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Abstract 

The circadian clock is an important timing system that, in part, controls stress adaptation in 

Arabidopsis thaliana. In the model crop barley, the clock orthologs Ppd-H1 and HvELF3 are 

important regulators of photoperiod response and flowering. However, little is known about 

additional effects of the clock on plant performance and stress adaptation in barley. Therefore, 

the objectives of this study were i) to analyse the effects of natural variation at the barley 

photoperiod response and clock genes Ppd-H1 and HvELF3 on response to osmotic stress and ii) 

to test whether osmotic stress at the root acted as an input signal to the shoot circadian clock and 

thus changed diurnal patterns of physiological traits. 

The first chapter describes changes in gene expression and physiology under polyethylene glycol 

induced osmotic stress  in seedlings of two spring barley cultivars carrying a natural mutation in 

Ppd-H1 and two derived introgression lines with the wild type Ppd-H1 allele. Analysis of 

performance at three consecutive days under stress revealed that the natural mutation in Ppd-H1 

resulted in reduced cell membrane injury and increased photosynthetic activity and concomitant 

lower expression of stress-responsive and senescence-activated genes as compared to the 

introgression lines with the wild type Ppd-H1 allele. In the second chapter, I analysed diurnal 

changes of clock and stress -expression and of leaf water relations and gas exchange in two pairs 

of genotypes varying at Ppd-H1 and HvELF3. Variation at HvELF3 affected the phase and shape 

of the clock and stress-gene expression profiles, whereas variation at Ppd-H1 modified the 

expression levels only of stress genes. Osmotic stress upregulated expression of clock and stress-

response genes and advanced their expression peaks. Expression differences in clock genes did 

not have strong effect on the diurnal expression of physiological traits. 

Taken together, this thesis demonstrates that osmotic stress at the barley root altered clock gene 

expression in the shoot and acted as a spatial input signal into the clock. Ppd-H1 controlled 

stress-induced senescence, while variation at HvELF3 did not affect senescence related traits, 

and had minor effects on gas exchange under stress. Unlike in Arabidopsis, barley primary 

assimilation was less controlled by the clock and more responsive to environmental 

perturbations, such as osmotic stress. 
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Zusammenfassung 

Die circadiane Uhr ist ein interner Zeitmesser, der unter anderem die Anpassung an Stress in der 

Modelpflanze Arabidopsis thaliana koordiniert. In der Modell-Getreidepflanze Gerste spielen die 

Uhrgene Ppd-H1 und HvELF3 eine wichtige Rolle für die Regulierung der Blüte in 

Abhängigkeit der Photoperiode. Allerdings ist der Einfluss der circadianen Uhr auf die 

agronomische Leistung und Anpassung an Stress in Gerste noch wenig erforscht. Das Ziel dieser 

Arbeit ist es, i) den Einfluss natürlicher Variation an Ppd-H1 und HvELF3 auf das Verhalten von 

Gerstenkeimlingen unter osmotischen Stress zu untersuchen, ii) den Effect von osmotischem 

Stress an der Wurzel auf die Expression von Uhrgenen und physiologischer Merkmale im Blatt 

zu untersuchen. 

Im ersten Teil meiner Arbeit beschreibe ich die Effekte von Variation an Ppd-H1 auf die 

Expression von Stress-induzierten Genen und physiologische Merkmale unter osmotischem 

Stress, induziert durch Polyethylenglycol. Zwei Genotypen mit verschiedenen Allelen für Ppd-

H1 zeigten unter osmotischem Stress Unterschiede in der photosynthetischen Aktivität und 

Zellmembranpermeabilität, und in der Expression von Stress- und Seneszenz- induzierten Genen. 

Im zweiten Teil meiner Arbeit gehe ich näher auf die Interaktion von osmotischem Stress und 

diurnalen Änderungen circadianer Rhythmen ein. Hierfür wurden diurnale 

Genexpressionsprofile der Uhrgene und Stress-induzierter Gene erfasst, sowie Änderungen 

physiologischer Parameter  unter osmotischem Stress untersucht. Osmotischer Stress führte zu 

einer Induktion von Genen der circadianen Uhr und der Stress-Signalwege, sowie zu einer 

Verschiebung ihrer diurnalen Expressionsprofile. HvELF3 beinflusste die Expressionsphase und 

Form von Uhr- und Stressgenen, während Ppd-H1 nur die Expressionshöhe von Stressgenen 

regulierte. Diese Veränderungen korrelierten nicht mit Änderungen in den betrachteten 

physiologischen Parametern. 

Zusammenfassend zeigen meine Ergebnisse, dass Ppd-H1 neben seiner Rolle in der 

photoperiodischen Regulation der Blüte pleiotrope Funktionen in der osmotischen Stressantwort 

und der Stress-induzierten Seneszenz übernimmt. Des Weiteren führte osmotischer Stress an den 

Wurzeln zur Änderung der Genexpresssion der circadianen Uhr im Spross. Im Unterschied zu 

Arabidopsis scheint der Primärmetabolismus in Gerste weniger stark von der  circadianen Uhr 

als von äusseren Umwelteinflüssen, wie osmotischer Stress, kontrolliert zu sein.  



V 
 

Abbreviations 

ABA               Abscicic acid  

ABI5              ABA-insensitive5 

ABRE            ABA responsive element 

APX1           Ascorbate peroxidase1 

ARF1          ADP-rybosylation factor 1  

AT                Time after stress  

CAT1            Catalase 1 

CCA1            Cicadian clock -associated1 

CCAF            Circadian clock factor 

DRE             Drought responsive element 

DREB1         Drought responsive binding1 

DRF1            Drought responsive factor 1 

EC               Evening complex 

EE               Evening element 

EL               Electrolyte leakage  

Fv/Fm        Maximum quantum yield of PSII  

GA             Gibberlicc acid  

GI             Gigantia 

HRGP       Hydroxyproline-Rich Glycoprotein 

LD            light dark 

LHY          Late elongated hypocotyl 

LREM        Light response element motif 

LT              Leaf temperature 

MDA         Malondialdehyde 

PEG        Poly ethylene glycol 

PI          Performance index 

PIF        Phytochrome interacting factor 

PRR        PSEUDO-RESPONSE REGULATOR 

PSII       Photosystem II 

RWC          Relative water Content 

SAM      Shoot apical meristem 

TF           Transcript factor 

TOC1     Timing of CAB1 

ZT           Zeitgeber time 
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Chapter One- The Effect of Natural Variation at Ppd-H1 on Responses to to 

Osmotic in Barley 

Introduction 

Drought is the most important abiotic constraint to plant survival and global crop productivity. 

Water deficit affects plant physiological, biochemical, as well as molecular processes (Harb et 

al., 2010).  Its impact on plants differs depending on developmental stage of the plant, duration 

and severity of the stress and the ability of plant to adapt to drought stress. Responses to drought 

stress at different growth stages could thus provide a basis for developmental strategies to adapt 

and respond to drought stress (Vurayai, et al.,2011). Plants respond to drought stress through 

changes in morphology, physiology, and metabolism in different organs of the plant (Chaves et 

al., 2002). At the cellular level, plant responses to water deficit may result from cell damage, 

whereas responses at tissue and organ level may be correspond to adaptive mechanisms (Cellier 

et al., 1998). The adaptive strategies to cope with the prevailing drought stress include drought 

escape, drought avoidance and drought tolerance. An important drought escape mechanism is 

rapid phenological development which allows reproduction outside the dry season. Drought 

avoidance describes the maintenance of a high tissue water potential through reduced 

transpiration or improved water uptake. Finally, drought tolerance allows the plant to survive and 

reproduce in the presence of a low water content in the plant, through accumulation of 

osmolytes, antioxidants, and other protective proteins ( Ingram and Bartels, 1996; Chavez et al., 

2003).  

As an escape strategy, the pattern of crop development is an important trait for adaptation to dry 

environments. Quantitative Trait Loci (QTL) studies showed that genomic regions associated 

with improved yield under drought coincided with major flowering genes in barley and 

wheat(Quarrie et al., 2006; von Korff et al., 2008; McIntyre et al., 2009; Rebetzke et al., 2008, 

Rollins et al. 2013). Studies suggest that flowering time genes have pleiotropic effects on plant 

architecture, yield structure and even shoot sodium accumulation (Taeb, et al., 1992; Kurepa, et 

al. 1998; Lens, et al., 2008; Kinoshita et al. 2011; Rollins et al. 2013). However, not much is 

known about the direct or indirect effects of flowering time genes on genes and pathways other 

than those involved in the control of development.   
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Photosynthesis is one the plant processes that is affected primarily by drought stress. The effects 

of drought stress on photosynthesis can be direct through the reduction of CO2 diffusion (Flexas 

et al., 2012) or indirectly through alteration of photosynthetic metabolism (Cornic and Fresneau, 

2002) that arises from imbalances of electron transport (Bartoli et al., 2000). Furthermore, these 

imbalances of electron transport enhance the accumulation of reactive oxygen species (ROS) 

such as superoxide radicals, singlet oxygen, and hydroxyl radicals (Cruz de Carvalho, 2008). 

Hence, the increased ROS would damage proteins, lipids and DNA (Mittler et al., 2002). For 

example, peroxidation of lipids, commonly taken as an indicator of oxidative stress, disrupts the 

membrane integrity of the plant cell. This means that essential solutes leak out from the 

organelles and from the cell and cause the damage of membrane function and metabolic 

imbalances (Blokhina et al., 2003). In addition, drought stress could also damage oxygen-

evolving complex of photosystem II and reaction centers (Subrahmanyam et al., 2006). 

Therefore, in order to examine the extent of damage in the photosynthetic apparatus chlorophyll 

fluorescence measurements have become a widely used method to study the functioning of the 

photosynthetic activity and are used as an indicator of the plant’s response to drought stress 

(Massacci et al., 2008). Furthermore, drought induced senescence in plants plays an important 

role in plant survival. This drought-induced leaf senescence under stress contributes to the 

remobilization of nutrient material to the new tissues (Munne-Bosch and Alegre, 2004). ROS are 

regulators of leaf senescence (Zentgraf and Hemleben, 2008) and their production is also known 

to be increased under drought stress. Understanding this connection between development/ 

senescence and stress response might be crucial to decipher the genetic and molecular control of 

stress responses in plants.  

Studies on the model plant Arabidopsis revealed genes and gene networks of drought responses 

in plants, and these were classified in regulatory and functional (response) genes (McCue and 

Hanson, 2002; Shinozaki and Yamaguchi-Shinozaki, 2007; Harb et al., 2010). Nakashima et al., 

(2009) showed that gene networks regulating drought responses are conserved between dicots 

and monocots. The common drought stress signaling pathway are comprised of abscisic acid 

(ABA)-dependent and ABA-independent pathways (Shinozaki and Yamaguchi-Shinozaki, 

2007). Key genes for these ABA-dependent/independent pathways have been identified in 

Arabidopsis , such as DROUGHT-RESPONSIVE-BINDING PROTEIN2 (DREB2)/C-REPEAT 

BINDING FACTOR (CBF) and ABA-RESPONSIVE ELEMENT BINDING PROTEINS (AREB) 
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(Bartels and Sunkar, 2005; Sakuma et al., 2006). These transcription factors induce downstream 

functional genes, which are involved in cellular homeostasis to mitigate the effects of stress 

(Ramanjulu and Bartels, 2002). Orthologous  genes involved in these regulatory pathways were 

also identified in barley (Tondelli et al., 2006; Guo et al., 2009), but the functions of most of 

these genes have yet to be identified. Despite the existence of common regulatory mechanisms 

between monocots and dicots, some stress-inducible genes such as DREB2 like genes in barley 

are induced both by ABA and drought stress (Xue and Loveridge, 2004), suggesting that drought 

signaling pathways might be different in barley as compared to the model plants Arabidopsis and 

rice.  

Barley is one of the most drought tolerant crops which is cultivated in various parts of the world 

and is an ideal model crop for drought stress studies (Eshghi et al., 2010). Mediterranean barley 

which is adapted to terminal drought is characterized by a rapid development under long day 

(LD) conditions (von Korff et al., 2008). Early flowering under LD in barley is primarily 

controlled by the photoperiod response gene Ppd-H1 (Turner et al., 2005). Barley genotypes 

carrying the mutated recessive ppd-H1 allele are late flowering whereas the dominant Ppd-H1 

allele causes early flowering under LD (Campoli et al., 2012). A single nucleotide mutation in 

the CCT domain of Ppd-H1 resulting in an amino acid change is causative for this difference in 

sensitivity to LD (Turner et al., 2005). Natural variation at this gene is adaptive and shows a 

specific  geographical distribution. The photoperiod sensitive winter barley genotypes (ancestral) 

are predominant in Mediterranean areas and represents an adaptation to terminal drought and 

heat. In contrast, the derived photoperiod insensitive allele was selected in spring barley cultivars 

grown in  temperate Northern European areas as an adaptation to longer growing seasons 

(Cockram et al., 2007). Ppd-H1 encodes a PSEUDO-RESPONSE REGULATOR (PRR) gene, 

most similar to the circadian clock gene PRR7 in Arabidopsis (Turner et al., 2005). The circadian 

clock is an autonomous oscillator that produces endogenous biological rhythms with a period of 

about 24 hours. The Arabidopsis circadian clock consists of core oscillators that connect morning 

and evening phases. The central core feedback loop comprises two MYB genes CIRCADIAN 

CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) which is 

expressed in the morning and represses transcription of the evening expressed PRR gene TIME 

OF CAB EXPRESSION1 (TOC1) (Wang and Tobin, 1998; Alabadi et al., 2001).  The expression 

of CCA1/LHY declines in the evening releasing the repression of TOC1 in the evening. The 

http://jxb.oxfordjournals.org/content/61/12/3211.full#ref-67
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morning feedback loop comprises of PRR7 and PRR9, the transcription of these genes is 

promoted by CCA1/LHY and the subsequent accumulation of PRR7 and PRR9 proteins down 

regulates the transcripts of CCA1/LHY genes (Farre’ et al., 2005). This loop also involves, 

EARLY FLOWERING 3 (ELF3), EARLY FLOWERING 4 (ELF4) and LUX ARRYTHMO (LUX) 

which promotes CCA1 and LHY expression and represses PRR7 and PRR9 (Doyle et al., 2002; 

Hazen et al., 2005). The evening feedback loop involves GIGANTIA (GI) regulates negatively 

TOC1 expression (Pokhilko et al., 2012). 

The circadian clock is implicated in regulation of stress responses in plants (Matsui et al., 2008; 

Mizuno and Yamashino, 2008). For example, studies in Arabidopsis have shown that the 

circadian clock is an important mechanism controlling stress adaptation in plants by coordinating 

their metabolism and development with predicted daily and seasonal changes of the environment 

(Green et al, 2002; Michael et al, 2003; Dodd et al, 2005). In line to these, global transcriptome 

analysis identified several stress-responsive genes that are controlled by circadian clock in 

Arabidopsis such as genes providing protection against cold stress, oxidative and heat stress 

(Covington et al., 2008; Lai et al., 2012). For example, constitutive expression of DREB1s/CBFs 

genes were observed in triple PRR mutants (PRR5, PRR7 and PRR9), which reveals a direct link 

between clock genes such as PRRs to the stress inducible transcription factors CBFs (Nakamichi 

et al., 2009).  This suggests a relationship between PRR genes and stress-inducible DREB/CBF 

genes in plants. Despite the prominent role of Ppd-H1 for photoperiod response and adaptation, 

its effect on stress adaptation through clock dependent or independent control of stress 

responsive genes has not yet been analyzed in barley. 

Furthermore, recent studies indicated that the circadian clock is also involved in the control of 

seed germination (Penfield and King, 2009). It is believed that circadian clock is arrested in dry 

seeds, but the start of seed imbibition could set the phase and synchronize Arabidopsis circadian 

clock (Zhong et al., 1998). Circadian clock and seed germination are sensitive to environmental 

stimuli and can be modulated by light and temperature (McClung et al., 2006). Because of the 

common environmental factors setting these two events, there is a possible interaction between 

clock and seed germination. Moreover, metabolism of the plant hormones such as ABA and 

gibberilic acid (GA) are under the control of the clock, including genes important in germination 

control, suggesting that this is the mechanism through which the clock controls germination 
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(Michael et al. 2008; Penfield and Hall, 2009). In agreement to these ideas, a previous study has 

indicated the interaction of central seed dormancy regulator ABA-INSENSITIVE3 (ABI3) and 

TOC1 in Arabidopsis (Kurup et al., 2000), indicating the involvement of circadian clock in seed 

germination through hormone balance control. In addition, a recent study by Penfield and Hall, 

(2009) demonstrated that mutations in the circadian clock genes CCA1/LHY, GI and LUX altered 

seed germination in Arabidopsis. Their study also indicated the importance of clock genes for the 

normal ABA and GA responses in seeds. However, the effects of other circadian clock genes 

including PRR7 and PRR9 on seed germination remain to be demonstrated. Furthermore, there is 

less information available on how alteration of circadian clock genes affects seed dormancy and 

germination in cereals.  

Different experimental procedures have been developed for mimicking drought stress which 

differed in terms of intensity and dynamics. Polyethylene glycol (PEG) is a ionically neutral 

osmotically active polymer and has been widely used to induce osmotic stress by decreasing the 

water potential of the nutrient solution (Murillo-Amador et al., 2002). With this method a water 

deficit can be uniformly applied to all plants and higher molecular weight of PEG such as 8000 

or more does enter into the plant  roots and is not toxic to plant cells (Verslues et al., 2006). 

Hence, many drought/osmotic stress experiments have used PEG to understand physiological, 

metabolism and molecular changes drought stress (Kumar et al., 2011; Marcin’ska et al., 2013; 

Yang et al., 2011) and to identify tolerant cultivars in different crops (Badiane et al. 2004; 

Nodichao, 2010).  

 

The objective of this study was to understand the role of natural genetic variation at major 

photoperiod response genes and circadian clock ortholog Ppd-H1 on plant performance under 

osmotic stress. The second objective of the present study was to study the effects of natural 

variation at Ppd-H1 on seed germination under ABA. The plant performance was analyzed by 

measuring physiological responses and transcript changes under short-term PEG-induced 

osmotic stress conditions and by assessing seed germination under different concentrations of 

ABA.  

 

 

http://rspb.royalsocietypublishing.org/content/276/1673/3561.full?cited-by=yes&legid=royprsb;276/1673/3561#ref-44
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Materials and Methods 

Barley genotypes 

The spring barley cultivars Scarlett and Triumph and derived introgression lines S42-IL107 and 

Triumph-IL in the background of Scarlett and Triumph, respectively, were used in this study. 

S42-IL107 was generated by crossing the spring barley Scarlett with the wild barley accession 

ISR42-8, the introgression line was then obtained after repeated selection and backcrossing to 

Scarlett (von Korff et al., 2004; Schmalenbach et al., 2011); Triumph-IL was obtained from the 

cross of Triumph and the winter barley Igri and was kindly provided by David Laurie (John 

Innes Center, Norwich). Scarlett and Triumph carry the same mutation in the CCT domain of 

Ppd-H1 and are late flowering under LD (Turner et al. 2005). The introgression lines S42-IL107 

and Triumph-IL harbor the photoperiod-responsive Ppd-H1 allele introgressed from wild barley 

and winter barley, respectively, and are early flowering under LD (Campoli et al., 2012). 

Growth conditions 

All chemical were purchased from Carl Roth GmbH unless stated otherwise. Seeds of all 

genotypes used in this study were surface-sterilized with 6 % Sodium hypochlorite solution for 

30 min and stratified at +4°C for 2-3 days (d) on wet filter paper in the dark. The stratified seeds 

were pre-germinated at room temperature in the dark for 1 d. The germinated seeds were then 

placed in seed-holders which were filled with agar (Merck, Germany). After 2 d, seedlings were 

transferred to the hydroponics system which consisted of half-strength Hoagland nutrient 

solution (3.5 mM Ca(NO3)2, 2.5 mM KNO3, 1 mM KH2PO4, 1 mM MgSO4.7H20, 0.5 mM Fe–

EDTA, 0.023 mM H3BO3, 0.004 mM MnCl2-4H2O, 0.47 mM ZnSO4-7H2O, 0.12 mM CuSO4-

5H2O, 0.006 mM Na2MoO4), as described by (Hoagland and Arnon, 1950). Plants were kept for 

8-10 d in a climatic chamber at irradiance of 300 μmol/m
2
/s and air temperature 20 °C  during 

day and 16 °C at night time. The nutrient solution was changed every three to four days. 

Experimental set up 

Short-term osmotic stress experiments were conducted in 16 h photoperiod length (LD) using 

cultivars Scarlett and Triumph as well as introgression lines S42-IL107 and Triumph-IL. 

Osmotic stress was applied after seedlings reached the two leaf stage. In order to generate  

uniform osmotic stress conditions in the roots of the plants, seedlings were subjected to water 



7 
 

deficit by replacing the normal nutrient solution with one supplemented with 20 % PEG 8000 

(Fluka, Germany) which corresponds to -0,8 MP osmotic potential. The media of the control 

plants were also replaced with freshly prepared Hoagland’s nutrient solution that corresponded to 

-0.2 Mpa. According to Hsiao (1973) the stress induced by PEG for 24, 48 and 72 h represents 

mild, moderate and severe water stress, respectively. 

Each experiment was repeated three times. Physiological measurements and leaf sampling for 

RNA were conducted at three time points i.e. 24 h, 48 h and 72 h after stress. All measurements 

were conducted from second leaf from the bottom and samples were collected between ZT4-ZT6 

in order to minimize the diurnal effects on sampling. In each experiment, RWC, photochemical 

efficiency and leaf temperature were analysed from 8-9 plants per genotype, treatment and time 

point. Measurements of proline content and MDA accumulation were conducted using three 

replicates per genotype, treatment and time point, each pool of three leaves was considered as 

one biological replicate.  Leaf samples for total RNA extraction were also collected at three 

different time points using three replicates each of which consists of two pooled leaf samples. 

The leaf samples collected for RNA were immediately frozen in liquid nitrogen and stored -80 

⁰C until processed. 

Determination of relative water content (RWC) 

Leaf relative water content (RWC) was measured on the second emerged leaf. Water content was 

estimated according to Turner (1981) and was calculated from the equation: RWC = (FM - 

DM)/(SM - DM) X 100, where FM is the fresh mass of the leaves, SM is the mass at full water 

saturation, measured after submerging the leaves for 24 h in the dark in distilled water at +4 °C, 

and DM is the mass after drying the leaves for 24 h at 70 °C.  

Photochemical efficiency 

Photochemical efficiency was estimated using chlorophyll fluorescence measurements. 

Chlorophyll fluorescence was measured on the middle part of the abaxial side of the second fully 

developed intact leaf after dark-adaptation for 20 min with an in situ portable fluorometer Handy 

Plant Efficiency Analyzer (PEA) (Hansatech, King’s Lynn, Norfolk, UK) as described by 

Humbeck et al. (1996). Fluorescence was induced using 3000 µmol photons m 
-2

s
-1

 flash of 

actinic light persisting for 1 s on dark adapted leaves. The induction curves were analyzed using 

the PEA plus software (Hansatech,UK). The chlorophyll fluorescent parameters calculated 
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include Fv/Fm, performance index (PI) and Area. Where, Fv/Fm ratio measures the efficiency of 

excitation energy captured by open PSII reaction centers representing the maximum capacity of 

light-dependent charge separation (Krause and Weis, 1991). Performance index (PI) 

encompasses three components; the force of the light reactions, the force of the dark reactions 

and the efficiency of light trapping by the light harvesting complex. The area above the 

fluorescence curve between Fo and Fm (Area) is proportional to the pool size of electron 

acceptors Qa on the reducing side of PSII. 

Leaf temperature 

Leaf temperature (LT) was measured on the second emerged leaf. LT was measured using Optris 

LS LT portable infrared thermometer (Optris, USA) set to close focus mode and with the 

emissivity set 0.99. Temperature measurements were taken prior to sampling and measured from 

the middle portion of the blade. 

Electrolyte leakage  

Electrolyte leakage was measured according to Szalai et al., (1996). Uniform leaf discs from 

nine plants from each genotype per condition were pooled and placed in a glass vial (20 ml). The 

leaf discs were then washed three times in deionised water to remove electrolytes adhered on the 

leaf surface. Then 10 ml deionised water was added to the vial, capped and incubated in the dark 

for 24 h at room temperature. The conductance was measured using a conductivity meter 

(Horiba, Ohio). After the initial measurement (i), the vials were autoclaved for 15 min to kill the 

leaf tissue and to achieve 100 % electrolyte leakage. After cooling, the final conductivity reading 

(ii) was taken. The measurement was then represented as percentage of (i/ii) *100. These two 

measurements were carried out individually for all samples from both the control (non-stress) 

and stress treatments every 24 h for 3d after stress application. 

Quantification of proline 

Plant material (0.1-0.2 g fresh weight of leaf) was collected on ice and stored at -80 °C for 

further processing. The proline content was estimated according to the method of Bates et al. 

(1973). Leaf samples were extracted with 3% sulphosalicylic acid, extracts (200µl) were held for 

1 hour in boiling water after adding 200 µL acidic ninhydrin and 200 µL glacial acetic and the 

reaction was terminated in an ice bath. The reaction mixture was extracted with 400 µL toluene 
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mixed for 60 seconds. The chromophore containing toluene was aspirated from aqueous phase. 

The proline content was then measured by spectrophotometer (Synergy 4, Biotek, Germany) by 

reading at 520 nm against toluene blank. The standard curve was prepared from a 10X dilution 

series of L-proline (Sigma Aldrich, Germany) with 0.1 to 100 µg ml-1 concentrations. Free 

proline content was determined from standard curve and calculated following Bates et al., 

(1973): 

 

 µ𝑔 𝑝𝑟𝑜𝑙𝑖𝑛𝑒  /𝑚𝑙  𝑋  𝑚𝑙  𝑡𝑜𝑙𝑢𝑒𝑛𝑒  

115 .5µ𝑔/µ𝑚𝑜𝑙𝑒

𝑔 𝑠𝑎𝑚𝑝𝑙𝑒 /5
  = µmol/g fresh weight 

  

Leaf Malondialdehyde  (MDA) measurement 

The level of lipid peroxidation Malondialdehyde (MDA) was measured following the modified 

method of Heath and Packer (1968) with 0.2 g of fresh leaf per plant of the second leaf. The leaf 

material ground in liquid nitrogen and homogenized with 2 ml solution of 0.1 % Trichloracetic 

acid (TCA). The homogenate was centrifuged at 1000xG for 15 min. Then 2 ml of the 

supernatant was mixed with 2 ml of TCA and 2 ml of Thiobarbituric acid (TBA). The samples 

were incubated at 95 °C for 30 min and immediately transferred to ice for 5 min, followed by 

centrifugation at 1000 g for 1 min. The supernatant absorbance was read at 532 nm, and values 

correspond to non specific absorption 600 nm were subtracted. MDA concentration was 

calculated using its molar extinction coefficient (є= 155 mM-1 cm-1)  

Apical meristem measurement 

The development of plants was monitored by dissecting and scoring the shoot apical meristem 

three day after application of osmotic stress in 3-5 replicate plants according to the Waddington 

scale (Waddington et al., 1983). 

Germination test 

Seeds of all genotypes were surface-sterilized with 6 % sodium hypochlorite solution for 30 min 

and rinsed with sterile water. The sterilized seeds were placed in 10cm Petri dishes lined with 

two sheets of Whatman No.1 filter paper, saturated either with 3ml distilled water (control) or by 

adding different concentrations of 3ml ABA (± Cis,trans-abscisic acid, Sigma, Germany). 

Germination tests for all samples were immediately conducted in the dark at room temperature. 
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Three replications of 40 seeds were used per genotype and treatment conditions. After 3d, 

germinated seeds (those where the coleoptile had emerged through the hull) were counted and 

expressed as a germination percentage. The experiment was repeated three times. 

RNA extraction, cDNA synthesis and real time qRT-PCR 

Total RNA was extracted from 100 mg of tissue using TRIZOL® reagent (Invitrogen,Germany) 

following manufacturer’s instructions, except for the addition of RNaseH, followed by a DNase 

treatment (final volume 100 μL). First strand cDNA synthesis was performed on 4 μL of total 

RNA using 100 U of SuperScriptTM II RT (Invitrogen, Germany) and 500 ng of poly-T primer 

and following manufacturer’s recommendations (final volume 40 μL). The resulting cDNA was 

diluted 1:4 in nuclease-free water and stored in aliquots at −20 °C. 

Real-Time quantitative PCRs (qRT-PCR) were performed on cDNA samples using gene-specific 

primers (Supplementary Table 1). Amplifications were performed using 4 μL of cDNA, 0.5 U of 

GoTaq DNA polymerase (Promega), 0.2 mM dNTP, 2.5 mM MgCl2, 0.2 μM each primer, and 

0.5 μL of EvaGreen (Biotium) in a final volume of 10 μL. Reactions were performed in a 

LightCycler480 (Roche) with the following amplification conditions: 95 °C for 5 min, 45 cycles 

of 95 °C (10 s), 60 °C (10 s) and 82 °C (10 s). Appropriate non-template controls were included 

in each 384-well PCR. Dissociation analysis was performed at the end of each run and the 

melting curves for each primer pair showed a single peak confirming the specificity of the 

reaction. The standard curves were prepared from a dilution series of plasmids containing the 

target fragments and subjected to qRT-PCR analysis with the respective cDNA samples. Starting 

amounts for each data point were calculated based on the titration curve for each target gene and 

the reference (HvActin) gene using the LightCycler480 Software (Roche; version 1.5).  

Design and validation of qRT-PCR primers 

Drought/osmotic responsive genes in barley were identified either through public data base 

searches from NCBI (http://www.ncbi.nlm.nih.gov/) and literature searches or via BLAST 

searches of known drought responsive genes to barley EST, Contigs, and mRNA sequences in 

NCBI, IPK Barley Blast Server (http://webblast.ipk-gatersleben.de/barley/viroblast.php) and 

HARVEST: Barley databases. Specific primer pairs for qRT-PCR were designed by using 

Primer3 (http://primer3.wi.mit.edu) (Supplementary Table S1). The specificity and efficiency of 
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the primers were tested by carrying out preliminary qRT-PCR assays on a pool of  cDNAs from 

stress and control samples  of different concentrations. Primers for candidate gene were then 

selected based the presence of single peak by melting curve analysis and absence of non-specific 

products or primer-dimer artifacts. The specificity of the amplicons was also checked by 

electrophoresis on 2 % agarose gel and sequencing of the PCR products in order to confirm that 

the product sequence was the same as the target candidate gene.  

Cloning of PCR product for standard curve in qRT-PCR 

Amplification of stress response genes was conducted from cDNA of stress samples using  

GoTaq® DNA polymerases (Promega, Germany). The PCR amplifications were performed 

using 5 μL of cDNA, 0.5 U of GoTaq DNA polymerase, 5 μL 5x GoTaq buffer, 1 μL 2 mM 

dNTP, 0.5 μL 10 mM of each primer, and 12.9 μL sterile H2O in a final volume of 25 μL  

Reactions were performed in a PCR Cycler (Eppendorf, Germany) with the following 

amplification conditions: 95 °C for 3 min, 35 cycles of 95 °C (10 s), 60 °C (30 s) and 72 °C (30 

s). After detection of specific PCR amplicons, the PCR products were cloned into the pCR®2.1-

TOPO® vector using T TOPO® TA Cloning® Kit according to manufacturers recommendation 

(Invitrogen, USA). The recombinant plasmids were extracted by the Nucleospin ® Plasmid 

purification kit (Mascherey-Nagel, Germany). The extracted recombinant plasmids were 

sequenced. The obtained sequences were queried online by using the BLAST service at the 

NCBI. Dilutions of purified plasmid DNA were used to construct gene specific calibration 

curves. These calibration curves were used for calculation of each candidate and reference gene 

concentration in qRT-PCR. 

Statistical analysis 

Statistical analyses were carried out with SAS version 9.1 (SAS Institute Inc, 2003). The 

procedure LSMEANS was used to calculate adjusted means and standard deviations for each 

trait.  A multifactorial analysis of variance (ANOVA) was performed for each trait with a mixed 

general linear model using the PROC GLM procedure:  

Yijkl = µ + Gi +Tj +Rk+Pl+GTij+GPil+TPjl+GTPijl+Rijkl. 

where µ is overall mean, Gi  is the fixed effect of the i-th genotype, Tj is the fixed effect of the j-

th treatment, Rk is the random effect of the k-th replication , Pl is the fixed effect of the l-th time 

point, GTij is the fixed interaction of the i-th genotype with j-th treatment, GPil  is the fixed 
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interaction of the i-th genotype with l-th time point, TPjl  is the fixed interaction of the j-th 

treatment with l-th time point ,GTPijl   denotes the interaction effects of i-th genotype with  j-th 

treatment and l-th time point, Rijkl   is the residual effect. Pearson correlations coefficients 

between trait values were calculated with the least squares means for stress and control plants 

separately.   

Results 

Effect of short-term osmotic stress on physiological responses of genotypes 

varying at Ppd-H1  

The present study was conducted to examine whether the natural mutation in the CCT domain of 

the major  photoperiod response gene Ppd-H1  and pseudo response regulator homolog (PRR7) 

affected performance under osmotic stress. The effects of short-term osmotic stress on 

physiological performance, relative water content (RWC), leaf temperature (LT) and proline 

content, were analysed in the spring barley cultivars Scarlett/ S42-IL107 and Triumph/Triumph-

IL at 24h, 48h and 72h after beginning of the stress treatment (AT). A significant reduction of 

RWC was observed in Scarlet and S42-IL107 under stress compared to control conditions at all 

time points (Fig. 1A), while in Triumph and Triumph-IL the reduction of RWC was only 

significant 72h AT (Fig. 1B). The lowest RWC was observed under stress 72h AT, when it was 

86 % for Scarlett(ppd-H1), 85 % for S42-IL107(Ppd-H1), 85 % for Triumph(ppd-H1) and 75 % 

for Triumph-IL(Ppd-H1). The RWC of control plants ranged between 91 % and 94 % in all 

genotypes. Although  no significant differences were observed between Scarlett(ppd-H1) and 

S42-IL107(Ppd-H1) at all time points under control and stress conditions, a significant 

difference in RWC was observed  between Triumph(ppd-H1) and Triumph-IL(Ppd-H1) in 

stressed plants 72h AT (Supplementary Table S2,S3,S4 and S5). LT was significantly increased 

in stressed plants compared to control plants in all genotypes (Fig. 1, C and D). No significant 

differences between genotypes differing at Ppd-H1 was recorded for LT.  Proline content 

increased gradually during the stress treatment and was significantly higher under stress 

compared to control conditions in all genotypes 48h and 72h AT, with an up to three-fold 

increase of proline content in stress as compared to control conditions (Fig. 1, E and F). No 

significant differences in proline accumulation were observed  between genotypes differing at 
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the Ppd-H1 locus. Taken together short term osmotic stress affected RWC, LT and proline 

content, but variation at Ppd-H1 did not cause differences in these physiological traits.   

Cell-membrane stability affected by short-term osmotic stress and by natural 

genetic variation at Ppd-H1 

Osmotic stress commonly leads to the production of reactive oxygen species (ROS) which in 

turn affect membrane integrity (Blokhina et al., 2003). In order to test for the effects of osmotic 

stress and variation at Ppd-H1 on ROS production and membrane integrity in barley, lipid 

peroxidation was analyzed as was the percentage of electrolyte leakage (EL) under osmotic 

stress. Changes in lipid peroxidation levels under osmotic stress were quantified by measuring  

malondialdehyde (MDA) content. MDA levels were increased in stressed plants in comparison 

to control plants 48h and 72h AT in all genotypes (Fig. 2, C and D). In general, MDA production 

was elevated in Scarlett(ppd-H1) and S42-IL107(Ppd-H1) compared to Triumph(ppd-H1)  and 

Triumph-IL(Ppd-H1) under osmotic stress. The production of MDA was higher in S42-

IL107(Ppd-H1) (0.52) than Scarlett(ppd-H1) (0.38) and in Triumph-IL(Ppd-H1) (0.31) than in 

Triumph(ppd-H1) (0.22) under osmotic stress 72h AT. The analysis of variance also showed 

significant genetic differences in MDA production (Supplementary Table S2 and S4), indicating 

a genotype dependent accumulation of MDA under osmotic stress. 
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Figure 1. Effects of osmotic stress and variation at Ppd-H1 on physiological performance in barley. 

Seedlings were grown in hydroponics under long days (16h light) for 10 days. Seedling were  immersed 

in 20 % PEG at the two leaf stage or kept under control conditions for 3 days and physiological traits 

were measured at a 24h interval. Scarlett(ppd-H1) control  , Scarlett(ppd-H1) stress  , S42-

IL107(Ppd-H1)  control   and S42-IL107(Ppd-H1)  stress  are shown in left panel and 

Triumph(ppd-H1) control  , Triumph(ppd-H1) stress  , Triumph-IL(Ppd-H1) control   and  

Triumph-IL(Ppd-H1)  are shown in the right panel. A) and B) Relative water content, C) and D) Leaf 

temperature and  E) and F) Proline accumulation. Different letters indicate significant differences at p≤ 

0.05 using least square means. Means ± standard deviation (Sd) (n = 3) are shown.  
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Like MDA, EL was significantly increased in stressed plants compared to control plants 48h and 

72h AT in Scarlett(ppd-H1) and S42-IL107(Ppd-H1) (Fig. 2A). Triumph(ppd-H1) and Triumph-

IL(Ppd-H1) showed significantly higher EL under osmotic stress compared to control conditions 

at all time points  (Fig. 2B). The increase in EL under osmotic stress was significantly higher in 

S42-IL107(Ppd-H1) as compared to Scarlett 72h AT and in Triumph-IL(Ppd-H1) as compared to 

Triumph at all time points. The analysis of variance demonstrated a significant effect of the 

genotype by time point interaction between Scarlett(ppd-H1) and S42-IL107(Ppd-H1) and 

between Triumph(ppd-H1) and Triumph-IL(Ppd-H1) (Supplementary Table S2 and S4). EL was 

thus affected by osmotic stress and by genetic variation between the spring barley genotypes 

Scarlett and Triumph and their respective introgression lines.  

Taken together, the gradual increases in MDA and EL under osmotic stress indicated the 

generation of free radicals and subsequent effects on cell membrane integrity. In addition, the 

increased production of MDA and EL in the introgression lines S42-IL107(Ppd-H1) and 

Triumph-IL(Ppd-H1) compared to Scarlett(ppd-H1) and Triumph(ppd-H1) showed genotype 

dependent accumulation of ROS and differences in cell membrane stability under osmotic stress. 
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Figure 2. Effects of genetic variation (Ppd-H1) and osmotic stress on ROS production and cell membrane 

injury in barley seedlings grown under PEG-induced or under control conditions. Seedlings were grown 

in hydroponics under long days (16h light) for 10 days. Roots of seedlings at the two leaf stage were 

immersed in 20 % PEG to induce osmotic stress or were kept under control conditions for 3 days and A) 

and B) electrolyte leakage (EL) and C) and D) malondialdehyde (MDA) were measured at 24h intervals 

in Scarlett(ppd-H1) control  , Scarlett(ppd-H1) stress  , S42-IL107(Ppd-H1)  control   and S42-

IL107(Ppd-H1)  stress  are shown in left panel and Triumph(ppd-H1) control  , Triumph(ppd-H1) 

stress  , Triumph-IL(Ppd-H1) control   and  Triumph-IL(Ppd-H1)  are shown in the right panel. 

Different letters indicate significant differences at p≤ 0.05 using least square means. Means ± standard 

deviation (Sd) (n = 3) are shown.  
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Chlorophyll fluorescence is affected by natural genetic variation at Ppd-H1 

osmotic stress 

To understand the effects of osmotic stress on photosynthesis activity, I measured the 

chlorophyll fluorescence transients under short-term osmotic stress. The fluorescence transients 

recorded included maximum quantum efficiency of photosystem II (Fv/Fm), the area above the 

fluorescence curve between initial fluorescence (Fo) and maximum fluorescence (Fm) (Area) 

and  Performance index (PI). Osmotic stress had no significant effects on the expression of 

chlorophyll fluorescence parameters at all time points, except for 72h AT, when S42-IL107 and 

Triumph-IL showed a significant decrease in all three chlorophyll fluorescence parameters under 

osmotic stress as compared to control conditions. At the same time, no significant decrease in 

chlorophyll fluorescence were observed in their respective parental lines Scarlett and Triumph, 

except Area in Triumph and PI in Scarlett, under osmotic stress (Fig. 3, A, C and E). 

(Supplementary Table S2,S3,S4 and S5). Furthermore, ANOVA revealed  interaction effects of 

genotype by treatment  for all three chlorophyll fluorescence parameters in Triumph(ppd-H1) 

and Triumph-IL(Ppd-H1) while in Scarlett(ppd-H1) and S42-IL107(Ppd-H1) only PI had 

significant interaction effect (Supplementary Table S3 and S5). 

 

Altogether, the results show that the chlorophyll fluorescence parameters were affected by 

osmotic stress 72 AT only in the introgression lines carrying a dominant Ppd-H1 allele. 
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Figure 3. Effect of short-term PEG-induced osmotic stress on chlorophyll fluorescence. Seedlings were 

grown in hydroponics under long days (16h light) for 10 days. Roots of seedlings at the two leaf stage 

were immersed in 20% PEG to induce osmotic stress or were kept under control conditions for 3 days and 

A) and B) Fv/Fm and C) and D) Area, E) and F) Performance index were measured at 24h interval from 

Scarlett(ppd-H1) control  , Scarlett(ppd-H1) stress  , S42-IL107(Ppd-H1)  control   and S42-

IL107(Ppd-H1)  stress  are shown in left panel and Triumph(ppd-H1) control  , Triumph(ppd-H1) 

stress  , Triumph-IL(Ppd-H1) control   and  Triumph-IL(Ppd-H1)  are shown in the right panel. 

Different letters indicate significant differences at p≤ 0.05 using least square means. Means ± standard 

deviation (Sd) (n = 3) are shown.  
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Association between physiological parameters in osmotic-stress 

In order to identify the relationship among physiological parameters, Pearson correlation 

coefficients (r) were calculated  across all genotypes and time points, but separately for control 

and stress conditions as shown in Table 1. The results demonstrated that most of the 

physiological traits had higher correlation coefficients under stress than control conditions. 

Under stress, RWC was positively correlated with PI (0.26) and negatively with EL (-0.38), LT 

(-0.33), Proline (-0.3) and MDA (-0.26), but not under control condition. LT was positively 

correlated with EL (0.33) and MDA (0.29) under stress, while it was only positively correlated 

under control condition with proline (0.21). Proline accumulation was negatively correlated with 

chlorophyll fluorescent parameters both under stress and control conditions, while it was 

strongly and positively correlated with EL (0.54) and MDA (0.47) under stress conditions. 

Chlorophyll fluorescence parameters (Fv/Fm, Area and PI) were strongly and negatively 

correlated either with EL or MDA under stress condition. In addition, MDA was positively 

correlated with EL (0.38) under stress which indicates the oxidative damage of lipid and 

membrane permeability under stress conditions. Altogether, the strong associations between 

RWC and other physiological traits might show that responses of the physiological traits were 

determined by the water status of the leaves. In addition, the significant links between 

photosynthetic efficiency responses (Fv/Fm, Area and PI)  and cell membrane stability indicators  

(EL and MDA) indicate that the stability of cell membrane influences the photochemical 

efficiency of the cell. 
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Table 1.Pearson correlation coefficients for physiological traits measured  across all genotypes 

under stress (above the diagonal) or control conditions (below the diagonal) 

  RWC LT Proline Fv/Fm Area PI EL MDA 

RWC 

 

-0.33* -0.3* 0.16 0.16 0.26* -0.38* -0.26* 

LT -0.15 

 

0.2 -0.21 -0.16 0.1 0.33* 0.29* 

Proline 0.11 0.21* 

 

-0.21 -0.43* -0.34* 0.54** 0.47** 

Fv/Fm 0.12 0.01 0.15 

 

0.24* -0.02 -0.37* -0.11 

Area 0 -0.22* -0.36* 0.07 

 

0.15 -0.45** 0.05 

PI 0.13 -0.01 -0.26* 0.03 0.34* 

 

0.15 -0.56** 

EL 0.02 0.19 -0.18 -0.08 0.08 0.19 

 

0.38* 

MDA 0.05 -0.02 0.29* -0.02 -0.26* 0.18 0.11 

 

Significant (*= p<0.05, **= p<0.001) coefficients are underlined. EL electrolyte leakage, RWC relative 

water content, Proline  proline content, Fv/Fm maximum quantum efficiency of Photosystem II ,Area the 

area above fluorescence curve between Fo and Fm, PI  performance index ,LT leaf temperature and MDA 

malondialdehyde 

Changes of shoot apical meristem under short-term osmotic stress 

Plant development and growth are affected by drought stress (Harb et al.,2010). In order to 

monitor the developmental changes under short-term osmotic stress, the development stage of 

shoot apical meristems (SAM) of seedlings were scored 3 d after the start of stress based on the 

Waddington developmental scale (Fig. 4;Waddington et al. 1983). The developmental stage of  

SAM  was advanced in the introgression lines carrying Ppd-H1 both under control and stress 

conditions compared to Scarlett and Triumph. However, the development of SAM was not 

affected by short-term stress.  
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Figure 4. Shoot apical meristem in Scarlett/S42-IL107 and Triumph/ Triumph-IL. Seedlings were grown 

in hydroponics under long days (16h light) for 10 days. Roots of seedlings at the two leaf stage were 

immersed in 20 % PEG to induce osmotic stress or were kept under control conditions for 3 days.  A) The 

picture of the meristem after 72h control/stress. Development of the shoot apical meristem under 

control/stress treatments in B) Scarlett and S42-IL107 and C) Triumph and Triumph-IL. Means ± 

standard deviation (Sd) (n = 3) are shown.  
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Expression of genes involved in osmotic stress signaling pathway in genotypes 

differing at Ppd-H1 under osmotic stress  

Natural variation at Ppd-H1 affected photosynthesis parameters, generation of free radicals and 

cell membrane integrity. In addition, it has been shown that variation at Pseudo Response 

Regulator genes, homologous to Ppd-H1 in barley controlled the expression of stress response 

genes (DREB/CBF genes) in Arabidopsis thaliana (Dong et al., 2011; Nakamichi et al., 2009). 

Therefore, the expression of representative genes induced by drought/osmotic stress HvDRF1 

and HvDREB1 (drought responsive element binding protein 2 like genes (DREB2), HvABI5 

(ABA-responsive gene), HvWRKY38 (ABA-responsive WRKY family gene), HvA22 (ABA-

induced late embryogenesis abundant protein) were tested under osmotic stress and control 

conditions (Shinozaki and Yamaguchi-Shinozaki et al.,2007; Todaka et al., 2012). As the 

introgression lines S42-IL107 and Triumph-IL carry other genes from the donor parents 

(Schmalenbach et al.,2011;Turner et al.,2005), I have tested the transcript profile of the stress 

response gene involved in cell wall extension hydroxyproline-rich glycoprotein (HvHRGP) 

(Sujeeth et al.,2012), from the introgressed genes in S42-IL107 (Supplementary Table S21). 

Moreover, the expression of PHYTOCHROME INTERACTING FACTOR (PIF), which is 

recently linked to abiotic stress as a negative regulator of DREB genes, was also tested 

(Kidokoro et al.,2009). Expression of these stress induced  genes was monitored  under the same 

conditions as used for measurements of physiological traits. 

The expression of both DREB2 like genes was elevated in stressed plants as compared to control 

plants in all genotypes. Under osmotic stress, S42-IL107(Ppd-H1) and Triumph-IL(Ppd-H1) 

showed higher levels of HvDRF1 and HvDREB1 transcripts 24h and 48h AT compared to 

Scarlett(ppd-H1) and Triumph(ppd-H1) (Fig. 5A, B, 5C and D). Under control conditions, the 

expression of HvDRF1 and HvDREB1 was not significantly different between genotypes 

differing at Ppd-H1.  

The expression of HvABI5 was significantly different between control and stress conditions 48h 

and 72h AT in all genotypes. However, no differences in expression of HvABI5 were detected 

between genotypes differing at Ppd-H1  both in control and stress conditions  (Fig. 5 E and F). 

Significant differences in the  expression of HvWRKY38 between stress and control conditions 

were observed at 48h and 72h AT in Scarlett and S42-IL107, and in Triumph and Triumph-IL  
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24h, 48h and 72h AT(Fig. 5 G and H). No significant differences of HvWRKY38 expression were 

recorded between genotypes under stress or control conditions. In contrast to other genes studied, 

the barley PIF3 like gene (HvPIL3) was down regulated in stressed plants compared to control 

plants (Fig. 5 I and J). In Scarlett(ppd-H1) and S42-IL107(Ppd-H1) the reduction of HvPIL3 

transcript level was shown under stress at all time points, except for 24h AT when HvPIL3 

expression was not significantly different between stress and control conditions in  S42-IL107  

(Fig. 5I). In Triumph(ppd-H1) a significant difference in HvPIL3 expression between control and 

stress conditions was observed 48h AT, while Triumph-IL(Ppd-H1) showed significant 

differences in HvPIL3 expression between control and stress conditions at 24h and 48h AT. The 

mRNA levels of the drought and ABA-inducible gene HvA22 was significantly higher in stress 

compared to control condition in all genotypes(Fig. 5, K and L). A significant difference in 

HvA22 expression was observed under stress conditions for S42-IL107 compared to Scarlett at 

72h AT and for Triumph-IL compared to Triumph at 48h AT. HvHRGP was higher expressed 

under stress than control conditions with no differences between genotypes,(Fig. 5 M and N).  

Taken together, osmotic stress increased expression of stress-response genes and decreased the 

expression of HvPIL3. Genotypes carrying the wild type Ppd-H1 allele showed a higher 

expression of HvDRF1, HvDREB1 and HvABI5 under osmotic stress compared to spring barley 

lines with the mutated ppd-H1 allele. 
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Figure 5. Effects of osmotic stress and variation at Ppd-H1 on the expression of genes involved in stress 

response in barley. Seedlings were grown in hydroponics under long day (16h light) for 10 days. Roots of 

seedlings at the two leaf stage were immersed in 20% PEG to induce osmotic stress or were kept under 

control conditions for 3 days  A) and B) HvDRF1 expression, C) and D) HvDREB1 expression, E) and F) 

HvABI5 expression, G) and H) HvWRKY38 expression, I) and J) HvPIL3 expression, K) and L) HvA22 

expression and M) and N) HvHRGP levels were analysed at 24h intervals from Scarlett(ppd-H1) control 

 , Scarlett(ppd-H1) stress  , S42-IL107(Ppd-H1)  control   and S42-IL107(Ppd-H1)  stress  

are shown in left panel and Triumph(ppd-H1) control  , Triumph(ppd-H1) stress  , Triumph-

IL(Ppd-H1) control   and  Triumph-IL(Ppd-H1) stress  are shown in the right panel. Different letters 

indicate significant differences at p≤ 0.05 using least square means. Means ± standard deviation (Sd) (n = 

3) are shown.  
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Differential expression of ROS scavenging and senescence activated genes 

under osmotic stress between genotypes differing at Ppd-H1 

To test whether the differences observed in cell membrane damage by production of ROS were 

due to differences in ROS scavenging, I examined expression of ROS scavenging genes, HvApx1 

(ascorbate peroxidase) and HvCAT1(catalase),and senescence activated genes HvARF1(ADP 

ribosylation factor 1-like protein) and HvGR-RBP1 (glycine-rich RNA-binding protein) (Ay et 

al., 2008; Parott et al., 2012). The expression levels of HvApx1 and HvCAT1 were elevated under 

osmotic stress and increased proportional to the duration of the stress treatment, except for 

expression levels of HvCAT1 in Scarlett and S42-IL107 which peaked 48h and declined at 72h 

AT (Fig.6). Under osmotic stress, the expression levels of HvApx1 were higher in the 

introgression line S42-IL107 than in Scarlett at 24h and 72h AT, and in Triumph-IL compared to 

Triumph 48h and 72h AT (Fig. 6, A and B). The expression of HvApx1 was not significantly 

different between genotypes under control condition, except between Triumph and Triumph-IL 

at 48h AT (Fig. 6, A and B). The expression of HvCAT1 was higher in Triumph-IL than in 

Triumph 72 h AT, but no significant genetic differences were detected between Scarlett and S42-

IL107 (Fig. 6, C and D).  

Under osmotic stress, the induction of HvARF1 was higher in S42-IL107  than Scarlett at 48h 

AT, and in Triumph-IL compared to Triumph 24h and 74h AT (Fig. 6, E and F). HvGR-RBP1 

showed no significant  induction under stress in all genotypes compared to control conditions 

(Fig. 6, G and H).  Taken together, genetic variation in the expression of ROS scavenging gene 

HvApx1 and the senescence activated gene HvARF1 was observed under osmotic stress condition 

but not in  control conditions. 
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Figure 6. Effects of osmotic stress and variation at Ppd-H1 on the expression of genes involved in ROS 

scavenging and leaf senescence. Seedlings were grown in hydroponics under long days (16h light) for 10 

days. Roots of seedlings at the two leaf stage were immersed in 20% PEG to induce osmotic stress or 

were kept under control conditions for 3 days.  A) and B) HvAPX1  expression, C) and D) HvCAT1 

expression, E) and F) HvARF1  expression and G) and H) HvGR-RBP1  expression levels were analysed 

at 24h intervals from Scarlett(ppd-H1) control  , Scarlett(ppd-H1) stress  , S42-IL107(Ppd-H1)  

control   and S42-IL107(Ppd-H1) stress  are shown in left panel and Triumph(ppd-H1) control  , 

Triumph(ppd-H1) stress  , Triumph(Ppd-H1) control   and  Triumph(Ppd-H1)  are shown in the 

right panel.  Different letters indicate significant differences at p≤ 0.05 using least square means. Means ± 

standard deviation (Sd) (n = 3) are shown.  
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Correlation between candidate drought stress gene expression under osmotic-

stress 

To determine co-expression of genes, pairwise Pearson correlation coefficients (r) were 

calculated for drought-responsive genes across genotypes of all time points and treatments 

combined. The strongest significant correlations were detected between HvABI5 and HvHRGP 

(0.88),followed by between HvHRGP and HvAPx1 (0.86) and between HvDRF1 and HvWRKY38 

(0.83). Senescence activated gene HvARF1 was positively correlated with stress induced genes 

such as with HvAPx1 (0.73), HvABI5 (0.64) and with HvHRGP (0.65), indicating strong 

association between senescence activated genes and stress-responsive genes. Furthermore, there 

was strong correlation between ABA-induced HvABI5 with HvDRF1 (0.42) and with HvDREB1 

(0.70) suggesting the induction of both ABA-dependent and ABA-independent in osmotic stress. 

HvPIL3 was negatively correlated with most of stress-responsive genes including with HvCAT1 

(-0.44), HvARF1 (-0.43) and HvDRF1 (-0.39). Similarly HvABI5 was also negatively correlated 

with HvWRKY38 (-0.30).  

Table 2. Pearson correlation coefficients for osmotic-stress induced gene expression measured  

across all genotypes ,conditions and time points 

  
HvDRF1 HvDREB1 HvABI5 HvWRKY38 HvPIL3 HvA22 HvHRGP HvApx1 HvCAT1 HvARF1 HvGR-

RBP1 

HvDRF1 
  0.13 0.42* 0.83** -0.39* 0.27 -0.49** 0.30* 0.06 -0.2 -0.18 

HvDREB1 
0.13   0.70* 0.16 -0.39* 0.09 0.51** 0.45* 0.48** 0.52** 0.09 

HvABI5 
0.42* 0.70*   -0.30* -0.12 0.02 0.88** 0.64** 0.2 0.67** 0.2 

HvWRKY38 
0.83** 0.16 -0.30*   -0.32* 0.62** -0.36* -0.24 -0.05 -0.19 -0.07 

HvPIL3 
-0.39* -0.39* -0.12 -0.32*   -0.27 0.01 -0.16 -0.44* -0.43* 0.05 

HvA22 
0.27 0.09 0.02 0.62** -0.27   -0.03 -0.07 0.16 0.03 0.2 

HvHRGP 
-0.49** 0.51** 0.88** -0.36* 0.01 -0.03   0.86** 0 0.65** 0.15 

HvApx1 
0.30* 0.45* 0.64** -0.24 -0.16 -0.07 0.86**   0.24 0.73** 0.13 

HvCAT1 
0.06 0.48** 0.2 -0.05 -0.44* 0.16 0 0.24   0.42** -0.17 

HvARF1 
-0.2 0.52** 0.67** -0.19 -0.43* 0.03 0.65** 0.73** 0.42**   0.2 

HvGR-RBP1 
-0.18 0.09 0.2 -0.07 0.05 0.2 0.15 0.13 -0.17 0.2   

Significant (*=p<0.05, **=p<0.001) coefficients are underlined. 
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Seed germination affected by allelic variations at Ppd-H1 under exogenous 

ABA application 

To investigate the effects of the stress hormone ABA on germination of barley seeds differing at 

Ppd-H1, seeds of Scarlett, Triumph and the respective introgression lines were germinated on 

increasing concentrations of ABA. Increasing concentrations of ABA reduced the germination of 

barley seeds in all genotypes after 3 days of imbibition. Interestingly, the introgression lines S42-

IL107 and Triumph-IL were more sensitive to ABA application particularly to ABA 

concentrations of 50 µM and 100 µM compared to the cultivars Scarlett  and Triumph (Fig. 

7).The germination percentage of S42-IL107 and Triumph were 40 % and 15 % respectively, 

while Triumph and Scarlett cultivars had a germination percentage 60 % and 80 % respectively 

under 50 µM ABA concentrations. Under a concentration of 100 µM ABA, seeds from both 

introgression lines did not germinate, but the seeds from Triumph and Scarlett  cultivars showed 

germination percentages of 35% and 20% respectively. These results suggest a hypersensitivity 

of the introgression lines carrying Ppd-H1 to exogenous ABA application. 

 

Figure 7. The effect of ABA on seed germination of barley genotypes differing at Ppd-H1. Germinated 

seeds of   Triumph(ppd-H1),  Scarlett(ppd-H1),    Triumph-IL(Ppd-H1) and  S42-

IL107(Ppd-H1) were counted after three days of imbibition either in ABA solution of different 

concentrations or in water (control).  Means ± standard deviation of three independent experiments are 

shown. Different letters indicate significant differences at p≤ 0.05 using least square means. 
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Discussion 

Short term Osmotic stress affects water status of barley seedlings  

Osmotic stress causes dehydration in plant tissues which in turn affects various physiological 

traits in plants (Farooq et al., 2009). Physiological parameters such as relative water content 

(RWC), leaf temperature (LT) and proline content are among the traits used to describe how the 

plant responds to the water deficit (Anjum et al.,2011). In the present study, the application of 

PEG-induced short-term osmotic stress enabled me to evaluate the effects of variation at Ppd-H1 

on physiological responses in barley seedlings. These results showed that the earliest responses 

to osmotic stress, observed already 24h AT, were a reduced RWC, increased LT, electrolyte 

leakage and MDA, followed by changes in proline content 48h AT. Changes in photosynthesis 

were only observed 72h AT (Fig. 1, 2, 3). Similar observations were reported by Kocheva et al., 

(2005), who showed a significant reduction in the water status of the leaves in barley seedlings 

subjected to PEG-induced osmotic stress, while the photosystem II was only weakly affected. An 

increased LT was among the earliest responses to osmotic stress and thus supported previous 

findings that stomata closure and reduced leaf transpiration are among the earliest plant 

responses to water deficit (Chavez et al., 2003). A decrease in RWC was followed by an increase 

in proline 48h AT. The accumulation of osmolytes, such as proline, decreases the cell osmotic 

potential and thus helps the plant to maintain the cell homeostasis and improves drought 

tolerance. (Armenguad et al., 2004; Hong et al., 2000; Nayar et al., 2003; Sharma et al., 2011). 

The fastest physiological responses were thus drought avoidance strategies, such as reduced 

transpiration, followed by strategies to improve drought tolerance through proline production. 

Finally, reduced photosynthesis rates 72h after stress application indicated damage of the cell 

due to increasing stress. Increased damage of the cell was indicated by an increased EL and thus 

reduced cell membrane stability under osmotic stress at 48h AT and thus before the reduction of 

phototsynthesis parameters  (Fig 2.). Indeed, the observed negative correlation between  EL and 

chlorophyll fluorescence parameters (Fv/Fm, Area and PI) (Table 1.) suggested that the cell 

membrane integrity is important to sustain photosynthesis during osmotic stress. Cell membrane 

stability was likely affected by the production of ROS as indicated by  increased levels of MDA 

under osmotic stress (Fig 2.). The increase in MDA levels was gradual and depended on the 

length of stress duration, suggesting a progress of oxidative damage. Reactive oxygen species 

(ROS) are known to be enhanced by drought stress when excited electrons move to oxygen 
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molecules rather than being used for carbon assimilation (Moradi and Ismail, 2007). ROS can 

also cause serious damage by oxidizing multiple cellular components including cellular 

membranes (Noctor et al., 2002). Therefore, plants develop a mechanism of detoxification of 

ROS by inducing scavenging enzymes and protecting compatible solutes such as proline 

(Chinnusamy et al., 2007). The positive correlations obtained in this study between proline with 

EL and MDA suggest that proline might be involved in ROS scavenging and membrane 

protection (Table 1). The higher correlation coefficients between photosynthesis parameters and 

EL, MDA and proline compared to RWC, suggested that oxidative damage was the primary 

cause for a reduction in photosynthesis and not the reduced RWC in cells.  

Several studies have shown that osmotic stress accelerates leaf senescence which exhibits similar 

symptoms as those recorded under stress in this study. Merewitz et al., (2011) showed that 

delayed leaf senescence resulted in reduced electrolyte leakage (EL) and higher chlorophyll 

fluorescence parameters in transgenic bentgrass under water stress. In addition, membrane 

stability and the disruption of light harvesting and electron transfer complex in chloroplast is 

associated with leaf senescence. In addition, Rivero et al., (2007) found that accelerated leaf 

senescence was affected by environmental stress such as drought. Therefore, these results 

suggested that osmotic stress accelerated leaf senescence in the present experiment.  

Photosynthesis is among plant processes that are affected by drought/osmotic stress as a result of 

reduced CO2 diffusion, due to stomatal closure and enhanced oxidative stress damage under 

water deficit conditions (Chavez et al., 2009). The present study indicated that the maximal 

quantum efficiency of photosystem II (Fv/Fm) was significantly reduced in stressed plants after 

72h stress as compared to controls. In addition, the PI was significantly reduced under stress 

which suggests that both the light-dependent and light-independent mechanisms, e.g. carbon 

fixation, were damaged or inhibited due to stress and reduced gas exchange. Thus, the osmotic 

stress had a detectable effect of photoinhibition and the availability of carbon dioxide was 

probably limited by stomata closure (Fig. 3). Previous reports have indicated that PI is more 

sensitive than Fv/Fm suggesting that the dark reaction of photosynthesis is more sensitive than 

the light reaction to short-term water deficit (Strasser et al., 1995; Živčák et al., 2008). However, 

the finding from this study suggests that under PEG induced osmotic stress, both the light and 

dark reaction show similar reactions. The observed reductions in the chlorophyll fluorescent 
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parameters might indicate permanent damage to the aforementioned photosynthetic apparatus by 

short-term osmotic stress.  

The present study showed that RWC was positively correlated with chlorophyll fluorescent 

parameters indicating that the observed responses under short term osmotic stress are a function 

of the water status of the seedlings. Previous studies have shown that chlorophyll fluorescence 

parameters are not affected under mild drought stress. Rollins et al. (2013) described that 

chlorophyll fluorescence parameters are only affected when the RWC dropped below 80% in 

adult barley plants.  

Expression of stress-responsive genes under PEG-induced osmotic stress in 

barley 

The plant’s response to drought is accompanied by the induction of genes involved in protection 

of cells from stress such as LEA protein, ROS scavenging genes and transcription factors (TFs) 

that are involved in signal transduction and gene modulation (Lata and Prasad, 2011). All 

analysed candidate genes were regulated by osmotic stress. The majority of stress responsive 

genes in particular TFs were upregulated between 24-48h AT and were downregulated again 72h 

AT. Early and transient up-regulation of the TFs suggest their involvement early stress response 

(signal), while the expression of ROS scavenging and LEA genes continued to increase between 

24 and 72h AT (Fig. 5 and 6). 

In the present study, osmotic stress enhanced the expression of DREB2 like genes (HvDRF1 and 

HvDREB1). It is known that DREB2s are AP2/ERF containing TFs and are involved in ABA-

independent drought stress signaling in Arabidopsis and rice (Shinozaki and Yamaguchi-

Shinozaki, 2007). These TFs interact with a cis-acting DRE elements and activate downstream 

genes involved in drought stress responses and drought tolerance in plants. Several studies have 

shown the induction of DREB2-type genes in different plant species for example TaDREB1 

(Shen et al., 2003) and Wdreb2 (Egawa et al., 2006) in wheat, HvDRF1 (Xue and Loveridge, 

2004) and HvDREB1 (Xu et al., 2009) in barley and ZmDREB2A (Qin et al., 2007) in maize 

under stress. The results from this study thus confirm previous results and suggest that the PEG 

treatment induced ABA-independent stress response pathways. 
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Similar to DREB2 like genes, HvABI5 was induced by osmotic stress.Casaretto and Ho, (2003) 

demonstrated that HvABI5 is an important basic leucine zipper (bZIP) transcriptional activator 

involved in the activation of ABA-induced gene expression by binding the promoter regions 

containing ABRE cis-acting elements. Upregulation of HvABI5 under osmotic stress thus 

suggested the induction of ABA signaling pathways under PEG. This is in line with previous 

studies in grasses which  showed the induction of OsbZIP46 rice homologous to ABI5, HvABI5 

in barley and WABI5 in wheat by drought and ABA (Casaretto and Ho, 2003; Kobayashi et al., 

2008; Tang et al., 2012).  

In the present study, HvWRKY38 was up-regulated by osmotic stress. Barley HvWRKY38 is an 

ortholog of AtWRKY40 in Arabidopsis, which is activated by drought, cold as well as by ABA 

(Mare`et al. 2004; Xie et al.,2007). Earlier reports have indicated that AtWRKY40 directly targets  

a number of AP2/ERF and bZIP TFs by binding to W box sites of the promoters  in ABI4, ABI5, 

ABF4, and DREB1A genes and thereby negatively regulating ABA signaling (Rushton et al., 

2012). In addition it has been demonstrated that AtWRKY40 is placed upstream of bZIP 

transcription factor of ABI5 (Shang et al., 2010). In the present study, HvWRKY38 and HvABI5 

expression was negatively correlated. HvWRKY38 may thus have similar targets as AtWRKY40 in 

Arabidopsis.  

PHYTOCHROME-INTERACTING FACTOR (PIFs) are a basic helix loop helix (bHLH) family 

TFs that directly interacts with phytochromes under specific light conditions (Castillon et al., 

2007). However, recent studies linked PIFs to stress responses. For example, PIF7 was 

demonstrated to be a repressor of the stress-responsive DREB1 gene in Arabidopsis (Kidokoro et 

al., 2009), and a PIF like gene in rice (OsPIL1/OsPIL13) is involved in internode elongation 

under drought stress (Todaka et al., 2012). Similar to these findings, the present study showed 

that the PIF3 like gene in barley (HvPIL3) was down-regulated under stress. Moreover, the 

correlation analysis revealed negative association of HvPIL3 gene with DREB2 like genes under 

stress suggesting it may have negative regulatory function similar to Arabidopsis PIF7 gene.  

Since PIF like genes are strongly regulated by stress  are important for plant growth, it would be 

important to elucidate their mechanism of action so that they can incorporated in future drought 

tolerance breeding applications. 
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The present study showed a clear induction of HvA22 under osmotic stress, while its expression 

was low or not detected under control condition. Previous reports showed that LEA protein 

HvA22 is regulated by environmental stress and by developmental cues (Sivamani et al., 2000 ; 

Shen et al., 2001), which provides cell tolerance to seed desiccation and environmental stresses. 

Therefore, the induction of HvA22 under stress suggests its important role in protecting cells 

from damage.  

ROS scavenging and senescence activated genes were altered by osmotic 

stress 

ROS production is a common phenomenon during osmotic stress in plants due to perturbation of 

photosynthesis. This increased ROS production in the cell is counteracted by antioxidant 

enzymes such as peroxidases, catalases and dismutases and their induction is correlated with the 

severity of stress (Grene, 2002; Miao et al., 2006; Miller et al., 2010).  Similarly, the present 

study showed that the expression of ROS scavenging genes HvAPX1 and HvCAT1 were 

increased and their induction correlated with increased levels of lipid peroxidation (MDA) and 

electrolyte leakage (EL) observed under osmotic stress. Interestingly, the senescence activated 

gene HvARF1 (Ay et al., 2008) was upregulated under osmotic stress even before the ROS 

scavenging genes. ARF1s (ADP ribosylation factor-1 proteins) regulate membrane trafficking, 

organelle structure and vesicle transport processes and has thus a potential role in the senescence 

process. Therefore, the induction of HvARF1 by osmotic stress support the findings that 

senescence related processes are an immediate response to osmotic stress even at the seedling 

stage.  

Variation at Ppd-H1 affects osmotic stress in barley 

The present study revealed genetic differences in physiological and molecular responses to 

osmotic stress, suggesting that variation at Ppd-H1 affected osmotic stress responses. In 

particular, the wild type Ppd-H1 allele was associated with higher levels of EL and MDA 48h 

AT and reduced photosynthesis rates 72h AT, while RWC and LT were not significantly 

different between genotypes. This indicates that variation at Ppd-H1 affect ROS production and 

the expression of ROS scavenging genes.  Consistent with these observations the expression of 

the ROS scavenging gene HvAPX1 was strongly induced in the introgression lines with a 

dominant Ppd-H1 allele. In addition, the strong negative correlation between chlorophyll 
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fluorescence parameters and electrolyte leakage (Table 1.) suggested that increasing oxidative 

damage affected photosynthesis activity negatively. This  effect was more pronounced in the 

introgression lines with the wild type Ppd-H1 allele. Induction of the senescence-activated gene 

HvARF1 in the introgression lines indicated that Ppd-H1 controlled stress induced senescence 

consistent with the increased EL in the introgression lines.  

Ppd-H1 might control stress-response either a) through its putative function in the barley 

circadian clock, or b) through clock independent functions or c) as a major photoperiod response 

and developmental gene. Finally, the linkage drag effect of other genes found in the introgression 

lines might also be responsible for the observed variation. Two different introgression lines with 

the Ppd-H1 allele derived from very different genetic backgrounds, a wild and a cultivated 

winter barley were used to control for background genes in the introgressions. We tested 

HvHRGP as the only gene within the introgression, annotated as stress responsive and differing 

between Scarlett and S42-IL107 (Supplementary Table S11). The expression of HvHRGP was 

not significantly different between genotypes varying at Ppd-H1 under both control and stress 

conditions (Fig. 4 M and N) indicating the observed differences may not be due to this gene. But 

still other genes, not yet functionally characterised and present in the introgressions might have a 

role in the stress responses. 

In Arabidopsis, the circadian clock is implicated in the adaptation to environmental stresses 

(Sanchez et al., 2011), suggesting that the clock may also control stress adaptation in barley. A 

recent study found that ROS-responsive genes, hydrogen peroxide production and scavenging 

were under circadian control and controlled by the circadian clock gene CCA1 in Arabidopsis 

(Lai et al. 2012). The circadian clock thus affected the transcriptional regulation of ROS-

responsive genes, ROS homeostasis, and tolerance to oxidative stress. Ppd-H1 is a barley 

ortholog of the PRR gene family from the core oscillator in Arabidopsis. The potential role of 

Ppd-H1 in controlling stress-response through its presumed function in the circadian clock is 

discussed in detail in chapter 3. Here, I would only like to point out that the natural mutation in 

the CCT domain of Ppd-H1 does not alter the circadian rhythm or expression of any core clock 

orthologs in barley (Campoli et al. 2012). Ppd-H1 may thus affect osmotic stress responses 

independently of its function in the clock. In line to this, a recent report by Liu et al. (2013) 

showed that PRR7 directly binds to and regulates several stress-responsive genes in Arabidopsis 

such as the ROS detoxifying gene superoxide dismutase and the transcription factors 
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CBFs/DREBs .Furthermore, Nakamichi et al. (2009) demonstrated that PRR9, PRR7 and PRR5 

in Arabidopsis are involved in a mechanism that initiates a stress response by mediating cyclic 

expression of the stress response genes DREB1/CBF. In the present study, the expression of 

stress responsive genes such as DREB2 like genes (HvDRF1and HvDREB1) were strongly up-

regulated in the introgression lines carrying Ppd-H1 compared to genotypes carrying the mutated 

ppd-H1 allele under stress. This differential induction of stress-responsive genes might display 

differences in the binding and thus regulatory efficiency between the two alleles. In contrast to 

the Arabidopsis prr mutants with abolished gene function (Nakamichi et al., 2009), ppd-H1 is a 

hypomorphic allele with reduced functionality (Campoli et al., 2012). The mutation in ppd-H1 

correlates with lower expression levels of HvFT1, the barley ortholog of Flowering Locus T in 

Arabidopsis, and delayed flowering under long day conditions. The developmental difference is 

already expressed at early stages of development where the meristem stage of the introgression 

lines carrying Ppd-H1 was advanced compared to genotypes carrying ppd-H1 (Fig.4). This 

developmental difference between introgression lines and genotypes carrying ppd-H1 might also 

influence the osmotic stress responses. Parrot et al., (2012) showed that early flowering is linked 

to an early senescence as evidenced from induction of senescence regulated genes. Senescence is 

driven primarily by endogenous factors but is also influenced by environmental conditions, such 

as abiotic stress. Reproductive changes and abiotic stresses can lead to the accelerated production 

of ROS and the subsequent onset of cell death (Ahmed et al. 2009). Generally, the increase in 

oxidative stress occurs with increase in plant age, especially in chloroplasts. As such it is 

interesting to note that variation at Ppd-H1 affected lipid peroxidation and expression of 

HvAPX1 already at an early seedling stage. Genotypes with a wild type Ppd-H1 allele are 

adapted to environments with terminal drought as an accelerated development represent a 

drought escape strategy. Second, these genotypes also show a different response to osmotic 

stress and this might be an indirect consequence of the advanced development or an independent 

effect of Ppd-H1 on response to oxidative stress. I can only speculate that enhanced senescence 

under stress could be beneficial because i) it affects nutrient remobilization during stress, so that 

newly growing parts of the plant would benefit from the mobilized nutrients, ii) a reduction in 

the growing biomass might minimize water loss through transpiration, thus contributing to the 

maintenance of water balance of the plant. In conclusion, variation at Ppd-H1 affected stress 

induced leaf senescence and induction of ROS scavenging genes. However, further 
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physiological, molecular and genetic studies would be required to determine how Ppd-H1 affects 

adaptation to water deficit conditions in barley.   

Ppd-H1 sensitivity to ABA-mediates seed germination 

Here I report the possible link of ABA and a circadian clock gene Ppd-H1 in seed germination. 

ABA plays a key role in broad array of developmental processes and triggers plant responses to 

several environmental stimuli including water deficit (Fujita et al., 2011). In addition, ABA is 

also known as repressor of seed germination by stabilizing the dormant state (Holdsworth et al., 

2008). The present study indicated that the application of exogenous ABA resulted in reduced 

seed germination (Fig. 7) as demonstrated by Ramagosa et al., (2001) and  Bradford et al., 

(2008). Interestingly, the introgression lines carrying Ppd-H1 showed an increased sensitivity to 

ABA, as seen by the reduced germination of introgression lines under ABA. In addition, 

germination was not altered between genotypes varying at Ppd-H1 in non-ABA treated seeds, 

suggesting the underlying endogenous ABA level did not significantly differ between the 

genotypes.  

A recent report reported that circadian clock is linked to seed germination in Arabidopsis 

(Penfield and Hall, 2009). They showed that the double mutant lhy cca1 and single mutant gi had 

a reduced dormancy. The circadian clock might thus control dormancy and seed germination. 

The metabolism of hormones such as ABA and GI, which are involved in seed germination, is 

known to be controlled by circadian clock (Yakir et al.,2007). In addition, the Arabidopsis PRR7 

gene was  shown to be involved in the regulation of ABA-responsive genes (Liu et al., 2013). 

Like in Arabidopsis, the clock ortholog Ppd-H1 might have a role in ABA-mediated seed 

germination possibly via ABA signaling pathways.  

Seed germination is a very complex process that involves both genetic and environmental 

factors. The genetic factors determine the balance between GA and ABA pathways which is 

critical in determining seed germination (Jacobson et al., 2002). However, I tested only the 

effects of exogenously applied ABA. Future studies on the role of Ppd-H1 should consider its 

effect on the giberellic acid (GA) pathway to obtain a clearer picture of the interactions between 

Ppd-H1 and seed germination in cereal crops. 
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Conclusion 

PEG-induced short-term osmotic stress caused reductions in the leaf relative water content, in 

electrolyte leakage and lipid peroxidation, which are indicative of oxidative stress and this 

resulted in a decrease of the photosynthesis rates.  Variation at Ppd-H1 affected stress induced 

senescence at the seedling stage, germination under ABA, and expression of ABA dependent 

genes and genes involved in senescence processes. It is interesting to observe that Ppd-H1, 

known as a major regulator of flowering under long days, also affected germination and stress-

induced senescence. Coordination of these key developmental processes is important for 

successful adaptation to different environments. Plant hormones play an important role to 

coordinate developmental events in the plants (Gray, 2004). Ppd-H1 might thus affect important 

life cycle events through affecting hormone signaling in plants. Future studies should focus on 

the role of Ppd-H1 in controlling ABA and GA signaling in plants. 
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Chapter Two- Osmotic Stress at the Barley Root Affects Expression of 

Circadian Clock Genes in the Shoot 

Introduction 

Abiotic stresses such as drought, salinity and heat are amongst the greatest problems facing 

agriculture today. Under stress, plants undergo a series of morphological, physiological, 

biochemical and molecular changes which adversely affect their growth and productivity, but 

also improve adaptation and survival (Ingram and Bartels, 1996; Harb et al., 2010). Adaptive 

responses to stress can be grouped into three major classes (a) osmotic homeostasis; (b) stress 

damage control and repair; and (c) growth control (Zhu, 2002). Drought stress signaling 

pathways have been classified at the molecular level into abscisic acid (ABA)-dependent and 

ABA-independent pathways that regulate the expression of stress-responsive genes (Yamaguchi-

Shinozaki and Shinaozaki, 2005). The ABA RESPONSIVE ELEMENT BINDING PROTEINS, 

such as the AREB/ABF regulons are involved in ABA-dependent gene expression and regulate 

downstream genes harbouring ABA RESPONSIVE ELEMENTS (ABRE) in their promoters. 

ABA independent stress signaling is mediated by the DEHYDRATION RESPONSIVE ELEMENT 

BINDING PROTEIN2 (DREB2), which binds to downstream genes that contain DROUGHT 

RESPONSIVE ELEMENTS (DRE) in their promoters (Agarwal et al., 2006). In both the ABA- 

dependent and ABA-independent pathways, transcription factors such as DREB2, ABI5 and 

WRKY  bind to specific cis-elements and induce stress-responsive genes. These genes have roles 

in a) osmotic homeostasis and control stomatal opening, e.g. the LIGHT HARVESTING 

CHLOROPHYLL A/B BINDING PROTEIN (LHCB) (Xu et al.,2012) and PHYTOCHROME B 

(PHYB) (Gonzalez et al., 2012) b) in stress detoxification and scavenging of REACTIVE 

OXYGEN SPECIES (ROS), e.g. CATALASES (CAT) and PEROXIDASES (APX) and c) in 

growth control, e.g. the phytochrome-interacting factor-like proteins (PIF) (Todaka et al., 2012). 

These genes and their functions have been unraveled in the model plant Arabidopsis, however, 

much less is known about their functions in crop plants which commonly grow under stress in 

the field.  

The circadian clock is an important system that controls stress adaptation in plants by 

coordinating their metabolism and development with predicted daily and seasonal changes of the 

environment (Kant et al., 2008; Dong, Farré and Thomashow, 2011; Sanchez, Shin and Davis, 
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2011). The circadian clock is an autonomous oscillator that produces endogenous biological 

rhythms with a period of about 24 hours. Conceptually, a circadian system can be divided into 

three parts: the central oscillator, input and output pathways. In the model plant Arabidopsis 

thaliana, the central oscillator is composed of three negative feedback loops: (a) the inhibition of 

evening complex (EC) genes EARLY FLOWERING 3 (ELF3), EARLY FLOWERING 4 (ELF4), 

and LUX ARRHYTHMO (LUX) by the rise of CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and 

LATE ELONGATED HYPOCOTYL (LHY) late at night, (b) the inhibition of PSEUDO 

RESPONSE REGULATOR genes (PRR) by the EC early at night, and (c) the inhibition of 

LHY/CCA1 by TIMING OF CAB EXPRESSION1 (TOC1) in the morning (Pokhilko et al., 2012; 

Bujdoso and Davis, 2013). Furthermore, the evening-expressed GIGANTEA (GI) protein was 

modeled as a negative regulator of the EC, which in turn inhibits TOC1 expression (Pokhilko et 

al., 2012). The internal circadian rhythms are entrained to external conditions by daily changes 

in light and temperature (Boikoglou and Davis 2009, Boikoglou et al., 2011). The central 

oscillator controls of a large fraction of the Arabidopsis transcriptome, in particular genes from 

the plant hormone and stress-responsive pathways (Covington et al., 2008; Staiger et al., 2013). 

The clock thus modulates or “gates” plant hormone sensitivity and response to daily changes in 

temperature, water availability and irradiance (Robertson et al., 2009; de Montaigu, Tòth and 

Coupland, 2010, Nakamichi et al., 2009, Wilkins, Bräutigam and Campbell, 2010). TOC1, for 

example, was shown to control the diurnal expression of the putative ABA receptor, ABA-

RELATED/ H SUBUNIT OF THE MAGNESIUM-PROTOPORPHYRIN IX CHELATASE/ 

GENOMES UNCOUPLED 5 (ABAR / CHLH / GUN5), and thus stomatal aperture and 

dehydration response in Arabidopsis (Shen et al., 2006; Legnaioli et al., 2009; Castells et al., 

2010). In addition, the PSEUDO RESPONSE REGULATOR arrhythmic triple Arabidopsis 

mutant prr9/prr7/prr5 showed increased levels of DREB1 or C-repeat binding protein (CBF) and 

a correlated higher resistance to drought, salinity and cold stresses (Nakamichi et al., 2009). 

Other studies have shown that a close match between the length of the internal circadian and the 

external daily cycles represented a selective advantage (Dodd et al., 2005, Green et al., 2002, 

Yerushalmi, Yakir and Green, 2011; Sanchez et al., 2011). For example, Dodd et al., (2005) 

showed that arrhythmic Arabidopsis mutants produced less chlorophyll, fixed less carbon and 

had lower biomass than wild-type plants under 24 h day cycles.  

http://link.springer.com/article/10.1007%2Fs00709-011-0304-3/fulltext.html#CR118
http://link.springer.com/article/10.1007%2Fs00709-011-0304-3/fulltext.html#CR18
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Several studies have suggested a strong interdependence and reciprocal interactions between the 

stress-response hormone ABA and circadian clock regulatory systems (Robertson et al., 2009). 

For example, ABA controlled the expression of TOC1 in the presence of a functional 

ABAR/CHLH/GUN5 protein and impacted the amplitude, period and phase of CCA1 expression 

(Hanano et al., 2006; Legnaioli et al., 2009). Despite evidence on the hormonal control of the 

circadian clock, little is known about the role of abiotic stress at the roots as an input signal to the 

shoot clock. 

Although the clock regulates plant performance and stress adaptation in Arabidopsis, much less 

is known about its functions in important cereal crop plants. Barley represents a good crop model 

to study the effects of the clock on performance and stress adaptation, because it has extensive 

genetic variation for resistance to abiotic stresses. Campoli and colleagues (2012b) have shown 

that many circadian clock genes are structurally conserved between barley and Arabidopsis, and 

their circadian expression patterns suggested conserved functions. However, phylogenetic 

analyses revealed that independent duplications/deletions of clock genes occurred throughout the 

evolution of eudicots and monocots (Takata et al., 2010; Campoli et al., 2012b). Barley carries 

only a single ortholog for CCA1 and five PRR orthologs designated as HvPRR1 orthologous to 

TOC1, HvPRR73/HvPRR37 corresponding to AtPRR7 and AtPRR3, and HvPRR59/HvPRR95 

corresponding to AtPRR5 and AtPRR9 (Campoli et al., 2012b). Functional analyses of clock 

genes in barley have shown that circadian clock genes play an important role in photoperiod 

response and flowering time. For example, the PRR gene Ppd-H1 (HvPRR37) is the major 

photoperiod response gene in barley and induces early flowering under long photoperiods. A 

natural recessive mutation in the CCT domain of Ppd-H1 (HvPRR37) causes photoperiod 

insensitivity and late flowering in cultivated spring barley (Turner et al., 2005). In addition, 

recent studies have shown that mutations in HvELF3 and HvLUX1 caused photoperiod 

insensitivity and early flowering by upregulating Ppd-H1 under non-inductive short day 

conditions (Faure et al., 2012; Zakhrabekova et al., 2012; Campoli et al., 2013). In contrast to 

the Ppd-H1 variant in spring barley, which does not affect the expression of circadian clock 

genes (Campoli et al., 2012b); a non-functional HvELF3 allele severely compromised the 

expression of clock oscillator genes (Faure et al., 2012). Despite the strong evidence that clock 

genes control photoperiod response and thereby adaptation in cereals, it has not yet been reported 

if allelic variation in the clock affects other physiological traits in cereals. 
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The objectives of the present study in barley were to better understand how abiotic stress applied 

to the root affected the shoot clock, and how genetic variation in clock genes affected stress 

adaptation. For this, I tested 1) whether natural variation at Ppd-H1 and HvELF3, respectively, 

controlled the diurnal expression of stress-response genes and diurnal changes in physiology 

under stress conditions, and 2) whether osmotic stress to the root acted as an input signal to the 

shoot circadian clock and thus changed diurnal patterns of physiological traits.  

Materials and Methods 

Plant material and growth conditions 

The spring barley cultivar Scarlett and an introgression line S42-IL107 (von Korff et al., 2004, 

2006; Schmalenbach et al., 2011) were used in this study. Scarlett carries a mutation in the CCT 

domain of Ppd-H1 and is late flowering under long days (LD) (Turner et al., 2005). The 

introgression line S42-IL107 harbors the photoperiod-responsive Ppd-H1 allele introgressed 

from wild barley and is early flowering under LD. In addition, I have used the spring barley 

cultivar Bowman and two derived introgression lines, Bowman(eam8.k) and Bowman(eam8.w), 

carrying natural mutations in the EAM8/ HvELF3 gene (Faure et al. 2012, Zakhrabekova et al., 

2012). Bowman(eam8.k) and Bowman(eam8.w) were  generated by crossing the spring barley 

Bowman with the genotypes Kinai5 and Early Russian, respectively. Bowman(eam8.k) has a 

partial deletion of the gene, while Bowman(eam8.w) has a C-to-T point mutation in exon 2, both 

of which lead to the production of a truncated protein (Faure et al., 2012). To assess the 

physiological response to osmotic stress seedlings varying at HvELF3/EAM8 (Bowman, 

Bowman(eam8.k) and Bowman(eam8.w) were analyzed at 24h, 48h and 72h (Zeitgeber T4) after 

stress application.  

In addition, Scarlett, S42-IL107, Bowman and Bowman(eam8.w) were analyzed for diurnal 

expression of core clock and stress-response genes, and for diurnal fluctuation in physiological 

traits under control and osmotic stress conditions.  

Germinated seeds were placed in 1.5 ml pierced Eppendorf tubes, filled with 0.5% agar and 

transferred to a half-strength Hoagland nutrient solution (Hoagland and Arnon, 1950). The 

nutrient solution was renewed every 3-4 d. Plants were grown for 8-10 d in a growth chamber 
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under LD (16h/8h light/dark) at an irradiance of 300 µmol m
-2

 s
-1

, an air temperature of 20/16 °C 

(day/night) and a relative humidity of 50 - 60%. 

Osmotic stress application 

Osmotic stress was applied after seedlings reached the two-leaf stage. In order to generate 

uniform osmotic stress conditions in the roots of the plants, seedlings were moved from a 

Hoagland nutrient solution (-0.2 Mpa) to one supplemented with 20 % PEG 8000 (Fluka, 

Germany), which corresponded to -0.8 Mpa osmotic potential.  

Leaf sampling and gene expression analysis 

Leaf samples from stressed and control samples were harvested 48h after PEG application at 4h 

intervals starting from the onset of light (ZT0) to lights off ZT16 and in addition at ZT18 and 

ZT22 during the dark phase. For all genotypes and treatment condition, three biological 

replicates of two pooled plants were sampled per time point. Total RNA extraction, cDNA 

synthesis, and qRT-PCRs using gene-specific primers as detailed in Supplementary Table S1 

were performed as explained in materials method of chapter 1.   

Physiological and morphological measurements 

Measurements of relative water content (RWC), leaf temperature (LT), electrolyte leakage (EL), 

proline content, Malondialdehyde content (MDA) and chlorophyll fluorescence parameters from 

Bowman, Bowman(eam8.k) and Bowman(eam8.w) plants were conducted  at 24h. 48h and 72h 

under osmotic stress and control conditions as described in materials and methods of chapter 1.  

Diurnal measurements of leaf osmotic potential, gas exchange (stomata conductance, leaf 

transpiration rate and carbon exchange rate) and leaf temperature were taken 48 h after start of 

the osmotic stress treatment. Measurements were taken under osmotic stress and control 

conditions at 4 h intervals starting from ZT0 to ZT16 and in addition at ZT18 and ZT22 during 

the night phase. Each parameter was measured on the second leaf from three replicate plants per 

genotype and treatment conditions. 

Samples for measurement of the leaf water potential were collected from the middle part of the 

second leaf and frozen immediately in liquid nitrogen and stored at –20 °C.  Samples were 

thawed and placed in 1 ml microtubes that had a fine hole at the base and the sap was then 
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extracted after centrifuging (Eppendorf Centrifuge 5415D, Hamburg, Germany) for 2 min at 

1400 rpm. The osmolality of expressed sap samples was measured with an Osmomat 030 

freezing point depression osmometer (Gonotec GmbH, Berlin, Germany). Gas exchange and leaf 

temperature were measured using portable photosynthesis system (LI-6400, LI-COR, Inc., 

Lincoln, NE, USA). Gas exchange measurements were conducted with CO2 concentration set at 

400 µmol.mol
-1

 by means of a CO2 mixer and CO2 tank and the light intensity was set to the 

condition of the chamber using a red-blue (10%) source (LI-6400-02B; LI-COR, Inc.). 

Measurements were taken when readings for CO2 exchange (ΔCO2) stabilized after 5-10 min. 

Seedling height and biomass yield (dry matter) was measured 2 d after the begin of the treatment 

from 12-15 seedlings comprised of shoot and leaf material from each genotype and condition 

after drying the seedlings for 2 d at 70 ˚C. For measurements of coleoptile lengths, seedlings 

were grown on 1% (w/v) agar (Merck, Germany) for 2 d either in continuous red light (LED) 

with different fluency rates or in dark and mean coleoptile lengths (± SD) of 8-10 seedlings were 

determined.  

Statistical analysis 

Significant differences in gene expression and physiological responses were calculated using a 

general linear model in the SAS software, version 9.1 (SAS Institute 2003) with the factors 

genotype, treatment, time point and first and second order interaction effects. Significant 

differences in expression between genotypes and treatments were calculated for each time point 

based on three biological replicates. Pairwise correlation coefficients between gene expression 

data were calculated across genotypes and treatments using Pearson correlation coefficients 

(SAS Institute 2003).   

Comparative analysis of cis-acting regulatory elements 

Comparative in silico analyses of promoter regions of the core clock and stress-responsive genes 

were conducted to identify cis-acting regulatory elements conserved between barley, maize, 

sorghum, rice and Brachypodium. First, homologs of barley stress-response and clock genes 

were identified in maize, sorghum, rice and Brachypodium by using predicted polypeptide 

sequences of a given barley protein as a query in BLAST searches in the Phytozome database 

(http://www.phytozome.net). The most similar sequences were selected based on e-values and 

score (Supplementary Table S18). Subsequently, the promoter regions of barley genes and 
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corresponding homologs from the grass species including 3 kb sequences upstream of the 

transcription start site were retrieved using the Ensemble barley genome database 

(http://plants.ensembl.org/Hordeum_vulgare) and the Phytozome database for maize, sorghum, 

rice and Brachypodium. Conserved non-coding sequences (CNS) in the promoter regions were 

determined by phylogenetic footprinting approach (>70% identity in a 20-bp window; Guo and 

Moose, 2003) using the VISTA tool (Mayor et al., 2000). The CNSs were then searched for 

putative transcription factor binding motifs in barley using the GENOMATIX database 

(http://www.genomatix.de/). 

Results 

Osmotic stress at the root acts as an input into the shoot circadian clock  

In order to examine whether osmotic stress acts as input to the circadian clock in barley, I studied 

diurnal changes of the circadian-clock genes HvCCA1, HvPRR1, HvGI, Ppd-H1 (HvPRR37), 

HvPRR73, HvPRR59, and HvPRR95 under control and osmotic stress conditions. To test 

whether genetic variation at HvELF3 and Ppd-H1 affected the input of osmotic stress into the 

barley circadian clock, diurnal expression was compared between Bowman and 

Bowman(eam8.w), and between Scarlett and S42-IL107. 

Circadian clock genes showed a diurnal pattern of expression under control and stress conditions 

(Fig. 1, 2). HvCCA1 peaked in the morning, followed by Ppd-H1 and HvPRR73 in the middle of 

the day, and HvPRR1, HvGI, HvPRR59 and HvPRR95 in the evening of the long day. Expression 

of clock orthologs was significantly different between Bowman and Bowman(eam8.w) 

(Supplementary Table S12). Expression of HvCCA1 was reduced in Bowman(eam8.w) compared 

to Bowman at peak times during the day under stress and control conditions (Fig. 1A). HvPRR1 

and HvGI expression increased earlier in Bowman(eam8.w) compared to Bowman, for example, 

expression of HvGI peaked at ZT8 in Bowman(eam8.w) and at ZT12 in Bowman (Fig. 1 B, 1C). 

In addition, Ppd-H1 expression was significantly higher in Bowman(eam8.w) than Bowman 

during the night and the early morning (Fig. 1E). Under stress, expression of HvPRR59 and 

HvPRR95 was significantly lower in Bowman(eam8.w) compared to Bowman at peak time ZT8. 

In contrast, circadian-clock orthologs did not show differences in expression between Scarlett 

and S42-IL107 under stress and control conditions (Supplementary Table S13). Thus the 
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mutation in HvELF3 had a greater role in modulating the clock compared to the mutation in Ppd-

H1.  

Osmotic stress caused a significant increase in the expression of clock orthologs compared to 

control conditions in all genotypes. In particular, Ppd-H1, HvPRR73 and HvPRR95 showed a 

strong induction of expression under stress compared to control conditions (Fig. 1, 2). For 

example, Ppd-H1 showed a 2.5-fold increase in Scarlett and a 5-fold increase in Bowman under 

stress conditions. Furthermore, osmotic stress advanced the phase of clock gene expression 

compared to control conditions in all genotypes. HvPRR73 peaked at ZT4 under stress conditions 

and at ZT8 under control conditions. Similarly, HvGI, HvPRR59 and HvPRR95 peaked at ZT8 

under stress conditions and at ZT12 under control conditions. Osmotic stress also affected the 

shape of the expression amplitude of HvCCA1, HvPRR1, HvGI and Ppd-H1. The expression of 

these genes increased earlier under stress than control conditions, and decreased at the same time 

(HvCCA1, HvPRR1) under both treatments or even later under stress (HvGI, Ppd-H1). The 

expression peaks for these genes were thus broader under stress than control conditions.  

Taken together, these results indicate that osmotic stress applied at the root altered the expression 

of circadian clock genes in the barley shoot. Osmotic stress advanced the expression phase of 

evening expressed clock genes and affected the shape of the expression peaks of several clock 

genes. Variation at HvELF3 controlled the expression of clock genes, while variation at Ppd-H1 

did not, as previously reported (Campoli et al., 2012b, Faure et al., 2012). Variation at either 

gene did not change the effects of osmotic stress on the expression of clock genes.  
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Figure 1. Diurnal expression of circadian clockgenes in barley under control (solid line) and osmotic 

stress (dashed line) in the spring barley Bowman (green) and introgression line Bowman(eam8.w) (red). 

Seedlings of both genotypes were grown in hydroponics for ten days in long day (16h/8h, light/dark). 

Leaf samples for total RNA were collected after 48h of osmotic stress (20% PEG) or under control 

conditions at 4 h intervals during the day time (including samples taken in the dark 2 h before and after 

light on and off). Transcript accumulation was measured by qRT-PCR analysis of target genes normalized 

to HvActin.  Arrows indicate peak time of expression under control (blue) and stress (orange) 

conditions. Values are means ± SD of three biological replicates. Black bars and shaded regions indicate 

the night period.  
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Figure 2. Diurnal expression of circadian ortholog genes in barley under control (solid line) and osmotic 

stress (dashed line) conditions in the spring barley Scarlett (green) and the introgression line S42-IL107 

(red). Seedlings of both genotypes were grown in hydroponics for ten days in long day (16h/8h, 

light/dark). Leaf samples for total RNA were collected after 48 h of osmotic stress (20% PEG) or under 

control conditions at 4 h interval during the day time (including samples taken in the dark 2 h before and 

after light on and off). Transcript accumulation was measured by qRT-PCR analysis of target genes 

normalized to HvActin.  Arrows indicate peak time of expression under control (blue) and stress (orange) 

conditions. Values are means ± SD of three biological replicates. Black bars and shaded regions indicate 

the night period.  
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Osmotic stress affects the levels and peak phases of stress gene expression  

Since many stress-response genes are clock regulated in Arabidopsis, I examined whether 

variation in clock-gene expression affected expression of stress-response genes (Fig.3, 4). I 

tested diurnal expression of representative genes controlling signaling, response and sensitivity 

to drought and ABA as well as genes involved in ROS scavenging. These included the drought- 

and ABA-induced transcription factors HvDREB1, HvDRF1 (dehydration responsive factor 1), 

HvABI5 (ABA-response gene) and HvWRKY38. In addition, the expression of HvPHYB 

(PHYTOCHROME B), HvLHCB, HvCAT1 (catalase), HvAPX1 (ascorbate peroxidase) and the 

senescence activated HvARF1 (ADP ribosylation factor 1-like protein) was measured, which are 

involved in ABA-induced responses such as stomatal closure and ROS homeostasis in 

Arabidopsis (Gonzalez et al., 2012; Xu et al., 2012). Finally, the expression of a PIF3 like gene 

(HvPIL3) was measured, homologous to the phytochrome-interacting factor-like protein, 

OsPIL1, which acts as a key regulator of growth under drought in rice (Todaka et al., 2012). 

 

Under control conditions, the majority of genes peaked at the end of the day (ZT12) (Fig. 3, 4). 

Under stress, the expression levels of the majority of genes were significantly increased, with the 

exception of HvLHCB and HvPIL3, which showed significantly reduced expression levels under 

stress compared to control conditions in all genotypes. Furthermore, the expression peaks of 

HvABI5, HvDRF1, HvWRKY38, HvAPX1, HvCAT1, HvLHCB and HvPHYB were advanced 

under stress in all genotypes. HvAPX1 For example, the expression peaks of HvABI5, HvDRF1, 

HvCAT1 and HvPHYB were shifted from ZT12 under control to ZT8 under stress conditions in 

Bowman and Scarlett (Fig 3, 4). Together, stress often altered the rhythmic peak of diurnal 

transcript accumulation and advanced the phase. 

Genotype-dependent expression was observed in HvPIL3 and HvLHCB under control and stress 

conditions. In contrast, the remaining stress-response and signaling genes showed genetic 

differences under stress, but not under control conditions. Under control condition, HvPIL3 and 

HvLHCB exhibited a strong genetic difference in the phase of expression. HvPIL3 expression 

peak was shifted from ZT8 in Bowman to ZT0 in Bowman(eam8.w); and HvLHCB peak 

expression was altered from ZT12 to ZT8 (Fig. 3H, 3J). In Scarlett and S42-IL107, both genes 

peaked at the same time during the day, but Scarlett showed significantly higher expression 

levels of HvPIL3 and HvLHCB at peak time of expression compared to S42-IL107 (Fig.4H, J). In 
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Bowman(eam8.w), the expression of HvABI5, HvDRF1, HvDREB1, HvWRKY38 and HvAPX1 

showed a reduced amplitude and a broader peak shape which extended into the night compared 

to Bowman (Fig.3A-E). In contrast, HvCAT1 exhibited a higher expression peak in 

Bowman(eam8.w) than Bowman at ZT8 under stress (Fig.3F). HvPHYB expression levels were 

comparable between Bowman and Bowman(eam8.w), but the HvPHYB expression in Bowman 

peaked 4h earlier than in Bowman(eam8.w) under stress. S42-IL107 showed higher expression 

levels of the DREB2-like genes HvDRF1 and HvDREB1, the ROS scavenging genes, and 

HvPHYB compared to Scarlett (Fig.4). This higher expression of stress genes was also observed 

in Triumph compared to Triumph-IL after stress application at the time point 24, 48 and 72h, as 

shown for HvDREB1, HvDRF1, HvCAT1 and HvAPX1 in chapter 1.  

In summary, variation at HvELF3 resulted in differences in the diurnal expression patterns, the 

phase and shape of peak expression, while variation at Ppd-H1 affected only the levels of 

expression. 

In order to examine diurnal co-expression of core clock and stress-responsive genes, pair wise 

Pearson correlation coefficients were calculated across genotypes (Bowman, Bowman(eam8.w), 

Scarlett and S42-IL107) and treatments (control and stress). Within core clock genes, HvGI, 

HvPRR1 and HvPRR59 showed the highest correlation of expression patterns (R > 0.8). 

Expression of HvPRR37 was most highly correlated with expression of HvPRR95 (R=0.82) and 

HvPRR73 (R=0.72) (Table 1). Stress response genes most closely correlated with clock genes 

were HvABI5, HvARF1, and HvCAT1 which showed the highest positive correlation with 

HvPRR1 and HvGI. Among the stress-response genes, the highest correlations of above 0.8 were 

observed between HvAPX1, HvDRF1 and HvPHYB. Finally, HvPIL3 and HvLHCB, as the only 

two genes down-regulated under stress (Fig 3H, J, 4H, J), showed positive correlation 

coefficients of 0.72. Evening expressed clock genes were thus highly correlated with stress-

response genes. 
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Figure 3. Diurnal expression of stress response genes under control (solid line) and osmotic stress (dashed 

line) conditions in the spring barley Bowman (green) and the introgression line Bowman(eam8.w) (red). 

Seedlings of both genotypes were grown in hydroponics for ten days in long day (16h/8h, light/dark). 

Leaf samples for total RNA were collected after 48h of osmotic stress (20% PEG) or under control 

conditions at 4 h interval during the day time (including samples taken in the dark 2 h before and after 

light on and off). Transcript accumulation was measured by qRT-PCR analysis of target genes normalized 

to HvActin.  Arrows indicate peak time of expression under control (blue) and stress (orange) 

conditions. Values are means ± SD of three biological replicates. Black bars and shaded regions indicate 

the night period.  

A) B)

C)
D)

E)

F)

G) H)

I)
I)

Bowman - ctrl
Bowman(eam8.w) - ctrl

Bowman – osmotic stress
Bowman(eam8.w) – osmotic stress

Z
T0

Z
T4

Z
T8

Z
T1

2

Z
T1

6

Z
T2

0

Z
T1

8

Z
T2

2

Z
T0

Z
T4

Z
T8

Z
T1

2

Z
T1

6

Z
T2

0

Z
T1

8

Z
T2

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

H
vA

p
x1

/H
vA

ct
in

0

0.5

1

1.5

2

2.5

3

3.5

H
vC

A
T

1/
H

vA
ct

in

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

H
vA

B
I5

/H
vA

ct
in

0

0.001

0.002

0.003

0.004

0.005

0.006

H
vW

R
K

Y
38

/H
vA

ct
in

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

H
vD

R
F

1/
H

vA
ct

in

0

0.0005

0.001

0.0015

0.002

0.0025

H
vD

R
E

B
1/

H
vA

ct
in

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

H
vP

h
yb

/H
vA

ct
in

0

1

2

3

4

5

6

7

H
vL

H
C

B
/H

vA
ct

in

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

H
vP

IL
3/

H
vA

ct
in

0

0.1

0.2

0.3

0.4

0.5

0.6

H
vA

R
F

1/
H

vA
ct

in



52 
 

 

Figure 4. Diurnal expression of stress response genes under control (solid line) and osmotic stress (dashed 

line) conditions in the spring barley Scarlett (green) and introgression line S42-IL107 (red). Seedlings of 

both genotypes were grown in hydroponics for ten days in long day (16h/8h, light/dark). Leaf samples for 

total RNA were collected after 48h of osmotic stress (20% PEG) or under control conditions at 4 h 

interval during the day time (including samples taken in the dark 2 h before and after lights on and off). 

Transcript accumulation was measured by qRT-PCR analysis of target genes normalized to HvActin. 

 Arrows indicate peak time of expression under control (blue) and stress (orange) conditions. Values are 

means ± SD of three biological replicates. Black bars and shaded regions indicate the night period.  
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Table 1. Pearson correlation coefficients between core clock and stress-responsive genes in all genotypes and treatment conditions 

Genes HvCCA

1 

HvPRR1 HvGI HvPRR

37 

HvPRR

73 

HvPRR59 HvPRR95 HvDRF

1 

HvDREB1 HvABI5 HvWRKY

38 

HvAPX1 HvCAT1 HvARF

1 

HvPIL3 HvPHY

b 

HvLHC

B 

HvCCA1   -0.08 -0.02 0.33* 0.49* -0.03 0.25 -0.05 -0.28* 0.18 -0.18 -0.21 0.15 -0.03 0.08 -0.14 0.05 

HvPRR1 -0.08   0.8** 0.51** 0.55** 0.87** 0.51** 0.08 -0.21 0.66** -0.49** 0.07 0.74** 0.87** -0.25* 0.28* 0.07 

HvGI -0.02 0.8**   0.71** 0.6** 0.85** 0.77** 0.41* -0.08 0.79** -0.24 0.31* 0.75** 0.76** -0.07 0.46* 0.29* 

HvPRR37 0.33* 0.51** 0.71**   0.72** 0.64** 0.82** 0.4* -0.12 0.79** -0.2 0.17 0.62** 0.48* 0.05 0.3* 0.23 

HvPRR73 0.49* 0.55** 0.6** 0.72**   0.54** 0.59** 0.03 -0.31* 0.54** -0.5* -0.14 0.65** 0.46* -0.16 0.09 0.12 

HvPRR59 -0.03 0.87** 0.85** 0.64** 0.54**   0.74** 0.12 -0.2 0.68** -0.42* 0 0.71** 0.66** -0.13 0.23 0.21 

HvPRR95 0.25 0.51** 0.77** 0.82** 0.59** 0.74**   0.4* -0.1 0.73** -0.09 0.25 0.51** 0.38* 0.22 0.4* 0.48* 

HvDRF1 -0.05 0.08 0.41* 0.4* 0.03 0.12 0.4*   0.55** 0.62** 0.5** 0.9** 0.14 0.33* -0.06 0.83** -0.02 

HvDREB1 -0.28* -0.21 -0.08 -0.12 -0.31* -0.2 -0.1 0.55**   0.06 0.68** 0.54** -0.21 -0.04 -0.13 0.33* -0.17 

HvABI5 0.18 0.66** 0.79** 0.79** 0.54** 0.68** 0.73** 0.62** 0.06   -0.06 0.49** 0.67** 0.74** -0.13 0.57** 0.14 

HvWRKY38 -0.18 -0.49** -0.24 -0.2 -0.5* -0.42* -0.09 0.5** 0.68** -0.06   0.58** -0.49* -0.31* 0.19 0.24 0.06 

HvAPX1 -0.21 0.07 0.31* 0.17 -0.14 0 0.25 0.9** 0.54** 0.49** 0.58**   -0.02 0.3* -0.02 0.82** -0.02 

HvCAT1 0.15 0.74** 0.75** 0.62** 0.65** 0.71** 0.51** 0.14 -0.21 0.67** -0.49* -0.02   0.75** -0.25* 0.17 0.02 

HvARF1 -0.03 0.87** 0.76** 0.48* 0.46* 0.66** 0.38* 0.33* -0.04 0.74** -0.31* 0.3* 0.75**   -0.34* 0.44* -0.07 

HvPIL3 0.08 -0.25* -0.07 0.05 -0.16 -0.13 0.22 -0.06 -0.13 -0.13 0.19 -0.02 -0.25* -0.34*   -0.07 0.72** 

HvPHYb -0.14 0.28* 0.46* 0.3* 0.09 0.23 0.4* 0.83** 0.33* 0.57** 0.24 0.82** 0.17 0.44* -0.07   0.06 

HvLHCB 0.05 0.07 0.29* 0.23 0.12 0.21 0.48* -0.02 -0.17 0.14 0.06 -0.02 0.02 -0.07 0.72** 0.06   

Significant (*= p<0.05, **= p<0.001) coefficients are underlined. 
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Cis-acting regulatory elements in core clock and drought-responsive genes 

As the expression of clock and stress genes was correlated, I analysed the presumed promoter 

regions, 3000 bp located upstream of the stress-response genes, for the presence of conserved 

cis-elements driven by circadian clock and light factors (Adams and Carre, 2011). Furthermore, 

since circadian clock genes were induced by osmotic stress, I searched for stress-response 

elements in the presumed promoter regions (3000 bp) of the circadian clock genes. One to three 

CNS per promoter sequences were identified across the five grass species in the stress-response 

and clock genes. Dependent on the lengths of CNSs identified for each gene, the number of cis-

acting elements differed for each gene (Supplementary Table S2). ABA-responsive elements 

(ABRE), drought responsive elements (DRE), circadian-clock factors (CCAF), and light-

responsive motifs (LREM) were identified in the CNS of drought-responsive genes 

(Supplementary Table S19). Similarly, the analysis of circadian clock promoters also revealed an 

enrichment of CCF, LRE, ABRE and DRE (Supplementary Table S19).  

Taken together, the identification of conserved regulatory elements in drought-responsive genes 

suggested that the circadian clock and light regulators are involved in the transcriptional control 

of stress-response genes. In addition, the identification of stress and ABREs in the promoter 

sequences of circadian-clock orthologs indicated that their transcription is regulated by stress and 

ABA signaling factors, which supports results of the expression analysis (Fig. 1, 2).  

Diurnal changes of physiological responses to short-term osmotic stress 

I have examined whether variation in the expression of circadian clock and stress-response 

genes, variation affected physiological traits. Physiological traits such as biomass, daily 

fluctuations in leaf osmotic potential, stomatal conductance, leaf transpiration, net CO2 uptake 

and leaf temperature under control and stress conditions were measured. The treatment had the 

strongest effects on the diurnal variation of physiological traits, while genetic variation had only 

minor effects on trait expression with the exception of biomass (Fig. 5, 6, Supplementary Tables 

S14,S15). Osmotic stress caused an increase in the leaf osmotic potential and leaf temperature, 

and a reduction in the stomatal conductance, leaf transpiration, and net CO2 uptake compared to 

control conditions in all tested genotypes (Figure 5). Phenotypic differences between stress and 

control conditions were generally more pronounced during the light period, in particular towards 

the end of the light period. Bowman(eam8.w) had a significantly higher osmotic potential than 
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Bowman at ZT4 and ZT12 under control conditions, and at ZT4 under stress conditions.  In 

addition, a significantly lower net CO2 uptake was observed in Bowman(eam8.w) and S42-IL107 

compared to their recurrent parents at ZT12 and ZT16 under stress conditions. Furthermore, S42-

IL107 exhibited significantly lower stomatal conductance and leaf transpiration rate compared to 

Scarlett at ZT12 and ZT16 under control conditions.   

Total biomass was significantly regulated by treatment and genotype (Fig. 7, Supplementary 

Table S16). Bowman biomass was 68 ±2.2 mg and 59 ±2.4 mg under control and stress 

conditions, respectively. Bowman(eam8.w) had a lower biomass of 59 ±4.1 mg and 52 ±3.3  mg 

under control and stress conditions, respectively. Biomass was also significantly lower in S42-

IL107 than in Scarlett under stress, but not under control conditions. The introgression lines, 

varying at HvELF3 and Ppd-H1 thus showed a significantly reduced biomass accumulation 

under stress compared to their recurrent parents. In addition, both lines exhibited a reduction in 

the net CO2 uptake at the end of the day under stress.   
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Figure 5. Diurnal expression of physiological traits under control (solid line) and osmotic stress (dashed 

line) conditions in the spring barley Bowman (green) and the introgression line Bowman(eam8.w) (red). 

A) Leaf osmotic potential, B) Stomata conductance (gs), C) Leaf transpiration rate (E), D) Net CO2 

exchange and E) Leaf temperature. Seedlings were grown in hydroponics for ten days under long day 

(16h/8h, light/dark). Physiological measurements were taken after 48 h of osmotic stress at 4 h intervals 

during the day time (including samples taken in the dark 2 h before and after light on and off). Values are 

means ± SD of three biological replicates. Black bars and shaded regions indicate the night period.  
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Figure 6. Diurnal expression of physiological traits under control (solid line) and osmotic stress (dashed 

line) conditions in the spring barley Scarlett (green) and the introgression line S42-IL107 (red). A) Leaf 

osmotic potential, B) Stomata conductance (gs), C) Leaf transpiration rate (E), D) Net CO2 exchange and 

E) Leaf temperature. Seedlings were grown in hydroponics for ten days in long day (16h/8h, light/dark). 

Physiological measurements were taken after 48 h of osmotic stress at 4 h intervals during the day time 

(including samples taken in the dark 2 h before and after light switch on and off). Values are means 

± SD of three biological replicates. Black bars and shaded regions indicate the night period.  
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Figure 7. Dry weight biomass in Bowman/ Bowman(eam8.w) (A) and Scarlett/ S42-IL107 (B) under 

control and osmotic stress conditions. Measurements were taken in 12 day old seedlings after 48h of 

osmotic stress (20% PEG). Values are means ± SD of 12-15 seedlings. Different letters indicate 

significant differences at p≤ 0.05 using least square means.  
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Osmotic stress thus caused significant differences in relative water content and leaf temperature, 

but variation in the circadian clock gene HvELF3 did not affect both traits under control or stress 

conditions. Electrolyte leakage (EL) was not significantly increased in plants under osmotic 

stress as compared to control conditions and did not show significant differences between 

genotypes at any time point (Fig. 8C).  In contrast, malondialdehyde (MDA) was significantly 

increased 48h and 72h AT under osmotic stress as compared to control conditions, but did not 

show significant differences between genotypes. Proline levels were significantly increased in 

stressed plants 48h and 72h AT as compared to control plants (Fig. 8E). However, there was no 

significant difference in proline content between genotypes differing at HvELF3.  Hence, short-

term osmotic stress caused an increase in the accumulation of MDA and proline content, but did 

not affect EL. No significant differences in MDA and proline content were detected between 

Bowman and Bowman(eam8) lines.   

As variation at HvELF3 affected the diurnal expression of chlorophyll a/b binding proteins, 

which are important for the light reaction of photosynthesis (Faure et al. 2012), I analysed the 

effects of variation at HvELF3 on photosynthesis efficiency. Changes of the chlorophyll 

fluorescence parameter PI under control and osmotic stress was studied in Bowman and 

Bowman(eam8) lines. PI was only significantly decreased in stressed plants of Bowman 

compared to control plants at 72h AT. At this time point however, the reduction of PI in 

Bowman was not significantly different from Bowman(eam8.k) (Fig. 8F). PI was thus not 

strongly affected by osmotic stress in Bowman and no significant differences were observed 

between genotypes. 

Altogether, short-term osmotic stress significantly altered RWC, LT, and proline accumulation 

however; no significant effects of variation at HvELF3 on these physiological responses were 

recorded under osmotic stress and control conditions. In addition, osmotic stress had only small 

effects on photosynthetic activity and cell membrane injury.   
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Figure 8. Physiological responses of barley genotypes varying at HvELF3 to short-term osmotic 

stress. Bowman control,  Bowman(eam8.k)control, Bowman(eam8.w)control,  Bowman 

stress,  Bowman(eam8.k)stress and  Bowman(eam8.w) stress. Seedlings were grown in 

hydroponics under LD (16h light). After 10 days osmotic stress was induced by immersing the 

roots of seedlings in PEG. Physiological parameters were measured every 24 h for three 

consecutive days after onset of stress. A) Relative water content, B) Leaf temperature, C) 

Electrolyte leakage, D) Malonaldehyde content, E) Proline content and F) Performance index. 

Values are means ±sd of three independent experiments. Different letters indicate significant 

difference at p≤ 0.05 using least square means. 
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Variation at HvELF3 and Ppd-H1 does not affect coleoptile development  

In Arabidopsis elf3 and prr7 mutants show defects in red light response during hypocotyl 

elongation (Zagotta  et al., 2002; Kaczorowski  and Quali, 2003). Hence, in order to study the 

role of HvELF3 and Ppd-H1 in barley early seedling photomorphogenesis, I compared the length 

of coleoptiles of Bowman with Bowman(eam8.w) and Scarlett with S42-IL107 under different 

fluence rates of continuous red light and under dark conditions. The coleoptile was significantly 

elongated in the dark compared to red light in all genotypes (Fig. 9, A and B). The growth 

response of coleoptile development in red light was similar between Bowman and 

Bowman(eam8.w), likewise there was no genetic variation between Scarlett and S42-IL107 (Fig. 

9). This result indicates that variation at HvELF3and Ppd-H1 do not affect photomorphogenesis. 

 

Figure 9. Coleoptile lengths of barley seedlings grown in the dark or under continuous red light.  A) 

Coleoptile length of  Bowman and  Bowman(eam8.w) B) coleoptile length of  Scarlett and   

S42-IL107. Germinated seeds were grown in petri dish containing agar for 2 days in different intensities 

of continuous red light or dark. Coleoptile length was measured using a calibrated ruler. Values are means 

± SD of 8-10 seedlings. Different letters indicate significant difference at p≤ 0.05 using least square 

means.  
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Discussion  

Reciprocal interaction between clock and stress-response genes 

The effects of daily changes in light and temperature on the clock are well characterized (Millar, 

2004; Boikoglou et al., 2011). However, much less is known about the effects of other less 

predictable environmental signals on the circadian clock. A major factor for plant growth and 

productivity is water availability and changes in water relations have profound effects on the 

plant metabolism (Chavez et al., 2002; Sanchez et al., 2013). Here, I show that osmotic stress 

applied at the barley roots affected expression of clock and stress genes in the shoot. Osmotic 

stress upregulated the expression of clock genes and advanced the expression peaks of evening 

expressed clock genes compared to control conditions irrespective of the genotype (Fig. 1 and 2). 

Interestingly, ABRE and DRE elements were identified in clock gene promoters (Supplementary 

Table S10). Similarly, Lai et al., (2012) demonstrated that ROS, an important secondary 

messenger during stress (Foyer and Noctor, 2005), acted as an input to the circadian clock. In 

addition, ABA signaling was shown to interact with the clock (Robertson et al., 2009; Legnalioli 

et al., 2009). For example, increased levels of ABA lengthened the free-running period of the 

clock and reduced CCA1 mRNA levels in Arabidopsis (Hanano et al., 2006). By contrast, in 

barley, osmotic stress upregulated expression of circadian clock genes and advanced their 

expression peaks. Therefore, osmotic stress in barley affected the expression of clock genes 

differently than ABA in Arabidopsis. Genetic variation at HvELF3 and Ppd-H1 did not affect the 

stress-response of clock genes, possibly because several entry points of stress into the clock 

exist, as suggested by the presence of stress-response cis-elements in several clock genes. The 

mechanisms by which osmotic stress and ABA regulate circadian periodicity still await 

unraveling.   

Stress response genes, encoding HvABI5 and HvDRF1 binding to ABRE and DRE motifs in the 

clock gene promoters, were upregulated under osmotic stress. Upregulation of stress-response 

genes was thus likely upstream of the observed induction of clock genes under osmotic stress. It 

is noteworthy that osmotic stress also advanced the expression peaks of stress-response genes in 

all four genotypes, similar to the expression shifts observed for the clock genes under osmotic 

stress. Differences in the phase and expression levels of clock genes under osmotic stress 

suggested that clock genes were controlled by stress response genes, possibly encoding the 
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transcription factors HvABI5 and HvDRF1. The presence of ABRE and DRE motifs in the 

promoters of clock genes solidified our hypothesis (Supplementary Table S13). On the other 

hand, differences in the phase and levels of clock gene expression due to osmotic stress or 

variation at HvELF3 were reflected in the expression patterns of stress-response genes. Co-

regulation of stress-response and clock genes and the presence of circadian clock motifs in the 

promoters of stress-response genes suggested that the clock controls the expression of stress-

response genes in barley.  Thus I propose a reciprocal feedback mechanism between the barley 

clock and stress response in barley.   

Variation at Ppd-H1 affects the expression levels of stress-response genes 

In contrast to HvELF3, genetic variation at Ppd-H1 did not affect diurnal expression patterns of 

clock and stress-response genes. Interestingly it did alter the expression levels of several stress-

response genes (Fig. 4, Chapter 1 Fig. 5). These results suggested that the ancestral Ppd-H1 

allele caused an increased expression of stress-response genes under osmotic stress. In 

Arabidopsis, PRR proteins have been described as transcriptional repressors presumably binding 

to EE or G-box elements in the promoters of target genes for plant growth, light signaling and 

stress-response (Liu et al., 2013). Nakamichi et al., (2009) showed that the DREB genes were 

upregulated in the prr975 mutant and expression of DREB genes was gated by PRR genes. The 

mutation in Ppd-H1 of Scarlett and Triumph is likely to affect DNA binding qualities and has 

been associated with reduced expression levels of HvFT1 and delayed flowering (Turner et al., 

2005; Campoli et al., 2012a). Similarly, the mutated Ppd-H1 allele in spring barley correlated 

with reduced expression levels of stress-response genes, such as DREB-like genes (Fig. 4). In 

addition, potential PRR-binding motifs, such as circadian clock factors and G-box motifs were 

identified in the conserved regions of the promoters of HvDRF1, HvDREB1, HvABI5, HvAPX1, 

HvPHYB, HvLHCB and HvWRKY38, suggesting that Ppd-H1 controls expression of stress-

response genes in barley (Supplementary Table S19). However, in contrast to PRRs acting as 

repressors in Arabidopsis, the ancestral Ppd-H1 allele was associated with higher expression of 

stress-response genes. In Arabidopsis, PRR functions were revealed using the prr975 mutant or 

lines over-expressing individual PRR genes exhibiting strong effects on the circadian clock. This 

study considered a natural mutation with apparently reduced functionality, but with no effect on 

its own expression or on expression of other clock genes. The different nature of the mutations 

may explain differences in the downstream responses of PRR genes in barley and Arabidopsis. 
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Because, the expression of clock genes was not different between the spring barley cultivars and 

introgression lines, we concluded that variation at Ppd-H1 affected the expression of stress-

response genes independently of its role in the barley clock.  

Expression of Ppd-H1 was reduced at peak times, but elevated during the night in 

Bowman(eam8.w) as compared to Bowman consistent with the role of HvELF3 as a repressor of 

Ppd-H1 during the night (Faure et al., 2012). Like Ppd-H1, stress-response genes like HvDRF1 

and HvABI5 (Fig. 2) showed a higher expression during the night in Bowman(eam8.w) than 

Bowman. HvELF3 expression may thus control expression of stress-response genes through 

changing diurnal expression of Ppd-H1.  

Diurnal pattern of physiological traits do not correlate with diurnal changes in 

gene expression  

Photosynthesis rate, net CO2 exchange and stomatal opening are under circadian control in 

Arabidopsis and clock mutants are strongly compromised in growth, physiology and metabolism 

(Kant et al., 2008; Dong et al., 2011). In addition, it has been shown that ELF3 and PRR genes 

control stomatal opening and water relations in Arabidopsis (Nakamichi et al., 2009, Kinoshita et 

al., 2011). Hence I hypothesized that in barley physiological traits might be also under the 

control of the circadian clock. Variation at Ppd-H1 affected stress induced senescence, 

electrolyte leakage, MDA and chlorophyll fluorescence as discussed in chapter 1. In contrast to 

variation at Ppd-H1, variation at HvELF3 did not affect these senescence related traits (Fig. 8), 

supporting the hypothesis that Ppd-H1 acted independently of its role in the circadian clock. 

Variation at both genes, Ppd-H1 and HvELF3 did not influence diurnal fluctuations in leaf water 

potential, stomatal conductance and gas exchange (Fig. 5, 6). Similarly, Izawa et al., (2011) 

reported that a mutation in the rice ortholog of the clock gene GIGANTEA did not affect net 

photosynthesis rates under field conditions, and the authors concluded that the photosynthesis- 

and growth-related primary assimilation were maintained under light-dark cycles despite defects 

in a clock gene and marked changes in the global transcriptome. In contrast, Edwards et al. 

(2011) showed that in field-grown Brassica rapa circadian period was correlated with 

photosynthesis, stomatal conductance and gas exchange, suggesting that physiology is regulated 

by the clock and synchronized with daily light cycles. Differences in the effects of the circadian 

clock on photosynthesis- and growth-related primary assimilation between monocots and dicots 
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may be due to differences in plant architecture and control of growth. Poiré et al., (2010) showed 

that growth is under circadian control and follows a diel pattern in dicots, while growth in 

monocots is mainly controlled by environmental fluctuations in water availability and 

temperature, suggesting that external cues are dominant over endogenous signals for the control 

of primary assimilation in monocots.  

Although diurnal patterns of physiological traits were not affected by changes in clock genes, 

osmotic stress and variation at HvELF3 and Ppd-H1 affected biomass (Fig. 7).  

A phytochrome-interacting factor-like protein OsPIL1 has recently been identified as a key 

regulator of reduced growth under drought (Todaka et al., 2012). Similar to PIF like genes in 

rice and Arabidopsis (Nusinow et al., 2012), I found that osmotic stress downregulated HvPIL3, 

while the mutation in HvELF3 upregulated HvPIL3 expression at night and advanced its 

expression peak. Since ELF3, PhyB and PIFs are known to control photomorphogenesis in 

Arabidopsis (Zagotta et al., 1996, Liu et al., 2001; Soy et al., 2012), I analysed coleoptile lengths 

in the dark and under different fluence rates of red light. Unlike in Arabidopsis, our data 

indicated that neither HvELF3, nor expression differences in HvPIL3 and HvPHYB between 

Scarlett and S42-IL107, affected barley seedling photomorphogenesis (Fig. 9). Similarly, Yang 

et al., (2012) found that the rice oself3 mutant was not affected in photomorphogenesis, 

suggesting that the genetic control of photomorphogenesis is different between Arabidopsis and 

monocots.  

Conclusion 

This study demonstrated that osmotic stress at the root altered circadian clock genes in the barley 

shoot and thus acted as a spatial input signal into the clock. In contrast to Arabidopsis, barley 

growth and primary assimilation was less controlled by the clock and more responsive to 

environmental perturbations, such as osmotic stress. A strong response to unpredictable 

environmental changes may be adaptive in marginal environments which are often characterized 

by random climatic fluctuations, while a circadian control of the plants metabolism may confer 

optimal adaptation in environments with predictable diurnal changes. In this context it is 

interesting to note that grasses, including barley, are among the most stress resistant plants and 

adapted to wide array of environments. Alternatively, differences in plant architecture and 
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growth may explain variation in the control of assimilation between monocots and dicots, as 

meristematic tissue is well protected and covered at the base of the plant in monocots, but 

exposed to the environment in dicots.   
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Supplementary Tables 

Supplementary Table S1.  List of primers used for qRT-PCR. 

Primer name Accession 

code 

Forward primer  (5'-3') Reverse primer (5'-3') References 

HvDRF1 AF521303 GAAGTTGACCCGGTGACTGT GCTCATCTCAGCATCATGGA Xue et al.2003 

HvDREB1 DQ012941 TCAACTTCCCAGAGCATTCC CACAGTCCCTGCAGACTCAA Xu et al.2009 

HvABI5 AY150676 CGCGCTGAAGTATTGAAACA CACCAGAACGTTGCAGCTTA Kobashi et al.2008 

HvWRKY38 AY541586 CCGTCAAAGCCTGCGCAGACAAAGC ATGTTACAACCTCCCTCGCCG Xiong et al.2009 

 HvAPX1 AS006358 CGCCCTCTT GTGGAGAAATA CGCGCATAGTAGCAGCAGTA Shi et al.2001 

HvCAT1 AF021938 TGGACGGATGGTACTGAACA GTGCCTTTGGGTATCAGCAT Skadsen et al.1995 

HvARF1 AJ508228 AGCTCCACAGGATGCTGAAT TCCCTCGTACAACCCTTCAC Ay et al.2008 

 HvLHCB X63197 TCTGAGGGTGGTCTCGAT TA CAACAAGACCCATGAGAAGG Brandt et al. 1992 

 HvPHYB AK365283 CTTGCGCACCAACTATCAGA CTCCATGACACACCGTCAAC Szucs et al. 2006 

HvPIL3 AK359117 AGCTCATACCCCACTGCAAC CATCCACATCATCTGCACCT Faure et al.2012 

 HvCCA1 HQ850270 CCTGGAATTGGAGATGGAGA TGAGCATGGCTTCTGATTTG Campoli et al.2012 

 HvPRR1 HQ850268 TGTCTTTCCTCGGAAATTGG TGTCAGACATCCCTGGAACA Campoli et al.2012 

 HvGI AY740524 TCAGTTAGAGCTCCTGGAAGT  GGTAGTTTGGGCTTTGGATG Campoli et al.2012 

 HvPRR37 AY970703 GATGGATTCAAAGGCAAGGA GAACAATTGGCTCCTCCAAA Campoli et al.2012 

 HvPRR73 JQ791230 GCGCCGTAGAGAATCAGAAC  CATGTCGGGTACAGTCATCG  Campoli et al. 2012 

 HvPRR59 JQ791228 CAGAACTCCAGTGTCGCAAA  TGCTGTTGCCAGAGTTGTTC  Campoli et al. 2012 

HvPRR95 JQ791232 GAAATTCCGCATGAAAAGGA  TTCCGCATCTTCTGTTGTTG  Campoli et al. 2012 
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Supplementary Table S2. Analysis of variance of  physiological traits over all time points of  Scarlett(ppd-H1) and S42-IL107(Ppd-

H1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

EL- electrolyte leakage, RWC- relative water content, Proline-  proline content, Fv/Fm  -maximum quantum efficiency of photosystem II, Area -  area over the 

curve between Fo and Fm, PI -performance index  ,LT- leaf temperature and MDA- malondialdehyde. 

 

 

Traits Statistics 

Genotype Treatment Time 

point 

Experiment Genotype 

*Treatment 

Genotype 

*Time 

point 

Genotype*E

xperiment 

Genotype*T

reatment*Ti

me point 

Genotype

*Treatme

nt*Time 

point*Exp

eriment 

RWC F-value 0.37 56.99** 0.59 4.64* 1.15 1.02 1.08 2.58* 3.34** 

R
2
 0 0.26 0.01 0.04 0.01 0.01 0.01 0.05 0.31 

LT F-value 0 111.2** 1.97 11.8* 0.12 0.34 2.45 0.66 1.37 

R
2
 0 0.4 0.01 0.08 0 0 0.02 0.01 0.1 

EL F-value 14.85* 49.86** 24.56** 2.12 21.14** 7.8* 1.61 13.41** 2.39* 

R
2
 0.04 0.15 0.14 0.01 0.06 0.05 0.01 0.16 0.14 

Fv/Fm F-value 0.88 0.29 3.14* 1.17 0 0.3 2 1.4 0.69 

R
2
 0.01 0 0.1 0.02 0 0.01 0.03 0.09 0.11 

Area F-value 0.08 4.96* 1.28 0.02 0.05 0.42 0.02 1.79 0.61 

R
2
 0 0.08 0.04 0 0 0.01 0 0.11 0.1 

PI F-value 0 14.53* 162.85** 0.06 0.87 0.04 1.8 5.93* 1.16 

R
2
 0 0.03 0.76 0 0 0 0 0.06 0.03 

MDA F-value 1.02 35.78** 45.11** 0.34 12.43* 8.97* 0.25 5.43* 2.07 

R
2
 0 0.19 0.22 0.02 0.09 0.06 0.01 0.03 0 

Proline F-value 0.13 129.94** 39.31** 1.76 0 1.91 0.69 22.21** 1.45 

R
2
 0 0.32 0.19 0.01 0 0.01 0 0.22 0.07 
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Supplementary Table S3. Analysis of variance of physiological traits after 24, 48 and 72h stress of Scarlett (ppd-H1) and S42-

IL107(Ppd-H1) 

Traits RWC LT Proline Fv/Fm Area PI MDA EL 

source of 

variation/St

atistics 

Time F-value R
2
 F-value R

2
 F-value R

2
 F-

value 

R
2
 F-

value 

R
2
 F-value R

2
 F-value R

2
 F-value R

2
 

Genotype 
24h 

1.11 0.03 0.44 0 0.28 0.01 0.31 0.02 0.04 0 0.06 0 1.02 0.06 5.59 0.26 

48h 
0 0 0.43 0 1.7 0.02 0.09 0 0.04 0 0.03 0 0.14 0 0.08 0 

72h 
0.44 0 0.01 0 1.41 0.01 1.45 0.05 1.12 0.04 0.06 0 7.81* 0.13 23.29** 0.15 

Treatment 
24h 

4.86* 0.27 35.99** 0.31 6 0.12 0.55 0.03 1.54 0.09 0.25 0.02 0.01 0 0.42 0.01 

48h 
21.42** 0.35 51.52** 0.44 38.19** 0.39 0.57 0.01 0 0 0.1 0 37.73** 0.66 5.83* 0.3 

72h 
89.41** 0.41 31.12** 0.46 91.71** 0.75 6.91* 0.25 8.69* 0.3 52.64** 0.54 29.85** 0.51 75.73** 0.48 

Experiment 
24h 

2.99 0.08 12.18* 0.43 8.97 0.37 0.34 0.02 1.99 0.12 1.26 0.08 0.25 0.01 0.54 0.03 

48h 
5.84* 0.19 6.85* 0.29 6.59* 0.13 1.95 0.05 0.26 0.02 2.81 0.13 0.14 0 1.56 0.04 

72h 
1.36 0.03 2.89 0.09 1.82 0.03 0.5 0.02 1.65 0.06 9.93 0.1 0.56 0.01 0.92 0.01 

Genotype 

*Treatment 
24h 

2.48 0.06 0.16 0 0 0 0.09 0.01 0.11 0.01 0.17 0.01 0.34 0.02 2.54 0.12 

48h 
3.56 0.06 1.16 0.01 1.51 0.02 0.25 0.01 0.48 0.03 0.13 0.01 0.08 0 2.85 0.1 

72h 
9.99* 0.29 0.33 0 0.45 0 1.41 0.05 3.05 0.1 10.24* 0.11 4.48* 0.08 25.72** 0.16 

Genotype*

Experiment 
24h 

0.52 0.02 2.86 0.05 0.84 0.03 0.28 0.02 0.12 0.01 0.16 0.01 2.07 0.12 0.29 0.01 

48h 
0.42 0.01 2.94 0.05 1.22 0.02 8.58* 0.22 0.12 0.01 3.12 0.14 0.26 0 3.66* 0.3 

72h 
2.94 0.05 0.64 0.02 0.25 0 0.84 0.03 0.2 0.01 1.27 0.01 0.09 0 1.99 0.03 

Genotype*

Treatment*

Experiment 

24h 
0.42 0.04 0.44 0.02 0.6 0.05 0.77 0.1 0.16 0.02 0.49 0.06 0.53 0.06 1.77 0.1 

48h 
0.59 0.04 0.61 0.02 4.27 0.17 6.46* 0.34 0.76 0.09 0.85 0.08 1.61 0.06 2.52 0.14 

72h 
6.72* 0.12 1.6 0.1 0.42 0.01 1.24 0.09 0.28 0.02 5.06 0.1 0.03 0 0.91 0.02 

EL- electrolyte leakage, RWC- relative water content, Proline-  proline content, Fv/Fm  -maximum quantum efficiency of photosystem II, Area -  area over the 

curve between Fo and Fm, PI -performance index  ,LT- leaf temperature and MDA- malondialdehyde. 
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Supplementary Table S4. Analysis of variance of  physiological traits over all time points of Triumph(ppd-H1)  and Triumph (Ppd-

H1)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EL- electrolyte leakage, RWC- relative water content, Proline-  proline content, Fv/Fm  -maximum quantum efficiency of photosystem II, Area -  area over the 

curve between Fo and Fm, PI -performance index  ,LT- leaf temperature and MDA- malondialdehyde. 

 

Traits 

Statistics Genotype Treatment Time 

point 

Experi

ment 

Genotyp

e 

*Treatme

nt 

Genotyp

e *Time 

point 

Genotype

*Experim

ent 

Genoty

pe*Trea

tment*T

ime 

point 

Genotype

*Treatme

nt*Time 

point*Exp

eriment 

RWC F-value 1.4 20.2** 3.59* 2.79 0.49 2.49 0.39 4.2* 1.1 

R
2
 0.01 0.14 0.05 0.04 0 0.03 0.01 0.11 0.15 

LT F-value 3.54 198.23** 7.04* 21.23** 1.44 0.51 2.19 3.32 1.46 

R
2
 0.01 0.52 0.04 0.11 0 0 0.01 0.04 0.08 

EL F-value 67.91** 299.72** 33.23** 1.22 40.15** 2.49 1.5 9.96** 0.55 

R
2
 0.11 0.51 0.11 0 0.07 0.01 0.01 0.07 0.02 

Fv/Fm F-value 8.73* 6.93* 1.26 4.44 5.65* 1.33 7.79* 2.22 4.06* 

R
2
 0.04 0.03 0.01 0.04 0.03 0.01 0.07 0.04 0.39 

Area F-value 0.26 1.9 6.63* 0.12 1.66 0.37 0.62 4.2 2.07 

R
2
 0 0.01 0.09 0 0.01 0.01 0.01 0.12 0.29 

PI F-value 0.2 0.46 86.73** 3.29 1 1.09 0.1 5.4* 1.07 

R
2
 0 0 0.59 0.02 0 0.01 0 0.07 0.07 

MDA F-value 3.45 1.35 200.95** 4.42* 9.19* 12.37** 1.84 7.75** 1.65 

R
2
 0.01 0.01 0.63 0.02 0.06 0.12 0.02 0.05 0.05 

Proline F-value 0.2 369.68** 85.05** 2.55 0.5 0.03 0.49 42.03** 0.7 

R
2
 0 0.48 0.22 0.01 0 0 0 0.22 0.02 
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Supplementary Table S5. Analysis of variance of physiological traits after 24, 48 and 72h stress of Triumph(ppd-H1) and 

Triumph(Ppd-H1)  

Traits RWC LT Proline Fv/Fm Area PI MDA EL 

source of 

variation/Stati

stics 

Time F-

value 

R
2
 F-value R

2
 F-value R

2
 F-

value 

R
2
 F-value R

2
 F-value R

2
 F-value R

2
 F-value R

2
 

Genotype 24h 0.18 0.01 0.22 0 0.34 0.01 2.63 0.05 0.47 0.01 0.65 0.02 6.54* 0.17 13.95* 0.11 

48h 0.01 0 2.06 0.02 1.6 0.01 1.25 0.02 0.35 0.01 0.36 0.01 12.1* 0.1 35.5** 0.24 

72h 3.44 0.07 1.8 0.01 0.02 0 5.08* 0.06 0.1 0 1.23 0.02 12.16* 0.12 20.88* 0.09 

Treatment 24h 0.39 0.01 41.35** 0.54 1.96 0.04 0.62 0.01 2.02 0.04 2.68 0.08 0.24 0.01 86.7** 0.7 

48h 5.39* 0.11 57.54** 0.54 284.93** 0.9 0.27 0.01 0.63 0.02 1.56 0.04 36.38** 0.3 71.07** 0.49 

72h 
17.94* 0.36 115.17** 0.61 180** 0.9 7.78* 0.09 24.26** 0.42 22.25** 0.33 37.95** 0.39 154.42** 0.64 

Experiment 24h 0.07 0 1.8 0.05 2.14 0.57 8.32* 0.32 1.85 0.08 1.89 0.11 3.14 0.16 0.93 0.02 

48h 4.7 0.19 7.04* 0.13 1.24 0.03 9.94 0.39 2.76 0.19 5.66 0.27 9.11* 0.32 0.67 0.01 

72h 1.24 0.05 17.18** 0.18 1.07 0.01 1.65 0.14 0.06 0 0.53 0.02 3.33 0.07 0.25 0 

Genotype 

*Treatment 
24h 0.05 0 0.65 0.01 0.07 0 0.89 0.02 0.77 0.02 0.23 0.01 0.85 0.02 0.08 0 

48h 0.03 0 0.96 0.01 0.57 0 1.07 0.02 0.11 0 1.26 0.03 0.22 0 12.2* 0.08 

72h 1.98 0.04 4 0.02 0.61 0 4.91* 0.06 5.36* 0.09 6.26* 0.09 13.9* 0.14 44.31** 0.18 

Genotype*Ex

periment 
24h 2.13 0.14 0.87 0.02 1.6 0.06 1.32 0.05 2.15 0.09 0.94 0.06 3.16 0.16 0.17 0 

48h 0.67 0.03 2.99 0.06 0.01 0 1.01 0.04 0.02 0 0.65 0.03 1.17 0.09 1.78 0.02 

72h 0.08 0 0.22 0 0.01 0 2.33 0.18 0.24 0.01 4.52* 0.14 4.18* 0.09 0.18 0 

Genotype*Tr

eatment*Exp

eriment 

24h 0.35 0.05 1.18 0.06 1.27 0.1 1.32 0.1 2.89 0.25 0.41 0.05 0.76 0.08 0.5 0.02 

48h 2.91 0.23 0.53 0.02 1.03 0.01 1.24 0.1 0.35 0.05 0.89 0.09 1.13 0.04 0.91 0.03 

72h 0.41 0.03 2.56 0.05 0.48 0.01 4.13* 0.2 1.25 0.09 0.92 0.06 0.06 0 0.64 0.01 

EL- electrolyte leakage, RWC- relative water content, Proline-  proline content, Fv/Fm  -maximum quantum efficiency of photosystem II, Area -  area over the 

curve between Fo and Fm, PI -performance index  ,LT- leaf temperature and MDA- malondialdehyde. 
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Supplementary Table S6. Analysis of variance of drought-responsive gene expression over all time points in Scarlett(ppd-H1)  and 

S42-IL107(Ppd-H1) 

Gene 

Source of 

Variation/Statistics 

Genotype Treatment Replication Time 

point 

Genotype 

*Treatment 

Genotype*

Time point 

Genotype*Tr

eatment*Tim

e point 

HvDREB1 

F-value 0.17 34.69** 0.92 1.13 0.04 4.47* 2.68 

R
2
 0 0.45 0.02 0.03 0 0.12 0.14 

HvDRF1 

F-value 2.07 83.67** 3.49* 20.54** 8.11* 0.86 3.11* 

R
2
 0.01 0.47 0.04 0.23 0.05 0.01 0.07 

HvABI5 

F-value 0.39 27.83** 1.92 10.95* 0.01 3.14 5.69* 

R
2
 0 0.27 0.04 0.21 0 0.06 0.22 

HvWRKY38 

F-value 0.68 23.32** 3.37 15.77** 1.09 0.04 4.64* 

R
2
 0.01 0.23 0.07 0.31 0.01 0 0.18 

HvPIL3 

F-value 0.43 38.34** 2.5 7.36* 0 0.55 0.41 

R
2
 0.01 0.46 0.06 0.18 0 0.01 0.02 

HvRB1 

F-value 0.3 8.87* 2.53 8.91* 1.09 0.11 1.85 

R
2
 0.01 0.15 0.08 0.3 0.02 0 0.12 

HvARF1 

  

F-value 0.72 45.43** 0.39 0.79 6.53* 0.98 1.02 

R
2
 0.01 0.61 0.01 0.02 0.03 0.03 0.06 

HvAPX1 

  

F-value 7.59* 19.76** 1.1 10.75* 5.43* 3.73* 5.1* 

R
2
 0.07 0.19 0.02 0.21 0.03 0.07 0.2 

HvCAT1 

  

F-value 2.09 19.36* 0.01 12.13* 4.42* 1.04 6.2* 

R
2
 0.02 0.2 0 0.25 0.05 0.02 0.25 

HvHRGP 

F-value 4.11 3.2 1.49 9.66* 0 4.91* 0.63 

R
2
 0.07 0.05 0.05 0.32 0 0.16 0.04 
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Supplementary Table S7. Analysis of variance of drought-responsive gene expression after 24,48 and 72 h stress in Scarlett(ppd-H1) 

and S42-IL107(Ppd-H1) 

Gene Source of 

Variation/Statistics Genotype Treatment Replication Genotype *Treatment 

24 h 48 h 72 h 24 h 48 h 72 h 24 h 48 h 72 h 24 h 48 h 72 h 

HvDREB1 
F-value 5.79* 6.25* 0.03 22.9* 12.78* 16.53* 0.62 0.36 1.51 5.56* 4.42* 0 

R
2
 0.14 0.18 0 0.55 0.26 0.67 0.03 0.06 0.12 0.13 0.19 0 

HvDRF1 
F-value 0.01 5.39* 0.85 14.74* 106.29** 31.8* 0.97 2.39 1.72 4.64* 6.67* 3.18 

R
2
 0 0.04 0.02 0.56 0.87 0.7 0.07 0.01 0.08 0.14 0.04 0.07 

HvABI5 
F-value 2.86 2.26 0.08 1.79 5.96* 21.93* 0.38 0.39 1.88 3.05 0.03 2.06 

R
2
 0.2 0.15 0 0.12 0.4 0.71 0.05 0.05 0.12 0.21 0 0.07 

HvWRKY38 
F-value 2.76 0.02 1.01 6.03* 16.25* 27.54* 0.71 2.78 1.05 0 0.79 0.17 

R
2
 0.17 0 0.03 0.37 0.59 0.75 0.09 0.2 0.06 0 0.03 0 

HvPIL3 
F-value 0.3 0.3 1.05 7.96* 14.26* 22.23* 0.3 0.57 4.73 0.21 0.14 0.01 

R
2
 0.02 0.01 0.03 0.53 0.65 0.57 0.04 0.05 0.24 0.01 0.01 0 

HvRB1 
F-value 0.21 1.12 0.12 5.83 3.38 0.29 1.3 1.01 0.65 0.68 0.35 0.22 

R
2
 0.01 0.09 0.02 0.38 0.26 0.06 0.17 0.16 0.26 0.04 0.03 0.04 

HvARF1 F-value 0.14 5.47* 0.24 5.22* 26.95* 26.96* 0.18 1.04 0.63 0.79 5.15* 0.17 

  R
2
 0.01 0.14 0.01 0.42 0.68 0.8 0.03 0.03 0.04 0.06 0.08 0.01 

HvAPX1 
F-value 4.05 0.02 4.54* 8.24* 10.87* 8.5* 0.11 1.81 0.58 5.44* 1.42 5.08* 

R
2
 0.18 0 0.18 0.36 0.5 0.44 0.01 0.16 0.06 0.24 0.06 0.11 

HvCAT1 
F-value 3.22 1.05 0.05 14.99* 7.87* 9.63* 0.67 0.14 0.38 0.44 4.44 0.38 

R
2
 0.12 0.06 0 0.58 0.42 0.57 0.05 0.01 0.05 0.02 0.24 0.02 

HvHRGP  
F-value 6.28* 1.26 0.13 0.17 7.06* 7.6* 0.56 0.28 1.56 0.15 0.22 0.51 

R
2
 0.46 0.14 0.01 0.01 0.34 0.5 0.08 0.06 0.2 0.01 0.02 0.03 
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Supplementary Table S8. Analysis of variance of drought-responsive gene expression over all time points in Triumph(ppd-H1)  and 

Triumph(Ppd-H1)  

Gene 

Source of 

Variation/Statistics 

Genotype Treatment Replicatio

n 

Time 

point 

Genotype 

*Treatment 

Genotype*Ti

me point 

Genotype*Tre

atment*Time 

point 

HvDREB1 F-value 10.58* 43.05** 0.53 79.63** 10.1* 4.54* 10.53** 

R
2
 0.04 0.14 0 0.54 0.03 0.03 0.14 

HvDRF1 F-value 9.96* 89.86** 0.34 27.15** 3.64 2.15 4.52* 

R
2
 0.05 0.45 0 0.27 0.02 0.02 0.09 

HvABI5 F-value 0.21 83.85** 2.26 10.19* 2.23 0.95 1.56 

R
2
 0 0.6 0.03 0.15 0.02 0.01 0.04 

HvWRKY38 F-value 0 14.54* 1.74 20.19** 1.35 1.21 3.15* 

R
2
 0 0.16 0.04 0.44 0.01 0.03 0.14 

HvPIL3 F-value 0.02 62.85** 3.01 19.4** 2.67 0.45 1.62 

R
2
 0 0.45 0.04 0.28 0.02 0.01 0.05 

HvRB1 F-value 4.42* 0.15 0.05 23.1** 5.08* 0.28 2.55 

R
2
 0.05 0 0 0.55 0.06 0.01 0.12 

HvARF1 F-value 23.09** 100.68** 0.23 18.2** 7.79* 1.03 2.95* 

R
2
 0.11 0.5 0 0.18 0.04 0.01 0.06 

HvAPX1 F-value 4.63* 271.14** 2.02 19.07* 9.14* 3.28 35.32** 

R
2
 0.01 0.55 0.01 0.08 0.02 0.01 0.29 

HvCAT1 F-value 6.42* 56.2** 6.63* 10.42* 18.26* 2.23 5.36* 

R
2
 0.04 0.36 0.08 0.13 0.12 0.03 0.14 

HvHRGP 

F-value 40.81** 19.99* 4.4 13.98* 0.03 2.83 5.11* 

R
2
 0.28 0.14 0.06 0.19 0 0.04 0.14 
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Supplementary Table S9. Analysis of variance of drought-responsive gene expression after 24,48 and 72 h stress in Triumph(ppd-H1)  

and Triumph(Ppd-H1)  

Gene Source of 

Variation/Statistics Genotype Treatment Replication Genotype *Treatment 

24 h 48 h 72 h 24 h 48 h 72 h 24 h 48 h 72 h 24 h 48 h 72 h 

HvDREB1 
F-value 64.98* 5.79* 0.22 180.09** 22.9* 14.53* 1.73 0.62 1.04 64.09* 5.56* 0.09 

R
2
 0.2 0.14 0.01 0.57 0.55 0.63 0.01 0.03 0.09 0.2 0.13 0 

HvDRF1 
F-value 11.78* 4.75* 0.01 78.27** 31.88** 7.04 0.52 0.47 0.7 9.42* 6.54* 2.2 

R
2
 0.11 0.11 0 0.73 0.73 0.48 0.01 0 0.1 0.09 0.02 0.15 

HvABI5 
F-value 0.01 0.84 4.78 11.02* 100.4* 192.85** 0.87 0.04 1.38 1.16 1.19 7.49* 

R
2
 0 0.01 0.02 0.58 0.93 0.9 0.09 0 0.01 0.06 0.01 0.04 

HvWRKY38 
F-value 26.14* 0.59 1.99 95.17** 6.44* 4.35* 0.98 0.18 0.51 17.7* 0.03 0.6 

R
2
 0.18 0.05 0.15 0.66 0.56 0.34 0.01 0.03 0.08 0.12 0 0.05 

HvPIL3 
F-value 0.07 0.74 0.58 43.92** 13.89* 21.39* 3.27 0.11 2.58 1.34 1.38 1.26 

R
2
 0 0.03 0.02 0.76 0.63 0.64 0.11 0.01 0.15 0.02 0.06 0.04 

HvRB1 
F-value 1.16 3.76 3.09 0.29 0.87 0.88 1.51 0.23 0.68 4.56 3.18 0.44 

R
2
 0.1 0.28 0.29 0.02 0.07 0.08 0.25 0.03 0.13 0.38 0.24 0.04 

HvARF1 F-value 21.66* 2.46 3.94 53.56* 11.46* 48.35* 3.97 0.08 0.05 6.57* 0.01 4.96* 

 

R
2
 0.23 0.13 0.06 0.57 0.6 0.78 0.08 0.01 0 0.07 0 0.08 

HvAPX1 
F-value 1.12 8.17* 10.68* 1.56 235.26** 486.3** 0.05 1.24 0.19 1.68 58.54* 5.73* 

R
2
 0.13 0.03 0.02 0.18 0.76 0.96 0.01 0.01 0 0.2 0.19 0.01 

HvCAT1 
F-value 0 4.13 3.36 2 77.89* 25.29* 0.31 2.75 1.68 0.47 13.83* 8.48* 

R
2
 0 0.04 0.07 0.28 0.74 0.56 0.09 0.05 0.07 0.07 0.13 0.19 

HvHRGP 
F-value 32.26* 19.13* 2.52 0.83 8.89* 12.5* 3.93 1.8 0.45 5.92 3.07 0.98 

R
2
 0.62 0.47 0.11 0.02 0.22 0.55 0.15 0.09 0.04 0.11 0.08 0.04 
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Supplementary Table S10. Analysis of variance of germination percentage under ABA using genotypes differing at Ppd-H1 

Sources of Variation 

Scarlett/S42-IL107 Triumph/TriumphIL 

F-value R
2
 F-value R

2
 

Model   0.79   0.94 

Genotype 42.36** 0.32 43.72** 0.09 

Treatment 17.42** 0.39 116.3** 0.75 

Replication 0.07 0 0.68 0.01 

Genotype*Treatment 3.29* 0.07 14.33** 0.09 

 

 

 

 

 

 

 

 

 



89 
 

Supplementary Table S11. Introgressions  in S42-IL107 from wild type based on barley genome zipper (Schmalenbach et al.,2011).. 

Unigene 
Barley 
CHR CHR Arm SNP Name Brachypodium e-score 

Brachypodium 
Locus Brachypodium desccription 

U35_15700 B2H       S 2646-1277            1.00E-176 Bradi1g16700.1            protein expressed protein 

U35_17375 B2H       S 5880-2547            0 Bradi1g16680.1            protein ubiquitin-activating enzyme, putative, expressed 

U35_4459 B2H       S 7766-492             1.00E-109 Bradi1g16820.1            protein PHD-finger family protein, expressed 

U35_2854 B2H       S 7747-1056            0 Bradi1g16810.1            protein protein phosphotase protein, putative, expressed 

U35_19669 B2H       S 8787-1459            0 Bradi1g16770.1            protein D-alanine--D-alanine ligase family, putative, expressed 

U35_18139 B2H       S 7032-201             4.00E-29 Bradi1g17050.4            protein expressed protein 

U35_16350 B2H       S 3616-1171            1.00E-128 Bradi1g17090.1            protein nicotianamine synthase, putative, expressed 

U35_2416 B2H       S 4490-1344            1.00E-68 Bradi1g68200.1            protein expressed protein 

U35_14095 B2H       S 5652-419             0 Bradi1g76700.1            protein GTPase of unknown function domain containing protein, putative, expressed 

U35_14190 B2H       S 864-594              4.00E-81 Bradi2g10010.1            protein OsCam1-2 - Calmodulin, expressed 

U35_1093 B2H       S 2477-377             1.00E-145 Bradi1g64120.1            protein glycosyl transferase 8 domain containing protein, putative, expressed 

U35_1093 B2H       S 2477-910             1.00E-145 Bradi1g64120.1            protein glycosyl transferase 8 domain containing protein, putative, expressed 

U35_3824 B2H       S 7144-973             1.00E-170 Bradi1g17160.1            protein expressed protein 

U35_1937 B2H       S 5050-1101            1.00E-159 Bradi4g40150.1            protein 2-dehydro-3-deoxyphosphooctonate aldolase, putative, expressed 

U35_1841 B2H       S ABC05236-1-10-217    1.00E-124 Bradi1g17430.1            protein thioredoxin, putative, expressed 

U35_2718 B2H       S 6086-690             1.00E-126 Bradi1g17240.1            protein serine hydrolase domain containing protein, expressed 

U35_26 B2H       S ConsensusGBS0155-4   5.00E-91 Bradi1g17460.1            protein stress responsive protein, putative, expressed 

U35_20446 B2H       S ABC12652-1-1-79      2.00E-80 Bradi1g17410.1            protein expressed protein 

U35_17092 B2H       S 6471-1139            0 Bradi1g17490.1            protein nucleoside-triphosphatase, putative, expressed 

U35_403 B2H       S 816-265              0 Bradi1g17460.1            protein stress responsive protein, putative, expressed 

U35_14502 B2H       L 682-767              4.00E-64 Bradi5g17470.1            protein oleosin, putative, expressed 

U35_3452 B2H       L ABC10472-1-2-247     3.00E-78 Bradi3g50490.1            protein ethylene-responsive transcription factor, putative, expressed 

U35_15444 B2H       L 2944-1813            0 Bradi5g21710.1            protein aminotransferase, putative, expressed 

U35_4022 B2H       L ABC12363_1_220       1.00E-122 Bradi5g21740.1            protein retrotransposon protein, putative, unclassified, expressed 

U35_2689 B2H       L 5347-585             1.00E-137 Bradi3g22640.1            protein EF hand family protein, putative, expressed 

U35_19034 B2H       L ConsensusGBS0272-1   5.00E-56 Bradi5g21570.1            protein expressed protein 

U35_4319 B2H       L 7236-1384            1.00E-145 Bradi5g21660.1            protein methyl-CpG binding domain containing protein, putative, expressed 
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Supplementary Table S12. ANOVA table of core clock and stress-responsive genes in Bowman and Bowman(eam8.w). 

Gene name Statistics Model Genotype Treatment Replication Time 

point 

Genotype 

*Treatment 

Genotype* 

Time point 

Genotype* 

Treatment* 

Time point 

HvCCA1 F-value 

 

175.54** 54.46** 2.28 318.83** 4.11* 43.1** 11.27** 

R2 0.95 0.07 0.02 0 0.71 0 0.1 0.05 

HvPRR1 F-value   4.77* 31.49** 1.92 76.67** 30.94** 7.53** 8.52** 

R2 0.83 0.01 0.04 0 0.57 0.04 0.06 0.13 

HvGI F-value   45.26** 97.8** 1.13 96.53** 0.4 4.02* 5.85** 

R2 0.86 0.05 0.1 0 0.61 0 0.03 0.07 

HvPRR37 F-value   106.93** 102.24** 7.7* 30.57** 0.77 12.58** 10.07** 

R2 0.82 0.14 0.14 0.02 0.25 0 0.1 0.16 

HVPRR73 F-value   1.02 14.1* 1.28 10.26** 0.06 3.02* 2.66* 

R2 0.52 0 0.06 0.01 0.24 0 0.07 0.13 

HvPRR59 F-value   0 37.95** 3.35* 146.98** 21.9** 9.63** 11.41** 

R2 0.9 0 0.03 0.01 0.69 0.02 0.05 0.11 

HvPRR95 F-value   0.17 25.85** 7.36* 112.42** 18.99** 7.61** 14.07** 

R2 0.87 0 0.02 0.01 0.62 0.02 0.04 0.16 

HvDRF1 F-value   11.82* 259.78** 3.12* 14.05** 9.88* 2.26* 7.95** 

R2 0.78 0.02 0.42 0.01 0.14 0.02 0.02 0.15 

HvDREB1 F-value   0.61 180** 1.29 14.3** 1.55 1.78 2.82* 

R2 0.7 0 0.4 0.01 0.19 0 0.02 0.08 

HvABI5 F-value   6.89* 170.68** 3 16.26** 7.81* 4.93* 5.29** 

R2 0.74 0.01 0.33 0.01 0.19 0.02 0.06 0.12 
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Gene name Statistics Model Genotype Treatment Replication Time 

point 

Genotype 

*Treatment 

Genotype* 

Time point 

Genotype* 

Treatment* 

Time point 

HvWRKY38 F-value   10.37* 59.06** 2.51 4.41* 4.53* 3.72* 2.88* 

R2 0.54 0.03 0.2 0.02 0.09 0.02 0.07 0.12 

HvAPX1 F-value   1.93 338.5** 2.25 28.46** 0.87 5.32** 8.29** 

R2 0.82 0 0.43 0.01 0.22 0 0.04 0.13 

HvCAT1     0.93 105.18** 1.65 7.76** 1.12 0.51 3.79** 

R2 0.61 0 0.31 0.01 0.14 0 0.01 0.13 

HvARF1 F-value   0.19 124.47** 0.76 8.18** 2.63 3.66* 4** 

R2 0.67 0 0.33 0 0.13 0.01 0.06 0.13 

HvSRP     5.14* 174.11** 22.59** 34.02** 32.52** 3.64* 3.68** 

R2 0.8 0.01 0.26 0.07 0.31 0.05 0.03 0.07 

HvLHCB F-value   31.91** 83.14** 2.7 86.68** 6.05* 7.61** 15.47** 

R2 0.86 0.03 0.08 0.01 0.51 0.01 0.04 0.18 

HvPHYB     0.1 65.67** 0.02 12.03** 0.01 1.52 2.72* 

R2 0.57 0 0.21 0 0.23 0 0.03 0.1 

HvPIL3 F-value   63.65** 127.67** 4.85* 27.96** 5.74* 42.58** 3.53* 

R2 0.84 0.08 0.16 0.01 0.21 0.01 0.32 0.05 
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Supplementary Table S13. ANOVA table of core clock and stress-responsive genes in Scarlett and S42-IL107. 

Gene name Statistics Model Genotype Treatment Replication Time 

point 

Genotype 

*Treatment 

Genotype* 

Time point 

Genotype* 

Treatment* 

Time point 

HvCCA1 F-value   0.05 196.75** 0.43 547.87** 2.53 2.1 21.85** 

R2 0.97 0 0.05 0 0.84 0 0 0.07 

HvPRR1 F-value   2.01 39.27** 1.77 176.01** 0.11 3.55* 8.38** 

R2 0.9 0 0.03 0 0.78 0 0.02 0.07 

HvGI F-value   0.01 95.64** 3.01 81.42** 6.25* 4.22* 8.58** 

R2 0.84 0 0.11 0.01 0.57 0.01 0.03 0.12 

HvPRR37 F-value   0 181.09** 0.13 136.78** 1.33 1.86 11.02** 

R2 0.89 0 0.14 0 0.64 0 0.01 0.1 

HVPRR73 F-value   0.59 12.78* 4.14* 17.58** 1.47 1.11 2.56* 

R2 0.6 0 0.05 0.03 0.38 0.01 0.02 0.11 

HvPRR59 F-value   1.57 7.48* 3.09 215.63** 2.85 0.82 20.5** 

R2 0.92 0 0 0 0.76 0 0 0.14 

HvPRR95 F-value   0.54 69.38** 3.49 184** 0.03 0.59 19.01** 

R2 0.91 0 0.04 0 0.71 0 0 0.15 

HvDRF1 F-value   6.18* 105.66** 1.09 10.65** 14.62* 1.2 2.67* 

R2 0.63 0.02 0.29 0.01 0.17 0.04 0.02 0.09 

HvDREB1 F-value   23.87** 63.57** 0.43 31.32** 0.98 8.34** 7.01** 

R2 0.75 0.04 0.12 0 0.34 0 0.09 0.15 

HvABI5 F-value   0.56 80.97** 1.08 15.09** 0 2.05 2.78* 

R2 0.62 0 0.23 0.01 0.25 0 0.03 0.09 
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Gene name Statistics Model Genotype Treatment Replication Time 

point 

Genotype 

*Treatment 

Genotype* 

Time point 

Genotype* 

Treatment* 

Time point 

HvWRKY38 F-value   0 97.65** 0 53.45** 15.68* 16.89** 16.68** 

R2 0.85 0 0.11 0 0.37 0.02 0.12 0.23 

HvAPX1 F-value   9.01* 554.9** 1.63 76.75** 47.16** 16.33** 24.21** 

R2 0.91 0.01 0.35 0 0.29 0.03 0.06 0.18 

HvCAT1 F-value   12.47* 63.88** 1.87 8.86** 16.56** 2.76* 5.34** 

R2 0.63 0.03 0.17 0.01 0.15 0.05 0.05 0.17 

HvARF1 F-value   0.27 233.42** 0.27 43.53** 31.35** 1.45 7.81** 

R2 0.82 0 0.3 0 0.34 0.04 0.01 0.12 

HvSRP F-value   0.76 119.56** 14.74** 32.82** 0.18 0.79 3.87** 

R2 0.74 0 0.22 0.06 0.37 0 0.01 0.09 

HvLHCB F-value   10.5* 253.54** 0.79 188.27** 1.63 9.56** 52.19** 

R2 0.94 0 0.11 0 0.51 0 0.03 0.28 

HvPHYB F-value   6.15* 130.52** 1.02 30.34** 9.93* 3.06* 12.58** 

R2 0.78 0.01 0.2 0 0.29 0.02 0.03 0.24 

HvPIL3 F-value   67.84** 77.76** 5.62* 95.63** 24.77** 3.97* 12.52** 

R2 0.88 0.06 0.07 0.01 0.54 0.02 0.02 0.14 
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Supplementary Table S14. ANOVA of physiological responses under osmotic stress in Bowman 

and Bowman(eam8.w). 

Factors 

Stomatal 

conductance CO2 uptake 

Leaf 

transpiration Leaf temperature 

Leaf osmotic 

potential 

F-value R2 F-value R2 F-value R2 F-value R2 F-value R2 

Model   0.93   0.84   0.8   0.99   0.85 

Genotype 2.31 0.01 0.23 0 0 0 2.01 0.01 2.34 0.04 

Treatment 108.59** 0.16 28.22** 0.13 27.03** 0.11 190.87** 0.04 161.86** 0.46 

Time point 61.66** 0.54 12.71** 0.35 15.47** 0.37 643.06** 0.89 15.59** 0.26 

Replication 1.4 0 3.89* 0.04 0.09 0 2.64 0 3.95* 0.02 

Genotype*Treatment 0.01 0 1.38 0.01 0.14 0 0.51 0 1.96 0.01 

Genotype *Time point 2.12 0.02 2.62* 0.07 1.87 0.05 5.71* 0.01 0.81 0.01 

Treatment*Time point 21.46** 0.19 6.77** 0.19 10.58** 0.26 17.34** 0.02 2.02 0.03 

Genotype*Treatment*Time 

point 0.23 0 2.19 0.06 0.81 0.02 8.57** 0.01 0.68 0.01 

 

Supplementary Table S15. ANOVA of physiological responses under osmotic stress in Scarlett 

and S42-IL107 

Factors 

Stomatal 

conductance CO2 uptake 

Leaf 

transpiration Leaf temperature 

Leaf osmotic 

potential 

F-value R2 F-value R2 F-value R2 F-value R2 F-value R2 

Model   0.88   0.81   0.83   0.97   0.88 

Genotype 2.21 0.01 1.7 0.01 1.13 0 3.44 0 2.67 0.01 

Treatment 13.75* 0.03 0.03 0 0.09 0 96.23** 0.05 79.73** 0.17 

Time point 51.4** 0.71 8.47** 0.23 33.22** 0.66 255.93** 0.86 44.02** 0.57 

Replication 0.25 0 6.82* 0.06 1.03 0.01 0.19 0 2.37 0.01 

Genotype*Treatment 2.06 0 0.06 0 0.57 0 3.94* 0 0.11 0 

Genotype *Time point 2.49* 0.03 8.32** 0.23 3.02* 0.06 3.33* 0.01 0.32 0 
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Factors 

Stomatal 

conductance CO2 uptake 

Leaf 

transpiration Leaf temperature 

Leaf osmotic 

potential 

F-value R2 F-value R2 F-value R2 F-value R2 F-value R2 

Treatment*Time point 6.51** 0.09 7.87** 0.22 4.23* 0.08 10.93** 0.04 8.77** 0.11 

Genotype*Treatment*Time point 0.53 0.01 2.35* 0.06 0.66 0.01 0.57 0 0.93 0.01 

 

Supplementary Table S16. ANOVA of shoot dry weight in Bowman and Bowman(eam8.w) and 

Scarlett and S42-IL107. 

Factors 

Shoot biomass (Dry weight) 

Bowman and Bowman(eam8.w) 

Shoot biomass (Dry weight) 

Scarlett and S42-IL107 

F-value R2 F-value R2 

Model   0.67   0.65 

Genotype 17.46* 0.32 10.07* 0.18 

Replication 1.66 0.13 0.52 0.06 

Treatment 6.77* 0.22 21.86** 0.39 

Genotype*Treatment 0.16 0 0.88 0.02 

 

Supplementary Table S17. ANOVA of coleoptile lengths in barley seedlings. 

Factors 

Coleoptile length of Bowman and 

Bowman(eam8.w) 

Coleoptile length of 

Scarlett and S42-IL107 

F-value R2 F-value R2 

Model   0.76   0.6 

Genotype 3.77 0.02 13.86* 0.12 

Replication 1.03 0.04 1.89 0.12 

Light 40.77** 0.69 11.05** 0.3 

Genotype*Light 0.3 0.01 2.02 0.05 
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Supplementary Table S18.  Stress-responsive and core clock ortholog genes in barley, Brachypodium, rice, sorghum and maize  

Barley Brachypodium Rice Maize Sorghum  

Gene name Accession 

code 

Locus 

name 

score E-

Value 

Locus name score E-Value Locus name score E-

Value 

Locus name score E-

Value 

Length 

of 

CNS 

in bps 

HvDRF1 AF521303 Bd2g2996

0 

387.1 7.50E-

108 

Loc_Os05g2793

0 

256.9 1.70E-68 GRMZM2G00674

5 

  8.30E-

60 

Sb09g016150   1.70E-

44 54 

HvDREB1 DQ01294

1 

Bd2g0400

0 

 434.5 3.30E-

122 

Loc_Os01g0712

0 

 364.8 3.70E-101 GRMZM5G88971

9 

 117.9 8.10E-

27 

Sb03g004480  305.2 2.40E-

83 127 

HvABI5 AY15067

6 

Bd4g3209

0 

 400.6 7.10E-

112 

Loc_Os09g2831

0 

 369.8 1.40E-102 GRMZM2G15772

2 

 290.4 1.30E-

78 

Sb02g026570  321.2 5.30E-

88 62 

HvWRKY3

8 

AY54158

6 

Bd3g0607

0 

 404.7 4.10E-

113 

Loc_Os02g0844

0 

 364.8 5.40E-101 GRMZM2G12032

0 

 330.9 1.00E-

90 

Sb04g005520  320.5 7.60E-

88 94 

HvAPX1 AS006358 Bd1g6582

0 

 496.1 6.30E-

141 

Loc_Os03g1769

0 

 482.6 1.10E+136 GRMZM2G05430

0 

 467.6 3.60E-

132 

Sb01g038760  467.6 2.80E-

132 58 

HvCAT1 AF021938 Bd1g2980

0 

 805.4 0 Loc_Os06g5115

0 

 794.3 0 GRMZM2G08821

2 

 788.1 0 Sb10g030840  786.9 0 

43 

HvARF1 AJ508228 Bd2g5307

7 

 375.9 7.00E-

105 

Loc_Os05g4106

0 

  375.9 7.70E-105 GRMZM2G15759

6 

 374 3.60E-

107 

Sb09g023880  375.9 5.80E-

105 25 

HvLHCB X63197 Bd1g2476

0 

501.1 2.70E-

142 

Loc_Os07g3755

0 

475.7 1.30E-134 GRMZM2G05728

1 

500 1.00E-

142 

Sb02g036380 505.8 8.40E-

144 130 

HvPHYB AK36528

3 

Bd1g6436

0 

2210.6 0 Loc_Os03g1959

0 

2144.4 0 GRMZM2124532 2092 0 Sb01g037340 2109 0 

73 
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Barley Brachypodium Rice Maize Sorghum  

HvPIL3 AK35911

7 

Bd1g1398

0 

165.2 1.90E-

41 

Loc_Os0394381

0 

145.2 2.70E-35 GRMZM2G16504

2 

157.5 6.60E-

39 

Sb01g013843 164.1 3.10E-

41 34 

HvCCA1 HQ85027

0 

Bd3g1651

5 

937.2 0 Loc_Os08g0611

0 

877.9 0 GRMZM2G01490

2 

792.3 0 Sb07g003870 812 0 

119 

HvPRR1 HQ85026

8 

Bd3g4888

0 

827 0 Loc_Os02g4051

0 

768.5 0 GRMZM2G02008

1 

746.1 0 Sb04g026190 772.1 0 

61 

HvGI AY74052

4 

Bd2g0522

6 

2095.9 0 Loc_Os01g0870

0 

1994.5 0 GRMZM2G10710

1 

1965.3 0 Sb03g0036500 1955.6 0 

50 

HvPRR37 AY97070

3 

Bd1g1649

0 

750.7 0 Loc_Os07g4946

0 

656.8 0 GRMZM2G03396

2 

507.7 1.20E-

143 

Sb06g014570 407.9 7.80E-

114 42 

HvPRR73 JQ791230 Bd1g6591

0 

290.8 3.90E-

79 

Loc_Os03g1757

0 

249.2 1.50E-66 GRMZM2G09572

7 

244.2 5.20E-

65 

Sb01g038820 240.4 4.80E-

64 145 

HvPRR59 JQ791228 Bd4g2496

7 

261.9 1.20E-

70 

Loc_Os11g0593

0 

253.8 4.50E-68 GRMZM2G48846

5 

174.5 4.60E-

44 

Sb05g900366 184.9 2.30E-

47 48 

HvPRR95 JQ791232 Bd4g3607

7 

292 1.60E-

79 

Loc_Os09g3622

0 

292.7 1.30E-79 GRMZM2G17902

4 

268.1 3.30E-

72 

Sb05g900366 137.9 4.00E-

33 37 
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Supplementary Table S19.  Regulatory elements identified in conserved promoter regions of barley core clock ortholog and stress-

responsive genes. 

Matrix 

Family 
Detailed Family Information Sequence 

Core clock genes Stress-responsive genes 

P$ABRE ABA response elements gctgctgaCGTGgcacc 
HvCCA1, HvPRR59,  

HvELF3 

HvDREB1, HvABI5, HvWRKY38, HvAPX1, 

HvPHYB, HvLHCB 

P$AGL1.0 
AGL1, Arabidopsis MADS-domain protein AGAMOUS-

like 1 
tttTTCCctagcaggtgagct 

HvCCA1  

P$AGP1 AG-motif binding protein 1 gcaGATCcaac 
HvPRR1, HvPRR37  

P$AHBP HD-ZIP class III protein ATHB9 ggaATGGttgc 
HvCCA1 HvABI5, HvWRKY38, HvCAT1, HvARF1 

P$AP1.01 Floral homeotic protein APETALA1 taatacCACAagaagcaatat 
HvCCA1  

P$AREF Auxin response element acgTGTCccacca 
 HvAPX1, HvPHYB 

P$ASRC AS1/AS2 repressor complex tcaTTGAat 
HvPRR37  

P$ATHB9.0

1 
HD-ZIP class III protein ATHB9 ggaATGGttgc 

HvCCA1  

P$BRRE Brassinosteroid (BR) response element cacgcCGTGcgccagcc 
HvPRR95 HvDREB1 

P$CAAT CCAAT binding factors aaCCAAtgt 
 HvABI5, HvLHCB 

P$CBNAC.
02 

Calmodulin-binding NAC protein tattGCTTcttgtggtattac 
HvCCA1  

P$CCAF Circadian control factors taaaaaAATAtgtca 
HvGI, HvPRR59, HvELF3 HvDRF1, HvDREB1, HvABI5, HvWRKY38 

P$CDC5 Arabidopsis CDC5 homolog tcttcAGCGcg 
 HvPHYB 

P$CE1F Coupling element 1 binding factors gtgcCACCgccgc 
 HvDREB1 

P$CE3S Coupling element 3 sequence tcaacaCGAGtggcacggc 
 HvDREB1, HvAPX1 

P$CGCG Calmodulin binding / CGCG box binding proteins cgcCGCGtcggcgtcgg 
HvPRR59, HvELF3  

P$CNAC Calcium regulated NAC-factors ttctGCTTacatacggcggcc 
 HvABI5 

P$DOF1.01 Dof1 / MNB1a - single zinc finger transcription factor ctagagttAAAGataaa 
HvCCA1  

P$DOFF DNA binding with one finger (DOF) cgcacagaAAAGctacc 
HvPRR37, HvELF3 HvABI5 

P$DPBF Dc3 promoter binding factors gACACgtggcg 
 HvAPX1 
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Matrix 

Family 
Detailed Family Information Sequence 

Core clock genes Stress-responsive genes 

P$DREB Dehydration responsive element binding factors cgcatgcgCCGAcaccgcgca 
HvCCA1, HvPRR1, HvPRR37, 
HvPRR59, HvELF3 

HvDRF1, HvDREB1, HvWRKY38, HvAPX1, 
HvARF1,  HvPIL3 

P$EINL Ethylen insensitive 3 like factors aTGGAtctt 
HvPRR37  

P$EREF Ethylen respone element factors aTCGAactagcccaagtag 
HvPRR37 HvDREB1 

P$ERSE ER stress-response elements cccctccggccctccCACG 
HvPRR73 HvDREB1, HvLHCB 

P$FORC Fungal and oomycete pathogen response cluster - promoter 

motif 

agaaatGGGCatgctgc HvPRR73  

P$GAGA GAGA elements gaggagAGAGaggagaaggggg
agg 

HvPRR59  

P$GAPB GAP-Box (light response elements) actgATGAatagtgt 

  HvPIL3 

P$GARP Myb-related DNA binding proteins (Golden2, ARR, Psr) AGATccggc  HvDREB1, HvARF1 

P$GATA.01 Class I GATA factors ttaaaGATAaagagagg HvCCA1  

P$GBOX Plant G-box/C-box bZIP proteins tgaccaTGACgtggagcaagt HvPRR73, HvPRR59 HvDREB1, HvABI5, HvAPX1, 

HvPHYB, HvLHCB 

P$GCCF GCC-box, ethylene-responsive element (ERE) aacAGCCgccgcc HvPRR1  

P$GCN4.01 GCN4, conserved in cereal seed storage protein gene 

promoters 

aaaacTGAGtcaacgga HvCCA1  

P$GT1.01 GT1-Box binding factors with a trihelix DNA-binding 
domain 

gtttttGTTAgtctaat HvCCA1  

P$GTBX GT-box elements cccaacGTGAatgagta HvGI HvABI5, HvWRKY38, HvCAT1 

P$HEAT Arabidopsis thaliana class A heat shock factor 1a ttaaacTTTCaagtact HvCCA1, HvPRR37, HvPRR73 HvDRF1, HvDREB1 

P$HOCT Octamer motif of Histone H3, H4 promoters tccgacgATCCgaggtg 

  HvLHCB 

P$HSE.01 Heat shock element tgaaagcatagAGAAcc 

HvCCA1   

P$IBOX Class I GATA factors ttgaaGATAaagagagg HvCCA1, HvPRR73, HvELF3 HvDRF1, HvABI5, HvCAT1 

P$IBOX.01 I-Box in rbcS genes and other light regulated genes gaacaGATTagactaac HvCCA1  

P$IDE1.01 Iron-deficiency-responsive element 1 (IDEF1) aatacttGCAAgttttatgctgattct HvCCA1  

P$L1BX L1 box, motif for L1 layer-specific expression ctgCATTaaaaaaatat HvGI, HvPRR37  

P$LEGB Legumin Box family gatccatGCGTgcttcttgcagattc

c 

HvPRR73, HvPRR95  
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Matrix 

Family 
Detailed Family Information Sequence 

Core clock genes Stress-responsive genes 

P$LFYB LFY binding site gGCCActgggttc  HvDRF1, HvLHCB 

P$LREM Light responsive element motif, not modulated by 

different light qualities 

gtATCTagaca  HvABI5, HvCAT1, HvPIL3 

P$MADS MADS box proteins ccgctcCAAAgatggccactg  HvDRF1, HvCAT1, HvPIL3 

P$MIIG MYB IIG-type binding sites tgGGGGttgattgaa HvGI, HvPRR59 HvDREB1 

P$MSA.01 M-phase-specific activators (NtmybA1, NtmybA2, 

NtmybB) 

gagtcAACGgaattt HvCCA1  

P$MSAE M-phase-specific activator elements tagatAACGgggtga HvPRR73 HvWRKY38, HvPIL3 

P$MYB96.0

1 

Myb domain protein 96 (MYBCOV1) attctagAGTTaaagat HvCCA1  

P$MYBL CAACTC regulatory elements, GA-inducible attctagAGTTgaagat HvCCA1, HvGI, HvPRR73 HvPIL3 

P$MYBPH3

.01 

Myb-like protein of Petunia hybrida caaaaacaGTTGaaagc HvCCA1  

P$MYBS Zea mays MYB-related protein 1 (transfer cell specific) ctctcttTATCttcaac HvCCA1, HvPRR73, HvELF3 HvPIL3, HvPHYB 

P$MYCL Myc-like basic helix-loop-helix binding factors gtggagCAAGtggaggcgt HvPRR73 HvDREB1, HvAPX1 

P$NACF Wheat NAC-domain DNA binding factor (DNA binding 

site II) 

gctgttggatctgcgGACGcctcct

cc 

HvPRR1, HvPRR73 HvDREB1, HvABI5, HvWRKY38, HvCAT1 

P$NCS1 Nodulin consensus sequence 1 aAAAAgttcac  HvABI5 

P$OCSE Enhancer element first identified in octopine synthase gene gaagttaactgtacACTTagg HvGI, HvPRR95 HvARF1, HvPHYB, HvLHCB 

P$OPAQ Opaque-2 like transcriptional activators agtatcataTCAAccaa HvGI, HvPRR73 HvDREB1, HvABI5, HvCAT1 

P$PALBOX

L.01 

Cis-acting element conserved in various PAL and 4CL 

promoters 

ttttagtaGGTGagt HvCCA1  

P$PDF2.01 Protodermal factor 2 catggtTAAAttccgtt HvCCA1  

P$PHR1.01 Phosphate starvation response 1 cagaTTATgcaaccatt HvCCA1  

P$PNRE Plant nitrate-responsive cis-elements cgatggcgccattatatagagccGA

GAgcagag 

HvELF3  

P$PREM Motifs of plastid response elements atggCGACgccgacgccgtggcct
ctgcctc 

 HvWRKY38, HvLHCB 

P$PSRE Pollen-specific regulatory elements gcacaGAAAagctaccc HvPRR37  

P$RAV1-

5.01 

5'-part of bipartite RAV1 binding site, interacting with 

AP2 domain 

tgcAACAgacc HvCCA1  
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Matrix 

Family 
Detailed Family Information Sequence 

Core clock genes Stress-responsive genes 

P$RAV5 5'-part of bipartite RAV1 binding site ggcAACAtaca HvPRR37  

P$ROOT Root hair-specific cis-elements in angiosperms tcttcttttgactgaCACGtcgcat  HvABI5, HvPHYB 

P$SALT Salt/drought responsive elements cctctGTGGgggttg HvGI HvDREB1 

P$SBF1.01 SBF-1 agcatggTTAAattccg HvCCA1  

P$SBPD SBP-domain proteins gctcCGTAaaacgcacg  HvPIL3 

P$STK.01 Storekeeper (STK), plant specific DNA binding protein tacTAAAaaactcaa HvCCA1  

P$TCPF DNA-binding proteins with the plant specific TCP-domain caggggCCCGccg HvPRR73 HvLHCB 

P$TDTF Transposase-derived transcription factors ccgtCACCcgctttctc  HvDREB1, HvAPX1, HvPHYB 

P$TEFB TEF-box tcACGGtcagtcacgtcttct  HvWRKY38, HvCAT1 

P$TERE Tracheary-element-regulating cis-elements, conferring TE-

specific expression 

ctcaAAAGgaa  HvCAT1 

P$TERE.01 Tracheary-element-regulating cis-element ctgcAAAGtaa HvCCA1  

P$WBXF W Box family caaatcTGACcgagagg  HvDRF1, HvDREB1, HvABI5, HvWRKY38, 

HvCAT1 

P$ZMMRP1
.01 

Zea mays MYB-related protein 1 (transfer cell specific) ctctcttTATCtttaac HvCCA1  
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