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Abstract

This thesis investigates the quantum field theoretical description of Dirac system at
(deconfined) quantum critical points ([D]QCP). Using the perturbative renormalization
group (RG) in higher loop orders, the critical behavior is quantitatively analyzed. In the
first project, a detailed resummation of the four loop RG of the Gross-Neveu-Yukawa
model is laid out for this matter. While the Landau-Ginzburg-Wilson paradigm used for
this purpose proves to be very successful, exotic phase transitions beyond are treated
in the remaining parts of this work. The studied quantum phase transitions describe
an unexpected order-to-order transition and unveil a web of novel dualities between
different theories. The second project examines the critical theory of a DQCP to the fourth
loop order to address the question of transition’s nature. The third project checks one of
the new dualities for a system of gauged Dirac fermions. In the fourth and final project,
the critical theory of a DQCP composed by fractionalized degrees of freedom is analyzed
quantitatively using a series of complementary RG methods.

Kurzzusammenfassung

Diese Arbeit beschäftigt sich mit der quantenfeldtheoretischen Beschreibung von Dirac
System an (dekonfinierten) quantenkritischen Punkten ([D]QCP). Mit Hilfe der pertur-
bativen Renormierungsgruppe (RG) in hohen Schleifenordnungen wird das kritischen
Verhalten quantitativ analysiert. Im ersten Projekt wird dazu eine ausführliche Re-
summierung der vier Loop RG des Gross-Neveu-Yukawa Modells ausgelegt. Während
sich das dafür genutzte Landau-Ginzburg-Wilson Paradigma als sehr erfolgreich be-
weist, werden im weiteren Teil der Arbeit exotische Phasenübergänge jenseits davon
behandelt. Die untersuchten Quantenphasenübergänge beschreiben einen unerwarteten
Ordnung-zu-Ordnung Übergang und eröffnen ein Netz neuartiger Dualitäten zwischen
verschiedenen Theorien. Im zweiten Projekt wird die kritische Theorie eines DQCP zur
vierten Schleifenordnung untersucht um auf der Frage nach der Art des Übergangs
auf den Grund zu gehen. Das dritte Projekt überprüft eine der neuen Dualitäten für
ein System von geeichten Dirac Fermionen. Im vierten und letzten Projekt wird die
kritische Theorien eines DQCP aus fraktionalisierten Freiheitsgraden mit einer reihe
komplementärer RG Methoden quantitativ untersucht.
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Introduction 1

The history of critical phenomena is a story of success and inseparably linked
to the achievements of quantum field theory. All the more astonishing when
one considers that this required reconsidering an old and equally successful
principle of theory formulation. In almost every physical theory resides
the idea of an effective description for a certain length scale. No matter if it
describes the behavior of quarks, the dynamics of a fluid, the motion of a
mechanical pendulum or the orbits of celestial bodies, the descriptive theory
gets along without references to the other scales. This decoupling of length
scales establishes the foundation of physical insight all the way to quantum
mechanics. For a system with a critical point marking a continuous phase
transitions, however, this principle fails and it turns out to be correlated
across all length scales. Even more, transitions in completely diverse systems
exhibit the same universal behavior near the critical point.

The first theory on continuous phase transitions developed by Lev D.
Landau [1] explains this feature as the result of amutual symmetry,measured
by an order parameter, which is spontaneously broken as soon as the system
reorganizes in a certain ground state. Although this idea turned out to be
correct in essence, it provided the correct result only for special cases which
fulfilled the criteria added by Ginzburg [2]. At the latest with the exact
calculations by Onsager [3] for the famous Ising model, it became clear that
this concept needed some refinement. The till then uniform order parameters
had to be elevated in the continuum limit to fields in order to capture its
fluctuations. Since not only thermal fluctuations can drive a phase transition
but also quantum ones, Landau’s theory ultimately becomes a quantum
field theory.

Quantum field theory is one of the most precise theories in physics. For its
original application in high-energy physics involving the Standard Model
of the fundamental interactions and beyond, it allows predictions with un-
precedented accuracy. For example, the fine-structure constant  computed
in the Quantum Electrodynamics (QED) matches up to at least eight decimal
digits [4, 5]. However, the key to this milestone lies in the development
of the renormalization group, which appears utterly abstract at first sight.
Since measurements of quantities such as the charge 4 exhibit a scale de-
pendence of the energies used to probe in experiment, a calculation of the
latter is required. This mathematically conceptional task gives rise to the
renormalization group which enables us to derive an effective theory for
a given scale out of another theory formulated at smaller scales. A theory
that retains its form under the renormalization group is characterized by a
fixed point under renormalization group transformations. Leo Kadanoff [6]
and later Kenneth Wilson [7–11] realized that the implied scale invariance
of these points corresponds exactly to that of a critical point. The Landau-
Ginzburg-Wilson (LGW) paradigm devised out of these works has proven
to be extremely successful especially for bosonic theories (see Section 2.4.2
for a brief review) and was later extended methodologically to include
non-perturbative formulations as well [12]. Eventually, it is leading to even
more fundamental applications in the realm of conformal field theory [13, 14].
In particular, the efforts on the computational perturbative renormalization
group in high orders for theories such as quantum chromodynamics (QCD)
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set the standard for many comparative studies. For fermionic systems, on
the other hand, the precise quantitative determination of the critical behav-
ior remained a long-standing challenge. In the search for critical behavior
beyond the bosonic order parameter theories, systems which feature gapless
fermionic excitations raisedmore andmore attention [15]. Not the least, these
challenges fostered a unification of quantum field theory and condensed
matter physics [16, 17] as well as forced numerical methods such as Monte
Carlo simulation to face the notorious sign problem [18–21].

In 2004, Nobel laureates Andre Geim and Konstantin Novoselov succeeded
to synthesize thematerial graphene in the laboratory [22–24] for the first time
and thus unleashed an unprecedented run on Dirac materials. Graphene
owes its special properties to its two-dimensional honeycomb lattice, which
makes the electrons at low energies appear like quasi-relativistic particles
which entail remarkable transport properties [25–27], the applications of
which seem to be far from being exhausted [28]. The phase transition from
this semi-metallic ground state to one of many possible ordered states such
as charge density waves, spin density waves or Kekulé valence bonds [29–31]
renewed the interest of a large variety of theoretical methods [15, 21]. Among
others, the perturbative loop calculations presented in this work in Chapter 3
quantitatively pushed forward the understanding of the universal quantities
at the critical point. With the synthesis of slightly twisted bilayer graphene
in 2018 [32, 33], another possible candidate for application and verification
of this insight is under discussion [34].

Despite the successes of the LGW paradigm, some transitions seem to
evade this scheme. As a prominent example serves the Kosterlitz-Thouless
transition [35] in the 23 XYmodel where the usual order parameter approach
can not distinguish the different phases. But also in other low-dimensional
quantum systems [36, 37], it becomes apparent that the description by one
or more order parameters in the LGW paradigm may not capture unique
quantum properties such as topological defects without further adjustments.
However, in quantum magnets, the latter are found to contribute crucially
to the nature of the transition between two ordered phases. It was found
they induce emergent “deconfined” fractionalized degrees of freedom at the
critical point [38–40]. A rigorous treatment of the topological details shows
that, contrary to the LGW intuition, the phase transition is continuous as
confirmed in several numerical simulations [41–43]. Surprisingly, the very
same simulations show that the deconfined critical point also exhibits an
emergent enlarged symmetry [44]. These breadcrumbs encouraged theorists
to elevate of the recently developed fermionic counterpart [45–47] of the
charge-vortex duality [48] to the idea of an entire web of novel dualities
between both fermionic and bosonic systems [49–51]. A subset of these
dualities between specific deconfined quantum critical points again involve
emergent Dirac fermions. We will investigate one of these models from the
renormalization group point of view in Chapter 6.

A crucial step in the derivation of a theory of the deconfined quantum
critical point was to fractionalize the Néel order parameter into spinon
degrees of freedom. This concept leaves the question if all sorts of quantum
critical points might be affected by a fractionalization, especially when
they involve a symmetry-protected topological (SPT) phase. While this
was studied for bosonic (toy) models like the hard-core boson model [52,
53], fractionalization in fermionic systems was only found very recently
for certain Kitaev formulations of spin-orbital liquid models [54]. The
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corresponding continuum field theories again are governed by a certain
type of Gross-Neveu universality where not all excitations are gapped out
after the transition. We will discuss one of these models from different RG
angles in Chapter 7.

Outline

The content of this thesis was partly published or already submitted for
publication. While in Chapter 2 we give a brief review on methods and the
general framework, the first project presented in Chapter 3 is based on

I Bernhard Ihrig, Luminita N. Mihaila, and Michael M. Scherer. ‘Critical
behavior of Dirac fermions from perturbative renormalization’. In:
Phys. Rev. B 98 (2018). arXiv: 1806.04977

In Chapter 4, we motivate the concept of deconfined quantum criticality
which sets the stage for the following chapters on the Abelian Higss model
(Chapter 5), the QED3-Gross-Neveumodel (Chapter 6) and the Gross-Neveu-
SO(3) model (Chapter 7) based on the following publications

I Bernhard Ihrig, Nikolai Zerf, Peter Marquard, Igor F. Herbut, and
Michael M. Scherer. ‘Abelian Higgs model at four loops, fixed-point
collision, and deconfined criticality’. In: Phys. Rev. B 100 (2019). arXiv:
1907.08140

I Bernhard Ihrig, Lukas Janssen, Luminita N. Mihaila, and Michael M.
Scherer. ‘Deconfined criticality from the QED3-Gross-Neveu model at
three loops’. In: Phys. Rev. B 98 (2018). arXiv: 1807.04958

I Shouryya Ray, Bernhard Ihrig, Daniel Kruti, John A. Gracey, Michael
M. Scherer, and Lukas Janssen. ‘Fractionalized quantum criticality in
spin-orbital liquids from field theory beyond the leading order’. In:
Phys. Rev. B 103 (2021). arXiv: 2101.10335

https://arxiv.org/abs/1806.04977
https://arxiv.org/abs/1907.08140
https://arxiv.org/abs/1807.04958
https://arxiv.org/abs/2101.10335
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The quantum theory is one of the most successful areas of modern physics
and together with statistical physics it shapes our understanding of the laws
of nature. The combination of both emerged into modern quantum field
theory which was originally developed to understand the standard model
and therein the physics of the very essential building stones of our (known)
universe. But it also finds its way into condensed matter physics. In fact, the
application of QFT on the both ends of the spectrum of scales, i.e. higher
energies in particle physics and low energies in condensedmatter systems, is
further pushed by the renormalization group method. It provides a general
mathematical tool to understand how length scales interplay and in which
way microscopic interactions affect the system’s behavior at larger scales.
Especially the latter is essential in the theory of continuous phase transitions.
Their crucial feature to show fluctuations at all length scales near a critical
point demands for a method beyond the usually successful study of different
decoupled scales.

In this chapter, we will review the basic concepts andmotivation of quantum
field theories in condensed matter systems, the general idea of the renor-
malization group method, including perturbative and non-perturbative
approach to it and its application to quantum phase transitions.

2.1 Quantum field theories in condensed matter

Quantum field theory elevates the idea of fields and wavefunctions to the
quantum world and gives matter a new meaning as low energy vibrations
of these fields. Indeed, it is a further generalization of quantum mechanics
which in this picture emerges as the non-relativistic limit. In condensed
matter theory, we can adopt this notion and introduce the fields as an
effective description of reality, e.g. as spin fields in the thermodynamic limit
of a solid or displacements of atoms in a lattice. The crucial point of this
description is that most of the dynamics of these fields lie in the quantum
regime and QFT is again the proper language to conceive their physics. But
also from the statistical physics point of view QFT is relevant as the effective
description of many-body quantummechanics in the continuum limit [16].

While the quantum fields O(G) (with G a point in space-time) are a vehicle
of the theory, the actual physical information is completely encoded in the
correlation functions

�(=)(G1 , . . . , G=) = 〈0|)O(G1) . . .O(G=)|0〉 , (2.1)

where |0〉 describes the vacuum ground state and ) denotes the time
ordering. The correlators have many different interpretations depending on
the QFT’s purpose ranging from scattering cross-sections to energy spectra.
Most interestingly throughout this thesis, they take a pivotal role in the
description of a system near and at a continuous phase transitions.



6 2 Critical phenomena from the renormalization group perspective

1: While it usually is accredited to Richard
Feynman, the foundations were laid by Gre-
gor Wentzel [59] and Paul Dirac [60].

2: For a given action S[O], the classical
physics is determined by the principle of
least action, demanding that �S[O]/�O= 0.
In the classical limit S[O] � ~ it becomes
clear that these are the only contributions
surviving the integral inEq. (2.2). In contrast
forS[O] ∼ ~, also other quantum trajectories
contribute.

In statistical physics, the correlators are interpreted slightly different as the
probability of a system to transfer between two configurations represented
by the fields O(G). They are generated from the partition function which
counts and weights the configurations by their “likelihood” regarding to
the fundamental principal of least action. For a classical continuous system
the partition function becomes an integral over the system’s phase space.
Richard Feynman1 successfully boosted this concept to the quantum realm
by allowing for quantum fluctuations in all space-time dimensions. Strictly
speaking, this lifts the classical notion of the path integral to Dirac’s abstract
Hilbert space formulation of quantum field theory. Each possible field
configuration O(G) is weighted by the quantum action S[O]/~ in

Z=
∫

DO(G) eiS[O]/~ (2.2)

where ~ denotes the Planck constant (from hereon we set ~ = 1). Herein, the
element DO defines a functional integral measure which sweeps over all
possible field configurations. Indeed, the path-integral is a very powerful
unification of the classical and the quantum realm2. From Eq. (2.2) the
correlators are generated by extending the exponential S[O] → S[O] + � · O.
The dependence Z= Z[�] added by the additional term

� · O≡
∫

d3G �8(G)O8(G) (2.3)

introduces source fields � and integrates over the 3-dimensional space-time.
By means of this term the correlators are derived as functional derivatives
with respect to �(G)

〈O1(G1) . . .O=(G=)〉 = 1
Z[0]

�

��1(G1) . . .
�

��=(G=)Z[�]
����
�=0

. (2.4)

In Chapter 3, we will explore how such a QFT description for a certain
system is deveceloped in practice by considering low-energy excitations in
the material graphene.

2.2 Fundamentals of critical phenomena

Phase transitions accompany us almost every day and yet are a challenge for
theory to be fully understood. While most transitions such as from water
to ice show an abrupt change of the system between two different phases,
there are also phase transitions showing a gradual change and are therefore
called continuous. From a thermodynamic point of view, a phase transition
can be defined as a non-analyticity of the thermodynamic potential in the
parameter space. This rather cryptic definition directly affects measurable
quantities and shows that the systems’ properties change drastically3

3: To be precise, the non-analyticity is a
mathematical idealization and arises only
in the thermodynamic limitwhere we assume
infinite system sizes [61].

.

Continuous transitions (also known as second order transitions4
4: Second order refers to Paul Ehrenfests’
classification [62] from 1933. It accounts
that the second derivative of the thermody-
namic potential shows the non-analyticity.
The term continuouswas coined due to the
order parameters’ continuous slope when
tuned through the transition.

) show an
intriguing feature that sparked an entire branch of physics known as critical
phenomena. Close to the critical point separating two phases which is for
example marked by a critical temperature )2 , the non-analyticity is reflected
in the occurrence of power laws with a specfic critical exponent. For instance,
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Figure 2.1: Critical behavior of disparat sys-
tems: (left) Liquid-gas transition for various
materials. After rescaling density and temer-
pature to their critical values, all materials
show the samepower law. (right)Magnetiza-
tion at a paramagnet-ferromagnet transition
which shows the very same power law after
rescaling. (Taken from Ref. [63])

5: In fact, there are only six different ex-
ponents which are even related by non-
trivial laws named after Rushbrooke, Grif-
fith, Fisher and Josephson [61].

the specific heat scales like

�+ ∼ |Δ|− (2.5)

where Δ measures the distance to the critical point. In thermodynamic
systems, this is the reduced temperature C, i.e. Δ = () − )2)/)2 . We will
see later that this concept can also be extended to transitions driven by
quantum fluctuations. Besides the specific heat also other quantities like the
susceptibility, the compressiblity or the magnetization show such a power
law behavior and define additional critical exponent. Luckily, the number of
exponents is very limited5.

However, the most surprising feature that attracted decades lasting attention
for the this field becomes manifest if we compare the critical exponents of
phase transitions in very different systems. Counter-intuitively, for some
transitions we find the same set of exponents as for example shown in
Fig. 2.1. Both the magnetization transition on the right as well as the liquid-
gas transitions for various materials on left show the same power laws with
the very same exponent � ≈ 1/3. While this may have been expected for
the group of liquid-gas transitions, the paramagnet-ferromagnet transition
is apparently very different in its very nature. This phenomenon is called
universality. Transitions that share the critical behavior are called to be
in the same universality class which can be labeled be their unique set of
critical exponents. The precise calculation of the exponents seems to be a
minor detail at first but indeed it is a highly non-trivial challenge to many
complementary theoretical methods and can even be be understood as a
benchmark for their quantitative comparison (see e.g. Section 2.4.2).

First substantial progress in the understanding of universality were made by
LevD. Landau [1] andVitali Ginzburg [2]. Landau realized that the properties
the allegedly different transitions have in commonare the spontaneously broken
symmetries6

6: The idea of spontaneous symmetry
breaking is an extremely powerful concept
which has applications to almost every area
inmodernphysics. For a pedagogical review
see Ref. [64].

when the system changes its phase. In fact, for any symmetry
breaking ground state |#〉 it is possible to identify an operator Owith a finite
expectation value

) ≡ 〈O〉 = 〈# |O|#〉 . (2.6)

We call this expectation value order paramter and it measures so to speak the
onset of the symmetry breaking and vanishes in symmetric phase.

The formulation of the theory in terms of a non-fluctuating mean field7

7: Inmeanfield theory, the spacial variation
of the fields is omitted. While this already
partially explains universal behavior it fails
aside certain dimensions in which the so-
called Ginzburg-criterion is fulfilled.

, later
extended by Vitali Ginzburg, used this observation to reinterpret the Gibbs
free energy as a function of the local order parameter )(G). Today, it is known
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8: We call this term mass for historical rea-
sons and it should not be confused with the
physical mass. In fact, it can be understood
as the energy gap of the spectrum at zero
momentum.

〈)〉

))2

spontaneously-broken symmetric

�

)

�

)

Figure 2.2: Order parameter and the
Landau-Ginzburg energy functional. For
large temperatures the system respects a
certain symmetry as 〈)〉 = 0. Below the
critical point at ) = )2 , this symmetry is
broken and the ground state will collapse
to one of the minima of the potential with
〈)〉 > 0

9: Indeed, this is a very old widely used
concept in physics. Most theories are formu-
lated for a certain length scale and ignore
the others, e.g. for mathematical pendulum
the motion is described only by the length
of the rope with no reference to atomic or
cosmic scales.

as the famous Landau-Ginzburg energy functional

�[)] =
∫

d3G
[(∇)(x))2 + <2)2 + �)4] . (2.7)

In this form, constructed for an Ising transition with a ℤ2 symmetry, only
terms obeying the corresponding reflection symmetry )→ −) are allowed.
The lowest gradient term accounts for nearest-neighbor interactions and
suppresses short-wavelength fluctuations as wanted for the continuous
transition. While the last term with positive coupling � ensures stability, the
most important one is the mass8 term <2)2. It is tuned around the critical
temperature <2 ∼ () − )2) and changes sign at the transition. Following
Landaus’ intuition, we can give a nice pictorial notion of spontaneous
symmetry breaking by looking at the slope of the energy functional as
shown in Fig. 2.2 (here for a spatially uniform field).

As long as ) > )2 , the mass is positive and the energy functional of (2.7)
has a unique ground state with 〈)〉 ≡ 0. When tuned through the critical
temperature <2 changes sign and reveals two minima with 〈)〉 ≠ 0. The
system will have to pick one of them as its ground state and therefore
spontaneously break the ℤ2 (Ising) reflection symmetry.

While the Landau-Ginzburg theory is a phenomenological ansatz, it already
lays the foundation of the field theoretical approach. In fact, Landaus
observation that systems of the same universality class break the same
symmetries was already right but it dismisses the role of dimensionality.
His original idea was to write down an effective macroscopic theory for
the transition which does not involve the microscopic details9. But on the
contrary, a continuous transition is accompanied by characteristic self-similar
structures on all length scales as shown in Fig. 2.3 again for the Ising
transition (here shown in a lattice simulation [65]). Nomatter howwe rescale
the system at the critical point, it still looks the same. In terms of the order
parameter operator O, these structures appear when the correlation-length
� diverges. Similar to the thermodynamic quantities we can assume a power
law close to the critical point

�(Δ) ∼ |Δ|−� . (2.8)

Consequently, when measuring the two-point correlations we assume the
following scaling form

�(G, C) = 〈O(G)O(0)〉 ∼ e−G/�(Δ)

G3−2+� . (2.9)

Close to the transition, the correlations will therefore decay exponentially,
while directly at the critical point (Δ = 0) the correlation function decays
algebraically in a power law with dimension 3 and another critical exponent
�, called the anomalous dimension.

The crucial point here is that a theory formulated only for one fixed length
scale must fail to capture the physics of a continuous transition. Neverthe-
less, although at the transition the system fluctuates on all length scales,
the universality shows that very different systems look the same and the
microscopic details become irrelevant. These seemingly contradictory facts
as well as the concept of universality itself can better be understood by
studying a continuum like limit of theories. The systematic method to do
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! = 211 ! = 215 ! = 219

Figure 2.3: Ising lattice tuned to the critical
temperature: At the critical point, the pat-
tern of the Ising model shows self-similarity,
i.e. even if zoom out as in the figures from
bottom to top, the structure does not change.
The crucial oberservation here is that a the-
ory describing this state would have to be
scale invariant. (Pictures taken from [65]).

)

AQCP

〈)〉 ≠ 0 〈)〉 = 0

Quantum
critical
fan) ∼ |A |�I

Figure 2.4: Principal phase diagram of sys-
tems near a quantum critical point. At tem-
perature zero, the transitions is driven solely
by quantum fluctuations. But also at finite
), the transition can be dominated by the
quantum regime when the temperature is
comparative to the energy scale of the quan-
tum fluctuations, i.e. ) ∼ |A |�I in the region
of the so-called quantum critical fan. Here,
the dynamical critical exponent I accounts
for the additional imaginary time contri-
bution to the correlation-length. (similar in
Ref. [66])

this is called the renormalization group.

Quantum phase transitions

The observations on critical phenomena we made so far are not limited to
phase transitions driven by thermal fluctuations. In fact, there is always a
competition between the thermal fluctuations and quantum fluctuations
whichwe have not considered yet. In the Landau-Ginzburg energy functional
(2.7), we account only for thermal fluctuations be allowing for spatially
dependent order parameter field )(x) and neglect any time-dependence,
assuming the system is at equilibrium. In order to generalize it to the
quantum level as in Eq. (2.2) which incorporate quantum fluctuations as
well, we have to allow for an imaginary-time � dependence of the order
parameter fields

S[)] =
∫ �

0
d�

∫
d3G

[
Lkin[)(�, x)] + (∇)(�, x))2 + <2)2 + �)4] , (2.10)

where � ∼ 1/) (for :� = 1). The added term Lkin accounts for the quantum
fluctuations in the periodic imaginary-time direction. In the Matsubara
formalism,we assigns the frequencies$= ∼ =) as the field’s oscillations such
that $0 = 0 corresponds to the classical fluctuations. For finite temperature
near criticality (<2 → 0), the former frequencies can be integrated out and
we recover the Landau-Ginzburg energy functional of Eq. (2.7) [66, 67].

However, at zero temperature this is not possible and the theory is in fact
dominated by quantum fluctuations. Now the kinetic part Lkin becomes
all important and extends the correlations by a quantum imaginary “time”
direction. Similar to the correlation-length � for the classical spatial directions
in Eq. (2.8), also the correlation “time” �2 diverges at the critical point. Since
the time-like quantum fluctuations are independent from the spatial thermal
fluctuations, the power law of �2 reflects this anisotropy by the dynamical
critical exponent I, i.e.

�2(Δ) ∼ �I ∼ |Δ|−�I . (2.11)

Whenever at low temperatures close to the critical point the energy scale
of the quantum fluctuations $ ∼ |Δ|−�I is comparative to the energy scale
of the thermal fluctuations ∼ :�), the transition “looks” quantum critical.
Therefore, upon tuning the system with respect to the quantum direction
A = <2 wemayfind reminiscent scaling behavior but the thermal fluctuations
will take over eventually [68]. This region is known as the quantum critical fan,
as shown in Fig. 2.4. In the special case of relativistic fields, the dynamical
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10: In fact, this space is infinitely dimen-
sional and for all following discussions we
already limit ourselves to subsets of it from
which some are closed and others are not.

11: A long list of very intelligent people!
While Gell-Mann was awarded a Nobel
prize in 1969 for his contributions to el-
ementary particle physics and Feynman,
Schwinger and Tomonaga in 1965 for solv-
ing QED, it was Kenneth Wilson who was
honored for developing the renormalization
group with the Nobel prize in 1982 [11].

12: This condition ensures that only the
theory H� at scale � is known to the renor-
malization and not the history of predecess-
ing theories. Consequently, the derivative
�d� = d/dln� accounts for this multiplica-
tive feature that we can go back in coarse-
graining. In the functional RG this observa-
tion coined the phrase RG time C = ln�.

critical exponent is simply I = 1which applies also for all projects throughout
this thesis.

On first sight, the former discussion seems to lead to a quantum-classical
mapping where the classical transitions in 3 dimensions map to quantum
phase transitions in 3 + I dimensions. However, this mapping assumes that
every transition can be described in the Landau order parameter picture
which dismisses features special to the quantum world as e.g. topological
Berry phases [39, 68]. In Chapter 4, we will discuss why this critical behavior
lies beyond the Landau notion.

2.3 Concepts of the renormalization group

The renormalization groupmakes an essential abstraction important for field
theories of all areas: It systemically realizes a map from the theory space10
on itself. This renormalization group operation is sometimes called coarse-
graining, a term which goes back to the very first ideas by Leo Kadanoff.
In his seminal paper [6] on “Scaling laws for Ising models near )2”, he
repeatedly regrouped neighboring states on a real space lattice to an effective
single state. Upon this step-by-step method, it was possible to systemically
reveal the self-similar structure of the system near criticality.

While this already proved to be a powerful concept, it was Kenneth Wilson
who developed the modern systematic approach in momentum space [7–11],
nowadays known asWilson RG. Wilson realized that in momentum space the
coarse-graining can be achieved by successively integrating out fast modes
of a theory. He was able to unify these ideas with the renormalization group
methods from high energy physics developed in the 1950s at first by Ernst
Stueckelberg and André Petermann and later by Murray Gell-Mann, Francis
E. Low, Richard Feynman, Julian Schwinger and Shin’ichirō Tomonaga11.

2.3.1 General idea

The goal of renormalization is to construct a macroscopic theory from micro-
scopic degrees of freedom. While the usual approach to write down such
a theory with respect to certain observations may fail, the renormalization
group systematically establishes amap fromall (renormalizable)microscopic
theories to the macroscopic theories. This way it also allows us to understand
the physics in between. Technically, we can define the renormalization group
operation Tas a differential mapping that acts on a theory H� at scale � and
tells us how it renormalizes to a theory at infinitesimally larger scale �+ ��

�
d

d�
H� = T[H�] . (2.12)

This is the renormalization group equation (RGE) where the scale � effectively
only enters through the theory H�

12. In order to use this rather abstract
concept in practice, we deconstruct H into the action ([O] introduced above.
Since every action of a field theory can be formulated by dynamical fields
and their interactions, we describe a theory by the couplings 68 of these
interaction terms and the space-time dimension 3 it lives in

H≡ {3; 61 , 62 , . . . } . (2.13)
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13: For a detailed one-loop pRG analysis
of a generalized version of Gross-Neveu-
Yukawa model which will become relevant
multiple times throughout this thesis, see
Appendix A.

In the renormalization group, the couplings inherit an explicit scale de-
pendence 68 = 68(�) and renormalize under RG transformations. This scale
dependence is encoded in the so-called beta function and is fixed by the
RGE which in this language reads

�
d68
d�

=
d68

d ln�
= �8(3; 61 , 62 , . . . ) . (2.14)

Note that the beta functions in general depend on all couplings of the theory
space.

The main goal of many field theoretical RG calculations now is to compute
the beta functions as precise as possible. For the purpose of this thesis, wewill
present two approaches: (i) the perturbative approach which requires certain
conditions for the microscopic theory as we will see in the next section
and (ii) the non-perturbative functional renormalization group method
which overcomes these requirements but trading in its own subtleties. In
the following, we will present and discuss both of them and apply them
exemplarily to the O(#)-model which serves as a seminal theory with many
physical intpretations. The first of them, we already mentioned as the Ising
model at # = 1.

2.3.2 Perturbative renormalization group

A priori, we can not make any assumptions about the couplings of a theory.
However, if wemanage to introduce a small parameter, we can try to perform
the RG analysis perturbatively (pRG). There are different angles to (artificially)
insert such a parameter and then successively expand the beta functions in
this parameter. Once this parameter is found, we also has to fix a certain
RG scheme. In the Wilsonian RG, we mentioned above, one integrates out
fast modes step-by-step in momentum shells : ∈ [Λ/1,Λ] ranging from
the ultraviolet physics at scale Λ to the effective infrared behavior towards
: → 0. While this is a very intuitive approach for critical phenomena, the
perturbative RG was originally developed around the problem of infinities in
the celebrated theory of quantum electrodynamics (QED). Consequently, it
became the state-of-the-art method for decades and thus is well formalized.
While both approaches share the same goal in computing the beta functions
of a theory, the high energy approach is apparently less intuitive but profits
from the wide experience gained in computations for the standard model.
Experience we can benefit from.

The method of choice for most projects throughout this thesis is the dimen-
sional regularization within the minimal substraction scheme (MS). Behind this
complicated sounding name hides an equally complicated procedure over
which entire books have been written (see e.g. Ref. [69]). In the following,
we will illustrate some of the advantages and the basic ideas in terms of the
prototypical Ising model which easily generalize to other theories13. At first,
we generalize the Landau-Ginzburg energy functional to the free energy
� = :�)SIsing with the euclidean 3-dimensional action

SIsing =
∫

d3GL=
∫

d3−1xd�
(

1
2
(%�)0)2 + 1

2
<2

0)
2
0 +

�0
4!
)4

0

)
, (2.15)



12 2 Critical phenomena from the renormalization group perspective

=
1

?2 + <2
0

= �0

Figure 2.5: Feynman-rules for the )4-Ising
model: the propagator of the massive
bosonic field )0 and the vertex with cou-
pling �0.

14: Symmetry factors in perturbative QFT
can become quite complicated and basically
account for the number of possibilities to
attach loose ends of the vertex when draw-
ing the diagrams. For a nice overview see
Ref. [70].

and the corresponding derivative %� = (%� ,∇3−1). Note that all quantities
obtained a zero index which means we have not renormalized them yet and
therefore label them as bare because they are scale invariant.

Besides, we also add combinatorial factors to each term. A basic ingredient
for this renormalization method are the Feynman rules for the Lagrangian
to be renormalized. These can be deducted from the use of the path integral
formalism. In principle, the rules stem from a perturbative expansion of
the interactions which can be justified a posteriori. For the Ising model
in Eq. (2.15), there are two rules for the propagator and the interaction
vertex with prescriptions in momentum space shown in Fig. 2.5. The shown
diagrams set the tree-level.

Using these rules, we can try to compute corrections to the (still) bare field
)0 and coupling �0 by allowing for virtual processes. These can be sorted
by their loop order which accounts for the number of closed momentum
integrals appearing in the process. For the Ising model, we want to compute
essentially two correlatorswhich at one loop are represented by the following
diagrams

〈)0)0〉 = + 1
2

+ O(2-loop) (2.16)

〈)4
0〉 = + 1

2
+ 1

2
+ 1

2
(2.17)

+ O(2-loop)

Besides the tree-level contributions from the rules themselves, there are four
one-loop diagrams with loop momentum ? we have to integrate over. Note
that we also assigned so-called symmetry factors14. in front of each diagram.
We have to compute only two integrals

= �0

∫
d3?
(2�)3

1
?2 + <2

0
= <3−2

0 �1 (2.18)

= �2
0

∫
d3?
(2�)3

1
(?2 + <2

0)2
=

(
1 − 3

2

)
�2

0<
3−4
0 �1 (2.19)

where by �1 we denote the result of the integral

�1 =
1

(4�)3/2 Γ(1 − 3/2) . (2.20)

Unfortunately, this integral diverges for every 3 = 2 + 2=, = ≤ 0 which
reveals a major obstacle of the field-theoretical approach to quantum field
theory. What seems as a severe problem at first sight, turns out to be a
consequence of the bare and therefore unphysical quantities in the theory.
The correlations of the bare fields are not the ones measured in experiment.
In fact, we have to maintain the infinities by renormalizing the theory.

At first, let’s gain control over the divergencies by introducing the dimensional
regularization. By shifting the integrals dimension slightly away to 3 = 4 − &,
we can describe the divergency in the limit & → 0. In fact, at this stage
of the analysis, & is an artificial control parameter with only one purpose:
regularizing the divergence without breaking any symmetries and especially
not the Lorentz-symmetry. However, it also introduces a complication for the
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⊗ = �/)?2 + �/<<2

⊗ = �(�/� + 2�/))
Figure 2.6: Counter term Feynman-rules
for the )4-Ising model: (a) the propagator
counter rule )0 and the vertex counter rule
in (b). Both involve the renormalization con-
stants �/8 .

coupling’s mass dimension. If we want to make the calculation manifestly
dimensionally correct,we therefore have to shift thembya factor proportional
to the energy scale �

�0 = �&� and <2
0 = �−2<2 . (2.21)

We now deal with the dimensionless, renormalized coupling � and mass <2.
A posteriori, we are also able to justify the perturbative expansion for the
corrections. The (dimensional) scale dependence of the coupling � is

0 =
d�0

d ln�
= &�&� + �& d�

d ln�
⇒ d�

d ln�
= −&� , (2.22)

which meaning that the corrections to the renormalization of � are of order
O(&�). For & � 1, this justifies the expansion of the path integral in orders of
a finite coupling �. However, this is only the the zero order contribution to
the scale dependence of � and we should now turn to refine it by allowing
for the virtual processes we tried to compute above.

Practically, for the RG procedure, we reintroduce the renormalized fields and
couplings ), <2 and � with so-called renormalization group constants /8

)0 = /
1/2
) ) , <2

0 = �2/<<2 , �0 = �&/�� . (2.23)

For free fields (i.e. no interactions), we would expect no corrections to the
renormalization. We can account for this by writing

/8 = 1 + �/8 ∀8 ∈ {), <2 ,�} . (2.24)

and recover the dimensional scaling of Eq. (2.21) for �/8 = 0.

Inserting these definitions in the Lagrangian gives us an additional set of
Feynman rules, the so-called counter terms. Hence, the bare Lagrangian L0
is L0 = Lren +Lct where Lren is just L0 upon replacing the bare fields and
couplings by the renormalized ones. The counter term Lagrangian reads

Lct =
1
2
�/)(%�))2 + 1

2
(�/) + �/<)<2)2 + 1

4!
(�/� + 2�/))�)4 . (2.25)

This translates to very similar Feynman rules but multiplied with the
respecting �/8 , see Fig. 2.6. In this way, the perturbative renormalization
cancels the infinities as they appear from the bare Lagrangian, i.e. order-
by-order by some counter diagrams. The general idea behind is that the
counter terms only cancel the unphysical divergencies, leaving only finite
contributions in the corresponding correlation functions of the now fully
renormalized theory. Diagrammatically, the counter terms are supposed
to cancel out all divergencies at a given loop order, providing only finite
correlators

〈)2〉 = + ⊗ + 1
2

+ O(2-loop) (2.26)

= finite + O(2-loop) ,

〈)4〉 = + ⊗ + 3
2

+ O(2-loop) (2.27)

= finite + O(2-loop) ,
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where we summarized the three one-loop diagrams to the vertex into one
as the all have the same contribution. This – in essence – is the overall
perturbative approach of renormalizing a field theory. But how do we cancel
the divergencies precisely?

At this point, the minimal substraction scheme MS comes into play. We take
a step back to the divergent integrals and use the dimensional regularization
at 3 = 4 − & dimensions. It shows that Eq. (2.20) approximates to

�?(3 = 4 − &) = −#4
&
+ O(&) = − 1

8�2
1
&
+ O(&) , (2.28)

where #3 = 2/((4�)3/2Γ(3/2)). Crucially, the divergency became a 1/& pole
with a certain prefactor in which we are actually interested in. In the minimal
subtraction scheme, the renormalization constants �/8 are now chosen to
cancel exactly these poles, i.e.

�/) = 0 , �/< =
1

8�2
�
&
, �/� =

3
16�2

�
&
. (2.29)

This provides us with a controlled way to cancel the divergencies at every
order of the perturbative expansion (also called loop-by-loop). Even better, it
finally puts us in the position to compute the beta functions. As before for
the dimensional scaling in Eq. (2.22), we use that the bare couplings have
no scale dependence and obtain

�� = −&� + �d ln/�

d ln�
= −&� + 3

16�2�
2 + O(�3) . (2.30)

Note that the renormalization constant does not explicitly depend on the
scale � but only implicitly through the coupling �. Similarly, we compute
the beta function of the mass to

�<2 =
(
−2 − d ln/<

d ln�

)
<2 =

(
−2 + �

8�2 + O(2-loop)
)
<2 . (2.31)

<2

�

Figure 2.7: Perturbative renormalization
group flow of the )4 Ising model at one
loop. The direction of the flow is towards
the infrared. While in the mass direction
the sign of <2 seperates the flow, in the �-
direction we see the so-called Wilson-Fisher
fixed point.

The procedure we introduced here describes how to compute the beta
functions for renormalization towards the ultraviolet (UV), i.e. the scale
dependence for growing �.

For critical phenomena, however, we are interested in the infrared behavior
(IR) of a theory for larger length scales ;. For this purpose, the IR-beta-
functions can be recovered by connecting the energy scale � with the
length scale ; by � = �0 exp(−;), i.e. d/d ln� = −d/d;. Let’s conclude this
calculation by drawing our very first RG flow from the beta functions in
Fig. 2.7. We used the IR-�-functions and the arrows therefore point towards
the infrared. Interestingly, we can already spot the so-called Wilson-Fisher
fixed point at � = �∗ in the flow which turns out to be essential for critical
phenomena.

This concludes how we compute the beta function to one-loop order with
dimensional regularization in the minimal substraction scheme15

15: There are also other regularization
schemes like cut-off regularization, lattice reg-
ularization or Pauli-Villar regularization. The
advantage of the dimensional regulariza-
tion in the MS over these schemes lies in its
formalization also in higher loops which is
needed for using computer algebra systems.
We further address this in App. B.1.

. While
this may serves as a good approximation close to the 3 = 4, we would
need to compute higher-loop contributions to make quantitatively reliable
statements. Since the perturbative RG is closed loop-order-by-loop-order,
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17: Sometimes also called non-perturbative
RG (NPRG) or exact renormalization group
(ERG). The latter term is rarely used be-
cause it raised complaints in the community
due its misleading indication the method
would provide the “exact” results in all its
publications.

the contributions to the beta function have the following structure

��(&;�) ∼ −&� + (�2) + (�3) + (�4) + . . . (2.32)

Another example for a perturbative approach is the large # or 1/# expan-
sion [71, 72]. Here the number of field components is assumed to be large and
we rescale the coupling, e.g. in the case of the O(#)-model by it �→ �/√# .
This limits the number of contributing diagrams dramatically by surpressing
most of them by factors of 1/# . The remaining RPA diagrams are calculated
at arbitrary dimension 3. A thorough review on this expansion can e.g. be
found in Ref. [72]

In either of these perturbative methods one central question remains: Can
we trust their predictions? The anwser has many subtleties. First of all, the
power of the epsilon expansion is to preserve the symmetries of the theory
in any step of the procedure. Consequently, it provides already a good
first qualitative intuition about the topology of the RG flow and its fixed
points. However, extrapolating toward 3 = 3 by naively sending & → 1 at
least appears dangerous and indeed the epsilon expansions provide only
asymptotic series with diverging coefficients. A quantitative finding is still
possible but requires complicated resummation schemes. We will address
this point in the first project in detail.

In the analysis above,wewere apparently lucky that all thedivergencies could
be canceled out by renormalization. However, this is not a coincidence and
all theories like the )4-model in Eq. (2.15) can be classified as renormalizable,
non-renormalizable or even super renormalizable. The classification is made
by calculating the so-called superficial degree of divergencewhich counts the
number of legs, momenta, vertices (by their type) and the dimension up
to a single number. It turns out that this number is sufficient to proof (in
the so-called BPHZ theorem16

16: A quite technical proof by Bogoljubov,
Parasjuk, Hepp and Zimmermann which
shows that the divergencies of 1PI Feynamn
diagrams in a renormalizable theory can
be canceled by a finite number of counter
terms (see Ref. [73])

) if a theory is perturbatively renormalizable.
Often the term “pertubative” is dropped in this context but in fact there
are non-perturbative methods which can deal even with supposedly non-
renormalizable theories.

2.3.3 Functional renormalization group

The perturbative implementation of the renormalization group in the previ-
ous Section is not the only way to calculate the scale dependence of a theory.
While in Eq. (2.15) we made an explicit choice to compute the flow only for
the coupling � and the mass <2, one can also take a step back and compute
the flow of the effective action as a whole. This is known as the functional17
renormalization group (FRG) [74–81]. By the effective action Γ we denote
the Legendre transformed scale-dependent Schwinger functional. Crucially,
it generates the connected one-partical irreducible diagrams we already met
in the first loop order in the perturbative approach above.

For the renormalization group approach, we elevate the effective action
by letting it flow with the momentum scale :, i.e. Γ → Γ: . In this way, Γ:
interpolates between the microscopic action ( at a cut-off scaleΛ, i.e. ΓΛ = (,
and the full effective action Γ after integrating out all quantum and statistical
fluctuations to : = 0, i.e. Γ0 = Γ. We can illustrate this idea as a flow diagram
similar to the one we already computed, but with the major generalization
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Figure 2.8: Schematic flow of the effective
action in theory space. Starting at a micro-
scopic action ΓΛ = ( at a cut-off scale Λ,
the Wetterich equation describes how the
effective action flows to the full effective
action Γ in the infrared at : = 0. The differ-
ent curves account for different regulators
which introduce an ambiguity only at inter-
mediate scales.

18: There are same rare examples where
this actually possible, see Refs. [83, 84] and
references therein.

19: The choice of a certain regulator and the
truncation can be compared to the choice of
a pRG scheme and its subsequent resumma-
tion. It’s not a priori safe that every regulator
in every truncation will provide the same
results since they confine the flow to distinct
subspaces. An example of this ambiguity is
shown in last project in Chapter 7

that the entire effective action flows in the infinite dimensional theory space
as shown in Fig. 2.8. The equation that establishes this flow is theWetterich
equation

:%:Γ: =
1
2
Str

[
:%:':

Γ(2): + ':

]
. (2.33)

This involves the Hessian of the effective action Γ(2): with respect to the
considered fields and a so-called regulator ': . The super trace Str sums over
all (fermionic) field components with their respecting signs. The regulator
accomplishes the crucial Wilsonian idea for the whole action at once and
freezes out modes below a certain scale @. In this way, the renormalization of
effective action is dominated by scales : . @ and the successive integration
of them finally establishes the flow equation. Strictly speaking, the regulator
has to fulfill the following three requirements

(i) lim
:→0

':(@) = 0 for fixed @ , (2.34)

(ii) lim
:→∞

':(@) = ∞ , (2.35)

(iii) ':(@) respects all global symmetries of ( . (2.36)

The third condition is essential to not generate terms which break the
symmetry. Nevertheless, by picking a certain regulator the flowbecomes non-
universal at intermediate scales which is depicted as a regulator-dependent
“path” for the flow in theory space (represented by different paths in Fig. 2.8).
Fortunately, by imposing the conditions Eq. (2.34) to (2.36), measurements
of physical quantities remain untouched by this artificially introduced
ambiguity. A widely used regulator in field-theoretical FRG calculations is
the Litim regulator [82] ': = /:(:2 − @2)Θ(:2 − @2) where Θ denotes the
Heaviside step function and /: the wavefunction renormalization similar to
the constant in the previous section.

Despite its innocuous appearance, the Wetterich Equation (2.33) is usually
impossible to solve exactly18. Instead, we have to employ an approximation
scheme either analytical or numerical. In the analytical approach the equation
can be translated into an infinite tower of integro-differential equationswhich
can be truncated at a certain order19. Since in critical phenomena we are
mostly interested in the long-wavelength physics, we can usually pick the
so-called derivative expansion. In this scheme the momentum dependence
of the vertices is imposed in the beginning which limits the analysis to
moderately fluctuating order parameter fields20

20: This again restricts the analysis to a
lower dimensional sub-space of the theory
space.While this is a justifiedapproximation
for many theories it might fail eventually.

.

Let’s illustrate the procedure by analyzing the Ising field theory again. Recall
that the model has a ℤ2 symmetry leaving any power of � = )2 invariant
under the transformation ) → −). In order to solve the flow equation
we make the ansatz of a local potential *:(�) which only depends on the
symmetry invariant � = )2 such that the effective action reads

Γ: =
∫

d�G
[

1
2
/:(%�))2 +*:(�)

]
. (2.37)

This is called the improved local potential approximation (LPA’) where the
prime distinguishes the additionally wavefunction-renormalization by a
scale-dependent /: . We skip the details of the derivation which can be
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21: Of course this is not a coincidence and
in fact, we are even able to recover the one-
loop beta functions from our flow equation.
This is possible because the Wetterich equa-
tion itself was derived from the one particle
irreducible correlations [74].

23: It picks up the idea by asymptotic safety
proposed by Steven Weinberg where the
theory flows to a finite UV fixed point. In
contrast to asymptotic freedom as seen in
QCD this demands for a non-perturbative
method.

found in various great reviews on the functional renormalization group
such as Ref. [74, 80, 83] and directly jump ahead to the flow equation of the
dimensionless potential

:%:D:(�) = −3D:(�) + (3 − 2 + �)�D′:(�) + ;30 (D′:(�) + 2�D′′: (�)) . (2.38)

with D: denoting the dimensionless potential. Here, we introduced the
so-called threshold function ;30 which depends only on the regulator. For the
especially interesting case 3 = 3 and the mostly used Litim-regulator the
final result is

:%:D:(�) = −3D:(�) + �D′:(�) +
1

6�2(1 + D′:(�) + 2�D′′(�)) . (2.39)

Despite its complicated appearance we can solve this flow equation and
consequently obtain the beta functions of our theory. To this end, we make
the following ansatz for the potential

D:(�) =
∑
==2

�=
=!
(� − �:)= . (2.40)

In fact, this is a Taylor expansion around the potential’s minimum �: of the
the potential. Note, that we also allow this minimum �: to flow similar to
the mass term in the perturbative renormalization group approach because
it denotes the vacuum expectation value of the systems ground state. In this
sense, we expanded the system in the symmetry broken phase in accordance
to Fig. 2.2. Even better, if we truncate the expansion at = = 2, we recover
the same action21 but with �2 = � in comparison to Eq. (2.15). In order to
get to the beta functions for the couplings �8 , we now have to truncate the
expansion at some order =max. Strictly speaking, by doing this we confine
ourselves to a closed subset of theory spacewith a finite number of couplings.
However, the truncation also introduces a regulator dependence to our beta
functions which can only barely be controlled22

22: It was shown that the Litim-
regulator minimizes this dependence in
most cases [82].

. A local Taylor expansion
of the potential is not the only way to solve Eq. (2.38). Another prominent
way developed in the last decade are the application of pseudospectral
methods [85] to FRG equations [86–90]. Both methods are used in the
last project of this thesis in comparison, see Chapter 7. The wave-function
renormalization is computed from /: by a projection of the hessian [74, 80]
at @ → 0 as

/: =
(2�)3

�(@ = 0) lim
@2→0

d
d@2

(
Γ(2)
)(@),)(−@))

)
. (2.41)

In contrast to theperturbative renormalziationgroup, the FRGdoesnot have a
control parameter like & or 1/# . This does not imply it is totally uncontrolled.
However, it can treat theories beyond their renormalizable dimensionswhich
is especially interesting for a theory of quantum gravity23 [84]. Other than in
the perturbative expansions, FRG results do not have to be resummed due
to the non-perturbative nature of the Wetterich equation. The resummation
is included is already partly included in the choice of the regulator. This
advantage is the trade-off for a regulator dependency which itself is difficult
to measure.
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Figure 2.9: Depticiton of the RG flow in the-
ory space near a critical point. Once the flow
hits the critical manifold it will eventually
flow into the fixed point (FP). This region is
sometimes also called the basin of attraction.
If it comes only close it will get close to the
FP, slow down and eventually depart to one
of the phases along the critical surface.

24: Usually, we formulate the theory in a
way such that least one vector \ has only
one non-trivial component explicitly along
the phase transition. Of course, a further
analysis can show that this is not possible
and operators of the original theory mix in
all eigendirections.

2.4 Criticality in the renormalization group

Up to this point, we introduced two ways to compute the renormalization
group flow in theory space in form of the beta functions. Let’s now come
back to the original goal to explain universality in critical phenomena.
The crucial observations of continuous transitions were the self-similar
structures and that different systems show the very same critical behavior.
Picking up Landau and Ginzburgs idea of an order parameter functional,
the renormalization group now allows us to include also fluctuations of this
parameter. This significant extension defines the so-called Landau-Ginzburg-
Wilson paradigm (LGW).

2.4.1 Fixed points in the renormalization group flow

In the language of the RG the self-similarity expresses as a fixed-point under
the coarse-graining. Strictly speaking, there is a theory H∗ = {6∗8 } which
under repeated RG transformations remains the same

T[H∗] = 0 ⇒ �({6∗8 }) = 0 . (2.42)

This known as the fixed point (FP) equation. Since the RG transfomation tells
us about a theory’s trajectory in theory space, H∗ includes fluctuations on
all length scales. This feature is exactly what we observe for a continuous
transition and therefore H∗ exhibits so-called scale invariance . However,
the existence of such fixed point is not sufficient. We also have to require
certain properties for its vicinity. Remember that we formulated the QFT
in terms of the order parameter fields which expectation values measure a
spontaneously broken symmetry. Therefore, if the fixed point marks a critical
point between those two phases it has to have exactly one axis in theory
space which leads away from it under RG transformations in opposing
directions. This direction is called the critical surface as shown in Fig. 2.9.
Only in this case, the fixed point marks the border between the two described
phases of the transition. We can make this requirement more precise with
the help of the beta functions. Close to a fixed point {6∗8 } the RG flow can be
linearized

d68
d ln�

= �8 9(69 − 6∗9 ) + O({68}2) , (2.43)

with summation over 9 implied. The matrix �8 9 is the stability matrix of the
fixed point and is computed from the beta functions as

�8 9 =
%�8
%69

. (2.44)

In order to find the wanted direction away from the fixed point we change
to eigensystem of the stability matrix by explicitly diagonalizing it. We
denote the eigendirections by the vectors24 \ and the eigenvalues as −�,
such that

B\ = −�\ . (2.45)

Note that we assigned an additional minus sign to the eigenvalues in our
notation such that positive (negative) eigenvalues signal an infrared repulsive
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25: In either case, it leads to a violation
of the hyperscaling relation of the critical
exponents , � and � [61].

(attractive) direction. Consequently, close to the fixed point we can integrate
out Eq. (2.43). Starting at scale �0, the flow takes a comprehensive form in
the eigensystem as

68 = 6∗8 +
∑


�+,8

(
�0

�

)�
, (2.46)

where � is an integration constant. The eigenvalues � allow for a simple
classification of the type of direction into three categories. We follow the
renormalization group flow towards larger scales to a theory in the infrared
and distinguish

(i) Relevant directions with Re� > 0: The flow in this direction leads
away from the fixed point ,

(ii) Marginal directions with Re� = 0: There is no flow in this direction
(at least to level of precision and

(iii) Irrelevant directions with Re� < 0: The flow in this direction is
attracted to the fixed point.

Irrelevant directions which lead to a fixed point define a critical manifold, see
Fig. 2.9. Besides these categories, a direction (or better its corresponding
operator) can also be dangerously irrelevant. In this case, either the eigenvalues
dependence on this operator is non-analytic or it picks up corrections during
the RG flow and turns from irrelevant in the ultraviolet to relevant at long
distances in the infrared-limit25. In these terms, a fixed point, corresponding
to a critical point, has to have exactly one relevant direction while the
others are irrelevant. The subspace defined by the latter is often called basin
of attraction. The only positive eigenvalue also sets the correlation-length
exponent � since it describes how fast the RG flow departs from the fixed
point to one of the phases. In this picture, the least negative and therefore
irrelevant eigenvalue $ predominantly bounds the speed of the RG flow
towards the fixed point from below. Since critical behavior can only be
observed when the flow settles in all irrelevant directions, this also effects
the correlation length in the vicinity of the fixed point. We incorporate this
behavior by refining its power law to

� ∼ |Δ|−�(1 + �|Δ|$ + . . . ) , (2.47)

where � denotes a non-universal constant and Δ becomes the leading
distance to the fixed point in theory space. The new exponent $ describes
the corrections to scaling and becomes essential for the extraction of critical
exponents from experiment [61].

In this elaborate discussion hides one crucial observation: not the fixed point
itself determines the critical behavior but its vicinity. On top of that, it turns
out to be a universal quantity because the stability matrix only depends on
derivatives of the beta functions and is therefore unaffected by any re-scaling
of the couplings.

While the beta functions describe how the couplings and mass renormalize
under RG transformations, the wave function itself renormalizes by its
renormalization constants is /)

26

26: In the one loop perturbative renormal-
ization at 3 = 4− & dimension the renormal-
ization constant /) = 1 + O(2-loop). The
first non-trivial contribution enters at two
loops.. Assuming the scaling behavior of the

two-point correlator in Eq. (2.9), this enables us to compute the anomalous
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27: Not every scale invariant field theory
is conformal, but conformal invariance also
implies scale invariance [13, 95].

dimension to

�) =
d ln/)

d ln�

����
68=6∗8

. (2.48)

Finally, we can also give a more precise definition of universality. Since
the RG operates in theory space pushing us from a microscopic theory to
effective ones at larger scales any flow which hits the basin of attraction on
its way will eventually flow into the fixed point and therefore share the very
same critical behavior. In this way, the renormalization group allows us to
group these theories into one universality class described by the fixed point
and uniquely label them by the eigenvalues and the renormalization of the
wavefunction in form of the anomalous dimension �.

2.4.2 Brief review of its success

The two presented renormalization group approaches to the Ising model can
easily be generalized to the entire class of the seminal O(#)-model criticality.
However, these are by far not the only theoretical methods to compute
critical exponents and we also missed to compare the numbers with the
experiment. Other complementarymethods include (quantum)Monte-Carlo
simulations which do not employ the RG and can make precise predictions
just from simulating microscopic Hamiltonians. The trade-off is that these
are often computationally expensive and if – other than for the O(#)-model
– also fermions are involved, suffer from the infamous sign problem [20,
21]. In the following, we want to compare the critical exponents of the
controversial [91, 92] O(2)-model where besides the theoretical computations
also experimental data are available.

At the time being, the most precise numbers are achieved from the conformal
bootstrap [14, 93, 94]. In this branch of conformal field theory, the scale
invariance of the fixed point is elevated to a conformal field theory27. The
crucial feature of any conformal field theory is that it is defined only by a
finite number of so-called primary fields and their scaling dimensions which
are closely related to the anomalous dimensions we introduced above. The
conformal bootstrap exploits the conformal symmetry of the correlators and
the invariance of different operator product expansion (OPE) channels. This
way, one can formulate a set of complicated non-trivial equations. The main
goal then is to solve them by a sophisticated computer aided optimization
process which practically excludes more and more field theories which
do not fulfill these equations. This narrows down the set of feasible field
theories to small bounds on the scaling dimensions with unprecedented
precision [96]. These bounds can be considered as the “final verdict” on
the corresponding universality class [91]. The most recent estimates for the
O(2)-model are available in Ref. [92].

In comparison, the estimates from the perturbative renormalization group
were pushed to the sixth loop order with a sophisticated subsequent resum-
mation of the epsilon expansions [97, 98]. Only this way they can compete
quantitatively with the other methods. We will explore some of the used
resummation techniques in the next Chapter. The non-perturbative renor-
malization group results (FRG) as employed in Section 2.3.3 in the LPA’ are
already in the vicinity of the other methods but need a refinement of the
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Table 2.1: Table of the critical exponents of the O(2) universality class. Across the presented methods, we see a very good agreement with
conformal boostrap leading in precision [92]. Note that the FRG in the LPA’ truncation provides a wrong anomalous dimension which has to be
fixed by expanding in higher orders in the derivative expansion [99]. The last exponent $ denotes the subleading exponent measuring the
corrections to scaling. Unfortunately, the experimental data lies outside the conformal bootstrap bound and triggered an discussion [91].

Method Year � � $

&-expansion (6-loop, Borel-resummed) [97] 2017 0.6690(10) 0.0380(6) 0.804(3)
&-expansion (6-loop, Meĳer-resummed) [98] 2020 0.66953 0.03824 0.80233
Functional RG (LPA’18 see Sec. 2.3.3) 0.686 0.0437 0.735
Functional RG (derivative exp. O(%4)) [99] 2020 0.6716(6) 0.0380(13) 0.791(8)
Monte-Carlo (hybrid Metropolis-Cluster) [101] 2019 0.67169(7) 0.03810(8) 0.789(4)
Monte-Carlo (worm-type MC) [102] 2019 0.67183(18) 0.03853(48) 0.789
Conformal bootstrap [92] 2020 0.67175(22) 0.038176(22) 0.794(8)
Experiment (lambda point in He4) [100] 2003 0.6709(1) – –
Experiment (XY-Ferromag. in Gd2IFe2) [103] 1995 0.671(24) 0.034(47) –

derivative expansion to higher orders in O(%). The comprehensive study in
Ref. [99] shows that this extension improves the precision significantly.

Finally, asmentioned in the beginning of this Chapter universality can be also
observed experimentally. Partially triggered by the tremendous agreement
of this many complementary theoretical methods, a sample of He4 was
brought to the space shuttle in order to study the specific heat of helium
at sub-nano-Kelvin temperatures at the lambda point [100]. The vicinity
of this point falls into the O(2)-universality class and we compare it with
the theoretical methods in Tab. 2.1. While we can admire the astonishing
agreement of different theoretical methods, it’s painfully obvious that the
experimental results are excluded by the conformal bootstrap bounds. This
raised an on-going discussion if the experimental estimates stem from an
technical or physical error. In the light of the unprecedented agreement
across theoretical methods especially from the conformal bootstrap any
other option seems no longer viable [91].
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The remarkable success in determining the bosonic universality classes
proves the quantitative precision across all methods on critical phenomena.
For fermionic systems, however, the situation is much less explored. This
might be also due to a long standing lack of physical motivation for cor-
responding quantum field theories. Lately, quantum critical points which
feature besides the bosonic order parameter fluctuations also additional
gapless fermion degrees of freedom, got more and more attention (for a nice
recent overview see Ref. [15]). From the renormalization group point of view,
one of the simplest purely fermionic QFTs is the Gross-Neveu model which
was developed and studied by David Gross and André Neveu as a toy model
to explain the strong interaction in quantum chromodynamics [104]. It can be
understood as a two dimensional correspondent to the Nambu-Jona-Lassino
model, previously proposed in the context of BCS theory for superconduc-
tivity [105]. Both models incorporate a high degree of symmetry which
is emergent in the described physical systems at low energies, including
relativistic and chiral invariance [106]. Similar as in the related Thirring
model [107], the Lorentz invariant Grassmann fields interact via a 4-fermi
term in the Lagrangian. As a prime example of a fermionic universality class,
we focus in this project on the (2+1)3 chiral Ising Gross-Neveu universality
from the renormalization group point of view. Corresponding quantum
transitions can also be realized in systems with interacting fermions such as
�-flux or honeycomb lattices [108].

Following the works by I. Herbut [106, 109, 110], at first we go a few extra
miles andmotivate this class of field theories from interacting electrons in the
material graphene. Due to its honeycomb lattice the low-energy spectrum
provides gapless Dirac fermions which form a semi-metallic phase. We
will show that short-range interactions of different kind, from on-site to
next-to-nearest neighbor, trigger phase transitions to non-trivial gapped
long-range orderings. We explore how these transitions can be captured
and studied by semi-phenomenological quantum field theories such as the
Gross-Neveu models and its ultraviolet complete siblings.

By now, the perturbative renormalization group (pRG) has been employed
for up to four-loop calculations for Gross-Neveu and similar models in
Refs. [111–114]. Despite these promising developments, however, no sat-
isfactory agreement across different theoretical methods has been found
for the fermionic universality classes, yet. A major obstacle from the pRG
perspective, is that the obtained epsilon expansions also entail a problem
known from the bosonic models: they are asymptotically divergent. This
means that starting from 4-epsilon dimensions a naïve extrapolation to 2+1
dimensions is not straightforwardly promising. Fortunately, some of these
difficulties can be controlled by a sophisticated resummation as discussed
in the following for the chiral Ising universality class.

The content of this Chapter’s Sections 3.3 to 3.7 was published in Ref. [55] and is
a result of collaboration of the author with Luminita N. Mihaila and Michael M.
Scherer. The formulations and figures were kept unchanged and only updated in a few
cases by new developments or for better readability. Intermediately added sentences
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Figure 3.1: The honeycomb lattice of
graphene can be constructed of two triangu-
lar sub-lattices (here: red and black) where
electrons can hop with amplitude C between
nearest neighbors.

1: Award with a Nobel prize in physics in
2010. A. K. Geim was also awarded with the
infamous Ig-Nobel prize (For experiments
that should never be repeated. He let a frog
levitate in a strong magnetic field.) and is
therefore the only one who won both prizes.

2: The existence of two dimensional mate-
rials were believed to be impossible since
L. D. Landau and R. Peierls [115] (later ex-
tended by Mermin [116] and after that more
generally fomulated in the Mermin-Wagner-
Hohenberg-theorem [117]) showed theoret-
ically that 23 crystals are thermodynam-
ically unstable. A comprehensive answer
why we still observe graphene can be found
in Ref. [118].
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Figure 3.2:Dispersion of graphene from the
nearest neighbor tight-bindingHamiltonian
in Eq. (3.1) where the energy was normal-
ized to the hopping amplitude C.

3: For a great and pedagogical derivation,
read the lecture notes in Ref. [119] (by Nobel
laureate Anthony Leggett).

are tagged by /*[...]*/. A physical motivation was added in Sections 3.1 to 3.2
for the sake of an enhanced comprehensibility.

3.1 Dirac fermions in graphene

The material graphene has an astonishing history and a successful academic
career both as a theoretical playground as well as an experimental platform
for low-dimensional condensed matter physics [25, 27]. Its possible appli-
cations range from high temperature superconductor to more recently as
promising candidate in future battery technology [28].

Graphene, first fabricated by A. K. Geim and N. K. Novoselov [22, 24] in
20041, consists of a single layer of carbon atoms which formate to honey-
comb shaped lattice. The two dimensional2 lattice is constructed by two
triangular sub-lattices (see red and black atoms in Fig. 3.1). The tight-binding
Hamiltonian reads

H0 = −C
∑
〈8 , 9〉,�

(
0†8 ,�1 9 ,� + h.c.

)
, (3.1)

which accounts for hopping with amplitude C between the sub-lattices A
and B (represented by creation/annihilation operators 0†8 (1 9) at site 8 (9)).
Additionally, we allow the electrons to have spin � ∈ {↑, ↓}.
Without going through the calculations of this model in detail3, we directly
jump to the full energy dispersion of the first Brillouin zone (BZ) as shown
in Fig. 3.2 (left). At the corners of the hexagonal BZ, we see that the two
bands touch and form isotropic Dirac cones as the zoom on the right in
Fig. 3.2 reveals. One could expect this to be an oversimplified vintage model
but at the latest, the experimental verification of gapless Dirac fermions as
dominating charge carriers startet a new ‘gold rush’ [23]. From the theory
perspective, the visually apparent feature of the dispersion comes along
with a non-trivial mathematical structure. We can explore it by focusing on
these special points of the first Brillouin zone and restrict ourselves to the
low-energy excitations in the vicinity.

For charge neutral graphene the chemical potential lies exactly at the energy
of the touching point and enables us to write down an effective theory by
keeping only the Fourier modes near the Dirac points Q in the BZ, i.e. we
expand the Hamiltonian for q ' Q

H0,Q = E�
∑

q'Q ,�
#†q'Q ,�

(
0 @G − i@H

@G + i@H 0

)
#q'Q ,�

= E�
∑

q'Q ,�
#†q'Q ,�[2 · q]#q'Q ,� , (3.2)

with #q'Q ,� = (0�(Q + q), 1�(Q + q))) . The unexpected fact that we can
express theHamiltonian in terms of the Pauli matrices 2 = (�G , �H) is already
a non-trivial feature of the low energy model. Additionally, we introduced
the Fermi velocity E� = 3C0/2 which directly describes the slope of our linear
dispersion. Since there are two inequivalent Dirac points Q and −Q, the total
effective Hamiltonian is given by H0,Q +H0,−Q or, more conveniently, we
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Figure 3.3: Brillouin zone (BZ) of the tight-
binding model for graphene. At the cor-
ners of the BZ, the dispersion forms linear
isotropic so-called Dirac cones. Since there
are two inequivalent corners (here ±Q) the
full effective low energy physics is com-
posed by these two decoupled valleys. In
the vicinity of point ±Q, we introduced the
wavevector q± = (±@G , @H).

4: Note, that this representation is reducible
and there two further 4 × 4 matrices that
anticommutewith all three ��, namely �3 =
�G ⊗ �H and �5 = �H ⊗ �H [109].

compose one 4 × 4 matrix with the corresponding four component spinor

Ψq ,� ≡ (Ψ+,� ,Ψ−,�)) = (0Q+q+ ,� , 1Q+q+ ,� , 0−Q+q− ,� , 1−Q+q− ,�)) . (3.3)

Note that we further implemented the notation q± = (±@G , @H) in accordance
to the local coordinate systems at the corners ±Q of the Brillouin zone as
shown in Fig 3.3. In case we also take the spin degree of freedom in to
account, the number of components is doubled, i.e. we are left with an
8-component spinor. In the following analysis, we will call this case the
# = 8 graphene case. The full effective low energy Hamiltonian then reads

Heff = E�
∑
q ,�
Ψ†q ,�

[
@G

(
�G 0
0 −�G

)
+ @H

(
�H 0
0 �H

)]
Ψq ,�

= E�
∑
q ,�
Ψ†q ,�

[
@G�1 + @H�2

]
Ψq ,� . (3.4)

Here, we introduced the matrices �1 = �I ⊗ �H and �2 = 12 ⊗ �G which
inherit the anti-commutation rule from the Pauli matrices {�1 , �2} = 0. It
turns out, that these matrices together with �0 = 12 ⊗ �I in 2+ 1 dimensions
form the graphene representation4 of the Clifford algebra [109]

{�� , ��} = 2���14 with �, � = 0, 1, 2 . (3.5)

This non-trivial result shows that the effective low energy theory of electrons
in graphene at half filling is described by theDirac equation [120] formassless
relativistic fermions. The inherited Lorentz symmetry is a powerful, and for
a lab-system unexpected, feature which explains the measured conductivity
properties of graphene. The latter make this material a promising candidate
for many electronic devices [28].

Before we continue our analysis by including interactions, let us analyze
the symmetries of this model a bit further. First of all, there is the usual
U(1)ch phase-rotational symmetryΨ ↦→ Ψei� which is required by charge
conservation but in this case even separately for each Dirac cone and spin.
Besides, our system also shows an easy to imagine sublattice-exchange
symmetry of the honeycomb lattice. It replaces red with black and vice
versa in Fig. 3.1 or, on the level of the sublattice operators, 0 ↔ 1. In the
language of our spinorsΨ this transformation is in fact aℤ2 (Ising) reflection
symmetry

Ψ→ (12 ⊗ �2)Ψ . (3.6)

For book keeping, note that the system also shares a time reversal symme-
try [109]. All these symmetries can be broken by a mass term proportional to
the corresponding generators and open a gap at the Dirac point. We illustrate
this mechanism a bit further in the next Section. At the moment, all these
symmetries are preserved and we generalize to 3 space-time dimensions for
later purpose in the proceeding LGW analysis. By casting the spinorsΨ into
fermionic massless quantum fields, we obtain the following action

S0 =
∫

d3−1Gd�Ψ(12 ⊗ ��)%�Ψ , (3.7)

where the fields Ψ = Ψ(G) are now defined in real space upon a Fourier
transformation. Note that the Lorentz symmetry is expressed in the 3-
dimensional derivative %� = (%� ,∇3−1). On top of that, we summarized
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FIG. 3: Complete mean-field phase diagram for the spinful
model. The transitions from the semimetal (SM) to the in-
sulating phases are continuous, whereas transitions between
any two insulating phases (red lines) are first-order.

[15].

Quantum fluctuations, however, lift the mean-field
degeneracy between the QAH and QSH phases. To
quadratic order in quantum fluctuations (RPA) about
the QSH phase , we obtain an effective action Seff =∑

k⃗ δχµ(k⃗, Ω)Kµν(k⃗, Ω)δχν(−k⃗, −Ω) which shows the
presence of six modes (2 longitudinal and 4 transverse
modes), and 2 of the transverse modes correspond to de-
generate Goldstone modes whose velocity is proportion-
ality to the Fermi velocity v ≈ vf = 3t/2|a|. Thus, the
zero-point motion associated with these gapless modes,
lowers the free energy of the QSH state relative to the
QAH state.

Renormalization Group Analysis - Mean field theory
generally starts with a given, in a sense, biased Ansatz,
and investigate the self-consistency of the mean field so-
lution. Therefore, it is important to investigate the topo-
logical Mott states with a method without any a priori
bias. Next we go beyond mean-field theory and RPA us-
ing the temperature(T )-flow functional renormalization

group (fRG)[21][22]. In this scheme, we discretize the k⃗-
dependence of the interaction [23] and consider all possi-
ble scattering processes between a set of initial and final
momenta that occur between points on rings around the
Dirac points (inset of Fig. 4). Starting with T0 ∼ 2t,
the temperature T is lowered, and a flowing (renormal-
ized) interaction VT is obtained by the coupled summa-
tion of the T -derivatives of all one-loop channels. Due
to this, the method is unbiased and goes beyond the
mean-field-level. Applying the scheme to the Hamilto-
nian, Eq. 8, we search for flows to strong coupling, where
for a low temperature Tc certain components of VT be-
come large. Then the approximations break down, and
the flow is stopped. Information on the low-T state is
obtained from analyzing which coupling functions grow
most strongly and from susceptibilities for static external
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FIG. 4: a) Data for U=0, V1=1.4t, V2=0. Susceptibilities of
each phase vs. T are shown: CDW (black); SDW (green);
QAH(red) and QSH (blue).b) Same for U=0, V1=0, V2=1.8t
(QSH instability). The QSH phase has a larger susceptibility
than QAH. Inset: fRG phase diagram at U=0, indicating SM
(blue) and insulating (red) regions (CDW dominates at large
V1, QSH at large V2.) The colorbar correspond to Tc below
which the insulating phases develop in fRG.

fields coupling to the various order parameters. In this
scheme, a tendency towards ordering at a finite vector
Q can be detected as a growth of the associated vertex
VT . However, we have found that largest couplings occur
at Q = 0, which strongly supports the mean-field results
presented above.

For onsite and nearest-neighbor repulsions U > Uc ≈
3.8t and V1 > V1c ≈ 1.2t, the flow to strong coupling
is either an SDW instability for dominant U or a CDW
instability for dominant V1, in good agreement with a
1/N-study[24] and Quantum-Monte-Carlo[17]. For more
details, see Ref. [25]. If we include a sufficiently strong
second-nearest-neighbor repulsion V2 > 1.6t, the flows
change qualitatively; there is a leading growth of the QSH
susceptibility. In Fig. 4 a) and b) we compare the T -flows
of various susceptibilities for V1 > V2 and for V2 > V1.
For the latter case, the QSH susceptibility grows most
strongly toward low T , followed by the QAH susceptibil-
ity, which is consistent with the RPA treatment of the
Goldstone modes in the QSH. The QSH phase remains
stable even when a moderate onsite interaction of U = t
or U = 2t is introduced. Hence the global structure of
the mean-field phase diagram is confirmed by the fRG
results. Note however that the slope of the lines of criti-
cal V1 versus V2 differs. We interpret this a competition
effect captured by the fRG, where V2 decreases the CDW
tendencies induced by V1.

Discussion - We have shown that topological phases
displaying the QAH and QSH effects can be generated
from strong interactions - thus, we refer to these phases
as topological Mott insulators. Both phases have asso-
ciated with them conventional order parameters which
develop continuously at the quantum critical phase tran-
sition from the semi-metallic state. However, these states
are also described by topological quantum numbers which
jump discontinuously at the transition. Although the in-
teraction strengths needed to produce these phases are

Figure 3.4: Mean-field phase diagram of
Hubbard model on the honeycomb lat-
tice [121].

6 =
+1
C62

Figure 3.5: Interaction induced gap to the
CDW phase in graphene. When the system
crosses the critical ration 62 it orders to a
charge density wave.

the spinors into the 8-component vectors in the additional notation Ψ =
Ψ†(12 ⊗ �0).

3.2 Effective field theory from interactions

The quasi-relativistic Dirac fermions found in the tight-binding model are
a direct consequence of the lattice symmetries and accordingly endowed
with the corresponding symmetries. In the sense of the LGW paradigm,
we can now ask how interactions on the lattice spontaneously break these
symmetries to different ordered ground states. Since the density of states
vanishes at half filling, the screening of the electrons is negligibly small [106,
109, 110]. Furthermore, the ?I orbitals strongly localize at the lattice sites. In
the atomic limit [106], the interactions are therefore dominated by density-
density Coulomb repulsion [109]. We model these properties with the
following interaction Hamiltonian

Hint =
∑
8 , 9 ,�,�′

=8 ,�

[
*�8 9 +

42(1 − �8 9)
4�|r8 − r 9 |

]
= 9 ,�′ , (3.8)

where* denotes the on-site interaction strength, 4 the charge of the electrons
and =8 ,� = 〈2†8 ,�2 9 ,�〉 (for 2 ∈ {0, 1}) the density operator at site ri with spin
�. At short distances, the non-local interactions will contribute the most
and we can restrict ourselves to interactions up to next-to-nearest-neighbor
interactions

Hint ≈ *
∑
8
=8 ,↑=8 ,↓ ++1

∑
〈8 , 9〉,�,�′

=8 ,�= 9 ,�′ ++2
∑

〈〈8 , 9〉〉,�,�′
=8 ,�= 9 ,�′ . (3.9)

This extended Hubbard model on the honeycomb lattice shows three phases
distinct from the semi-metallic ground state, as shown in the mean field
diagram from Ref. [121] in Fig. 3.4. For large on-site interaction* , the spins
will order anti-ferromagnetically in a spin density wave (SDW), while for
large nearest-neighbor interactions +1 the system favors a charge density
wave (CDW). Tuning only +2 the system transfers to a quantum spin hall
state (QSH) [121].

We depict the charge density wave order in Fig 3.5 but the ordering for a spin
density wave just replaces the charge modulation by an anti-ferromagnetic
spin modulation. It is easy to convince ourselves that these orderings break
the sublattice symmetry (3.6) of semi-metallic graphene. A thorough analysis
of all possbile symmetry breaking patterns by interactions in graphene can
be found in Ref. [106]. For this project, we focused on the CDW transition
in particular.

According to themeanfield analysis, we only consider finite nearest-neighbor
interactions+1 and realize that we can rewrite this term of the Hamiltionian
in the following way

H+1 =
+1
4

∑
〈8 , 9〉,�,�′

[(=8 ,� + = 9 ,�′)2 − (=8 ,� − = 9 ,�′)2] (3.10)

From this simple rearrangement, it is obvious that for strong interactions
+1 � C the system will favor a spatial modulation of the densities, i.e. the
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5: “Simple” in this context means, it is
closed under RG transformations and there
are no further terms and couplings gener-
ated in the RG process. For implementations
of the Gross-Neveu model with terms of
higher symmetry like a chiral XY or chiral
Heisenberg symmetry this does not hold
and in these cases a (2 + &) expansion de-
mands a careful elaborate analysis where
more than one coupling has to be taken into
account.

charge density wave. We can express the two density terms by the spinors
as

=8 + = 9 = Ψ†Ψ =8 − = 9 = Ψ†(12 ⊗ �3)Ψ . (3.11)

Since the terms are symmetric upon another transformation of the spinors,
for the further field-theoretical analysis, it is sufficient to summarize them
into one term in the action [106]. This finally brings us to the Gross-Neveu
model with the action

SGN =
∫

d3−1Gd�LGN =
∫

d3−1Gd�
(
Ψ̄(12 ⊗ ��)%�Ψ + 1

2
6(Ψ̄Ψ)2

)
,

(3.12)

where 6 now denotes the coupling of the four-fermion interaction term.
Originally, as mentioned in the introduction of this Chapter, David Gross
and André Neveu discussed this action at length as a toy model for strong
interactions in the QCD. In their seminal paper [104], they were mostly
interested in a playground to study chiral symmetry breaking which in this
model manifests in the following discrete chiral symmetry

Ψ→ �5Ψ , Ψ̄→ −Ψ̄�5 , (3.13)

where �5 = �H ⊗ �H in the graphene representation. The Gross-Neveu model
is (perturbatively) renormalizable in 1+ 1 dimension and due to its relatively
simple5 vertex structure it was studied in a 3 = 2 + & expansion up to the
four loops [111]. At one-loop order the beta function of 6 reads

�6 = &6 − (# − 2) 6
2

�
+ O(63) (3.14)

and shows a fixed point at 6∗ = �&/(# − 2). According to Eq. (3.13), we
identify the expectation value 〈Ψ̄Ψ〉 as the system’s order parameter for the
chiral symmetry breaking. The fixed point corresponding to +2 in Fig. 3.5
distinguishes between two phases with 〈Ψ̄Ψ〉 = 0 (semi-metallic phase)
and 〈Ψ̄Ψ〉 ≠ 0 (the charge density wave) where the latter opens up a mass
gap with < =

√
6〈Ψ̄Ψ〉. This is one renormalization group angle on the

Gross-Neveu universality. In perturbative analysis, it was pushed recently
to the fourth loop order [111] such that the critical exponents for # = 8
component spinors in the (2 + &) expansion read

1
�
= & − 1

6
&2 − 5

72
&3 + 81�3 + 35

216
&4 + O(&5) , (3.15)

�) = 2 − 4
3
& − 7

36
&2 + 7

54
&3 + 1092�3 + 91

5184
&4 + O(&5) , (3.16)

�# =
7
72

&2 − 7
432

&3 + 7
10368

&4 + O(&5) . (3.17)

Again, in this notation the bosonic anomalous dimension corresponds to
the charge density wave order. Expressions for general # are available in
Appendix C.1.2 or Ref. [111].

Similar transitions and their properties were discussed recently. For further
reading on this topic we refer to Refs. [15, 122–125] and references therein.
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6: Thisdynamical degree of freedomwould
also be generated once we run the renormal-
ization group.

3.3 The Gross-Neveu-Yukawa model

Since the order parameter in the chiral symmetry breaking towards the charge
density wave is bosonic we can directly construct a semi-phenomenological
model [126] for the phase transition in the spirit of the LGW paradigm as
applied for the )4 theories. For this purpose, we consider a now fluctuating
order parameter field )(G)with a kinetic term6 and add a quartic interaction
term which stabilizes the renormalization. For this work, we focus on the
chiral Ising Gross-Neveu-Yukawa model which again for # = 8 component
spinors describes the continuous transition of graphene from the semi-
metallic phase to a charge density wave as discussed above. We directly
jump ahead to the Lagrangian which reads

LGNY = #̄/%# − 1
2
(%�))2 + <

2

2
)2 + √H)#̄# + �)4 , (3.18)

where H denotes the Yukawa coupling of the of the order parameter field
) to the massless fermion #. The discrete chiral symmetry (3.13) of the
Gross-Neveu model is extended to the bosonic field to

#→ �5# , #̄→ −#̄�5 , )→ −) . (3.19)

/*In fact, the Gross-Neveu-Yukawa theory can also be derived from the Gross-Neveu
model by a Hubbard-Stratonovich transformation and subsequently allowing for
a canonical kinetic term as well as a quartic )4 interaction. The latter stabilizes
the renormalization and renders the GNY model perturbatively renormalizable in
3 = 4 − & space-time dimensions. In this regard, the GNY model is deduced as the
ultraviolet completion of the Gross-Neveu model [127], a relation which already
suggests that both models not only lie in the same universality class but are even
analytically linked. This statement is supported by matching the large-# expansions
of both theories [127] at any dimension 3 ∈ (2, 4). A feature which puts us in an
excellent position to study the universality at 3 = 2 + 1, i.e. exactly between the
two critical dimensions of both models.

In the Lagrangian in Eq. (3.18) we have assumed, without further elaboration,
that the bosonic order parameter field inherits the Lorentz symmetry of the Dirac
fermions. Thus, we have also defined the dynamical critical exponent to be I = 1.
However, it remains open whether the Lorentz symmetry is emergent. A one-loop
RG calculation [128] shows that at least near 3+1 dimensions it is protected against
perturbative corrections of the fermionic velocity E� and the bosonic velocity E�
away from the speed of light 2. Although these two irrelevant directions flow at
different rates towards 2, this implies that Lorentz Symmetry is restored in the
infrared.*/

What is known about Gross-Neveu universality?

In view of the successful description of the critical behavior of the three-
dimensional $(#) models, it is tempting to believe that a similar pre-
cision can also be achieved for the case of the comparatively simple
three-dimensional Gross-Neveu models. Indeed, there has been promising
progress in the development of the various methods, recently, suggesting
that the consensual precision determination of the Gross-Neveu universality
classes is within reach
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I Numerical approaches have found sign-problem free formulations
for the calculation of various important quantum phase transitions of
interacting Dirac fermions on the lattice [20, 21, 108, 129–135].

I The conformal bootstrap has emerged as a numerical tool to determine
critical exponents for fermionic models [136–139].

I Nonperturbative field-theoretical methods like the functional renor-
malization group (FRG) have managed to explore sophisticated trun-
cations schemes [81, 90, 140–143].

I The perturbative renormalization group (pRG) has seen substantial
advances in computational technology and the development of suitable
algorithms which facilitate the calculation of higher-loop orders.

In this Chapter, we perform a thorough analysis of resummation and interpo-
lation techniques within the perturbative renormalization group approach
to extract quantitative renormalization group predictions for the critical
exponents. We show that this strategy reconciles discrepancies between the
conformal bootstrap results from Ref. [139] and the pRG calculations, but
not with QuantumMonte Carlo simulations. To that end, we focus on the
simplest version of the Gross-Neveu-Yukawa models, i.e. the chiral Ising
model [144], which in 2 < 3 < 4 lies in the same universality class as the
purely fermionic Gross-Neveu model [127, 145]. Even this simplest model
has a number of interesting applications. Most prominently, for # = 8, the
theory describes the quantum critical point of the semimetal-to-insulator
transition of spin-1/2 electrons on the graphene lattice. In the insulating
phase sublattice symmetry is broken and charge density wave (CDW) order
occurs [109]. The eight spinor components originate from the two sublattices
of the honeycomb lattice, the two inequivalent Dirac points in the Brillouin
zone and two spin projections of the spin-1/2 electrons.

Another application of the Gross-Neveu model is the case of # = 4. Ac-
cording to the counting of spinor components in the graphene case, this
corresponds to a model of spinless fermions on the honeycomb lattice.
Strong repulsive nearest-neighbor interactions also drive the spinless system
through a semimetal-to-insulator transition [121]. This simplified version
of graphene is accessible to a broad range of different numerical methods
with reduced computational cost and therefore has been extensively studied,
previously [20, 90, 112, 113, 129–131, 139, 141, 146]. For # = 1, it has been
argued that in 3 = 3 a minimal N= 1 superconformal theory emerges from
the Gross-Neveu-Yukawa model at the quantum critical point which might
be relevant at the boundary of a topological phase [146, 147].

3.4 Perturbative renormalization group analysis

We proceed with the perturbatve renormalization group analysis of the
Gross-Neveu-Yukawamodel. Similar as shown for the Ising model discussed
in Sec. 2.3.2, we employ a dimenional regularization in themodifiedminimal
substraction (MS) scheme for the renormalization group. Since, the number
of diagrams in this loop expansion grows factorially, the usage of computer
aided algebra is necessary and we refer to App. B.1 for a brief overview
of the challenges and concepts to overcome them. While up to two loops
this tool chain may seem over-engineered, only this way it was possible to
push the calculation to four loops which demands the computation of 31,671
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diagrams [113]. In the following, we set the stage for the actual fixed point
analysis and the resummation of the epsilon expansions.

The renormalized Lagrangian can be obtained by replacing fields and
couplings by their bare counterparts G → G0 for G ∈ {#, ), H,�, <} and
reads

LGNY = /##̄/%# − 1
2
/)(%�))2 + /)2

<2

2
)2 + /)#̄#

√
H�&/2)#̄#

+ /)4��&)4 , (3.20)

where we parameterized the energy scale of the RG flow of the couplings
with �. Here, we introduced the wave function renormalization constants
/# and /) by rescaling the fields by #0 =

√
/## and )0 =

√
/)). For the

couplings and the mass term, we introduced the following renormalized
quantities

<2 = <2
0/)/−1

)2 , (3.21)

H = H0�
−&/2

#/)/−2
)#̄#

, (3.22)

� = �0�
−&/2

)/
−1
)4 . (3.23)

These relations are used to compute the RG scale dependence of the renor-
malized quantities by taking the derivative with repespect to the scale �.

3.4.1 Renormalization group functions

The renormalization group functions are now defined from the couplings
and respecting renormalization constants as the logarithmic derivative with
respect to the scale �

�G =
d G

d ln�
, for G ∈ {H,�} , (3.24)

�G =
d ln/G
d ln�

, for G ∈ {#, ), )2} . (3.25)

After rescaling a spherical factor from the momentum integral G/(8�2) → G
for G ∈ {H,�}, they take the following form

�G = −&G +
!∑
:=1

�(:L)G , with G ∈ {H,�} (3.26)

�G =
!∑
:=1

�(:L)G , with G ∈ {#, ), )2} (3.27)

where the latter are also often called anomalous dimensions in accordance to
the scaling exponents of the fermionic and bosonic correlation functions close
to the critical point. Nevertheless, the function �)2 has no such meaningful
counterpart, so we will call these functions renormalization group functions
to avoid any confusion. Since, the full expressions to four loop order for both
beta functions and renormalization group functions become quite lengthy
we present here only the one-loop contributions. In the notation, introduced
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Figure 3.6: Renormalization group flow
of the perturbatively renormalized Gross-
Neveu-Yukawa model. From the one loop
beta functions, we identify four fixed points
(FPs). The trivial Gaussian fixed point, the
Wilson-Fisher (WF) and two non-Gaussian
FPs (NGFP(*)). Since we search for a stable
FP, the critical point is the red non-Gaussian
(NGFP).WF is the critical point in the$(#)-
models, but is unstable to the NGFP. In
the perturbative renormalization group ap-
proach, the one loop calculation sets the
topology of the RG flow and inflict it also to
the higher loop orders.

above they read

�(1L)H = (3 + #/2)H2 , (3.28)

�(1L)� = 36�2 + #H� − (#/4)H2 , (3.29)

and

�(1L)
# =

H
2
, �(1L)

) = 2#H , �(1L)
)2 = −12� . (3.30)

and refer for the full expressions to appendix C.1.1 or Ref. [113]. /*Additionally,
in Appedix A we present the one-loop pRG procedure for a generalized Gross-Neveu-
Yukawa model.*/

3.4.2 Fixed points and critical exponents

To analyze the critical behavior, we are now looking for a stable fixed point
in the beta functions. The flow diagram in Fig. 3.6 shows us that besides
the trivial Gaussian fixed point and the Wilson-Fisher fixed point, there is
another, non-Gaussian and fully attractive fixed point as required for a critical
point. The Wilson-Fisher fixed point lies on the H = 0 axis as expected and is
the critical point of the $(#)models. On the level of the renormalization
group functions, we can use this fixed point to perform a consistency check
of our loop calculation and compare them to the findings in Ref. [97], both
on the level of the epsilon expansions of the critical exponents as well as one
the level of the beta functions for H = 0.

For the critical behavior of the GNY model, we concentrate on the non-
Gaussian fixed point which at one loop order reads

(H∗ ,�∗) =
(

&

3 + #/2 ,
(3 − #/2 + B)&

72(3 + #/2)
)
, (3.31)

where B =
√

9 + #(33 + #/4). The critical exponents, i.e. the (inverse) corre-
lation length exponent �−1 and the fermionic �# and bosonic �) anomalous
dimensions, we obtain from the renormalization group functions by evalu-
ating them at this fixed point. Hence the anomalous dimensions are

�) = �)(H∗ ,�∗) , �# = �#(H∗ ,�∗) . (3.32)

For the inverse correlation length exponent,we apply the following relation

�−1 = 2 − �) + �)2 , (3.33)

where we defined the value �)2 = �)2(H∗ ,�∗) in the same notation as
before. The resulting expressions are expanded in & where the coefficients
for each critical exponent 5: of order &: is fixed by the diagrams with :
loops. Schematically, we can write the epsilon expansions of all three critical
exponents to loop order ! as

5 GN(Y)(&) =
!∑
:=0

5 GN(Y)
: &: . (3.34)

Here, 5 represents one of the three discussed critical exponents, i.e. 5 ∈
{�−1 , �) , �#} where each coefficient 5: is a function of the number of spinor
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7: In fact, there is an optimal order :opt
until which the coefficients decline. This
stems from an exponential quantum “Boltz-
mann” factor for the activation energy of
the classical solution [148].
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Figure 3.7: Naive extrapolation of the
bosonic anomalous dimenions �) for# = 8
(graphene case) towards the interesting case
3 = 3 (& = 1).

components # . As indicated, this also holds accordingly for the (2 + &)
expansion of theGross-Neveu (GN)model as presented for# = 8 in Eq. (3.15)
to (3.17). The full expressions for expansions of the critical exponents of the
GNY model in 3 = 4 − & can also be calculated analytically, see the ancillary
files of Ref. [113] and for the GN model in (2 + &) dimensions in App. C.1.2
or in Ref. [111].

/*For most # , these coefficients grow at least factorially with the loop order : as
you can see for example in the case of # = 8 (graphene case) where the epsilon
expansions read

1
�
≈ 2 − −0.952& + 0.007&2 − 0.095&3 − 0.013&4 (3.35)

�) ≈ 0.571& + 0.124&2 − 0.028&3 + 0.149&4 (3.36)

�# ≈ 0.071& − 0.007&2 − 0.024&3 + 0.018&4 . (3.37)

Note that the expression were approximated only to three digits for better readability.
In contradiction to a usually faithful Taylor expansion, the coefficients of the higher
orders in & are not decreasing7 for larger :. In fact, they grow and it seems to be
debatable to include them in the analysis of the critical exponents towards three
dimensions if we would naively extrapolate to &→ 1.

This obstacle originates from the vanishing radius of convergence of the epsilon
expansions which in turn is a direct consequence of the perturbative expansion in
couplings before taking the path integral. Practically, we can see this problem when
evaluating the critical exponents away from the expansion point at different orders in
&. In Fig. 3.7, we plot the bosonic anomalous dimension �) for different loop orders
in & ∈ [0, 1]. It is easy to see that the values for increasing & are rapidly diverging
apart, which seems to make it impossible to determine the critical exponents for
large & to the interesting case 3 = 3 (& = 1). But not all hope is lost. In order to
extract a quantitative improvement on the precision out of the higher loop orders, a
resummation of these so-called asymptotic series is necessary.*/

3.5 Resummation towards 3 = 3

/*Our observation that after an initial convergence in the loop order : the coefficients
start to grow for larger : is seemingly diminishing the significance of the series.
Nevertheless, to benefit from the higher loop orders, we have to overcome this issue
by means of a resummation. In general, we distinguish between two approaches
in resummation. In the first one, we focus on dealing solely with the vanishing
radius of convergence and make almost no assumptions about the series structure.
In the further course of this analysis, we merely assume that the critical exponents
are continuous functions between 3 ∈ (2, 4). In the second approach, we try to
incorporate justified presumptions about the series coefficients, especially for large
loop orders : � 1.*/

3.5.1 Padé approximants

We start our resummation analysis of the chiral Ising critical exponents for
general# by studying the Padé approximants which are rational functions

[</=] = 00 + 01& + · · · + 0<&<
1 + 11& + · · · + 1=&= . (3.38)
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Figure 3.8: Chiral Ising universality in 3 = 3: Overview plots for the correlation-length exponent �−1 (left panel), the boson anomalous
dimension �) (medium panel) and the fermion anomalous dimension �# (right panel) for different numbers of spinor components # ∈ [1, 20].
For comparison, values from Monte Carlo (MC) calculations, the functional renormalization group (FRG), and the conformal bootstrap (cBS) are
also shown. For the large-# results, we applied Padé-Borel resummation. (Figures from Ref. [55] updated by [150, 151])

with ! = < + = where the expansion coefficients 00 , ..., 0< , 11 , ..., 1= are
uniquely given by the condition that the series expansion of [</=]match
the original series

[</=] −
!∑
:=0

5:&: = O(&!+1) . (3.39)

At a given order !, there are ! + 1 different Padé approximants and we note
that it is not a priori clear which of them will give the most faithful estimate.
Importantly, Padé approximants can be used for finding approximations
to functions outside the radius of convergence ' of their corresponding
power series. In particular, the case ' = 0 is relevant in the context of the
perturbative RG [148, 149]. Further, no assumption about the large-order
behavior of the series coefficients is made. Systematically, we compute all
! + 1 possible Padé approximants for �−1, �) and �#. Evaluating them at
& = 1 provides us with a range of estimates which we interpret as a first
rough window of confidence for their values. Note again, that at this stage
we made no presumptions about the coefficients. We employ this method for
the critical exponents from the (4 − &) expansion series of the GNY model
at four-loop order by evaluating all 4 + 1 Padé approximants at & = 1, i.e.
for 3 = 2 + 1 dimensions. This provides a range of estimates for the critical
exponents, which we interpret as a first rough window of confidence for
their values. We show the results of this analysis as a function of # in
Fig. 3.8 as the gray-shaded area. There, we have only taken into account Padé
approximantswhich showno poles in the range 3 ∈ (2, 4). Since this criterion
is not fulfilled by all approximants for a given # , a sudden enlargement
of the window may occur upon changing # . Such an example can be seen
for the correlation length exponent �−1 around # ≈ 7. In this case, the
pole of one of the approximants is pushed out of the interval 3 ∈ (2, 4). In
the following section, when we consider two-sided Padé approximants, we
will also show sequences of Padé approximants to study more carefully the
convergence properties of the approximations.

For comparison, we also present the results of other methods for different #
in Fig. 3.8. The functional renormalization group (FRG) [81, 90, 141] provides
compatible estimates for �−1 and �) over the whole range of # . On the
other hand, the FRG values for the fermionic anomalous dimension �#
are systematically below the range we find with Padé approximants. We
remark that the FRG calculations in Refs. [81, 90, 141] are based on the
derivative expansion scheme and more intricate momentum dependencies
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might become important for the evaluation of anomalous dimensions [152,
153]. Comparison to the conformal bootstrap results from Ref. [139] also
shows very good compatibility concerning the boson anomalous dimension.
Generally, the results for the fermion anomalous dimension lie between the
FRG estimates and the window given by the Padé approximants. We show in
the next two sections, how this discrepancy can be resolved. The conformal
bootstrap results for the correlation length exponents deviate strongly from
the other approaches, in particular, in the range 2 ≤ # ≤ 8. For very small# ,
including the limit of the Ising universality class and the emergent SUSY limit
(# = 1), the estimates agreewellwith the renormalization group approaches.
We note that within the conformal bootstrap method, the boson and fermion
anomalous dimensions are obtained from universal bounds. The correlation
length exponent estimate, however, is based on the extremal functional
approachwhere one assumes that the theory exactly lives at the characteristic
kink and subsequent extrapolation of the spectrum [139]. Therefore, it
would be very interesting to obtain conformal bootstrap estimates of the
correlations length exponent directly from universal bounds. From Monte
Carlo simulations estimates for the Ising Gross-Neveu universality class
are available for the cases # = 4 and # = 8. In particular, the case # = 4
was intensely studied by Monte Carlo methods [20, 129–131, 154] and the
resulting estimates still varied with system size. In Fig. 3.8, we show the
latest estimates for the correlation length exponent from Refs. [130, 154] for
comparison, which agree quite well with the RG estimates, but not with the
conformal bootstrap. For the boson anomalous dimension, the latest estimate
from Ref. [130] is also in good agreement with the other approaches. For
the fermionic anomalous dimension, (when compiling the paper [55]) only
a value at # = 8 is available [108], which with �# ≈ 0.38(1) is much larger
than the estimates from the complementary methods and therefore does not
appear in the range presented in the Fig. 3.8. /*In 2020, a new comprehensive
Designer-Monte-Carlo simulation [151] provides �# ≈ 0.05(2) which for the first
time is in very good agreement with our and other complementary methods. We
updated Fig. 3.8 and Tab. 3.1 accordingly.*/ Also the # = 8 estimates from
Refs. [108, 155] for the correlation length exponent and the boson anomalous
dimension are not in agreement with RG or the conformal bootstrap. In
the left panel of Fig. 3.8, we also show the recent results from Ref. [154] for
the # = 8 correlation length exponent, which is much closer to our result
than the one from Ref. [108]. Finally, as another perturbative method we also
show the values from a large-# expansion [140, 156] for # ≥ 4. Note that we
have resummed these series following reference [156] using the Padé-Borel
method. The resulting curves are for most # deep in the shaded area of the
Padé approximants.

3.5.2 Interpolations

In Section 3.2,wehave introduced theGross-Neveumodelwhich is expanded
in (2 + &) dimensions and in Section 3.3 the Gross-Neveu-Yukuwa model
expanded 3 = 4 − & dimensions. Furthermore, we have seen that these
models are closely related through their symmetries and symmetry-breaking
patterns and universality therefore suggests that they describe the same
critical point [127]. Moreover, the (2 + &) and the (4 − &) expansions can be
compared to the known results from 1/# expansions [157–165]. Indeed, we
have confirmed that the (4−&) expansion is fully compatiblewith the large-#
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Figure 3.9: Order by order study of polynomial interpolation of the three critical exponents �−1 (left panel), �) (mid panel) and �# (right panel)
between 3 ∈ (2, 4) at # = 8. We restrict ourselves to interpolations, which include the same number of loop orders in the respective critical
dimensions 3 = 2 and 3 = 4

expansion of the Gross-Neveu model order by order, which represents a
highly nontrivial check, see our Refs. [112, 113].

/*In the following, we combine the two expansion schemes, which are defined near
their respective critical dimensions, i.e. 3 = 2 and 3 = 4, into an interpolated
curve.*/

Polynomial interpolation

A suitable interpolation between the two critical dimensions can be con-
structed by using a purely polynomial ansatz. To that end, we use both
epsilon expansions for the critical exponents, simultaneously, and set up
an interpolating function for the critical exponents in the interval 3 ∈ (2, 4).
More specifically, for an exponent 5 (3), we choose a polynomial interpolation
with polynomial %8 , 9(3) of (8 + 9)-th degree, where 8 (9) denotes the highest
order of the epsilon expansion in 3 = 2+ & (3 = 4− &) dimensions. We fix the
polynomial coefficients with the expansion near the lower critical dimension
and determine the first 8 + 1 terms from the condition

%8 , 9(3) =
8∑
:=0

5 GN
: (3 − 2): +

8+9+1∑
:=8+1

0:(3 − 2): . (3.40)

The remaining (9 + 1) higher-order terms with coefficients 08+1 , . . . , 08+9+1
are then determined from the requirement that the 9 lowest derivatives of
%8 , 9(3) at 3 = 4 correspond to the wpsilon expansion of the GNYmodel by

%(=)8 , 9 (4) = (−1)==! 5 GNY
= (3.41)

where %(=)8 , 9 (4) denotes the =-th derivative at 3 = 4. The resulting polynomials
are then by construction 8-loop (9-loop) exact near the lower (upper) critical
dimension and provide a systematic estimate for the physically relevant case
of three dimensions.

We show the results of this interpolation procedure, i.e. %8 ,8(3) for 8 ∈
{1, 2, 3, 4} for the inverse correlation length exponent and the anomalous
dimensions for the# = 8 (graphene case) in Fig. 3.9. For the inverse correlation
length exponent and the boson anomalous dimension, we observe a very
good stability of the estimates from the interpolation procedure upon
increasing the orders of the two perturbative expansions. Comparisons
to other methods will be presented in the next section after we have also
analysed an alternative interpolation method.
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Figure 3.10: Order by order study of two-sided Padé approximants of the three critical exponents �−1 (left panel), �) (mid panel) and �# (right
panel) between 3 ∈ (2, 4) at # = 8. We restrict ourselves to approximants, which include the same number of loop orders in the respective
critical dimensions 3 = 2 and 3 = 4. Further, we choose approximants with < ≈ =.

Two-sided Padé approximants

Another way of interpolating and also approximate the functions by a
rational function, in contrast to the polynomial ansatz, is a two-sided Padé
approximation. To that end, we again employ a generic Padé-approximant,
cf. Eq. (3.38), and this time, we fix its coefficients such that its power series
expansion near 3 = 2 and 3 = 4 agrees with both perturbative series in
(2 + &) and the (4 − &) dimensions, respectively. Explicitly, we make the
ansatz

2[</=](3) = 00 + 013 + · · · + 0<3<
1 + 113 + · · · + 1=3= , (3.42)

and demand for the coefficients {08} and {1 9} to fit to the epsilon expansions.
This leads to the relations

2(:)[</=](2) = :! 5 GN
: , (3.43)

2(:)[</=](4) = (−1): :! 5 GNY
: , (3.44)

with 5 GN(Y)
: being the expansion coefficient of a critical exponent at order :,

cf. Eq. (3.34). In this way, the two-sided Padé approximant 2[</=](3) provides
an interpolating function for a critical exponent 5 (3) in 2 < 3 < 4.

We show the two-sided Padé approximants evaluated for the inverse correla-
tion length exponent and the boson and fermion anomalous dimensions for
the physically interesting case # = 8 in Fig. 3.10. Moreover, we also show a
sequence of two-sided Padé approximants corresponding to increasing order
of the perturbative expansions which clearly shows signs of convergence
towards higher orders. The two-sided Padé approximants can also have
a pole in the interval 3 ∈ (2, 4) depending on the choice of 5 and # . In
Fig. 3.10, we therefore show only the two-sided Padé approximants, which
do not have a pole in 3 ∈ (2, 4) for the example # = 8. We further restrict
our analysis to approximants which include the same number of loop orders
at both ends, i.e. at 3 = 2 and at 3 = 4. We observe a very good stability of
the estimates from the two-sided Padé approximants for the three critical
exponents upon increasing the orders of the expansions, even faster than in
the polynomial interpolations. In particular, this also holds for the fermion
anomalous dimension which vanishes in both limits, i.e. at 3 = 2 and 3 = 4
and is finite only in between. Finally, we remark that the series expansions
for the critical exponents of the Gross-Neveu model have a pole at # = 2
and therefore an extraction of estimates from the (2 + &) expansion close
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Figure 3.11: Interpolation of the three critical exponents �−1 (inverse correlation-length exponent, left panel), �) (boson anomalous dimension,
mid panel) and �# (fermion anomalous dimension, right panel) between 3 ∈ (2, 4) at # = 8. The shown interpolations polynomial (red line)
and two-sided Padé (dark-red dashed line) are fixed by the two epsilon-expansions at 3 = 2 and 3 = 4 in the first four derivatives. As a result,
the asymptotic behavior is suppressed even far from these expansion points at the physical dimension 3 = 3 and plausible values can be read off.
It should also be noted that both complementary approaches for the interpolation are very close to each other and comparable to conformal
bootstrap (cBS) [139], lattice Monte Carlo [108] and functional renormalization group (FRG) [90] calculations. (Figures taken from Ref. [55] and
updated by [150, 151] (2020))

to or below # = 2 becomes problematic. Therefore, we find that two-sided
Padé approximants and other interpolation schemes cannot be faithfully
applied for small # . In fact, the effects of the pole at # = 2 can already be
observed at # = 4.

In Fig. 3.11, we summarize our best results for the # = 8 estimates from the
two-sided Padé approximants as well as from the polynomial interpolation
exhibiting the excellent agreement between both interpolations in the whole
range 3 ∈ (2, 4). For comparison, we also show the estimates for the critical
exponents at 3 = 3 from other methods, namely from the functional RG [90]
and from the conformal bootstrap [139]. In particular, the conformal bootstrap
estimates for the boson and fermion anomalous dimensions, which have
been determined from universal bounds, almost perfectly match with our
results. There is still a sizable difference in the estimates of the inverse
correlation length exponent, which needs to be resolved in future studies.
The available quantum Monte Carlo results for # = 8 [108, 154] show
deviations from our RG results as well as from the conformal bootstrap
estimates for both, the anomalous dimensions and the correlation length
exponent. It is encouraging, though, that the more recent QMC results from
Ref. [154] seem to agree better than the earlier works [108, 131]. Unfortunately,
in Ref. [154] only the correlation length exponent is given and the situation for
the anomalous dimensions remains to be clarified. /*Amore recent study [151]
was conducted in 2020 after publishing this text in Ref. [55]. The provided estimates
for both anomalous dimensions show a faithful agreement with our results here.
We updated the figures and Tables accordingly.*/ We remark, that in the more
exhaustively studied case of # = 4, it has been found that the QMC results
can still be subject to some changes upon increasing the lattice size [130].

We compile our results from the two different interpolation techniques and
the following resummations for 3 = 3 as a function of # in Fig. 3.14 in
the discussion section. Generally, the two interpolation procedures provide
highly compatible results for # & 6 and start to deviate from each other
and the other methods for # . 6. This is expected since the interpolation
makes use of the series expansion in (2 + &) which exhibits poles in the
critical exponents for # = 2, see Fig. 3.14. We conclude that for # .
6 we cannot faithfully employ the interpolation techniques rooting in a
(2 + &) expansion. In the following section, we therefore explore Borel
resummation for the (4 − &) expansion to obtain improved estimates for the
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Gross-Neveu universality classes at small # , in particular for smaller #
where interpolation between (2 + &) and (4 − &) is difficult.

3.5.3 Borel resummation

A very accurate determination of critical exponents in 3 = 3 from the
(4 − &) expansion was achieved for O(=) symmetric )4 theories by using
Borel resummation with conformal mapping [69, 148], see e.g., Ref. [97]
for a recent study at six-loop order. For this resummation technique, the
large-order behavior of an asymptotic series is considered, which has been
computed for scalar models in the minimal subtraction scheme [166, 167].
Unfortunately, for the Yukawa models considered, here, the precise large-
order behavior is not known. However, even with the knowledge of the
large-order behavior as in the O(=) symmetric scalar models, resummation is
a delicate issue. There, for example, the serieswritten in terms of the coupling
constant in fixed dimensions 3 = 2, 3 is known to be Borel summable [168,
169], but the situation for the epsilon expansion remains unsettled.

Borel summability is therefore often taken as an assumption in the analysis
of O(=) symmetric scalar models [170] and we will also do this, here. In
the following, we also make the additional assumption that the asymptotic
behavior of the GNY model is qualitatively the same as the one from the
scalar models, i.e. the epsilon expansion for the critical exponents follows a
formal power series with factorially increasing coefficients, i.e.

5: ∼ (−0):Γ(: + 1 + 1) ≈ (−0): :!:1 (3.45)

for large :. The Borel transformof such an asymptotic series 5 with expansion
coefficients 5: is calculated as

B1
5 (&) :=

∞∑
:=0

5:
Γ(: + 1 + 1) &

: =
∞∑
:=0

�1:&
: . (3.46)

Consequently, the coefficients behave like �1: ∼ (−0): for large orders : and
therefore follow a geometric series which can be understood as a rational
function with a pole at & = −1/0, i.e.

B1
5 (&) ∼: large

∑
:

(−0):&: = 1
1 + 0& . (3.47)

While the original series has a vanishing radius of convergence, we note that
the Borel transform is analytic in a circle with |& | < 1/0. We now use the
assumption that the considered series are Borel summable, i.e. that we can
analytically continue the Borel transform to the positive real axis and that
the Borel sum

5̃ (&) :=
∞∫

0

dC C1e−CB1
5 (&C) , (3.48)

is convergent and gives the correct value of 5 for & = 1.

A perturbative expansion of the integral in Eq. (3.48)with respect to & restores
the original asymptotic series. In particular, if only finitely many terms of
the asymptotic series are known, the corresponding finite Borel transform in
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the Borel sum merely reproduces the initial series. This can be circumvented
by replacing the Borel transform in Eq. (3.48) by a nonpolynomial function
which has the same power series coefficients as the Borel transform for all
known terms and ideally incorporates the large-order behavior of the series.
Therefore, in the next step, we analytically continue the Borel transformwith
a conformal transformation to the real axis, using

F(&) =
√

1 + 0& − 1√
1 + 0& + 1

⇒ & =
4
0

F
(1 − F)2 . (3.49)

This transformation preserves the origin and maps all points of the relevant
positive real & axis in the unit circle, i.e. |F(&)| < 1 for & ∈ [0,∞). The cut of
the negative real axis (−∞,−1/0) of the Borel transform is mapped to the
unit circle in the variable F. The Borel transform in the new variable F can
be found by expanding B1

5 (&(F)) in F, which renders the series convergent
in the full integration domain of the Borel sum.

We further introduce an adjustment parameter � in the Borel transform
truncated at order !, cf. Refs. [97, 170],

B1
5 (&) ≈ B

0,1,�
5 (&) :=

(
0&(F)
F

)� !∑
:=0

�1,�: F: . (3.50)

Herein, the coefficients �1,�: are found by expanding the expression(
F

0&(F)
)�

B1
5 (&(F)) , (3.51)

in a power series of F. While the Borel transform in Eq. (3.46) for finite !
will diverge, this behavior is lost when introducing the conformal mapping
variable as F tends to one for large &. The parametrization in Eq. (3.50)
with � ≠ 0 can be used to restore the actual large & behavior ∼ &� of the
Borel transform by adjusting �. Since the asymptotic behavior of 5 (&) is
unknown, we use� to improve the sensitivity properties of our resummation
algorithm [170], see below.

Further improvement is introduced by a homographic transformation with
shifting variable @

& = ℎ@(&̃) :=
&̃

1 + @ &̃ ⇒ &̃ = ℎ−1
@ (&) =

&
1 − @& . (3.52)

The original series is expanded in &̃ and in the last step before the Borel sum
transformed back by ℎ−1

@ . Thus, the resummed series is determined by

5̃ (&) ≈ 5 0,1,�,@! (&) :=
∞∫

0

dC C1e−CB0,1,�
5 ◦ℎ@ (ℎ

−1
@ (&)C) . (3.53)

The conformal mapping in the Borel transform produces poles in the Borel
sumEq. (3.48). Using the homographic transformation these poles are shifted
away from the physical dimension at & = 1 into a region of the integral
where their diverging behavior is suppressed by exp(−C). This improves the
stability of the numerical analysis and is essential to find an “optimized”
parameter set.
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Figure 3.12: Chiral Ising universality for
3 = 3, # = 8: Sensitivity of the Borel re-
summed inverse correlation-length expo-
nent �−1 to a variation of one of the three
large-order parameters 1, � and @. In the
first row we show the change to variation
of 1 and � at the optimal @ = 0.16, i.e. at
the global minimum of the error estimate
� ≡ �4(31.5, 0.74, 0.16) ≈ 0.009. In this case
we find plateaus with increasing spread in
the loop order. For comparison, we also
show the same plots at @ = 0.4 away from
the optimum where these plateaus are lost.
In the last plot we present the variation with
respect to @ which has no plateaus at all is
only fixed by the intersection point. (Figures
taken from Ref. [55])
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To summarize, we introduced a resummation scheme for the asymptotic
series 5 (&)which incorporates four parameters 0, 1,� and @ in the resummed
series 5̃ (&) in Eq. (3.53). The resummed series would be independent of
the choice of these parameters, if all orders of the expansion were known,
i.e. for ! → ∞. At finite ! this suggests that, for an optimized choice of
resummation parameters, their variation should only induce amild variation
of the resummed 5̃ (&). Consider, for example, the inverse correlation length
exponent 1/�, resummed according to Eq. (3.53). Individually changing the
parameters 1,� and @ leads to a variation of the resummed 1/�, which we
show in Fig. 3.12 for different orders in the epsilon expansion. We observe
that for increasing order in epsilon, the dependence on the resummation
parameters generally decreases as expected. Further, there are extended
plateaus where the function 1/� of the resummation parameters becomes
rather flat, i.e. the resummed series becomes insensitive to a further variation
in the corresponding parameter.

In the plots we omitted the dependence on the parameter 0, cf. Eq. (3.45),
whichwefix to the value 0 = (3+#/2)−1. This ismotivated by the observation
that the factor (3 + #/2)−1 structurally appears in the RG beta functions,
fixed point values and critical exponents at all available loop orders, see, e.g.,
Eq. (3.31). This is reminiscent of the factor 3/(=+8) appearing in the study of
the scalar$(=)models, which determines 0 in the corresponding asymptotic
behavior [171]. In our case, however, we do not have further justification to
use a specific value for 0. We have explicitly checked the stability of our
results with respect to variations of 0 and we find that choosing different
0 ∈ (0, 1] only very mildly affects our results. For simplicity, we therefore
proceed with the fixed choice 0 = (3 + #/2)−1.

Resummation algorithm

We now describe the employed resummation algorithm closely following
the strategy presented in Ref. [97] and then apply it to the epsilon expansion
of the GNY model. In order to find an optimized set of resummation
parameters, we need a measure for the sensitivity of the summation to a
parameter change. To that end, we study the variation of a function � upon
changing one of its parameters G in a range G ∈ [G0 , G0 + Δ],

SG(�(G0)) := min
G∈[G0 ,G0+Δ]

(
max

G′∈[G0 ,G0+Δ]
|�(G) − �(G′)|

)
. (3.54)
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Figure 3.13: Chiral Ising universality in 3 = 3:
Error estimates for the inverse correlation-
length exponent �−1 at# = 8. The error axis
is normalized to the smallest error in the
parameters � ≡ �4(31.5, 0.74, 0.16) ≈ 0.009.
Theglobalminimumof this parameter space
(left panel) is located in an area around the
value �−1 ≈ 0.994, which we have zoomed
in on the right panel. The weighted mean
of this subspace in parameter space has
�−1 ≈ 0.993 (dashed line). (Figures taken
from Ref. [55])

A function �(G) which only weakly varies within the plateau of length Δ
leads to a small value for SG .

Considering the example of the inverse correlation length 1/� in Fig. 3.12
again, now, we are able to quantify the sensitity by reading off the length Δ
of the extended plateaus. At the highest available order O(&4), these have
the spreads

Δ1 ≈ 40, Δ� ≈ 1, Δ@ ≈ 0.02 , (3.55)

which we will use in the following analysis for computing the sensitivities
in Eq. (3.54). We note, that finding these plateaus without prior knowledge
of the resummation parameters can be quite tedious since the parameter
space is large. Here, we have performed extensive scans and in Fig. 3.12, we
already show a range of parameters for 1,� and @ which is centered around
the optimized set to be determined as indicated in the caption. We want to
stress at this point that the parameter @ is chosen in such a way that the
dependence on the parameters 1 and � exhibits extended flat plateaus. The
dependence on @ itself is rather steep over the whole definition domain and
we use it just as an optimization tool for the numerical analysis [172]. This
is also the reason why the variation domain for @ is very narrow. Note that
the variation with respect to @ shows no plateaus and the optimal @ is fixed
by the intersection point of the curves corresponding to the different loop
orders, see lower left panel of Fig. 3.12.

We identify the optimal set of parameters following the method introduce
in Ref. [97], i.e. making use of both the “principle of minimal sensitity” and
“principle of fastest convergence”. As already extensively discussed in the
literature, the errors might be underestimated if the unknown higher order
corrections are much larger than the last computed ones. Such examples are
known and only an explicit calculation can solve this question.

The different variations are collected in an error estimate [97],

�1,�,@5 ,! :=max
{
| 5 1,�,@! − 5 1,�,@!−1 |, | 5

1,�,@
! − 5 1,�,@!−2 |

}
+max

{
S1

(
5 1,�,@!

)
,S1

(
5 1,�,@!−1

)}
+ S�

(
5 1,�,@!

)
+ S@

(
5 1,�,@!

)
. (3.56)

and we select the parameters in such a way that this error estimate is
minimized.We also compare the sensitivities at different orders ! and search
for a minimum in the dependence on !.

Explicitly, we scan the parameter space in the range (1,�, @) ∈ [0, 50] ×
[0, 2.5] × [0, 0.5] in steps of �1 = 0.5, �� = 0.02, �@ = 0.02 and compute
�1,�,@5 ,! for each parameter set. We show the results of this scan for the inverse

correlation length exponent 1/� in Fig. 3.13. The gobal minimum � of this
scan marks the apparently best set of resummation parameters. However,
this minimum is not always sharp and there are other sets of parameters
which are almost equally likely. Therefore, we compute a weighted mean of
all points which lie below a relative error of �8/� < 3. For the weights we use
F8 = 1/�2

8 and plot the result as a dashed line in the parameter scans, see,
e.g., in the lower panel of Fig. 3.13. From the error estimate at the minimum
we compile the error for the resummation as 3�. The resulting error bars are
consistent with the spread of the critical exponents around the optimum.



42 3 Gross-Neveu universality in graphene and beyond

We provide more detail and numerical data on the error estimates in the
appendix of Ref. [55].

3.6 Discussion

The resummation techniquespresented are nowapplied to several (physically
motivated) cases. We start with the graphene case of # = 8 component
spinors which is relevant to our initial discussion.

3.6.1 Graphene case (# = 8)

As shown in the beginning, one of the quantum critical points that can be
described by the Gross-Neveu-Yukawa model with # = 8 is the semimetal-
CDW transition of spin-1/2 electrons in graphene [109]. With the Borel
resummation described in Sec. 3.5.3 applied to the (4 − &) expansion of
the GNY model, we obtain the critical exponents 1/� ≈ 0.993(27), �) ≈
0.704(15) and �# ≈ 0.043(12). This compares very well with the perturbative
RG estimates which we obtained using the combination of (2 + &) and
(4 − &) expansions in terms of the two-sided Padé approximants and the
polynomial interpolation Sec. 3.5.2. In particular, for the fermion anomalous
dimension, the agreement is remarkable since, in this case, the one-sidedPadé
estimates around each critical dimension, individually, seems to significantly
overestimate the value at 3 = 3 even at order O(&4) [111, 113]. Some deviation
between our different resummation approaches at the . 5% level can be
observed for the boson anomalous dimension, though. We have compiled
our results for# = 8 from the two-sided Padé approximants, the polynomial
interpolation and the Borel resummation in Tab. 3.1. Here, to summarize all
of the considerations from Secs. 3.5.1, 3.5.2 and 3.5.3, we build the simple
average of the estimated critical exponents and transfer the error from the
Borel resummation

1
�
≈ 0.99(3) , �) ≈ 0.72(2) , �# ≈ 0.043(1) . (3.57)

In Tab. 3.1, we also compare to other methods and refer to the more detailed
discussions of these results in Secs. 3.5.1 and 3.5.2. We would like to empha-
size, again, the excellent agreement of our results for the boson and fermion
anomalous dimensions with the conformal bootstrap estimates [139]. The
superior agreement between two independent theoretical approaches builds

Table 3.1: Graphene case at # = 8: Com-
parison of the resummed critical expo-
nents obtained from the resummation algo-
rithm (Borel resummation) with the results
from the polynomial interpolation, the two-
sided Padé approximations (Padés) with
with results from other theoretical methods.
/*Monte-Carlo[151] (2020) was added after pub-
lication*/

# = 8 �−1 �) �#

Padés (incl. two-sided) 1.004 0.735 0.042
polynomial interpolation 0.982 0.731 0.043
Borel resummation 0.993(27) 0.704(15) 0.043(12)

large-#[156, 158, 161, 162] 0.952 0.743 0.044
conformal bootstrap[139] 0.88 0.742 0.044
functional RG[90] 0.994(2) 0.7765 0.0276
Monte Carlo[108] 1.20(1) 0.62(1) 0.38(1)
Monte Carlo[156] 1.00(4) 0.754(8) –
Monte Carlo[154] 1.07(4) – –
/*Monte Carlo[151] (2020)*/ 1.0(1) 0.59(2) 0.05(2)
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# = 4 �−1 �) �#

Padés (incl. two-sided) 0.961 0.480 0.086
polynomial interpolations 1.040 0.397 0.140
Borel resummation 1.114(33) 0.487(12) 0.102(12)

large-#[158, 161, 162] 0.938 0.509 0.1056
conformal bootstrap[139] 0.76 0.544 0.084
functional RG[90] 1.075(4) 0.5506 0.0654
Monte Carlo[130] 1.14(2) 0.54(6) –
Monte Carlo[154] 1.096(34) – –
Monte Carlo[20] 1.30(5) 0.45(2) –
/*Monte Carlo[150] (2020)*/ 1.06(3) 0.49(4) –

Table 3.2: Spinless honeycomb fermions at
# = 4: Comparison of the resummed crit-
ical exponents obtained from the resum-
mation algorithm (Sec. V) with the results
from the polynomial interpolation (Sec. IV),
the two-sided Padé approximations (Sec. III)
with results from other theoretical methods.
/*Monte-Carlo[150] (2020) was added after pub-
lication.*/

a strong case for these values. At the same time, the available quantum
Monte Carlo results for the anomalous dimensions at # = 8 [108] show
significant deviations from the pRG and conformal bootstrap results, sug-
gesting that the QMC approach might still be affected by the finite system
sizes. Surprisingly, the earliest numerical lattice studies of the chiral Ising
universality class at # = 8 [156] agree best with our results for the boson
anomalous dimension.

We further note that there is still a sizable difference in the estimates of
the inverse correlation length exponent between the different approaches
which needs to be resolved in future studies. In particular, it would be very
interesting to obtain conformal bootstrap estimates of the correlations length
exponent directly from universal bounds.

3.6.2 Spinless fermions on the honeycomb (# = 4)

The universality class of the semimetal-CDW transition of spinless fermions
on the honeycomb lattice is described by the# = 4 GNmodel [106, 109]. Due
to its simplicity and paradigmatic role, it has been subject to many studies,
see Ref. [173] for a recent review. Within our pRG approach we have found
that the two-sided Padé approximants and the polynomial interpolation
presented in Sec. 3.5.2, respectively, are problematic, because the critical
exponents from the (2 + &) expansion exhibit a pole at # = 2. Therefore, the
dimensional interpolation in 3 ∈ [2, 4] breaks down in the vicinity of # = 2
and we find that this is already shows at # = 4. For completeness, however,
we also show the values for the critical exponents that we obtain from these
two interpolations in Tab. 3.2 in gray fonts. The Borel resummation from
Sec. 3.5.3 exclusively uses the (4 − &) expansion which is not plagued by
this pole structure and, here, we obtain 1/� ≈ 1.114(33), �) ≈ 0.487(12) and
�# ≈ 0.102(12).
For # = 4, the agreement of the boson and fermion anomalous dimensions
with the conformal bootstrap estimates from Ref. [139] is not as good as
in the case # = 8, where we also had more reliable results based on the
dimensional interpolation in 3 ∈ [2, 4]. Still, within the error bars extracted
from the resummation procedure, the estimates deviate only on the ∼ 10%
level. We would like to mention that for the anomalous dimensions, the
case # = 4 turns out to show the largest deviation from the conformal
bootstrap results. For other N, i.e. # = 1, 2 and # & 6 the agreement
between these two independent methods is much better, see below. It will be
interesting to see, whether this can be fully resolved by going to even higher
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Table 3.3: Emergent SUSY at # = 1: Com-
parison of the resummed critical exponents
obtained from the resummation algorithm
(Sec. V) with the results from complemen-
tary methods: Functional Renormalization
Group (FRG) and conformal bootstrap.Here,
we have determined the conformal boot-
strap estimate of 1/� from the scaling rela-
tion Eq. (3.58).

# = 1 �−1 �) �#

Borel resummation 1.415(12) 0.1673(27) 0.1673(27)
conformal bootstrap[139] 1.418 0.164 0.164
functional RG[81] 1.395 0.167 0.167
functional RG[174] 1.410 0.180 0.180

loop orders. We would also like to mention that there is a series of Monte
Carlo estimates for the boson anomalous dimension, i.e. �) = 0.303(7) [129],
�) = 0.45(2) [20], �) = 0.275(25) [131], and �) = 0.54(6) [130]. The different
results have been achieved using various Monte Carlo methods and different
system sizes. The last result from Ref. [130] was obtained with the largest
system size. It seems to fit very well with the conformal bootstrap result and
within the ∼ 10% range also with our estimate. /*The more recent Monte Carlo
simulations in Ref. [150] narrow this window further.*/ In view of the better
control, we have for # = 8 it would therefore be very interesting to explore
this case with the same system sizes, too, and to have improved data for the
fermion anomalous dimension for all cases.

The correlation-length exponent from the conformal bootstrap, 1/� =
0.76 [139], on the other hand, is very far away fromall the other approaches, in
particular, also from the recent Monte Carlo simulations, 1/� = 1.14(2) [130]
which agreed well for the anomalous dimension with the Borel resummed
estimates from Sec. 3.5.3. Here, we note that our Borel resummed pRG
estimate of 1/� = 1.114(33) agrees very well with the Monte Carlo result
from Ref. [130] as well as with another recent Monte Carlo estimate [154]
where 1/� = 1.096(34). Unfortunately, the latter study does not provide data
for the anomalous dimensions.

3.6.3 Emergent supersymmetry (# = 1)

The emergent supersymmetry scenario [146, 147] for the case # = 1 features
a supersymmetric scaling relation [174, 175] which connects the inverse
correlation length exponent, dimensionality and the anomalous dimension

�−1 = (3 − �)/2 . (3.58)

Note, that the anomalous dimensions of the boson and the fermion are
equal in that case � = �# = �). Eq. (3.58) therefore allows for a number of
non-trivial checks for the estimates of the critical exponents. In previous
works, cf. Refs. [112, 113], it has been shown that Eq. (3.58) holds exactly
order by order in the epsilon expansion up to O(&4). Moreover, the estimates
for all critical exponents from simple Padé approximants already showed
very good agreement with the conformal bootstrap [139] and the functional
RG results [81]. Borel resummation yields the values 1/� ≈ 1.415(12), �) ≈
0.1673(27) and �# ≈ 0.1673(27). Since the anomalous dimensions of the
boson and fermion coincide order by order in the epsilon expansion, also the
Borel resummation provides the same values for both exponents. Further,
within the error bars, the supersymmetric scaling relation, Eq. (3.58), is
fulfilled as expected.Here, we obtain excellent agreement among all available
theoretical approaches, see Tab. 3.3. Using the scaling relation in Eq. (3.58),
we show that this agreement even holds for the inverse correlation length
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Figure 3.14: Chiral Ising universality in 3 = 3: Overview plot of the three examined critical exponents as the correlation-length exponent �−1

(left panel), the boson anomalous dimension �) (medium panel) and the fermion anomalous dimension �# (right panel) for different spinor
component numbers # ∈ [1, 20]. For comparison, the values from Monte Carlo (MC) calculations and the functional renormalization group
(FRG), as well as the conformal bootstrap (cBS) were also plotted. On top of that we applied a Padé-Borel resummation on the large-# expansions
as in Ref. [156]. (Figure taken from Ref. [55] updated by [150, 151] (2020))

# = 2 �−1 �) �#

Borel resummation 1.276(15) 0.2934(42) 0.1400(39)
conformal bootstrap[139] 0.86 0.320 0.134
functional RG[141] 1.229 0.372 0.131

Table 3.4: Chiral universality at # = 2: Com-
parison of the resummed critical exponents
obtained from the resummation algorithm
(Sec. V) with the results from complemen-
tary methods: Functional Renormalization
Group (FRG) and conformal bootstrap (cBS).

which, for other # , shows clear deviations. We also would like to mention
that our results continuously connect to the limit # → 0 where we recover
critical exponents compatible with the three-dimensional Ising model. We
show this in Fig. 3.8 together with the data point from the highly accurate
conformal bootstrap results [176].

3.6.4 Other cases (# = 2 and # = 20)

In addition to these cases, we compare the two additional choices # = 2
and # = 20. At # = 2, no interpolation to the Gross-Neveu model in the
(2 + &) expansion is possible due to the pole in the critical exponents. Other
methods which provide results in this case are the conformal bootstrap and
the functional RG and we compile these results for comparison in Tab. 3.4.
This fits into the general picture that our anomalous dimension agree very
well with the conformal bootstrap results, but the inverse correlation length
agrees better with the functional RG.

Finally, we study the case # = 20, cf. Tab. 3.5, which should already be
well located in the large-# regime. It is accessible by all the resummation
approaches we introduced in this paper and shows very good agreement
between the two-sided Padé approximants, the polynomial interpolation
and the Borel resummation. Moreover, it agrees excellently with the direct
large-# results [156], the conformal bootstrap [139] and also very well with

# = 20 �−1 �) �#

Padés (incl. two-sided) 0.9840 0.893 0.0151
polynomial interpolations 0.9763 0.893 0.0150
Borel resummation 0.9580(75) 0.893(9) 0.0120(48)

large-#[158, 161, 162] 0.970 0.894 0.0152
conformal bootstrap[139] 0.97 0.888 0.016
FRG, App. [55] 0.980 0.911 0.011

Table 3.5: Chiral universality at# = 20: Com-
parison of the resummed critical exponents
obtained from the resummation algorithm
(Sec. V)with the results from thepolynomial
interpolation (Sec. III), the two-sided Padé
approximations (Sec. IV) and complemen-
tary methods: Functional Renormalization
Group (FRG), conformal bootstrap (cBS),
Monte Carlo (MC) and large # calculations.
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functional RG, which we have carried out in a simple approximation by
ourselves see appendix of Ref. [55]. We expect that this level of agreement
generally holds in the large-# regime. This could therefore be a very good
benchmark case for upcoming large-scale Monte Carlo calculations as the
large-# limit reduces uncertainties within the approximations required for
the renormalization group methods. We have compiled an overview plot
with all of our data for 3 = 3 and comparisons for the range # ∈ [0, 20] in
Fig. 3.14 which supports this expectation.

3.7 Conclusion and Outlook

We studied the universality classes of chiral Ising or Gross-Neveu(-Yukawa)
models using the perturbative renormalization group up to four-loop order.
Employing various resummation and interpolation techniques, in particular,
dimensional interpolations between two and four dimensions as well as
Borel resummation, we calculated estimates for the critical exponents.

To describe the physically interesting case of interacting electrons on
graphene’s honeycomb lattice which undergo a quantum phase transi-
tion towards an ordered charge density wave state, we have focused on
the # = 8 Gross-Neveu and Gross-Neveu-Yukawa models. We have found
that all of our approaches to extract critical exponents in 3 = 2 + 1 within
the perturbative RG, i.e. the two-sided Padé approximants, the polynomial
interpolation and also the Borel resummation, converge order by order
towards a stable and compatible set of values, as compiled in Tab. 3.1. This
is true for all the exponents that we have studied, i.e. the inverse correlation
length exponent and both anomalous dimensions.

While resummation techniques for this type of theories is little explored
and we cannot exclude unexpected behavior at higher orders in the loop
expansion, the stability of our results still suggests they could be considered
as very reasonable estimates.Moreover, for the boson and fermion anomalous
dimensions at # = 8, we find excellent agreement of our results with the
universal bounds provided by the conformal bootstrap method [139], which
builds a strong case from independent theoretical methods for the validity
of these values. The corresponding values from Quantum Monte Carlo [108,
150, 151] only partly agree for the anomalous dimensions and it will be very
interesting to see whether this issue can be resolved in the future, e.g., by
increasing system sizes. In particular, the fermion anomalous dimension
is off by about an order of magnitude in the QMC simulations [108]. More
recent simulations resolve this issue and provide estimates in agreement
with our results [151]. Reconciliation with the field theoretical results may be
achieved by going to larger lattice sizes as suggested from similar calculations
for the case # = 4 [130]. We also note that there is still a significant
difference in the estimates for the inverse correlation length exponent
between the perturbative RG and the conformal bootstrap. This difference is
most pronounced for a range in the number of spinor components, 2 ≤ # ≤ 8,
while for larger# it disappears and all the exponents agree verywell. Within
the conformal bootstrap [139], in contrast to the anomalous dimensions,
the correlation length exponent estimate is not obtained from universal
bounds but from the extremal functional approach. It would therefore be
very interesting to have conformal bootstrap estimates of the correlations
length exponent directly from universal bounds, too. We have also found
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very good agreement with the conformal bootstrap and the functional RG
approach for the case of emergent supersymmetry, # = 1. Here, deviations
across the different approaches are only found on the level of below 2%.

For the future, we identify twomain directions for this line of research. Firstly,
to fully establish convergence of the critical exponentswithin the perturbative
RG approaches, loop calculations beyond fourth order are required. In
view of the recent developments in computational technology and the
mathematical insights into the structure of Feynman diagrams, this may be
challenging but possible. Secondly, there are a number of very interesting
quantum critical points of interacting Dirac fermions, which are not captured
by the chiral Ising universality class. For example, superconducting or
magnetic transitions of Dirac fermions exhibit critical behavior which are
described by a coupling to *(1) or a $(3) order parameters, respectively.
The corresponding universality classes are known as the chiral XY and
chiral Heisenberg universality classes [144] and in perturbative RG are also
known for higher orders [113, 114]. Moreover, for these and even more exotic
transitions, there is recent QMCdata [34, 125, 132–135, 177–180], whichwould
be interesting to compare to. It can also be expected that more conformal
bootstrap results will be available, soon, see, e.g., Ref. [137]. As has been the
case for the chiral Ising universality class, the critical exponents of the chiral
XY and chiral Heisenberg universality classes, have not been satisfactorily
settled, yet. For thesemodels, a thorough study of the critical exponents from
resummation and interpolation techniques is under way. /*For an up-to-date
overview on these universality classes, see the tables in Ref. [150].*/

An alternative and promising approach for the quantitative characterization
of the 2+ 1 dimensional chiral universality classes could also be the analysis
of low-energy finite-size torus spectra at quantum critical points, cf. Refs. [181,
182]. Moreover, we note that it has recently been possible to observe strongly-
correlated behavior and superconductivity in graphene-based systems,
i.e. in twisted bilayer graphene [32, 33]. While it is currently not clear
which mechanism underlies these transitions, the chiral universality classes
may become relevant in this context, too. This, however, is still subject to
discussion [183–187] and further experimental data and theoretical studies
are required to settle the situation.
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While the Landau-Ginzburg-Wilson paradigm introduced in Chapter 2 has
proven tobe extremely successful in quantifying continuous (quantum)phase
transitions (remember the stunning agreement for the O(2)-universality class
across complementary methods in Section 2.4.2), numerical simulations
for various systems [36, 40, 134, 188] hint that there could be exotic phase
transitions that can not easily captured this way. In this Chapter, we want
to tell the story of a certain type of these transitions which are driven by
deconfined degrees of freedom. It’s an intriguing lesson of theory-building
to see how an unexpected twist in numerical simulations can open up an
entire field of novel and surprisingly subtle transitions beyond the LGW
paradigm [39, 40]. Its foundations lie in the discovery of topological order
and especially its relevance to condensed matter systems [38]. In the on-
going discussion, it was shown that unconventional long-range-entangled
states, i.e. spin-liquid states, can be stabilized in situations in which the
magnetic frustration is large. Their non-local fractionalized excitations lead
to fascinating new physics [53, 189] and novel fractionalized universality
classes [54].

We will pave the road to the following projects by giving an partly historical
overview on how especially the field of deconfined quantum critical points
emerged, what its remaining questions are and which future prospects it
reveals.

4.1 Beyond the Landau-Ginzburg paradigm

In the Landau-Ginzburg-Wilson (LGW) paradigm, we introduced in Chap-
ter 2, the an order parameter concept plays a pivotal role. Its dynamics
display both, a spontaneously broken symmetry of the ground state and
the long-range properties of the system at criticality. We have seen that this
notion is very successful in a vast collection of continuous phase transitions
including quantum phase transitions as discussed in Sec. 2.2. The crucial
feature from our persepective in these stories is the spontaneous breaking of
a certain symmetry by any kind of ordering. But what if we are confronted
with two symmetry breaking orders as limits of the same system and ask for
the transition between them?

In the LGW language of dynamically evolving order parameters, we would
search again for a functional of the free energy which incorporates the
two competing orderings by independent operators, e.g. )1 and )2. These
account for the two distinct symmetry breaking orderings with 〈)8〉 ≠ 0.
The )4-theories of Chapter 2 in mind, a simple example of such a functional
could look like

�!()1 , )2) = A1)
2
1 + �1)

4
1 + A2)

2
2 + �2)

4
2 + 6)2

1)
2
2 , (4.1)

where we omitted any kinetic terms of the order parameter fields )8 for the
moment. Here the last term with coupling 6 accounts for the competition of
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Figure 4.1: Scenarios of order-to-order tran-
sition in the LGW paradigm. (A) Both order-
ings coexist in a crossover region. (B) One
ordering is superseded by the other one in
a first order transition. (C) The transition is
continuous with a critical point where both
orderings vanish. A

〈)1〉 〈)2〉
(A)

A

〈)1〉 〈)2〉
(B)

A

〈)1〉 〈)2〉
(C)

2: Nevertheless, we mention the existence
of multicritical points which fall in the latter
scenario. In the recently discussed example
in Ref. [31, 190], the broken symmetry is
similar and even enhances to a higher sym-
metry directly at the critical point. A feature,
we should keep in mind.

3: Precisely, the staggered magnetization
does not commute with the Hamiltonian
and it’s a non-trivial finding that the Néel
order for spin-1/2 survives the strong quan-
tum fluctuations. While this was studied
in Ref. [192, 193] for spin ( ≥ 1, we lack a
rigorous proof but know from numerical
studies that the ground state shows long
range Néel order [194, 195].

the two orderings which are tuned by A1 and A2. Minimizing this functional
�! leaves us with three non-trivial scenarios1

1: There is a fourth, but trivial, scenario
where there is a region of disorder and both
order parameters vanish. However, it turns
out this case is irrelevant for quantum mag-
nets in two dimensions (see the discussion
below).

as shown in Fig. 4.1

(A) Both orderings coexist for a range of A8 where 〈)1〉 ≠ 0 ≠ 〈)2〉.
This scenario is sometimes called crossover.

(B) One ordering is suddenly replaced by the other one in
a first order transition.

(C) There is a continuous transition between both orderings where
〈)1〉 → 0 exactly when 〈)2〉 acquires a finite value.

While in case (A) for the coexisting ordering the coupling 6 of our functional
(4.1) simply vanishes and the situation in case (B) of a first-order transition
covers nearly every non-trivial situation for 6 ≠ 0, the continuous transition
as in scenario (C) needs an unnatural fine-tuning of the A8 with the condition
A1 = A2. Of course the latter is still possible, but in the light of our discussions
so far, it seems very unlikely for a generic system with two distinct ordered
ground states2.

4.1.1 Spins on a square lattice

Let’s turn to a practical system where the above discussion becomes im-
portant and look at spin-1/2 Heisenberg magnets. In the plain Heisenberg
model, we can formulate the interaction of the spins by a simple product of
their operators Y8

� = �
∑
〈8 , 9〉

Y8 · Y 9 , (4.2)

where we sum over nearest neighbors and interaction has the strength � > 0.
This is known in the literature as theHeisenbergHamiltonian [38, 191].While
the SU(2) spin symmetry is preserved by the Hamiltonian in the ground
state an antiferromagnetic Néel order3 is favored, as shown on the left in
Fig. 4.2. It breaks the SU(2) spin symmetry but preserves the translational
lattice symmetry.

What are other possible symmetry breaking ground states spin-1/2 particle
can take on the square lattice? To answer this question, we induce different
orderings by extending the Heisenberg Hamiltonian by another SU(2)
symmetric term, e.g.

� = �
∑
〈8 , 9〉

Y8 · Y 9 −&
∑
〈8 , 9 ,:,;〉

(
Y8 · Y 9 − 1

4

) (
Y: · Y; − 1

4

)
. (4.3)

For this second term with strength & [41], we deliberately chose a columnar
dimer ordering type encoded in 〈8 , 9 , :, ;〉. They refer to the corners of
a plaquette, such that 8 9 and :; form two parallel adjacent horizontal or
vertical links [41]. It pushes the system to the formation of specific singlet
patterns. Note that both terms still fulfill a SU(2) spin symmetry and the
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6 ≡ &/�
62Néel valence bond solid

or Figure 4.2: Cartoon of the possible symme-
try breaking ground states of the �-&-model.
As explained in the text, we can tune from
the Néel order for 6 � 1 to the VBS for
6 � 1. In the LGW paradigm, there is a
62 with most likely a first order transition
between the two phases. Note that the VBS
phase can take one of four orientations [200].

4: To be precise, the Néel order, i.e. stag-
gered magnetization, is spatially uniform.

5: This line of argument is frequently used
to identify quantum spin liquid phases
which allegedly lack an order parameter
distinguishing its ground state [203].

Figure 4.3: From [36]: Order parameters of
spin stiffness �B (Néel order) and a plaquett-
stripe order (VBS) tuned by the ratio of their
interactions strengths  /�. Surprisingly, the
transition is continuous which and suggests
scenario (C) in Fig. 4.1.

choice for the four spin term was made only for practical reasons in the
following story. Indeed, also other SU(2) symmetric four spin term could be
considered [196–198] which favor other singlet patterns while preserving
the SU(2) spin symmetry without altering this story’s course [199].

Crucially, the Hamiltonian in Eq. (4.3) displays two distinct symmetry break-
ing orderings. For � � &, the spins will again align anti-ferromagnetically
to the Néel order and therefore spontaneously break the SU(2) symmetry to
U(1). Nevertheless, this transition preserves the translational lattice symme-
try4. In the opposite limit, for � � &, neighboring spins will form another
non-trivial ordering, the so-called valence bond singlet

= 1√
2
( − ) . (4.4)

On the lattice, all the sites will pair up to one of the four feasible columnar
valence bond solids (VBS) as depicted on the right side in Fig. 4.2. Most
importantly, in this ground state the translational and rotational lattice
symmetries are broken. On the contrary, the SU(2) spin rotational symmetry
is preserved.

Ourmodel, therefore, allows for two non-trivial ground states as limits of the
ratio 6 ≡ &/�. Each of them breaks completely distinct symmetries which
are preserved by the other. Even better, we can tune through the transition
between them by adjusting 6 and as we learned above the most likely nature
of this transition will be the coexistence of both patterns or a first order
transition.

While for classical spins one would also expect a featureless paramagnetic
phase in this model, this is not possible in the quantum version. Inspired
by the Lieb-Schultz-Mattis-Theorem [201] for half-integer spin system in
13, Hastings [202] proved that also for higher dimensions a generic SU(2)
spin system like (4.3) will have only two possible types of ground states: (i)
the ground state is gapped and degenerate (e.g. equipped with topological
order or a spontaneously broken discrete symmetry) or (ii) the ground state
remains gapless. The paramagnetic valence bond solid ground state falls in
the first category by breaking the discrete lattice translational symmetry5
Surprisingly, the theorem by Hastings also rules out a region of disorder
which one could naively expect with the classical limit in mind.

4.1.2 Numerical findings

The Hamiltonian in (4.3) is called �-& model [41, 42]. Similar to the class of �1-
�2 models, it is especially amenable to quantum Monte-Carlo methods [204,
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6: The results of an extensive finite tempera-
ture quantumMonte-Carlo simulations [42]
even show a ‘quantum critical fan’ (at finite
)) with a dynamical critical exponent I = 1.

Figure 4.4: Emergent SO(5) symmetry at the
critical point on the square lattice as seen
from the joint probability distribution of
both order parameters T for the Néel phase
and (!G , !H) for theVBSphase. (Taken from
Ref. [44]).

205]. In this light, it appears natural to approach the question above about the
type of the transition between the two competing symmetry breaking orders
numerically. Surprisingly, the first studies of the �-& model by Sandvik et
al. [36] show an unexpected continuous transition6 which suggests scenario
(C) in the LGW paradigm of Fig. 4.1. Based on these findings, there remain
only two explanations: (i) the continuous transition is a coincidence or (ii)
the LGW paradigm fails in describing this transition. While considering
only this very first observation in Ref. [36], one could argue the former.
However, similar results where found for various lattice realizations [43,
198, 199, 206–211]. Even more, it was confirmed for more general SU(#)
symmetric models [196, 204, 212] and in distinct numerical methods [44, 213,
214]. Beyond that, these are not the only transitions which seem to evade the
LGW paradigm and there was found evidence for various similar critical
points between two ordered phases [37, 134, 215].

This naturally raises the question if we have encountered an exotic class of
continuous phase transitionswhich lies beyond the LGWparadigm.While the
authors Ref. [36] evidently report a continuous transition, complementary
studies observed an anomalous scaling behavior [216, 217] as well as a
drift of the critical exponents with the system size ! [43, 212]. Further,
recent numerical simulations argued that the apparently strong scaling
violations are a consequence from an actuallyweakly first order transition. The
latter entails a reminiscent pseudo-critical behavior which could explain an
anomalously large correlation-length as well as the drifting exponents [218,
219]. These contradictory observations opened a discussion about the very
nature of the transition itself. We will address the intricacies of these results
and their possible origin in the following Chapter.

But this is not the only unexpected observation concerning this transition. An
intriguing feature which most of the numerical works share is an emergent
SO(5) symmetry at the critical point [44, 199, 220, 221] as shown in Fig. 4.4.
Not least, also this observation triggered the exploration of a novel web of
dualities between theories which share such a critical point [50, 51]. We will
elucidate this lead and its implications in Section 4.3.

4.2 Deconfined quantum criticality

Sparked by the numerical findings, physicists started to wonder if a continu-
ous transition between the Néel order and the valence bond solid can occur
naturally, without artificial fine-tuning. Surprisingly, it is indeed possible and
the intricate subtleties of the theory behind also explain why the LGW had
to fail in the first place. In the following, we want to lay out the landmarks
of the derivation up to the critical theory. For a detailed and more rigorous
derivation we refer to Ref. [40] and the original papers by T. Senthil, S.
Sachdev and L. Balents [38, 39].

4.2.1 From Néel to VBS – and back

In the previous Section, we already explained that there are two possible
competing orderings of spins on a square lattice: the translational invariant
Néel phase and the SU(2) spin rotational invariant valence bond solid.
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7: To be precise: In order to finally arrive
at the Landau-Ginzburg theory, we have to
soften the length constraint of the non-linear
sigmamodel. This is done by introducing an
appropriate potential of the form <2T2 +
�T4.

Figure 4.5: Depiction a skyrmion on a two
dimensional lattice. Its winding number &
in this case is −1. (Taken from Ref. [223]).

8: F. Duncan M. Haldane was awarded
with the Nobel prize in 2016 for his work
on “theoretical discoveries of topological phase
transitions and topological phases of matter.” to-
getherwithDavid J. Thouless and J.Michael
Kosterlitz.
9: In fact, we can write down a Lagrangian
which involves all sorts of monopole in-
sertions and not only �4. Our restriction
already incorporates the findings by Hal-
dane [224].

Crucial for the following discussion is the oberservation that each of them
breaks the symmetry of the other phase.

Let’s start our discussion in the Néel phase with the fluctuating order
parameter field T (x , �)which describes the staggered magnetization on the
lattice. We skip the details of the derivation towards a field theory using
spin coherent states [222] and directly write down a continuum theory at
zero temperature for the order parameter field

S=
1

26

∫
d2Gd�

[(∇T )2 + (%�T )2] + S�(T ) , (4.5)

where 6 ∼ &/�. This is the non-linear sigma model, accompanied by a
topological term S�. The first part we already saw in the very beginning
of this thesis. It resembles the three-dimensional version of the Landau-
Ginzburg theory7.

But the most important part of this theory is indeed the Berry phase term
S�. It arises naturally from the path integral construction and measures the
topological defects of the theory [222]. For a spin system, these non-trivial
configurations are known as skyrmions and may look like the one shown
in Fig. 4.5. The role of the Berry phase is to measure the appearance of the
skyrmions with an integer topological winding number & by integrating
over a closed sweep of the fluctuating vector T (x , �)

& =
1

4�

∫
d2G T · %GT × %HT . (4.6)

For smooth equal-time configurations, the Berry phase will vanish and the
winding number & is conserved (in time). However, on the lattice there are
events allowed which change & in time by some integer in a monopole event.
Precise calculations carried out by Haldane8 show that the only allowed
monopole events are quadrupled hedgehogs where the winding number
jumps by ±4 [224]. In the field theory, this can be respected by an additional
term9 to the Lagrangian which reads

Lmp = �4((E†G)4 + E4
G) (4.7)

Here, �4 denotes the monopole fugacity and the operators E(†)G insert
monopoles of strength ±2� at G in space-time [40, 222]. In the RG, this
direction turns out to be irrelevant [40]. For our derivation, the most impor-
tant feature of the hedgehogs is that they preserve the SU(2) spin rotational
symmetry same as the VBS phase. In fact, the quadrupling of the instantons
upon proliferation will induce the /4 structure seen in this phase. A thor-
ough analysis supports this hint by suggesting that the operators EG may be
identified with the VBS order parameter [40, 225, 226].

For the further derivation, it turned out to be convenient to change to the
complex projective (CP) parameterization [38, 222]. It allows to rewrite the
Néel vector in fractionalized degrees of freedom

T = I∗2�I� . (4.8)

The introduced spinon degrees of freedom z = (I1 , I2) are two component
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10: Having the usual definition of a gauge
field for a magnetic field H = ∇ × G in
mind, the crucial difference to the gauge
fields known from electrodynamics is that
the equation above would admit magnetic
monopoles with ∇ · H ≠ 0 at the core of
a hedgehog event. This gives us a more
intuitive notion why the gauge field has to
be compact.

spin-1/2 particles which entail an all-important U(1) gauge redundancy

I → I ei�(x ,�) . (4.9)

We skip the tedious calculational details [40, 222] at this point and will arrive
straight at the appealing result. The introduction of the gauge redundant
spinons gives rise to a gauge field �� which can be promoted to an indepen-
dent degree of freedom after a Hubbard-Stratonovich transformation. Thus,
the non-linear sigma model under the presented fractionalization translates
into the following form

S=
∫

d2Gd�
∑


|(%� − i��)I |2 + S� . (4.10)

Also the Berry phase term can be rewritten now in terms of the gauge field
��. In fact, the winding number & in Eq. (4.6) decodes to the flux of the
gauge field at any instant of time

2�& =
∫

d2G
(
%G�H − %H�G

)
. (4.11)

Since the winding number can change only by an integer, this equation
renders the gauge field �� compact10 (being an angle modulo 2�).

Deep in the Néel phase, the hedgehog events are very costly and therefore
absent. However, at the critical point they start to proliferate and eventually
destroy the Néel order [38, 40]. Above, we already mentioned that the Berry
phase term only allows for quadrupled instantons and it turns out that upon
their proliferation the system will ultimately take the ℤ4 structured VBS
order. This means the topological defects of the Néel phase described by the
Berry phase term carry the quantum numbers of the VBS order and thus the
phase transition is expected to be continuous. We will make this statement
more precise in the next Section. But first, let’s try to approach the critical
point also from the VBS ordered phase where the situation turns out to be
more intuitive.

From the VBS phase.

We start the discussion on the same track but on the other end of the road
deep in the VBS phase. Here, a natural phenomenological candidate for a
theory is the XY model with quartic anisotropy which accounts for the ℤ4
order and its fluctuations. The discrete symmetry group ℤ4 in this context
means that the bonds can have four different orientations on the lattice
as shown in Fig. 4.2 on the right. The multiple orientations on the same
lattice are separated by domain walls. Similar to the hedgehog events in
Néel phase, these topological defects of the VBS order become crucial at the
transition [200].

Figure 4.6: ℤ4 vortex in the VBS phase:
When the four different orientations of the
VBS order meet they create a swirl of do-
main walls with an untangled spin-1/2 at
the site at its center.

A special case is the ℤ4 vortex, where all four different orientations come
together at one point forming a swirl of domain walls as shown in Fig. 4.6.
Surprisingly, this situation will always leave one untangled spin-1/2 in its
center carrying already the Néel quantum number. This gives us already a
first hint how a spin degree of freedom as apparent in the Néel phase can
come into play. But how do these swirls spark and why do not they destroy
the VBS order outside the critical point?



4.2 Deconfined quantum criticality 55

(a) (b) (c)
Figure 4.7: Cartoon of deconfinement in the
VBS phase. (a) Starting in the VBS a spin-
1 excitation creates two spin-1/2 spinons
which are metaphorically glued together by
a topological term (b). Driving these spinons
apart costs energy and confines them. At
the critical point (c) the spinons get liberated
and proliferate.

11: This means it is relevant in the XY phase
and only irrelevant at the critical point. How
this is possible we will elucidate in the fol-
lowing section.

12: Strictly speaking, it is a special case
of the compact CP#−1 model with a #-
component scalar.

13: Precisely, Murthy and Sachdev show
that for large # the @ = 4 hedgehog
monopole events we identified above as the
driving defects at the transition are strongly
irrelevant in 3 = 3 dimensions.

Recall that the valence bond consists of a super-position of neighboring
spin-1/2 states as written in Eq. (4.4), i.e. we can think of them as being
composed by the very same fractionalized spinons I. If we now break up
a valence bond singlet to a spin-1 excitation, we are left with two spinons
next to each other as shown in Fig. 4.7 (a). Pulling them apart will create a
line of defects and therefore cost energy proportional to the length of the
line. Consequently, deep in the VBS, the spinons will be confined and do not
exist as free excitations [200]. Note also that by this procedure we create
two ℤ4 vortices (vortex and antivortex) with opposite charge in the gauged
picture we drew above. For the case of the XY model (without the spin
structure), it can be explicitly shown that the quartic anisotropy, whichmakes
up the glue between the spin-1 fragments, becomes dangerously irrelevant11
at the critical point [227]. This results in the emergence of a non-compact
gauge theory same as in the explanation above when starting in the Néel
phase. The spinons in this picture are no longer bound, become deconfined
and proliferate. The explicit mapping for the XY model is known as the
charge-vortex duality [48, 228].

4.2.2 Critical theory of the DQCP

We now turn to the critical point alone. In the above discussion, we have
seen that the topological defects of each phase carry the seeds of the other.
We also learned that while in principle feasible these defects are confined.
Only at the critical point, they condensate to finally render the transition
continuous. Precisely, the two competing order parameters have long-ranged
statistical interactions mediated by the topological defects what ultimately
explains why a macroscopic theory in the LGW paradigm with only local
order parameters had to fail.

The critical theory can best understood by applying these findings on the
fractionalized spinon formulation in Eq. (4.10). Here the Néel phase is
captured by a kinetic term of the spinons, while the VBS ordering is hidden
in the Berry phase term (�. This model is known as the compact CP1 model
due to the compact gauge field and the # = 2 spinon components12. A
detailed analysis, we spare here, shows that both the compactness as well
as the Berry phase are relevant perturbations and we can not drop them
individually [40, 222]. However, for# = 1, we know about the charge-vortex
duality. In the renormalization group language, it tells us that at the critical
point neglecting both becomes a dangerously irrelevant perturbation. Thereby,
dropping both terms simultaneously is safe only at the critical point. A similar
result can be found for # →∞ by a saddle-point approximation [229]13. By
continuity [38, 230], it is now expected this feature holds also for # = 2 as
present here. It implies lifting the compactness and the Berry phase at the
same time is, in fact, a dangerously irrelevant perturbation at the critical
point. A conjecture which might not be true and we will shed some light on
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Figure 4.8: Schematic RG flow of spin-1/2
quadratic lattice. The NCCP1 model does
not include themonopole fugacity�4 which
is anyhow a (dangerously) irrelevant pertur-
bation at the critical point.However, if tuned
through the critical point at 62 , the system
will flow to a U(1) spin-liquid state at inter-
mediate scales before finally terminating in
the VBS phase. (Taken from Ref. [39]).

this in Chapter 5. Upon softening the length constraint on the spinons, we
obtain at the critical point the non-compact CP1 (NCCP1) model

SNCCP1 =
∫

d2Gd�

[ ∑
=1,2
|(%� − i��)I |2 + A |I |2 + �|I∗I |2 +

1
442 ����

��

]
.

(4.12)

Here, the gauge field promotes to a non-compact one and couples minimally
to the spinons by a standard Maxwell term with the field strength tensor
��� = %��� − %���. While the original theory has no dynamical gauge
degree of freedom, it will be generated under RG transformations and we
can take it into account already from the beginning.

For A < 0, the expectation value of the spinon field 〈I〉 ≠ 0 and consequently
〈T〉 ≠ 0, i.e. the system is in the Néel phase. For A > 0, however, we obtain
〈I〉 = 0 which on first glance seems not to capture the VBS phase. This is
because the NCCP1 model does not include a term for the monopole fugacity
anymore. We neglected this term because perturbations in the �4 direction
were found irrelevant at the critical point.

In the RG flow of the spin-1/2 square lattice, the corresponding �4 direction
is attracted to the critical point at 6 = 62 , cf. Fig. 4.8. In this picture, the
NCCP1 model describes the flow only on the axis for �4 = 0. If we tune the
flow from theNéel phase (with A < 0 in the NCCP1 model) through 62 , it will
flow towards a U(1) spin liquid phase. However, this fixed point is unstable
to perturbations in the �4 direction. Consequently, RG transformations will
terminate in the infrared at the VBS phase fixed point with �4 →∞.

In conclusion, at a deconfined quantum critical point the transition is
governed by fractionalized spinon degrees of freedom which are “confined”
in either of the adjacent ordered phases. While the field theory at the critical
point alone, the NCCP1 model, looks apparently like a harmless abelian
version of the )4-theory, it is still a strongly coupled theory. Crucially, the
existence of the critical point described by the action in Eq. (4.12) is based on
a continuity argument between the large-# limit and the # = 1 case as we
mentioned before. This subtle intricacy provides an analytical RG angle on
the discussion raised by the unsettled numerical results (see Sec. 4.1.2). We
will partly address this discussion in the next Chapter.

4.3 Conjectured web of dualities from DQCPs

A duality connects in principal equivalent descriptions of the same theory
(or certain aspects of it) and therefore not only resolve ambiguous theoretical
formulations but can also serve as powerful tool for revealing its underlying
fundamental structures which in case of condensed matter systems are
encoded in the conformal invariant quantum field theories describing the
critical point. In general, dualities can be categorized in weak and strong
formulations [51]. A weak duality connects two descriptions of the same
physical system by two theories which therefore share the same local opera-
tors and global symmetries. The prime example of dualities in field theory,
the charge-vortex duality [48], for instance is a weak duality. It states that
the superfluid-Mott-insulator transition is equally described by interacting
charges14

14: In the literature, the charge-vortex dual-
ity is sometimes coined particle-vortexwhich
in the authors’ opinion is a less ambiguous
phrasing.

or vortices coupled to a U(1) gauge field. Both descriptions capture
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15: Numerical evidence for this duality has
been purported very recently as well [210,
215].

the same universal long-wavelength physics and describe the same critical
point [48, 228, 231]. A strong duality supposes that the critical point is
described by a certain conformal field theory (CFT). Each theory with a
continuum Lagrangian that flows under RG in to this infrared CFT may
be connected by relevant perturbations. This is a much more powerful
concept which provides dual descriptions of both sides of the corresponding
phase transition. Numerical simulations [232] suggest that the charge-vortex
duality may even be a strong one.

In the derivation of the deconfined quantum critical theory on the square
lattice, we made already use of the charge-vortex duality or to be more
precise of the consequent self-duality of the easy plane NCCP1 model [40,
233]. While this duality connects theories in the bosonic sector only, the idea
inspired a search for a fermionic counterpart. Initiated by ideas of D. T. Son
on the Dirac theory of the half-filled Landau level [234], it was proposed
that the theory of a free massless fermion is dual to Dirac fermions coupled
to a U(1) gauge field [45–47]. While this can be indeed understood as the
fermionic counterpart to the charge-vortex duality it remains entirely in the
fermionic sector.

However, there were also found early indications for a boson-fermion
duality at the critical point which suggests the equivalence between (2 + 1)3
quantumelectrodynamics (QED3) andan easy-planeversionof theCP1 sigma
model15 at criticality [235]. Together with the fermion-fermion dualities,
these findings triggered the conjecture of partly ‘bosonized’ fermion-boson
dualities [49, 236]. Even better, a comprehensive web of dualties between 2+
13 theories from both gauged fermionic and bosonic sector was spanned [50].
While some of the proposed (conjectured) dualities can be explicitly derived
within a lattice formulation [237], advancing established supersymmetric
dualities [238] or at least verified in the large-# limit [239], most of them still
lack a rigourous proof or at least convincing consistency checks. A subsection
or “miniweb” [51] of this novel dualities focuses on deconfined quantum
critical points. The intriguing emergent SO(5) symmetry (see Fig. 4.4) in
this context was proposed to be a consequence of a strong duality between
the SU(2) symmetric NCCP1 model and a strongly coupled version of the
QED3 theory coined QED3-Gross-Neveumodel. Wewill look into this model
and its conjectured scaling relations from the perturbative renormalization
group point of view in Chapter 6.





1: To honor its many discoverers ap-
propriately it should always be referred
to as the Anderson-Englert-Brout-Higgs-
Guralnik-Hagen-Kibble mechanism [241–
244], of course.
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The theory of the deconfined quantum phase transition of spin-1/2 particles
on a square lattice involves some subtleties and pitfalls. Nevertheless, the
theory we developed directly at the critical point, the NCCP1 model, is
surprisingly unfashionable. Although it is a strongly correlated field theory,
at first glance it appears innocuous and more like the big gauge-redundant
brother of the well known )4-theory which we discussed in Chapter 2. One
might naively assume a renormalization group analysis is not too much of a
challenge. However, this assessment quickly turns out to be too simple, at
least from the RG perspective. Rather, the features of the theory as we will
describe them in the following, as well as the perturbative renormalizability,
force us to discuss the generalized Abelian Higgs model instead of the
NCCP1 model.

The content of this Chapter was published in Ref. [56] and is a result of collaboration
of the author with Nikolai Zerf, Peter Marquard, Igor F. Herbut and Michael M.
Scherer. The formulations and figures were kept unchanged and only slightly updated
or re-arranged or for better readability. Intermediately added sentences are tagged by
/*[...]*/.

5.1 Motivation

The abelian Higgs (AH) model is one of the most fundamental field theories
in both condensed matter and particle physics. It serves as the prime
textbook example for the superconducting transition and the Anderson-
Higgs mechanism [17, 61, 69, 240]1. The AH model features a complex scalar
field coupled to a fluctuating U(1) gauge field, and it displays two distinct
phases separated by a sharp transition: the symmetric phase and the phase
with spontaneously broken symmetry. In the context of superconductors, the
symmetric phase is related to the normalmetallic state and the spontaneously
symmetry broken phase to the superconductingMeissner state. As discussed
in Chapter 4, the three-dimensional AH model with a single complex scalar,
the charge-vortex duality links this transition to the continuous transition of
the XY model [48, 228]. Moreover, this statement is backed up by numerical
simulations of lattice versions of both models which confirm the conjectured
mapping, and also suggest a continuous transition [48, 232, 245].

However, the field-theoretical analysis of the AH model including its gen-
eralized version with = complex scalars has turned out to be surprisingly
subtle. The subtlety originates in the presence of fluctuating complex scalars
and other fluctuating massless modes – here, coming from the gauge fields.
Such a scenario is generic and also arises in quantum phase transitions
of electronic systems. Indeed, in the AH model, the determination of the
nature of transition as a function of =, i.e. the question of whether it is
discontinuous or continuous, is a long-standing problem in the theory of
critical phenomena [48, 228, 232, 245–255]. In mean-field approximation, for
example, the = = 1 transition is found to be discontinuous. This is further
supported by renormalization group (RG) calculations at one-loop order
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2: In the “reply” on these findings in
Ref. [198], the authors interpret the confor-
mal bootstrap bounds as a hint for a second
relevant field and conjecture it destabilizes
the DQCP by topological defects.

and in 4 − & dimensions, which only for a very large value of = > =2 ∼ 183
show a critical point [246]. The next-to-leading order loop expansion, on the
other hand, shows a dramatic reduction of the critical =2 , but due to the large
magnitude of this correction, it remains rather inconclusive [249, 250] and
has led to the belief that a perturbative RG is not well-suited for the question
at hand. Nevertheless, with the sophisticated tools we are well suited to
fill this long-standing void by performing a perturbative RG calculation to
four-loop order and in the parameter & = 4 − 3, primarily to provide an
improved estimate for the critical number of complex scalars =2 above which
the transition becomes continuous.

In fact, the =-component extension of the AHmodel is not only a playground
for theoreticalmethods, but has is closely related to theNCCP=−1 models [40].
It is expected to have the same critical behavior also for the case of = = 2 we
found as the describing field theory in the deconfined quantum criticality
context, see Eq. (4.12) [38–40, 204, 233]. On top of that, similar scenarios
have been devised for = = 3, 4 [206, 212] and can possibly be generalized
to even higher =. To make this point clear, in the derivation of the NCCP1

model, the existence of a critical point which analytically continues from the
large-= results was only conjectured [38, 230]. In this light, we come back to
the numerical findings, we already mentioned in Section 4.1.2. Our main
concern are the doubts from recent numerical analyses [218, 219] whether
the transition indeed is a continuous one in studied the spin models. In
Ref. [218], the authors argue instead for a weakly first order transition but still
confirm the emergent symmetry predicted by the DQCP scenario. Absence
of a continuous transition with the scaling dimensions as found in Monte
Carlo simulations is further supported by bounds from symmetry-enhanced
conformal field theories [94, 256] which would suggest a contradictory
non-unitary 2 conformal field theory at the critical point. These combined
results suggest that the DQCP scenario is more subtle than initially expected
from basic arguments.

The finding that similar scaling properties and violations are present in a
variety of models suggests that the numerically observed phenomenology is
not uniquely tied to a particular lattice realization and also not exclusively
explicable by a fourfold anisotropy of the valence bond solid order param-
eter [196, 207, 208, 213, 214, 218, 219, 257]. Rather, it can be expected to be
related to a general mechanism which is tied to universal physics described
by an effective theory at the phase transition, i.e. the AH model.

In fact, weakly first-order transitions naturally appear in complex conformal
field theories [50, 218, 219, 258] where a RG fixed point is complex-valued
and, if imaginary parts are small, the complex fixed point slows down and
controls the RG flow of real and unitary gapped physical theories. Such
behavior naturally occurs in models where two RG fixed points collide,
annihilate and move into the complex plane [259–265], e.g., the AH model
below =2 .

These observations suggest that the =2 of the three-dimensional =-component
AHmodel should be above but still near = = 2, 3, 4, to be compatible with the
numerical findings. Through the explicit higher-loop RG analysis presented
in this work, we provide the quantitative background for this scenario.
Furthermore, we note that the special point of = = 1, which exhibits a
continuous transition, is not continuously connected to the critical point at
large = > =2 [218].
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5.2 The abelian Higgs model

The =-component abelian Higgs model is also known as scalar quantum elec-
trodynamics (QED) and is defined in 3-dimensional euclidean space(time)
by the Lagrangian

L= |��) |2 + 1
4
�2
�� + A |) |2 + �(|) |2)2 . (5.1)

Here, ) = ()1 , ..., )=) describes the =-component complex scalar field
with mass term A and quartic interaction �. It is minimally coupled to the
dynamical non-compact U(1) gauge field �� via the covariant derivative
�� = %� − 84�� with charge 4 and indices �, � run from 0 to 3 − 1. Common
summation convention over repeated indices is implied. The gauge field
comes with the field strength tensor ��� = %��� − %��� and we add a
gauge fixing term Lgf = − 1

2� (%���)2 where � denotes the gauge fixing
parameter.

For the case of a single complex scalar field, = = 1 and in three spatial
dimensions, the model is paradigmatically used to describe the supercon-
ducting transition [266] and also the nematic-to-smectic transition in liquid
crystals [246]. Generally, the scalarmass parameter A can be considered as the
tuning parameter of the transition towards, e.g., the superconducting state
where the amplitude fluctuations of ) become massive and – if the charge is
finite 4 ≠ 0 – the phase fluctuations of ) can be completely absorbed into
the gauge field which becomes massive, too. This is the abelian and simplest
version of the Higgs mechanism.

Relation to the CP
=−1

model

In Ch. 4, we already learned that there is a close relation between the
NCCP=−1 model (with the same universality as the AH model) and the
CP=−1 model with the following action

SCP=−1 =
1
2C

∫
d3G

(
%�)̄

0
8 %�)

0
8 + ()̄08 %�)08 )()̄18 %�)18 )

)
(5.2)

Note, that the fields are constraint by ∑=
0=1 )̄

0
8 )

0
9 = �8 9 [267, 268]. In terms of

the renormalization group functions we can further establish this relation by
considering the non-linear sigmamodel (nl�m)definedon theGrassmannian
manifold of*(=)/[*(=− ?)×*(?)]. In fact for ? = 1, the symmetric space is
isomorphic to CP=−1 [269], i.e. the models share the same universality class.
The beta function �C for general ? was computed in 3 = 2 + & to four-loop
order [269–271]. and features an IR-unstable fixed point �C(C2) = 0 reading

C2=
&
=
− 2&2

=
+ 3(= − 4)

2=3 &3−
(
2=2 − 51= + 126

)
6=4 &4+O(&5) , (5.3)

which is real valued for all = > 0. Consequently, the associated correlation-
length exponent 1/� is

1
�
= &+ 2

=
&2+ (3= − 4)

=2 &3+
(

11
=3 −

9
2=2 +

1
=

)
&4+O (

&5) . (5.4)
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A further connection can be drawn between the above NL�M with target
space *(=)/[*(= − ?) × *(?)] and a (*(?) × *(1) gauge theory with
Lagrangian [268, 272]

L= |��)0 |2+ �2

4 + �
2

4 +�()̄0)0)2+�()̄0)1)()̄1)0). (5.5)

Here, �� = %� − i4�� − i6�� is the covariant derivative and �2 (�2) are
kinetic terms for the*(1) ((*(?)) gauge fields �� (��). Eq. (5.5) represents
a generalization of the AHmodel and its beta functions can be deduced from
it upon replacing = → ?= supplemented by the beta function for the (*(?)
gauge field [268]. For ? = 1 we recover the AH model beta functions. The
large-= expansion for Eq. (5.5) gives correlation-length exponent [272]

� =
1

3 − 2

(
1 + 2(32 − 3) sin(3�/2)Γ(3 − 1)?

�=Γ2(3/2)
)
,

and anomalous dimension

�=
?

2=

(2(3 − 4) sin(�3/2)Γ(3 − 1)
�3 Γ2(3/2)

)(
1− 4(3 − 1)2

4 − 3
)
.

As a check, we will expand the critical exponents of the AH model to first
order in 1/=. An order-by-order agreement in & corroborates the evidence
that both theories lie in the same universality class for large =.

5.3 Renormalization group analysis

The AH model has an upper critical dimension of 3+2 = 4 where the charge
and the quartic coupling, 68 ∈ {61 =  = 42 , 62 = �}, become marginal
simultaneously, i.e. it is perturbatively renormalizable in 3 ≤ 3+2 . Here,
we present a perturbative renormalization group analysis in 4 − & dimen-
sions using dimensional regularization (DREG) and the modified minimal
subtraction scheme (MS) to four-loop order. To that end, we introduce the
bare Lagrangian, which is the one from Eq. (5.1) with fields and couplings
replaced by their bare counterparts, i.e. G ↦→ G0 and G ∈ {), �� , 4 , A ,�, �}.
Then, the renormalized Lagrangian reads

L′ =/) |��) |2 + /)2 A�2 |) |2 + /)4��&(|) |2)2 + /�
4
�2
�� −

1
2�
(%���)2 .

(5.6)

with ��) = (%� − 84�&/2��)) and � defines the energy scale parametriz-
ing the renormalization group flow. Here, we have introduced explicit �
dependencies to rescale the dimensionless couplings in (4 − &) dimensions
as well as the wavefunction renormalizations /) and /� to relate the bare
and the renormalized Lagrangian through )0 =

√
/)) and �0,� =

√
/���.

Accordingly, the bare and the renormalized bosonic mass terms are related
by A = A0�−2/)/−1

)2 and we obtain the following relations between the bare
and the renormalized couplings

 = 42
0�
−&/� , � = �0�

−&/2
)/
−1
)4 . (5.7)

For completeness, we note that the flow of the gauge-fixing parameter is
encoded in the relation � = �0/−1

� . In Fig. 5.1, we show the different types of
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Figure 5.1: The four types of diagrams, we
have to compute in the perturbative renor-
malization group procedure. Wiggly lines
represent the gauge field�� and dashed the
bosonic field ). Each diagram corresponds
to the renormalization of the its correlator
〈����〉, 〈)∗)〉, 〈)∗��)〉 and 〈|) |4〉

diagrams necessary to compute. In total, we computed 1,908,140 diagrams.
The calculation of the renormalization constants /G with G ∈ {), )2 , )4 , �}
at four-loop order is performed by using an automated protocol which
is described in Appendix B as well as in the appendix of the original
publication [56].

From the renormalization contants, we can construct the renormalization
group beta functions which are defined as the logarithmic derivatives of the
dimensionless renormalized couplings {61 =  = 42 , 62 = �} with respect
to 1 = �−1. Schematically, the beta functions have the form

�8 =
d68

d ln 1
= &68 +

∑
:

�(:ℓ )8 , (5.8)

where the index : indicates the loop order. Explicitly, we obtain for the
gauge coupling ,

�(1ℓ ) = −=
3
2 , (5.9)

�(2ℓ ) = −2=3 , (5.10)

�(3ℓ ) =
( 49

72=
2 − 29

8 =
)
4 − =2+=

2 3� + =2+=
8 2�2 . (5.11)

The beta functions for the quartic self-interaction coupling � up to three-loop
order are given accordingly as

�(1ℓ )� = −62 + 6� − (= + 4)�2 , (5.12)

�(2ℓ )� =
( 14

3 = + 30
)
3 − ( 71

6 = + 29
2
)
2� − (4= + 10)�2 + ( 9

2= + 21
2
)
�3 ,

�(3ℓ )� =
(− 7

18=
2 + [ 203

8 − 27�3
]
= + 367

8 − 45�3
)
4 (5.13)

+ (− 5
216=

2 + [
18�3 − 989

8
]
= − 889

4 − 54�3
)
3�

+ ( 43
16=

2 + [
18�3 + 1749

16
]
= + 1093

8 + 126�3
)
2�2

+ (− 33
16=

2 + [−15�3 − 461
16

]
= − 185

4 − 33�3
)
�4

+ ( [ 25
2 − 6�3

]
= + 29

2 + 6�3
)
�3 ,

where �3 = �(3)denotes theRiemann �-function. The four loop contributions
are presented in Appendix C.2. Note that the beta functions are gauge
parameter independent as expected. Further, the expressions are in full
agreement to the two-loop results [61, 247]. Also, in the limit  → 0 we
recover the beta functions of the purely bosonic 2=-vector model up to
four-loop order [148]. For completness, we list the beta function of the gauge
fixing parameter in Appendix C.2 as well. Note that we also provide the
field anomalous dimensions there.
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Figure 5.2:Renormalization group flow and
fixedpoint annihilation in theAbelianHiggs
model. The perturbative computations sug-
gest that above a critical number of scalar
compenents =2 an IR-attractive charged FP
exists. At =2 this collides with the bicritical
FP so that they annihilate and disappear in
the complex plane of the quartic coupling.
At =2 , the transition switches from continu-
ous to weakly first order.
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5.3.1 Fixed point collision at =2

/*In Section 2.4, we showed that the critical behavior of a theory in the renormal-
ization group approach is encoded in the stability matrix �8 9 of a fixed point {6∗8 }
(FP). Recall that the eigenvalues �8 and eigenvectors v8 of �8 9 determine the critical
exponents and the corresponding directions. Positive eigenvalues describe relevant
and negative ones irrelevant directions. A vanishing eigenvalue means the RG flow
in this direction becomes marginal.*/

When twoFP solutions coincide, the flowbetween them ismarginal, implying
that the stability matrix has a vanishing eigenvalue, i.e. the determinant
vanishes,

det(�8 9)|{6∗8 } = 0 , (5.14)

providing an additional condition to the fixed point equations in Eq. (2.42).
We use Eq. (5.14) and the condition of a vanishing eigenvalue, �8 = 0 for
some 8, as a criterion for the appearance of a fixed point collision for both,
the abelian Higgs model in (4 − &) dimensions as well as the non-linear
sigma model in (2 + &) dimensions, see below.

At one-loop order, the beta functions read

�(1ℓ ) = −=
3
2 , �(1ℓ )� = −62 + 6� − (= + 4)�2 . (5.15)

This set of beta functions features four fixed points (FP) where &, i.e.
�8(∗ ,�∗) = 0 and scaling may emerge. In 3 = 4 − &, one FP is the triv-
ial Gaussian fixed point, ∗ = �∗ = 0, and another one is the Wilson-Fisher
fixed point of the scalar O(2=) model, ∗ = 0,�∗ = &/(= + 4) + O(&2).
The two remaining non-trivial non-Gaussian fixed points have identical
FP coordinate of the gauge coupling, ∗ = 3&/= + O(&2). There are two
corresponding FP solutions for the quartic interaction,

�∗± =
3(18 + = ± √B)

2=(= + 4) & + O(&2) , (5.16)

where B = =2 − 180= − 540. We refer to (∗,�∗+) as the charged FP and to
(∗,�∗−) as the bicritical FP . The charged FP is irrelevant in both directions,
i.e. represents a stable FP. The bicritical FP is unstable to perturbations in
the quartic coupling.

Thefixedpoints have a strongdependence on thenumber of field components
=, in particular, the quartic coupling only provides real-valued solutions
above a certain critical = > =2 , when the radicand B of the square root in
Eq. (5.16) is positive. At = = =2 the two fixed points collide and, for = < =2 ,
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drift into the complex plane. The one-loop analysis predicts that this happens
for values of

=2,0 = 6(15 + 4
√

15) ≈ 182.95 . (5.17)

Consequently, for = ≥ =2 there is a continuous transition while below it is
expected to become first-order [246]. Note that we neglected an unphysical
negative solution =2,− = 6(15 − 4

√
15) + O(&) ≈ −2.952 + O(&). At the next

order around the negative solution =2,−, we find it to become even more
negative =2,− ≈ −2.952(1 + 1.62323& + O(&2)).
In the previous section, we considered the fixed points of the AH model at
one-loop level and found that two fixed points collide and disappear in the
complex plane when tuning the number of scalar components =. The critical
number =2 below which the fixed points disappear in the complex plane
was computed by analyzing the imaginary part of the quartic coupling’s
charged FP coordinate. Here, we compute corrections to this value at higher
orders.

We use Eqs. (2.42) and (5.14) to calculate the fixed point collision point =2
in the parameter = at higher orders in the epsilon expansion to obtain the
series expansion

=2 ≈ =2,0 + =2,1& + =2,2&2 + =2,3&3 + O(&4) , (5.18)

with =2,0 from Eq. (5.17) and we find

=2,1 = − 9
70

(
317
√

15 + 1265
)
, (5.19)

=2,2 =
53396968 + 25893277

√
3
5

768320
+

27981 − 22872
√

3
5

245
�3 , (5.20)

=2,3 =
197218191162096 − 49532015359609

√
15

189744307200
+ 1251897

490
�5 − 492241

49
√

15
�5

+

(
9327 − 7624

√
3
5

)
9800

�4 +

(
5103190199

√
15 − 17908675920

)
50421000

�3 , (5.21)

where, again, �3 = �(3) and �5 = �(5) denote the Riemann � function.
Numerical evaluation then provides the approximate expression

=2 ≈ =2,0
(
1 − 1.752& + 0.798&2 + 0.362&3) + O

(
&4) . (5.22)

This series expansion exceeds previous estimates by two orders in &. Since
the coefficients in the series of Eq. (5.18) are still decreasing in magnitude,
we provide direct evaluation for & = 1, see Fig. 5.3. In the following, we will
explore resummation of the series.



66 5 Fixed point collision in the abelian Higgs model

Figure 5.3: Direct evaluation of the epsilon
expansion in Eq. (5.18) for the critical num-
ber of components =2 at different orders
in &.
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Order & = 1

&0 182.95
&1 -137.54
&2 8.42
&3 74.69

Table 5.1: Padé and Padé-Borel approxi-
mants of the epsilon expansion evaluated
at 3 = 3 (& = 1). The Padé-Borel [2/1] is not
availabe due to a singularity in the integral
of the Borel sum.

[</=] Padé Padé-Borel

[0/1] 66.48 89.11

[0/2] 36.42 66.78
[1/1] –37.25 –46.53

[0/3] 25.27 58.42
[2/1] 129.81 –
[1/2] 1.81 –13.65

5.4 Resummation of =2

The expansions from perturbative RG calculations are asymptotic series.
Consequently, obtaining reliable estimates for =2 at 3 = 3 requires resum-
mation. Whether or not such resummation yields reliable results depends
on the underlying model, the order of the expansion and the knowledge
about the large-order behavior. We begin with a Padé-(Borel)-resumamtion
of the actual epsilon expansion and then move on to more sophisticated and
equally hypothetical interpolation to two dimensions. Application of the
Borel resummation scheme as shown in Chapter 3 was not fruitful and we
refer for details on this to the appendix in our publication [56].

5.4.1 Resummation of (4 − &) expansion
At first, we explore three resummation schemes for the series in (4 − &)
dimensions, i.e. 1. Padé approximants, 2. Padé-Borel approximants and
3. Borel resummation. The employed schemes presented here are conven-
tional and we use standard notation, e.g., for the Padé approximants [</=].
Explicit definitions are provided in the appendix of Ref. [56]. We display
the available Padé and Padé-Borel approximants order by order in Fig. 5.4
and in Tab. 5.1. The Borel resummation scheme including the corresponding
set of resummation parameters is introduced in the apendix of Ref. [56]
and we merely state the results here. Optimization through variation of the
resummation parameters according to the principle of minimal sensitivity
and the principle of fastest convergence yields a negative weighted mean
value for =2(& = 1)with a huge error of =2(& = 1) ≈ −52 ± 45. In the present
case, we find that the three methods do not allow us to extract a precise
numerical result for =2(& = 1) and estimates are scattered over a rather large
range.

The main conclusion drawn from this one-sided resummation analysis is
therefore merely that =2(& = 1) lies significantly below the leading-order

Figure 5.4: Resummed epsilon expansion
for the critical number of components =2 .
Left panel: Padé approximants. Right panel:
Padé-Borel approximants. (Adapted from
Ref. [56])
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3

=2

2 4

183

3

1
=

AH↔ XY

Figure 5.5: Schematic plot of =2(3). When
we fix it at =2(3 = 2+&) = 0&with 0 > 0, the
curve will hopefully lie in the gray shaded
area. Note that the point with = = 1 at 3 = 3
is known to be a continuous transition from
the charge-vortex duality [48].

3: The scaling of higher-derivative terms is
found to be H = 2− 2: + & + 2:(: − 1) C∗ for
terms 2: derivatives, cf. Ref. [273].

result of =2,0 ≈ 183.

5.4.2 Dimensional interpolation

In view of the high order series for =2 in &, we would like to obtain a better
estimate on =2(& = 1) than the one from the resummations explored in
the previous section. This is possible through an interpolation between
two and four dimensions and by additionally including the assumption of
=2(3 = 2+ &) = 0&, with unknown coefficient 0 > 0. /*Assuming a continuous
function for =2(3) we can hope to find it somewhere in the gray shaded area of
Fig. 5.5 in 3 ∈ (2, 4). Above the line we then would expect a continuous transition
and below a weakly first order one. Note that with = = 1 at 3 = 3 we know the
transition has to be continuous because of the charge-vortex duality [48] but this
point does not necessarily lie in the large-= interpolation. Before we carry out the
explicit interpolations between two and four dimensions, we briefly review the
arguments leading to that conjecture.*/

Nonlinear � model in (2 + &) dimensions

The first item is suggested from studying the nonlinear sigma model in
(2+ &) dimensions, e.g., in the CP=−1 formulation [267, 268] as we laid out in
Sec. 5.2. Practically, this connection is exhibited by comparing their critical
exponents with the large-= result expanded in the respective dimension
which turn out to be identical. We find that, the large-= inverse correlation-
length exponent expanded around 3 = 2 + & agrees with the exponent from
the CP=−1 model to all availabe orders in &. Therefore, the two expansions
near two and four dimensions in the respective models can be employed to
provide for a continuous interpolation of the same renormalization group
fixed points in the plane (=, 3) for large enough = > =2(3).
In the CP=−1 model =2(3 → 2) → 0 [267, 268]. Moreover in 3 = 2 + &, the
beta function of the model coupling C features a real valued fixed-point
solution C∗ for all = > 0, which for small & is C∗ = &/= + O(&2). Therefore, a
fixed-point collision is expected to be exhibited in the symmetry-allowed
higher-derivative terms of the non-linear sigma model. For example, the RG
scaling of the canonically least irrelevant higher-derivative terms, i.e. the
four-derivative terms, is found to be3 H4 = −2 + & + 4 C∗ at one-loop order.
A fixed-point collision would now be indicated by a vanishing of H4, i.e.
when the scaling becomes marginal, cf. Eq. (5.14), which at that order yields
=2(3 = 2 + &) = 2& + O(&2).
At this point a word of caution seems in order. Concerning a possible
fluctuation-induced fixed-point destabilization due to the RG relevance of
terms with an even larger number of derivatives in nonlinear sigma and
related models, there has been a extended discussion in the literature, e.g.,
Refs. [273–275], which we here will not attempt to resolve. Instead, we
take on a pragmatic approach by assuming that near two dimensions the
first fluctuation-induced relevant direction comes from the least irrelevant
canonical terms, which is the four-derivative term. Moreover, since C∗ is of
O(1) at that point and therefore not small, the corrections to the leading-order
behavior of H4 cannot be expected to be small either. We therefore refrain
from fixing the coefficient of the epsilon expansion of =2(3 + &) and just
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write =2(3 = 2 + &) = 0&, with unknown coefficient 0 > 0 as stated above,
see also Ref. [218].

Interpolation

A suitable interpolation between the two critical dimensions can now be
constructed by using a polynomial ansatz as we employed it already in Chap-
ter 3. To that end, we use both epsilon expansions for =2 , simultaneously, and
set up an interpolating function in the interval 3 ∈ [2, 4]. More specifically,
we choose a polynomial interpolation with polynomial %8 , 9(3) of degree 8+ 9,
where 8 (9) denotes the highest order of the epsilon expansion in 3 = 2 + &
(3 = 4 − &) dimensions, i.e 8 = 1 and 9 ∈ {1, 2, 3, 4}. We fix the polynomial
coefficients of the first 8 + 1 terms with the expansion near the lower critical
dimension. The remaining 9 + 1 higher-order coefficients are then deter-
mined from the requirement that the 9 lowest derivatives of %8 , 9(3) at 3 = 4
correspond to the (4 − &)-expansion. The resulting polynomials are then by
construction 8-loop exact near the lower critical dimension and (9-loop) exact
near the upper critical dimension. From this calculation, we obtain inter-
polating functions for general coefficient 0, i.e. %1,1(3 = 3) ≈ 11.35 + 0.250,
%1,2(3 = 3) ≈ 2.023 + 0.1250, %1,3(3 = 3) ≈ 17.86 + 0.06250, exhibiting that
the dependence on the coefficient 0 is rather weak.

In Ref. [218] the additional conjecture that =2(3) increases monotonically, i.e.
=′2(3) > 0, has been put forward, however, without further justification. Here,
we briefly discuss the impact of this assumption: while %1,3(3) increases
monotonically for 0 < 0 . 80, %1,1(3) requires 10 . 0 . 200 and %1,2(3) is
never monotonous for 2 < 3 < 4. We show the results for the polynomial
interpolation as a function of 3 in the left panel of Fig. 5.6 and compiled
their estimates at 3 = 3 in Tab. 5.2.

Following the same reasoning, we can set up two-sided Padé approximants
2[</=](3), cf. the right panel of Fig. 5.6 and Chapter 3 for definitions. Tenta-
tively, setting 0 = 1, we observe that increasing the order in 2[</=](3) from
< + = = 3 to < + = = 5 decreases the range spanned by the estimates for
=2(3 = 3) order by order. This behavior is even more pronounced upon
disregarding the values which belong to non-monotonous interpolations,
i.e. dropping the values for 2[3/1] and 2[4/1].
We use the highest order, < + = = 5, including the non-monotonous 2[4/1],
to calculate the average and error

=2(3 = 3) ≈ 12.2 ± 3.9 . (5.23)

This is our best estimate based on the above reasoning. We have also studied
the dependence on the parameter 0 and find that, within an extended range
of 0 ∈ [0.2, 5], this estimate varies mildly, see in the appendix of Ref. [56].
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Figure 5.6: Left panel: Estimates from poly-
nomial interpolation for the critical num-
ber of components =2(3) for 0 = 1. Right
panel: same for two-sided Padé approxi-
mants. (Adapted from Ref. [56])

Table 5.2: Estimates from polynomial inter-
polation and two-sided Padé approximation
for the critical number of components =2
at 3 = 3 dimensions for 0 = 1. The values
which belong to a non-monotonous inter-
polating function =2(3) for 3 ∈ [2, 4] are
printed in italics.

polyn. Int. Two-sided Padé

%1,1 11.60 2[2/1] 26.62
2[1/2] 3.77

%1,2 2.15 2[2/2] 18.76
2[1/3] 6.56
2[3/1] -1.40

%1,3 17.92 2[2/3] 16.32
2[3/2] 14.11
2[1/4] 9.80
2[4/1] 8.06

5.5 Deconfined pseudo criticality

/*Since the =-component abelian Higgs model has been argued to describe the
universal properties of the Néel–valence-bond-solid transition as we laid out in
Chapter 4, we may also comment on the on-going discussion of the recent numerical
simulations we mentioned earlier from the renormalization group perspective.
Especially the strong violations of scaling which was accounted to a weakly first
order transition with an anomalously large correlation length and drifting critical
exponents could possibly explained by walking of the RG flow and the caused
Miransky scaling.*/

5.5.1 Miransky scaling

The behavior described above may be due to emergent walking behavior
that appears when two fixed points have just been annihilated and vanished
into the complex plane, e.g., just as it happens in the AH model below =2 .
Here, we briefly recap the underlying reasoning using the beta functions at
one-loop order, cf. Eqs. (5.15). At that order for the gauge coupling the fixed
point value ∗ = 3&/= can be acquired for any choice of = ≶ =2 . Further, the
gauge coupling is irrelevant and we therefore can replace  = ∗ in the beta
function for the quartic coupling �, to obtain

3�
3 ln 1

���
∗
=

(
1 + 18

=

)
&� − (= + 4)�2 − 54

=2 &
2 . (5.24)

This flow equation can be integrated yielding

ln
(
1IR
1UV

)
=
−2=
&
√−B arctan

(
2=(4 + =)�−(18 + =)&

&
√−B

)�����IR

�UV

,

with B = =2 − 180= − 540, again. For = . =2 , where B < 0 and |B | � 1, the
flow of � proceeds as follows: � starts at some positive value, goes through a
walking regime and eventually diverges towards negative values. Therefore,
in the infrared and the ultraviolet, the argument of the arctan is always
large, i.e. we can use limG→±∞ arctan G = ±�/2. Arbitrarily choosing 1UV = 1
and renaming 1IR = !IR, we obtain the exponentially large infrared length
scale [218, 261, 262]

!IR(=) ' exp (� 5 (=)) , where 5 (=) = 2=
&
√−B , (5.25)

which is also referred to asMiransky scaling. Note that including the running
of the infrared-attractive gauge coupling yields power-law corrections to
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=

� ∞
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Figure 5.7: Depiction of the Miransky scal-
ing below the fixed point collision. Towards
but below =2 , the correlation-length � grows
exponentially leading to a strong hierarchy
of length scales close to =2 . Above =2 , the
fixed point exists andwe can observe critical
behavior with � = ∞.

this behavior [276]. Further, higher-loop contributions will generally modify
the function 5 (=).
Now, approaching =2 frombelow, this correlation length grows exponentially
to diverge at =2 . Therefore, to obtain a large correlation length, one needs to
be close to =2 , which at one-loop order, Eq. (5.25), is =2,0 ∼ 183. Generically,
small changes in = . =2 induce a large hierarchy in length scales, for example
at & = 1, !IR(180)/!IR(179) ∼ 833 or !IR(179)/!IR(178) ∼ 97 which, however,
decreases rapidly when = moves away from =2 . In case, = is further away
from =2 , the correlation length is, of course, exponentially suppressed.

Including higher-loop contributions into this reasoning will significantly
change the quantitative aspects of this behavior, but not its qualitative fea-
tures. For this work, we refrain from providing a corresponding quantitative
analysis, since this would require an appropriate resummation of the under-
lying higher-loop beta functions. We postpone such an analysis to the future
and describe the underlying qualitative implications, instead.

Hierarchy of length scales

In numerical simulations of deconfined quantum transitions, similar scaling
violations have been observed for various lattice models [196, 207, 208, 213,
214, 257] and, notably, also for a range of values for =, i.e. = = 2, 3, 4 [206, 212].
Here, based on our four-loop calculations and the interpolating functions
from Sec. 3, we will explore whether such scaling violations for = = 2, 3, 4
can be consistently be ascribed to the pseudo-critical or walking behavior
related to Miransky scaling, cf. Eq. (5.25), in the three-dimensional AH
model. First, we note that our estimate of =2(3) ≈ 12.2 ± 3.9, Eq. (5.23),
tentatively supports the scenario that =2(3) is of comparable order as the
physically relevant = = 2, 3, 4. Uncertainties in this determination are still
large and it is therefore conceivable that the true =2(3) is closer to = = 2, 3, 4.
The following reasoning, however, will not rely on the precise number =2(3),
but on the behavior of the interpolating function =2(3) for 3 ∈ [2, 4] as
exhibited in Fig. 5.6.

The essential feature of the infrared length scale as given by the Miransky
scaling, Eq. (5.25), is that the length scale diverges when approaching =2
from below as shown in Fig. 5.7. This is related to the singularity in the
argument 5 (=) appearing in the exponential at =2 . Sufficiently close to =2 , the
slope of !IR(=) diverges, too, and small variations of = are expected to lead
to large changes in !IR(=). This behavior is generic unless the function 5 (=)
is exceptionally flat just before it develops the singularity, e.g., like an inverse
step function Θ−1(=2 − =). Whereas, we cannot quantitatively determine the
function 5 (=) fromour present analysis, our interpolating functions for =2(3),
cf. Fig. 5.6, do not provide indications for such exceptionally flat behavior.We
therefore expect that near =2 a change of = → = ± 1 significantly impacts the
correlation length due to its exponential behavior. On the other hand, if = is
further away from =2 , it is exponentially suppressed and the pseudo-critical
or walking regime where, approximate scaling can be observed, should be
small.

We conclude that, generically, a substantial hierarchy of characteristic corre-
lation lengths can be expected for different values of =. In particular, if the
true =2(3) lies close enough to = = 2, 3, 4, we predict that the three cases
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should exhibit this large hierarchy of length scales, which can be probed in
numerical simulations by comparing the correlation lengths for = = 2, 3, 4.

5.6 Discussion and Outlook

We have delivered a study of the =-component AH model at four loops and
in (4− &) dimensions and analysed the critical number of complex scalars =2 ,
below which a fixed-point collision appears and the phase transition turns
from second to first order. Based on a series of assumptions on the topology
of the RG flow between two and four dimensions, we have obtained a smooth
interpolating function =2(3) and our best estimate for the three-dimensional
case yields =2(3) ≈ 12.2 ± 3.9. Slightly below =2 weakly first order behavior
occurs with a correlation length which is governed by Miransky scaling, i.e.
it is exponentially suppressed upon increasing the distance to the point of
fixed-point collision.

Due to this exponential dependence, even small variations of = are expected
to induce substantial changes in the correlation length unless the argument
appearing in the exponential is an exceptionally flat function of =. We do
not find indications of such behavior and therefore predict a large hierarchy
of correlation lengths for different =, if =2(3) is near these values. This is
relevant to the results from different lattice studies of the corresponding
deconfined phase transitions for = = 2, 3, 4 and we expect that indications of
this hierarchy of length scales can be measured in numerical simulations.

In the future, it will be interesting to extract more quantitative estimates for
the merging line 32(=) employing appropriate resummations of the beta
functions [277]. /*A potential prospect could be offered by non-perturbative RG
as explored in Refs. [253–255, 278]. These works either find a vanishing =2 at
three dimensions [253, 254] or a strong regulator dependence [255] when using the
modified Ward-Takahashi identities [83]. A conclusive answer to this question from
the RG perspective is therefore still pending.*/
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The conjectured web of dualities we discussed in Chapter 4 also involves the
duality between the SU(2) symmetric noncompact CP1 model, describing
the Néel-VBS deconfined QCP, and the QED3-Gross-Neveu (QED3-GN)
model [50]. This latter theory consists of 2+13 gapless Dirac fermions that are
charged under a U(1) gauge field as in QED3, but are additionally coupled
to a critical Gross-Neveu scalar field. The duality implies an emergent SO(5)
symmetry at the deconfined QCP [50], which rotates components of the
Néel and VBS order parameters into each other. Such an emergent symmetry
had in fact been observed numerically earlier [44] as well as confirmed in
more recent simulations [199, 220, 221]. Although having passed a number
of consistency checks [50], it should be emphasized that this fermion-boson
duality, just as most of the other new duality relations in 2+1 dimensions,
lacks a formal proof. In particular, it is at present unclear, whether the strong
version of the duality holds, implying that the two theories flow to the same
renormalization group (RG) fixed point and describe the same infrared
physics, or only a weaker version applies, stating that the two theories “live
in the same Hilbert space,”. In the later, they have the same local operators,
the same symmetries, and the same anomalies (if any) [50]. Assuming the
strong version of the duality, however, implies a number of nontrivial scaling
relations between the CP1 and QED3-GN models, as well as new pertinent
scaling relations entirely within the QED3-GN model itself. These scaling
relations allow to test the duality conjecture on a quantitative level and,
eventually, to answer the question which version of the duality applies.

Recently, it has been shown that the QED3-GN model exhibits an infrared
stable RGfixed point, the existence ofwhich is a prerequisite for the proposed
(strong version of the) duality to hold [279]. This can be established within a
suitable generalization of the model to noninteger space-time dimension 3
with 2 < 3 < 4. This theory has an upper critical space-time dimension of
3+c = 4, enabling one to compute the critical behavior within a controlled
epsilon expansion in 3 = 4 − & dimensions. Here, we extend the previous
one-loop analysis [279] to the three-loop order and compute the scaling
dimensions of various operators to compare with the predictions from the
duality. Moreover, we establish the previously conjectured [279] equivalence
of the QED3-GN model with a gauged fermionic theory in which the boson-
mediated scalar interaction is replaced by a corresponding critical four-
fermion interaction. This fermionic theory is amenable to a 1/# expansion
in fixed dimension 2 < 3 < 4, which allows us to demonstrate order by
order in a double expansion in both & and 1/# the explicit equivalence
of the ultraviolet stable fixed point in this theory with the infrared stable
fixed point of the QED3-GN model. This puts the asserted equivalence of
these gauge theories on the same level as the known ultraviolet-infrared
correspondence between the usual ungaugedGross-Neveu andGross-Neveu-
Yukawa models [127, 156] which connection we exploited in the first project
in Chapter 3.

The content of this Chapter was published in Ref. [57] and is a result of collaboration
of the author with Lukas Janssen, Luminita N. Mihaila and Michael M. Scherer.
The formulations and figures were kept unchanged and only slightly updated or
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re-arranged or for better readability. Intermediately added sentences are tagged by
/*[...]*/

6.1 The QED3-Gross-Neveu model

/*In this Section, we introduce the two relevant U(1)-gauged fermionic models for the
dual description of the deconfined quantum critical point, i.e., the QED3-GN model
and the corresponding gauged four-fermion model. Especially, the QED3-GN model
appears familiar since it can also be understood as the partially gauge-invariant big
brother of the chiral Ising Gross-Neveu-Yukawa model, we extensively discussed
in Chapter 3. Nevertheless, the gauge degree of freedom turns out to be not only
a minor subtlety but elevates the model to a new universality class with its own
challenges.*/

6.1.1 QED3-GN model

TheQED3-GNmodel is defined in 3 = 2+1Euclidean space-time dimensions
by the Lagrangian [50]

L= #̄8( /� + 6))#8 + 1
4
�2
�� +

1
2
)(A − %2

�)) + �)4 , (6.1)

with #8 and #̄8 being 2# flavors of two-component gapless Dirac spinors,
8 = 1, . . . , 2# , which interact with each other through the real scalar field ).
Here, we have abbreviated the covariant derivative /� ≡ (%� − 84��)��, with
the 2 × 2 matrices �� serving as a two-dimensional representation of the
Clifford algebra, {�� , ��} = 2���1. The summation convention over repeated
indices is implicitly assumed. ��� = %��� − %��� is the field strength tensor
of the U(1) gauge field ��, �, � ∈ {0, 1, 2}. In our calculations, we will also
add a gauge-fixing term

Lgf = − 1
2�
(%���)2 , (6.2)

to the Lagrangian with gauge fixing parameter �, allowing us to check the
gauge invariance of our results. In addition to the U(1) gauge symmetry, the
theory satisfies an SU(2#) flavor symmetry and a set of discrete symmetries
such as parity, charge conjugation, and time reversal. Under the latter, the
scalar field ) maps to −). The scalar mass parameter A can be used as a
tuning parameter for a symmetry-breaking phase transition at some critical
Ac. For A < Ac, ) acquires a vacuum expectation value, 〈)〉 ∝ 〈#̄8#8〉 ≠ 0,
signaling the spontaneous breaking of time-reversal symmetry and the
dynamical generation of a fermion mass.

A lattice realization of this ordered state is given by the quantum anomalous
Hall statewith spontaneously generatedmicroscopic currents, a gapped bulk
spectrum, and topologically protected chiral edge states [280]. The gauge
symmetry as well as the flavor symmetry remain intact across this transition.
In Eq. (6.1), the charge 4, the Yukawa coupling 6, as well as the bosonic
selfinteraction � become simultaneously marginal at the upper critical
dimension 3+c = 4, suggesting that the critical point may be approached
within a standard & expansion in 3 = 4 − & space-time dimensions.
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In order to generalize the theory to arbitrary dimension 2 < 3 < 4, we
first combine the 2# flavors of two-component spinors into # flavors of
four-component spinors [281]

Ψ0 ≡
(
#0

#0+#

)
and Ψ̄0 ≡

(
#̄0 ,−#̄0+#

)
, (6.3)

with 0 = 1, . . . , # . The Dirac kinetic term then becomes Ψ̄0%���Ψ0 with
�� = �I ⊗ ��, where �I denotes the diagonal 2× 2 Pauli matrix. �� serves as
four-dimensional reducible representation of the Clifford algebra. The Yukawa
interaction reads )Ψ̄0�35Ψ0 with �35 = 8�3�5 = �I ⊗ 1. Here, �3 and �5 are
the two “left-over” gamma matrices, which anticommute with each other as
well as with �0, �1, and �2 [106, 282]. It is important to note that �35 squares
to one and commutes with the fermion propagator �Ψ(?) = −8�01/?/?2 in
3 = 3. The above theory with the full SU(2#) flavor symmetry therefore has
the same loop expansion as a corresponding theory with a smaller symmetry
of only SU(#) × SU(#) ×U(1), in which the Yukawa interaction is replaced
by the simple scalar interaction involving only the identity operator

)Ψ̄0�35Ψ0 ↦→ )Ψ̄01Ψ0 . (6.4)

This is because in any nonvanishing closed fermion loop, the bilinear operator
�35 occurs always twice and may thence in all diagrams be replaced by
1 from the outset. The critical behavior determined by, e.g., the critical
exponents �) and �, of these two theories should therefore coincide to all
orders in the perturbative expansion. We note, however, that subleading
exponents, such as the corrections-to-scaling exponent $, corresponding to
irrelevant operators, might deviate, cf. Ref. [281].

A generalization of �35 to noninteger dimensions can be obtained by noting
that �35 = − 8

3! &��������� = −8�[�����], where the square brackets denote
complete antisymmetrization. The last form is a well-defined expression also
in noninteger dimension [283], however, this expression does not preserve
the commutation relation between �35 and �Ψ in 3 ≠ 3. In 3 = 4, e.g., one
obtains �35 → ���5, which neither commutes nor anticommutes with �Ψ.
By contrast, the naive generalization of the SU(#)×SU(#)×U(1)-symmetric
theory, which keeps the simple scalar Yukawa term Ψ̄0Ψ0 in all dimensions
2 < 3 < 4, does retain this crucial property of the loop expansion in a trivial
way, [�Ψ , 1] = 0. In this work, we therefore advocate the use of this latter
theory to approach the critical behavior of the QED3-GN model within an &
expansion around the upper critical space-time dimension of 3+c = 4.

6.1.2 Gauged four-fermion theory

In Ref. [279], it was suggested that the infrared stable fixed point in the
critical QED3-GN model can be equivalently understood as an ultraviolet
stable fixed point of a gauged four-fermion model with Lagrangian

L4-fermi = Ψ̄0 /�Ψ0 + 1
4
�2
�� +

62

2A
(Ψ̄0Ψ0)2 . (6.5)

This is reminiscent of the correspondence between the infrared fixed point in
the critical Gross-Neveu-Yukawa model and the ultraviolet fixed point of the
fermionic Gross-Neveu model [127, 156]. The correspondence can be made
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plausible by means of a Hubbard-Stratonovich transformation, where the
quartic interaction is replaced by a Yukawa coupling to an order-parameter
field ), yielding the effective fermion-boson Lagrangian

L′4-fermi = Ψ̄0( /� + 6))Ψ0 + 1
4
�2
�� +

A
2
)2 , (6.6)

which is equivalent to Eq. (6.1) up to the presence of the gradient term∝ %2)2,
the boson self-interaction ∝ �)4 and the previously discussed difference
in flavor symmetry. Within the 1/# expansion, the model (6.5) has been
shown to possess a critical fixed point in all dimensions 2 < 3 < 4 [284–286].
Below, we collect additional evidence that the theories defined by Eqs. (6.1)
and (6.5) lie in the same universality class upon a double expansion in both
1/# and & = 4 − 3. In fact, we carry out this expansion up to linear order in
1/# and cubic order in & and show that the exponents �) and � precisely
coincide order by order in the calculation.

6.1.3 Noncompact CP
1
model

As part of the web of dualties we laid out in Sec. 4.3, the bosonic theory that
has been proposed [50] to be dual to the QED3-GN model is the CP1 sigma
model describing two complex fields I,  = 1, 2. They satisfy the length
constraint ∑ |I |2 = 1, and interact via a noncompact U(1) gauge field 1�.
The Lagrangian can be written as

LCP1 =
1
�

∑


��(%� − 81�)I��2 , (6.7)

with the coupling constant �, which is marginal for 3 = 2 and perturbatively
irrelevant for 3 > 2. In order to employ a controlled expansion in fixed
3 = 2 + 1, the above Lagrangian can be generalized to the CP#1−1 model
by allowing an arbitrary number #b of components of I,  = 1, . . . , #b. At
large #b, the model can be shown to possess a quantum critical point at
finite � = �c, separating an ordered phase for � < �c from a disordered
phase for � > �c. The critical exponents have been computed up to the linear
order in 1/#b [246, 287, 288], yielding the correlation-length exponent �
as

1/�CP1 = 1 + 48
�2#b

+ O(1/#2
b) (6.8)

and the anomalous dimension �I as

�I = −4(3 + 2�)
�2#b

+ O(1/#2
b) . (6.9)

Note that �I depends on the gauge-fixing parameter �, while � is gauge
independent. The case relevant for the deconfined critical point between
Néel and VBS orders on the square lattice is given by #b = 2. The “spinon
fields” I = (I1 , I2)T then describe the fractionalized quasiparticles at the
transition point, and the Néel order parameter is T = I†2I. Here, 2 stands
for the three-dimensional vector of Pauli matrices. The anomalous dimension
of the Néel order parameter is given by �Néel = 1+ 2�I + 2�I†�I , where �I†�I
denotes the anomalous dimension of the vertex I†2I. To the linear order in
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1/#b, it reads

�Néel = 1 − 32
�2#b

+ O(1/#2
b) , (6.10)

in which the gauge dependence has dropped out, as expected [288]. The
coefficient of the leading-order correction ∝ 1/#b is large, and higher-order
calculations are necessary to yield an estimate for the case of #b = 2. The
VBS order parameter is given by the instanton operator M1 , which creates a
monopole in the gauge field 1� with lowest finite topological charge. The
scaling dimension of M1 has been computed up to next-to-leading order in
the 1/#b expansion [289], yielding the VBS anomalous dimension

�VBS = 0.249#b − 0.237 + O(1/#b) , (6.11)

which is well consistent with numerical results for various #b [204].

6.2 Duality conjecture

Let us review the conjectured duality between the CP1 model and the
# = 1 QED3-GN model in 2+1 dimensions [50]. On the bosonic side, the
two real components of the complex VBS order parameter M1 and the
three components of the Néel order parameter T can be combined into a
5-tuplet,

nCP1 = (2<M1 , 2=M1 , I†�GI, I†�HI, I†�II) . (6.12)

Here, the first two components of nCP1 transform into each other under
the global U(1) symmetry, while the last three components transform as a
3-vector under the SU(2) spin symmetry.

On the fermionic side, a monopole in the gauge field �� created by the
operator M� induces a zero mode for each of the two Dirac fermions, with
one of it filled as a consequence of the Atiyah-Singer index theorem [290].
This allows to construct a 5-tuplet in the QED3-GN model with # = 1 as

nQED3-GN =
[<(#†1M�),−=(#†1M�),<(#†2M�),=(#†2M�), )

]
. (6.13)

The # = 1 QED3-GN model has an explicit SU(4) symmetry in 2+1 dimen-
sions, under which the first four components of nQED3-GN are rotated into
each other.

The proposed strong version of the duality now implies that nCP1 and
nQED3-GN are dual to each other when both CP1 and QED3-GN models are
tuned to their respective critical points,

nCP1(�→ �c) ∼ nQED3-GN(A → Ac) . (6.14)

We emphasize that the duality is expected to hold only precisely in 3 = 2+ 1
dimensions and for two flavors of two-component Dirac spinors on theQED3-
GN side (corresponding to # = 1 in our notation). The duality immediately
implies an emergent SO(5) symmetry in both models at criticality, since any
component of nCP1 and nQED3-GN, respectively can be rotated into each other
by applying the symmetry transformation of the respective dual theory. If
the duality holds, it would therefore explain the emergent SO(5) observed



78 6 Deconfined criticality in the QED3-Gross-Neveu model

Figure 6.1: Summary of conjectured dual-
ity relations among and within the CP1

and QED3-GN models. The duality rela-
tion within the # = 1 QED3-GN model is
emphasized by the thicker red arrow and
will be subject to investigation here.

CP1 QED3-GN

�CP1 = �QED3-GN

1/�CP1 = 3 − [Ψ̄�IΨ]

�Néel = �)

�VBS = �)

I†�II

I†I

ℳ1

�VBS = �Néel

)2

Ψ̄�IΨ

)

1/�QED3-GN = 3 − [Ψ̄�IΨ]

numerically at the deconfined critical point [44]. It also implies that the
scaling dimensions of all components of nCP1 and nQED3-GN coincide. For
instance, [M1] = [I†2I], from which we obtain

�VBS = �Néel , (6.15)

which is consistent with the numerics [218]. Also, I†�II ∼ ) implies that
the anomalous dimensions of the CP1 and QED3-GN models coincide at
criticality,

�Néel = �) . (6.16)

Moreover, from the SO(5) vectors nCP1 and nQED3-GN we can construct
traceless second-rank tensor operators

-(2) = n nT − 1
5 (n)215 , (6.17)

with the duality implying

-(2)CP1(�→ �c) ∼ -(2)QED3-GN(A → Ac) . (6.18)

Note that -(2)CP1 involves the operators M†1M1 and T 2, which tune through

the Néel-VBS transition, while -(2)QED3-GN involves )2, which tunes through
the time-reversal-symmetry-breaking transition in the QED3-GN model.
We therefore have that [M†1M1] = [T 2] = [)2], and the correlation-length
exponents must coincide as a consequence of the duality,

�CP1 = �QED3-GN . (6.19)

Even more interestingly, the fermion bilinear #̄�I# = #̄1#1 − #̄2#2 can be
understood to also correspond to an element of -(2)QED3-GN [50], yielding

[#̄�I#] = 3 − 1/�QED3-GN (6.20)

at the critical point of the 2+1 dimensional QED3-GN model. Eq. (6.20)
represents an especially powerful implication of the duality, as it relates the
scaling dimensions of different operators of the same model to each other,
and can thus be fully checked within a standalone QED3-GN calculation [50].
The duality between the CP1 and QED3-GN models and the implications for
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Figure 6.2: One-loop diagrams of the QED3-GN model. The solid arrowed line denotes the fermionic fieldΨ, the dashed line the bosonic field )
and the snake line the gauge field �. In total there are 18 diagrams (we omitted diagrams of the )4-vertex which just have an anti-clockwise
running fermion or interchanged external legs).

Table 6.1: Number of diagrams to compute
in dimensional regularization to the third
loop order.

Type 1ℓ 2ℓ 3ℓ

〈Ψ̄Ψ〉 2 13 177
〈)2〉 2 9 99
〈����〉 1 6 83
〈)Ψ̄Ψ〉 2 38 876
〈��Ψ̄Ψ〉 2 37 844
〈)4〉 9 153 4248

Total 18 256 6327

the critical behaviors are summarized in Fig. 6.1. In the following, we will
compute the critical behavior of the QED3-GNmodel with a particular focus
on this scaling relation as a nontrivial check of the conjectured duality.

6.3 Renormalization group analysis

In principle we employ the same setup for the three-loop renormalization
group analysis in 3 = 4 − & space-time dimensions as in the projects before.
In this section, we want to lay out a few technicalities and further present the
full set of �− and �− renormalization group functions up to three-loop order
before we carry on with the critical behavior in the epsilon expansion.

6.3.1 RG Scheme

The bare Lagrangian is defined by Eq. (6.1) upon replacing the fields and
couplings by their bare counterparts, i.e. Ψ ↦→ Ψ0, ) ↦→ )0, �� ↦→ �0,�,
4 ↦→ 40, 6 ↦→ 60, � ↦→ �0, � ↦→ �0. The renormalized Lagrangian is then
introduced as

L′ = /ΨΨ̄0 /%Ψ0 − i/�Ψ̄Ψ4�
&/2 /�Ψ̄0Ψ0

/�
4
�2
�� +

/)

2
(%�))2

+ /)2
A
2
�2)2 + /)Ψ̄Ψ6�

&/2)Ψ̄0Ψ0 + /)4��&)4 , (6.21)

where � again defines the effective energy scale parametrizing the RG
flow. We have defined the wavefunction renormalizations /Ψ, /), and
/�, which relate the bare and the renormalized Lagrangian upon the field
rescalings Ψ0 =

√
/ΨΨ, )0 =

√
/)), and �0,� =

√
/���. The explicit

� dependencies in the above Lagrangian arise from the introduction of
dimensionless couplings. Demanding that the coefficient in front of the
mass term remains invariant under the RG requires A = A0�−2/)/−1

)2 . The
dimensionless couplings are then related to the bare couplings as

 = 42
0�
−&/2

Ψ/�/
−2
�Ψ̄Ψ

, (6.22)

H = 62
0�
−&/2

Ψ/)/−2
)Ψ̄Ψ

, (6.23)

� = �0�
−&/2

)/
−1
)4 . (6.24)
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In the above equations, we have introduced the dimensionless parameters
 ≡ 42 and H ≡ 62, where we have implicitly used the fact that the RG flow
must be symmetric under sign changes of 4 and/or 6.

We calculate the renormalization factors /G up to the three-loop order for
G ∈ {Ψ, ), �, )2 , )Ψ̄Ψ, �Ψ̄Ψ, )4} near the upper critical dimension by
employing dimensional regularization and themodifiedminimal subtraction
scheme (MS)using a chain of computer algebra tools described inAppendixB.
For the first loop order, the diagrams are shown in Fig. 6.2. Note that we
omitted diagrams which are variations of the shown upon interchanging
external legs. Up to three-loop order, the complete number of diagrams is
sizable as shown in Tab. 6.1 for the different types of diagrams corresponding
to the respective renormalization group factor /G .

6.3.2 Beta functions

The beta functions for couplings G ∈ {, H,�} and the gaugefixingparameter
� are defined as before as the logarithmic derivatives with respect to � as

�G =
dG

d ln�
. (6.25)

We use rescaled couplings G/(8�)2 ↦→ G for G ∈ {, H,�}. To three-loop
order the �-functions can then be written in the form

�G = −& G + �(1L)G + �(2L)G + �(3L)G , (6.26)

where we have defined the functions �(8L)G to collect the contributions of the
8th loop order to the coupling G ∈ {, H,�}.
Up to the three-loop order, the beta function of the gauge coupling  reads

�(1L) =
4
3
#2 , (6.27)

�(2L) = 2#3 − #H2 , (6.28)

�(3L) = −
2#
36

[
22(22# + 9) − 9(7# + 6)H2 + 27H

]
. (6.29)

The beta function for the Yukawa coupling H is given by

�(1L)H = (3 + 2#)H2 − 6H , (6.30)

�(2L)H = 24�2H −
(

9
8
+ 6#

)
H3 − 24�H2 + (12 + 5#)H2 + 1

6
(20# − 9)H2 ,

(6.31)

�(3L)H =
1

16
H2 [

192� + 2 (−64#2 + 98# + 327
) + 48�2(91 − 30#)]

+ 1
64 [2#(112# + 67) − 697] H4 − 1

4
H3 [(79# + 174) − 72�(5# + 7)]

+ 3
4
�3H

[−323# + (18# + 19)H3 + 4(4# + 3)H2 − 122(6# + 7)H]
− 216�3H + 1

108
3 [4#(70# + 621) − 3483] H . (6.32)
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�I = �(I) denotes Riemann’s zeta function. The beta function of the scalar
interaction with coupling � reads

�(1L)� = 36�2 − #H2 + 4#H� , (6.33)

�(2L)� =
(
10� − 72�2 + 4H2 − 2H + 7�H

)
#H − 816�3 ,

�(3L)� = 31320�4− 1
8
#2H

(
642�+157H3−868�H2 − 1162H + 864�2H

)
− 3�3

{
#H

[−12�( + 12�) + 4H3 + 4H
(
2 + 19� − 81�2)

+H2(39� − 8)] − 6912�4} + H
32
#

[
8�

(
6192�2 − 1192 − 1836�

)
+5H3 − 2H2(44 + 4395�) + 4H

(
1312 + 1302� + 4332�2) ] . (6.34)

Note that the beta functions are gauge independent as expected and we use
this as a sanity check on our calculations. Further, the above expressions fully
agree with the QED beta functions [291–293] in the limit of H → 0 and�→ 0.
Also, we recover the beta functions of the Ising Gross-Neveu-Yukawa model
for  → 0 [112, 113] and the scalar )4 theory with Ising symmetry [148].
Moreover, Eqs. (6.27), (6.30), (6.33) are consistent with the one-loop result
from Ref. [279]. For completeness, the beta function of the gauge fixing
parameter is listed in Appendix C.3.

6.3.3 Anomalous dimensions

The field anomalous dimensions �G are defined by �G =
d ln/G
d ln� for G ∈

{Ψ, �, ), )2} and at three-loop order, they can be expanded as

�G = �(1L)
G + �(2L)

G + �(3L)
G . (6.35)

Explicitly, the boson anomalous dimension is given by

�(1L)
) = 2#H , (6.36)

�(2L)
) = −5

2
#H(H − 2) + 24�2 , (6.37)

�(3L)
) =

1
4
#2H

(
25H2 − 162) − 216�3 + 1

32
#H

[
21H2 − 84H − 4762 + 960H�

−2880�2] + 3
2
#H

(
H2 − 4H + 122) �3 . (6.38)

Note that �) involves no explicit dependence on the gauge-fixingparameter�,
which is consistent with the fact that the scalar-field anomalous dimension
determines the exponent in the anomalous power law of the two-point
correlator at criticality.

The exponent �, governing the divergence of the correlation length, can be
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computed from the renormalization of the mass term, which reads

�(1L)
)2 = −12� (6.39)

�(2L)
)2 = −2#H2 + 24#H� + 144�2 (6.40)

�(3L)
)2 = 36#H3 − 28#H2 − 4#2H2(4H − 9�)

− 33
2
#H2� + 153#H� − 288#H�2 − 6264�3

− 12#H
[
H2 − 3H( − 5�) + 12�

]
�3 . (6.41)

The anomalous dimensions for the fermion and the gauge boson are given
in the appendix for completeness. Again, we have checked that these ex-
pressions are fully compatible with the known expressions from QED [291,
292], the Ising Gross-Neveu-Yukawa model [112, 113], the scalar )4 theory
with Ising symmetry [148] and the one-loop results from Ref. [279] in the
appropriate limits.

We are also interested in the scaling dimension of the flavor-symmetry-
breaking bilinear

#̄8(�I ⊗ 1# )8 9# 9 ↦→ Ψ̄0(�I ⊗ 12)Ψ0 ≡ Ψ̄�IΨ . (6.42)

Here �I ⊗ 12 = �35 in our representation of the 2+13 Clifford algebra. A
natural generalization to 3 = 4 − & can be obtained by assuming an even
number # of four-component spinors, allowing us to construct an 8 × 8
operator Γ35 = Γ−1

35 that commutes with the fermion propagator, [�Ψ ⊗
12 , Γ35] = 0. The results for odd # are obtained by analytical continuation.
If the CP1–QED3-GN duality holds, the scaling dimensions of [Ψ̄�IΨ] and
)2 coincide for 3 = 2 + 1 and # = 1 at the critical fixed point, leading to a
nontrivial scaling relation (cf. Sec. 6.2).

To calculate the scaling dimension of the bilinear in Eq. (6.42), we introduce
an additional term ℎΨ̄�IΨ, where ℎ serves as an infinitesimal background
field that couples linearly to the flavor-symmetry-breaking bilinear. To
leading order in ℎ, we obtain

�(1L)
Ψ̄�Ψ

= 3 − 3
2
H (6.43)

�(2L)
Ψ̄�Ψ

=
1

12
2(9 − 20#) + 7

4
#H2 + 9

16
H2 − 6H (6.44)

�(3L)
Ψ̄�Ψ

=
1

216
3 (−280#2 − 2484# + 3483

) + 87H2

4

+ 1
128

(
176#2 − 604# + 697

)
H3 + 137

16
#H2

− 3
8
�3

(
12H2( + 2#) − 323# + 19H3 − 842H

)
+ 3

32
H
(
464�2 + 2(80# − 109)) − 30�H2 . (6.45)

Finally, we note that Eq. (6.43) agrees with the previous one-loop result from
Ref. [279]. We have also checked that it is consistent with the QED limit [283,
294] up to three loops.
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Figure 6.3: RG flow of the QED3-GN model
in (4 − &) dimensions at the one-loop fixed
point gauge coupling ∗ = (4∗)2 = 3&/4.
The critical behavior is governed by the in-
frared stable fixed point (QED3-GN ). Taken
from Ref. [279].

6.3.4 Fixed point structure

At one-loop the QED3-GN model was already analyzed in Ref. [279] and the
RG flow as shown in Fig. 6.3 exhibits several fixed points. In this work, we
build up on these findings and extend the determination of the RG fixed
points order by order in the epsilon expansion. To the leading order, we find
a unique infrared stable fixed point at

(∗ , H∗ ,�∗) =
(

3
4#

,
2# + 9

2#(3 + 2#) ,
−2#2 − 15# + B

72#(3 + 2#)
)
& + O(&2) , (6.46)

where

B ≡
√

4#4 + 204#3 + 1521#2 + 2916# , (6.47)

in agreement with the previous result [279]. The higher-order terms sup-
pressed in the above equation are straightforwardly computed by making
use of the beta functions (6.27)–(6.34), but we do not display them for general
# here for notational simplicity. At# = 1 we obtain to the third loop order

∗ = 3
4 & − 9

40 &
2 + 430

√
4645−101630
48000 &3 + O(&4)

≈ 0.75& − 0.225&2 − 1.50674&3 + O(&4) (6.48)

H∗ = 11
10 & + 86

√
4645−10741

5400 &2 +
(

13263�3
2500 + 271988639

19440000 − 389515313
388800

√
4645

)
&3 + O(&4)

≈ 1.1& − 0.903655&2 + 5.66874&3 + O(&4) (6.49)

�∗ =
(√4645−17)

360 & +
(

14471
32400 − 308027

6480
√

4645

)
&2

+
[

66888(78285599
√

4645−6406570729)
50332551120000 �3 + 1814042581409

√
4645−132453179835199

50332551120000

]
&3 + O(&4)

≈ 0.142095& − 0.250827&2 + 1.53577&3 + O(&4) . (6.50)

We note that the three-loop coefficients are large, signaling the divergent
behavior of the series at finite & ∼ O(1). For general # , the series read

G∗(#, &) =
3∑
:=1

G(:L)
∗ (#) &: , (6.51)

with G∗ ∈ {∗ , H∗ ,�∗} and expansion coefficients G(1L)
∗ , G(2L)

∗ , and G(3L)
∗ at one-,

two-, and three-loop order, respectively. The dependence of the expansion
coefficients as a function of # is shown in Fig. 6.4. Note that the higher-loop
corrections become small for large # in all three cases.
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Figure 6.4: Expansion coefficients G(:L)
∗ from :-loop order of the expansion of the fixed-point values G∗ = ∗ (left panel), H∗ (middle panel), and

�∗ (right panel) as a function of # . The coefficients are large for small # , but satisfy a hierarchy |G(3L)
∗ | < |G(2L)

∗ | < |G(1L)
∗ | at large # . Darker red

(lighter blue) lines denote positive (negative) coefficients.

6.4 Quantum critical behavior

Here, we discuss the critical behavior of the QED3-GN model, which can
be extracted from the &-expansion, i.e. we provide the series expansions for
the inverse correlation length exponent, the boson anomalous dimension
and the fermion bilinear Ψ̄�IΨ up to order O(&3). For comparison, we also
give the corresponding expressions at one-loop order for the four-fermion
model and explicitly establish the correspondence between both models in a
combined epsilon and 1/# expansion.

6.4.1 In the QED3-GN model

When the QED3-GN model is tuned to criticality, the couplings , H, and
� flow to the infrared stable fixed point and the system becomes scale
invariant. Right at the critical point, the two-point correlation function
�)(?) = 〈)(−?))(?)〉 satisfies a power law �)(?) ∝ 1/?2−�) , where the
critical exponent �) is given by the anomalous dimension at the fixed
point,

�) = �)(∗ , H∗ ,�∗) . (6.52)

The gauge-field anomalous dimension �� is similarly given by �� =
��(∗ , H∗ ,�∗) and governs the power law of the gauge-field propagator
��(?) ∝ 1/?2−�� at the critical point. Near criticality, the correlation length
�c diverges with exponent � as �c ∝ |�A0 |−� , where �A0 measures the distance
to the critical point. The correlation-length exponent is obtained from the
flow of the dimensionless mass parameter �A = (−2 + �) − �)2)A as

�−1 = 2 − �) + �)2(∗ , H∗ ,�∗). (6.53)

We also compute the scaling dimension of the flavor-symmetry-breaking
bilinear, which, according to the proposed duality [50], is related to �,

[Ψ̄�IΨ] = 3 − 1 − �Ψ̄�Ψ (6.54)

where �Ψ̄�Ψ = �Ψ̄�Ψ(∗ , H∗ ,�∗).
We have computed the scaling dimensions and the critical exponents for all
# to the third order in & = 4 − 3, see appendix. Here, we display the result
for the situation of one four-component spinorΨ, which is the case relevant
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Figure 6.5: Expansion coefficients of the inverse correlation-length exponent 1/� (left), the order-parameter anomalous dimension �) (middle),
and the scaling dimension of the flavor-symmetry-breaking bilinear [Ψ̄�IΨ] (right) as a function of # . Darker red (lighter blue) lines denote
positive (negative) coefficients. The higher-loop corrections are again large for # = 1, but become small for large # .

for the duality conjecture. For the scalar-field anomalous dimension �) and
the correlation-length exponent � we find for # = 1:

�) = 11
5 & + (

23
√

4645−1768)
900 &2 +

(
91497
5000 �3 + 818567

60000 − 383489
300
√

4645

)
&3

≈ 2.2& − 0.222725&2 + 16.8838&3 + O(&4) (6.55)

and

�−1 = 2 − (
√

4645+49)
30 & +

(
33311

54
√

4645
− 853

540

)
&2 +

(
39308173

27000
√

4645
− 5931383

67500

)
�3&3

+
(

39127961
2430000 − 1646143919039

902988000
√

4645

)
&3

≈ 2 − 3.90514& + 7.47146&2 − 90.5962&3 + O(&4) (6.56)

We expect hyperscaling to hold at the critical point. The other exponents ,
�, �, and � can hence be obtained from the usual scaling laws [66].

In order to compare with the 1/# expansion of the gauged four-fermion
model, it is useful to also compute the exponents �) and 1/� in the limit of
large # . We find

�) =
(
1 + 3

# − 9
2#2

)
& −

(
1
# − 39

8#2

)
&2 −

(
3

4# − 816�3−413
32#2

)
&3 + O(1/#3 , &4)

(6.57)

and

�−1 = 2 −
(
1 + 6

#
− 63

2#2

)
& +

(
7

2#
− 207

8#2

)
&2

+
(

1
#
− 45�3

#2 +
629

32#2

)
&3 + O(1/#3 , &4) . (6.58)

The scaling dimension of the flavor-symmetry-breaking bilinear reads for
# = 1

[Ψ̄�IΨ] = 3 − 8
5 & + (

43
√

4645+646)
1800 &2 +

(
51393
10000�3 − 22196749

3240000 − 37077727
32400

√
4645

)
&3

(6.59)

≈ 3 − 1.6& + 1.987&2 − 17.46&3 + O(&4)
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whereas in the large-# limit we obtain

[Ψ̄�IΨ] = 3 +
(
−1 − 3

2# + 9
4#2

)
& +

(
1

2# − 15
16#2

)
&2

+
(

3
8# + 1−216�(3)

64#2

)
&3 + O

(
1/#3 , &4) . (6.60)

For the gauge-field anomalous dimension �� we find

�� = & + O(&4) , (6.61)

for all# , which is consistent with theWard identity associated with the U(1)
gauge symmetry, requiring /Ψ = /�Ψ̄Ψ in the renormalized Lagrangian,
Eq. (6.21). This result provides another nontrivial crosscheck of our calcula-
tions. The power law of the gauge-field propagator at criticality thus reads
��(?) ∝ 1/? exactly, in agreement with the situation in plain QED3 [295–
297].

We show the expansion coefficients as a function of # for the inverse
correlation-length exponent, the order-parameter anomalous dimension and
the scaling dimension of the flavor-symmetry-breaking bilinear in Fig. 6.5.
The figure demonstrates that only for large enough # the higher-loop
corrections become small. For small # , the series expansions of these other
exponents, in contrast to ��, exhibit a sizable growth in magnitude, with the
three-loop terms for # = 1 being significantly larger than the leading-order
terms. This is in analogy to the notorious situation in multi-loop calculations
of the standard bosonic O(#)models [148]. The determination of estimates
for scaling dimensions of operators in three dimensions therefore requires a
suitable resummation scheme. Due to the lack of knowledge on the large-
order behavior of the series, here, we employ simple Padé approximants.

6.4.2 In the gauged four-fermion model

Here, we compare the exponents �) and � of the QED3-GN model with
those of the gauged four-fermion model in Eq. (6.5). The scaling dimensions
of the latter model have been computed before within the 1/# expansion
for all space-time dimensions 2 < 3 < 4 [284–286]. At the critical point, the
scalar-field propagator in real space satisfies the power law �)(G) ∝

(
1/G2

�

) 0
with exponent [285]

0 = 1 + (3 − 1)Γ(3 − 1)
2[Γ(3/2)]3Γ( 4−32 )

1
#
+ O(1/#2) , (6.62)

where Γ( · ) denotes the Gamma function. From the exponent 0, we obtain
the anomalous dimension �) as

�) = 4 − 3 + (3 − 1)Γ(3 − 1)
[Γ(3/2)]3Γ( 4−32 )

1
#
+ O(1/#2) = 1 + 16

�2#
+ O(1/#2) ,

(6.63)

where the second line correspond to the physical case of 3 = 3. We note
that the O(1/#) correction in �) is positive, indicating an unusually large
anomalous dimension �) > 1, at least as long as # is large. This is in
contrast to the situation in the (ungauged) Gross-Neveu model [159, 162],
but consistent with our result in the QED3-GN model, see Eq. (6.57).
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Near, but not right at, the critical point, the scaling of the propagator receives
corrections according to

�)(G) ∝ 1(
G2
�

) 0 [
1 + 2

(
G2
�

)1
+ . . .

]
, (6.64)

where G ≡
√
G2
�, 2 a constant (with respect to G), and the ellipsis denotes

higher-order terms that vanish upon approaching the critical point. From
the above equation, we can read off the scaling form of the correlation length
�c ∝ |�A0 |−� with � = 1/(21).
Using the result of Ref. [285] for the exponent 1, we find

�−1 = 3 − 2 − Γ(3 + 1)
2Γ

(
4−3

2

)
Γ

(
3
2

)3
1
#
+ O(1/#2) , (6.65)

= 1 − 24
�2#

+ O(1/#2) , (6.66)

where the second line corresponds again to 3 = 3. Expanding the above 1/#
series for �) and � further in & = 4 − 3 allows us to make contact with the
exponents of the QED3-GN model. We find

�) =
(
1 + 3

#

)
& − &2

#
− 3&3

4#
+ O(1/#2 , &4) . (6.67)

and

1
�
= 2 −

(
1 + 6

#

)
& + 7&2

2#
+ &3

#
+ O

(
1
#2 , &

4
)
. (6.68)

Both Eqs. (6.67) and (6.68) precisely agree with the cor responding Eqs. (6.57)
and (6.58) in the QED3-GN model. This constitutes yet another useful cross-
check of our calculations. Even more importantly, this result demonstrates
the equivalence between the QED3-GN model and the gauged four-fermion
model atcriticality, at least in the regime where both 1/# and epsilon
expansions are under perturbative control. Put differently, here we have
explicitly verified the naive expectation that the presence or absence of the
gradient term∝ %2)2 and/or the scalar selfinteraction∝ )4 in the QED3-GN
Lagrangian [Eq. (6.1)] does not change the universality class of the critical
system.

6.5 Estimates for 2+1 dimensions

As is usually the case in a perturbative calculation below the upper crit-
ical dimension, the resulting series are (at best) asymptotic and diverge
upon naively extrapolating to & = 1. This problem can often be overcome
with the help of a suitable resummation scheme, which is a particularly
promising approach if the high-order coefficients can be estimated within,
e.g., a strong-coupling expansion [148]. Due to the limited knowledge of
the strong-coupling behavior in the present fermionic theories, here we
constrain ourselves to a simple Padé approximation. A comparison with
Padé-Borel resummed estimates is deferred to the appendix of the original
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Figure 6.6: Padé approximants of the inverse correlation-length exponent 1/� (left panel), the boson anomalous dimension �) (mid panel) and
the bilinear [Ψ̄�IΨ] (right panel) at # = 1. Note that, e.g., the [1/2] approximant of the boson anomalous dimension �) has a pole in & ∈ [0, 1]
and has therefore been omitted in Tab. 6.2.

Table 6.2: Padé-approximated estimates for
the inverse correlation-length exponent 1/�,
the boson anomalous dimension �) and the
fermion bilinear scaling dimension [Ψ̄�IΨ]
in the # = 1 QED3-GN model in � = 2 + 1
space-time dimensions from two- and three-
loop epsilon expansion. Values, for which
the approximant has a pole in & ∈ [0, 1] or is
not defined, have been omitted (denoted by
“–”). Estimates from [0/3] strongly deviate
from all other Padé approximants and are
hence not displayed.

Order [</=] 1/� �) [Ψ̄�IΨ]
&2 [0/2] 0.6602 – 2.5964

[1/1] 0.6595 1.9978 2.2863
&3 [1/2] 0.6774 – 1.9894

[2/1] – 2.1971 1.6030

publication [57]. At this point, we only note that these yield a larger spread
for the inverse correlation-length than the simple Padé approximants.

6.5.1 Padé approximants

The Padé approximant for a series expansion 5 (&) = ∑!
:=0 5:&

: truncated at
order ! is a rational function

[</=] = 00 + 01& + · · · + 0<&<
1 + 11& + · · · + 1=&= . (6.69)

The results for the correlation-length exponent �, the order-parameter
anomalous dimension �) , and the scaling dimension of the flavor-symmetry-
breaking bilinear [Ψ̄�IΨ] for different Padé approximants are given for the
case of # = 1 in Tab. 6.2 for & = 1 (corresponding to 3 = 2+1) and in Fig. 6.6
as a function of & ∈ [0, 1].
A few remarks are in order:

(1) The deviation between the different Padé estimates is not small, in
particular for the fermion bilinear. Thismay point to an inherent strong-
coupling nature of the problem, indicated by the large fixed-point
values at finite & for # = 1, see Eqs. (6.48)–(6.50). The issue dissolves
for larger # , for which the loop corrections become small.

(2) The order-parameter anomalous dimension is significantly larger than
in the ungauged Gross-Neveu and Gross-Neveu-Yukawa models, for
which �GN

) . 1 [55, 113]. Our result that �QED3-GN
) > 1 in the QED3-GN

models is consistent with the findings at large # , cf. Eq. (6.63).
(3) The Padé approximation predicts an anomalous dimension of the

order of two. Hyperscaling then requires the susceptibility exponent
� to (nearly) vanish. An unusual situation would occur if �) turned
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out to be larger than two, leading to a negative � and a vanishing
susceptibility at the quantum critical point.

6.6 Comparison with duality predicitions

We aim to compare our results for the critical behavior of the QED3-GN
model involving two two-component Dirac fermions (corresponding to
# = 1 in our notation) with the predictions from the conjectured duality
with the CP1 model. We take the mean values for 1/�, �), and [Ψ̄�IΨ],
respectively, from the different Padé approximants shown in Tab. 6.2 as
our best guesses for the critical exponents in 3 = 2 + 1, and the largest
deviation among the different Padé results as an estimate for the order of the
confidence interval. Let us focus on the scaling relation (6.20) that follows
from the assumption of emergent SO(5) symmetry at the deconfined critical
point. This nontrivial relation allows to compare scaling dimensions fully
within the QED3-GNmodel. For the left-hand-side of the relation, we find

[Ψ̄�IΨ] ≈ 2.12(50) , (6.70)

which, according to the duality conjecture, should coincide with the right-
hand-side

3 − 1/� ≈ 2.33(1) . (6.71)

We note that in view of the quickly growing series coefficients for 1/� the
spread is likely to be accidentally small. In any case, these estimates are
consistent with the duality prediction.

We should emphasize, however, that our estimates do not agree with the
exponents measured in the simulations of the spin systems that are believed
to possess a deconfined critical point [41–43, 207, 211, 218], see Table 6.3. In
particular, the anomalous dimensions �Néel ≈ �VBS in these bosonic systems
(although already being an order of magnitude larger than in the usual
Heisenberg or XY universality classes) are significantly below one, while
both the epsilon expansion of the QED3-GNmodel in 3 = 4− & and the 1/#
expansion of the corresponding four-fermion model in fixed 3 = 2+ 1 find a

CP1 QED3-GN (# = 1)

�Néel ≈ 0.26(3) [41] �) ≈ 2.1(1) [this work]
≈ 0.35(3) [42] ≈ 1.3(9) [279]
≈ 0.30(5) [207]
≈ 0.22 [254]
≈ 0.259(6) [218]

�VBS ≈ 0.28(8) [207]
≈ 0.25(3) [218]

3 − 1/� ≈ 1.72(5) [41] 3 − 1/� ≈ 2.33(1) [this work]
≈ 1.53(9) [42] ≈ 2.7(4) [279]
≈ 1.15(19) [207]
≈ 1.21 [254] [Ψ̄�IΨ] ≈ 2.12(50) [this work]
≈ 1 [218] ≈ 1.8(5) [279]
≈ 0.76(4) [43] ≈ 1.98(8)[298]
≈ 0.802(2) [211]

Table 6.3: Comparison of critical exponents
in 2+1 dimensions for the Néel-VBS decon-
fined critical point described by the non-
compact CP1 model and the conjectured
dual QED3-GN model for # = 1. (Updated
by Ref. [211] (2020) and Ref. [298] (2018).
Note that the four loop epsilon expansions
allowno conclusive estimates for the anoma-
lous dimension and the inverse correlation-
length due to its strong asymptotic behav-
ior [298]).
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value for �QED3-GN
) that is significantly above one. Similarly, the correlation-

length exponent �CP1 in the spin systems appears to be smaller than one,
while we find �QED3-GN ≈ 1.50(2) > 1, in qualitative agreement with the
1/# expansion of the four-fermion model [Eq. (6.66)]. This discrepancy may
be interpreted within one of the following three possible scenarios:

(A) The strong version of the CP1–QED3-GN duality may not hold for the
infrared physics and, in this case, the apparent consistency between
Eqs. (6.70) and (6.71) would be accidental.

(B) While the perturbative approach to the QED3-GN model approxi-
mately sustains the duality relation within the model as reflected by
Eqs. (6.70) and (6.71), it might not be well-suited to provide reliable ab-
solute estimates for the critical exponents. In that case, non-perturbative
approaches, e.g., the functional renormalization group or the confor-
mal bootstrap, could help to check the conjectured duality on the level
of critical exponents and scaling relations.

(C) The deconfined critical point may really be only a pseudocritical point
corresponding to a critical fixed point that has disappeared from the
real coupling space as a consequence of a collision and annihilation
with another fixed point. If indeed existent, any other fixed point
would be located outside the perturbative regime for & � 1 and can
only approach the QED3-GN fixed point at some finite & > 0. Such a
fixed-point annihilation scenario is known to occur in various gauge
theories both in 2+13 and 3+13 [246, 261, 262, 264, 296, 299–301],
and has recently been entertained also in the context of deconfined
criticality in the spin models [50, 218]. In this scenario, SO(5)would
only emerge as an approximate symmetry near a weakly-first-order
phase transition with an exponentially large, but finite correlation
length �c [219]. The CP1–QED3-GN duality would then only hold at
length scales ℓ . �c in the simulations, and the exponents computed
here for the QED3-GN model would not apply to this pseudocritical
regime, butwould in fact characterize the nonunitary SO(5)-symmetric
fixed point located at complex coupling.

6.7 Discussion and Outlook

We have determined the critical behavior of the QED3-GN model within a
three-loop epsilon expansion around the upper critical space-time dimen-
sion of 3+c = 4. Within this expansion, the model exhibits a unique infrared
stable fixed point corresponding to a continuous phase transition at which a
time-reversal symmetry broken fermion mass term is spontaneously gener-
ated. In analogy to the ungauged Gross-Neveu and Gross-Neveu-Yukawa
models [127], the infrared fixed point of the QED3-GN model can be equiva-
lently understood as an ultraviolet fixed point of a corresponding gauged
four-fermion theory, the critical behavior of the latter is amenable to a 1/#
expansion [285]. We have explicitly verified this infrared-ultraviolet corre-
spondence by demonstrating that the critical exponents coincide order by
order (up to the order we calculated) within a (1/#, &) double expansion.
Most interestingly, our estimates for the critical behavior of the 2+13 QED3-
GN universality class for the case of two flavors of two-component Dirac
fermions (corresponding to # = 1 in our notation) are consistent with
a nontrivial scaling relation that follows from emergent SO(5) symmetry
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implied by the proposed duality between theQED3-GN and noncompact CP1

models [50]. If this agreement persists in future calculations that will narrow
down our uncertainty interval, it would constitute a strong indication for
emergent SO(5) s ymmetry at the # = 1 QED3-GN fixed point. Our results,
on the other hand, are not compatible with themost recent simulation results
for the deconfined critical point in the spin models [43, 44], and we have
given a possible interpretation of this discrepancy in terms of the previously
proposed [44, 50, 219] pseudocriticality scenario.

For future work, it would be interesting to study the possible existence of
other fixed points that might collide and annihilate with the QED3-GN fixed
point at some space-time dimension between 3 = 3 and 3 = 4 − &. As a
complementary approach, it would be desirable to test whether the time-
reversal-symmetry-breaking transition in the QED3-GNmodel is continuous
or (weakly) first order, e.g., within a numerical simulation of a suitable
lattice model. Furthermore, to increase the precision, a more systematic
study of different resummation techniques is necessary and left to future
work. It could possibly involve other non-polynomial approximants, using
e.g. hypergeometric functions [302].

/*After this work was published, in Ref. [298] a comprehensive four loop pRG
analysis was published. Unfortunately, the epsilon expansion keep their strong
asymptotic behavior and the authors only provide a reasonable estimate for the
bilinear at 3 = 3 and # = 1. This may be interpreted as another hint for a strongly
coupled problem which has to be treated beyond perturbative methods. Additionally,
in Ref. [303] the authors revisit the large-# RG analysis and argue that previous
epsilon and large-# expansions are missing the analysis of so-called Aslamazov-
Larkin diagrams. These arise from the tensor structure of the gammamatrices at three
dimensions, exactly where the duality was conjectured to hold. Indeed, the modified
large-# boson anomalous dimensions is in better agreement with the Néel-VBS
transition than our epsilon expansion. Nevertheless, the inverse correlation-length
exponent 1/� still does not fit. We updated Tab. 6.3 accordingly.

Recently, the QED3-Gross-Neveu-XY model with a two component bosonic field
was studied extensively as the critical theory for another confinement transition
from gapless QED3 to a VBS phase [304–306]. Furthermore also a chiral Heisenberg
version, the QED3-O(3) model, was discussed as model for a Néel-to-algebraic spin
liquid transition [307]. It will be interesting to extend those studies and further
symmetry classes of QED3-GN model in possible applications. A nice overview of
the current knowledge is given in Ref. [15].*/
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In the analysis of “conventional” phase transitions, the LGW paradigm has
proven to be extremely successful. However, as we saw in Chapter 4 in the
derivation of the deconfined phase transitions of quantum magnets in two
spatial dimensions, the absence of an easy to identify order parameter in
systems with symmetry-protected topological (SPT) phases leaves behind
many loose ends to understand. The search for other transitions involving
intrinsic topological order and to understand their universal properties at
the unconventional quantum critical points pose an on-going challenge and
might reveal a deeper understanding of long-range entanglement structures
such as in the deconfined quantum criticality scenario. A crucial step in the
derivation of Chapter 4 was the fractionalization of the Néel order parameter
which also introduced the gauge degrees of freedom which turned out to be
emergent exclusively at the critical point. In this scenario the fractionalized
degrees of freedom not only linked the topological term intrinsically to the
valence bond solid (through an intermediate U(1)-spin liquid phase) but
more importantly governed the critical behavior. In fact, this is an example
for a fractionalized quantum critical point.

Since there are also other systems hosting topological order, it remains open
to understand systematically how the criticality changes if governed by
(a subset) of fractionalized degrees of freedom. While this question was
addressed in a range of bosonic models, such as a (toy) model of hard-core
bosons with a fractionalized XY* [52] critical point and also subsequent
generalizations to Ising andO(#)models, itwas only very recently found also
in spin-orbital liquids featuring emergent gapless Majorana fermions [54].
Here, the low-energy fermion excitations arise from fractionalization of the
microscopic spin and orbital degrees of freedom. Spin-orbital models hence
realize a fractionalized counterpart of the Gross-Neveu-type transitions we
discussed in Chapter 3, dubbed Gross-Neveu*.

7.1 Fractionalized spin-orbital liquids

In the Gross-Neveu transitions, studied so far, all Dirac cones become
simultaneously gapped out in the long-range-ordered phase. In the case of a
continuous-symmetry breaking, this leaves behind the bosonic Goldstone
modes alone as low-energy excitations. If only a discrete symmetry is broken,
it leads to a full gap in the spectrum of the ordered phase. The fractionalized
Gross-Neveu* transitions differ from the ordinary Gross-Neveu transitions in
the universal finite-size spectrum [308]. However, in contrast to the situation
in the fractionalized bosonic universality classes [52, 309], at a Gross-Neveu*
transition, two independent universal exponents, such as the order-parameter
anomalous dimension �) and the correlation-length exponent �, feature the
same values as in the transition’s ordinary counterpart. As a consequence
of the hyperscaling relations, this then implies that also the exponents
, �, � and � in a fractionalized Gross-Neveu* universality classes agree
with those of the corresponding ordinary Gross-Neveu universality class.
Starting point for the model in Ref. [54] is a spin-orbital model with a
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Figure 7.1: Schematic phase diagram of
the fractionalized spin-orbital liquid. For
 � �, the model in Eq. (7.1) realizes a
Dirac semi-metal ground state with three
gapless excitations (see also the correspond-
ing Gross-Neveu-SO(3) model in Fig. 7.2).
For � �  , the system will order anti-
ferromagnetically as shown on the right
and therefore spontaneously break the SO(3)
symmetry. (Adapted from Ref. [54]).

Gross-Neveu-SO(3)∗
�/ 0

1: In Ref. [54], the authors also discuss the
case of an even number of �" on a square
lattice. In this case the fractionalized critical
point is found to governed by the chiral
Ising Gross-Neveu universality which we
studied extensively in Chapter 3.

bond-dependent Kitaev interaction [310] and an odd number �" of itinerant
Majorana fermions on the honeycomb lattice1. We are particularly interested
in the transition between a symmetric ℤ2 quantum spin-orbital liquid on
the honeycomb lattice and a symmetry-broken phase, in which the spins
order antiferromagnetically, while the orbital degrees of freedom remain
disordered [54]. On the lattice, the model in Ref. [54] is composed by a
biquadratic Heisenberg-spin and Kitaev orbital interaction with strength  
and an anti-ferromagnetic Heisenberg interaction term �

H= H +H� = − 
∑
〈8 9〉�

28 · 29 ⊗ ��8 �
�
9 + �

∑
〈8 9〉

28 · 29 ⊗ 1819 , (7.1)

where � = 1, 2, 3 refers to the three inequivalent bonds. Crucial for this
model is that the spin degrees of freedom 2 = (�G , �H , �I) are present in
both terms while the orbital degrees of freedom � only couple to them by
the Kitaev term � . For this reason, the latter exhibits ℤ2-gauged Majorana
fermions leading to a SO(3) symmetry. In this sense, the ℤ2 quantum spin-
orbital liquid can be understood as a generalization of Kitaev’s quantum spin
liquid [310], inwhich the number ofMajorana fermions that couples to theℤ2
gauge field is tripled [311]. For  � �, the model realizes a Dirac semi-metal
ground state with # = 3 (i.e. �" = 3) gapless excitations as shown on the
left in Fig. 7.1. On the other end, for � �  the system is expected to order
anti-ferromagnetically and therefore spontaneously breaking the SO(3) to
a residual SO(2) × ℤ2 symmetry leaving two out of the three Dirac cones
gapped out, while the third one remains gapless (i.e. �" = 1). This partially
gapped phase can be understood as a spin-1 antiferromagnet [54].

The content of this Chapter was published in Ref. [58]. Intermediately added
sentences are tagged by /*[...]*/. Each section presents a different advanced
renormalization group methods contributed by Shoryya Ray and Lukas
Janssen (Sec. 7.5), Daniel Kruti (Sec. 7.5 [pseudospectral methods]), John A.
Gracey (Sec. 7.4) and BI and Michael M. Scherer (Sec. 7.3).

In this work, we focus on the corresponding family of Gross-Neveu tran-
sitions, at which the fermion spectrum is only partially gapped out. In
particular, we study the critical behavior of the Gross-Neveu-SO(3) universal-
ity class. This universality class describes a transition between a symmetric
Dirac semimetal phase featuring SO(3) symmetry and # gapless Dirac
fermions, where # is an integer multiple of three, and a long-range-ordered
phase, in which SO(3) is spontaneously broken and 2#/3 Dirac cones are
gapped out. Importantly, #/3 Dirac cones remain gapless throughout the
ordered phase, as illustrated in Fig. 7.2.

The purpose of this work is to provide refined estimates for the critical
exponents characterizing the (2+1)-dimensional Gross-Neveu-SO(3) univer-



7.2 The Gross-Neveu-SO(3) model 95

Figure 7.2: Quantum phase diagram of
the (2 + 1)-dimensional Gross-Neveu-SO(3)
model as function of tuning parameter <2.
The theory exhibits a quantum critical point
between aDirac semimetal anda long-range-
ordered phase in which two Dirac cones
acquire a mass gap, while one remains gap-
less, as depicted in the insets. In this work,
we provide improved estimates for the uni-
versal exponents 1/�, �) , and �# , charac-
terizing this universality class. (Adapted
from Ref. [58])

sality class. To this end, we compare the results of three complementary
advanced field-theoretical approaches. We use a chain of computer-algebra
tools developed in the context of high-energy physics (see Appendix B) to
determine the critical behavior within an & expansion around the upper
critical space-time dimension of four at three-loop order. Further, by solving
the Schwinger-Dyson equations directly at the critical point [71, 72, 157, 312],
we compute the correlation-length exponent � and the order-parameter
anomalous dimensions �) at order O(1/#2) in the large-# expansion; the
fermion anomalous dimension �# is determined at orderO(1/#3) bymaking
use of the large-# conformal bootstrap technique [72, 162, 163, 313, 314].
Finally, by employing the functional renormalization group (FRG) in the
derivative-expansion scheme, we compute the critical behavior of the Gross-
Neveu-SO(3) universality class at the level of the improved local potential
approximation (LPA′).

7.2 The Gross-Neveu-SO(3) model

The continuum field theory describing the Gross-Neveu-SO(3) universality
class is given by the action S=

∫
d3GLwith [54]

L= #̄��%�# + 1
2
)0

(
−%2

� + <2
)
)0 + �()0)0)2 − 6)0#̄

(
12#/3 ⊗ !0

)
#

(7.2)

in 3 Euclidean space-time dimensions. Here, we have assumed the sum-
mation convention over repeated indices � = 0, . . . , 3 − 1 and 0 = 1, 2, 3.
We use conventions in which the Dirac matrices �� form a 2#-dimensional
representation of the Clifford algebra, {�� , ��} = 2���12# , such that #
corresponds to the number of two-component fermion flavors. The spinor #
and its Dirac conjugate #̄ ≡ #†�0 have 2# components each. The interaction
Lagrangian comprises the SO(3)-counterpart of the Heisenberg-Yukawa
interaction [106, 140], parameterized by its Yukawa coupling 6, and a quartic
boson self-interaction with coupling �. As in the standard Gross-Neveu-
Yukawa models [315], the Dirac matrices commute with the Yukawa vertex
operator, [�� , 12#/3 ⊗ !0] = 0. The 3 × 3 matrices !0 are generators of SO(3)
in the fundamental representation, corresponding to spin 1. The order-
parameter field )0 is a scalar under space-time rotations, but transforms
as a vector under SO(3). In 3 = 2 and 3 = 3 space-time dimensions, this
requires that # is a multiple of three, whereas in 3 = 4, # would need to
be a multiple of six in any physical realization. However, in what follows, it
will prove to be useful to compute the critical behavior for general 2 < 3 < 4
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2: We note that subleading exponents, such
as $, corresponding to the corrections to
scaling, may depend on whether the the-
ory is defined in terms of # flavors of two-
component fermions or #/2 flavors of four-
component fermions, see Ref. [281].

and arbitrary 0 ≤ # ≤ ∞, allowing one to analytically continue also to
noninteger values of both 3 and # . As Aslamazov-Larkin diagrams vanish
for the ungauged Gross-Neveu models [303], the critical exponents �, �),
and �# do not depend on whether the theory is defined in terms of reducible
or suitable copies of irreducible fermion flavors 2. The physical case realized
in the spin-orbital models [54] corresponds to # = 3 and 3 = 3.

The zero-temperature phase diagram of the Gross-Neveu-SO(3) model as
a function of the tuning parameter <2 can be understood on the level of
mean-field theory, see Fig. 7.2. In this case, the fluctuations of the order
parameter )0 are neglected. Formally, this correspond to the strict limit
# →∞. For<2 > 0, the ground state is symmetric and the spectrum consists
of # gapless Dirac cones. For <2 < 0, the order parameter field acquires a
finite vacuum expectation value 〈)0〉 ≠ 0 and the SO(3) flavor symmetry is
spontaneously broken. However, since !0 has a zero eigenvalue, only 2#/3
of the Dirac cones acquire a mass gap, while the remaining #/3 Dirac cones
remain gapless throughout the long-range-ordered phase. In this work, we
demonstrate that the mean-field picture remains qualitatively correct for
finite values of # , but the corresponding critical exponents characterizing
the universality class receive sizable corrections to their mean-field values.

7.3 (4 − &) expansion
The field theory defined in Eq. (7.2) has an upper critical space-time di-
mension 3up = 4, where both, the Yukawa coupling 6 and the quartic
bosonic self-interaction �, become simultaneously marginal. This allows for
a controlled expansion in 3 = 4 − & dimensions. In this section, we report
our calculation of the renormalization group functions at three-loop order.
Further, we extract the correlation-length exponent �, the boson anomalous
dimension �), and the fermion anomalous dimension �# at order O(&3).

7.3.1 Method

We define the bare Lagrangian upon replacing fields and couplings in
Eq. (7.2) by their bare counterparts # ↦→ #0, )0 ↦→ )0,0, 6 ↦→ 60 and
� ↦→ �0. The renormalized Lagrangian reads

L= /##̄�
�%�# − /)#̄#6�

&/2)0#̄
(
12#/3 ⊗ !0

)
#

+ /)

2
(%�)0)2 +

/)2

2
<2)0)0 + /)4��&()0)0)2 , (7.3)

with the renormalization constants /# , /) , /)#̄# , /)2 , and /)4 . The kinetic
terms in the renormalized and bare Lagrangian can be related to each
other upon identifying #0 =

√
/## and )0 =

√
/)). The energy scale

� parametrizes the renormalization group flow. It is introduced upon
shifting the couplings 62 ↦→ �&62 and � ↦→ �&� after the integration over
(4−&)-dimensional spacetime. The renormalizedmass and the renormalized
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couplings are then related to the corresponding bare quantities as

<2 = <2
0/)/−1

)2 , (7.4)

62 = 62
0�
−&/2

#/)/−2
)#̄#

, (7.5)

� = �0�
−&/2

)/
−1
)4 . (7.6)

In the following, we compute all renormalization constants up to three-
loop order. To that end, as in the previous prjects we employ dimensional
regularization and the modified minimal substraction scheme (MS). For the
Gross-Neveu-SO(3) model this amounts to the evaluation 1,815 Feynman
diagrams. For the sophisticated chain of computer algebra tools originally
developed for loop calculations in high-energy physics we again refer to
Appendix B. Furthermore in Appendix A, we present the one-loop RG on a
generalized Gross-Neveu-Yukawa model.

7.3.2 Flow equations

The beta functions for the squared Yukawa coupling 62 and the quartic
scalar coupling � are defined as

�62 =
d62

d ln�
, �� =

d�
d ln�

. (7.7)

It is convenient to further rescale the couplings as 62/(8�2) ↦→ 62 and
�/(8�2) ↦→ �, such that the � functions at three loop order read

�62 = −&62 + 2
3
(# + 6)64 − 1

2
62 [(7 + 6#)64 + 8062� − 80�2]

+ 1066�(5# + 24) + 1064�2(48 − 5#) − 44062�3

+ 6�368(# + 3) + 1
8
68(6#2 + 37# − 118) , (7.8)

�� = −&� + 44�2 − 1
3
62#(62 − 4�) + 1

3
62#(564 + 462� − 88�2) − 1104�3

+ 1
72

{
−368#(66# + 19) + 266�#(562# − 4761)

− 4864�2#(22# − 521) + 4963262�3# + 3469248�4

− 36�3
[
64#(764 + 12062� − 792�2) − 56832�4]} . (7.9)

Here, �B = �(B) is the Riemann zeta function. We have sorted the terms in
Eqs. (7.8) and (7.9) such that the firsts lines show the tree level and one-loop
contributions, the second lines show the two-loop contributions, and the
remaining lines show the three-loop contributions. The wavefunction renor-
malization functions �) and �# are defined as �)/# = d ln/)/#/(d ln�). At
three-loop order they read

�) =
2
3
#62 + 40�2 − 4

3
#64 + 4166#2

36

+ 6
2

24
#(2164 + 40062� − 1200�2) − 440�3 , (7.10)

�# = 62 − 2# + 1
4

64 − 6
2

48
[
64(4#2 − 84# − 9) − 96062� + 2640�2] .

(7.11)
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Finally,we consider themass renormalization function as �)2 = d ln/)2/(d ln�),
which at three-loop order reads

�)2 = −20� − 2
3
#64 + 40

3
#62� + 240�2 + 61

3
#66 − 2�3#64(62 + 50�)

− 130
3
#64� − 160#62�2 − 4

9
#264(762 − 15�) − 12920�3 . (7.12)

The corresponding � function for the bosonic mass is then computed from
the dimensionless mass <̃2 = �−2<2 as

�<̃2 = (−2 + �) − �)2)<̃2 . (7.13)

We note that in the limit 62 → 0, we recover the three-loop results for the
O(3)-symmetric real scalar )4 theory [97].

7.3.3 Critical exponents

The above � functions feature several renormalization group fixed points, i.e.,
couplings 62

★ and�★ atwhich theflowvanishes, �62(62
★,�★) = ��(62

★,�★) = 0.
At thefixedpoints, the systembecomes scale invariant, giving rise to quantum
critical behavior. We find that the Gaussian fixed point at (62

★,�★) = (0, 0)
and the purely bosonic Wilson-Fisher fixed point (62

★,�★) = (0,�★) are
characterized by two and one relevant directions within the critical plane
<̃2 = 0, respectively. They are thus unstable and cannot be accessed in a
system with a single control parameter without fine tuning. We further find
a pair of interacting fixed points at finite 62∗ ≠ 0, one of which is fully infrared
stable. To the leading order, the corresponding critical couplings are

(62
★,�★) =

(
3

2(#+6) ,
√
#2+120#+36−#+6

88(#+6)
)
& + O(&2) , (7.14)

in agreement with the previous calculation [54]. The corresponding higher-
order contributions up to O(&3) are lengthy but straightforward expressions
that can be obtained from Eqs. (7.8) and (7.9) analytically, and will be used
in the following.

The critical behavior is determined by the renormalization group flow at
and near the stable fixed point. The anomalous dimensions are given by the
wavefunction renormalization functions �# and �) at the fixed point,

�# = �#(62
★,�★) , �) = �)(62

★,�★) . (7.15)

The inverse of the correlation-length exponent is extracted from the flow of
the bosonic mass, which acts as tuning parameter,

1
�
=

d�<̃2

d<̃2

����
(62

★,�★)
= 2 − �) + �)2 . (7.16)

The full expressions for general # are given in Appendix C.4. Electronic
versions of the exponents are also available as Supplemental Material for
download, see [58] for further instructions. For # = 3, which corresponds to
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the situation relevant for the spin-orbital models [54], the exponents read

1
�
= 2 − 5

√
5+9

22 & + 937
√

5−3182
31944 &2

+ 264(576665−306864
√

5)�3+5132520
√

5−113996279
834888384

√
5

&3 + O(&4)
≈ 2 − 0.917& − 0.0340&2 − 0.0735&3 + O(&4) , (7.17)

�) = 1
3 & + 80

√
5+89

2904 &2 − 351384�3+66393
√

5−357226
6324912 &3 + O(&4)

≈ 0.333& + 0.0922&2 − 0.0338&3 + O(&4) , (7.18)

�# = 1
6 & + 105

√
5+79

8712 &2 − 234256�3+72458
√

5−187711
8433216 &3 + O(&4)

≈ 0.167& + 0.0360&2 − 0.0303&3 + O(&4) . (7.19)

We note that the above expansions are asymptotic series with vanishing
radius of convergence. It is reassuring, however, that the coefficients of
the two- and three-loop corrections are still small compared to the one-
loop values. For comparison with the large-# expansion, we also state
the expressions we have obtained upon further expanding the general
(4 − &)-expansion results in 1/# . We obtain

1
�
= 2 − & − [

9& − 39
4 &

2 + 9
16 &

3] 1
#

+ [
459& − 5895

8 &2 + 27
32 (153 − 184�3)&3] 1

#2 + O(&4 , 1/#3) , (7.20)

�) = & + [−6& + 15
4 &

2 + 21
16 &

3] 1
#

+ [
36& − 261

8 &2 − 9
32 (72�3 + 95)&3] 1

#2 + O(&4 , 1/#3) , (7.21)

�# =
[ 3

2 & − 9
8 &

2 − 9
32 &

3] 1
#
+ [−9& + 369

16 &
2 − 513

64 &
3] 1
#2

+ [
54& − 4023

16 &2 + 243
32 (33 − 4�3)&3] 1

#3 + O(&4 , 1/#4) . (7.22)

For any fixed # , we extract estimates for the physical dimension & = 1 by
employing standard Padé approximants

[</=] = 00 + 01& + · · · + 0<&<
1 + 11& + · · · + 1=&= , (7.23)

with <, = ∈ {0, 1, 2, 3} and < + = = 3. The coefficients 00 , . . . , 0< and
11 , . . . , 1= are obtained from matching the Taylor series of [</=] order by
order with the & expansions. The discussion of the resulting estimates for
1/�, �), and �# for different values of # is deferred to Section 7.6.

7.4 1/# expansion

In the limit of a large number of fermion flavors # →∞, the fluctuations
of the order-parameter field )0 freeze out, which allows us to compute the
critical exponents in arbitrary 2 < 3 < 4 in a systematic expansion in powers
of 1/# and is the topic of this section.
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7.4.1 Method

To achieve this, we have applied the large-# critical point method developed
in Refs. [71, 312, 314] for the scalar O(#) model and later extended to the
Gross-Neveu universality class in Refs. [157, 159–163]. As the latter formalism
has already been applied to variations of the Gross-Neveu model, we will
highlight only the key differences here. Indeed given the strong overlap with
the Gross-Neveu-SU(2) (= chiral Heisenberg) model that the present SO(3)
study is similar to, we refer the reader to Ref. [72] for the finer details of the
technique.

One of the first steps is to recognize that the Lagrangian that serves as the
basis for the method of Refs. [71, 312, 314] is that of the universal theory that
resides at the stable fixed point in all dimensions 2 < � < 4. It is a simpler
version of Eq. (7.2) in that only the fermion kinetic term and the three-point
vertex are the essential ones needed to define the canonical dimensions of
the fields at the fixed point, together with a quadratic term in the boson field.
Specifically,

Luniv = #̄/%# − )0#̄
(
12#/3 ⊗ !0

)
# + 1

2
)0)0 , (7.24)

where /% ≡ ��%� with �� again being (2#) × (2#) Dirac matrices, such that
the spinors # and #̄ have 2# components, as in the original Lagrangian
[Eq. (7.2)]. The scalar )0 has been rescaled since at criticality the perturbative
coupling constant is fixed and does not run. The quartic interaction present
in Eq. (7.2) is required in four dimensions to ensure renormalizability. Its
contribution in Luniv is automatically accounted by through closed fermion
loop diagrams with four external boson fields [316]. The other main aspect
of the setup concerns the algebra of the SO(3) generators !0 , which satisfy
the relation

(!0)8 9(!0):; = �8;� 9: − �8:� 9; . (7.25)

We have used this in determining the group-theory factors associated with
the Feynman diagrams that contribute to the large-# formalism.

In general the method of Refs. [71, 312, 314] entails analyzing the behavior
of various Schwinger-Dyson equations in the approach to criticality. At
the stable fixed point, the propagators of the fields have a simple scaling
behavior where the exponent of the propagator corresponds to the full
scaling dimension. Specifically, in coordinate space the propagators take the
asymptotic forms

#(G) ∼ �/G
(G2)

[
1 + �′(G2)�] , (7.26)

)(G) ∼ �
(G2)�

[
1 + �′(G2)�] , (7.27)

where have used the name of the field as a shorthand for the propagator at
criticality, with the scaling exponents

 = � + 1
2�# , � = 1 − �# − " , (7.28)

and we have introduced � ≡ 3/2. Here, �# is the fermion anomalous
dimension, which has been computed to three loops at criticality in the
previous section. The anomalous dimension of the boson-fermion vertex is
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0 = #−1 + +

0 = )−1 + +

Figure 7.3: Skeleton Schwinger-Dyson two-
point functions used to determine �# at
O(1/#2). Dashed inner lines correspond to
critical fermion propagators [Eq. (7.26)] and
wiggly inner lines correspond to critical
boson propagators [Eq. (7.27)].

Figure 7.4: Leading-order skeleton
Schwinger-Dyson three-point function
used to determine " at O(1/#).

denoted by " so that

�) = 4 − 2� − 2�# − 2" . (7.29)

In addition to these leading exponents, each propagator includes a correction
term involving the exponent �. At criticality, this exponent corresponds to
the correlation-length exponent as 1/� = 2�. The canonical dimension of
� is (� − 1). The quantities �, �, as well as �′ and �′ are G-independent
amplitudes. The first two always appear in the combination �2�, but this
plays an intermediate role in deriving exponents. The first terms of the
respective equations in Fig. 7.3 represent the asymptotic scaling forms of
the two-point functions and have been given in Ref. [157]. They are derived
from Eqs. (7.26) and (7.27) and have a similar scaling form to these although
� and � occur in the denominator.

Skeleton Schwinger-Dyson equations

To determine the anomalous dimensions of the two fields, one focuses
on the two-point Schwinger-Dyson equations shown in Fig. 7.3, as well
the three-point vertex function, for which the first correction is depicted
in Fig. 7.4. For both the two- and three-point functions the contributing
diagrams are computed with the asymptotic propagators, Eqs. (7.26) and
(7.27). As the power of the leading term of each propagator includes the
nonzero anomalous dimensions of Eq. (7.28), then there are no self-energy
corrections on the contributing diagrams in order to avoid double counting.
By evaluating the diagrams and solving the equations of Fig. 7.3 self-
consistently, eliminating the product �2� in the process, one obtains an
expression for �# at O(1/#2). The value of " at O(1/#) is required for this to
ensure that no ln(G2) terms remain after renormalization. This value for " is
deduced from the scaling behavior of the diagram of Fig. 7.4. Moreover, this
produces �) at O(1/#) as a corollary from Eq. (7.29). For the next order of ",
one extends the critical-point evaluation of the higher-order diagrams to the
three-point function, which are given by the decorations of the leading-order
diagram of Fig. 7.4 with vertex corrections, as well as the non-planar and
three-loop diagrams shown in Fig. 7.5. This produces " and hence �) at
O(1/#2).
Oncewe have established the anomalous dimensions of the fields atO(1/#2),
the correction to scaling terms in Eqs. (7.26) and (7.27) can be included in
order to determine 1/� via the determination of �. Since the correction terms
involve (G2)�, then the two-point Schwinger-Dyson consistency equation
contains terms of different dimensions. These split into terms which are
independent of the correction to scaling amplitudes, �′ and �′, and those
that are not. It is the latter ones that determine � to O(1/#2) [312], since a
consistency equation can be formed from the 2 × 2 matrix defined by the
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Figure 7.5: Diagrams contributing to large-
# conformal bootstrap formalism to deduce
�# at O(1/#3). Black dots refer to Polyakov
conformal triangles, see Ref. [72] for details.

+ + + +

coefficients of �′ and �′ in each equation of Fig. 7.3. Finding the solution to
the equation formed by setting the determinant of this matrix to zero defines
the consistency equation. For the Gross-Neveu universality classes there is
a known complication in that while all the propagators of the diagrams of
Fig. 7.3 include the correction terms, extra diagrams are needed due to the
same reordering that arises in the original Gross-Neveu-ℤ2 (= chiral Ising)
model [157, 160, 161, 163]. This necessitates the inclusion of the higher-order
Feynman diagram as given in Fig. 4 of Ref. [72], but with the appropriate
group factor for the present model.

Large-# conformal bootstrap technique

Finally, we have been able to apply what is termed the large-# conformal
bootstrap technique to compute the O(1/#3) term of �#. This method was
originally developed for the O(#) scalar model in Ref. [314] using the early
work of Refs. [313, 317, 318]. It was subsequently extended to the Gross-
Neveu-ℤ2 universality class in Refs. [159, 162, 163] and more recently for
the Gross-Neveu-SU(2) (= chiral Heisenberg) model in Ref. [72]. We refer
readers to that later article formore details of the large-# conformal bootstrap
technique for the present context. However, it is worth noting some of the
key aspects of the approach. Rather than focusing on the skeleton Schwinger-
Dyson two-point functions, the underlying self-consistency equations that
ultimately produce �# at O(1/#3) are derived from the vertex functions.
By contrast to the two-point function approach, one is in effect performing
perturbation theory in the vertex anomalous dimension ". The relevant
diagrams are given in Fig. 7.5. Again, while there is no dressing on the
propagators, there are no vertex corrections unlike the diagrams in Fig. 7.3.
Instead, the contributions that underlie the vertex structure are subsumed
into the black dots, which denote Polyakov conformal triangles. These
are designed in such a way that the sum of the critical exponents of the
propagators connected to the vertex is (2�+ 1). This value means that all the
scalar-fermion vertices are unique in the sense of conformal integration [157,
160, 161, 163]. So it is possible to evaluate all the diagrams to the necessary
order to determine �# at O(1/#3).

7.4.2 Critical exponents

Having summarized the large-# critical point formalism, we are now in a
position to discuss the results. Expressions in general space-time dimensions
2 < 3 < 4 for all the exponents we have determined are presented in
Appendix C.4 and electronically as supplemental material to Ref. [58].
However, the epsilon expansion of the large-# expressions must agree with
the explicit three-loop exponents derived from the renormalization group
functions at the stable fixed point. Therefore, if we expand each of �#, �),
and 1/� around 3 = 4 − &, we find
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1
�
= 2 − & + [−9& + 39

4 &
2 − 9

16 &
3 − 9

64 (1 + 16�3)&4 + 3
256 (208�3 − 144�4 − 3)&5] 1

#
(7.30)

+ [
459& − 5895

8 &2 + 27
32 (153 − 184�3)&3 + 27

64 (320�5 − 276�4 + 1376�3 + 203)&4

+ 9
1792 (4795 − 90496�5 + 6720�2

3 − 123984�3 + 33600�6 + 86688�4)&5] 1
#2 + O(&6 , 1/#3) ,

�) = & + [−6& + 15
4 &

2 + 21
16 &

3 + 3
64 (11 − 32�3)&4 + 3

256 (80�3 − 96�4 + 19)&5] 1
#

(7.31)

+ [
36& − 261

8 &2 − 9
32 (72�3 + 95)&3 + 9

64 (472�3 − 108�4 + 45)&4 + 9
256 (97 − 288�5 + 1416�4 − 1248�3)&5] 1

#2

+ O(&6 , 1/#3) ,
�# =

[ 3
2 & − 9

8 &
2 − 9

32 &
3 + 3

128 (16�3 − 3)&4 + 9
512 (16�4 − 16�3 − 1)&5] 1

#
(7.32)

+ [−9& + 369
16 &

2 − 513
64 &

3 − 9
128 (128�3 + 69)&4 + 9

512 (1008�3 − 384�4 − 89)&5] 1
#2

+ [
54& − 4023

16 &2 + 243
32 (33 − 4�3)&3 + 27

256 (2184�3 − 216�4 + 493)&4 + 27
1024 (6552�4 − 576�5 − 20024�3 − 2375)&5] 1

#3

+ O(&6 , 1/#4) .

All terms to O(&3) agree exactly with Eqs. (7.20)–(7.22), which is a highly
non-trivial check on our 3-dimensional expressions. In the above equations,
we have included additional terms to O(&5) to provide checks for future
higher-loop computations.

With this check of the 3-dimensional exponents satisfied, we can nowdeduce
their values in the 1/# expansion in fixed 3 = 2 + 1 space-time dimensions.
We find

1
�
= 1 − 16

�2#
+ 324�2 + 2624

3�4#2 + O(1/#3)

≈ 1 − 1.62114
#

+ 19.92200
#2 + O(1/#3) , (7.33)

�) = 1 − 20
�2#

+ 2(81�2 − 1028)
3�4#2 + O(1/#3)

≈ 1 − 2.02642
#

+ 1.56428
#2 + O(1/#3) , (7.34)

�# =
4

�2#
+ 304

3�4#2 +
972�2 ln(2) + 255�2 − 10206�3 − 3796

9�6#3 + O(1/#4)

≈ 0.40528
#

+ 1.04029
#2 − 0.79721

#3 + O(1/#4) . (7.35)

In effect, three terms in the expansion of each exponent are available, but
involve different powers of 1/# . We note that the leading two terms of 1/�
and the leading terms of �) and �# are the same as those of the Gross-Neveu-
SU(2) model [72]. However, the O(1/#2) term of 1/� is nearly twice that of
its SU(2) counterpart and the coefficients of the subsequent terms of �) and
�# are also significantly larger here, with the exception of the O(1/#2) term
in �).

For extrapolating the large-# series to finite # , we again use Padé approxi-
mants

[</=] = 00 + 01#−1 + · · · + 0<#−<
1 + 11#−1 + · · · + 1=#−= , (7.36)
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where now <, = ∈ {0, 1, 2} (<, = ∈ {0, 1, 2, 3}) and < + = = 2 (< + = = 3)
for 1/� and �) (�#). The numerical estimates for different values of # are
discussed in Sec. 7.6.

7.5 Functional renormalization group

Finally, as the physical case of interest 3 = 2 + 1 and # = 3 lies outside the
regimes in which the epsilon and 1/# expansions are fully controlled, we
also employ the FRG as a complementary approach to estimate the critical
exponents.

7.5.1 Method

/*In this Section, we present the technical details for the FRG calculation. Our
starting point is the Wetterich equation in Eq. (2.33). For the effective action we
introduce Φ which corresponds to a collective field variable, which comprises all
individual fields contained in the theory.*/ Hence, in the Gross-Neveu-SO(3)
case, we have Φ = ()0 ,#, #̄).

Γ(2): =
−→
�

�Φ>
Γ:

←−
�
�Φ

, (7.37)

and the supertrace operator STr extends the usual trace by accounting for
Fermi-Dirac statistics thus:

STr ©«
� ∗ ∗
∗ �1 ∗
∗ ∗ �2

ª®¬ = Tr � − Tr
(
�1 ∗
∗ �2

)
. (7.38)

See Refs. [74, 76, 77, 83] for introductory expositions on the method, and
Refs. [78, 79, 84] for reviews on applications to interacting many-body
systems. The Wetterich equation itself is exact, but generically not exactly
soluble.

In the absence of a small control parameter for the physical case of # = 3
and 3 = 3, here we pursue an ansatz in the spirit of a derivative expansion
of the effective average action,

Γ: =
∫

d3G
[
/#,:#̄�

�%�# + 1
2
/),:(%�)0)2 − 6:)0#̄(1 ⊗ !0)# +*:(*)

]
,

(7.39)

where we have introduced the SO(3)-invariant * = 1
2)0)0 . General field-

dependence of renormalization group functions is allowed only in the
effective average bosonic potential*: , which is assumed to carry no explicit
momentum dependence. Pure fermionic interactions, such as four-fermion
terms, that may be generated in the nonperturbative regime, are neglected.
The next-to-leading order contributions come from the kinetic terms, whose
scale-dependences are approximated by field-independent renormalization
constants/Φ,: ; all higher-order terms in the gradient expansion are neglected.
This truncation of the effective average action is commonly referred to as
“improved local potential approximation” (LPA′). It has been proven to yield
reliable results in a number of similar Gross-Neveu-Yukawa-type models [30,
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31, 126, 140, 188, 300, 319–323]. Extensions of this approximation for the
present class of models have been discussed in Refs. [90, 141, 142, 324]. A final
approximation entails choosing a suitable ansatz for the effective average
potential. Here, we employ two different expansion techniques. We have
verified that our numerical results from the two approaches converge to the
same values within the error bars.

Taylor expansion of effective potential

A simple ansatz is a truncated Taylor expansion

*:(*) =
=/2∑
8=1

1
8!
�8 ,: *

8 , (7.40)

where we have assumed that the fixed point is located in the symmetric
regime, such that the minimum of the potential is at * = 0. If this assumption
is violated at the fixed point, i.e.,*′(0) < 0, an alternative expansion

*:(*) =
=/2∑
8=2

1
8!
�̂8 ,: (* − *0,:)8 (7.41)

is more expedient; this is called the spontaneously symmetry broken (SSB)
regime. In the above, *0,: is the (scale-dependent) location of the minimum
of *:(*). It is related to the vacuum expectation value (VEV) of the order
parameter by �0,0 = 1

2 〈)0〉2. Note that the linear term in the Taylor expansion
is absent, since %*(*)/%)0 = )0*′(*), and hence *′(*0) = 0 if *0 ≠ 0 is a
local minimum.

For practical computations, the ansatz (7.40) is truncated at some finite order
= ∈ 2N. This defines the so-called LPA=′. The validity of this polynomial
truncation can be checked a posteriori by verifying convergence of the results
upon increasing =. The expansion of the effective potential introduces a
plethora of coupling constants, of which �1 = <2 > 0 is proportional to
the squared boson mass and �2 = 4!� is the quartic boson self-coupling.
Inclusion of the higher-order couplings �8>2 is a minimal way to incorporate
nonperturbative corrections in space-time dimensions 3 < 4, in addition to
the effects from the nonperturbative propagator, cf. Eq. (2.33).

The flow of the bosonic self-couplings are determined from the flow of*:(*)
by differentiating successively with respect to * . In the symmetric regime,
this is straightforward to implement:

%C�8 =
[(%* )8%C*:(*)

]
*→0 (8 ∈ N>1). (7.42)

The corresponding system of equations in the SSB regime is given by

%C�̂8 =
[(%* )8%C*(*)]*→*0

+ �̂8+1%C*0 (8 ∈ N>2), (7.43)

and has to be supplemented by a flow equation for the VEV:

%C*0 = − 1
�̂2

[
%*%C*(*)

]
*→*0

. (7.44)

The latter follows from*′(*0) = 0 in the SSB regime [321].
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Pseudospectral decomposition of effective potential

In the context of the present work, we aim at systematically comparing
the results from different quantum-field-theoretical methods between two
and four dimensions. In particular, towards two dimensions, we have to be
careful about a possible breakdown of the convergence of a local expansion
in the effective potential. This is related to the canonical dimensionality of
the operators or couplings in the local expansion, i.e. the terms ∝ �8* 8 . More
specifically, the canonical dimension [·] of the bosonic field ) is given by
[)] = (3 − 2)/2, i.e. the dimension of the operator * 8 is (3 − 2)8. Therefore,
the corresponding coupling �8 scales as [�8] = 3 − (3 − 2)8. Lowering the
dimension towards 3 = 2 means that more andmore couplings with higher 8
become canonically relevant until they all have the same canonical dimension
of two in 3 = 2. Depending on the model and the specific fixed point, this
behavior can severely limit the reliability of a finite-order local expansion in
the bosonic operators.

In lieu of a local Taylor expansion for the effective potential, non-local
expansion schemes can be advantageous in terms of tractability, accuracy,
and fast convergence. An approximation scheme that has been explored
in the context of FRG fixed-point- and flow equations, is based on pseudo-
spectral methods [85]. Importantly, these methods facilitate, e.g., an efficient
and high-precision resolution of global aspects of the effective potential
including the correct description of a model’s asymptotic behavior [86–90,
142, 325, 326].

In the present case of the fixed point equation for the effective potential, we
need to find an approximate solution to an ordinary differential equation in
one variable, which is defined on the domainℝ+. To that end, we can expand
the effective potential, i.e. *(*), into a series of Chebyshev polynomials,
where the domain of*(*) is decomposed into two subdomains, i.e. [0, *m]
and [*m ,∞). The expansion then reads

*(*) ≈

∑=)
8=0 C8)8

(
2*
*m
− 1

)
, * ≤ *m ,

*∞(*)∑='
8=0 A8'8(* − *m) , * ≥ *m .

(7.45)

Here, the )8(G) are the Chebyshev polynomials of the first kind and the
'8(G) = )8

( G−!
G+!

)
are rational Chebyshev polynomials with a free parameter !,

which parametrizes the compactification in the argument G. Further,*∞(*)
is the leading asymptotic behavior of the effective potential for large field
arguments, i.e. * →∞, which we obtain from the dimensional scaling terms
in the flow equation. The matching point *m separates the subdomains and
is another free parameter that has to be chosen large enough such that the
minimum of the effective potential appears for * = *0 < *m. We can use
! and *m to optimize numerical convergence. The values of the effective
potential and its derivatives for all field arguments * are straightforwardly
obtained by employing efficient recursive algorithms [85]. In fact, we only
need a relatively small number of expansion coefficients C8 and A8 due to fast
convergence of the series.

For the determination of the coefficients C8 and A8 in the Chebyshev expansion,
we use the collocation method, i.e. we insert the ansatz in Eq. (7.45) into
the flow Eq. (2.33) and evaluate it on a given set of collocation points. The
collocation points are chosen to be the nodes of the highest Chebyshev
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polynomials in the respective domain and we add the origin, i.e. * = 0.
Finally, to accomplish smoothness, we implement matching conditions for
the values of the effective potential and its derivatives at *m. The resulting
set of algebraic equations is then solved with the Newton-Raphson method.
In practice, we actually expand the derivative of the dimensionless effective
potential D′(*) along these lines, we optimize ! and *m as well as the number
of collocation points until we reach convergence in our numerical results.
For the present model, we observe numerical convergence of the first four
significant digits already starting at =) = =' = 9 and, as a sanity check, we
have increased the number of collocation points up to 18 in each subdomain
for selected cases.

The anomalous dimensions of the quantum critical point are then obtained
directly from the fixed-point solution of D′(*) using the FRG flow equations
specified in the next section. To obtain the inverse correlation length exponent,
we use the pseudospectral expansion from the first subdomain, i.e. * < *m,
rewriting it as a local expansion around its minimum. With the latter
expansion, we then calculate the stability matrix and extract the eigenvalues
at the fixed-point potential. The largest positive eigenvalue is the inverse
correlation length exponent.

7.5.2 Flow equations

For convenience, we introduce dimensionless versions of renormalized
couplings and the effective potential, to wit:

6̃2 = /−1
),:/

−2
#,: :

3−462
: , D(*̃) = :−3*:(/−1

),: :
3−2*̃), (7.46)

where *̃ = /−1
),: :

3−2* (and likewise for the VEV *0) and we have suppressed
the indices indicating the scale dependence for simplicity. In the following,
we shall work solely with dimensionless quantities, and leave the “tilde”
implicit. Furthermore, we define the bosonic and fermionic anomalous
dimensions in usual fashion, �),: = −%C/),://),: and �#,: = −%C/#,://#,: .
The FRG flow equations can be derived by inserting the ansatz (7.39) into
the Wetterich equation (2.33) and comparing coefficients. In particular,
evaluating for constant )0 = (0, 0,

√
2*) yields the flow equation for the

effective potential

%CD(*) = −3D(*) + (3 − 2 + �))*D′(*)
+ 2E3ℓ

(B),3
0 (D′(*) + 2*D′′(*);�))

+ 4E3ℓ
(B),3
0 (D′(*);�))

− 4E3
[

2#
3 ℓ
(F),3
0 (2* 62;�#) + #

3 ℓ
(F),3
0 (0;�#)

]
. (7.47)

The factor E3 ≔ [23+1�3/2Γ(3/2)]−1 arises from integration over the surface
of the sphere in 3-dimensional Fourier space. The threshold functions ℓ (B),30
and ℓ (F),30 involve the remaining radial integration and encode the details
of the regularization scheme, see Ref. [74] for formal definitions. While
the first line of Eq. (7.47) represents the tree-level flow, the second and
third line arise from the fluctuations of the one Higgs mode with mass
2*D′′(*) and the two Goldstone modes respectively, in full agreement with
the Gross-Neveu-SU(2) case [140]. In the fermion bubble contribution (last
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3: The flow equations are non-universal
(i.e., dependent on cutoff scheme), so care
must be taken when comparing results for
fixed-point couplings, and flow equations
a fortiori, obtained using different methods
(this would be true even if we could em-
ploy the respective methods exactly). The
exponents, on the other hand, are univer-
sal and hence scheme-independent. In fact,
the loop expansion near the upper critical
dimension is universal order by order. We
have checked explicitly that the exponents
using the linear cutoff agree to O(&) with
the sharp cutoff result.

line), the first term corresponds to the 2#/3 gapped modes with mass 2*62,
and the second term to the #/3 modes that remain gapless in the presence
of a constant background * .

The definition of the Yukawa coupling is actually ambiguous in the SSB
regime, as in general the fermions couple differently to Higgs and Gold-
stone modes. Assuming the coupling to the Goldstone modes (due to their
masslessness) to be the one primarily important for critical behavior [140,
324], we determine the flow of the Yukawa coupling by projecting onto
)1#̄(!1 ⊗ 12)# and obtain

%C 62 = (3 − 4 + �) + 2�#)62 + 8E3ℓ
(FB),3
11 (2*062 , D′0;�# , �))64

− 16E3*0D′′0 ℓ
(FBB),3
111 (2*062 , D′0 , D

′
0 + 2*0D′′0 ;�# , �))64. (7.48)

Likewise, comparison of coefficients for the kinetic terms gives the anomalous
dimensions,

�) =
32#E3

33
<(F),34 (2*062;�#)62 + 16E3

3
<(B),322 (D′0 , D′0 + 2*0D′′0 ;�))*0D′′0

2

(7.49)

�# =
16E3
33

[
<(FB),3

12 (0, D′0;�# , �)) + <(FB),3
12 (2*062 , D′0;�# , �))

+<(FB),3
12 (2*062 , D′0 + 2*0D′′0 ;�# , �))

]
62. (7.50)

Here, ℓ (FB),3
11 ,<(F),34 ,<(B),322 and<(FB),3

12 are further threshold functions defined
in Ref. [74].

In this work, we use a linear cutoff, which satisfies an optimization crite-
rion [82], as well as a sharp cutoff [324] for comparison. For these regulators,
the threshold functions are known analytically, see, e.g., the appendix of
Ref. [324] for an overview.

As a consistency check, we derive, in the limit of small & = 4−3, the one-loop
flow equations of Ref. [54]. Since the latter employed Wilsonian RG with a
sharp cutoff, we need to insert3 the threshold functions corresponding to the
sharp cutoff in the flow equations (7.47)–(7.50). We assume the fixed-point
effective potential lies in the symmetric regime. Assuming furthermore that
fixed-point couplings 62

★ = O(&), �=,★ = O(&=−1) are parametrically small,
we may neglect all higher-order couplings �8>2 in the flow of the effective
potential above (i.e., we work in LPA4′). Thus,

%C�1 = (−2 + �))�1 − 10E3
�2

1 + �1
+ 16

3
E3#62 , (7.51)

%C�2 = (−& + 2�))�2 + 22E3
�2

2
(1 + �1)2 −

32
3
E3#64 , (7.52)

and

%C 62 = (−& + �) + 2�#)62 + 8E3
64

1 + �1
, (7.53)

with�) = 32
3
E3
3 #6

2 and�# = 16 E33 6
2/(1+�1)2.We then rescale the couplings

�2 → �2/(4E3) and 62 → 62/(4E3) and take into account that E3 = 1
32�2 +

O(&). Upon identifying �1 ≡ <2 and �2 ≡ 4!�, Eqs. (7.51)–(7.53) coincide
precisely with the one-loop flow equations given in Ref. [54].
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Figure 7.6: Critical exponents of the Gross-Neveu-SO(3) universality class as a function of space-time dimension 3 for # = 3 flavors of
two-component Dirac fermions from three-loop (4 − &) expansion, second-order 1/# expansion (third-order for �#), and FRG in LPA16′ using
linear (lin) and sharp (sc) regulators. [</=] correspond to different Padé approximants.

A fixed point of the FRG flow equations is given by %C 62 = 0 and %CD(*) = 0
for all * > 0. Employing the polynomial expansion of the average potential
yields (= + 2)/2 coupled nonlinear equations for the (= + 2)/2 couplings
(62 ,�1 , . . . ,�=/2) or (62 , *0 , �̂2 , . . . , �̂=/2) depending on regime. In an arbi-
trary fixed space-time dimensions 2 < 3 < 4, these equations can be solved
iteratively [140]. For our numerical results, we use the linear cutoff, which
satisfies an optimization criterion [82], as well as a sharp cutoff [324] for
comparison. In both cases, the threshold functions are known analytically,
see, e.g., the appendix of Ref. [140] for an overview. In 3 = 3, we always find
a unique fixed point that is characterized by a single relevant direction in
the renormalization group sense. Upon increasing the dimension towards
3 ↗ 4, this fixed point is adiabatically connected to the infrared stable
fixed point of the one-loop flow in the (4 − &) expansion. We discuss the
corresponding critical exponents in the following section, together with the
results of the other two approaches.

7.6 Discussion

The quantum critical point is characterized by a set of universal exponents. In
this work, we focus on the leading exponents � and �) , as well as the fermion
anomalous dimension �#. Here, the exponent � determines the divergence
of the correlation length � upon approaching the quantum critical point,
while the boson and fermion anomalous dimensions �) and �# govern the
scaling forms of the respective correlators. We emphasize that the fermionic
correlator is not gauge invariant in the spin-orbital models and therefore
�# does not correspond to an observable quantity in this setting. However,
as the Gross-Neveu-SO(3) universality may in principle also be realized in
a model of interacting fermions, in which case �# is measurable, we also
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Figure 7.7: Same as Fig. 7.6, but as a function of two-component Dirac fermion flavors # in fixed space-time dimension 3 = 3.



110 7 Fractionalized quantum criticality in spin-orbital liquids

Table 7.1: Critical exponents for the Gross-
Neveu-SO(3) universality class for# = 3fla-
vors of two-component fermions in 3 = 2+1
space-time dimensions as relevant for the
spin-orbital model on the honeycomb lat-
tice [54] from three-loop (4 − &) expan-
sion, second-order 1/# expansion (third-
order for �#), and functional renormal-
ization group. [</=] correspond to differ-
ent Padé approximants. For the (4 − &)-
expansion results (1/#-expansion results),
we have refrained from showing approxi-
mants that exhibit a singularity in 3 ∈ (2, 4)
[in # ∈ (0,∞)], marked with “sing.”; those
that do not exists are marked “n.-e.”. A dash
(—) signifies that the approximant either en-
tails the computation of terms which go be-
yond the scope of this work, or (conversely)
does not exhaust all the terms computed in
the preceding sections. For the FRG results,
we have employed the LPA=′ approxima-
tion with = ≤ 16 for the linear regulator and
= ≤ 28 for the sharp regulator. The error
bars correspond to the uncertainty in the
extrapolation to = →∞.

# = 3 1/� �) �#

4 − & expansion [2/1] sing. 0.36989 0.18622
[1/2] 0.94472 0.40086 0.16458
[3/0] 0.97516 0.39181 0.17234
[0/3] 1.09000 n.-e. n.-e.

1/# expansion [1/1] 0.89397 0.46276 —
[2/0] sing. 0.49833 —
[0/2] sing. 0.51074 n.-e.
[2/1] — — 0.22716
[1/2] — — 0.12337
[3/0] — — 0.22116
[0/3] — — n.-e.

FRG Taylor linear 1.1901(10) 0.38781(6) 0.15068(8)
sharp 1.209(4) 0.3434(5) 0.1966(6)

pseudospectral linear 1.18974 0.38781 0.15072
sharp 1.20465 0.34340 0.19649

discuss this quantity here. Subleading quantities that control the corrections
to scaling upon approaching the quantum critical point, such as $, can in
principle also be computed within our approaches, but are left for future
work.

Figure 7.6 shows our results for 1/�, �), and �# as a function of space-time
dimension 2 < 3 < 4 for # = 3 flavors of two-component Dirac fermions,
which is the case relevant for the spin-orbital models. For the results from
the (4 − &) and large-# expansions, we have employed different Padé
approximants, marked as “[</=]” with integer < and = in the plots. The
difference between the different approximants provides a simple estimate
for the systematic error of the extrapolation to finite & and 1/# , respectively.
For the same purpose, in the FRG calculation, we have applied two different
regularization schemes, marked as “lin” for the linear cutoff and “sh” for
the sharp cutoff. We note that in the sharp-cutoff scheme, there is no stable
fixed point for 2.104 < 3 < 2.366 as a consequence of fixed-point collisions
at the lower and upper bound of this interval. In this cutoff scheme, the fixed
point near 3 = 2 + & dimensions is therefore not adiabatically connected to
the fixed point at 3 = 4 − & dimensions. We also note that in both cutoff
schemes, the FRG fixed point for # = 3 is located in the symmetric regime
for 3 = 2+& and 3 = 4−&, but in the symmetry-broken regime for 3 = 3. This
leads to discontinuities in 1/� at those values of 3, at which the minimum
of the fixed-point potential becomes finite, see Fig. 7.6(a). Reassuringly, we
observe that all curves approach each other near the upper critical space-time
dimension 3up = 4, as it should be [140].

Figure 7.7 shows the critical exponents for the physical dimension 3 = 2 + 1
as a function of the flavor number # . For # sufficiently large and increasing,
the deviations between the different approaches decrease for increasing
# and vanish in the limit # → ∞ as expected. Note that for large # , the
fixed point in the FRG calculation is again located in the symmetric regime,
in analogy to the behavior of the Gross-Neveu-ℤ2 model [320, 322]. The
transition from symmetry-broken to symmetric regime upon increasing #
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# = 6 1/� �) �#

4 − & expansion [2/1] 0.96700 0.61484 0.12551
[1/2] 0.81514 0.60023 0.10216
[3/0] 0.86069 0.61414 0.09720
[0/3] 1.01291 n.-e. n.-e.

1/# expansion [1/1] 0.91136 0.70076 —
[2/0] 1.28320 0.70572 —
[0/2] 1.26614 0.71005 n.-e.
[2/1] — — 0.09317
[1/2] — — 0.08341
[3/0] — — 0.09275
[0/3] — — n.-e.

FRG Taylor linear 0.9294(6) 0.66947(6) 0.073170(17)
sharp 0.926(3) 0.6598(4) 0.08257(16)

pseudospectral linear 0.92961 0.66948 0.073165
sharp 0.93245 0.65980 0.082570

Table 7.2: Same as Table 7.1, but for # = 6.

is accompanied by a jump in 1/�, similar to the transition as a function of 3
at fixed 3 discussed above.

The numerical estimates for the physical dimension 3 = 2 + 1 are given in
Table 7.1 for # = 3 and in Tables 7.2–7.3 for larger values of # . Overall,
we observe a fair agreement of the estimates from the three different
approaches. In order to obtain final estimates for the three exponents from
the combination of the three different approaches we first average over
the values of the different Padé approximant and regularization schemes,
respectively, within a given approach and then average over the mean values
of the three approaches. The spread of the three mean values yield a rough
estimate for the accuracy of our final result. This way, we obtain the critical
exponents for the physically relevant case of# = 3 flavors of two-component
Dirac fermions in 3 = 2 + 1 space-time dimensions as

# = 3 : 1/� = 1.03(15), �) = 0.42(7), �# = 0.180(10) . (7.54)

Equation (7.54) represents the main result of this work. As there appears to
be no dangerously irrelevant coupling in the theory, we expect hyperscaling
to be satisfied. The critical exponents , �, �, and � can then be obtained
from � and �) with the help of the usual hyperscaling relations [61]. For
completeness, we also quote the estimates obtained for larger values of # ,
which may be relevant for models with microscopic fermionic degrees of
freedom,

# = 6 : 1/� = 1.00(13), �) = 0.66(5), �# = 0.091(15), (7.55)
# = 12 : 1/� = 0.93(4), �) = 0.83(4), �# = 0.039(9). (7.56)
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Table 7.3: Same as Table 7.1, but for # = 12.
For the FRG results, we have omitted the
error bars corresponding to the uncertainty
in the extrapolation of the Taylor expansion
of the effective potential, as they are smaller
than 2 × 10−5.

# = 12 1/� �) �#

(4 − &) expansion [2/1] 0.91427 0.80775 sing.
[1/2] 0.82616 0.80659 0.05391
[3/0] 0.84820 0.80614 0.04095
[0/3] 0.99001 n.-e. n.-e.

1/# expansion [1/1] 0.93326 0.84134 —
[2/0] 1.00325 0.84199 —
[0/2] 0.98522 0.84280 n.-e.
[2/1] — — 0.04056
[1/2] — — 0.03995
[3/0] — — 0.04054
[0/3] — — n.-e.

FRG Taylor linear 0.93660 0.85180 0.02992
sharp 0.93282 0.85700 0.02941

pseudospectral linear 0.93660 0.85180 0.02992
sharp 0.93282 0.85700 0.02941

4: Unfortunately, the resummation by in-
terpolation to a (2 + &) expansion is much
more difficult in this model. In fact, we are
lacking the epsilon expansions because the
corresponding Gross-Neveu model is not
closed under RG. A careful analysis would
be needed to take all terms in to account
which are generated under RG transforma-
tions.

7.7 Summary and outlook

In this work, we have investigated the critical behavior of the (2 + 1)-
dimensional Gross-Neveu-SO(3) universality class in terms of the universal
critical exponents �, �), and �# by means of different sophisticated field-
theoretical techniques. The fractionalized counterpart of the Gross-Neveu-
SO(3) universality class, dubbed Gross-Neveu-SO(3)*, may be realized in
spin-orbital magnets with strong exchange frustration [54]. In contrast to
the fractionalized bosonic universality classes [52], in the fractionalized
fermionic universality classes, not only the correlation-length exponent �,
but also the order-parameter anomalous dimension �) agrees with the value
of the corresponding conventional fermionic universality class. This allows
us to obtain estimates for both Gross-Neveu-SO(3) and Gross-Neveu-SO(3)*
from the same calculation. We emphasize, however, that the fermionic
correlator is not gauge invariant in the spin-orbital model. Our estimate
for the fermion anomalous dimension �# therefore applies only to the
conventional Gross-Neveu-SO(3) universality class.

The Gross-Neveu-SO(3) theory is different from the previously studied
Gross-Neveu-type models, as it features a symmetry-breaking transition
between two semimetallic phases, with only a partial gap opening in the
ordered phase. This leads to values for the critical exponents that strongly
differ from those of the semimetal-to-insulator Gross-Neveu transitions [55,
113] as we discussed them in Chapter 34. In particular, the order-parameter
anomalous dimension �) in the Gross-Neveu-SO(3) model is significantly
smaller than �) in any of the other Gross-Neveu-type models for the same
number of fermion flavors. These difference may be readily observable in
numerical simulations of suitable lattice models.

For the future, it would be interesting to study further properties of the Gross-
Neveu-SO(3) universality class. In particular, the finite-size spectrum on
the torus, which was recently investigated in the conventional Gross-Neveu
universality class [180], might be worthwhile to be examined, both in the
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conventional Gross-Neveu-SO(3) and the fractionalized Gross-Neveu-SO(3)*
case.
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In this thesis, we investigated the critical behavior of Dirac systems at
three space-time dimensions from the perturbative renormalization group
perspective. The originally for high energy theories (in the realm of the
Standard Model) developed tools and techniques to compute higher loop
renormlization group functions are used to push the quantitative insight
on fermionic universality classes which so far are lacking the astonishing
agreement across complementary methods as present in their bosonic
siblings.

Starting with the chiral Ising Gross-Neveu-Yukawa model which can be
derived as the semi-phenomenological theory for phase transitions in the
most prominent Dirac material graphene, we extensively studied the (4 − &)
expansions to the state of the art fourth loop order. Applying sophisticated
resummation schemes as well as taking advantage of the (2 + &) expansion
in the Gross-Neveu model in Chapter 3, we provided concise estimates of
the critical exponents of the chiral Ising Gross-Neveu universality class at
3 = 3. Especially, the elaborated interpolations between these two models in
the same univerality class has proven to maintain the asymptotic divergent
behavior of both epsilon expansions. We contributed to the substantial
progress on the precision of critical exponents across all methods ranging
from non-perturbative RG, (quantum) Monte-Carlo simulations to the con-
formal bootstrap and the numbers are closing in on to each other, such that
the striking agreement seen in the O(#)-universality seems to be in reach.

With these insights and experiences at hand, we turned to quantum field
theories for deconfined quantum critical points. The latter explain the
continuous phase transitions between two ordered phases of completely
different symmetry by fractionalized spinons which are liberated exclusively
at the critical point and drive the transition [40]. For perturbatively RG
analysis, we generalized the theory to the Abelian Higgs model which
exhibits a critical point only above =2 ∼ 183 complex scalars in one-loop
order. To improve this number towards 3 = 3 dimensions, we refined the
RG analysis of the critical behavior in Chapter 5 by means of a four loop
expansion. The resummed predictions for =2 ≈ 12 ± 4 narrow the previous
calculations by multiple orders of magnitude. Nevertheless, it remains to
further discussion whether the critical behavior captured by the NCCP1

model describes a continuous phase transition. Concerning this matter,
our findings revealed walking of the RG flow in the vicinity of the fixed
point collision which possibly explains the pseudocritical behavior of the
NCCP1 model as found in some numerical simulations [218]. Although a
quantitative evaluation of the concomitant Miranksy scaling is out of range
for the presented perturbative renormalization group analysis, our results
motivate future projects using non-perturbative methods as the FRG or
possible checks within the numerical simulations.

Partly inspired by the surprising emergent SO(5) symmetry in the numerical
simulations of the deconfined quantum phase transition, an entire web of
novel dualitieswas conjectured [50, 51]. One of the contributing field theories,
in a subset of this web connecting deconfined quantum critical points, was
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found to exhibit gapless gaugedDirac fermions described by theQED3-Gross-
Neveu model [50, 279]. In order to check the duality conjectured scaling
relations for 3 = 3, we performed a three loop perturbative renormalization
group analysis in Chapter 6. While for some exponents our predictions
are consistent with the duality, especially the anomalous dimension is
significantly above unity and therefore out of range of the conjectured dual
Néel-VBS transition [50]. The further analysis by a four loop RG, as well
as the consideration of Aslamazov-Larkin diagrams at three dimensions,
couldn’t resolve this issue undoubtedly [303]. Nevertheless, it supports our
assessment that the answer may be beyond a perturbative approach. Once
again, non-perturbative methods could explore if this proves a violation of
the duality or serves as another possible hint for actually pseudo-critical
behavior.

In the last part of this thesis, we scrutinized the critical behavior of a
recently found fermionic fractionalized critical point [54]. While for bosonic
theories already known, the fractionalization of degrees of freedom may
shift the transition to a novel universality class. In this project, we perform
a comprehensive study of the Gross-Neveu-SO(3) model by means of a
three loop perturbative RG, a large-# expansion and a functional RG
analysis. The results provide a concise window of confidence on the critical
exponents which may be the reference for future comparative Monte-Carlo
simulations.
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In Chapter 2, we discussed the perturbative one-loop renormalization of the
Isingmodel Eq. (2.15) and presented the RG procedure bymeans of Feynman
diagrams and their divergent parts in the dimensional regularization and
the subsequent minimal subtraction scheme (MS).

A reoccurring Lagrangian, throughout this thesis, is the ungauged Gross-
Neveu-Yukawa model. We have seen it emerges as the critical theory for
the transition of graphene from a semi-metallic insulator phase to charge
density wave ordering or a spin density wave ordering. Additionally, in
our last project we extensively disucssed another implementation as critical
theory for a fractionalized spin-oribtal liquid transition. All these models
have a relatively simple1

1: By “simple”, we mean in comparison to
gauged theories with a non-abelian vertex
structure like the Lagrangian of QCD.

structure in common, but are distinguished by
the spontaneously-broken symmetries. These symmetries are encoded in
the generators of the Lie algebra which occur in only one term of the
Lagrangian, theYukawa interaction. Byperforming the one-loopperturbative
renormalization group analysis for a generic Lie algebra, we have the
opportunity to unify all these models to limits of generic beta functions.

A.1 Gross-Neveu-Yukawa models

We start by formulating the Lagrangian of the most general ungauged
version of the Gross-Neveu-Yukawa model in 3 = 4 − & dimensions

LGNY = #̄8(/% + 6)0)089 )# 9 + 1
2
)0(<2 − %2

�))0 +
�
4!
()0)0)2 . (A.1)

In this formulation the fermionic field has # = (#1 , . . . ,## )T components
and the bosonic field obtains 0 = 1, . . . , #� components. Besides the global
U(1) symmetry, the discrete chiral symmetry of this model is encoded in the
matrices )0 . These are the the generators of the underlying Lie algebra and
couple bosons and fermions by the Yukawa interaction term with coupling√
H. In order to stabilize the RG in four dimensions, we added the usual

quartic interaction term with coupling �. Finally, this model enjoys a full
Lorentz symmetry, i.e. the dynamical critical exponent is set to I = 1.

The renormalizability of this model is easily checked by analyzing the
canonical power counting of the mass dimensions of fields and couplings.
For a 3 dimensional theory like this, they read

[#] = 3 − 1
2

, [)] = 3 − 2
2

, [√H] = 4 − 3
2

, [�] = 4 − 3 . (A.2)

Similar to the discussion in Chapter 2 for the Ising model, this ensures that
for 3 = 4 − & the couplings of the GNY model scale like

[√H] = &/2 and [�] = & . (A.3)

At the upper critical dimension, the couplings become marginal and the
mean field results apply. However, below four dimension (& > 0), the
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2: Once again we refer to the monumental
opus by Jean Zinn-Justin [69]. A bookwhich
demands more than a life time to be written
and yet it’s not the only one by Zinn-Justin.

Gaussian fixed point becomes unstable and infrared repulsive. In this case,
we now ask for other (infrared attractive) fixed points which break the
consider symmetry like the ones we dicussed in Chapter 3 and 7.

A.2 Feynman rules & one loop diagrams

The very first step in any modern (Wilsonian) perturbative renormalization
group analysis is deducing the momentum-space Feynman rules from the
Lagrangian. How this is done in detail is explained in almost every textbook
on quantumfield theory2 andwe rush directly to the diagrammatic Feynman
rules, also known as tree-level diagrams, which read

?
8 9 =

i�8 9
/? ,

0

1

2

3

= −�(�01�23 + �02�13 + �03�12) ,

8

9
0 =
√
H )089 ,

?
0 1 =

�01

?2 + <2 . (A.4)

Here, the arrowed line denotes the fermion propagator and the dashed
line the boson propagator. The three terms of the quartic interaction stem
from the three possible ways to contract the loose ends. At one-loop level,
applying these rules we have to compute 13 diagrams as shown in Fig. A.1
from which especially the nasty appearing quartic ones will all contribute
equally and it is sufficient to compute only one of them. Each diagram entails
one unfixed 3-dimensional loop momentum : which we have to integrate over.
This sets the maybe most difficult part of the one-loop RG analysis and we
are asked to actually calculate the momentum-loop integrals. Fortunately,
many physicists before were challenged by this task and developed several
tricks to compute them analytically (see again Ref. [69]). We will perform
this calculation in the next section, but first focus on a rather unfamiliar
modification. Besides the momentum part, the crucial contributions here are
the generators of the Lie algebra )089 in the Yukawa tree-level diagram. In fact,
based on the ideas by Pedrag Cvitanovic [327, 328] on so-called birdtrack
diagrams, we can separate the momentum part of the diagrams from the
group theoretical part. Technically, this prescribes a set of additional color rules
which entail their own “Feynamn rules” but for group theoretical part only.

#̄8 # 9 )0 )1
)0 )1

#̄8

# 9

)0

)0

)1

)2

)3
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)1

)2

)3

)0

)1

)2

)3

)0

)1

)2

)3

)0

)1

)2

)3

)0

)1

)2

)3

Figure A.1: All one-loop diagrams of the ungauged Gross-Neveu-Yukawa model. In total there are 13 diagrams (we omitted three diagrams of
the )4-vertex which just have an anti-clockwise running fermion).
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3: Because of its appearance, this diagrams
is also called “sunrise” diagram. There are
also a bunch of other explicitly named dia-
grams including the “penguin diagram”.

If, for instance, we consider the one-loop diagram of the fermion propagator3
and explicitly use the Feynman rules in (A.4), we will find that the group
theoretical part can be separated in the following way

&, 8 &, 9
: +&

:

= &, 8 &, 9
: +&

:

× 8 9

(A.5)

Here, & denotes the external momentum and : again the loop momentum
to integrate over. In fact, we are left with a product of the diagram built
by the pure momentum-space rules including also the Dirac algebra of the
�-matrices and the color weight built by using the color rules. This principle
is essential for the computer algebra and offers a generic way to deal with
color weights generated by any simple Lie algebra. Since a reduction to
invariants is, in general, only possible if all color indices are contracted, we
have to apply according projectors as explained next.

A.3 Group theory for Feynman diagrams

In the general formulation of the Gross-Neveu-Yukawa model Eq. (A.1), we
introduced the matrices )0 in the Yukawa interaction connecting fermionic
and bosonic fields. These matrices are the generators of a finite dimensional
simple Lie algebra [329]. They satisfy the following commutator relation

[)0 , )1] = )0)1 − )1)0 = i 5 012)2 , (A.6)

where 5 012 are called the structure constants. In the following, the generators
are conventionally used to be hermitean and the Killing form is choosen to
be proportional to �01 , i.e.

Tr[)0)1] ∝ �01 . (A.7)

Under these conventions, the structure constants are real and totally anti-
symmetric. We further introduce labels where “'” denotes a generic rep-
resentation with dimension #' and “�” the adjoint representation with
dimension #�. The generators of the adjoint representation are build from
the structure constants by

()�)012 = −i 5 012 . (A.8)

Since in the calculation of the color amplitudes of our Feynman diagrams,
traces over products of matrices )0 play a major role, we can express the
entire group theoretical weight by only their invariant tensors. These tensors
define Casimir operators from which, in this context, first of all the quadratic
Casimir operaotr �' is of special interest

()0')0' )8 9 = �'�8 9 . (A.9)

Accordingly, for the adjoint representation using (A.8) follows that

5 023 5 123 = ���01 . (A.10)
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In the Killing form, for a trace over two generators in the representation ',
we can additionally define the coefficient �2(') as

Tr
[
)0')

1
'

]
= �2(')�01 . (A.11)

This is related to the quadratic Casimir operator via the dimensions of the
representations as

�2(') = #'

#�
�' . (A.12)

At the moment, it may seem over-engineered to worry this much about the
group theoretical weight and how to express it by their invariants. But it
enables us to compute the beta functions for a generic symmetry group and
only subsequently fix it by setting the invariants to simple numbers of the
wanted version of our model.

Additionally, it provides us with a very perceptive formalized procedure to
compute the arising color amplitudes (a.k.a. group theoretical weigts) by
means of the above mentioned color rules. For the Gross-Neveu-Yukawa
model as defined in (A.1), we assign the representation' to the fermion fields
and the adjoint representation � to the boson fields. Note that we intention-
ally already chose the bosonic field to have #� components. In accordance
with the full momentum-space Feynman rules above, the correpsonding
diagrammatic color rules read

8 9 = �8 9 , 0 1 = �01 ,

8

9
0 = )089 ,

0

1

2

3
=

0

1

2

3
+
0

1

2

3
+
0

1

2

3
(A.13)

= �01�23 + �02�13 + �03�12 .

Again, the three terms of the quartic vertex account for the three possible
ways to contract the indices. As a first simple application of these rules, we
can depict the dimensions of both representations as well as the quadratic
Casimir operator and the �2(') invariant by the following diagrammatic
calculations

= �88 = #' , = �00 = #� , (A.14)

8 9 = )
0
8;)

0
; 9 = �'�8 9 , (A.15)

0 1 = )089)
1
98 = Tr

[
)0')

1
'

]
= �2(') �01 . (A.16)

Note that connecting loose ends for the color diagrams means that we
contract the respecting indices. The presented application of the ideas by
Cvitanovic give only a glimpse of the powerful language he developed in
Ref. [327, 328].
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A.4 Renormalization group procedure

We begin our renormalization group procedure on the same track as in
Section 2.3.2. At first, we write down the bare Lagrangian upon replacing the
fields and couplings by their bare counterparts {#0 , )0 , 60 ,�0 , <0}, i.e.

Lbare = #̄0 /%#0 + 1
2
)0(<2

0 − %2
�))0 + 60)0,0#̄0)0#0 +

�4
0

4!
)4

0 , (A.17)

where we omitted most of the indices in Eq. (A.1) for a better readability.
Note that the bare quantities independent of any cutoff or energy scale �.
Although these are of no use for measurable correlation functions, they
are related to the renormalized physical quantities by the renormalization
constants /G

#0 = /
1/2
# #, )0 = /

1/2
) ), 60 = /6 6, �0 = /��, <2

0 = /<<
2 .

(A.18)

The renormalized quantities are now scale dependent on the energy scale �.
For a renormalizable field theory, any divergence or infinity occurring in
correlation functions of the renormalized fields #̄,# and ) is absorbed by
the renormalization constants. The renormalized Lagrangian then reads

Lren = /##̄/%# + 1
2
)(/</)<2 − /)%

2
�)) + /6/1/2

) /#6)0#̄)0#

+ /�/2
)

�
4!
)4 . (A.19)

For a better overview and the calculation of the critical exponents and anoma-
lous dimensions, it is worth to summarize the products of renormalization
constants in the following definitions

/)2 ≡ /</) , /)#̄# ≡ /6/1/2
) /# , /)4 ≡ /�/2

) . (A.20)

Since for the epsilon expansion, the appearing infinities are regularized
within a dimensional regularization (DREG) around 3 = 4 − & dimensions,
we have to rescale all quantities regarding their mass dimension in (A.2).
The new renormalization mass scale � is attached to render themmassless

√
H → √H�&/2 , �→ ��& , <2 → <2�−2 . (A.21)

A.4.1 Renormalization constants

In the minimal subtraction scheme MS, the renormalization constants are
determined by computing the one-particle-irreducible (1PI) corrections to
the propagators and vertices. For this purpose, we demands them to absorb
only the divergent part of the Feynman diagrams loop-by-loop. By replacing
/G = 1+�/G in the renormalized Lagrangian (A.19), we split the Lagrangian
in two parts

Lren = (1 + �/#)#̄/%# + 1
2
)((1 + �/)2)<2 + (1 + �/))%2

�))

+ (1 + �/)#̄#)6)0#̄)0# + (1 + �/)4)�
4!
)4 . (A.22)
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As before, in Section 2.3.2, the first part provides the physics of the renor-
malized fields, while the second one generates the counterterms which has
to absorb the emerging divergent diagrams

Lren = L+Lct =#̄/%# + 1
2
)(<2 − %2

�)) + 6)0#̄)0# +
�4

4!
)4

+ �/##̄/%# + 1
2
)(�/)2<2 − �/)%

2
�))

+ �/)#̄#6)0#̄)
0# + �/)4

�4

4!
)4 . (A.23)

Therefore, the counterterm Lagrangian Lct gives rise to additional coun-
terterm Feynman rules reading. As a result, we are left with in total eight
Feynman rules. While & � 1 is assumed to be small enough for the dimen-
sion regularization, the couplings scale with O(&�) even smaller such that
for �/8 we can write (1+ �/8)B ≈ 1+ B�/8 . We obtain the following relations
between the renormalization constants

�/)2 = �/< + �/) , (A.24)

�/)#̄# = �/6 + 1
2
�/) + �/# , (A.25)

�/)4 = �/� + 2�/) . (A.26)

Then, the divergent parts of the according correlation functions define the
renormalization constants by the following equations

i/?(�/# + 〈#̄#〉div.) = finite , (A.27)

?2 · �/) + <2 · �/)2 + 〈))〉div. = finite , (A.28)

6 · �/)#̄# + 〈)#̄#〉div. = finite , (A.29)

� · �/)4 + 〈))))〉div. = finite . (A.30)

In particular, the renormalization constants collect all divergent contributions
of of the loop momentum integrals after the dimensional regularization.

A.4.2 Group theoretical weights

Each 1PI Feynman diagrams, we drew so far, comes with loose ends which
means there are also non-contracted group indices left. Their handling can
become quite challenging for a computer algebra. In order to obtain the
group theoretic weight which contributes to a certain vertex or propagator,
we therefore use proper projectors %G in color space. These are multiplied to
the respecting diagram and contract all free indices, such that we are left with
a scalar which is proportional to the tensor structure of the corresponding
vertex or propagator in the color rules above. For the correct results, we
finally have to normalize the projector by a group theoretical factor by
demanding the correct result on tree-level. Explicitly, we make the following
ansatz

(%#̄#)8 9 = �#̄#�8 9 , (A.31)

(%)))01 = �))�
01 , (A.32)

(%)#̄#)089 = �)#̄#)
0
89 , (A.33)

(%)4)0123 = �1,)4�01�23 + �2,)4�02�13 + �3,)4�03�12 . (A.34)
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4: A small hint for lazy minds like the
author’s: take a look at Ref. [69].

The normalization constants �G are determined by multiplying these pro-
jectors with the corresponding propagator or vertex Feynmanrule and
demanding the resulting contracted diagrams to be unity

�8 9 · (%#̄#)98 = �#̄#�88 = �#̄##'
!
= 1 (A.35)

�01 · (%)))10 = �))�
00 = �))#�

!
= 1 (A.36)

)089 · (%)#̄#)098 = �)#̄#)
0
89)

0
98 = �)#̄#�'�88 = �)#̄#�'#'

!
= 1 (A.37)

(�01�23 + �02�13 + �03�12) · (%)4)0123 = (#2
� + 2#�)(�1,)4 + �2,)4 + �3,)4) !

= 1 .
(A.38)

Note that for the last projector of the quartic coupling, we are free to choose
one of the constants and neglect the other two.

A.5 One-loop Calculations

At one-loop level, the number of diagrams is still manageable and its worth to
do the calculation by hand in order to get a notion of the procedure necessary
also in higher loop orders. We will now go through the evaluation of the
single diagram contributing to the fermion propagator will be presented in
full detail. For the calculation of all other diagrams we can essentially follow
the same steps and leave this task to the reader4. However, we present how
the nontrivial group theoretical weights are calculated in detail.

Fermion Propagator. For the fermion propagator, there is only one diagram
which contributes on one-loop level. By applying the Feynman rules derived
in Section A.2, we obtain the following integral

&, 8 &, 9
: +&

:

≡ �# =
∫

d� :
(2�)�

[
)08<

�01
:2 + <2)

1
; 9

i�;<
/: + /&

]
= i()0)0)8 9

∫
d� :
(2�)�

1
(: −&)2 + <2

/:
:2 , (A.39)

where in the second line the integral was shifted by : → : −&. Note that,
as explained above, the group theoretical weight naturally appears as a
factor in front of the momentum integral. We use the Feynman parameter
technique to introduce another integral

�# = i�'�8 9
∫

d3:
(2�)3

∫ 1

0
dG

/:
[G((& − :)2 + <2) + (1 − G):2]2

. (A.40)

By another shift from : − G& → : and integrating over :, we obtain

�# = i /&�'�8 9 Γ(2 − 3/2)(4�)3/2
∫ 1

0
dG G3/2−1 [

<2 + (1 − G)&2] 3/2−2
. (A.41)

Expanding this to the first order in & = 4 − 3 and evaluating the integral
over G, the wanted 1/& pole is given as

�# =
i /&
2
<−&

#3

&
�'�8 9 + finite . (A.42)
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The factor #3 = (4�)−3/2/Γ(3/2) appears in all orders to the power of the
respecting loop level (as here at one loop level) and can be absorbed by a
suitable re-scaling of the couplings

#3 H → H and #3 �→ � . (A.43)

This re-scaling also applies to the following calculations as well as in the
computer algebra.

Boson Propagator. The Boson propagator has two one-loop diagrams: The
fermion-loop diagram and the massive tadpole diagram. For the former the
group theoretical weight was already given in (A.16) as

0 1 · (%)))10 = 1
#�

)089)
0
98 = �2(') . (A.44)

The group theoretical weight of themassive tadpole is calculated by applying
the projector (A.32) to

0 1
· (%)))01 = (�01�22 + �02�12 + �02�21)�))�

01

= (#� + 2)�01 1
#�

�01 = #� + 2 . (A.45)

Yukawa Vertex. For the calculation of the group theoretical weight of the
Yukawa vertex, we have to carefully apply all relations given in Section A.3.
The final result of the occurring trace is

8

9

0 · (%)#̄#)098 = �)#̄#Tr
[
)1')

0
')

1
')

0
'

]
= �' + 1

2
�� . (A.46)

)4 Vertex. The computation of the quartic boson vertex follows straight-
forwardly again by applying the corresponding projector. In fact, there are
two types of diagrams. In the first only the Yukawa coupling appears
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ª®®¬ · (%)4)0123

=
4�� − 24�'
#2
� + 2#�

�2(')#� . (A.47)

Here, the factor two in front accounts for the possible inverse arrow direction
in each of the diagrams which has no effect on the color weights. The second
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type is constructed by using only the quartic coupling itself

©«
0

1

2

3

+
0

1

2

3

+
0

1

2

3

ª®®¬ · (%)4)0123
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16#� + 10#2
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�

#2
� + 2#�

. (A.48)

Collecting all results, the beta functions can be deduced for an arbitrary
simple Lie algebra in the representation matrices )0 in the GNY model.

A.5.1 One-loop RG functions

We now have all results at hand to finally compute the renormalization
constants and subsequently all renormalization group functions including,
most importantly, the beta functions. Remember, the beta functions are
computed directly from the renormalization constants by

�(1ℓ )H =
−&H

1 +  % ln/(1ℓ )H

%H

and �(1ℓ )� =
−&�

1 + � % ln/(1ℓ )�
%�

, (A.49)

where /(8ℓ ) denotes all 8-loop contributions. Therefore, by collecting all the
results from the diagrams above, we obtain for the beta functions at one-loop
level

�(1ℓ )H = −&H +
(
3�' + �2(')2

− ��
)
H2 , (A.50)

�(1ℓ )� = −&� + (�� − 6�')�2(')
#� + 2

H2 + �2(')H� + #� + 8
2

�2 , (A.51)

and for the other renormalization group functions

�# =
d ln/#

d ln�
=

1
2
�'H , (A.52)

�) =
d ln/)

d ln�
=

1
2
�2(')H , (A.53)

�)2 =
d ln/)2

d ln�
= −

(
1 + #�

2

)
� . (A.54)

By setting the invariants to a certain group and upon a convenient re-scaling
of the couplings, we are able to recover the functions for chiral Ising GNY
model in Chapter 3 and the Gross-Neveu-SO(3) model in Chapter 7. Beware
that for bothmodels the invariants have to involve the number of components
of the fermionic field. For many groups, one can find the invariants in the
literature [327, 330].





1: In fact, the master integrals have to be
computed numerically for most cases. It
occurs that certain types precisely approxi-
mate magic numbers like � or the Riemann
zeta function �(=) for instance [331]. What
could be confused with a coincidence might
be a deeper connection between quantum
field theory and pure number theory [332,
333].
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Throughout this thesis,we calculated the perturbative renormalization group
functions in higher-loop order multiple times. In the previous Chapter, we
also presented that already at one-loop level this can be a tedious but
nevertheless straightforward task. All these calculations have in common
that they are performed using dimensional regularization (DREG) within
the modified minimal subtraction scheme (MS) – a method with several
advantages for further formalization as we will explore in the first part of
this Chapter.

Since the amount of diagrams to compute grows at least factorially with the
loop level we rely on computer-aided algebra. In fact, we employ a whole
chain of computer algebra tools. These tools emerged from decades long
development in the realm of high energy physics and especially the Standard
Model. Unfortunately, due to the long development and the large number
of software used, some gaps have appeared in the documentation. In the
second part of this chapter, we will try to given a tour on the map of these
tools and how they are applied on the projects of this thesis.

B.1 Fundamentals of Feynman diagram

computation

In the dimensional regularization within the modified minimal subtraction
scheme, the divergent parts relevant to the renormalization occur as 1/&-
poles. As we have shown in Section 2.3.2, for a renormalizable theory these
can be absorbed in a finite number of renormalization constants also known
as the / factors of specific correlators. If we follow our previous procedure,
as in Chapter A, this means especially for the more complicated theories that
we have to analytically solve millions of integrals. An enormous challenge,
which fortunately can be cut short by taking advantage of the DREG.

B.1.1 Integration by parts

The major advantage of the dimensional regularization for our purpose lies
in the Integration-by-Parts (IBP) algorithm. Since the number integrals at
first sight might be scary, this methods accomplishes a reduction to only a
small amount of tabulatedmaster integrals1 [331]. For this method, we use the
special feature of 3 dimensional boundary integrals over a total derivative,
which have to be zero ∫

d3:
(2�)3

%

%:�
5 (:, . . . ) = 0 . (B.1)

By explicitly evaluating the derivatives, we obtain a number of recurrence
relations which relate Feynman integrals of different complexity [334].
Solving a proper system of recurrence relations provides a reduction of any
Feynman integral to the mentioned master integrals.
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2: Still a hard task to do, but in a finite
amount of time and disk space.

But let us take a look at an example for a better notion of this procedure. We
consider the following simple example of a loop integral

�(=) =
∫

d3:
(2�)3

1
(:2 + <2)= . (B.2)

For = = 1, for instance, this resembles a massive boson propagator. Starting
from the boundary integral and explicitly performing the derivative, we
obtain

0 =
∫

d3:
(2�)3

%

%:�
:�

1
(:2 + <2)=

=
∫

d3:
(2�)3

�
�
�

(:2 + <2)= +
∫

d3:
(2�)3 :�

−2:�=
(:2 + <2)=+1

=
∫

d3:
(2�)3

3 − 2=
(:2 + <2)= +

∫
d3:
(2�)3

2=<2

(:2 + <2)=+1

= (3 − 2=)�(=) + 2=<2�(= + 1) . (B.3)

Crucially, this relates the integral �(=) to �(= − 1) by

�(=) = − 3 − 2= + 2
(2= − 2)<2 �(= − 1) . (B.4)

Note that by this any integral for = > 1 can be reduced using this integration
by parts relation to the master integral �(1).
While this gives only a small peak on the method, it generalizes to more
complicated integrals. Finally, a system of recurrence relations is constructed
which has to be solved by a computer algebra [334–336]2. While it is
also possible to derive a system of equations for multi-scale-integrals it is
much more difficult and worth to reduce them to one-scale-integrals by an
asymptotic expansion in the first step.

B.1.2 Asymptotic expansion

Most of the diagrams we are confronted with, especially in higher loop
orders, depend on more than one mass or external momentum. These
multi-scale integrals has to be factorized before they can be processed in
the IBP relations. Strictly speaking, we need to break the diagrams down
to products of so-called one-scale-integrals. In case that we can impose a
certain hierarchy of the involved scales (or it can at least be assumed a priori)
this is achieved by an asymptotic expansion.

The goal of this algorithm is to expand certain subdiagrams of a Feynman
diagram in several applications until one is left with the wanted products
of simpler one-scale-integrals. Depending on the hierarchy, this leaves two
major procedures which both are used in this thesis to verify the calculations.
There are the

1. marge-momentum procedure with amomentum dominated hierarchy:
& � @, <

2. hard-mass procedure with the mass dominated hierarchy:" � @, <

Here, & denotes the external momentum, " the leading mass and @, <
smaller momenta or lighter masses. Both procedures are based on the same
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principles, but we restrict the following discussion to the large-momentum.
From this the hard-mass procedure can easily be adapted.

Let us denote by Γ(&, {<, @}) an arbitrary Feynman diagram. Then, the
asymptotic expansion is described by the following abstract formular [336,
337]

Γ(&, {<, @}) &→∞≈ ∑
�

Γ/�({@, <}) ◦T{@� ,<�}�(&, {@� , <�}) , (B.5)

where & denotes the large momentum. The sum runs over all subgraphs
(or subdiagrams) � with the collection of smaller scales {@� , <�} which
have to fullfil some extra conditions as explained below. We can think of
this formula as cutting out parts of the diagram Γ as a whole and expand
them individually. Strictly speaking, each subgraph � will be extracted of
the diagram Γ such that only the so-called co-subgraph Γ/� is left. Next,
� is expanded in a Taylor series T{@� ,<�} with respect to the small mass
scales {@� , <�} of �, i.e. also internal loop momenta that do not belong
to the subgraph are treated as external and consequently considered as
small. Finally, in the last step the result is reinserted (◦) into the co-subgraph
Γ/�. For this procedure to work, we have to require that we only expand
subgraphs � which are 1PI and contain all vertices where a large external
momentum & is running through [336, 337].

In order to get a better notion and also introduce a diagrammatic represen-
tation of the large-momentum procedure, it is worth to consider a simple
one-loop example. Not to get confused by a Clifford algebra, we consider
a one-loop propagator diagram in a purely bosonic theory with a massive
boson (dashed line) and a massless boson (solid line) reading as

& &
: +&

:

= Γ(&, <) =
∫

d3:
(2�)3

1
(:2 + <2)

1
(& − :)2 . (B.6)

Following (B.5) and the rules for the subgraphs, we idenitfy three terms
in the expansion. At first, we consider the contribution of � = Γ and only
expand in the single boson mass <

T<Γ(&, <) =
∫

dB :
(2�)B

1
(& − :)2 T<

1
:2 + <2

=
∫

d3:
(2�)3

1
(& − :)2

(
1
:2 −

<2

:4 +
<4

:6 − . . .
)
. (B.7)

We are left with two subgraphs which fulfill the conditions explained above:
The first one is the contraction of the Boson propagator to a vacuum bubble,
i.e.

Γ/� ◦T@�� =
∫

d3:
(2�)3

1
:2 + <2 T@�

1
(& − :)2 , (B.8)

where the only smallmomentum is the loopmomentum @� = :. By explicitily
expanding, we obtain

T:
1

(& − :)2 = T:
1

&2 − (2&: − :2) =
∞∑
==0
(&2)−=−1(2&: − :2)= . (B.9)
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The remaining integral is found to be the Feynman integral of the massive
vacuum bubble and the massless propagator (see e.g. in Ref. [69]). To be
precise, there is a third subgraph, which fits to the requirements but as
vacuum bubble vanishes in DREG. Finally, collecting all contribution the
asymptotic expansion of the one-loop diagram in DREG [337] reads

Γ(&, <) &→∞∼ ∑
�

· · · = 1
(4�)�/2

(
�2

&2

) & [
Γ2(1 − &)Γ(&)

Γ(2 − 2&) 1�0(2& − 1;−<2/&2)

+
(
<2

&2

)1−&
Γ(1 − &)2�1(1, &; 2 − &;−<2/&2)

]
.

(B.10)

Note that the result not only involves Gamma functions we are familiar with
from the DREG but also hypergeometrical functions 8�9 . These functions
always depend on <2/&2 such that for an expression extracting the 1/&
poles, we can expand the expression in this ratio. The final results may
seem obnoxious but in fact describes a very formal procedure to reduce the
multi-scale integral to a product of one-scale integrals like Eq. (B.2).

B.2 Tool Chain

For the higher-loop calculations throughout this thesis, a whole chain of
tools was used. In this section, we want to briefly present the major parts
and the order in which they are employed.

QGRAF
Generate all diagrams including
their symmetry factors

q2e
Assign Feynman rules and
mass scales

exp
Perform asymptotic expansion to
one-scale integrals

MATAD & Crusher
Solve IBP recurrence relations
down to master integrals

FORM
Collect and assemble results to
/ factors
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B.3 Programs for higher loops

In this section, we present the different parts of the tool chain in more detail.
A pivotal role therein plays the computer algebra language FORMwhich itself
is worth mentioning.

B.3.1 The Symbolic Manipulation System FORM

The symbolic manipulation system FORM was developed by Jos Vermaseren
in 1989 [338–340] to manipulate large scale formulas which appear in
perturbative calculations of high energy physics. Its predecessor SCHOONSHIP
already offered fast algebraic computations but was hard to program. With
the new programming techniques FORM became even faster andmore flexible
than that.

While other computer algebra systems like Wolfram’s Mathematica or
Maple offer a large amount of functions including integration, differentiation
and even solve ODEs, FORM has very limited features. Actually, it works in
a completetly different way. While Mathematica and co are processing a
formula as a tree, where each bracket is a branch of the level it contains,
FORM creates a so-called queue and processes the formulas as a sequence
of terms. This is the reason why, FORM provides much faster computation
and can handle large amount of data (far beyond the RAM space) since the
queue is stored on the hard disk. For processing the terms, the user has to
learn to implement his code by using the powerful pattern matching abilities
of FORM . After each step the terms can be “sorted” (i.e. written to the hard
disk). Additionally, the program allows to divide the algorithm in so-called
FORM -folds which define code segments, for which FORM decides during the
runtime to put them in its input stream.

Since FORM was mainly developed for complicated calculations in high
energy physics (especially in QCD), several packages were added over the
years. One of the most important for loop calculations as done here is the
color-package added by Ritbergen, Schellekens, and Vermaseren [329]
and follows the concept of [327]. It accomplishes what we discussed in the
previous Appendix for the group theoretical weights. For this it contracts all
indices of the generators and structure constants for any simple Lie algebra
and repeatedly uses the pattern matching function to express the group
theoretical weight by the invariants presented in Section A.3.

B.3.2 Generating Feynman Diagrams with QGRAF

The program QGRAF , originally implemented in Fortran, was written by
Nogueira [341, 342] and is used here to generate the wanted Feynman
diagrams. By “generating”, we mean QGRAF draws each diagram by only
knowning about the topologies of the given propagators and vertices. Besides
this, it also assigns the all important symmetry factors to each diagram.
As input the program needs the basic structure of the Lagrangian, i.e. the
different propagators and how they are connected by vertices. At this stage,
QGRAF does not ask for the underlying Feynman or color rules. For the
Gross-Neveu-Yukawa models discussed in the previous Chapter, the input
would look like this
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1 * propagators *
2

3 [fq,fQ,-]

4 [phi,phi,+]

5

6 * vertices *
7

8 [fQ,fq,phi]

9 [phi,phi,phi,phi]

Figure B.1: Input file for QGRAF which specifies the “La-
grangian”, i.e. all propagators and vertices from the topo-
logical point of view. The identifiers for this are
fq→ #̄ (ingoing fermion line)
fQ→ # (outgoing fermion line)
phi→ ) (boson line)
Lines which start with an asterisk sign (*) are only com-
mentary.

Here, fq→ #̄ denotes the ingoing fermion and fQ→ # the outgoing one,
while for the bosonic field we have no momentum direction and thus only
one identifier is needed phi→ ). In contrast to other diagram generators,
as e.g. FeynArts, QGRAF does not uses lower loop diagrams to compose
higher-loop order diagrams. Employing the pseudodiagram technique, it
avoids the comparison to other diagrams such that each diagram is “traced
out” individually [341].

Since we are searching for all contributing diagrams for a specific choice of
external legs up to a certain number of loops, this has to be passed to QGRAF

in the file qgraf.conf. It contains, besides the in- and outgoing external
legs (using again the identifiers specified in the .lag Lagrangian file), the
number of loops and the path to the .lag Lagrangian file. It also allows for
some extra options. First of all, the name of the output file has to be given,
where QGRAF lists the generated diagrams and assigns momentum labels to
each line. The style of this output can be modified freely by a style-file to
bring it in a human-readable form and process it in the next step of the tool
chain. For example, one of the two-loop diagrams of the boson propagator is
generated by QGRAF in the following style (where the diagram itself is drawn
right next to it with the labels as assigned by QGRAF )

1 diagram 4

2 pre_factor (-1)*1

3

4 number_propagators 5

5 number_loops 2

6 number_legs_in 1

7 number_legs_out 1

8

9 external_leg q1|1|phi

10 external_leg q2|2|phi

11

12 momentum p1|3,1|fQ,fq

13 momentum p2|1,4|fQ,fq

14 momentum p3|2,3|fQ,fq

15 momentum p4|4,2|fQ,fq

16 momentum p5|4,3|phi,phi

1 2

3

4

?1

?2

?3

?4

?5
@1 @2

Figure B.2:Output of the example diagram
by QGRAFwhich also assigns already labels
for the momenta. Note that QGRAF also
compute the symmetry factor here called
pre_factor.

B.3.3 Interface to Asymptotic Expansion

The programm q2ewas designed by R. Harlander, T. Seidensticker and M.
Steinhauser as an interface between QGRAF and exp [343], the latter used for
the asymptotic expansion. While QGRAF is extremely efficient in generating
diagrams, the actual task, i.e. evaluating the corresponding integrals, is left
to a computer algebra system like FORM . This link is established by q2e .
It reads the QGRAF output as shown for the example diagram in Fig. B.2
and assigns FORM -functions to the propagators and vertices. These have to
be specified with their momentum space rules and the group theoretical
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structure of the underlying simple Lie algebra, similar to the discussion in
Appendix A. For the two loop example diagram of the boson propagator
as shown on the right of Fig B.2, q2e creates two FORM -folds. The firs one
includes only themomentum space functionswhere FT(?8)denotes a fermion
with momentum ?8 and Den(?8) denotes the boson one. The couplings are
simple FORM -variables in this language and we use 6 := gffp for the Yukawa
coupling because the character g in FORM is already reserved for the �-
matrices. Using the momentum labels assigned by QGRAF in listing B.2 the
first fold reads

1 *--#[ d2l4 :

2

3 (-1)*1

4 *gffp

5 *FT1(p3)

6 *gffp

7 *FT1(p4)

8 *gffp

9 *FT1(p2)

10 *gffp

11 *FT1(p1)

12 *Den(p5);

13

14 #define TOPOLOGY "arb"

15 #define INT1 "arb"

16

17 *--#] d2l4 :

gffp gffp

gffp

gffp

FT(?1)

FT(?2)

FT(?3)

FT(?4)

Den(?5)

Figure B.3: The program q2e already as-
signs FORM -functions for the propagators
and vertices as they are defined in the
respecting files. For this it uses the momen-
tum labels assigned by QGRAF as shown in
Fig. B.2.

The preprocessor variables TOPOLOGY and INT1 are set to “arbitrary” (arb),
since the next program in the tool chain exp will determine the topology
itself in order to proceedwith the asymptotic expansion. For the color weight,
the program creates another fold

1 *--#[ fqcd2l4 :

2

3 1

4 *T(j5,j10,ij14)

5 *d_(j10,j9)

6 *T(j9,j12,ii2)

7 *d_(j12,j11)

8 *T(j11,j8,ij13)

9 *d_(j8,j7)

10 *T(j7,j6,ii1)

11 *d_(j6,j5)

12 *d_(ij13,ij14)

13 *1*Numfq

14 ;

15

16 *--#] fqcd2l4 :

) 88197 96 ) 88299 912

) 8 914
95 910

) 8 913
911 98

� 95 96

� 98 97

� 910 99

� 912 911

�8 913 8 914
881 882

Figure B.4: The program q2e also creates a
FORM -fold which contains the group theo-
retical part of the diagram using the color
rules. Note here that the indices in the fla-
vor space start with an j (i.e. for example
j5) while indices in the adjoint representa-
tion of the Bosonic field have an extra i in
front (i.e. for example ij13)

Finally, q2e needs to know about the hierarchy of the scales for the asymptotic
expansion as explained above. This is modified in a configuration file named
.conf as shown in listing B.5.
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3: MATAD stands for MAssiveTADpole.

1 * q2e.propagator_file path/to/GN.v0.

prop

2 * q2e.vertex_file path/to/GN.v0.vrtx

3

4 * q2e.scales q1,M1

5 * q2e.mass phi:M1

6

7 * q2e.anti_fermion fq:fQ

Figure B.5: Configuration file .conf for
q2e . Here the user has to give the pathes
to the files for propagators and vertices
and also defines the hierarchy of scales.
For this scales to the left are considered to
be largest, i.e. q1� M1where the former is
the external momentum and the latter the
Boson mass as specified in the next line.
Depending on this expwill use the large-
momentum procedure. In the last line the
user tells the program that fq:fQ is the
anti Fermion to fQ:fq.

As output q2e produces two files. The first one, with ending .dia, is
organized in FORM -folds as shown in the listing above and contains the
diagrams with the assigned FORM -functions in order to be processed by the
FORM programs MATAD , MINCER or Crusher [344]. The second file with the
ending .edia is prepared for the program exp , contains the information
about the topology as found by QGRAF in listing B.2 and additionally adds
which propagator is massive.

B.3.4 IBP reduction in FORM

After successfully reducing the multi-scale integrals to one-scale-integrals
of certain topologies using the asymptotic expansion, the programs MINCER ,
MATAD (up to three loop order) and Crusher (up to four loop order) further
process the output. All these codes rewrite the amplitudes from the diagram
source files in terms of massive tadpole integrals of the following type∫

d� :
(2�)�

1
(:2 +"2)= (B.11)∫

d� :1

(2�)�
d� :2

(2�)�
1

(?2
1 +"2

1)=1(?2
2 +"2

2)=2(?2
3 +"2

3)=3
(B.12)∫

d� :1

(2�)�
d� :2

(2�)�
d� :3

(2�)�
1

(?2
1 +"2

1)=1

1
(?2

2 +"2
2)=2

. . .
1

(?2
6 +"2

6)=6
(B.13)

In fact, these three integrals are sufficient to describe all possible cases of
(up to) three-loop vacuum diagrams [345]. For this, the diagrams are firstly
fully contracted by using the proper projectors as derived in Sec. A.4.2.

While MINCER [346, 347] was first developed for diagrams with massless
propagators only with a small external momentum, MATAD [345]3 can also
deal with massive lines but for vacuum diagrams up to three loops. For
computing the diagrams in the present work, MATAD works as an interface to
MINCER and supports also Taylor expansions in small masses or momenta.
In particular, this means for a massive diagram with one small external
momentum a Taylor expansion provides a vacuum diagram which can be
processed by MATAD . At this point, the program has to finally solve the IBP
recurrence relations down to a finite number master integrals [331]. Since
during this process, there are appearing artificial & poles one has to keep for
the four loop results terms up to O(&8)which will drop out in the end. For
four loops, this framework was extended by Crusher [344] which solves the
system of equations with the Laporta algorithm [348].
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In this appendix, we supplement all higher loop results which are too lengthy
for presentation in the main text. In the beginning of each section we shortly
give the used Lagrangian. For details on the models see

I Chapter 3: chiral Ising Gross-Neveu-Yukawa model [55]
I Chapter 5: Abelian Higgs model [56]
I Chapter 6: QED3-Gross-Neveu model [57]
I Chapter 7: Gross-Neveu-SO(3) model [58]

or the respective publications and references therein.

C.1 Chiral Ising of Gross-Neveu-Yukawa model

In this section we give the four loop contributions to the RG functions of the
chiral Ising Gross-Neveu-Yukawa model with the Lagrangian (cf. (3.18))

LGNY = #̄/%# − 1
2
(%�))2 + <

2

2
)2 + √H)#̄# + �)4 . (C.1)

where H denotes the Yukawa coupling of the of the order parameter field )
to the massless fermion # with #f flavors of 3�-component spinors.

C.1.1 Four loop RG functions

For the convenience of the reader, we give below the analytic expressions for
the RG functions that we used in the numerical analysis. Here, and in the
following, we use #f = #/3� to display the RG functions. For the Ising GNY
model, the beta function contributions to the Yukawa coupling explicitly
read [113]

�(1L)H = (3 + 2#f)H2 , (C.2)

�(2L)H = 24H�(� − H) − (9
8
+ 6#f

)
H3 , (C.3)

�(3L)H =
H
64

(
1152(7 + 5#f)H2� + 192(91 − 30#f)H�2

+ (
912�3 − 697 + 2#f(67 + 112#f + 432�3)

)
H3 − 13824�3

)
. (C.4)

Here �I is the Riemann zeta function. The four-loop contribution is listed
below, together with all the other four-loop contributions. Accordingly, the
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beta function for the quartic scalar coupling are composed of

�(1L)� =36�2 + 4#fH� − #fH2 , (C.5)

�(2L)� =4#fH3 + 7#fH2� − 72#fH�2 − 816�3 , (C.6)

�(3L)� =
1

32

(
6912(145 + 96�3)�4 + 49536#fH�3

− 48#f(72#f − 361 − 648�3)H2�2 + #f(5 − 628#f − 384�3)H4

+ 2#f(1736#f − 4395 − 1872�3)H3�
)
. (C.7)

For the contributions to the RG gamma function corresponding to wave
function renormalization of the fermion derivative term, we find

�(1L)
# =

H
2
, (C.8)

�(2L)
# = − H

2

16
(12#f + 1) , (C.9)

�(3L)
# =

H3

128 (48�3 + 4#f(47 − 12#f) − 15) + 6�H2 − 33�2H
2

. (C.10)

The gamma function corresponding to the wave function renormalization of
the derivative term of the scalar order parameter reads

�(1L)
) = 2#fH , (C.11)

�(2L)
) = 24�2 − 5#fH2

2
, (C.12)

�(3L)
) = −216�3 + 1

32
#fH3 (48�3 + 200#f + 21) + 30�#fH2 − 90�2#fH .

(C.13)

Finally, the scaling of the quadratic scalar operator is given by the following
contributions to the RG gamma function �)2 ,

�(1L)
)2 = −12� , (C.14)

�(2L)
)2 = 144�2 − 2#fH(H − 12�) , (C.15)

�(3L)
)2 =

3
2
#fH2� (24#f − 120�3 − 11) − 6264�3 (C.16)

− 4#fH3 (4#f − 9 + 3�3) − 288#fH�2 .

To complete the set of RG beta and gamma functions at the available order,
we now also display the four-loop contributions,

�(4L)H = −5
2
�5(42#f + 43)H5 +

(
32�4(2#f + 3)(18#f + 19) + 40#f(8#f(44#f − 899) + 29721) + 457935

)
H5

7680
(C.17)

+ �
8
(8#f(12#f − 683) − 2829)H4 − 1

2
�2(4#f(6#f + 635) + 4455)H3 + 36�3(8#f − 455)H2

− 1
8
�3H2 (−41472�3 + (4#f(125#f + 331) − 5)H3 + 432�(12#f + 7)H2 − 864�2(6#f − 25)H) + 14040�4H ,

+ Δ3#f(1 + 107�3 − 125�5)H5 ,



C.1 Chiral Ising of Gross-Neveu-Yukawa model 139

�(4L)� = 41472
(
−39�3 − 60�5 + �4

10
− 3499

96

)
�5 + 1

240
�#fH4 (−60�3

(
912#2

f − 4156#f − 4677
)

(C.18)

+1200�5(157 − 168#f) − 4�4(450#f + 41) + 25(4#f(337#f + 3461) + 5847))
+ #fH5 (

480�3(12#f(14#f − 15) + 277) + 2400�5(128#f + 65) + 8�4(64#f − 77) + 160#f(1289 − 386#f) − 67095
)

1920

+ 1
80
�2#fH3 (

835200�5 + 1920�3(3#f(4#f − 61) + 19) + 72�4(24#f + 31) − 40#f(288#f + 15649) + 1057825
)

+ 4
5
�3#fH2 (−86400�5 + 540�3(4#f − 69) + 7890#f − 288�4 − 72605

) + 36
5

(−17280�3 + 96�4 − 6775
)
�4#fH .

The symbol Δ3 should be set to Δ3 = 1, see Ref. [112] for more details on
the dimensional regularization scheme. The four-loop contributions to the
gamma functions read

�(4L)
# =

H
393216

(
134479872�3 + H3

(
−884736�3 − 5

(
384 (256�5 − 893) + 377339�4

90

)
(C.19)

+16#f

(
−164352�3 + #f (1536 (16�3 − 3)#f − 74752) − 1536�4

5
+ 53440

)
+ 303611�4

18

)
− 288�H2

(
512 (93 − 32�3) + 8

(
7424 + 927�4

4

)
#f − 1

18
�4(33372#f + 7079) + 7079�4

18

)
+ 96�2H (221184�3 + 344064#f − 656384)

)
,

�(4L)
) = 14040�4 + �#fH3

256 (768 (16�3 − 83) − 19456#f) + 1
32
�2#fH2 (256 (81�3 − 91) − 384#f) + 288�3#fH (C.20)

−
#fH4

(
377856�3 + 15360 (8�5 − 29) + 4#f

(
162816�3 + 256 (144�3 − 101)#f + 1536�4

5 − 54016
)
+ 1024�4

)
24576

,

�(4L)
)2 = 1728

(
18�3 + 2�4

5
+ 187

)
�4 + 3

2
�2#fH2

(
5760�3 + 4 (−48�3 − 176)#f + 48�4

5
+ 3796

)
(C.21)

+ 1
64
#fH4

(
−5376�3 + 10080�5 + 2#f

(
320�3 + 4480�5 + 64 (18�3 − 11)#f + 48�4

5
− 5208

)
− 224�4

5
− 2846

)
− 3

16
�#fH3

(
−5120�3 − 5760�5 + 4#f

(
−672�3 + 64 (2�3 − 1)#f + 16�4

3
− 1618

)
+ 184�4

5
+ 12989

)
+ 36 (96�3 + 313)�3#fH .
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C.1.2 GN critical exponents

From the four-loop RG beta and gamma functions of the GN model in
Ref. [111] we have extracted the critical exponents as a function of general # .
They read

1
�
= & + 1

2 − # &2 − (# − 3)
2(# − 2)2 &

3 (C.22)

+ 6�3(11# − 34) + (# − 1)(# + 12)
4(# − 2)3 &4 + O(&5) ,

�) = 2 − #
# − 2

& + 1 − #
(# − 2)2 &

2 + (# − 1)#
2(# − 2)3 &

3 (C.23)

+ (# − 1) (2�3(#(# + 7) − 42) − (# − 9)# + 5)
4(# − 2)4 &4 + O(&5) ,

�# =
# − 1

2(# − 2)2 &
2 − (# − 6)(# − 1)

4(# − 2)3 &3 (C.24)

+ (# − 1)((# − 11)# + 25)
8(# − 2)4 &4 + O(&5) .

We note that these critical exponents have a pole at # = 2, which is due
to a factor of (# − 2) appearing in each loop order of the RG functions,
cf. Ref. [111].

C.2 Abelian Higgs model

In this section we give the four loop contributions to the RG functions of the
Abelian Higgs model with the Lagrangian (cf. (5.1))

L= |��) |2 + 1
4
�2
�� + A |) |2 + �(|) |2)2 . (C.25)

Here, ) = ()1 , ..., )=) describes the =-component complex scalar field
with mass term A and quartic interaction �. It is minimally coupled to the
dynamical non-compact U(1) gauge field �� via the covariant derivative
�� = %� − 84�� with charge 4 and indices �, � run from 0 to 3 − 1. Common
summation convention over repeated indices is implied. The gauge field
comes with the field strength tensor ��� = %��� − %��� and we add a
gauge fixing term Lgf = − 1

2� (%���)2 where � denotes the gauge fixing
parameter.
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C.2.1 Four loop RG functions

The beta functions up to three loops are given in Sec. 5.3.Here,we provide the
missing terms at four loops and give the full expressions for the anomalous
dimensions and the flow of the gauge fixing parameter. The four-loop
contributions to the beta functions read

�(4ℓ ) =
(
− 323

3888=
3 +

[
451
54 − 38�3

9

]
=2 + 3

16=
)
5 + ( 5

72=
3 − 41

9 =
2 − 37

8 =
)
4� + ( 1

24=
3 + 139

48 =
2 + 137

48 =
)
3�2 (C.26)

+ (− 5
48=

3 − 7
16=

2 − 1
3=

)
2�3

�(4ℓ )� =
([

40�5 − 27�3
2 − 6145

48 − �4

180

]
=2−

[
3157�3

6 + 80�5 + 25123
24 + 143�4

180

]
=− 12�4

5 − 18503
16 − 768�3 − 960�5

)
2�3

(C.27)

+
([

29�3
2 − �4

60 − 377
96

]
=2 +

[
− 269�3

2 + 50�5 + 7�4

10 − 1403
32

]
= + 103�4

60 − 185
12 + 150�5 − 435�3

)
�4

+
([

1
81 − 2�3

9

]
=3+

[
28�3 − �4

10 − 55709
1296

]
=2 +

[
310�5 − 578�3

3 − 13987
36 − 19�4

60

]
= − 12751

16 − 33�4

20 + 504�3 − 390�5

)
5

+
([

19�3
18 + 67

2592

]
=3+

[
20�5− 77�3

2 + �4

5 + 12779
162

]
=2+

[
431�3

2 +305�5+ 13�4

10 + 209
12

]
=+ 26�4

5 − 19127
96 +2095�5 − 1191�3

2

)
4�

−
([

7�3
6 + 139

1944

]
=3−

[
40�5− 157�3

3 − �4

60 + 289817
7776

]
=2−

[
1080�5− 1813�3

2 − 5�4

12 + 88871
96

]
=+ 6�4

5 − 66851
48 +725�3−1520�5

)
3�2

+
(
− 5

96=
3 +

[
63�3

2 + 20�5 − �4

12 + 395
12

]
=2 +

[
191�3 + 275�5 + 10057

48 − 31�4

60

]
= − 11�4

15 + 24581
96 + 583�3

2 + 465�5

)
�5

The field anomalous dimensions are defined through the relation �G = 3 ln/G
3 ln 1 ,

for G ∈ {), )2 , ��}. Schematically, order by order, they can be written as
�G =

∑!
8=1 �

(8ℓ )
G . Up to three loops, the contributions to �)2 read

�(1ℓ )
)2 = (1 − �) − (= + 1)� , (C.28)

�(2ℓ )
)2 =

3
2
(= + 1)�2 −

(
5= + 1

2

)
2 − 4(= + 1)� , (C.29)

�(3ℓ )
)2 =

(
6�3(3= + 2) − 167=

4
− 51

2

)
3 + 1

16
(= + 1) (144�3 + 43= + 299) 2�

+ 3 (�3 + 1) (= + 1)�2 − (= + 1)
16
(31= + 115)�3 . (C.30)

The contributions to �) are

�(1ℓ )) = −(� + 2) , (C.31)

�(2ℓ )) =
1

12
(11= + 9)2 + 1

4
(= + 1)�2 , (C.32)

�(3ℓ )) =
(

1
432

=(5= + 3267) + 1
8
− 3�3(= − 1)

)
3 − 1

8 (24�3 − 13) (= + 1)2�

+ 5
4
(= + 1)�2 − 1

16
(= + 1)(= + 4)�3 , (C.33)
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and for �� we obtain

�(1ℓ )� =
=
3
 , (C.34)

�(2ℓ )� = 2=2 , (C.35)

�(3ℓ )� =
=
72
(261 − 49=)3 + =

2
(= + 1)2� − =

8
(= + 1)�2 . (C.36)

The contributions at four loops to these field anomalous dimensions are,
again, more lengthy. They read

�(4ℓ )
)2 =

( [
− 127�3

6 + 40�5 − 1889
36 − �4

45

]
=2 +

[
− 368�3

3 + 70�5 − 5249
36 − 67�4

180

]
= − 280

3 − 7�4

20 + 30�5 − 203�3
2

)
2�2

+
(
− 55�3

2 +
[
− 9�3

2 + �4

30 − 775
96

]
=2 +

[
−32�3 + �4

12 − 369
16

]
= + �4

20 − 1439
96

)
�3

+
(

49�3
4 + 70�5 +

[
�3
2 + 5

324

]
=3 +

[
− 145�3

6 + �4

8 + 42545
1296

]
=2 +

[
77�3 − 285�5

4 + 23�4

60 + 97
24

]
= + 11�4

40 − 1283
48

)
4

+
(
120�5 − 327�3

2 −
[

7�3
6 + 139

1944

]
=3+

[
273683

7776 − 119�3
6 − �4

30

]
=2+

[
120�5 + �4

15 + 23665
144 − 1093�3

6

]
=+ �4

10 + 12391
96

)
3�

+
(

17�3
4 +

[
3�3

4 − 1
12

]
=3 +

[
2�3 + �4

24 + 977
48

]
=2 +

[
11�3

2 + 2�4

15 + 377
6

]
= + 11�4

120 + 2035
48

)
�4 , (C.37)

�(4ℓ )) =
(
−4�3 − 20�5 +

[
5�3

3 + 199
144 − �4

180

]
=2 +

[
− 7�3

3 − 20�5 + 2�4

45 + 413
18

]
= + �4

20 + 345
16

)
3�

+
(

11�3
2 + 5�5 +

[
19�3

12 − �4

120 − 641
288

]
=2 +

[
85�3

12 + 5�5 − 179
18 − �4

24

]
= − �4

30 − 247
32

)
2�2

+
(
−�3 +

[
�3
2 − 19

96

]
=2 +

[
61
96 − �3

2

]
= + 5

6

)
�3 + (− 5

64=
3 + 5

8=
2 + 85

32= + 125
64

)
�4

+
(

63�3
2 − 45�5 +

[
13

5184 − �3
36

]
=3 +

[
9�3

4 − �4

120 − 1505
432

]
=2 +

[
− 49�3

4 − 25�5
4 + 231

16 − �4

24

]
= − �4

20 + 133
64

)
4 , (C.38)

�(4ℓ )� =
(

323
3888=

3 +
[

38�3
9 − 451

54

]
=2 − 3

16=
)
4 + (− 5

72=
3 + 41

9 =
2 + 37

8 =
)
3� + (− 1

24=
3 − 139

48 =
2 − 137

48 =
)
2�2

+ ( 5
48=

3 + 7
16=

2 + 1
3=

)
�3 . (C.39)

Finally, we also give the corresponding expression for the renormalization
group flow of the gauge fixing parameter

�(1ℓ )� =
8
3
=� , (C.40)

�(2ℓ )� = 16=2� , (C.41)

�(3ℓ )� =
(
29 − 49=

9

)
=3� +

(
17
6
 − 5

12
�

)
=(= + 1)� � , (C.42)

�(4ℓ )� = �
( 11

192
=

(
5=2 + 21= + 16

)
�3 (C.43)

− 25
288

=(5=2 − 328= − 333)3� − 3
32
=

(
2=2 + 139= + 137

)
2�2

+ =
486

(
323=2 + 72=(228�3 − 451) − 729

)
4

)
.
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C.3 QED3-Gross-Neveu model

In this section, we give further three loop RG functions of the QED3-Gross-
Neveu model with the Lagrangian (cf. (6.1))

L= #̄8( /� + 6))#8 + 1
4
�2
�� +

1
2
)(A − %2

�)) + �)4 , (C.44)

with #8 and #̄8 being 2# flavors of two-component gapless Dirac spinors,
8 = 1, . . . , 2# , which interact with each other through the real scalar field ).
Here, we have abbreviated the covariant derivative /� ≡ (%� − 84��)��, with
the 2 × 2 matrices �� serving as a two-dimensional representation of the
Clifford algebra, {�� , ��} = 2���1. The summation convention over repeated
indices is implicitly assumed. ��� = %��� − %��� is the field strength tensor
of the U(1) gauge field ��, �, � ∈ {0, 1, 2}. In our calculations, we will also
add a gauge-fixing term

Lgf = − 1
2�
(%���)2 , (C.45)

to the Lagrangian with gauge fixing parameter �.

C.3.1 Further three loop RG functions

Here, we display the RG functions that have been omitted in the main text.
For the fermion anomalous dimension the corresponding loop contributions
read

�(1L)
Ψ = � + H

2
, (C.46)

�(2L)
Ψ =

1
4
2(−4# − 3) − 3

4
#H2 − H

2

16
− H , (C.47)

�(3L)
Ψ =

1
72

3 (
40#2 + 54# + 27

) + 1
128

(
188# − 48#2 − 15

)
H3 + 5

16
#H2

+ 3
8
�3H

[
42 + 4H( + 2#) + H2] + 6�H2

+ 3
32
H

[
2(4# − 17) − 176�2] + H2

2
. (C.48)

We note that only the one-loop term depends on the gauge-fixing parameter
�, cf. also Refs. [292]. The beta function of the gauge fixing parameter follows
the form �� =

∑3
:=1 �

(:L)
� and reads

�(1L)� = −2
3
#� (C.49)

�(2L)� = −1
2
#(2 − H)� (C.50)

�(3L)� = − 1
72
#�

[−22(22# + 9) + 9(7# + 6)H2 − 27H
]
. (C.51)

These beta functions agree in the limit H = �→ 0 with the QED calculations
[292]. To explicitly verify the Ward identity associated with the local U(1)
symmetry in our calculations, we also compute the gauge anomalous
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dimension. We obtain

�(1L)
� =

4
3
# , (C.52)

�(2L)
� = (2 − H)# , (C.53)

�(3L)
� =


36
#

[
9(6 + 7#)H2 − 27H − 2(9 + 22#)2] . (C.54)

Gauge invariance requires �� = 4−� exactly at the critical fixedpoint [279].

C.3.2 Critical exponents for arbitrary #

We display the critical exponents for general # . It is convenient to abbre-
viate B ≡ B(#) = √4#4 + 204#3 + 1521#2 + 2916# . The inverse of the
correlation-length exponent then reads

1/� = 2 − 10#2 + 39# + B
6#(2# + 3) & − 1

108#(2# + 3)3B2

(
192#8 + 10672#7 − 96#6B + 131232#6 − 8936#5B

+1196856#5 − 141660#4B + 7872660#4 − 835326#3B + 27080487#3

−2230713#2B + 41504886#2 − 2985255#B + 21257640# − 2125764B
)
&2

+ 1
15552#3(2# + 3)5B3

(
294912#14�3 − 453120#14 + 37380096#13�3 − 42546688#13 − 147456#12B�3

+917760#12B + 1706655744#12�3 − 1248153088#12 − 14929920#11B�3 + 35954979840#11�3

+66756224#11B − 11880201600#11 + 228480#10B2 − 582100992#10B�3 + 1536213056#10B

+414397472256#10�3 + 7521785280#10 + 12064128#9B2 − 11530874880#9B�3 + 17570258400#9B

+2913244123392#9�3 + 939273904800#9 − 234624#8B3 + 152479584#8B2 − 118782816768#8B�3

+113751808560#8B + 13271427877248#8�3 + 7692596085888#8 − 4509312#7B3 + 748856448#7B2

−689855242752#7B�3 + 432301897800#7B + 40165847835840#7�3 + 30916853322552#7 − 21600#6B4

−32667552#6B3 + 893187000#6B2 − 2383905022848#6B�3 + 943060541292#6B + 80251526970144#6�3

+68128907003406#6 − 233280#5B4 − 103418208#5B3 − 5311161576#5B2 − 4991366935296#5B�3

+1056628909674#5B + 101314839073104#5�3 + 72296243742564#5 − 2160#4B5 − 882576#4B4

−102824640#4B3 − 22336611030#4B2 − 6205207152672#4B�3 + 397375835472#4B + 72105783082632#4�3

+991212929622#4 − 14904#3B5 − 1364688#3B4 + 149467356#3B3 − 32684093892#3B2

−4220721428112#3B�3 − 73196963253#3B + 20189256522768#3�3 − 73287042502500#3 − 72#2B6

−30132#2B5 − 739206#2B4 + 362560860#2B3 − 17065633392#2B2 − 1214950653504#2B�3 − 18954#B5

+74901294540#2B − 2008387814976#2�3 − 53054911445616#2 − 216#B6 + 183347145#B3 − 162B6) &3 .
(C.55)
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The order-parameter anomalous dimension is

�) =
2# + 9
2# + 3

& − 332#3 + 1200#2 − 22#B + 2205# − 93B + 5103
36#(2# + 3)3 &2

− 1
2592#2(2# + 3)5B

(
12224#8 + 1145920#7 + 56096#6B + 24748032#6 − 2115072#5B�3 + 1119952#5B

+223255440#5 − 16625088#4B�3 + 5031576#4B + 1031152788#4 − 46422720#3B�3 + 2559276#3B

+2651693112#3 − 55427328#2B�3 − 27824040#2B + 3828763404#2 − 25509168#B�3 − 56551446#B

+2593432080# − 2125764B�3 − 34897959B) &3 . (C.56)

The scaling dimension of the flavor-symmetry-breaking bilinear at the critical
point reads

[Ψ̄�IΨ] = 3 − 2(# + 3)
2# + 3

& + 284#4 + 552#3 + 2#2B − 279#2 + 51#B + 2673# + 162B
72#2(2# + 3)3 &2

− 1
5184#2(2# + 3)5B

(
2112#8 + 234944#7 − 63264#6B + 8115072#6 + 559872#5B�3 − 559696#5B

+111458160#5 + 1041984#4B�3 + 545256#4B + 750279564#4 − 8724672#3B�3 + 14256756#3B

+2710445976#3 − 31492800#2B�3 + 42085224#2B + 5432779188#2 − 34012224#B�3 + 41551542#B

+6081810804# − 10628820B�3 + 13167927B + 3443737680) &3 . (C.57)

In the above equations, �I ≡ �(I) denotes Riemann’s zeta function.

C.4 Gross-Neveu-SO(3) model

In this section, we give the three loop epsilon expansion and the full large-#
expressions of theGross-Neveu-SO(3)modelwith the Lagrangian (cf. (7.2))

L= #̄��%�# + 1
2
)0

(
−%2

� + <2
)
)0 + �()0)0)2 − 6)0#̄

(
12#/3 ⊗ !0

)
# .

(C.58)

C.4.1 Epsilon expansions

The full expressions for the critical exponents from the (4 − &) expansion at
three-loop order for arbitrary # ≥ 3 are quite lengthy. They are available
electronically in the supplemental material of Ref. [58]. We also print the
full expressions here
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1
�
= 2 − 17# + 5(B + 6)

22(# + 6) & + 820#4 − #3(820B − 172050) − #2(19032B − 65745) − 18#(7417B − 111450) − 179280(B + 6)
10648(# + 6)3B &2

+ 3
10307264(# + 6)5B3

(
130160#8 − 40#7(3254B − 792723) − 42#6(615046B − 62828375)

+ #5(38744100900 − 1283135016B) − 90#4(76274956B + 4047257499) − 27#3(650749372B + 61741071045)
+ 324#2(690975808B − 10686990915) − 972#(39813404B + 2231925285) − 32313945600(B + 6)
+ 88

(
#3 + 126#2 + 756# + 216

) (
2960#5 + #4(417300 − 2960B) − 150#3(1598B − 31167)

− 9#2(181016B − 2657505) − 162#(15058B − 43965) + 3836160(B + 6)
)
�3

)
&3 + O(&4) , (C.59)

�) =
#

# + 6
& + 3

968(# + 6)3
(
1010#2 + #(200B − 867) + 120(B + 6)) &2

+ 3
468512(# + 6)5B

(
− 44590#5 + 6#4(41594B − 1353735) + 15#3(494903B + 858426) + 72#2(342319B − 6404430)

+ 27#(829517B + 593640) + 11171520(B + 6) − 3162456
(
#2 + 9# + 18

)
#B�3

)
&3 + O(&4) , (C.60)

�# =
3

2(# + 6) & +
3

1936(# + 6)3
(−736#2 + 5#(2B + 123) + 600B + 9045

)
&2

− 9
937024(# + 6)5B

(
1570#5 + 32#4(866B + 13605) + 3#3(457279B + 9071670) + #2(65284110 − 55782B)

+ #(330505920 − 39115413B) + 81(339000 − 719473B) + 3162456
(
#2 + 9# + 18

)
B�3

)
&3 + O(&4) . (C.61)

with B =
√
#2 + 120# + 36.

C.4.2 Critical exponents for 2 < 3 < 4 from 1/# expansion

In this appendix, we record the full 3-dimensional expressions for the
various critical exponents that have been computed. These are also provided
electronically in the ancilliary file of the supplemental material of Ref. [58].
We denote the numerical coefficients of the 1/# series as

" =
∞∑
==0

"=

(
1
#

)=
, � =

∞∑
==0

�=

(
1
#

)=
, �# =

∞∑
==0

�=

(
1
#

)=
, (C.62)

The leading-order terms are identical in all Gross-Neveu-like universality
classes,

"0 = 0 , �0 = � − 1 , �0 = 0 . (C.63)

To order O(1/#), we recover the expressions that were originally determined
in Ref. [54],

"1 =
�

2(� − 1)�1 , �1 = −(2� − 1)�1 , (C.64)

where
�1 = − 3Γ(2� − 1)

�Γ(1 − �)Γ(� − 1)Γ2(�) . (C.65)
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At next order, we have

�2 =
[ (3� − 2)

2(� − 1)Ψ(�) +
13�2 − 12� + 2

4�(� − 1)2
]
�2

1 , (C.66)

"2 =
[
�(3� − 2)
4(� − 1)2 Ψ(�) −

�(4�2 − 3� − 2)
4(� − 1)2 + 9�2Θ(�)

8(� − 1)
]
�2

1 , (C.67)

for the field anomalous dimensions, while the correction to the exponent
relating to � is

�2 =
{

3�(�2 − 2� + 4)
4(� − 1)(� − 2)2�1

− 32�6 − 178�5 + 349�4 − 265�3 − 14�2 + 128� − 32
8(� − 1)2(� − 2)2 Ψ(�)

− 7�2(2� − 3)
8(� − 1)(� − 2)

[
Ψ2(�) +Φ(�)] − 3�2(4�2 − 27� + 28)

8(� − 1)(� − 2) Θ(�)

+64�8 − 528�7 + 1650�6 − 2375�5 + 1367�4 + 218�3 − 632�2 + 256� − 32
16�(� − 1)3(� − 2)2

}
�2

1 . (C.68)

At this order, derivatives of the Euler Γ function arise, which is apparent in
the functions

Ψ(�) = #(2� − 1) − #(1) + #(2 − �) − #(�) , Θ(�) = #′(�) − #′(1) ,
(C.69)

where #(I) = d lnΓ(I)/(dI) is the Euler # function. Finally, the large-#
conformal bootstrap formalism produced

�3 =
{

3(3� − 2)2
8(� − 1)2 Ψ

2(�) + (3� − 2)2
8(� − 1)2Φ(�) −

8�7 − 5�6 − 8�5 − 182�4 + 414�3 − 288�2 + 80� − 8
16�2(� − 1)4

−4�5 − 7�4 − 101�3 + 178�2 − 88� + 12
8�(� − 1)3 Ψ(�) + 3�3 + 24�2 + 12� − 8

32(� − 1)2
[
Θ(�) + 1

(� − 1)2
]

+ 9�2

8(� − 1)
[
Θ(�) + 1

(� − 1)2
]
Ψ(�) + 9�2

16(� − 1)Ξ(�)
[
Θ(�) + 1

(� − 1)2
]}

�3
1 , (C.70)

where an additional function Ξ(�) appears. It is related to a particular
two-loop self-energy diagram that was defined as �(�) in Eq. (16) of Ref. [314]
and is connected to Ξ(�) by

�(�) = − 2
3(� − 1) + Ξ(�) . (C.71)

In Ref. [349] it was shown to be related to derivatives with respect to the
parameter dependence of an 4�3 hypergeometric function and its & expansion
was given to very high orders near two and four space-time dimensions. The
three-dimensional value was given in Ref. [314] as

�( 32 ) = 2 ln 2 − 21
�2 �3 . (C.72)
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