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Abstract 

 
 
p63, a member of the p53 family of transcription factors, is crucial for vertebrate epidermal 

development. However, different isoforms of p63 are supposed to have different if not opposing 

functions. There is compelling genetic evidence that ∆Np63 isoforms are needed to enhance 

keratinocyte proliferation and stemness. However, the role of TAp63 isoforms is not fully understood, 

and TAp63 knockout mice display normal epidermal development. In this thesis, we describe the 

epidermal defects of zebrafish mutants specifically lacking TAp63 isoforms. TAp63 as well as p53 

mutant zebrafish present with compromised development of breeding tubercles, epidermal 

appendages with more advanced stratification and keratinocyte differentiation than in regular 

epidermis, including continuous desquamation and renewal of superficial cells by derivatives of basal 

keratinocytes. Additionally, those defects are further enhanced in TAp63/p53 double mutants. 

Furthermore, molecular analyses, treatments with chemical inhibitors and epistasis studies indicate 

the existence of a linear TAp63/p53  Notch  Caspase 3 pathway required for enhanced 

proliferation of keratinocytes at the base of the tubercles and their subsequent differentiation in the 

absence of complete cell death. In summary, these studies identify the zebrafish breeding tubercles as 

specific epidermal structures sharing crucial features with cornified mammalian epidermis. In addition, 

they demonstrate essential and partially redundant roles of TAp63 and p53 to promote keratinocyte 

proliferation and their terminal differentiation, involving a pathway that might be conserved between 

fish and mammals.  
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Zusammenfassung 
 
 
p63, ein Mitglied der p53-Familie von Transkriptionsfaktoren wird essentiell benötigt während der 

Entwicklung der Epidermis von Vertebraten. Andererseits scheinen verschiedene Isoformen von p63 

unterschiedliche, wenn nicht sogar gegensätzliche Funktionen zu haben. Es existieren verschiedene 

Hinweise, dass ƩNp63 benötigt wird um Proliferation und Stammzell-Eigenschaften in Keratinozyten 

anzuregen. Die Funktion der TAp63-Isoform ist dagegen nur wenig verstanden, wobei TAp63-

defiziente Maus-Mutanten einen eher normalen epidermalen Phänotyp zeigen. In dieser Arbeit 

beschreiben wir die epidermale Defekte einer Zebrafisch-Mutante, in der spezifisch die TAp63-

Isoformen von p63  fehlen. TAp63-, genauso wie p53-Mutanten zeigen eine gestörte Bildung von 

„Breeding Tubercles“, epidermalen Anhangsgebilden mit weitergehender Stratifizierung und 

Differenzierung verglichen mit regulärer Epidermis von Fischen, einschliesslich kontinuierlicher 

Schuppung und Erneuerung von äusseren Zelllagen durch Nachkommen basaler Zellen. Weiterhin sind 

diese Defekte noch verstärkt in TAp63/p53 Doppelmutanten. 

Durchgeführte molekulare Analysen, Behandlung mit chemischen Inhibitoren und Epistase-Studien 

deuten auf die Existenz eines linearen TAp63/p53 Notch  Caspase 3 Signalübertragungsweges 

hin, der sowohl für Proliferation an der Basis der Tuberkel, als auch für die nachfolgende terminale 

Differenzierung (die allerdings ohne kompletten Zelltod einhergeht) nötig ist. Insgesamt identifiziert 

diese Arbeit die „Breeding Tubercels“ von Zebrafischen als epidermale Strukturen mit deutlichen 

Ähnlichkeiten zur verhornten Säugetier-Epidermis. Weiterhin werden teilweise redundante Funktionen 

von TAp63 und p53 sowohl in Bezug auf Proliferation als auch Differenzierung von Keratinozyten 

aufgezeigt die von einem molekularen Signalweg reguliert werden, der konserviert ist zwischen Fisch 

und Säugetier.      
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I. Introduction 

 

Terminal differentiation of keratinocytes in land living animals 

The epidermis is the outermost part of the integument that constitutes the boundary between the 

organism and the environment. Thereby, the epidermis has to protect against various physical, 

chemical and microbiological traumata. Additionally, most important for all land-living tetrapods, the 

epidermis provides a tight barrier against water loss and dehydration [Fuchs & Raghavan 2002, 

Medawar 1953].  Histologically, the epidermis of those animals has been classified as a multilayered, 

stratified and squamous epithelium that originates from the embryonic ectoderm [Fuchs 2007, Fuchs 

& Raghavan 2002]. The epidermis also develops certain epidermal appendages, like hairs, nails or 

claws. The “regular” epidermis between these appendages (especially the hair producing hair follicles) 

is referred as interfollicular epidermis [Fuchs 2007].    

The specific functions of the epidermis are achieved particularly by terminal differentiation of 

keratinocytes called cornification [Candi et al. 2005]. This differentiation process is a specific 

characteristic of mammalian epidermis but has already been present in birds, reptiles and amphibians. 

In the progress of evolution, a cornified epidermis depicts an important step in the adaptation to land 

[Wu et al. 2004 & Alibardi 2003]. 

Particularly in older literature, the epidermis is only described as keratinized what means it contains 

high amounts of the intermediate filament keratin. However, during the last years it became clear that 

terminal differentiation of keratinocytes includes many more cellular hallmarks than only 

keratinization. All these processes together are now described as cornification. However, keratinisation 

and cornification are still often used as synonymous terms [Candi et al. 2005].  

In mammalian - including human - epidermis different layers can be distinguished by the status of 

differentiation of the keratinocytes. Terminal differentiation is accompanied by differential gene 

expression of certain marker genes only in specific layers. Of certain importance is the so called 

“keratin-code” in the epidermis: Different layers are characterized by the expression of distinct 

keratins [Candi et al. 2005, Fuchs & Raghavan 2002]. The anatomy of mammalian epidermis together 

with the expression domain of certain marker genes is summarized in figure 1.  

Proliferation occurs only in the basal layer which consists of stem cells (with unlimited capacity of cell 

division) and transient amplifying (TA-) cells (with limited capacity of cell divisions) [Mack et al. 2005]. 

The proliferation rate is precisely balanced with a desquamation process of the cornified layer at the 

outer surface of the epidermis. Via this epidermal homeostasis process, the epidermis is constantly 

rejuvenated [Candi et al. 2005].  

Basal keratinocytes are attached to the underlying extracellular matrix (ECM) and the basement 

membrane via integrins, which mediate not only attachment, but also regulate proliferation or 

terminal differentiation in keratinocytes [Lippens et al. 2005]. Two different cell-ECM complexes 

mediate the connection between the basal cells and the basement membrane: hemidesmosomes, 

which connect intracellularly to the keratin filaments and focal adhesion contacts, which connect to 

the actin cytoskeleton. Both types of contacts contain integrin dimers [Fuchs & Raghavan 2002].  
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Differentiation of keratinocytes starts after the cells have undergone cell cycle arrest and detached 

from the basement membrane [Fuchs 1995, Lippens et al. 2005]. At the molecular level, the process 

is initiated by unoccupied ǃ1-integrin receptors. However, the same mechanism can also induce 

apoptosis or anoikis in cell culture. So far, both processes are supposed to be interdependent. The 

initial molecular trigger for detachment of keratinocytes and the molecular survival mechanism that 

prevents immediate cell death are still unidentified [Lippens et al. 2005, Levy et al. 2000, Mitra et al. 

1997]. However, Notch-signalling and its target gene Hes1 are considered to play a pivotal role at the 

basal-suprabasal juncture to down-regulate basal genes (like K5/K14) and up-regulate spinous 

markers (like K1/K10) [Blanpain et al. 2006]. 

After detachment and initiation of terminal differentiation, keratinocytes leave the basal layer and 

migrate into the suprabasal compartment [Fuchs & Raghavan 2002]. This switch towards 

differentiation can also be seen in the transcriptional profile of the cells. While proliferating 

keratinocytes express keratin 5 and 14 (K5 & K14) as main intermediate filaments (bundled into KIFs 

= keratin intermediate filaments) of the cytoskeleton [Fuchs & Raghavan 2002, Byrne et al. 1994], 

differentiating cells immediately start expressing keratins 1 and 10 (K1 & K10), which replace the old 

K5/K14 filament network (figure 1) [Candi et al. 2005, Fuchs & Raghavan 2002]. This switch in 

keratin gene expression indicates the commitment of the epidermal cell to terminal differentiation 

Basement
membrane

Basal layer

Spinous layer

Granular layer

Cornified layer

K5/K14

K1/K10

Loricrin, 
Involucrin,
Profilaggrin

TGM2

TGM1
TGM5

TGM3

Figure 1: Anatomy of mammalian epidermis. The epidermis of mammals can be divided into basal layer, spinous 
layer, granular layer and cornified layer. The cells above the granular layer are dead and enucleated. Cells in the epidermis 
differentiate while they migrate from the basal layer to the cornified layer. Certain marker genes are expressed only in 
specific layers (K Keratin, TGM Transglutaminase). 
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[Fuchs 2007]. Starting in the spinous layer, K1/K10 are expressed up to the outer cornified layer 

[Fuchs & Raghavan 2002, Candi et al. 2005]. The new keratin network does not only remodel the 

cytoskeleton of the cell to facilitate cell migration, but also regulates cell growth and cell cycle arrest 

via binding the adaptor protein 14-3-3ı and activating the AKT/mTOR (mammalian target of 

rapamycin) pathway [Kellner & Coulombe 2009, Fuchs 2007, Kim et al. 2006, Watt 2002].  

In the following two to four weeks, the keratinocytes migrate through all epidermal layers to the outer 

surface while they differentiate into dead and enucleated corneocytes [Lippens et al. 2005, Fuchs 

1995]. The cornification process includes rearrangements of the cytoskeleton, formation of a cornified 

envelope (CE) underneath the plasma membrane and an outer lipid envelope in the extracellular 

space. Keratins become the main component of the cytoskeleton and form a dense intracellular 

network while they are bundled into large tonofibrils (keratinization) [Fuchs 2007, Candi 2005, 

Matoltsy 1976]. The process ends with a flattened, dead and enucleated cell at the outer surface that 

has lost all its organelles and is metabolically inactive. To highlight that the differentiation process is 

fulfilled, these cells are thus described as corneocytes [Fuchs & Raghavan 2002].  

Through all layers the cells are attached to each other by cell-cell contacts. Adherens junctions 

connect two cells with the intracellular actin cytoskeleton and are found particularly in the lower layers 

of the epidermis, whereas desmosomes are in contact with the keratin intermediate filament system 

and can be found in all layers [Fuchs & Raghavan 2002].    

Formation of the cornified envelope starts in the granular layer [Fuchs & Raghavan 2002]. Here cells 

acquire electron-dense keratohyalin granules which contain profilaggrin, the precursor of filaggrin that 

bundles keratin intermediate filaments into large macrofibrillar cables (= tonofibrils) [Fuchs 2007] and 

thereby promotes the collapse of the cell into a flattened shape, the characteristic of corneocytes 

[Fuchs & Raghavan 2002]. Keratin intermediate filaments and filaggrin together constitute between 80 

and 90 % of the total cellular protein mass in the granular layer. Both proteins are heavily covalently 

cross-linked and build up a platform for later reinforcement and maturation of the cornified envelope 

[Fuchs & Raghavan 2002]. Already in the spinous layer, specific modifications at the inner side of the 

desmosomes had occurred that are now reinforced in the granular layer. CE-proteins like small 

proline-rich proteins (SPRPs), Loricrin, Involucrin and Filaggrin, which are rich in glutamine and lysine 

residues [Fuchs 2007] are crosslinked to the inner side of the plasma membrane and to the keratin 

intermediate filament system. This crosslinking occurs all over the inner side of the plasma membrane 

but particularly at the desmosomes [Candi 2005, Fuchs & Raghavan 2002]. The characteristic 

resistance and insolubility of the cornified envelope is mainly achieved by very stable covalent 

isopeptide bonds, whose formation is catalyzed by Ca2+ dependent transglutaminases (TGMs) [Fuchs 

& Raghavan 2002]. Most important substrates for transglutaminases are type II-Keratins, Involucrin, 

Loricrin, Filaggrin, S100-Proteins and small proline-rich proteins (SPRPs) [Fuchs & Raghavan 2002]. 

Due to their main function, attaching the cornified envelope to keratin filaments, all these proteins are 

described as intermediate filament associated proteins (IFAPs) [Fuchs 1995]. Interestingly, most (but 

not all) of these CE proteins are arranged in mammalian genomes in one large gene cluster called 
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epidermal differentiation complex EDC (for example EDC in humans is a two Mb cluster with 45 genes 

on Chromosome 1q21) [Hoffjan & Stemmler 2007]. 

In the granular layer, the cells are tightly attached to each other by tight junctions. In cornifying 

epidermis, tight junctions are present only in this layer and play a crucial role in preventing 

transepidermal water loss [Brandner 2009, Mirota & Miyachi 2003, Tsuruta et al. 2002]. 

The cells of the outermost cornified layer are still tightly attached to each other. This is achieved by 

so-called corneodesmosomes, a modified desmosomal structure in which specific desmosomal proteins 

are substituted. Profound changes in desmosome morphology can be detected at the transition 

between the granular and the cornified layer.  At the ultrastructural level, the cytoplasmic plaques of 

the desmosomes are integrated into the cornified envelope and a homogenous electron-dense plaque 

occurs in the intercellular space [Fuchs & Raghavan 2002]. This plaque is considered to consist of the 

transmembrane proteins Desmoglein and Desmocollin, members of the cadherin-family, and the 

extracellular protein Corneodesmosin, which is produced by the keratinocytes of the granular layer 

[Ishida-Yamamoto et al. 2011]. 

Additionally to the proteinacous cornified envelope, an extracellular lipid envelope is formed also 

starting at the granular layer. Lamellar bodies (= Odland bodies), which store complex series of lipids 

(e. g. ceramids, cholesterol esters or free fatty acids) originate from the Golgi apparatus and fuse with 

the plasma membrane to release their content into the extracellular space [Candi et al. 2005, Fuchs & 

Raghavan 2002]. Outside the cell, the lipids are directly bound to the outer cell membrane to reinforce 

the barrier function, or aligned into extracellular lipid lamellae to prevent water loss. Together with the 

lipid lamellae precursors, acidic hydrolases are extruded into the intercellular space, which are 

responsible for changes of the lipid composition and subsequently lipid lamellae formation. At the end 

of this process in the upper cornified layers, the cornified envelope is embedded in a lipid envelope 

and the lipids are organized as stacked lamellar sheets that occupy all intercellular space between the 

corneocytes. An important but still unresolved field of research are interactions between the lipid 

envelope and the cornified envelope [Lippens et al. 2005, Fuchs & Raghavan 2002]. 

Simultaneously to the formation of the cornified and the lipid envelope, degradation of the DNA and 

cell organelles occurs. In contrast to apoptosis, no chromatin condensation or DNA laddering occurs 

during cornification.  Finally the nucleus disappears and no chromatin remnants remain. So far, 

neither any DNAse responsible for this degradation process nor the processors of nuclear destruction 

could be identified. [Lippens et al. 2005].  

Above the granular layer, the skin is comprised only of dead cells. The fully differentiated squames 

resemble empty “protein sacs” consisting nearly exclusively of keratins and cross-linked CE-proteins. 

During the final shedding process in the uppermost layers of the stratum corneum, proteolytic 

degradation of cell-cell contacts allows squammation [Lippens et al. 2005, Fuchs & Raghavan 2002]. 

Especially during the later stages, cornification highly depends on specific proteases. Many CE protein 

precursors need proteolytic activation. Degradation of the nucleus and the organelles depends on 

proteases and finally degradation of cell-cell contacts during sloughing of cornified squames [Fuchs & 

Raghavan 2002].  
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As already mentioned, proliferation and squammation are tightly linked and regulated processes in 

epidermal maintenance [Lippens et al. 2005, Fuchs 1995]. This may be achieved by organizing the 

epidermis into epidermal proliferating units (EPUs), columns of hexagonally packed cells as has been 

shown by lineage tracing experiments. All cells of an EPU originate from single basal stem cells that 

occasionally divide to produce cells with more restricted proliferating capacity (TA-cells), whereas all 

other cells differentiate [Fuchs 2007]. 

 

Cornification is the most abundant form of cell death in mammalian epidermis. Despite many 

similarities (e. g. loss of the nucleus and cell organelles and activation of specific proteases including 

effector-caspases), cornification is clearly different from apoptosis [Lippens et al. 2005, Candi et al. 

2005, Fuchs & Raghavan 2002]. Apoptosis in the skin mainly occurs as a response to cell damage by 

UV light in proliferating basal keratinocytes, whereas cornification is a physiological process of 

terminal differentiation in the suprabasal layers [Lippens et al. 2005]. Characteristically, apoptosis 

occurs in single cells, which thereby loose their cell-cell contacts and are phagocytized afterwards by 

macrophages. In contrast, cornification is associated with sheet formation (cell-cell contacts remain 

intact) and stratification of the epidermis, meaning that the cellular changes during the differentiation 

process are not restricted to single cells, but occur simultaneously in all keratinocytes of the respective 

epithelial sheet [Lippens et al. 2005].  

Interestingly, nearly all keratins as major components of differentiated keratinocytes contain 

conserved caspase cleavage sites. However, keratins are not considered to be cleaved during terminal 

differentiation. Whether they are indeed substrates of effector-caspases during apoptosis remains still 

unclear [Lippens et al. 2005]. The most important features of both types of cell death are summarized 

in table 1. 

 

In a similar way, cornification as described above occurs in all amniotes (mammals, reptiles & birds). 

For all these land-living animals protection from dehydration is crucial for survival [Alibardi 2002].  

Reptiles resemble the primary amniotes from which birds and mammals derived. However, the 

mechanism of keratinization and cornification in reptiles is only poorly understood. In general, two 

different processes, Į- and ǃ-keratinization can be distinguished which involve Į- and ǃ-keratins. In Į-

keratinized layers of the epidermis, cross-reactivity with antibodies against the CE-proteins Filaggrin 

and Loricrin could be detected in keratohyalin-like granules (KHLG) in the granular layer. A cornified 

envelope is also formed in the stratum corneum [Alibardi 2003]. These results support the hypothesis 

that reptilian Į-keratinization (which is softer and occurs often at locations exposed to movement) 

resembles mammalian keratinization, whereas ǃ-keratinization forms the hard scales of the reptilian 

skin which are folds of the complete skin. ǃ-keratins might have evolved from a single Į-keratin in the 

course of evolution, but seem to be now an independent keratin family that does not exist in 

mammals at all [Alibardi & Toni 2006, Alibardi 2002]. Alternating layers of Į- and ǃ-keratinized 

keratinocytes facilitate shedding [Alibardi 2003]. However, not all reptiles renew the cornified tissue 

via a shedding process. Continuous wearing is also very common [Alibardi & Toni 2006]. 
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Table 1: Differences between cornification and apoptotic cell death. 

 Cornification Apoptosis 
General features  Slow process (duration ca. 2 weeks) 

 Occurs simultaneously in all cells of an 
epidermal layer 

 Massive synthesis of specific proteins 

 Fast process (48-72 hours) 

 Occurs in individual cells surrounded by 
viable neighbour cells 

 Limited need for protein synthesis 
Cell-cell contacts  Remain intact  Apoptotic cells loose cell-cell contacts 

what causes formation of apoptotic 
bodies 

Nuclear events  Complete loss of nucleus 

 No chromatin condensation or DNA 
laddering 

 Responsible DNases unknown 

 Proteases that cause destruction of 
nuclear proteins unknown (except 
Desquamin) 

 Incomplete loss of nucleus 

 Nuclear remnants detectable 

 Internucleosomal DNA cleavage by 
caspase-activated DNases (CADs) 

 Caspases degrade nuclear proteins (for 
example Lamin) 

Cytoskeletal 
rearrangements 

 Expression of different cytoskeletal 
components during the process 

 Formation of the cornified envelope 
and the lipid envelope 

 Cross-linkage between keratin filament 
system and cornified envelope 

 Dismantling of the cytoskeleton 

Organelle function  Organelles are completely degraded 
by proteases 

 Organelle function ceases, but 
organelles are not completely degraded 

Final fate of cell 
corpses 

 Dead cells are regularly sloughed off 
into the environment as squames after 
proteolysis of cell-cell contacts 

 Apoptotic cells are phagocytosed by 
macrophages 

Table 1 is based on Lippens et al. 2005, Candi et al. 2005 & Allombert-Blaise et al. 2003 

 

 

Reptilian epidermis cornifies in a parakeratotic manner. That means that the nuclei of keratinocytes 

are still present in the stratum corneum. In mammals however, parakeratosis is clearly a pathological 

feature.  Thus, cornification in reptiles may be described as a more primitive modality of cornification, 

where apoptosis or apoptosis-like processes appeared in conjunction with the formation of the 

stratum corneum [Alibardi 2003].  

Both ways of keratinization are also present in birds, which are evolutionary related to reptiles. Avian 

epidermis comprises scaled and non-scaled areas. A soft interfollicular epidermis (apterilae) and a 

feathered epidermis (pterylae) can be distinguished, while scales are only present in the skin of the 

hind limbs [Alibardi & Toni 2006, Alibardi 2005]. Apteric epidermis is similar to mammalian epidermis 

but has no evident granular layer (which is the same in mammalian hard-cornified tissue). However, 

cross-reactivity with antibodies against mammalian cornification markers (Į-keratins, Loricrin, 

Filaggrin, transglutaminases) has been demonstrated as well as the formation of cornified and lipid 

envelopes [Alibardi & Toni 2006, Alibardi 2005]. This indicates that keratinization and cornification in 

avian apteric epidermis roughly resembles the respective mammalian process. According to the 

literature, the lack of the stratum granulosum with its keratohyalin granules results in a poorly 

developed interkeratin matrix [Alibardi & Toni 2006] that might be responsible for the soft character 

of avian apteric epidermis.   
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Table 2: Comparison of cornification processes in amphibians, reptiles, birds and mammals. 

 Amphibians Reptiles Birds Mammals 

Str. corneum Replacement layer Į-kertinization: thin 

ȕ-kertinization: thick 

(occur at the same 

sites) 

Į-kertinization: thin 

ȕ-kertinization: thick 

(occur at different 

sites) 

thick layer; only Į-

kertinization 

Str. granulosum No yes no yes 

Shedding Moulting moulting or wearing shedding? shedding 

Keratinization-Type ǹ Į+ȕ Į+ȕ Į 

CE -- ++ ++ ++ 

HPRs No Loricrin 

Filaggrin 

Loricrin 

Filaggrin 

Loricrin, Involucrin, 

Filaggrin 

Parakeratosis Yes Yes ? Pathologically 

Table 2 is based on Alibardi & Toni 2006, Alibardi 2005 and Alibardi 2002. Str. = Stratum, ? indicates lack of information  

 

 

ǃ-keratinization occurs in the scaled regions of the epidermis and during production of the feathers. ǃ-

keratins are similar to those of reptiles. Despite these similarities, the exact mechanisms of 

cornification in birds remains to be elucidated [Alibardi & Toni 2006]. 

As only anamniotes amphibian epidermis also constitutes a stratum corneum [Alibardi 2009]. 

Depending on the post-metamorphic adaptation, two different types of amphibian epidermis exist. In 

species which remain permanently aquatic, no cornified layer is formed and the epidermis is purely 

mucogenic. In terrestrially adapted forms, one ore two layers of cornified epidermis are formed on top 

of the stratified epidermis [Alibardi 2009]. Cells from the basal layer differentiate and eventually form 

a replacement layer that replaces the corneous layer during moult [Alibardi 2003b]. The process of 

moulting is under strict hormonal control (e. g. aldosterone). The dead cornified layer is shed and the 

granular layer underneath completes cornification [Smith 1975]. Interestingly, electron-dense granules 

are present in the upper spinous layer during epidermal differentiation. The smaller granules with a 

mucus-like content are discharged into the extracellular space, whereas the larger granules with an 

unknown content stay inside the keratinocytes [Farquhar & Palade 1964]. These granules are believed 

to contain mucus and crosslinking-proteins (that are different from the mammalian proteins) and form 

intracellularly a dense mucus interkeratin matrix [Alibardi 2003b, Navas et al. 1987, Bueno et al. 

1981]. However, there is a lack of information about interfilamentous matrix proteins in the epidermis 

of non-mammalian vertebrates [Alibardi 2003b, Matoltsy 1987]. At least a cornified envelope does not 

seem to be formed in amphibians [Alibardi 2002]. 

In summary, cornification as it occurs in mammals is probably the most advanced form in terms of Į-

keratinization, but many different - perhaps more primitive forms - can also be found throughout the 

animal kingdom. The main differences that are already known are listed in table 2. 
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Teleost epidermis 

In vertebrate epidermis two different developmental pathways have been demonstrated, which are 

tightly linked to environmental adaptation. One pathway of this duality leads to keratinization, 

occurring predominantly in land-living animals, whereas the other one ends in mucogenesis and is 

common in amphibious or aquatic vertebrates [Henrikson & Matoltsy 1967]. Due to its aquatic 

environment, the epidermis has to protect fish from osmotic pressure stress, physical damage and 

infectious organisms including parasites [Hawkes 1974]. The epidermis of adult individuals is 

pluristratified and organized in three distinct strata: the basal layer on top of the basement 

membrane, the intermediate layer and the outer superficial layer [LeGuellec et al. 2004] (figure 2). 

In contrast to mammalian epidermis, living epidermal cells are in direct contact with the environment 

[Hawkes 1974]. This means fish skin consists exclusively of living cells [LeGuellec et al. 2004]. 

Processes like keratinization and cornification that are characteristic for land-living vertebrates are 

absent in fish [Burgess 1956] or occur only at specific sites, as for example adhesive organs, lips or 

breeding tubercles. Generally, the surface of the skin is covered by mucus but not dead cornified cells 

[Chang & Hwang 2011, 

LeGuellec et al 2004]. 

Ontogenetically, the cells of 

the basal and intermediate 

layer derive from the 

ectodermal sheet after 

gastrulation, whereas the 

origin of the superficial layer 

not completely understood. 

It is considered to develop 

from the embryonic 

enveloping layer (EVL), 

which derives from the 

blastoderm during blastula 

period [Chang & Hwang 

2011, LeGuellec et al. 

2004]. 

Even if fish epidermis is also 

a pluristratified epithelium, 

the high degree of 

organization as seen in 

mammalian epidermis can 

not be detected in teleost epidermis. Whereas in mammals basal, spinous, granular and horny or 

cornified cell layers can be distinguished, which resemble the degree of differentiation of the individual 

keratinocytes of the certain layers, fish epidermis consists mainly of undifferentiated cells in the 

Basal layer

Intermediate
layer

Superficial
layer

MC

CC

Basement
membrane

Figure 2: Anatomy of teleost epidermis. Three different compartments can 
be distinguished in the epidermis of teleosts: the basal layer, the large 
intermediate layer with mainly undifferentiated cells, and the flat superficial layer. 
The intermediate layer also comprises certain differentiated cell types as mucous 
cells (MC) or club cells (CC). Ionocytes are not shown.   
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intermediate layer [Chang & Hwang 2011, LeGuellec et al. 2004]. However, the epidermis of fish 

comprises many differentiated cell types that do not exist in mammalian skin at all, for example 

mucous cells, club cells or ionocytes. On the other hand, those cells are structurally similar to some 

mesoderm- or endoderm-derived cells in mammals. For example mucous cells share similarities with 

mammalian goblet cells of the intestine epithelium and ionocytes have features needed for ion- and 

osmolarity-regulation, which are similar to mammalian epithelial kidney cells [Chang & Hwang 2011].  

 

In mammalian skin, mitosis only occurs in basal cells. In teleost skin, autoradiographic studies with 

tritiated thymidine showed incorporation into cells throughout all epidermal layers indicating that in 

fish epidermis, mitosis is not restricted to the basal layer but occurs throughout the whole 

intermediate layer and the superficial layer as well [Henrikson & Matoltsy 1967]. 

In land-living tetrapods, epidermal cells adopt specific structural changes as they undergo terminal 

differentiation. They synthesize differentiation products and become transformed into protective 

corneocytes when they reach the distal stratum corneum. In regular fish skin, a comparable 

differentiation process does not seem to exist. It is assumed that density and bundling of keratin 

filaments do not differ in basal and intermediate layers. In mammalian skin, formation of tonofibrils is 

a hallmark of differentiation, whereas in teleost skin, filaments remain discrete rather than aggregate, 

as shown in electron microscopy studies. Most of these cytoskeletal rearrangements in mammals 

occur in the granular layer that is characterized by the presence of hyaline granula (keratohyalin). This 

cannot be found in fish skin either [Henrikson & Matoltsy 1967].  

 

The outer surface layer, the superficial layer, is a single cell layer of flat viable cells. These cells 

develop microridges at the outer surface and are rich in keratins filaments. However, in contrast to 

mammals these cells do not get keratinized or cornified [Chang & Hwang 2011, LeGuellec et al. 2004].  

The cells of the superficial layer are not shed and renewed regularly, but replaced individually after 

cell death [Chang & Hwang 2011]. 

Microridges are small protrusions (0.5 – 1 µm height) of the cell membrane, which are similar to 

microvilli of the intestine epithelium. They are formed by the actin cytoskeleton with the actin 

filaments being arranged perpendicular to the cell surface and an attachment plate at the basis of the 

microridge. These cellular protrusions are thought to protect fish against traumata and retain secreted 

mucus (which protects against various microbia) at the skin surface. Additionally, they might be 

needed during initial wound closure since the microridges can move by the contraction of their basal 

microfilaments [Bereiter-Hahn et al. 1979, Hawkes 1974]. 

In contrast to mammalian epidermis, tight junctions in fish epidermis are found only between the cells 

of the superficial layer that means in the outermost layer of the epidermis [Henrikson & Matoltsy 

1967]. The origin of the superficial cells is not clear. However, they share many similarities with EVL 

(enveloping layer) cells which cover the embryo from blastula period on [Chang & Hwang 2011], 

whereas the intermediate and basal cells originate from the embryonic ectoderm [Chang & Hwang 

2011, LeGuellec et al. 2004]. 
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The large intermediate layer is composed of different cell types. The major components are relatively 

small basophilic cells [Henrikson & Matoltsy 1968] which resemble undifferentiated epidermal cells or 

keratinocytes with a low level of differentiation [Chang & Hwang 2011, LeGuellec et al. 2004]. They 

operate as a reservoir to replace dead cells of the epidermis.  

The undifferentiated cells can divide rapidly and replace dead cells [Chang & Hwang 2011, LeGuellec 

et al. 2004]. The number of layers of the intermediate layer is highly variable and differs between 

different body regions [LeGuellec et al. 2004]. The cells are tightly connected to each other by 

numerous desmosomes [Henrikson & Matoltsy 1967]. 

The regulation of keratinocytes differentiation in fish skin remains still unclear [Chang & Hwang 2011]. 

Tonofibrils are described for fish keratinocytes but are only scarcely present compared to mammals 

and do not form a typical tight network [Hawkes 1974]. Additionally all histidine-rich proteins that are 

important for cornification (Involucrin, Loricrin and Filaggrin) are not existing in fish genomes and no 

incorporation of tritiated histidine could be detected by autoradiogaphy in contrast to mammalian or 

reptilian epidermis. [Alibardi 2003, www.ensembl.org]. Furthermore, no specific keratin expression 

has been reported in teleost epidermis so far. That means a “keratin-code” which is typical for 

mammalian epidermis is not known for fish epidermis so far. However, in general fish keratins are 

very different from mammalian keratins [Schaffeld et al. 2007].  

Additionally to keratinocytes, different types of unicellular glands occur in the intermediate layer like 

mucous cells or club cells, sensory cells and ionocytes [Chang & Hwang 2011]. Each cell type has 

specific functions. 

Mucous cells produce mucus substances that cover the outer surface of the fish and protect it from 

infections [Chang & Hwang 2011]. Mucous gland cells are basally derived cells that move upwards 

through the epidermis and thereby displace the boundaries of the adjacent cells [Hawkes 1974]. 

During their migration, the cells increase remarkably in size, until finally engorged cells reach the 

surface where they discharge their content into the extracellular space [Henrikson & Matoltsy 1968 b]. 

Club cells release alarm signal factors into the surrounding and exhibit a fright reaction. However, 

they are considered to have slightly different functions in different species [Chang & Hwang 2011]. 

Ionocytes carry specific ion transporters located at the cell membrane and are necessary for 

homeostasis and regulation of osmolarity of the body fluids [Chang & Hwang 2011]. This type of 

glands seems to develop from the same precursor population as the keratinocytes. After gastrulation, 

precursor cells start expressing the transcription factor ƩNp63. In few cells, which will develop into 

ionocytes, the transcription factor foxi3a and deltaC are turned on whereas ƩNp63 is downregulated. 

Notch signalling in the surrounding cells together with sustained ƩNp63 expression drives these 

undifferentiated cells into the keratinocytes lineage [Chang & Hwang 2011]. 

The basal cell layer is a single cell layer that is attached to the underlying basement membrane via 

hemidesmosomes [LeGuellec el al. 2004, Mittal & Whitear 1979]. The basement membrane separates 

the epidermis from the underlying dermis. In fish epidermis, the main function of the basal layer is the 

tight connection of the epidermis to the dermis [Chang & Hwang 2011, LeGuellec et al. 2004]. 

However, the basal cells themselves are connected to each other only by a relatively small number of 
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desmosomes [Mittal & Whitear 1979]. During skin development, the basal layer is involved in the 

production of the initial collagenous stroma of the dermis [LeGuellec et al. 2004]. In contrast to 

amniote epidermis, the basal layer in fish epidermis contains non-differentiated and differentiated cells 

[Chang & Hwang 2011]. 

Taken together, despite some similarities, fish epidermis and the epidermis of land-living vertebrates 

are quite different in architecture and composition. 

 

 

 

Breeding tubercles 

Breeding tubercles (also described as pearl organs) are spine-like epidermal structures found in at 

least 15 families within four orders of teleosts (especially cypriniformes) [Chen & Arratia 1996] and 

are thought to facilitate contact between individuals during spawning [Wiley & Colette 1970]. 

Accordingly, they frequently exist in body regions that come in contact with other fish, for instance 

head, fins or flank. Additionally, some species use them for nest or territory defence, or stimulation of 

females during breeding. While breeding tubercles are purely epidermal structures, analogous spikes 

which include also the dermis are also described in a variety of species. In contrast to breeding 

tubercles, these are classified as contact organs. In most cases, breeding tubercles as well as contact 

organs have a sexually dimorphic pattern in males and females. Often breeding tubercles are only or 

predominantly found in males [Wiley & Colette 1970]. 

Already fifty years ago, it became obvious that the cells of breeding tubercles consist of a substantial 

amount of keratins compared to lower levels of keratin in the remaining fish epidermis [Wiley & 

Colette 1970]. Light and electron microscopy studies revealed a different composition of the epidermal 

cells in these tubercles including a process of keratinization in the outer cells and subsequent cell 

death at the outer surface [Mittal & Whitear 1979, Wiley & Colette 1970]. This is in clear contrast to 

the general agreement that keratinization and a terminal differentiation process are absent in fish 

skin.  

In contrast to normal fish skin, mitosis is expected to occur in a stratum germinativum (in mammalian 

epidermis: basal layer + lower spinous layer) directly above the basement membrane [Mittal & 

Whitear 1979, Wiley & Colette 1970]. The cells of the layers above become progressively hypertrophic 

and polygonal with large nuclei toward the outer surface. The outermost layer of the breeding 

tubercle appears keratinized with high amounts of keratin as shown by histology staining and electron 

microscopy [Mittal & Whitear 1979]. The transition between the hypertrophic cells and the outer 

keratinized cells is so abrupt that no transition zone is usually visible. In the keratinized cells, the 

nuclei disappear completely or persist as pyknotic remnants in the flattened, irregular cells of the 

keratinized layer [Mittal & Whitear 1979]. The general appearance of a breeding tubercle is 

summarized in figure 3. 
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In general, breeding tubercles develop prior the spawning season and reach their maximum size right 

before the season starts. After the spawning period is over, they break off, slough off or regress 

gradually. The development of the breeding tubercles seems to be affected mainly by the gonads and 

the pituitary gland [Wiley & Colette 1970], as gonadectomy prevents the formation of tubercles in the 

goldfish, and intraperitoneal injection of pituitary extract causes tubercle growth in minnows [Wiley & 

Colette 1970, Ramaswami & Hasler 1955]. 

In amniotes and amphibia, the process of cornification is characterized not only by the presence of 

bundled keratin, but also involves death of cornified cells. A sloughing layer of dead but highly 

keratinized cells was found at the surface of certain elevations of the epidermis of the Indian catfish 

Bagarius bagarius [Mittal & Munshi, 1970]. These elevations showed all the features described for 

breeding tubercles, even if they not present with the classical breeding tubercle shape. In 1979, Mittal 

and Whitear used electron microscopy to further characterize the nature of keratinization and cell 

death in epidermal elevations compared to the non-keratinized epidermis of the furrows between the 

elevations [Mittal & Whitear 1979]. This study showed that basal cells below the elevations were 

bigger and more cubical than in the furrows. A striking feature was an abrupt transition in the 

appearance of keratinocytes between the fifth and sixth tier from the surface. From the fifth tier (from 

top) on, tonofibrils were condensed into bundles changing shape and staining behaviour of the cells. 

This transition was explained by the authors by an increase in calcium content, shown by alicarin-S 

staining. Starting in the second tier, the cells flatten and the tonofibril bundles orientated parallel to 

Figure 3: General features of breeding tubercles. The general organization and the major differences of breeding 
tubercles to regular epidermis are summarized here. Please refer to text for details. 
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the cell surface at least in the distal cytoplasm. The cells of the second tier were the most superficial 

living cells of the elevations. They were connected to one another by tight junctions, which normally 

occur only in the superficial layer in fish epidermis and to the upper tier of dead and keratinized cells 

by large desmosomes. A typical subcorneal space, as found in amphibians, was detected between the 

first and second tier in this study and large lipid inclusions were reported for the second tier [Mittal & 

Whitear 1979]. The outermost cell layer showed the strongest reaction for calcium, indicating its 

keratinized nature. Additionally, those cells lacked all cell organelles and had an electron-dense layer 

of unknown material at the inner side of the plasma membrane, reminding of the cornified envelope in 

mammalian epidermis [Mittal & Whitear 1979].  

Openings of mucous glands were never found in the keratinized regions of the elevations [Mittal & 

Whitear 1979], indicating that the furrows resembled a mucogenic type of epidermis, whereas the 

elevations might be keratogenic. Furthermore, the keratinocytes in those regions were capable of 

synthesis of mucous granules [Das & Nag 2006]. In fish and amphibian epidermis, large mucous 

granules are expected to be involved in the clumping of keratin filaments [Fox 1986, Whitear 1986, 

Budtz & Larsen 1975, Parakkal & Matoltsy 1964].  

 

Other potentially keratinized structures in fish are the horny teeth of the lamprey [Alibardi & Segalla 

2011], the horny upper and lower jay sheet of Puntius sophore [Tripathi & Mittal 2011], or the organ 

of attachment of the catfish Garra gotyla [Das & Nag 2006], which all show many similarities on 

cellular or histological level. Comparison of morphology and histology of breeding tubercles among 

different species revealed a high number of significant differences, indicating that tubercles evolved 

independently in different groups [Wiley & Colette 1970]. However, the process of putative 

keratinization in the different described structures of fish skin seem to be basically the same or at 

least similar [Wiley & Colette 1970]. 

 

 

 

The p53-familiy member p63 and its role in mammalian epidermal development and 

maintenance 

So far, three members of the p53-transcription factor family have been identified: p53, p63 and p73, 

all with high sequence and structural similarity, but apparently quite different functions [Koster & 

Roop 2004]. All three proteins share an N-terminal transactivation domain (TAD), a central DNA 

binding domain (DBD) and a C-terminal oligomerization domain (OD) [Vanbokhoven et al. 2011, Candi 

et al. 2007, Strano et al. 2001]. Sequence similarity is particularly high between DBD of p63 and p73 

but also p53 shares at least 65% similarity with other family members [Melino et al. 2002, Yang et al. 

2002, De Laurenzi & Melino 2000].  

The most commonly known member of the p53-family is the transcription factor p53 itself which is 

one of the best studied tumor suppressors and is involved in cell cycle arrest, DNA repair and leading 

cells into apoptosis [Riley et al. 2008]. As p53 -/- mutants (e. g. mouse mutants or zebrafish mutants) 
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[Molchadsky et al. 2010, Parant et al. 2010, Tyler et al. 1994] show no visible developmental defects 

but develop tumors later during adulthood, p53 is believed to be dispensable for development but 

very important to avoid tumor formation.  

Different cellular stress scenarios, like DNA damage, spindle damage or hypoxia activate p53, which 

levels are tightly controlled via MDM2, an ubiquitin ligase, driving p53 into proteasomal degradation 

[Riley et al. 2008]. An activated p53 tetramer binds to p53 responsive elements (RE) in the promoter 

region of certain p53 target genes and thereby alternates gene expression of the cell inducing DNA 

repair, cell cycle arrest, cellular senescence or apoptosis [Riley et al. 2008]. 

Furthermore, p53 seems to be involved in asymmetric cell division of stem cells, giving rise to a 

dividing daughter cell and a postmitotic cell arrested in G1/S of the cell cycle [Sherley 2002]. As these 

results were shown mainly by in vitro experiments, the significance of this hypothesis still has to be 

demonstrated in vivo. However, this finding is consistent with the well-established idea that increased 

symmetric cell divisions increase the risk of carcinogenesis, as it was shown in p53 null animals 

[Sherley 2002]. Additionally, cultured explanted cells from p53 null mice do no longer show signs of 

senescence. The absence of senescence by cultures of p53 null tissue cells is consistent with 

abrogation of the asymmetric cell kinetics barrier to adult stem cell expansion by removal of p53-

dependent regulation [Sherley 2002, Rambhatla et al. 2001, Merok & Sherley 2001]. 

On the RNA level, different p53 isoforms are transcribed by three different promoters in the p53 gene. 

Additionally, alternative splicing at the 3’-end, leads to sets of Į-, ǃ- & Ǆ- isoforms [Bourdon et al. 

2005, Rohaly et al. 2005]. However, the full length protein is the most abundant isoform, and the 

alternative mRNAs seem to be produced especially under pathologic conditions (e. g. in tumors) 

[Rohaly et al. 2005]. The promoter P1 transcribes the regular p53 isoforms, whereas the alternative 

P1’ promoter leads to truncated Ʃ40p53 isoforms and the promoter P2 (upstream the fifth exon) to 

Ʃ133p53 isoforms. The functions and importance of the different isoforms remain largely unknown 

[Rohaly et al. 2005]. 

 

In contrast, the different isoforms of p63 and p73 are investigated in much more detail [Strano et al. 

2001]. An alternative promoter upstream the third exon (in mammals) gives rise to two different types 

of isoforms: TA-isoforms with an N-terminal transactivation domain and ƩN-isoforms without this 

domain [Strano et al. 2001, Koster & Roop 2004]. Additionally, alternative splicing at the 3`-end 

contributes to a more complex set of isoforms with the same 5`-end but different 3`-ends [Strano et 

al. 2001]. The longest set of isoforms with the same 5’-end, named Į-isoforms, carry an additional 

sterile alpha motif (SAM) domain at the 3’-end. This domain often contains protein interaction motifs 

frequently found in proteins that are involved in development and differentiation [Koster & Roop 

2004], suggesting a role for p53-familiy members in such processes. Smaller sets of isoforms, the ǃ- 

and Ǆ-isoforms, lack the SAM domain [Vanbokhoven et al. 2011, Candi et al. 2008, Koster & Roop 

2004]. p53, on the other hand, does not have a SAM domain at all [De Laurenzo & Melino 2000].  
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The diversity of p63 isoforms gets even more complicated by different transcriptional and translational 

starts in the 5’-region. Bamberger and Schmale identified four different ATGs (AT1-4) in the TA 

specific region leading to four different sets of isoforms [Bamberger & Schmale 2001]. 

The domains of the most important isoforms of p53 and p63 are shown in figure 4. 

In contrast to p53, p73 and especially p63 do not have a remarkable function as tumor suppressor, 

but have specific functions during development [Ramadan et al 2005, Moll & Slade 2004, Di Laurenzi 

& Melino 2000]. As much more information is available for p63, the following description refers 

primarily to p63 which was shown to have crucial functions during formation of the epidermis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Organization of p53 and p63. (A) Genomic organization of the mammalian p63 gene. p63 consists of a 3’-
transactivation domain (TA, green), a DNA binding domain (DBD, blue), and an 5’-oligomerization domain (OD, red). 
According to a second promoter, truncated ƩN isoforms are generated lacking the N-terminal transactivation domain. 
Alternative splicing at the 3’-end gives rise to additional sets of isoforms with the same 5’-end, named Į-, ǃ-, and Ǆ-
isoforms. Only the long Į-isoforms have an additional sterile alpha motif (SAM, grey) domain. Splicing variants generated 
by alternative splicing at the 5’-terminus are not shown. (B) Structure of p53, TAp63, and ƩNp63 proteins. p53 and p63 
share high similarity in the DBD and the OD. TAp63 and p53 both have a transactivation domain to activate specific target 
genes. According to alternative splicing, different truncated versions exist especially for p63, whereas those versions of 
p53 occur predominantly only under pathological conditions. 
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According to initial in vitro transactivation studies, the ─N-isoforms were supposed to be only 

dominant negative repressors of the respective TA-isoforms [Koster & Roop 2004, Koster et al. 2004, 

Yang et al 1998] because of the missing 5’-transactivation domain. However, newer results claim also 

transactivation functions for the different ─N isoforms possibly due to other transactivation domains 

[Vanbokhoven et al. 2011, Koster & Roop 2004, Wu et al. 2003, King et al. 2003, Ghioni et al. 2002, 

Dohn et al. 2001]. Furthermore, it is still not clear whether the dominant-negative function of the ─N-

isoforms results from direct competition for p53-family binding sites in the promoter regions of target 

genes or by heterotypic dimerization [Koster & Roop 2004, Yang et al. 2002, Gaiddon et al. 2001]. 

 

The epidermis in mice (or mammals) develops from the embryonic ectoderm initially as a single-

layered epithelium. Until day E9.5, this simple epithelium expresses the respective markers of simple 

epithelia, keratins 8 and 18. On day E9.5, the epithelial cells commit towards a stratified epithelium, 

which is demonstrated by a switch from K8/K18 to the basal marker keratins K5/K14. At day E10.5, 

the epidermis becomes bilayered. A layer of flat cells, the periderm, develops on top of the basal layer 

[Koster & Roop 2004b]. In contrast to the EVL in fish, the mammalian periderm originates directly 

from the basal layer of the epidermis. The periderm is needed for protection while the embryo is still 

in the amnion cavity. However, as in fish EVL, the first tight junctions of mammalian epidermis 

develop between cells of the new periderm at around day E11. These initial tight junctions are more 

similar to tight junctions of simple epithelia than to maculae occludentes in the granular layer of the 

mature stratified epidermis [Morita et al. 2002, M’Boneko & Merker 1988, Nakamura & Yasuda 1979]. 

At day E13.5, the epidermis eventually stratifies. In the following, an intermediate cell layer forms 

between the basal layer and the periderm. Initially this second layer proliferates as well, probably due 

to the rapidly growing embryo.  But soon later at day E15.5, the cells in this layer become postmitotic 

and start to differentiate, what is reflected in the switch towards K1/K10, the keratins of suprabasal 

cells [Koster & Roop 2004b, Weiss & Zelickson 1975]. Calcium signalling is needed for the 

commitment as well as for the later differentiation of keratinocytes [Koster & Roop 2004b]. Cultured 

primary human keratinocytes proliferate and remain features of basal cells only when kept at low 

calcium concentration. When the concentration is increased, cells withdraw from cell cycle and start 

terminal differentiation. During epidermal development, a calcium gradient is established around the 

time, the spinous layer occurs [Koster & Roop 2004b, Elias et al. 1998]. In accordance with these 

results, Okuymama et al. demonstrated that E15.5 epidermal keratinocytes have an intrinsically higher 

commitment to terminal differentiation than newborn epidermal keratinocytes [Koster & Roop 2004b, 

Okuyama et al. 2004].  

Until day E19.5, the epidermis gets multilayered, always with viable periderm cells on top. At a final 

step in epidermal development, the periderm cells are shed at E19.5 and are replaced by the stratum 

corneum with fully differentiated and dead keratinocytes [Akiyama et al. 1999, Byrne et al. 1994, 

Holbrook & Odland 1975]. Mammalian epidermal development is summarized in figure 5. 
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The expression pattern of the different p63 isoforms especially during epidermal development is still 

under intensive discussion. In adult mice, p63 is expressed at high levels in the basal cells of the 

epidermis and other stratified epithelia. In the suprabasal layers p63 is strongly reduced or completely 

absent [Pellegrini et al. 2001, Yang & McKeon 2000, Mills et al. 1999]. However, the generation of 

isoforms-specific antibodies identified only the ƩN isoforms in the basal layer, whereas the TA 

isoforms were found in the suprabasal layers, indicating a switch during keratinocytes differentiation 

from the ƩN to the TA isoforms [Nylander et al. 2002]. According to its expression pattern and the 

phenotype of p63 knock-out mice (described below), p63 was expected to have an essential role 

during development and/or differentiation of the epidermis [Koster & Roop 2004]. Both, TAp63 and 

ƩNp63 isoforms were found to be expressed in mouse embryos and in adult mouse epidermis as 

shown by RT-PCR using isoforms-specific primer. In detail, this expression analysis of whole embryos 

(E7.5-E9.5) and embryonic epidermis (E15.5-E18.5) demonstrated the presence of TAp63 as early as 

E7.5, prior to commitment to stratification. In this study, ƩNp63 transcripts were not detected prior to 

day E9.5, with TAp63 still being the predominant isoform until day E18.5 [King & Weinberg 2007, 

Koster at al. 2004]. Additionally in support of the early onset of TAp63, it was shown that ectopic 

expression of TAp63 but not ƩNp63 in single layered lung epithelium was necessary and sufficient for 

initiation of a stratification program demonstrated by expression of K5/K14 [Koster & Roop 2004, 

Koster et al. 2004].  

However, a different study could not find any p63 transcripts at E7, and only ƩNp63 at E8 and E9 

[King & Weinberg 2007, Laurikkala et al. 2006]. Similarly in zebrafish, ƩNp63, but not TAp63, 

expression was observed and reported to be required for morphogenesis of the stratified epidermis 

[King & Weinberg 2007, Lee & Kimmelman 2002]. qRT-PCR data of skin samples from mouse embryos 

during different stages of skin development, while the epidermis is already bilayered (day E13), are 

available. These data revealed that 99% of the existing p63 transcripts were ƩN isoforms, whereas 

only 1% was identified as TA isoform [King & Weinberg 2007, Candi et al. 2007]. 

To make it even more complicated, in situ hybridization studies with isoforms-specific antisense 

probes could show that only the ƩN isoforms but not the TA isoforms were expressed in epithelia of 

mice from day from E11 to E14 [Laurikkala et al. 2006]. Additionally, isoforms-specific antibodies 

detected only the ƩN isoforms but not the TA isoforms of p63 during epidermal development (E10.5-

E16.5) [Romano et al. 2009]. 

In summary, it is still not clear if TAp63 is expressed in embryonic skin at all [Vanbokhoven et al. 

2011, Livera et al. 2008, Suh et al. 2006]. It became clear, that the ƩN-isoforms are the more 

abundant isoforms compared to the TA-isoforms at the protein level [Vanbokhoven et al. 2011, Koster 

et al. 2007]. ƩNp63 is highly expressed in basal keratinocytes, but downregulated in suprabasal cells. 

TAp63 is strongly expressed in oocytes, but expression in the epidermis is still unclear [Vanbokhoven 

et al. 2011, Livera et al. 2008, Suh et al. 2006]. 

 

Mutations in the human p63 gene are responsible for several ectodermal dysplasia syndromes (EDS) 

that are congenital disorders with abnormalities in ectodermal derived structures like hair, teeth, nails 
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or even craniofacial structures or digits [Vanbokhoven et al. 2011]. p63-deficient mice develop no 

stratified epidermis and have aberrant squamous epithelia (e. g. cervix or urothelium) [Vanbokhoven 

et al. 2011]. Additionally they lack epithelial appendages like mammary glands, hair follicles or teeth 

[Vanbokhoven et al. 2011, Koster et al. 2007]. Consequently, p63-deficient mice die shortly after 

birth, most probably due to dehydration because of the absent barrier function of the skin [Candi et 

al. 2008]. Besides the epithelial phenotype, also p63 knock-out mice have truncated limbs and cranio-

facial defects [Vanbokhoven et al. 2011]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, the generation of two independent p63-(isoform independent) knock out models led to 

controversial results concerning the function of p63 in epidermal development. Both strains were 

generated on different genetic backgrounds with different targeting strategies. On the first sight, both 

of them had severe defects in epidermal development and lacked epidermal appendages as described 

above. A subsequent more detailed analysis led to two quite different hypotheses concerning the 

function of p63 in the epidermis [Vanbokhoven et al. 2011]: Knock-out mice created in the Bradley 

laboratory were covered by a one-layered simple epithelium [Koster et al. 2007, Mills et al. 1999] that 
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Figure 5: Mammalian development of the epidermis. In mammals, the development of the 
epidermis starts with a simple epithelium originating from the embryonic ectoderm. After occurrence of 
the periderm layer, the epidermis stratifies while it still consists exclusively of living cells. At the end of 
the developmental process the periderm cells are shed and the cornified layer develops. The time frame 
of the different steps and the most important marker molecules are shown below the figure. Please see 
text for details. Blue: basal cells, light blue: spinous cells, red: granular cells, yellow: cornified cells, 
green: periderms cells. 
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did not stratify and lacked all specific markers of differentiation. Furthermore, the epithelial cells 

expressed K8 and K18, typical markers of simple epithelia [Vanbokhoven et al. 2011, Mills et al. 

1999]. Consequently, it was concluded that p63 is necessary for epidermal commitment and 

stratification [Vanbokhoven et al. 2011]. As epithelial cells do not express K5 and K14, the epidermis 

might remain arrested in a premature state prior to the onset of stratification [Koster & Roop 2004b]. 

Similarly, it was demonstrated in 2004 that the switch in the differentiation of the Muellerian duct 

depends on p63. In the absence of p63, the Muellerian duct epithelium develops into a single layered 

uterine epithelium, while induction of p63 expression results in the differentiation into a cervicovaginal 

(stratified) epithelium [Koster & Roop 2004b, Kurita et al. 2004].  Additionally, it was demonstrated in 

this study that p63 expression in the Muellerian duct is induced via signals of the underlying 

mesenchyme [Kurita et al. 2004], whereas a role of the mesenchyme in epidermal p63 induction is 

not known so far. According to the similarities in development of the different stratified epithelia, an 

equivalent role for the mesenchyme in the epidermis is very likely. In support of an early function of 

p63 in the epidermis, p63 was found to be the first keratinocyte-specific marker in cell culture 

experiments [Koster & Roop 2004b, Green et al. 2003]. 

In contrast to the above phenotype, KO mice from the McKeon laboratory presented patches of 

differentiated keratinocytes that expressed terminal differentiation markers like Involucrin, Loricrin and 

Filaggrin, placed on an exposed dermis [Vanbokhoven et al. 2011, Koster et al. 2007, Yang & McKeon 

2000, Yang et al. 1999]. In accordance with these findings, another study could show that p63 protein 

is enriched in putative epidermal stem cells [Koster & Roop 2004b Pellegrini et al. 2001]. This led to 

the interpretation that a stratified epidermis can develop initially in the absence of p63, but cannot be 

maintained afterwards due to a lack of proliferating cells. According to this hypothesis, p63 would be 

required for stem cell maintenance but not differentiation [Vanbokhoven et al. 2011].  

 

More recent data indicate that during development and later maintenance of the epidermis, an exactly 

titrated balance between the different isoforms is absolutely crucial [Mack et al. 2005]. However, 

additionally to the above described controversial data on p63, especially the TAp63 isoform functions 

seem to be even more complicated. Different studies claim promoting or inhibitory functions of TAp63 

during keratinocyte differentiation and cornification after commitment has occurred. 

Cell culture transfection experiments identified TAp63 to directly bind to the Jagged1 promoter and 

thereby promoting Jagged-Notch signalling [Mack et al. 2005, Sasaki et al. 2002]. Okuyama et al. 

published data in 2004 where Notch signalling activated Caspase3 in a non-apoptotic manner only 

during initial cornification in mouse embryonic epidermis. Blocking Notch signalling by the ┛-secretase 

inhibitor DAPT also blocked activation of caspase3. Furthermore, important cornification markers like 

Loricrin and Filaggrin were significantly reduced in caspase3 knock-out mice [Mack et al 2005, 

Okuyama et al 2004]. These data claim a differentiation-driving pathway in mammalian epidermis, 

where TAp63 activates Jagged-Notch signalling. Then Notch enhances terminal differentiation and 

cornification via a non-apoptotic function of Caspase 3. However, induction of terminal differentiation 

of keratinocytes is characterized by withdrawal from the cell cycle and alteration of gene expression. 
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Several Notch pathway genes were identified to be induced after differentiation starts [Koster & Roop 

2004b, Nickoloff et al. 2002, Rangarajan et al. 2001]. These data indicate that Notch has several 

important functions in the epidermis during development and later maintenance. 

 

Furthermore, TAp63 might also have differentiation promoting effects on keratinocytes that are 

independent of Notch signalling. In vitro experiments have shown that p300 directly interacts with 

TAp63 at its N-terminus and induces expression of p21WAF/Cip1, which causes cell cycle arrest 

[MacPartlin et al., 2005].  

 

The differentiation promoting effects mainly seem to be an effect of the TAp63Ǆ isoform, whereas 

TAp63Į seems to inhibit terminal differentiation [Mack et al. 2005]. Induction of TAp63Į resulted in 

hyperplasia, hyperproliferation and inhibition of terminal differentiation in adult and embryonic mouse 

skin [Koster et al. 2004]. According to the author’s hypothesis, ƩNp63 would be needed to 

counterbalance this inhibitory effect of TAp63 after commitment of stratification has occurred, in order 

to allow the cells to respond to maturation and differentiation signals [Koster et al. 2004]. 

 

In an attempt to unravel the controversial results of the different isoforms, p63-KO mice (McKeon 

laboratory) were used to create transgenic KO mice that express either TAp63, ƩNp63 or both under 

the control of a krt5 promoter [Vanbokhoven et al. 2011, Koster et al. 2007, Candi et al. 2006]. All 

transgenic mutants developed patches of differentiated cells but with slight alterations in comparison 

to the phenotype of KO mice from the McKeon laboratory [Koster et al. 2007, Candi et al. 2006]. In 

krt5::ƩNp63 transgenic p63 -/- mice, the epidermal patches expressed only K5 and K14 as 

differentiation markers, whereas krt5::ƩNp63; krt5::TAp63 transgenic p63 -/- mice also expressed K1 

and Loricrin. However, this expression of suprabasal markers could not be detected in only TA 

complemented p63-/- mice [Koster et al. 2007, Candi et al. 2006]. Based on these experiments, the 

authors concluded that ƩNp63 maintains the proliferative and undifferentiated state of the basal 

epidermis, whereas TAp63 is required for the formation of the suprabasal layer [Koster et al. 2007, 

Candi et al. 2006]. However as K5 is not active before commitment of keratinocytes to a stratified 

epidermis, no conclusions could be made concerning a role of the different isoforms during epidermal 

commitment. These results again mirror the controversial results of previous experiments, but also 

highlight the necessity of a properly controlled balance between the TA- and ƩN-isoforms for 

adequate epidermal formation [Koster et al. 2007]. 

In contrast to these results, Romano et al. reported in 2009 that K5 as well as K14 are direct targets 

of ƩNp63. In accordance with previous data, only ƩNp63 but not TAp63 could be detected in the 

epidermis during development as shown by isoforms-specific antibodies. Therefore, the group 

concluded that ƩNp63 but not TAp63 is responsible for commitment of epithelial cells to stratification, 

which is highlighted by the switch from K8/K18 to K5/K14 [Romano et al. 2009]. Additionally, p63 KO 

mice complemented with ƩNp63 under the control of a tetracycline inducible promoter developed 

patches of completely normal and stratified epidermis [Romano et al. 2009]. In 2012, the same group 
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published a p63 knock-in mouse line, where the ƩN-specific exon was replaced by GFP, revealing a 

“specific ƩNp63-KO situation” [Romano et al. 2012]. The homozygous ƩNp63gfp/gfp mice strikingly 

phenocopied the total p63 KO mice described by Mills et al. before. Interestingly, closer investigation 

by immunohistochemistry revealed that in ƩNp63gfp/gfp at least some cells expressed K5 indicating that 

these cells committed to stratification. But also cells expressing K5 together with the simple epithelium 

marker K8 could be detected, leading to the conclusion that those cells got stuck in an intermediate 

state of identity crisis. Small cell clumps contained cells that even co-expressed K5 and K1/K10, 

indicating a higher differentiation status. Finally, also late stage differentiation markers like Filaggrin, 

Involucrin or Loricrin could be detected in E15.5 ƩNp63gfp/gfp mice. In control mice these markers did 

not show up at this stage, indicating a premature or accelerated differentiation program in ƩNp63gfp/gfp 

mice [Romano et al 2012]. After all, the analysis of ƩNp63gfp/gfp mice reaffirms the indispensable role 

of the ƩN isoform of p63 in epithelial biology and confirms that ƩNp63-null keratinocytes are capable 

of committing to an epidermal cell lineage, but are likely to suffer from diminished renewal capacity 

and an altered differentiation fate [Romano et al 2012]. 

An unconditional TAp63 KO mouse line developed by Suh et al. revealed embryos that were viable 

and showed normal epidermal morphogenesis [Vanbokhoven et al 2011, Suh et al. 2006]. 

Furthermore, two conditional Cre/loxP activated KO systems of the TAp63 isoform did not lead to any 

severe epidermal phenotype [Vanbokhoven et al 2011, Guo et al 2009, Su et al 2009].  

Combining all these controversial data into an all-embracing model of epidermal development is still 

one of the leading challenges in this field. Many problems or controversies arose from limitations of 

the available tools. Perhaps more “primitive” organisms, as the teleost zebrafish that has proven to be 

a very useful tool in creating mutants or transgenics, might help to collect new data and information, 

which might also be important for organisms with a more advanced epidermis that is very different 

from that of fish. 
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II. Objective 

According to previously published data, breeding tubercles seem to be epidermal structures in fish 

that share similarities with the terminal-differentiation process of keratinocytes in land-living 

tetrapods. So far, breeding tubercles have not been described in zebrafish. Demonstration of the 

existence and localisation in zebrafish should be accompanied by analysis using in vivo methods (as 

transgenic lines or mutants), histological and antibody staining methods as well as molecular 

methods. Furthermore, transmission and scanning electron microscopy should be used to dissect the 

ultrastructure of breeding tubercles.  

The aim of this work was to compare a putative differentiation process of epidermal cells in teleost 

epidermis to the well characterized cornification process in land-living animals. In particular, the 

breeding tubercles should be analyzed according to aspects of proliferation, keratinization, formation, 

differentiation and subsequent cell death as well as sloughing and renewal of the outer layer. 

Additionally, the epidermal structure of breeding tubercles should not only be compared to cornified 

epidermis of mammals or amphibians, but also to regular epidermis of teleosts. 

As the available data of the function of p63 in embryonic development and later maintenance of the 

epidermis are highly controversial, a TAp63 specific zebrafish mutant should be exploited to 

investigate functions of this isoform in a more “primitive” epidermis. Special emphasis was laid on 

Notch signalling, as TAp63 was shown to activate Notch in mammalian epidermis in a variety of 

functions. The conservation of the linear pathway TAp63  Notch/Jagged1  Caspase3 should be 

evaluated as well as its importance in breeding tubercles. We propose to dissect the mentioned 

pathway by using mutants and specific small compound inhibitors with subsequent epistasis analysis 

by immunohistochemistry methods.   

p63 is a member of the p53-family of transcription factors. The founding member p53 itself is believed 

to have many common targets with p63 but a specific function during development of the epidermis is 

not established. To identify putative redundant functions of both proteins, a p53 zebrafish mutant was 

included in the above proposed experiments. 
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III. Results 

 

Breeding tubercles in zebrafish 

According to literature, breeding tubercles are epidermal appendages that are regularly found in 

teleosts especially at the head, at the fins or even at the outlines of the scales [Chen & Arratia 1996, 

Mittal & Whitear 1979, Wiley & Colette 1970]. Histological staining of paraffin sections of adult 

zebrafish revealed tubercle-like structures at two different sites: most prominent, and present in all 

fish, at the anterior tip of the lower jaw (figures 6A & 6B), and smaller, and only in some fish, at the 

dorsal side of the pectoral fins (figure 6C).  

At the lower jaw, two super-structures could be distinguished: a plate containing many spikes 

particularly at the edge and an additional row of single tubercles along the ridge of the jaw (figures 

6A, 6D & 6E). Pectoral fin tubercles were arranged in one up to three rows above the fin rays in the 

middle section of the dorsal side of the pecfins (figure 6C). Unexpectedly, breeding tubercles were 

stained by the vital dyes calcein (figures 6D & 6E) and methylene blue (shown below). Regular skin 

in fish was impermeable for both dyes, indicating that the cells of the epidermis at the tubercles were 

leaky, or cell-cell contacts did not properly seal the organism against the surrounding. 

In general, the tubercles of the head and the pectoral fins seemed to be equal types of structures, 

even if the pecfin tubercles were much smaller. Tubercles presented with many additional cell layers 

compared to the surrounding epidermis. The cells of the lower layers in the tubercles had the same 

size as the cells of the surrounding, however especially the cells of the basal layer often had a more 

cubical shape and were more evenly arranged (figure 6B) as in regular zebrafish epidermis. The cells 

of the outer layers appeared progressively larger and hypertrophic with large round nuclei (figures 

6B & 6F). As an outermost layer, the tubercles were covered by a thin cap layer, in most cases only 

one cell layer thick (in rare cases two to three layers). Often the cap layer had lost contact with the 

tier underneath or was torn apart from the tubercle by the embedding procedure. This might indicate 

the fragile nature of cell-cell contacts between the cap layer and the next tier (figures 6A-6C). 

In all histology staining methods, the cap layer stained differently than the lower layers of the 

tubercle, indicating its different composition compared to the epidermis underneath. The cap layer 

appeared bright red in Azan stained sections and purple-red in hematoxylin/eosin staining, possibly 

indicating a keratinized nature of these cells (figures 6A-6C & 6F). 

 DAPI staining clearly demonstrated the existence of nuclei in the cap layer of jaw tubercles (figure 

6G) as well as pectoral fin tubercles, indicating that the cap definitely consisted of cells, even if cell 

borders were hardly detectable. The presence of nuclei also ruled out the possibility of a secreted 

cuticle. In accordance, PAS staining of tubercles showed no glycoprotein-positive reaction of the cap 

layer, as would be expected for cuticle structures (figure 6H).  

In contrast to the big and round nuclei of the layers underneath the outermost layer, the nuclei of the 

cap layer appeared small and flat, often located at the bottom of the cell. This pyknotic appearance of 

the nuclei might be due to an at least partially apoptotic character of the cells at the outermost edge 

of the tubercles (figures 6B, 6F & 6G). 
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Adult wildtype zebrafish that lacked all tubercles were not found at all, however, few fish displayed 

only a very low number of tubercles. Overall, the number of tubercles was very variable. At the lower 

jaw, the number of tubercles ranged from 20 to up to 60 tubercles per side. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Distribution pattern and general structure of breeding tubercles in zebrafish: (A) Azan trichrome
staining of a section of the anterior head. A big plate-like structure with spikes can be seen on both sides. More 
dorsally, single tubercles can be detected at the lower jaw. The outer cap layer often appeared torn apart from the 
underlying layers of the tubercle. (B) Magnification of a jaw tubercle. The tubercle has many more layers than the 
surrounding epidermis with cell shape changes towards the outer top layer, which appears completely flat and reacts 
differently in histological staining methods (black arrows). The arrowhead shows the more regularly organized basal 
layer cells in the region of the tubercle. (C) Azan trichrome staining of pectoral fin tubercles. The cap layer above the 
bony rays has the same staining behaviour as for the head jaw tubercles. (D) Lateral view of calcein stained head 
tubercles. The plate structure and the dorsal row of tubercles can be distinguished. (E) Frontal view of calcein stained 
head tubercles. (F) HE stained section of a jaw tubercle at the lower jaw. The purple stained cap layer possibly 
indicates high amounts of keratin. A wide space between the cap of the spike and the cells underneath is visible 
(arrow). (G) DAPI staining of the jaw tubercle region. The nuclei of the upper layers of the tubercle are big and 
roundish, whereas the nuclei of the cap layer appear often flat and condensed indicating a pyknotic state of the cap 
cells. However it demonstrates that the cap is definitely a cellular tissue. (H) Region of the jaw tubercles stained with 
the PAS method to detect glycoproteins. Whereas the mucous cells stain bright purple (arrowhead) the cap layer is not 
stained by this histological staining method, arguing against a secreted cuticle.
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Sexually dimorphic pattern of breeding tubercles in zebrafish 

Breeding tubercles are often more prominent in male individuals [Wiley & Colette 1970]. In zebrafish, 

both males and females showed the same distribution of tubercles at the lower jaw. Additionally, it 

seemed that number and size of tubercles were in the same range in both sexes, as shown by calcein 

whole-mount staining (figures 7A & 7B). On the other hand, pectoral fin tubercles could be detected 

exclusively in male individuals and never in females (figures 7C & 7D), indicating sexual dimorphism.  

Male and female tubercles always showed the same staining behaviour in all tested staining methods.  

Even if the distribution of breeding tubercles in zebrafish was different in males and females, the 

general architecture of the tubercles was identical. Therefore, if not mentioned otherwise, sex was not 

considered for all following experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cells of the regular superficial layer got lost in tubercles and cells with unique features 

were exposed at the outer surface 

To analyse the appearance of breeding tubercles and the cap layer in particular, scanning electron 

microscopy (SEM) was used to compare the epidermal surface of regular epidermis with the surface of 

breeding tubercles. Adult PFA fixed specimens were prepared either by cryo-fixation or critical-point 

drying (CPD) technique. All scanning electron microscopy was done at the Central Microscopy Unit of 

Figure 7: Sexual dimorphism of breeding tubercles in zebrafish. Males and females 
have the same distribution of tubercles at the lower jaw (A/B), but only males have additional 
tubercles at the dorsal side of the pecfins (C/D). A/B: calcein staining; C/D: DIC images
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the Max Planck Institute for Plant Breeding Research in Cologne, with the help of Dr. Elmon Schmelzer 

and Rainer Franzen. 

Generally the outer surface of zebrafish was characterized by hexagonal cells with the typical 

microridge pattern of superficial cells, as shown in figures 8A & 8B. Using lower magnifications, the 

localisation pattern of breeding tubercles could be confirmed as described before. Tubercles were 

found at the lower jaw of all specimens (figure 8C), and on the fin rays of male pecfins (figure 8E). 

Using higher magnifications (6000-8000x), the outer surface appeared strikingly different at the 

breeding tubercles compared to the surrounding epidermis. Again the same results were found for the 

jaw tubercles and the pectoral fin tubercles. Figures 8D & 8F show magnifications of the border 

region between regular epidermis and jaw tubercles or pecfin tubercles. In the lower part of both 

images, the characteristic microridge pattern of superficial cells can be seen, as the tubercles were 

surrounded by regular epidermis. At the base of the tubercle, cell borders were still visible, however 

the microridges were dramatically reduced (or completely absent) and only bleb-like structures 

remained. At the tip of the tubercle, in the upper part of figures 8D & 8F, the cell surface appeared 

completely flat and smooth. Microridges were completely absent and cell borders only hardly 

detectable. These findings led to the suggestion that the smooth cells at the tip of tubercles might 

have distinct features compared to the regular superficial cells, whereas the cells with reduced 

microridges or blebs possibly resemble an intermediate state between superficial and cap cells. As it 

was reported that superficial cells loose their microridge structure during cell death followed by 

sloughing [Hawkes 1974], the cap layers of breeding tubercles might be considered as death tissue 

that will be sloughed as a sheet, similar as in mammalian epidermis. Additionally, this would be in 

accordance to the pyknotic character of most cap cells. 

Often, the tissue was broken at the base of the tubercles in the region of intermediate type cells. This 

observation was underscored by the often detached cap layer in histological sections, and might 

indicate fragile or defect cell-cell contacts at these sites. 

The intermediate type of superficial cells was found at the base of each and between two spikes, at 

the head tubercles. Only the tips of each spike showed the flat and smooth appearance (figures 9A 

& 9B). This was even more obvious at the tubercle rows of the pecfins. These samples were prepared 

with the CPD method leading to better quality of the sample tissue. Despite the smaller appearance of 

these tubercles, the flat and smooth cells presented only at the tip of the tubercles, whereas all cells 

at the base and between two tubercles showed the intermediate stage (figures 9C-9E). Also 

between two rows of tubercles, no regular superficial cells with microridges could be detected (figure 

9D). In these specimens, the cellular outlines were clearly detectable, again arguing against a 

secreted cuticle. Similar as for the jaw tubercles, cracks appeared only at the base of the tubercle in 

the region of intermediate superficial cells, but never at the tip (figures 9E & 9F).  

 

Overall, these results indicated a clear difference of tubercle cap cells compared to regular superficial 

cells. Probably, the cap layer might be a modification of superficial cells or resemble a distinct cell type 

with possibly a different developmental origin.  As the results of various histological methods indicated 
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frequently that the cap layer detaches from the layers underneath, and additionally cracks around the 

tubercles were frequently seen by SEM, one might assume that the cells of the outer layer get lost in 

the area of breeding tubercles. The intermediate stage between cap cells and superficial cells could 

only be seen in TEM images but never in any histological methods, where the superficial layer 

between tubercles always stained in the same way as the cap cells at the tip of the tubercle. 

Therefore, the intermediate stage cells were considered as a part of the cap layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Cap cells of breeding tubercles lack the typical microridge structure of 
superficial cells. (A/B) Regular epidermis of zebrafish. The outer surface consists of 
hexagonal cells with the characteristic microridge pattern. (C) Overview of the tubercle 
distribution at the lower jaw. The disk of tubercles and the posterior row of single tubercle 
can be seen on both sides of the jaw. (D) Cell surface of cap cells. Around the tubercle, 
the superficial cells present with microridges (regular superficial layer - 1). At the base of 
the tubercle, the microridges get lost and the cells obtain a surface covered by bleb-like 
structures (intermediate stage - 2). The cells at the tip of the tubercle appear completely 
flat (cap cell – 3). (E) Breeding tubercles on top of the fin rays on the dorsal side of 
pectoral fins. (F) High magnification of a breeding tubercle of the pectoral fin. The same 
three stages as described above (superficial cells, intermediate cells & cap cells) can be 
seen at pecfin tubercles as well. 
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To further evaluate the difference between cap cells and regular superficial cells, cross-sections of 

heads and pecfins of adult fish of the transgenic line krt4::gfp were performed. In this line, green 

fluorescent protein (GFP) is driven by the krt4 promoter and despite controversial in situ hybridization 

data of krt4 expression (formerly named keratin 8 at ZFIN) [Imboden et al. 1997], fluorescence is 

detected only in cells of the superficial layer during all larval (data not shown)  and adult stages 

(figures 10A & 10B). In contrast to the whole fish which was covered by a fluorescent superficial 

layer (indicating that the krt4 promoter is active in this layer), the outermost layer of breeding 

Figure 9: Different types of cell surfaces of breeding tubercles. (A/B) Low magnification of tubercles
of the jaw and high magnification of the bridge between two head tubercels of the lower jaw row (asterisk). 
All cells between the tips of the tubercles display the intermediate phenotype, whereas microridges are not
seen in this area. (C) Rows of pectoral fin tubercles on top of the fin rays. Whereas the surface between the
fin rays is filled by regular superficial cells, the area between the tubercle tips is filled always with
intermediate stage cells (white arrows). (D) If there is more than one row of tubercles on top of a single fin
ray, the space between the rows also only consists of internediate stage cells and never of regular superficial
layer cells (asterisk). (E) Cracks in the tissue were seen only in the region of the intermediate cell type but
never in the surrounding epidermis or at the tip of the tubercles. (F) Higher magnification of the crack region, 
which is localized in the region of the intermediate type cells.
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tubercles, the cap layers, were always GFP negative (figures 10A, 10C & 10D). This finding could 

also be reconfirmed for pectoral fin tubercles (figure 10E). Additionally, Manuel Metzger in our 

laboratory performed immunostaining with an anti-S100 antibody on adult zebrafish pecfin cross -

sections. While the antibody stained all regular superficial cells, staining was absent in the cap cell 

layer of tubercles. Figure 10F was kindly allocated by Manuel Metzger to complement the results 

described before. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In accordance with the TEM images, the results presented above clearly indicate crucial differences 

between cells of the cap layer and the superficial layer of regular epidermis. All tested marker for the 

superficial layer were gone in the cap layer of breeding tubercles. We therefore argued that the 

superficial layer is lost in breeding tubercles and replaced by cells of the cap layer. 

Figure 10: Marker of regular superficial layer are absent in the cap layer of breeding tubercles. All 
images except F depict cross sections of the transgenic line krt4::gfp that expresses GFP only in cells of the
superficial layer. (A) Section of the anterior head region. The complete superficial layer is GFP positive, whereas
the marker is gone at the small tubercle (arrow). (B) High magnification of head epidermis. Only the superficial
layer is marked by GFP. (C) Magnification of a breeding tubercle of the lower jaw row. The superficial layer
displays GFP fluorescence around the tubercle. However,the cap layer is clearly GFP negative. (D) Also more
complex tubercle structures show the same pattern. Whereas the cap layer of the single tubercles are always
GFP negitive, the area between the tubercles is still GFP positive. (E) The absence of GFP in the transgenic line
described for the head tubercles can also be seen at the pecfin tubercles. Arrows point to GFP negative cap
layers. (F) Also other markers for superficial cells are not detectable in cap layer cells. Immunostaining for S100 
which is present in the whole superficial layer, is absent in tubercle cap layers (provided by M. Metzger).
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The cap layer of breeding tubercles is shed off indicating the need for a regeneration 

process in breeding tubercles  

As described before, cap layer cells might be sloughed eventually indicating renewal or a regeneration 

process in breeding tubercles. Indeed, remnants of tubercle cap layers could often be found at the 

bottom of mating boxes after setting up mating pairs. Whereas long stripes of pecfin tubercles could 

be detected regularly, complete head tubercle plates were only scarcely found (figure 11). Again, 

DAPI staining clearly demonstrated the cellular character of the sloughed cap layer (figures 11A, 

11D and the magnification figure 11C). Long pieces of sometimes several rows of tubercles still 

connected to each other, indicated that not only the flat cells at the tip of the tubercles are shed but 

also the cells of the intermediate type. As already mentioned, intermediate type cells were considered 

to have the same properties than the cap layer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The sloughing process of larger parts of the cap layer also led to the conclusion that cell-cell contacts 

did not loose their functionality between the cells of the cap layer, in contrast to contacts between the 

cap cells and the cells of the layer underneath.  

As it was not possible to embed these cap layer samples for subsequent sectioning, the ApoTome 

(Zeiss) function of our microscope was used to obtain “confocal-like” plains of a Z-stack. As shown in 

figure 11D, the shed tubercles were hollow structures and the wall of the structure was only one 

(sometimes two) cell layer thick. This demonstrated that indeed only the cap layer was shed off, 

whereas all lower layers of the tubercle remained intact, and is in accordance with the healthy 

appearance of the nuclei of all cells underneath the cap. These findings led to the questions how 

Figure 11: Cap cells of breeding tubercles are sloughed as a whole sheet. (A) A complete plate with
tubercles of the head found after mating. DAPI staining clearly demonstrates the cellular character of the shed
off cap layer. (B) Magnification of spikes in A. (C) Single plain of a Z-stack of a tubercle spike from figure A. 
The shed tubercles are hollow demostrating that indeed only the cap layer is shed. (D) Several rows of shed
pectoral fin tubercles still connected to each other and stained with DAPI.
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these tubercles develop in zebrafish and which mechanisms are responsible for the final shedding 

process. 

 

Regeneration experiments done by Manuel Metzger in our laboratory indicated that shedding of the 

cap layer of tubercle happens quite frequently in zebrafish. However the time of regeneration (until a 

new cap has developed after shedding) was very variable. Pairs of fish were analysed once per day 

via calcein staining over two month followed by closer evaluation of the head tubercle region each 

day. All fish had shed at least parts of their tubercle structures two or three times during that period. 

However, the regeneration period was very variable ranging from five days to up to two weeks, 

sometimes also in the same fish (Manuel Metzger, unpublished data). 

 

 

Tubercles develop prior to sexual maturity in a very rapid process 

Larval zebrafish do not show any tubercle structures (data not shown). To determine the onset of 

tubercle development, larval to juvenile stages of zebrafish were observed using a stereomicroscope 

and by hematoxylin/eosin staining subsequent to paraffin embedding and sectioning. The first small 

tubercles could be found not earlier than approximately 30 dpf only by histology (data not shown). At 

this time tubercles could not be seen under the stereomicroscope at all.  Overall, onset and size of the 

first tubercles was very variable. To identify the exact onset of tubercle formation and to analyse the 

process of development, batches of juveniles were fixed at 21, 24, 28, 31, 35 and 38 dpf, and the 

standard length (SL) of the individuals was measured. According to the literature, the standard length 

is a better indicator for juvenile stages of development than dpf [Parichy et al. 2009]. Table 3 

demonstrates that the fish were in the appropriate range according to this staging. Afterwards, the 

occurrence of tubercles was evaluated by scanning electron microscopy.  

 

 

Table 3 Length of fish used for scanning electron microscopy 

Age 21 dpf 24 dpf 28 dpf 31 dpf 35 dpf 38 dpf 

SL [mm] 6.5 7 9 10 12 13 

 6 7 9 10 12,5 12,5 

 6.5 7 8 11 9 12 

 6 6.5 8 10 8,5 12 

 6 7 7,5 10 8 10,5 

 6.5 6.5 8,5  10  

 5.5 7 9  12,5  

 6 7 8,5  11,5  

 6 7 9  10  

 6.5 7 8,5  9,5  

Range* 6-6.5 6.5-7.0 7.5-9.0 10-11 10-12 11-13 

* For some time points the length of individual fish was very variable. In that case, the range was determined that most values 
were covered. 

 

 

The smallest juveniles (6-6.5 mm SL) did not present tubercles at all, and the respective position at 

the lower jaw was completely covered by regular superficial cells with the microridges (figure 12A). 
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Soon later (SL 6.5-7.0 mm & SL 7.5-9.0 mm), a small bulge could be detected at the edge of the 

lower jaw near the developing barble. This swelling was still covered completely by regular superficial 

cells (figure 12B). The same batch already contained fish were the first tubercle had started to from 

on top of the bulge and developed the cap layer, indicating rapid progression of tubercle formation 

(figure 12C). However, the initial shedding of superficial cells could never be detected. The freshly 

developed cap cells were of completely flat appearance but cell borders could still be detected.  

At 10-11 mm SL, the tubercle had grown in size and appeared more steeply with a smooth surface 

(figure 12D).  In the following period, a second and a third tubercle formed rapidly in a row (figures 

12E & 12F), until finally a three-dimensional superstructure, the tubercle plate, had developed 

(figure 12G). 

Figure 12H depicts a tubercle (SL 11-13 mm) shortly after partial shedding of the cap layer. The cells 

of the layer underneath (2nd tier layer) are now exposed to the environment. These cells look clearly 

different than the cap cells with numerous small aggregates at the surface that might resemble 

remnants of former cell-cell contacts to the cap layer. Accordingly, shedding of the cap layer seems to 

start directly after development of the tubercle has been completed and (according to the previously 

presented results) seems to be maintained during adulthood.  

 

 The row of head tubercles caudally of the tubercle plate has still not developed at the described 

stages. However, tiny hillocks developed (starting at SL 11-13 mm) in regular distances at the 

locations the row of tubercles will appear later (figure 12I). On top of these elevations was always a 

single cell that appeared similar to the intermediate stage cells at the base of mature tubercles. Even 

if these elevations shared a lot of similarity with (at that stage already present) taste buds [Hansen et 

al. 2002], the bleb-like structure of these “core cells” might also indicate the first cap cell of a small 

newly developed tubercle. However, later stages of tubercle development were not observed in this 

study.   

 

Pecfins of males of the bactin2::mGFP transgenic line (membrane bound GFP) were used to 

investigate the developmental progress of pectoral fin tubercles. Fixed whole-mount pecfins of 

different stages were mounted with Mowiol/DAPI and observed directly with a fluorescence 

microscope including the ApoTome (Zeiss) module. 

Regular DIC images revealed that pectoral fin tubercles developed at the same time as the tubercles 

at the lower jaw. Whereas no tubercles could be detected at SL=7.5 mm, the formation of small 

characteristic cell aggregates on top of the fin rays could be detected at SL=8.5 mm (figures 13A & 

13B). At that time, a cap layer has not formed yet. This intermediate stage of development might 

resemble the formation of the small, more flat tubercles at the same time point at the lower jaw. 

However, a fully developed cap layer was detected only shortly later (figure 13C, SL 9.5 mm).  
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By exploiting fluorescence microscopy, cell borders of epidermal cells were clearly be detectable in 

bactin2::GFP transgenic fish, in which membrane bound GFP is expressed under the control of a 

ubiquitous active ┚-actin2 promoter. Before tubercle development, the fin rays are covered by regular 

Figure 13: Pectoral fin tubercle development. Development of the tubercles on the dorsal 
side of the pectoral fins. DIC images and the corresponding fluorescent images of the bactin2:GFP
transgenic line are shown. At 7.5 mm SL no tubercle structures are detectable on top of the fin
rays (A & A‘). Later, at 8.5 mm SL small cell aggregations have been formed that are still not
covered by a cap layer (B & B‘). The cap layer has been formed only shortly later at 9.5 mm SL (C 
& C‘). The transgenic line demonstrates the cellular character of the tubercle and the cap layer in 
particular at all stages of the developmental process.

SL 7.5 mm          SL 8.5 mm           SL 9.5 mm
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Figure 12: Stages of breeding tubercle development. (A) View of the ventral side of the lower jaw prior
to breeding tubercle development. The complete jaw is covered by regular superficial cells (SL 6-6.5 mm). (B) 
A small bulge has developed at each side of the jaw (6.5-7 mm). The elevation is still covered by regular
supericial cells. The tubercle spikes will develop on top of this elevation during the next steps. (C) A first
tubercle has developed on top of the initial bulge. Even if the tubercle is not as steep as a mature tubercle, the
cap layer seems to be already present. (SL 7.5-9 mm). (D) Maturation of the first tubercle is completed (SL 
10-11 mm). (E-G) In the following, more tubercles develop until a three dimensional structure, the tubercle
plate has developed (SL 10-13 mm). (H) Shedding seems follow of tubercle development directly. Half of the
cap layer has been torn away and the underlying second tire becomes visible (SL 11-13 mm). (I) The dorsal 
row of tubercles at the head has still not been developed, but small elevations already occured on top of 
which one cell seems to display the intermediate phenotype of tubercles (arrows) (11-13 mm).

11-13 mm SL 11-13 mm SL

H I
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epidermal cells. At 8.5 mm, the above mentioned cell aggregates could also be detected with clearly 

outlined cell borders. Even after development of the cap layer, single cells still could be distinguished 

in the transgenic line, indicating that despite the smooth appearance of the cap in SEM images as well 

as in the DIC figures, the cap still consisted of individual cells (figures 13A’-13C’). 

 

The SEM images of juvenile zebrafish clearly demonstrated that the regions where the tubercles will 

develop later are initially covered by regular superficial cells. However, all tested superficial maker 

were not detected in mature cap layers, indicating that the superficial layer has been sloughed. To 

evaluate when this loss of superficial layer markers occurs and if it correlates with the formation of the 

cap layer, fluorescence microscopy of whole-mount pecfins and heads of krt4::gfp transgenics was 

performed during the above described developmental period.  

Initially the pectoral fins were covered by regular hexagonally shaped superficial cells. The small cell 

aggregates described before were also detected in this line (data not shown). At the beginning, 

tubercles were still covered by GFP positive cells, indicating their regular superficial cell character.  

Shortly later GFP fluorescence ceased in single cells of the tubercles (figure 14). This loss of GFP 

fluorescence was detected at SL=9 mm around the same time the cap layer has been shown to form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The same results were also found for head tubercles of krt4::GFP fish. Similar as for the pectoral fins, 

GFP fluorescence ceased in the developing tubercles when formation of the cap layer had started.  

However, the small cell aggregates (as an intermediate stage of tubercle development at the pectoral 

fins) were not found at the head. The initial bulge, which was still covered by regular superficial layer 

cells, was also detected in the krt4::GFP transgenic line. The first small tubercles developed rather 

early on top of this elevation and coincided with the loss of GFP superficial cells (figures 15A-E). 

Figure 14: Breeding tubercles loose the superficial layer cells when the cap develops.
Different stages of breeding tubercle development of the pectoral fin in the transgenic line krt4::GFP. 
(A) Superficial layer of the pectoral fin prior to tubercle development. (B/C) GFP levels cease at the
time cap layer development occurs. However, this step does not occure exactly at the same time in all 
tubercles in a row (white arrows). 

SL 7.5 mm

SL 9.0 mmSL 9.0 mm

krt4::gfp

krt4::gfp
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Altogether, tubercle development of jaw tubercles as well as pectoral fin tubercles occurred between 

SL 8.5 mm and 9.5 mm in a very rapid process. The loss of superficial markers, most likely due to 

shedding of the superficial layer in an initial shedding cycle happened simultaneously to the 

development of the first cap layer. 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SL 7.5 mm SL 8.5 mm

krt4::gfp krt4::gfpA B

SL 9.5 mm SL 9.5 mm

krt4::gfp krt4::gfpC D

Figure 15: Loss of periderm coincides with the development of the cap layer of head tubercles.
Whole-mount images of krt4::GFP transgenic fish at different stages of head tubercle development are shown. 

The site of tubercle formation is marked by red circles. (A) At 7.5 mm SL, breeding tubercles still have not

developed. The lower jaw is covered by regular GFP expressing superficial cells (lateral view). (B) at 8.5 mm 

SL, a bulge has formed on the lateral side of the jaw, which is still covered by superficial cells. However, in  a 

small region, the GFP fluorescence is already lost at this stage (white arrow). (C) At 9.5 mm SL, the region
where GFP florescence is lost has increased greatly in size. (D) At the same stage, ventral view shows that this
process had occured on both sides of the jaw but with slight timely variations. THe loss of GFP seems to be
greater on the left than on the right side. (E) Magnification of the tubercle region shown in B. The left image is
an overlay of the bright field channel indicating the formation of the first mature tubercle (arrow) and GFP 
channel. The left figure is the GFP channel alone. The region, where GFP is gone correlates perfectly with the
region, where the first cap layer becomes visible.
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SL 8.5 mm
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The superficial layer of adult zebrafish epidermis is gradually replaced by basal 

derivatives whereas the cells of the cap layer develop exclusively from the 

basal/intermediate layer 

The origin of the superficial cells in zebrafish epidermis is still not completely understood. The EVL of 

embryonic stages shows many structural similarities with periderm cells of mouse embryos like 

flattened cell shape, tight junction complexes and microridge structures [LeGuellec et al. 2004], but 

does not derive from basal keratinocytes as it is the case in mammalian epidermis. Initially it was 

suggested that the enveloping layer gets replaced after embryonic development [Kimmel 1990]. 

However, newer data indicate that the EVL is at least maintained until larval stages [Fukazawa 2010]. 

In the krt4::gfp line, GFP is expressed in superficial cells throughout the complete lifetime. 

Additionally, the appearance of superficial layer (cell shape, microridges) cells is very similar to 

embryonic EVL cells. This might indicate that the embryonic EVL is maintained throughout 

metamorphosis or even adulthood. To test whether the EVL is replaced by cells coming from the 

intermediate layer or maintains itself autonomously throughout larval development and adulthood, we 

performed lineage tracing experiments using a tamoxifen-inducible Cre/lox system [Kaslin et al. 2009] 

to specifically label embryonic EVL cells by a krt4 driver [Gong et al. 2002] or basal cells by a krt19 

driver. As we already demonstrated that the superficial layer is lost in breeding tubercles and the 

outermost layer seemed to develop by a differentiation process in the tubercles giving rise to cap layer 

cells with distinct functions compared to the regular superficial layer, we wanted to use our lineage 

tracing system to compare the situation in regular epidermis to the breeding tubercles.  According to 

our data we hypothesized that the cap layer may develop exclusively from intermediate or basal cells.  

The krt19 promoter construct was kindly provided by Tom Carney (Institute of Molecular and Cell 

Biology, Agency for Science, Technology and Research (A*STAR), Singapore) All other transgenic lines 

of this experiment, were established by Rebecca Richardson and Philipp Knyphausen by BAC 

recombination in our laboratory. 

Initially, we demonstrated the specificity of the mentioned promoter fragments with five day old 

krt19::dtomato; krt4::gfp double transgenics. After the larvae were sacrificed they were directly used 

for cryo-sectioning. Immunostaining was not performed.  

During embryonic and early larval stages, the epidermis of zebrafish consists of only two layers: the 

basal layer and the EVL. Figure 16A demonstrates that that the krt19 promoter was active only in 

basal cells (shown by red fluorescent cells). This domain did not overlap with the EVL cells labelled by 

green fluorescence due to the krt4 promoter fragment. 

In the following, we crossed krt4::gfp; bactin2::loxP-STOP-loxP-dsred double transgenics with 

identified carriers of the krt19::CreERt2, and the krt4::CreERt2 driver line respectively, to obtain triple 

transgenics. In these lines, the inducible version of Cre recombinase would be expressed only in those 

cells where the promoter of the driver constructs are active. Additionally, Cre recombinase was 

activated by tamoxifen from 1 dpf to 5 dpf.  At that time the epidermis of zebrafish larvae is still 

bilayered. Therefore, activation of the Cre recombinase occurred only during a developmental period 

when all epidermal cells which are not EVL cells are basal cells and no other cells exist. The timely 
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restricted treatment prior to formation of the intermediate layer ensured that all epidermal cells during 

these larval stages could be targeted. As labelling occurs by recombination of DNA between the two 

loxP sites, the STOP cassette gets lost only in labelled cells and allows the expression of the 

fluorophore DSRED by the ubiquitous ┚-actin2 promoter, which is later additionally the case in all cells 

that derive from these initially labelled cells. Activity of the Cre recombinase is therefore controlled 

spatially and timely. 

The tamoxifen treated double transgenics were sacrificed after approximately two months of 

development when the epidermis has become multilayered and used directly for cryo-sectioning. Of all 

triple transgenic lines mentioned before sections of the head, the trunk and the pectoral fin (in case of 

males) were performed. 

 

Unexpectedly, the two distinct domains of embryonic epidermis were not completely separated 

anymore at the observed stage (two month of age). Sections of treated krt19::CreERt2; krt4::gfp; 

bactin2::loxP-STOP-loxP-dsred triple transgenics revealed DSRED labelled cell clones predominantly in 

the basal and intermediate layer. But DSRED positive cells were also frequently detected in the 

superficial layer and co-labelled by GFP (figures 16B-16D). This result was found for sections of the 

trunk, the fins and the head, and would clearly indicate that at later stages of development, the 

intermediate layer contributes to the maintenance of the superficial layer. Possibly, the embryonic EVL 

will be replayed completely in the course of time. 

Importantly, the cells of the superficial layer that derived from the basal layer expressed the same 

marker genes (GFP in the krt4::gfp line) as the derivatives of the EVL (GFP positive but DSRED 

negative cells) and had adopted the same characteristics as for example cell shape or microridges, 

indicating equal properties and functions. 

Interestingly, the basal cells displayed very bright intensity of DSRED fluorescence, whereas the 

intensity ceased throughout the different cell layers of the intermediate layer. As DSRED is driven by 

the ubiquitous bactin2 promoter, this might point to a lower activity of the promoter in the 

intermediate layer compared to the basal layer. 

The breeding tubercles were completely labelled by DSRED positive cells, indicating that they are 

indeed exclusively derivatives of the basal epidermis. In accordance with previous results, GFP positive 

cells were lost in the cap layer of tubercles (figure 16E).    

In summary, the superficial layer of the regular epidermis was found to be a mixture of cells 

originating from the basal layer and from cells that derive from the embryonic EVL. In contrast, the 

epidermal cells of the breeding tubercles completely derived from basal cells. 

 

However, this model was complicated by evaluation of the reverse experiment. krt4::gfp; 

bactin2::loxP-STOP-loxP-dsred double transgenics were crossed to the krt4::CreERt2 driver line. The 

obtained tripe transgenics were tamoxifen-treated and analysed as described above.   

Here, recombination should occur only in cells of the embryonic/larval EVL. We speculated that these 

DSRED labelled cells should still be part of the superficial layer and thereby be labelled in both, red 



Results 
 

 45 

and green. This was indeed the case for many superficial cells. However, additionally many cells of the 

intermediate layer were also found to be labelled by DSRED (figures 16F-16I). In rare cases also 

the basal layer was labelled. This would indicate that cells of the superficial layer might also contribute 

to the intermediate and perhaps even the basal layer of the epidermis. Whole-mount images of 

younger triple transgenic fish (10 dpf) revealed that already at the time the intermediate layer forms 

cells leave the superficial layer and contribute to the new intermediate layer (figure 16J). 

In general, breeding tubercles were not stained in this triple transgenic line due to loss of the 

superficial layer above the tubercles (data not shown). However, in very rare cases also DSRED 

labelled cells in the upper layers of tubercles could be detected, and might be explained by cells that 

moved from the superficial layer downwards to the intermediate layer prior to tubercle formation 

(figure 16K).  

 

In summary, regular fish epidermis seems to become a mixture of cells that derive from the 

embryonic EVL or from basal epidermal cells. Both types of cells have the same appearance and 

function in the end. However, if the proportion of replaced superficial cells increases during adulthood, 

the situation of adult zebrafish epidermis would resemble the situation of embryonic mouse epidermis 

before cornification has started. There, the multilayered epidermis is still covered by viable periderm 

cells that originate from the basal layer.  

Accordingly, the cells of the cap layer might develop from derivatives of both embryonic layers as well. 

However in general, they derive exclusively from the basal layer of the epidermis, only if in this region 

cells from the superficial layer contributed to the basal layer prior to tubercle development, then also 

cells from the superficial layer might contribute to the tubercle. This means that cells of the basal 

layer (and possibly also derivatives of the superficial layer) have the property to eventually become 

cap cells. 

It might be concluded that there are two different types of differentiation in adult fish epidermis 

originating both from the basal layer. One type ends in viable superficial cells and the other in cap 

cells of the breeding tubercles that are shed regularly. Additionally, our data indicate that not only the 

superficial layer is a mixture of cells with different origin but the intermediate and perhaps even the 

basal layer as well. 

 

 

 

Breeding tubercles are rich in keratin content with differential keratin expression 

compared to the surrounding epidermis 

In vertebrates, the cytoskeleton of keratinocytes is reinforced by type-I and type-II keratin 

intermediate filaments that consist of type-I/type-II heterodimers. According to literature, fish keratins 

are evolutionary very distant from mammalian keratins with an additional excess of type-I keratins 

compared to type-II [Schaffeld et al 2007]. In contrast to mammals, keratins are not restricted to 

epithelia in fish, but are sometimes also found in mesenchymal tissues [Conrad et al 1998].  
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However keratins are still a crucial part of fish epidermis, where they form a scaffold that enables the 

cells to resist against mechanical stress [Coulombe & Bernot 2004]. Especially in mammalian 

epidermis keratins are also important molecules in the process of keratinization (intensive bundling 

and crosslinking of keratin filaments) and cornification (differentiation process of keratinocytes 

including keratinization, membrane alterations and cell death) [Bragulla & Homberger 2009].  

20たm merge GFP DSRED

J

60たm
merge GFP DSRED

K

Figure 16: The superficial layer of adult zebrafish is a mixture of cells that derive from the embryonic
EVL and from the embryonic basal compartment, whereas the cap layer of breeding tubercles derives
from basal cells exclusively. (A) Sections of larval transgenic fish (krt19::dtomato; krt4::gfp) sacrificed after

5dpf. The red fluorescent domain (krt19 driver) does not overlap with the green fluorescent domain (krt4

driver). (B-E) Sections of adult triple transgenic zebrafish (krt19::creert2; bactin2::loxP-STOP-loxP-dsred; 

krt4::gfp). Tamoxifen treatment was performed from 1dpf until 5dpf. The red fluorescent cells that are derived

from embryonic basal cells and the green fluorescent cells (are derived from the embryonic EVL) are not

completely separated anymore during adulthood. Breeding tubercles exist completely (including the cap

layer) of cells from the embryonic basal layer (sections: B – trunk; C – dorsal fin; D – dorsal fin; E – pectoral

fin with breeding tubercle). (F-H) Sections of adult triple transgenic zebrafish (krt4::creert2; bactin2::loxP-

STOP-loxP-dsred; krt4::gfp). Tamoxifen treatment was performed from 1dpf until 5dpf. The DSRED positive 

cells are not only found in the superficial layer (F) as initially expected, but also frequently in the intermediate

layer (G) and even in the basal layer (H). (I) Z-stack of the epidermis of adult krt4::creert2; bactin2::loxP-

STOP-loxP-dsred; krt4::gfp triple transgenic adult zebrafish. The DSRED positive clone clearly consists of 

cells that do not belong to the superficial layer. (J) Already at 10 dpf, shortly after the intermediate layer has 

formed, some DSRED positive cells in krt4::creert2; bactin2::loxP-STOP-loxP-dsred; krt4::gfp triple

transgenics are in the layer underneath the superficial layer (white arrow). (J) Most breeding tubercles in 2 

month old krt4::creert2; bactin2::loxP-STOP-loxP-dsred; krt4::gfp triple transgenics are negative for both

fluorophores. However, occationally DSRED positive cells were also found in upper layers of breeding

tubercels indicating that cells of the embryonic EVL or larval superficial layer conributed to the

basal/intermediate compartment prior to tubercle formation.

10dpfkrt4:CreERt2; bactin2::loxP-STOP-loxP-dsred;krt4::gfp

krt4:CreERt2; bactin2::loxP-STOP-loxP-dsred;krt4::gfp
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We used a polyclonal mouse anti-pan-Keratin antibody (recognizes mouse type-II; keratins 1-8), to 

study keratin content in breeding tubercles and regular epidermis of zebrafish (figure 17). 

Immunohistochemistry was performed on paraffin- and cryo-sections. The antibody detected low 

amounts of keratins in all layers of regular zebrafish epidermis (figure 17A. However, the levels of 

keratin seemed to be strongly elevated in the upper layers of the breeding tubercles. Figures 17B-

17D show that keratin content was greatly increased in the additional layers of the tubercles including 

the cap layer. However, high amounts of keratin do not necessarily indicate keratinization or 

cornification but are an important prerequisite.  

 

In mammalian epidermis, differentiation of keratinocytes includes differential expression of certain 

keratins in the different layers of the epidermis. Specific keratins are needed for specific functions of 

the cells in certain layers. A “keratin code” like it is described for mammals is not known so far for 

fish. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: The cellular amount keratin is highly increased in the upper layers and 
in the cap layer of breeding tubercles. Immunostaining with a pan-Keratin antibody

(recognizes Keratin 1-8). (A) Regular head epidermis. Only low amounts of Keratin 

could be detected. (B) Breeding tubercle with surrounding epidermis. Compared to the

surrounding epidermis, keratin content is greatly increased in the upper layers of the

breeding tubercle including the cap layer. The left image shows an overlay of the RFP 

channel visualizing Keratin content and the DAPI channel. The right image depicts

bright field togther with DAPI. (C) Low magnification image of the jaw row tubercles. The

antibody signal increases greatly towards the outer surface. (D) Low magnification

image of the tubercle disc on the head showing the same staining pattern.
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The expression pattern of six different zebrafish keratins was analysed in adult fish epidermis by in 

situ hybridization. The expression in regular epidermis was compared to breeding tubercles. The 

different keratin probes used for this study are listed in table 4.  

During early larval stages five of the six keratins were expressed overall the epidermis (figures 18A, 

18B & 18D and data not shown). Cross sections revealed that all these keratins are expressed in the 

basal and in the superficial layer of the bilayered epidermis at these stages (figures 18E, 18F and 

data not shown). In contrast the sixth keratin, cytokeratin E7 (cke7), had an expression pattern 

restricted to the tip of the larval finfold and the pecfins (figure 18C).  

 

Table 4: Zebrafish keratin RNA probes used for in situ hybridization 

Keratin name Chromosome Reference Type 

krt4 Keratin 4 6 Gong et al. 1997; Webb et al. 2008 II 
krt5 Keratin 5 23 Chua et al. 2000 II 
krt8 Keratin 8 23 Padhi et al. 2006 II 
cki Cytokeratin type 1 19 Chua et al. 2000 I 
ckl cytokeratin type 1 like 19 Sagerström et al 2005 I 
cke7 cytokeratin E7 22 Padhi et al. 2006 I 

 

 

During adulthood, the same group of five keratins as described above was also found to be expressed 

in all layers of trunk epidermis covering the scales, as well as in the epidermis of the scale-less head. 

Of all six tested keratins, cke7 was the only keratin that was expressed only at very low levels in adult 

epidermis (figure 19). These results indicated a very uniform expression of keratins in fish epidermis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In contrast to this uniform expression in regular epidermis, keratin expression was more diverse in the 

area of the breeding tubercles (figure 19).  Two of the keratins, krt5 and krt8, were expressed in all 

layers of the tubercle including the additional upper layers. In contrast, expression of three keratins, 

krt4, cki and ckl, was reduced in the upper tubercle layers. Cytokeratin E7 was found to be expressed 

krt4

krt4cke7

cki

2 dpf

2 dpf

2 dpfA B

C D E

F

2 dpf

2 dpf

krt5 krt8

2 dpf

Figure 18: Expression of different keratins in larval epidermis. Six zebrafish keratins (see table 4) were
tested by in situ hybridization on 2 dpf zebrafish larvae. Five keratins appeared to be expressed throughout both
layers of the bilayered epidermis at that stage. The expression of the sixth keratin (cke7) was restricted to the dorsal 
tip of the larval fin fold and the pecfins (arrows figure C). (A-C) Lateral view of 2 dpf larva after in situ hybridization. 
(D) Magnification of the trunk region after krt4 in situ hybridization. (E) Cross section of a 2 dpf larva after krt5 in 
situ hybridization. (F) Magnification of the bi layered epidermis after krt8 in situ hybridization.  
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only at the base and in the epidermis around the tubercle but not (or only at very low levels) in the 

surrounding epidermis (figure 19). 
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These results led to the conclusion that in contrast to regular zebrafish epidermis, where keratins are 

expressed rather uniformly, they are expressed in distinct pattern in breeding tubercles, at least 

similar to the mammalian keratin code. On the other side, no keratin gene was found so far that was 

expressed only or preferentially in the upper layers of the tubercles. According to the reaction of the 

pan-keratin antibody, keratin levels should be remarkably higher in these layers. 

 

 

Breeding tubercle ultrastructure indicated terminal cell differentiation in breeding 

tubercles   

Adult male pectoral fins were prepared for transmission electron microscopy (TEM) to analyse the 

ultrastructure and composition of breeding tubercles. Because the preparation of adult zebrafish 

heads turned out to be very difficult, these experiments were done only with pectoral fins. The 

preparation of TEM sections and the subsequent evaluation was done together with Prof. Wilhelm 

Bloch and Mojgan Ghilav (Deutsche Sporthochschule, Cologne).  

Figures 20A-20C present semithin-sections of pectoral fin breeding tubercles. At these lower 

magnifications, the localisation of up to three rows of tubercles could be detected on top of the bony 

hemirays. The basal cells appeared rather small but more cubical and evenly arranged compared to 

the cells of the regular epidermis (figure 20D). The cells of the layers above the basal layer displayed 

a “star-shaped” appearance similar as in mammalian spinous layer but remained still connected to 

each other by numerous cell-cell contacts (figures 20D-20F). These spinous layer cells became 

progressively hypertrophic toward the outer surface. However, the cells directly underneath the cap 

layer (2nd tier layer) often seemed to obtain a flattened shape in parallel to the outer cap layer (figure 

20P). The cap layer presented with very flat cells (only one cell layer thick), which were filled with a 

highly homogenous and electron-dense material. Cell organelles and sometimes even nuclei were only 

krt8, krt5

krt4, cki, cklcke7

Figure 19: Expression of different keratins in zebrafish trunk and head epidermis, as well as 
breeding tubercles. The expression pattern in the adult epidermis of six different zebrafish keratins was 
assessed by in situ hybridization. All left panels show expression of the different keratins in the epidermis
of the trunk. All keratins are expressed in all layers, except cke7 is expressed only at weak levels. All right 
panels demonstrate the expression of the six keratins in regular head epidermis and in the breeding
tubercels. Whereas similar as in the trunk, all keratins except cke7 are expressed throughout all layers of 
the epidermis, the same keratins are differentially expressed in breeding tubercles. A summary of the
different expression patterns of keratins in regular head epidermis and breeding tubercles of adults is
shown at the bottom of this figure.  
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hardly detectable (figures 20D-20F). In general, this continuous change in cell shape and the final 

flattening of the cap cells indicated the existence of a differentiation process starting in the basal layer 

and ending in the cap layer that is (according to the previous data) shed regularly. 

 

Higher magnifications revealed that the basal cells are of cubic shape and arranged evenly above the 

basement membrane (figure 20G). In contrast, this cubical shape was not found in the surrounding 

epidermis (figure 20D). Hemidesmosomes could not be detected in all analysed samples. However, 

the basal cells were always tightly connected to the basement membrane. Additionally, basal cells 

were connected to neighbour cells by numerous desmosomes. Nuclei of the cells of this layer 

appeared healthy and not condensed (figures 20G & 20H). 

The cells of the spinous layer (in general six to seven layers between basal layer and cap layer) 

increased progressively in size. Most likely due to the fixation method, the cells had undergone 

shrinkage while they were still connected via cell-cell contacts leading to the typical spinous 

appearance. Therefore, the cells between the basal layer and the cap layer will be now referred as 

“spinous cells”. Also the nuclei of the spinous layer cells appeared healthy including cells of the tier 

underneath the cap layer (figures 20E & 20F). Spinous cells were connected to other cells including 

cap cells by numerous desmosomes (figures 20I-20K). Other cell-cell contacts like adherens 

junctions could not be found. 

Desmosomes are normally connected to the intermediate filament system of the cytoskeleton, which 

are keratins in keratinocytes. However, in most of these samples keratin filaments could not be 

detected at all (figure 20L). These findings were clearly controversial to the previously described 

antibody staining and the keratin in situ hybridization data. On the other side, desmosomes often had 

contact with large electron-dense condensations of an unknown material (figures 20L & 20M). 

These condensations were frequently found in nearly every cell of the spinous layer but not the cap 

layer. Only in very few samples, filamentous structures that possibly resembled keratin filaments could 

be detected, especially in layers near or directly underneath the cap layer. As expected for keratin 

filaments, they ended in desmosomes and elongated through the cytoplasm. Probably due to the 

highly electron-dense material in cap cells, keratin filaments ending in desmosomes were never found 

in the cap layer (figure 20N). However, keratin filaments were suddenly orientated parallel to the 

outer cell surface in cap cells, possibly indicating that similar processes as the cell shape change in the 

stratum corneum of mammalian epidermis (induced by cross-linking of filaggrin and keratins) might 

also occur in the breeding tubercles of zebrafish (figure 20O). Even if filaggrin does not exist in the 

genome of zebrafish, other cross-linking substances might be responsible for the reorientation of 

keratin bundles in cap cells. Given the controversial discussion concerning keratins in fish epidermis 

[Henrikson & Matoltsy  1968, Burgess 1965] this might indicate that in general keratin proteins are 

present in epidermal cells but probably exist in a more  amorphous state. However, keratin filaments 

were clearly detected in the epidermis of Bagarius [Mittal & Whitear 1979]. 

The cytoplasm of spinous layer cells was filled with increasing content of small electron-dense 

aggregates of unknown material and the already described large homogenous condensations (figure 
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20Q). The small aggregates were suggested to be protein condensations, perhaps ribosomes, 

whereas the large condensations might be non-filamentous aggregations of keratin proteins. 

 

Starting in the cells of the granular layer, an extracellular lipid envelope is formed around cells of 

mammalian epidermis. Even if fatty structures are often hardly detectable, extracellular membranes, 

possible extracellular lipid droplets and vesicles discharging their content into the extracellular space 

could be observed in spinous cells in al least some of the samples (figures 20R-20T). These signs of 

lipid envelope formation were found especially between cap layer cells and the tier underneath, or 

between two cap cells. Interestingly, the vesicles were only found at the basal side of cap cells 

(figure 20S), in contrast to mammalian cells, where those vesicles were found only on the apical side 

of granular cells. These vesicles charged their unknown homogenous content into the subcorneal 

space, probably needed for the formation of extracellular lipid membranes or proteolytic lysis if cell-

cell contacts (see below).   

In regular fish epidermis, tight junctions are only found between cells of the superficial layer [Chang & 

Hwang 2011]. However, in the area of breeding tubercles, tight junctions were observed only between 

the cells of the 2nd tier, whereas the cap cells itself did have tight junctions anymore (figures 20U & 

20V). Importantly, the same was described for the keratinized elevations of Bagarius bagarius [Mittal 

& Whitear 1979].  
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Additionally, it might resemble al least partially the situation in mammalian epidermis, where tight 

junctions only appear in the granular layer. In this layer many important cellular changes in the 

process of cornification occur. Here, the cornified envelope together with the lipid envelope is formed, 

and cell death is initiated. The cornified layer above does not have tight junctions and is sloughed 

regularly [Fuchs & Raghavan 2002]. This might be summarized in the hypothesis, where 2nd tier cells 

have “granular-like” functions, whereas the cap layer would resemble a primitive cornified layer. 

 

The cap cells appeared as very electron-dense and highly homogenous cell remnants, with condensed 

or pyknotic nuclei. The cell borders of cap cells were often hardly detectable or appeared in a 

degraded or lysed state (figure 20W). However, intact desmosomes between cap cells und cells of 

Figure 20: Differentiation of keratinocytes in pectoral fin breeding tubercles. The keratinocytes of pecfin breeding

tubercles undergo a process of differentiation demonstrated by TEM imaging. (A/B) Semithin sections of tubercles at different 

magnifications. The tubercles are located on top of the bony hemirays. (C) Higher magnification of a semithin section. Breeding

tubercles consist of regular arranged basal cells, layers of spinous cells, a 2nd tier layer and a flattened and highly electron-

dense outer cap layer. (D) Interface between regular epidermis and a breeding tubercle. The more regularly arranged basal

cells of the tubercle are marked by asterisks. (E) Spinous layer cells get progressively hypertrophic towards the apical surface. 

(F) Cap layer on top of the spinous layer consists of flat, highly electron-dense cells with often hardly detectable cell borders or

organelles. (G) Basal cells of the tubercle appear more cubic as regular basal cells (basement membrane: black arrow). (H) 

Basal cell of a tubercle with many desmosomal cell-cell contacts to surrounding cells (black arows) and a healthy unsegmented

nucleus. Basement membrane is marked by asterisk. (I) Desmosomes between spinous cells (white arrows). (J) Intact

desmosomes between a cap cell and a spinous cell (black arrows) (K) Degraded desmosomes between cap and spinous cells

(black arrows). The desmosomal structures might have undergone proteolytical degradation. (L) Keratin filaments running into

desmosomes are only rarely seen. On the other hand, desmosomes are often in direct contact with intracellular aggregations

of unknown material (marked by asterisk). (M) Homogenous condensates occur frequently in the spinous layer (marked by

asterisks). (N) Only few desmosomes show keratin filaments in contact with desmosomal structures (marked by asterisk). (O) 

In the cap layer keratin filaments are orientated in parallel to the outer cell surface. (P) Spinous cells of the upper layers

change their cell shape and flatten along the axis of the upper cap cells. (Q) Cytoplasm of spinous layer cells is filled with dots

of small aggregates (black arrow) and large homogenous condensations (white arrow), both of unknown material. (R) Lipid

droplets between upper spinous layer cells (marked by asterisk). (S) Vesicles at the basal side of cap cells, discharging their

content into the extracellular space (black arrows). (T) Extracellular lipid layers between the cap layer and the 2nd tier cells

underneath (black arrow). (U/V) In contrast to regular teleost epidermis, tight junctions (black arrow) were found in breeding

tubercles only in the tier beneath the cap layer, whereas the cap itself and the layers underneath do not have tight junctions. 

(W/X) Cap layer furrow between two tubercles. The cell borders of the cap cells appear degraded (black arrow). A subcorneal

space is present beneath the cap. (Y) Cap cell at the edge of the tubercle. The cap cell is tightly attached to the regular

epidermis and the spinous cells by numerous desmosomes. (Z) Healthy nucleus of a spinous cell of the tier underneath the

cap. (Z‘) condensed and apoptotic nucleus of a cap cell. (AA) Piling up of cap cells at the tip of the tubercle indicating high 

physical forces driving the formation of the tubercle. Nuclei of cap cells marked by asterisks. (BB) Summary of cap cell features

compared to spinous cells: Highly electron dense and homogenous cytoplasm, vesicles at the basal side of the cell, a 

subcorneal space and lysed cell-cell borders. Abbreviations: bt breeding tubercle; cl cap layer; sl spinous layer; sc superficial

cell; re regular epidermis.
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the spinous layer could also be detected regularly (figure 20J). On the other hand, the desmosomes 

of the cap cells seemed to be lysed with a widened extracellular space or in a state of decay in many 

samples (figure 20K), indicating proteolytic processes that might be involved in the shedding 

process. These degraded desmosomes might resemble the fate of corneodesmosomes in mammalian 

epidermis. Additionally, a subcorneal space (as often seen in amphibian) could quite often be found in 

those samples. This extracellular space was particularly wide in samples with degraded cell-cell 

contacts (figure 20X). On the other hand, the cap cells were tightly connected to spinous cells or 

superficial cells at the edge of a tubercle (figure 20Y). 

In general, the cells of the cap layer appeared very flat compared to the hypertrophic spinous cells. In 

contrast to regular fish epidermis, no microridges were found in cap cells. The cytoplasm was filled 

with a homogenously electron-dense material. Cell organelles including mitochondria could not be 

found (figure 20C, 20F, 20P & 20W). The nuclei of cap cells always appeared condensed and 

showed signs of pyknosis, in contrast to the healthy nuclei of the cells underneath (figure 20Z & 

20Z’). Overall, cap cells seemed to be metabolically inactive cells that have acquired some features of 

apoptotic or dying cells.  

In all sections the cap layer was only one cell layer thick. However at the tip of the tubercle, several 

cap cells appeared in close contact (figure 20AA), indicating that here cap cells might be pushed on 

top of each other. Rupture of the tissue was often seen in the spinous layer. The flattening of cap 

cells on top of the tubercle might create tension to the tissue leading to the tubercle structure and the 

piling of cap cells seen at the tip of the tubercle. However, it would be necessary to know if such a 

mechanism is supported by proliferation at the base of the tubercle. Alterations of the cytoplasm 

membrane that might indicate the formation of a cornified envelope could not be detected. The 

specific features of cap cells are summarized in figure 20BB. 

In summary, the results of the ultrastructural analysis of pectoral breeding tubercles indicate a 

differentiation process in tubercles that leads to the formation of the cap layer. The most dramatic 

steps occur in the 2nd tier layer (that might have similarities to the mammalian granular layer), 

including cell shape changes and the formation of tight junctions. The outermost layer consists of 

inactive and probably dying cells that still have remained their nuclei in contrast to mammalian 

corneocytes. The formation of a lipid envelop is another strong parallel to cornification. However, a 

cornified envelope was not detected.    

 

In contrast to breeding tubercles, the surrounding epidermis appeared rather thin at pectoral fins, 

with only three to four cell layers in total (figure 21). In general, the tissue appeared more compact 

compared to tubercles. Additionally, the star-shaped form of cells of the spinous layer could not be 

found in the surrounding epidermis. 

As mentioned before, the basal cells of the surrounding epidermis displayed a flatter appearance 

compared to the base of the tubercles and were more irregularly arranged (figures 21A & 21B).   

Mucous cells only occurred in the regular epidermis, but never in the area of breeding tubercles. As 

mucous cells are typical for mucogenic epithelia but do not occur in keratogenic epithelia, this again 
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points towards the model of a “keratogenic” island (the tubercle region) surrounded by regular 

mucogenic epidermis (figure 21C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Ultrasturcture of regular epidermis of adult zebrafish pectoral fins. (A/B) Overview of regular
epidermis of the pectoral fins. In contrast to breeding tubercles, the epidermis is thinner: four to five tiers (figure A) and 
three to four (figure B) respectively. The flat and segmented nuclei of basal cells are highlighted by asterisks in figure A. 
The basement membrane is marked in figure B by black arrows. (C) Mucous cells (asterisk) are only found in regular
epidermis but not in the area of breeding tubercles. The outer surface of superficial cells displays the typical microridge 
pattern. (D) The cells of the superficial layer are flat but healthy cells with an intact nucleus. Microridges are always
present (black arrow).  (E) Nucleus of a superficial cell. (F) Superficial cells are tightly connected to each other by
numerous tight cell-cell contacts.
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The superficial cells appeared flat, but in contrast to cap cells presented with a healthy, segmented 

nucleus and intact cell organelles (figures 21D & 21E). The cells in this layer were tightly attached 

to each other and the cells of the intermediate layer. A subcorneal space was not found. The apical 

side of superficial cells showed the characteristic microridge structure (figures 21D-21F), which was 

completely absent in cap cells.  

Despite the existence of numerous tight cell-cell contacts between cells of the superficial layer (figure 

21F), a definite proof of tight junctions could not be made by electron microscopy. Therefore, 

immunohistochemistry was performed with a mouse anti-ZO1 antibody. The antibody was directed 

against zonula occludens protein 1, a protein of the tight junction complex. Staining of regular 

epidermis of krt4::GFP transgenic fish revealed that the cell outlines stained via the antibody 

correlated with the GFP positive superficial cells (figure 22A & 22B). However, the antibody did not 

recognize tight junctions in the breeding tubercles, which were probably shielded by the cap layer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Results 
 

 62 

In summary, the TEM data and the ZO1 immunostaining indicated crucial differences between the 

cells of the breeding tubercle compared to the cells of regular epidermis. In tubercles, tight junctions 

occur in the course of a (“cornification-like”) differentiation process similar as in mammalian 

epidermis, whereas in regular epidermis the location is different, but as the EVL gets replaced by 

basally derived cells, the occurrence of tight junctions in the superficial layer might be part of the 

second (regular) differentiation process in fish epidermis.  

 

 

Proliferation is increased in breeding tubercles but also restricted to the stratum 

germinativum  

We wondered if the processes leading to tubercle formation include not only differentiation but also 

effect proliferation in comparison to the surrounding epidermis. We speculated that proliferation might 

be increased because of the additional layers of tubercles, or even decreased because cells rather 

differentiate than proliferate. To address this question we performed BrdU incorporation assays over 

the time period of 24 hours.  Incorporated BrdU was visualized by immunostaining and the percentage 

of BrdU positive nuclei in the breeding tubercle regions was compared to BrdU incorporation in regular 

epidermis.  

The age of the tested fish was 60 dpf and general tubercle formation should already be completed at 

that age. However, it could clearly be seen that proliferation was increased in the area of breeding 

tubercles (figure 22A). This result was additionally confirmed by estimation of the ratio: BrdU-

positive nuclei / all nuclei in the region of the tubercles compared to the ratio in regular epidermis 

(figure 22B).  

In regular epidermis, BrdU positive cells were found throughout all layers, confirming that proliferation 

occured throughout the whole intermediate layer. However, this pattern was not found in breeding 

tubercles. Even if the proliferation rate was higher in breeding tubercles, the BrdU positive cells were 

concentrated in the lower layers of the epidermis, indicating that in tubercles proliferation is more 

restricted to the stratum germinativum. This result argues for a similar architecture of breeding 

tubercles and mammalian epidermis, together with the TEM data and the shedding process. 

Additionally, it clearly highlights the difference between regular epidermis in fish and breeding 

tubercles (figure 22A). In accordance with the TEM data, cells in the tubercles proliferate only in the 

basal or lower spinous layer. In the following they exit cell cycle and start a differentiation program. 

 

This result could also be confirmed by antibody staining with the mouse (clone 4A4) anti-p63 

antibody. However, this antibody did not discriminate between the different isoforms of p63, but 

because the ƩN isoforms should be the much more abundant than the TA isoforms, we argued that 

the antibody would stain preferentially nuclei of cells that still have the capacity to proliferate. Figure 

23 demonstrates that in regular epidermis p63 positive nuclei could be found throughout the whole 

epidermis, in accordance with BrdU incorporation.  
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Furthermore, p63-positive cells were restricted to the lower layers in breeding tubercles. This strongly 

indicates a more stratified architecture in breeding tubercles as in regular fish epidermis. Additionally 

it points to the existence of a differentiation process in tubercles. Descriptions of breeding tubercles in 

other fish species also mention this different pattern of proliferating cells [Mittal & Whitear 1979]. 
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Figure 22: Proliferation is increased at the base of breeding tubercels compared to regular
surrounding epidermis. BrdU incorporation assay was perfomed to compare proliferation in 

regular epidermis to breeding tubercels. (A/B) Two examples of breeding tubercle regions are

shown together with the surrounding regular epidermis. The BrdU channel demonstrates the

increased proliferation in the tubercle area (area marked by white bars in A). In regular epidermis, 

proliferation occurs in all layers of the intermediate layer, whereas in breeding tubercels

proliferation is reduced to the stratum germinativum. (C) Quantification of the proliferation rate in 

breeding tubercles and the regular epidermis. Graph shows the ratio BrdU-positive nuclei/all 

nuclei (counted via DAPI) in percent.
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Non-apoptotic functions of Caspase 3 in the outer layers of breeding tubercles  

Cornification in mammals and amphibians involves a specific form of cell death, but still shares 

similarities with apoptosis. As the nuclei of cap layer cells appeared condensed and inactive, and cell 

organelles, in particular mitochondria were not found in TEM images of cap cells, we wondered if a 

similar process of cell death takes place in fish epidermis that is possibly more similar to apoptosis. 

Acridine orange in vivo staining of adult zebrafish, as a general indicator of cell death, failed to detect 

cell death in breeding tubercles (figure 24A). The very weak fluorescence of the cap of tubercles was 

considered an auto-fluorescence artefact, as it was detected with all fluorescence filters (data not 

shown).   

Next we analysed the epidermis of whole-mount male pectoral fins via TUNEL assay and sectioned 

them after plastic embedding.  

In general, TUNEL-positive nuclei were only scarcely detected in all samples indicating very low levels 

of apoptosis in adult fish epidermis. Importantly, no TUNEL-positive nuclei were found in the cap layer 

of breeding tubercles arguing against elevated apoptosis in the cap layer (figure 24B & 24C). Few 

apoptotic nuclei in breeding tubercles were found in basal cells or in the mesenchyme below the 

tubercles. However, this result demonstrated only that no DNA single strand breaks occurred in cap 

cells of the breeding tubercles. A different type of cell death might still occur or the cells of the cap 

Figure 23: At the base of breeding tubercles, proliferation is found only in the basal layer in 
contrast to regular epidermis. Immunostaining with the anti pan-p63 antibody revealed that in 

regular epidermis, cells troughout the whole intermediate layer have remained the capacity for

proliferation, whereas the p63-positive domain was found to be reduced to the basal and the lowest

spinous layer cells in breeding tubercels.. (A/B) merge; (A‘/B‘) Cy3 channel. White arrowheads mark

the tubercle domain.
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layer just get metabolically inactive while their nuclei remain largely intact. Additionally, even 

mammalian stratum corneum cells are not TUNEL positive [Gandarillas et al. 1999]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To further investigate this point, we exploited a mouse antibody directed against active Caspase 3. 

Caspase 3 is one of the major effector caspases in the classical apoptosis cascade, where it is 

activated by other upstream caspases [Snighda et al. 2012, Taylor et al. 2008]. 

Immunohistochemistry was performed on paraffin sections of adult zebrafish heads and pecfins. 
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Figure 24: Cap cells of breeding tubercles do not show a positive reaction in cell death assays, but display
high levels of active Caspase 3. (A) Acridine orange (AO) staining does not inidicate cell death in the tips of 

breeding tubercles. White arrows point to tubercle plates. (B) TUNEL assay of whole-mount pectoral fins reveales

that cap cells of breeding tubercles are negative for TUNEL reaction. Black arrows point to TUNEL positive nuclei. 

ma: male; fe: female; C-: negative control; C+: positive control. (C) TUNEL stained pectoral fins were plastic

embedded and sectioned. Again no TUNEL positive nuclei are found in the cap layer. (D/D‘) Immunostaining of 

breeding tubercles and the surrounding epidermis using an active Caspase 3 antibody. Caspase 3 is found to be

highly active in the upper spinous layers, the 2nd tier layer and the cap layer.
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Caspase 3 was found to be highly active in breeding tubercles. However, Caspase 3 was activated not 

only in cells of the cap layer (as expected according to the TEM results) but also in the upper spinous 

layers and the 2nd tier layer, which showed no signs of apoptosis in TEM and in the previous 

histological methods (figures 24D & 24D’). Additionally, the intensive staining of the cap layer 

contradicts to the results of the TUNEL assay. 

However, a lot of recent publications claim different functions of caspases apart from their most 

commonly know function in apoptosis, including differentiation of keratinocytes in mammalian 

epidermis [Wu et al. 2011, Lamkanfi et al. 2007, Okuyama 2004, Schwerk & Schulze-Osthoff 2003]. 

The strong presence of cleaved Caspase 3 together with the healthy appearance of spinous layer cells 

in the TEM images might lead to the suggestion that Caspase 3 has non-apoptotic functions in 

zebrafish breeding tubercles. Due to the fact that the pattern of activated Caspase 3 staining widely 

overlapped with the layers of differentiating cells in the tubercles, one might conclude an important 

function of Caspase 3 in the differentiation process of epidermal cells in breeding tubercles. 

 

 

Cap cell membranes display leakiness in barrier assays pointing towards cell degradation 

Regular epidermis is generally impermeable to substances from the outside. In mammals, this is 

mainly achieved by the stratum corneum, but also the tight junctions of the granular layer contribute 

to this function. In our lab we use methylene blue to study re-epithelialization after wounding of adult 

zebrafish. Generally, methylene blue is not able to pass the epidermis [Richardson et al. 2013]. To 

test whether the tight junctions in the tier below the cap layer efficiently seal the epidermis we used 

this barrier assay to stain zebrafish breeding tubercles.  

Interestingly, tubercles could easily be stained by methylene blue presumably due to the detached cap 

layer (figures 25A &25B). However, the staining was washed away again very quickly, indicating 

that the dye might only reach the subcorneal space. The staining performed very well on the bigger 

jaw tubercles, whereas it was only very weak for the pecfin tubercles.  

However, it turned out that tubercles could be stained much more efficiently by another vital dye, 

calcein, which is normally used to target bone tissue [Du et al. 2001]. Wildtype fish were stained with 

calcein alive and afterwards anaesthetized and used for whole-mount imaging or sacrificed and 

prepared for cryo-sectioning. In contrast to methylene blue, calcein stained the tubercles much 

stronger and with long lasting effect (figures 25C-25E). Sections revealed that the layers 

underneath the cap layer were indeed tightly sealed. The dye had not entered the tiers underneath 

the cap layer. However, the calcein signal was very strong in the cytoplasm of the cap cells 

themselves (figure 25F-25H). As we considered the cap layer cells as metabolically inactive or 

perhaps even dying, we concluded that the cell membranes might be leaky, thereby allowing to dye to 

pass the membrane barrier. Degradation of cell membranes of cap cells was already confirmed by 

TEM imaging. 

Again, this would argue against an apoptotic mechanism in cap cells, as cell membranes remain intact 

during apoptosis [Lippens et al. 2005].  



 Results 
 

 67 

In the following, we used the calcein stain to study cap layer regeneration during a shedding cycle 

and tubercle formation in mutants. 

According to recent data from Manuel Metzger in our laboratory, shedding of the cap layer occurs 

quite frequently in most tested fish. However, the time until a completely regenerated cap layer 

formed was very variable in different individuals. The regeneration period ranged from five days up to 

two weeks. The underlying reasons for this variability still remain unknown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transglutaminase 1 is specifically expressed in the upper layers breeding tubercles 

Transglutaminases (TGM) are crucial for cross-linking keratins and CE associated proteins in 

mammalian cornification resulting in the formation of a dense keratin network and the cornified 

envelope [Fuchs & Raghavan 2002]. Only very few data are available concerning transglutaminases in 
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Figure 25: Cells of the cap layer can be stained with vital dyes like methylene blue or calcein. (A) Lateral 

view of a zebrafish head. Methylene blue stains the tubercle plate (arrow). (B) Ventral view of the head. Tubercle

plates on both sides are stained by methylene blue. (C/D) Lateral and frontal view of the head of an adult

zebrafish stained with calcein. The tubercles are brightly stained by this dye. (E) Additionally the tubercles on the

pectoral fins are stained with calcein. (F/G) Sections of calcein stained fish reveal that calcein enters the

cytoplasm of the cap cells but not the tissue underneath the cap layer. (H) Calcein stained cap cells of pectoral

fin tubercles.
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zebrafish [Deasey et al. 2012]. Additionally, these data revere only to embryonic/larval development, 

whereas the functions in adult fish are not analysed so far. 

tgm1 knock-out mice die around birth due to stratum corneum defects [Matsuki et al. 1998]. As 

transglutaminases are crucial for cornification in mammals, we wanted to find out if they are also 

involved in the differentiation process of tubercle keratinocytes. To address this suggestion, we used 

an in situ RNA antisense probe to detect expression of tgm1 in the epidermis of adult zebrafish.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tgm1 was found to be completely absent in regular epidermis of adult zebrafish, but was highly 

expressed exclusively in the upper layers of breeding tubercles (figures 26A-26C). This would 

indicate that tgm1 is expressed only in those cells that differentiate in tubercles, whereas the 

proliferating cells at the base of tubercles and in regular epidermis are tgm1 negative. The staining 

was not found with the corresponding sense probe (figure 26D). Even if the functions of 
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Figure 26: Expression of transglutaminase1 (tgm1) in breeding tubercles. (A-C) Expression of 

tgm1 (in situ hybridization data using the tgm1 RNA antisense probe) is found exclusively in the

upper cells of breeding tubercles, whereas regular epidermis and lower layers of tubercle remain

unstained. A – overview of staine d tubercles of the lower jaw. B – staining of larger tubercles of the

head. C – staining of small (probably newly developing) tubercle. (D) No staining was obtained with

the tgm1 sense probe. Not stained tubercles are marked by black arrows.
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Transglutaminase 1 were not investigated further, the highly restricted expression pattern strongly 

suggested participation of TGM1 in the differentiation of epidermal cells in zebrafish breeding 

tubercles. Together with active Caspase 3, tgm1 is therefore a specific marker for differentiating 

keratinocytes in the breeding tubercles of zebrafish.  

 

 

 

Differentiation of zebrafish keratinocytes in breeding tubercles strongly depends on 

Notch signalling and activation of Caspase 3 

Notch signalling is especially known for the process of lateral specification and is frequently involved in 

processes, where a single cell is chosen to adopt a different fate than the surrounding cells [Panelos & 

Massi 2009, Okuyama et al. 2008]. As already described, Notch signalling plays important roles during 

keratinocyte differentiation in mammals.   

The Notch signalling pathway is activated through binding of membrane-bound Notch ligands of 

surrounding cells to the Notch receptor. In vertebrates, two types of Notch ligands are known: Delta-

like and Jagged. Especially Jagged is known to be expressed in mammalian epidermis. Jagged 2 was 

detected in basal cells, whereas Jagged 1 seemed to be expressed only in suprabasal cells. After 

epidermal cells exit from the cell cycle, they initiate expression of Notch. Binding of Jagged 1 ligand to 

the Notch receptor leads to cleavage of the NICD (Notch intracellular domain) by Ǆ-secretase, which is 

then released into the nucleus. There, a complex of NICD and RBP-J binds to responsive target 

promoters and drives the expression of Notch target genes which are then responsible for the specific 

Notch functions [Okuyama et al. 2008, Watt et al. 2008, Nickoloff et al. 2002]. 

To study a putative function of Notch signalling in the formation of breeding tubercles in zebrafish, we 

took advantage of the chemical inhibitor DAPT, which is a specific Ǆ-secretase inhibitor and frequently 

used in zebrafish and other model-organism or cell culture [Okuyama et al. 2004, Geling et al. 2002]. 

As Notch signalling was already linked to a non-apoptotic function of Caspase 3 during keratinocyte 

differentiation and cornification [Mack et al. 2005, Okuyama et al. 2004], we also used z-DEVD, a 

Caspase 3 specific inhibitor [Valencia et al. 2008, Parng et al. 2004].  

Approximately 15 to 20 juvenile zebrafish were kept in 100 ǋM DAPT, 10 ǋM z-DEVD or 0.2% DMSO 

as control for three weeks during the development of breeding tubercles. The experiment was started 

when the fish had reached an age of 20 days and ended at 41 dpf. According to previous data it was 

assumed that tubercles had not been developed at the start, but should definitely exist at the end of 

the experiment. Afterwards tubercle formation was evaluated by calcein staining or histological HE 

staining. Measurement of standard length after the treatment ensured the same developmental 

progress in treated and control groups. 

Both inhibitors were found to reduce or even completely block tubercle formation (figure 27A). The 

experiment was repeated three times in the above described way. In the overall evaluation, 65% of 

the fish in the DMSO control group had clearly developed jaw breeding tubercles of an age-respective 

size. The remaining 35% had developed tubercles as well, but remarkably smaller and/or reduced in 
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number. In all experiments, no juveniles without tubercles were detected in the control groups. 

Inhibition of NICD cleavage by the Ǆ-secretase inhibitor DAPT reduced the amount of fish with 

normal-sized tubercles to 44%. Additionally, 29% displayed only poorly developed tubercles and 27% 

even had no tubercles at all. Caspase 3 inhibition yielded in 28% of fish with normally developed 

tubercles, 51% with small or less tubercles and 21% without any tubercles. The data of this analysis 

and examples for regular-sized and small-sized tubercle structures are shown in table 5 and figure 

27B. 

 

Table 5: Chemical inhibitor treatment reduces breeding tubercle formation. 

Treatment for three weeks 
Fish with: DMSO DAPT z-DEVD 

no BT 0 0 % 9 27 % 8 21 % 
small BT 11 35 % 10 29 % 20 51 % 

regular BT 20 65 % 15 44 % 11 28 % 
Total 21 100 % 34 100 % 39 100 % 

Treatment for four weeks 
Fish with: DMSO DAPT z-DEVD 

no BT 0 0 % 2 11 % 2 10 % 

small BT 7 37 % 12 63 % 14 70 % 
regular BT 12 63 % 5 26 % 4 20 % 

Total 19 100 % 19 100 % 20 100 % 

Treatment over three weeks was done three times in independent experiments. Treatment over four weeks was done only once. 
The first value of each section is the total number of juveniles; the second number the relative value in percent.  

 

 

To demonstrate that the above described results are not only caused by delayed development due to 

a toxic effect of the inhibitor solutions, the standard length of the juveniles was measured after the 

experiment to demonstrate comparable developmental progress in all groups according to the 

standard table published by Parichy et al. in 2009 (figure 27D). Additionally, the same experiment 

with both inhibitors was performed over four weeks instead of three, again to exclude a general 

developmental delay. Again, the effect of both inhibitors could be confirmed (figures 27C & figure 

27E). Therefore, the described effect of the two inhibitors should be due to the inhibition of Notch 

signalling or Caspase 3 respectively and not due to a general developmental delay.   

For closer evaluation, inhibitor treated juveniles were analysed by hematoxylin/eosin staining and 

active Caspase 3 immunostaining. HE staining was performed to demonstrate the absence or 

reduction of tubercle development in treated fish, and additionally to compare the structure of 

tubercles in inhibitor treated fish to control fish. Special focus was put to the question if a cap layer 

was still able to form after blockage of active Caspase 3 or Notch signalling in general. Additionally we 

speculated that, as zDEVD inhibits Caspase 3 activation, active Caspase 3 should not be detectable 

anymore in the zDEVD treated group. However, if Caspase 3 is activated by Notch signalling, 

activation of Caspase 3 should be blocked in the DAPT treated group as well. 

 

Figure 28A demonstrates that tubercle size was decreased or completely absent in DAPT or zDEVD 

treated fish in comparison to the DMSO control group. However, both groups presented with a fully 

developed cap layer on top of the (smaller) breeding tubercles. This would indicate that Notch 

signalling and Caspase 3 are important but not absolutely crucial for breeding tubercles formation.  
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Figure 27: Inhibition of Notch signalling or Caspase 3 blocks breeding tubercle
formation. Zebrafish juveniles were treated with the chemical inhibitors DAPT (け-

secreatse inhibitor) or zDEVD (Caspase 3 inhibitor) during the developmental period of 

initial breeding tubercle formation. (A) Formation of tubercles is reduced after treatment

of both inhibitors in a three weeks trial. (B) Examples for staging: no – breeding

tubercles are completely absent after the experiment; small – only very few and small

tubercles had developed; regular – fish present with tubercles of wildtype size and 

number. (C) Formation of tubercles is reduced after treatment of both inhibitors in a four

weeks trial. (D/E) SL (standard length) is measured to demonstrate equal development

in treated and control groups, standard length. Both treated group display similar SL 

than the DMSO control group. D – SL of three weeks trial; E – SL of four weeks trial. 

Numbers of fish per group are listed in table 5.
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Other factors might possibly contribute to this process or compensate the loss of Notch and Caspase 3 

respectively. Additionally, it was not estimated, if the inhibitors had blocked their targets completely in 

the performed assay. 

Importantly, immunostaining using the active Caspase 3 antibody demonstrated that cleaved Caspase 

3 was present and active in the breeding tubercles of DMSO control fish. However, Caspase 3 did not 

seem to be activated when the Notch pathway or Caspase 3 itself was blocked (figure 28B).  

Accordingly, Notch signalling activates Caspase 3 in the upper layers of breeding tubercles, which then 

might induce keratinocyte differentiation in an non-apoptotic way.  
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Figure 28: Inhibition of breeding tubercle formation by DAPT or zDEVD are both accompanied with
loss of active Caspase 3. (A) HE staining of the tubercle region at the lower jaw of inhibitor treated fish

reveales loss or reduction of tubercles. (B) Active caspase 3 is absent after inhibibion of Casaspe 3, and 

after inhibition of Notch signalling as well, indicating that Caspase 3 is regulated by Notch. 
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As we did not obtain valuable results with various notch and jagged RNA antisense probes, we used a 

transgenic notch signalling reporter line, tp1bglob::GFPum13, to study Notch signalling in zebrafish 

breeding tubercles. In this line, binding of the RBP-J/NICD complex to the 12 RBP-J binding sites in 

the promoter region of the transgene drives expression of GFP (figure 29A) [Parsons et al. 2009]. 

This line was kindly provided from the laboratories of Wiebke Herzog and Arndt Siekmann (Max-

Planck-Institute for Molecular Biomedicine, Münster).  

GFP fluorescence could easily be detected in breeding tubercles during adulthood, as well as during 

tubercle development. Transgenic fish were either used directly for whole-mount imaging or prepared 

for cryo-sectioning. Immunostaining for GFP was not performed (figures 29B-29E). Importantly, 

Notch signalling was active only in the upper layers of the tubercle, whereas basal layer and lower 

spinous layer remained GFP negative. This would indicate that Notch signalling occurs only in those 

layers of the tubercles, where cells do not proliferate anymore and started to differentiate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, this result was confirmed by immunostaining with the anti-p63 antibody or the anti-active 

Caspase 3 antibody respectively. The GFP positive domain in tp1bglob::GFPum13 did not overlap with 

p63 positive cells, indicating that Notch signalling is not active in cells that still have the capacity to 

proliferate (figure 30A). However, overlap of a few p63 positive cells at the border of the GFP 

positive domain might indicate that Notch is turned on directly after or already during the switch to 

cell cycle arrest. 

eGFP

12 RBP-Jk binding sites

NICD RBP-Jk

TG(TP1bglob:eGFP)um13

A

20d 33d

B C

D E50たm 30たm

Figure 29: High levels of Notch signalling are found in the upper layers of breeding tubercles. The transgenic line

tp1bglob::GFPum13 was used to detect Notch signalling in breeding tubercles. (A) Transgene of tp1bglob::GFPum13. (B) 

Whole-mount image of a zebrafish head prior to breeding tubercle formation. No Notch signalling is detected in the area

where later the tubercles will develop (white arrow). (B) Whole-mount image of a zebrafish head after breeding tubercle

formation is completed. The cells of the tubercles are highly GFP positive, indicating activation of the transgene. (D/E) 

Sections of breeding tubercles and the surrounding epidermis. Only the upper layers of breeding tubercels are GFP positive.
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Furthermore, the domain of active Caspase 3 was completely identical with the GFP positive domain of 

the transgene (figure 30B), confirming the suggestion that Notch signalling and Caspase 3 are 

needed for differentiation. According to the literature, we suggested that Notch would activate 

Caspase 3.  

 

To test whether Caspase 3 is indeed upstream of Notch signalling, epistasis analysis with the above 

described small inhibitor compounds, DAPT and zDEVD, was performed in transgenic 

tp1bglob::GFPum13 fish. As proof of concept, Notch signalling should be blocked in the transgenic line 

only in the DAPT treated group, whereas it should still be present in the zDEVD treated group if 

Caspase 3 is indeed upstream of Notch. 

 

 

 

 

Treatment was performed over four weeks in the same way described above. Notch signalling was 

evaluated by whole-mount imaging and after sectioning. After the treatment, seven of seven fish in 

the DMSO control group displayed GFP positive tubercles. In the DAPT treated group, only one of 

eight fish showed fully developed tubercles. However, GFP was not turned on in this fish. Additionally, 

the seven remaining individuals of this group presented with no or very weak fluorescence (five 

without, two with weak fluorescence) in the area where breeding tubercles would develop (12.75% 
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present tubercles, 25% weakly GFP positive). On the other hand, the zDEVD treated group showed 

tubercle formation in two out of five fish (40% present tubercles), whereas Notch signalling was 

turned on the region of tubercle formation in all five (100%) specimens. The results are summarized 

in figures 31A & 31C Again, measurement of the standard length of all individuals revealed 

comparable development between all three groups (figure 31B). 
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Figure 31: Áctive Caspase 3 is downstream of Notch signalling. (A) Notch signalling after inhibitor treatment with DAPT 

or zDEVD in tp1bglob::GFP. The percentage of fish with developed tubercels and with GFP positive cells in the area of 

breeding tubercels is shown (DMSO n=7; DAPT n=8; zDEVD n=5). (B) Measurement of standard length reveals similar

developmental progress in all groups (mean±SD). (D) Examples of fish after inhibitor treatment (white arrow points to the 

tubercle region at the lower jaw). (D) Immunostaining of inhibitor treated transgenic fish with/without subsequent active 

Caspase 3 antibody staining. Additionally, young juvenile fish during initial tubercle development (30dpf) were included in 

this study.  
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Additionally, cryo-sections of treated juveniles also demonstrated that Notch signalling was blocked 

only in the DAPT treated group, whereas it iwas still active in the zDEVD treated group. Activation of 

Caspase 3 however was absent in both treated groups. To demonstrate that Notch signalling and 

Caspase 3 are activated in breeding tubercles already during initial development of breeding tubercles, 

30 day old  tp1bglob::GFPum13 transgenics were analysed for GFP and active Caspase 3. Together with 

the results of the epistasis analyses these data are presented in figure 31D. 

In summary, these data indicate that active Caspase 3 is involved in keratinocyte differentiation in 

breeding tubercles and is induced through notch signalling.   

 

 

Notch signalling is activated in immature tubercles before cap layer formation starts 

To further demonstrate that Notch signalling in fact drives tubercle formation, the transgenic notch 

signalling reporter line tp1bglob::GFPum13 was exploited for time course studies. We claimed that 

Notch signalling had to be activated prior to formation of the cap layer of initial tubercles if the 

proposed Notch  Caspase 3 pathway drives differentiation and eventually cap layer formation in 

breeding tubercles.    

Transgenic juveniles were examined by whole-mount imaging for onset of GFP expression in the 

respective areas to detect the start of Notch signalling. Additionally, calcein blue was used to 

specifically stain the cells of the cap layer. Calcein blue stains cap layer cells in the same way as 

calcein (-green).  As shown in figure 32, Notch signalling was turned on at approximately 24 dpf (SL 

7 mm). At that time, immature tubercles had already formed, but a cap layer was not detected. 

However, three days layer, GFP intensity had had remarkably increased and a fully developed cap 

layer was visible that grow in size over the next days (SL 9 mm). Altogether these results strongly 

point toward an important function of Notch signalling in breeding tubercle formation. Additionally, the 

Notch  active Caspase 3 pathway seems to be necessary for the differentiation pathway in tubercles 

after cells are withdrawn from the cell cycle. 

 

 

 

Tubercle formation is compromised in TAp63 and p53 zebrafish mutants 

According to evidence from mammalian epidermis, TAp63 is a potential regulator of keratinocyte 

differentiation [Truong et al. 2007, Truong et al. 2006, Mack et al. 2005]. TAp63 but not ƩNp63 was 

considered to activate Notch signalling and thereby promote differentiation via non-apoptotic functions 

of Caspase 3 [Mack et al. 2005]. Additionally, TAp63 is expected to play an important role in the 

commitment to stratification during embryonic development of the epidermis [Koster et al. 2004]. 

Furthermore, Jagged1 has been shown to be a direct target of TAp63 [Sasaki et al. 2002], indicating 

that there is a direct link between TAp63 and Notch signalling in epidermal development and 

keratinocyte differentiation. However, these data are still controversially discussed, especially because 

TAp63 specific knock-out mice do not reproduce the severe phenotype of total-p63 KO mice 
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[Vanbokhoven et al. 2011]. We wondered if the zebrafish as a powerful tool to generate mutant and 

transgenic lines might recapitulate the above described pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TAp63 isoforms have not been described in zebrafish so far. All available data concerning p63 in 

zebrafish regard to functions of the ƩN isoforms [Bakkers et al. 2002, Lee & Kimelman 2002]. 

However, exon prediction in the genomic region upstream of the ƩN-specific exon 

(ENSDARG00000044356) and subsequent RT-PCR analysis identified two TAp63 isoforms (TA1 and 

TA4) that are highly similar to the identified isoforms in mammals [Bamberger et al. 2001] (figures 

33A & 33B).  The primer sequences of the TA or ƩN specific primer used for isoform specific RT-PCR 

analysis are listed in the Material & Methods section.   

Consistent with data from mouse embryos [Laurikkala et al. 2006], TAp63 isoforms were found to be 

absent in early zebrafish development whereas the ƩN isoforms were already expressed (figure 

33C).  At 24 hpf, (during the initial steps of epidermal development) the shorter TA4 isoform was 

detected as first TA isoform, whereas the longer TA1 isoform was still not expressed. At the time 

metamorphosis was initiated and slightly before development of the breeding tubercles took place 

(20dpf), additionally the TA1 isoform was found to be expressed, suggesting a potential role of the TA 

isoforms in breeding tubercle formation. These results might indicate that additionally to the ƩN 

isoform, also the TA isoforms are needed for early epidermal development and especially during 

Figure 32: Notch signalling precedes cap layer formation in breeding tubercles. During initial

development of breeding tubercles the formation of the cap layer was visualized by calceine blue. At 

22 dpf (SL 6.5mm), neither GFP positive cells nor a cap layer are found. Later at 24 dpf (SL 7.5 mm) 

the tubercles are present but only in an immature state, as a cap layer has still not developed

(calcein blue). At 27 dpf (SL 9.0 mm) the cap layer has formed on top of the tubercle. This finding

suggests that Notch signalling is present prior to cap development.
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development of breeding tubercles, where the epidermis adopts a more stratified status as regular 

zebrafish epidermis and the keratinocytes undergo a more advanced differentiation program. 

In adult zebrafish TA isoforms were found to be expressed in the epidermis and in the ovaries, 

whereas they were not expressed in brain tissue. The ƩN isoform was present in all tissues (figure 

33D). These data are in accordance with results from Suh et al., where TAp63 in mice was detected 

to be strongly expressed in oocytes [Suh et al. 2006].  
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Figure 33: TAp63 isoforms and their expression pattern in zebrafish. (A) Genomic structure of tp63 in zebrafish.The binding

sites of the TA and 〉N specific primer used in this thesis are highlighted. Additionally, the predicted splice variants at the 3‘- and 

5‘-end are shown, as well as the protein domains and the location of the mutated triplet in tp63hu2525. Color code: blue: 5‘-

transactivation domain; yellow: DNA binding domain; yellow: oligomerization domain. (B) RT-PCR analysis of different TAp63 

isoforms in total RNA of adult zebrafish. The localization of the different TA specific primer is shown in A. The length of the

different isoforms are noted. (C) RT-PCR analysis of TA and 〉N isoforms at different stages of development.(D) RT-PCR analysis

of TA and 〉N isoforms in different organs of adult zebrafish. For all experiments, a く-actin2 (actb2) fragment was used as control.
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A TA-specific p63 zebrafish mutant (Tp63hu2525 allele) had already been generated using target-

selected mutagenesis [Wienholds et al. 2003]. The hu2525 allele bears a nonsense mutation (TCA > 

TAA) in exon 4, the last TA-specific exon, changing a serine amino acid triplet into a premature stop 

codon (S48X) (figure 34). Thereby, all TA isoforms should be abrogated in this mutant, whereas the 

ƩN isoforms should be not affected. The mutants were found to be viable and fertile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As already mentioned, the three members of the p53 transcription factor family (p53, p63 and p73) 

share high sequence and structural similarity, especially in the DNA binding domain [Yang et al. 2010, 

Dötsch et al. 2010]. Binding site analysis revealed that the p53 family members bind to quite similar 

target site sequences in the promoter regions of target genes. Therefore, the members of the p53 

family are expected to share a quite large intersection of target genes [Barbieri & Pietenpol 2005]. 

However, newer data also indicate unique features of the binding sites of each member [Yang et al., 

2010, Perez et al. 2007, Perez & Pietenpol 2007], indicating that the different members have common 

targets as well as specific targets [Barbieri & Pietenpol 2005].  

On the other side, the high sequence similarity of the DNA binding domain, might allow p63 and p73 

to transactivate p53 target genes via the p53-responsive element (p53-RE) and vice versa [Murray-

Zmijewski et al. 2006]. In particular p63 was found to regulate p53-target genes and lead to cell-cycle 

arrest and apoptosis. In a similar study, contrary effects were detected for the TAp63 and the ƩNp63 

Figure 34: Mutation in tp63hu2525. Chromatograph after sequencing of wildtype, heterozygous

TAp63+/- and homozygous TAp63-/- fish.
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isoforms [Dohn et al. 2001]. Similar as for p53, a specific p63-RE exists as well, which is needed for 

the activation of p63 specific target genes [Perez et al. 2007]. 

p53 has to form homo-tetramers before it is able to recognize the p53-REs of its target genes. The 

same is considered for target activation by p63. It was suggested that activation of common target 

genes by p53 and p63 might be due to formation of hetero-tetramers. Even if yeast-two-hybrid data 

could not confirm this hypothesis [Yang et al. 2010, Joerger et al. 2009, Levrero et al. 2000, Davidson 

et al. 1999], there are also data available that promote the existence of an certain interplay: in 

mammalian epidermis, the start of differentiation of keratinocytes was shown to depend on RUNX1 

activity, which blocks proliferation and activates the expression of Keratin 1. RUNX1 itself is activated 

via ƩNp63 in a p53-dependent manner [Masse et al. 2012]. 

In accordance with these findings, it was shown that not only p63, but also p53 can activate Notch 

signalling in epithelial cells. A p53-RE was detected in the promoter region of p53. In a recent 

publication, p53 was therefore not only linked to proliferation, but also to differentiation. According to 

the author’s hypothesis based on in vitro and in vivo results, p53 induces growth suppression and 

differentiation by activation of Notch1 in keratinocytes [Yugawa et al. 2007]. 

 

To analyse this contradictory situation in zebrafish we took advantage of p53 mutant zebrafish, which 

are viable and fertile but frequently develop tumors during adulthood. The used Tp53 zdf1 allele bears 

an M214K exchange of a conserved amino acid residue in the DNA-binding domain that inactivates 

p53 [Berghmans et al. 2005]. We wondered if tubercle formation is compromised in the TA-specific 

p63 mutants and if the mutation affects the Notch  Caspase 3 pathway. According to the above 

described data, we decided to test p53 mutants as well. 

 

p63 immunostaining of regular epidermis of adult mutants was not altered compared to wildtype fish 

(figure 35A), suggesting that ƩNp63 is the predominant isoform in the epidermis. This was also 

consistent with the RT-PCR data presented above and the previously described data from mice 

[Laurikkala et al. 2006].  

However, breeding tubercle formation was clearly compromised in TAp63 mutant zebrafish and p53 

mutants as well. Even if the strength of this effect was variable in individual fish, individuals of both 

mutants were detected that lacked tubercles completely and others where number and size were 

dramatically reduced. These results were demonstrated by calcein staining, histological staining and 

SEM analysis (figures 35B-35C & 36). However, individuals with rather normally developed 

tubercles were also found in both groups. 

HE analysis of TAp63 and p53 mutants revealed that tubercle formation was reduced or absent in 

most mutants (figures 36A-36F). Additionally, a clearly developed cap layer could not be detected in 

all fish (figure 36E). SEM imaging also confirmed the mutant phenotype. Even if the tubercle plate 

structure was present in both mutants, the structure appeared clearly smaller with fewer tubercles. 

Additionally, the dorsal row of tubercles at the lower jaw was absent in both mutants (figures 36G-

36I).    
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Figure 35: Breeding tubercle developmet is compromised in TAp63 mutant as well as p53 mutant
zebrafish. (A) p63 immunostaining of regular epidermis in wildtype fish and TAp63 as well as p53 mutants. 

The distribution of potential proliferative cells is not altered in both mutants. (B) Many TAp63 mutants display

complete loss of breeding tubercels (Calcein staining & HE staining) in contrast to wildtype fish. (C) TAp63 

and p53 mutant zebrafish have reduced or absent tubercles at the lower jaw (calcein stain).
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Figure 36: Phenotype of compromised breeding tubercles in adult TAp63 and p53 

mutants. (A-F) HE staining of sections of adult wildtype, TAp63 and p53 mutants. For each

mutant, a weak and a strong phenotype is shown. (G-L) TEM images of wildtype, TAp63 and 

p53 mutants. The upper panel displays overview images of the lower jaw region. In both

mutants the tuberlce plate is smaller and the dorsal row of tubercles is completely missing

(arrows). The lower panel shows superficcial layer cells of the jaw regions. Superficial cells

seem to be compromised in large areas in this region.
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Higher magnifications revealed that large regions of the superficial layer are compromised in TAp63 

and p53 mutant zebrafish as well. In wildtype zebrafish, the regular superficial layer cells with 

microridges filled the regions between the tubercles at the lower jaw. However, the microridges were 

absent in large regions of TAp63 mutants even if no tubercles (lower jaw row) had developed. In p53 

mutants, remnants of microridges could still be detected, however, large holes were found in the 

superficial layer, indicating that the integrity of the superficial layer was highly disturbed. Both 

described phenotypes were found at the lower jaw and around the tubercle plate as well (figures 

36J-36L). However, both phenotypes of regular epidermis were not analysed in detail. 

 

Because the number of tubercles was also very variable in wildtype fish, the exact number of 

tubercles in mutants was quantified and compared to wildtype fish (figure 37A). Mutants and 

wildtype fish of two different ages were analysed: approximately 50 day old fish and adult fish of 1-

1.5 years. The absolute numbers of jaw tubercles per side per fish was then classified into three 

categories: absent tubercles, reduced number of tubercles and normal number of tubercles. The 

categories were assessed as follows: 50 dpf – 0-3 tubercles = no tubercles, 4-6 tubercles = reduced 

tubercles, 7-10 = regular tubercles; adults - <10 tubercles = no tubercles, 10-20 tubercles = reduced 

tubercles, >20 tubercles = regular number of tubercles. Wildtype fish presented with normal tubercle 

development, even if a fraction of wildtype fish displayed fewer tubercles, representing the variability 

in the amount of breeding tubercles. However, the majority of analysed mutants were classified as 

having no or remarkably reduced tubercles. This effect was more striking after 50 days of 

development but still present in the adult groups. For exact numbers please refer to figure 37A. 

 

As tubercle formation was often only reduced in TAp63 and p53 mutants, we speculated that it might 

be completely abolished in TAp63/p53 double mutants, if both proteins share redundant functions.  

TAp63+/-; p53+/- double heterozygous individuals were in-crossed to obtain double mutant zebrafish. 

The genotype of 70 individuals was assessed for both mutations and yielded in 4 viable double mutant 

fish. However, only in two double mutants tubercle formation was not blocked completely (figure 

37A -37C). On the other side, the effect on tubercle formation was also in these fish stronger than in 

the single mutant fish. This result indicated that TAp63 and p53 should have at least partially 

redundant functions in the formation of breeding tubercles, but other additional differentiation-

promoting pathways might also be involved. 

 

On the molecular level, the antibody against active Caspase 3 failed to detect any signal in both single 

mutants, indicating that both transcription factors activate the Notch  Caspase 3 pathway (figure 

38). However, in situ hybridisation revealed that tgm1 expression was remarkably reduced in TAp63 

mutants, whereas the effect was rather moderate in the p53 mutant (figure 38). This led to the 

conclusion that TAp63 is the stronger activator of tgm1 expression, or TAp63 can compensate the loss 

of p53. Additionally it indicated that TAp63 and p53 do not seem to have fully redundant functions in 

keratinocyte differentiation.   
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Figure 37: Breeding tubercle formation in TAp63 and p53 mutants is compromised throughout development and 
adulthood, but is still not completely abolished in double mutants . (A) Tubercle development defects at 50dpf of TAp63-

/-, p53-/- mutants and TAp63;p53-/- double mutants, as well as wildtype control fish are presented in the left graph (wildtype 

n=28; TAp63-/- n=20; p53-/- n=26; TAp53-/-,p53-/- double mutant n=8). The right graph shows defects in breeding tubercle

formation of adult TAp63- and p53- mutants in comparison to wildtype fish (wildtype n=56; TAp63-/- n=68; p53-/- n=44). (B) 

Calcein stain of wildtype and two double mutant heads (one with weaker and one with strong phenotype – arrows; 50 dpf) (C) 

Lower jaw tubercles of a WT, a TAp63 mutant and a TAp63/p53 double mutant zebrafish (SEM images). The compromised

formation of breeding tubercels in TAp63-/- fish is even stronger in the double mutants, but not completely abolished (50 dpf). 
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These results contribute to the previously described chemical inhibitor treatment. Because breeding 

tubercle formation was compromised in TAp63 mutants and active Caspase 3 could not be detected 

anymore, we concluded that TAp63 drives Notch activation giving rise to the following pathway: 

TAp63  Notch  Caspase 3. As the same results were obtained for p53, both genes seem to have 

at least partially redundant functions. However, the reduction of tgm1 expression was stronger in 

TAp63 mutants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ectopic over-expression of Notch rescued the diminished tubercle formation in TAp63 

mutants 

Next we wondered how important Notch signalling might be for tubercle formation. The above 

described inhibitor experiments resulted mainly in a reduction and not a complete loss of tubercles. 

Therefore, Notch signalling might be only one of several pathways that are responsible for tubercle 

formation. To investigate the importance of Notch we tried to over-express Notch-ICD in juvenile 

zebrafish during the period of tubercle development. Practically, we took advantage of a bi-transgenic 

Gal4-UAS system that enabled over-expression of Notch-ICD via heat-shock [Scheer et al. 1999]. 

Transgenic fish of the hsp70::gal4 line were crossed with the uas::notchICD line to obtain double 
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Figure 38: Caspase 3 is not activated in the compromised tubercles of TAp63 and p53 mutants but tgm1 
expression is reduced particularly by loss of TAp63, whereas loss of p53 only has moderate effects. The upper

panel displays immunostaining using the active Caspase 3 antibody. Caspase 3 is not activated in the compromised

breeding tubercels od both mutants. The lower panel depicts in situ hybridization data of tgm1 expression. Whereas loss

of TAp63 strongly reduces tgm1 expression, loss of p53 has only a more mild effect
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transgenics (figure 38A). Starting at 20 dpf, the juveniles were heat-shocked once per day at 40°C 

for one hour over four weeks. 48 individuals were assessed for both transgenes by genotyping, 

yielding in 8 double transgenic fish. However, Notch over-expression did not alter tubercle distribution 

or appearance. Additional tubercles at different locations compared to wildtypes were not detected as 

well as bigger or larger tubercles at the physiological sites. All transgenic fish presented like wildtype 

specimen (figures 38B & 38C). Assessment was performed with the same categories as described 

before.  

Then we re-introduced Notch signalling into TAp63 mutants, using the same transgenic approach for 

temporally controlled expression of Notch-ICD as described above. TAp63 homozygous mutants were 

crossed to carriers of each transgene and the identified carries inter-crossed in the next generation. 

137 individuals were assessed by genotyping for both transgene and homozygosity regarding the 

TAp63 mutation, yielding in 6 positive individuals. Despite the small number of specimens, breeding 

tubercle formation seemed to be restored compared to the mutants. All individuals clearly presented 

tubercle development that seemed to be shifted towards the wildtype condition (figures 38C-38D).  

Together with the above described results, these data again highlight the importance of Notch 

signalling for tubercle formation and additionally contribute to the evidence of the TAp63  Notch  

Casapse 3 pathway.  

 

 

Proliferation at the base of breeding tubercles is reduced in TAp63 and p53 mutant 

zebrafish 

As described above proliferation is increased at the base of breeding tubercles compared to regular 

epidermis. A huge amount of data regarding p53 as an important tumor suppressor is available, 

resulting in cell cycle arrest [Hearnes & Pietenpol 2005, Levine 1997]. Interestingly, Notch was 

identified as a direct target of p53 in the epidermis leading to differentiation and growth arrest in cell 

culture [Yugawa et al. 2007]. Additionally, mammalian TAp63Ǆ had been shown to activate p21WAF/CIP1 

via p300 and thereby inducing cell cycle arrest as well. The TAp63 function was tightly 

counterbalanced by ƩNp63 isoforms [Mack et al. 2005]. Therefore we wondered if loss of TAp63 or 

p53 protein in the respective mutants effects proliferation rates in tubercle remnants. 

60 day old fish (wildtypes and mutants) were bathed in BrdU solution for 24 hours, sacrificed and 

sectioned for BrdU immunostaining. Three individuals were examined per group.  

In all wildtype specimens, as well as in both mutants, the number of BrdU positive cells in regular 

epidermis was much lower than at the base of tubercles (figures 39A-39C). For quantitative 

analysis, the ratios BrdU-positive nuclei/total nuclei were evaluated (figure 39D). Whereas 

approximately 50% of all nuclei were BrdU positive in breeding tubercles of wildtype fish, the number 

was reduced in both mutants to approximately 35%. Interestingly, the ratio in regular epidermis was 

similar in wildtype fish and both mutants. 

This led to the conclusion that p53 as well as TAp63 are required not only for normal differentiation of 

keratinocytes but additionally for proper controlled proliferation. However, the expected effect of both  
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of head tubercles of TAp63-/- and a rescued mutant with both transgenes.
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mutant zebrafish. (A-C) BrdU incorporation in wildtype and mutant zebrafish tubercles and 
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asterisk and tubercle region by bars. (D) Quantification of the ratio BrdU positive nuclei/ total nuclei
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regulators would have been that proliferation is increased in the mutants. The observed effect is in 

fact the opposite and points to a proliferation-promoting function of both proteins, which might be 

due to cross regulation between TAp63/p53 and ƩNp63 isoforms. 
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IV. Discussion 

 

Advanced differentiation and self-renewal in breeding tubercles 

Breeding tubercles in zebrafish have not been described before. However, breeding tubercles occur in 

many fish species especially in the cypriniformes suborder, which includes Danio rerio. The distribution 

of breeding tubercles differs dramatically among different species. In zebrafish, breeding tubercles 

were detected at the lower jaw and on the pectoral fins in a sexually dimorphic pattern. However, a 

dimorphic pattern of breeding tubercles is quite common [Wiley & Colette 1970]. 

 

In general, the following different compartments of breeding tubercles could be distinguished: a layer 

of basal cells, a variable number of spinous cell layers that increased in cell volume from basal to 

apical, a 2nd tier layer, that sealed the organism against the environment via tight junctions and the 

outermost cap layer of inactive cells that have lost all their organelles. Accordingly, stratification is 

much more pronounced in breeding tubercles than in regular fish epidermis. 

It was demonstrated that the outermost layer, the cap layer, is shed regularly and renewed 

throughout lifetime by differentiating cells from the basal layer.  

In regular epidermis proliferation occurs throughout the whole intermediate layer [Henrikson & 

Matoltsy 1967], as shown by p63 antibody staining and BrdU incorporation. In contrast, proliferation 

was found only in the cells of the lowest layers (stratum germinativum) in breeding tubercles. 

Proliferation was not detected in the upper layers of the tubercles. Additionally, the shape of spinous 

cells changed continuously from the basal layers to the apical surface. Differential expression of 

certain marker genes (like transglutaminase 1, various keratins and Caspase 3) indicated that the cells 

had started a differentiation program in breeding tubercles subsequent to withdrawal from the cell 

cycle. Differentiation in tubercle cells might be at least similar to terminal differentiation in mammalian 

keratinocytes, as important players of cornification are found to be expressed exclusively in breeding 

tubercles.  

The differentiation process in tubercles is completed when cells of the 2nd tier layer transform into flat 

cap cells. This process is accompanied by loss of transcription (suggested due to the condensed 

nucleus and the absence of any signal in the cap layer in all in situ hybridization experiments) and 

degradation of cell organelles. Shedding of cap layers was frequently observed most probably 

facilitated by lysis or degradation of desmosomal contacts between cap cells and 2nd tier cells as 

detected in many TEM samples.  

 

So far, we have not addressed the question if cap cells are shed only when the tight junctions are 

properly formed in the 2nd tier. As the regeneration of the tubercles seemed be a very fast process, it 

might also be possible that new tight junctions are also formed after shedding. In the layers beneath 

the 2nd tier, no signs of tight junctions were found, indicating a unique process only in cells of the 2nd 

tier.  
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Barrier function in mammals is achieved not only by tight junctions but also by the extracellular lipid 

envelope. In mammalian epidermis, vesicles with lipid content are exocytosed into the extracellular 

space, where they form additional lipid lamellae around the cells to prevent water loss. Even if water 

loss is not a problem for fish, lipid lamellae were definitely found in the breeding tubercles of 

zebrafish. They could be detected preferentially between the cap layer and the 2nd tier cells, but also 

between the uppermost cells of the spinous layer. This lipid envelope was probably formed by vesicles 

at the basal side of cap layer cells that discharged their lipid content into the extracellular space.  

Interestingly, those vesicles of analogue processes in mammalian epidermis are found only at the 

apical side of the cells of the granular layer. The epidermis of the frog Rana pipiens has been shown 

to be capable to form keratin containing granules and mucous granules as well in differentiating 

keratinocytes [Parakkal & Matoltsy 1964], which are therefore clearly different from vesicles in 

mammalian epidermis. The mucous granules are discharged into the extracellular space to protect the 

organism from dehydration due to the water-binding properties of mucus. Even if the authors do not 

refer to the mechanism of vesicle discharge or to a possible formation of extracellular lipid lamellae as 

well, the vesicles detected in the cap layer of zebrafish might resemble a more primitive form of these 

vesicles in the context of a cornification-like process, because the duality between mucous granules 

and keratin-containing granules was found only in differentiated keratinocytes [Parakkal & Matoltsy 

1964]. However, the mucous granules in keratinized epidermis of Rana pipiens were shown to be PAS 

positive, what was not the case in any cells of the breeding tubercle. 

In 2004, Alibardi et al. presented electron microscopy data regarding keratinisation in turtle epidermis 

[Alibardi et al. 2004] and showed that vesicles that contain mucus and possibly lipids discharge their 

content into the extracellular space. The presence of lipid/mucus granules in turtle epidermis was 

already described before, but depends highly on the fixation method [Henrikson & Matoltsy, 1970]. 

Mucus is formed in the endoplasmatic reticulum and processed in the Golgi apparatus and eventually 

packed into vesicles [Alibardi et al. 2004]. However, the data do not show if the vesicles fuse at the 

apical or basal side with the plasma membrane. Furthermore, the author points out that the 

intercellular material is highly electron-dense, what is not the case in zebrafish. They find these 

vesicles in the upper cells of the spinous layer and in the granular layer. Not all these vesicles are 

discharged into the intercellular space.  Many of them also stay inside the cell to build up an inter-

keratin matrix that mainly consists of mucus and lipids [Alibardi et al. 2004]. Probably, the vesicles 

seen at the basal side of the cap cells are not only needed to form and maintain a lipid envelope, but 

also change the intracellular arrangement of the keratin network. As seen in TEM sections, keratins 

filaments are orientated parallel to the cell surface in cap cells, whereas they are not detectable at all 

or only at desmosomes in the tiers underneath. 

 

The cap layer reacted differently in all histological methods indicating its different composition 

compared to regular epidermis and the lower layers of breeding tubercles. The eosinophilic cytoplasm 

of this layer in hematoxylin/eosin or MGT staining might point to high amounts of keratin and/or a 
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keratinized character. Additionally, the pyknotic nuclei and the loss of organelles indicated that those 

cells are prone to a shedding process.  

Even if this nuclear appearance and of course the positive reaction with the active Caspase 3 antibody 

might argue towards apoptosis, the cap layer nuclei were always TUNEL negative. Additionally, 

apoptotic cells do not completely loose their cell organelles. TEM imaging revealed that cell 

membranes of cap cells often appeared degraded or leaky sometimes possibly even connecting 

neighbour cells to a syncytium, what is never found in apoptosis. Even if the nuclei are not degraded 

completely, cap layer cells might resemble a sort of cells death that resembles a more primitive form 

of cell death during cornification. 

In contrast, the superficial layer of regular epidermis clearly presented with healthy not condensed 

nuclei and the typical microridges at the apical surface. In contrast, microridges were never found in 

cap cells. 

Analysis of the distribution of marker of the superficial cells revealed absence of GFP in transgenic 

krt4::GFP fish and no reaction with a S100 antibody in cap layer cells of breeding tubercles, whereas 

both were present in the superficial layer of the surrounding epidermis. This initially indicated a 

shedding process but additionally led to the suggestion that the outer cells of the superficial layer and 

the cap layer might resemble distinct types of differentiation in fish epidermis. However, the results of 

the lineage tracing analysis revealed that the superficial layer of regular epidermis in adult zebrafish 

consists of a mixture of cells that are derived from the original embryonic EVL and from cells of the 

embryonic basal layer. During adulthood, the EVL seems to be replaced step by step by cells from the 

basal/intermediate layer of the epidermis. In contrast to the more homogenous appearance of the 

epidermal cells in the intermediate layer, cells that end up in the superficial layer undergo dramatic 

changes in shape (flat appearance with microridges) and expression (e.g. genes of the tight junction 

complex). In general, the cells obtain the same features as the EVL derived cells. 

Cap cells of the breeding tubercle on the other side, were found to develop exclusively from cells of 

the basal stratum germinativum. The remnants of the EVL might get lost during the first shedding 

cycle and in the following renewal of the cap layer by differentiation of 2nd tier cells replaces the 

superficial layer at the outside of breeding tubercles. 

Therefore, two distinct differentiation pathways might exist in fish epidermis. One pathway is driving 

intermediate layer cells into the superficial layer to replace EVL cells. During this process, the 

epidermal cells have to undergo certain structural changes including flattening and the formation of 

the microridge structure. The second mechanism is more similar to processes in mammalian 

epidermis. Epidermal cells from the stratum germinativum differentiate continuously throughout the 

whole epidermis until the reach their final stage as a flattened cap cell and are sloughed off 

eventually. In comparison with mammalian embryonic development, one might conclude that regular 

fish epidermis resembles at least partially mammalian embryonic epidermis prior to initial cornification. 

At that stage, the embryo is covered by viable periderm cells that are derived from the basal layer. 

Furthermore, the region of the breeding tubercles might resemble the status of initial cornification in 

mammalian embryos, where the periderm layer is shed and the layers underneath have originated 
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form the basal layer until they eventually have undergone cornification. Overall, the cells of the cap 

layer seem to be more similar to first “cornified” cells of fetal human epidermis that were described as 

“immature horny cells with nuclei”. By evaluation of TEM data these cells were considered to 

represent a “transition phase” of keratinization” [Holbrook et al. 1975].   

 

However, there are also clear differences to cornification of land-living animals. As already mentioned, 

a cornified envelope was not detected in breeding tubercles. The typical cross-linking proteins of 

amphibian and mammalian epidermis (like filaggrin, involucrin or loricrin) do not exist in fish genomes 

[Vanhoutteghem et al. 2008]. Therefore formation of a cornified envelope is not very likely. However, 

the strong expression of the cross-linking enzyme Transglutamiase 1 in the upper layers of the 

breeding tubercle might indicate that similar substrates exist in fish. Additionally, the nucleus of 

cornified cells gets completely lost, whereas it was still present (even if in a pyknotic and inactive 

form) in breeding tubercles. 

However, also the epidermis of water-living mammals as for example whales adopts an at-least “fish-

like” character. The epidermis of whales is still cornified but in a parakeratotic manner, meaning that 

the outer cornified layer includes a remarkable amount of living cells [Reeb et al. 2007].  

In mammalian and amphibian epidermis tight junctions are found in the stratum granulosum or in the 

outermost viable cell layer. Additionally, most steps of cornified envelope formation and lipid envelope 

formation occur in the granular layer. Accordingly, in a “comparison” of the epidermis of teleost 

breeding tubercles and regular mammalian or amphibian epidermis, the cap layer would resemble the 

stratum corneum of tetrapod epidermis and the 2nd tier layer the stratum granulosum (figure 40).  
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Figure 40: Comparson between mammalian/amphibian epidermis and breeding tubercels in zebrafish 
according to the disscussed data.
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Breeding tubercles in an evolutionary context 

Cornification is especially important for land-living higher vertebrates to prevent water loss and 

dehydration. Therefore, processes like cornification are not considered to be necessary for aqueous 

vertebrates. However, according to the data presented in this thesis, we concluded that at least a 

more primitive type of cornification does already exist in breeding tubercles of various fish species. 

As already described, the differentiation process in breeding tubercles seems very different from 

mammalian cornification. However, land-living amphibians also display only one layer of cornified cells 

with an underlying 2nd tier layer that seals the organism via tight junctions. HPRs like fiaggrin are also 

not known in amphibians as well as a cornified envelope. Additionally, parakeratosis occurs quite 

frequently in amphibian epidermis. Also in amphibian epidermis specific secondary sexual organs are 

described on the fingers of adult male amphibians, called nuptial pads that facilitate a firm grip by 

males on females during egg laying [Fox 1986]. This suggests that formation of those more advanced 

epidermal appendages is conserved at least between fish and basal terrestrial vertebrates. However, it 

might also indicate that the advanced genetic system of cornification had been elaborated in the 

course of evolution starting from a “primitive” differentiation process in contact organs of fish. In 

accordance with this hypothesis would be that Notch signalling and Caspase 3, which are known to be 

essential regulators of mammalian cornification [Okuyama et al. 2008, Blanpain et al. 2006] are also 

required for formation of breeding tubercles in zebrafish. 

 

 

 

Keratin network in zebrafish breeding tubercles 

In general, the ultrastructure of breeding tubercles in zebrafish resembled the ultrastructure of 

elevations in Bagarius [Mittal & Whitear, 1979]. However, a few remarkable differences could be 

found. Hemidesmosomes were described to attach the basal layer of Bagarius to the basement 

membrane. In general, hemidesmosomes are connected intracellularly with the keratin cytoskeleton 

[Fuchs & Rhagavan, 2002] and connect the cytoskeleton to integrins at the outside of the cell. 

However, no signs of hemidesmosomes were found in all zebrafish TEM sections. Additionally signs of 

keratin filaments or tonofilaments were only scarcely found. Accordingly, immunostaining with the 

pan-keratin antibody gave only a weak reaction in the basal layer of the tubercle.  However, 

desmosomes could clearly be detected between cells of the basal layer and lower spinous layer. Basal 

cells were always tightly connected to the basement membrane and at least during larval stages the 

existence of hemidesmosomes was clearly shown in zebrafish [Sonawane et al. 2005]. Therefore the 

absence of hemidesmosomes cannot be explained. 

The most important difference between the elevations of Bagarius and the breeding tubercles of 

zebrafish was the abrupt transition of cellular character in the middle of the elevations of Bagarius. 

This transition was caused by rearrangement of the keratin filaments from a more even distribution in 

the lower layers into larger bundled keratin cables in the upper layers [Mittal & Whitear, 1979]. This 

transition was not detected in zebrafish breeding tubercles.  
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As keratin content in fish epidermis was controversially debated for a very long time [Padhi et al. 

2006, Conrad et al. 1998, Burgess 1965], and given the evolutionary distance between fish and 

mammalian keratin genes, one might suggest that keratins in fish do not (or only to a minor extend) 

form the typical dense network as known from mammalian epidermis but exist in a more amorphous 

state. Additionally, keratin bundling was described in Bagarius, predominantly in the upper tiers of the 

elevations, whereas the lower tiers presented a more amorphous state of keratin distribution [Mittal & 

Whitear 1979]. Additionally the great increase in keratin that was indicated by immunohistochemistry 

with a pan-keratin antibody was not found in TEM images. On the other side, large homogenous 

aggregates could be seen, often in contact with desmosomes. These condensations might represent 

keratin aggregates that do not form fibrils. To make it even more complicated, in situ hybridisation 

with different keratin specific RNA-probes showed that some keratins are expressed only in epidermal 

cells at the base of the tubercle. This might indicate that keratins are expressed preferentially in those 

epidermal cells that are still mitotic active, but mature perhaps into specific aggregates after the cells 

are withdrawn from the cell cycle.  

Additionally, these aggregations were not found in regular fish epidermis indicating that they might be 

specific for breeding tubercles. Together with the differential expression of the tested keratin in situ 

probes and the tgm1 expression profile, one might suggest substantial differences in keratin 

composition and properties in breeding tubercles compared to regular fish epidermis.  

Interestingly, keratin inclusion bodies are also found in apoptotic cells of mammalian epidermis. These 

bodies contain KIFs together with various apoptosis-mediating factors, thereby modulating different 

ways of apoptosis in keratinocytes. In humans keratin bodies are often associated with certain 

diseases (e.g. different dermatoses, lupus erythematosus or lichen planus) [Lin et al. 2008, Grubauer 

et al. 1986]. One might speculate that similar processes occur in cornification-like processes of 

breeding tubercles. In turn this would be another parallel between cornification and apoptosis. 

 

 

The linear pathway TAp63  Notch  active Caspase 3 is needed for keratinocyte 

differentiation in zebrafish as well as mammals 

Whereas the ƩN isoforms of p63 are well know to have important functions during early steps of 

epidermal development, functions of the TA counterparts are still controversially discussed. ƩNp63 

was shown to have important functions regarding proliferation and stemness of basal keratinocytes 

[Romano et al. 2012, Bakkers et al. 2002, Lee & Kimelman 2002], whereas TAp63 specific knock-out 

mice lack the severe phenotype of the (pan-)p63 knock out [Vanbokhoven et al. 2011].  In contrast to 

mutants of the canonical notch signalling partner RBP-J and Casaspe 3 mutants [Okuyama et al. 2008, 

Blanpain et al. 2006], TAp63 mutant mice do not have a severe epidermal phenotype at all [Su et al. 

2009, Suh et al 2006]. The same is true for mutants of the more prominent member of the p53 

transcription factor family, p53 itself. 

In this thesis, we had shown that tubercle formation is compromised and reduced in TAp63 mutant 

and p53 mutant zebrafish as well. Additionally, chemical inhibition of Notch signalling and Caspase 3 
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as well led to the same phenotype. In accordance, active Caspase 3 levels were dramatically reduced 

in mutants due to inhibition of the canonical Notch pathway. Furthermore, this phenotype could be 

rescued by re-introducing Notch signalling into TAp63 mutants. This led to the conclusion that the 

linear pathway TAp63  Notch  active Caspase 3 that was already proposed in mammals [Mack et 

al. 2005] to drive terminal differentiation of keratinocytes already exists in fish epidermis. 

As already explained, the fact that the p63 positive domain in breeding tubercles (stained by the 4A4 

pan-p63 antibody) did not overlap with the domain of Notch signalling or Caspase 3 should not be 

contradictory to the above proposed pathway. The antibody did not discriminate between the different 

isoforms and it was already described that ƩNp63 should be more abundantly expressed in the 

epidermis than TAp63 [Vanbokhoven et al. 2011, Koster et al. 2007]. This was also confirmed by the 

RT-PCR data from skin extracts and the unaltered immunofluorescence signal of p63 (4A4) in regular 

epidermis. This indicated that ƩNp63 is expressed in the basal layer of tubercles complementary to 

the Notch and Caspase 3 domain and in contrast to the broad signal in the intermediate layer in 

regular epidermis. As the expression pattern of TAp63 still remains unknown, one could argue that the 

TA isoforms might have a broader expression pattern, perhaps more similar to p53 [Pan et al. 2003], 

including the upper layers of the breeding tubercles. 

Yang et al. already suggested that TAp63/p53 activity in maturing mouse keratinocytes is higher than 

in immature keratinocytes [Yang et al. 2000], which express ƩNp63. as already mentioned, the ƩN 

isoforms are shown to be dominant-negative regulators of TA isoforms. Taken a broader expression 

pattern for TAp63 into account, we believe that TAp63/p53 activity in zebrafish breeding tubercles is 

indirectly regulated via negative inference with ƩNp63. The ƩN isoforms, which are only expressed in 

the stratum germinativum block their TA counterparts in this layer, whereas the TA isoforms remain 

active in the upper layers of the tubercle.  

 

ƩNp63 has been shown to be a direct target of Smad-mediated signalling by Bone Morphogenetic 

Proteins (BMPs) [Bakkers et al. 2002] In accordance with the data that BMP signalling is suppressed in 

skin appendages like hairs and teeth in mammals by Ectodysplasin signalling [Laurikkala et al. 2002], 

we speculated that the TAp63  Notch  active Caspase 3 pathway might be regulated via 

Ectodysplasin, which then activates BMPs and in turn blocks ƩNp63. Consequently, breeding tubercle 

formation should also be compromised in mutants of Ectodysplasin signalling. As ƩNp63 would not be 

abrogated in the absence of Ectodysplasin signalling, the tightly controlled balance between the ƩN 

and TA isoforms would be disturbed. According to our model, if ƩNp63 expression ceases due to 

Ectodysplasin-induced transcriptional activation of BMP inhibitor genes (Noggin/Chordin [Bakkers et al, 

2002]) tubercle formation should be induced.   

However, finless and nackt fish (zebrafish mutant lines with complete loss of Ectodysplasin receptor 

and Ectodysplasin ligand respectively) [Harris et al. 2008] displayed rather normal phenotypes 

concerning the breeding tubercles. On the other side, a closer evaluation (e.g. counting the number of 

tubercles, marker analysis) was not performed so far. 
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In accordance with this model, Notch1 has been shown to repress ∆Np63 expression [Nguyen et al. 

2006], while TAp63 induces caspase-dependent ∆Np63 degradation [Wu et al. 2011], indicating a 

proper controlled balance by various feed-back loops. 

 

 

The p53/TAp63  Notch  active Caspase 3 pathway might be involved in regulation of 

shedding and renewal in breeding tubercles 

One striking result of this thesis was that loss of TAp63 and p53 as well did not only affected 

keratinocyte differentiation, but also proliferation at the base of breeding tubercles. Proliferation was 

reduced in both mutants compared to wildtype fish, as shown by BrdU incorporation, indicating dual 

functions (inducing differentiation and proliferation) of both regulators. In addition, the same effect 

was also observed by chemically inhibition of Notch and Caspase 3. Importantly, both are activated 

only in the upper domain of breeding tubercles, where the cells do not proliferate anymore and have 

become post-mitotic. This argues for a non-cell autonomous mitogenic effect of the two regulators. 

Interestingly in Drosophila melanogaster wing discs, the caspase Dronc, which is generated in 

apoptotic cells upon injury, does not only execute cell-autonomous cell-death, but additionally 

stimulates adjacent cells non-cell autonomously to proliferate and compensate for the loss of the dead 

cells. This non-autonomous effect promoted proliferation, even when Dronc-positive cells were 

prevented from dying, indicating that a Dronc-dependent signal acts in an apoptosis-independent 

manner [Lamkanfi et al. 2007, Huh et al. 2004]. We suggest a similar mechanism in zebrafish 

breeding tubercles. After activation via the p53/TAp63  Notch  active Caspase 3 pathway, Caspase 

3 might have a dual function. Cell autonomously caspase enhances differentiation of keratinocytes of 

the upper layers in breeding tubercles and simultaneously it might enhance proliferation at the base of 

the breeding tubercle in a paracrine way to ensure a balance between sloughing of the cap layer and 

proliferation at the base. This mechanism might explain how continuous renewal in tubercles is 

regulated. 

Consequently, both isoforms of p63 would be necessary for proliferation at the base of breeding 

tubercles: ƩNp63 which promotes proliferation cell-autonomously as in regular zebrafish epidermis. 

Furthermore, TAp63 acts indirectly onto proliferation via active Caspase 3 in a non-cell autonomous 

way.  

 

However, a proliferation-stimulating function of p53 might be considered as very surprising, due to its 

commonly known anti-proliferative function as a tumor suppressor. However newer data of metabolic 

functions of p53 also came to this conclusion. Loss of p53 was shown to cause severely impaired 

proliferation of starved human cancer cells [Maddocks et al. 2013, Maddocks et al. 2011]. 

It would be interesting if a similar function for TAp63 and p53 also exists in mammalian epidermis. 

Additionally it would shed new light onto the interactions between the different isoforms of p63. 

The proposed model according to our data is depicted in figure 41. 
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Redundant functions of TAp63 and p53 might at least partially explain the lack of a severe 

phenotype in mouse TAp63 mutants 

The tubercle phenotype of the TAp63 and p53 mutants was very variable in strength and penetrance, 

ranging from an absolute loss of tubercles to nearly wildtype appearance. However, the same was the 

case for the TAp63/p53 double mutant, even if the phenotypic strength was clearly higher than in the 

single mutants. This leads to the suggestion that the two related transcription factor have at least 

partially redundant roles in the breeding tubercle formation and thus can compensate the loss of the 

second factor in the single mutants. However, as even in double mutants tubercle formation was not 

abolished completely, other factors might additionally be needed to contribute to tubercle formation. 

But this redundancy of TAp63 and p63 might also account for the lack of a severe epidermal 

phenotype in TAp63 knock-out mice [Guo et al. 2009, Su et al. 2009, Suh et al. 2006]. However, 

epidermis of TAp63/p53 double mutant mice has not been analyzed so far.  

However, other factors might also contribute to the formation of breeding tubercles. TAp73 as the 

third member of the p53 family would be strong candidate, however, to our knowledge a zebrafish 

TAp73 specific mutant is not known so far. TAp73 was shown to be expressed in oocytes together 

with TAp63 to prevent genomic instability and female infertility [Dötsch et al. 2010 Tomasini et al. 

2009 Tomasini et al. 2008, Suh et al. 2006].  

Figure 41: Proposed model of the interaction between TAp65, p53 and 〉Np63 in differentiation and 
proliferation of breeding tubercels of zebrafish. The interaction network involves cell-autonomous and 

non cell-autonomous interactions.
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Additionally ƩNp63 isoforms might be involved in this redundancy. In general they are thought to 

have dominant negative effects on TAp63 and p53 as well. Additionally they can act as transcriptional 

activators [Truong 2006, King & Weinberg 2003]. This contribution might additionally explain the 

notion that in contrast to TAp63 mutant mice, (pan-)p63 knock-out mice complemented with krt5:: 

ƩNp63 do display moderately impaired cornification [Candi et al. 2006]. 

 

In total, the data demonstrate the complexity of regulation, function and interplay of the different 

members of the p53 transcription factor family. However it seems that many of these connections are 

conserved during vertebrate evolution. 
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V. Material and Methods 

 

 

1. Zebrafish methods 

 

Zebrafish strains 

Unless stated otherwise, wild-type fish from a mixture of TL and EK were used.  

The mutant Tp63 hu2525 (S48X) line was generated in the Hubrecht Institute, NL, using target-selected 

mutagenesis (TILLING) [Wienholds et al. 2003]. The stable transgenic lines Tg(krt4:creERt2)fr33, 

Tg(krt19:dTomato)fr34 and Tg(krt19:creERt2)fr35 were generated using the Tol2 kit [Kwan et al. 2007] 

with the described krt4 promoter fragment [Gong et al. 2002] or a fragment of the krtt1c19e gene 

(Tom Carney; manuscript in preparation) for construct generation, followed by standard injection and 

screening procedures. 

The mutant line Tp53 zdf1 (M214K) [Berghmans et al. 2005] and the transgenic lines Tg(krt4:GFP)gz7 

[Gong et al. 2002], Tg(actb2:loxP-STOP-loxP-dsREDEx)sd5 [Bertrand et al. 2010], 

Tg(TP1bglob:eGFP)um13 [Parsons et al. 2009], also named Tg(EPV.Tp1-Mmu.Hbb:eGFP)um13, 

Tg(5xUAS-E1b:6xMYC-notch1a)kca3 [Scheer et al. 1999], Tg(-1.5hsp70l:Gal4)kca4 [Scheer et al. 1999] 

and TG(actb2:GFP)zp5 [Reischauer et al. 2009] have been previously described. For NICD expression, 

Tg(5xUAS-E1b:6xMYC-notch1a), Tg(-1.5hsp70l:Gal4)kca4 double transgenic fish were heat-shocked 

from 20 – 41 dpf once a day for 1 hour at 40°C.  

 

General fish handling 

All general methods for zebrafish care and handling were performed as described in Westerfield et al. 

2000. Fish rooms and incubators for embryos and larvae were kept at a constant temperature of 

28°C. All tank rooms were equipped with a electronically controlled 14 hours light / 10 hours darkness 

cycle. Feeding was done according to the age of the fish or larvae, but at least twice a day by the 

animal care takers of the institute’s fish facility. Staging of embryos was done according to Kimmel et 

al., 1995, whereas juvenile or older fish were classified according to Parichy et al. 2009. 

 

Tamoxifen treatment 

Tg(krt19:creERT2)fr35, Tg(actb2:loxP-STOP-loxP-dsREDEx)sd5 double transgenic, Tg(krt19:creERT2)fr35, 

Tg(actb2:loxP-STOP-loxP-dsREDEx)sd5, Tg(krt4:GFP)gz7 triple transgenic, or Tg(krt4:creERT2)fr33, 

Tg(actb2:loxP-STOP-loxP-dsREDEx)sd5; Tg(krt4:GFP)gz7 triple transgenic embryos were treated with 5 

µM 4-Hydroxytamoxifen (Sigma Aldrich; H7904) in the dark at 28°C from 24 hpf to 96 hpf before 
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being returned to normal system conditions for growing up. Treated fish were then imaged at regular 

time-points.  

 

 

Fin clip and isolation of genomic DNA 

Fish were anesthetized with Tricaine (ethyl-3-aminobenzoate methanesulfonate, Fluka) 1:25 in fish 

system water before fin clipping. The distal third of the caudal fin of adult zebrafish was cut and lysed 

overnight in 50 µl lysis buffer (10mM Tris pH 8.0, 2mM EDTA, 0.3% Tween20 and 0.3% glycerol) 

including 10 µg/ml proteinase K at 55 °C. After heat inactivation of the proteinase, the DNA was 

diluted 1:10 and used for genotyping.  

 

 

Genotyping of TAp63 mutants 

The TAp63hu2525 allele was genotyped using the dCAPS (derived Cleaved Amplified Polymorphism 

Sequence) method [Neff et al. 2002], with PCR primer CTG ACC CCG AGG TTG TCT AA (sense) and 

TGC TAA TCT GTA TAG TAT TGG AAG CT (antisense), and subsequent HindIII (NEB) restriction 

digest, yielding a smaller band for the mutant allele. The protocol was kindly provided by Krasimir 

Slanchev (MPI of Immunobiology, Freiburg). 

TAp63MM-For2 (forward primer) CTG ACC CCG AGG TTG TCT AA 

TAp63MM-Rev  (reverse  primer) TGC TAA TCT GTA TAG TAT TGG AAG CT 

PCR program 1) 95°C – 2 min 

 2) 95°C – 30 sec     

 3) 60°C – 30 sec 

 4) 72°C – 30 sec 

 5) Goto 2; 40 cycles 

 6) 72°C – 5 min 

 7) 12°C – hold 

 

 

Genotyping of p53 mutants 

The Tp53 zdf1 allele was identified via an RFLP (Restriction fragment length polymorphism) genotyping 

assay, with PCR primer CCA GAG TAT GTG TCT GTC CA (sense) and TGA TTG TGA GGA TGG GCC 

TGC GGA ATC (antisense) and subsequent BstyI restriction digest, yielding to a smaller band for the 

mutated allele. 

P53-For  (forward primer) CCA GAG TAT GTG TCT GTC CA 

P53-Rev  (reverse primer) TGA TTG TGA GGA TGG GCC TGC GGA ATC 

PCR program 1) 95°C – 2 min 

 2) 95°C – 30 sec     

 3) 56°C – 30 sec 
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 4) 72°C – 30 sec 

 5) Goto 2; 40 cycles 

 6) 72°C – 5 min 

 7) 12°C – hold 

 

 

Genotyping of hsp70::Gal4 and uas::NotchICD transgenic zebrafish 

Transgene specific PCR primer were used to identify carrier fish. Primer sequences and PRC program 

are shown below. The expected band sizes were: hsp70::gal4: 1200 bp; uas::notchICD: 300 bp. 

 

hsp70::gal4 transgene 

Gal4 (forward primer) CGG GCA TTT TAC TTT TAT GTT GC 

Gal4  (reverse primer) CAT CAT TAG CGT CGG TGA G 

PCR program 1) 95°C – 2 min 

 2) 95°C – 30 sec     

 3) 56°C – 30 sec 

 4) 72°C – 100 sec 

 5) Goto 2; 40 cycles 

 6) 72°C – 5 min 

 7) 12°C – hold 

 

uas::notchICD transgene 

ICD  (forward primer) CAT CGC GTC TCA GCC TCA C 

ICD  (reverse primer) CGG AAT CGT TTA TTG GTG TCG 

PCR program 1) 95°C – 2 min 

 2) 95°C – 30 sec     

 3) 56°C – 30 sec 

 4) 72°C – 30 sec 

 5) Goto 2; 40 cycles 

 6) 72°C – 5 min 

 7) 12°C – hold 

 

 

 

2. Molecular biology methods 

 

All standard methods in molecular biology were performed according to Sambrook and Russell, 2001. 
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Total RNA isolation 

Isolation of total RNA of embryos, larvae or adult tissue was performed with Trizole (Invitrogen) 

according to the recommendations of the company. Afterwards, RNA was purified by ethanol 

precipitation and dissolved in 50 µl RNase-free water. All RNA solutions were stored at -80°C.   

 

 

 

RT-PCR 

RNA of whole zebrafish of different developmental stages or RNA from isolated tissues/organs was 

isolated using the trizole reagent as described above. cDNA was amplified using random hexamer 

primer. 1 ǋg RNA was used per reaction. For the subsequent PCR reaction, the TA-specific sense 

primers TAS1 (CAG GGG CTA GCT TCTA GTG G), TAs2 (ATA CAT GTG CTT GGG CCA CT), TAs3 (GCA 

AGA CGT CCT CAA CCA GT), or the ∆N-specific sense primer ∆Ns (TGT TGT ACC TGG AGA CCA ATG) 

were combined with a shared reverse primer (GTG ACT GGG TGG GGC TAT TT; nt501-481 of ∆Np63 

CDS; NM_152986). Figure 42 demonstrates the binding sites of the described PCR primer in the p63 

sequence. Zf-bactin2 (GenBank: BC0675676) specific primers were used as positive control (Bactinfor: 

AGTTTGAGTCGGCGTGAAGT and Bactinrev: AGGCTGTGCTGTCCCTGTAT). The reaction was performed 

with an annealing temperature of 55°C for 35 cycles.  

 

 

 

In situ probe synthesis 

For antisense RNA probe synthesis, a 1.8 kb fragment of krt8 was amplified from EST GenBank 

BI875660 and cloned into pBluescript SK. The plasmid was linearized with HindIII (NEB) and 

transcribed with T3 RNA polymerase (Roche). A 0.6kb cki fragment was amplified from EST GenBank 

AF197880 and cloned into pSPORT vector. The plasmid was linearized with EcoRI and transcribed with 

SP6 RNA polymerase (Roche). A 0.4 kb krt5 fragment was amplified from EST GenBank AF197909 and 

cloned into pBluescript SK vector. The plasmid was linearized with KpnI (NEB) and transcribed by T3 

RNA polymerase. A 1.5 kb cke7 (ZFIN-ID now: zgc:92061) fragment was amplified from EST Genbank 

BI850052 and cloned into pSPORT vector. EcoRI (NEB) was used for linearization of the plasmid and 

SP6 RNA polymerase for transcription. A 1.4 kb cyt1 fragment was amplified from EST GenBank 

AF084461 and cloned into pBlueskript vector. The plasmid was linearized with EcoRI (NEB) and T7 

RNA polymerase (Roche) was used for transcription. A fragment of krt4 was amplified from EST 

GenBank AF134850 and cloned into pBluescript. The plasmid was linearized with PstI (NEB) and T7 

RNA polymerase (Roche) was used for transcription. 

All other probes were cloned using cDNA specific primer (TGase1: forward primer     

TTACAGCCACCTGAGCACTG, reverse primer CAGGCTTTTGTCTGCAATGA). The PCR fragment was 

cloned into empty pCS2 vector using the TA cloning kit (Invitrogen). The plasmid was linearized with 

Xho1 (NEB) followed by RNA synthesis with SP6 RNA polymerase (Roche) to obtain the antisense  
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Figure 42: Binding sites of the TA and 〉N specific primer in zebrafish-p63 used
for RT-PCR analysis
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probe and linearized with HindIII (NEB) followed by RNA synthesis with T7 RNA polymerase (Roche) 

to obtain the antisense probe. For all probe synthesis reactions, Dig RNA labelling mix (Roche) was 

used as nucleotide source. 

 

 

 

3. Histology, immunohistochemistry and microscopy 

 

Fixation of adults and larvae 

All larvae were fixed in 4% paraformaldehyde at 4°C overnight and stored in 100% methanol at -

20°C. Adult fish were fixed in 4% paraformaldehyde as well, but the fixation period was carried out 

longer, up to three or four days.  

For antibody staining with the mouse anti-pan Keratin antibody (Progen) fish were fixed with Dent’s 

fixative (80% methanol, 20% DMSO) at room temperature for several days. 

For histology staining, adult fish were fixed with Bouin’s fixative (20% formaldehyde 37%, 75% picric 

acid, 5% acetic acid 100%) for three days at 4°C. 

For transmission electron microscopy, adult tissue had to be fixed in 2% paraformadehyde + 2.5% 

glutaraldehyde or 2 days at 4°C. For scanning electron microscopy fish were fixed in 4% 

paraformaldehyde and dehydrated afterwards in 100% ethanol. 

 

 

Sectioning of paraffin embedded tissue 

Tissues from adult fish were embedded in paraffin for histology or antibody staining. After fixation, 

the tissue was decalcified with 0.5 M EDTA pH 7.4 for up to one week at room temperature on the 

rocker. Afterwards, the samples were dehydrated in a graded series of alcohols, cleared in Roti-Histol 

(Carl Roth) and embedded in paraffin wax. Finally, the paraffin blocks were sectioned using a Leica 

RM2255 microtome. Thickness of the sections was 8-10 ǋm.  

 

 

Sectioning of Durcupan embedded tissue 

Pecfins of adult fish and larvae were embedded in Durcupan (Fluka) embedding medium directly after 

the fixation. The tissue was dehydrated in an ascending ethanol series and finally in acetone. The 

tissue was incubated overnight in a 1:1 acetone/Durcupan solution mixture. On the next day, tissue 

samples were transferred to embedding moulds and orientated in fresh Durcupan solution. The 

Ducrupan polymerized while incubation at 65°C overnight. 

For all experiments Durcupan medium solidity was used: 32 ml solution A mixed with 27 ml solution B, 

1 ml solution C and 0.6 ml solution D.  

Durcupan blocks were cut with the same microtome as paraffin sections, but specific disposable high 

profile for hard tissue were used. 
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Cryo-sections of cryo-embedded tissue 

After fixation the tissue was soaked in 30 % sucrose in PBST at 4 °C overnight. On the next day, the 

tissue blocks were orientated in melted 1.5% agarose in 15 % sucrose in PBST. After the gel had 

polymerized the tissue samples were cut according to the required orientation and stored until use in 

30% sucrose in PBST. At the cryostat, an embedding plate was prepared with freezing medium in -80 

°C cold isopentene. The agarose block with the tissue was mounted onto the plate and covered with 

freezing medium and shock-frozen in isopentene. The cryostat Leica CM1850 was used to perform 10-

14 ǋm thick cryo-sections. The sections could be stored at 4 °C until further usage. 

Cryo sections were performed especially from transgenic lines, when the endogenous fluorophore of 

the transgene should be visualized without previous immunohistochemistry. 

 

 

 

Whole mount in situ hybridization on larval zebrafish 

The in situ hybridization protocol was performed according to [Nüsslein-Volhard & Dahm 2002] with 

some modifications. Zebrafish embryos / larvae were stored in 100% methanol at -20°C and 

rehydrated before the start. The fish were digested with 10µg/ml proteinase K at room temperature 

according to the embryonic stage (2 dpf 45 min, 3dpf 60 min). Afterwards the embryos were refixed 

in 4% paraformaldehyde for 20 min at room temperature. After washings, the embryos were 

prehybridized in prehybridized in a freshly prepared hybridization solution (Hyb+) for several hours at 

65°C. The hyb+ was exchanged by the digoxygenin-labelled probe (diluted in hyb+ 1:100) and 

incubated overnight at 65°C. . On the next day the samples were washed at 65°C with 75% Hyb -/ 

25% 2xSSCT, 50% Hyb-/ 50% 2xSSCT, 25% Hyb-/ 75% 2xSSCT and 2xSSCT for 15 min each. Then 

they were washed twice with 0.2xSSCT for 30  min at 65°C, followed by  washings with PBST at room 

temperature. In the following, the embryos were blocked in blocking solution at room temperature 

over several hours. The blocking solution was replaced by anti-DIG Fab fragment dilution (1:500 in 

blocking solution) and the embryos incubated at 4°C overnight. The anti-DIG antibody was coupled 

with alkaline phosphatase that was used later for the staining reaction. On the next day, the samples 

were washed extensively and incubated three times in staining solution for 5 min at room 

temperature. The staining was performed with NBT/BCIP (Roche) (dilution 1:20 in staining buffer) at 

room temperature in the dark.  The staining reaction was stopped by washing in PBST. 

 

Special solutions / reagents: Staining buffer 

0,1M Tris pH9,5; 50mM MgCl; 0,1M NaCl; 0,1% 

Tween20 

 NBT/BCIP (Roche) 

 Hyb - 

50% formamid, 5xSSC, 0,1%Tween20; 9,2mM 

citric acid 
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 Hyp+  

Hyp- enriched with 50µg/ml Heparin and 

0,5mg/ml tRNA 

 

 

In-situ hybridization of paraffin sections 

The protocol was performed according to Moorman et al., 2001 with slight modifications. 

The sections were rehydrated in a descending Roti-histol/ethanol series and finally washed in PBST, 

followed by permeabilization with proteinase K solution 10 µg/ml in PBS at 37°C for 10 min. The 

digestion was stopped with 0.2% glycine solution in PBS and the sections briefly re-fixed with 4% 

paraformaldehyde with 0.2% glutaraldehyde for 20 min at room temperature. After washing, the 

sections were pre-hybridizided for several hours at 65°C in hybridization mix. The RNA antisense 

probe was heated up to 80°C for 10 min to destroy secondary structures. The hybridization mix was 

replaced by 80 µl diluted RNA antisense probe (all probes were diluted 1:100 in hybridization mix, the 

slide covered with a coverslip and incubated overnight at 65°C.  

On the next day, stringency washings were performed with 50% formamide + 2x SSC at 65°C, twice 

for 20 min. After several washings in PBST, unspecific binding sites were blocked by incubation with 

100 µl blocking solution per slide in a humidified box for several hours at room temperature. 

Subsequently, the blocking solution was replaced by anti-DIG-FAB solution 1:5000 (in blocking 

solution). For ech slide, 100 µl antibody solution were used. The slides were covered by cover slips 

and incubated over night at 4 °C. After extensive washing, the sections were incubated three times in 

staining buffer for 5 min, before the staining reaction was performed with NBT/CIP according to the 

manufacturer’s recommendations. During staining, the slides were kept in the dark. The staining 

reaction was stopped by washing with PBS. Finally, the slides were mounted with Mowiol. 

 

For hybidizazion mix, anti-DIG Fab (Roche) solution and the NBT/BCIP staining reaction, the same 

reagents were used as described in the previous section. 

 

 

Immunostaining 

Paraffin sections were rehydrated in a descending Roti-histol/ethanol series. For antigen retrieval, the 

slides were heated up to 70°C in 0.1 mM citrate buffer pH 6.0 for 2 hours. After the slides returned to 

room temperature, they were washed with PBST and incubated several hours in blocking solution. 

Incubation with the primary antibody diluted in blocking solution was performed overnight at 4°C. On 

the next day, sections were washed thoroughly with PBST, blocked again with blocking solution and 

incubated with the secondary antibodies at 4°C overnight. After final washings in PBST, the slides 

were mounted with Mowiol/DAPI. 

For double staining, the sections were incubated with both primary and both secondary antibodies 

respectively, at the same time.  



Material & Methods 
 

 108 

 

Blocking solution: 10% fetal calf serum with 0.1% DMSO inPSBT. 

 

Primary antibodies used in the described experiments: 

Antibody Company Organism dilution 

anti-panKrt(1-8) TypeII Progen 61006 mouse 1:200 

anti-p63 (4A4) Santa Cruz sc-8431 mouse 1:150 

anti-ZO1 Zymed 33-9100 mouse 1:200 

anti-BrdU Roche 1170376 mouse 1:200 

Anti-active Caspase 3 abcam ab-13847 rabbit 1:1000 

    

Secondary antibodies used were: anti-mouse Cy3 (1:1000, Invitrogen), anti-rabbit Cy3 (1:1000, 

Invitrogen), AlexaFluor-488 anti-rabbit (1:1000, Invitrogen) 

 

 

Hematoxylin / Eosin (HE) staining: 

Paraffin sections were rehydrated with washings in Roti-histol and decreasing ethanol series 

as described above. The slides were bathed in hematoxylin (Merck) solution for 30 sec 

followed by 5 min of washing under running tab water. Bathing in eosin solution (Merck) was 

done for 20 min, again followed by washing out under running water. Finally, the slides were 

again dehydrated with the ethanol/Roti-Histol series in reverse direction and mounted with 

Entellan.    

Masson-Goldner-Trichrome (MGT) staining  

MGT staining was performed with the Masson-Goldner Staining kit by Merck according to the 

manufacturer’s recommendations. Slides were mounted with Entellan after the final 

dehydration series.  

Periodic acid shift (PAS) staining 

After rehydration, sections were oxidized with 0.5% periodic acid solution for 5min. 

Afterwards the sections were bathed in Schiff’s solution (Merck) for 15 min. After washing 

with tap water, nuclei were counterstained with Weigert’s hematoxylin solution for 5 min. 

After washing, slides were mounted with Entellan.  

 

TUNEL (TdT mediated dUTP nick end labelling) assay on sections 

TUNEL assay on sections was performed using the In Situ Cell Death Detection Kit, POD (Roche) 

according to the manufacturer’s instructions.  

The sections were rehydrated in a Roti-histol/ethanol series with decreasing amount of ethanol as 

described above. Antigen retrieval was performed by incubation in 0.1 M citrate buffer pH 6.0 at 70°C 

for two hours.  After washings with PBST, the TUNEL reaction was performed according to the 
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manufacturer’s protocol. A reaction mix without the TdT enzyme was used as negative control, 

whereas digestion of sections with Dnase I prior to the TUNEL reaction was the positive control. After 

washing, signal conversion was done with the kit POD enzyme according to the company’s protocol. 

Finally, the staining reaction was performed with DAB substrate for 10 min. 

 

 

Acridine orange staining 

Acridine orange staining was performed as described in Furutani-Seiki et al. 1996 with slight 

modifications. Adult zebrafish were bathed in 5 mg/ml acridine orange (Sigma) in fish water for 30 

min at 28°C in the dark followed by extensive washings. The fish were immediately anaesthetised with 

Tricaine 0.1% and observed under the fluorescence stereomicroscope using the GFP filter. 

 

 

Methylene blue assay 

After anaesthetisation, adult fish were stained in 100 mg/ml methylene blue solution for 1 min, rinsed 

with clear water and observed immediately under the binocular.   

 

 

Calcein / Calcein blue staining 

Adult or juvenile fish were bathed in 100 mg/l calcein (Sigma) or calcein blue (Sigma) solution at room 

temperature for 2 hours in the dark. After quick washing steps, the fish were anaesthetized with 

Tricaine 0.1% and observed with the stereo microscope using the GFP filter.    

 

 

BrdU staining 

The fish were stained in 100 µg/ml BrdU (Sigma) solution for 24 hours at 28 °C in the dark. The fish 

were washed several times with fish water and scarified after further four hours at 28 °C. Detection of 

BrdU was performed as antibody staining as described above using an anti-BrdU primary antibody. 

The only modification to the regular antibody staining protocol was an additional incubation step with 

1 N HCl at room temperature for 1 hour directly after the antigen retrieval step.  

 

 

Chemical inhibitor treatment 

Fish were raised from 20 dpf – 50 dpf in E3-medium containing 100 µg/ml of the ┛-secretase inhibitor 

DAPT (N-N-(3,5-difluorophenacetyl)-L-alanyl)-S-phenylglycien t-butylester; Sigma-Aldrich 208255) 

[Geling et al. 2002], 5 µg/ml of the caspase 3 peptide inhibitor z-DEVD-fmk (Calbiochem 264155-80) 

[Parng et al. 2004] or 0.2% DMSO as control. To allow feeding, the fish were transferred to a 1L tank 

for 5 hours a day and afterwards returned into the inhibitor solution. The same was done with the 
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DMSO treated control group. The inhibitor solutions were renewed twice a week. The whole 

experiment was performed under standardized conditions at 28 °C. 

Standard length (SL) of the larvae was used to control equal development of each treatment group.   

 

 

Fluorescence and bright light microscopy 

All immunohistochemistry was done with fluorescent secondary antibodies. The sections were 

mounted with Mowiol containing 10 µl DAPI. Microscopy was done with a Zeiss Axioimager Z1 

(containing the Apotome module) or M1.  

In situ hybridization sections and TUNELs were evaluated with an Axiophot microscope (Zeiss), after 

the slides were mounted with Entelan.  

For stereomicroscopy, living fish were anaesthetized with 0.1 % tricaine (Sigma) and evaluated with a 

fluorescent Leica M165 FC. 

 

 

Preparation for Electron microscopy (EM) 

All samples for transmission EM (TEM) were fixed in 2 % paraformaldehyde + 2.5 % glutaraldehyde in 

PBS at 4°C over night. The samples were not decalcified. All sectioning was done by Mojgan Ghilav 

(Deutsche Sporthochschule, Cologne). Imaging was done with the help of Prof. Wilhelm Bloch 

(Deutsche Sporthochschule, Cologne). 

All scanning EM (SEM) samples were fixed in 4 % paraformaldyhyde at 4°C overnight. Either the 

whole adult fish was fixed or the head was separated from the trunk prior to fixation. All samples 

were dehydrated via ethanol series with increasing amount of ethanol. Microscopy was performed at 

the Max Planck Institute for Plant Breeding Research in collaboration with Dr. Elmon Schmelzer and 

Rainer Franzen. Dehydrated samples were either cryo-fixed, sputter-coated (gold/palladium) and 

evaluated in frozen stage, or critical point dried (CPD), sputter-coated and evaluated under room 

temperature conditions. Initial samples were mounted by Thomar Ramezani. 
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VI. Abbreviations 

 
 
AO Acridine orange 

CE Cornified envelope 

CPD Critical point drying 

DBD DAN binding domain 

dpf Days post fertilization 

ECM Extracellular matrix 

EVL Enveloping layer 

GFP Green fluorescence protein  

HE Hematoxylin / Eosin 

IFAP Intermediate filament associated protein 

K Keratin 

KHLG Keratohyalin-like granula 

KIF Keratin intermediate filaments 

mGFP Membrane bound GFP 

MGT Masson-Goldner trichrome 

mRNA Messenger RNA 

NICD Notch inracellular domain 

OD Oligomerization domain 

PAS Periodic acid shift 

PFA Paraformaldehyde 

RBP-J Recombination signal binding protein J 

RE Responsive element 

SEM Scanning electron microscopy 

SL Standard length 

SPRP Small prolin rich protein 

TAD Transactivation domain 

TEM Transmission electron microscopy 

TGM Transglutaminase 

TUNEL Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End 

Labeling  
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