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Summary

As the prevailing theory of gravitation, the general theory of relativity successfully
describes classical gravitation, but has yet to be consistently quantised, despite the
efforts of generations of physicists in over a hundred years.

One of the first attempts to quantise general relativity directly is the Wheeler–
DeWitt approach. It begins with the Hamiltonian formulation of this theory by
Arnowitt, Deser and Misner, and applies the quantisation scheme of Dirac, de-
signed for constrained systems, including the Dirac spinors and the Maxwell the-
ory, among others. This approach, also known as quantum geometrodynamics, is
successful in the semi-classical method of Wentzel–Kramers–Brillouin (WKB) and
Born–Oppenheimer, and has been applied to quantum models of universes and
black holes.

Unfortunately, because of the constrained nature of general relativity (from an-
other perspective, its diffeomorphism invariance), its quantised version à la Dirac
lacks many properties that are crucial in conventional quantum theory. Partic-
ularly, the scalar product of quantum states is difficult to define, rendering the
non-existence of a Hilbert space, and of the analysis of self-adjoint operators.
Moreover, the semi-classical approach described above only works for wave func-
tions in the WKB form, which contain the classical Hamilton’s principal function
as a phase factor in the leading-order approximation. For wave-packets, which
naturally arise in many realistic systems, even their corresponding semi-classical
trajectories cannot be calculated; in conventional quantum mechanics, in contrast,
one can refer to the Ehrenfest theorem if the wave-packet is sharp.

In this dissertation, we try to address these problems of the Wheeler–DeWitt
approach by porting conventional tools in physics and mathematics to this context.
We study a two-dimensional minisuperspace model, related to physical cosmolog-
ical models, to illustrate our arguments.

Under the WKB approximation, we show that a narrow Gaussian wave-packet
has “maxima” on the semi-classical trajectory, which is given by the stationary
phase principle, that also governs the WKB approach. In other words, these two
semi-classical approaches are consistent in the semi-classical trajectory.

By considering additional conditions, an effective Hilbert space emerges from
our minisuperspace model, and the Hamiltonian, responsible for the energy spec-
trum, can have non-trivial self-adjoint extensions. We study its self-adjoint do-
mains in detail and argue that these mathematical properties could lead to physical
effects.

In order to maintain consistency of our new tools for both quantum gravitation
and conventional quantum theory, we construct a framework of stationary wave-



packets, that make sense for both the minisuperspace Wheeler–DeWitt equation
and the stationary Schrödinger equation. In doing so, we also argue for the suitable
choice of amplitudes when constructing wave-packets. The framework is then
tested by the model of two-dimensional hydrogen atom.

Finally, we discuss approaches to find the semi-classical trajectories from ar-
bitrary wave-packets, which are methods for ridge-detection. We discuss differ-
ent mathematical descriptions of ridge-lines, which were historically developed for
Riemannian geometry with Euclidean metric signature. Then we try to generalise
these descriptions to pseudo-Riemannian geometry with Lorentzian metric signa-
ture, which is the usual case of minisuperspaces. In the end, we give proposals of
prospective physical applications.
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Zusammenfassung

Als vorherrschende Gravitationstheorie beschreibt die Allgemeine Relativitäts-
theorie zwar erfolgreich die klassischen Gravitation, konnte aber trotz der Be-
mühungen von Generationen von Physikerinnen und Physikern in über hundert
Jahren noch nicht konsistent quantisiert werden.

Einer der ersten Versuche, die Allgemeine Relativitätstheorie direkt zu quanti-
sieren, ist der Wheeler–DeWitt-Ansatz. Er beginnt mit der Hamiltonschen Formu-
lierung dieser Theorie von Arnowitt, Deser und Misner, und wendet das Quanti-
sierungsschema von Dirac an, was für Systeme mit Zwangsbedingungen entworfen
wurde, unter anderem für die Dirac-Spinoren und die Maxwell-Theorie. Dieser An-
satz, der auch als Quantengeometrodynamik bezeichnet wird, ist in der semiklas-
sischen Methode von Wentzel–Kramers–Brillouin (WKB) und Born–Oppenheimer
erfolgreich und auf Quantenmodelle von Universen und Schwarzen Löchern ange-
wendet worden.

Leider fehlen ihrer quantisierten Version à la Dirac aufgrund der Zwangsbedin-
gungen (oder der Diffeomorphismusinvarianz) der Allgemeinen Relativitätstheorie
viele Eigenschaften, die in der konventionellen Quantentheorie entscheidend sind.
Insbesondere ist das Skalarprodukt von Quantenzuständen schwer zu definieren,
was die Nichtexistenz eines Hilbert-Raums sowie der Analyse selbstadjungierter
Operatoren zur Folge hat. Außerdem funktioniert der oben beschriebene semiklas-
sische Ansatz für Wellenfunktionen in der WKB-Form, die in der ersten Ordnung
die klassische Wirkung als Phasenfaktor enthalten. Für Wellenpakete, die natür-
lich in vielen realistischen Systemen vorkommen, können nicht einmal die entspre-
chenden semi-klassischen Trajektorien berechnet werden; in der konventionellen
Quantenmechanik kann man dagegen auf das Ehrenfest-Theorem zurückgreifen,
wenn das Wellenpaket scharf ist.

In dieser Dissertation versuchen wir, diese Probleme des Wheeler–DeWitt-
Ansatzes zu lösen, indem wir konventionelle Werkzeuge der Physik und Mathe-
matik auf diesen Kontext übertragen. Wir untersuchen ein zweidimensionales
Minisuperraum-Modell, das mit physikalischen kosmologischen Modellen verwandt
ist, um unsere Argumente zu illustrieren.

Unter der WKB-Näherung zeigen wir, dass ein schmales Gaußsches Wellen-
paket „Maxima“ auf der semiklassischen Trajektorie hat, die durch das stationäre
Phasenprinzip gegeben ist, das auch den WKB-Ansatz steuert. Mit anderen Wor-
ten, diese beiden semiklassischen Ansätze sind auf der semiklassischen Trajektorie
konsistent.

Durch die Berücksichtigung zusätzlicher Bedingungen entsteht aus unserem
Minisuperraum-Modell ein effektiver Hilbert-Raum, und der für das Energiespek-
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trum zuständige Hamiltonoperator kann nicht-triviale selbstadjungierte Erweite-
rungen haben. Wir untersuchen seine selbstadjungierten Definitionsbereiche im
Detail und argumentieren, dass diese mathematischen Eigenschaften zu physikali-
schen Effekten führen könnten.

Um die Konsistenz unserer neuen Werkzeuge sowohl für die Quantengravitati-
on als auch für die konventionelle Quantentheorie aufrechtzuerhalten, konstruieren
wir ein Gerüst, das wir stationäre Wellenpakete nennen und das sowohl für die Mi-
nisuperraum Wheeler–DeWitt-Gleichung als auch für die stationäre Schrödinger-
Gleichung sinnvoll ist. Dabei argumentieren wir auch für die geeignete Auswahl
der Amplituden bei der Konstruktion von Wellenpaketen. Die Konstruktion wird
dann anhand des Modells des zweidimensionalen Wasserstoffatoms getestet.

Schließlich diskutieren wir Ansätze, um die semiklassischen Trajektorien aus
beliebigen Wellenpaketen zu finden, die Methoden zur Ridge-Erkennung sind. Wir
diskutieren verschiedene mathematische Beschreibungen von Kammwegen, die his-
torisch für die Riemannsche Geometrie mit euklidischer metrischer Signatur entwi-
ckelt wurden. Dann versuchen wir, diese Beschreibungen auf pseudo-Riemannsche
Geometrie mit Lorentzscher metrischer Signatur zu verallgemeinern, was der übli-
che Fall für Minisuperräumen ist. Zum Schluss geben wir Vorschläge für mögliche
physikalische Anwendungen.
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1 Introduction
Among the so-called four fundamental interactions, gravitation is the earliest to
be described by axiomatic mathematics, which traces back to Isaac Newton in
the 17th century, but remains the last to be quantised. There are various mo-
tivations to do so, both from an experimental and theoretical point of view. To
be short, consistent treatment of quantum matter with gravitational interaction
needs a quantum description of the latter. Now that all other fundamental degrees
of freedom are quantised, a quantum theory of gravitation is also indispensable.
We refer to [91, sec. 1.1.2] for a comprehensive review of the reasons to quantise
gravitation.

As is well-known, the most widely accepted classical theory of gravitation is
the general theory of relativity, which was mainly developed by Albert Einstein
between 1907 and 1915. Therefore, a straightforward way to quantise gravitation
is to quantise general relativity, which has already been suggested by Einstein
himself [51]. Although people are quite experienced in quantising matters and
other interactions, gravitation remains a hard bone. Aside from the experimental
difficulties that no concrete proposal to test the quantum theories of gravitation
can be carried out, general relativity also differs from the other gauge interac-
tions. The latters are all in the framework of Yang–Mills theory, which at the
classical level deals with additional fibre-bundle structures on the space-time man-
ifold [172]. General relativity, on the other hand, lives in space-time itself. For a
comprehensive discussion of the gauge aspects of gravitation, see [22].

One of the oldest approaches to quantise the full theory of general relativity is
the Wheeler–DeWitt approach, also known as quantum geometrodynamics, dating
back to 1967. It handles a Hamiltonian formalism of general relativity, credited to
Arnowitt, Deser and Misner in 1959 – 1962, and then applies the Dirac quantisation
rules. We recommend [92] and the subsequent chapters for a recent review of the
various ways to quantise general relativity and other approaches towards quantum
gravitation.

1.1 The problem of lacking tools
Unfortunately, after thriving in the late 1980s and early 90s, the community of
quantum gravity seems to become less interested in quantum geometrodynamics,
which can be coarsely reflected in the number of citations of the establishing pa-
per [40], see fig. 1. Although it certainly subjects to serious historical research,
we believe that one reason that discourages people from working further on the
Wheeler–DeWitt approach is the deep difference between this quantum theory and
the conventional one, which leaves few tools for researchers to carry out concrete
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Figure 1: Citations of [40] with the keyword “quantum gravity” from 1980 to 2020.
The green bar chart is the number of citations with the scale on the left, whereas
the orange line chart is the percentage of citations in all papers with the keyword
“quantum gravity”. Source: INSPIRE.

predictions.
One such difference is reflected in the closely related problems, the lack of a

Hilbert space and the absence of space-time (the problem of time). Technically, the
Wheeler–DeWitt approach adapts the functional Schrödinger formalism, instead
of the usual Fock-space formalism in quantum theory of fields, which starts from
quantising merely the fluctuation of fields. Within the former formalism, an inner
product is difficult to define. In contrast, the Hamiltonian in the Arnowitt–Misner–
Deser formalism consists of pure constraints that are constrained to zero on shell.
Upon Dirac quantisation, the wave function does not evolve with respect to a(n)
(fictitious) external time, which therefore does not exist. For further discussion
about these problems, see e.g. [91, ch. 5].

The lack of a Hilbert space in the Wheeler–DeWitt approach results immedi-
ately in the inability of predicting, in terms of probability amplitudes and spectra
of self-adjoint operators, what play a central role in conventional quantum me-
chanics and quantum theory of fields. Incidentally, the self-adjointness in other
quantum systems is also a focus in recent years. Since the theoretical discovery of
PT-symmetric Hamiltonians that seem to be non-Hermitian but have real spectra
[16], it has also been discovered in optics that systems with non-Hermitian, PT-
symmetric Hamiltonian can be non-dispersive [146]. An extension of the good old
Hermiticity, to the mathematical self-adjointness, is not only a theoretical fantasy,
that enriches the possible systems to be studied [121], but also an experimental
reality.

The deficits, caused by the missing probability amplitudes and self-adjointness,
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are partially compensated by the semi-classical schemes, that study a subset of all
allowed quantum states, which “has a classical correspondence”. One of them is the
Wentzel–Kramers–Brillouin (WKB) + Born–Oppenheimer approximation, which
separates the gravitational and the matter degrees of freedom in a wave function of
the universe in the WKB form. At the end of the day, the matter part of the wave
function obtains a Schrödinger type of equation, and the conventional quantum
theory is restored. Another one is using a narrow cosmological wave-packet, that
arises heuristically by decoherence, and the classical correspondence lies on the
sharp ridge of the wave-packet. In a sense, this scheme implies a probabilistic
interpretation of cosmological wave functions. The two schemes mentioned above
are described in [91, sec. 5.4, 90, 89] and other related chapters in these books.

The full quantum geometrodynamics, which deals with all degrees of freedom
in general relativity, sometimes also with matter, is governed by functional dif-
ferential equations named after Wheeler and DeWitt, and is formidable to work
with. In practice, people often adapt a symmetry reduction, effectively “freeze”
many of them, and study midi- and minisuperspace [117] models, if the system
contains field-theoretical degrees of freedom, or only particle degrees of freedom,
respectively. Applications of midi- and minisuperspace models include quantum
black holes and quantum cosmology, which has been surveyed in e.g. [91, ch. 7
and 8].

1.2 Outline of the dissertation

In this dissertation, we address the above-mentioned deep difference between the
conventional quantum theories and the Wheeler–DeWitt approach, within the
framework of a prototype minisuperspace model in section 2, that is related to
various realistic models in physics, and can also be solved exactly. Afterwards in
section 3, we perform the standard WKB analysis of the model.

Since analytic results of wave-packets can be obtained both for the exact and
the WKB wave packets, it makes sense to ask the following questions that have
yet to be answered. First, how is the WKB approximation related to the narrow
wave-packets, that both have its own classical correspondence? This question is
addressed in section 3 and our answer is that they coincide. Second, does a Hilbert
space make physical sense in minisuperspace models? This question is studied in
section 4 in which we find that the self-adjointness of operators in quantum cosmol-
ogy do have a physical effect. Third, where is the ridge of a given wave-packet? To
answer this question, we first find the special wave-packets in conventional quan-
tum mechanics that share the properties with the ones in minisuperspace models,
which is done in section 5. Then we give mathematical descriptions of ridge-lines,
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apply them in various examples, and discuss their advantages as well as deficits.
In the appendices we describe aspects that are either not included in the usual

graduate courses, or not emphasised but are frequently used in the thesis.
The Wheeler–DeWitt approach is conservative, in the sense that it does not

need much new concepts as input; the metric degrees of freedom and the canoni-
cal quantisation rules are all well-recognised, whereas much of the unconventional
concepts are derived from the input. This is an advantage, in our mind, that the
approach has an elegance of simplicity. On the other hand, in studying nature,
new tools are no less important than new concepts, the former of which are unfor-
tunately often belittled in theoretical physics, while the latter can be exaggerated.

In this dissertation, we try to provide novel tools to the old quantum geometro-
dynamics. More specifically, the gap between the conventional quantum theories
and the Wheeler–DeWitt approach worried us, and the lacking of prediction power
for wave-packets remained unsettled. Therefore, we provide a multifaceted parallel
between the conventional quantum theories and quantum geometrodynamics, and
pave the way towards retrieving a classical trajectory from wave-packets.

4



2 A two-dimensional minisuperspace model
In this section 2, we study a prototype minisuperspace model that traces back to
[6, 4, 5], which is described by the Lagrangian action in minisuperspace

𝑆 = Vol3 ∫ 𝕕𝑡 𝑀(𝑡){𝘴(− 3
𝜘

̇𝛾2

𝑀(𝑡)2 + 𝘭
2

�̇�2

𝑀(𝑡)2 ) − 𝑉 𝖾𝑔𝜒} (2.1a)

≕ ∫ 𝕕𝑡 { 1
2𝑀(𝑡)𝒢𝐼𝐽𝑞𝐼𝑞𝐽 − 𝑀(𝑡)𝒱(𝑞)} , (2.1b)

where 𝘴2 = 𝘭2 = 𝘷2 = 1 are signs, 𝘷 ≔ sgn𝑉 , 𝑔 > 0 is a coupling factor; 𝒢𝐼𝐽 ’s
are the components of the minisuperspace DeWitt metric,1 𝒱 the potential, and
𝑞𝐼 denotes collectively the minisuperspace position variables {𝛾, 𝜒}. One sees that
𝑀 corresponds to a lapse function and has no dynamics, whereas 𝛾 and 𝜒 are the
dynamic variables.

We will see in section 2.1 that this prototype model contains several homo-
geneous cosmological models as its special cases. Moreover, it is exactly solvable
at both the classical (section 2.2) and the quantum levels (section 2.3), which
facilitates the further study of the model. These motivate the study of the mini-
superspace model. As an example, we construct an exact quantum wave-packet in
section 2.5.

About superspace and its mini-version In this work, the term superspace
is coined by Wheeler (e.g. [169]), referring to the configuration space of geometro-
dynamics, in contrast to the somewhat more popular meaning of a supermanifold,
which is central in supersymmetry. See [68] for a historical note.
Minisuperspace, on the other hand, refers to the symmetry-reduced superspace,

that contains particle-like degrees of freedom, and no field-theoretical degrees of
freedom. The term can at least be traced back to [117]. Such models in general
relativity also contain collapse models related to black holes (e.g. [95, 150, 103,
134]).

2.1 Physical models related to the prototype

In relativistic physical cosmology, which was founded in [52], it is usually assumed
that our Universe is homogeneous and isotropic at large scale. This assumption
is sometimes called the cosmological principle, and realised as the Friedmann–
Lemaître model [56, 109], equipped with the Robertson–Walker metric [143, 163],
that makes a sensible exact solution of the Einstein’s field equations. Starting

1Unfortunately, DeWitt metric in the full geometrodynamics has upper indices.
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from here, one can then study inhomogeneities of the Universe by e.g. considering
metric perturbations [76], which is out of the scope of this thesis.

Although no fundamental scalar field manifests at the classical level, it is still
an easy starting point of a matter content in a cosmological model. Cases with a
normal-signed kinetic term, dubbed quintessence [31], and with a negative-signed
kinetic term, called phantom [30], have their applications, e.g. [39]. Extending
the potential to complex numbers can give rise to a PT-symmetric scalar field [4],
making more room for possible models.

Aside from the isotropic case, theoretical physicists are also interested in anisotropic
homogeneous models, with the benefit that the extra degrees of freedom are
particle-like and not field-theoretic [38, 93, 104, 94, 103]. In cosmology, the
anisotropic homogeneous models in (3 + 1)-dimensions are classified into the nine
Bianchi-type universes [20, 21] and the Kantowski–Sachs metric [84], the former
of which are summarised in e.g. [147, 107, sec. 116].

Our prototype model in eq. (2.1a) contains several cosmological models men-
tioned above as special cases, described in this section 2.1 below.

2.1.1 Closed Friedmann–Lemaître–scalar model

To begin with, we consider a spatially-closed Friedmann–Lemaître model, mini-
mally coupling the model to a homogeneous, isotropic, massless, free, and neutral
scalar field 𝜙 ∈ ℝ. This is a solvable model, making it a good starting point [86,
91, ch. 8].

The Robertson–Walker metric of this model is given by

𝕕𝑠2 = −𝑁(𝑡)2 𝕕𝑡2 + Len2𝖾2𝛼(𝑡)(𝕕𝜉2 + sin2 𝜉 (𝕕𝜗2 + sin2 𝜃 𝕕𝜑2)) , (2.2)

where 𝑡 ∈ ℝ, the hyperspherical coordinates 𝜉, 𝜃 ∈ (0, π), 𝜑 ∈ (0, 2π); 𝑁(𝑡) is the
lapse function, and 𝛼(𝑡) is the logarithm of a dimensionless scale factor. Only 𝑡
and Len have the dimension of length; other variables on the right-hand side are
all dimensionless.

Introducing a free neutral scalar field, and complete the spatial integration, we
obtain the Lagrangian action

𝑆 = Vol3 ∫ 𝕕𝑡 𝑁𝖾3𝛼{− 3
𝜘

̇𝛼2

𝑁2 + r
2

̇𝜙2

𝑁2 − 𝑉cur𝖾−2𝛼} , (2.3a)

where 𝘳2 = 1 ; 𝑉cur ≔ 3
𝜘Len2 > 0 , Vol3 ≔ 2π2Len3 . (2.3b)

The sign 𝘳 is introduced to incorporate the cases of the field with a normal-signed
kinetic term 𝘳 = + (aka quintessence) or a negative-signed kinetic term 𝘳 = −
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(aka phantom).
Comparing eq. (2.3a) with eq. (2.1a), one observes that the following transfor-

mations

𝑁 = 𝑀𝖾3𝛼 ; 𝛼 = √𝜘
6 𝜒 , 𝜙 = √ 6

𝜘 𝛾 ; 𝑔 ≔ 2√2𝜘
3 . (2.4)

gives the prototype action in eq. (2.1a) with (𝘴, 𝘭 , 𝘷) = (−𝘳, 𝘳 , +).

Note on the lapse function In many applications in cosmology, the Robertson–
Walker metric is introduced without the lapse function 𝑁(𝑡), e.g. [165, 107, sec.
111], and one may wonder the reason to do so.

One can simply take it as a part of the Arnowitt–Deser–Misner formalism, see
appendix B.2. Apart from this reason, its presence also makes the symmetry-
reduced actions in eqs. (2.7), (2.3a) and (2.10a) equivalent to the corresponding
Friedmann equations, which means the equations of motion followed by varying the
actions are the same as substituting the metrics in eqs. (2.2), (2.6) and (2.9) into
Einstein’s field equations. Were 𝑁(𝑡) not present, the first Friedmann equation,
which contains only first-order time derivative and is therefore a constraint, would
be missing in the Euler–Lagrange equations.

Being able to derive the constraint equations from the action is important in
Dirac quantisation, see section 2.3.

2.1.2 Flat Friedmann–Lemaître–Liouville model

Next, we consider a spatially-flat Friedmann–Lemaître model. The spatial flatness
is traditionally preferred and consistent with the up-to-date observation [1]. A
Liouville scalar field 𝜙 has an exponential potential

𝒱(𝜙) = 𝑉 𝖾𝜆𝜙 , 𝜆 ∈ ℝ , (2.5)

which traces back to the homonymous equation [112]; it is used nowadays in certain
branches of string theory (e.g. [123]), but here we use “Liouville field” outside
this context. Incidentally, the Friedmann–Lemaître–Liouville model has also been
studied in the context of inflation [74, 28, 15].

The Robertson–Walker metric of the model is given by

𝕕𝑠2 = −𝑁(𝑡)2 𝕕𝑡2 + 𝖾2𝛼(𝑡)(𝕕𝑥2 + 𝕕𝑦2 + 𝕕𝑧2) , (2.6)

where the Cartesian coordinates 𝑡, 𝑥, 𝑦, 𝑧 ∈ ℝ. The lapse function 𝑁(𝑡) and the
logarithmic scale factor 𝛼(𝑡) are dimensionless; other variables on the right-hand

7



side have the dimension of length.
Minimally coupling the model to a Liouville scalar field, that is homogeneous,

isotropic, and neutral, and formally integrating out the spatial variables, we obtain
the Lagrangian action [5]

𝑆 = Vol3 ∫ 𝕕𝑡 𝑁𝖾3𝛼{− 3
𝜘

̇𝛼2

𝑁2 + 𝘭
2

̇𝜙2

𝑁2 − 𝑉 𝖾𝜆𝜙} , (2.7)

where Vol3 = ∫ 𝕕𝑥 𝕕𝑦 𝕕𝑧 is a formal 3-volume factor.
Comparing eq. (2.7) with eq. (2.1a), one observes that the following transfor-

mations

𝑁 = 𝑀𝖾3𝛼 ; (2.8a)

(𝛼
𝜙) = ±1

𝑔 ( 𝜆 −𝘭𝘴𝜘
−6 𝘴𝜆 ) (𝛾

𝜒) , (2.8b)

𝘴 ≔ sgn(𝜆2 − 6𝘭𝜘) , 𝑔 ≔ √|𝜆2 − 6𝘭𝜘| . (2.8c)

give the prototype action in eq. (2.1a) if 𝜆2 − 6𝘭𝜘 ≠ 0.

2.1.3 Vacuum Kantowski–Sachs models

Finally, we consider the Kantowski–Sachs spacetime. Without matter content,
this is just the interior of Schwarzschild spacetime.

In Misner’s parameterisation [60, 12], the Kantowski–Sachs metric reads

𝕕𝑠2 = −𝑁(𝑡)2 𝕕𝑡2

+ Len2[𝖾2
√

3𝛽(𝑡) 𝕕𝜉2 + 𝖾−2
√

3(𝛽(𝑡)+Ω(𝑡))(𝕕𝜃2 + sin2 𝜃 𝕕𝜑2)] ,
(2.9)

where 𝑡, 𝜉 ∈ ℝ. This parameterisation has an advantage for separating the kinetic
term in the minisuperspace action. In vacuum, this metric just describes the
Schwarzschild metric inside the horizon [84].

Upon formally integrating out 𝜉, 𝜃, and 𝜑, the minisuperspace action reads

𝑆 = Vol3 ∫ 𝕕𝑡 𝑁𝖾−
√

3(𝛽+2𝛺){ 3
𝜘𝑁2 (− ̇𝛺2 + ̇𝛽2) + 𝑉KS𝖾2

√
3(𝛽+𝛺)} , (2.10a)

𝑉KS ≔ 1
𝜘Len2 , Vol3 ≔ 4πLen3 . (2.10b)

The transformations

𝑁 = 𝑀𝖾−
√

3(𝛽+2Ω) ; 𝛽 = 𝛾 , Ω = −√𝜘
6 𝜒 ; 𝑔 ≔

√
2𝜘 (2.11)
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bring the action to the prototype form in eq. (2.1a) with (𝘭 , 𝘴, 𝘷) = (+, −, −).

2.2 Classical trajectory

The minisuperspace model in eq. (2.1a) can be exactly solved by the Lagrangian
approach, which is to be shown here in section 2.2. In [5, 6] the solution in the
Hamiltonian approach is described; also see section 2.3 below.

The Euler–Lagrange equations of motion for (𝑀, 𝛾, 𝜒) can be derived to be

0 = 𝘴( 3
𝜘

̇𝛾2

𝑀(𝑡)2 − 𝘭
2

�̇�2

𝑀(𝑡)2 ) − 𝑉 𝖾𝑔𝜒 , (2.12a)

0 = −6𝘴
𝜘

𝕕
𝕕𝑡

̇𝛾
𝑀 , (2.12b)

0 = −𝑔𝑉 𝑀𝖾𝑔𝜒 − 𝘭𝘴 𝕕
𝕕𝑡

�̇�
𝑀 . (2.12c)

One readily sees that as the Euler–Lagrange equation for 𝑀 , eq. (2.12a) contain
only a first-order time derivative of 𝑀 . If it were a dynamical equation for 𝑀 ,
the derivative would be a second-order one. Instead of dynamical, the equation is
a constraint equation, and 𝑀 is not a dynamical variable, in contrast to 𝛾 and 𝜒.
See also the comment at the end of this subsection.

From eq. (2.12b) one sees that 𝛾 is cyclic, so that its conjugate momentum

𝑝𝛾 = −6𝘴Vol3 ̇𝛾
𝜘𝑀 (2.13)

is a first integral of the system. Using 𝑝𝛾 to eliminate 𝑀 in the Euler–Lagrange
equations, and further eliminating the parameter 𝑡, one can obtain analytic solu-
tions of the classical, implicit trajectory (or history, if we take the model as that
of a universe) in terms of (𝛾, 𝜒),

𝖾𝑔𝜒 trig(√ 3
2𝜘𝑔(𝛾 − 𝛾0))2 = 𝜘𝑝2

𝛾

12Vol23|𝑉 |
, (2.14)

where 𝛾0 is a constant, trig a trigonometric function which depends on the four
possibilities of (𝘭 , 𝘴𝘷), see table 1. All other cases, except for the (−, −), leave
trajectories in the (𝛾, 𝜒) space, see fig. 2.

Note that eq. (2.14) is an implicit equation of trajectory in configuration
space, in contrast to the usual explicit or parametrised representation of path.
This reflects the property of reparametrisation invariance in the system, i.e. the
parametrisation of the trajectory is not a priori significant; only with additional
considerations, e.g. adding a fictitious comoving observer into the universe, does a
parametrisation become relevant. Moreover, it is also easier for comparison with
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(a) (−, +) with sin
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(b) (+, −) with sinh
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(c) (+, +) with cosh

Figure 2: Three cases of the classical trajectories of the prototype model, which
are given by eq. (2.14) and table 1, with 𝑝𝛾 such that 𝜘𝑝2

𝛾
12Vol23|𝑉 | = 1 (in solid

lines) or 4 (dash-dotted lines). The contours (dashed lines) are the potential −𝖾𝑔𝜒

(figs. 2a and 2b) or +𝖾𝑔𝜒 (fig. 2c). Note that for the (−, +) and (+, −) cases,
the implicit equation (2.14) contains multiple continuous trajectories: the former
includes countably infinite many, whereas the latter comprises two, indicated in
the plot by different colours.
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(𝘭 , 𝘴𝘷) trig(√ 3
2𝜘𝑔(𝛾 − 𝛾0))2

(−, −) −sin(√ 3
2𝜘𝑔(𝛾 − 𝛾0))2

(−, +) sin(√ 3
2𝜘𝑔(𝛾 − 𝛾0))2

(+, −) sinh(√ 3
2𝜘𝑔(𝛾 − 𝛾0))2

(+, +) cosh(√ 3
2𝜘𝑔(𝛾 − 𝛾0))2

Table 1: Four cases of the trigonometrical function in eq. (2.14). The first case
(−, −) does not leave a real and physical trajectory for (𝛾, 𝜒); (−, +) gives infinitely
many isolated trajectories due to the periodicity of the sine function, (+, −) gives
two, and (+, +) gives one, see fig. 2.

the quantised system in the semi-classical approximation, see section 3 below.
Because of the implicity of the representation, there can be more than one

trajectory contained in eq. (2.14) with the same constant 𝛾0. As can be seen in
fig. 2, there are countably infinite trajectories in the (𝘭 , 𝘴𝘷) = (−, +) case, and two
trajectory in the (𝘭 , 𝘴𝘷) = (+, −) case.

First-order differential equations as constraints We often take it for granted
that the motion of a mechanical system is determined by all its positions and ve-
locities at some point of time as the initial condition. This is sometimes known as
Newton’s principle of determinacy [9, sec. 1.1] (see also appendix B.1), and can be
realised by differential equations that contain second-order (and no higher) time
derivative terms. In these equations, the initial positions and velocities can be
freely posed.

For an equation that contains only first-order time derivatives, its solution is
determined by the initial position alone, and the initial velocities can no longer be
arbitrarily given; they have to be compatible with the first-order equation. This
is called a constraint, which is the case for eq. (2.12a).

2.3 Dirac quantisation

One can easily verify that the Lagrangian action in eq. (2.1a) is reparametrisation
invariant, i.e. invariant under reparametrising

𝑡 ↦ ̃𝑡 = 𝑓(𝑡) , 𝑓 ′(𝑡) > 0 . (2.15)
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For such systems that do not depend explicitly on 𝑡, it can be shown that (e.g.
[91, sec. 3.1])

𝑝𝑖 ̇𝑞𝑖 − 𝐿 = 0 , (2.16)

where (𝑞𝑖, 𝑝𝑖) are the conjugate positions and momenta, and 𝐿 the Lagrangian.
One sees that the Hamiltonian of the system would be identically zero, if one were
to construct it in the usual way.

Such reparametrisation-invariant systems can be shown to be constrained or
singular, and the extended Hamiltonian formalism with inexpressible velocities
and primary constraints are to be used. Details of this formalism are described
in appendix A.1. Here in section 2.3, we give the steps that are essential for our
prototype model.

To begin with, one rewrites eq. (2.1a) as the action with inexpressible velocities
and primary constraints

𝑆 = Vol3 ∫ 𝕕𝑡 {𝑝𝛾 ̇𝛾 + 𝑝𝜒�̇� + 𝑝𝑀�̇� − 𝑀𝐻⟂ − 𝑝𝑀𝑣𝑀} , (2.17)

where 𝑣𝑀 is the inexpressible velocity of 𝑀 , and the Hamiltonian constraint reads

𝐻⟂ = 𝐻⟂(𝛾, 𝜒; 𝑝𝛾, 𝑝𝜒) = 𝘴
Vol3

(− 𝜘
12𝑝2

𝛾 + 𝘭
2𝑝2

𝜒) + Vol3𝑉 𝖾𝑔𝜒 (2.18a)

≕ 1
2𝒢𝐼𝐽𝑝𝐼𝑝𝐽 + 𝒱(𝑞) , (2.18b)

where 𝒢𝐼𝐽 ’s are the components of the inverse minisuperspace DeWitt metric,2

and 𝑝𝐼 denotes collectively the minisuperspace momenta variables (𝑝𝛾, 𝑝𝜒).

The action in eq. (2.17) is classically equivalent to the one in eq. (2.1a) in
the following ways. First, varing 𝑣𝑀 as well as the 𝑝’s, and then inserting the
resulting equations into eq. (2.17) gives back eq. (2.1a). Second, upon variation
of all positions and momenta {𝑞, 𝑝} as well as the inexpressible velocity 𝑣𝑀 , the
resulting differential equations are equivalent to the equations of motion. To be
more specific, the variation of 𝑝𝑀 gives

𝑣𝑀 = �̇� (2.19)

as an equation of motion; one also says that 𝑣𝑀 is constrained to �̇� .

2Unfortunately, inverse DeWitt metric in the full geometrodynamics has lower indices.
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The Hamiltonian with primary constraints in the action eq. (2.17)

𝐻p = 𝐻p(𝑀, 𝛾, 𝜒; 𝑝𝑀 , 𝑝𝛾, 𝑝𝜒; 𝑣𝑀) = 𝑀𝐻⟂(𝛾, 𝜒; 𝑝𝛾, 𝑝𝜒) + 𝑝𝑀𝑣𝑀 (2.20)

is a linear combination of the primary constraint 𝑝𝑀 and the secondary constraint
𝐻⟂. At the classical level, variation of 𝑀 and 𝑣𝑀 gives

𝐻⟂ = 0 , 𝑝𝑀 = 0 , (2.21)

respectively; in other words, they are constrained to zero as a part of the equations
of motion. À la Dirac [44, 91, sec. 5.1], the constraint equations (2.21) are to be
valid also at the quantum level upon acting on the wave function. This leads to
the minisuperspace Wheeler–DeWitt equation [40]

0 = 𝐻⟂(𝛾, 𝜒; ℏ
𝗂 𝜕𝛾, ℏ

𝗂 𝜕𝜒)𝜓 = (−ℏ2

2 𝒢𝐼𝐽 𝜕
𝜕𝑞𝐼

𝜕
𝜕𝑞𝐽

+ 𝒱)𝜓 (2.22a)

= (𝘴 ℏ2

Vol3
(+ 𝜘

12𝜕2
𝛾 − 𝘭

2𝜕2
𝜒) + Vol3𝑉 𝖾𝑔𝜒)𝜓(𝛾, 𝜒) , (2.22b)

where the operator-ordering [91, sec. 5.3] is chosen such that the “kinetic energy
operator”

−ℏ2

2 𝒢𝐼𝐽𝜕𝑞𝐼
𝜕𝑞𝐽

(2.23)

is proportional to the Laplace operator, which sometimes is called the Laplace–
Beltrami operator, named after Eugenio Beltrami, crediting his introduction of
this operator in differential geometry of surfaces [154].

One sees that for 𝘭 = ±, eq. (2.22b) is hyperbolic and elliptic, respectively. The
former case is more usual for a Wheeler–DeWitt equation [87, 67, 85].

One can solve eq. (2.22b) by separating the variables. Substituting the sepa-
rated test solution

𝜓(𝛾, 𝜒) = 𝖾 𝗂
ℏ 𝑝𝛾𝛾𝜙𝑝𝛾

(𝜒) (2.24)

into eq. (2.22b) gives

0 = 𝐻⟂(𝛾, 𝜒; ℏ
𝗂 𝜕𝛾, ℏ

𝗂 𝜕𝜒)𝜓𝑝𝛾
(2.22a revisited)

= 𝘭𝘴 ℏ𝐿P𝖾 𝗂
ℏ 𝑝𝛾𝛾

Vol3
[− ℏ2

2𝑀P

𝕕2

𝕕𝑦2 + 𝘭𝘴𝘷𝑈𝖾
𝑔

𝐿P
𝑦 − 𝘭ℰ𝑝𝛾

]𝜙𝑝𝛾
(𝑦) , (2.25a)

= 𝘭𝘴 ℏ2𝑔2𝖾 𝗂
ℏ 𝑝𝛾𝛾

8Vol3
[𝑥2 𝕕2

𝕕𝑥2 + 𝑥 𝕕
𝕕𝑥 + 𝘭(𝜈2 − 𝘴𝘷𝑥2)]𝜙𝑝𝛾

(𝑥) , (2.25b)
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(𝘭 , 𝘴𝘷) Bessel𝜈(𝑥)
(−, −) 𝑐1𝐾𝜈(𝑥) + 𝑐2𝐼𝜈(𝑥)
(−, +) 𝑐1𝐽𝜈(𝑥) + 𝑐2𝑌𝜈(𝑥)
(+, −) 𝑐1𝐹𝗂𝜈(𝑥) + 𝑐2𝐺𝗂𝜈(𝑥)
(+, +) 𝑐1𝐾𝗂𝜈(𝑥) + 𝑐2𝐼𝗂𝜈(𝑥)

Table 2: Four cases of the Bessel function in eq. (2.27) that solves eq. (2.25b).
Branches that diverge at the infinite boundary are in grey, which are to be dropped,
see section 2.4. The remaining branches are all real and have no imaginary part,
see fig. 3.

In eq. (2.25a), which will be used later in section 4.4,

𝐿P ≔
√

ℏ𝜘 , 𝑀P ≔ √ℏ/𝜘 , 𝑦 ≔ 𝐿P𝜒 ;

𝑈 ≔ Vol23|𝑉 |
ℏ𝐿P

> 0 , ℰ ≔ 𝑝2
𝛾

12ℏ𝑀P
.

(2.26a)

In eq. (2.25b),

𝜈 ≔ 1
ℏ𝑔

√2𝜘
3 𝑝𝛾 , 𝑥 ≔ 2

√
2Vol3√|𝑉 |

ℏ𝑔 𝖾𝑔𝜒/2 . (2.26b)

For the moment, we focus on eq. (2.25b), which is a Bessel equation. The corre-
sponding complete integrals with constant 𝑝𝛾 (see section 3.1), which will be called
mode functions, read

𝜓 ∝ 𝖾 𝗂
ℏ 𝑝𝛾𝛾Bessel|𝜈|(𝑥) , (2.27)

and Bessel𝜈(𝑥) is a Bessel function of order 𝜈, the type of which depends on
the signs (𝘭 , 𝘴𝘷), see table 2, where 𝐹𝗂𝜈(𝑥) and 𝐺𝗂𝜈(𝑥) are the unmodified Bessel
functions adapted to purely imaginary orders, defined as [46]

𝐹𝜈(𝑥) ≔ 1
2{𝖾+𝜈π𝗂/2𝐻(1)

𝜈 (𝑥) + 𝖾−𝜈π𝗂/2𝐻(2)
𝜈 (𝑥)} (2.28a)

≡ 1
2sec(

𝜈π
2 ){𝐽+𝜈(𝑥) + 𝐽−𝜈(𝑥)} ; (2.28b)

𝐺𝜈(𝑥) ≔ 1
2𝗂{𝖾+𝜈π𝗂/2𝐻(1)

𝜈 (𝑥) − 𝖾−𝜈π𝗂/2𝐻(2)
𝜈 (𝑥)} (2.28c)

≡ 1
2csc(

𝜈π
2 ){𝐽+𝜈(𝑥) − 𝐽−𝜈(𝑥)} . (2.28d)

By the arguments in section 2.4, the branches that diverge as 𝜒, 𝛾 → ±∞
are to be dropped. This removes the (−, −) case completely, as was the classical
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scenario; moreover, the 𝑌𝜈 and 𝐼𝗂𝜈 branches in the (−, +) and (+, +) cases are also
disqualified, respectively. Mode functions for small 𝜈’s are plotted in fig. 3.

2.4 Boundary condition at infinity

Since we do not have a Schrödinger norm that leads to a conserved probability
[91, sec. 5.2.2], one may wonder whether the wave functions that diverge at the
asymptotic region 𝜒, 𝛾 → ±∞ are also allowed. From both mathematical and
physical arguments, people believe that the wave functions are to be endowed
with a boundary condition, that they converge to zero fast.

Mathematically, since the Wheeler–DeWitt equation is in most cases hyper-
bolic, and solving an initial-value problem for it also requires a boundary condition
(e.g. [54, sec. 7.2]). More generally, one needs a suitable functional space, in order
to perform functional analysis on the wave functions; and the easiest, simplest
choice of such is a Banach space, which makes the wave functions normalisable in
the, e.g. 𝐿𝑝 sense [102]. This requirement makes the wave function fall off to zero
fast enough at infinity.

Physically, a boundary condition was already suggested by DeWitt [40], so
that the classical singularities can be avoided. In doing so, it is implicitly as-
sumed that the amplitude of a Wheeler–DeWitt wave function is related to the
probability, albeit the absence of a Schrödinger norm. From this perspective, the
plausible requirement that the probability at infinity does not diverge also leads
to a boundary condition. Moreover, in the semi-classical approximation (Born–
Oppenheimer + WKB), a Hilbert space for the matter content emerges [91, sec.
5.4.2], which imposes a fall-off boundary condition to the matter wave function,
rendering them belonging to 𝐿2. This boundary condition is easier to realise, if
the bulk cosmological wave function already falls off as needed at the boundary.

In the physical application of constructing wave-packets, we will also see that
a norm of the mode function plays a crucial role.

2.5 An exact wave-packet

Like the stationary Schrödinger equation in conventional quantum mechanics, the
Wheeler–DeWitt equation is also a linear differential equation. For a family of
mode functions {𝜓𝜈}, which are complete integrals of the Wheeler–DeWitt equa-
tion, one could therefore choose an amplitude 𝒜(𝜈) and construct a wave-packet

𝛹 = ∫ 𝕕𝜈 𝒜(𝜈)𝜓𝜈 , (2.29)
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Figure 3: Three cases of Bessel𝜈(𝑥) in the mode function (2.27), which are specified
in table 2. For concreteness, constants are chosen such that 𝑥 = 𝖾𝑔𝜒/2. The
normalisation factor 𝑁𝐾,𝜈 is given by eq. (4.28b). The envelops, in the asymptotic
sense as 𝑥 → +∞, have the expression √2𝖾−𝑥/π, and are found by the asymptotic
expansion of Bessel𝜈(𝑥) with fixed 𝜈 and 𝑥 → +∞, see table 6. As 𝑔𝜒 → +∞,
one sees that the (−, +) and (+, −) cases in figs. 3a to 3c converges to 0 as ∼
exp(−𝑔𝜒/4), but vibrates very (actually, exponentially) fast; the (+, +) case in
fig. 3d, on the other hand, converges to 0 as ∼ exp(−𝖾−𝑔𝜒/2 + 𝑔𝜒/4) and does not
vibrate. As 𝑔𝜒 → −∞, the (−, +) case in fig. 3a converges to 0, whereas the (+, −)
and (+, +) cases in figs. 3b to 3d vibrates sinusoidally with an asymptotically
constant amplitude.
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Figure 4: Schrödinger profile |𝛹 |2 of wave-packets of the (+, +)-case of the proto-
type model, the mode-function of which is proportional to 𝐾𝗂𝜈(𝑥). In fig. 4a, the
wave-packet is given by eq. (2.31). The solid line is the classical trajectory with

𝜘𝑝2
𝛾

12Vol23|𝑉 | = 1, which seems to lie “on the ridge” of the wave-packet. This will be
studied in section 6. In fig. 4b, a half-flipped Gaussian amplitude with respect to
the normalised mode function, eq. (2.37), is chosen.

which is a general solution of the Wheeler–DeWitt equation, independent of any
interpretations. It is scarce that an exact expression of a wave-packet in mini-
superspace models can be found. In this section 2.5 we will study such a case.

Making use of [70, eq. (6.795.3)], we have

∫
+∞

−∞
𝕕𝜈 𝜈𝖾𝗂𝜈𝑦𝐾𝗂|𝜈|(𝑥) = 𝗂π𝑥𝖾−𝑥 cosh𝑦 sinh 𝑦 , (2.30)

and are able to construct the exact wave-packet for the (+, +)-case of our prototype
model,

𝛹lin(𝛾, 𝜒) ∝ 𝖾𝑔𝜒
2 sinh[√ 3

2𝜘 𝑔(𝛾 − 𝛾0)]

⋅ exp{−2
√

2Vol3√|𝑉 |
ℏ𝑔 𝖾𝑔𝜒

2 cosh[√ 3
2𝜘 𝑔(𝛾 − 𝛾0)]} ,

(2.31)

with an amplitude that “seems to be” 𝒜lin(𝜈) ∝ 𝑝𝛾 ∝ 𝜈 (c.f. eq. (2.26b)). This
is a typical profile of the norm square |𝛹 |2 of a wave-packet in Wheeler–DeWitt
quantum cosmology, which form a tube around some classical trajectory in the
asymptotic region, see fig. 4a.

One may wonder how an amplitude that is proportional to the “wave number”
𝜈 can lead to a smooth wave-packet that makes physical sense. For example, if
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one naively takes plane waves (2π)−1/2𝖾𝗂𝑘𝑥 and uses a linear amplitude, one finds

1√
2π ∫

+𝑀

−𝑀
𝕕𝑘 𝑘𝖾𝗂𝑘𝑥 = −𝗂√2(1 + 𝑀2𝑥2)

π
1
𝑥2 cos(𝑀𝑥 + arctan 1

𝑀𝑥) (2.32a)

→ −𝗂
√

2π𝛿′(𝑥) 𝑀 → +∞ , (2.32b)

which is 0 for 𝑥 ≠ 0, and in no ways resembles the plot in fig. 4a.

The doubts can be dispelled if one considers the Schrödinger normalisation of
𝗂|𝜈|(𝑥), which is given in eq. (4.28b), leading to the true amplitude

𝒜lin(𝜈) ∝ 𝜈
𝑁𝐾,𝜈

∝ √ 𝜈
sinh(𝜈) sgn 𝜈 . (2.33)

In turn, the normalisation condition for the amplitude ∫+∞
−∞ 𝕕𝜈 |𝒜lin(𝜈)| = 1 gives

𝒜lin(𝜈) = √ 2𝜈
sinh(𝜈) sgn 𝜈 . (2.34)

See fig. 5 for the amplitude and probability density.

To understand more about 𝒜lin, one can turn to the Gaussian amplitude that
is popular in the literature, and compare the former with a modified version of
the latter, which is flipped with respect to the 𝑥-axis for 𝜈 < 0 and has the same
second moment ⟨𝜈2⟩ as 𝒜lin. The second moment for the “linear” amplitude in
eq. (2.34) reads

∫
+∞

−∞
𝕕𝜈 𝜈2|𝒜lin(𝜈)|2 = 1

2. (2.35)

One therefore uses the one-dimensional Gaussian distribution (c.f. eq. (3.22b))

GD1(0, 𝜎2 = 1
2; 𝜈) = π−1/2𝖾−𝜈2 (2.36)

and constructs the amplitude as

𝒜hfg(𝜈) = √GD1(0, 𝜎2 = 1
2; 𝜈) sgn 𝜈 = π−1/4𝖾− 𝜈2

2 sgn 𝜈 , (2.37)

see figs. 5a and 5b. The corresponding wave-packet, which is constructed numer-
ically, is plotted in fig. 4b. One sees that it indeed resembles that with 𝒜lin in
fig. 4a.
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Figure 5: Comparison of 𝒜lin and 𝒜hfg, in terms of the amplitudes (5a), densities
(fig. 5b) and moments (5c). In the linear-scaled plot in fig. 5a, the difference
between 𝒜lin and 𝒜hfg seems small. In the logarithm-scaled plot in fig. 5b, one
sees that |𝒜lin|

2 approaches a straight line as 𝜈 → ±∞, whereas ∣𝒜hfg∣
2 remains

parabolic, hence their difference becomes “asymptotically infinitely large” in terms
of orders of magnitude. In fig. 5c one sees that their moments are the same for
𝑛 = 0 and 2, then become exponentially different as the order increases.
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The difference of 𝒜lin and 𝒜hfg can also be seen with the higher moments,

∫
+∞

−∞
𝕕𝜈 𝜈2𝑛|𝒜lin(𝜈)|2 = (−2)𝑛(4𝑛+1 − 1)

𝑛 + 1 𝐵2𝑛+2 , (2.38a)

∫
+∞

−∞
𝕕𝜈 𝜈2𝑛∣𝒜hfg(𝜈)∣2 = π−1/2𝛤(𝑛 + 1

2) , (2.38b)

where 𝐵𝑛 is the 𝑛th Bernoulli–Seki number [45, sec. 24.1, 71, sec. 6.5].3 See fig. 5c.
One may wonder that the wave-packet in fig. 4a, though exact in its mathe-

matical form, is somewhat artificially constructed, and can hardly arise in Nature.
In section 5.3 we will indeed argue for this. Moreover, the wave-packets that are
more relevant to the real world will be numerically constructed in section 4.5.

Finally, one may ask about a possible classical correspondence of this wave-
packet, which many other wave-packets do have, see sections 3.5, 4.5 and 5.2.
Generally speaking, the familiar scenario would be that the wave-packet is con-
structed by superposing mode functions with quantum number 𝜈 ∈ ℝ by a normal
Gaussian amplitude, that is centred at 𝜈0. Then the claim is that, this wave-packet
corresponds to the classical trajectory with a classical first-integral ∝ 𝜈, see also
[5, 94]. This approach is not viable here, since the amplitude is by no means a
normal Gaussian one. We will focus on the issue of digging a classical trajectory
out of a generic wave-packet in section 6.

3These numbers were discovered independently by Jacob Bernoulli and Seki Takakazu at about
the same time. See [152] for the second mathematician.
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3 Semi-classical approach of WKB

The WKB approach, named after Wentzel, Kramers and Brillouin [168, 99, 27],
is an important approximation in conventional quantum mechanics that separates
the rapidly varying phase from the slowly varying amplitude [91, sec. 5.3.2, 105,
ch. 7]. It is also one of the standard ways to connect quantum geometrodynamics
with classical general relativity.

In contrast, the connection between the quantum and classical gravitational
theories in the scenario of wave-packets, is not very clear, and mostly ad hoc
case by case, shown with plots [5, 88, 94]. In [61], the author observed that a
superposition of WKB states can be chosen to have support only in a thin “tube”
around a classical trajectory. Moreover, in [78], it was suggested that in the WKB
approximation, an integral across a narrow section near a classical trajectory is
related to the lapse function. Furthermore, in [110], the author interpreted WKB
wave-packets as containing higher-order WKB effects. And finally in [127], it was
suggested that the wave function of the universe forms a narrow wave-packet in
the classical region.

It is common to construct a wave-packet by superposing mode functions with
an amplitude that refers to a quantum number, e.g. superposing plane waves with a
Gaussian amplitude that refers to the momenta of the plane waves. At the classical
level, the quantum numbers correspond to first integrals, and using the former
implies the existence of the latter. Therefore, this practice implicitly assumes that
the system is Liouville integrable [9, sec. 49], containing a number of first integrals.
Systems that do not have sufficient first integrals belong to the regime of classical
and quantum chaos [171], and will not be studied here. For a criterion of integrable
systems that can be separated in the Hamilton–Jacobi formulation, see [161].

In this section 3, we will first describe the general WKB theory in mathematics
and minisuperspace models, and explain the relation between the WKB mode
functions and the classical trajectories in section 3.1. Then we will derive the
WKB approximation for our prototype minisuperspace model, both by analysing
the obtained exact solution in section 3.2, and by working theWKBmode functions
out from scratch in section 3.3. Observing that these mode functions all contain
a quantum number, we will show in section 3.4 that these quantum numbers have
their correspondence at the classical level as first integrals of the system, and
the phase of the WKB mode functions is just the Hamilton’s principal function.
Finally, we will apply the theory established in section 3.4 to wave-packets in
section 3.5. We will show that these wave-packets, if constructed by superposing
the WKB mode functions with a narrow Gaussian amplitude, necessarily peak
near a classical trajectory, which has the first integrals corresponding to the centre
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of the Gaussian amplitude.

3.1 General theory
This section 3.1 briefly introduces the WKB approximation in mathematics and
the Wheeler–DeWitt approach.

Mathematically, the WKB approximation belongs to the class of global ap-
proximations to the solution of a linear differential equation, in which the highest
derivative is controlled by a small parameter 𝛿 [17, ch. 10], with respect to which
the solution 𝑦 = 𝑦(𝑥) is expanded as a formal power series on the exponent:

𝜙(𝑥) ∼ exp(1
𝛿

+∞
∑
𝑛=0

𝛿𝑛𝑆𝑛(𝑥)) , 𝛿 → 0 . (3.1)

In conventional quantum mechanics as well as in the Wheeler–DeWitt ap-
proach of quantum gravitation, the highest derivatives are controlled by the re-
duced Planck constant ℏ. The meaning of a power expansion with respect to such
a dimensionful quantity is questioned at the end of this subsection.

At the next-to-leading order, the WKB wave function is often taken as the test
solution [94]

𝜓 ≈
√

𝐷 𝖾 𝗂
ℏ 𝑆 , (3.2)

where 𝑆 is the leading order term, 𝐷 = 𝖾2ℏ0𝑆1 corresponds to the real part of
the next-to-leading order term, which is called Van Vleck factor, named after its
eponymous founder [159].4 In the minisuperspace models, inserting eq. (3.2) into
the Hamiltonian in the form of eq. (2.20), the resulting equations read [94]

0 = 𝐻⟂(𝜒, 𝛾; 𝜕𝑆0
𝜕𝜒 , 𝜕𝑆0

𝜕𝛾 ) = 1
2𝒢𝐼𝐽 𝜕𝑆

𝜕𝑞𝐼
𝜕𝑆
𝜕𝑞𝐽 + 𝒱(𝑞) , (3.3a)

𝒢𝐼𝐽 𝜕𝑆
𝜕𝑞𝐼

𝜕𝐷
𝜕𝑞𝐽 = −(□𝑆)𝐷 . (3.3b)

Results for the next orders can be found in e.g. [91, sec. 5.4.1], which are not
needed here.

Equation (3.3a) is just the Hamilton–Jacobi equation for the singular system
described by eq. (2.17).

Expansion with the dimensionful ℏ One may wonder how a physical quan-
tity, that has a unit, can be called small. More specifically, upon going to the

4See [132, ch. 7] for a viable introduction of the Van Vleck factor; for historical remarks, see
[160, 170].
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natural unit, we have ℏ = 1, and a formal power expansion with ℏ2 ≡ 1 does not
make sense.

In our opinion, one way out is to compare ℏ2 with the other quantities in
eq. (2.22b), i.e. to use ℏ2/(Vol23𝑉 ) as the small parameter. But once this is
fixed and found to be small, one could absorb the denominator into the expansion
coefficient, rending the usual power series with respect to ℏ.

3.2 Asymptotic expansion as a WKB approximation
In our prototype model, the exact solution of the minisuperspace Wheeler–DeWitt
equation (2.22b) is known. The WKB approach can therefore be realised in two
ways. One can start with the generic WKB result, which means the Hamilton–
Jacobi equation in (3.3a), and then solve 𝑆0 for it. This approach will be illustrated
later in section 3.3. Alternatively, one can also begin with the mode functions in
eq. (2.27) which are exact solutions, and find an approximation for the Bessel
functions that have the form of eq. (3.1). We will follow this approach in this
section 3.2.

Since 𝜈, 𝑥 ∝ ℏ−1 (c.f. eq. (2.26b)), an approximation at small ℏ means asymp-
totic expansion of the Bessel functions at large 𝜈 and 𝑥. Note that

(𝜈
𝑥)

2
= 𝜘𝑝2

𝛾

12Vol23|𝑉 |𝖾𝑔𝜒
(3.4a)

= trig(√ 3
2𝜘𝑔(𝛾 − 𝛾0))2 by substituting eq. (2.14). (3.4b)

Equation (3.4b) makes sense if we want to study the behaviour of the mode func-
tions near a classical trajectory.

In such a case of fixed 𝜈/𝑥, the asymptotic representations belong to the “De-
bye” type [114, sec. 3.14.2]. In the following we give the leading order results. For
the (−, +) case with 𝐽𝜈(𝑥), the Debye expansion reads [45, eq. (10.19.6)]

𝐽𝜈(𝑥) = √ 2
π(𝑥2 − 𝜈2)−1/4

⋅ {sin[
√

𝑥2 − 𝜈2 − 𝜈 arccos 𝜈
𝑥 + π

4 ] + 𝛰(𝑥−1)} 𝑥 > 𝜈 ,
(3.5)

where 𝑥 > 𝜈 holds because trig = sin for (−, +), and 𝑥 = 𝜈 is excluded because it
is not contained in the trajectories, see fig. 2a. The mode function 𝖾 𝗂

ℏ 𝑝𝛾(𝛾−�̃�0)𝐽𝜈(𝑥)
contains therefore two WKB branches ∼ 𝖾 𝗂

ℏ 𝑆± ,

𝑆±
ℏ ≔ 𝑝𝛾

ℏ (𝛾 − ̃𝛾0) ± (
√

𝑥2 − 𝜈2 − 𝜈 arccos 𝜈
𝑥 + π

4 ) , (3.6)
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see fig. 6a. Note we have introduced an additive constant ̃𝛾0 to cancel the ex-
tra constant factors and match the classical constant 𝛾0, which is also related to
eqs. (3.16a) and (3.16b). By using eq. (3.16a), one gets

0 = 1
ℏ

𝜕𝑆±
𝜕𝑝𝛾

= (𝛾 − 𝛾0) ∓ √2𝜘
3

1
𝑔 arccos√ 𝜘𝑝2𝛾

12Vol23|𝑉 |𝖾𝑔𝜒
, (3.7)

which leads to eq. (2.14) with trig = sin.

For the (+, −) case with 𝐹𝗂𝜈(𝑥) and 𝐺𝗂𝜈(𝑥), the Debye expansions at leading
order read [46, eqs. (5.15) and (5.16)]

𝐹𝗂𝜈(𝑥) = √ 2
π(𝑥2 + 𝜈2)−1/4

⋅ {sin[√𝑥2 + 𝜈2 − 𝜈 arsinh 𝜈
𝑥 + π

4 ] + 𝛰(𝑥−1)} ,
(3.8a)

𝐺𝗂𝜈(𝑥) = −√ 2
π(𝑥2 + 𝜈2)−1/4

⋅ {cos[√𝑥2 + 𝜈2 − 𝜈 arsinh 𝜈
𝑥 + π

4 ] + 𝛰(𝑥−1)} ,
(3.8b)

where 𝑥, 𝜈 ∈ ℝ+ are arbitrary. Both cases contain two WKB branches. Take 𝐹𝗂𝜈(𝑥)
as an example, one has

𝑆±
ℏ = 𝑝𝛾

ℏ (𝛾 − ̃𝛾0) ± (√𝑥2 + 𝜈2 − 𝜈 arsinh 𝜈
𝑥 + π

4 ) , (3.9)

0 = 1
ℏ

𝜕𝑆±
𝜕𝑝𝛾

= (𝛾 − 𝛾0) ∓ √2𝜘
3

1
𝑔 arsinh√ 𝜘𝑝2𝛾

12Vol23|𝑉 |𝖾𝑔𝜒
, (3.10)

which also leads to eq. (2.14) with trig = sinh. The calculation for 𝐺𝗂𝜈(𝑥) is
essentially the same, with an extra constant phase shift π/2.

Finally, for the (+, +) case, the expansion at leading order reads [114, p. 141–
142]

𝐾𝗂𝜈(𝑥) = √ 2π
𝖾π𝜈 (𝜈2 − 𝑥2)−1/4

⋅ {cos[
√

𝜈2 − 𝑥2 − 𝜈 arcosh 𝜈
𝑥 + 𝜋

4 ] + 𝛰(𝑥−1)} 𝜈 > 𝑥 ,
(3.11)

where 𝜈 > 𝑥 holds because trig = cosh for (+, +). Equation (3.11) contains, once
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Figure 6: Asymptotic expansions of Bessel𝜈(𝑥) of the “Debye” type. The ex-
act functions are plotted with solid lines, whereas the asymptotic expressions are
shown with dashed lines. The constants, normalisation factors and envelops are
chosen in the same way as in fig. 3. One sees that even for such small 𝜈’s, the
asymptotic expressions fit well with the exact functions over a large range. More
specifically, the asymptotics for 𝐹𝗂𝜈(𝑥) and 𝐺𝗂𝜈(𝑥) work for 𝑔𝜒 ∈ ℝ. As for 𝐽𝜈(𝑥),
the asymptotic works for 𝖾𝑔𝜒/2 ≫ 𝜈, and 𝐾𝗂𝜈(𝑥) for 𝖾𝑔𝜒/2 ≪ 𝜈. For the latter two
cases, the asymptotics blow up at a certain value. This is related to the fact that
the WKB approximation fails at the classical turning point. At the other side of
the “blowing-up walls”, there is another branch of asymptotic expression, which
fits the decaying part of the exact function, but is not needed here.
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(𝘭 , 𝘴𝘷) 𝐷±

(−, −) no solution
(−, +) (+𝑥2 − 𝜈2)−1/2𝐷0(√ 3

2𝜘 𝑔𝛾 ∓ arccos 𝜈
𝑥)

(+, −) (+𝑥2 + 𝜈2)−1/2𝐷0(√ 3
2𝜘 𝑔𝛾 ∓ arsinh 𝜈

𝑥)
(+, +) (−𝑥2 + 𝜈2)−1/2𝐷0(√ 3

2𝜘 𝑔𝛾 ∓ arcosh 𝜈
𝑥)

Table 3: General integrals of the Van Vleck factor 𝐷± that are solutions to
eq. (3.14) and correspond to 𝑆±. The pre-factors are in accordance with those
in eqs. (3.5), (3.11), (3.8a) and (3.8b). The arbitrary function 𝐷0 can be argued
to be a constant.

again, two WKB branches, and one has

𝑆±
ℏ = 𝑝𝛾

ℏ (𝛾 − ̃𝛾0) ± (
√

𝜈2 − 𝑥2 − 𝜈 arcosh 𝜈
𝑥 + 𝜋

4 ) , (3.12)

0 = 1
ℏ

𝜕𝑆±
𝜕𝑝𝛾

= (𝛾 − 𝛾0) ∓ √2𝜘
3

1
𝑔 arcosh√ 𝜘𝑝2𝛾

12Vol23|𝑉 |𝖾𝑔𝜒
, (3.13)

which, again, lead to eq. (2.14) with trig = cosh.
The WKB phases in eqs. (3.6), (3.9) and (3.12) can also be compared to the

classical trajectories, see fig. 7.

3.3 WKB approximation by direct calculation
In this section 3.3, we obtain the WKB phase 𝑆 and the van Vleck factor 𝐷 directly
from eqs. (3.3a) and (3.3b).

To begin with, one can verify that the 𝑆± given by eqs. (3.6), (3.9) and (3.12)
are indeed complete integrals of the Hamilton–Jacobi equation (3.3a), which is a
non-linear first-order partial differential equation by itself.

The transport equation (3.3b) in our prototype model reads

𝘴 ℏ
Vol3

(−𝜘
6

𝜕𝑆
𝜕𝛾

𝜕𝐷
𝜕𝛾 + 𝘭 𝜕𝑆

𝜕𝜒
𝜕𝐷
𝜕𝜒 ) = − 𝘴

Vol3
(−𝜘

6
𝜕2𝑆
𝜕𝛾2 + 𝘭 𝜕2𝑆

𝜕𝜒2 )𝐷 , (3.14)

which is a first-order linear partial differential equation. By using the transforma-
tion in eq. (2.26b), we are able to derive the general integral, which contains an
arbitrary function 𝐷0, in contrary to the complete integrals for 𝑆, where merely
arbitrary constants are present. See table 3.

Since 𝑆±’s are complete integrals that result from separation test solutions (see
eq. (3.18) below), the full Van Vlack factor should also be in a separated form,
which would render 𝐷0 constant, because it mixes 𝛾 with 𝜒 otherwise. This can
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(c) (+, +) with 𝑆+

Figure 7: The WKB phases 𝑆+ in eqs. (3.5), (3.11), (3.8a) and (3.8b) as dashed
contours, and the corresponding classical trajectories given by eq. (2.14) and ta-
ble 1. One sees that in the region where the mode function is asymptotically
sinusoidal with a constant amplitude (see fig. 6), the WKB phase fronts align
asymptotically with the classical trajectory. This happens for (+, −) as 𝑔𝜒 →
−∞, √ 3

2𝜘 𝑔(𝛾 − 𝛾0) → +∞ (7b) and (+, +) as 𝑔𝜒 → −∞, √ 3
2𝜘 𝑔(𝛾 − 𝛾0) → −∞

(7c). For (−, +) (7a), the mode function is never a sinusoidal form, and the wave
fronts do not match the classical trajectories.
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be verified if one begins from scratch by inserting the WKB wave function in
eq. (3.2) into the Wheeler–DeWitt equation (2.22b), and then adapts a separation
test solution. An ordinary differential equation in 𝜒 would arise, from which one
could find the second terms of 𝑆±’s in eqs. (3.5), (3.11), (3.8a) and (3.8b) that only
contain 𝛾, and the corresponding 𝐷±’s are solved by the pre-factors in table 3, with
no place for the arbitrary function 𝐷0.

We conclude that eqs. (3.3b) and (3.14) may not be the best starting point to
solve for the Van Vleck factor for systems with multiple degrees of freedom.

3.4 WKB phase as a complete integral
In this section 3.4, we study the WKBmode functions and their phases. We will see
that the mode functions can be chosen, such that they are labelled with quantum
numbers, which are related to classical integrals of motion. Correspondingly, their
phases are complete integrals of the classical Hamilton–Jacobi equation, which
contain the classical integrals mentions above.

For the Hamilton–Jacobi equation (3.3a), the useful family of solutions is the
complete solution or complete integral [106, sec. 47, 54, sec. 3.1, 9, sec. 9.4], that
containing integral constants, e.g.

𝑆 = 𝑆(𝑞𝑖; 𝛼1, … , 𝛼𝑛−1) + 𝛼𝑛 , (3.15)

where 𝛼𝑖 are constants, 𝑖 = 1, 2, … , 𝑛. A classical trajectory that corresponds to
this WKB solution can then be obtained by the principle of constructive interfer-
ence [61] as

𝜕𝑆
𝜕𝛼𝑖

= 0 . (3.16a)

Meanwhile, in the classical Hamilton–Jacobi formalism, the related equations are

𝜕𝑆
𝜕𝛼𝑖

= 𝛽𝑖 , (3.16b)

where {𝛼𝑖}’s are the constants contained in the complete integral 𝑆, and {𝛽𝑖}’s
are another set of constants [106, sec. 47].

Now, if 𝑆 is a complete integral in the form of eq. (3.15), a stationary wave-
packet can be constructed by smearing out each constant with an amplitude, see
e.g. section 3.5.

In practice, it has been shown in [61] that, in order to be able to derive the
Hamilton equations for the canonical momenta in full geometrodynamics, it is suffi-
cient and necessary that 𝑆 is a complete integral of the Hamilton–Jacobi equation,
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containing a number of constants that is equal to the physical degrees of freedom.
In the following we give a construction, in which the phase factor 𝑆 in eq. (3.2)

is indeed of a form close to the expression in eq. (3.15). Let the system be such
that 𝑚 ≤ 𝑛 − 1 variables can be iteratively separated [106, sec. 48], so that the
following equations can be obtained along a classical trajectory

𝜙1(𝑞1, 𝕕𝑆1
𝕕𝑞1 ) ≕ 𝛼1 , 𝜙2(𝑞2, 𝕕𝑆2

𝕕𝑞2 ; 𝛼1) ≕ 𝛼2 , … ,

𝜙𝑚(𝑞𝑚, 𝕕𝑆𝑛
𝕕𝑞𝑚 ; 𝛼1, … , 𝛼𝑚−1) ≕ 𝛼𝑚 ,

(3.17)

and the corresponding complete integral, (3.15), reads

𝑆(𝑞1, … , 𝑞𝑛; 𝛼1, … 𝛼𝑚) = 𝑆1(𝑞1; 𝛼1) + … + 𝑆𝑚(𝑞𝑚; 𝛼1, … , 𝛼𝑚)
+ 𝑆𝑚+1(𝑞𝑚+1 … 𝑞𝑛; 𝛼1, … , 𝛼𝑚) .

(3.18)

From the Hamilton–Jacobi theory, we know that {𝜙𝑗(𝑞𝑗, 𝑝𝑗)}’s are in involution
[9, sec. 10.1] with 𝐻⟂, i.e. the Poisson brackets vanish,

[𝜙𝑗(𝑞𝑗, 𝑝𝑗), 𝐻⟂(𝑞1, … , 𝑞𝑛, 𝑝1, … , 𝑝𝑛)]
P

= 0 , ∀𝑗 = 1, … , 𝑚 . (3.19)

Furthermore, we require that {𝜙𝑗(𝑞𝑗, 𝑝𝑗)}’s are in mutual involution.
Upon canonical quantisation, the 𝐻⟂ and {𝜙𝑗}’s are promoted to (if necessary,

self-adjoint, see section 4) operators [91, sec. 5.1], and the condition of mutual
involution with respect to [⋅, ⋅]P is promoted to commuting 1

𝗂ℏ [⋅, ⋅]−. Equation (3.17)
are promoted to the simultaneous eigenvalue equations

𝜙1(𝑞1, ℏ
𝗂 𝜕1)𝜓 = 𝛼1𝜓 , 𝜙2(𝑞2, ℏ

𝗂 𝜕2; 𝛼1)𝜓 = 𝛼2𝜓 ,

… , 𝜙𝑛(𝑞𝑛, ℏ
𝗂 𝜕𝑚; 𝛼1, … , 𝛼𝑚−1)𝜓 = 𝛼𝑚𝜓 ,

(3.20)

so that one can write 𝜓 = 𝜓𝛼1…𝛼𝑚
. Applying a WKB test solution to eq. (3.20)

results in the WKB wave function in eq. (3.2) with 𝑆 given by eq. (3.18). This
finishes our construction.

3.5 Narrow WKB Gaussian wave-packet
Having proved that the WKB phase 𝑆 of a mode function can be a complete
integral of the Hamilton–Jacobi equation, we show in this section 3.5 that a nar-
row Gaussian wave-packet peaks around a classical trajectory, with the integral
constant set by the centre of the Gaussian amplitude.

A narrow Gaussian wave-packet of the stationary WKB wave functions con-
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structed in section 3.4 can be worked out in an explicit form. We begin with the
two-dimensional case, so that the WKB wave function reads

𝜓(𝑞1, 𝑞2; 𝛼) ≈
√

𝐷 exp[ 𝗂
ℏ(𝑆(𝑞1, 𝑞2; 𝛼) − 𝛼𝛽)] , (3.21)

where the additional phase 𝛼𝛽 will become clear soon. The Gaussian wave-packet
is the result of

𝛹(𝑞1, 𝑞2; 𝛼, 𝜎) = ∫ 𝕕𝛢 𝜓(𝑞1, 𝑞2; 𝛢)GD1(𝛼, 𝜎2; 𝛢)1/2 , (3.22a)

GD1(𝛼, 𝜎2; 𝛢) ≔
exp(−1

2𝜎−2(𝛢 − 𝛼)2)
√

2π𝜎2 . (3.22b)

Applying Taylor’s theorem to the exponent of the integrand in eq. (3.22a) with
respect to 𝛢 at 𝛼 gives

𝜓(𝑞1, 𝑞2; 𝛢)GD1(𝛼, 𝜎; 𝛢)1/2

= exp[𝗂𝑑(0)
1 + 𝗂(𝛢 − 𝛼)𝑑(1)

1 − 1
2(𝛢 − 𝛼)2𝑑(2)

1 ]𝑔(𝛢) , (3.23)

where

𝑑(0)
1 ≔ 1

ℏ(𝑆(𝑞1, 𝑞2; 𝛼) − 𝛼𝛽) , (3.24a)

𝑑(1)
1 ≔ 1

ℏ(𝜕𝛼𝑆 − 𝛽) , (3.24b)

𝑑(2)
1 ≔ 1

2𝜎−2 − 𝗂
ℏ𝜕2

𝛼𝑆 ; (3.24c)

𝑔(𝛢) ≔
√

𝐷 exp(ℎ(𝛢)(𝛢 − 𝛼)2) , ℎ(𝛼) = 0 . (3.24d)

If 𝑑(2)
1 dominates in eq. (3.23), i.e. ∣𝑑(2)

1 ∣ ≫ 1, the integral in eq. (3.22a) can
be estimated by the stationary phase method [5, 39]. This can be realised if
𝜎−2 ≫ ℏ−1𝜕2

𝛼𝑆, which means that the wave-packet is constructed to be narrow.
The result is

𝛹(𝑞1, 𝑞2; 𝛼, 𝜎) ≈ (2π)1/4( 𝐷
𝜎𝑑(2)

1
)

1/2

exp⎡⎢
⎣

𝗂𝑑(0)
1 −

(𝑑(1)
1 )

2

2𝑑(2)
1

⎤⎥
⎦

, (3.25)

and the corresponding Schrödinger density reads

𝜌 = 𝜌(𝑞1, 𝑞2; 𝛼, 𝜎) = |𝛹|2 =
√

2π 𝐷
𝜎∣𝑑(2)

1 ∣
exp⎡⎢

⎣
− ℜ𝑑(2)

1

∣𝑑(2)
1 ∣

2 (𝑑(1)
1 )

2⎤⎥
⎦

. (3.26)
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(𝘭 , 𝘴𝘷)
√

2π 𝐷
𝜎∣𝑑(2)

1 ∣
⋅exp[−ℜ𝑑(2)

1
∣𝑑(2)

1 ∣
(𝑑(1)

1 )
2
]

(−, −) no solution

(−, +) 2
√

2π 𝜎√
+𝑥2−𝜈2+4𝜎4 ⋅exp[−𝜎2(+𝑥2−𝜈2)

𝑥2−𝜈2+4𝜎4 (√ 3
2𝜘 𝑔(𝛾 − 𝛾0) ∓ arccos 𝜈

𝑥)
2
]

(+, −) 2
√

2π 𝜎√
+𝑥2+𝜈2+4𝜎4 ⋅exp[−𝜎2(+𝑥2+𝜈2)

𝑥2+𝜈2+4𝜎4 (√ 3
2𝜘 𝑔(𝛾 − 𝛾0) ∓ arsinh 𝜈

𝑥)
2
]

(+, +) 2
√

2π 𝜎√
−𝑥2+𝜈2+4𝜎4 ⋅exp[−𝜎2(−𝑥2+𝜈2)

𝑥2+𝜈2+4𝜎4 (√ 3
2𝜘 𝑔(𝛾 − 𝛾0) ∓ arcosh 𝜈

𝑥)
2
]

Table 4: Narrow Gaussian wave-packet of the WKB mode functions with 𝑆± by
eq. (3.26), which are plotted in fig. 8.

Given that 𝐷, 𝑑(2)
1 and ℜ(𝑑(2)

1 ) vary slowly with respect to (𝑞1, 𝑞2), the peak of 𝜌
dominates near 𝑑(1)

1 = 0, i.e. 𝜕𝛼𝑆 = 𝛽 (c.f. eq. (3.16b)), which is just the classical
trajectory. Narrow Gaussian wave-packets of (−, +), (+, −) and (+, +) cases are
calculated in table 4 and plotted in fig. 8.

The above result in two dimensions can easily be generalised to higher dimen-
sions. Consider the WKB mode function

𝜓(𝑞𝑖; 𝛼𝑘) ≈
√

𝐷 exp[ 𝗂
ℏ(𝑆(𝑞1 … 𝑞𝑛; 𝛼1 … 𝛼𝑚) −

𝑚
∑
𝑘=1

𝛼𝑘𝛽𝑘)] , (3.27)

where 𝑚 = 𝑛 − 1 is the number of integral constants.

Choosing a non-degenerate 𝑚-dimensional Gaussian amplitude leads to the
Gaussian wave-packet

𝛹(𝑞𝑖; 𝛼𝑗, 𝛴𝑗𝑘) = ∫ 𝕕𝛢1 … 𝕕𝛢𝑚 𝜓(𝑞𝑖; 𝛢𝑘)GD𝑚(𝛼𝑘, 𝛴𝑘𝑙; 𝛢𝑘)1/2 , (3.28a)

where

GD𝑚(𝛼𝑘, 𝛴𝑘𝑙; 𝛢𝑘) ≔
exp[−1

2 ∑𝑚
𝑘,𝑙=1 (𝛴−1)𝑘𝑙(𝛢 − 𝛼)𝑘(𝛢 − 𝛼)𝑙]

√(2π)𝑚 det𝛴
(3.28b)

is the probability density function of the multivariate Gaussian distribution [72,
ch. 5], 𝑚 = 𝑛−1, and 𝛴 is the non-degenerate, positive definite covariance matrix.
The integral in eq. (3.28a) can also be estimated by the stationary phase method
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Figure 8: Narrow Gaussian wave-packets of the WKB mode functions with 𝑆± by
eq. (3.26) as dashed contours, the expressions of which are listed in table 4. One
sees that for each 𝑆±, the wave-packet peaks around one asymptotic branch of
the classical trajectory, which fails to hold near the turning point. Moreover, for
the (+, −)- and (+, +)-cases, where 𝑔𝜒 → −∞ is a region that the corresponding
Bessel functions are sinusoidal, the wave-packets form uniform tubes near the
classical trajectory. For the (−, +)- and (+, −)-cases, where 𝑔𝜒 → +∞ is a region
that the corresponding Bessel functions decay exponentially in amplitude, the
wave-packets also decay. See also fig. 3.
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as

𝛹(𝑞𝑖; 𝛼𝑘, 𝛴𝑘𝑙) ≈ ((2π)𝑚

det𝛴 )
1/4

( 𝐷
det 𝑑(2)

𝑚
)

1/2

⋅ exp(𝗂𝑑(0)
𝑚 − 1

2 ∑
𝑘,𝑙

(𝑑(2)
𝑚 )

𝑘𝑙
(𝑑(1)

𝑚 )
𝑘
(𝑑(1)

𝑚 )
𝑙
) ,

(3.29)

where

𝑑(0)
𝑚 ≔ 1

ℏ(𝑆(𝑞𝑖; 𝛼𝑘) −
𝑚

∑
𝑘=1

𝛼𝑘𝛽𝑘) , (3.30a)

(𝑑(1)
𝑚 )

𝑘
≔ 1

ℏ(𝜕𝛼𝑘
𝑆 − 𝛽𝑘) , (3.30b)

(𝑑(2)
𝑚 )

𝑘𝑙
≔ (1

2𝛴−1 − 𝗂
ℏHess𝛼 𝑆)

𝑘𝑙
; (3.30c)

(Hess𝛼 𝑆)𝑘𝑙 ≔ 𝜕𝛼𝑘
𝜕𝛼𝑙

𝑆 . (3.30d)

The Schrödinger density of the wave-packet reads

𝜌 = 𝜌(𝑞𝑖, 𝛼𝑘, 𝛴𝑘𝑙) = |𝛹|2

= √(2π)𝑚

det𝛴
𝐷

det 𝑑(2)
𝑚

exp[−ℜ(∑
𝑘,𝑙

(𝑑(2)
𝑚 )

𝑘𝑙
(𝑑(1)

𝑚 )
𝑘
(𝑑(1)

𝑚 )
𝑙
)] .

(3.31)

The corresponding classical trajectory is (𝑑(1)
𝑚 )

𝑘
= 0, or 𝛽𝑘 = 𝜕𝛼𝑘

𝑆, which is
identical to eq. (3.16a).

3.6 Summary
In this section 3 we have studied the WKB mode functions and the WKB wave-
packets both for generic models and specifically for our prototype model. With
the results established in section 3.5, we can be confident that a classical universe
is likely to emerge from a quantum wave-packet constructed by a narrow Gaussian
amplitude, and in regions where the WKB approximation is good. The amplitudes
near the peak also seem to be constant. Departure from classicality is expected
where these conditions are violated, for example when the wave-packet spreads
(and becomes wider), is damped (and the amplitude becomes smaller), or near the
classical turning point (and the WKB approximation fails).

The idea of the “peak” of a wave-packet, that was used in eqs. (3.26) and (3.31),
is heuristic. If a wave-packet does not have a form as in eqs. (3.26) and (3.31),
the heuristic idea does not easily apply, which has already happened in eq. (2.31).
One needs a mathematical description for this idea, which will be studied in sec-
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tion 6. One will see that in the contour approach of ridge-lines, as well as in the
simple first-derivative test, the classical trajectories in eqs. (3.26) and (3.31) can
be confirmed.
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4 Self-adjoint extensions

In conventional quantum mechanics, the kinematic space of physical states is a
Hilbert space, which the physicists usually perceive as a finite-dimensional Hilbert
space as in linear algebra, and the physical observables are delegated by Hermi-
tian operators. When generalising these statements to the unbounded operators
in infinite-dimensional Hilbert spaces, it turns out that they need to be refined in
the sense of general topology, namely the convergence of vectors becomes compli-
cated compared to the finite-dimensional cases, which is usually not emphasised in
physics. As a result, the Hermiticity of observables is to be understood not only
in their actions on physical states, but also in their domains, which may have an
impact on the spectra of the operators, leading to observable consequences.

In our prototype minisuperspace model, consider the case (𝘭 , 𝘴𝘷) = (−, +),
where the mode functions are proportional to the unmodified Bessel functions
𝐽𝜈(𝑥), which is a result from eqs. (2.25a) and (2.25b). If the differential operator in
those equations were naively Hermitian, these Bessel functions would be expected
to be orthogonal upon ∫+∞

−∞ 𝐽𝜈1
𝐽𝜈2

𝕕𝜒 ∝ ∫+∞
0 𝐽𝜈1

𝐽𝜈2
𝕕𝑥
𝑥 . Surprisingly, calculation

shows that [45, eq. (10.22.57)]

∫
+∞

0
𝐽𝜈1

(𝑥)𝐽𝜈2
(𝑥)𝕕𝑥

𝑥 = 1
𝜈1 + 𝜈2

sin π(𝜈1−𝜈2)
2

π(𝜈1−𝜈2)
2

, ℜ(𝜈1 + 𝜈2) > 0 , (4.1)

which is not zero unless 𝜈1 − 𝜈2 = 2𝑛, 𝑛 ∈ ℤ.
This simple calculation motivated us to look into details of the self-adjointness

of unbounded operators, which turns out to have already been extensively studied
by von Neumann [126, sec. II.9] in the context of conventional quantum mechanics,
and later summarised in e.g. [142, ch. VIII, 141, sec. X.1], which are easier to access.
In the 2000s, there was a revival of interest in this problem in physics pedagogy,
e.g. [7, 26, 36, 53].

In quantum gravitation, the technique of self-adjoint extensions was already
applied in [173], in which the self-adjoint extension of the Wheeler–DeWitt op-
erator is not unique, and was fixed by imposing simultaneous self-adjointness of
other operators. [55] discussed the self-adjointness of another Wheeler–DeWitt
operator, which is related to the scale factor in the Friedmann–Lemaître model,
which is defined only on the positive real axis. In [35], the self-adjointness of the
kinetic term of a scalar field was studied in a naked Reissner–Nordström space-
time. Furthermore, in [128–130], the self-adjoint extension was used to resolve the
unitarity problem in anisotropic models with respect to an internal time param-
eter. Finally, [2] studied the self-adjointness of the Hamiltonian derived from a
Brans–Dicke theory.
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In this section 4, we first review the mathematical construction of a Hilbert
space in section 4.1, and then give an elementary physical example in section 4.2,
where the self-adjointness of operators has a non-trivial physical effect. Next, in
section 4.3 we give a practical set of thumb-rules to check whether a self-adjoint
extension exists. Finally, in section 4.4 we go back to our prototype model, and
derive the consequences of imposing its Hamiltonian constraint to be self-adjoint,
which are to be used in section 4.5, so that we can construct wave-packets from
the eigenfunctions of the self-adjoint version of the Hamiltonian constraint.

Throughout this section 4, an operator 𝐴 will be stressed with a hat like 𝐴.

4.1 Mathematical preliminaries
In this section 4.1 we introduce the mathematical concept of self-adjointness and
describe the conditions, under which the concept can become alerting.

Let the Hilbert space in which the physical states live be 𝐇, which is equipped
with a Hermitian form as the inner product

(𝜓, 𝜙) = ∑
𝑖

𝜓∗
𝑖 𝜙𝑖 = (𝜙, 𝜓)∗ , 𝜙, 𝜓 ∈ 𝐇 , (4.2)

where {𝜙𝑖} are the components of 𝜙 under a standard basis. The norm of 𝜙 ∈ 𝐇
is then defined as

‖𝜙‖ = √(𝜙, 𝜙) . (4.3)

In such a linear space, one can pick up a linear operator 𝐴 and defines its adjoint
𝐴† by imposing

(𝐴†𝜙, 𝜓) ≔ (𝜙, 𝐴𝜓) , ∀𝜙, 𝜓 ∈ 𝐇 . (4.4)

𝐴 is called Hermitian if 𝐴𝜓 = 𝐴†𝜙, ∀𝜙 ∈ 𝐇, which is usually abbreviated as
𝐴 = 𝐴†. Here, only the action of operator is described; the domain of 𝐴 is just 𝐇.

A Hermitian operator has the following merits:

1. it has real eigenvalues;

2. its eigenvectors are orthogonal; and

3. it is the generator of a unitary operator.

These nice properties, especially the first and the third ones, make it a good
candidate to delegate a physical observable. This is the reason why the Hermitian
operators are important to quantum mechanics.
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Finite-dimensional Hilbert spaces do have applications in physics, such as in the
Stern–Gerlach experiment,5 where the two-dimensional space of non-relativistic
spins is essential. For most other applications, however, physical states often live
in (separable [73, Def. A.32]) Hilbert spaces of infinite dimensions, which is a
vector space equipped with an inner product, and is topologically complete in the
corresponding norm.

The concepts in finite-dimensional spaces need to be refined here; in particular,
the domain Dom𝐴 of the operator is to be specified, in addition to its action. To
begin with, we define the operator norm as

∥𝐴∥ ≔ sup
𝜙∈𝐇⧵{0}

∥𝐴𝜙∥
‖𝜙‖ ≡ sup

‖𝜙‖=1
∥𝐴𝜙∥ , (4.5)

namely the maximum norm of the result given by the operator acting on a unit
vector. If the norm is finite, the operator is called bounded. In this case, 𝐴 is
defined on the whole 𝐇, and the merits mentioned above are essentially kept [73,
sec. 7]. For a bounded “Hermitian” operator, the spectrum is also bounded [73,
prop. 7.5]. Examples include the spin operator in the Stern–Gerlach experiment,
and the density operator of a canonical ensemble ̂𝜌 ≔ 𝑍−1exp(−𝛽𝐻), where
𝑍 ≔ Tr exp(−𝛽𝐻) is the partition function, 0 < 𝛽 = 1/(𝘬B𝑇 ) is the inverse
temperature, 𝘬B the Boltzmann constant, and 𝐻 is a Hamiltonian operator which
is bounded below [108, eq. (31.4), 151, eq. (2.6.6)].

If ‖𝐴‖ is not finite, the operator is unbounded. In this case, the operator can
only be defined in a dense subset of 𝐇, and the notion of “Hermiticity” is to be
split into symmetricity and self-adjointness. On the one hand, an operator 𝐴 is
called symmetric if 𝐴𝜙 = 𝐴†𝜙, or

(𝐴𝜙, 𝜓) − (𝜙, 𝐴𝜓) = 0 , (4.6)

∀𝜙 ∈ Dom𝐴; the definition includes the case in which Dom𝐴 ⊊ Dom𝐴†. On the
other hand, 𝐴 is called self-adjoint if in addition to symmetric, Dom𝐴 = Dom𝐴†

also holds.
In conventional quantum mechanics, unbounded “Hermitian” operators are very

common. Consider a free particle moving in one dimension, then unbounded op-
erators include the position and momentum operators, as well as the Hamiltonian.
To explain in more detail, take the position operator ̂𝑥𝜙(𝑥) ≔ 𝑥 ⋅ 𝜙(𝑥) as the ex-
ample. The Hilbert space is the (Lebesgue) square-integrable functions 𝐿2(ℝ), but
Dom ̂𝑥 = {𝑥𝜙(𝑥) ∈ 𝐿2(ℝ)} ⊊ 𝐿2(ℝ); in words, for 𝜙 ∈ 𝐿2(ℝ), ̂𝑥𝜙(𝑥) may fail to be

5For a summary by the conductors of the experiments, see [62]; for a historical discussion, see
[57]; for a pedagogical introduction, see [149, ch. 1].
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in 𝐿2(ℝ), for instance 𝜙(𝑥) ∼ 𝛰(𝑥−1) as 𝑥 → ±∞, so that 𝜙(𝑥) ∼ 𝛰(𝑥0) and the
integral of |𝜙|2 on ℝ does not converge.

Compared to the introduction above, the mathematical details behind un-
bounded operators are more challenging, in which physicists may not be interested.
There are, however, possible physical consequences, which cannot be ignored.

4.2 Particle in an infinite square well: an example

In this section 4.2 we give a simple example in which the self-adjointness of a
physical operator is not trivial and has a physical consequence.

Consider the classic example of an infinite square well, in which a scalar particle
of mass 𝑚 moves non-relativistically in an infinite square potential wall between
[0, 𝐿] in one dimension. The common practice is to choose the Dirichlet boundary
condition

𝜙(0) = 𝜙(𝐿) = 0 (4.7)

for the stationary wave functions, yielding heuristically the space [105, eq. (22.5),
69, eq. (2), 73, sec. 9.6]

{𝜙 ∈ 𝐿2([0, 𝐿]) ∩ 𝐶1([0, 𝐿]) ∣ 𝜙(0) = 𝜙(𝐿) = 0} . (4.8)

The condition in eq. (4.8) sounds physically plausible, since one can understand
the infinite wall as the limiting case of a finite wall, in which the potential reads

𝒱(𝑥) =
⎧{
⎨{⎩

𝑈 > 0 𝑥 < 0 , 𝑥 ≥ 𝐿
0 0 ≤ 𝑥 < 𝐿 .

(4.9)

In this case, the stationary wave functions take the form

𝜙𝑛(𝑥) =
⎧{{
⎨{{⎩

𝑐1𝖾𝜅𝑛𝑥 𝑥 < 0
𝑐2 sin(𝑘𝑛𝑥 + 𝛿𝑛) 0 ≤ 𝑥 < 𝐿
𝑐3𝖾−𝜅𝑛𝑥 𝑥 ≥ 𝐿 ,

(4.10)

where 𝑐𝑖’s are normalisation factors, and 𝜙′
𝑘/𝜙𝑘 is expected to be continuous. One

can estimate that for the ground state,

𝛿0 ≈ πℏ√
2𝑚𝑈𝐿 𝑈 → +∞ , (4.11)

so that 𝜙0(0) → 0 as 𝑈 → +∞. In words, one expects that the stationary wave
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functions vanish at the limit of an infinite wall.
In the following we will study the momentum operator ̂𝑝,

̂𝑝𝜙 = −𝗂ℏ𝜕𝑥𝜙 . (4.12)

Taking it naively as “Hermitian”, we will check the domain of its conjugate ̂𝑝†. Let
𝜙 ∈ Dom ̂𝑝 be given by eq. (4.8). If ̂𝑝 is symmetric,

(𝜓, ̂𝑝𝜙) − ( ̂𝑝𝜓, 𝜙) = 0 (4.13)

needs to hold, and the condition under which eq. (4.13) is true will give Dom ̂𝑝†.
Direct calculation shows that

(𝜓, ̂𝑝𝜙) − ( ̂𝑝𝜓, 𝜙) = −𝗂ℏ(𝜓∗𝜙)𝑥=𝐿
𝑥=0 ≡ 0 , (4.14)

meaning that there is no further restraint for 𝜓, and Dom ̂𝑝† = 𝐿2([0, 𝐿]) ⊋ Dom ̂𝑝.
Apparently, ̂𝑝 is symmetric but not self-adjoint!

The problem is that the boundary conditions imposed to 𝜙 are too strong and
can be relaxed. This process is called self-adjoint extension. We can go back to
eq. (4.13) and set 𝜓 = 𝜙, which gives |𝜙(0)|2 = |𝜙(𝐿)|2, or

𝜙(𝐿) = 𝖾−𝗂𝛼𝜙(0) , 𝛼 ∈ ℝ . (4.15)

Inserting eq. (4.15) into eq. (4.13) yields

0 = −𝗂ℏ(𝜓∗𝜙)𝑥=𝐿
𝑥=0 = −𝗂ℏ𝜙(0)(𝖾−𝗂𝛼𝜓∗(𝐿) − 𝜓∗(0)) , (4.16)

or 𝜓(𝐿) = 𝖾−𝗂𝛼𝜓(0) , (4.17)

which is the same condition as that for 𝜙. In other words, roughly speaking, we
now have

Dom ̂𝑝𝛼 ≔ {𝜙 ∈ 𝐿2([0, 𝐿])| − 𝗂ℏ𝜕𝑥𝜙 ∈ 𝐿2([0, 𝐿]), 𝜙(𝐿) = 𝖾−𝗂𝛼𝜙(0)}
= Dom ̂𝑝†

𝛼 ,
(4.18)

making ̂𝑝𝛼 self-adjoint.
Note that each 𝛼 gives a different self-adjoint domain and therefore a different

operator ̂𝑝𝛼. If there were no such freedom to choose, the operator would be called
essentially self-adjoint. In this example, ̂𝑝 is not essentially self-adjoint, and has a
family of self-adjoint extensions, labelled by 𝛼.

More exact mathematical details of this specific example can be found in [142,
sec. VIII.2, 141, sec. X.1, 66, sec. 6.1.3]. We now turn to the physical implica-
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tions. Fixing an 𝛼, the eigenvalues and eigenfunctions of ̂𝑝𝛼 are (𝑘𝛼, 𝖾 𝗂
ℏ 𝑘𝛼𝑥), where

𝑘𝛼 ≔ 𝐿
ℏ (𝛼 + 2π𝑛), 𝑛 ∈ ℤ. One sees that a different 𝛼 (mod 2π) corresponds to

a different momentum spectrum; in other words, distinct extensions potentially
have an experimental effect.

Is self-adjointness a common problem in quantum mechanics? Having
seen the problem of self-adjointness in the elementary example of a square well,
one may wonder whether such a problem would also occur in other basic cases
in quantum mechanics. If this were true, things could become nasty because the
study of self-adjointness is in general a difficult task.

Fortunately, in quantum mechanics, we mostly deal with operators that are
formally polynomial with respect to differentiation (differential operations), say
∑𝑛

𝑖=0 𝑐𝑖
𝕕𝑖

𝕕𝑥𝑖 , where 𝑥 represents a position variable. This fact greatly simplifies the
task, and the self-adjointness can be established for quite generic situations. For
example, consider a non-relativistic particle moving in one dimension in a potential
𝒱(𝑥). Then the Hamiltonian is essentially self-adjoint if 𝒱(𝑥) is square-integrable,
or bounded below by some −𝐾𝑥2, 𝐾 > 0 [64, ch. 7.1]. This condition is even
more relaxed than bounded below by a constant, and therefore guarantees the
self-adjointness of most Hamiltonians that describe a physical system.

The Dirac notation In conventional quantum mechanics, the Dirac notion is
often introduced [41], such that the matrix element of an operator 𝐴 reads

⟨𝜓 ∣ 𝐴 ∣ 𝜙⟩ ≔ (𝜓, 𝐴𝜙) . (4.19)

One readily sees that the calculation in eq. (4.14) is impossible under such a
notion, because it can only express two types of matrix elements, ⟨𝜓 ∣ 𝐴 ∣ 𝜙⟩ and

⟨𝜓 ∣ 𝐴† ∣ 𝜙⟩, whilst there are four possibilities (𝜓, 𝐴𝜙), (𝜓, 𝐴†𝜙), (𝐴𝜓, 𝜙) and
(𝐴†𝜓, 𝜙). We see that the Dirac notion as in eq. (4.19) is inadequate in the
context of studying the self-adjointness.

4.3 Criterion of the existence of self-adjoint extensions
The generic theory of self-adjoint extensions is technically complicated, and an
outline is given in appendix D. A set of thumb-rules, however, can be described
in short. In this section 4.3, we give a criterion for the existence of self-adjoint
extensions.

Define the deficiency subspaces 𝐇𝐴,± as the kernel of ±𝗂𝜆�̂� − 𝐴†, where 𝐴 ia
symmetric, 𝜆 is introduced only for dimensional reason. Roughly speaking, 𝐇𝐴,±
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is spanned by the solutions 𝜙 in

𝐴†𝜙 = ±𝗂𝜆𝜙 . (4.20)

The deficiency indices are defined by

𝒩𝐴,± ≔ dim𝐇𝐴,±. (4.21)

There are three cases:

1. 𝒩𝐴,+ = 0 = 𝒩𝐴,−: 𝐴 is essentially self-adjoint.

2. 𝒩𝐴,+ = 𝒩𝐴,− = 𝒩: 𝐴 has self-adjoint extensions, which correspond one-
to-one to the unitary maps

𝑈 ∶ 𝐇𝐴,+ → 𝐇𝐴,− , dim𝑈 = 𝒩2 . (4.22)

3. Otherwise, 𝐴 has no self-adjoint extension.

Use the momentum operator for the infinite-well model in section 4.2 as an
example. Equation (4.20) now reads

−𝗂ℏ𝜕𝑥𝜙 = ±𝗂𝜆𝜙 . (4.23)

The solutions are

𝜙± ∝ 𝖾∓ 𝜆
ℏ 𝑥 , (4.24)

so that 𝒩−𝗂ℏ𝜕𝑥,+ = 1 = 𝒩−𝗂ℏ𝜕𝑥,+, and ̂𝑝 = −𝗂ℏ𝜕𝑥 has a one-parameter family of
self-adjoint extensions, which fits the conclusion in eq. (4.18).

In practice, however, it is possible that the symmetricity condition in eq. (4.6)
alone can determine the self-adjoint domain(s) of the operator, see section 4.4.

4.4 Self-adjointness of the exponential potential
Now in this section 4.4 we go back to the specific case in our prototype model
in eq. (2.1a). After separation of variables in eq. (2.24), the non-trivial part of
the model can be abstracted as the following non-relativistic particle with an
exponential potential, described by the Hamiltonian

𝐻(𝑦, 𝑝) = 𝑝2

2𝑀 + 𝑈𝖾𝑘𝑦 , (4.25)

where 𝑀 has the dimension of mass, 𝑈 ∈ ℝ ⧵ {0}.
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(𝘦, 𝘶) Bessel𝜈(𝑥)
(−, −) 𝑐1𝐽𝜈(𝑥)
(−, +) no solution
(+, −) 𝑐1𝐹𝗂𝜈(𝑥) + 𝑐2𝐺𝗂𝜈(𝑥)
(+, +) 𝑐1𝐾𝗂𝜈(𝑥)

Table 5: Physical solutions to eq. (4.26b), which are adapted from table 2 with
𝘦 = 𝘭 , 𝘶 = 𝘭𝘴𝘷 .

Upon the usual canonical quantisation, the stationary Schrödinger equation
reads

0 = [𝐻(𝑦, ℏ
𝗂

𝕕
𝕕𝑦) − ℰ]𝜙(𝑦) = [− ℏ2

2𝑀
𝕕2

𝕕𝑦2 + 𝑈𝖾𝑘𝑦 − ℰ]𝜙(𝑦) (4.26a)

= −ℏ2𝑘2

8𝑀 [𝑥2 𝕕2

𝕕𝑥2 + 𝑥 𝕕
𝕕𝑥 + (𝘦𝜈2 − 𝘶𝑥2)]𝜙(𝑥) , (4.26b)

where the dimensionless parameters 𝑥 ≔ 2√2𝑀|𝑈|
ℏ𝑘 𝖾𝑘𝑦/2, the energy ℰ ≕ 𝘦 ℏ2𝑘2

8𝑀 𝜈2;
𝘦 ≔ sgnℰ, 𝘶 ≔ sgn𝑈 . Equations (4.26a) and (4.26b) take the same form as
eqs. (2.25a) and (2.25b), respectively. The solutions to eq. (4.26a) are therefore
also Bessel functions, see table 5.

One could use the criterion with deficiency indices in section 4.3, and would
see that for 𝘶 = +, the deficiency indices are both 0, and the Hamiltonian is
essentially self-adjoint. For 𝘶 = −, in contrast, there is one bounded solution for
each of ±𝗂𝜆, respectively, so that the deficiency indices are both 1, meaning that
there is a one-parameter family of self-adjoint extensions.

In the case of an exponential potential, however, it turns out that the sym-
metricity condition in eq. (4.6) alone already fixs the self-adjoint domains of the
Hamiltonian. The symmetricity of 𝐻 requires the vanishing of

(𝜓, 𝐻𝜙) − (𝐻𝜓, 𝜙)

= − ℏ2

2𝑀 ∫
+∞

−∞
𝕕𝑦 [𝜓∗ 𝕕2𝜙

𝕕𝑦2 − 𝕕2𝜓∗

𝕕𝑦2 𝜙] (4.27a)

= −ℏ2𝑘2

8𝑀 ∫
+∞

0

𝕕𝑥
𝑥 {𝜓∗[𝑥 𝕕

𝕕𝑥(𝑥𝕕𝜙
𝕕𝑥)] − [𝑥 𝕕

𝕕𝑥(𝑥𝕕𝜓
𝕕𝑥 )]

∗
𝜙} . (4.27b)

For stationary states, one sets 𝜓 = Bessel𝜈1
, 𝜙 = Bessel𝜈2

, inserts eq. (4.26b) into
eq. (4.27b) and obtains

−ℏ2𝑘2

8𝑀 (𝜈2
1 − 𝜈2

2)𝘦 ∫
+∞

0

𝕕𝑥
𝑥 Bessel𝜈1

(𝑥)Bessel𝜈2
(𝑥) . (4.27c)
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This integral can be evaluated by the method in appendix C; here we only sum-
marise the results.

The simpler case is 𝘶 = +, in which the potential is bounded below by 0, and the
Hamiltonian is essentially self-adjoint, which has a continuous positive spectrum
(𝘦 = +) and no negative spectrum. Therefore the generalised eigenvalues and
eigenfunctions are proportional to (𝜈2, 𝐾𝗂𝜈(𝑥)). From [174, 131, 157]

∫
+∞

0
𝐾𝗂𝜈1

(𝑥)𝐾𝗂𝜈2
(𝑥)𝕕𝑥

𝑥 = π2

2𝜈1sinh(π𝜈1)𝛿(𝜈1 − 𝜈2) , 𝜈1, 𝜈2 > 0 (4.28a)

one sees that the 𝛿-normalisation factor for 𝐾𝗂𝜈(𝑥 = 2√2𝑀|𝑈|
ℏ𝑘 𝖾𝑘𝑦/2) is

𝑁−2
𝐾,𝜈 = π2

𝑘𝜈 sinh(π𝜈) . (4.28b)

The more complicated cases are where 𝘶 = −, for which the Hamiltonian is
not essentially self-adjoint [5]; a family of self-adjoint extensions is characterised
by a number 𝑎 ∈ [0, 2). For its positive part 𝘦 = +, the spectrum is continuous,
and the orthonormal eigenfunction corresponding to 𝜈 is

𝛯(𝑎)
𝜈 (𝑦) = 𝑁 (𝑎)

𝛯,𝜈(𝐹𝗂𝜈(𝑥) cos π𝑎
2 + 𝐺𝗂𝜈(𝑥) sin π𝑎

2 ) , (4.29)

where 𝑁𝛯,𝜈 is the 𝛿-normalisation factor for the original variable 𝑦. Adapting the
method in [157], one can derive

∫
+∞

0
𝐹𝗂𝜈1

(𝑥)𝐹𝗂𝜈2
(𝑥)𝕕𝑥

𝑥 = tanh π𝜈1
2

𝜈1
𝛿(𝜈1 − 𝜈2) , (4.30a)

∫
+∞

0
𝐺𝗂𝜈1

(𝑥)𝐺𝗂𝜈2
(𝑥)𝕕𝑥

𝑥 = coth π𝜈1
2

𝜈1
𝛿(𝜈1 − 𝜈2) , (4.30b)

∫
+∞

0
[𝐹𝗂𝜈1

(𝑥)𝐺𝗂𝜈2
(𝑥) + 𝐹𝗂𝜈2

(𝑥)𝐺𝗂𝜈1
(𝑥)]𝕕𝑥

𝑥 = 0 ; (4.30c)

therefore

(𝑁 (𝑎)
𝛯,𝜈)

−2
= 2

𝑘𝜈 (tanh π𝜈
2 cos2 π𝑎

2 + coth π𝜈
2 sin2 π𝑎

2 ) . (4.30d)

For its negative part 𝘦 = −, the spectrum is discrete with

𝜈 = 2𝑛 + 𝑎 , 𝑛 ∈ ℕ , (4.31a)
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Figure 9: Normalised eigenfunctions of the Hamiltonian with negative exponential
potential in eq. (4.25). Solid, dashed and dash-dotted lines denote different fam-
ilies of eigenfunctions in distinct self-adjoint domains. The functions are shifted
with the corresponding energy level, plotted as black, dotted lines. One sees that
in fig. 9a, different extensions correspond to phase shifts in the asymptotically
sinusoidal region 𝑘𝑦 → −∞. In fig. 9b, different domains give rise also to different
families of energy levels, in addition to “phase shifts”.

and the corresponding orthonormal eigenfunctions read

𝛷(𝑎)
𝑛 (𝑦) = 𝑁 (𝑎)

𝐽,𝑛𝐽2𝑛+𝑎(𝑥) , (4.31b)

(𝑁 (𝑎)
𝐽,𝑛)

−2
= 1

𝑘(2𝑛 + 𝑎) . (4.31c)

These eigenfunctions are plotted in fig. 9.
The exponential potential in eq. (4.25) is also a special case of the so-called

Morse potential [120]

𝑔1𝖾−2𝑐𝑦 + 𝑔2𝖾−𝑐𝑦 , 𝑔1, 𝑔2 ∈ ℝ, 𝑐 > 0 , (4.32)

which belongs to the exact solvable potentials of the one-dimensional stationary
Schrödinger equation. Lists and comprehensive results of such potentials can be
found in e.g. [11, appx. I]. The self-adjointness of the exponential potential has
been studied in [64, sec. 8.5.3] as well, which confirms our results.

4.5 Wave-packets of the minisuperspace model

Having fixed the self-adjoint domains of the Hamiltonian constraint, we can now
construct wave-packets for our minisuperspace model that are more physically
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relevant.
For the (+, −) and (+, +)-cases, the quantum number 𝑝𝛾 or 𝜈 ranges in ℝ, so

that we can use Gaussian amplitudes for them, as in eq. (3.22a). For the (−, +)-
case, where the quantum number 𝑛 takes non-negative integral values, we choose
the Poisson distribution, the probability mass function reads

PD(𝜇; 𝑘) ≔ 𝜇𝑘𝖾−𝜇

𝑘! , (4.33a)

𝜇 > 0, 𝑘 = 0, 1, 2, … , (4.33b)

where 𝜇 is the mean value. The reason for the choices will be given in section 5.3.
None of the wave-packets can be worked out analytically; the numerical con-

structions are shown in fig. 10, which should also be compared to fig. 8. One sees
that the classical trajectories, in which the integral constants are proportional to
the corresponding quantum numbers, lie near the ridge of the wave-packets. This
will be studied in detail in section 6.

4.6 Summary

Non-trivial results of self-adjoint extensions can appear in those quantum mechan-
ical systems, with degrees of freedom taking values in a subinterval of ℝ, or with a
potential 𝒱(𝑥) that cannot be bounded below by −𝐾𝑥2, 𝐾 > 0. These conditions
can be satisfied in certain cosmological models, for example when one uses the
scale factor 𝑎 that ranges in (0, +∞). Alternatively, as shown by the prototype
model, they also arise in a Friedmann–Lemaître–Liouville model where the Liou-
ville field is phantom. In this case, there is an one-parameter family of self-adjoint
domains, that leads to a phase-shift for the mode functions, or the discretisation
of a quantum number that are also subject to the shift.

In the early development of quantum theory, people recognised discrete ob-
servable values in e.g. the atomic emission or the Stern–Gerlach experiment, which
were distinguishing phenomena that told them apart from the continuous classi-
cal world. It has been known since the advent of quantum mechanics that these
discretisations root in the spectra of self-adjoint operators acting on the physical
Hilbert space. Now that different discrete spectra also appear with the requirement
of operators being self-adjoint, we expect this is a chance for experimentalists to
realise such an ambiguous system, and a challenge for theorists to work out rules
that select a privileged spectrum over the others.

In the phantom Friedmann–Lemaître–Liouville model with parameters that
lead to the discrete spectrum, the Poisson amplitude gives many wave-packets
that overlap and interfere in the long-tailed region. Heuristically, one can argue
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Figure 10: Wave-packets of the minisuperspace model. In figs. 10a to 10c, a Pois-
son amplitude with mean value 𝜇 = 1 is chosen, whereas in figs. 10d to 10g, a
Gaussian amplitude with mean value 𝜇 = 1, standard distribution 𝜎 = 1/2 is cho-
sen; see section 5.3 for arguments. In figs. 10a to 10f, the (−, +)- and (+, −)-cases
with different self-adjoint extensions are plotted; One sees that they produce dif-
ferent interference patterns. The classical trajectories, where the integral constant
is the same as the quantum number, lie near the ridge of the wave-packets.
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from the experience in quantum mechanics that these could lead to tunnelling
between the adjacent multiverses and a departure from the classical universe, that
meets singularities at the end of the tail. More discussion will be given in section 6.
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5 Stationary wave-packets

In quantum cosmology, the usual way of constructing a wave-packet is linearly
superposing the complete integrals 𝜓𝜈, containing constants 𝜈, of the Wheeler–
DeWitt equation,

0 = 𝐻⟂𝜓𝜈 = (−ℏ2

2 𝒢𝐼𝐽 𝜕
𝜕𝑞𝐼

𝜕
𝜕𝑞𝐽

+ 𝒱)𝜓𝜈, (2.22a revisited)

𝛹 = ∫ 𝕕𝜈 𝒜(𝜈)𝜓𝜈 . (2.29 revisited)

In quantum mechanics, eq. (2.22a) is comparable to the stationary Schrödinger
equation

𝐻𝜓𝜈 = 𝐸𝜓𝜈 , (5.1)

the solution 𝜓𝜈 to which is called the wave function of a stationary state, where
𝜈 is another quantum number that marks different states in a degenerate level. If
one writes 𝐻⟂ = 𝐻 − 𝐸 and fixes the energy level 𝐸, eq. (5.1) becomes 𝐻⟂𝜓𝜈 = 0,
which looks identical to eq. (2.22a). In this resemblance, constructing a wave-
packet corresponds to the superposition of degenerate stationary states in the
same energy level, the result of which is also an energy eigenstate of the same
level.

We will call such a quantum wave-packet a stationary wave-packet, that encom-
passes both conventional quantum mechanics and the Wheeler–DeWitt quantum
cosmology. Relating a tentative theory of quantum gravitation to quantum me-
chanics can lead to analogue models, which has been realised in the study of black
holes [13, 156, 158, 167] and quantum field theory in curved space-time [24, 166].
For a review of analogue gravitation, see [14].

On the one hand, we did not find suggestions that relate the superposition of
degenerate energy eigenstates and quantum cosmology in the literature. On the
other hand, we noticed that the Rydberg or highly excited atom, has indeed a de-
scription of such a superposition as a wave-packet [58, 111, 153]. Independent of
this experimental aspect, in section 5.1 we introduce the two-dimensional hydrogen
atom as a toy model, and then construct stationary wave-packets in section 5.2.
Meanwhile, in section 5.3 we discuss the choice of superposition amplitudes, argu-
ing in favour of Gaussian, binomial and Poisson amplitudes, etc., which maximises
the entropy. In the end, we turn to the study of the classical limit, and verify the
correspondence principles in section 5.4.
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5.1 Two-dimensional hydrogen atom

Consider a spinless non-relativistic two-dimensional hydrogen atom, described by
the action

𝑆 = ∫ 𝕕𝑡 [𝑚
2 ( ̇𝜚2 + 𝜚2�̇�2) + 𝛼

𝜚 ] , 𝛼 > 0 (5.2)

in polar coordinates (𝜚, 𝜑). The classical trajectory can be solved in terms of the
conserved energy and angular momentum (𝐸, 𝐿) as

𝜚 = 𝐿2

𝑚𝛼 + √𝑚(2𝐸𝐿2 + 𝑚𝛼2) cos(𝜑 − 𝜑0)
. (5.3)

For 𝐸 < 0, the system is bounded, and the trajectory is an ellipse. Fixing 𝜑0 = 0,
the trajectory passing through (𝜚, 𝜑) = (𝜚0, 0) and (𝜚π, π) can be worked out in
terms of

𝐸 = − 𝛼
𝜚0 + 𝜚π

< 0 , 𝐿 = ±√ 2𝑚𝛼
𝜚−1

0 + 𝜚−1π
. (5.4)

Upon canonical quantisation, the stationary Schrödinger equation reads

(− ℏ2

2𝑚∇2 − 𝛼
𝜚 )𝜓(𝜚, 𝜑) = 𝐸𝜓(𝜚, 𝜑) , (5.5)

where the Laplace–Beltrami operator

∇2 ≔ 𝜕2
𝜚 + 𝜚−1𝜕𝜚 − 1

ℏ2𝜚2 𝐿2 , 𝐿 ≔ −𝗂ℏ 𝜕𝜑 (5.6)

is chosen. In appendix E we show that the stationary wave functions, with definite
main and angular quantum numbers, are

𝜓𝑛𝑙(𝜉, 𝜑) = 𝛲𝑛𝑙(𝜉)Φ𝑙(𝜑) , (5.7a)
𝛲𝑛𝑙(𝜉) = 𝑁𝑛𝑙𝜉|𝑙|𝖾−𝜉/2𝐺𝑛𝑙(𝜉) , (5.7b)

𝑁𝑛𝑙 = 1
(2|𝑙|)!(

(𝑛 + |𝑙|)!
(2𝑛 + 1)(𝑛 − |𝑙|)!)

1/2
, (5.7c)

𝛷𝑙(𝜑) = (2π)−1/2𝖾𝗂𝑙𝜑, 𝑙 = 0, ±1, ±2, … , (5.7d)

where

𝜉 ≔ 𝛽𝑛𝜚 , 𝛽𝑛 ≔ 2𝑚𝛼
ℏ2 (𝑛 + 1

2)
−1

(5.7e)

49



are the dimensionless radial coordinate, and 𝐺𝑛𝑙 is a special function given in
eqs. (E.5a) to (E.5c). Note that eq. (5.7c) is chosen such that eq. (5.7a) is nor-
malised with respect to 𝜉, rather than 𝜚. The energy levels for the bounded states
are

𝐸𝑛 ≔ −𝑚𝛼2

2ℏ2 (𝑛 + 1
2)

−2
. (5.8)

The normalisation condition for scattering states 𝐸 ≥ 0 does not lead to a
closed-form expression for the normalisation factor, see e.g. [175, eq. (2.28)]. For
simplicity, we focus on the case 𝐸 < 0 in the following.

5.2 Stationary wave-packets for the hydrogen atom

For bounded states of the two-dimensional hydrogen atom in eq. (5.2), one fixes 𝐸
or 𝑛 and chooses a probability amplitude for different 𝑙’s to construct a stationary
wave-packet,

𝛹𝑛𝑞 ≔
𝑛

∑
𝑘=−𝑛

𝐴𝑛𝑘;𝑞𝜓𝑛𝑘 . (5.9)

We would like to find a choice for the 𝐴𝑛𝑘;𝑞’s, such that the expectation value of
angular momentum

(𝛹𝑛𝑞, 𝐿 𝛹𝑛𝑞) = 𝑞ℏ , (5.10)

where 𝑞 ∈ [−𝑛, 𝑛], 𝑞 ∈ ℝ. Since 𝑘 ∈ [−𝑛, 𝑛]∩ℤ, a “natural” choice for the probability
masses seems to be the binomial distribution, where the probability mass function
is

BD(𝑘; 𝑢, 𝑠) ≔ (𝑢
𝑘)𝑠𝑘(1 − 𝑠)𝑢−𝑘 , (5.11a)

(𝑢
𝑘) ≔ 𝑢!

𝑘!(𝑢 − 𝑘)! , (5.11b)

𝑘 = 0, 1, … , 𝑢, 𝑠 ∈ [0, 1] . (5.11c)

In our case, the amplitude satisfies

∣𝐴𝑛𝑘;𝑞∣2 = BD(𝑛 + 𝑘; 2𝑛, 𝑛 + 𝑞
2𝑛 )

= (2𝑛)−2𝑛(𝑛 − 𝑞)𝑛−𝑘(𝑛 + 𝑞)𝑛+𝑘( 2𝑛
𝑛 + 𝑘) . (5.12a)
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Figure 11: Stationary wave-packets ∣𝛹𝑛𝑞(𝜉, 𝜑)∣2 of the two-dimensional hydrogen
atom. The green lines denote a classical trajectory in eq. (5.3) with 𝜑0 = 0, 𝐸 = 𝐸𝑛
and 𝐿 = 𝑞ℏ. The orange lines are the classical trajectories passing through the
two highest peaks of the wave-packet, with the integral constants (𝐸, 𝐿) given by
eq. (5.4). Apparently, the green line in fig. 11b fits the orange line better than in
fig. 11a, but worse than in fig. 11c. In fig. 11d we show the normal projection of
fig. 11c on the sin𝜑 = 0 line (in logarithm scale). One sees that there are multiple
maxima; the highest two were chosen for plotting fig. 11c.

The most naive choice

𝐴𝑛𝑘;𝑞 = √BD(𝑛 + 𝑘, 2𝑛, 𝑛 + 𝑞
2𝑛 ) (5.12b)

leads to stationary wave-packets that “peak around” a classical trajectory for |𝑞| ≲
𝑛, see fig. 11.

5.3 Wave-packets and the choice of amplitudes
In the previous sections, we have studied Gaussian wave-packets for the quantum
numbers that take values in ℝ, and a binomial amplitude for the quantum number
that takes finite integral values. In this section, we try to justify the usage of
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wave-packets and discuss the choice of amplitudes.
In reality, a physical system interacts with the environment, which contains a

vast number of degrees of freedom. At the quantum level, describing the system
plus the environment as an entirety, and then eliminating the latter, is not equiv-
alent to beginning with separate descriptions of the system and the environment.
To be more specific, if one begins with a wave function of the entirety, and then
eliminating the environment by tracing out the corresponding degrees of freedom,
one necessarily arrives at a density operator of the system. In other words, an
open quantum system is usually in a mixed state, even though the entirety may
be described by a pure state.

During evolution, the open quantum system loses coherence with the envi-
ronment and becomes a mixed state. Such a process is called decoherence, and
the evolution cannot be simply described by, say, the Schrödinger equation for
conventional quantum mechanics, with respect to the Hamiltonian of the system.
Instead, the Hamiltonian of the environment and that of the interaction also play
a role. Now in quantum cosmology, we also study a reduced number of degrees
of freedom, with e.g. the inhomogeneities suppressed at the beginning, serving ef-
fectively as the environment. Therefore, it should be the density operator of the
universe, rather than the wave-packet, that we are talking about [90].

Nevertheless, we have been sticking to wave-packets throughout this work.
From a practical point of view, on the one hand, wave-packets are much easier
to handle, that obey the familiar Schrödinger equation or the Wheeler–DeWitt
equation. On the other hand, it has been shown that local interactions lead to a
density operator that is narrowly diagonal with respect to the position eigenstates,
which can be described as an incoherent superposition of narrow wave-packets
[178], each of which is called an Everett branch.

Having decoherence in mind, which serves as a dynamical mechanism that re-
sults in (an incoherent superposition of) wave-packets, the choice of an amplitude is
no longer arbitrary and has a physical priority. We note that decoherence increases
the entropy of the open quantum system, and the Everett branches have Gaussian
amplitudes [82]. From a statistical point of view, maximisation of the entropy is
also the most probable result [139]. Incidentally, the Gaussian distribution

GD1(𝛼, 𝜎2; 𝛢) ≔
exp(−1

2𝜎−2(𝛢 − 𝛼)2)
√

2π𝜎2 . (3.22b revisited)

is also a maximum entropy distribution [37, ch. 12]. Taking the maximality of
entropy seriously, we propose that this property should also hold in cases where
the quantum number is discrete.

Following this proposal, for the two-dimensional hydrogen atom, we chose bi-
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nomial amplitude, that squares to be eq. (5.11a). For quantum numbers taking
values in ℕ, as in the case of our minisuperspace model (−, +) in section 3.5, we
chose the Poisson distribution

PD(𝜇; 𝑘) ≔ 𝜇𝑘𝖾−𝜇

𝑘! , (4.33a revisited)

These are both maximum entropy distributions for their corresponding discrete
random variables [77].

5.4 Ridge-line of a wave-packet and the correspondence
principles

In quantum cosmology, people argue that the ridge-line of a wave-packet peaks
along a classical trajectory [75]. This would be more convincing if the statement
also holds for the stationary wave-packets in conventional quantum mechanics.

For the binomial wave-packets here, defined by eqs. (5.9), (5.7a), (5.7d) and (5.12b),
we approximate the ridge by finding the two highest peaks of the wave-packet, and
find the elliptic classical trajectory passing them, see fig. 11. The approximate
ridge-line is described by the integral constants (𝐸ar, 𝐿ar) given by eq. (5.4).

One sees that this approximation is good as 𝑛 increases, which fits Bohr’s
correspondence principle [25], stating that the quantum system reproduces its
classical behaviour in the limit of large main quantum number 𝑛. This can be
seen in fig. 12a, where one fixes 𝑞/𝑛 and observes the relative difference between
(𝐸ar, 𝐿ar) and (𝐸𝑛, 𝐿) vanishes polynomially as 𝑛 → +∞.

In our application, on the other hand, we are more concerned with fixed 𝑛 or
𝐸𝑛, and varying 𝑞. In this case, the ridge-line gets closer to the classical trajectory
as the effective angular quantum number 𝑞 → 𝑛−, in the sense that the relative
differences between (𝐸ar, 𝐿ar) and (𝐸𝑛, 𝑞ℏ) become smaller in the aforementioned
limit, see fig. 12b. The differences, however, will not vanish. This correspondence
phenomenon is relevant in quantum cosmology, where the “main quantum number”
is to be fixed, and only the other quantum numbers in the degenerate “energy
eigenspace” can change.

5.5 Summary
The stationary wave-packets are realised in quantum mechanics with the super-
position of degenerate energy eigenstates. Such cases are illustrated by the toy
model of a two-dimensional hydrogen atom. In reality, the Rydberg atom can also
be described by such a superposition, providing a chance to verify the theoretical
statements.
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Figure 12: Correspondence principles shown in terms of the difference between
(𝐸ar, 𝐿ar) and (𝐸𝑛, 𝑞ℏ), where the former with subscript ar denotes the integral
constants that give a trajectory passing through the two highest peaks of the
binomial wave-packet (fig. 11). In fig. 12a, the difference vanishes as 𝑛 → +∞,
which is accordance with Bohr. The solid line is the best fit with the generalised
linear model [124] 𝑦 = 𝑔−1(𝛽0 + 𝛽1 ln𝑛) with 𝑔(𝑦) = ln 𝑦. In fig. 12b, the difference
becomes smaller as 𝑞 → 𝑛−, but will not vanish; this correspondence phenomenon
is relevant in quantum cosmology.

Wave-packets constructed by superposing solutions of the Wheeler–DeWitt are
also formally stationary. It is imaginable to make use of this fact and use quantum
systems in laboratory to simulate a quantum universe or a quantum black hole.

However, one crucial difference between common quantum mechanical systems
and quantum cosmology is that, the latter usually has a Lorentzian “kinetic energy
term” in the Hamiltonian constraint, whereas the former mostly have a Euclidean
kinetic energy term. One needs to be very creative to set up a simulated quantum
cosmology system in laboratory.
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6 Ridge-lines of wave-packets

In the Wheeler–DeWitt approach of quantum gravitation, due to the absence of a
Hilbert space, one cannot use the usual way to make predictions as in conventional
quantum mechanics. This includes, on the one hand, interpreting the inner product
as a probability amplitude; on the other hand, analysing self-adjoint operators and
studying their spectra. In particular, when the wave-packet of the universe (c.f.
section 5.3) needs a semi-classical interpretation, there is no quantitative way to
calculate the emerged classical trajectory from the quantum wave function.

In section 3.5, we have studied a special case, in which the wave-packet is
constructed by superposing the WKB mode functions with a narrow Gaussian
amplitude. The mathematical result confirms the heuristic idea, that such a wave-
packet peaks near the classical trajectory, which shares the same integral constant
as the centre of the Gaussian amplitude. In section 5.3, we have also discussed the
reason to study wave-packets and a maximum-entropy criterion of amplitudes.

In this section 6, we try to quantify the qualitative arguments in the litera-
ture, that a classical trajectory can be read off from wave-packets in specific forms.
Intuitively, one may imagine the profile of a wave-packet as a terrain in its config-
uration space, where the hills and valleys are the most and least probable places
to “find” the system. In physical geography, chains of mountains or hills stretch
a distance, where the “highest points” form the ridge-lines; conversely, one can
define the valleys or the dale-lines by the “lowest points”.

The ridge- and dale-lines are in some sense the generalisation of local maxima
and minima, which are isolated points. The latter are also easier to be solved in
terms of local extrema as ∇𝜌 = 0 as necessary but not sufficient conditions, and
distinguishing them is more involved. One may give a sufficient condition when
the Hessian is non-singular, but when it is, more works need to be done. For
simplicity and clearance, we will study the ridge- and dale-lines on the equal foot.

The ridge- and dale-lines have been studied by the computer scientists work-
ing on imaging and vision [48, 97, 98], where the ridge- and dale-lines have rich
applications, especially in two-dimensional Euclidean geometry. In physical con-
figuration spaces having a higher-dimensional (pseudo-)Riemannian geometry, the
ridge- and dale-lines have not been much used, to our knowledge. In addition, the
Euclidean experience from computer science also needs to be thought twice.

From now on, we will not use the analogy with terrain any further, which we
argue as follows. For terrain, the altitude has the dimension of length, which is
comparable to the dimension of the geographic coordinates. For a wave-packet, in
contrast, the dimension of its profile is not comparable to the dimensions of the
configuration space coordinates; the former might be the inverse of the configura-
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tion volume if one has the Schrödinger normalisation condition in mind,

∫ 𝕕Vol |𝛹 |2 = 1 , (6.1)

which is dependent on the configuration space coordinates. Based on these consid-
erations, we shall find an intrinsic description of the ridge-lines of a wave-packet,
where the wave-packet is not to be plotted in an additional dimension.

Heuristically, one can simply use the first partial derivative to find the ridge-
and dale-lines, see section 6.1. We mainly introduce two distinct intrinsic ap-
proaches, in terms of contours and stream-lines, which will be explained in sec-
tions 6.2 and 6.3, respectively. Details of these approaches are discussed in the
subsequent sections 6.4 to 6.6.

6.1 First-derivative test
One can easily come up with a simple first-derivative test for a ridge-line, which
we also describe here in section 6.1. In two dimensions with Cartesian coordinates
(𝑥, 𝑦), it reads

𝜌,𝑥 = 0 or 𝜌,𝑦 = 0 , (6.2)

which is weaker than the extremum condition 𝜌,𝑥 = 0 and 𝜌,𝑦 = 0.
Geometrically, eq. (6.2) can be interpreted as a directional extremum test,

namely to find the extremum with respect to only the 𝑥- or 𝑦-direction.
Take the “linear” wave-packet in eq. (2.31) as an example. With 𝜌lin = |𝛹lin|

2,
the condition 𝜕𝜒𝜌lin = 0 gives

𝖾𝑔𝜒cosh[√ 3
2𝜘 𝑔(𝛾 − 𝛾0)]2 = 𝑔2ℏ2

8Vol23|𝑉 |
. (6.3)

Compared with eq. (2.14) and table 1, eq. (6.3) has exactly the form of a classical
trajectory, with

𝑝2
𝛾 = 3𝑔2ℏ2

2𝜘 . (6.4)

On the other hand, the condition 𝜕𝛾𝜌lin = 0 gives

𝖾𝑔𝜒cosh[√ 3
2𝜘 𝑔(𝛾 − 𝛾0)]2 = 𝑔2ℏ2

8Vol23|𝑉 |
coth[√ 3

2𝜘 𝑔(𝛾 − 𝛾0)]4 . (6.5)

Since coth[√ 3
2𝜘 𝑔(𝛾 − 𝛾0)] → 1 as √ 3

2𝜘 𝑔(𝛾 − 𝛾0) → ±∞, eq. (6.5) also coincides
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Figure 13: Two ridge-line approaches shown with the “linear” wave-packet in
eq. (2.31). In fig. 13a where the first-derivative test is used, the orange and pur-
ple lines are the results from eq. (6.5), whereas the pink line is from eq. (6.3). In
fig. 13b, we have used the Lorentzian minisuperspace metric in eq. (2.1b). The solid
lines in color dash-dotted line are derived by the contour approach in eq. (6.18).
Unfortunately, we failed to solve the problem in the stream approach.

asymptotically with a classical trajectory, with the same 𝑝𝛾 as in eq. (6.4). In
contrast to eq. (6.3), one has two distinct trajectories, which approach the same
classical trajectory in the above-mentioned asymptotic region, while they depart
from the trajectory near the classical turning point. The two results are plotted
in fig. 13a.

Now consider a classical trajectory that is implicitly given by an equation
𝑓(𝑥, 𝑦) = 0. This works only in two dimensions; for 𝑑-dimensions, 𝑑 > 2, one
needs 𝑑−1 > 1 equations to specify an implicit curve. One can intuitively imagine
a wave-packet that “peaks around” this trajectory, the density of which is given by
[75, eq. (6.3)]

𝜌 = 𝖾−𝑓2 , (6.6)

so that the density 𝜌 peaks to 1 at 𝑓 = 0, and is less than 1 for 𝑓 ≠ 0.
Using the first-derivative test with an arbitrary variable 𝑥, one has

0 = 𝜕𝑥𝜌 = −2𝜌𝑓 𝜕𝑥𝑓 , (6.7)

and therefore

𝑓 = 0 , or 𝜕𝑥𝑓 = 0 . (6.8)

Hence the trajectory 𝑓 = 0 is included in the result of the first-derivative test.
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The first-derivative test is intuitive and easy to implement. However, it is not
covariant under coordinate transformation; moreover, one can construct examples
where the test does not give sensible results, see fig. 14b. One may imagine using
the eigenvector field of the Hessian 𝜕𝑖𝜕𝑗𝜌 as the “principle directions” and perform
a directional derivative test with respect to them. This is the approach in [48].

Unfortunately, the directional derivative test is not practical in higher dimen-
sions, where no generic expression for roots of the algebraic eigenvalue equation
exists. In addition, the smoothness of the eigenvector field is difficult to establish.
Moreover, upon moving to (pseudo-)Riemannian geometry, one needs to deal with
the (1, 1)-Hessian tensor, which is not symmetric as a matrix, and the analysis is
lost in challenging calculations. We now move forward to the other two approaches
of ridge-lines.

6.2 Contour ridge-lines
In this section 6.2 we describe the ridge-lines in terms of a certain character of the
contour lines. One can imagine finding the locally most curved neighbourhoods on
the contour lines, the trajectory of which forms a ridge- or dale-line. The defining
equation of this approach was first written down by Barré de Saint-Venant in 1852
[148] without derivation. We refer to [48] for a comprehensive explanation.

We will begin with the two-dimensional Euclidean case, where there are two
equivalent definitions of the contour ridge-lines, both of which can be generalised
to higher dimensions, as well as to (pseudo-)Riemannian geometry. For the “linear”
wave-packet in eq. (2.31), the contour approach can directly be applied.

First definition In topography, contour lines give the altitude intrinsically. One
can formulate the ridge- and dale-lines in terms of the contour lines as follows [116,
sec. 4.1]:

When representing ridges, contour lines are elongated towards ridge
stretch and they are convex as they are turned towards the fall of the
ridge or the ground …

Mathematically, one considers a 𝐶2 real function 𝜌(𝑥, 𝑦), the contour lines 𝛾𝑐
of which are given by the implicit equation 𝜌 ≡ 𝑐.

Having the idea of “locally most curved neighbourhoods” in the introduction
in mind, now let 𝜅(𝑥, 𝑦) be a characteristic function, such that the crossing of a
ridge and the contour 𝛾𝑐 is an extremum of 𝜅 on 𝛾𝑐. This gives the first definition
of a contour ridge-line, namely the ridge-line is regarded as the locus of extrema of
𝜅 under the constraint 𝜌 = 𝑐.

58



The statement can be formulated by the method of Lagrange multipliers,

𝕕𝜌 = 𝜆𝑐 𝕕𝜅 , (6.9a)
𝜌 = 𝑐 , (6.9b)

where 𝜆𝑐 is the Lagrange multiplier. Equation (6.9a) can be separated into a
system of equations in the bases 𝕕𝑥 and 𝕕𝑦. Then eliminating 𝜆𝑐 gives

0 = 𝜌,𝑥𝜅,𝑦 − 𝜌,𝑦𝜅,𝑥 , (6.10)

where “,” denotes partial derivative [118, eq. (2.25)].
In practice, one can use the squared norm of 𝕕𝜌 as the characteristic function

𝜅 = 𝜅sqr(𝑥, 𝑦) = 𝜌2
,𝑥 + 𝜌2

,𝑦 . (6.11)

Substituting eq. (6.11) in eq. (6.10) results in the de Saint-Venant equation for
ridges (dSVr) [97, 148]

0 = 𝜌,𝑥𝜌,𝑦(𝜌,𝑥,𝑥 − 𝜌,𝑦,𝑦) − (𝜌2
,𝑥 − 𝜌2

,𝑦)𝜌,𝑥,𝑦 . (6.12)

Second definition To see the mathematical structure more clearly, we use the
generalisation of eq. (6.11) in eq. (6.15). Substituting the latter in eq. (6.9a) gives
the tensorial equation

𝜌;𝑖 = 2𝜆𝑐𝜌;𝑖
;𝑗𝜌;𝑗 . (6.13)

In other words, 𝜌;𝑖 is an eigenvector of its Hessian 𝜌;𝑖
;𝑗. This gives the second

characteristic of a contour ridge-line: it is the locus of points where the gradient is
an eigenvector of the Hessian.

Generalisations The results above in two dimensions can easily be generalised
to higher dimensional (pseudo-)Riemannian spaces. From eq. (6.9a) one can derive

0 = 𝕕𝜌 ∧ 𝕕𝜅 , (6.14)

which takes the place of eq. (6.10). For eq. (6.11), the generic version reads

𝜅sqr = ⋆−1(𝕕𝜌 ∧ ⋆𝕕𝜌) = 𝕕𝜌♯ ⨼ 𝕕𝜌 = 𝑔𝑖𝑗𝜌;𝑖𝜌;𝑗 , (6.15)

where ⋆ is the Hodge star operator [29, sec. 28], ♯ is a musical isomorphism, ⨼ is
the interior product or contraction [29, sec. 23], 𝑔𝑖𝑗 is the inverse metric, and the
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symbol ; denotes the covariant derivative with respect to an affine connection [107,
sec. 85].

Inserting eq. (6.15) in eq. (6.14) gives the covariant dSVr equation

0 = 𝕕𝜌 ∧ 𝕕(𝕕𝜌♯ ⨼ 𝕕𝜌) . (6.16)

This equation is to be understood as imposing all its components to be zero, and
therefore defining an implicit curve.

Application to the “linear” wave-packet The contour approach can immedi-
ately be applied to the “linear” wave-packet in eq. (2.31). Using the DeWitt metric
in eq. (2.1b), the de Saint-Venant equations for ridges (6.16) can be factorised such
that

0 = 𝑦 , or (6.17a)
0 = 𝑥3sinh(𝑦)4 − 𝑥2cosh(𝑦)sinh(𝑦)2 − 𝑥cosh(𝑦)2 + cosh(𝑦) , (6.17b)

where 𝑥 > 0 is given in eq. (2.26b), 𝑦 = √ 3
2𝜘 𝑔(𝛾 − 𝛾0). One can solve 𝑥 from

eq. (6.17b) in terms of 𝑦,

3𝑥𝑘 = 1 + 4 cos
2𝑘π + arctan[19 − 8cosh(2𝑦), 3√48cosh(2𝑦) − 33]

3 ,

𝑘 = 0, 1, 2 ,
(6.18)

where arctan(𝑥, 𝑦) gives 𝜑 ∈ [0, 2π) such that cos𝜑 = 𝑥
√𝑥2+𝑦2 , sin𝜑 = 𝑦

√𝑥2+𝑦2 .
In eq. (6.18), since

lim
𝑦→∞

arctan[19 − 8cosh(2𝑦), 3√48cosh(2𝑦) − 33] = π , (6.19)

one obtains

lim
𝑦→∞

𝑥𝑘 = (−)𝑘+13 . (6.20)

Therefore, the cases 𝑘 = 0 and 2 give positive 𝑥 and real 𝜒 as 𝜒 → ∞, whereas
𝑘 = 1 does not. Exact calculation shows that 𝑥2 < 0 for all 𝑦 ∈ ℝ, and is to be
excluded.

These results are plotted in fig. 13b. One sees a redundant line 𝑦 = 0 that is a
dale, a pink line that resembles a classical trajectory, and two further solid lines
that converge to the same classical trajectory as 𝛾 → ±∞.
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Curvature as the characteristic function In two dimensions, it is tempting
and intuitive to use the curvature of the contours as the characteristic function. We
argue that this choice will not fit our purpose. Upon generalising to higher dimen-
sions, the curvature of an (𝑛 − 1)-dimensional contour becomes the scalar-valued
second fundamental form (see appendix B.1), which is a symmetric tensor. One
may want to further analyse this tensor, and study its orthonormal eigenvectors
[48].

Unfortunately, for the cases where the (DeWitt) metric is indefinite (e.g. Lo-
rentzian), the second fundamental form is defined differently for the time- and
space-like patches [3, sec. 1.2.4], which discontinues at the null edge, where the
second fundamental form is again defined differently [101]. The reason is that, for
time- and space-like hypersurfaces, the second fundamental form depends on the
choice of a unit normal vector, which of course discontinues going from a time-like
patch to a space-like patch. Moreover, the eigenvectors of the second fundamental
form may also not exist ([3, sec. 2.5.(2)]).

The contour ridge-line is based on first- and second-derivatives of 𝜌 and always
give equations for an algebraic curve. However, aside from sensible ridge-lines,
this approach also gives counter-intuitive curves. Examples, further properties
and comments about the contour approach will be given in sections 6.4 and 6.5.

6.3 Stream ridge-lines
Now we consider the ridges in terms of singular stream-lines of the gradient vector
field, which dates back to Rudolf Rothe in 1915 [145]. Heuristically, one imagines
that water slowly flows from the top of a hill along the stream-lines of the gradient
vector field. The water stream diverges from a ridge and converges to a dale.
This is the intuitive notion of the singularity of the stream-lines along ridge- and
dale-lines.

The stream approach is also adapted by modern computer scientists in image
processing and computer vision [97, 98]. The mathematics behind this approach
is the inverse integral factor and inverse Jacobi multiplier, which work for two-
and higher-dimensional cases, respectively [19, 59]. We will focus on the two-
dimensional case.

Inverse integral factor In ℝ2 with Cartesian coordinates (𝑥, 𝑦), the contours of
𝜌 are defined by 𝕕𝜌 = 0, or 𝜌 = 𝑐; dual to them are the stream-lines, characterised
by 𝕕𝑤 = 0 or 𝑤 = 𝑐, where

𝜃 𝕕𝑤 = ⋆𝕕𝜌 = −𝜌,𝑦 𝕕𝑥 + 𝜌,𝑥 𝕕𝑦 , (6.21)
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in which 𝜃 compensates the non-integrability of the right-hand side and is therefore
called an inverse integral factor. One also has

0 = 𝜌,𝑥𝑤,𝑥 + 𝜌,𝑦𝑤,𝑦 = ⋆−1(𝕕𝜌 ∧ ⋆𝕕𝑤) . (6.22)

(𝜃, 𝑤) is unique up to

𝜃 → 𝜃/𝐹 ′(𝑤) , 𝑤 → 𝐹(𝑤) , (6.23)

where 𝐹(𝑤) is an arbitrary function. One may worry that this arbitrariness renders
the stream approach not giving definite results, which fortunately does not seem
to be the case, see section 6.4.

One sees that if 𝜃 = 0 and 𝜌,𝑥 ≠ 0 ≠ 𝜌,𝑦 at (𝑥0, 𝑦0), 𝑤 cannot be expanded by
the Taylor theorem at (𝑥0, 𝑦0), since the linear term blows up by eq. (6.21) [145,
sec. 7]. (𝑥0, 𝑦0) is said to be on a singular stream-line.

One can imagine that if the ridge- and dale-lines are required also to be stream-
lines themselves, then the neighbouring stream-lines converge to the former, and
diverge from the latter along the direction of the gradient vector field. In other
words, stream ridge- and dale-lines are singular stream-lines. It has been shown
that along these stream-lines, one has [59]

𝜃(𝑥, 𝑦) = 0 . (6.24a)

The integrability condition 𝕕 ∧ 𝕕𝑤 = 0, or 𝑤,𝑥,𝑦 = 𝑤,𝑦,𝑥, gives the differential
equation for 𝜃,

𝜌,𝑥𝜃,𝑥 + 𝜌,𝑦𝜃,𝑦 = (𝜌,𝑥,𝑥 + 𝜌,𝑦,𝑦)𝜃 . (6.24b)

Equations (6.24a) and (6.24b) define the stream ridge- and dale-lines.

Generalisations The results above in two dimensions can readily be generalised
to 𝑛-dimensional curved spaces. Consider local coordinates (𝑥1, … , 𝑥𝑛), 𝑛 ≥ 2.
The gradient vector field 𝑣 of 𝜌 is given by

𝑣𝑖 𝜕𝑖 ≡ 𝑣 = 𝕕𝜌♯ ≔ 𝑔𝑖𝑗𝑓,𝑗𝜕𝑖 . (6.25)

One has (𝑛 − 1) linearly independent 𝑤’s for the stream-lines, satisfying

0 = 𝑣𝑖 𝜕𝑖𝑤 = 𝑣(𝑤) , (6.26)
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which is the generalisation of eq. (6.22). They are nothing else but the (𝑛 − 1)
first integrals [8], that require (𝑛 − 1) inverse integral factors 𝜃.

Similar to eq. (6.21), one has for instance

𝜃 𝕕𝑤 = 𝑣1 𝕕𝑥𝑗 − 𝑣𝑗 𝕕𝑥1 , 2 ≤ 𝑗 ≤ 𝑛 , (6.27)

given 𝑣𝑖 ≠ 0, 1 ≤ 𝑖 ≤ 𝑛. All of the 𝜃’s satisfying the linear, first-order partial
differential equation

𝑣𝑖𝜃,𝑖 = 𝜃𝑣𝑖
;𝑖 , or 𝑣 ⨼ 𝕕𝜃 = 𝜃 𝕕†𝑣♭ , (6.28)

where 𝕕† is the codifferential or the adjoint [29, sec. 29]. The solutions to eq. (6.28)
are called inverse Jacobi multipliers [19], first appeared in [81].

For Riemannian geometry, the stream approach seems to always give sensible
results, in contrast with the contour approach and the simple first-derivative test.
However, the approach involves giving the general integral [54, sec. 3.1.2] of the
partial differential equation (6.26) or (6.28), which is only possible in very limited
cases. Moreover, Lorentzian geometry gives rise to counter-intuitive configurations
of gradient vector fields, where the time-like component of the gradient one-form
fields is flipped. This leaves us problems that are yet to be solved. See sections 6.4
and 6.6.

6.4 Relations of the contour and stream approaches
In this section 6.4 we compare the contour and stream approaches, as well as argue
against the first-derivative test. Much of the material is adapted from [97, 145].

The contour and stream ridge-lines can be derived on the same footing. In ℝ2,
from 𝕕𝜌 = 𝜌,𝑥 𝕕𝑥 + 𝜌,𝑦 𝕕𝑦, eqs. (6.11) and (6.21), one deduces that [145, sec. 5]

1
2 𝕕𝜅sqr = 𝑅 𝕕𝜌 + 𝜃𝑆 𝕕𝑤 , (6.29)

where

𝑅 ≔ 𝜌2
,𝑥𝜌,𝑥,𝑥 + 2𝜌,𝑥𝜌,𝑦𝜌,𝑥,𝑦 + 𝜌2

,𝑥𝜌,𝑦,𝑦
𝜅2
sqr

, (6.30a)

𝑆 ≔ 𝜌,𝑥𝜌,𝑦(𝜌,𝑥,𝑥 − 𝜌,𝑦,𝑦) − (𝜌2
,𝑥 − 𝜌2

,𝑦)𝜌,𝑥,𝑦
𝜅2
sqr

. (6.30b)

Imposing 𝜅sqr to be stationary in the direction of 𝑤 gives

0 = 1
2

𝜕𝜅sqr
𝜕𝑤 = 𝜃𝑆 , (6.31)
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which gives either 𝜃 = 0 or 𝑆 = 0; they corresponds to the contour and stream
ridge-lines defined in eqs. (6.12) and (6.24a), respectively.

The contour and stream ridge-lines are distinct, except for two special cases.
Breton de Champ (see [145, sec. 2]) has shown that, stream-lines satisfying 𝑆 = 0
are necessarily straight lines; otherwise, contour ridge-lines should not be stream-
lines, and they are therefore no stream ridge-line. However, it seems to us that
points satisfying 𝜌,𝑥 = 𝜌,𝑦 = 0 also lie on both the contour and stream ridge-lines,
see sections 6.5 and 6.6 for an example.

The differences, of the contour and stream ridge-lines, as well as the simple first-
derivative test, can be shown with a so-called two-dimensional helicoidal gutter [97,
sec. 6]; in polar coordinates (𝜚, 𝜑) the metric and the gutter are

𝕕𝑠2 = 𝑔𝑖𝑗 𝕕𝑥𝑖 𝕕𝑥𝑗 = 𝕕𝜚2 + 𝜚2 𝕕𝜑2 ,
𝜚 > 0 , 0 ≤ 𝜑 < 2π ;

(6.32a)

𝜌(𝜚, 𝜑) = 𝜑 − 1
2( 𝜚

𝜚0
− 1)

2
, (6.32b)

see fig. 14.

The contour ridge-lines of eq. (6.32b) are given by the dSVr equation, or 𝑆 = 0
in eq. (6.30b). From the covariant expression in eq. (6.16), one derives

0 = ( 𝜚
𝜚0

)
4

− ( 𝜚
𝜚0

)
3

− 1 . (6.33)

The only positive root reads

𝜚
𝜚0

≈ 1.380 28 . (6.34)

See fig. 14a. Roughly speaking, it crosses the contours where the latter are curved
more.

As for the stream ridge-lines, using eq. (6.26) yields the equation for 𝑤

𝕕𝜌♯ ⨼ 𝕕𝑤 = 0 , or 0 = 𝜌,𝑖𝑔𝑖𝑗𝑤,𝑗 = ( 𝜚
𝜚0

− 1)𝑤,𝜚
𝜚0

+ 𝑤,𝜑
𝜚2 . (6.35)

The general integral to eq. (6.35) reads

𝑤 = 𝐹(−𝜚0
𝑢 + 𝜑 − ln(1 − 𝜚0

𝜚 )) , (6.36)

where 𝐹 is an arbitrary function, see eq. (6.23). In order to obtain 𝜃, one applies
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Figure 14: The so-called helicoidal gutter in eq. (6.32b), its contours (dashed lines)
and gradient vector field (represented by the grey stream-lines with arrows), and
its ridge-lines. In fig. 14a, the green line is the stream ridge-line given by 𝜃 = 0,
and the orange line is the contour ridge-line predicted by the dSVr equation. In
fig. 14b, the pink and the purple lines are 𝜌,𝑥 = 0 and 𝜌,𝑦 = 0, respectively. In
fig. 14c, the section at 𝜑 = 2π/3 is plotted, where the round, square and diamond
points are the stream and contour ridge-lines, as well as the first-derivative line.
One sees that it is the stream ridge-line that picks the highest point in the sense
of constant 𝜑-section.
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eq. (6.21)

𝜃 𝕕𝑤 = ⋆𝕕𝜌 = −𝜌,𝜑
𝜚 𝕕𝜚 + 𝜚𝜌,𝜚 𝕕𝜑 . (6.37)

The result is

𝜃 = 𝜚
𝜚0

( 𝜚
𝜚0

− 1){𝐹 ′(−𝜚0
𝜚 + 𝜑 − ln(1 − 𝜚0

𝜚 ))}
−1

. (6.38)

The stream ridge-lines are then given by 𝜃 = 0, or

𝜚 = 𝜚0 . (6.39)

See fig. 14a. One sees that the arbitrariness of 𝑤 encoded in 𝐹 does not affect
the effectiveness of the stream approach. Furthermore, the stream ridge-line really
marks the highest point for a constant 𝜑-section. As a stream-line by itself, the
stream ridge-line is also a limit cycle [8, sec. 1.6.3] of the gradient vector field, and
is also a watershed for two distinct families of stream-lines, one spirals inwards
and another outwards. The contour ridge-line, on the other hand, is close to the
highest point, see fig. 14b.

Finally, the curves given by the first-derivative test with respect to (𝑥, 𝑦) can
also be easily worked out, see fig. 14b. They do not respect the rotational symmetry
of 𝜌 and is therefore not very sensible. One may argue for an alternative test with
respect to (𝜚, 𝜑), but the choice itself cannot be arbitrary and needs a mathematical
description, which renders the method losing its simpleness.

6.5 Aspects of the contour approach
In this section 6.5 we first establish a scenario with an exponential wave-packet,
in which the contour approach gives intuitive results. We then generalise this
scenario with a slowly varying amplitude and show that an intuitive result is still
contained in the result. We show how the redundant results can be identified with
a toy example.

Invariance under regular transformation and applications For a trans-
formation 𝜌 → 𝐹 ∘ 𝜌, the dSVr equation (6.16) transforms to

0 = (𝕕𝐹
𝕕𝜌 )

3
𝕕𝜌 ∧ 𝕕(𝕕𝜌♯ ⨼ 𝕕𝜌) . (6.40)

If 𝐹 is strictly monotonic, i.e. 𝕕𝐹/𝕕𝜌 ≠ 0, the extra factor is non-zero, and
eq. (6.40) gives the same ridge-line as eq. (6.16).
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Figure 15: Density function 𝜌 = 𝖾−(𝑦−𝑥2)2 and the contour ridge-lines, which are
𝑥 = 0 (green, ridge-line for 𝑦 < 0 and dale-line for 𝑦 > 0) and 𝑦 = 𝑥2 (orange).
Incidentally, these lines are also given by the first-derivative test 𝜌,𝑥 = 0, 𝜌,𝑦 = 0.

Now we move back to the two-dimensional wave-packet

𝜌 = 𝖾−𝑓2 . (6.6 revisited)

Since 𝖾𝑥 increases monotonically with respect to 𝑥, applying the above-mentioned
property gives the ridge-line

0 = 𝕕(𝑓2) ∧ 𝕕(𝕕(𝑓2)♯ ⨼ 𝕕(𝑓2))

= 8𝑓3 𝕕𝑓 ∧ 𝕕(𝕕𝑓 ♯ ⨼ 𝕕𝑓) , (6.41)

which means

0 = 𝑓 or (6.42a)
0 = 𝕕𝑓 ∧ 𝕕(𝕕𝑓 ♯ ⨼ 𝕕𝑓) . (6.42b)

Equation (6.42a) gives what we wanted to set up, whereas eq. (6.42b) gives the
ridge- (or dale-)line of 𝑓 itself.

This is easier to see with the toy example

𝑓(𝑥, 𝑦) = 𝑦 − 𝑥2 , (6.43)

so that 𝑓 = 0 gives the parabola 𝑦 = 𝑥2. There is an additional solution to the
dSVr equation, 𝑥 = 0, satisfying eq. (6.42b). See fig. 15.

The parabola 𝑦 = 𝑥2 is what we wanted. However, we also get 𝑥 = 0, which is
a dale-line for the density function 𝑓 = 𝑦 − 𝑥2; as for 𝜌 = 𝖾−𝑓2 , it is a ridge-line
for 𝑦 < 0, and a dale line for 𝑦 > 0. This line is a concrete mathematical result,
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although it does not fit our expectation.

Modulation and redundant lines The results for the wave-packet in eq. (6.6)
can be generalised to the narrow wave-packet with varying amplitude

𝜌(𝑥, 𝑦) = 𝑔(𝑥, 𝑦)𝖾− 𝑓(𝑥,𝑦)2
2𝜎2 , (6.44)

where 𝜎 is a constant, 𝜎 ≪ |∇𝑔| characterising the narrowness, and 𝑔 is a modu-
lation. Substituting eq. (6.44) into eq. (6.12) gives

0 = 𝑔3𝑓3(𝑝𝑓𝑞𝑓(𝑟𝑓 − 𝑡𝑓) − (𝑝2
𝑓 − 𝑞2

𝑓)𝑠𝑓) + 𝑂(𝜎2) , (6.45)

where (𝑝𝑓 , … , 𝑡𝑓) are the symbols with respect to 𝑓 .
As 𝜎 → 0+, the wave-packet becomes sharper and sharper; except for an

additional factor 𝑔3, the leading-order dSVr equation recovers the case without
modulation. At the limit 𝜎 = 0+, the wave-packet becomes a wall with zero
width, and extends along the classical trajectory 𝑓 = 0. Equation (6.45) shows
that a slow modulation does not drastically change the ridge-lines.

The narrow WKB Gaussian wave-packets in section 3.5 is an instance of this
model. The heuristic arguments we used in that section can now be replaced with
the derivation in eq. (6.45).

Exact calculation reveals that the approximation we used to derive eq. (6.45)
loses details. To see this, we also modulate eq. (6.43) by

𝑔 = 𝖾−2𝜖𝑦 , 𝜖 = 1
2, 1

10 . (6.46)

The dSVr equation for 𝜌 = 𝑔 𝖾−(𝑦−𝑥2)2 with 𝑔 given in eq. (6.46) reads

0 = 16𝑥[−2𝑦3 + 2𝑦2(3𝑥2 − 𝜖) + 𝑦(−6𝑥4 + 8𝜖𝑥2 + 𝜖)
+ 2𝑥6 − 6𝜖𝑥4 − 𝜖𝑥2 + 𝜖2] ,

(6.47)

which has been factorised into 𝑥 = 0, and a term cubic in 𝑦. One can solve 𝑦 in
terms of 𝑥 from the factor in a square bracket, where the three roots 𝑦 = 𝑦(𝑥) are
all real. See fig. 16.

Only one of the three roots approaches 𝑦 = 𝑥2 as 𝑥 → ∞. This can be seen by
expanding 𝑦(𝑥) − 𝑥2 at 𝜖 = 0+, which yields

𝑦1,2(𝑥) − 𝑥2 = ∓√1 + 4𝑥2

2 𝜖1/2 + (−1 + 1
1 + 4𝑥2 ) 𝜖

2 + 𝛰(𝜖3/2) , (6.48a)

𝑦3(𝑥) − 𝑥2 = −𝜖 1
1 + 4𝑥2 + 𝛰(𝜖2) . (6.48b)
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(a) 𝜌 = 𝖾−(𝑦−𝑥2)2−𝑦/2
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(b) 𝜌 = 𝖾−(𝑦−𝑥2)2−𝑦/10

Figure 16: Density function 𝜌 = 𝑔 𝖾−(𝑦−𝑥2)2 and the contour ridge-lines for 𝑔 =
𝖾−𝑦/2 and 𝑔 = 𝖾−𝑦/10 with a Euclidean metric. The green line 𝑥 = 0 and the
orange line are (qualitatively) the same as in fig. 15; however, the dSVr equation
(6.16) also gives the purple and the pink lines, which are apparently neither ridge-
nor dale-lines.

As 𝑥 → ±∞, 𝑦3 − 𝑥2 converges to 0, whereas 𝑦1,2 − 𝑥2 diverge, and can be
interpreted as the locus of the “locally flattest places on the contour”, resembling
𝑥 = 0 for 𝑦 = 𝑥3.

The extra curves in eq. (6.48a) seem to be a common feature of the dSVr
equation. Here we have managed to remove them by asymptotic analysis at infinity,
recovering the intuitive result 𝑦3. The extra line 𝑥 = 0 has been discussed at the
end of the last part.

Two-dimensional hydrogen atom revisited The binomial stationary wave-
packets of two-dimensional hydrogen atom, described in section 5.2, can also be
studied by the contour approach. For 𝑛 = 1, the dSVr equation is a sextic equation
with respect to the dimensionless radial coordinate 𝜉, which has a quadratic and
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Figure 17: Stationary wave-packet ∣𝛹1, 23
24

(𝜉, 𝜑)∣2 of the two-dimensional hydrogen
atom with 𝑛 = 1, 𝑞 = 23

24 . See section 5.2 for details. The thick lines with colour
are solutions of the dSVr equation, whereas the dash-dotted line is the “best-fit
trajectory” that crosses the maxima, adapted from the orange line in fig. 11b. The
discontinuities within the same color are a numerical artefact.

a quartic factor

0 = −𝑥2(√… cos𝜑 − 1)2

+ 𝑥 (√…2cos(2𝜑) + 3√…2 − 6√… cos𝜑 + 2)
+ √…(2 cos𝜑 − 3√…) , or

(6.49a)

0 = +4𝑥4(√… cos𝜑 − 1)3

+ 𝑥3[ − 4√…3cos(3𝜑) + 30√…2cos(2𝜑)

− 4 (5√…2 + 16) √… cos𝜑 + 38√…2 + 20]

+ 𝑥2{6√…[ + 2 (3√…2 + 8) cos𝜑

− 5√…cos(2𝜑)] − 74√…2 − 28}

+ 4𝑥 [−2 (3√…2 + 4) √… cos𝜑 + 13√…2 + 2]
− 12√…2 ,

(6.49b)

where √… ≔ √1 − 𝑞2. We are therefore able to obtain solutions in terms of roots.
Aside from sin𝜑 = 0, there are six solution 𝜉 = 𝜉(𝜑), three in which are real and
positive near 𝜑 = 0 and 𝜑 = π; one is from the quadratic factor and has a simple
form, while the other two are very complicated. We managed to plot them in
fig. 17.

One sees that the orange ridge given by the dSVr equation is very close to the
“best-fit trajectory” that passes through the maxima of the wave-packet. Like in
the case 𝜌 = 𝑔 𝖾−𝑓2 , there are two additional lines, which might be the locally
flattest points of the contours.
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(a) 𝜌 = 𝖾−(𝑡−𝑥2)2−𝑡/2
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(b) 𝜌 = 𝖾−(𝑡−𝑥2)2−𝑡/10

Figure 18: Density function 𝜌 = 𝑔 𝖾−(𝑡−𝑥2)2 and the contour ridge-lines for 𝑔 = 𝖾−𝑡/2

and 𝑔 = 𝖾−𝑡/10 with an Lorentzian metric (6.50). The green line 𝑥 = 0 is the same
as in figs. 15 and 16. The orange line fits intuition better near 𝑥 = 0, whereas the
other two lines both have a sharp turning point, and one of the branches fits the
intuitive ridge in the asymptotic region.

Lorentzian signature In quantum cosmology, the minisuperspace DeWitt met-
ric usually has a Lorentzian signature. For the Lorentzian metric

𝕕𝑠2 = −𝕕𝑡2 + 𝕕𝑥2 , (6.50)

the Lorentzian dSVr, according to eq. (6.16), reads

0 = −𝜌,𝑥𝜌,𝑡(𝜌,𝑥,𝑥 + 𝜌,𝑡,𝑡) + (𝜌2
,𝑥 + 𝜌2

,𝑡)𝜌,𝑥,𝑡 . (6.51)

In fig. 13b, we have already shown a sensible result with contour ridge-lines in a
Lorentzian signature.

For the 𝜌 = 𝑔 𝖾−𝑓2 model, we can also mimic the scenario by replacing 𝑦 → 𝑡
in eqs. (6.43) and (6.46), and using the metric in eq. (6.50). The result can still
be factorised to 𝑥 = 0 and a cubic algebraic equation with respect to 𝑡, see fig. 18.

Intriguingly, none of the three curves given by the latter factor lies on the
intuitive ridge globally; instead, for the turning and asymptotic regions, there is
one branch for each case that fits well with intuition.

Summary The contour approach to ridge-lines, which dates back to Barré de
Saint-Venant in 1852, gives us an implicit equation (6.16) that can readily be
plotted. It may not give results that are directionally minimal, but the difference
can be small, see fig. 14c.

The curves given by the dSVr equations are typically higher-order algebraic
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equations, which can at least be numerically solved. For the “linear” wave-packet,
as well as for narrow Gaussian WKB wave-packets, this approach gives sensible
results, as discussed in section 6.2 and earlier in this section.

With a Euclidean signature, redundant curves can appear, as we have seen in
this section with the modulated toy model 𝜌 = 𝑔 𝖾−𝑓2 , as well as with the two-
dimensional hydrogen atom, that may arise from the fact that the dSVr equations
collect not only the most convex and concave neighbourhoods, but also the flat-
test points. For the toy model, the redundant lines can be removed by careful
asymptotic analysis, leaving results that also fit intuition.

As for the Lorentzian signature, however, it can happen that no result fully
agrees with intuition, as we have seen in the modulated toy model. We have to
decide whether to believe in mathematics and abandon our intuition, or stick to
the intuition and find a better mathematical description.

Finally, an algorithm is needed to find the contour ridge-lines for numerically
constructed wave-packets, like in section 4.5. This is to be investigated in the
future.

6.6 Aspects of the stream approach

In this section 6.6 we first examine two families of density function, for which
the stream ridge-lines can be exactly solved. We then show that the toy model
𝜌 = 𝖾−(𝑦−𝑥2)2

introduced in section 6.5 belongs to one of the families. In the end
we investigate the cases with a Lorentzian metric signature.

Stream ridge-lines of two function families For density functions of the
following two forms

𝜌(𝑢, 𝑣) = 𝑓(𝑓𝑢(𝑢) + 𝑓𝑣(𝑣)) , (6.52a)
𝜌(𝑢, 𝑣) = 𝑓(𝑓𝑢(𝑢)𝑓𝑣(𝑣)) (6.52b)

with the metric

𝕕𝑠2
1 = ℎ(𝑢, 𝑣)2(𝘨 𝕕𝑢2 + 𝕕𝑣2) ,
𝘨 = ± , ℎ(𝑢, 𝑣) > 0

(6.53)

the stream-lines of the gradient vector field can be exactly solved. Note that for
the Euclidean signature 𝘨 = +, eq. (6.53) includes the bipolar, Cartesian, ellip-
tic and planar parabolic coordinates for the flat geometry, and the stereographic
coordinates for the spherical geometry, so that it is quite comprehensive. The
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Hodge-stars of the coordinate differentials read

⋆𝕕𝑢 = 𝘨 𝕕𝑣 , ⋆𝕕𝑣 = −𝕕𝑢 ; (6.54)

one therefore gets

𝜃 𝕕𝑤 = ⋆𝕕𝜌 = −𝜌,𝑣 𝕕𝑢 + 𝘨𝜌,𝑢 𝕕𝑣 . (6.55)

By using eqs. (6.22), (6.53) and (6.54), one obtains for eq. (6.52a)

𝑤 = 𝐹(−𝘨 ∫
𝑢 𝕕𝜇

𝑓𝑢′(𝜇) + ∫
𝑣 𝕕𝜈

𝑓𝑣′(𝜈)) (6.56a)

𝜃 = − 1
𝐹 ′ 𝑓 ′𝑓𝑢′(𝑢)𝑓𝑣′(𝑣) , (6.56b)

and for eq. (6.52b)

𝑤 = 𝐹(−𝘨 ∫
𝑢 𝕕𝜇

(ln 𝑓𝑢(𝜇))′ + ∫
𝑣 𝕕𝜈

(ln 𝑓𝑣(𝜈))′ ) (6.57a)

𝜃 = − 1
𝐹 ′ 𝑓 ′𝑓𝑢′(𝑢)𝑓𝑣′(𝑣) (6.57b)

Curiously, both eqs. (6.56b) and (6.57b) includes the result from the first-derivative
test, 𝜌,𝑢 = 0 or 𝜌,𝑣 = 0.

Application to the toy model The toy model 𝜌 = 𝖾−(𝑦−𝑥2)2
in section 6.5 has

the form of eq. (6.52a). One can adapt the results in eqs. (6.56a) and (6.56b) and
get

𝑤 = 𝐹(𝘨𝑦 + 1
2 ln𝑥) , (6.58a)

𝜃 = 4𝘨𝖾−(𝑦−𝑥2)2 𝑥(𝑦 − 𝑥2)
𝐹 ′(𝘨𝑦 + 1

2 ln𝑥) . (6.58b)

See fig. 19. The Lorentzian results are to be understood with 𝑦 having the negative
signature in the Minkowski metric. Equation (6.58b) gives the same ridge-lines as
in the contour approach, as well as in the first-derivative test, 𝑦 = 𝑥2 and 𝑥 = 0.

Now we move to the modulated toy model 𝜌 = 𝑔(𝑥, 𝑦) 𝖾−(𝑦−𝑥2)2
. Using 𝑔𝜖 =

𝖾−2𝜖𝑦, eq. (6.35) becomes

𝘨(−𝑥2 + 𝑦 + 𝜖)𝑤,𝑦 + 2𝑥(𝑥2 − 𝑦)𝑤,𝑥 = 0. (6.59)
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(b) Lorentzian signature 𝘨 = −

Figure 19: Density function 𝜌 = 𝖾−(𝑦−𝑥2)2 , the stream-lines of the gradient vector
field in both Euclidean and Lorentzian geometry, and the stream ridge-lines which
are 𝑥 = 0 (green) and 𝑦 = 𝑥2 (orange). The Lorentzian results are to be understood
with 𝑦 having the negative signature in the Minkowski metric.

For 𝜖 ≪ 1, one uses the series test solution

𝑤 =
∞

∑
𝑛=0

𝑤𝑛𝜖𝑛 with 𝑤0 = 𝐹(𝘨𝑦 + 1
2 ln𝑥) , (6.60)

and for 𝑛 ≥ 0,

(𝑦 − 𝑥2)(2𝘨𝑥𝜕𝑥𝑤𝑛+1 − 𝜕𝑦𝑤𝑛+1) = 𝜕𝑦𝑤𝑛 . (6.61)

On the other hand,
𝜃 = 𝘨 𝜌,𝑥

𝑤,𝑦
= − 𝜌,𝑦

𝑤,𝑥
, (6.62)

where 𝜌 can also be expanded with respect to 𝜖, i.e.

𝜌 = 𝜌0

+∞
∑
𝑛=0

(1 + 𝜖𝑛

𝑛!
𝜕𝑛𝖾−2𝜖𝑦

𝜕𝜖𝑛 ∣
𝜖=0

) , 𝜌0 = 𝖾−(𝑦−𝑥2)2. (6.63)

This implies that 𝜃 ∝ 𝜕𝑥𝜌0 ∝ 𝑥(𝑦 − 𝑥2).
We failed to obtain a general integral 𝑤 for the modulated toy model 𝜌 =

𝑔 𝖾−(𝑦−𝑥2)2
. Numerically integrated stream-lines of the gradient vector field are

plotted in fig. 20. One sees that for the Euclidean signature, the stream-lines
indicate the fastest up-hill direction, in which the singular stream-lines are ridge-
or dale-lines that fit the intuition. Moreover, the dash-dotted orange line 𝑦 = 𝑥2

is a good approximation of the actual ridge-line for small 𝜖 (fig. 20b), but fails for
larger 𝜖 (fig. 20a); in other words, there are non-perturbative effects that cannot
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be revealed by the perturbative analysis above.
With the Lorentzian signature shown in figs. 20c and 20d, things become more

complicated. The above-mentioned property, that the gradient vector field points
to the up-hill direction, is lost. Furthermore, the apparent ridge in the plot is no
longer accompanied by a possible singular stream-line; instead, on the plot one
sees a series of turning points that could play the role of indicating a ridge-line
that also fits human cognition.

Numerical applications to other models As mentioned before, the stream
approach is difficult to obtain analytic results. For the two-dimensional hydrogen
atom and the “linear” wave-packet that were studied before, we make numeric plots
of the stream-lines of the gradient vector fields, see fig. 21.

One sees again the good quality in the case with a Euclidean signature in
fig. 21a, that no counter-intuitive lines are present. There seems to be a singular
stream-line that is very close to the “best-fit” classical trajectory. For the Lo-
rentzian geometry, the “best-fit” classical trajectory lies again near the “turning
points” of the stream-lines, instead of being near a singular stream-line.

Summary The stream approach to ridge-lines, which dates back to Rudolf
Rothe in 1915, tells us to solve for a generic first integral 𝑤 of the gradient vector
field from eq. (6.22), so that an inverse integral factor 𝜃 can be calculated, and
𝜃 = 0 gives the singular stream-lines, that define the stream ridge-lines. As has
been shown with fig. 14c, it can give results that are also directionally minimal.

With the Euclidean signature, the directions of the gradient vector field give
the fastest ascent. The stream approach here gives results that agree with intuitive
expectations, and no redundant lines appear except for those given by symmetries.
We have shown this with the helicoidal gutter, as well as the toy model 𝜌 = 𝖾−𝑓2

analytically; numerically, the modulated toy model 𝜌 = 𝑔 𝖾−𝑓2 as well as the two-
dimensional hydrogen atom also seem to perform pretty well under this approach.

As for the Lorentzian signature, the singular stream-lines of the gradient vec-
tor field do not seem to agree with the intuitive ridge-lines, as we have seen in
the numeric results of the “linear” wave-packet in fig. 21b. The reason is that, for
Lorentzian geometry, the directions of the gradient vector field differ from those of
the gradient one-form field, and the former field no longer points to the direction
of the fastest ascent. One can either discard intuition and embrace what math-
ematical generalisation gives, or invent a novel notion of ridge-lines, keeping in
mind that this new notion is also to work with the Euclidean case.

Finally, an algorithm is needed to find the singular ridge-lines for an analyti-
cally given gradient vector field, since the generic first integral is difficult to solve.
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(a) 𝜌 = 𝖾−(𝑦−𝑥2)2−𝑦/2
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(b) 𝜌 = 𝖾−(𝑦−𝑥2)2−𝑦/10
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(c) 𝜌 = 𝖾−(𝑡−𝑥2)2−𝑡/2
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(d) 𝜌 = 𝖾−(𝑡−𝑥2)2−𝑡/10

Figure 20: Density function 𝜌 = 𝑔 𝖾−(𝑦−𝑥2)2 and the contour ridge-lines for 𝑔 =
𝖾−𝑦/2 and 𝑔 = 𝖾−𝑦/10 with the Euclidean and Lorentzian metrics. The green solid
line 𝑥 = 0 remains a ridge-dale-line, whereas the orange dash-dotted line is merely
an approximation in the Euclidean case; the actual singular stream-lines seem to
be under the orange lines. The stream ridge-line in the Lorentzian signature is
apparently more intriguing.
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Figure 21: Numerical results of stream ridge-lines for the two-dimensional hy-
drogen atom 21a and the “linear” wave-packet 21b. In fig. 21a, the geometry is
Euclidean, and the dash-dotted line is the “best-fit” classical elliptic trajectory,
passing through the maxima of the stationary wave-packet. In fig. 21b, the geom-
etry is Lorentzian, and the dash-dotted line is the “best-fit” trajectory used before.

Moreover, for the cases where wave-packets are already constructed numerically,
another algorithm is needed to find the singular ridge-lines from the numerically
given gradient vector field.

6.7 Prospective applications

The systematics of ridge-lines enables us to calculate the classical trajectories that
emerge from a quantum wave-packet.

In fig. 13, for example, one sees three trajectories, one of which coincides or is
close to a classical trajectory; with the profile of the wave-packet considered, one
may understand it as predicting a tunnelling between two branches of the wave-
packet, in that the wave-packet describes a semi-classical universe evolving from
one classical trajectory in the asymptotic region to another classical trajectory,
tunnelling near the origin of the plot. In contrast, the other two trajectories depart
from classical trajectories near the classical turning point, giving a semi-classical
behaviour that essentially differs from the classical one.

The tunnelling picture can be useful for the singularity avoidance, which also
tells a semi-classical fate. In figs. 10a to 10f, one can understand 𝛾 as an exponential
scale factor, so that 𝑔𝛾 → +∞ is a classical singularity. If one could equip with
numerical tools to find ridge-lines, it is plausible from the plots that in figs. 10a
to 10c, a classical trajectory that is wavy and remains near the vertical axis can
be found, whereas in figs. 10d to 10f, an orbit that comes from the bottom-left
corner goes back to the upper-left, so that the 𝑔𝛾 → +∞ singularities are avoided
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in both cases.
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7 Conclusion and outlook

In this dissertation, we summarised our work on various aspects that link quantum
geometrodynamics of Wheeler–DeWitt with the conventional quantum theory,
which can be shown by the prototype model in a two-dimensional minisuperspace,
that was introduced in section 2. As we have seen, this solvable model not only
has its practical value, but is also related to several realistic physical models. After
the Dirac quantisation that leads to “cosmological” wave functions. We were also
able to construct an exact “linear” wave function, where we would like to ask about
its corresponding classical trajectory, which cannot be read off directly, as people
would usually do. This question would be explored later in section 6.

It would be of interest to look into higher-dimensional minisuperspace models,
and see if one could use them for the same purposes below.

Then in section 3, we performed the standard WKB approximation to the
prototype model at the beginning, which is one of the usual ways to connect
the Wheeler–DeWitt approach to classical gravitational system. Seeing that the
obtained WKB mode functions happened to contain a quantum number, we then
established a theory, showing that such WKB mode functions generally exist, in
which the quantum numbers correspond to classical first integrals. Using the
theory, we showed that a narrow Gaussian wave-packet necessarily peaks near
the classical trajectory, which has the same classical first integral as the centre
of the Gaussian amplitude. Within the WKB approximation, the matching of a
wave-packet and a classical trajectory seems to be a mathematical fact.

By set-up, this theory was restricted to Liouville integrable systems that can
be solved by separation of variables in the Hamilton–Jacobi formulation. Since
there are also non-integrable cases in the Bianchi models [113], one might want to
study how to make sense of a wave-packet there.

Next, in section 4 we first introduced the mathematical concept of self-adjoint-
ness, showing with an example that such operators can have different domains,
which may have a physical effect. We then argued that a boundary condition
is needed for the “cosmological” wave functions, that led to a Hilbert space for
the quantum states of the universe. The self-adjoint analysis of the Hamiltonian
constraint gave non-essential extensions in certain cases, which lead to different
phases of the mode functions, and can discretise the spectrum. The wave-packets,
constructed by different mode functions, also differ in their profiles. These results
can become predictions in suitable experiments.

So far, no guiding principle is known for choosing a preferred self-adjoint do-
main in quantum geometrodynamics, and the issue is open for further investiga-
tion.
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In section 5 we constructed a parallel between the minisuperspace Wheeler–
DeWitt equation and the stationary Schrödinger equation, particularly a parallel
between wave-packets in both cases, which were called stationary wave-packets.
This concept was illustrated by the minimal example of a two-dimensional hydro-
gen atom, for which we constructed a wave-packet by superposing with a binomial
amplitude. From the results we could recover Bohr’s correspondence principle that
is related to large main quantum numbers, as well as establish a new correspon-
dence phenomenon, in which the main quantum number remains fixed, while the
average angular quantum number is close to its maximal allowed value. Mean-
while, we also argued for the importance of wave-packets for the observed classical
universe, and proposed a criterion for the superposition amplitude for a given set
of quantum states, labelled with a quantum number.

Although there has been much interest in simulating black holes and quantum
field theory in curved space-time, a simulation of quantum cosmology has not yet
been proposed. Stationary wave-packets could help to establish such an analogue,
provided the Lorentzian kinetic term could be realised.

Finally, in section 6, we discussed possible mathematical descriptions of ridge-
lines of a wave-packet, that are the only way to make sense of a semi-classical
wave-packet in the literature, as well as in our derivation before. We gave three
ways to calculate the ridge-lines. First of all, the simple first-derivative test is easy
to calculate, but is not invariant under coordinate transform, and may give results
that do not even respect the symmetry of the wave function. If the wave-packet
is numerically given, it is relatively easy to work out a result by using an existing
algorithm. Second, the contour approach of Barré de Saint-Venant gives implicit
equations of ridge-lines, but in most cases the results contain redundant lines. This
approach performs similarly in Euclidean and Lorentzian geometries. Finally, the
stream approach of Rudolf Rothe outperforms the other two approaches in Eu-
clidean geometry, but solving the ridge-lines is difficult even when the wave-packet
is given analytically. In Lorentzian geometry, this approach loses its advantage
and the results are difficult to make sense of.

These approaches gave ridge-lines that could be interpreted as semi-classical
trajectories that emerge from the wave-packets. One could identify behaviours
such as tunnelling or singularity avoiding, and perform further analysis on them.

For both the latter two approaches, an algorithm for numerically given wave-
packets is yet to be looked for.

80



A Hamiltonian formulation of singular systems
Singular systems are those whose dynamics cannot simply be determined by im-
posing an arbitrary initial condition in terms of generalised positions and velocities,
as is demanded by the Newton’s principle of determinacy [9, sec. 1.1]. Important
field-theoretical examples in fundamental physics include electrodynamics [135],
general relativity (appendix B below), the Dirac spinor, Proca theory,6 Yang–Mills
theory, and the bosonic string theory; even a point particle in special relativity,
described in the covariant formulation, is a singular system.

In appendix A.1, we give the Hamiltonian kinematics of a singular system.
Then in appendix A.2, we sketch the way towards solving the dynamics of a
singular system. Appendix A.3 contains an example. Our treatment basically
follows [65, 144].

Nomenclature Singular systems are also called constrained systems, the latter
of which contains more generic cases. Here we will stick to the former, more precise
term.

A.1 The Hamiltonian

Consider a conserved system with several degrees of freedom, described by the
Lagrangian action that does not depend on time explicitly,

𝑆[𝑞] = ∫ 𝕕𝑡 𝐿(𝑞𝑎, ̇𝑞𝑎) . (A.1)

Define the matrix

𝑀𝑎𝑏 ≔ 𝜕2𝐿
𝜕𝑞𝑎 𝜕𝑞𝑏 . (A.2)

The system is called singular if 𝑀𝑎𝑏 is a singular matrix. This could also be
understood within the Lagrangian formulation, but we will go directly to the
Hamiltonian approach, which fits our purpose.

Failure in constructing the canonical Hamiltonian One way to understand
the singularity of the system is to recognise that the momenta

𝑝𝑎 = 𝑝𝑎(𝑞, ̇𝑞) ≔ 𝜕𝐿
𝜕 ̇𝑞𝑎 (A.3)

6For a bibliographic account of Alexandru Proca, see [137].
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need to be partially inverted to get the velocities in terms of 𝑞 and 𝑝,

̇𝑞𝑎 = 𝑤𝑎(𝑞, 𝑝) , (A.4)

so that one can perform the Legendre transformation and derive the canonical
Hamiltonian of the system

𝐻c ≔ (𝑝𝑎 ̇𝑞𝑎 − 𝐿)| ̇𝑞𝑎=𝑤𝑎(𝑞,𝑝) . (A.5)

If 𝑀𝑎𝑏 is singular, eq. (A.3) cannot be inverted to get eq. (A.4) by the implicit
function theorem, and the canonical Hamiltonian approach fails to be constructed.

Extended action and Hamiltonian A viable work-around is to use the ex-
tended action

𝑆e[𝑞, 𝑝, 𝑣] ≔ ∫ 𝕕𝑡 {𝐿(𝑞, 𝑣) + 𝑝𝑎( ̇𝑞𝑎 − 𝑣𝑎)} , (A.6)

where {𝑞𝑎, 𝑝𝑎, 𝑣𝑎} are independent variables. Variation of 𝑆e with respect to
{𝑞𝑎, 𝑝𝑎, 𝑣𝑎} gives

𝜕𝐿(𝑞, 𝑣)
𝜕𝑞𝑎 − ̇𝑝𝑎 = 0 , (A.7a)

̇𝑞𝑎 − 𝑣𝑎 = 0 , (A.7b)
𝜕𝐿(𝑞, 𝑣)

𝜕𝑣𝑎 − 𝑝𝑎 = 0 . (A.7c)

Inserting eqs. (A.7b) and (A.7c) into 𝑆e gives

𝑆e[𝑞, 𝑝𝑎 = 𝜕𝐿(𝑞, ̇𝑞)
𝜕 ̇𝑞𝑎 , 𝑣𝑎 = ̇𝑞𝑎] = ∫ 𝕕𝑡 𝐿(𝑞, ̇𝑞) = 𝑆[𝑞] ; (A.8)

In words, 𝑆e is equivalent to 𝑆 on-shell. One can then define the extended Hamil-
tonian and rewrite 𝑆e

𝐻e(𝑞, 𝑝, 𝑣) ≔ 𝑝𝑎𝑣𝑎 − 𝐿(𝑞, 𝑣) , (A.9a)

𝑆e[𝑞, 𝑝, 𝑣] = ∫ 𝕕𝑡 {𝑝𝑎 ̇𝑞𝑎 − 𝐻e} . (A.9b)

𝐻e contains all the velocities {𝑣𝑎}.

Inexpressible velocities Now that not all the velocities can be given in terms
of eq. (A.4), one chooses instead a maximal subset {𝑣𝑖} that can, which are called
expressible velocities; the rest, {𝑣𝛼}, are called inexpressible velocities. Note that
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the overall indices for degrees of freedom 𝑎, 𝑏, … are divided into the expressible
ones 𝑖, 𝑗, … and the inexpressible ones 𝛼, 𝛽, ….

Primary constraints More explicitly, one derives from eq. (A.7c) that

𝑣𝑖 = 𝑤𝑖(𝑞, 𝑝𝑗) , (A.10a)

𝛷𝛼(𝑝𝛽, 𝑞) ≔ 𝑝𝛼 − 𝜕𝐿(𝑞, 𝑣)
𝜕𝑣𝛼 ∣

𝑣𝑖=𝑤𝑖(𝑞,𝑝𝑗)
= 0 . (A.10b)

Note that 𝑤𝑖 does not depend on 𝑝𝛼. 𝛷𝛼 in eq. (A.10b) are called primary con-
straints. The condition 𝛷𝛼 = 0 is to be considered as a part of the equations
of motion. They cannot be directly imposed in the action; 𝛷𝛼 = 0 only holds
on-shell.

Hamiltonian and action with primary constraints Inverting eq. (A.10a)
and inserting the results into 𝐻e gives the Hamiltonian with primary constraints
and the corresponding action

𝐻p(𝑞, 𝑝, 𝑣𝑖) ≔ 𝐻e|𝑣𝑖=𝑤𝑖(𝑞,𝑝𝑗)

= 𝑝𝑖𝑤𝑖(𝑞, 𝑝𝑗) − 𝐿(𝑞, 𝑣)|𝑣𝑖=𝑤𝑖(𝑞,𝑝𝑗) + 𝑝𝛼𝑣𝛼

≕ 𝐻s(𝑞, 𝑝) + 𝑣𝛼𝛷𝛼 , (A.11a)

𝐻s(𝑞, 𝑝) ≔ [𝑝𝑖𝑤𝑖(𝑞, 𝑝) + 𝑣𝛼 𝜕𝐿(𝑞, 𝑣)
𝜕𝑣𝛼 − 𝐿(𝑞, 𝑣)]

𝑣𝑖=𝑤𝑖(𝑞,𝑝𝑖)
; (A.11b)

𝑆p[𝑞, 𝑝, 𝑣𝑖] ≔ ∫ 𝕕𝑡 {𝑝𝑎 ̇𝑞𝑎 − 𝐻s(𝑞, 𝑝) − 𝑣𝛼𝛷𝛼} . (A.11c)

𝐻s does not contain any velocities, since one can easily verify from eq. (A.11b)
that 𝜕𝐻s/𝜕𝑣𝛼 = 0. Some authors see 𝑣𝛼 as merely Lagrangian multipliers, and
according to them, these as well as the 𝛷𝛼 can somewhat be manually imposed; in
the formulation here, in contrast, they originate from the description of the system
and are derived.

Breakdown of the Newton’s principle of determinacy The constraints are
also to be obeyed by the initial condition. From this perspective, the Newton’s
principle of determinacy is already broken by the primary constraints.
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A.2 Classical dynamics

Poisson bracket The Poisson bracket is defined as usual,

[𝐴, 𝐵]P ≔ 𝜕𝐴
𝜕𝑞𝑎

𝜕𝐵
𝜕𝑝𝑎

− 𝜕𝐴
𝜕𝑝𝑎

𝜕𝐵
𝜕𝑞𝑎 . (A.12)

By varying eq. (A.9b) or eq. (A.11c), one can show that the evolution of phase-
space functions is still given by [⋅, 𝐻∗]P, ∗ = e or p, with the corresponding con-
straints considered. For example,

{
̇𝐴(𝑞, 𝑝) = [𝐴, 𝐻p]P ,

𝛷𝛼 = 0
(A.13)

determines the evolution of 𝐴.

Secondary constraints Now, we consider 𝛷𝛼, which are to be constrained to
zero throughout the evolution of the system. This persistency condition requires

0 = [𝛷𝛼, 𝐻p]P . (A.14)

which may lead to new generations of constraints, collectively called secondary
constraints.

Second-class constraints We suppose that

𝐻p = 𝐻c + 𝜆𝜇𝛷𝜇 , (A.15)

where 𝛷𝜇 are all primary and secondary constraints, and 𝐻c does not contain any
constraint. In this case, the persistency condition reads

0 = [𝛷𝜈, 𝐻c]P + 𝜆𝜇[𝛷𝜈, 𝛷𝜇]
P

. (A.16)

If the anti-symmetric matrix [𝛷𝜇, 𝛷𝜈]
P
is invertible, one can choose

𝜆𝜇 = [𝛷𝜈, 𝐻c]P[([𝛷, 𝛷]P)−1]
𝜈𝜇

(A.17)

and then only deal with the 𝑞’s and 𝑝’s. One way to solve the dynamics of a second-
class system is to keep all the phase-space variables and use the Dirac bracket,
instead of the Poisson one. Another way is to find a canonical transformation
that reduces the constraints to conjugate pairs of phase-space variables, which
are constrained to zero, and study the rest of the phase-space variables, which
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constitute a regular system.
In fundamental physics, the Dirac spinor and the Proca theory are examples

of second-class systems. Apart from the literature mentioned at the beginning
of this appendix A, the Hamiltonian formulation of Dirac spinor 𝜓 has also been
studied in popular textbooks on quantum field theory, e.g. [133, sec. 3.5], where
the momentum conjugate to the spinor field 𝜓 was mentioned to be 𝗂𝜓†, so that
the phase space has the same dimension as the configuration space, rather than
doubling the size; in other words, the authors took a short-cut of the second way
mentioned above, and only studied the reduced physical phase space.

Although we could not find a proof, in all examples we know, eq. (A.15) holds
without the need of adding the secondary constraints by hand.

First-class constraints When [𝛷𝜇, 𝛷𝜈]
P
in eq. (A.16) is not invertible, these

constraints are called first-class, which generate “gauge” or redundancy transfor-
mations in the phase space, that can shift the phase-space trajectory while keeping
the initial values intact. The algorithm to construct gauge transformations is given
in e.g. [32].

In fundamental physics, electrodynamics, general relativity, Yang–Mills theory
and the bosonic string theory are all first-class systems.

In practice, it has been proven that [𝛷𝜇, 𝛷𝜈]
P

can always be blockwise di-

agonalised into (I 𝟘
𝟘 II

), such that II contains all the second-class constraints,

whereas no further constraint of such can be separated from I, which is therefore
purely first-class.

A.3 Example: relativistic point particle

Consider the quadratic action of a free point particle in special relativity [23, eq.
(2.7)]

𝑆[𝑥, 𝑁] ≔ 1
2 ∫ 𝕕𝜆 {𝜂𝜇𝜈

̇𝑥𝜇 ̇𝑥𝜈

𝑁 − 𝑁𝑚2} , 𝜇, 𝜈 = 0, 1, … , 𝑑 , (A.18)

where 𝑚 ≥ 0 is the mass; 𝑁 = 𝑁(𝑡) is an auxiliary variable, the equation of
motion of which reads

0 = 𝜂𝜇𝜈 ̇𝑥𝜇 ̇𝑥𝜈 + 𝑚2𝑁2 . (A.19)
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For 𝑚 > 0, substituting eq. (A.19) into eq. (A.18) gives the usual action for a
point particle

𝑆[𝑥, 𝑁 = 𝑚−1√−𝜂𝜇𝜈 ̇𝑥𝜇 ̇𝑥𝜈] = −𝑚 ∫ 𝕕𝜆 √−𝜂𝜇𝜈 ̇𝑥𝜇 ̇𝑥𝜈 . (A.20)

Let the configuration-space variables be ordered as (𝑥0, 𝑥1, … , 𝑥𝑑, 𝑁). The (𝑑 + 2)×
(𝑑 + 2) matrix

𝑀𝑎𝑏 = 𝜕2𝐿
𝜕𝑞𝑎 𝜕𝑞𝑏 = 1

𝑁 ( 𝜂𝜇𝜈 −𝜂𝜇𝜈
�̇�𝜈
𝑁

−𝜂𝜇𝜈
�̇�𝜇
𝑁 𝜂𝜇𝜈

�̇�𝜇�̇�𝜈
𝑁2

) (A.21)

has a matrix rank of (𝑑 + 1), and is therefore singular.

Using the formulation above, we choose 𝑣𝑁 to be the inexpressible velocity,
and the action with primary constraints reads

𝑆p[𝑥, 𝑁, 𝑝, 𝑃𝑁 , 𝑉 𝑁] = 1
2 ∫ 𝕕𝜆 {𝑝𝜇 ̇𝑥𝜇 − 𝐻p(𝑥, 𝑁, 𝑝, 𝑃𝑁 , 𝑉 𝑁)} , (A.22a)

𝐻p = 𝑁𝐻⟂ + 𝑉 𝑁𝑃𝑁 , (A.22b)
𝐻⟂ ≔ 𝜂𝜇𝜈𝑝𝜇𝑝𝜈 + 𝑚2 . (A.22c)

where 𝑃𝑁 is the only primary constraint. The Poisson bracket of 𝑃𝑁 and 𝐻p is

[𝑃𝑁 , 𝐻p]P = 𝐻⟂ . (A.23)

For this reason, 𝐻⟂ is often called Hamiltonian constraint, although it is unfortu-
nately not a Hamiltonian itself. There is no further constraint, and the system is
first-class, since [𝑃𝑁 , 𝐻⟂]P ≡ 0.

Note that 𝐻p consists of constraints only. Using the Dirac quantisation scheme
for such second-class systems, equations for the quantum wave function reads

0 = ℏ
𝗂 𝜕𝑁𝜓 , (A.24a)

0 = (−ℏ2𝜂𝜇𝜈𝜕𝜇𝜕𝜈 + 𝑚2)𝜓 . (A.24b)

Equation (A.24a) eliminates the dependence of 𝜓 on 𝑁 , and eq. (A.24b) is nothing
else but the Klein–Gordon equation.

Instead of the quadratic action (A.18), one could have begun with the usual
action (A.20) instead. The system is still singular; choosing 𝑣0 > 0 to be the
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inexpressible velocity, the action with primary constraints reads

𝑆p[𝑥, 𝑝, 𝑣0] = ∫ 𝕕𝜆 {𝑝𝜇 ̇𝑥𝜇 − 𝐻p(𝑥, 𝑝, 𝑣0)} , (A.25)

𝐻p = 𝑣0𝛷0 , (A.26)

𝛷0 ≔ 𝑝0 + √𝑚2 + 𝛿𝑖𝑗𝑝𝑖𝑝𝑗 , (A.27)

where 𝛷0 is the primary and the only constraint. Equations (A.25) and (A.26) are
different from eqs. (A.22a) and (A.22b). The quantum equation read

{ℏ
𝗂 𝜕0 +

√
𝑚2 − ℏ2∇2}𝜓 = 0 , (A.28)

so that we arrive at the same equation as the one found by Paul Dirac in the
development of his equation for electrons [42, sec. 74].
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B Canonical quantum gravitation à la Wheeler–
DeWitt

In this appendix B we briefly review the Wheeler–DeWitt approach of canonical
quantum gravitation. In appendix B.1 we give general relativity in terms of the
Einstein–Hilbert Lagrangian action plus the boundary term. Then in appendix B.2
we give a Hamiltonian formulation of general relativity that was developed by
Richard Arnowitt, Stanley Deser and Charles Misner. In the end, we give the
quantum equations of the Arnowitt–Deser–Misner formulation, which dates back
to John Wheeler and Bryce DeWitt, using the quantisation scheme of Paul Dirac.

B.1 General relativity

The most popular theory of gravitation is the general theory of relativity, or briefly
general relativity, originally developed by Albert Einstein [49]. At the moment,
there are many alternative theories that are indistinguishable from general rela-
tivity by observations and experiments, including the gauge approaches [22], the
scalar–tensor–vector theories [119], etc.

In general relativity, gravitation is a geometric effect of the pseudo-Riemannian
metric 𝑔𝜇𝜈 of space-time manifold ℳ; the dynamics of the metric is governed by
the Einstein field equations

𝑅𝜇𝜈 − 1
2𝑅𝑔𝜇𝜈 = 𝜘𝑇𝜇𝜈 − 𝛬𝑔𝜇𝜈 , (B.1)

where 𝑅𝜇𝜈 is the Ricci tensor, 𝑅 the Ricci scalar, 𝜘 ≔ 8π𝘎 , 𝑇𝜇𝜈 the energy-
momentum tensor of matter, and 𝛬 the cosmological constant.

These field equations can be derived from the Einstein–Hilbert action [79]

𝑆EH ≔ 1
2𝜘 ∫

ℳ
𝕕4𝑥 √−𝑔∼∼ (𝑅 − 2𝛬) , (B.2)

where 𝑔∼∼ ≔ det 𝑔𝜇𝜈, which is a scalar density of weight 2, hence the double tilde
above. 𝑆EH contains second derivatives of 𝑔𝜇𝜈 as well, which are to be eliminated
in order to be in accordance with the Newton’s principle of determinacy [9, sec.
1.1], see also the endnote of section 2.2. This can be realised by adding a boundary
term that was given credit to York, Gibbons and Hawking as

𝑆GHY ≔ − 1
2𝜘 ∫

𝜕ℳ
𝕕3𝑦 𝘵√−ℎ∼

∼
𝐾 , (B.3)

where 𝜕ℳ is the boundary of ℳ, which is supposed to be a time- or space-
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like hypersurface; 𝘵 = ± for time- and space-like cases of 𝜕ℳ, respectively; ℎ∼
∼
is

the determinant of the induced metric on 𝜕ℳ, and 𝐾 is the trace of the scalar-
valued second fundamental form of 𝜕ℳ [91, sec. 4.2.1, 3, sec. 1.2.4]. A different
boundary term has already been used by Einstein in [50]. The total action of
general relativity can now be written as sum of the bulk term and the boundary
term

𝑆gr = 𝑆EH + 𝑆GHY . (B.4)

For a detailed derivation of the Lagrangian formulation, see [138, sec. 4.1]

Ambiguity of the action The quantisation schemes depend on the action of
the system. Unfortunately, not only does the boundary term have ambiguities (see
e.g. [34]); the bulk Lagrangian of the system also contains arbitrariness [140, sec.
1.1.2].

Generic form of the boundary term One can use the method of moving
frames to study the boundary term, treating the null boundary within the same
framework, and dealing with the possible contribution from the non-smooth junc-
tion, or corner, of a piece-wise-defined boundary [83].

B.2 The Arnowitt–Deser–Misner formulation of geometro-
dynamics

The Arnowitt–Deser–Misner (ADM) formulation [10] is the most popular Hamil-
tonian formulation of general relativity, that uses the (3 + 1)-decomposed metric
as the configuration-space variables. For detailed derivations, see [91, ch. 4, 138,
sec. 4.2]. One can also use the original space-time metric as the variable, which
traces back to [43]; see [96] for a comparison.

When the space-time manifold can be decomposed ℳ = ℝ × 𝛴, where 𝛴
is space-like, one can adapt the coordinates (𝑡, 𝑦𝑎) such that the metric has the
components

𝑔𝜇𝜈 𝕕𝑥𝜇 𝕕𝑥𝜈 = −𝑁2 𝕕𝑡2 + ℎ𝑎𝑏(𝑁𝑎 𝕕𝑡 + 𝕕𝑦𝑎)(𝑁 𝑏 𝕕𝑡 + 𝕕𝑦𝑏) , (B.5)

where ℎ𝑎𝑏 𝕕𝑦𝑎 𝕕𝑦𝑏 is the induced metric on 𝛴, (𝑁, 𝑁𝑎) are the lapse and shift
functions, respectively.

Eliminating 𝑆GHY on the time-like boundaries from 𝑆gr yields the ADM action
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𝑆ADM = 1
2𝜘 ∫

ℝ×𝛴
𝕕𝑡 𝕕3𝑦 𝑁√ℎ∼

∼
{𝐾𝑎𝑏𝐾𝑎𝑏 − 𝐾2 + 𝑅[ℎ] − 2𝛬} (B.6a)

= 1
2𝜘 ∫

ℝ×𝛴
𝕕𝑡 𝕕3𝑦 𝑁{𝐺∼ 𝑎𝑏𝑐𝑑𝐾𝑎𝑏𝐾𝑐𝑑 + √ℎ∼

∼
(𝑅[ℎ] − 2𝛬)} , (B.6b)

𝐺∼ 𝑎𝑏𝑐𝑑 ≔
√ℎ∼

∼

2 (ℎ𝑎𝑐ℎ𝑏𝑑 + ℎ𝑎𝑑ℎ𝑏𝑐 − 2ℎ𝑎𝑏ℎ𝑐𝑑) , (B.6c)

where 𝐺∼ 𝑎𝑏𝑐𝑑
is the DeWitt metric [40], 𝐾𝑎𝑏 are components of the scalar-valued

second fundamental form, and 𝑅[ℎ] is the Ricci scalar of ℎ𝑎𝑏.
Equation (B.6b) describes a singular system. Using the formulation in ap-

pendix A, one finds the ADM action with constraints

𝑆p
ADM = 1

2𝜘 ∫
ℳ

𝕕𝑡 𝕕3𝑦{𝑝∼𝑎𝑏ℎ̇𝑎𝑏 + 𝑃∼ ̇𝑁 + 𝑃∼ 𝑎 ̇𝑁𝑎 − ℋ∼ p} , (B.7a)

ℋ∼ p ≔ 𝑁𝐻∼ gr
⟂ + 𝑁𝑎𝐻∼ gr

𝑎 + 𝑉 𝑃∼ + 𝑉 𝑎𝑃∼ 𝑎 , (B.7b)

ℋ∼ gr
⟂ ≔ 2𝜘𝐺∼ 𝑎𝑏𝑐𝑑𝑝∼𝑎𝑏𝑝∼𝑐𝑑 −

√ℎ∼
∼

2𝜘 (𝑅[ℎ] − 2𝛬) , (B.7c)

ℋ∼ gr
𝑎 ≔ −2𝑝∼𝑎

𝑏
|𝑏 , (B.7d)

𝐺∼ 𝑎𝑏𝑐𝑑 ≔ 1
2√ℎ∼

∼ (ℎ𝑎𝑐ℎ𝑏𝑑 + ℎ𝑎𝑑ℎ𝑏𝑐 − ℎ𝑎𝑏ℎ𝑐𝑑) , (B.7e)

where (𝑝∼𝑎𝑏, 𝑃∼ , 𝑃∼ 𝑎) are momenta conjugate to (ℎ𝑎𝑏, 𝑁, 𝑁𝑎), respectively; 𝐺∼ 𝑎𝑏𝑐𝑑 is
the inverse DeWitt metric, and | denotes the induced covariant derivative on 𝛴.

One can read off that 𝑃∼ and 𝑃∼ 𝑎 are the primary constraints, and ℋ∼ gr
⟂ , ℋ∼ gr

𝑎 are
the corresponding secondary constraints, which are called the Hamiltonian and
momentum (also diffeomorphism) constraints, respectively. Altogether, the four
of them generate the gauge transformations of the ADM action, see [96].

The classical Hamiltonian dynamics is discussed in e.g. [138, sec. 4.2, 162, appx.
E.2], which is not needed here.

B.3 The Wheeler–DeWitt approach
Applying the Dirac quantisation scheme to the ADM action gives the Wheeler–
DeWitt approach of quantum gravitation [40]. In this scheme, the generalised
positions and momenta are promoted to operators, as in the usual canonical quan-
tisation procedure in quantum mechanics. It gives rise to a functional Schrödinger
formulation, in which the kinetics of the system is described by a wave functional,
the arguments of which are the configuration space variables, or the field config-
urations, see e.g. [80]. This is in contrast to the usual practice in quantum field
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theories in special relativity, the kinetics of which is mostly written with the help
of a Fock space.

Since the ADM action describes a first-class system, the Hamiltonian of which
is constrained to zero, so that the equations that govern the wave function are
just the constraint equations. One can promote the conditions, that the classical
constraints are constrained to zero, to the quantum level, that the quantised con-
straints acting on the wave functional also give zero. For the gravitational part of
the system, this gives

0 = ℏ
𝗂

δ
δ𝑁 𝜓 , (B.8a)

0 = ℏ
𝗂

δ
δ𝑁𝑎 𝜓 , (B.8b)

0 = ℋ∼ gr
⟂ (ℎ𝑎𝑏,

ℏ
𝗂

δ
δℎ𝑎𝑏

)𝜓

= {−2𝜘ℏ2𝐺∼ 𝑎𝑏𝑐𝑑
δ2

δℎ𝑎𝑏 δℎ𝑐𝑑
−

√ℎ∼
∼

2𝜘 (𝑅[ℎ] − 2𝛬)}𝜓 ,
(B.8c)

0 = ℋ∼ gr
𝑎 (ℎ𝑎𝑏,

ℏ
𝗂

δ
δℎ𝑎𝑏

)𝜓 . (B.8d)

Equations (B.8a) and (B.8b) just eliminate the lapse- and shift-dependence of
the wave functional. Equations (B.8c) and (B.8d) are called the Wheeler–DeWitt
equations.

91



C Normalisation integral of the Bessel functions
Bessel functions are common transcendental functions in theoretical physics, dat-
ing back to Friedrich Bessel [47]. Unfortunately, undergraduate students nowadays
have decreasingly less lecture time on the special functions. We recommend [164,
ch. 7] for an introduction to these practical functions.

The integral of Bessel functions

∫
+∞

0

𝕕𝑥
𝑥 𝑊𝜈1

(𝑥)𝑊𝜈2
(𝑥) , (4.27c revisited)

where 𝑊𝜈(𝑥) is a Bessel function of order 𝜈, can be evaluated by a method that
has been given in [157, sec. 3]. Here we outline the calculation that is not available
in standard references, e.g. [45, ch. 10].

The Bessel equation (4.26b) can be rewritten as

𝑥 𝕕
𝕕𝑥(𝑥𝕕𝑊𝜈

𝕕𝑥 ) + (𝘦𝜈2 − 𝘶𝑥2)𝑊𝜈(𝑥) = 0 , (C.1)

where 𝘦, 𝘶 = ±1, and the correspondence of 𝑊𝜈(𝑥) to 𝐽𝜈(𝑥), 𝐹𝗂𝜈(𝑥), 𝐺𝗂𝜈(𝑥) and
𝐾𝗂𝜈(𝑥) can be found in table 5. Moving the second term to the right-hand side
and multiplying by 𝑊𝜈2

gives

𝕕
𝕕𝑥(𝑥

𝕕𝑊𝜈1

𝕕𝑥 )𝑊𝜈2
= (𝘶𝑥 − 𝘦 𝜈2

1
𝑥 )𝑊𝜈1

𝑊𝜈2
, (C.2a)

𝕕
𝕕𝑥(𝑥

𝕕𝑊𝜈2

𝕕𝑥 )𝑊𝜈1
= (𝘶𝑥 − 𝘦 𝜈2

2
𝑥 )𝑊𝜈2

𝑊𝜈1
. (C.2b)

Subtracting eq. (C.2a) from eq. (C.2b) and integrate with 𝑥, one gets

𝘦(𝜈2
1 − 𝜈2

2) ∫
+∞

𝜉

𝕕𝑥
𝑥 𝑊𝜈1

𝑊𝜈2

= ∫
𝑥→+∞

𝑥=𝜉
[𝕕(𝑥

𝕕𝑊𝜈2

𝕕𝑥 )𝑊𝜈1
− 𝕕(𝑥

𝕕𝑊𝜈1

𝕕𝑥 )𝑊𝜈2
] (C.3a)

= [𝑥(
𝕕𝑊𝜈2

𝕕𝑥 𝑊𝜈1
−

𝕕𝑊𝜈1

𝕕𝑥 𝑊𝜈2
)]

𝑥→+∞

𝑥=𝜉
, (C.3b)

where integrating by parts was used to derive eq. (C.3b). One can then substitute
the asymptotic expressions of 𝑊𝜈 at 𝑥 = 0+ and 𝑥 → +∞ (table 6) to evaluate
the integral (4.27c). The 𝛿-function is obtained by a more detailed discussion of
the sin or cos functions of the divergent logarithm, see [157, sec. 3].
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D Construction of a self-adjoint extension
The self-adjoint extension of a (closed) symmetric operator 𝐴 is best to be con-
structed by finding the extension of its Cayley transform [125]

𝑇𝐴 ≔ (𝐴 − 𝗂�̂�)(𝐴 + 𝗂�̂�)
−1

, (D.1)

named after Arthur Cayley [33]. 𝑇𝐴 is a unitary operator [73, thm. 10.28], The
inverse transform

𝐴 = 𝗂(𝑇𝐴 + �̂�)(𝑇𝐴 − �̂�)−1
(D.2)

gives back 𝐴. The logic of the construction is easier to be understood than to be
proven, which is described below.

1. 𝐴 if self-adjoint, if and only if the spectrum of 𝐴† is also real [141, thm. X.1].
Therefore we first study the complex spectrum of 𝐴†.

2. Let the deficiency subspaces be

𝐇𝐴,𝜆 ≔ ker(𝜆�̂� − 𝐴†) ≡ range(𝜆∗�̂� + 𝐴)⟂ , (D.3)

where ⟂ denotes orthogonal complement [141, thm. X.1]. Their dimensions
𝒩𝐴,𝜆 ≔ dim𝐇𝐴,𝜆 are called the deficiency indices.

3. The deficiency indices are constants for ℑ𝜆 > 0 and < 0, respectively [141,
thm. X.1]. Hence for simplicity and definiteness, we fix 𝜆 = ±𝗂, and focus
on 𝐇𝐴,± as well as 𝒩𝐴,±, where ± is to be understood as ±𝗂.

4. Now, it has been shown that Dom𝐴† can be decomposed as [141, p. 138, 64,
thm. 3.1]

Dom𝐴† = Dom𝐴 ⊕ 𝐇𝐴,𝜆 ⊕ 𝐇𝐴,𝜆∗ , (D.4)

where ⊕ means direct sum. We will try to extend Dom𝐴 to, say, 𝐇𝐴,+, so
that Dom𝐴† is shortened.

5. Now go back to 𝑇𝐴. One has

Dom𝑇𝐴 = (𝐴 + 𝗂�̂�)Dom𝐴 ≡ range(𝐴 + 𝗂�̂�) ≡ (𝐇𝐴,+)⟂ . (D.5)

6. One can extend Dom𝑇𝐴 to 𝐇𝐴,+ by assigning a unitary transformation
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𝑈 ∶ 𝐇𝐴,+ → 𝐇𝐴,−, so that Dom𝐴 is extended to

Dom𝐴𝑈 ≡ {𝜙 + (�̂� − 𝑈)𝜙+ ∣ 𝜙 ∈ Dom𝐴, 𝜙+ ∈ 𝐇𝐴,+}, (D.6)

and the action of the extended operator

𝐴𝑈(𝜙 + (�̂� − 𝑈)𝜙+) ≔ 𝐴𝜙 + 𝗂(�̂� + 𝑈)𝜙+ , (D.7)

which is given by eq. (D.2) [141, thm. X.2].

For a technical note about the proofs, see [141, p. 318]
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E Quantisation of the two-dimensional hydrogen
atom

In this appendix E we describe the canonical quantisation of the two-dimensional
hydrogen atom in more detail.

The system is described by the action

𝑆 = ∫ 𝕕𝑡 [𝑚
2 ( ̇𝜚2 + 𝜚2�̇�2) + 𝛼

𝜚 ] . 𝛼 > 0 (5.2 revisited)

Upon quantisation, the stationary Schrödinger equation reads

(− ℏ2

2𝑚∇2 − 𝛼
𝜚 )𝜓(𝜚, 𝜑) = 𝐸𝜓(𝜚, 𝜑) . (5.5 revisited)

A separated test solution

𝜓(𝜚, 𝜑) = 𝛲(𝜚)𝛷(𝜑) (E.1)

gives the orthonormal angular eigenfunction

𝛷𝑙(𝜑) = (2π)−1/2𝖾𝗂𝑙𝜑, 𝑙 = 0, ±1, ±2, … , (5.7d revisited)

and the corresponding angular momenta reads 𝑙ℏ, where 𝑙 is called the angular
quantum number. The remaining radial wave function satisfies

{ 𝕕2

𝕕𝜚2 + 1
𝜚

𝕕
𝕕𝜚 + [2𝑚

ℏ (𝐸 + 𝛼
𝜚 ) − 𝑙2

𝜚2 ]}𝛲(𝜚) = 0 . (E.2)

For bounded states 𝐸 < 0, rewrite the energy levels as [177]

𝐸𝑛 ≔ −𝑚𝛼2

2ℏ2 (𝑛 + 1
2)

−2
, (5.8)

where 𝑛 is called the main quantum number. Introducing the dimensionless radial
coordinate

𝜉 ≔ 𝛽𝑛𝜚 , 𝛽𝑛 ≔ 2𝑚𝛼
ℏ2 (𝑛 + 1

2)
−1

, (5.7e revisited)

the radial wave function can be factorised [105, sec. 32, 36]

𝛲(𝑥) ≕ 𝜉|𝑙|𝖾−𝜉/2𝐺(𝜉) , (E.3)
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and eq. (E.2) becomes

{𝜉 𝕕2

𝕕𝜉2 + [(2|𝑙| + 1) − 𝜉] 𝕕
𝕕𝜉 − (|𝑙| − 𝑛)}𝐺(𝜉) = 0 . (E.4)

The solutions that are regular at 𝜉 = 0 can be given in terms of a Kummer’s [100]
confluent hypergeometric function [45, sec. 13.2], Sonin’s [155, sec. 40] associated
Laguerre polynomial [45, eq. (18.11.2)], or a Whittaker function [45, eq. (13.14.4)]
as

𝐺(𝜉) = 1𝐹1(|𝑙| − 𝑛, 2|𝑙| + 1, 𝜉) 𝑁𝑛𝑙 (E.5a)

= 𝐿(𝑎)
𝜇 (𝜉) 𝑎!

(𝜇 + 1)2|𝑙|
𝑁𝑛𝑙 𝑎 = 2|𝑙| , 𝜇 = 𝑛 − |𝑙| ; (E.5b)

= 𝑀𝜈,|𝑙|(𝜉)𝜉−|𝑙|𝖾𝜉/2 𝑁𝑛𝑙 𝜈 = 𝑛 + 1
2 , (E.5c)

where (𝑎)𝑛 ≔ 𝑎(𝑎 − 1) … (𝑎 − 𝑛 + 1) is the Pochhammer’s [136] symbol [45, sec.
5.2(iii)]. The usual orthonormal condition requires 𝑛 ∈ ℕ ∪ {0}; 𝑙 = 0, ±1, … , ±𝑛,
and

𝑁𝑛𝑙 = 1
(2|𝑙|)!(

(𝑛 + |𝑙|)!
(2𝑛 + 1)(𝑛 − |𝑙|)!)

1/2
. (5.7c revisited)

Together with eqs. (5.7a) to (5.7d), these results complete the canonical quantisa-
tion of the two-dimensional hydrogen atom.
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F Manipulation of differential forms
In this appendix F we establish an inductive framework, in which one can effectively
manipulate differential forms used in section 6. In practice, we have found that
the closed-form definitions and formulae are much less useful than the inductive
ones. It is not intended to give a consistent introduction of the topic. We mostly
follow [29, ch. 4, 122, sec. 7.9].

In (pseudo-)Riemannian geometry, the partial differentials 𝜕𝑖 serve as bases for
the tangent vector space, which we denote by 𝗩, without specifying the point.

One- and zero-forms A(n) (untwisted) differential one-form 𝛼 ∈ 𝝠1 is a co-
vector, the space in which it lives 𝝠1 = 𝗩∗ is spanned by the coordinate differentials
𝕕𝑥𝑖, defined by their action on the coordinate differentials

𝕕𝑥𝑖(𝜕𝑗) = 𝛿𝑖
𝑗 . (F.1)

A zero-form 𝑓 ∈ 𝝠0 is just a scalar function.
Zero- and one-forms will be the starting point of much of the construction

below.

Exterior product and 𝑟-forms For 𝛼, 𝛽 ∈ 𝝠1, their wedge product is the
antisymmetrised tensor product,

𝛼 ∧ 𝛽 = −𝛽 ∧ 𝛼 . (F.2)

From here one can define the (untwisted) differential (𝑟 + 1)-forms by the wedge
product of an one-form and an 𝑟-form, which are totally antisymmetric tensors of
type (0, 𝑟 + 1).

In general, the wedge product is defined for an arbitrary 𝑝- and 𝑞-form,

∧ ∶ 𝝠𝑝 × 𝝠𝑞 → 𝝠𝑝+𝑞 . (F.3)

For 𝜔 ∈ 𝝠𝑝, 𝜂 ∈ 𝝠𝑞,

𝜔 ∧ 𝜂 = (−)𝑝𝑞𝜂 ∧ 𝜔 . (F.4)

For a 𝑑-dimensional manifold, the non-empty spaces of forms are 𝝠𝑟, 𝑟 =
0, 1, … , 𝑑.

Exterior derivative The exterior derivative 𝕕 is a linear derivative operator
that maps an 𝑟-form to an (𝑟 + 1) form, that acts on 𝑓 ∈ 𝝠0 as the usual differen-
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tial, and

𝕕(𝕕𝑓) = 0 . (F.5a)

Moreover, for 𝜔 ∈ 𝝠𝑝, 𝜂 another differential form,

𝕕(𝜔 ∧ 𝜂) = 𝕕𝜔 ∧ 𝜂 + (−)𝑝𝛼 ∧ 𝕕𝜂 . (F.5b)

Interior product The interior product, or contraction ⨼, is a linear map

⨼ ∶ 𝗩 × 𝝠𝑟 → 𝝠𝑟−1 . (F.6)

In particular, for 𝑣 ∈ 𝗩, 𝜔 ∈ 𝝠𝑝, 𝜂 an arbitrary form,

𝑣 ∧ 𝛼 = 𝛼(𝑣) , (F.7a)
𝑣 ⨼ (𝜔 ∧ 𝜂) = (𝑣 ⨼ 𝜔) ∧ 𝜂 + (−)𝑝𝜔 ∧ (𝑣 ⨼ 𝜂) . (F.7b)

Musical isomorphisms The musical isomorphisms [18, p. 21] are a convenient
way to connect 𝗩 and 𝗩∗ = 𝝠1 by using the metric. The flat operator takes vectors
to one-forms

♭ ∶ 𝗩 → 𝝠1 , (F.8a)

(𝜕𝑖)
♭ ↦ 𝑔𝑖𝑗 𝕕𝑥𝑗 , (F.8b)

whereas the sharp operator takes one-forms to vectors

♯ ∶ 𝝠1 → 𝗩 , (F.9a)

(𝕕𝑥𝑖)♯ ↦ 𝑔𝑖𝑗𝜕𝑗 . (F.9b)

Hodge star The Hodge star operator is a linear isomorphism

⋆ ∶ 𝝠𝑟 → 𝝠𝑑−𝑟 , (F.10)
(F.11)

One can start the construction from the zero-form, the Hodge star of which is just
the volume form

⋆1 = √∣det 𝑔𝑖𝑗∣ 𝕕𝑥1 ∧ 𝕕𝑥2 ∧ … ∧ 𝕕𝑥𝑑 . (F.12)
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The Hodge star of higher forms is constructed inductively by the following identity

⋆(𝜂 ∧ 𝛼) = 𝛼♯ ⨼ ⋆𝜂 , (F.13)

where 𝛼 ∈ 𝝠1, 𝜂 an arbitrary form. In particular, the Hodge dual of coordinate
differentials reads

⋆𝕕𝑥𝑖 = ⋆(1 ∧ 𝕕𝑥𝑖) = (𝕕𝑥𝑖)♯ ⨼ ⋆1 = 𝑔𝑖𝑗𝜕𝑗 ⨼ ⋆1 . (F.14)

The inverse of Hodge star is the Hodge star itself with additional signs. For
𝘴 = sgn det 𝑔𝑖𝑗, 𝜔 an 𝑟-form,

⋆−1𝜔 ≔ 𝘴(−)𝑟(𝑑−𝑟) ⋆ 𝜔 , (F.15a)
⋆−1 ⋆ 𝜔 = ⋆ ⋆−1 𝜔 = 𝜔 . (F.15b)

Inner product and codifferential Let 𝛼 = 𝛼𝑖 𝕕𝑥𝑖, 𝛽 = 𝛽𝑖 𝕕𝑥𝑖 be two one-
forms. One can verify that

𝛼 ∧ ⋆𝛽 = 𝑔𝑖𝑗𝛼𝑖𝛽𝑗 . (F.16)

In general, for 𝜔, 𝜂 ∈ 𝝠𝑟, their inner product is defined by

(𝜔, 𝜂) = ∫ 𝜔 ∧ ⋆𝜂 . (F.17)

In the sense of this inner product, for 𝜔 ∈ 𝝠𝑟, 𝜆 ∈ 𝝠𝑟−1, one can define the
codifferential 𝕕† as the adjoint of the exterior differential

𝕕† ∶ 𝝠𝑟 → 𝝠𝑟−1 , (F.18a)
(𝜔, 𝕕𝜆) ≕ (𝕕†𝜔, 𝜆) . (F.18b)

One can show that for 𝜔 ∈ 𝝠𝑟,

𝕕†𝜔 = (−)𝑟 ⋆−1 𝕕 ⋆ 𝜔 . (F.19)
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