems can be realized experimentally by gel slabs coated with gels
with di�erent properties [150, 201]. These systems have been used as simulacra for
brain folding [165, 188], where they were able to mimic the folding of a 3D-printed hu-
man brain. Thus, the production of samples with sinusoidal variation of the top-layer
thickness would allow for the experimental testing of our predictions. Further, we
hypothesise that it would be possible to use these systems to distinguish between the
various types of inhomogeneity. For instance, by controlling the cross-linker density
in di�erent regions of the sample, it is possible to control the sti�ness of gel, mak-
ing sti�ness inhomogeneities experimentally accessible. Similarly, it would be possible
to control the hydration of the regions, mimicking inhomogeneous in growth. Brain
organoids have been used as biological toy models for several aspects of brain develop-
ment [202, 203], with folding having been recently achieved in such small systems [204].
These systems can thus be used in controlled studies to provide strong evidence of the
drivers of brain folding.
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4.1.9 Appendix: Simplified analytical model

In order to understand the buckling of the system, we use a simplified model which
can be solved analytically. Here, a thin plate with a spatially varying bending rigidity
is studied. This plate is attached to a linear elastic substrate, filling the whole of
the half-space y < 0. In the limit of small deflections and disregarding shearing, it is
possible to write the displacement of the system in the Monge representation as

u(x, 0) = (0, h(x)).
Here, h(x) indicates the local height of the plate along the x axis. The free energy

of this system is composed of three terms:

F = Fbend + Fstretch + Fsubs, (4.6)

where Fbend is the free energy of bending the thin plate, Fstretch is the energy required in
order to stretch the plate and Fsubs is the energy of the deformed underlying substrate.
Explicitly,

Fbend =
L

�
0

Ÿ(x) �∇2
h(x)�2 dx
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Fstretch =
L

�
0

�∇h(x)�2“dx

Fsubs = 1
2

∞
�
0

L

�
0
�
ij

‡ijuijdxdy

where Ÿ(x) describes the space-dependent bending rigidity, “ is the surface tension
on the superficial plate, ‡ij are the components of the Cauchy stress tensor, and uij

are the components of the strain tensor uij = 1
2 � ˆui

ˆxj
+ ˆuj

ˆxi
�. In order to keep the

simplicity of the model the bending rigidity of the plate, rather than its thickness,
varies sinusoidally. That is,

Ÿ(x) = Ÿ0 + Ÿ1 sin�2fi

L
x� = Ÿ0 + Ÿ1 sin(k∗x),

where k∗ is the characteristic wavenumber of the inhomogeneity. Due to the periodic
nature of our system, the stability analysis is easier to carry out in Fourier space.
Thus, the height function h(x) is expanded into

h(x) = 1
L
�
k

hk exp(ixk), k ∈ 2fi

L
Z

hk = rk exp(i„k)
with „k = „−k. In this decomposition, whole-plate dislocation(i.e., h0 = 0) were disre-
garded.

To obtain the energy of the elastic substrate in the Fourier space, one has to solve
the problem of a linear elastic substrate with given surface deformation in Fourier
space, as derived in Ref. [182]. With this solution, the free energy described in Eq. 4.6
is written as

F =�
k

1
2(Ê�k� + “k

2 + Ÿ0k
4)r2

k
+ Ÿ1

2 k
2(k + k

∗)2rkrk+k∗ sin(„k − „k+k∗) (4.7)

with
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Ê = E
2(‹ − 1)(‹ + 1)(4‹ − 3) . (4.8)

We search for the buckling modes that are most unstable. That is, those with
wavenumber k which minimize the energy in Eq. 4.7. Due to the bound properties of
the sinus, it is clear that the condition „k − „k+k∗ = 3�2fi + 2fin is necessary to obtain
this minimum. Thus, the energy is written as

F =�
k

1
2(Ê�k� + “k

2 + Ÿ0k
4)r2

k
− Ÿ1

2 k
2(k + k

∗)2rkrk+k∗ (4.9)

Unstable modes can then be obtained by standard stability analyses. Eq. 4.9 is
recast into its matricial form

F = 1
2rT Hr,

where r is a vector with components r = rk, and H is the Hessian matrix. Explicitly,

Hij = 4g(ki)”ki,kj − 2f(ki)”kj ,ki+k∗ − 2f(−ki)(”kj ,k∗−ki − ”kj ,ki−k∗) (4.10)

with

g(k) = 1
2(Ê�k� + “k

2 + Ÿ0k
4),

f(k) = Ÿ1
2 k

2(k + k
∗)2.

In this form, the unstable modes are obtained as those states with negative eigenvalues
for the Hessian matrix, corresponding to modes with negative energy. For homoge-
neous systems (i.e., Ÿ1 = 0), the energy contribution of each mode is independent
(i.e., the Hessian matrix is diagonal), and modes that minimize the energy can be
obtained analytically [184, 206], with same resulting prefactor as in Eq. 4.5. In the
inhomogeneous case, the various wavemodes are coupled, and it is necessary to solve
the eigenproblem numerically. Fig. 4.9 shows the results of these calculations. Each
curve corresponds to the eigenfunctions with lowest eigenvalues for di�erent elastic
parameters, as indicated therein.
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This analytical theory gives results which are qualitatively similar to those obtained
in our simulations. In order to obtain quantitative comparisons, a more complex theory
is necessary, which takes into account the lateral displacements during gyrification.

4.1.10 Supplementary material

Supplementary figures are available in Appendix E as Figs. E.1 and E.2.

4.2 Further remarks

In this section we show some further results obtained in this system that are not
presented in the paper as published in NeuroImage.

4.2.1 Pressure of folding

After buckling, the cortical thickness of the slab is no longer uniform. This folding
imparts a residual stress in the system. The homogeneous pressure p = tr(‡) of the
system shows that while the whole of the cortical plate is under compression, it is clear
that the sulcal regions are under a higher compression than the gyri (see Fig. 4.12).

Figure 4.12: Snapshot of the simulation indicating the local pressure (see colorbar)
during folding. Note the strong compressile stress in center of the sulci. Simulation
with T = 0.50 and ◊ = 1.55.
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4.2.2 Onset of folding

In systems with short wavelength (i.e., those with thin cortices), the local folding
style does not change considerably inhomogeneities are introduced (see Fig. 4.13 (a)).
They are distinguished, however, in that each part of the initially flat system starts
to fold at a distinct growth parameter ◊g, with the regions of thinner cortex folding
at a earlier step than those with thicker cortices (see kymographs in Fig. 4.13 (b)).
This e�ects becomes more noticeable as the thickness and inhomogeneity amplitude
increases, (compare Fig. 4.13 (a, b) with (c, d)).

Figure 4.13: Evolution and curvature kymograph of inhomogeneous systems with (a,
b) base thickness T0 = 0.144 cm and inhomogeneity amplitude A = 0.091 cm, and (c,
d) T0 = 0.50 cm, A = 0.315 cm.

4.2.3 Reproducibility of folding

Di�erent realizations of the simulations with the same parameters have the same be-
haviors during the first steps of buckling, but soon diverges once secondary folding
starts (see Fig. 4.14). This is consistent with the biology of folding, where the first
order folding is robust when compared between di�erent individuals, but the higher
order folding is highly individual-specific, and indicate that the energy landscape of
the system is complex and highly degenerate.



92 CHAPTER 4. ENERGY MINIMIZATION SIMULATIONS

Figure 4.14: Snapshots of three di�erent realizations of systems with the same param-
eters, T0 = 0.278cm, A = 0.200cm, and ◊g = 2.5, and distinct random number generator
seeds.



Chapter 5

Dynamical simulations

In this chapter, dynamical e�ects are studied. The chapter is divided in three parts.
First, the consistency between the energy minimization and the slow growth regimes
is demonstrated, and further e�ects of growth rates on the folding of the homoge-
neous cortex are studied. Second, inhomogeneities are analysed in this new regime.
Thickness inhomogeneities are revisited, and inhomogeneities in growth rates are in-
troduced. These are studied first in isolation, and then the e�ects of their interplay
is analysed. Thirdly, the thin plate theory used in Sec. 4.1.9 is extended to handle
multiple types of concurrent inhomogeneities, and the results obtained in the previous
part are discussed in light of this theory.

5.1 Dynamical e�ects

In order to use the available computer time e�ciently, simulations are initially per-
formed for a single initial thickness, while the growth rate is varied carefully. Later,
both the thickness and the growth rate are varied, exploring a wide, even if coarse,
phase space.

The studies in Ch. 4 were done using energy minimization simulations, an ap-
proach which is often found in the literature [41, 77, 79, 188] and presupposes that
the energy minimization approximation retrieves the same configurations as a system
with infinitely slow growth. While relatively intuitive, there are possibly important
sources of di�erences between the dynamical and energy minimization approaches.
Most notably, minimization algorithms pay little respect to the physics of the under-
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lying problem. They may skip energy barriers, and could lead into the global energy
minimum even if it cannot be reached by the real dynamic system (see Appendix C)1.
Another important factor is that the growth speed itself impacts folding [184].

We use the forced growth approach introduced in Eq. 4.1.5, but, in contrast with
the last chapter, the value of the growth constant g is consequential, introducing the
timescale of growth ·g = 1�g. The concepts of “fast” and “slow” growth are, of course,
relative. In order to anchor these concepts, we compare the timescale of growth ·g

to the timescale of amplification, i.e., the time it takes for a wavemode amplitude
to increase by a factor of e ≈ 2.71. We report the results as a function of the ratio
between the time scales as ·g�·a, with higher values of this ratio indicating slower
growth. Following Ref. [184], we obtain the timescale of amplification as

·a = 4ŸµT

“2 , (5.1)

where Ÿ is the bending rigidity, µ is the friction coe�cient, T is the cortical thickness,
and “ is the surface tension. In the linear regime, the surface tension at buckling is
given by

“C = −3�ŸÊ2

4 �
1�3

, (5.2)

with Ê being the e�ective Young modulus, as defined in Eq. 4.8. Both the amplifi-
cation timescale ·a and the surface tension “C depend on the Young modulus E of
the simulated material. For the brain, determining the correct value of this quantity
is di�cult. Rheological experiments are typically in the order of second or minutes,
while brain development happens in the span of weeks and months. However, as the
long-term the Young modulus is not well characterized we use the short-time Young
modulus instead, which while not perfect, will be su�cient to provide a comparison
timescale. Introducing the relevant physical constants in Eqs. 5.1 and 5.2 results in
the following ratio for the simulations

·g

·a

= 23.31
gT

. (5.3)

1In the brain such a situation might arise if the cortical thickness changes after folding as it hap-
pens, for instance, during aging. The dynamical system would not necessarily change its characteristic
wavelength, while a energy minimization system could present large jumps in wavelength.
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Quasistatic

Figure 5.1: Snapshots of systems with di�erent growth rates at normalized time gt = 5,
with growth parameter ◊ = 2.5.

We initially fix the thickness of the system at T0 = 0.5 cm, and carefully vary
the growth rate g between simulations in the range g ∈ [10−3, 0.336], introducing
growth time scales in the range ·g ∈ [2.98, 103]. The system is grown until the growth
parameter ◊g equals 2.5. As it is possible that the system is not fully relaxed once this
point is reached, the system is then allowed to relax for an equivalent amount of time.

The resulting snapshots of few representative simulations after relaxation are shown
in Fig. 5.1, where it can be seen that the folding profile of the dynamical systems are
qualitatively similar to those obtained in Sec. 4.1.6.1, with a simple wave throughout
the cortex. The evolution of these systems happens in three steps. Similarly to the
results obtained in Chapter. 4, the system is initially compressed, keeping its mostly
flat configuration. Once the surface tension is large enough, the system buckles and
folds. Finally, the system undergoes a relaxation step.

This evolution can be seen in detail in Fig. 5.2. During the first step, the cortical
length is mostly constant (see Fig. 5.2 (a)) while the thickness goes through a large
overshoot until right before folding (Figs. 5.2 (b), (c), and (d)). Until buckling, the
folding wavenumber kF (as defined in Eq. 4.4) is stationary at zero, indicating no
significant folding occurs until a certain growth threshold is reached. Once the system
buckles, a particularly precipitous drop in thickness is observed, which, after some
oscillation, reaches a stable growth pattern. Complementarity to the drop in cortical
thickness, there is steep increase in the cortical length. It is also worth of notice that
folding happens at later normalized times for increasing values of growth rate g.

The second part of this process in particular is very consequential to the folding
landscape predicted. As such, the folding wavenumber during this step is shown in
further detail in Fig. 5.2 (f), where it is worth to notice that on one hand slowly
growing systems (including the energy minimization system) fold into the analytically
predicted wavenumber before higher order e�ects become relevant and force an increase
in wavenumber, leading to a departure from the analytically predicted value. On the
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Figure 5.2: Evolution of geometrical quantities for a system with cortical thickness
T = 0.5 cm, and growth rates g as color coded. Black lines indicate the results from
energy minimization simulations. Growth was halted at gt = 2.5, and the system was
then allowed to relax for the same time, as indicated by the shaded area. (a) Nor-
malized cortical length L, (b) normalized sulcal thickness Ts, (c) normalized average
thickness T , (d) normalized gyral thickness Tg, (e) folding wavelength kF over the
whole simulation period, (f) folding wavelength kF around the folding step. L0 and T

indicate the initial length and average cortical thickness. The blue broken line in (e)
and (f) indicates the analytically predicted value for the folding wavenumber.
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Figure 5.3: Power spectrum of system at various steps during growth. Green, orange,
and blue lines indicate the spectra at the onset of folding, at the point of highest
average wavenumber, and before the relaxation period, respectively. Snapshots of
systems associated with the spectra are also shown.
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other hand, fast growing systems fold into a higher wavenumber than predicted, which
decreases towards the predicted value during relaxation. However, while the folding
wavenumber decreases slightly, it is often the case that the system is locked into a
metastable state corresponding to a high wavenumber.

Besides the noted di�erences in the folding wavenumbers, we also observe that
faster growing systems present a broader (but shallower) folding spectrum than slower
growing systems (see Fig. 5.3). At the onset of folding, it is possible to observe a
broad power distribution around a non-zero wavenumber. However, most of the power
is concentrated near zero, indicating a whole-plate dislocation as it is compressed by
growth. When the system reaches its highest average wavenumber, a large number
of wavenumbers are activated, with fast growing systems presenting more spread out
spectra. This phenomenon is clearly seen when comparing the results for growth rate
·g�·a = 358.6, which fold largely in a single wavenumber, with localized exceptions
where period doubling is present, and those with growth rate ·g�·a = 19.9, which
exhibits several contemporaneous waves, leading to its broad power spectrum. As the
system relaxes, the amplitude of most wavenumbers decays, and is absorbed into the
amplitude of a few other waves. By the end of the simulation, the power is mostly
concentrated in a narrow band around a single wavenumber, with much smaller peaks
surrounding other wavenumbers corresponding to the higher harmonics of the main
peak.

So far, the analyses were restricted to those systems with a relatively large thick-
ness, T0 = 0.5 cm. When the phase space is extended to also probe variations in
cortical thickness in the range T0 ∈ [0.1, 0.5] cm, we observe that the simulations
behaved largely the same, independently of the cortical thickness studied. Changes
in thickness generate two interconnected e�ects. Firstly, the overestimation in the
folding wavenumber kF increases for systems with thicker cortex. Secondly, due to
the overestimation, the time necessary so that the system relaxes also increases (see
Fig. 5.4).

Taken together, the results in the current section show that the system studied in
Chapter 4 took a physically sound path through configuration space. Further, they
showed that the e�ect of growth rate becomes more noticeable as both the thickness
and the growth rate increase. This can be understood in light of the linear stability
theory developed in Ref. [144] and reproduced in as Sec. 4.1.9, where surface ten-
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Figure 5.4: Evolution of folding wavenumber kF as the systems grows, organized by
base thickness T . Broken lines indicate the analytically predicited wavenumber.

sion plays an important role in the determination of which wavelengths are generally
favorable. When the timescale of growth ·g is comparable with the time scale of
amplification ·ampl, the surface tension is not able to relax fast enough, and tends to
accumulate. This leads to an increase in the stretch energy, making several wavemodes
energetically permissible at the same time, yielding the broad spectra seen in Fig. 5.1,
and corresponding overshoot in wavenumber. As the surface tension is calculated over
the whole cortex, it is natural that thicker system also have larger surface tension,
magnifying the growth rate e�ects.

5.2 Inhomogeneities in the dynamical regime

As shown in Sec. 1.3.3, neither the cortical thickness, nor its growth rate are homoge-
neous throughout the mammalian cortex [193]. In the current section we revisit the
growing cortex with inhomogeneous thickness, investigate the e�ects of inhomogeneous
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growth in an otherwise homogeneous cortex, and finally study the interplay between
the two types of inhomogeneity on folding.

The results in the last section revealed that dynamical e�ects are impactful in the
formation of folds, and that the magnitude of these e�ects increase with both growth
rate and cortical thickness.

Keeping in mind that inhomogeneities in the brain may be one of the mechanisms
by which some stereotypical folding patterns such as higher-order folding, emerge, it is
necessary to investigate the influence of the dynamical e�ects on the inhomogeneous
cortex.

5.2.1 Inhomogeneous thickness revisited

Systems with varying thickness were first introduced in the energy minimization regime
in Sec. 4.1.6.2, and are now revisited in the dynamical regime. The cortical thickness
of this system is given by

T (x) = T0 +At sin(2fiXx�Lx),
where the notation At is introduced to distinguish between inhomogeneity in thickness
and in inhomogeneity in growth, which is introduced in Sec. 5.2.2. Fig. 5.5 shows
the development of inhomogeneous systems with various growth rates. The folding
trajectory of the cortex is largely similar to that obtained in the energy minimization
regime, with folding being initiated in the thin regions of the cortex, and concentrated
therein. While the energy minimization and slow growth simulations present a similar
phenomenology, some di�erences are noticeable between the two, most notably, the
region around the thickest cortex presents a flatter profile in the energy minimization
regime than in the slow growth one. As the growth rate g increases, the thicker regions
stabilize in a higher wavenumber (compare Fig. 5.5 (b) and (e)), indicating that the
spectrum-spreading e�ects shown in Sec. 5.1 are compounded with those created by
the inhomogeneity.

As mentioned in Sec. 4.2.3, after buckling the energy landscape of inhomogeneous
systems becomes highly degenerate 2, presenting several similar but distinct accept-

2The flat case can be argued to be even more degenerate, as any change in the phase of the solution
yields a new valid solution. However it represents a simpler degeneracy – a�ecting a single wavemode
– while the one in the current case depend on the nonlinear interaction between various modes.
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able configurations. This can be a challenge simulations using the energy minimization
approximation, as small changes might lead to very distinct configurations, often with
simulations jumping back and forth betweend various configurations. Dynamical sim-
ulations do not have this issue, as they are required to follow a continuous trajectory
through phase space. (e) �g/�a = 68.94(d) �g/�a = 111.37(b) �g/�a = 1447.83 (c) �g/�a = 517.08(a) EMt' = 0.00t' = 0.50

t' = 3.00
t' = 1.50
t' = 1.00

Figure 5.5: Snapshots with evolution of systems with inhomogeneous thickness. All
systems have the same geometrical parameters, with base thickness T0 = 0.322 cm, and
At = 0.174 cm.

5.2.2 Inhomogeneous growth

So far, it was supposed that the whole cortex grows at the same rate. This is not
the case in the mammalian brain, which follows a protomap of growth [193, 207]. We
briefly study the e�ects of the distinct growth rates along the cortex. In a similar way
as was done in Sec. 4.1.6.2, the inhomogeneity profile is sinusoidal, as

g(x) = g0 +Ag sin(2fiXx�L). (5.4)

The notation for the normalized amplitudes A′
g
= Ag�g0 and A′

t
= At�T0 are adopted

for easier comparison. The evolution of a system with cortical thickness T = 0.4 cm is
shown in Fig. 5.6. In these thicker systems, the cortical development is similar to that
of systems with inhomogeneous thickness. In the slow growth regime, a leading sulcus
forms early during development, which is soon followed by further sulci (see Fig. 5.6 (a),
(d)). Once the base growth increases, pairs of sulci appear simultaneously, generating
a single gyrus instead, opposite to what was observed in system with inhomogeneous
thickness.

During the whole simulation, most of the folding is concentrated in the region of
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high growth, with the region surrounding the slow-growth zone remaining mostly flat
(see Fig. 5.6 (c)). In the case of fast growth, this region is slightly bent due to the
compression from surrouding regions, but no proper folding occurs (see Fig. 5.6 (d)).

These results show that inhomogeneous growth rates also lead to inhomogeneous
folding. However, the folding landscape is less complex than the one generated by
inhomogeneous cortical thickness.

t' = 0.00
t' = 0.83
t' = 1.25
t' = 0.67A' g = 0

.5

(a) �g/�a = 1447.83t' = 0.00
t' = 0.83
t' = 1.25
t' = 0.42 A' g = 1

.0 t' = 0.00
t' = 0.83
t' = 1.25
t' = 0.42

t' = 0.00
t' = 0.83
t' = 1.25
t' = 0.67

(b) �g/�a = 58.28 (c) �g/�a = 1447.83 (d) �g/�a = 58.28

Figure 5.6: Dynamics of systems undergoing inhomogeneous growth with initial cor-
tical thickness T = 0.4 cm, and growth parameters as shown within the figure.

5.2.3 Inhomogeneity interplay

In the past two sections, the dynamical e�ects of cortical thickness and growth in-
homogeneities have been shown in isolation. In Sec. 5.2.1 it was shown that folding
is concentrated in the thinner regions of the cortex, while in Sec. 5.2.2 folding was
concentrated in the regions with more growth, with higher wavenumbers in these re-
gions. We now investigate the case when the two e�ects compete What happens with
the developing cortical plate when the thicker regions of the cortex grows faster than
the thinner regions. Growth inhomogeneity is introduced to the system in Sec. 5.2.1,
as shown in Fig. 5.7. As shown before, in the absence of growth inhomogeneities,
this system has the tendency to initiate folding in its thinnest part. Such an e�ect is
observed even in the presence of moderately strong growth inhomogeneities (Ag = 0.5,
Fig. 5.7 (b)), where its e�ects are limited to a small decrease in wavelength on the
thicker regions on the left, and a corresponding increase in wavelength on the thinner
regions. Indeed, trajectories similar to the inhomogenous growth (see Sec. 5.2.2), with
fissuration initiating on the faster growing regions, are only seen in very large growth
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inhomogeneities (Ag ≈ 1.0). The folding pattern, however, is noticeably di�erent to
those obtained before, due to its open structure.(a) A'g = 0.00 (b) A'g = 0.5 (c) A'g = 1.0

Figure 5.7: Dynamics of systems with base cortical thickness T0 = 0.4 cm, thickness
inhomogeneity A′

t
= 0.45, growth rate ·g�·a = 11.65, and inhomogeneity parameters as

indicated within the figure.

These results indicate that inhomogeneities of cortical thickness have a strong influ-
ence on the emerging landscape of folding when compared with growth inhomogeneity,
with small di�erences in cortical thickness leading to large di�erences in folding land-
scape. In contrast, di�erences in cortical growth lead to relatively tame changes in
cortical landscape, mostly inhibiting local folding.

The physical reason for this, as hinted in Sec. 4.1.7, is that the thickness has an am-
plified role on the energy of the system. Firstly, the thickness itself has a cubic-power
influence on the energy polynomial g(k) (see Eq. 5.8), through the bending rigidity
Ÿ, which, in turn, serves as the prefactor of fourth power component in the energy,
leading to further amplification of the role of the cortical thickness. In comparison, the
growth rate arguably influences the energy only through the surface tension “, itself
a prefactor of a quadratic term. This idea is further explored in the following section.

5.3 Linear stability theory

5.3.1 Surface tension inhomogeneity

This section o�ers a similar treatment to growth inhomogeneity as was done to thick-
ness inhomogeneity in Sec. 5.3. We map the problem to an analytically treatable one,
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in the realm of linear plate theory. We suppose a spatially-dependent surface tension
in the form

“(x) = “0 + “1 sin(k∗x), (5.5)

whose net e�ect is similar to that in bending rigidity, yielding the following energy

F = ∞�
k=1

1
2(Ê�k� + “k

2 + Ÿk
4)r2

k
− “1

2 k(k + k
∗)rkrk+k∗ , (5.6)

where the condition „k − „k+k∗ = 2(n + 1)fi has been applied. The associated Hessian
matrix has a similar structure to that in Eq. 4.10, with terms

Hij = 4g(�ki�)”ki,kj − 2f2(ki)”kj ,ki+k∗ (5.7)

− 2f2(−ki)(”kj ,k∗−ki − ”kj ,ki−k∗),
with

g(k) = 1
2(Ê�k� + “k

2 + Ÿ0k
4),

f2(k) = “1
2 k(k + k

∗).
Now the o�-diagonal terms depend on the surface tension. The eigenfunctions asso-
ciated with the most negative eigenvalues are shown in Fig. 5.8, where it is seen that
the folding is localized in the regions of largest surface tension.

5.3.2 Inhomogeneity interplay

In the linear regime, the e�ects of inhomogeneities in rigidity and surface tension
are energetically decoupled. The net contribution of both types of inhomogeneity is
concentrated in the o�-diagonal components of the Hessian matrix as

Hij = 4g(�ki�)”ki,kj − 2f3(ki)”kj ,ki+k∗ (5.8)

− 2f3(−ki)(”kj ,k∗−ki − ”kj ,ki−k∗),
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Figure 5.8: Analytical prediction of most unstable modes of a system with inhomoge-
neous surface tension “, and e�ective Young modulus Ê = 2000Ÿ0�L3. For each curve,
the value of “0 was chosen as the least negative value that leads to a stable mode.

with o�-diagonal terms, f3(k) = Ÿ1
2 k2(k + k∗)2 + “1

2 k(k + k∗) obtained as the individual
o�-diagonal terms in Eq. 4.9 and Eq. 5.6.

Due to their opposite signs, it is expected that these two sources of inhomogeneity
would have opposite e�ects. Large values of surface tension lead to higher wavenum-
bers, and therefore more folding, while higher values of bending rigidity lowers the
wavenumber, as a harder cortex is more di�cult to bend. Fig. 5.9 shows the most
negative solutions of the eigenproblem induced by the expanded Hessian matrix. The
region where folding is observed depends on the inhomogeneity used. Inhomogeneities
in bending rigidity leads to folding on the right side of the system, where the cortex is
softest (see left column of Fig. 5.9), while surface tension inhomogeneities leads to fold-
ing on the left side, where the system is most under tension (Fig. 5.9, upper row). In
both of the previous cases, the e�ects seen were mostly due to a single type of inhomo-
geneity. The interplay between the two is shown in the middle column Fig. 5.9. These
show that the energy competition makes the folding pattern flip between the two sides
of the system, depending on the relative amplitude between the two inhomogeneities.
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Figure 5.9: Analytical prediction of most unstable modes, with e�ective Young modu-
lus Ê = 2000Ÿ0�L3. Di�erent from Figs. 4.9 (a) and 5.8, here the value of “0 is imposed,
being roughly mapped to growth.

5.4 Conclusions

The model used in this chapter departed from the energy minimization regime, and
the systems studied before were reanalysed taking into consideration dynamical e�ects.
It was shown that dynamical systems behave roughly in the same manner as those
obtained in the energy minimization regime. The timescale of growth, when compared
with the timescale of the relaxation, is vital in the determination of the wavelength on
which the system will fold. In many cases we observe that there would be an overshoot
in the folding wavenumber, which becomes more pronounced for thicker systems, or
those with a high growth rate. These overshoots were followed by a relaxation period,
where the wavenumber of the system would approach the wavelength predicted by
energy minimization approaches, but not necessarily reach it. This fact makes it
possible that the wavelengths obtained in the real cortex would be smaller than those
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predicted without taking dynamical e�ects into account. These results also serve
as a consistency check of the results in Ch. 4, showing that the trajectory the system
performed in phase space was physically sound despite the quasi-static approximation.

Inhomogeneities in the growth rate were also introduced, in addition to the cortical
thickness inhomogeneity studied in Ch. 4. It was observed that growth inhomogeneity
has a similar e�ect to that of cortical thickness, creating a leading sulcus around the
region of fastest growth, while inhibiting folding in regions of little growth. The inter-
play between the two kinds of inhomogeneity was studied, where the thickest regions
grow faster than the thinner regions, leading to an e�ective competition between the
two kinds of inhomogeneity. The observed configurations are not simply additive, as
one could expect a priori. Instead, it was observed that they interfere with each other,
with early folding being located either at the thinnest or at the thickest point, but not
in both at the same time, nor in a in-between location.

We further developed the linear stability theory developed in Sec. 4.1.9, in order
to aid in the understanding of the configurations obtained in the simulations. This
theory was then extended to deal with two types of inhomogeneity, bending rigidity and
surface tension, with qualitative matching between the simulation and theory results.
In energetical terms, the e�ects of either type of inhomogeneity is to couple distinct
wavemodes, producing non-sinusoidal waves. In the first case the theory produces
configurations that are highly localized around the regions of less sti� cortex, while
in the latter case produced folding on the area of maximal absolute surface tension.
These can be roughly mapped onto cortical thickness and growth rate inhomogeneities,
respectively. This theory was also used to explain the relative predominance of the
e�ects of cortical thickness when compared to growth rate inhomogeneities.
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Chapter 6

Conclusions and further remarks

This thesis aimed to contribute to the understanding of the mechanics involved in gyro-
genesis, the process by which the mammalian brain acquires its characteristic folding.
We performed simulations using a nonlinear elasticity framework, where the brain was
modelled as a perfect elastic undergoing large deformations. JuFold, the simulation
software used in this thesis implementing the finite element method to solve the di�er-
ential equations derived from nonlinear elasticity, is made available as an open source
library. Based on the di�erential growth hypothesis [154], the simulated systems were
composed of two layers, where the upper layer grows tangentially, mimicking the gray
matter found in the brain cortex, while the lower layer, mimicking the white matter,
does not grow. In order to probe di�erent timescales, simulations were performed
using both energy minimization and full dynamics.

It was shown that, in the energy minimization regime, systems with homogeneous
thickness fold into well-defined waves, whose wavelengths depend linearly on the cor-
tical thickness. These findings are consistent with previous literature [156, 157, 182,
186]. In these simulations, the thicknesses of the sulci and gyri diverge after folding,
with the sulci being much thinner than the corresponding gyri, in agreement with
what has been observed in histological sections [187]. Similarly, we found that the
sulci are under higher compressive stress than the gyri. In systems with spatial vari-
ation of the cortical thickness, formations similar to the higher-order folding – one of
the hallmarks of highly-folded brains – were observed. In these conditions, the thin-
ner regions fold first, followed by regions of successive cortical thickness. In extreme
cases, an isolated fold forms in an otherwise flat cortex, reminiscent of the central
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sulcus of the squirrel monkey brain [13]. These leading folds are soon followed by
secondary folding. We observed that while the initial folding is highly reproducible,
the final folding pattern is susceptible to any small noise and is unique, explaining the
“reproducible uniqueness” seen in the brain [31]. In order to explain the simulation
results, a linear stability theory based on the Föppl-von Kármán elastic plate theory
was developed, where inhomogeneities in thickness are mapped to a spatially depen-
dent bending rigidity. The results obtained from the simulations and the theory are
in qualitative agreement, yielding configurations whose folding is most localised in the
thinnest (i.e., low bending rigidity) region.

When analyzed in the dynamical regime, systems with homogeneous thickness
presented a weak dependency between their growth rates and folding wavenumbers.
Most importantly, we found that the wavemodes predicted by the energy minimization
approach are recovered in the limit of slow growth, thus justifying much work in the
literature – including our own – that assumed that energy minimization is equivalent to
slow growth or the quasistatic approximation a posteriori. It was also observed that the
opposite condition, of fast growth rate, creates two e�ects on the homogeneous cortex.
Firstly, it leads to folding in a higher wavenumber than the energetical minimum.
Secondly, it allows for a larger number of wavemodes to be excited, creating an initially
more complex folding than systems in the slow growth regime. Still, after a short period
even these systems relax to an extremely narrow wavenumber spectrum, which is not
necessarily the same as observed in the energy minimization regime. These indicate
that, while the folding of the brain can be influenced by the growth rate, faster growth
does not lead to complex growth on its own. By how much these two wavelengths
di�er depends on the cortical thickness of the system, as well as on the rate by which
the cortical plate grows.

Thickness inhomogeneities in the dynamical regime generate qualitatively similar
results to those in the slow growth regime, with its e�ects being compounded by faster
growth rates. Complementarily, inhomogeneities in cortical growth – with cortical
thickness initially constant – showed that growth di�erences also lead to localised
folding. However, these systems do not exhibit the same folding complexity as sim-
ulations with inhomogeneous thickness. This di�erence can be understood based on
a further specialised stability theory. The interplay between both kinds of inhomo-
geneity were studied, showing a complex interaction where the e�ects of each type of
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inhomogeneity are somewhat mutually exclusive, with the repercussions of thickness
inhomogeneity being much more pronounced. Most notably, relatively large inhomo-
geneities needed to be imposed on the growth rate before patterns characteristic of
thickness inhomogeneity were inhibited. Finally, these results were analysed in light
of the linear stability theory, where, in addition to the spatially varying bending rigid-
ity introduced earlier, the surface tension was also considered inhomogeneous. This
improved theory qualitatively reproduces the results obtained in the simulations, and
explains the relative prominence of the bending rigidity (which corresponds to the
cortical thickness in our simulations) in relation to the surface tension (corresponding
to the growth rate).

While the results in this work give important insight into the mechanics of folding,
there are many important issues left before gyrogenesis is fully understood. Theoretical
arguments indicate that cell division and apoptosis lead to tissue fluidisation [208] –
and to an e�ective Maxwell-like rheology – due to cell division and death relaxing the
stress in the system. Such a theory has been successfully applied to several epithelial
tissues in the mammalian body [209–211]. It is necessary to observe, however, that the
development of the brain is markedly distinct from those tissues, with cell division and
apoptosis being much less frequent, and cellular di�erentiation being more prominent.
In experiments on short time scales (i.e., in the range of minutes) where small cubes of
brain tissue undergo a prescribed shear, it has been observed that the brain behaves
as a Kelvin-Voigt viscoelastic, presenting a finite steady-state stress [212]. As current
experiments have not been able to probe the long-term behavior of brain tissue, it
remains to be seen whether the microscopic processes connected to gyrogenesis can
also lead to fluidisation, and if so, what influence it will have in folding.

The elastic model used in this work, while validated ex-vivo, can be improved with
further experimental data. The elastic properties of the brain tissue were supposed to
be constant throughout the cortex. While a valid approximation for smaller sections
of the brain, previous rheological works have shown that di�erent parts of the brain
have di�erent sti�ness [42]. Additionally, the di�erential growth hypothesis – and
consequentially this work – supposes that the gray matter is sti�er than the white
matter. This fact is far from settled, with works in the literature supporting both
claims that the gray matter is indeed sti�er than the white matter [69, 70, 213] and
vice-versa [71–73].
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On that note, it is important to point out that there are several other proposals to
explain brain folding. Structural connectivity (i.e., neuronal axons connecting di�erent
parts of the brain), for instance, has been proposed as a driver of folding, with wide
adoption. How it would influence the conformations used in this work can be further
investigated to understand the mutual influences of di�erential growth and axonal
tension in gyrogenesis. Indeed, it is possible to incorporate the mechanical e�ects of
the structural connectivity by expanding the model to include inhomogeneous external
tractions. For example, revised models of axonal traction have emerged where the
white matter is supposed softer than the gray matter, yielding folded configurations
not through compressive stress but through as “brain-as-smetic” (i.e., a liquid crystal)
approach [65].

With competing hypotheses, it becomes necessary to design experiments which are
able to test these hypotheses against each other. In recent years, layered soft gels have
been used as models for brain folding [78]. Using 3D-printed templates, it is possible
to mimic the embryonic brain, and upon hydration and consequential swelling, folding
patterns reminiscent of those in the human brain are obtained. In this vein, PDMS
can be manipulated using oxygen plasma to have a sti� surface and a soft bulk [143,
214], creating simulacra of the results from this work. This correspondence can be
extended by careful masking the surface of the PDMS, making it possible to control
the pattern of these sti� configurations. Performing such a process in an initially
stretched slab of PDMS allows the system to create an e�ectively grown state which
coincides with the protocol used in the simulations of this thesis. Conclusions drawn
from these simulacra, however, are of limited scope, and they carry the supposition
that the brain is a perfect (or at most, highly visco-) elastic and completely disregard
the biology behind the folding process.

In order to perform biologically meaningful comparisons, gel simulacra are thus
not fully adequate, and experiments on the developing brain are necessary. These are
di�cult, for a plethora of reasons. Not only are they long and expensive, but most
importantly, they are riddled with ethical issues. In recent years, a new possibility
for biological experiments in the field of brain development has emerged, through
the usage of in vitro brain organoids [202, 203], three-dimensional self-assembled cell
agregates similar to the developing brain. These organoids allow great control over
the experiment, both at the genetical and mechanical levels, being possible to create
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mutant genes, or to use laser microdissections to kill specific cells. Only recently
folding has been achieved in such small systems [204], but they already show promise
as an important tool in the experimental study of gyrogenesis.

Finally, it is important to further emphasise the duality between gyrogenesis models
and the modelling of elastic materials. As mentioned above, elastic gels have been
used – even if in a limited fashion – as simulacra of developing brains. However,
this mapping goes both ways, and the knowledge obtained from the study of brain
folding can be applied to material science. Most notably, not only are our results
useful to explain gyrogenesis, but they are also directly applicable to the study of
microscopic surfaces where surface swelling leads to corrugations [199], where they
can aid the understanding of these corrugations, and to help control their emergence.
This application has been submitted as a patent application, whose approval is still
pending.

In summary, while the contributions in this work will hopefully prove helpful in the
understanding of gyrogenesis, there is still a long road before every one of its aspects
are fully understood. As with many other fields, the knowledge on the causes behind
gyrogenesis can be further improved by novel theoretical works and more complex
modeling. However, new experiments, especially those probing the long term behavior
of brain tissue, are necessary in order to validate the assumptions of current theories,
and to inform new works.
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Appendix A

The directional derivative

A.1 Definition

This derivative expands the idea of the usual derivative, from the Euclidean fields to
general items. The item can be mostly anything: matrices, determinants, functions,
etc., and it can depend on any other, equally general, item. It then exposes how the
item changes for a small perturbation in their dependencies. We use the following
notation to denote the direction derivative of a given item F

DF(x)[”x] � dF(x + Á”x)
dÁ

�
Á=0

, Á ∈ R (A.1)

This equation can be read as the change in the item F starting in the position x in
the direction ”x.

A.2 Properties

• Linearity in the direction:

DF(x)[”x1 + ”x2] =DF(x)[”x1] +DF(x)[”x2]
• Lineary in the argument:

D(F1(x) +F2(x))[”x] =DF1(x)[”x] +DF2(x)[”x]
• Leibniz rule for products:
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D(F1(x) ⋅F2(x))[”x] =DF1(x)[”x] ⋅F2(x) +F1(x) ⋅DF2(x)[”x]
• Chain rule:

DF1(F2(x))[”x] = F1(F2(x))[DF2(x)[”x]]

A.3 Useful linearizations
In order to calculate the linearization of the stress, it is advantageous to first perform
the linearization of the gradient deformation tensor F as

DF(u)[”v] =dF(u + Á”v)
dÁ

�
Á=0

= d

dÁ

ˆ(u + Á”v)
ˆX

�
Á=0

= d

dÁ
� ˆu

ˆX
+ Á

ˆ(”v)
ˆX

� �
Á=0

=ˆ(”v)
ˆX

=∇0(”v).
Using the chain rule as defined in Sec. A.2, it is possible to write

D�(F(u))[”v] =D�(F)[DF(u)[”v]], (A.2)

where the linearization of the gradient deformation tensor is then applied to find

D�(F(u))[”v] =D�(F)[∇0”v]
=d�(F + Á∇0”v)

dÁ
�
Á=0

=ˆ�(F)
ˆF

∶ d(F + Á∇0”v)
dÁ

�
Á=0

=P ∶ ∇0”v. (A.3)

This is the linearization used in Sec. 2.1.4.



Appendix B

Example of FEM – the Poisson
equation

B.1 Weak form

As a toy example, the Poisson equation, which describes the electric potential field
„e(x) generated by a charge density fle(x), will be used. In order to simplify the
treatment below, a simple boundary condition is used, in which the potential is set in
the borders of the system to zero. This problem can be stated as

d2„e(x)
dx2 = fle(x), with „e(0) = „e(1) = 0. (B.1)

The di�erential problem stated in Eq. B.1 can be replaced by its weak form

1

�
0

v(x)d2„e(x)
dx2 dx = 1

�
0

v(x)fle(x)dx. (B.2)

Using the partial integration theorem, the derivatives are distributed from the potential
„e(x) to the weight function v(x):

− 1

�
0

dv(x)
dx

d„e(x)
dx

dx = 1

�
0

v(x)fle(x)dx (B.3)

Now not only was the weak form of Eq. B.1 obtained but also, and most importantly,
while in Eq. B.1 the potential „e(x) must be a member of C2, in Eq. B.3 it must only
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belong to C1.

B.2 Function expansion

0.0 0.5 1.0
x

�0.02

�0.01

0.00

0.01

0.02

�
(x

)
N=3

N=5

Analytical solution

Figure B.1: Approximations using the weak form to solve the Poisson equation, where
N indicated the number of terms in the approximating polynomial. .

Eq. B.1 is solved for fle(x) = − sin(2fix) using terms up to third order, i.e, the poly-
nomial base is composed of three terms, Â0(x) = 1, Â1(x) = (1− x)x, and Â2(x) = (1−
x)x2, with a generic element of the space being written as „(x) = „0+„1Â1(x)+„2Â2(x).
Using any of the two boundary conditions it is possible to see that „0 is necessarily
equal to zero. Thus, it is removed, and the calculations are performed in a reduced
system. This application of the necessary boundary conditions and consequential re-
duction in the number of degrees-of-freedeom is one of the first steps to be carried out
in the application of the FEM method, as it spares the e�ort of spurious calculations1.
The sti�ness matrix B and force vector l of this problem are

Bij =
1

�
0

dÂi

dx

dÂj

dx
and li =

1

�
0

Âifle(x)
1Had the constant term „0 been carried out to the next steps, the sti�ness matrix would have an

extra row a column filled with zeroes, leading to an ill-posed problem.
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with values

B = ��
1�3 1�6
1�6 2�15

�
� and l = ��

0
−3�4fi3

�
� .

The coe�cients of the electric potential „ are then calculated by the inversion of the
sti�ness matrix B,

„ = B−1l = ��
−1
2
�
�

30
4fi3

In Fig. B.1, the results of this approximation are shown with N = 2, as calculated here,
and with N = 4.

B.3 Space discretization

The previous example is now expanded for the discretized system. In this example,
the domain is discretized in five points, with spacing �x = 0.25, using the Lagrange
functions introduced in Eq. 2.42. Each element yields the reduced matrix

B
e

ij
= (−1)”ij+1 0.25

�x2 = ��
−4 4
4 −4

�
� (B.4)

The full-sized matrices for elements 1 and 2, are, for instance

B
(1)
ij
=
����������

−4 4 0 0 0
4 −4 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

����������
; B

(2)
ij
=
����������

0 0 0 0 0
0 −4 4 0 0
0 4 −4 0 0
0 0 0 0 0
0 0 0 0 0

����������
(B.5)

leading to total matrices B and l

B =
����������

−4 4 0 0 0
4 −8 4 0 0
0 4 −8 4 0
0 0 4 −8 4
0 0 0 4 −4

����������
; l =

����������

−0.058
−0.203
0.000
0.203
0.058

����������
(B.6)
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One final step is required before the system is solved. The boundary conditions
of the problem are imposed at this point. The weights c1 = c5 = 0 are set such that
u(0) = u(1) = 0. Therefore, there is only the need to solve the reduced system

Brescres = lles⇒
�����
−8 4 0
4 −8 4
0 4 −8

�����
�����

c2

c3

c4

�����
=
�����
−0.203
0.000
0.203

�����
(B.7)

to obtain

c = �0.000 0.025 0.000 −0.025 0.000�T (B.8)

This numerical solution is seen in Fig. B.2, where the solution in a finer discretization
is also shown.

0.0 0.5 1.0
x

�0.02

�0.01

0.00

0.01

0.02

�
(x

)

Np = 5

Np = 9

Analytical solution

Figure B.2: Approximate solution of Eq. B.1 using Np = 5 and Np = 9 mesh points and
linear interpolators. Each straight line is imersed in its own element



Appendix C

Nonlinear solvers

In this work, it is necessary to minimize energy functions which depends on the current
displacement u. This fundamental idea – finding a condition x∗ that minimizes a
given function f(x) – is common to many fields of science. From the field of Economy,
the minimum expenditure problem (and its complement, the utility maximization
problem) computes the minimal amount of wealth required to reach some certain level
of happiness [215]. Another important example comes from Machine Learning, where
weights between the connections of a neural network are sought such that the resulting
predictions are close to some data obtained a priori [216]. This is represented by a
problem-dependent error function, that must be minimized [216]. These are only two
examples of numerical minimization. These two examples, in addition to the energy
minimization problem, illustrate the wide variety of fields that have founded use in
numerical optimization.

C.1 Line search methods

The branch of mathematics that deals with these problems is called Mathematical
optimization. The subfield of nonlinear optimization is specially interesting for this
work, as it specializes in nonlinear functions and/or constraints. In the interest of
space, a full survey of the field cannot be presented (the interested reader can find
an introduction to the topic in Ref. [115], and the references therein). Instead, two
algorithms are presented, the steepest descent and the Newton method, both in the line
search family, and a small modification that grandly improves their properties is shown.
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Only real functions on Euclidean space are used, i.e., x ∈ Rn, and f(x) ∶ Rn → R,
where the dimension n is dictated by the problem at hand. In JuFold, this dimension
is roughly the number of spatial dimensions (2 or 3), times the number of points in
the mesh.

In general, given a multi-variable function f(x) (henceforth called the objective
function), standard calculus tells us the necessary conditions for some point x∗ to be
a minimum are

• the gradient must vanish at this point. That is, ∇f(x∗) = 0;

• the Hessian matrix must be positive definite. That is, vT∇2f(x∗)v > 0 for every
v ∈ Rn.

When the gradient ∇f(x) is nonlinear, finding the solution may involve finding the
roots of a set of complicated equations, for which no general solution exists. In these
situations, numerical solutions are necessary, and the algorithms mentioned before
come to the rescue.

The commonality tying together the members of the line search family is that a
minimum of a function f(x) is sought by iterating over the following equation

xk+1 = xk + pk (C.1)

where xk is the current guess for the minimal point and xk+1 is the new estimate. The
vector pk is called the descent direction. Ideally, the descent direction and the object
function gradient are such that pk ⋅ ∇f(xk) < 0. This condition will guarantee that
the function is smaller at the new estimate than at the current one. The algorithms
in this family are distinguished from one another in the way they build the descent
direction pk. The simplest method in this family, called steepest descent, assigns pk

as the negative of the gradient of the objective function. That is,

pk = −∇f(xk), (C.2)

guaranteeing a decrease in the objective function. Another important member of this
family is the Newton method, where the information regarding the curvature of the
function at the point is also used. In this method, the descent direction is calculated
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by
∇2

f(xk)pk = −∇f(xk). (C.3)

There is a clear trade-o� between these two algorithms: at every step of the Newton
method the linear equation therein is solved, which can be computationally intensive.
Comparatively, the calculation of the descent direction in the steepest descent is very
direct. However, in general the Newton method is able to find the minimum of the
objective function in a much smaller number of steps. Indeed, it can be proven that
the Newton method converges quadratically once in the neighborhood of the solution.
Furthermore, the radius of convergence of the Newton method is much larger than
that of the steepest descent [111]1.

C.1.1 Numerical experiments

We are now going to compare the two algorithms exposed above. As a working exam-
ple, the Rosenbrock function

R(x, y) = 100(y − x
2)2 + (1 − x)2, (C.4)

is used. This function is often used to stress-test optimization algorithms because of
its shape, with its long and narrow valley, but single global minimum at (1, 1) (cf
Fig. C.1), making it challenging to find the exact global minimum.

Both algorithms are run with starting position xk = (−1.5,−1), with results as
summarized in Table C.1. While the Newton method converged in only six steps, the
steepest descent algorithm diverged altogether.

Table C.1: Results of minimization of the Rosenbrock function.

Algorithm Root Steps
Steepest descent Diverged ∞
Newton method (1.0, 1.0) 6

1For a review on the history of this algorithm see [217]
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Figure C.1: Plot of the Rosenbrock function as defined in Eq. C.4 and trajectory of
nonlinear solvers. The black × indicates the location of the global minimum. Both
solvers were initiated at x0 = (−1.5,−1).

C.2 Adaptive step

The last example shows one of the main issues with the steepest gradient: it often
diverges. However, another, subtle issue is hinted in Fig. C.1. Even the Newton
algorithm takes some large steps, going over a wide area of the function domain. In
the example above, this poses no issue, as the function is defined at every point of R2.
This is not the case for many hyperelastic energy density functions. For instance, in
the function defined in Eq. 2.12, any configuration that leads to a negative J has an
undefined energy2. As the derivatives of the energy are not defined in this point, the
algorithm cannot proceed any further and the system is left at an unphysical state.

The two issues above, lack of convergence and wide search space, have the same
solution. The step described in Eq. C.1 is modified to include an adaptive step length
–k,

2Note that while systems with negative J have no realistic meaning, the trajectory of the nonlinear
solver is not constrained by the physics of the problem at hand. It is perfectly valid, for instance, for
an algorithm to jump over energy barriers that would otherwise impede the evolution of the system
in that direction.
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xk+i = xk + –kpk. (C.5)

such that 0 < –k ≤ 1.
We now contend with the natural question of how to choose the value of –k. Such

value should not be too small, so as to not slow the algorithm down too much, but it
should also be small enough to avoid the issues exposed above. The ideal value would
be one that minimizes the function „(–) = f(xk + –pk) for fixed xk and pk. This is
often unfeasible, as it would just put us back into the original problem.

One practical approach to break this deadlock is to find an inexact (but still good
enough) value of –k in not too many evaluations of f . There are many possible
algorithms (and trade-o�s) for the computation of –k, some of them of incredible
complexity. One of the simpler algorithms, called backtracking is used. In such method,
the scaling is initially chosen as –k = 1.0. If this choice would su�ciently decrease the
value of the objective function f(x), it is accepted. Otherwise, a new value is assigned
to –k, –k ← –kfl, where fl is called the backtracking factor with condition 0 < fl < 1.
Such process is repeated until an appropriate value of scaling is obtained, or until its
value is too small, which is then accepted unconditionally.

The concept of su�cient decrease is given concrete meaning by the Armijo condi-
tion,

f(xk + –kpk) ≤ f(xk) + c–k∇f(xk) ⋅ pk, (C.6)

for some constant c, such that 0 < c < 1. According to Ref. [115], the value of c is
normally chosen to be very small. Specifically, they recommend choosing c = 10−4.
The main advantage of using the Armijo condition, rather than, say, a constant, is
that it also takes into account the local configuration (via the gradient ∇f(xk)) to
decide whether the reduction is indeed su�cient.

C.2.1 Numerical experiments

The steepest descent algorithm and the Newton-Raphson algorithm are both aug-
mented by an adaptive step size, with results as seen in Table C.2. This change fixes
the issue with steepest descent, as it is now a converging, even if slow, algorithm.
This slow convergence is characteristic to the steepest descent algorithm, hindering its
usage in most applications. Specifically, this algorithm has a zigzagging nature in any
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Figure C.2: (a) Trajectory of algorithms in the function domain. In both cases, the
algorithms start at x = (−1.5,−1.0). Compare specially the area explored by the
direct Newton method versus its augmented version. (b) Zigzagging behaviour of the
adaptive steepest descent algorithm when close to the solution.

convex configuration. This behavior is observed in Fig. C.2 (b), where at each step,
the solution barely moves in the direction of the solution.

Table C.2: Results of minimization of the Rosenbrock function with adaptive step size.
The adaptive steepest descent was stopped after 10,000 steps.

Algorithm Root Steps
Adaptive steepest descent (1.00004, 1.00009) 10000
Adaptive Newton method (1.0, 1.0) 23

On the other hand, the augmented Newton method converges slower than its sim-
ple counterpart, with 23 steps being necessary in this specific example to find the
minimum, compared with the 6 steps necessary before. This is a worth trade-o� in
some situations where the energy landscape is complex, as this way regions where the
energy diverges are avoided.



Appendix D

JuFold Usage

The main component of the JuFold framework is the JuFold class. The user is expected
to create a derived class to JuFold, and overload a number of pure virtual functions.
In that way, the user is able to insert their model into the framework, which can then
be compiled and executed. The location of these functions in the flow of the system
are shown in italics in Fig. 3.1. The functions that must be overloaded in a minimal
program, and their brief description are the following:

• JuFold::reinit_vectors(): The place to allocate the memory for the data in
the simulations. Called during setup_system().

• JuFold::populate_cell_data(): Writes supplementary data to be used in each
simulation cell, e.g., spatially varying elastic parameters.

• JuFold::advance_state(): Advances the state of the system using the appro-
priate algorithm.

• JuFold::growth_on_cell(): Changes the growth tensor Fg, thereby growing
the system.

For performance reasons, there is another type of overloading to be done. The
user must also provide a few classes for template specialization. These are few in
number. In short, Hyperelastic is a class containing the hyperelastic model of the
simulation. Parameters is a class containing the parameter data required for the
simulation, and PerCellData is a class containing the data for each cell. More details
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on each, including their formal concept definition, are available in JuFold’s soon to be
released online documentation.
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Extra plots
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Figure E.1: (Supplementary Material) Visual phase space of inhomogenous simula-
tions at several evolution steps. The values in the x-axis indicate the normalized
inhomogeneity amplitude A′ = A�T0, while the values in the y-axis indicate the base
thickness T0. The growth parameter ◊g of each subfigure is (a) ◊g = 1.00, (b) ◊g = 1.45,
(c) ◊g = 1.70.
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(a)

(b)

(c)

Figure E.2: (Supplementary Material) Measured thickness field T and thickness gra-
dient T ′, from the simulations shown in Fig. E.1. The gradient is calculated as
T ′ = dT �dl, where l is the arclength of the system. Both quantities are projected
back into the original coordinates. The growth parameter ◊g of each subfigure is (a)
◊g = 1.00, (b) ◊g = 1.45, (c) ◊g = 1.70.
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Figure E.3: Evolution of various quantities for system with growth rate g = 1.000. Solid
lines indicate results obtained in the dynamical regime, and dashed lines indicate thos
obtained in the quasistatic regime.
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Figure E.4: Dynamics of systems with initial cortical thickness T0 = 0.2 cm, and growth
parameters as shown within the figure.
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Figure E.5: Dynamics of systems with initial cortical thickness T0 = 0.3 cm, and growth
parameters as shown within the figure.
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A B S T R A C T

There has been an increasing interest in examining organisational principles of the cerebral cortex (and
subcortical regions) using different MRI features such as structural or functional connectivity. Despite the
widespread interest, introductory tutorials on the underlying technique targeted for the novice neuroimager are
sparse in the literature.

Articles that investigate various “neural gradients” (for example based on region studied “cortical gradients,”
“cerebellar gradients,” “hippocampal gradients” etc … or feature of interest “functional gradients,” “cytoarchi-
tectural gradients,” “myeloarchitectural gradients” etc …) have increased in popularity. Thus, we believe that it is
opportune to discuss what is generally meant by “gradient analysis”. We introduce basics concepts in graph
theory, such as graphs themselves, the degree matrix, and the adjacency matrix. We discuss how one can think
about gradients of feature similarity (the similarity between timeseries in fMRI, or streamline in tractography)
using graph theory and we extend this to explore such gradients across the whole MRI scale; from the voxel level
to the whole brain level. We proceed to introduce a measure for quantifying the level of similarity in regions of
interest. We propose the term “the Vogt-Bailey index” for such quantification to pay homage to our history as a
brain mapping community.

We run through the techniques on sample datasets including a brain MRI as an example of the application of
the techniques on real data and we provide several appendices that expand upon details. To maximise intuition,
the appendices contain a didactic example describing how one could use these techniques to solve a particularly
pernicious problem that one may encounter at a wedding. Accompanying the article is a tool, available in both
MATLAB and Python, that enables readers to perform the analysis described in this article on their own data.

We refer readers to the graphical abstract as an overview of the analysis pipeline presented in this work.

1. Introduction

Every discrete point in the brain (modelled as a voxel or vertex in the
context of MR imaging) has several co-existing features such as the
cytological architecture, the functional signature, the receptor density etc

… Parcellation is one method of describing neural features and their
similarities. The technique groups area of the brain that have similar
features together. One of the most recognisable names in modern
neuroscience is that of Korbinian Brodmann and his cytoarchitectonic
parcellations of the cortex from the early 20th century. Despite his
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modern fame, Brodmann was not the most ardent proponent of parcel-
lation. That honour arguably goes to Oskar and Cecile Vogt, who were
the true parents of modern parcellation, and Brodmann’s mentors.

Brodmann’s regions attempted to define areas of local cytoarchitec-
tural homogeneity in the cortex. Unfortunately, the convenience of using
such areas in neuroimaging studies comes at a high price. First, Brod-
mann areas were defined histologically and do not necessarily corre-
spond to gross anatomical landmarks that are visible on MRI (Zilles and
Amunts, 2010). Second, Brodmann’s maps certainly are not the final
word on what constitutes a cytoarchitectural brain parcel. His contem-
poraries (von Economo and Koskinas, 1925) as well as current re-
searchers (Amunts et al., 2005; Bludau et al., 2014; Caspers et al., 2013,
2006; Rottschy et al., 2007; Scheperjans et al., 2008) are still investi-
gating and refining cytoarchitectonic parcellation. Third, cytoarchi-
tecture is not the only feature with which one can parcellate the cortex.
Myeloarchitecture, for instance, has been used since the times of Brod-
mann (Geyer and Turner, 2013; Nieuwenhuys et al., 2015; Vogt and
Vogt, 1911) and recently a vast array of neuroimaging features has been
used (Glasser et al., 2016). Fourth, the boundaries (or borders) between
areas characterised by any particular feature may sometimes be sharp
while other times they can be blurred (Bailey and von Bonin, 1951;
Brodmann, 1909; Glasser et al., 2016). Finally, different “distinct” areas
may also share some relationship with other areas and thus show a
non-random pattern across the whole cortex; for example functional
areas involved in resting state networks (Damoiseaux et al., 2006).

In the 1950s, Percival Bailey and Gerhardt von Bonin proposed
another, competing conceptualisation of cortical organisation. Vogt and
Bailey can be, prima facie, thought of as expounding opposing points of
views. While the Vogts, championed cortical parcellation, Bailey and von
Bonin (1951) argue that the isocortex (or neocortex – the six layered
cortex) is much more similar throughout its extent than it is different.
They go so far as to state that:

“The drawing of sharp areal boundaries, on the basis of many struc-
tural peculiarities of varying distinctiveness and significance, is the
fundamental defect of most maps and has been carried to absurd
lengths by the Vogt school.” (p. 189)

They elaborate by stating:

“Anybody can see, to give an example, the difference between
Brodmann’s areas 17 and 18. But the differences between his 18 and
19 are quite tenuous and very difficult to recognize. To draw amap on
which these three areas are given three different markings - such as
dots, cross-hatchings, and broken lines - is to create an entirely
misleading impression. Useful as such maps are for the description of
corticocortical connections, they do not translate accurately
cytoarchitectonic data.” (p. viii)

An interest in similar issues of parcellations versus gradual transitions
between areas has reappeared in the modern neuroscience literature.
Indeed, Brodmann himself asserted that some regions demonstrated
transitionary zones (Brodmann, 1909). While the feature of interest has
moved on from cytoarchitecture to fMRI time series analysis or diffusion
MRI tractography (more generally within a context of network analysis,
connectomes and connectivity based parcellations), some themes of the
early debates have lived on. For example: when, and to what extent, is
clustering the cortex into distinct parcels appropriate? And, as has been
explored by (Mesulam, 2008, 1998), what are the interareal relationships
between cortical territories?

In 2004, a novel approach, based on spectral graph theory, appeared
in the literature to investigate changes in cortical connectivity patterns
across the brain using diffusion MRI tractography (Johansen-Berg et al.,
2004). Similar approaches have become a popular tool for parcellating
the cerebral cortex using both diffusion and functional MRI (Cloutman
et al., 2012; Craddock et al., 2012; Devlin et al., 2006; Eickhoff et al.,
2015; O’Donnell et al., 2013, 2006). Recently, similar techniques have

also been used to explore interareal connectivity pattern changes (such as
structural connectivity through tractography or functional connectivity)
as one traverses the cerebral cortex; so-called feature similarity gradients
(Bajada et al., 2017; Cerliani et al., 2012; Haak et al., 2018; Jackson et al.,
2017; Margulies et al., 2016). Indeed, Margulies et al. (2016) have shown
that, under certain constraints that likely depend on the construction of
the similarity matrix, the primary rs-fMRI feature gradient reflects the
interareal relationships outlined by Mesulam (2008) and elaborated by
Buckner et al. (2013) where this gradient has modality selective and
modality general cortices on either end. While this concept may not be
fully understood by a novice reader, we hope that by the end of this
article (and particularly after reading the supplementary text) the
interpretation of such a statement will be obvious.

These techniques are appealing to the neuroimaging community since
they have the potential to provide a flexible, unified framework for un-
derstanding similarities of neural structure or function across the brain
(c.f. Paquola et al., 2020, 2019; V!azquez-Rodríguez et al., 2019 for ex-
amples of how flexible these concepts can be used across multiple mo-
dalities). In this article we further extend this framework by introducing
a way to measure how sharply defined each area is, showing the full
spectrum of possibilities between the ideas of the Vogts, and those of
Bailey and von Bonin; The Vogt-Bailey index.

We use the historical context to highlight the importance of having a
way of thinking about cortical organisation through “feature gradients” –
e.g. fMRI, tractography, cytoarchtectonic etc … that bridges the gap
between old debates. Specifically, we will apply the tools described here
to help settle a discussion started in the middle of the 20th century. We
have also made available a pair of tools written in MATLAB and Python
implementing the algorithms outlined in this work, thus making it
possible for the interested reader to calculate the VB index using their
own data (https://doi.org/10.5281/zenodo.3609459, https://gith
ub.com/VBIndex/) (Da Costa Campos and Bajada, 2020). It is also
possible to install the recommended production version of the software
using Python’s de facto package manager, pip, with “pip install vb_toolbox”.
Once this is done, the software vb_tool will be available for use. For usage
details, we refer to the full documentation of the software’s GitHub re-
pository (https://github.com/VBIndex/py_vb_toolbox).

We note that various groups have released their own “gradient
analysis” pipelines and toolboxes including the early “gradient pipeline”
by Margulies et al. (2016), connectotopic mapping focused on regional
modes of connectivity changes and their statistical tests by Haak et al.
(2018), LittleBrain focusing on Cerebellar gradient by Guell et al. (2019),
and BrainSpace a recent all-purpose gradient toolbox by Vos de Wael
et al. (2019). All these workflows and toolboxes have minor differences
in certain choices that are described below. Some also include the ability
to perform statistical testing on gradient maps. The software presented in
this article creates similar, but not necessarily identical, ‘gradient maps’
as the other software packages available, in addition it is the only
package to-date, that allows calculation of the VB index (as described in
section 5.1).

In the rest of this article we describe and explore the details of the
steps needed to extract feature similarity gradients and the VB Index from
data. We discuss methods of measuring similarity between brain regions,
why it is useful to think of these resultant similarity measurements as a
mathematical graph, and how to further process the graph to obtain the
desired gradient maps. In this article we restrict our discussion to a
technique based heavily upon Laplacian Eigenmaps (c.f. Belkin and
Niyogi, 2003, 2002). In general, the problem of finding meaningful
structures and geometric descriptions of such data is usually stated as
some sort of nonlinear dimensionality reduction. Although several forms
of dimensionality reductions for constructing cortical gradients (or
subcortical, cerebellar etc.) have been used in the literature (Coifman and
Lafon, 2006; Haak et al., 2018; Johansen-Berg et al., 2004; Margulies
et al., 2016), they are similar in spirit to the Laplacian Eigen-mapping
reviewed here. We refer the interested reader to the relevant literature
and hope that the tutorial presented here will serve as a useful
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introduction to understand the principles behind those related
approaches.

2. What is a graph?

Most algorithms for feature gradient analyses emerge from the
mathematical discipline of spectral graph theory. This is an approach to
studying properties of graphs by computing the eigenvalues and eigen-
vectors of matrices that summarise the graph. While it would be lengthy
to go into a detailed explanation of eigenvalues and eigenvectors in this
text, we hope that their use in the context described will become clearer
in later sections.

A graph is a mathematical structure that defines relationships be-
tween various objects. For example, the structure in Fig. 1 is a graph that
defines the relationship between four objects. Each object is called a
node.

The nodes could be thought of as voxels (or surface vertices) in the
cortex or as cortical regions of interest.

The lines that link the nodes are called edges. The edges can be binary
or have a weight associated with them (creating a weighted graph).
Within neuroimaging, the edges are almost always undirected meaning
that if node a connects to node b, the opposite is also true.

Some basic concepts are needed in order to proceed. The adjacency
matrix is a square matrix (i.e., the same number of rows and columns)
where every row and every column represent a single node, and the el-
ements in the matrix represent the relationships between the row node
and the column node. For the unweighted graph in Fig. 1, the adjacency
matrix is

A ¼

0

BB@

0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

1

CCA:

The rows and columns are ordered from 1 to 4 such that entries of 1s
in columns 2, 3 and 4 of row 1 means that node a (row 1) is connected to
nodes b, c and d (columns 2, 3 and 4).

The degree matrix is a diagonal matrix where the entries along the
diagonal represent the degree of each node, that is, the number of nodes
that are connected (adjacent) to that node. For example, node a has a
degree of 3 because it is adjacent to three nodes (b, c and d). The degree
matrix D can be computed as the row/column wise sum of the adjacency
matrix. For the graph in Fig. 1, the degree matrix is

D ¼

0

BB@

3 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

1

CCA:

The Laplacian is defined as the degree matrix minus the adjacency
matrix

L ¼ D" A:

While the exact meaning of the Laplacian may be difficult to intuit for
many readers, we hope that the use of it in Section 4 will give the readers
some intuition. At this point it is useful to note that in many applications,
including in neuroimaging one can define a weighted graph, where each
edge connecting the nodes carry different weights. A high weight, for
instance, could mean that two nodes are strongly connected, while a low
weight would indicate the nodes are not as strongly connected. One can
now define a weighted version of the adjacency matrix, which can be
used to describe a weighted graph. In the general case, the weighted
adjacency matrix can be defined as

W ¼

0

B@
w11 w12 ⋯
w21 w22 ⋯
⋮ ⋮ ⋱

w1n

w2n

⋮
wn1wn2⋯ wnn

1

CA:

We will see later that this matrix can be associated to the concept of a
similarity or affinity matrix. In the example above, the weighted adja-
cency matrix can be written replacing the 1s in the adjacency matrix with
the corresponding weights. Weighted versions of the Degree and Lap-
lacian matrices can be defined in the same way as before. Henceforward,
unless otherwise specified, we will refer to the Laplacian, degree and
adjacency matrix as their generalised weighted versions.

2.1. Graphs in neuroimaging

For neuroimaging purposes, a graph can be one of two distinct types.
The most conceptually straightforward way of creating a graph of the
brain is to consider its structural connections. For example, the nodes in
the graph of Fig. 1 can represent brain areas (e.g. cerebellum, brainstem,
etc …) and the edges can represent the tracts that connect those brain
areas. In other words, these graphs can be obtained through tractography
and assuming that each voxel (or region of interest) is a node and that
every tract is an edge connecting two nodes. These graphs we refer to as
direct graphs since the edges are the direct connections between each
node. One can think of these as friendship networks where an edge be-
tween two individuals is determined on whether they are friends or not.

Another approach to constructing a graph is to compute a measure of
similarity between a feature of interest of one region and the same
feature of another. For structural data, the whole output of a tractography
algorithm (the tractogram of a single voxel) can be considered to be a
feature of a voxel and is compared pairwise to obtain a similarity matrix
between voxels (Bajada et al., 2017; Cerliani et al., 2012; Devlin et al.,
2006; Johansen-Berg et al., 2004). For functional data, one can use the
fMRI time series. In this case, the nodes are still voxels, but the edges are
weights of how similar one voxel’s feature is to another’s. If we consider
that two people are nodes in a network their edge weight would be
determined by how similar two individuals are, based on individual
features (e.g. dress sense, job, etc …). We call this a feature similarity
graph. For simplicity, this is the type of graph that we will be discussing in
the rest of this article. It is important to note that much work in the fMRI
literature performs the similarity computation not on the features
themselves (e.g. the time-series), but on a “functional connectivity”
matrix (c.f. Margulies et al., 2016). In terms of the “people network”
proposed above, if we assume that the “functional connectivity” gives us
information about the “level of friendship” between two individuals,
then the similarity matrix of this last approach indicates the similarity
between each individual’s friendship network.

3. The similarity, affinity or adjacency matrix

The adjacency matrix is a simple mathematical representation of a
graph that describes the structure of the connectivity in the graph, that is,

Fig. 1. A representation of a graph with 4 nodes. Every node can be considered
to be a voxel or a region of interest. The edges between the nodes represent their
relationships; these can either be structural connections or a measure of simi-
larity (affinity) between the nodes.
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whether nodes are connected or not. A more detailed description is
provided by using a weighted adjacencymatrix. The question is then how
to define the weights, which in turn depends on what kind of graph we
want to describe.

In neuroimaging the weights can be defined in terms of a similarity
metric describing to what extent a feature of one voxel, or vertex (e.g. an
fMRI time series or a set of streamlines) is similar to every other voxel in
the region of interest. This is done across all voxels (or vertices). We will
refer to such a weighted adjacency matrix as the similarity or affinity
matrix.

Choosing a similarity metric is extremely important since it will affect
any clustering that may be done on the data. By far the most popular
similarity measure between two voxels is the Pearson’s correlation co-
efficient, which can be interpreted as a centred and normalised dot
product (Cerliani et al., 2012; Craddock et al., 2012; Devlin et al., 2006;
Johansen-Berg et al., 2004; Klein et al., 2007; Zhang et al., 2014); see
next section for a discussion of the dot product and other similarity
measures. In order to understand the utility of correlation as a similarity
metric, a short description of its precursors is given below (cf O’Connor,
2012 for an intuitive review). We will then introduce a slight modifica-
tion that we employ in our adjoining code.

One caveat of the algorithms used for these analyses is that the ad-
jacency matrix must be non-negative. This is not automatically true for
most similarity measures, including those introduced in section 4.1.
Hence, some technique must be used to ensure that the corresponding
similarity matrix only contains non-negative weights (Haak et al., 2018;
Johansen-Berg et al., 2004; Von Luxburg, 2007). For example, Johan-
sen-Berg et al. (2004) proposed to add a scalar constant to the similarity
matrix to ensure that all values are positive, others have only kept pos-
itive values at some threshold (Margulies et al., 2016).

Once a similarity matrix has been created, it can be used to represent
the graph that all computations are carried out on. A final consideration
regarding the similarity matrix is whether the full set of similarities
should be used or if the similarity matrix should be thresholded in some
way (Von Luxburg, 2007). For example, all weights below some arbitrary
value ε could be set to zero; the remainder of the weights can be retained
or binarised (this will be the same as using a simple adjacency matrix).
Another approach to limiting the neighbourhood is to restrict the weights
to the k-nearest neighbours. Advantages of both these data reduction
approaches are that they remove noisy weights and they sparsify the
matrix, leading to faster and cheaper computations. For example, in fMRI
voxels may have a very low correlation (weight) not because of any
intrinsic functional connectivity, but because of noise.

3.1. Similarity measures

The most basic way to measure the similarity of two datasets (thought
of as vectors) is the dot product of the two vectors (consider an fMRI time
series or a three-dimensional image of a tract density map (or tracto-
gram) that is flattened into one long vector).

Geometrically, the dot product of two vectors is the projection of one
vector onto the other. There are many equivalent ways to calculate the
dot product. For this paper, the one offers the most insight is

dotðx; yÞ¼
ffiffiffiffiffiffiffiffiffiffiffiX

i

x2i
r ffiffiffiffiffiffiffiffiffiffiffiX

i

y2i
r

cosðx; yÞ:

In this form, the dot product has two components: the cosine of the
angle between the two datasets (treated as vectors) and their magnitudes.
This means that magnitude and angular similarity (as measured by the
cosine of an angle) are confounded. In order to solve this problem, one
can normalise the dot product by dividing by the magnitude of each
dataset and that leaves us with the cosine function.

One problemwith the cosine similarity is that it is sensitive to relative
shifts in the data between samples (such as can occur in fMRI time series
due to absolute signal differences that are of no interest). The most

common way to create a shift invariant similarity is to mean centre the
data and then compute the cosine similarity, which is the sample Pear-
son’s correlation coefficient:

corrðx; yÞ¼ cosððx" xÞ; ðy" yÞÞ;

where x and y are constant vectors the size as x and y, where each element
is the mean of x and y, respectively. Being shift invariant is an appealing
property of the correlation coefficient and is especially useful to compare
variables that have different means. Examples of works in the literature
that use the cosine similarity can be found in the following articles
(Bajada et al., 2017; Hong et al., 2019; Jackson et al., 2020, 2017;
Margulies et al., 2016).

One should remember that the cosine is a sinusoidal function. As a
result, a cosine similarity, or a correlation, value of 0.5 does not have the
neat interpretation that the angle between the two datasets is 45%. An
easy solution to this is to calculate the angle between the two data sets by
using the inverse cosine function (the arccosine), normalise by 90% (or
π/2):

normAngle¼ cos"1ðcosððx" xÞ; ðy" yÞÞÞ
90

:

The above formula will measure a normalised “angular distance”
between two datasets bound between 0 and 2. We can thus define the
quantity, as follows

AngSim¼ 1" normAngle:

This measure returns a value that has an almost identical interpre-
tation to the correlation coefficient (or cosine similarity) but has the nice
property that a value of þ0.5 implies that the two datasets are half way
between orthogonal and colinear while a value of "0.5 implies that the
two datasets are half way between orthogonal and anti-colinear. Exam-
ples of works in the literature that use a normalised angle include
(Larivi"ere et al., 2020; Vos de Wael et al., 2018).

4. The spectral transformation and the graph laplacian

Once a similarity (also affinity or adjacency) matrix is computed, we
have all the information that describes the relationships between indi-
vidual nodes. Our next step is to embed our data into a low dimensional
space (for the moment a one-dimensional line) where the nodes distances
from each other and the centre of the space reflect the internodal affinity.

While we refer readers to the supplementary material (Appendix C)
for an informal discussion of the problem, the process can be formulated
as the solution of an optimisation problem where a suitable cost function
UðxÞ is minimised (described by Leskovec et al., 2014)

bx¼ argmin
x

fUðxÞg:

Shortly, bx is the vector that minimises the cost function UðxÞ. Such
cost function can be written as a weighted sum of squared internode
(Euclidean) distances across all connected nodes,

UðxÞ¼
X

ði;jÞ2E
Wij

"
xi " xj

#2
:

One can think of the weights Wij as a measure of the relationship
between two nodes, for example, cortical vertices. Using graph theory
language, one can think of the above situation as defining a weighted
graph where the value of each node represents the location of each in-
dividual and the weight of the edge connecting two nodes represent their
relationship.

The minimisation of the above cost function means that long dis-
tances between pairs of vertices with a high relationship value (i.e., high
weight) is penalised. As a result, a pair of vertices with a high weight will
be placed close to each other, while a pair of vertices with a low weight
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will be placed far apart. The aim is to find a positioning where the sum of
costs associated with all pairs of vertices is at its minimum.

The above problem, however, is not well-posed. First, it has a trivial
solution which is to place all vertices at the same location (x is a constant
vector), which produces zero cost. While this satisfies the minimisation of
our cost function, it is not useful since it tells us nothing about the re-
lationships between vertices. Second, if bx is a solution then any shifting
or re-scaling of bxby a constant value c (i.e., by ¼ bx þ c or by ¼ cbx,
respectively) will also be a solution because the resulting cost function is
invariant to shifting or re-scaling. Therefore, in order to circumvent
trivial and non-unique solutions some constraints are required. The
simplest constraint is that the cost function must be minimised subject to
(s.t.) the magnitude of the position vector x being equal to 1. Mathe-
matically this is written as

bx¼ argmin
x

fUðxÞg s:t: xTx¼ 1:

Note that this constraint does not solve the problem of a constant
solution completely since a constant vector, can still produce a zero cost
and also satisfy the constraint. We will see later that since this solution is
known in advance, one can easily account for it after optimisation. In
general, the constrained minimisation problem can be solved using the
method of Lagrange multipliers (cf Hagen and Kahng, 1992). While a
detailed explanation of Lagrangian multipliers is beyond the scope of this
text, the modification makes the computation easier to solve while
maintaining its accuracy. The idea of this method is simple: We incor-
porate the constraints into the cost function itself. Thus, we rewrite the
problem as

bx¼ argmin
x

$
UðxÞþ λð1" xTxÞ

%
:

Now, any putative solution that does not conform to the constraint
imposed will be penalised. This penalty is dictated by the weight λ, often
called the Lagrange multiplier. We proceed to solve the problem in the
following way. First, rewrite the optimisation problem as follows (see
Appendix A for details):

bx ¼ argmin
x

f~UðxÞ g ¼ argmin
x

$
xTLxþ λð1" xTxÞ

%
:

Theminimisation can now proceed in the usual way by taking the first
derivative of the modified cost function ~UðxÞ and equating to zero
(extremum condition)

∂
~UðxÞ
∂x ¼ 2Lx" 2λx ¼ 0;

and hence

Lx ¼ λx:

The last expression defines a standard eigenvalue problem for the
Laplacian that can be solved using standard numerical libraries (e.g., the
MATLAB function eig). The pair ðλ; bxÞ is called an eigenpair, with λ called
the eigenvalue, and bx the eigenvector. Eigenvalues and eigenvectors are
useful in a broad range of applications, with the interpretation of these
pairs depending on the context in which they are used.

In this paper, we will focus on the eigenvectors of the Laplacian, as
they contain the information which we will use to create our gradients.
However, the eigenvalues also encode important information. Given that
the Laplacian matrix is positive semi-definite, the smallest eigenvalue is
zero and its associated eigenvector is a constant, thus, we will focus upon
the second smallest eigenvalue, which is termed the algebraic connec-
tivity of a graph (Fiedler, 1973).

Fiedler (1973) showed that the magnitude of the algebraic connec-
tivity reflects how well connected the overall graph is, i.e., the larger the
algebraic connectivity is, the more difficult it is to cut a graph into in-
dependent components. If the algebraic connectivity is zero it means that

the graph is not connected; i.e. there are at least two graph partitions. In
other words, if a graph has at least two hard clusters (i.e. it is two
completely disconnected subgraphs), the algebraic connectivity will be
zero. The more connected a graph gets, the higher the algebraic con-
nectivity becomes. This intuition will be revisited in section 5.3.

The fact that the first eigenvalue is zero directly dictates that its
associated eigenvector does not carry any useful information regarding
the relative position of the nodes. Hence, the optimal solution is encoded
in the eigenvector associated with the second smallest eigenvalue. This is
called the Fiedler vector after the mathematician who first described this
solution in the context of graph partitioning (Fiedler, 1973).

At this stage, it is worth noting that the described solution to the
problem is biased in the sense that nodes with high degree will dominate
the minimisation since the corresponding row (or column) of the Lap-
lacian matrix is dominant. This means that nodes with a high number of
neighbours (i.e., high degree) will tend to be grouped together irre-
spective of their similarity. This bias can be compensated for by using a
modified constraint xTDx ¼ 1 so that our optimisation problem is
transformed to

bx ¼ argmin
x

$
xTLxþ λð1" xTDxÞ

%
:

The new constraint means that nodes are penalised (i.e., they are
assigned a higher cost) according to their degree (Johansen-Berg et al.,
2004). By following the same mathematical derivation, as above, the
associated eigenvalue problem is then

Lx ¼ λDx:

This is known as the generalised eigenvalue problem for matrices L and
D, which can also be solved numerically using standard toolboxes.
Commonly, toolboxes that are able to solve the standard eigenvalue
problem can also be used to solve the generalised problem. This is the
case, for instance, for MATLAB’s and Scipy’s eig function.

Often, the Laplacian matrix is used in normalised form (i.e., nor-
malised with respect to the nodes degree), so that its diagonal elements
are all one. However, it can be demonstrated that normalising the Lap-
lacian is equivalent to changing the constraint of the minimisation
problem in some way and therefore one must be clear of how a given
normalisation affects the solution. Several versions of the normalised
Laplacian have been used in the literature. In Appendix B we describe the
symmetric normalised Laplacian and the random walk normalised
Laplacian.

5. Reordering, eigenmaps, and the Vogt-Bailey Index

If we think of brain voxels, or cortical surface vertices, as nodes with
associated features (such as an fMRI time series, or a tractogram etc …)
and the relationships between these features as edges on a graph, we
previously described that the second smallest eigenvector describes the
location (coordinate) of each node in one dimension, a line, which is
dictated by each nodes relationship (affinity) to each-other. Using the
location as a heatmap value becomes a way to visualise those relation-
ships on the brain (the so-called macroscale gradients). Further, the
components of eigenvectors denote the coordinates of the node in a space
containing as many dimensions as there are eigenvectors (it is not
restricted to a single dimension). Hence the eigenvector with the second
smallest eigenvalue would give coordinates of the nodes on a line, the
second and third eigenvectors would give the coordinates on a plane and
so on. For this, more complicated visualisations are needed. Onemay also
present the higher dimensional gradients independently, but one must
always remember that the second gradient is influenced by the first and
the third by the previous two etc.

Further, the algebraic connectivity indicates the sharpness of the best
split (or cluster) in the region of interest. If a searchlight VB index
analysis is performed on local neighbourhoods (see section 5.3), we can
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investigate mesoscopic gradients (or transitions between areal borders).

5.1. Spectral reordering

The simplest approach to mapping the embedded location onto the
brain is by assigning each voxel or vertex a heatmap value that corre-
sponds to their rank order in the embedding. This approach allows for
investigating the general pattern of changes in features across the brain,
but, being rank ordered, does not provide any details about the actual
feature distance between vertices (c.f. Bajada et al., 2017 for an example;
c.f. Johansen-Berg et al., 2004 for the original spectral reordering paper
in the literature where it was used for parcellation).

5.2. Eigenmaps

Laplacian eigenmaps (Belkin and Niyogi, 2003, 2002) are closely
related to spectral reordering. Use of eigenmaps has been introduced to
the neuroscience literature (Cerliani et al., 2012; Haak et al., 2018). In
one dimension, the approach uses the coordinate points given by the
primary eigenvector of the Laplacian as the intensity of the voxel of
interest.

This approach can be particularly advantageous since one can explore
the relationships between voxels in more than one dimension. Indeed,
coordinates of the similarity or eigen-space can be mapped into a colour
palette and the resultant colour map value can be mapped onto the brain
space by assigning that value to the corresponding voxel (c.f. Bajada
et al., 2019). This means that one can only map as many dimensions as
the dimensions of the colour palette (in our case the 3-dimensional RGB
colour palette).

Reordering and eigenmaps give us maps of optimal embedding of
voxels in a low dimensional space. Effectively, voxels (or ROIs) with a
similar value, have a greater affinity to one another. This establishes the
large-scale organisational gradients of the cortex. It also gives some
indication as to whether there are sharp discontinuities across that
gradient but a focus on the eigenvectors alone fails to quantify the extent
of discontinuity in cortical intra-areal relationships. The eigenvalues
provide a solution.

5.3. The algebraic connectivity and the Vogt-Bailey Index

The algebraic connectivity of a graph is an indicator of how “well
connected” that graph is. It is the second smallest eigenvalue of the
Laplacian matrix (see section 4).

Once normalised to be bounded between zero and one (by dividing by
themean of all eigenvalues save for the first, which is the maximum value
a graph with an affinity matrix one ones would have), the algebraic
connectivity can be used as an indicator that a particular neural region
has at least one sharp delineation or comprises only graded differences.
This allows for a quantification of the historical issue about the degree of
interareal transitions present in the cortex. While the Vogts primarily
argued for clearly demarcated brain areas, Brodmann, in his 1909
monograph clearly stated that some areal cytoarchitectonic boundaries
were graded. In the extreme, Bailey and von Bonin (1951) argued for an
effectively graded cortex (with some minor exceptions). We thus propose
the term “Vogt-Bailey Index” to describe the normalised algebraic con-
nectivity of the graph Laplacian when used to describe the extent of
feature similarity in a neuroscientific context.

Such an approach can be done across the entire cortex to give a single
value for the “gradedness” of the whole cortex, across predefined clusters
(such as the resting state networks) or to give a value per region of in-
terest that quantifies how similar features in the region are. We note,
however, that this value alone tells us little since the value will be
affected by smoothing (which exist in MRI signals). It can, however, be
used as a relative measure where one can compare regions across the
same brain or between different subjects (see section 5.3. for notes on
statistical analysis).

Finally, one can use a vertex-wise searchlight to calculate the Vogt-
Bailey (VB) Index across the entire cortex. Using this approach, a
neighbourhood of adjoining cortical voxels, or vertices (as is assumed in
the adjoining code) is calculated and the (normalised) algebraic con-
nectivity of its affinity graph is calculated. The calculated VB index gives
a value of how similar a feature (fMRI, tractography, or others) in the
centre of the searchlight is to its nearest neighbours. The final result is
effectively a cortical edge detection algorithm (see Figs. 2 and 3 for
intuitive examples) where boundaries between parcels should emerge

Fig. 2. The VB Index applied to a photograph (top left) using all three normalisations of tha Laplacian matrix. The colormap ranges from black (0) where there are
sharp transitions to white (1) where there is homogenous structure in the image.
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naturally and their relative sharpness should be apparent. Of course,
smoothing effects and voxel/vertex size will limit the resolution that one
can expect. Indeed, such notions in MRI analysis are not new. The idea of
a measure of regional homogeneity (ReHo) has been present since the
early days of fMRI (Jiang and Zuo, 2016; Zang et al., 2004). Further, the
approach has similarities to the observer independent method for
microstructural parcellations (Schleicher et al., 1999). Our approach
simply fits these ideas of regional homogeneities and boundaries into a
flexible and more general framework that does not restrict either the
metric for similarity that is used (such as the method for microstructural
parcellation) or the feature of interest (such as in both ReHo and the
observationally independent approach for microstructural parcellation).

In summary, the VB Index is the proposed term for the normalised
algebraic connectivity of the graph Laplacian when used to describe the
extent of feature similarity in a neuroscientific context. The adjoining
software can produce three “types” of VB Indices: 1) the full brain
analysis which also computes a whole brain gradient single VB Index for
the whole brain; 2) clustered analysis that computes a gradient and VB
Index per region of interest, and 3) the searchlight VB Index which
computes a VB Index per vertex based on the neighbourhood data of
directly adjacent vertices. The size of the cluster (going from the nearest
connected 5 or 6 neighbours to the full brain) is relevant in the inter-
pretation of the VB Index. As Fielder (1973) showed in the original paper,
the value of algebraic connectivity provides a measure of how difficult it
is to split the graph (higher value indicating more “connectedness”, i.e.
more difficult to split). If it is zero, then it indicates that there is at least
one complete split in the graph. Hence as the cluster gets larger there is
more of a chance that the graph will be easier to split into two, that is
what the VB Index measures. In the case of the searchlight, since we are
only looking at 5 or 6 connected neighbours, the interpretation is more
straightforward: is there an edge near that vertex?

6. Notes on statistical analysis

This article focused on creating a conceptual understanding of the
large-scale gradients and the quantification of boundary edges using MRI
data.

With respect to the statistical treatment of large-scale feature gradi-
ents, a literature is emerging that discusses various statistical approaches
to use on gradient maps. The reader is encouraged to explore the articles
in this section for current approaches on gradient statistics (Haak et al.,
2018; Hong et al., 2019; Langs et al., 2015; Tian and Zalesky, 2018; Xu
et al., 2019).

Regarding the statistical analysis of the VB Index maps, future work is
needed to disentangle the effects of MR noise and inherent smoothness
from real gradations in feature similarity. A research avenue for noise
removal includes the generation of null models with similar noise and
baseline smoothness as the underlying MRI data (c.f. Gordon et al., 2016;
Tian and Zalesky, 2018).

The VB toolbox is a freely available, open source, project under the

terms of a GPL licence, we hope that with interest growing in the field of
Gradient analysis that the toolbox will grow to also incorporate various
statistical approaches for making inferences on both gradient maps and
the VB Index.

7. Experiments

7.1. Photography example: searchlight VB index

Before applying the VB Index to the rather abstract notion of function
MRI, we have provided a MATLAB script within the respective version of
the toolbox that implements the VB Index on a colour photograph (http
s://github.com/VBIndex/matlab_vb_toolbox/tree/master/vb_index_int
uitive_example). Every pixel within the 2D photo can be thought of as a
vertex within a brain surface. The functional data is represented by the
hue, saturation and their brightness value of the pixel. Performing the VB
Index searchlight operation on the photograph, as described in Section
5.3. results in a quantification of boundaries of the image (See Fig. 2).
Readers are invited to explore this script with other images made freely
available or try it out using their own photographs.

7.2. A neuroimaging example: simulated MRI data example

Following the validation of the technique on colour photographs, the
performance of the technique was evaluated on synthetic MRI data where
the ground truth is known. To this end a cortical surface from the HCP
dataset was arbitrarily split into 6 contiguous parcels. The vertices within
the same parcel were assigned identical time-series, which differed
across different parcels. The analysis was carried out using version 1.1.0
of the python vb_tool. Fig. 3 show the results of applying the proposed
method to the simulated data. As expected, the full brain gradient shows
a piece-wise constant pattern, reflecting the similarity structures between
parcels (unknown) as described above (Fig. 3a). Consistent with this
result, the vertex-wise VB Index shows a pattern where the edges be-
tween parcels are highlighted (Fig. 3b).

7.3. A neuroimaging example: human connectome project data example

The adjoining toolbox was run on twenty-four (24) individuals (12 F)
from the human connectome project database. The calculations were
carried out on two separate rs-fMRI runs per participant across both
hemispheres. The dataset was pre-processed by the HCP using the min-
imal processing pipeline (Glasser et al., 2013). The data collection was
approved by the Washington University Institutional Review Board (IRB)
and further approval for processing the data was obtained by the Uni-
versity of Malta’s University Research Ethics Committee.

The data were processed according to the procedures outlined in the
above text using version 1.1.0 of the python vb_tool; all calculations used
the generalised eigenvalue problem for computations.

First, the whole brain affinity matrix was computed for all 24 subjects

Fig. 3. a) The gradient map on synthetic data showing the expected pattern with values within parcels being extremely similar but different across parcels. b) The VB
Index on a cortical surface highlighting the arbitrary parcels. All results show the default generalised eigenvalue problem solution.
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(per run) and an eigendecomposition of its Laplacian was computed. This
resulted in Fig. 4 (left) which shows an exemplar of the primary large
scale inter-areal (feature) gradient of the whole cortex in both hemi-
spheres of a single subject. Fig. 5 shows all 24 subjects on the lateral
surface of the left hemisphere for a single rs-fMRI run.

We note that the principle gradients differ somewhat from previously
published work (c.f. Margulies et al., 2016). This may be due to multiple
differences in parameter choices that were made (and discussed briefly in
section 2.1). In short, the principle gradient is highly dependent upon the
properties of the affinity matrix; the most pertinent difference between
our affinity matrix and that of Margulies et al. (2016) was the latter’s
retention of only the top 10% of functional connections and subsequent
re-computation of a cosine similarity while our approach (c.f. Jackson
et al., 2020, 2017 for a slightly modified example) accepts all positive

correlations that were then transformed to a normalised angular dis-
tance. Thresholding plays an important role in the interpretation of the
results. A high threshold (such as retaining only the top 10% of con-
nections) will only consider the similarity of “well-connected” vertices
giving no weight to moderately and poorly connected ones. Our
approach, which only eliminates negative weights, takes these connec-
tions into account but would also be more sensitive to “spurious”
connections.

Second, the toolbox was used to calculate the primary gradients and
their associated VB Index for the data parcellated using the Multimodal
HCP parcellation (Glasser et al., 2016). An exemplar of these results can
be found in Fig. 3 (right), where the principle gradient is computed in
each parcel. Associated with these parcels are the VB Indices per parcel
(see Fig. 7 right and a further discussion below).

Fig. 4. An exemplar of the principal similarity gradient across the whole cortex based on rs-fMRI as a feature (left). An exemplar of the principal gradient computed on
a pre-clustered cortex (using the HCP Multimodal Parcellation, right).

Fig. 5. The principle similarity gradient across 24 individuals on a single run. The image of the same participants on a second fMRI run can be found in the sup-
plementary material.
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Finally, the vertex-wise searchlight VB Index was computed on all
participants. This approach highlights, in a data-driven fashion, the
feature edges and boundaries across the cortex. Fig. 6 shows the
searchlight VB Index across all 24 participants while Fig. 7 (left) shows
the mean vertex-wise VB Index. One can also see similar patterns be-
tween the group vertex-wise VB Index (Fig. 4 left) and the group VB Index
computed on clusters (Fig. 7 right).

The full set of results can be found on the HCP BALSA database (https
://balsa.wustl.edu/study/show/kND1N).

8. Conclusion

The idea of gradations in neural features has been present since at
least the beginning of the twentieth century and has gained traction in
the neuroimaging community throughout the early twenty-first. This
paper has outlined the general concepts and mathematical intuition
behind the spectral transformation and has introduced the related

techniques of spectral reordering, Laplacian eigenmaps and clustering. As
an accompaniment to this paper, MATLAB and Python tools that per-
forms the different spectral transformations discussed in Section 4 are
available. Depending on the size of the data, the technique can take up a
considerable amount of RAM and computation time, however, at stan-
dard mesh sampling our attached code can run a full brain gradient
analysis (using HCP 32K surfaces) on a standard desktop or notebook
with 32 GB of RAM.

While the described framework can be used to reason about re-
lationships between neural features, there are plenty of unanswered
questions. The first important issue regards the choice of similarity
measurement. Although all the metrics discussed above have been used
to some extent, a systematic comparison along with guidance regarding
which metric to use in different circumstances is needed.

In summary, it is hoped that this article and accompanying tools will
be used as a guide to researchers interested in performing anatomical
investigations using neural features and their interareal relationships in

Fig. 6. The VB Index computed across 24 individuals on a single run. The image of the same participants on a second fMRI run can be found in the supplemen-
tary material.

Fig. 7. An average (on a single run) of 24 individual’s searchlight, local neighbourhood, whole brain VB-index identifying regions of relatively sharper borders across
the cortex.
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the brain.
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