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Abstract

Symmetry protected topological (SPT) phases are characterized by robust
boundary features, which do not disappear unless passing through a phase
transition. These boundary features can be quantified by a topological in-
variant which, in some cases, is related to a physical quantity, such as the
spin conductivity for the quantum spin Hall insulators. In other cases, the
boundary features give rise to new physics, such as the Majorana fermion.
In all cases the boundary features can be analyzed with the help of an entan-
glement spectrum and their robustness make them promising candidates for
storing quantum information. The topological invariant characterizing SPT
phases is strictly only invariant under deformations which respect a certain
symmetry. For example, the boundary currents of the quantum spin Hall
insulator are only robust against non-magnetic, i.e. time-reversal invariant,
impurities. In this thesis we study the SPT phases of spin chains.

As a result of our work we find a topological invariant for SPT phases
of spin chains which are protected by continuous symmetries. By means of
a non-local order parameter we find a way to extract this invariant from the
ground state wave function of the system. Using density-matrix-renormaliza-
tion-group techniques we verify that this invariant is a tool to detect transi-
tions between different topological phases. We find a non-local transforma-
tion that maps SPT phases to conventional phases characterized by a local
order parameter. This transformation suggests an analogy between topologi-
cal phases and conventional phases and thus give a deeper understanding of
the role of topology in spin systems.
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Zusammenfassung

Symmetriegeschützte topologische Phasen (SPT-Phasen, von engl. symme-
try protected topological) sind durch stabile Randeigenschaften bestimmt,
die sich nur bei Quanten-Phasenübergängen ändern. Diese Eigenschaften
können durch topologische Invarianten ausgedrückt werden, die in einigen
Fällen in direkter Verbindung zu physikalischen Eigenschaften des betrachte-
ten Systems stehen; ein Beispiel hierfür ist die Spin-Leitfähigkeit von Quanten-
Spin-Hall-Isolatoren. In anderen Fällen äußern sie sich in Gestalt neuer
Physik, beispielsweise Majorana-Fermionen. Die Randeigenschaften können
mit Hilfe des Verschränkungsspektrums analysiert werden. Durch ihre Sta-
bilität sind sie vielversprechende Kandidaten für die Speicherung von Quan-
teninformation. Die topologischen Invarianten sind strenggenommen nur für
eine Klasse von symmetrieerhaltenden Deformationen invariant. Beispiels-
weise sind die Randströme in einem Quantum-Spin-Hall-Isolator nur stabil
gegen nicht-magnetische Störstellen, d.h. solche, die die Zeitumkehrsymme-
trie nicht brechen.

In der vorliegenden Arbeit untersuchen wir SPT-Phasen von Spinketten.
Liegt der Stabilität eine kontinuierliche Symmetrie zugrunde, so geben wir
eine topologische Invariante an, die mit Hilfe eines nichtlokalen Ordnungs-
parameters aus der Grundzustandswellenfunktion des System berechnet wer-
den kann. Zur Überprüfung unserer theoretischen Vorhersage verwenden wir
Dichtematrix-Renormierung und zeigen, dass sich diese Invariante zur Un-
tersuchung von Übergängen zwischen verschiedenen topologischen Phasen
eignet. Desweiteren geben wir eine nichtlokale Transformation an, mit de-
ren Hilfe man SPT-Phasen auf solche abbilden kann, die durch einen lokalen
Ordnungsparameter charakterisiert werden. Wir erhalten so eine Korrespon-
denz zwischen topologischen und konventionellen Phasen und gelangen auf
diese Weise zu einem grundlegenderen Verständnis letzterer.
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Chapter 1

Introduction

Topological phases of matter have become of growing interest in the last
couple of decades. They are often explained as phases that cannot be char-
acterized by symmetry breaking, thus phases beyond the Landau paradigm
[1]. This statement can be unsatisfying: it does not explain why these phases
are coined topological and it does not enlighten us on any of the interesting
properties of topological phases on which I will touch in this introduction.

In my thesis I will focus on a sub-topic of this growing field of topological
phases: spin chains. Spin chains arise as models of 1-dimensional crystals
in the limit of large on-site coulomb repulsion. Consider for example the
Hubbard model, which describes the hopping of electrons and the Coulomb
potential between two electrons if they occupy the same site. At half filling
and small hopping amplitude compared to the Coulomb potential, this model
describes a Mott insulator. Here electrons are essentially bound to a single
site and each site is occupied by a single electron. They are effectively
modeled by a spin 1/2 degree of freedom for each site. Exchange interactions,
which can be thought of as virtual hoppings of electrons, lead to different
types of couplings between neighboring electrons. A prime example is the
Heisenberg model. The Hamiltonian describing this model is

H = J

L−1∑
i=1

~Si · ~Si+1 , (1.1)

where J is the interaction strength, L is the number of electron sites and ~Si
denotes the operator that measures the spin direction of the i-th site. This
model can be thought of as a quantum version of a chain of magnets. With
a positive J these magnets prefer to anti-align to minimize the energy. It
is important to understand the symmetry of this Hamiltonian. Since the
Hamiltonian is a function of the relative orientation of neighboring spins,
rotating all spins in the same manner will have no physical effect. Since
spin rotations are given by the group SU(2), this is also the symmetry
group of this system. I have introduced the Heisenberg model by giving
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2 CHAPTER 1. INTRODUCTION

the Hamiltonian of a spin 1/2 chain. This Hamiltonian can also be used to
model crystals with more than one valence electron per ion. If S is the size
of the effective electron spin on each site, we are dealing with a spin S chain.

Effects of topology already appear in the Heisenberg model. Haldane
conjectured that the physics of the anti-ferromagnetic Heisenberg model is
profoundly different for the cases when S is integer compared to the cases
when S is half integer [2, 3]. If S is integer there is a finite energy difference
(gap) between the ground state and the first excited state. This is evident if
the size of the spin chain L is finite, however the gap persists even in the limit
of infinite L. If S is half integer the anti-ferromagnetic Heisenberg model is
gapless, meaning that the energy difference between the ground state and
the first excited state vanishes as L goes to infinity. In the semiclassical limit,
when the spin S is large, the conjecture is well established. The different
behavior between integer and half integer spin systems can be explained by
the presence or absence of a topological Θ-term in a non-linear sigma model
of the spin chain. Later I will explain that the difference in behavior can
also be understood by symmetry fractionalization.

In introducing the Heisenberg model, each ion of the crystal had an
effective electronic spin of size S. Mathematically, spin S is a (2S + 1)-
dimensional representation of SU(2). This (2S + 1)-dimensional space, de-
noted by VS , is called the on-site Hilbert space of the spin chain. The total
Hilbert space is the tensor product of L copies of such spaces:

V
[1]
S ⊗ V

[2]
S ⊗ V

[3]
S ⊗ V

[4]
S ⊗ · · · ⊗ V

[L]
S =

L⊗
i=1

V
[i]
S . (1.2)

Here V
[i]
S is the Hilbert space modeling the effective electronic degrees of

freedom of the i-th site. By construction, this Hilbert space allows for an
action of SU(2). In the same manner, spin chains allowing for an action
of any group, G, can be constructed. For example, the Hilbert space of an
SU(N) spin chain can be defined by tensoring L copies of a representation
space of SU(N). Whether such a chain is also SU(N) invariant depends
on the Hamiltonian of that system. Physically SU(N) spin chains can arise
in cold atom systems [4], created by atoms which are trapped in an optical
lattice formed by lasers. (Note the similarities with electrons being trapped
in a periodic Coulomb potential formed by a crystal of ions.) In earth-
alkaline atoms the nuclear spin I is almost completely decoupled from the
electronic angular momentum. Due to this decoupling, the SU(2) symmetry
is lifted to an SU(N) symmetry where N = 2I + 1 and can be as large as
10.

The integer quantum Hall (IQH) effect is one of the first observed ex-
ample of a topological phase [5]. It is an effect that arises when applying
a large magnetic field to a 2-dimensional electron gas. This field gives rise
to Landau levels with energy εm = ~ωc(m+ 1/2), where ωc is the cyclotron



3

frequency. The gap between the different Landau levels ensures that an IQH
system is insulating if N levels are completely filled and the rest are empty.
However, a current can be measured to flow along the boundaries of the
sample with a Hall conductivity (σH) given by

σH = N
e2

h
. (1.3)

Strikingly this conductivity is completely universal. It only depends on the
number of filled Landau levels N and fundamental physical constants. It is
independent of material details. The quantization of σH can be understood
if one relates it to a topological invariant [6]. Via the Kubo formula, the
Hall conductivity is shown to be proportional to the so called first Chern
number. This number is an invariant of the topological space which models
the electronic bands and only changes during a phase transition. In con-
clusion, the IQH effect gives rise to topological phases which differ in their
boundary properties. This difference is quantified by a topological invariant
N .

Related to the IQH effect is the fractional quantum Hall (FQH) effect.
It is different in that N in Eq. (1.3) can now be some fraction ν. The first
measurements were done with ν = 1/3 [7], but FQH states with other frac-
tional fillings have also been observed. The integer case can be understood
by considering free electrons, in the fractional case however, interactions
play a major role.

FQH states were one of the first to be analyzed by studying their entan-
glement spectrum [8], which is obtained by decomposing the Hilbert space
H into two parts H = HA ⊗ HB. Spatial decompositions are most easily
visualized. In Ref. [8] the FQH state was realized on a spherical geometry.
A cut was created along the equator such that HA is the northern and HB
the southern hemisphere. The ground state is described as

|Ψ〉 =
∑
i

e−λi/2|Ψi
A〉 ⊗ |Ψi

B〉 . (1.4)

The entanglement spectrum is given by the set {λi}. Remarkably, it con-
tains information usable for characterizing the topological phase in which
the state |Ψ〉 resides. As mentioned above, an IQH system is characterized
by boundary currents, a sphere however, does not have boundaries. The
decomposition into a northern and a southern hemisphere introduces an ar-
tificial boundary. The entanglement spectrum gives information on possible
gapless boundary modes of a FQH state considered only on the northern or
southern hemisphere. Indeed it was shown that the low lying energy levels
of the entanglement spectrum {λi} of a ν = 5/2 FQH state coincide with
the spectrum of a conformal field theory [8], which is always gapless.

Although I have not given a direct definition of what a topological phase
is, the two previous examples indicate that in some cases it can be charac-
terized by robust boundary properties, which persist throughout the phase.
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These properties can be observed in a suitably chosen entanglement spec-
trum. I will continue this paradigm by considering yet another example of
a topological phase that gives rise to exotic boundary physics.

In Ref. [9] a model of a quantum wire is discussed. It consists of spinless
electrons obtained by applying a magnetic field to select one spin direction.
The quantum wire is put onto a superconductor leading to electron pair
creation and annihilation via the proximity effect. The Hamiltonian can be
written in a compact form of coupled Majorana fermions. Let c†n create an
electron on the n-th site. For each electron one can define two Majorana
operators γn,1 = cn + c†n and γn,2 = i(cn− c†n), which are self adjoint (γn,i =

γ†n,i). For a certain choice of parameters the Hamiltonian is

H = −i
L−1∑
n=1

γn,2γn+1,1 . (1.5)

The ground state of this Hamiltonian has the remarkable feature of having
Majorana degrees of freedom localized at its boundary, see Fig. 1.1. This
can be easily understood since the operators γ1,1 and γL,2 do not enter in the
Hamiltonian. Signals which could be remnants of these Majorana fermions
have been recently measured in the lab [10]. Other than the emergence
of these exotic boundary modes, I have not mentioned why this phase is
topological. It is however separated by a quantum phase transition from the
system described by the Hamiltonian [9]

H = −i
L−1∑
n=1

γn,1γn,2 . (1.6)

Its ground state clearly does not have any Majorana fermions as boundary
modes. Otherwise, both Hamiltonians are very similar in the sense that their
ground states do not spontaneously break some symmetry of the Hamilto-
nian in different manners. However, both Hamiltonians describe systems
residing in different phases since they can not be connected by a path of
Hamiltonians without going through a phase transition [11, 12]. The above
Hamiltonian describes a system in a topologically trivial phase whereas the
Hamiltonian described by Eq. (1.5) describes a system in a topologically
non-trivial phase.

The Majorana wire gives an example of a topological phase with bound-
ary modes (Majorana fermions) which do not appear in the bulk of the wire.
The Majorana fermions are not fundamental but rather emergent particles.
In the bulk Majoranas pair up to form an electron. Those realized on the left
and right boundary do not pair into an electron due to their spatial separa-
tion. This causes the Hamiltonian, given by Eq. (1.5), to have a completely
delocalized electronic degree of freedom.
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Figure 1.1: A graphical representation of the two phases of the quantum
wire. Ellipses represent sites with a spinless electron. Each electron can
be represented by two Majorana fermions (black dots). In the topological
phase, Majorana fermions of different sites are coupled to each other (top)
which results in boundary Majorana modes. In the trivial phase (bottom)
these Majorana modes are not present.

Keeping the above discussion in mind I now to return to the topological
phases in which spin chains can reside. Let G be the symmetry group of the
spin chain. Recall that the Hilbert space of such a spin chain is modeled by
a tensor product of L copies of a representation space of G, see Eq. (1.2).
Naively, one would expect boundary modes to also transform according to
this same representation. Let VL and VR be the representation spaces of the
left and right boundary modes. Recently, it has been understood that for
topologically phases, VL and VR need not be representations of G. Only the
pair VL⊗VR is necessarily a representation of G [13, 14]. This is in complete
analogy with the Majorana wire. Majoranas appear as emergent particles
localized at the boundary although they are not the fundamental particles of
the bulk. There is however one main difference. Topological phases of spin
chains are only different phases (separated by a quantum phase transition)
if one restricts to G invariant systems. This is why topological phases in
spin chains are called symmetry protected.

Consider a S = 1 spin chain with a Hamiltonian given by

H =
L−1∑
i=1

[
~Si~Si+1 +

1

3

(
~Si~Si+1

)2
]

. (1.7)

Although it is not the same as the Heisenberg Hamiltonian given by Eq. (1.1),
they both reside in the same symmetry protected topological (SPT) phase
[15] that is called the Haldane phase. It is important to note that spin 1
is not only a representation of SU(2) but also a faithful representation of
SO(3). It has the same structure as SO(3) and not of SU(2). (Note that
SU(2) is larger than SO(3) since SO(3) = SU(2)/Z2.). It is thus more
correct to call a spin 1 chain an SO(3) chain.

Although the Hamiltonian described by Eq. (1.7) is an SO(3) spin chain,
it has boundary modes transforming according to the spin 1/2 representation
of SU(2), which is clearly not a representation of SO(3). However, both
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boundary modes together pair into

1

2
⊗ 1

2
= 0⊕ 1 , (1.8)

which is an SO(3) representation. Here 0 and 1 denote the spin singlet and
triplet representation. The spin 1 fractionalizes into two spin 1/2, just as
an electron fractionalizes into two Majoranas. As explained with the FQH
example, the entanglement spectrum can be used to observe this symme-
try fractionalization. Indeed, the entanglement spectrum of systems in the
Haldane phase consists of energy levels which are all even-fold degenerate
[16]. This reflects the even dimensionality of half-integer spin representa-
tions, according to which artificial boundary modes of systems residing in
the Haldane phase transform.

Similarly, on any SO(3) invariant spin chain, Hamiltonians can be de-
fined which have ground states with half-integer spin and fractionalized
boundary modes. In contrast, half-integer boundary modes are not frac-
tionalized on SU(2) invariant spin chains since then the boundary modes
transform under representations of the symmetry group. The fractionalized
boundary modes occurring on integer spin chains can be related to the Hal-
dane conjecture stating that the anti-ferromagnetic Heisenberg Hamiltonian
is only gapped (topological phase) if defined on an such chains.

SPT phases do not only occur in spin chains. The quantum spin Hall
(QSH) effect [17, 18] is another example of an SPT phase. It is a closely
related to the IQH effect. In an IQH system time reversal symmetry is
broken by the magnetic field, in a QSH system time reversal symmetry
is not broken. Strong spin-orbit interactions can lead to chiral boundary
modes. Here chiral means that the momentum is coupled to spin: spin up
and down electrons travel in opposite directions. Two phases exist in QSH
systems, depending on whether the number of boundary modes is odd or
even. As long as time reversal is respected, these two phases cannot be
connected without passing through a quantum phase transition. Similar
effects were predicted in 3D topological insulating materials [19, 20, 21] and
were first measured in bismuth antimony alloys [22].

The next Chapter of this thesis contains my three publications [DQ1,
DQ2, DQ3]. In the first paper, Topological phases of spin chains, we discuss
spin chains which are invariant under continuous symmetries described by
a compact connected simple Lie group. We explicitly discuss the different
phases that can arise in such systems and their characterizing features in
terms of boundary modes. We generalize the statement that chains with
an SU(2)/Z2 symmetry (being equal to SO(3)), allow for two phases, to;
chains with an SU(N)/ZN symmetry (being equal to PSU(N) ), allow for N
phases. This number N can in principle be any integer, which is remarkable
when put into contrast to the periodic table of topological insulators [11, 12]
where the non-trivial entries are Z2 and Z, which implies only two or an
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infinite number of phases.
In the second paper, A discriminating string order parameter for topo-

logical phases of gapped SU(N) spin chains, we discuss a way to measure
the features of the boundary modes that characterize the phase, by defining
a topological invariant for the phases of SU(N) spin chains. This invariant,
which only changes during quantum phase transitions, can be extracted from
a set of string order parameters in a novel way. Where other string order
parameters are only able to distinguish between two phases by a zero/non-
zero effect [23] or a positive/negative effect [24], our string order parameters
can directly distinguish N phases.

In a third manuscript, From symmetry-protected topological order to Lan-
dau order we discuss a transformation which maps systems residing in SPT
phases to systems residing in spontaneous symmetry breaking (SSB) phases
and vice versa. Such a transformation was known for quite some time for
the SO(3) invariant spin 1 chain [25]. For the first time we generalize it
such that it is applicable to spin chains invariant under a symmetry group
of the form ZN × ZN . This transformation gives a deeper understanding of
SPT phases in terms of hidden symmetry breaking. Different SPT phases
can be understood as phases in which the protected symmetry is broken in
a different hidden manner. This symmetry breaking becomes apparent after
applying our generalized transformation a different number of times. In the
same manuscript we also argue that the SPT phases arising in spin chains
protected by a symmetry G are also protected by a discrete subgroup of G,
if G is a simple compact connected Lie group. In almost all cases (including
PSU(N)) this subgroup is of the form ZN ×ZN allowing to understand the
corresponding SPT phases as to occur due to hidden symmetry breaking.

Chapters 3 to 5 contain relevant background information as well as some
extending ideas. The first of these three chapters describes matrix product
states (MPS). This name refers to a technique to cope with the exponentially
increasing dimension of the Hilbert space of 1-dimensional quantum systems.
It is the foundation of numerical tools such as DMRG [26] which can be
used to calculate ground states with computation resources scaling only
polynomially with system size. The framework of MPS is also useful as
an analytical tool since it gives rise to gapped Hamiltonians with exactly
known ground states and it allows for a direct access to the entanglement
spectrum. In chapter 4 the classification of spin chains is discussed [13, 14].
Chapter 5 discusses some additional topics which go beyond my papers.
Our SU(N) string order parameter giving rise to a topological invariant
can also be derived from a recently found selection rule for general string
order parameters [27]. Also, some extra insights are discussed regarding
the transformation defined in the third paper (which relates SPT phases to
symmetry breaking phases).



Chapter 2

Publications

In this chapter the following three publications can be found:

1. K. Duivenvoorden and T. Quella, “Topological phases of spin chains,”
Phys. Rev. B 87 (2013) 125145.

2. K. Duivenvoorden and T. Quella, “A discriminating string order pa-
rameter for topological phases of gapped SU(N) spin chains,” Phys.
Rev. B 86 (2012) 235142.

3. K. Duivenvoorden and T. Quella, “From symmetry-protected topolog-
ical order to Landau order,” Phys. Rev. B 88 (2013) 125115.

They are cited throughout the thesis as [DQ1, DQ2] and [DQ3].
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One-dimensional gapped spin chains with symmetry PSU (N ) = SU (N )/ZN are known to possess N different
topological phases. In this paper, we introduce a nonlocal string order parameter which characterizes each of
these N phases unambiguously. Numerics confirm that our order parameter allows one to extract a quantized
topological invariant from a given nondegenerate gapped ground state wave function. Discontinuous jumps in the
discrete topological order that arise when varying physical couplings in the Hamiltonian may be used to detect
quantum phase transitions between different topological phases.

DOI: 10.1103/PhysRevB.86.235142 PACS number(s): 03.65.Vf, 75.10.Pq, 75.10.Kt

I. INTRODUCTION

For a long time, the classification of distinct phases of
matter was synonymous with Landau’s theory of symmetry
breaking. The latter applies to systems where the symmetry of
the Hamiltonian is spontaneously broken in the ground state,
such as ferromagnets at sufficiently low temperature. Different
phases can be distinguished in terms of order parameters which
correspond to expectation values of local observables (e.g., the
magnetization). Another hallmark of the theory is the existence
of massless Goldstone modes if continuous symmetries are
broken.

Landau’s paradigm was challenged with the advent of
gapped physical systems in which distinct phases exist even
though the ground state (or the ground states) preserves
the same symmetries as the Hamiltonian. Such systems are
characterized by topological order, a term that was originally
coined for fractional quantum Hall systems.1 Since topological
orders are usually related to discrete invariants, they enjoy
protection against continuous deformations of the system. It
might happen that protection against deformations is not solely
due to topology but that it rather appears in conjunction with a
symmetry which has to be preserved. In this case one speaks
about symmetry protected topological orders.

The Haldane phase of SO(3) invariant antiferromagnetic
spin chains based on S = 1 is one of the first and best
understood examples of a nontrivial symmetry protected
topological phase. For the interactions it is custom to choose
a specific deformation of the Heisenberg Hamiltonian as a
representative. The resulting model is commonly referred
to as the AKLT chain.2,3 While the exact ground state for
the Heisenberg Hamiltonian is not known, the AKLT chain
provides a convenient laboratory which allows one to establish
several important properties of the Haldane phase with full
mathematical rigor. In particular, the ground states of the
AKLT Hamiltonian are known explicitly, both for periodic and
for open boundary conditions. Moreover, it could be proven
that the chain has a mass gap and that ground state correlation
functions of local observables decay exponentially.

The evidence for the identification of the Haldane phase as
a nontrivial topological phase of matter can be summarized
as follows. First of all, open boundary conditions imply the
existence of massless edge modes. The system thus exhibits a
bulk-boundary correspondence which is widely regarded as a
typical characteristic of nontrivial topological phases. It was

later understood that the topological nature is due to symmetry
fractionalization which allows the edge modes to carry a
discrete Z2-valued topological quantum number.4,5 Secondly,
all these features can also be observed in a characteristic
entanglement spectrum6 which provides a virtual realization
of edges even in the presence of periodic boundary conditions.
Finally, and most importantly for our present paper, there exists
a nonlocal string order parameter,7 sensitive to a kind of diluted
antiferromagnetic order, which allows one to distinguish the
topologically trivial from the topologically nontrivial phase.

Various extensions of the AKLT setup to higher rank groups
and supersymmetric systems have been considered (see, e.g.,
Refs. 3,8–11). Other generalizations include q deformations of
the symmetry group which can be used to describe anisotropic
spin chains.12,13 In all these examples the matrix product (or
valence bond) state formalism plays a crucial role.14–17 The
latter has also proven extremely useful in connection with
the classification of symmetry protected topological phases
in general one-dimensional (1D) spin systems.4,5,18 Indeed,
by now it is well known that topological phases can be
distinguished based on the properties of (virtual) boundary
modes that arise when the system is considered with open
boundary conditions or when parts of the system are traced
out. Matrix product states are relevant in this context since
their boundary and entanglement properties are almost trivial
to access. In addition, there is a natural way to associate
a so-called parent Hamiltonian to each matrix product state
which, in turn, is realized as the ground state of the former.

The classification results just mentioned yield the number of
potential topological phases and an explicit way of construct-
ing a representative Hamiltonian for each of them. However,
given an arbitrary physical system (i.e., a Hilbert space, a
Hamiltonian, and a symmetry), no universal recipe for how
to recover its topological class is known at present. Since all
topological properties are encoded in the ground state wave
functions, this is first of all due to the lack of knowledge of
the latter. But even if the ground states are known exactly or
approximately through a numerical calculation, the definition
of a quantity which can be calculated efficiently and which can
discriminate between all different topological phases is still an
open problem. The degeneracy of massless edge modes might
serve as a first indication but it still leaves ambiguities.19–21

Even access to the full entanglement spectrum (including the
energy and all additional quantum numbers) might not be
sufficient as long as the contributions from the two edges

235142-11098-0121/2012/86(23)/235142(13) ©2012 American Physical Society
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cannot clearly be separated from each other. For this reason,
the most promising route to a complete characterization of
topological phases seems to be the definition of suitable
nonlocal order parameters. Important progress in this direction
has recently been achieved in Refs. 20 and 22 (see also Refs. 23
and 24). While these approaches seem to be sufficiently general
to embrace continuous symmetry groups as well, the concrete
implementations have mainly been concerned with discrete
symmetries so far and do not cover the case of PSU (N ).

In the present paper we will follow an alternative route and
use it for the characterization of antiferromagnetic spin chains
with PSU (N ) symmetry. As has been shown in Ref. 21, there
are N distinct topological phases which can be realized in such
chains. These N phases correspond to the N different ways;
the center ZN of the group SU (N ) can be realized on possible
boundary spins. Just as in the SO(3) = SU (2)/Z2 AKLT chain
before, the situation can be understood as a fractionalization
of the physical symmetry PSU (N ) = SU (N )/ZN in a setup
with open boundary conditions. Our main result is an explicit
expression for a string order parameter for SU (N ) spin chains
which can easily be evaluated once the ground state is known;
see Eq. (13). In contrast to earlier approaches it is essential that
our string order parameter is a matrix valued quantity. Instead
of extracting the information about the topological phase from
the absolute value of the matrix entries we will rather infer
it from relative complex phases between off-diagonal matrix
elements. It will be proven that the order parameter defined in
this way is quantized and that it is sensitive to the representation
class of boundary spins with respect to the action of ZN . The
string order parameter thus allows one to extract a discrete
topological invariant which permits one to discriminate all N

distinct phases of PSU (N ) spin chains. It is important to note
that the topological invariant will only change when the system
undergoes a discontinuity. For this reason it may be used as a
good (numerical) measure for the identification of topological
quantum phase transitions.

In order to check the validity and applicability of our
analytical results we study the phase transition between two
topologically nontrivial phases of a PSU (3) spin chain. Each
of the two phases exhibits a subtle breaking of inversion
symmetry through the spontaneous occurrence of boundary
modes. For this reason the Hamiltonian cannot be written as
a polynomial in the invariant scalar product �S1 · �S2 but rather
requires the use of higher order Casimir operators. To our
knowledge this is the first time that such Casimir operators are
employed systematically in the formulation of spin chains. We
then continue with a numerical investigation of the topological
order using DMRG. The quantization of the topological order
and its discontinuity at the phase transition (see Fig. 4) provide
a clear confirmation of our analytical predictions.

Even though spin chains based on higher rank groups like
SU (N ) are unlikely to be found in real materials, there is a
chance that the corresponding Hamiltonians can be engineered
artificially using ultracold atoms in optical lattices.25,26 In
addition, special points in the moduli space of spin chains
and spin ladders might exhibit an enhanced symmetry. This,
for instance, happens for SO(3) spin chains which are known
to possess an SU (3) symmetric point for a certain choice of
the couplings.27 It should be noted that string order parameters
have also been suggested for other systems (e.g., 1D Haldane

Bose insulators).28 Since the latter has been observed in
experimental measurements29 it seems natural that a similar
experimental verification should be possible for PSU (N ) spin
chains and the string order parameter obtained from Eq. (13).

The paper is organized as follows. In Sec. II we start with
a concise definition of the physical setup under consideration
and we introduce a few of the concepts that turned out to
be useful in the classification of topological phases: Matrix
product states and projective representations. Afterwards we
provide a thorough discussion of the representation theory
of su(N ) and review the origin of the N distinct phases of
PSU (N ) spin chains. Section III contains the main result of
our paper. We introduce a string order parameter and evaluate it
in the thermodynamic limit. In a series of arguments we show
that the string order parameter includes discrete topological
information and we identify the latter with the parameter
specifying the topological phase of the spin chain. Finally,
Sec. IV is devoted to the numerical study of a family of
PSU (3) symmetric spin chains which interpolates between
two topologically nontrivial phases. The toy model provides
a clear confirmation of our analytical results. Some more
technical parts of the proofs and a brief introduction into
Casimir operators of su(3) have been moved to the appendixes.

II. PRELIMINARIES

In this section we introduce the notation and the structures
that are used in the main part of our text. We start with
a description of the physical setup and a brief outline of
the matrix product state formalism. The latter is used to
motivate the existence of N different phases of PSU (N ) spin
chains. We then review some essential aspects concerning the
representation theory of the Lie algebra su(N ).

A. Physical setup

Throughout this paper we are considering spin chains which
are characterized by the following data. The spins reside at sites
k on a circular chain with periodic boundary conditions, the
index running over the set k = 1, . . . ,L. It will be assumed
that the length of the chain is large but finite. The spins are
described by operators �Sk which take values in the Lie algebra
su(N ) and which act on on-site Hilbert spaces Hk . The total
Hilbert space H = ⊗

k Hk is the product of all on-site Hilbert
spaces. For simplicity we will assume that all Hilbert spaces
Hk are irreducible representations of su(N ) since otherwise
the system would admit a more natural interpretation as a spin
ladder instead of a spin chain. Finally, the dynamics of the
system is described by a local Hamiltonian H which commutes
with the total spin �S = ∑

k
�Sk . It can thus be written in terms

of Casimir operators of su(N ). The simplest Hamiltonians
can be expressed as a function of �Sk · �Sl (corresponding
to the quadratic Casimir) where the dot denotes an su(N )
invariant scalar product. More complicated Hamiltonians (e.g.,
involving many-body interactions or breaking the permutation
symmetry between the two sites) can be defined using higher
order Casimir operators. An example of this type will be
discussed in Sec. IV B.

Actually, the precise form of the Hamiltonian is not
particularly important for the purpose of this paper since we
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will almost exclusively be concerned with properties of states.
To be precise, our attention rests on the ground state |φ〉 of the
system which will always be assumed to be a nondegenerate
finitely correlated state14–16 (nondegenerate at least in a system
with periodic boundary conditions). Moreover, there should
exist a gap to the first excited state, thus implying exponential
decay of local correlation functions. Both properties, the
uniqueness and the gap, should persist in the thermodynamic
limit.

The simplest way to realize an antiferromagnetic spin
chain is as follows. The on-site Hilbert spaces are alternating
between a space V and its dual V∗. The total Hilbert space is
given by H = (V ⊗ V∗)L/2 and the spin dynamics is described
by the translation invariant Heisenberg Hamiltonian,

H = J

L∑
i=1

�Si · �Si+1, (1)

with nearest neighbor interactions. The coupling constant J

is assumed to be positive, thereby favoring antiparallel spin
alignment. For the symmetry group SU (2) and V being the
S = 1/2 representation, the Hamiltonian (1) arises naturally
from the electronic Hubbard model at half filling. However,
with regard to the study of topological phases, the Heisenberg
model is not ideal in many respects. First of all, apart from
the overall normalization there are no free parameters in the
Hamiltonian so it can only serve as a representative of one
physical phase. In addition, besides the fact that the ground
state is not known exactly, the absence or presence of a gap
has not been fully established. The absence of a gap is known
for certain representations V .30 For other representations, the
existence of a gap can be proven in the limit of “large spin”
using a mapping to a σ -model with a topological �-term.31–33

More recently, the question of the Haldane gap has been
revisited in Refs. 8,21, and 34.

In order to realize different topological phases while
retaining full analytic control over the ground state of the
system, it is useful to consider modifications of the Heisen-
berg Hamiltonian which are obtained by generalizing the
AKLT construction.2,3 These Hamiltonians arise as “parent
Hamiltonians” of specific matrix product states (MPS).14–17

Since all our considerations take place on the level of ground
states we will refrain from giving detailed expressions for
the Hamiltonians. The only exception is a specific family
of Hamiltonians with su(3) symmetry which will be the
subject of Sec. IV and which interpolates between two
Hamiltonians associated with different topological phases. It
will be used to abandon the idealized environment of MPS
parent Hamiltonians and to provide a numerical check of our
ideas in a more realistic scenario.

B. Matrix product states and topological phases

Let the vectors |ik〉 denote an orthonormal basis of the
on-site Hilbert spaces Hk . Using an iterated Schmidt decom-
position, any state |φ〉 of a periodic spin chain of length L can
be written as17

|φ〉 =
∑

i1,...,iL

tr(A[1] i1 · · · A[L] iL) |i1 · · · iL〉, (2)

with a certain set of matrices A[k] carrying three different
indices, one physical and two auxiliary ones. Such a state is
known as a matrix product state. To be precise, one has to
distinguish different types of MPS depending on the behavior
of the system in the thermodynamic limit L → ∞. If one
wishes to describe the ground state of a critical system, the
size of the matrices A[k] will grow beyond any limit. In our
current paper we are only interested in gapped systems and
hence we will assume that the dimension of the matrices A[k]

(and their nature) stabilizes for sufficiently large values of
L. The resulting infinite volume states are known as finitely
correlated states.14–16 Even though we are eventually interested
in the thermodynamic limit, an accurate description of the
physics of the system can be obtained by working with finite
but large L for this class of states. In the presence of a finite
gap, there are exponential corrections to expectation values
which quickly die away if L is sufficiently large.

The structure (2) arises naturally if one associates two
auxiliary spaces H(k,L) and H(k,R) to each physical site k such
thatH∗

(k,R) = H(k+1,L). This guarantees the existence of a max-
imally entangled state |Ik〉 = ∑

q |q〉〈q| ∈ H(k,R) ⊗ H(k+1,L)

where |q〉 refers to an orthonormal basis ofH(k,R). The matrices
A[k] can be regarded as linear maps from H(k,L) ⊗ H(k,R)

to Hk . The state |φ〉 is the image of the tensor product
|I 〉 = |I1〉 ⊗ · · · ⊗ |IL−1〉 of completely entangled pairs under
the map A = A[1] ⊗ · · · ⊗ A[L]. The application of the map
A to the product of completely entangled pairs |I 〉 effectively
converts the tensor product into a matrix product.

In the spin chains we are interested in, the physical Hilbert
spaces Hk carry a unitary representation of SU (N ). Moreover,
the ground state |φ〉 should be invariant under the action
of SU (N ).35 These two properties imply the existence of
additional structures which are realized on the data of an MPS.
Let R[k](g) denote the representation of SU (N ) on the space
Hk . According to Ref. 36, this on-site symmetry lifts to the
auxiliary level as

R[k](g) · A[k] = D[k](g)A[k]D[k+1](g)−1, (3)

thereby promoting H(k,L) and H(k,R) to representations of
SU (N ).37 In other words, the homomorphisms A[k] should
be equivariant projections from H(k,L) ⊗ H(k,R) to Hk [i.e.,
they should commute with the action of SU (N )].

In fact, a careful inspection of relation (3) shows that
the physical Hilbert space Hk and the associated auxiliary
spaces H(k,L/R) enter the discussion on a different footing.
To understand this statement, let us for a moment assume that
D[k] = D[k+1] and that the auxiliary spaces form an irreducible
representation of SU (N ). In view of Schur’s Lemma, the
right-hand side of Eq. (3)—and hence also the left-hand
side—is invariant in this case if g is chosen to be in the
center ZN of the symmetry group SU (N ). In other words,
R[k] descents to a linear representation of the quotient group
PSU (N ) = SU (N )/ZN while no such requirement exists for
the matrix D[k]. The latter only needs to implement a projective
representation of PSU (N ),

D(g1)D(g2) = ω(g1,g2) D(g1g2),
(4)

with g1,g2 ∈ PSU (N ) and ω(g1,g2) ∈ U (1),
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that is, a representation up to phase factors. It is known that
the projective representations of PSU (N ) fall into N different
classes when considered modulo obvious equivalences (see,
e.g., Ref. 21).

Analogous considerations apply if the assumption D[k] =
D[k+1] fails. By choosing suitable representations of SU (N )
on the auxiliary spaces, one can realize any symmetry group
SU (N )/� on the physical Hilbert spaces Hk , where � ⊂ ZN

is an arbitrary subgroup of the center of SU (N ). It can be
shown that the group SU (N )/� has |�| distinct classes of
projective representations.21

In a series of papers,4,5,18 the projective class of the
representation of the physical symmetry on the auxiliary
spaces has been identified as a topological invariant of 1D
gapped spin chains. In other words, the projective class arising
in the MPS representation of the respective ground states
remains invariant upon deformation of the Hamiltonian. For
the symmetry group PSU (N ), the previous argument predicts
exactly N distinct topological phases. For a general treatise on
1D spin systems with continuous on-site symmetries we refer
the interested reader to Ref. 21.

The different topological phases of a spin chain with a
given symmetry can all be realized explicitly by defining
suitable parent Hamiltonians. More precisely, for each MPS
|φ〉 of the form (2) there exists a local Hamiltonian with
the following two properties:17 The state |φ〉 is the unique
ground state of the Hamiltonian and there exists a gap. When
considered with open boundary conditions, this construction
will lead to gapless edge modes which transform according to
the projective representations BL = H(1,L) and BR = H(L,R).
Even though the energy of boundary states will receive
corrections and the degeneracy with the ground state might get
lost upon deformation of the Hamiltonian, they will remain
stable until the mass gap closes in the bulk. Intuitively, the
correlation length will diverge at the phase transition, thus
allowing the two boundaries modes of the spin chain to interact
with each other and to disappear.

C. The Lie algebra su(N) and its representations

For a more detailed discussion of SU (N ) spin chains and
a concise formulation of our result we need to review the
representation theory of the Lie algebra su(N ) (see, e.g.,
Ref. 38 and 39). The latter is the Lie algebra g of traceless
N × N matrices and it is generated (as a vector space) by the
matrices Eab with a �= b and by Ha = Eaa − Ea+1,a+1. Here
Eab denotes the elementary matrix (Eab)cd = δacδbd with a
single nonzero entry in row a and column b. The diagonal
matrices Ha generate the Cartan subalgebra h of su(N ). The
other generators Eab are called positive or negative roots,
depending on whether a < b or a > b. As a consequence,
the Lie algebra su(N ) admits a triangular decomposition
g = g+ ⊕ h ⊕ g− into positive roots g+, negative roots g−, and
the Cartan subalgebra h. As a Lie algebra, su(n) is generated
by the positive and negative simple roots Eab with |a − b| = 1.

All finite dimensional representations V of su(N ) are so-
called weight representations in which all generators Ha are
represented by diagonal matrices ρV (Ha). By abuse of notation
we will simply omit to write the map ρV in case it is clear that
we are acting on a representation. If μ ∈ h∗ one says that a

vector v ∈ V has weight μ provided that

Hav = μ(Ha)v =: μav. (5)

The different eigenvalues μa can be assembled into a tuple μ =
(μ1, . . . ,μN−1) of Dynkin labels and should be regarded as
physical charges characterizing the state v. A convenient basis
for the space h∗ is given by the fundamental weights ωa which
are dual to the Cartan generators in the sense that ωa(Hb) = δb

a .
A weight can thus also be written as μ = ∑

a μaωa . Any
representation space V can be split into distinct eigenspaces
with regard to the action of the generators Ha . This leads to
the weight space decomposition,

V =
⊕
μ∈h∗

Vμ. (6)

In a finite dimensional representation all weights μ are
necessarily integral (i.e., μa ∈ Z). The set of all weights forms
the weight lattice P which is an Abelian group under addition.

Let us now turn our attention to finite dimensional ir-
reducible representations. As is well known, the latter are
labeled by weights λ whose Dynkin labels λa are all non-
negative integers. Such weights are called dominant. The set
of dominant weights, denoted by P +, defines the fundamental
Weyl chamber of the weight lattice P . Within an irreducible
representation λ, the different weights are all related by the
application of roots α. The latter should be thought of as the
charges of the root generators Eab (for a �= b) with respect to
the Cartan generators Ha . Phrased differently, for each weight
μ in the representation λ one has λ − μ ∈ Q where Q is the
root lattice which is generated by the (finite) set of roots α.

A distinguished role is played by the adjoint representation
in which the Lie algebra is represented on itself (regarded as a
vector space) by means of the adjoint map X 
→ adX = [X, · ].
The nonzero weights of the adjoint representation are precisely
the roots α. The N − 1 simple roots have weights αa which are
just the rows of the su(N ) Cartan matrix Aab = 2δab − δ|a−b|,1.
For our purposes it will be important that there exists a unique
weight ρ = 1

2

∑
α>0 α = (1, . . . ,1), the so-called Weyl vector,

which has a scalar product (ρ,αa) = 1 with each of the simple
roots αa . The dual generator Hρ ∈ h is characterized by the
property,

αa(Hρ) = 1, (7)

for all a = 1, . . . ,N − 1. This generator will play an important
role in the definition of the string order parameter in Sec. III.
With the previous choice of simple roots one can find the
following explicit expression for the diagonal entries of the
matrix Hρ = diag(Hρ

1 , . . . ,H
ρ

N−1) ∈ h,

Hρ
a = N + 1

2
− a. (8)

Indeed, one can easily check that this defines the unique
traceless diagonal matrix with H

ρ
a − H

ρ

a+1 = 1, as required
by Eq. (7).

The final ingredient that will be needed below is the Weyl
group of su(N ). The Weyl group can be regarded as the
symmetry of the root system. It consists of rotations and
reflections which leave the set of roots invariant and is thus a
subgroup of the orthogonal group in N − 1 dimensions. For
su(N ), the Weyl group is isomorphic to the symmetric group
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SN . Under the action of the Weyl group, the weight lattice P

may be decomposed into orbits. In our considerations below it
will be crucial that each of these orbits has at least one element
in the fundamental Weyl chamber of dominant weights P +. In
other words, for each weight μ ∈ P one can find an element
S ∈ W such that μ′ = Sμ is in the fundamental Weyl chamber
(i.e., μ′ ∈ P +). Note that the element S need not be unique.

In order to derive the explicit action of the Weyl group
on a weight it is convenient to switch to an alternative set
of elements εi (i = 1, . . . ,N ) which span the dual h∗ of the
Cartan algebra of su(N ). Given any H ∈ h they are defined
by εi(H ) = Hii . Since su(N ) matrices are traceless, these
vectors satisfy the constraint

∑
i εi = 0 which leads to a slight

redundancy when weights are expressed in terms of the εi .
However, this disadvantage is compensated by the simple
transformation behavior under the action of the Weyl group
W which, for su(N ), is isomorphic to the symmetric group
SN . Given any permutation σ ∈ SN and the associated Weyl
group element Sσ ∈ W one simply has

Sσ (εi) = εσ (i). (9)

Given this formula, we can deduce the Weyl group action on
any weight μ = ∑

i ciεi . Note that the labels ci are, a priori,
only defined up to a simultaneous shift. We can nevertheless
arrive at a unique description by imposing the “gauge”

∑
i ci =

0, and the latter will be assumed from now on. With these
conventions the new labels are related to the standard Dynkin
labels μa as

ci = −
i−1∑
a=1

a

N
μa +

N−1∑
a=i

N − a

N
μa. (10)

This relation can be derived using the explicit form of the
roots in terms of Dynkin labels; compare the expression for
the Cartan matrix above.

A second reason for using the epsilon basis is that εi(Ha)
and εi(Hρ) can be easily calculated. The former evaluates to
εi(Ha) = δi,a − δi,a+1, while the latter is εi(Hρ) = N+1

2 − i.
Note that a shift in the index i translates directly to a shift in
εi(Hρ). More precisely, let σm ∈ SN be the cyclic permutation
defined by σm(i) = i + m (modulo N ). Then,

εσm(i)(H
ρ) = εi(H

ρ) − m + N θ (i + m − N ). (11)

Here, θ is the Heaviside step function with θ (0) = 0.

D. Classes of representations

As was discussed in detail in our previous article,21 the
representations λ of su(N ) [and hence of SU (N )] fall into
N different classes which can be interpreted as elements of
the group P/Q, the quotient of the weight lattice P by the
root lattice Q. In terms of its Dynkin labels the class of the
representation λ = (λ1, . . . ,λN−1) is defined by

[λ] ≡
N−1∑
a=1

aλa mod N. (12)

When representations are specified using Young tableaux, the
class of a representation can be expressed as the number of
boxes modulo N .21 Even though Eq. (12) was introduced for
highest weights, it can be extended to any weight since the

SU(3)

λ1

λ2

SU(2) λ1

FIG. 1. (Color online) Visualization of different congruence
classes for SU (2) and SU (3) in terms of colors. The shaded blue
boxes are possible representatives of topological classes.

expression on the right-hand side is invariant under the action
of the root lattice Q. In other words, [μ] = [λ] for any weight
μ in a representation with highest weight λ. As is illustrated
in Fig. 1, Eq. (12) divides the weight lattice of su(N ) into N

different sublattices.
The congruence class [λ] of a representation λ determines

whether the representation descends to quotients of the group
SU (N ). More precisely, the value of [λ] fixes the action of
the center ZN of SU (N ) on the representation λ. Elements of
ZN ⊂ SU (N ) are multiples 
kIN of the identity matrix with

 = exp( 2πi

N
) denoting the fundamental N th root of unity. In

the representation λ, this element is mapped to the complex
phase ρ(
kIN ) = 
k[λ]. We conclude that representations
λ with [λ] ≡ 0 are linear representations of PSU (N ) =
SU (N )/ZN . Likewise we may ask whether a representation
λ lifts to any of the groups SU (N )/Zq where Zq ⊂ ZN is
a subgroup of the center. This is the case if and only if
[λ] ≡ 0 mod q (instead of using mod N ).21

The connection to the classification of topological phases
comes in since representations λ of SU (N ) with [λ] �≡ 0 only
define projective representations of PSU (N ). If the physical
Hilbert spaces Hk transform in a linear representation of
PSU (N ), the (virtual) boundary spins might still transform
in a projective representation of PSU (N ) as was discussed
in Sec. II B. The division of SU (N ) representations into N

distinct classes which is described by Eq. (12) in this way
reflects the division of spin chains into N distinct topological
classes.

Let us finally establish the connection to the physical spin
chains which have been discussed in Sec. II B. Since we shall
be dealing with PSU (N ) spin chains in this paper, the physical
Hilbert spaces Hk (which are described by a highest weight
λ) should all reside in the trivial class (i.e., [Hk] = [λ] ≡ 0).
On the other hand, the auxiliary spaces H(k,L/R) can reside in
nontrivial classes as long as their total class sums up to zero,
[H(k,R)] = −[H(k,L)]. Together with the condition [H(k,R)] =
−[H(k+1,L)] which arises from the duality constraint H∗

(k,R) =
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H(k+1,L) this means that the projective class of the left and right
auxiliary spaces, respectively, is constant all along the chain.

III. A STRING ORDER PARAMETER FOR SU(N)
SPIN CHAINS

In this section we introduce a nonlocal string order
parameter for SU (N ) spin chains which reduces to the diluted
antiferromagnetic order of Rommelse and den Nijs7 for N = 2.
Using transfer matrix methods we evaluate the string order
parameter on matrix product ground states and show that it
may be used to extract a quantized topological order parameter.
The latter is capable of distinguishing between the N different
phases of PSU (N ) invariant spin chains.

A. Definition and interpretation

Let |φ〉 be the unique ground state of our spin system. We
will assume that the system has a symmetry group PSU (N )
and that |φ〉 is in a definite topological phase described by a
constant t ∈ ZN (regarded as an additive group). Following the
reasoning of Sec. II B, the constant t will be identified with the
projective class [H(k,R)] of the right auxiliary representations
arising in the matrix product state representation of |φ〉.

In what follows we shall prove that the ground state
expectation value 〈σab

ij 〉 of the nonlocal string order operator,

σab
ij = Ha

i exp

[
2πi

N

j−1∑
k=i+1

H
ρ

k

]
Hb

j (for i < j ), (13)

contains all information required to reconstruct the value of
t . It serves as a convenient tool for the measurement of the
topological phase of the system, even in cases where the matrix
product state representation of |φ〉 is not known or where the
nature of the auxiliary spaces—regarded as a representation
of SU (N )—is unclear. In the previous formula, Hρ refers to
the Cartan operator associated with the Weyl vector ρ (see
Sec. II C). For SU (2), expression (13) reduces to the
string order Sz

i exp (iπ
∑

Sz)Sz
j introduced by Rommelse and

den Nijs.7

In the following section it will be proven that, in the limit
|i − j | → ∞, the dependence of the string order parameter
〈σab

ij 〉 on a and b converges exponentially to

T ab = lim
|i−j |→∞

〈
σab

ij

〉 = Cij 
t(a−b),

(14)

with 
 = exp
2πi

N
.

The prefactor Cij can be used as a first rough indication of
whether the system resides in a topologically trivial phase or
not. In a trivial phase we will always obtain Cij = 0 while in a
nontrivial phase the prefactor is expected to be nonzero.40 Up
to this point, the discussion completely parallels the analysis of
the conventional SU (2) string order. For SU (N ), however, the
most important information resides in the off-diagonal entries,
the complex phases 
t(a−b). Obviously, the constant t entering
this expression is only defined modulo N . In fact, as we shall
see below, it takes values inZN , just as desired. It characterizes
the projective class according to which (virtual) edge modes
transform and it thereby determines the topological phase of

the state |φ〉. Whenever Cij �= 0, the value of t can be extracted
unambiguously by calculating (or measuring) two different
matrix elements and taking their quotient. For instance, one
immediately finds T 21/T 11 = 
t . Let us emphasize that a
transition from one topological phase to another enforces the
prefactor Cij to vanish since otherwise the parameter t cannot
change its value.

In the way it was introduced, the constant t ∈ ZN deter-
mines the projective class of (virtual) edge modes with respect
to the minimal quotient PSU (N ) = SU (N )/ZN of SU (N ). In
a concrete physical realization it might happen that the actual
symmetry group is not PSU (N ) but rather a different quotient
SU (N )/Zq whereZq ⊂ ZN . In this case, the projective classes
are described by Zq , not by ZN , and t has to be considered
modulo q; see Ref. 21.

The attentive reader may wonder why the expectation value
(14) still depends on i and j even after taking the limit |i −
j | → ∞. The answer is simple: The result of the calculation
depends on the representation spaces used at sites i and j and
hence on how the limit is performed. The dependence will
disappear if the system is translation invariant.

B. Evaluation

The proof of Eq. (14) will proceed in two steps. We first
prove the factorization of the matrix 〈σab

ij 〉 = 〈J a
i,L〉〈J b

j,R〉 in the
thermodynamic limit, up to exponentially small corrections.
This step uses transfer matrix techniques and it is intimately
related to the matrix product state structure of |φ〉. In a second
step we use the Weyl symmetry of the weight lattice to reduce
J a

i,L to a simpler expression. The latter is further analyzed in a
third step from which we conclude that 〈J a

i,L〉 depends on a as
〈J a

i,L〉 ∝ 
at . The case Jj,R can be dealt with analogously.

1. Step 1: Factorization

To prove the factorization of the matrix T ab we express the
ground state |φ〉 = A|I 〉 in terms of the maximally entangled
state |I 〉; see Sec. II B. The possibility to write |φ〉 in this form
is a direct consequence of the fact that |φ〉 can be written as a
matrix product state. In the next step we use the intertwining
property,

Ha
k A = A

(
Ha

k,L + Ha
k,R

)
, (15)

which expresses the physical spin operator Ha
k as a sum of spin

operators Ha
k,L and Ha

k,R on the two corresponding auxiliary
sites. Using the singlet property of |I 〉,

Ha
k,R|I 〉 = −Ha

k+1,L|I 〉, (16)

one easily sees that the phase factors in the string order operator
σab

ij cancel out pairwise except for the two boundaries. We then
immediately find

〈
σab

ij

〉 = 〈φ|σab
ij A|I 〉

〈φ|φ〉 = 〈φ|AJ a
i,LJ b

j,R|I 〉
〈φ|φ〉 , (17)

where the two operators J a
i,L and J b

j,R are defined by

J a
i,L = (

Ha
i,L + Ha

i,R

)

−H

ρ

i,R , and (18)

J b
j,R = 
−H

ρ

j,L

(
Hb

j,L + Hb
j,R

)
. (19)
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Note that each of these operators acts locally on two auxiliary
sites. However, neither of them can be lifted to an operator
acting locally on physical sites, that is, there is no way to
commute them back through A without rebuilding the original
nonlocal string.

Now that we could eliminate the nonlocal string connecting
the two sites i and j we can evaluate the string order parameter
using standard transfer matrix techniques.14 For that purpose,
we write

〈φ|AJ a
i,LJ b

j,R|I 〉
= tr

(· · · E[i−1]E
[i]
J a

L
E[i+1] · · · E[j−1]E

[j ]
J b

R

E[j+1] · · ·), (20)

〈φ|φ〉 = tr(E[1] · · · E[L]), (21)

where

(
E

[k]
X

)
αβ,μν

=
∑
s,γ,ρ

(Ā[k])sαμ(A[k])sγρ 〈γρ|X|βν〉, (22)

and E[k] = E
[k]
11 . A pictorial interpretation of the expectation

value is provided in Fig. 2. The two traces can be evaluated
by diagonalization of the transfer matrices E[k], considered
as an operator mapping matrices on the auxiliary space
H(k,R) to matrices acting on the auxiliary space H(k,L).41 In
the thermodynamic limit and with |i − j | → ∞, the only
contribution will come from the highest eigenvalue. All other
contributions are suppressed exponentially due to our mass
gap assumption. It can easily be seen that the identity matrices
on the auxiliary spaces are left and right “eigenvectors”
with eigenvalues dimHk/ dimH(k,L) and dimHk/ dimH(k,R),

X
β

α

ν

μ

γ ρ

s

Ā

A

Ā

A

Ā

A

Ā

A

Ā

A

Ā

A

Ā

A

Ja
L Ja

R

· · · · · ·

FIG. 2. Sketch of the one-site transfer matrix E
[k]
X (upper diagram)

and of the expectation value (20) (lower diagram). For the latter,
periodic boundary conditions are assumed.

respectively. Indeed, due to Schur’s Lemma we have

E
[k]
αβ,μν11μν = CR 11αβ, and (23)

11αβ E
[k]
αβ,μν = CL 11μν. (24)

Moreover, it is obvious that

dim(Hk) = 11αβ E
[k]
αβ,μν 11μν = CR trH(k,R) (11)

= CR dim(H(k,R)), (25)

and similarly for CL. Since E[k] is a completely positive map
it is guaranteed that there is no greater eigenvalue (Ref. 42,
Prop 3.6). On the other hand, due to our mass gap assumption
this eigenvalue is nondegenerate, even in absolute value.17

In the limit of large separation, |i − j | � 1, we can rewrite
the desired expectation value in a factorized form as

〈
σab

ij

〉 =
〈11H(i,L) |E[i]

J a
L
|11H(i,R)〉

dimHi

〈11H(j,L) |E[j ]
J b

R

|11H(j,R)〉
dimHj

= 〈
J a

i,L

〉〈
J b

j,R

〉
. (26)

We note that the result still depends on the representation
spaces describing the start and the end point of the original
string.

2. Step 2: Employing Weyl symmetry

In the second part of the derivation we focus on the a

dependence of the expectation value J a := 〈J a
i,L〉 which we

claim to be proportional to 
at with t = [H(i,R)]. The same
reasoning can be used to derive that 〈J b

j,R〉 ∝ 
b[H(j,L)] = 
−bt

from which the main result, Eq. (14), follows. Here we used
the chain of equalities [H(j,L)] = [H∗

(i,R)] = −[H(i,R)] = −t .
Since the operators J a

i,L contain Cartan elements only,
their expectation value can be calculated most easily in an
orthonormal basis |αβ〉 of the auxiliary space H(i,L) ⊗ H(i,R)

which respects the weight space decomposition. In such a
basis the operator J a

i,L is represented by a diagonal matrix
with components J a

αβ . In order to keep the notation simple
we shall use the abbreviation α ∈ μ if |α〉 is contained in
the weight space with weight μ (of H(i,L) in this case).
Moreover, we wish to recall that the matrices (A[k])sαβ are
SU (N ) invariant projections from auxiliary space to physical
space which can be represented as the matrix element 〈s|αβ〉.
From the definition of the expectation values J a in Eq. (26)
we immediately conclude

J a = 1

dimHi

∑
s,α,β

|〈s|αβ〉|2J a
αβ

= 1

dimHi

∑
μ,ν

∑
α ∈ μ,β ∈ ν

s ∈ μ + ν

|〈s|αβ〉|2J a
αβ. (27)

In the second equality, instead of summing directly over all
basis vectors, we first sum over weight spaces followed by a
sum over vectors spanning a certain weight space. We also
used an obvious selection rule for the weights entering the
Clebsch-Gordan coefficients 〈s|αβ〉. The values J a

αβ do not
directly depend on α and β, but only on the weight space they
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belong to. We may thus define

J a
μν := J a

αβ with α ∈ μ,β ∈ ν. (28)

Furthermore, it is convenient to introduce the abbreviation,

P (μ,ν) :=
∑

α ∈ μ,β ∈ ν

s ∈ μ + ν

|〈s|αβ〉|2, (29)

such that above expression can be written as

J a = 1

dimHi

∑
μ,ν

P (μ,ν)J a
μν. (30)

At this point we split the sum into orbits with respect to the
Weyl group. To be more precise, we simplify Eq. (30) by
restricting the summation to those weights μ and ν such that
their sum is in the fundamental Weyl chamber, μ + ν ∈ P +.
All the other terms are obtained using the action of the
Weyl group. Since the weights at the boundary of P + are
invariant under a subgroup of the Weyl group this leads to an
overcounting which is compensated by dividing through the
order of the stabilizer subgroup Wμ+ν ⊂ W . This procedure
yields

J a = 1

dimHi

∑
μ,ν

μ + ν ∈ P +

1

|Wμ+ν |
∑
S∈W

P (Sμ,Sν)J a
S(μ),S(ν)

= 1

dimHi

∑
μ,ν

μ + ν ∈ P +

P (μ,ν)

|Wμ+ν |
∑
S∈W

J a
S(μ),S(ν)

= 1

dimHi

∑
μ,ν

μ + ν ∈ P +

P (μ,ν)

|Wμ+ν |K
a
μ,ν. (31)

In the second equation the Weyl invariance of P (μ,ν) is
used: P (μ,ν) = P (Sμ,Sν) for all S ∈ W . This is proven in
Appendix A. The third equation defines Ka

μ,ν . Since P (μ,ν) is
independent of a, we are left to show that Ka

μ,ν(a) ∝ 
a[ν] =

at . The identification of [ν] with t follows since the label [ν]
is the same for all weights ν appearing in the decomposition of
the su(N ) representation H(i,R). This is a direct consequence
of the fact that the ground state |φ〉 was assumed to be in a
well-defined topological phase.

3. Step 3: Weyl group gymnastics

At this point, all ingredients are set to show that Ka
μ,ν ∝


a[ν], where Ka
μ,ν is defined by Eq. (31):

Ka
μ,ν =

∑
S∈W

S(μ + ν)(Ha) 
−S(ν)(Hρ ). (32)

Writing the weights as ν = ∑
l clεl and μ + ν = ∑

k dkεk

(with the “gauge fixing”
∑

l cl = ∑
k dk = 0), respectively,

and using the Weyl group action specified in Eq. (9) allows us

to rewrite this expression in the form,

Ka
μ,ν =

∑
k

dk

∑
σ (k)=a


∧
(

−
∑

l

clεσ (l)(H
ρ)

)

−
∑

k

dk

∑
σ (k)=a+1


∧
(

−
∑

l

clεσ (l)(H
ρ)

)

=
∑

k

dk

(
Q

(a)
k − Q

(a+1)
k

)
. (33)

Let us now focus on the sum over the different permutations σ

which has been abbreviated by Q
(a)
k in the previous formula.

Our goal is to remove the constraint involving the index a in
the summation over the permutations and to convert it into
an explicit dependence of the whole expression. This can be
achieved by the following simple resummation which makes
use of the cyclic permutations σa and of Eq. (11),

Q
(a)
k =

∑
σ (k)=a


∧
(

−
∑

l

clεσ (l)(H
ρ)

)

=
∑

σ (k)=N


∧
(

−
∑

l

cσ−1(l)εσa (l)(H
ρ)

)

=
∑

σ (k)=N


∧
(

−
∑

l

clεσ (l)(H
ρ) + a

∑
l

cl .

−
N∑

l=N−a+1

Ncσ−1(l)

)

= 
a[ν] Q
(N)
k . (34)

The last expression arises from the following simplifications
on the third row. The first sum in the exponent of the last
equation is independent of a. The second sum vanishes due to
our choice of “gauge fixing”

∑
l cl = 0. The third sum contains

the information we are after. Formula (10) implies the relation
−Nck = ∑

a aνa = [ν] (modulo N ) for any index k. Hence
each term in this sum is equal to [ν] = t . Moreover, there are
exactly a of these terms in this sum. This gives the desired
dependence of Ka

μ,ν ∝ 
a[ν] on the index a. The equation,

J a = 
at (1 − 
t )

dimHi

∑
μ,ν

μ + ν ∈ P +

P (μ,ν)

|Wμ+ν |
∑

k

dkQ
(N)
k , (35)

follows immediately. We have thus confirmed that the string
order parameter is given by Eq. (14) and that it is a suitable
tool for measuring the topological phase of a state on a spin
chain. Moreover, the previous equation also implies that the
string order operator always has a vanishing expectation value
as long as the edge modes transform according to a linear
representation of PSU (N ) (i.e., when the system is in a
topologically trivial phase with t = 0).

C. Properties

The string order parameter that is derived from Eq. (13) has
a number of desired features that one expects for a quantity
capable of measuring a topological property. First of all, the
factorization (26) implies the invariance under arbitrary block
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renormalization between the end points in questions. From a
mathematical perspective this is the analog of invariance under
continuous deformations or choice of metric. Even though the
factorized expression resembles a local correlation function
one should bear in mind that the invariance of the ground
state under PSU (N ) leads to a subtle entanglement which
propagates from site to site and cannot be removed by block
renormalization.4

It should be emphasized that the integer number t associated
with our string order parameter (14) gives a reliable answer
about the precise type of the topological phase. In contrast,
entanglement entropies and spectra only encode information
about the number of massless edge modes but not (at
least not directly) about their representation type (see, e.g.,
Refs. 19 and 20). Indeed, even when only considering
irreducible representations of SU (N ), the dimension is not
sufficient to distinguish between a representation and its dual,
for instance. A systematic search for even more convincing
examples already succeeds for SU (3): This group has four
different 15-dimensional irreducible representations labeled
by (2,1) and (4,0) as well as their conjugates. While (2,1)
and (4,0) belong to the class [1] ∈ Z3, the representations
(1,2) and (0,4) belong to the class [2] ∈ Z3. So, even
when forgetting about the possibility to form direct sums of
irreducible representations we recognize that the dimension of
a representation alone might not be sufficient to specify the
topological phase it is associated with.

The formula we derived for the string order and its
interpretation in a sense assumes an ideal measurement. The
form of the outcome and the particular dependence of the
complex phase factor on the label a rely on a very specific
and fixed choice of basis for the Cartan generators. In a
real physical measurement in a laboratory one will generally
measure the expectation value for a linear combination of
operators which slightly deviates from Ha . A more detailed
analysis of this effect, just as of finite size corrections, is
beyond the scope of the present article.

IV. NUMERICAL VERIFICATION

In this section, it will be verified in a concrete physical
setup that the string order parameter defined in Sec. III
is capable of measuring the topological order of a spin
chain. For this purpose we define a family of PSU (3)
invariant Hamiltonians which smoothly interpolates between
two distinct topologically nontrivial phases. We determine the
ground states numerically using DMRG and study the behavior
of the string order parameter and its associated topological
order parameter t . The numerical results clearly confirm our
theoretical predictions. The complex phase of the string order
parameter is quantized and jumps at the phase transition.

A. Setup and idea

In what follows, we shall consider a family of PSU (3)
invariant spin chains with periodic boundary conditions. The
on-site Hilbert spaces are all chosen to be equal to the
eight-dimensional adjoint representation of SU (3), which is
described by the highest weight (1,1). Since Eq. (12) implies
[(1,1)] ≡ 0, this is clearly a representation of PSU (3). We

start with a discussion of two particular states |φ1〉 and |φ2〉
and their associated parent Hamiltonians H1 and H2. For these
two systems we have full analytical control over all relevant
properties such as the energy gap and the topological phase.
We then consider the family of Hamiltonians,

H (c) = cH1 + (1 − c)H2 with c ∈ [0,1]. (36)

Our basic idea is to determine the ground state and the string
order parameter numerically as a function of c. Since, however,
the structure of the Hamiltonian H (c) is quite complicated we
will instead implement the numerics using a truncated version
Htrunc(c) which exhibits the same qualitative behavior.

The state |φ1〉 is a matrix product state defined as follows:
As the left and right auxiliary spaces we choose the two distinct
three-dimensional representations 3̄ and 3 of SU (3), with
highest weight (0,1) and (1,0), respectively. The matrices A

correspond to the SU (3) invariant projections A : 3̄ ⊗ 3 → 8
as described in Sec. II. By construction, the state |φ1〉 resides
in the nontrivial topological phase t = [(1,0)] = 1. As is well
known, the parent Hamiltonian for an open chain of this
form will lead to massless boundary spins transforming in the
representations 3̄ and 3, respectively. With periodic boundary
conditions, however, we end up with a unique ground state. A
state which belongs to the topological class t = 1 necessarily
breaks inversion symmetry since the representations 3 and 3̄
in the auxiliary space need to be treated on a different footing.
Since the ground state is required to be nondegenerate, this
actually provides an interesting challenge for the construction
of a suitable two-site Hamiltonian as will be discussed below.

The state |φ2〉 is obtained from |φ1〉 by inversion. In
particular, the left auxiliary space of each site is interchanged
with the right auxiliary space. As should be clear from the
exchange of auxiliary spaces, the new state |φ2〉 resides in the
nontrivial topological phase t = [(0,1)] = 2. Of course we can
also apply the inversion to the Hamiltonian H1, resulting in a
new Hamiltonian H2 of which |φ2〉 is the unique ground state.

B. A family of Hamiltonians

We are now making the preceding statements more explicit,
following the standard strategy of the AKLT construction.2,3

Our goal is to find concrete expressions for the Hamiltonians
H1 and H2 as well as for the interpolating Hamiltonian H (c)
defined in (36). This requires introducing the concept of
Casimir operators (see also Appendix B) and the calculation
of a few tensor products. It turns out that we can restrict
our attention to Hamiltonians involving nearest neighbor
interactions only.

The two-site Hilbert space decomposes as follows:

(1,1) ⊗ (1,1) = (0,0) ⊕ (1,1)s ⊕ (1,1)a
⊕(3,0) ⊕ (0,3) ⊕ (2,2). (37)

The subscripts in (1,1)s and (1,1)a refer to the symmetric and
to the antisymmetric part of the tensor product. Schur’s Lemma
implies that su(3) invariant Hamiltonians cannot change the
type of representation. This leaves one parameter for each
of the representations which occur with multiplicity one but
four parameters for the representation (1,1) which appears
with multiplicity two. The latter can be thought of as the
entries of a 2 × 2 matrix which acts on the multiplicity
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space of the representation (1,1). In total, there is thus an
eight-dimensional space of two-body Hamiltonians which
commute with the action of su(3). In what follows, we will
express these explicitly in terms of invariant combinations of
the spin operators �S1 and �S2 on the two sites.

The basic objects we have at our disposal are the expression
Q12 = �S1 · �S2 which is related to the quadratic Casimir
(�S1 + �S2)2 as well as the cubic terms C112 = drstS

r
1S

s
1S

t
2

and C122 = drstS
r
1S

s
2S

t
2 which are defined using a symmetric

invariant rank three tensor drst ; see Appendix B. In addition,
we need to consider polynomials in these objects, potentially
with permutations in the order of the operators. One example
for such an operator would be

C(2) := drst duvwSr
1S

u
1 Sv

1 Sw
2 Ss

2S
t
2. (38)

A careful analysis shows that the eight-dimensional space of
invariant operators acting on the tensor product (1,1) ⊗ (1,1)
is spanned by〈

1 ,Q12 ,Q2
12,Q

3
12, Cs = C112 + C122,

Ca = C112 − C122, C
(2), [Ca,C

(2)]
〉
. (39)

The action of some of these operators on the constituents of
the tensor product (37) is summarized in Fig. 3. Note that
Ca is an operator which exchanges the symmetric and the
antisymmetric part of the tensor product. After some linear
algebra, it turns out that a good choice for the interpolating
two-site Hamiltonian entering (36) is given by43

H (c) = 1 + 9

56
�S1 · �S2 − 5

112
(�S1 · �S2)2

− 1

112
(�S1 · �S2)3 + (1 − 2c)

2

7
Ca − 4

63
C(2). (40)

We note that the deformation parameter c only multiplies
the term Ca which explicitly breaks inversion symmetry. It
is not obvious at all, but an explicit calculation shows that the
Hamiltonian above reduces to a projector for c = 0 and for
c = 1 (see the table in Fig. 3). In both cases it projects onto
the subspace generated by (3,0) ⊕ (0,3) ⊕ (2,2) as well as two
(different) one-dimensional subspaces in the two-dimensional
multiplicity space of (1,1)s ⊕ (1,1)a . The latter single out
a specific copy of (1,1) inside of (1,1)s ⊕ (1,1)a . In other
words, the space of zero-energy states (for two sites) is
given by (0,0) and states in a complementary copy of (1,1)

8

3̄ 3

8

3̄ 3

Tensor product 8⊗ 8 = (1, 1)⊗ (1, 1)

Irrep λ (0, 0) (1, 1)s (1, 1)a (3, 0) (0, 3) (2, 2)

Qλ 0 6 ( 1 0
0 1 ) 12 12 16

�S1 · �S2 −6 −3 ( 1 0
0 1 ) 0 0 2

Cλ 0 ( 0 0
0 0 ) 9 −9 0

C(2) 45
8 − 9

2 (
1 0
0 0 ) 0 0 9

8

Ca 0 3
4

√
5 ( 0 1

1 0 ) 0 0 0

FIG. 3. Construction of the two-site Hamiltonian.

within (1,1)s ⊕ (1,1)a for c = 0 and c = 1. This is precisely
the content of (1,0) ⊗ (0,1) (i.e., the contribution of the
four auxiliary sites with the singlet constraint imposed), thus
showing that the Hamiltonians H (0) and H (1) are of AKLT
type.

Since the numerical evaluation of the Hamiltonian (40)
is quite time-consuming we shall henceforth work with the
following family of truncated Hamiltonians,

Htrunc(c) = 1 + 9

56
�S1 · �S2 + (1 − 2c)

2

7
Ca. (41)

In view of the structural similarity with the Hamiltonian (40)
we believe that both share the same qualitative features. Evi-
dence for this assertion comes from the exact diagonalization
on a chain of L = 6 sites.

C. Evaluation of the topological order parameter and discussion

For different values of c in Eq. (41), we have calculated the
ground state using DMRG techniques.44 We have considered a
chain of length L = 20 and worked with an auxiliary space of
dimension D = 400. We calculated the expectation value of
the string order parameter 〈σab

ij 〉 numerically, for the specific
sites i = 5 and j = 15. We compared the resulting matrix to
the expression

〈σij 〉 = −R

(
1 
2t


t 1

)
with 
 = exp

2πi

3
, (42)

which is the theoretical prediction for the string order parame-
ter in the limit of an infinite chain [see Eq. (14)]. The numerical
values of the parameters R and t have been estimated by

minimizing eσ = tr(dσ · dσ †), with dσ = 〈σab
ij 〉 − 〈σab

ij 〉. The
results are plotted in Fig. 4 and they are in perfect agreement
with the theory. The parameter t is quantized and restricted
to the numbers 1 and 2, thus providing the desired label for
the topological class of the system. Moreover, this parameter
changes discontinuously at the value c = 1/2.

The failure of finding R = 0 at the phase transition is
probably due to finite bond dimension and finite system
size. Indeed, apart from potential numerical deficiencies there
are finite size corrections which have been neglected in the
derivation of Eq. (14). These finite size effects become more
important as the mass gap goes to zero and the correlation

0 0.2 0.4 0.6 0.8 1

1

2

0 0.2 0.4 0.6 0.8 1

0.2

0.3

0.4

c

0.46 0.5 0.54
0

0.1

c

eσ
Rt

FIG. 4. (Color online) A phase transition between two topological
phases. The diagram shows the c dependence of the parameters t

(blue, squares) and R (red, circles). The inlet shows the deviation of
the measured form of the string order matrix from its analytical form.
We used adapted increments in the vicinity of the phase transition.
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length increases. Let us summarize two observations which
provide evidence for this assertion. First of all, the error bars
in Fig. 4 which quantify the discrepancy of the numerical result
from the analytical expression (42) grow significantly close to
the transition point. In addition, we compared the numerical
results for R at c = 1/2 using two different bond dimensions
D = 200 and D = 400. The drop from R = 0.31 to R = 0.20
is another signal of finite size effects.

Of course, the transfer matrix method allows one to
compute the string order exactly, even for finite size of the
system, once the eigenvalues and the eigenvectors of the
transfer matrix have been determined. However, our numerical
analysis here should merely be regarded as a proof of principle.
A more accurate treatment will be left for future work. Despite
our numerical limitations we still clearly see the crossover from
one topological phase to another.

In addition to the previous investigations we applied the
same method to the full parent Hamiltonians H1 and H2. Also
in this case, the numerical analysis confirmed our analytical
expectation that the corresponding ground states belong to the
nontrivial topological classes 1 and 2, respectively.

V. CONCLUSIONS

In our paper, we have searched for a physical observable
which allows one to distinguish the N different topological
phases of PSU (N ) spin chains. To achieve this goal we
have proposed a nonlocal string order operator in Eq. (13)
and we have shown that its expectation value provides an
unambiguous measure for the topological phase the chain
resides in. In essence, our string order parameter extracts
the projective class of the representations according to which
potential (virtual) massless boundary modes transform in.
It should be emphasized that, in contrast to earlier studies,
our string order parameter is matrix valued. All matrix
entries are equal in absolute value and identical to zero
in the topologically trivial phase. The information about
the—quantized—topological phase of the chain is contained
in the relative complex phases between different matrix
entries. More precisely, the quotient of two suitably chosen
matrix elements is completely sufficient in order to extract
the quantized topological order parameter determining the
topological phase. Our analytical results are supported by
the numerical study of a family of PSU (3) Hamiltonians
which interpolates between two distinct nontrivial topological
phases. Since the realization of these two phases enforces
the breaking of inversion symmetry, the Hamiltonian employs
a new construction scheme making explicit use of higher
order Casimir operators. We find full agreement between our
analytical predictions and the numerical results. Indeed, Fig. 4
clearly exhibits a robust quantization of the topological order
parameter.

Even though tentative results have been included here, we
believe that SU (N ) spin chains deserve further numerical
study. First of all, our numerical investigation of the string
order parameter only covered a special family of SU (3) spin
chains, the interpolation between two topologically nontrivial
phases. While this provided the desired proof of principle that
our method works in practice, one could similarly analyze
the behavior of the string order parameter when interpolating

between a nontrivial phase and the trivial phase. An important
open problem in this context is the identification of the type
of phase transitions that occur when crossing the boundary
between two distinct topological phases. For our model
Hamiltonian (41) we analyzed the gap behavior in the vicinity
of the transition point c = 1/2. However, at this point of time
our DMRG results are not accurate enough to be able to
draw a final conclusion. Another possible avenue to uncover
the nature of the phase transition is the investigation of
the scaling behavior of the entanglement entropy.45,46 The
latter is directly accessible from the DMRG representation
of the ground state. However, just as before accurate re-
sults would require increasing bond dimension and system
size.47

Another natural direction is the extension of our numerical
study to larger values of N . Since PSU (N ) spin chains have
N distinct topological phases, we expect a complicated phase
diagram with a large number of different phase transitions
which might be implemented. It would be interesting to
investigate whether each pair of mutually distinct phases is
directly connected or whether they are only connected via
a series of phase transitions each of which changes the ZN

topological order by one unit, for instance.
It is evident that systems which are invariant under

continuous symmetries different than SU (N ) should also
admit a string order parameter similar to the one described
in the current paper. Even though the groups based on SU (N )
are the most interesting ones due to the large size of their
center, it is known21 that two and three distinct nontrivial
topological phases, respectively, also exist for the symmetry
groups E6 and Spin(2N ) [the universal cover of SO(2N )].
Just as for PSU (N ) a single expectation value will not be
sufficient to distinguish between different types of topological
order for such symmetries. In addition, an extension to
certain classes of supersymmetric or anisotropic systems looks
feasible. It should be noted, however, that the respective
symmetries of these systems are described by supergroups
or quantum groups and that a classification of topological
phases is still missing in that context. Nevertheless, it seems
likely that our formula (13) will be applicable in anisotropic
spin chains with SUq(N ) quantum group symmetry without
modification.

It remains to be clarified how our string order parameter
relates to other recent proposals for the determination of the
projective class of (virtual) edge modes.20,22 While there is no
fundamental obstruction in applying these techniques to the
case of PSU (N ), the details still need to be worked out. In
particular, we would like to remark that both Refs. 20 and 22
adopt a perspective which is somewhat different from ours:
Their discussion is based on relations between discrete group
elements (possibly interpreted as elements of subgroups of
a continuous group), while our proposal only features the
underlying Lie algebra and, in fact, only its Abelian part. As
a result, our final formula (13) for the string order parameter
is easy to evaluate on the standard basis of the spin states.
This statement is independent of whether the ground state is
represented as a matrix product state or not.

Let us finally address an interesting conceptual issue
that arises in connection with our work. For the original
SU (2) AKLT chain it is well known that the existence of
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a nontrivial Rommelse-Den Nijs string order7 is equivalent
to the breaking of a discrete hidden symmetry Z2 × Z2.48–51

This intimate relationship can be made manifest by means
of a nonlocal transformation of the spin chain. It would be
very interesting to investigate whether a similar relationship
exists for general SU (N ) spin chains and to analyze the
symmetry breaking patterns of discrete groups that arise in
this way when considering the full hierarchy of topological
phases.21 The relationship between string order and discrete
hidden symmetries for higher rank groups was also discussed
in Ref. 52.
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APPENDIX A: WEYL GROUP INVARIANCE OF
CLEBSCH-GORDAN COEFFICIENTS

In this Appendix it will be shown that the expression P (μ,ν)
defined in Eq. (29), is invariant under a Weyl transformation of
the weights μ and ν. Note that the expression can be rewritten
as a trace over three orthogonal projections:

P (μ,ν) =
∑

i ∈ μ,j ∈ ν

s ∈ μ + ν

|〈s|ij 〉|2 = tr(�μν�H�μν). (A1)

Recall that Hk ⊂ H(k,L) ⊗ H(k,R): �H denotes the orthogonal
projection onto this subspace. �μν denotes the orthogonal
projections on the weight space Vμ ⊗ Vν ⊂ H(k,L) ⊗ H(k,R).

The Weyl group is not only the symmetry group of the
root system, but it can also be defined as the quotient group
of the normalizer of the maximal torus with the centralizer of
the maximal torus: W = N (T )/Z(T ). The maximal torus of
SU (N ) simply consists of all diagonal matrices with elements
of U (1) on the diagonal and determinant 1. Just like elements
in the Cartan subalgebra h∗, elements of the maximal torus
have a simple action on states vλ with a well-defined weight
λ. For h = exp H (H ∈ h) one simply obtains

ρ(h)vλ = exp λ(H )vλ. (A2)

Let σ : SU (N ) ⊃ N (T ) → W → Aut(�V ), where �V is the
space of weights appearing in the representation V . Explicitly,
σwμ(h) = μ(w−1hw). Weyl invariance of P (μ,ν) will follow
from

P (σwμ,σwν) = P (μ,ν). (A3)

The advantage of this approach is that since w ∈ SU (N ), the
action of the Weyl group is trivial to implement on V1 ⊗ V2.
Denote ρi : SU (N ) → Vi for i ∈ {1,2}. Using this action we

aim to show that

ρi(w)�μρi(w)−1 = �σwμ. (A4)

Since if this holds, the Weyl transformed function P can be
rewritten as

P (σwμ,σwν)

= tr(�σwμσwν�H�σwμσwν)

= tr(ρ12(w)�μνρ12(w)−1�Hρ12(w)�μνρ12(w)−1)

= tr(�μνρ12(w)−1�Hρ12(w)�μν)

= tr(�μν�H�μν) = P (μ,ν), (A5)

which shows that P (μ,ν) is Weyl invariant. In the second
equality ρ12 = ρ1 ⊗ ρ2. In the third equality we make use of
the cyclic property of the trace to cancel the outer two maps
ρ12(w) and ρ12(w)−1. In the fourth equality we make use of
the fact that ρ12(w) and �H commute. We are left to check the
validity of Eq. (A4). Let vμ ∈ Vμ and let h be an element in
the maximal torus. The chain of equalities,

ρ(h)ρ(w)vμ = ρ(w)ρ(w−1hw)vμ

= μ(w−1hw)ρ(w)vμ

= σwμ(h)ρ(w)vμ, (A6)

shows that ρ(w)vμ ∈ Vσwμ. From this, Eq. (A4) follows.

APPENDIX B: CASIMIR OPERATORS OF su(3)

The Casimir elements of a Lie algebra are polynomials in
its generators Sr which are central (i.e., which commute with
each of the generators). For su(3) there are two algebraically
independent Casimir operators. One is the usual square of
the spin vector �S2. It is associated with a nondegenerate
invariant form and can be expressed as �S2 = κrsS

rSs where
κrs is an invariant symmetric rank two tensor. The second
Casimir is a cubic invariant (�S,�S,�S) = drstS

rSsSt which can
be constructed from a nonvanishing invariant symmetric rank
three tensor drst . Up to normalization, all invariant tensors of
su(3) are obtained by choosing suitable representations and by
considering traces of the form,

ta1···an = tr(Sa1 · · · San ). (B1)

These tensors are not all independent. On the contrary, there
exist algebraic relations between the tensors which may be
used to reduce higher rank tensors to those of relatively low
degree.

For su(3) the most convenient way of finding explicit
expressions for the tensors (B1) is to employ the fundamental
representation in which the spin operators Sr = λr/2 are
proportional to the Gell-Mann matrices λr (see, e.g., Ref. 8).
One then defines

κrs = tr(λrλs) = 2δrs, (B2)

drst = 1
4 tr({λr,λs}λt ). (B3)

235142-12



DISCRIMINATING STRING ORDER PARAMETER FOR . . . PHYSICAL REVIEW B 86, 235142 (2012)

By construction, κrs and drst are manifestly symmetric. The
matrices κrs and its inverse, κrs = δrs/2, serve as a metric
which can be used to raise and lower indices, just as in
special and in general relativity. The tensors which are used
for the construction of the Casimir operators are κrs and
drst = κruκsvκtwduvw.

Since Casimir operators commute with the action of su(3),
they are represented as scalars on irreducible representations.
With our normalization conventions, the eigenvalues of the
quadratic and the cubic Casimir operator,

Q = 4 κrsS
rSs and C = 8 drstS

rSsSt , (B4)

on the irreducible representation with highest weight λ are
given by

Qλ = (λ,λ + 2ρ)

= 2

3

(
λ2

1 + λ2
2 + λ1λ2 + 3λ1 + 3λ2

)
and (B5)

Cλ = 1

2
(λ1 − λ2)

[
2

9
(λ1 + λ2)2 + 1

9
λ1λ2 + λ1 + λ2 + 1

]
.

In contrast to Qλ, the cubic Casimir Cλ can distinguish between
a representation λ = (λ1,λ2) and its dual λ+ = (λ2,λ1). We
also see that Cλ vanishes on all representations which are
self-dual.
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C. Gross, L. Mazza, M. C. Bañuls, L. Pollet, I. Bloch, and S. Kuhr,
Science 334, 200 (2011).

30I. Affleck and E. H. Lieb, Lett. Math. Phys. 12, 57 (1986).
31F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
32F. D. M. Haldane, Phys. Lett. A 93, 464 (1983).
33D. Bykov, arXiv:1206.2777.
34S. Rachel, R. Thomale, M. Führinger, P. Schmitteckert, and

M. Greiter, Phys. Rev. B 80, 180420 (2009).
35Note that invariance is implied automatically if the ground state is

unique.
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Symmetry-protected topological phases of one-dimensional spin systems have been classified using group
cohomology. In this paper, we revisit this problem for general spin chains which are invariant under a continuous
onsite symmetry group G. We evaluate the relevant cohomology groups and find that the topological phases are
in one-to-one correspondence with the elements of the fundamental group of G if G is compact, simple, and
connected and if no additional symmetries are imposed. For spin chains with symmetry PSU (N ) = SU (N )/ZN ,
our analysis implies the existence of N distinct topological phases. For symmetry groups of orthogonal,
symplectic, or exceptional type, we find up to four different phases. Our work suggests a natural generalization
of Haldane’s conjecture beyond SU (2).
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I. INTRODUCTION

The integer quantum Hall effect is the best-known example
of a condensed matter system where a physical observable,
the electric conductance, can be expressed in terms of a
discrete, Z-valued topological invariant. The interest in such
topological phases of matter was renewed with the prediction
of a spin quantum Hall effect and an associated Z2 topological
invariant in graphene with time-reversal-invariant spin-orbit
interactions.1 Soon after, a generalization of the spin quantum
Hall effect to three dimensions was found.2 By now, a com-
prehensive classification of noninteracting fermionic systems
is available which describes various types of topological
insulators and superconductors.3–6 These results have been
motivated by the symmetry classification of quadratic random
Hamiltonians à la Altland and Zirnbauer.7,8

More recently, the focus shifted towards interacting sys-
tems. Due to strong correlations between the electrons, the
notion of a band structure ceases to be valid and alternative
methods to detect and to classify topological phases have to be
sought. The bulk-boundary correspondence, i.e., the prediction
of massless surface modes at the interface between two
topologically distinct bulk systems, serves as a useful guiding
principle. Evidence may also be gained from characteristic
entanglement spectra9,10 which contain information about
potential surface modes by introducing virtual interfaces into
the system or from single-particle Green’s functions.11 The
first systematic studies of topological phases of interacting
fermions have been concerned with Majorana chains.12–14 For
these chains, it was shown that the Z classification of the
corresponding noninteracting symmetry class is reduced to a
Z8 classification. Similar results for other systems have been
obtained in Refs. 15,16.

Topologically nontrivial phases are not confined to
fermionic systems but they also arise naturally in bosonic
models, e.g., in interacting spin systems. A specific defor-
mation of the SU (2)-invariant antiferromagnetic Heisenberg
spin chain with spin S = 1, the so-called Affleck-Kennedy-
Lieb-Tasaki (AKLT) spin chain,17,18 was probably the first
example of this type. This system exhibits the following
hallmarks of a topological phase: with periodic boundary
conditions there is a gap above a unique ground state,18

one has a bulk-boundary correspondence: open boundary

conditions imply massless edge modes carrying a topological
quantum number,19 the ground state leads to a characteristic
entanglement spectrum,20,21 and last but not least there exists
a nonlocal string order parameter.22

Various extensions of the AKLT setup to higher-rank
groups and supersymmetric systems have been considered
(see, e.g., Refs. 18,23–26). Other generalizations include q

deformations of the symmetry group which can be used to
describe anisotropic spin chains.27–29 In all these examples,
the matrix product (or valence bond) state formalism plays
a crucial role.30–33 Indeed, the latter is extremely useful
when classifying symmetry-protected topological phases of
one-dimensional spin systems since boundary and entan-
glement properties are almost trivial to access.34–36 In the
meantime, also proposals have been presented on how to
address fermionic systems in this framework and how to
lift the classification to higher-dimensional systems using
projective entangled pairs and, more generally, tensor network
states35,37,38 (see also Ref. 39 for a C∗-algebraic point of view).

In this paper, we are considering gapped antiferromagnetic
spin chains which are invariant under the action of an arbitrary
compact connected simply connected simple Lie group G. In
contrast, we do not impose any additional symmetries such as
time-reversal or inversion symmetry. Under these conditions,
the general classification predicts that the distinct topological
phases are labeled by the elements of a certain cohomology
group.34,35 Depending on the concrete system under study,
the relevant cohomology groups are H 2(G/�,U (1)) where
� ⊂ Z(G) denotes a central subgroup of G. Elements of
this cohomology label the distinct classes of projective
representations of G/�. The group � is determined by the
representations of G which are used to describe the physical
spins.

To our knowledge, so far explicit results on the co-
homology groups H 2(G/�,U (1)) have only appeared in
the condensed matter literature for the orthogonal groups
SO(N ) = Spin(N )/Z2 where two topological phases have
been found.40 In addition, the cohomologies for the classical
groups SU (N ) and SP (N ) (corresponding to � = {1}) have
been written in Ref. 37. However, the corresponding phases all
turn out to be topologically trivial, at least in one dimension. In
our paper, we will fill this gap and show that the cohomology
group H 2(G/�,U (1)) is isomorphic to �, which can also be
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interpreted as the fundamental group of G/� [see Eq. (11)].
Hence, there are |�| distinct topological phases. This number
becomes maximal for � = Z(G) in which case the resulting
group PG = G/Z(G) is called the projective group associated
with G. For PSU (N ), for instance, our result implies the
existence of N distinct topological phases.

Aside from stating an abstract classification result, we
also discuss how each nontrivial topological phase can be
engineered using matrix product states. For this purpose, we
state an explicit formula which determines the projective class
of a representation of G if it is interpreted as a projective
representation of PG [see Eq. (14)]. The topological phases
fall into different hierarchies with regard to different choices
of central subgroups � ⊂ Z(G). This information is sufficient
to determine the projective class with respect to any of the
quotients G/�. While, from a mathematical perspective, we
are merely summarizing well-known facts, we hope that
the explicitness of our presentation will be useful to the
practitioner.

Our paper ends with a discussion of physical implications.
We first reveal a physical interpretation for the hierarchy of
topological phases. More importantly, the mere existence of
such a hierarchy suggests a natural generalization of Haldane’s
conjecture41,42 to arbitrary symmetry groups. In particular, we
conjecture the existence of confined spinon phases in spin
chains with SO(2N ) symmetry and long-range interactions.
Even though spin chains with higher-rank symmetry groups
such as SU (N ) or SO(2N ) are unlikely to be found in
real materials, there is a chance that the corresponding
Hamiltonians can be engineered artificially using ultracold
atoms in optical lattices.43–46 Also, special points in the moduli
space of spin chains and spin ladders might exhibit an enhanced
symmetry. This for instance happens for SU (2) spin chains
which are known to possess an SU (3)-symmetric point for a
certain value of the couplings.47

The paper is organized as follows. In Sec. II, we present
a number of physical and mathematical prerequisites. From
a physical perspective, this includes a precise definition of
the setup, a brief review of the classification of topological
phases in terms of the second cohomology of the symmetry
group, and the general definition of matrix product states. The
mathematical part is concerned with the relation between a
Lie algebra g and its various associated compact connected
Lie groups, which can all be represented as a quotient G/� of
a simply connected universal covering group G. We introduce
the congruence class [λ] of an irreducible representation λ of
g. The value of [λ] measures whether the representation can be
lifted to a linear representation of PG or not. We also recall the
intimate connection between central extensions and covering
groups.

Section III contains the main result of the paper: We
identify the second cohomology of the groups G/� with
their fundamental group �, thereby giving a direct classi-
fication of topological phases. In a case-by-case study, we
afterwards determine the number of topological phases and
their characteristics for each compact connected simple Lie
group. Our presentation includes explicit formulas for the
congruence class of representations which may be used to
characterize gapless edge modes. In Sec. IV, we return to
the physical realization of topologically nontrivial phases

in spin chains. We give a physical interpretation for the
mathematical hierarchy of topological phases in terms of
a blocking procedure. Otherwise, the main focus centers
around a generalization of Haldane’s conjecture to spin chains
with arbitrary continuous symmetry. Section V features an
application of our formalism to SU (N ) spin chains that arise
in the context of cold-atom systems. Our results support the
observation of Ref. 46 that nontrivial topological phases should
be realizable in such systems. Finally, Sec. VI provides a
summary and concluding remarks. In particular, we briefly
sketch the modification of our classification when space-time
symmetries are enforced.

II. PHYSICAL AND MATHEMATICAL PREREQUISITES

The first half of this section is used to define one-
dimensional (1D) spin systems with continuous symmetries
and to briefly review the classification of topological phases
in such systems by means of cohomology groups. For later
convenience, we also recall the characterization of nontrivial
topological phases in terms of massless edge modes. In the
second half, we present some important facts on Lie algebras
and Lie groups which are well known in mathematics but
required for a self-contained presentation of our results. Our
main focus is the relation between Lie algebras and Lie groups.
We discuss which groups can be obtained by exponentiating
a given Lie algebra g and which representations of g lift to
which of these groups, possibly projectively. For this purpose,
we introduce congruence classes of g representations. Finally,
we discuss the relation between finite coverings of Lie groups
and their central extensions.

A. Physical setup

We base the definition of 1D spin chains on the following
data: A simple Lie algebra g of symmetries, a representation
Hk of g attached to each of the sites k, and a Hamiltonian
H ∈ Endg(H) which acts on the total Hilbert spaceH = H1 ⊗
. . . ⊗ HL of the system and which commutes with the action
of g. In addition, one might wish to impose specific boundary
conditions (open, periodic, . . .) which are compatible with the
action of g. For physical reasons, the Hamiltonian should be
local, i.e., one should be able to write it as a sum H = ∑

k Hk

where each summand Hk only affects a finite number of sites.
Since the quadratic Casimir is the only second-order invariant
of a simple Lie algebra, every Hamiltonian with two-body
interactions will be a function of the product �Sk · �Sl of the two
“spin operators” on the sites k and l.

Given this setup, it is important to note that g alone
does not (necessarily) determine the full symmetry of the
system. In particular, there might be discrete symmetries (e.g.,
translations but also onsite symmetries) which necessarily
need to be described by a group. They can not be captured
by the symmetry algebra g but may well be relevant for a
characterization and/or classification of topological phases.
Aside from the choice of g, also the choice of representations
Hk will play a crucial role in the discussion of discrete
symmetries. To give just one trivial example, translations by
one site only have a chance to be a symmetry of the system
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if all spaces Hk are chosen to be isomorphic and periodic
boundary conditions are imposed.

More important for the purpose of this paper, when lifting
the symmetry described in terms of the Lie algebra g to a
group symmetry G, one might have several choices and not all
of them will lead to a faithful representation of G on the spaces
Hk . A simple example is the S = 1 representation of SU (2)
which can not distinguish the two central elements ±1 ∈
SU (2) and hence only corresponds to a faithful representation
of SU (2)/Z2 = SO(3). In Secs. II E and II F and then in
Sec. III, we will discuss additional (and less familiar) examples
of this type. Being aware of subtle differences such as those
just mentioned is the key to the classification of topological
phases in the presence of continuous symmetries.

B. Classification of topological phases

A complete classification of one-dimensional gapped spin
systems has been obtained in Refs. 34–36. We use this and
the following section to review these results. In case one is
only interested in topological phases sharing the same onsite
symmetry group G, the classification is particularly simple:
Different topological classes are in one-to-one correspondence
with the cohomology group H 2(G,U (1)) [with trivial action
of G on U (1)]. If, in addition, space-time symmetries are taken
into account, the classification becomes more complicated.36

In this paper, we wish to keep the presentation simple, thus
neglecting potential space-time symmetries throughout the
main part of the text. Necessary modifications arising from the
presence of space-time symmetries will be briefly discussed
in the Conclusions.

Before we proceed, let us briefly recall the definition of
the cohomology group H 2(G,U (1)). For this purpose, let us
consider maps ω : G × G → U (1) which are solutions to the
cocycle equation

ω(g1,g2) ω(g1g2,g3) = ω(g2,g3) ω(g1,g2g3). (1)

The set of cocycles forms an Abelian group G under pointwise
multiplication. Furthermore, there are trivial solutions of the
cocycle condition which, for f : G → U (1), have the form

ω(g1,g2) = f (g1g2)/f (g1)f (g2). (2)

Solutions of this form are called coboundaries and they form
a subgroup K of G. The cohomology group above is defined
as the quotient H 2(G,U (1)) = G/K. In the cases of interest,
this is a finite Abelian group (Proposition 2.2 of Ref. 48).

Cocycles arise naturally from projective representations of
G, i.e., from maps D : G → U (N ) satisfying

D(g1)D(g2) = ω(g1,g2) D(g1g2). (3)

From this point of view, the cocycle condition (1) is just the
associativity condition for the multiplication law (3), while
the identification of coboundaries with the trivial cocycle
arises from the desire to trivialize the transformation D(g) →
f (g)D(g).

From a physical perspective, the relevance of the second
cohomology group H 2(G,U (1)) can be understood as follows:
Each element � ∈ H 2(G,U (1)) labels a different central
extension G̃(�) of G. If ω ∈ � is a representative of the class
�, this central extension G̃(�) is defined as the set G × U (1)

System with open BC

Symmetry GG̃(Ω) G̃(−Ω)

Reduced system

GG̃(Ω) G̃(−Ω)

FIG. 1. (Color online) Physical and virtual edge modes (red dots)
in topologically nontrivial spin chains. For simplicity of illustration,
the spin chain is depicted as a continuous system.

with group multiplication

(g,α) · (h,β) := [gh,αβ ω(g,h)/ω(1,1)]. (4)

One can check that cocycles ω belonging to the same class
� give rise to isomorphic central extensions. The choice
ω(g1,g2) = 1 corresponds to the trivial central extension
� = [0]. Now the important point is the following: While
the total system is invariant under the symmetry group G,
the system will exhibit gapless edge modes when considered
with open boundary conditions.34,35 The latter transform under
one of the enhanced symmetries G̃(�) if the system is in
a topologically nontrivial phase. If the system has periodic
boundary conditions, the same reasoning applies. However,
now the edge modes are not real but they rather appear virtually
in the bipartite entanglement spectrum after part of the system
has been traced out.20,21 The two possibilities are sketched in
Fig. 1.

So far, we have not discussed the class of functions that
we wish to allow for the cocycles ω : G × G → U (1) and
the functions f : G → U (1) entering Eqs. (1) and (2). For
the finite groups mostly used in Refs. 34–36 there is actually
no restriction. However, since our paper is concerned with
continuous groups, one should impose additional regularity
conditions. Demanding continuity turns out to be too restric-
tive. Indeed, all we need is that linear and projective representa-
tions are implemented in terms of continuous homomorphisms
R : G → U (N ) and D : G → PU (N ), respectively, where
PU (N ) = U (N )/U (1). In this formulation, any reference
to cocycles is missing altogether. In fact, in order to be
admissible, the cocycles only have to respect a Borel structure
on the relevant groups G and U (1), i.e., they have to
be measurable functions. Since a Borel structure is less
restrictive than a topology, this opens the possibility for
discontinuous jumps on sets of measure zero. Fortunately,
these rather technical aspects are not relevant for the further
presentation of the subject. For this reason, we refer interested
readers to the more detailed expositions available in the
original literature.48–50

C. Matrix product states

The previous statements can be motivated most easily in
the language of matrix product states (MPS).34,35 Since all
its characteristics should be visible at zero temperature, we
expect the topological phase of a system to be fully encoded in
its ground state |ψ〉. In this paper, we will throughout assume
the absence of spontaneous symmetry breaking such that the
ground state is unique (the more general case can be considered
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H1

BL H(1,R) H(2,L) H(2,R) H(3,L) BR

H2 H3

A[1] A[2] A[3]|I1〉 |I2〉

FIG. 2. (Color online) Sketch of a matrix product state for a
system with open boundary conditions. The states in the boundary
spaces BL and BR (red) correspond to massless edge modes.

along the lines of Refs. 35 and 36). It is also crucial to require an
energy gap between the ground state and the first excited state,
even in the thermodynamic limit, since otherwise long-range
correlations would exist which might spoil the existence of
a topological invariant altogether. We regard the requirement
of having a gap as being equivalent to demanding a finite
correlation length.

As is well known, any state, including the ground state |ψ〉,
on a periodic chain of length L can be represented as a matrix
product state of the form33

|ψ〉 =
∑

i1,...,iL

tr(A[1] i1 . . . A[L] iL) |i1 . . . iL〉, (5)

where the vectors |ik〉 constitute an orthonormal basis of the
Hilbert spaceHk . If the dimension of the matrices A[k] remains
bounded uniformly when L is sent to infinity, it makes sense
to speak about the thermodynamic limit of the state |ψ〉.
One can then specify very precise conditions under which
the state defines correlation functions with a finite correlation
length.32,33 At the same time, they ensure the existence of a
mass gap even in the thermodynamic limit. Throughout the
paper, we are only interested in situations where |ψ〉 is finitely
correlated and invariant under the action of G.

From a mathematical perspective, matrix product states
arise by associating two auxiliary sites (k,L) and (k,R) to each
physical site k which carry a Hilbert space H(k,L) and H(k,R).
Moreover, we demand that H(k,R) = H∗

(k+1,L). This guarantees
the existence of intertwiners Ik : C → H(k,R) ⊗ H(k+1,L). Al-
ternatively, one has a state Ik(1) = |Ik〉 ∈ H(k,R) ⊗ H(k+1,L),
a completely entangled pair, which is invariant under the
action of G. Under these prerequisites, the matrices A[k]

can be regarded as intertwiners from H(k,L) ⊗ H(k,R) to Hk .
The state |ψ〉 can then be viewed as the image of a product
|I 〉 = |I1〉 ⊗ . . . ⊗ |IL−1〉 of completely entangled pairs under
the map A[1] ⊗ . . . ⊗ A[L]. By construction, the state |ψ〉 is
invariant under the action of G. The construction of a matrix
product state is sketched in Fig. 2.

Let R[k] : G → U (Hk) be a unitary representation of G

on Hk and let, similarly, D[k] : G → U (H(k,L)) be a unitary
(potentially projective) representation on H(k,L). The inter-
twining property for the homomorphisms A[k] translates into
the equation (see also Ref. 51)

R[k](g) · A[k] = D[k](g)A[k]D[k+1](g)−1. (6)

In this equation, the maps A[k] are interpreted as homomor-
phisms from H(k,R) = H∗

(k+1,L) to H(k,L) with values in Hk . It
should be emphasized that the auxiliary space H(k,L) ⊗ H(k,R)

can always be regarded as a representation of G even when
the two auxiliary spaces H(k,L) and H(k,R) themselves are only
projective representations of G (as long as their projective

class sums up to the trivial one). This is due to the fact that
potential phase factors arising in the multiplication law (3) are
canceling out on the right-hand side of Eq. (6).

In a chain with open boundary conditions, the auxiliary
spaces BL = H(1,L) and BR = H(L,R) at the two boundaries
are associated with the massless edge modes and, as advertised
before, these are capable of carrying a projective representation
of G. This is equivalent to the statement that they carry a linear
representation of two centrally extended groups G̃(�) and
G̃(−�), respectively (if the system is not in a superposition of
topological phases). The situation is pictured in Fig. 1.

It was the remarkable insight of Refs. 34 and 35 that the
(discrete) projective class � is invariant under continuous
deformations of the physical system. For this reason, it can
be viewed as a quantitative measure for the topological phase
the system resides in. The continuity of the deformation
is equivalent to the preservation of a gap. Moreover, it is
important to emphasize that the previous classification only
holds as long as we restrict ourselves to deformations which
retain the full original symmetry group G.

If we view the same system from the angle of a different
symmetry G′ and if we allow for deformations which preserve
G′ instead of G, the classification of topological phases will
change. In particular, one and the same system can belong
to different topological classes, depending on the symmetry
group under consideration. It is thus incorrect to think about �

as being an inherent property of the physical system, without
specifying the precise symmetry group the classification refers
to. This basic but important observation will play a key role in
Sec. IV.52

It should finally be noted that the dimension of the spaces
BL and BR alone is not sufficient to discriminate between
topological phases.53–55 It really requires knowledge of the
full representation type � ∈ H 2(G,U (1)). In principle, the
latter should be measurable by a suitable nonlocal order
parameter.40,54,55 In contrast, it is not clear to us whether
this knowledge can be inferred unambiguously from (a
nonspecialized version of) the entanglement spectrum.

As we have just reviewed, the general principles leading
to the classification of symmetry protected topological phases
are well known. What is currently still missing is an explicit
evaluation of the cohomology groups H 2(G,U (1)) for general
continuous groups G. Moreover, for the purpose of construct-
ing nontrivial topological phases it will be important to have an
explicit map between the boundary representations BL and BR

and their associated projective classes � and −�. Section III
will provide a complete solution to both problems. However,
before we can state our results, we first need to recall some
facts about the structure of continuous groups.

D. Review of SU(2) spin chains: The difference between
SU(2) and SO(3)

In an SU (2) spin chain, the spin operators �Sk on each site
take values in the spin algebra su(2). The relevant irreducible
representations are labeled by the spin S ∈ {0,1/2,1,3/2, . . .}.
By definition, the spin chain possesses an SU (2) symmetry
if the total spin generator �S = ∑

k
�Sk commutes with the

Hamiltonian H .
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For the classification of topological phases, we need to
carefully consider which symmetry group G is entering
the cohomology group H 2(G,U (1)). If the physical spins
transform in half-integer spin representations, the group SU (2)
is acting faithfully and there is only one topological phase.
Indeed, it is well known that SU (2) only admits the trivial
central extension SU (2) × U (1).

The situation is different if the physical spins transform
in integer spin representations. In that case, SU (2) does
not act faithfully and the actual symmetry is only SO(3) =
SU (2)/Z2. However, the edge modes can transform in
projective representations of SO(3) and all of them can be
thought of as ordinary representations of SU (2). We now
thus find two different topological classes, corresponding to
edge modes transforming either in integer or in half-integer
representations of SU (2).34 The two central extensions [by
U (1)] corresponding to these two classes are SO(3) × U (1)
and U (2).56 It should be noted that the difference can already
be seen in the two central extensions of SO(3) by Z2, namely,
SO(3) × Z2 and SU (2).

In view of the envisaged generalization to spin chains based
on SU (N ) and other Lie groups, it is useful to understand
the difference between SU (2) and SO(3) more precisely
in topological terms. When viewed as geometric manifolds,
SU (2) and SO(3) look identical locally, i.e., they have the
same underlying Lie algebra su(2). However, they differ in
their global topology. While SU (2) is simply connected, the
group SO(3) is not simply connected, i.e., it admits nontrivial
loops which can not be contracted to a point. Phrased more
mathematically, SO(3) has fundamental group π1[SO(3)] =
Z2 while π1[SU (2)] = {1}. In other words, SU (2) can be
viewed as a twofold covering of the group SO(3). As we
will review in the following section, the close tie between
fundamental groups and covering groups extends to other
symmetry groups, e.g., to SU (N ).

E. From Lie algebras to Lie groups

Let us now consider a general spin chain whose spin
operators take values in a Lie algebra g.57 For convenience,
we will assume g to be simple. The rank of g will be denoted
by r . The finite-dimensional irreducible representations of
g are labeled by integrable weights λ, i.e., by r-tuples of
non-negative integers. Denote this set by P +. By relaxing the
positivity condition, one obtains the weight lattice P . The root
lattice will be denoted by Q. It is a sublattice of P and both
can be regarded as Abelian groups. In Sec. III, we shall show
that, under certain natural assumptions, the topological classes
of g-symmetric spin chains are in one-to-one correspondence
with the elements in the quotient P/Q.58

SU(2) λ1

FIG. 3. (Color online) Visualization of different congruence
classes for SU (2). The picture shows the weight lattice P (all spins) in
terms of colored dots. The root lattice Q (integer spins) corresponds
to the large black dots. Different colors indicate different congruence
classes. The shaded blue box is a possible representative of P/Q.

In the case g = su(2), the weight lattice59 is given by P =
Z, while the root lattice is given by Q = 2Z such that P/Q =
Z2 (see Fig. 3). This reproduces the classification we obtained
for the symmetry group SO(3) but not that for SU (2) even
though both are associated with the same Lie algebra su(2).
If at all, our assertion can thus only be true for a subset of
symmetry groups with Lie algebra g. In what follows, we
review the classification and construction of such Lie groups.
We also single out a Lie group PG which arises naturally from
a physical perspective and whose second cohomology group
coincides with the quotient P/Q.

Any simple Lie algebra g can be exponentiated to a compact
connected Lie group. However, as we have just seen in
Sec. II D, several distinct Lie groups might have the same
underlying Lie algebra g. The Lie groups associated with g all
look the same locally but they differ in their global topological
properties, more precisely in their fundamental group.60 To
obtain a description of all Lie groups belonging to g, we
start with the unique simply connected Lie group G. The Lie
group G serves as a universal cover, i.e., all other Lie groups
belonging to g can be obtained by taking quotients G� = G/�

where � ⊂ Z(G) is an arbitrary nontrivial subgroup of the
center of G. The groups G� have center Z(G�) = Z(G)/�

and fundamental group π1(G�) = �. It is custom to denote
the centerless Lie group with Lie algebra g by the symbol
PG = G/Z(G) and to call it the projective group belonging
to G.61 Among the Lie groups associated with g it has the
maximal fundamental group Z(G), i.e., its topology is the
most complicated. A list of all classical simple Lie algebras g
and the associated simply connected group G can be found in
Table I, together with the relevant data for P/Q and Z(G). For
readers not dealing with Lie theory every day, we should stress
that the simply connected double cover of SO(N ) is known as
Spin(N ).

F. Lifting representations

In the following paragraphs, we will compare the represen-
tation theory of the groups G and G� (especially PG) and
relate it to the representation theory of g. By considering in-
finitesimal group actions, it is clear that any finite-dimensional

TABLE I. Simple Lie algebras g and their associated compact connected simply connected Lie group G. The table also contains the
congruence group P/Q of g and the center Z(G) of G.

Lie algebra g An Bn Cn Dn E6 E7 E8 F4 G2

Other name su(n + 1) so(2n + 1) sp(2n) so(2n)
G SU (n + 1) Spin(2n + 1) Sp(2n) Spin(2n) E6 E7 E8 F4 G2

P/Q ∼= Z(G) Zn+1 Z2 Z2 Z4 (n odd) Z3 Z2 {1} {1} {1}
Z2 × Z2 (n even)
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representation of G, G� , or PG must also be a representation
of g. In contrast, the opposite conclusion only holds for the
simply connected Lie group G, the universal cover of all the
groups G� . This restriction arises from the fact that the center
Z(G) ⊂ G might act nontrivially on a representation, thus
preventing it from descending to the quotient G� = G/�.
Nevertheless, the latter can still be regarded as a projective
representation of G� .

In order to study this issue more systematically, let us
consider an irreducible representation Vλ of g (and hence G)
with highest weight λ ∈ P +. As a consequence of Schur’s
lemma, the elements of the center Z(G) are represented by
multiples of the identity operator. Put differently, Vλ can be
viewed as dim(Vλ) copies of one and the same one-dimensional
representation [λ] of the Abelian group Z(G).62 We call [λ]
the congruence class of λ. [λ] can be interpreted as an element
[λ] ∈ Hom(Z(G),U (1)) of the character group of Z(G). In
our situation, with Z(G) being finite, the character group
Hom

(
Z(G),U (1)

)
is isomorphic to the center Z(G) itself,

albeit the identification is not canonical.
We note that the algebraic structures on P + and on

Hom(Z(G),U (1)) (considered as an additive group) are
compatible with the embedding specified above in the sense
that [λ + μ] ≡ [λ] + [μ]. Indeed, the left-hand side of this
equation is determined by the action ofZ(G) on the irreducible
representation Vμ+λ. However, the latter can be realized as
an invariant subspace of the tensor product Vλ ⊗ Vμ on
which the two actions of Z(G) on the individual factors
just multiply trivially, leading to the class [λ] + [μ]. Since
the trivial representation of G is associated with the trivial
representation [0] of Z(G), the previous relation can be used
to extend the definition of [ · ] from P + to the full weight
lattice P . This is also consistent with the observation that if
λ+ denotes the representation conjugate to λ, one easily finds
[λ+] ≡ [λ]+ ≡ −[λ], as is implied by the existence of the
trivial representation inside of Vλ ⊗ V ∗

λ . Moreover, all groups
G� admit an action on g by conjugation which is insensitive
to the action of the center. Since the generators of g can be
interpreted as elements of Q, this means that the root lattice
Q is mapped to [0] and, in fact, one obtains a homomorphism
P/Q → Hom(Z(G),U (1)). A closer inspection shows that
the homomorphism just constructed is actually an isomor-
phism (Ref. 63, Theorem 8.30).64 Summarizing our previous
discussion, we obtain an isomorphism

P/Q ∼= Hom(Z(G),U (1)) ∼= Z(G). (7)

Any representation λ of G with [λ] ≡ [0] is a linear repre-
sentation of PG, while all the other ones are only projective
representations.

Similar considerations apply to any subgroup � ⊂ Z(G) of
the center. By the same arguments as above, we can define a
surjective homomorphism [ · ]� : P → Hom(�,U (1)). Since
all the groups involved are Abelian, one can regard the
character group Hom(�,U (1)) of � as a quotient of the
character group Hom(Z(G),U (1)) [see also Eq. (35)] and
hence as a sublattice of P/Q. If Q� denotes the kernel of
the map [ · ]� , we obviously obtain the isomorphisms

P/Q�
∼= Hom(�,U (1)) ∼= �. (8)

All linear representations λ of G� satisfy [λ]� ≡ [0]. If this
equation is not satisfied, λ is a projective representation of
G� . Note that any representation with [λ] ≡ [0] automatically
satisfies [λ]� ≡ [0] for all � ⊂ Z(G). More generally, the
relation [λ]� ≡ [0] implies [λ]�′ ≡ [0] for all �′ ⊂ � ⊂ Z(G).
Additional details on the relationship between the maps [ · ]�
and [ · ]�′ for different choices of � and �′ can be found
in Sec. IV. In the next section, we will argue that all the
groups appearing in Eq. (8) can also be identified with the
cohomology group H 2(G�,U (1)), thus relating our findings
to the classification of topological phases.

G. Central extensions of compact Lie groups

As discussed in Sec. II B, central extensions of an arbitrary
group K are classified by the cohomology group H 2(K,U (1)).
For a finite group K , the determination of the second coho-
mology group essentially reduces to a purely combinatorial
problem. The situation is very different for continuous groups
since now cocycles and coboundaries have to be measurable
functions of continuous variables, resulting in an infinite
number of constraints.

For concreteness, we assume all Lie groups to be finite
dimensional, compact, and connected in what follows. In
this case, the cohomology H 2(K,U (1)) receives contributions
from two sources: there might be local obstructions to the
trivialization of cocycles. These are classified by central
extensions of the Lie algebra belonging to K and they are
absent if K is semisimple. Moreover, there might be global
obstructions arising from the existence of noncontractible
loops in K , i.e., from a nontrivial fundamental group π1(K).65

Our previous statements can brought into a mathematically
precise form and they result in the following proposition (for
a proof, see e.g. Ref. 48, Proposition 2.1):

Proposition 1. Let K be a finite-dimensional compact
connected simple Lie group; then, there is a canonical
isomorphism

H 2(K,U (1)) ∼= Hom(π1(K),U (1)). (9)

Since π1(K) is finite and Abelian in the cases of interest,
the right-hand side actually consists of all representations of
π1(K) and can be identified with the group π1(K) itself (even
though not in a canonical way).

Let us now discuss the implications of the previous
proposition for simply connected simple Lie groups G. Since
the fundamental group is trivial, one immediately finds that
H 2(G,U (1)) is trivial as well. In other words, G neither
admits nontrivial central extensions nor nontrivial projective
representations. All finite-dimensional representations of the
underlying Lie algebra g lift to linear representations of G.

In the next step, we drop the simply connectedness, i.e., we
allow for noncontractible loops. As was recalled in Sec. II E,
every simple Lie group can be written as G� = G/� where
G is its simply connected universal cover and � ⊂ Z(G)
is a subgroup of the center of the latter. The fundamental
group of G� can be written as π1(G�) = �. In order to
illustrate the content of Proposition 1, we are now constructing
the central extensions of G� explicitly. Fix an element
� ∈ H 2(G�,U (1)) and interpret it as a representation
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� : � → U (1). The associated central extension is given by

G̃�(�) = [G × U (1)]/� , (10)

where the central subgroup � ⊂ Z(G) of G is embedded
diagonally into G × U (1) according to the prescription γ �→
[γ,�(γ )]. Our previous arguments also imply that the projec-
tive representations of G� are just the representations of G

(or g) themselves. Different projective classes correspond to
different actions of the subgroup �. Indeed, due to Schur’s
lemma, the center � can always be interpreted as being
embedded in U (1) (possibly not injectively) when acting on
an irreducible representation.

III. TOPOLOGICAL PHASES OF GAPPED SPIN CHAINS

In this section, we will give a classification of topological
phases in gapped spin chains whose spin operators belong
to an arbitrary simple Lie algebra g. This is achieved by
evaluating the cohomology groups H 2(G�,U (1)) explicitly
by relating them to the central subgroup � ⊂ Z(G) defining
G� . We also provide a dictionary that characterizes massless
boundary modes according to the congruence class of their
representation. We conclude with a detailed application of our
general result to each individual simple Lie group. Among
these, the symmetry group PSU (N ) is the most interesting
since the number of distinct topological phases turns out to
increase with N . Also, the symmetry groups PSO(2n) stand
out since their four topological phases are characterized by
either Z2 × Z2 or Z4, depending on whether n is even or odd.

A. Topological classes for spin chains with general
Lie group symmetry

In all that follows, we use the notation introduced in
Secs. II E and II F. We shall assume that the physical onsite
Hilbert spaces Hk can be regarded as linear representations of
the group G� . In particular, the central subgroup � ⊂ Z(G)
acts trivially on each Hk such that these spaces are associated
with the class [0] ∈ P/Q� .

We are now prepared to present the main result of the
paper. Combining the statements of Secs. II F and II G, the
classification of topological phases can be obtained from
the following chain of isomorphisms:

H 2(G�,U (1)) ∼= Hom(�,U (1)) ∼= � ∼= P/Q�. (11)

In other words, the different topological phases of a spin chain
with symmetry group G� are in one-to-one correspondence
with the elements of its fundamental group �. In particular,
the topological phases of a system with PG symmetry can
be identified with the center of G. In this case, the previous
equation reduces to

H 2(PG,U (1)) ∼= Hom(Z(G),U (1)) ∼= Z(G) ∼= P/Q.

(12)

The interpretation of the center as the quotient of the weight
lattice P of g modulo its root lattice Q is sometimes useful for
the concrete evaluation of Z(G), e.g., for exceptional groups
such as E6. More importantly, it provides the avenue for a
characterization of topological phases in terms of edge modes
as will be explained in Sec. III B. The relevant data for P/Q

[and hence Z(G)] for different choices of g can be found
in Table I. The important question as to how to determine
the relevant symmetry group G� entering Eq. (11) will be
addressed in Sec. IV. Let us just emphasize here that one can
be certain not to miss a possible phase if one employs Eq. (12)
instead. In this sense, the symmetry group PG can be regarded
as a kind of master symmetry.

B. Edge-mode representations as an indicator for the
topological phase

We will argue in Sec. IV that the topological phases of
systems with G� symmetry admit, in many cases, a natural
embedding into the topological phases of systems with PG

symmetry. Hence, we will restrict the following analysis to the
symmetry group PG.

Let us thus consider a PG-symmetric gapped spin chain
with a unique PG-invariant ground state which resides in
a well-defined topological class. According to our previous
discussions, this statement has three implications. First, all
irreducible representations λ appearing in the decomposition

Hk =
⊕

λ

Vλ (13)

of the physical onsite Hilbert spaces Hk should belong to the
trivial class [0] ∈ P/Q. Second, there should exist a unique
class � ∈ Hom(Z(G),U (1)) labeling the topological phase.66

Third, the edge modes (possibly virtual) on the left-hand
side and on the right-hand side of the (reduced) system
should transform in representations which correspond to the
projective classes � ∈ P/Q and −� ∈ P/Q, respectively.67

If we decompose the auxiliary Hilbert space BL = H(1,L) (or
BR = H(L,R)) at the boundary into irreducible representations
of g similar to Eq. (13), then all the λ should belong to the
same class � ∈ P/Q (or −� ∈ P/Q). The previous few lines
clearly exhibit the need for an efficient way of determining the
projective class of a given representation λ of g.

Fortunately, there exists an explicit formula which deter-
mines the congruence classes [λ] ∈ P/Q of any irreducible
representation λ of g.68 If λ = (λ1, . . . ,λr ) ∈ P + denotes the
associated integrable weight, one simply finds

[λ] ≡
r∑

i=1

λiνi mod M, (14)

where the congruence vectors ν are summarized in Table II.
In all cases but so(4n) (= D2n), the class [λ] is specified by a

TABLE II. Congruence vectors for simple Lie algebras (Ref. 68).

Lie algebra Congruence vector(s) ν Modulus M

An (1,2, . . . ,n) n + 1
Bn (0, . . . ,0,1) 2
Cn (1,0,1,0, . . .) 2
D2n+1 (0, . . . ,0,1,1) 2

(2,0,2, . . . ,2,2n − 1,2n + 1) 4
D2n (0, . . . ,0,1,1) 2

(2,0,2, . . . ,2,0,2n − 2,2n) 4
E6 (1, − 1,0,1, − 1,0) 3
E7 (0,0,0,1,0,1,1) 2
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single number. Only for so(4n) are there two choices of (ν,M)
one has to consider at the same time. In this case, the class is
given by a tuple [a,b] of two numbers. Since formula (14) is
pretty abstract, we will use the subsequent sections to evaluate
it in great detail for all relevant groups. We shall begin with
SU (N ) and continue with all the remaining simple simply
connected Lie groups, including Spin(N ) [the twofold cover
of SO(N )] and SP (2N ) as well as the exceptional groups E6

and E7. The remaining exceptional Lie groups E8, F4, and
G2 have a trivial center and hence do not allow for nontrivial
topological phases.

C. Topological classes for SU(N) spin chains

We assume that N � 2 since SU (1) is just the trivial group.
The group SU (N ) is simply connected and it has a center
ZN . When defined in matrix form, the center consists of the
matrices ωl11 with ω = exp(2πi/N ) and l = 0, . . . ,N − 1.
The restriction of the prefactor to the N distinct N th roots
of unity is implied by the requirement that SU (N ) matrices
should have unit determinant.

The group SU (N ) serves as the universal cover of the
projective special unitary group PSU (N ) = SU (N )/ZN . Ac-
cording to our general result (12), topological phases of SU (N )
spin chains are classified by the cohomology group

H 2(PSU (N ),U (1)) ∼= ZN . (15)

In other words, there are N distinct topological phases. For
N = 2, this reproduces the familiar result for PSU (2) =
SO(3) (see also Sects. II D and III D).

Let us now describe which type of edge mode indicates
the presence of which topological phase. As explained in
Sec. III B, this requires knowledge about the congruence class
of all irreducible representations of SU (N ). Representations
of SU (N ) can be described in terms of integrable weights
λ = (λ1, . . . ,λN−1) as above or, alternatively, in terms of
Young tableaux λ = {l1; . . . ; lN−1}. In terms of the weight,
the partition of the associated Young tableau is specified by
the numbers

li =
N−1∑
k=i

λk. (16)

By definition, the number li determines the number of boxes
in the ith row of the tableau.

According to our general result (14) and Table II, the
projective class of a representation λ is given by

[λ] ≡
N−1∑
k=1

kλk mod N. (17)

This formula divides the weight lattice P into N sublattices,
each of them labeled by an element of P/Q. An illustration
of this fact is shown in Fig. 3 and in Fig. 4 for the particular
cases of SU (2) and SU (3), respectively.

We will now briefly recall in which way the N different
classes of SU (N ) representations correspond to the N different
representations of the center ZN ⊂ SU (N ). If ρ : SU (N ) →
U (Vλ) denotes the irreducible representation with highest
weight λ, the center will act as follows:

ρ(ωl11) = ωl[λ]11. (18)

SU(3)

λ1

λ2

SP (4)

λ1

λ2

FIG. 4. (Color online) Visualization of different congruence
classes for SU (3) and SP (4). The pictures show the respective weight
lattice P in terms of colored dots. The root lattice Q corresponds to
the large black dots. Different colors indicate different congruence
classes. The shaded blue boxes are possible representatives of P/Q.
We clearly see that, for SP (4), the topological class is independent
of λ2.

This equation is evident for the trivial representation and for the
fundamental representation λ = (1,0, . . . ,0) (which has [λ] ≡
1 and can thus be regarded as the generator ofZN ). The general
validity follows from linear extrapolation (i.e., from taking
multiple tensor products of the fundamental representation).

We wish to emphasize that formula (17) admits a nice
interpretation in terms of Young tableau: The projective class
of a representation λ just corresponds to the number of boxes
|λ| modulo N . Indeed, a simple rewriting of Eq. (17) using the
identity (16) yields

[λ] ≡
N−1∑
i=1

li mod N ≡ |λ| mod N. (19)

This result can also be understood as follows. The basic
representation of SU (N ) is the N -dimensional fundamental
representation. It is represented by a Young tableau with a
single box. Hence, it has [λ] ≡ 1 and can be regarded as
the generator of the group ZN . All the other representations
of SU (N ) can be found in iterated tensor product of the
fundamental representation with itself. By the Littlewood-
Richardson rule for calculating tensor products, the number
of boxes (and hence the projective class) increases by one unit
in each iteration until we eventually reach the N th power of the
tensor product. Here, the phase is reset to zero and the counting
starts anew. In the process of calculating tensor products, one
might need to delete columns with N boxes. However, deleting
N boxes does not have an effect if the number of boxes is only
counted modulo N anyway.

D. Topological classes for Spin(N) spin chains

Let us now look at the orthogonal symmetry groups
SO(N ). In what follows, we restrict our attention to N � 3
since SO(1) = Z2 is discrete and SO(2) = U (1) fails to be
simple. Since SO(N ) is not simply connected, it is more
appropriate for the purpose of our paper to speak about
the universal covering group Spin(N ) which is a twofold
cover of SO(N ). As usual, the covering implies the identity
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SO(N ) = Spin(N )/Z2. For N = 3, we recover the familiar
case Spin(3) = SU (2) with SO(3) = Spin(3)/Z2.

Surprisingly, the groups Spin(N ) fall into two (actually
three) separate families with rather different properties as can
be inferred from Table I. For odd N = 2n + 1 (n � 1), the
center is Z2, while for even N = 2n the center is Z4 for odd
values of n and Z2 × Z2 for even n. The cohomology groups
classifying the topological phases of Spin(N ) symmetric spin
chains are thus given by

H 2(SO(2n + 1),U (1)) ∼= Z2,

H 2(SO(2n)/Z2,U (1)) ∼=
{
Z4, n odd

Z2 ⊕ Z2, n even.
(20)

In particular, there are four phases if N is even and two
phases if N is odd. We will treat these two cases separately in
what follows. A partial classification, focusing on SO(N ), has
previously appeared in Ref. 40.

1. Case Spin(n + 1)

For odd N = 2n + 1 (n � 1), the center is Z2 and there
are two different classes of representations. They can be
distinguished by the last entry of the Dynkin label λ =
(λ1, . . . ,λn),

[λ] ≡ λn mod 2. (21)

If γ is the generator of Z2 ⊂ Spin(N ) and ρ : Spin(N ) →
U (Vλ) denotes the irreducible representation with highest
weight λ, the center is represented by

ρ(γ ) = (−1)[λ]11. (22)

Accordingly, the situation is very similar to that of SU (2).
Representations with [λ] ≡ 0 are linear representations of
Spin(N ) and of SO(N ). On the other hand, representations
with [λ] ≡ 1 are spinorial, i.e., they are linear representations
of Spin(N ) but only projective ones of SO(N ). Since the center
of SO(N ) is trivial for N = 2n + 1, this covers all possible
cases.

2. Case Spin(2n)

The treatment of SO(N ) with even N = 2n (n � 2)
becomes slightly more involved but also more interesting.
In this case, the center of Spin(N ) is Z2 × Z2 for even n

and Z4 for odd n.69 This observation in particular implies
that the groups SO(N ) = Spin(N )/Z2 have a center Z2

themselves such that one also needs to consider the group
PSO(2n) = SO(2n)/Z2.70 In order to determine the class of
a representation λ = (λ1, . . . ,λn), we have to calculate the
Z2 ⊕ Z4-valued quantity

[λ] =
[

[λ]1

[λ]2

]

≡
[

λn−1 + λn mod 2

2λ1 + 2λ3 + . . . + (n − 2)λn−1 + nλn mod 4

]
.

(23)

The first entry [λ]1 determines whether the representation
is a linear representation of SO(2n) ([λ]1 ≡ 0) or rather a
projective one ([λ]1 ≡ 1). The second entry [λ]2 is required

to produce the correct group structure of Z(Spin(2n)) and
it is relevant when it comes to determining whether λ is a
representation of PSO(2n). For simplicity of presentation,
we shall treat the cases n even and n odd separately.

We start with n even. Note that the second entry [λ]2 is
always even in this case. Moreover, both components of [λ]
are completely independent. Hence, precisely four of the eight
possibilities,

[0,0], [0,2], [1,0], [1,2], (24)

are realized and one can easily check that they satisfy an
addition law corresponding to Z2 ⊕ Z2 (considered as a
subgroup of Z2 ⊕ Z4). If γ = [1,0] and ε = [0,2] denote the
generators of these two central subgroupsZ2 ⊂ Spin(2n), their
action on an irreducible representation ρ : Spin(2n) → U (Vλ)
of highest weight λ is given by

ρ(γ ) = (−1)[λ]1 11 and ρ(ε) = e
iπ
2 [λ]2 11. (25)

Representations λ of Spin(2n) with [λ] = [0,0] are linear rep-
resentations of PSO(2n). All the remaining ones correspond
to projective representations of PSO(2n).

If we turn to n odd, the analysis becomes even simpler. Now,
the two entries [λ]1 and [λ]2 of [λ] are either both even or both
odd. Put differently, the first component [λ]1 is completely
determined by the second [λ]2 by taking its value modulo two.
This again realizes four of the eight possibilities,

[0,0], [1,1], [0,2], [1,3], (26)

but now with an addition law corresponding to Z4 (again
considered as a subgroup of Z2 ⊕ Z4), the generator being
η = [1,1]. On an irreducible representation ρ : Spin(2n) →
U (Vλ) of highest weight λ, the center acts as

ρ(η) = e
iπ
2 [λ]2 11. (27)

The generator η2 of the subgroup Z2 ⊂ Z4 ⊂ Spin(2n) which
needs to be used to descend from Spin(2n) to SO(2n) is
mapped to ±11 under ρ, depending on whether [λ]2 is even
or odd. We thus obtain the following three-level hierarchy:
representations of Spin(2n) with [λ]2 ≡ 0 are linear represen-
tations of SO(2n) and PSO(2n). If [λ]2 ≡ 2, one deals with
a linear representation of SO(2n) which is only a projective
representation of PSO(2n). And in the two remaining cases,
one has a projective representation of SO(2n) and PSO(2n).

We note that in both of the superordinate cases treated, even
and odd n, there exist modifications of formula (23) which give
the classification of topological phases in a more direct and
canonical way: in the first case one could divide the second
component by two and in the second case one could restrict the
attention to the second component from the very beginning.
We decided to present both cases on the same footing in order
to stay close to the original reference.68 It seems plausible that
our results also have a natural explanation in terms of Young
tableaux. However, in this paper we refrain from adopting this
perspective.

E. Topological classes for SP(2N) spin chains

The group SP (2N ) is simply connected and its center is
isomorphic to Z2. We should carefully note that there we are
talking about the compact symplectic group SP (2N ) of rank N

125145-9



KASPER DUIVENVOORDEN AND THOMAS QUELLA PHYSICAL REVIEW B 87, 125145 (2013)

(see below for a brief comment on the noncompact version). As
usual, the topological phases are classified by the cohomology
group

H 2(SP (2N )/Z2,U (1)) ∼= Z2. (28)

We thus have two distinct topological phases. Given any
weight λ = (λ1, . . . ,λN ), the associated congruence class is
determined by the number71

[λ] ≡ λ1 + λ3 mod 2. (29)

The two different values of [λ] divide the weight lattice P

into two sublattices. For SP (4), this is depicted in Fig. 4.
In an irreducible representation Vλ of highest weight λ, the
center Z2 ⊂ SP (2N ) is implemented in the same fashion as
in Eq. (22). Representations with [λ] ≡ 0 are representations
of SP (2N ) and SP (2N )/Z2 while [λ] ≡ 1 leads to linear rep-
resentations of SP (2N ) which are projective representations
of SP (2N )/Z2.

In order to prevent potential confusion, let us finally
comment on the (probably more familiar) noncompact group
SP (2N,R). This group arises as the symmetry group of a
symplectic form defined on a 2N -dimensional real vector
space. The fundamental group of SP (2N,R) is given by
π1(SP (2N,R)) = Z. In order to arrive at a simply connected
group, one thus needs to pass on to an infinite cover of
SP (2N,R). The group also has a well-known double cover, the
so-called metaplectic group. From a representation theoretic
point of view, the transition from the compact instance of
a group to a noncompact version requires one to replace
finite-dimensional representations with infinite-dimensional
ones, just alone for reasons of unitarity. The topological
classification of systems involving infinite-dimensional rep-
resentations is beyond the scope of this paper. However, our
example shows that one needs to be very precise about the real
form and the global structure of the symmetry group under
consideration.

F. Topological classes for E6 and E7 spin chains

Just for completeness, we also treat the two exceptional
cases in the E series. By abuse of notation, we also use the
symbols E6 and E7 for the simply connected groups associated
with the corresponding Lie algebras. From Table I we infer
that the respective centers of these groups are given by Z3 and
Z2. We immediately conclude that the cohomology groups
classifying the topological phases are given by

H 2(E6/Z3,U (1)) ∼= Z3,
(30)

H 2(E7/Z2,U (1)) ∼= Z2.

Hence, there are three topological phases of E6-invariant and
two phases of E7-invariant spin chains.

Let us discuss the E6 case first. The representations
(λ1, . . . ,λ6) of E6 fall into three different classes according
to the value of

[λ] ≡ λ1 − λ2 + λ4 − λ5 mod 3. (31)

If γ ∈ Z3 ⊂ E6 is the generator of the center, the action in an
irreducible representation ρ : E6 → U (Vλ) of highest weight

λ is determined by

ρ(γ ) = e
2πi

3 [λ]11. (32)

Representations with [λ] ≡ 0 are linear representations of the
projective group E6/Z3. The remaining two classes are only
linear representations of E6 but projective representations of
E6/Z3.

Let us now turn our attention to E7. The representations
(λ1, . . . ,λ7) of E7 fall into two different classes according to
the value of

[λ] ≡ λ4 + λ6 + λ7 mod 2. (33)

The action of the generator γ ∈ Z2 ⊂ E7 on an irreducible
representation of highest weight λ is specified by formula
(22). Representations with [λ] ≡ 0 are linear representations
of E7 and E7/Z2. In contrast, representations with [λ] ≡ 1 are
linear representations of E7 but only projective representations
of E7/Z2.

IV. PHYSICAL PERSPECTIVES

In Sec. III, we classified topological phases for all spin
chains whose spins belong to a simple Lie algebra g. The
classification was intimately related to a division of represen-
tations of g, thought of as becoming manifest in gapless edge
modes, into different classes of projective representations of a
Lie group G� associated with g. In this section, we will analyze
which of the possible Lie groups G� is actually the relevant
symmetry. We will also investigate the hierarchy of topological
phases that arises by considering one and the same system
from different perspectives, based on symmetries G� and G�′

where � and �′ are related by the inclusion �′ ⊂ � ⊂ Z(G).
Moreover, we point out an interesting connection of our
results with a natural generalization of Haldane’s conjecture
to arbitrary spin chains. In the final part of this section, we
illustrate our general considerations with two examples.

A. Identification of the symmetry group

In the following, we will consider a fixed gapped spin
system with spin operators in a simple Lie algebra g and a
Hamiltonian that commutes with all elements of g. Further-
more, we assume the action of g on the total Hilbert space to
be faithful and the existence of a unique and g-invariant ground
state. The precise symmetry group which is relevant for the
classification of potential topological phases [see Eq. (11)]
depends on the nature of the onsite Hilbert spaces Hk .72 The
simply connected Lie group G can always be regarded as a
symmetry of the system. However, its action on the Hilbert
spaces Hk might not be faithful, leading to the existence of
nontrivial kernels �k . Whenever g acts faithfully on the total
Hilbert space, this kernel will be a subgroup �k ⊂ Z(G) of the
center of G. Under these circumstances, the actual symmetry
group (neglecting symmetries not related to g) is GA = G/�A,
with �A = ∩k�k being the intersection of all kernels �k , and
it is this group which enters the calculation of the cohomology
group (11) that characterizes potential topological phases.
Note that the actual symmetry group as defined above might
(and will generally) differ from that obtained by identifying
� with the kernel of G that arises when acting on the total
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Hilbert spaceH = ⊗
k Hk .73 It is thus important to distinguish

between the overall symmetry and symmetries that are realized
locally, even in the absence of translation invariance.

Our previous statements can easily be connected to our
discussion of congruence classes of representations of G in
Sec. III. The system has symmetry G� = G/� if all physical
onsite Hilbert spaces Hk are linear representations of G� ,
i.e., if [Hk]� ≡ [0]. In contrast, it is not required that all
these representations are faithful. Instead, we are searching
for the “smallest” among the groups G� which is still linearly
represented on all spaces Hk . Inverting the logic, the actual
symmetry group GA = G/�A of the system is associated with
the maximal subgroup �A ⊂ Z(G) such that [Hk]�A

≡ [0].

B. Hierarchies of topological phases

As a physical system can be invariant under more than one
of the groups G� , it seems appropriate to discuss the relation
between the potential topological phases predicted for different
choices of � ⊂ Z(G) (keeping the system fixed). Let us thus
consider a central subgroup � which is contained in �A such
that � ⊂ �A ⊂ Z(G). In what follows, we wish to argue that
this inclusion of subgroups gives rise to a natural inclusion
of topological phases. For the two symmetries GA and G� , the
topological phases are described by

H 2(GA,U (1)) ∼= Hom(�A,U (1)),
(34)

H 2(G�,U (1)) ∼= Hom(�,U (1)).

We expect that GA provides a finer resolution of topological
phases than G� . In other words, from the perspective of
G� , some of the original topological phases can not be
distinguished and need to be identified. It turns out that this
identification is done via the Abelian group �A/� which
measures to which extent �A is larger than �. This suggests a
relation of the form H 2(G�,U (1)) ∼= H 2(GA,U (1))/(�A/�)
and indeed a simple calculation yields

Hom(�,U (1)) ∼= Hom(�A/(�A/�),U (1))
(35)∼= Hom(�A,U (1))/(�A/�).

By considering embedding chains of central subgroups, the
previous procedure yields a whole hierarchy of topological
phases.

In the previous example, it was straightforward to change
the perspective from GA to G� with � ⊂ �A and then back
from G� to GA. In many situations, however, it is even possible
to change the perspective from GA to a smaller group G�

right away. In this case, the latter is obtained from a central
subgroup � satisfying �A ⊂ � ⊂ Z(G). For instance, a fixed
system with symmetry G can (under certain circumstances)
be interpreted as a system with symmetry PG (or any of the
other groups G�). This requires no modification of the physical
system, but rather a reinterpretation of its underlying Hilbert
space by means of a blocking procedure in which several
sites are combined into one. Under blocking, certain tensor
products of GA representations indeed lift to a representation
of G� since the individual projective classes (with respect to
�) add up and might eventually give [0] ∈ H 2(G�,U (1)).

For the sake of concreteness, we explain the idea in a simple
example. Most antiferromagnetic spin chains are modeled

using a chain of onsite Hilbert spaces Hk which are alternating
between a representation space H and its dual H∗, both having
a well-defined congruence class with respect to the action of
Z(G). Let us assume that the actual symmetry group is GA,
with a specific central subgroup �A ⊂ Z(G). In this situation,
we can combine two neighboring sites H and H∗ into a
single site Hblock = H ⊗ H∗ which resides in the trivial class
[Hblock] ≡ [H] + [H∗] ≡ [0] with respect to PG. Blocking
thus allows us to move within the hierarchy of topological
phases. It might happen, e.g., in spin ladders, that the Hilbert
space H decomposes into several irreducible representations
of G which belong to distinct congruence classes. In this
situation, blocking does not give rise to a symmetry PG.
Examples for hierarchies of topological phases are presented
in Sec. IV D.

Parts of our discussion might look very academic at first
sight. However, there are also direct physical implications.
Imagine two spin chains with actual symmetry groups GA and
GB . If we couple the two chains, thus building a spin ladder,
the actual symmetry group of the complete system will be
determined by the intersection �A∪B = �A ∩ �B ⊂ Z(G). In
the case of SU (2) spin ladders involving a mixture of integer
and half-integer spin representations, the intersection is trivial,
thus confirming the observation of Ref. 74 that edge modes are
not topologically protected.

C. A generalization of Haldane’s conjecture to arbitrary groups

As we will now explain, our analysis hints towards a natural
generalization of Haldane’s conjecture. In its original formu-
lation for the thermodynamic limit of the antiferromagnetic
SU (2) Heisenberg Hamiltonian for spin S representations,
it consists of the following two statements:41,42 First of all,
there is a unique ground state which is translation invariant.
Second, there is a gap above the ground state if S is integer
and the chain is gapless if S is half-integer (i.e., if 2S is odd).
Manifold evidence has been found to support the conjecture.
In particular, it is well motivated in the semiclassical limit
where the spin S is large and where one can derive an effective
description in terms of nonlinear σ models with or without �

term.41,42 Also, the absence of a gap could be proved using the
nontrivial action of the center of SU (2) on representations
with half-integer spin.75,76 On the other hand, a rigorous
mathematical proof of the existence of a mass gap for integer
spins still seems to be open. The invention of the AKLT chain
(in which a mass gap can be proven18) was an attempt to cure
this unsatisfactory situation. In any case, the relevance of the
center of SU (2) and of its action on specific representations
already indicates a close relation to our present work.

Rather recently, the existence of Haldane gaps was revisited
for different types of SU (N )-invariant spin chains23,77 (see
Ref. 47 for some older work). In particular, the authors
of Refs. 23 and 77 claimed that SU (N ) chains with two-
site interactions possess a Haldane-type gap due to spinon
confinement if the physical sites are described by an irreducible
representation λ whose Young tableau possesses a number |λ|
of boxes which can be divided by N . In view of our discussion
in Sec. III C, this just corresponds to the statement that
[λ] ≡ [0], i.e., the representation of SU (N ) needs to descend
to a representation of PSU (N ). With PSU (N ) playing the
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same role as SO(3), this suggests an obvious generalization of
Haldane’s original conjecture to an arbitrary simply connected
symmetry group G: The center Z(G) should act trivially,
[λ] ≡ 0, in order to find a Haldane phase.

However, the authors of Refs. 23 and 77 noted something
even more interesting: A confinement similar to the one above
can also be observed whenever |λ| and N have a nontrivial
common divisor different than N . With an important difference
to the previous case, the ground state is degenerate now and
the interaction needs to encompass N/q + 1 sites where q =
gcd(|λ|,N ). Our discussion of the hierarchy of topological
phases immediately exhibits: Under the conditions specified,
the representation λ is a linear representation of the group
SU (N )/Zq . Since the second cohomology of this group is
isomorphic to Zq , this still gives potential edge modes the
chance to transform in a nontrivial projective representation,
thus providing a topological argument for the presence of a
Haldane gap. Proving the absence of a mass gap in systems
where |λ| and N do not have common divisors appears to be a
more challenging endeavor (see, however, Ref. 76 for two-site
interactions).

An extrapolation of our previous arguments suggests that
spinon confinement (for a suitable interaction range) exists if
and only if the physical system allows for a nontrivial way
of enhancing its symmetry at (virtual) edges. Equivalently,
the physical Hilbert spaces Hk have to belong to the trivial
congruence class [HK ]� ≡ [0] with respect to at least one
nontrivial central subgroup � ⊂ Z(G) such that the relevant
symmetry of the system is G� , a proper quotient of G. For
matrix product states, the existence or absence of a mass gap
(with respect to a specific model Hamiltonian) is intimately
related to the possibility of realizing it in an “injective”
way.33,51 Most likely, a suitable adaption of these arguments
provides the route for a proof of our statement.

A nontrivial test of our conjecture should be possible along
the lines of Refs. 23 and 77 for the groups Spin(4n) (see
Sec. III D). In this case, the center is given by Z2 × Z2 and it
admits three inequivalent embeddings Z2 ⊂ Z2 × Z2, either
into the left or right factor or diagonally. It turns out that among
the three quotients Spin(4n)/Z2, two are isomorphic, leading
to the so-called semispinor group SS(4n), while the remaining
one is isomorphic to SO(4n) [but not isomorphic to SS(4n)
as long as n �= 2].60 The resulting hierarchy of quotients is
displayed in Fig. 5. One can thus imagine to build spin chains
based on linear representations of SO(4n) or SS(4n) which
are only projective representations of PSO(4n). It is likely
that some of these chains would enjoy topological protection,
resulting in nontrivial edge modes transforming in a projective

PSO(4n)

SO(4n) SS(4n)

Spin(4n)
Z2 Z2

Z2 Z2

Z2×Z2

PSO(4n+ 2)

SO(4n+ 2)

Spin(4n+ 2)

Z2

Z2

FIG. 5. The hierarchy of topological phases in Spin(2n) spin
chains.

representation of SO(4n) or SS(4n), respectively. A priori,
it is not clear whether gapped spin chains of this type can
be realized with two-site interactions. Block renormalization
and the experience with SU (N ), however, suggest that such
spin chains should exist if interactions across several sites are
permitted. Similar remarks apply to Spin(4n + 2) which has a
nontrivial central subgroup Z2 ⊂ Z4.

D. Two illustrative examples: SU(6) and SU(12) spin chains

In this section, we wish to focus on spin chains with SU (6)
symmetry. This example nicely illustrates the technical aspects
and the physical implications of our work. The group SU (6)
has center Z6. We have three different choices for nontrivial
subgroups �. Either we choose Z2, Z3, or the full group Z6

itself. Depending on the choice of physical Hilbert spaces Hk ,
one then ends up with one of four symmetry groups: SU (6),
PSU (6), SU (6)/Z2, or SU (6)/Z3.

The topologically richest systems are those with PSU (6)
symmetry. In this case, we expect six different topological
phases which manifest themselves in the congruence class
[B] ∈ Z6 of (virtual) edge modes. They are labeled by [B] ∈
{[0],[1],[2],[3],[4],[5]}. In systems with SU (6)/Z3 symmetry,
we still have three distinct topological phases, which are
labeled by [B]Z3 ∈ {[0],[1],[2]}. Since the center of SU (6)/Z3

is isomorphic to Z2 and the double quotient gives rise to[
SU (6)/Z3

]
/Z2 = PSU (6), the phases of PSU (6) can be

identified with the phases of SU (6)/Z3 up to the identi-
fications [0] ∼ [3], [1] ∼ [4], and [2] ∼ [5], thus [B]Z3 ≡
[B] mod 3. Conversely, if we have a topological phase
[B]Z3 , there is a chance (but no need) that it admits an interpre-
tation as a phase of type [B] or [B] + [3] in a PSU (6) chain.

Similarly, a system with SU (6)/Z2 has two distinct topo-
logical phases labeled by [B]Z2 ∈ {[0],[1]}. Now, we have
PSU (6) = [SU (6)/Z2]/Z3 and [B]Z2 ≡ [B] mod 2. The
whole hierarchy of topological phases for SU (6) is depicted in
Fig. 6. We can easily confirm that Haldane phases should
exist for representations with [B] ∈ {[0],[2],[3],[4]} albeit
they are protected by different symmetries. These numbers
are precisely those having nontrivial common divisors with
6 [the 6 of SU (6)], in accord with the results of Refs. 23
and 77. They are represented in black color in the lower line
of Fig. 6. For higher-rank groups, the hierarchies becomes
more involved, but they can be derived following the same
principles. In Fig. 7, the hierarchy for the group SU (12) is
depicted. The extra structure arises from the fact that Z12 has
subgroups, for example Z3 and Z4, that are not subgroups of
each other.

PSU(6)

SU(6)/Z3

SU(6)/Z2

SU(6)

Z3

Z2

Z2

Z3

{0, 1, 2, 3, 4, 5}={0, 1, 2, 3, 4, 5}

{0, 1, 2}
{0, 1}

{0}

FIG. 6. (Color online) The hierarchy of topological phases in
SU (6) spin chains.
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PSU(12)

SU(12)/Z6 SU(12)/Z4
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FIG. 7. The hierarchy of topological phases in SU (12) spin chains.

V. APPLICATION TO COLD-ATOM SYSTEMS

The final section of our paper is devoted to the application
of our general formalism to the study of quantum magnetism
in cold-atom systems. The continuous symmetries relevant in
this context are SP (4) [or, equivalently, Spin(5)] and SU (N ),
with even values of N up to N = 10.44–46 In what follows,
we shall focus on the series SU (N ). We first outline how
the Heisenberg Hamiltonian arises as a particular limit of a
Fermi-Hubbard model. Afterwards, we discuss how particular
examples fit into our general framework.

A. SU(N) Heisenberg model from cold atoms

The realization of an SU (N ) symmetry requires a large
number of degenerate energy levels. As was emphasized in
Ref. 44, the latter arise naturally in earth-alkaline atoms.
Since the nuclear spin I reaches values up to I = 9

2 (for
87Sr), one can easily achieve degeneracies up to 2I + 1 = 10.
The resulting states can be identified with the N -dimensional
fundamental representation of SU (N ), with N = 2I + 1.
Earth-alkaline systems exhibit an almost perfect decoupling
of nuclear and electronic spin degrees of freedom. In practice,
this means that the degeneracy is not lifted by interactions.
For this reason, the SU (N ) symmetry is still reflected in the
Hamiltonian describing the dynamics of the atoms in an optical
lattice. Effectively, one thus arrives at an SU (N )-symmetric
Fermi-Hubbard model. Similar to the familiar case of the
Mott insulator phase, there exists a certain parameter range
where the model can be approximated in terms of an SU (N )
antiferromagnetic Heisenberg spin chain.44,46

B. Realization of topologically nontrivial phases

For the physics of the system, it is essential to know the
SU (N ) representation on which the spin operators act. This
representation is determined by the occupation number per
site.44,46 The situation that will be of interest for us is the
two-orbital case at half-filling, i.e., with N atoms per site.
As was argued in Ref. 46, the relevant SU (N ) representation
λ is then specified by a Young tableau with two columns
and N/2 rows. Using the general formula (19), we find that
[λ] ≡ [0]. Accordingly, λ can not only be interpreted as a
representation of SU (N ) but it also descends to the quotient
group PSU (N ) = SU (N )/ZN . It is thus natural to ask which
of the N possible topological phases is actually realized by
the cold-atom system.

The authors of Ref. 46 argued that the system realizes a
topologically nontrivial phase. This claim was supported by the
existence of AKLT-type Hamiltonians which act on the same
physical Hilbert space and which are utilizing an auxiliary
representation B which is described by a Young tableau with

N/2 rows in a single column. With our formula (19), we easily
verify that [B] ≡ [N/2], i.e., the AKLT-type system indeed
corresponds to a nontrivial topological phase. Since the AKLT-
type Hamiltonian for N = 4 provides a close approximation
to the Heisenberg Hamiltonian, the same nontrivial topology
was conjectured for the cold-atom system in the relevant range
of parameters.46

At this moment of time, it is still an open question as
to whether the Heisenberg Hamiltonian and the AKLT-type
Hamiltonian really belong to the same topological phase.
On the other hand, it is known that the topological phase
can be extracted unambiguously from a suitable string order
parameter.55 Our current work thus provides an important step
towards settling this crucial issue. Moreover, it suggests the
existence of other topological phases of PSU (N ) spin chains
which might be realizable in cold-atom systems. A more
detailed discussion of these aspects will be reported elsewhere.

VI. CONCLUSIONS

In our paper, we revisited the classification of topological
phases in gapped spin chains with continuous symmetry
group. We identified and evaluated the relevant cohomology
groups H 2(G�,U (1)) and showed that they are isomorphic
to the central subgroup � ⊂ Z(G) defining G� = G/� as a
quotient of its simply connected cover G. For a number of
symmetries, among them PSU (N ) and PSO(2N ), we found
more than one topologically nontrivial phase. In particular, we
wish to emphasize the remarkable fact that for PSU (N ), the
number of topological phases is N and hence increases with
the rank of the symmetry group. For the projective groups
PG = G/Z(G), a complete summary of our classification
result can be read off from Table I. The cohomology groups
H 2

(
G�,U (1)

)
exhibit mathematical relations when consid-

ered for different choices of the subgroup � ⊂ Z(G). These
dependencies lead to a natural hierarchy of topological phases.
In Sec. IV, we managed to explain this hierarchy from a
physical perspective by considering blocking procedures and
the combination of spin chains into spin ladders.

Our classification of topological phases, and the distin-
guished role played by the central subgroups � ⊂ Z(G), led us
to propose a natural generalization of Haldane’s conjecture41,42

to arbitrary symmetry groups (see Sec. IV C). In our more
general setup, the original distinction between half-integer and
integer spin S of SU (2) is replaced by whether a representation
λ is a linear representation of any of the groups G� (i.e.,
[λ]� ≡ [0]) where � ⊂ Z(G) is a nontrivial central subgroup
of G. Our proposal is in complete accord with a recent analysis
of Haldane phases in SU (N ) spin chains by Greiter and
Rachel.23 We believe that their analysis can be carried over
to groups of type Spin(2N ), thus providing a nontrivial check
of our conjecture.

Let us briefly discuss the implications of our results for the
study of concrete physical systems, possibly from a numerical
point of view. In our opinion, it can not be overemphasized
that in many spin chains there are more than two distinct
topological phases. While it is a relatively simple task to
distinguish between a topologically trivial and a nontrivial
phase, e.g., using a suitable string order parameter22 (for a
general discussion, see Ref. 78), the definition of a quantity
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which can be calculated efficiently and which can discriminate
between all different topologically nontrivial phases is still
an open problem. Significant progress with regard to such
order parameters has recently been made in Refs. 40 and 54.
However, both papers focused on discrete symmetries and an
application of similar ideas to the cases at hand remains to
be worked out. In a companion paper,55 we will fill this gap
and provide an explicit expression for a string order parameter
for SU (N ) spin chains which can easily be evaluated once
the ground state is known. It will be proven that our order
parameter is sensitive to the projective class describing the
topological phase and that it allows us to discriminate all
N distinct phases of PSU (N ) spin chains. The string order
parameter may therefore be used to verify the claim of Ref. 46
that nontrivial topological phases of PSU (N ) spin chains can
be simulated in cold-atom systems (see also Sec. V).

Our analysis calls for extensions in several directions. First
of all, our classification was concerned with continuous onsite
symmetries only. Taking into account additional discrete sym-
metries such as translation symmetry, time-reversal symmetry,
or inversion symmetry will modify the classification.34,36 In
order to gain some intuition for the underlying reasons, let
us briefly discuss the effects of imposing either time-reversal
or inversion symmetry (or both), in addition to the onsite
symmetry G. According to Ref. 36, apart from the cohomology
groups H 2(G,U (1)), another important ingredient is the space
of one-dimensional representations of G. For simple Lie
groups G, the only one-dimensional representation is the trivial
representation. Hence, these data do not give rise to additional
topological phases in our situation.

On the other hand, it was observed that the projective class
[λ] describing the boundary modes has to satisfy 2[λ] ≡ 0 in
the presence of either inversion or time-reversal symmetry.
This leads to a possible reduction in the number of topological
phases. Actually, the constraint 2[λ] ≡ 0 can be understood
quite easily from the matrix product state construction re-
viewed in Sec. II C. It is obvious for instance that inversion
symmetry requires the auxiliary spaces to be self-conjugate,
λ = λ+, since they are exchanged under inversion. In view of
the general relation [λ+] = −[λ], this condition immediately
implies 2[λ] ≡ 0. Similar remarks apply to time reversal.

As we have just seen, enforcing the presence of additional
symmetries may drastically reduce the number of topological
phases which can exist in spin chains with continuous

symmetry. In particular, for PSU (N ), there are no nontrivial
inversion-symmetric topological phases if N is odd. Indeed,
the construction of the two nontrivial topological phases in
a PSU (3) spin chain that was presented in Ref. 55 explicitly
required to break inversion symmetry. On the other hand, there
is precisely one topologically nontrivial inversion-symmetric
phase if N is even. An explicit realization of this phase has been
constructed in Ref. 46. Using the results of Ref. 34 and our
own classification, it is a straightforward exercise to work out
all topological phases which are protected by a combination
of continuous onsite symmetries G and/or time-reversal or
inversion symmetry.

Another interesting open point concerns the interplay of
continuous symmetries with discrete internal symmetries,
arising e.g. in spin ladders. The presence of these additional
symmetries will lead to adjustments (see, e.g., Ref. 79) which
require a separate analysis, depending on the precise type
of model under consideration. We believe that the results
presented here will be helpful in accomplishing this task.

It seems feasible to generalize our results to supersymmetric
and q-deformed spin chains. We hope to report on this in the
near future. On the other hand, an extension to noncompact
groups appears to be more challenging from a technical point
of view. While the mathematical part of the story, the topology
of noncompact groups and the division of representations
into congruence classes, seems to be well understood, the
complications arise on the physical side. In particular, it is
evident that noncompact groups come hand in hand with
infinite-dimensional representations, together with all their
functional analytic intricacies. For example, it is not clear
to us at the moment whether in the infinite-dimensional setup
symmetry-preserving matrix product states can be constructed
which admit a parent Hamiltonian describing a gapped phase.
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I. INTRODUCTION

Symmetry-protected topological phases have received a
lot of interest recently due to their characteristic properties
such as the existence of massless boundary modes. Prominent
examples are various types of topological insulators1,2 and
spin systems such as the AKLT model.3,4 In contrast to purely
topological phases such as the fractional or integer quantum
Hall effect, in these systems the robustness of boundary modes
is directly tied to the presence of symmetries.

For one-dimensional spin systems a complete classification
of gapped symmetry-protected topological and symmetry-
broken phases has been established in Refs. 5–8. Restricting
one’s attention to on-site symmetries G only, the phases are
fully characterized by the spontaneous symmetry breaking
of G to a subgroup K , together with an element from the
cohomology group H 2(K,U (1)). The latter labels the distinct
classes of projective representations of K and can be thought
of as being a discrete topological invariant attached to edge
modes of the system.9

In the present paper we shall focus on the particular
symmetry group ZN × ZN . It is the smallest Abelian group
which exhibits up to N distinct topological phases. At the same
time, it allows us to study topological phases in combination
with the phenomenon of spontaneous symmetry breaking if N

has nontrivial divisors. While information about the latter can
be inferred from suitable local Landau order parameters, the
detection of topological phases in 1D systems requires the use
of nonlocal string order parameters (see, e.g., Refs. 10–15).
As we shall see later, discrete groups of type ZN × ZN also
play a distinguished role when extending our considerations
to continuous symmetry groups.

Before we proceed, let us briefly review the specific case
of the dihedral group D2 = Z2 × Z2 which historically arose
in connection with the SO(3) AKLT model.3,4 It is well
known that the AKLT model realizes the Haldane phase of
S = 1 spin models. It exhibits topological order which can be
detected using the nonlocal string order parameter suggested
by Rommelse and Den Nijs.10 Soon after, it was discovered
that the presence of topological order could be interpreted as
the spontaneous breaking of a “hidden” Z2 × Z2 symmetry
which is related to the occurrence of two spin-1/2 degrees of
freedom at the edges of the chain.16 This symmetry breaking
becomes manifest after a nonlocal unitary transformation

which maps the original string order parameter to a local
Landau order parameter. This mapping can also be understood
as disentangler,17 transforming the entangled AKLT state into
a product state. It is known that this observation extends to
AKLT chains based on higher integer spins S.18 However, it
only became clear later that the topological protection does
in fact not rely on the full SO(3) symmetry but that it can
already be achieved by restricting one’s attention to a discrete
subgroup Z2 × Z2.19,20 The nontrivial elements of this group
can be thought of as rotations by π around three mutually
orthogonal axes. This group also appears in connection to the
cluster state, where in a similar way it protects the topological
order.21

In this paper, we generalize the previous ideas to arbitrary
groups ZN × ZN . In the process we face two difficulties:
First of all, these groups allow for more complicated patterns
of spontaneous symmetry breaking, giving rise to a whole
hierarchy of phases. And second, a more refined version
of string order parameter has to be used. Indeed, while for
Z2 × Z2 one only has to distinguish between two topological
phases (trivial and nontrivial), we now have to discriminate
N distinct phases which are labeled by a parameter t ∈ ZN .
It should be obvious that such a number cannot be extracted
from a single expectation value since there is no reason why
the latter should be quantized.

As it turns out, the method of choice is to employ the
selection rule procedure of Ref. 14.22 Our analysis starts with
a specific (string) order parameter S(a,b) which depends on
two parameters a,b ∈ ZN and which vanishes except if the
selection rule a + tb = 0 modulo N is satisfied. While S(a,b)
is nonlocal for b �= 0 it becomes local for b = 0. Determining
S(a,b) for various choices of a and b, one can thus extract
information about the topological phase t and about the
potential existence of spontaneous symmetry breaking. We
then construct a nonlocal unitary transformation UN which
maps S(a,b) to S(a,a + b). We analyze the implications of
this mapping and find that purely topologically phases are
mapped to symmetry-breaking ones. The transformation UN

thus allows us to reinterpret topological order in terms of
standard local Landau order. More generally, we work out
the effect of acting with UN on almost all phases of ZN × ZN

spin chains, including those with a mixture of topological
protection and spontaneous symmetry breaking to a subgroup
Zr × Zr .23
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As the original example of the SO(3) AKLT model
suggests, the results we derive may equally well be applied to
the detection of topological order in systems with continuous
symmetry groups. This is due to the fact that each contin-
uous symmetry group which permits nontrivial topological
phases (see Ref. 8) contains a nontrivial subgroup of the
form ZN × ZN for a suitable choice of N � 2. Moreover,
the projective representations characterizing the topological
phases with regard to either the continuous group or its
discrete subgroup are in bijection.24 For all groups of unitary,
orthogonal, and symplectic type the relevant subgroups are
constructed explicitly in Sec. V.

The paper is structured as follows. In Sec. II we introduce
the group ZN × ZN and we discuss its projective representa-
tions. Furthermore, we introduce the (string) order parameter
S(a,b) and explain how it can be used to characterize the
distinct topological and symmetry-broken phases of ZN ×
ZN -invariant spin systems. The construction of the nonlocal
unitary transformation UN which maps purely topological
phases to symmetry-broken ones is the content of Sec. III.
In Sec. IV we analyze the fate of each individual phase under
the action of UN . Finally, Sec. V discusses the implications of
our results for continuous groups. We conclude with a brief
summary and an outlook to future directions.

II. PRELIMINARIES

Different phases of one-dimensional quantum systems can
either arise due to symmetry breaking, due to topology, or
a combination thereof. We will consider systems with an
on-site symmetry G, but we will not impose space-time
symmetries such as translation invariance, time reversal,
or inversion symmetry. If the ground state of the system
breaks the symmetry to a subgroup K ⊂ G, then the possible
topological phases are given by different classes of projective
representations of K .6,7

The group ZN × ZN has N different projective classes. Let
R and R̃ be the generators of this group and let R′ and R̃′
be projective representations of these generators. The phases
R′N = eiθ and R̃′N = eiθ̃ can be removed by a redefinition
(gauge transformation) of R′ and R̃′. However, the phase
R′R̃′R′−1R̃′−1 = eiφ is gauge invariant and determines the pro-
jective class of the corresponding representation. Moreover, φ
is an integer multiple of 2π

N
due to the cyclic property of the

groupZN . Thus the projective class t ∈ ZN of a representation
of ZN × ZN can be obtained from the relation

R′R̃′ = ωtR̃′R′. (1)

Here, we used the abbreviation ω = exp(2πi/N ).
The special case of N = 2 arises in S = 1 spin chains in

which Z2 × Z2 is a subgroup of SU (2) generated by Rx =
exp(iπSx) and Rz = exp(iπSz). In these systems two phases
can occur: a topological trivial and a nontrivial (Haldane)
phase. The latter is characterized by a hidden symmetry
breaking which becomes manifest after applying a nonlocal
unitary transformation (NL-UT).16 The NL-UT can be written
as18

U2 =
∏

i<j

exp
(
πiSx

i Sz
j

)
. (2)

This transformation preserves the symmetry and maps local
invariant Hamiltonians (such as that of the XYZ or the bilinear
biquadratic model) to local Hamiltonians. Most importantly, it
maps the string order parameter Sa

i

∏
i�k<j Ra

k S
a
j to a Landau

order parameter Sa
i Sa

j for a = x or z, which explains that string
order and hidden symmetry breaking are one-to-one related to
each other.25

Our attempt to generalize the previous considerations
to ZN × ZN heavily used the string order selection rules
introduced in Ref. 14. In order to explain the underlying
ideas, let us consider a spin chain which is invariant under
two commuting transformations X and Y . It is known that
the action of these operators on the boundary modes can be
factorized according to

X = X ′′X ′ and Y = Y ′′Y ′, (3)

where the operators X ′′ and Y ′′ act on the left boundary modes
and X ′ and Y ′ on the right boundary modes. The factorization
leads to a phase ambiguity which implies that the boundary
modes only need to transform projectively. In other words,
we have that X ′Y ′ = eiφY ′X ′ where the phase φ determines
the projective class of the representation of the right boundary
mode. The phase φ thus also determines the topological phase
of the system. Let us now consider a string order parameter

OL
i

∏

i�k<j

Xk OR
j . (4)

A nonvanishing expectation value of such a string order
parameter in the limit |i − j | → ∞ implies invariance under
the transformation X , but stated as such it contains no
information on the topological phase.11 However, the latter
can be gained from a group theoretical selection rule.14 If the
operators OL and (OR)† have the same quantum number with
respect to Y ,

Y−1OLY = eiσOL and Y−1ORY = e−iσ OR, (5)

then the selection rule states that the string order parameter
can only be nonzero if σ = φ.

For the case of systems with symmetry ZN × ZN the role
of X and Y are played by R and R̃, respectively. We define
operators Xa which are invariant under R but which have a
specific quantum number with respect to R̃:

R̃−1XaR̃ = ω−aXa, [R,Xa] = 0. (6)

Using these operators, we introduce the string order parameter

S(a,b) = Xa
i

∏

i�k<j

Rb
k

(
Xa

j

)−1
. (7)

We note that this operator becomes local for b = 0. The
selection rule for string order states that the expectation value

�(a,b) = lim
|i−j |→∞

〈S(a,b)〉 (8)

can only be nonzero if a + tb = 0 modulo N , where t is the
projective class of the right boundary mode;14 see Eq. (1).

For the validity of our arguments below it is essential
that all ground states of the system give rise to the same
expectation value �(a,b). This is due to the invariance of the
string order parameter S(a,b) under conjugation by R and R̃.
This invariance implies that all ground states related by broken
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symmetries lead to the same result. On the other hand, ground
states in a well-defined gapped topological phase which are
not related by such transformations only differ locally at the
edges (see, e.g., Ref. 26), and the expectation value �(a,b) is
insensitive to such differences.

III. A NONLOCAL UNITARY TRANSFORMATION
FOR ZN × ZN

In this section we aim to generalize the NL-UT given
in Eq. (2), such that it is applicable to systems with ZN ×
ZN symmetry. Recall that this group is generated by the
symmetries R and R̃. Furthermore we consider two operators
O and Õ which have the properties R = ωO and R̃ = ωÕ , with
ω = exp(2πi/N ) as in the previous section. These operators
will generalize Sx and Sz. We then define a NL-UT as

UN =
∏

i<j

ωOiÕj . (9)

All terms in the above product commute with each other.
Commutators which are possibly nonzero are of the form
[ωOiÕj ,ωOj Õk ]. They can be rewritten as [R̃Oi

j ,R
Õk

j ], from
which it is clear that also these commutators are zero since
R and R̃ commute. Using similar arguments it is easily shown
that both R and R̃ commute with UN . Thus UN preserves the
ZN × ZN symmetry generated by these two transformations.

Consider a ZN × ZN -invariant local Hamiltonian H0.
We will now show that the transformed Hamiltonian H1 =
U−1

N H0UN is also local. More precisely, n-body terms (which
act on n consecutive sites) will be mapped to n-body terms.
We will show this for n = 2. Let hi,i+1 be a term acting on
sites i and i + 1. This term is transformed as follows:

U−1
N hi,i+1UN = P †ω−OiÕi+1hi,i+1ω

OiÕi+1P

= ω−OiÕi+1hi,i+1ω
OiÕi+1 , (10)

with

P =
∏

j>i+1

(RiRi+1)Õj

∏

j<i

(R̃iR̃i+1)Oj . (11)

The simplification in Eq. (10) is due to theZN × ZN invariance
of the Hamiltonian. The result is clearly a local 2-body term.
The generalization to n-body Hamiltonians is straightforward.

In the previous section it was explained that the string order
parameter S(a,b) is able to detect topological order via the
selection rule. We will now discuss the transformation rule of
S(a,b). The operators Xa appearing in S(a,b) transform as

U−1
N Xa

i UN =
∏

j<i

R̃
−Oj

i Xa
i

∏

j<i

R̃
Oj

i =
∏

j<i

ω−aOj Xa
i .

(12)

In these equalities we have used Eq. (6), in particular that Xa

and R commute. With this transformation rule it follows that

U−1
N S(a,b)UN = U−1

N Xa
i

∏

i�k<j

ωbOkX−a
j UN

= Xa
i

∏

i�k<j

ω(a+b)OkX−a
j = S(a,a + b). (13)

Applying UN sufficiently many times (n times, such that
b + na = 0 modulo N ), the result will eventually be
U−n

N S(a,b)Un
N = S(a,0) = Xa

i X
−a
j . The operator Un

N thus
relates the string order parameter which is capable of detecting
topological phases to a Landau order parameter measuring
symmetry breaking. Indeed, a nonzero S(a,b) gives infor-
mation on the topological phase through the selection rule,
whereas a nonzero S(a,0) gives information on the breaking
of the symmetry generated by R̃.

Just as before, we can define the string order parame-
ter S̃(a,b) = X̃a

i

∏
i�k<j R̃b

k X̃
−a with operators X̃a satisfying

R−1X̃aR = ωaX̃a and [X̃a,R̃] = 0. Similar to Eq. (13) we
have the transformation rule U−1

N S̃(a,b)UN = S̃(a,a+b). In the
topological phase labeled by t both S(a,b) and S̃(a,b) can be
nonzero (when their arguments satisfy a + tb = 0 mod N ). If
both string order parameters are zero, the unbroken symmetry
transformations of the UN -transformed system form a group
of the form Zr × Zr ⊂ ZN × ZN .

IV. A MAPPING OF PHASES

In this section we will discuss in detail what will happen
to the symmetries after performing the NL-UT. That is, we
start with a system with symmetry ZN × ZN whose ground
states spontaneously break the symmetry to Zr0 × Zr0 , with
q0r0 = N . We furthermore assume that the system is in the
topological phase t0, defined by the projective class of the
right boundary modes. In the previous section it was argued
that the transformed system, obtained by applying the NL-UT
defined in Eq. (9), could show a different pattern of symmetry
breaking and could reside in a different topological phase. It
was also argued that the group of unbroken symmetries of the
transformed system is of the form Zr1 × Zr1 , with q1r1 = N .
Let t1 label the topological phase of the transformed system.
We aim to find the explicit form of the relation

fN : (r0,t0)
UN−−−→ (r1,t1). (14)

As a warmup we will first assume that N is prime. In
this case, there is either no symmetry breaking or symmetry
is fully broken. From the selection rule we conclude that
only the string order parameter of the form S(at0, − a)
can be nonzero. This string order parameter is mapped to
U−1

N S(at0, − a)UN = S(at0,a(t0 − 1)). As long as t0 �= 1 no
symmetry is broken (r1 = N ). The topological phase can be
deduced from the selection rule: t0 + t1(t0 − 1) = 0 mod N .
In the exceptional case of t0 = 1, the operator S(at0, − a) is
mapped to a Landau order parameter measuring symmetry
breaking (r1 = 1 and trivially t1 = 0). Conversely, if we start
with a symmetry-breaking phase, S(a,0) �= 0, the transformed
system will have nonzero string order parameter S(a,a) from
which it follows that t1 = N − 1. Note that the trivial phase is
always mapped to the trivial phase. In Table I the action of the
map fN is illustrated for N = 5.

The discussion is slightly more involved when N is not
prime because topological order can then be mixed with
symmetry-breaking order. The first step in the analysis is to
use the selection rule to determine when S(a,b) is possibly
nonzero. Note that b is always a multiple of q0 (b = n1q0). The
transformations Rb and R̃q restricted to the right boundaries
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TABLE I. Mapping of symmetry-breaking and topological phases
of a Z5 × Z5 (left) and a Z6 × Z6 (right) invariant system. With SSB
we refer to the phase characterized by full spontaneous symmetry
breaking.

Z5 × Z5

t0 t1

0 → 0
1 → SSB
2 → 3
3 → 1
4 → 2
SSB → 4

Z6 × Z6

(r0,t0) (r1,t1)
(6,0) → (6,0)
(6,1) → (1,0) SSB
(6,2) → (6,4)
(6,3) → (3,0)
(6,4) → (2,0)
(6,5) → (3,2)
(3,0) → (6,3)
(3,1) → (6,1)
(3,2) → (2,1)
(2,0) → (6,2)
(2,1) → (3,1)
(1,0) SSB → (6,5)

do not commute but give rise to a phase factor. This complex
phase depends on the topological phase t0 via Eq. (1):

exp(2πi/r0)t0n1 = ωt0b. (15)

Moreover, from Eq. (6) it follows that transforming Xa by
R̃q0 gives rise to the phase ω−aq0 . The selection rule states
that the string order parameter S(a,b) is nonzero only if
these two phases coincide, thus if t0b + q0a = 0 mod N .
We conclude that nonzero string order parameters are of the
form S(n1t0 + n2r0, − n1q0). An extra term n2r0 in the first
argument is allowed since Xr0 commutes with R̃q0 . Setting
n1 = 0 results in a nonzero Landau order parameter S(n2r0,0),
which is consistent with symmetry breaking at hand. This
string order parameter is mapped to

S(n1t0 + n2r0, − n1q0)
UN−−−→ S(n1t0 + n2r0,n1(t0 − q0) + n2r0). (16)

The transformed string order parameter is a Landau order
parameter if its second argument vanishes (modulo N ). This
can only happen if n1(t0 − q0) = 0 mod r0. The smallest
n1 which fulfills this equation is given by n1 = r0/gcd(t0 −
q0,r0). The corresponding symmetry-breaking operator Xa is
determined by a = n1t0 + n2r0 = n1q0 = N/gcd(t0 − q0,r0).
We conclude that the symmetry of the transformed system is
determined by

r1 = N

gcd(t0 − q0,r0)
. (17)

Note that the second argument of the transformed string
operator is a multiple of q1 = gcd(t0 − q0,r0). Thus the
selection rule can be used to determine the topological phase

t1 of the transformed system. From this rule we have that

(n1t0 + n2r0)q1 = −t1[n1(t0 − q0) + n2r0]. (18)

The solution for t1 should be independent of n1 and n2. Thus
factoring these constants out we obtain two equations

0 = t1(t0 − q0) + t0q1 mod N, (19)

0 = r0(q1 + t1) mod N. (20)

From the second equation we deduce that t1 is equal to −q1

modulo q0 thus t1 = nq0 − q1. Substituting in the first and
simplifying results in n(t0 − q0) = −q1 mod r0. This equation
has a solution for n due to the definition of q1 = gcd(t0 −
q0,r0). In Table I the map fN is worked out for N = 6.

Let us finally comment on a subtle technical issue. Our
derivation of the map fN hinges on the presence of (string)
order via the selection rule. However, the selection rule
only gives a necessary but not a sufficient condition on the
nonvanishing of the (string) order. It can be accidentally absent
at specific points in the phase diagram where one would have
expected it to occur from the selection rule. To resolve this
problem, we recall that the map fN is not a statement about
specific points in a phase but rather about phases as a whole.
Assuming the existence of some point in the phase diagram
where the ground state leads to a nonvanishing string order is
enough to show that the map fN is valid for the whole phase.

Note that from Table I it can be seen that fN is bijective for
N = 5 and N = 6. This is as expected since the spectrum and
thus phase transitions should be invariant under the NL-UT.
Also it has been checked numerically for values of N up to
100 that indeed fN is bijective.

In Ref. 27 a different NL-UT transformation, mapping
topological phases to symmetry breaking phases, is discussed.
The main difference is that we discuss one single NL-UT
whereas in Ref. 27 the NL-UT Dt depends on the topological
phase t at hand. The map Dt always maps a pure topological
phase to the phase where the full symmetry is spontaneously
broken (SSB phase), whereas UN maps phases characterized
by a mixture of symmetry breaking and topology to each other.
Under certain conditions one can map such phases to the SSB
phase applying the transformation UN sufficiently many times.
Indeed, from Eq. (16) we have that

S(n1t0 + n2r0, − n1q0)
Uu

N−−−→ S(n1t0 + n2r0,n1(ut0 − q0) + n2ur0), (21)

where u is the number of times UN is applied. An arbitrary
phase is mapped to the SSB phase if its string order parameters
are mapped to Landau order parameters, that is, if n1(ut0 −
q0) + n2ur0 = 0 mod N for all values of n1 and n2. From this
we have the conditions that ut0 = q0 mod N and u = 0 mod
q0. The first condition can only be satisfied if gcd(t0,r0) = 1.
This is equivalent to stating that the projective representations
of Zr0 × Zr0 in class t0 are maximally noncommutative,27 a
requirement for defining the map Dt0 . The second condition
can be verified by considering orbits of fN containing the SSB
phase. For example, taking N = 6 this orbit is

SSB → (6,5) → (3,2) → (2,1) → (3,1) → (6,1) → SSB.
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V. RELEVANCE TO SYSTEMS WITH CONTINUOUS
SYMMETRY GROUPS

Although the previous section gives a better understanding
of the connection between symmetry-breaking order and
topological order, as it stands it is only applicable to systems
with the specific symmetryZN × ZN . In this section, however,
we will argue that almost all connected and compact simple Lie
groups G� (with only one exception) contain a subgroup of the
form ZN × ZN which is sensitive to the projective classes of
G� . More precisely, we will be discussing subgroups F� ⊂ G�

such that the homomorphism

τ : H 2(G�,U (1)) → H 2(F�,U (1)) (22)

is bijective and use a case-by-case argument to show that F�

can be chosen to be of the form ZN × ZN . Topological order
can thus also be understood as “hidden” symmetry breaking
if it is protected by a continuous symmetry. Note that this
is not in contradiction with the Mermin-Wagner theorem28

(stating that spontaneous symmetry breaking does not occur in
one-dimensional quantum systems with continuous symmetry)
since the NL-UT only preserves the discrete subgroup ZN ×
ZN but not the full continuous symmetry.

As was explained in great detail in Ref. 8, a connected
compact simple Lie group can be written as a a quotient G� =
G/� (which motivates the notation) where G is the universal
cover of G� and � is a subgroup of the center Z(G) of G.
All projective representations ρ of G� originate from linear
representations of G. The projective class of a representation of
G� can be deduced from the action of � on the corresponding
linear representation of G [denoted by ρ : � → U (1)]. With
only one exception [occurring for G = Spin(4n)], � is of the
form ZN . In these cases we choose a generator γ ∈ � and
define the projective class of a representation by ρ(γ ) = ωt

with ω = exp(2πi/N ). The main strategy in defining F� is
to start by choosing R, R̃ ∈ G such that RN ∈ � and R̃N ∈ �

(moreover, N should be the smallest nonzero integer for which
this holds). Furthermore, RR̃R−1R̃−1 should generate �. Thus
RR̃R−1R̃−1 = γ m with gcd(N,m) = 1. Let F be generated by
R and R̃. Clearly � ⊂ F . Furthermore F/� = F� = ZN ×
ZN is a finite Abelian group.

It is now not to hard to see that with this choice of F� the map
τ is bijective. Let ρ be a representation of G in the projective
class t [ρ(γ ) = ωt for γ ∈ Z(G)]. Restrict this representation
to F . The projective class of this restricted representation is
determined by the phase obtained upon commuting R and R̃

or, in other words, by ρ(γ m) = ωtm. As a consequence we
find τ : t → tm which is bijective under the assumption that
gcd(N,m) = 1.

It remains to show that symmetry generators R and R̃ with
the desired properties indeed exist. In what follows, we will
provide an explicit realization for G being equal to either of
the groups SU (N ), Sp(N ), or Spin(N ). A summary of the
possible quotient groups to be considered can be found in
Ref. 8.

(1) Case G� = SU (N )/ZN . The subgroup ZN is gener-
ated by ωI, where ω = exp(2πi/N ). We will give matrix
representations of R and R̃ acting on CN . Let vi denote
the standard orthonormal basis of this space. Choose R to be
proportional to the linear map vi → ωivi . The proportionality

constant c should be chosen such that R has determinant 1, thus
cN = (−1)N+1. Similarly, let R̃ be proportional to the linear
map vi → vi+1 (and vN → v1) with the same proportionality
constant c. These matrices obey RN = R̃N = (−1)N+1I and
RR̃ = ωR̃R.

(2) Case G� = SU (N )/Zq . The subgroup Zq is generated
by ωI, where ω = exp(2πi/q). Choose the generators of F to
be the block diagonal matrices R = diag(Rq, . . . ,Rq) and R̃ =
diag(R̃q, . . . ,R̃q) where Rq and R̃q are defined just as for the
case SU (q)/Zq discussed before. From the previous paragraph
we then directly conclude that Rq = R̃q = (−1)q+1I and
RR̃ = ωR̃R.

(3) Case G� = Sp(2N )/Z2. The group Sp(2N ) consists
of complex unitary 2N × 2N matrices M which preserve
a symplectic form Q (i.e., MT QM = Q, where Q is a
nonsingular skew symmetric matrix). Choose a basis such that

Q = ( 0 −I
I 0

). The group Z2 is {I, − I}. Let the generators of

F be R = ( iI 0
0 −iI

), and R̃ = Q. Clearly R2 = R̃2 = −I and

RR̃ = −R̃R.
(4) Case G� = Spin(N )/Z2 = SO(N ), N � 3. The group

Spin(N ) is most easily understood by first considering its Lie
algebra so(N ). Let ei be an orthonormal basis of RN . The
Clifford algebra Cl(N ) is generated by this basis together
with the relations {ei,ej } = 2δij . The Lie algebra so(N ) ⊂
Cl(N ) is generated by the operators Sij = i

2eiej (with i �= j ).
These operators generate rotations in the (i,j ) plane: Tij (θ ) =
eiθSij = cos( θ

2 )I − sin( θ
2 )eiej . The group Z2 is {I, − I}. The

generators of F can be chosen to be R = e1e2 and R̃ = e2e3.
These elements square to −I and anticommute. From the
perspective of SO(N ), they correspond to π rotations in two
orthogonal planes with a one-dimensional intersection.

(5) Case G� = Spin(N )/Z4 = PSO(N ), N = 4n + 2.
In this case the center of Spin(N ) is isomorphic to
Z4 and is generated by the element γ = ∏

i ei (in-
deed γ 2 = −I). The generators of F can be cho-
sen to be R = 2−1/2(1 + eN−1eN )

∏n
i=1 e4i−2e4i and R̃ =

2−neN−2eN

∏2n
i=1(1 + e2i−1e2i). One can check that R4 =

R̃4 = −I and that RR̃ = γ R̃R.
(6) Case G� = Spin(N )/(Z2 × Z2) = PSO(N ), N = 4n.

This is the only exception to the above recipe since the center
of Spin(N ) is no longer of the form Zq if N is a multiple of
four. However we can still give a flavor of how this exception
should be treated. Again, let γ = ∏

i ei . The center is generated
by γ and −I (indeed γ 2 = I). The projective class of a
representation ρ is determined by both ρ(γ ) = ±I and by
ρ(−I) = ±I. In this case we shall thus need two string order
parameters to determine both prefactors via the selection rule.
One could define two different NL-UTs mapping these string
order parameters to Landau order parameters. In order to define
both the string order parameters as well as the NL-UTs, one
would need to go through the above procedure twice. That
is, define Ri , R̃i ∈ Spin(N ) for i = 1,2 such that R1R̃1 =
−R̃1R1 and R2R̃2 = γ R̃2R2. Let R1 = R2 = ∏n

i=1 e4i−2e4i ,
R̃1 = e1e2, and R̃2 = 2−n

∏2n
i=1(1 + e2i−1e2i), which satisfy

the desired conditions [together with R2
1 = (−1)nI, R̃2

1 = −I
and R̃2

2 = γ ].
(7) Case G� = Spin(N )/Z2 = SS(N ), N = 4n. As dis-

cussed before, the group Spin(N ) has center {I, − I,γ,
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− γ } = Z2 × Z2. After dividing out {I,γ } or {I, − γ } (which
are both isomorphic to Z2) one obtains the group SS(N ) also
known as the semi-spinor group (see, e.g., Ref. 8). In the
former case one could define R = R2 and R̃ = R̃2, where
R2 and R̃2 have been defined in the previous paragraph.
Using the same reasoning as before, we directly obtain
RR̃ = γ R̃R and R̃2 = γ I. However, R2 = −I /∈ �. Thus
although F� = Z4 × Z2 constructed in this way does lead
to an bijective τ , it is not of the form Zr × Zr . In principle
the results discussed in Secs. III and IV cannot be directly
applied. However, Eq. (9) can still be used to define a NL-UT
and an analysis similar to Sec. IV can be performed to find
out what type of symmetry-breaking phase the topological
nontrivial phase is mapped to by such a NL-UT. In the case
where � = Z2 = {I, − γ } similar problems occur. One could
still define R = R2 and R̃ = e1e2R̃2 such that RR̃ = −γ R̃R

and R̃2 = −γ I. But also in this case R2 = −I /∈ � such that
F� = Z4 × Z2.

VI. CONCLUSIONS AND OUTLOOK

We presented a nonlocal unitary transformation which maps
topological phases of ZN × ZN spin chains to symmetry-
breaking ones. Since the map transfers nonlocal string order
to the more familiar local Landau order it provides a useful
alternative characterization of topological phases. Our result
may be regarded as a twofold generalization of the “hidden”
symmetry breaking that is familiar from the AKLT model.16

First of all, our method is able to deal with the existence of
several distinct nontrivial topological phases, not just a single
one. Moreover, in view of the existence of nontrivial subgroups
Zr × Zr ⊂ ZN × ZN , we are also capable of characterizing
phases which exhibit a mixture of topological protection and
spontaneous symmetry breaking.

As pointed out in Sec. V, our previous considerations
lead to a full characterization of topological phases in spin
systems with continuous symmetry groups. This observation
relies on the existence of discrete subgroups of type ZN × ZN

in all classical groups of unitary, orthogonal, or symplectic
type. Besides constructing these subgroups explicitly, we also
showed that the projective representations of the continuous
groups and their subgroups are (with one exception) in one-to-
one correspondence if N is chosen properly. For the stability
of edge modes it is thus not important to preserve the full
continuous symmetry group. Rather it is sufficient to preserve
the corresponding discrete subgroup. This phenomenon has
been known for some time in the case of SO(3)19,20 but
the picture that emerges from our paper is somewhat more
complete.

As a by-product, our analysis provides a complementary
perspective on the hierarchy of topological phases that was

pointed out in Ref. 8. As was shown in Ref. 8, there is an
injection of topological phases when viewing the same system
from the perspective of either G� or G�′ , with �′ ⊂ � ⊂ Z(G)
being two central subgroups of G. In Sec. V we have shown
that G� has a subgroup F� that can be used to characterize the
topological phases, and a similar statement holds for �′. From
the construction of F� it is clear that F�′ ⊂ F� . The original
hierarchy of topological phases is thus also reflected on the
level of “hidden” symmetry breaking.

We would like to stress that our results from Sec. V
also provide a precise route to embed spin systems with
discrete spin degrees of freedom into spin systems with
continuous symmetry. While a priori the latter appear to
be more constrained, this reformulation may nevertheless
be useful with regard to constructing effective low-energy
topological field theories in terms of nonlinear σ mod-
els. In this sense, it may be used to make some of the
ideas discussed in Ref. 29 more precise. It remains to be
clarified, however, whether the embeddings just mentioned
only capture the features of topological protection with
regard to continuous symmetry groups in one-dimensional
systems or whether the correspondence also lifts to higher
dimensions.

Note added. Recently Ref. 27 appeared which has consid-
erable overlap with our own results. Let us briefly summarize
the main differences. Our setup is, in a sense, more limited.
Instead of considering arbitrary Abelian groups, we restrict our
attention to groups of type ZN × ZN . Besides, the authors of
Ref. 27 construct a different nonlocal unitary transformation
for each individual purely topological phase which can be used
to map it to a phase with full spontaneous symmetry breaking.
In contrast, we keep the nonlocal unitary transformation fixed
and investigate the fate of various phases under this map. This
allows us to investigate phases which involve a mixture of
topological protection and symmetry breaking. At the end of
Sec. IV we determine precise conditions under which a given
phase can possibly be mapped to a fully symmetry broken
one. Finally, our treatment of continuous groups exhausts
all classical cases and does not just cover PSU (N ) and
SO(2N + 1) as in Ref. 27.
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Chapter 3

One-Dimensional Gapped
Systems

The origin of the complexity of quantum spin systems is the exponential
growth of the dimension of the Hilbert space with respect to the physical
system size. However, for all physical models interactions are local. This
locality should somehow be reflected in some property of the corresponding
ground states: it is reflected in the behavior of the von Neumann entropy
of the ground states. Let R denote a spatial region of a quantum spin sys-
tem and let ρR be the reduced density matrix of the corresponding ground
state with respect to this region. It is obtained from the density matrix
ρ of the ground state by tracing over all degrees of freedom in the com-
plement of R (denoted by \R): ρR = Tr\R ρ. The von Neumann entropy
S(ρR) = −Tr(ρR log ρR) is a measure of entanglement between R and its
complement. For generic quantum states, this entropy can be as large as
|R| log d, where d is the dimension of an on-site Hilbert space and |R| the
number of sites contained in region R. However, for one dimensional gapped
systems, it has been shown that the von Neumann entropy is bounded by a
constant which depends only on the energy gap and the correlation length
[28]. Generalizing to higher dimensions, ground states seem to obey an area
law [29] which states that the entropy scales as the boundary |∂R| of the
region R, with possibly logarithmic corrections for gapless systems. Note
that |∂R| is constant in the one dimensional case.

Matrix product states (MPS) offer an efficient way to parametrize the
set of states which obey an area law. Indeed, they were introduced to de-
scribe ground states of finitely-ranged gapped Hamiltonians [30, 31]. More-
over the inverse has also been shown: each MPS gives rise to a gapped
Hamiltonian which has this state as a ground state [32, 31, 33, 34]. They
also lie at the heart of the density-matrix-renormalization-group algorithm
(DMRG) [26], which has been proven to be very successful in computing the
ground state and low lying excited states in various models. These three

45
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topics - matrix product states, parent Hamiltonians and the density-matrix-
renormalization-group algorithm - will be discussed in detail in this chapter.

3.1 Matrix Product States

The Hilbert space of a physical spin chain is described by a tensor product
of on-site Hilbert spaces Hn,

H1 ⊗H2 ⊗ · · · ⊗ HL , (3.1)

where L is the length of the spin chain. Let |in〉 be an orthonormal basis for
Hn. The tensor product |i1 . . . iL〉 = |i1〉 ⊗ · · · ⊗ |iL〉 forms an orthonormal
basis for the total Hilbert space. Quantum states which are most resemblant
to classical states are those without entanglement, i.e. separable states.
They can be most easily written as a product:

|Ψ〉 =
∑
i1...iL

A
[1]
i1
. . . A

[L]
iL
|i1 . . . iL〉 . (3.2)

Note that the coefficients A
[n]
in

appearing in the above equation depend on a
single site only. The total number of coefficients to be determined is d · L,
where d is the dimension of an on-site Hilbert space. This is a great contrast
to a generic quantum state:

|Ψ〉 =
∑
i1...iL

Ci1...iL |i1 . . . iL〉 . (3.3)

Any form of entanglement can be encoded in such a state. The total number
of coefficients to be determined equals the dimension of the total Hilbert
space which is dL. To overcome this exponential growth, one could study

a generalization of separable states, such that each coefficient A
[n]
in

depends
on an extra parameter shared with its neighbor:

|Ψ〉 =
∑

α,β,...,δ

∑
i1...iL

A
[1]
i1,(αβ)A

[2]
i2,(βγ) . . . A

[L]
iL,(δα)|i1 . . . iL〉 . (3.4)

These extra parameters encode entanglement between neighboring sites. Re-
stricting these parameters to the integers smaller or equal to a constant D,

one can interpret the coefficients A
[n]
in,(αβ) as a set of d matrices of size D×D.

These matrices are multiplied to obtain the resulting coefficients of the state
|Ψ〉. Hence the name matrix product state (MPS) [35]. The state |Ψ〉 is de-
termined by a total of D2 · d · L coefficients, a number which scales linearly
with system size. The constant D can be site dependent. That is for each
site we define a “left” integer D(n,l) and a “right” integer D(n,r) such that the

parameters appearing in A
[n]
in,(αβ) are restricted to α ≤ D(n,l) and β ≤ D(n,r).
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A[1] A[2] A[L]. . .

i1 i2 iL

α β γ δ α

Figure 3.1: A diagrammatic representation of a matrix product state.

Of course these constants are related by D(n,r) = D(n+1,l). For systems with
open boundary conditions there is no reason for the boundary sites to be
entangled. In this case the constants D(1,l) and D(L,r) are set to 1.

Another popular way to explain MPSs is to introduce two auxiliary
spaces H(n,l) and H(n,r) for each site n. These spaces have dimensions
D(n,l) and D(n,r), respectively. These spaces model the entanglement of
the n-th site with its two neighbors. All the spaces H(n,l/r) together form
an auxiliary spin chain twice as long as the original spin chain. Neighbor-
ing auxiliary spaces should be dual to each other H(n+1,l) = H∗(n,r). This
allows to construct maximally entangled states on auxiliary spaces of sites
n and (n + 1): |In〉 =

∑
α |α〉〈α| ∈ H(n,r) ⊗ H(n+1,l). A maximally entan-

gled state can also be defined on the left and right most auxiliary spaces:
|In〉 ∈ H(1,l) ⊗H(L,r). Together these states define a state on the auxiliary
spin chain: |ΨA〉 =

⊗
n |In〉. A state on the physical spin chain |Ψ〉 is defined

by a set of maps

A[n] : H(n,l) ⊗H(n,r) → Hn , (3.5)

where Hn denotes the Hilbert space of the n-th site. The state |Ψ〉 is ob-
tained by |Ψ〉 =

(⊗
nA

[n]
)
|ΨA〉. The maps A[n] can be related to the

matrices introduced in Eq. (3.4) through

A
[n]
in,(αβ) = 〈in|A[n]|αβ〉 . (3.6)

where |αβ〉 = |α〉 ⊗ |β〉 ∈ H(n,l) ⊗H(n,r).
For a first encounter with MPSs, it is insightful to have a diagrammatic

picture in mind. The object A
[n]
in,(αβ) has three indices and is thus represented

by a box with three outgoing lines. Each time indices are contracted, their
corresponding lines are connected. In Fig. 3.1 these rules are used to depict
the product of matrices appearing in Eq. (3.4).

3.1.1 Success of matrix product states

MPSs were introduced to describe states obeying an area law. If R is a
region consisting of the sites between (and including) sites n and m, the von
Neumann entropy of an MPS with respect to R is bounded by logD(n,l) +
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logD(m,r). This can be explained by first observing that the reduced density
matrix ρR with respect to region R has a dimension smaller or equal to
D(n,l) ·D(m,r). The von Neumann entropy is maximal if all the eigenvalues of
ρR are equal, that is equal to (D(n,l) ·D(m,r))

−1. This calculation shows that
MPSs indeed obey an area law. But does the contrary also hold? Can each
state obeying an area law efficiently be modeled by an MPS? Certainly any
state on a finite chain can be written as an MPS, given that the dimension
of the auxiliary spaces is big enough (D = dL/2). The key point is that,
using a much smaller auxiliary dimensions (D � dL/2), one can already
approximate any finitely correlated state with high precision.

Let |Ψ0〉 be some state on a chain that we want to approximate with
an MPS |Ψ〉. To simplify notation, assume open boundary conditions, that
is D(1,l) = 1. Again consider a region consisting of the first n sites. The
entanglement of |Ψ0〉 between this region and its complement depends on
the Schmidt coefficients λi obtained by computing a singular value decom-
position

|Ψ0〉 =
k∑
i=1

λi|φRi 〉|φ\Ri 〉 , (3.7)

where {|φRi 〉}i is a set orthonormal states in region R and similarly for

{|φ\Ri 〉}i. The Schmidt coefficients are assumed to be sorted in decreasing
order of magnitude. The number of Schmidt coefficients k is bounded by the
dimensions of the Hilbert spaces of both region R and its compliment. Con-
sider |Ψ〉 obtained by taking only the first D(n,l) < k Schmidt coefficients.
Thus, the entanglement between R and its compliment is now modeled by
a space of dimension D(n,l) instead of k, exactly what an MPS does. The
error made in this approximation is bounded by [36]:

‖|Ψ0〉 − |Ψ〉‖ ≤
k∑

i=D(n,l)+1

λ2
i . (3.8)

The success of MPS lies in the fact that, for states obeying the area law
the Schmidt coefficients decay exponentially. More precisely, it was shown
in Ref. [28] that the sum of all but the first D Schmidt coefficients between
region R and its complement depends on D, the correlation length ξ and
the von Neumann entropy S = S(ρR) as:

∑
i>D

λ2
i ≤ C

(
e2S

2D

)1/(ξ log d)

, (3.9)

where d is the dimension of the on-site Hilbert space and C is some constant
that depends only on the correlation length. Note that even if the entropy S
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scales logarithmically (which is the case for ground states of critical systems
[37]) in the size of R (∼ L/2), the numerator of the fraction appearing in
Eq. (3.9) still scales linearly in L. In Ref. [36] a bound on the sum of all but
the largest D Schmidt coefficient was found in terms of the Renyi entropy
S(α) = 1

1−α log tr(ραR):

∑
i>D

λ2
i ≤

(
1− α
D

) 1−α
α

exp

(
1− α
α

S(α)

)
, (3.10)

where 0 < α < 1. Note that this bound is independent of the correlation
length ξ. Strictly speaking, it is only a bound of the Renyi entropy from
which approximability of an MPS follows. That is, in order to approximate a
(critical) ground state with precision ε, the corresponding bond dimension D
must scale polynomially in L and 1/ε. Thus, the total number of parameters
(= D2 · d · L) must scale polynomially in L and 1/ε, which is in contrast
to the exponentially increasing size of the total Hilbert space. In Ref. [38],
examples of states with an area law in term of von Neumann entropy are
discussed that can not be approximated efficiently with an MPS.

3.1.2 A standard form of MPSs

Although an MPS is a unique state, any state can be represented by various
different MPSs. The origin of this degree of freedom is the invariance of the
maximally entangled state under the gauge transformation U ⊗ U−1|α〉〈α|.
This degree of freedom translates to an invariance of an MPS under the
transformation of its matrices

A[n] → A[n] ◦
(
U(n,l) ⊗ U(n,r)

)
, (3.11)

such that U(n+1,l) = U−1
(n,r). One can also understand this diagrammatically:

=U U−1A[n] A[n+1] A[n] A[n+1]

.

The boxes U and U−1 cancel, explaining the invariance of the MPS. The
notation U is short for U(n,r). Different MPSs can describe the same quan-
tum state. However, it is convenient for calculations to use MPSs with
certain additional properties. In this section I will show that any MPS can
be brought into standard form [35] obeying∑

in

A
[n]
in
A

[n]†
in

= I , (3.12)

∑
in

A
[n]†
in

(Γ[n])2A
[n]
in

= (Γ[n+1])2 , (3.13)
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for some diagonal real non-negative matrices Γ[n].
I will start by defining the transfer matrix:

E
[n]
O αβ,γδ =

∑
in,jn

A
[n]
in,(αγ)OinjnĀ

[n]
jn,(βδ)

, (3.14)

where Oimjn = 〈jn|O|im〉 are the matrix elements of some operator O. This
expression can be depicted diagrammatically as

A[n]

Ā[n]

O

β

α

δ

γ

.

The transfer matrix with unit operator E[n] := E
[n]
I acts as

E[n] : End(H(n,r))→ End(H(n−1,r)) . (3.15)

Using the gauge degree of freedom of MPSs one can right-normalize the
transfer matrices such that Ẽ[n](I) = I which is equivalent to Eq. (3.12). Let

C
[n]
r : H(n,r) ⊗Hn → H(n−1,r) be the mapping obtained from A[n] through

〈α|C [n]
r |inβ〉 = A

[n]
in,(αβ) . (3.16)

Its singular value decomposition is C
[n]
r = UΛ[n]Ã[n], where U and Ã[n] are

isometries and Λ[n] is a diagonal matrix with the singular values of C
[n]
r as

its diagonal entries. More explicitly

A
[n]
in,(αβ) = Uαγλ

[n]
γ Ã

[n]
in,(γβ) , (3.17)

with λ
[n]
γ = Λ

[n]
γγ . Saying that the matrices Ã[n] are isometric means that the

matrix M with entries (M)γ,inβ = Ã
[n]
in,(γβ) obeys MM † = I. Here in and β

combine to form the second index. Similarly U †U = I. Using these property,
it can easily be shown that it gives rise to a right-normalized transfer matrix.
The matrix Ã[n−1] should be transformed accordingly to keep the total MPS
invariant. Similarly, one could left-normalize a transfer matrix such that it

obeys
∑

αE
[n]
αα,γδ = δγδ. Diagrammatically, the left- and right-normalized

transfer matrices obey:

=

A[n]

Ā[n]

, =

A[n]

Ā[n]

.
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Normalizing transfer matrices simplifies calculations. For example, calcu-
lating the norm of an MPS |Ψ〉 with transfer matrices E[i] which are left-
normalized for i < n and right-normalized for i > n results in 〈Ψ|Ψ〉 =

TrE[n](I) =
∑

in,α,β
|A[n]

in,(αβ)|2. Diagrammatically:

. . . . . . =

A[1] A[2] A[n] A[L] A[n]

Ā[1] Ā[2] Ā[n] Ā[L] Ā[n]

.

The calculation of reduced density matrices is also simplified if transfer
matrices are normalized. Consider an MPS with open boundary conditions
(D(1,l) = DL,r) = 1). Let Rn be the region of the last L − n + 1 sites. Its

complement consists of the first n− 1 sites. If the transfer matrices E[i] are
left-normalized for i < n and right-normalized for i > n, the expression for
the reduced density matrix ρRn will simplify as follows:

ρRn = Tr\Rn
∑

i1...iL,j1...jL

Ā
[1]
j1
. . . Ā

[L]
jL
A

[1]
i1
. . . A

[L]
iL
|i1 . . . iL〉〈j1 . . . jL|

=
∑

i1...iL,jn...jL

Ā
[1]
i1
. . . Ā

[n−1]
in−1

Ā
[n]
jn
. . . Ā

[L]
jL
A

[1]
i1
. . . A

[L]
iL
|in . . . iL〉〈jn . . . jL|

=
∑

injnαβ

Ā
[n]
jn,(αγ)A

[n]
in,(αβ)|inβ〉〈jnγ| . (3.18)

The vectors |β〉 are obtained through:

|β〉 = A
[n+1]
in+1,(βδ)

. . . A
[L]
iL,(ε)
|in+1 . . . iL〉 . (3.19)

All the matrices A
[a]
ia

in the above equation can be viewed as unitary map-
pings since their corresponding transfer matrices are right-normalized. Thus,
the vectors |β〉 form an orthonormal basis. The same argument holds for
〈γ|. This equation can be written diagrammatically as

· · · · · · =

An

Ān

An

Ān

|β〉

〈γ|
.

The reduced density matrix ρRn can also be written in terms of the

mappings C
[n]
r defined in Eq. (3.16): ρRn = C

[n]†
r C

[n]
r . The eigenvalues of

ρRn are exactly the square of the singular values of C
[n]
r . From Eq. (3.18) it

follows that ρRn+1 =
∑

in
〈in|ρRn |in〉 =

∑
in
A

[n]†
in
A

[n]
in

results in the reduced
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density matrix of Rn+1 having eigenvalues values (λ
[n+1]
i )2. Furthermore,

the matrices A[n] can also be right-normalized by means of Eq. (3.17). Thus
the matrices A[n] can be transformed to obey Eq. (3.13).

All right-normalized matrices can be transformed to obey Eq. (3.13)
where (Λ[n])2 is a diagonal matrix containing the eigenvalues of the reduced
density matrix ρRn . The right-normalized matrix Ã[n] can also be obtained
by computing the right-eigenvectors of ρRn .

I stated before that bringing an MPS in the standard form of Eqs. (3.12)
and (3.13) can simplify further calculations. Indeed the reduced density
matrix can easily be computed by means of Eq. (3.18). In the following I
will show that expectation values and correlation functions can also be more
easily computed if an MPS is brought into the standard form.

The expectation value of an operator On acting on the n-th site is cal-
culated as follows:

〈Ψ|On|Ψ〉 = Tr

(
n−1∏
i=1

E[i]E
[n]
O

L∏
i=n+1

E[i]

)
, (3.20)

where E[i] = E
[i]
I . This expression can be depicted diagrammatically as

A[n]

Ā[n]

O . . . .

Correlations between two operators L and R acting on two sites n and m
can also be easily calculated using transfer matrices:

〈LnRm〉 =
Tr
(
ELE

jERE
L−j−2

)
TrEL

. (3.21)

Here we assume that all transfer matrices are site independent: E
[i]
O = EO.

Thus we are dealing with a translational invariant MPS. Furthermore j =
m− n− 1 is the number of sites between sites n and m. Now for simplicity
assume that E has a non degenerate largest eigenvalue λ1 with right and left
eigenvectors |r〉 and 〈l| and rescale the MPS such that λ1 = 1. Eq. (3.21)
then simplifies to

〈LnRm〉 = 〈l|EL|r〉〈l|ER|r〉+
∑
k>1

λjk〈l|EL|rk〉〈lk|ER|r〉 , (3.22)
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where λk are the other eigenvalues of E with corresponding right and left
eigenvectors |rk〉 and 〈lk|. This implies an exponentially decaying correla-
tion. The exponent is in this case determined by λ2: in general it is de-
termined by the ratio between the first and second largest eigenvalue. This
statement also holds for MPS with a transfer matrix with degenerate largest
eigenvalue. In this case one obtains more than one constant non-decaying
term. The other terms still decay exponentially.

3.1.3 The AKLT-state

The AKLT-state is defined on a spin-1 spin chain and is the unique ground
state of the SO(3) invariant AKLT-Hamiltonian:

HAKLT =
∑
〈i,j〉

(
1

3
+

1

2
~Si~Sj +

1

6
(~Si~Sj)

2

)
, (3.23)

with periodic boundary conditions. It was studied by Affleck, Kennedy,
Lieb and Tasaki [15] because the correlation length and a lower bound on
its gap can be exactly calculated. Moreover this state lies in the Haldane
phase, thus it allows to verify the statement that the Heisenberg model on
integer spin chains is gapped and short range correlated [3]. Alternatively,
the AKLT-Hamiltonian with open boundary conditions has a four-fold de-
generate ground state.

The AKLT-Hamiltonian is a sum of terms, each acting on a space V2 ⊗
V2 = V0⊕V2⊕V4 where Vλ is the (λ+1)-dimensional spin-λ/2 representation
of SU(2). The action of ~Si~Sj on each of these three spaces can be calculated
by

~Si~Sjv =
1

2

(
(~Si + ~Sj)

2 − ~S2
i − ~S2

j

)
v

= (λ(λ+ 2)/8− 2) v , (3.24)

for all v ∈ Vλ. Using this equation for λ = 0, 2 or 4, it follows that the AKLT-
Hamiltonian is a projection on V4. Thus a state which does not contribute
to the spin 2 sector (TrV4ρR = 0 where R is a region of two neighboring
sites) has zero energy and is thus a ground state.

Consider an MPS whose auxiliary spaces are spin 1/2 representations
and whose matrices A[n] = A are site independent SU(2) invariant projectors
A : V1⊗V1 → V2, see Fig. 3.2. Let R′ be a region of the auxiliary spin chain
consisting of four sites corresponding to two neighboring physical sites. The
reduced density matrix ρ′R′ of the ground state on the auxiliary spin chain
with respect to region R′ only contributes to the spaces V1⊗V0⊗V1 = V0⊕V2

due to the singlet between neighboring auxiliary sites of different physical
sites. Thus TrV4ρ

′
R′ = 0. But since the mappings A are SU(2) invariant,

it follows that TrV4ρR = 0, where R is the region corresponding to two
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Figure 3.2: A graphical representation of two sites of the AKLT state (de-
noted by a “1”) and their corresponding auxiliary spaces (denoted by a “1

2”).
The boxes represent the SU(2) invariant projection. The ellipse represents
the spin singlet.

neighboring physical sites. Thus this MPS is indeed a ground state of the
AKLT-Hamiltonian. It was shown in Ref. [15] that it is the unique ground
state.

3.2 Parent Hamiltonians

Up to now we have considered MPSs as approximate or exact solutions of
gapped Hamiltonians. One can turn the question around: given an MPS,
what is a corresponding gapped Hamiltonian with exactly this MPS as
unique ground state. This Hamiltonian is called the parent Hamiltonian.
Such a study is motivated by the fact that it gives rise to toy models with
exactly known ground states. For example, in Ref. [DQ2] we used parent
Hamiltonians to study models in a specific topological phase.

Again, let |Ψ〉 be an MPS and let R be a region of sites m to n. The rank
of the reduced density matrix ρR is at mostD(m,l)D(n,r) which is smaller than

the dimension of the Hilbert space belonging to region R (dimHR = dl) for
a certain size l = m−n+1 of R. Consider the positive-semidefinite operator
hR acting in R with the property ker(hR) = im(ρR). The MPS |Ψ〉 is, by
construction, a ground state of hR⊗ I\R (where \R denotes the complement
of R) and thus also of ∑

i

hRi ⊗ I\Ri , (3.25)

where Ri is some covering of the chain. This Hamiltonian is frustration
free in the sense that its ground state minimizes each term in the above
sum. Note that this is exactly how one can obtain the AKLT-Hamiltonian
as the parent Hamiltonian of the AKLT-state (if one sums over regions of
neighboring sites).

Nothing guarantees that the Hamiltonian constructed in this manner has
a unique ground state. Consider for example the GHZ state (after Green-
berger, Horne and Zeilinger). It is a periodic state defined on a spin-1/2
chain given by |↑↑ · · · ↑〉+ |↓↓ · · · ↓〉. Its corresponding MPS representation
is given by the site independent matrices A± = I± σz, where the subscript
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“±” refers to spin-up and spin-down. The reduced density matrix of any
region R is given by ρR = |⇑〉〈⇑|+ |⇓〉〈⇓| where |⇑〉 (|⇓〉) refers to the state
in region R of all spins up (down). Its image space is clearly 2-dimensional
and is spanned by |⇑〉 and |⇓〉. The Hamiltonian given by expression (3.25)
will be of Ising type, having a two fold degenerate ground state.

The Hamiltonian of the GHZ state, constructed using Eq. (3.25), does
not have a unique ground state because any reduced density matrix ρR has
rank 2. However, the entanglement between region R and its complement is
modeled by two auxiliary spaces, both of dimension 2. Thus it is modeled
by a 4-dimensional space. I will discuss a sufficient condition for an MPS to
have a parent Hamiltonian, a Hamiltonian that has this MPS as its unique

ground state. Let |Ψ〉 be an MPS with matrices A
[n]
in,(αβ) and let R be a region

from site m to site n, with corresponding Hilbert space HR. Consider the
map ΓR : H(m,l) ⊗H(n,r) → HR from the boundaries of R into R given by

ΓR|αε〉 = A
[m]
im,(αβ)A

[m+1]
im+1,(βγ) . . . A

[n]
in,(δε)

|imim+1 . . . in〉 . (3.26)

Region R is said to be injective if the above mapping is injective. An MPS
is said to be injective if it has a disjoint covering of injective regions [34].
Each injective MPS has a parent Hamiltonian given by∑

〈i,j〉

hRi
⋃
Rj ⊗ I\(Ri⋃Rj) , (3.27)

such that its ground state is unique [32]. Here hR is a projection with the
property ker(hR) = im(ΓR).

We can check that the MPS of the GHZ state (defined by the ma-
trices A± = I ± σz) is not injective. Indeed, for any region R we have
ΓR(( 1 0 ),

(
0
1

)
) = 0, proving that ΓR is not injective. For the AKLT state,

each region R consisting of two neighboring sites is injective. Indeed the
corresponding map ΓR = V1⊗ V1 → V2⊗ V2 is injective. Regions R consist-
ing of only 1 site are not injective. Note that Eq. (3.27) implies a parent
Hamiltonian with 4-site interactions.

3.2.1 Translationally invariant systems

Translationally invariant states can be written in terms of site independent
maps A acting on site independent auxiliary spaces Hl⊗Hr, with Hr = H∗l .
In the previous section it was already shown that each MPS can be brought
into standard form (obeying Eqs. (3.12) and (3.13)). In Ref. [35] it is shown
that each MPS can be brought into a block form. Let the left and right
auxiliary space split into Hl = ⊕kHkl and Hr = ⊕kHkr . The matrices Ai can
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be written as

Ai =

 A1
i 0 0

0 A2
i 0

0 0
. . .

 , (3.28)

such that each set of matrices {Aki }i obeys Eqs. (3.12) and (3.13). More-
over, the unit matrix is the unique eigenvector of the transfer matrix Ek :
End(Hkr )→ End(Hkr ) given by

Ek(X) =
∑
i

AkiXA
k†
i , (3.29)

with eigenvalue 1, for each k. This standard form directly gives insight into
the degeneracy of the ground state of its parent Hamiltonian. The idea is
that each of the matrices Ak defines an injective MPS with injective regions
of some size Lk, which depends on the block k. The Hamiltonian defined
in Eq. (3.27), where the regions Ri have size maxk Lk, has each of these
MPSs as ground states [31, 33, 35]. This directly explains why the parent
Hamiltonian of the GHZ state described above has a two fold degenerate
grounds state.

This statement does not hold if a transfer matrix Ek has more than one
eigenvalue of magnitude 1 for some k. Consider for example the Majumdar-
Ghosh model [39]. It is defined on a spin 1/2 spin chain and consists of
nearest and next-nearest neighbor interactions:

HMG =
∑
〈i,j〉

~Si~Sj +
1

2

∑
〈〈i,j〉〉

~Si~Sj . (3.30)

It has a two-fold degenerate ground state consisting of singlets between
neighboring sites. The ground states are only invariant under a translation
of an even number of sites. The equal weight superposition of these two
ground states has an MPS representation with matrices

A↓ =
(

0 1 0
0 0 −1
0 0 0

)
and A↑ =

(
0 0 0
1 0 0
0 1 0

)
. (3.31)

One obtains only a single block upon bringing these matrices into the form
given by Eq (3.28). The corresponding transfer matrix has eigenvalues 1 and
-1 (after renormalization). By blocking two sites into one, one considers the
square E2 of the transfer matrix E, which of course has a twofold degenerate
eigenvalue 1. Indeed, this transfer matrix can be written in block form with
k = 2 such that the number of blocks is consistent with the number of
ground states.

In Ref. [33] the statement on a parent Hamiltonian is generalized to
non-injective systems, being indeed that the number of ground states equals



3.3. DMRG 57

the number of blocks k in the decomposition of the transfer matrix (when
translational symmetry is not broken). And more recently, in Ref. [34]
the condition for a parent Hamiltonian has been generalized to incorporate
higher dimensional systems in the framework of projected entangled pair
states (PEPS) [40].

3.2.2 Gap in translationally invariant systems

Throughout this whole Chapter we are dealing with gapped system. The
gap of a one dimensional translationally invariant system is defined in the
limit of large system size:

∆ = lim
L→∞

(e2 − e1) . (3.32)

Here e1 and e2 6= e1 are the two lowest eigenvalues up to degeneracies. Thus
a degenerate ground state does not imply a zero gap.

In Ref. [31] a lower bound for the gap of a parent Hamiltonian of an
injective MPS is found. It is given by:

∆ ≥ ∆2p

2

(
1− 2cλp

1 + cλp

1− cλp
)

. (3.33)

Here λ is the second largest eigenvalue of the transfer matrix, c = Trρ−1

where ρ is the left non-zero fixed point of the transfer matrix (ρ =
∑

iA
†
iρAi)

and p ≥ l where l is the size of the smallest region R which is injective. The
gap ∆2p is the gap of the same system restricted to 2p sites. In determining
λ and c, it assumed that the transfer matrix is right-normalized.

Note that λ also determines the correlation length via Eq. (3.22). Thus
these two important physical quantities - gap and correlation length - are
directly related to each other.

3.3 DMRG

In the following I will describe an algorithm to find an MPS with minimal
energy with respect to some Hamiltonian [41, 42]. This algorithm is closely
related to the Density-Matrix-Renormalization-Group (DMRG) algorithm
[26]. It consists of three steps: (1) Start with a random MPS |Ψ〉. (2)
Keeping all other matrices fixed, find the set of matrices belonging to a site
n (given by A[n]) such that |Ψ(A[n])〉 has minimal energy. (3) Repeat step
2 for all sites sufficiently often, until some stopping criteria are met.

An MPS |Ψ〉 depends linearly on the matrix coefficients A
[n]
in,(αβ). These

coefficients can be understood to form a vector a (ainαβ = A
[n]
in,(αβ)). Find-

ing |Ψ(a)〉 with minimal energy amounts to minimizing 〈Ψ|H|Ψ〉 which is
quadratic in a and can be written as a†Xa. Normalization of |Ψ(a)〉 gives
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rise to a constraint also of quadratic form: 1 = 〈Ψ|Ψ〉 =: a†Y a. This prob-
lem can be solved using a Lagrange multiplier λ:

L(a, λ) = a†Xa+ λ(1− a†Y a) . (3.34)

The minimum of this Lagrangian is determined by the generalized eigenvalue
equation Xa = λY a.

There are a few issues that should be taken care of before being able to
implement the above algorithm in an efficient way. I will discuss two im-
portant issues. The first issue arises when optimizing an MPS with periodic
boundary conditions (D(1,l) = D(L,r) 6= 1). I will discuss that the matrix Y
has a chance of being badly conditioned leading to numerical errors. In the
second section I will discuss how symmetries can be used to reduce the com-
putational costs. However, this give rise to a new problem, the algorithm
might get stuck in a certain “symmetry sector”. I will also discuss how this
problem can be helped.

3.3.1 Periodic versus open boundary conditions

When solving this generalized eigenvalue problem numerically one should
take care that the matrix Y is well conditioned [43]. The condition number is
the ratio between the largest and the smallest eigenvalue. Given the equation
b = Y a, the condition number of Y gives a bound on the dependence of the
solution a on deviations of b. For systems with open boundary conditions
this is however not a issue. One could transform the matrices as explained
in Sect 3.1.2 such that 〈Ψ|Ψ〉 := a†a or in other words Y is unity.

For systems with periodic boundary conditions more care should be
taken. Note that Y is a Hermitian matrix acting on the space H(n,l) ⊗
H(n,r) ⊗Hn. It can be decomposed into the sum of tensor products

Y =
∑
i

λiLi ⊗Ri ⊗ I , (3.35)

such that Li and Ri are also Hermitian and normalized with respect to the
Frobenius norm. (The Frobenius norm of X is given by

√
tr(XX†).) For

systems without periodic boundary conditions, the left and right part are
completely separated, the previous sum will consist of only one term with
L1 = 1/

√
D(n,l)

∏
i<nE

[n] and R1 = 1/
√
D(n,r)

∏
i>nE

[n]. However, with
periodic boundary conditions there exists some “entanglement” between the
left and right part leading to more than one non-zero singular value λi. The
singular values are expected to decay exponentially in system size due to
the finite correlation length [43]. Gauge invariance of the MPS allows to
transform the matrix Y as:

Y → (U †L ⊗ U
†
R ⊗ I)Y (UL ⊗ UR ⊗ I) . (3.36)

Choosing UL such that ULU
†
L = L1 and UR such that URU

†
R = R1 will result

in a Y close to unity and thus well conditioned.
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3.3.2 Symmetries

After optimizing the n-th site one continues to optimize the (n+ 1)-th site
and so on until the L-th site is reached. After this “right-sweep” all sites are
optimized again in decreasing order. In this way, the effort in calculating
the matrices X and Y is minimized, since only the matrices A[n] has to
be left- (or right-) normalized after optimization during a “right- (or left-)
sweep” [41]. After solving the generalized eigenvalue equation given by
Eq. (3.34), the matrices on site n should be right-normalized to prepare the
minimization of the (n − 1)-st site (or left-normalized, depending on the
direction of optimization). As described in Sect. 3.1.2, the reduced density
matrix ρRn described in Eq. (3.18) should be diagonalized to obtain right
normalized matrices Ã[n].

As with all diagonalization algorithms, great improvement with regard to
computational cost is achieved by making use of symmetries. Assume for the
following that a U(1) symmetry generated by Sz is conserved: [H,Sz] = 0.
Not only is it useful to choose a basis of the on-site Hilbert spaces Hn
in which Sz is diagonal (such that each basis vector is labeled by an Sz

quantum number), but also the auxiliary spaces can be chosen to have a
basis for which Sz is diagonal.1 Using the quantum numbers of Sz, both
ρRn and the matrix X appearing in Eq. (3.34) can be block diagonalized.
Moreover, if it is known that the ground state is in a certain symmetry sector
it is sufficient to diagonalize only the corresponding block of the matrix X.

Optimizing the matrices A[n] does not change the distribution of quan-
tum labels of the auxiliary spaces. If one starts with a certain state with cer-
tain corresponding distributions of quantum labels for the auxiliary spaces,
which is different for the optimal state, this optimal state will not be reached.
The algorithm is thus prone to getting trapped in a wrong “symmetry sec-
tor”. Note that quantum numbers of the auxiliary space H(n,l) are the sum
of the quantum numbers of the region Rn consisting of the last L − n + 1
sites. Quantum numbers of this auxiliary space are changed due to those
part of the Hamiltonian which acts on both Rn and its complement. In
Ref. [44] a method to prevent trapping is proposed which makes use of this
fact. Decompose the Hamiltonian H into a part H(n,l) acting on the first
n− 1 sites and H(n,r) acting on all other sites. Thus:

H =
∑
i

H i
(n,l) ⊗H i

(n,r) . (3.37)

1Consider the case where D(n,l) = D(L,r) = 1. The first and last auxiliary space
are trivial and thus have quantum number 0. The right-normalized matrices induce an
isometry Cr given by Eq. (3.16) which can be obtained from a reduced density matrix
commuting with the symmetry. Thus Cr commutes with the symmetry. This implies an
Sz action on H(n,r) given an Sz action on H(n+1,r). The same argument can be used in
case of left-normalized matrices. They imply a Sz action on H(n,l) given an Sz action on
H(n−1,l).
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The second part of the Hamiltonian, given by H i
(n,r), is used to perturb the

reduced density matrix ρRn obtained after optimization

ρ̂Rn = ρRn + α
∑
i

H i †
(n,r)ρRnH

i
(n,r) , (3.38)

where the weight α is small (10−4 − 10−8 [44]). This new reduced density
matrix should be diagonalized to obtain right normalized matrices Ã[n]. It
may in general have more than D(n,l) eigenvalues. Only the largest D(n,l)

should be kept, which may correspond to a different set of quantum numbers
compared to before optimization.



Chapter 4

Symmetry Protected
Topological Order in One
Dimensional Systems

Topological order [1] is a concept to describe distinct quantum phases with
equal symmetry breaking, which cannot be described by Landau theory.
Quantum phases can be defined in different ways. One definition is that
two gapped Hamiltonians H0 and H1 describe the same quantum phase
if there exist a continuous path of Hamiltonians H(q) with H(0) = H0

and H(1) = H1 such that H(q) is gapped for each value of q. Another
definition, shown to be equivalent [45], is to say that two systems are in
the same quantum phase if their ground states are related by a unitary
transformation Ut generated by the time evolution of a local Hamiltonian.
This locality restriction only makes sense if one studies systems in some
thermodynamic limit.

From the second definition it directly follows that all states obtained
by transforming a separable (classical) state with some Ut reside in the
same phase: the trivial phase. Since a separable state is not entangled,
states in this trivial phase are called short ranged entangled. Long range
entanglement in two-dimensional systems results in a universal constant
term in the von Neumann entropy: S(R) = c|∂R| + γ, [46, 47]. In one-
dimensional spin systems long range order does not exist [13]. Or in other
words, topological order does not exist in spin chains. This is because every
ground state can be written as a matrix product state (MPS) as explained in
the previous chapter. And as explained in Ref. [13] each MPS can be mapped
to a separable state by essentially mapping the singlets between auxiliary
spaces of different physical sites to singlets between auxiliary spaces of a
single physical site, see Fig.4.1.

In some cases one cannot use an arbitrary unitary transformation Ut
to connect different systems in the same phase. Symmetry might restrict

61
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· · · · · ·

· · · · · ·
⇓

Figure 4.1: A graphical explanation why every MPS can be mapped to a
separable state. Squares represent maps from auxiliary spaces to physical
spaces, ellipses represent singlets.

the choice of Ut. Having less options for Ut could result in more quantum
phases. These are called symmetry protected topological (SPT) phases [48].
An example of an SPT phase is the Haldane phase appearing in spin 1 spin
chains. In this case the SO(3) symmetry restricts the possible transforma-
tions Ut. The Haldane phase is separated by a quantum phase transition
from for example a dimerized phase (being the topological trivial phase).
Recently, a classification of all SPT phases has been found [13, 14]: given
a group G of unitary symmetries acting globally, the different phases are
classified by the elements of the group H2(G,U(1)), being the second group
cohomology of G with values in U(1). The group H2(G,U(1)) also classi-
fies the different projective representations of G, being representations up
to a phase. The idea behind the classification of SPT phases is that in
the context of an MPS a symmetry can be thought to act on not only the
physical sites but also on the auxiliary spaces. Since each physical site has
two corresponding auxiliary sites the symmetry u(g) acting on a single site
fractionalizes u(g) → Vl(g) ⊗ Vr(g) into actions Vl(g) and Vr(g) acting on
the corresponding left and right auxiliary space. This fractionalization gives
the auxiliary spaces H(n,l) and H(n,r) the possibility to be projective repre-
sentations. The type of projective representation that the auxiliary spaces
are, is directly related to the type of SPT in which the system resides.

Before discussing the classification of SPT phases I will introduce the
concept of central extensions which can be used to explain projective repre-
sentations. To get a good understanding of projective representations I will
discuss them for the case of finite Abelian groups and of simple Lie groups.
In the second part of this Chapter I will first discuss quite rigorously why
symmetry fractionalizes. In a more hand waving manner I will prove the
statement that SPT phases are classified by H2(G,U(1)). Finally I will
discuss in more detail the consequences of having time reversal or inversion
symmetry.
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4.1 Projective representations

As mentioned in the introduction, projective representations are classified
by the second group cohomology H2(G,U(1)), which in turn determines the
different extensions of G by U(1). Before introducing projective representa-
tions I will first introduce group extensions.

4.1.1 Central extensions

An extension of a groupG over A is a group E together with homomorphisms
ι and σ determining the following short exact sequence:

1→ A
ι−→ E

σ−→ G→ 1 . (4.1)

That is, the map ι is injective, the map σ is surjective and thus E/A = G.
As a set, E is just the direct product A×G and its elements can be written
as (a, g). In this notation the map σ is just (a, g)→ g. Let τ : G→ E select
a representative (ag, g) for each coset in G. It follows that σ ◦ τ = IG. The
map τ is in general not a homomorphism. If there exist a homomorphism τ
the extension E is said to be split, being isomorphic to a semi-direct product
A o G. Multiplication is given by (a1, g1)(a2, g2) = (a1φg1(a2), g1g2) where
the map φ : G→ Aut(A) is defined as φg(a) = τ(g)aτ(g)−1. From this point
on I will assume A is in the center of G, which defines central extensions.
In this case φ would always map to the trivial automorphism and thus it
follows that every split central extension is isomorphic to the direct product
A×G.

Since τ is in general not a homomorphism, the element

ω(g, h) = τgτhτ
−1
gh , (4.2)

is not necessarily equal to the unit element in E. Following [49], I use the
notation τg = τ(g) and τ−1

gh = (τ(gh))−1 as the inverse element of τgh in
G. However, ω(g, h) is an element of kerσ and thus of A. Note that the
map ω depends on the map τ . A different choice of representatives given by
τ ′g = θ(g)τg (where θ : G → A) will lead to a different map ω′ related to ω
by:

ω′(g, h) = θ(g)θ(h)θ(gh)−1ω(g, h) . (4.3)

From the associativity in E and G it follows that ω obeys a cocycle condition:

ω(f, gh)ω(g, h) = ω(f, g)ω(fg, h) . (4.4)

Maps ω : G × G → A satisfying the cocycle condition form a group under
point wise multiplication which is denoted by Z2(G,A). Each map θ : G→
A defines a map dθ : G×G→ A by dθ(g, h) = θ(g)θ(h)θ(g, h)−1. The image
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of this map is a subgroup of Z2(G,A) and is denoted by B2(G,A). Their
quotient gives the group cohomology H2(G,A) = Z2(G,A)/B2(G,A). This
can be put in a more general setting of a cochain complex. Let Cn be the
Abelian groups of maps θ : Gn → A and let dn : Cn → Cn+1 be given by:

dnθ(g1, . . . , gn, gn+1) =θ(g1, . . . , gn)θ(g2, . . . , gn+1)(−1)n+1×
n∏
i=1

θ(g1, . . . , gigi+1, . . . , gn+1)(−1)i . (4.5)

Define Bn = im dn−1 and Zn = ker dn. Since dn+1 ◦ dn = 1 it follows that
Bn ⊂ Zn which allows us to define Hn(G,A) = Zn/Bn as the n-th group
cohomology of G over A.

Not only does a central extension of G give rise to an element ω ∈
H2(G,A), also every ω ∈ Z2(G,A) gives rise to a central extension E with
multiplication rule (a1, g1)(a2, g2) = (a1a2ω(g1, g2), g1g2). Moreover, two
maps ω and ω′ satisfying ω(ω′)−1 ∈ B2(G,A) give rise to isomorphic central
extensions. Note that two groups related by the isomorphism φ : E → E′

are isomorphic central extensions if the following diagram commutes:

1 A G 1

E

E′

σ

σ′
φ .

Thus the group H2(G,A) exactly gives the central extensions of G over A
up to isomorphisms.

4.1.2 Representation of central extensions

Projective representations ρp of a group G are group homomorphism to the
projective linear group PGL(V ) = GL(V )/C∗. The group GL(V ) itself is
a central extension of PGL(V ), giving rise to a (non-homomorphic) map t
which fixes a phase for each representation matrix ρp(g). Let U(g) denote
t(ρp(g)) (these maps are also depicted in the diagram below). Due to the
non-homomorphicity of t we have that:

U(g)U(h) = ω(g, h)U(gh) , (4.6)

where ω(g, h) = ω(ρ(g), ρ(h)) is defined through Eq. (4.2). Thus projective
representations are also said to be representations up to a phase.

A projective representation can be lifted to a linear representation of a
central extension. Let s be the homomorphism from GL(V ) to PGL(V ).
Following Ref. [49], let E be the group defined as:

E = {(U, g) ∈ GL(V )×G | ρp(g) = s(U)} . (4.7)
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Defined as such E is a group since both ρp and s are homomorphisms.
Furthermore the maps σ = pr2 and ι : λ → (λIV , IG) are surjective and
injective, respectively, from which follows that E is indeed an extension of
G. These maps can be depicted diagrammatically as:

U(1) E G

C∗ GL(V ) PGL(V )

1

1

1

1

U

ι σ

s

τ

ρ ρp

Also on the level of this central extension a non-homomorphic map τ : G→
E can be constructed. If one chooses the map t(g) = (U(g), g) it follows that
the central extension of G has the same structure as the central extension
of PGL(V ). That is:

(U(g), g) · (U(h), h) = (U(g)U(h), gh) = (ω(g, h)U(gh), gh) . (4.8)

Projective representations are said to be equivalent if they are linear
representations of the same (isomorphic) central extension. Thus the set
of equivalence classes of projective representations of G, which I denote
with {[ω]}, equals H2(G,U(1)). The group structure of H2(G,U(1)) is also
present in {[ω]} and is defined by the tensor product:

Uω1 ∈ [ω1] and Uω2 ∈ [ω2] =⇒ Uω1 ⊗ Uω2 ∈ [ω1ω2] = [ω1] + [ω2] ,
(4.9)

where Uω is the projective representation U : G→ GL(V ) satisfying Eq. (4.6).

4.1.3 Projective representations of finite Abelian groups

For finite groups, finding all inequivalent projective representations reduces
to the problem of finding a finite site of suitable phases ω(g, h) satisfying
some given relations. Let gi be some ordered set of generators for the group
G. Note that the projective class [ω] is fully determined by the functions of
the form ω(gi, h). Any other function ω(g, h) can be determined by apply-
ing the cocycle condition given by Eq. (4.4) sufficiently often. Consider a
representative ω for each class [ω] satisfying

h =
∏
k≥i

gmkk =⇒ ω(gi, h) = 1 . (4.10)

Each class [ω′] has such a representative since a gi and an h of the given form
give rise to a unique element gih and a θ ∈ B2(G,U(1)) can be defined such
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that θ(gih) = ω(gi, h)θ(gi)θ(h). Such a θ will relate ω′ to an ω satisfying
Eq. (4.10).

From the above statement it directly follows that cyclic groups don’t
allow for non trivial central extensions. Or in other words, H2(Zn, U(1)) =
1. Each ω satisfying Eq. (4.10) is fully determined by the functions of the
form ωji = ω(gj , gi) with j > i. These functions determine how gj and gi
“commute” with each other. Let ni be the order of gi. It then follows that

1 = ω(gj , g
ni
i ) = ω(gj , gi)ω(gigj , g

ni−1
i ) = ωjiω(gj , g

ni−1
i ) = ωniji . (4.11)

The third equality is due to the fact that ω(gi, gjg
ni−1
i ) = 1. And the fourth

equality is obtained by induction. Thus ωji is an ni-th root of unity. It
is also a nj-th root of unity where nj is the order of gj . Let q be the
number of generators of a finite Abelian group. A projective representation
is determined by q(q − 1)/2 phases ωji satisfying

ω
gcd(ni,nj)
ji = 1 . (4.12)

It remains to show that these projective representations are all inequiv-
alent. For that matter consider the ratio f(g, h) = ω(g, h)/ω(h, g). This
function is the same for all other ω′ ∈ [ω]. And since f(gj , gi) = ωji for
j > i it follows that a different choice of phases ωij leads to a representative
of a different class of projective representations.2

4.1.4 Projective representations of simple Lie groups

Every simple Lie group GΓ can be written as the quotient of its universal
cover G and some subgroup Γ of the center of G. That is GΓ = G/Γ. Such
Lie groups are also simply-connected if and only if Γ = {IG}. In this case GΓ

does not allow for non-trivial central extensions [50]. This statement allows
for a straightforward classification of projective representations of simple Lie
groups. The idea is that all (projective) representations of GΓ give rise to
(projective) representations of G. And since G only allows for trivial projec-
tive representations, it follows that the set of all projective representations
of GΓ is equal to the set the representations of G. It remains to study which
representations of G are equivalent as projective representations of GΓ.

The reason representations of G lift to projective representations of GΓ

is the non trivial action of Γ on such representations. Let γ ∈ Γ and let
P denote the weight lattice of G. Due to Schur’s lemma, the action of
ρ(γ) on some irreducible representation Vµ with highest weight µ ∈ P+,

2Note that this argument is only complete if all orders ni are different. I have neglected
that different choices of some ordered set of generators and a different choice of ω can still
lead to the same projective representations. For example if G = Z2×Z2×Z2 than clearly
the projective representation ω21 = −1 and ω31 = ω32 = 1 is equivalent to the projective
ω′31 = −1 and ω′21 = ω′32 = 1 representation.
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equals a multiple of the identity. This allows me to introduce the map
c : P → Hom(Γ, U(1)), thus which maps µ → cµ where cµ(γ) is defined by
the action of ρ(γ) on vectors v ∈ Vµ:

cµ(γ)v = ρ(γ)v for v ∈ Vµ . (4.13)

The map c is a homomorphism. Since firstly if v ∈ Vµ and w ∈ Vν we
have that ρ(γ)v ⊗ w = cµ(γ)cν(γ)v ⊗ w and secondly Vµ+ν is an invariant
subspace of Vµ ⊗ Vν . Thus cµ+ν(γ) = cµ(γ)cν(γ). Moreover, Γ always acts
trivially on the one dimensional representation V0 which allows to extend
the map c to the negative weights by c−µ = c∗µ. Let QΓ be the kernel of
this map. It consist of exactly those weights µ which are highest weights of
some representation Vµ of G on which Γ acts trivially. Thus if µ ∈ QΓ (and
µ positive or zero) then Vµ is a linear representation of GΓ.

For those Vµ which are not a representation of GΓ due to a non-trivial
phase cµ(γ) we can construct a central extension E of GΓ of the form:

1→ U(1)
ι−→ U(1)×G

Γ

σ−→ GΓ → 1 , (4.14)

such that Vµ is a representation of E. In the quotient defining E the sub-
group Γ ⊂ U(1)×G is defined diagonally, consisting of the elements of the
form (c∗µ(γ), γ). Clearly the maps ι and σ are injective and surjective, respec-
tively. Moreover, the representation ρµ of E defined as ρµ(λ, g) = λρµ(g)
is well defined in the sense that the subgroup Γ acts trivially on ρµ. Thus
ρµ, being a projective representation of GΓ, is a representation of the above
constructed extension of GΓ.

The different central extensions are thus given by the different maps in
Hom(Γ, U(1)) which in its turn is isomorphic to P/QΓ. Vice versa, different
maps Hom(Γ, U(1)) give rise to inequivalent central extensions since the
central extension given in Eq. (4.14) is only trivial if c ∈ Hom(Γ, U(1)) is
the trivial map. Also, since Γ is finite, it is isomorphic to Hom(Γ, U(1)). In
conclusion we have that:

H2(GΓ, U(1)) ∼= P/QΓ
∼= Γ . (4.15)

As an example consider the Lie group SU(3) with Γ = Z3 generated by
ωI3, where ω is a third root of unity. The group SU(3)/Z3 allows for three
different central extensions. Its projective representations fall into three
classes. In Fig. 4.2 these classes are depicted by giving the highest weight
projective representation in different classes a different color.

4.2 Classification of topological order

In this section I will discuss in detail one of the main topics of the thesis:
the classification of symmetry protected topological (SPT) phases in one-
dimensional spin systems. I will focus on periodic systems having a ground
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Figure 4.2: The weight lattice P of the group SU(3). The black dots repre-
sent weights which are highest weights of representations of SU(3)/Z3. The
red/vertical and blue/horizontal ellipses represent weights which are highest
weights of projective representations of SU(3)/Z3.

state |Ψ〉 which can be represented by an injective MPS. This implies that
it is the unique ground state of some parent Hamiltonian but may allow for
boundary modes if the terms in the parent Hamiltonian connecting the first
and last site are omitted.

4.2.1 Action of the symmetry

As described in the introduction, no topological phases exist without re-
stricting paths to connect different systems by symmetries. I assume that
the system has a symmetry described by the group G. Thus [H,U(g)] = 0.
Uniqueness of the ground state implies: U(g)|Ψ〉 = α(g)|Ψ〉 where α(g) is
some one-dimensional representation of G. I consider symmetries which can
be realized by a product of copies of the same unitary transformation, which
all act on a different single site. Thus I consider symmetries which can be
written in the form: U(g) =

⊗
n un(g). Here the unitary un(g) acts on the

site Hn, being a representation space of G and L is the length of the system.
From Eq. (3.11) it follows that if u(g) commutes with the mapsA defining

the MPS representation of |Ψ〉 as:

u(g) ◦A = α′(g)A ◦ (Vl(g)⊗ Vr(g)) , (4.16)

with Vl(g) = Vr(g)−1 then |Ψ〉 is invariant under U(g) up to a phase α(g) =
α′L(g). Following Ref. [51] I will now show that the reverse also holds. If
two MPSs with maps A and A′ = u ◦ A describe the same state |Ψ〉 and
|Ψ′〉 = α|Ψ〉 up to a phase α an action Vl and Vr on the left and right
auxiliary spaces can be defined such that Eq. (4.16) is satisfied. Moreover

V = Vl = V †r is unitary and unique up to a phase.
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First assume that the matrices Ai are right normalized obeying the fol-
lowing two equations:∑

i

AiA
†
i = I ,

∑
i

A†iΛAi = Λ . (4.17)

where Λ is a diagonal matrix whose eigenvalues are strictly greater than
zero. Uniqueness of the ground state implies that I is the only eigenvector
of the transfer matrix E(X) =

∑
iAiXA

†
i with eigenvalue 1 and that Λ is

the unique solution to the second of the above two equations. Furthermore
let |i〉 be eigenvectors of U with eigenvalues eiθi . The transfer matrix EU (X)
as defined in Eq. (3.14) can be written as:

EU (X) =
∑
j

eiθjAjXA
†
j . (4.18)

We will first prove that the spectral radius ρ(EU ) of EU , is bounded by 1.
Moreover ρ(EU ) = 1 if and only if there exists a unitary V such that the
following equation holds:

eiθjAjV = αV Aj . (4.19)

with |α| = 1. From this Eq. (4.16) follows with Vl = V †r = V if ρ(EU )
equals to 1. This is indeed the case since the overlap 〈Ψ|U |Ψ〉, which has
magnitude unity, can be written in terms of powers of ρ(EU ). From this it
follows that ρ(EU ) has at least one non-zero fixed point.

I will now prove that the spectral radius of ρ(EU ) is bounded by 1.
Consider an eigenvector V of Eu with eigenvalue λ: λV = EUV . Multiplying
with ΛV † (Λ is determined by Eq. (4.17)), taking traces and absolute values
one obtains:

|λ|tr(V ΛV †) = |
∑
j

tr(eiθjAjV A
†
jΛV

†)| . (4.20)

Note that tr(V ΛV †) is a positive number since it is the Frobenius norm
squared of the matrix V Λ1/2. Define the vectors Xj,αβ = (Λ1/2AjV

†)αβ and
Yj,αβ = eiθj (Λ1/2V †Aj)αβ. The r.h.s. of the above equation is just the norm
squared of the inner product of these two vectors. From the Cauchy-Schwarz
inequality it follows that

|λ|tr(V ΛV †) ≤ ‖X‖‖Y ‖ =

√∑
j

tr(V A†jΛAjV
†)

√∑
j

tr(AjA
†
jV ΛV †)

=tr(V ΛV †) . (4.21)

In the second equality Eq. (4.17) has been used. This proves that the spectral
radius of Eu is less or equal to one. Moreover, λ is only equal to one
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if X and Y are parallel. Thus if an α exist such that eiθjV †Aj = αAjV
†.

Multiplying both sides with their adjoint, summing over j, taking traces and
using Eq. (4.17) one can show that |α|=1. Since Λ is invertible Eq. (4.19)
follows. Using this equation to compute E(V †V ) one obtains that E(V †V ) =
V †V . We also assumed that I is the only eigenvector of the transfer matrix
E with eigenvalue 1. It thus follows that V is unitary.

The phases α(g) defined in Eq. (4.16) form a one dimensional represen-
tation of G. Since the matrices Vl(g) and Vr(g) are only defined up to a
phase they define projective representations of G. Their projective classes
are related by [Vr] = −[Vl] and I will denote [Vr] by t.

In the more general case without translational invariance the actions on
auxiliary spaces would be site dependent. Due to the relation V(n+1,l)(g) =
V(n,r)(g)−1 the projective classes of all auxiliary spaces are connected to each
other. I can still define a t such that

t = [V(n,r)] = −[V(n,l)] , (4.22)

for all n.

It is this t ∈ H2(G,U(1)) that determines the phase in which the state
|Ψ〉 resides. To show this I will use the arguments described in Ref. [13] and
Ref. [14].

4.2.2 Equivalence of phases

First of all I will show that two ground states |Ψ〉 and |Ψ′〉 with equal pro-
jective classes of auxiliary spaces (t = t′) reside in the same phase. This can
be shown be finding a symmetry preserving local unitary transformation U
relating the two states. As described in the introduction, with locality I
mean that it is the time evolution of some local Hamiltonian. More con-
cretely I will take a U(τ) =

∏
n Un(τ) such that each term Un(τ) acts on

only two sites. Most importantly |Ψ(τ)〉 = U(τ)|Ψ〉 is symmetric during the
transformation.

In what follows I will describe the unitary transformations Un(τ). Let
A[n] be the maps defining an MPS representation of |Ψ〉 and similarly, let
B[n] define |Ψ′〉. Since it was assumed that |Ψ〉 and |Ψ′〉 are injective I can
also assume that the maps A[n] and B[n] are injective. One can achieve this
by possibly blocking injective regions to one site. The difference between |Ψ〉
and |Ψ′〉 is two fold. Not only are they defined by different maps, these maps
are also defined to act on different auxiliary spaces, denoted by H(n,l/r) for
|Ψ〉 and by H′(n,l/r) for |Ψ′〉. The idea is to use U1(τ) to change the auxiliary

spaces between the first and second site, use U2(τ) to change the auxiliary
space between the second and third site, and so on. Thus to use Un(τ) to
change the auxiliary spaces between the n-th and n + 1-th site. This give
rise to the following complication: after the first transformation U1(τ) the
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auxiliary spaces of the first site are H(1,l) and H′(1,r). To define an MPS at

this stage we will need a map T
[1]
12 which act as:

T
[1]
12 : H(1,l) ⊗H′(1,r) → H1 , (4.23)

which should be injective and respect the symmetries (that is obey Eq. (4.16)).

Similarly we shall need to define a T
[n]
21 acting as

T
[n]
21 : H′(n,l) ⊗H(n,r) → Hn , (4.24)

which should also be injective and equivariant. These maps will be used to
define Un(t) and appear in the MPS representation of intermediates states
|Ψn〉:

|Ψn〉 = Tr(T
[1]
12 B

[2] . . . B[n]T
[n+1]
21 A[n+2] . . . A[L])|in . . . iL〉 . (4.25)

A few of these states have been depicted in Fig. 4.3. Note that |Ψ0〉 = |Ψ〉
and |ΨL〉 = |Ψ′〉.

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 4.3: A schematic representation of the state |Ψn〉 for n equal to 0 ,
1, 4, L− 1 and L. The white boxes represent matrices A[n], the black boxes
B[n] and the red boxes T [n]. The single horizontal lines represent completely
entangled pairs between H(n,r) and H(n+1,l) whereas the double horizontal
lines represent completely entangled pairs between H′(n,r) and H′(n+1,l).

In more detail the maps Un(t) satisfy:

Un(τ) =

{
I for τ < n− 1
Un(n) := Un for τ > n

, (4.26)

such that they act in increasing order. Or in other words we have the equa-
tions |Ψn〉 =

∏
n Un|Ψ〉 = Un|Ψn−1〉. The unitary Un(t) will thus interpolate

between |Ψn−1〉 and |Ψn〉. During this interpolation only the matrices of the
sites n + 1 and n + 2 will change. The auxiliary space between these two
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sites will be enlarged to H(n+1,r) ⊕H′(n+1,r). Let the matrices on these sites
depend on γ = t− n− 1 as:

(1− γ)T
[n+1]
21 + γB[n+1] , (4.27)

(1− γ)A[n+2] + γT
[n+2]
21 . (4.28)

Since both the maps T21, A and B are assumed to be injective, the above
linear combinations are also injective except for γ = 0 or 1. However this is
only due to the too large auxiliary space which should be reduced again to
H(n+1,r) or H′(n+1,r). Injectivity ensures that the gap does not close during
the transformation.

For the above argument it is crucial that the maps T
[n]
12 and T

[n]
21 can

be defined. This is not always the case. Consider for example an SU(3)
invariant spin chain with Hn = 1 ⊕ 8 ⊕ 27 (irreps of SU(3) are labeled by
their dimensions). Let |Ψ〉 have auxiliary space H(n,l) = 3 and H(n,r) = 3̄
and be defined by the SU(3) invariant projection 3 ⊗ 3̄ → 1 ⊕ 8. Similarly
let |Ψ′〉 have auxiliary space H′(n,l) = 6̄ and H′(n,r) = 6 and be defined by the

SU(3) invariant projection 6̄⊗ 6→ 1⊕ 8⊕ 27. A SU(3) invariant injective
projection T12 : H(n,l) ⊗ H′(n,r) → Hn does not exist since 10 ⊂ 3 ⊗ 6 and
10 6⊂ Hn. This problem can however be cured by again blocking two sites
into one since 10 ⊂ Hn ⊗Hn.

I do not prove that T
[n]
12 and T

[n]
21 can be defined. However, if we are

dealing with two states with different auxiliary spaces belonging to different
projective classes (t 6= t′) then these maps can certainly not be defined. Since
in that case [H(n,l)] + [H′(n,r)] 6= 0 whereas we have trivially that [Hn] = 0.
In the following we will argue that indeed two such states reside in different
SPT phases.

4.2.3 Inequivalence of phases

In what follows I will give an idea of a proof that if two states are related by
a local unitary transformation |Ψ′〉 = U |Ψ〉 where U = eiH is a finite time
evolution (∆τ = 1) of some local Hamiltonian H, then the projective classes
of the auxiliary spaces of |Ψ〉 and |Ψ′〉 are the same (t = t′). I will assume
that H is a nearest neighbor Hamiltonian, a property that can be achieved
after blocking sufficiently many sites. The idea is that the time evolution
U(τ) = eiτH can be approximated by a product of unitary operators acting
on two sites only. This statement has been proven in the quantum infor-
mation community in order to show that one-dimensional quantum systems
can be simulated by a quantum circuit [52]. Thus we have that

U(τ)|τ=1 = eiH =
∏
i

U
[ni]
i , (4.29)
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where U
[ni]
i acts only on the sites ni and ni+ 1. Since the unitaries U

[ni]
i are

all local, they can not change the projective class of all auxiliary spaces, see
Fig. 4.4. Changing the projective class of all auxiliary spaces would require
a unitary transformation acting on all sites.

t′ t t′ t

ni ni + 1

Figure 4.4: A schematic picture of a part of an MPS. The red dotted

rectangle depicts the two sites on which U
[ni]
i acts. The projective class of

the corresponding auxiliary spaces is fixed by the auxiliary spaces of the two
neighboring sites and are thus unaltered.

To get a better understanding of Eq. (4.29), denote H = H1 +H2 where
H1 consists of terms acting on sites 2i and 2i + 1 and H2 consist of terms
acting on sites 2i − 1 and 2i. One can approximate the time evolution
U(τ)|τ=1 with

ei(H1+H2) ≈
(
eiH1/meiH2/m

)m
, (4.30)

in which the error scales inversely proportional to m (and quadratic in ‖H1‖
and ‖H2‖) [52]. Since the two-body terms in the Hamiltonian H1 commute
with each other it can be written as a product of unitaries acting on two
sites only, and similarly for H2. Thus Eq. (4.29) could have been written as:

eiH =
2m∏
i=1

Udisj
i , (4.31)

where Udisj
i is a a product of unitaries acting on disjoint regions. The above

argument stating that the transformation U
[ni]
i does not change the projec-

tive class of auxiliary spaces, can also be applied to Udisj
i . In this case the

auxiliary spaces connecting the disjoint regions are still left unaltered. This
argument should be applied 2m times. This should be put in comparison
with the case in which H is non-local. Since in principle any Hamiltonian can
be simulated by a quantum circuit. Thus for any Hamiltonian, Eq. (4.29)
holds and it seems that locality is a superfluous assumption. However, the
number of unitaries needed to simulate an arbitrary Hamiltonian generally
scales exponentially with the system size whereas the number of unitaries
needed to simulate a local Hamiltonian only depends on the desired ac-
curacy, as explained by Eq. (4.30). Thus for non-local Hamiltonians the
decomposition into local unitaries is ill defined in the thermodynamic limit,
which is not the case for local Hamiltonians.
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4.3 Time reversal and inversion symmetry

Both time reversal and inversion symmetry are exceptions to the symmetries
I discuss in Sect. 4.2.1. Time reversal is anti-unitary and inversion symmetry
is not of the form U(g) = u(g)⊗L since it maps site i to L − i. I discuss in
the following that this will give further restrictions on the maps V acting
on auxiliary space.

Time reversal T can be modeled by a unitary transformation uT com-
bined with a complex conjugation K (T = uTK). Eq. (4.16) will thus be
modified to

uT ◦ Ā = αA ◦ (V ⊗ V †) , (4.32)

where V is again some unitary matrix acting on auxiliary space and α is some
complex phase. Applying time reversal twice one obtains T 2A = A(V V̄ )⊗
(V̄ V )†. Using Eq. (4.17) it follows that the matrix V̄ V is a fixed point of the
transfer matrix and thus by assumption a multiple of the identity. Together
with the fact that V is unitary it follows that V̄ V = eiφT I with φT = 0 or π.
Just like the parameter t the phase φT can not jump unless the system goes
through a phase transition [16]. Imposing invariance under time reversal
thus gives rise to additional quantum phases. In more recent work time
reversal is combined with on-site symmetries already on the group level (T ∈
G) [53]. In this case the definition of second group cohomologyH2(G,U(1)T )
or that of projective representations is slightly altered to incorporate anti-
unitary symmetries. Instead of considering the maps U and ρp to GL(V )
and PGL(V ) as discussed in Sect. 4.1.2 one should consider the map U to
UUA = U(V )∪UA(V ) and the map ρp to PUUA = UUA/C∗ where UA(V ) is
the set of all anti-unitary operators acting on V [54]. The result is that all
quantum phases, including those protected by time reversal, are classified
by H2(G,U(1)T ).

Inversion symmetry has a very similar effect as time reversal. When
translation symmetry is also imposed (and if one works with a translationally
invariant MPS) inversion is just the transposition of the matrices Ai. Thus

AT = αA ◦ (V ⊗ V †) . (4.33)

Just as above, applying inversion twice one can show that V V̄ = eiφI I. And
thus it again follows that φI is either 0 or π. Just like φT it is argued in [16]
that φI can only jump at a phase transition. Thus imposing inversion leads
to a separation of a trivial phase from a non-trivial phase.

From the discussion above, it seems as if imposing either time reversal or
inversion symmetry leads to a doubling of phases already present when these
symmetries are not imposed due to the extra invariant φT or φI . However,
not all SPT phases allow for time reversal or inversion symmetric states.
Focus on inversion symmetry. A ground state residing in an SPT phase
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characterized by the invariant t has right auxiliary spaces being projective
representations in class t and left auxiliary spaces being in class−t. Inversion
symmetry gives rise to the restriction that t = −t. Non-trivial solutions exist
for example if H2(G,U(1)) = Z2N , thus for example if G = SU(2N). In that
case states in the phase t = N have a chance of being inversion symmetric.

For time reversal symmetry the same restriction for t holds. From
Eq. (4.16) it follows that the the matrices Ā obey

ū(g) ◦ Ā = ᾱ′(g)Ā ◦ (V̄l(g)⊗ V̄r(g)) , (4.34)

Projectiveness of V̄r gives rise to phases ω−1(g, g′) where ω is the factor
system of the projective representation Vr. And from Eq. (4.9) it follows
that t = [ω−1] = −[ω]. To be time reversal symmetric t should obey t = −t.



Chapter 5

Measuring Order

In the previous chapter symmetry protected topological (SPT) order was
discussed. A key point is that the ground state is invariant under the same
symmetries as its Hamiltonian. This is in great contrast to spontaneous
symmetry breaking (SSB) phases. Such phases have degenerate ground
states which are not invariant under all symmetry transformation. Let |Φ〉
be one of such ground states. Symmetry breaking of the ground state is
made apparent by a non-zero expectation value of an order parameter X
which changes under symmetry transformations. Thus if G were the group
of symmetries and U ∈ G is a symmetry transformation we have that:

〈Φ|X|Φ〉 = 〈X〉 6= 〈U †XU〉 . (5.1)

From this property of X it follows directly that [X,U ] 6= 0 and moreover that
|Φ〉 6= U |Φ〉. One might wonder whether the state

∑
U∈G U |Ψ〉 is an invariant

ground state (assuming G to be discrete). It is clearly invariant but not
a macroscopic ground state since it is not stable under symmetry breaking
fluctuations. It is crucial for this argument to hold that the system is infinite.
A more formal treatment on spontaneous symmetry breaking can be found
for example in [55]. Physically, ground states can be obtained by cooling
the system in the presence of a small symmetry breaking exterior field, for
example a magnetic field. In this manner a state |Φ〉 is obtained which is
not only the ground state of the Hamiltonian H but also of H + δ

∑
iXi,

where Xi is the operator X acting on the i-th site and δ is the strength of
the magnetic field.

Let G be the group of on-site symmetries of the Hamiltonian of a spin
chain. These symmetries are all realized as unitary global transformations.
Time reversal and inversion symmetry will not be considered in this Chapter.
The SSB and SPT phases of the spin chain are classified by a subgroup
H ⊂ G, describing the unbroken symmetries and a topological invariant
t ∈ H2(H,U(1)) describing the projective class of the boundary modes. By
analyzing the behavior of suitable order parameters X the subgroup H can

76
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be deciphered. Order parameters are used to detect symmetry breaking.
In Ref. [27] a method is introduced to detect the invariant t by means of a
suitable string order parameter in the case that G is a finite Abelian group.

It is understood that the Haldane phase occurring in SO(3) invariant
spin-1 chains can be explained by hidden symmetry breaking [25]. A non-
local unitary (NL-UT) transformation is introduced which preserves the
subgroup Z2 × Z2 ⊂ SO(3) of symmetries and the locality of SO(3) in-
variant Hamiltonians. It is exactly this subgroup of symmetries which also
protects the topological nature of the Haldane phase [56]. The NL-UT maps
systems residing in the Haldane phase into systems which break the Z2×Z2.
Essentially, the string order parameter measuring the Haldane phase [23] is
mapped to a Landau order parameter measuring symmetry breaking. The
four fold degeneracy of the AKLT Hamiltonian on an open chain is mapped
to four states which all break the Z2 × Z2 symmetry. The Haldane phase
is thus understood as a phase in which the Z2 × Z2 is broken in a hidden
manner. In Ref. [DQ3] we generalize these ideas to systems with ZN × ZN .

In this Chapter, I will review the concept of string order parameters
and discuss how the selection rule of Ref. [27] can be used to decipher t
from the expectation values of suitably chosen string order parameters. In
Ref. [DQ2] we have introduced a different string order parameter which is
capable of determining the SPT phase of a system with SU(N) symmetry.
The behavior of this SU(N) string order parameter can be derived from the
selection rule which I present in Sect. 5.1.1. In Sect. 5.2 I will review the
ideas of Ref. [DQ3] leading to our NL-UT and discuss that SPT phases can
be explained by hidden symmetry breaking.

5.1 String order parameters

Consider the case where G is the finite Abelian group ZN ×ZN .3 Let R and
R̃ be generators of this group and let X and X̃ be order parameters which
obey:

[X,R] = 0 , R̃XR̃† = ωX , (5.2)

[X̃, R̃] = 0 , RX̃R† = ω−1X̃ , (5.3)

where ω = exp(2πi
N ). Since the order parameter X does not commute with R̃,

it can be used to measure breaking of the symmetry generated by R̃. In the
introduction it was mentioned that 〈Φ|X|Φ〉 6= 0 implies |Φ〉 6= R̃|Ψ〉 ifX and
R̃ do not commute. Reversing the argument, in symmetric SPT phases the
ground state is invariant under R̃ and thus the expectation value of the order

3In Ref. [DQ3] it is motivated that this is a very useful group to study since it can be
defined to be a sub group of any (with one exception) compact connected group GΓ = G/Γ
such that the SPT phases protected by GΓ are also protected by the subgroup ZN × ZN .
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parameter X is necessarily zero: 〈Φ|X|Φ〉 = 0. The idea of a string order
parameter is that the string gives rise to an extra phase, compensating the ω
appearing in Eq. (5.2), such that the string order parameter commutes with
the symmetry. If the string order parameter commutes with the symmetry
it can take on a non-zero expectation value and it can be used as a detection
tool.

In general a string order parameter is of the form:

Xi

(
j−1∏
k=i+1

Uk

)
Yj , (5.4)

thus acting on sites i and j with some order parameter while transforming
the spin chain between these two sites with the symmetry transformation
U . The sites on which U act form a string between sites i and j, hence
the name string order parameter. For the symmetry group at hand I will
consider string order parameters of the following form

Sij(a, b) = Xa
i

(
j−1∏
k=i

Rbk

)
(X†j )

a , (5.5)

S̃ij(a, b) = X̃a
i

(
j−1∏
k=i

R̃bk

)
(X̃†j )

a , (5.6)

where Xa
i is the a-th power of the operator X acting on the i-th site. Simi-

larly for X̃, R and R̃.

As was discussed in the previous Chapter, the group ZN × ZN has N
classes of projective representations. Let P and P̃ be the action of the
symmetry transformation on the right auxiliary spaces. The topological
phase t is determined by the manner in which P and P̃ “commute” with
each other. That is:

PP̃ = ωtP̃P . (5.7)

It is exactly this phase that compensates the phase in Eq. (5.2). That is,
following Ref. [27], I will now show that in the limit of large |j − i| the
string order 〈Sij(a, b)〉 can only be non zero if a+ bt = 0 modulo N . A non-
zero string order parameter gives information about the type of topological
phases in a very similar way that non-zero order parameters give information
about symmetry breaking phases.

The first step in proving that a non-zero Sij(a, b) implies a + bt = 0
moduloN is similar to finding the t dependence of the string order parameter
introduced in Ref. [DQ2]. It makes use of the MPS structure of the ground
state. Instead of acting with R on all physical sites between sites i and j
one could act with P on all auxiliary sites. However, almost all actions of P
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cancel each other except for the one acting on left auxiliary space of the i-th
site and the right auxiliary space of the (j− 1)-th site. This step is clarified
in Fig. 5.1. Thus we are left with:

lim
|j−i|→∞

〈Sij(a, b)〉 = tr
(
A†Xa

i A(P b† ⊗ I)
)
· tr
(
A†(Xa

j )†A(P b ⊗ I)
)

,

(5.8)

where A are maps defining the MPS. For notational simplicity I have as-
sumed A to be site independent (A[i] = A[j] = A).

XaR R R . . . R Xa†

Xa

P † P P † P P † P P † P

. . . Xa†

Xa

P †

Xa†

P

·=

=

Figure 5.1: A diagrammatic derivation of Eq. (5.8). To simplify notations
b has been set to 1.

A non-zero string order parameter implies a non-zero trace over the ex-
pression A†Xa

i A(P b†⊗I). Since the ground state is assumed to be symmetric
under a global transformation R̃ it follows that the matrices A in Eq. (5.8)
are equivariant, that is A = R̃A(P̃ † ⊗ P̃ ). Using Eqs. (5.2) and (5.7) it
follows that:

tr
(
A†XaA(P b† ⊗ I)

)
=ωatr

(
A†R̃†XaR̃A(P b† ⊗ I)

)
=ωatr

(
A†XaA(P̃P b†P̃ † ⊗ P̃ †P̃ )

)
=ωa+bttr

(
A†XaA(P b† ⊗ I)

)
. (5.9)

Thus indeed only if a + bt = 0 mod N can the above trace and thus the
string order parameter be non-zero. A non-zero string order parameter
gives a selection rule of the possible SPT phases at hand [27]. Measuring
different string order parameters for various values of a and b one could
exactly determine the invariant t.



80 CHAPTER 5. MEASURING ORDER

It should be emphasized that our notation treats string order parameters
and Landau order parameters on the same footing. Indeed S(a, b) is just a
Landau order parameter when b = 0. The string order parameter detects
SPT phases analogous to Landau order parameters detecting SSB phases.

5.1.1 An SU(N) string order parameter

In Ref. [DQ2] we proposed a slightly different string order parameter suitable
for detecting SPT phases of SU(N) spin chains. I will first introduce this
string order parameter after which I will show that its behavior (detecting
SPT phases of SU(N) spin chains) can be derived using the selection rule
explained in the previous section.

Let Ha = Eaa−Ea+1,a+1 be N−1 generators of the Cartan subalgebra h
of su(N). Here Eab is a N by N matrix satisfying (Eab)cd = δacδbd. Since the
operators Ha mutually commute, they can be diagonalized simultaneously.
Every representation decomposes into eigenspaces of Ha or in other words,
has a weight decomposition: V = ⊕µVµ such that:

Hv = µ(H)v , ∀ v ∈ Vµ , (5.10)

where µ ∈ h∗ contains information about the eigenvalues of all H ∈ h.
The weights of the adjoint representation AdX = [X, ·] are called roots and
are denoted by α, that is [H,X] = α(H)X if X ∈ Vα. Let αa be the roots
corresponding to the operators Ha: Ha ∈ [Vαa , V−αa ]. The operators Ha are
chosen such that the roots αa are a set of simple positive roots [57]. Let Hρ

be the element in the Cartan subalgebra defined uniquely by αa(H
ρ) = 1.

It is dual to the Weyl vector ρ being half the sum of all positive roots (the
positive roots are those roots which can be obtained by summing simple
positive roots with non-negative coefficients). With the above definition for
matrices Ha, Hρ becomes a diagonal matrix with entries:

Hρ
ii =

N + 1

2
− i . (5.11)

The string order parameter discussed in Ref. [DQ2] is defined as4

Sabij = Ha
i

j−1∏
k=i

exp

(
2πi

N
Hρ
k

)
Hb
j , (5.12)

where Hρ
k is the operator Hρ acting on the k-th site. The operators Ha

j and

Hb
j equal to Ha and Hb acting on the i-th and j-th site, respectively. In

4Actually, the SU(N) string order parameter as defined in Ref. [DQ2] has a string
running from (i + 1) instead of i. However, this does not alter its behavior. The string
order parameter measures the projective class of the right auxiliary space of the i-th site:
t = [H(i,r)]. It does so in Ref. [DQ2] by relating it to −t = [H(i+1,l)]. In the same way,
one can relate it to −t = [H(i,l)].
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this article we proved that this string order parameter has a characteristic
t dependence:

lim
|j−i|→∞

〈Sabij 〉 = Cijω
t(a−b) . (5.13)

Again the number t defines the topological phase of the spin chain and can
be obtained from the equation [DQ1]:

t =
∑
n

nun , (5.14)

where un are the coefficients of the weight µ =
∑

n unµn with respect to
the basis {µn} of the weight lattice, which is dual to the basis {Ha} of the
Cartan subalgebra (µi(H

a) = δia). The weight µ is the highest weight of
the right most auxiliary space.

I will now show that the behavior of our string order parameter given by
Eq. (5.13) can be derived from the selection rule discussed in Ref. [27]. Let
R = exp

(
2πi
N Hρ

)
and let R̃ be proportional to the matrix EN,1 +

∑
aE

a,a+1.

Clearly these two matrices now obey RR̃ = ωR̃R. More generally, as dis-
cussed in Ref. [DQ3], how R and R̃ “commute” with each other depends on
the projective class t of the representation ρ they act on:

ρ(R)ρ(R̃) = ωtρ(R̃)ρ(R) iff [ρ] = t . (5.15)

Note that the matrix representation of R and R̃ defined above is just the
fundamental representation with t = 1. In order to use the selection rule
we need to derive the transformation properties of the Cartan operators
Ha under conjugation by R̃. Define the order parameter X which in the
fundamental representation of SU(N) are diagonal matrices with elements
Xii = ωi. This is a traceless matrix obeying Eq. (5.2). The matrices Ha

can be written as a linear combination of powers of X:

Ha =
1

N

N−1∑
b=1

ω−ab(1− ωb)Xb . (5.16)

Now all the work is done. The last step consists of using this expression for
Ha to rewrite our string order parameter given by Eq. (5.12) and using the
selection rule to simplify the result:

〈Sabij 〉 =
1

N2

∑
cd

ω−ac(1− ωc)ω−bd(1− ωd)〈Xc
i

∏
RkX

d
j 〉

∝ ωatω−bt(1− ω−t)(1− ωt) , (5.17)

where I have used the selection rule Ref. [27] to conclude that c = −t and
d = t. This is exactly the t dependence which we derived in Ref. [DQ2]
using different means. Note also that the SU(N) string order parameter is
zero if t = 0.
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5.1.2 Accidental zero points

Not only is the SU(N) string order parameter zero if the system is in the
topological trivial phase, it can also be accidentally zero at specific isolated
points in non-trivial phases. This idea was worked out after discussions with
Norbert Schuch.

Let Vµ be the irreducible representation of SU(2) with highest weight µ.
I use the convention in which the dimension of Vµ equals µ + 1, µ is twice
the spin value of Vµ. Consider a spin chain with on-site Hilbert spaces H
and left and right auxiliary spaces Hl and Hr as:

Hl = Hr = V1 ⊕ V3 , (5.18)

H = Hl ⊗Hr . (5.19)

Let the maps A : Hl ⊗Hr → H defining the state be given by

A = I⊗ (λ1P1 + λ3P3) , (5.20)

where Pi are projectors on the space Vi ⊂ V1 ⊕ V3 for i ∈ {1, 3}. Again,
for large |j − i| the SU(N) string order parameter 〈Szzij 〉 factorizes into
〈Jzi,L〉〈Jzi,R〉. The left factors equals:

Jzi,L = tr(A†Szi A(I⊗ U z)) , (5.21)

with U z = exp(−πiSz). Using Sz = Sz ⊗ I + I⊗ Sz this simplifies to:

Jzi,L = tr(Sz)tr(A†AU z) + tr(I)tr(A†SzAU z) . (5.22)

The first term is zero since tr(Sz) is zero. The second term can be written
as the sum of two traces over the different spaces V1 and V3. Also note that
tr(I) = 6. Thus we obtain:

Jzi,L = 6
(
|λ1|2trV1(SzU z) + |λ3|2trV3(SzU z)

)
(5.23)

= 6
(
i|λ1|2 − 2i|λ3|2

)
. (5.24)

Thus choosing λ1 =
√

2λ3, the SU(N) string order parameter will be zero
(although the spin chain is in a topologically non-trivial phase).

Note that this feature only occurs at very specific point in phases space.
Perturbing away from the point λ1 =

√
2λ3 automatically gives a non-zero

string order parameter. It is for this reason that we still believe that string
order parameters are suitable tools to detect SPT phases.

5.2 Non-local Unitary transformations

In Ref. [DQ3] a non-local unitary transformation (NL-UT) is discussed which
maps between different models: the transformation does not commute with
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the Hamiltonian. It is not only a map between models, it is also a map
between phases: the SSB/SPT phase of the transformed system is uniquely
determined by the SSB/SPT phase of the original system. In this section I
will introduce this NL-UT transformation and outline how it is shown that
phases are mapped to each other. Essentially what we show is that the NL-
UT maps Landau order parameters into string order parameters and vice
versa. Another way to understand the NL-UT is that it maps topologically
protected edge modes to symmetry breaking bulk modes. This idea will be
worked out in Sect. 5.2.1.

I will again restrict the discussion in this section to the finite Abelian
group ZN ×ZN . Moreover I will discuss SSB phases, which are possibly also
non-trivial as SPT phases, such that the symmetry is broken to the form
Zr×Zr ⊂ ZN×ZN . These SSB phases split into r different topological phases
which I specify by a number t running from 0 to r − 1. Let O and Õ be
operators satisfying R = ωO and R̃ = ωÕ, where as in the previous section R
and R̃ are the generators of ZN×ZN . Note that R and R̃ are simultaneously
diagonalizable and have eigenvalues being some integer power of ω. Thus O
and Õ have integer eigenvalues defined up to a multiple of N . The NL-UT
discussed in Ref. [DQ3] is:

UN =
∏
i<j

ωOiÕj . (5.25)

It is invariant under a change of an eigenvalue of either O or Õ by a multiple
of N . The NL-UT can be understood as: “Rotate on site i depending on a
measurement on site j”. This can be emphasized by the following notation

UN =
∏
i<j

(Ri)
nΠ̃n

j , (5.26)

where Π̃n
j is a projector projecting on the eigenspace of the operator R̃j

acting on the j-the site corresponding to the eigenvalue ωn.
It is discussed that this NL-UT is a mapping between SSB/SPT phases.

The reasoning is as follows: a SSB/SPT phase is labeled by the two integers r
and t. The integer r labels symmetry breaking of the form Zr×Zr ⊂ ZN×ZN
and the integer t labels the projective class of the representation of the right
auxiliary spaces. In a certain phase, “topology” leads to possible non-zero
string order parameters, denoted by S(a, b) whereas symmetry breaking can
lead to non-zero order parameters. Non zero order parameters are directly
related to non-zero string order parameter of the form S(a, 0). The main
step in Ref. [DQ3] is to show that

U †NS(a, b)UN = S(a, a+ b) . (5.27)

Thus a non-zero string order parameter S(a, b) in a certain system described
by a Hamiltonian H is related to a non-zero string order parameter of the
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form S(a, a+ b) in a transformed system H ′ = U †NHUN . From this slightly
modified string order parameter conditions can be derived for the parameters
r′ and t′ describing the phase of the transformed Hamiltonian. It should
be noted that UN preserves the ZN × ZN symmetry and locality of the
Hamiltonian (if H is a nearest neighbor Hamiltonian then so is H ′). In
summary we have the two steps:

Step 1 : (r, t) −→ 〈S(a, b)〉 , (5.28)

Step 2 : 〈S(a, a+ b)〉′ −→ (r′, t′) . (5.29)

There are some subtleties with the above derivation. Although non-
zero string order parameters can give information on r′ and t′ (Step 2),
information on r and t do not always imply non-zero string order parameters
(Step 1). String order parameters can be accidentally zero at certain points
in the phase diagram (as discussed in the previous section). However, since
we are dealing with a mapping of phases, as long as there is a point in phase
space such that all allowed string order parameters are indeed non-zero, the
above reasoning can be used to derive which phases are mapped to each
other.

In the second step [Eq. (5.29)], the prime in 〈S(a, a+ b)〉′ indicates that
the expectation value is taken with respect to a ground state of H ′. And this
brings me to the second subtlety. The ground states |Ψi〉 of H are mapped to

|Φi〉 = U †N |Ψi〉. The states |Ψi〉 and |Φi〉 necessarily have the same symmetry
breaking properties. However H and H ′ describe different symmetry broken
phases if r 6= r′. In this case the states |Φi〉 can not be macroscopic ground
states of H ′. Thus the intermediate step of 〈S(a, b)〉 6= 0⇒ 〈S(a, a+b)〉′ 6= 0
is on loose grounds.

One could also discuss this problem as follows. As discussed in the
introduction of this Chapter, I consider ground states of H as also being
ground states of the perturbed Hamiltonian H + δ

∑
iX

a
i , where Xa is a

suitable order parameter coupled to a magnetic field with strength δ. Or,
in other words, I use explicit symmetry breaking to ensure that I consider
only ground states which break the symmetry. When sending δ to zero, these
explicitly symmetry breaking ground states become SSB ground states. The
order parameterXa only needs to commute with R̃q where q = N/r to ensure
that the symmetries Zr ⊂ ZN generated by R̃q are preserved. Thus a can
be chosen to be a multiple of r. Similar arguments can be used to show
that a perturbation δ

∑
i X̃

a
i should be added to the Hamiltonian to ensure

that its ground state spontaneously breaks the symmetry generated by R
and is only invariant under the subgroup Zr ⊂ ZN generated by Rq with
again q = N/r. Since UN commutes with the symmetries ZN × ZN , the

transformed perturbation U †N
∑

iX
a
i UN has the same symmetry properties

as the original perturbation
∑

iX
a
i . Thus the ground states of H ′ can not

be obtained by using the transformed perturbation and thus can not be



5.2. NON-LOCAL UNITARY TRANSFORMATIONS 85

obtained by simply transforming the ground states of H by the NL-UT UN .
The macroscopic ground states of H ′ are thus not given by |Φi〉 = U †N |Ψi〉

but rather by a linear combination of these states: |Ψ′i〉 = Tij |Φj〉. In the
following I will show that the expectation value of S(a, b) is independent of
the ground state, that is

〈Ψi|S(a, b)|Ψi〉 = 〈Ψj |S(a, b)|Ψj〉 . (5.30)

From this statement it follows that the expectation value of the string order
parameter can be written as 〈S(a, b)〉 = n−1

g

∑
i〈Ψi|S(a, b)|Ψi〉 or in other

words be related to the trace

〈S(a, b)〉 =
1

ng
TrGSS(a, b) , (5.31)

where the trace is take over the ground state sector and ng is the ground state
degeneracy. Since the trace is invariant under a basis transformation this
cures the problem that macroscopic ground states |Ψ′i〉 of the transformed
system are linear combinations of the transformed ground states |Φj〉 of the
original system. Thus concluding that 〈S(a, a + b)〉′ = 0 on the basis that
〈S(a, b)〉 = 0 is valid.

The origin of ground state degeneracy is two-fold: symmetry and bound-
ary modes. Let |Ψαβnm〉 be a complete set of orthogonal ground states. The
quantum numbers α and β specify the left and right boundary modes. The
quantum numbers m,n specify the different symmetry breaking grounds
states. That is:

R|Ψα,β,n,m〉 = |Ψα,β,n+1,m〉 and R̃|Ψα,β,n,m〉 = |Ψα,β,n,m+1〉 . (5.32)

The ground states are assumed to be invariant under the symmetry Zr×Zr
generated by Rq and R̃q (with q = N/r), thus the quantum numbers n and
m take value in Zq. First of all, the expectation value of the string order
parameter can not depend on the quantum numbers specifying the boundary
modes, since the ground states are finitely correlated. Secondly, since the
string order parameter commutes with the symmetry, its expectation value
cannot depend on the quantum numbers n and m. Combining these two
arguments results in:

〈Ψα,β,n,m|S(a, b)|Ψα,β,n,m〉 = 〈Ψα′,β′,n′,m′ |S(a, b)|Ψα′,β′,n′,m′〉 . (5.33)

The NL-UT transformation is a transformation that maps different sys-
tems into each other such that their SSB and SPT phases are also mapped
into each other. This gives a deeper understanding of SPT phases in terms
of hidden symmetry breaking. For example when N is 5, spin chains with
Z5×Z5 symmetry allow for a trivial phase, four non-trivial SPT phases and
a phase in which the full symmetry is spontaneously broken. I do not con-
sider spontaneous symmetry breaking phases where the symmetry is broken
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to a group not of the form Zr×Zr ⊂ ZN ×ZN . In Ref. [DQ3] it was derived
in which manner these phases are mapped into each other. In terms of the
parameters (r, t) we have the following chain of phases:

(1, 0) −→ (5, 4) −→ (5, 2) −→ (5, 3) −→ (5, 1) −→ (1, 0) . (5.34)

Thus the SSB phase (1, 0) is mapped to the fourth non-trivial SPT phase
and so on. The trivial phases in which no symmetry is broken (5, 0) is always
mapped to itself. The different SPT phases can be understood as phases in
which symmetry is broken in a different hidden manner. That is, for the
different SPT phases one would need to perform the NL-UT transformation
a different number of times to arrive at the SSB phase.

5.2.1 A disentangler

The NL-UT given by Eq. (5.25) has been discussed as a map between dif-
ferent SSB/SPT phases. In this paragraph I will explain the disentangling
properties of the NL-UT following the ideas described in Ref. [58]. From
this discussion it should become more evident that the NL-UT essentially
maps protected edge modes to symmetry breaking bulk modes.

I will focus on the transformation of (N, 1)→ (1, 0), thus from the first
non trivial SPT phase to the phase in which the complete symmetry group
is spontaneously broken. As in Ref. [58] I will discuss the consequence of
the NL-UT on a single site by writing it as: UN =

∏
i Ui where Ui is

Ui =
∏
j<i

RÕij
∏
j>i

R̃Oij . (5.35)

The action of R and R̃ on the right auxiliary spaces are given by P and P̃
obeying Eq. (5.7), with t = 1. They generate a group which I will denote
by GP . The elements of this group can be written in the form ωaP bP̃ c. It
can be seen as a discrete subgoup of a central extension of ZN × ZN over
U(1). This group has N2 1-dimensional irreps defined by ρmn(P ) = ωm

and ρmn(P̃ ) = ωn (and thus ρmn(ω) = 1). Furthermore, the group GP has
(N−1) N -dimensional irreps obeying ρi(ω) = ωiIN . Only the representation
ρ1 can contribute to H(i,r) in order for Eq. (5.7) to hold. Thus we can write
the right auxiliary space as:

H(i,r) = Vω ⊗ V(i,r) , (5.36)

where Vω is the representation space of ρ1 and V(i,r) is some multiplicity
space. The space Vω is sometimes referred to as the protected or topological
subsystem [59]. It is the origin of the multiplets seen in the entanglement
spectrum of topological ordered systems [16]. The space V(i,r) is sometimes
referred to as junk system.
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Let Vmn be the representation space of ρmn. As explained above, it is
spanned by the eigenvector |mn〉 of P and P̃ having eigenvalue ωm and ωn,

respectively. Since the spaces V †ω and Vω combine to V †ω ⊗ Vω =
⊕

mn Vmn
and since the matrices A[i] are ZN × ZN equivariant, the vectors |mn〉 all
have an equal contribution to the ground state. Now consider the state after
the transformation. Using Eq. (5.35) it can be understood that the matrix
A[i] at site i are transformed by the NL-UT as follows:

A[i] → A′[i] =
∑
nm

A[i]((Pm)† ⊗ (P̃n)†)ΠnΠ̃m . (5.37)

Here Πn projects onto the eigenspace of R corresponding to the eigenvalue
ωn and similarly for Π̃n. This can be understood as follows. If an eigenvalue
of ωm is measured by R̃i, or if an eigenvalue of m is measured by Õi, all
sites to the left of site i should be transformed by Rm. Using an argument
similar to the one depicted in Fig. 5.1, it can be shown that transforming
all sites to the left of i is equal to transforming the auxiliary spaces H(1,l)

and H(i,l). Neglecting the effect of transforming boundary modes results in
the above equation.

Eq. (5.37) is slightly misleading. On the one hand it tells to measure
(using Πn and Π̃m) before transforming (using (Pm)† and (P̃n)†). On the
other hand however, measuring takes place on physical space (after using the
mapping A[i]) and transforming happens on auxiliary space (before using the
mapping A[i]). This problem can be easily solved since the mapping A[i] is
equivariant under the symmetry transformations ZN ×ZN . In other words,
measuring can also take place on auxiliary space. Eq. (5.37) then becomes:∑

nm

(
(Pm)† ⊗ (P̃n)†

)
ΠnΠ̃m (5.38)

=
∑
nm

∑
kl

(
(Pm)†ΠkΠ̃l ⊗ (P̃n)†Πn−kΠ̃m−l

)
(5.39)

=
∑
nm

∑
kl

(
ΠkΠ̃l−m(Pm)† ⊗Π−kΠ̃m−l(P̃

n)†
)

(5.40)

=Π0Π̃0

∑
nm

(
(Pm)† ⊗ (P̃n)†

)
. (5.41)

In the third line I have used the relations P̃ †Πa = Πa−1P̃
† and P †Π̃a =

Π̃a−1P
† which can derived from Eq. (5.7). The conditional projection given

by Eq. (5.37) can thus be understood as a projection onto the eigenspace
V00 of Hi. This holds for all sites. Thus only those states in an on-site
Hilbert space, which are vectors in the eigenspace V00 are entangled to each
other. The entanglement between site i and its neighbors is modeled by
the auxiliary spaces H(i,r) and H(i,r). In the topologically non-trivial phase
(N, 1) the protected subsystem is modeled by the N -dimensional space Vω
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whereas in a topologically trivial phase the protected subsystem is modeled
by an irrep of ZN × ZN which is 1 dimensional. I conclude that the N fold
degeneracy in the entanglement spectrum has been effectively removed since
the space Vω in the auxiliary spaces or the multiplicity in the entanglement
spectrum has been effectively removed.

One might wonder what has happened to all other states in the eigenspaces
Vmn with m 6= 0 and n 6= 0. For also these states should lie in the image of
the NL-UT. I have neglected the transformation of the left and right most
auxiliary spaces described by the term Pm(1,l)⊗Π̃m and Pn(L,r)⊗Π̃n. These two
extra conditional transformations alter the above result if the eigenvalues of
the operators P and P̃ corresponding to the left and right boundary modes
are different from 1. The NL-UT transformation maps boundary degrees
of freedom (characterized by different eigenvectors of the boundary opera-
tors P and P̃ ) to bulk degrees of freedom (characterized by the different
eigenspaces Vmn). We already stated that SPT phases are analogous to SSB
phases in the sense that string order parameters exist that detect hidden
symmetry breaking in the same manner that order parameters detect sym-
metry breaking. The above discussion suggest a further analogy in terms
of their ground state degeneracy: in SSB phases ground state degeneracy
occurs due to bulk degrees of freedom whereas in SPT phases it occurs due
to boundary degrees of freedom. These different types of degrees of freedom
are mapped into each other by the NL-UT.



Chapter 6

Conclusions

In this thesis I have discussed symmetry protected topological (SPT) phases
of spin chains which are invariant under a symmetry group G. The phase of
a spin chain is determined by properties of its boundary modes. In more de-
tail, the boundary modes do not transform according to a representation ofG
but rather according to a projective representation of G. It is the projective
class of this projective representation that determines the topological phase.
Using the framework of matrix product states (MPS) it has been shown that
the SPT phases of spin chains are classified by the second group cohomol-
ogy of G with values in U(1), denoted by H2(G,U(1)) [13, 14]. Suitable
chosen entanglement spectra can give evidence that boundary modes, reel
or virtual (in case of periodic chains), transform according to a projective
representation [16].

The main conclusions of this thesis are:

• We presented a way to characterize the SPT phases of spin chains with
symmetries described by a simple connected compact Lie group [DQ1].
As an example, we showed that spin chains with PSU(N) symmetry
allow for N different SPT phases. Proposals to realize such spin chains
in cold atom systems (for N up to 10) have already been made [4].

• We found a novel way to distinguish these N phases by measuring the
expectation value of a suitable string order parameter [DQ2]. Compa-
rable string order parameters are capable of only distinguishing two
phases from each other [23, 24, 27].

• We found an analogy between SPT phases and spontaneous symmetry
broken (SSB) phases [DQ3]. We defined a transformation mapping
SPT phases to SSB phases and vice versa. The N different SPT phases
can be understood to arise as N different ways a hidden symmetry is
broken.
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Results

We studied spin chains invariant under a continuous set of symmetries de-
scribed by a compact connected simple Lie group GΓ. This notation of
the subscript Γ is motivated as follows: a compact connected simple Lie
group GΓ can always be written as the quotient of its universal cover G
and a subgroup Γ of the center of G. Thus GΓ = G/Γ. A well known ex-
ample is SO(3) = SU(2)/Z2. We used that the second group cohomology
H2(GΓ, U(1)) of GΓ is isomorphic to Γ [DQ1]. This motivates the emphasis
on Γ in the notation of the set symmetries of the spin chain, since Γ classifies
the different SPT phases that can arise in spin chains invariant under GΓ.

The group Γ is a subgroup of the center of a universal cover group G,
which is by definition a compact simply-connected simple Lie group. In
Ref. [DQ1] we remind the reader what the centers are of these different Lie
groups. For example, the center of SU(N) is the discrete group ZN . We
concluded that spin chains which are topologically the richest are those based
on PSU(N) = SU(N)/ZN since these allow for N different phases. This is
particularly interesting in light of recent proposals of constructing such spin
chains in optical lattices [4]. Other groups that give rise to more than one
non-trivial topological phase are PSO(N) and the exceptional group E6.

I emphasize again that the boundary mode of a spin chain can transform
according to a projective representation of GΓ. All projective representations
of GΓ are linear representation of G, which are well known due to Lie theory.
They fall into different projective classes which are one-to-one related to the
topological phases of the spin chain. The action of Γ on the respective
representation gives rise to a topological invariant t which determines the
projective class and hence the topological phase of the spin chain.

It can be enlightening to keep the example of SO(3) = SU(2)/Z2 in
mind. Only the integer spins are representations of SO(3), while the half-
integer spins are projective representations of SO(3). However, all spins are
representations of SU(2) and fall into two projective classes: the integer
spins, and the half-integer spins. Thus a spin chain with a half-integer spin
boundary mode resides in a topologically non-trivial phase.

After having discussed in detail which SPT phases can occur in spin
chains invariant under GΓ one would like to be able to determine the phase
by measuring an associated invariant. We proposed a string order parameter
that does exactly this: it is able to measure unambiguously in which SPT
phase a PSU(N) spin chains resides [DQ2]. This string order parameter
is novel in the sense that it is able to distinguish N different phases from
each other. It is a matrix valued order parameter and the absolute value of
all matrix entries are equal. The complex phase between different matrix
entries is uniquely related to the topological invariant t and thus determines
the phase of the spin chain. An ordinary string order parameter [23] which is
zero in a trivial SPT phase and non-zero in a non-trivial SPT phase will not
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be able to distinguish N − 1 non-trivial phases (when N is greater than 2).
We verified the behavior of our string order parameter with numerical studies
[DQ2]. Using the DMRG algorithm we studied a quantum phase transition
between the two non-trivial phases of a PSU(3) invariant spin chain. We
verify that our string order parameter can be used to detect quantum phase
transitions since we observe a discrete jump of the topological invariant t
exactly at the expected transition point.

The Haldane phase occurring in SO(3)-invariant spin 1 chains is known
to be protected by a subgroup Z2 × Z2 ⊂ SO(3) of the symmetry group
[56]. We generalized this idea to all connected compact simple Lie groups
GΓ [DQ3]. That is, for each GΓ we found a discrete finite Abelian subgroup
FΓ such that the SPT phases occurring in spin chains with symmetry group
GΓ are also protected by the symmetries determined by FΓ. Moreover, we
showed, with one exception being the groups PSO(4N), that this subgroup
can be chosen to be of the form ZN ×ZN [DQ3]. This tremendously reduces
the number of groups one has to consider to discuss all spin chains giving
rise to SPT phases.

It was understood quite a while ago that the four-fold degeneracy of the
AKLT state is due to hidden symmetry breaking [25]. By using a non-local
unitary transformation (NL-UT) the AKLT state is mapped to a symme-
try breaking state. Actually, every state in the Haldane phase is mapped
to a state in the symmetry breaking phase. The topological feature of the
Haldane phase can be understood by the concept of hidden symmetry break-
ing. We have generalized this non-local unitary transformation such that it
is applicable to spin chains with ZN ×ZN symmetry [DQ3]. Essentially, this
transformation maps string order parameters (measuring SPT phases) to
local order parameters (measuring spontaneous symmetry breaking). When
N is prime, spin chains with ZN × ZN symmetry allow for a trivial phase,
(N − 1) non-trivial SPT phases and a phase in which the full symmetry is
spontaneously broken. These (N + 1) different phases are mapped to each
other by our non-local unitary transformation. The different SPT phases
can be understood as breaking the symmetry in different non-local/hidden
manners. Moreover, the NL-UT maps boundary modes occurring in sys-
tems residing in an SPT phase to bulk degrees of freedom responsible for
the ground state degeneracy of systems residing in an SSB phase. SPT
phases can thus be understood in complete analogy with Landau symmetry
breaking phases. Where in the latter case, order parameters are used to
detect symmetry breaking, in the former case string order parameters can
be used to detect hidden symmetry breaking. Using the above point, we
conclude that SPT phases occurring in spin chains with a symmetry de-
scribed by a connected compact simple Lie group GΓ (with the exception
of PSO(4N)) can also be understood to arise due to a hidden symmetry
breaking.
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Discussion

In the introduction I emphasized the characteristic boundary physics that
occurs in gapped systems residing in a topologically non-trivial phase. In-
deed, both the integer/fractional quantum Hall effect [5, 7] and the 2D/3D
time reversal invariant topological insulators [17, 19] give rise to gapless
boundary modes which are not present in the bulk. Additionally, topologi-
cal invariants can be defined which take on a non-trivial value in the bulk of
systems residing in a topological phase. The effect that at the boundary of a
topological insulator, where a topological invariant jumps from a non-trivial
to a trivial value (in vacuum), where gapless boundary modes necessarily
exist, is called the bulk-boundary correspondence.

The SPT phases of gapped quantum spin chains are characterized in a
very similar way. However, the presence of boundary modes alone does not
guarantee an SPT phase. The boundary modes are only protected against G
invariant perturbations (where G is the symmetry group of the spin chain)
when the representation according to which the boundary modes transform
is projective. This is similar to the time-reversal invariant topological in-
sulators in both two and three dimensions [17, 19]. In a similar way the
presence of boundary modes does not guarantee an SPT phase for these
systems. They only reside in an SPT phase when an odd number of bound-
ary modes are present. Since these can only be gapped out in pairs, one
boundary mode is always protected against time-reversal invariant pertur-
bations when an odd number of boundary modes are present.

A remarkable property of a 3D topological insulator is that its boundary
surface is characterized by a single Dirac cone [19]. Single Dirac cones do not
appear in conventional 2D conducting surfaces due to the fermion doubling
theorem [60]. Thus we are dealing with a boundary described by physics
which is emergent and cannot be present without the non-trivial topology of
the bulk. This effect can be put into connection with the Majorana wire [9]
which is discussed in the introduction. The boundary mode of this system
is described by an emergent particle which does not occur in the bulk. The
boundary modes of spin chains are also described by different physics when
compared to the bulk. The representation according to which the boundary
modes transform is a representation of a different group than the group G
which describes the bulk symmetries of the spin chain.

The entanglement spectrum as a tool to measure boundary modes was
mentioned during the introduction. Indeed it has been shown that the Hal-
dane phase in SO(3) spin 1 chains is characterized by an entanglement
spectrum whose eigenvalues are even-fold degenerate [16]. This degeneracy
is most easily understood when comparing it to the entanglement spectrum
of the AKLT state. It consist of just a single double-degenerate level, re-
flecting the spin 1/2 (half-integer, projective) edge mode. In light of the
entanglement spectrum, our non-local unitary transformation introduced in
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Eq. (5.25) can be understood as a complete disentangler. It removes the
N -fold degeneracy observed in the entanglement spectrum of spin chains
with ZN ×ZN symmetry residing in an SPT phase. This has been shown to
be the case for N = 2 numerically [58] and I give analytical arguments why
this statement holds for all N .

Finally, I would like to touch on the Haldane conjecture [2, 3] which
was also discussed in the introduction. Our work suggests a natural gener-
alization of this conjecture to spin chains with a symmetry described by a
connected compact simple Lie group GΓ [DQ1]: If GΓ is a proper quotient
of its universal cover G, then such spin chains allow for gapped GΓ invariant
translationally invariant Hamiltonians with a symmetry preserving ground
state. A gap was explicitly shown for PSU(N) models [61] and is explained
by confinement of elementary excitations (spinons). Confinement means
that the energy of a pair of elementary excitations depends linearly on the
distance between the excitations. Spinon confinement was also observed in
spin chains with SU(N)/Zq symmetry where q 6= 1. These two examples
support our generalization since both PSU(N) and SU(N)/Zq are proper
quotients of their universal cover SU(N). Also, our suggested generalization
is consistent with the original conjecture which states that the Heisenberg
Hamiltonian is gapped on integer/SO(3) spin chains and gappless on half-
integer/SU(2) spin chains. The group SO(3) has SU(2) as its universal
cover whereas the group SU(2) is simply connected and is thus its own uni-
versal cover. The main difference between the Haldane conjecture and our
suggested generalization thereof is that the original conjecture is a statement
about a specific Hamiltonian whereas our generalization only states when
gapped GΓ invariant models exist.

Outlook

The study of SPT phases in spin chains has some obvious restrictions. Of
course it only includes systems in 1-dimension. Attempts to classify SPT
phases using group cohomology in higher dimensions have already been made
[53]. Also in other works the techniques of MPSs have been generalized
to incorporate interacting fermionic systems [62, 63]. It remains an open
problem whether a topological invariant, which characterizes the SPT phases
appearing in higher dimensional systems, can be detected by making use of
some generalization of a string order parameter.

MPS techniques are tuned to study gapped quantum phases. They can
be used to study critical phases. However, their bond dimensions will scale
polynomially with system size to approximate the ground state with the
same precision. Infinite matrix product states make use of an infinite di-
mensional auxiliary space and are suitable to study critical systems [64]. It
is interesting to investigate whether similar techniques, such as the study of
the entanglement spectrum [65], can be used to classify critical systems.
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Our non-local transformation mapping SPT phases to SSB phases is ex-
plained to remove entanglement. This is closely related to quantum telepor-
tation in which entanglement is replaced in order to simultaneously teleport
quantum information [66]. How these two topics are precisely connected is
still unclear and is left open for further studies.
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[24] J. Haegeman, D. Pérez-Garćıa, J. I. Cirac, and N. Schuch. Order pa-
rameter for symmetry-protected phases in one dimension. Phys. Rev.
Lett., 109(5):050402, 2012.

[25] T. Kennedy and H. Tasaki. Hidden Z2 × Z2 symmetry breaking in
Haldane-gap antiferromagnets. Phys. Rev. B, 45:304–307, 1992.

[26] S. R. White. Density matrix formulation for quantum renormalization
groups. Phys. Rev. Lett., 69:2863, 1992.

[27] F. Pollmann and A. M. Turner. Detection of symmetry-protected topo-
logical phases in one dimension. Phys. Rev. B, 86(12):125441, 2012.

[28] M. B. Hastings. An area law for one-dimensional quantum sys-
tems. Journal of Statistical Mechanics: Theory and Experiment,
2007(08):P08024, 2007.

[29] J. Eisert, M. Cramer, and M. B. Plenio. Colloquium : Area laws for
the entanglement entropy. Rev. Mod. Phys., 82:277–306, Feb 2010.

[30] M. Fannes, B. Nachtergaele, and R. F. Werner. Exact antiferromagnetic
ground states of quantum spin chains. Europhys. Lett., 10:633, 1989.

[31] M. Fannes, B. Nachtergaele, and R. F. Werner. Finitely correlated
states on quantum spin chains. Commun. Math. Phys., 144:443–490,
1992.

[32] M. B. Fannes, B. Nachtergaele, and R. F. Werner. Valence bond states
on quantum spin chains as ground states with spectral gap. J. Phys.
A, 24:L185–L190, 1991.

[33] B. Nachtergaele. The spectral gap for some spin chains with discrete
symmetry breaking. Commun. in Math. Phys., 175:565, 1996.

[34] D. Perez-Garcia, F. Verstraete, J. I. Cirac, and M. M. Wolf. PEPS as
unique ground states of local Hamiltonians. Quantum Info. Comput.,
8:0650, 2008.



98 BIBLIOGRAPHY
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Jochen for telling me how to reach Löwenburg, Max for lending me his book
and Roberto for his sofa. I would also like to thank my colleagues Rochus,
Alexander and Martin for inspiring discussions. I should not forget to thank
Jean-Sebastien for pointing out this PhD position, my former roommates
Ammar and Friedmar for their support. I would also like to thank Jakob for
introducing me to the university and Rob for joining me in my first visit to
Cologne. A special thanks goes to Jochen, Daniel, Sebastian, Ricardo and
Roberto, for proofreading my thesis.

I am of course very grateful for all the support I got from Martine
throughout my whole PhD.

Last but certainly not the least I thank my supervisor Thomas. For
steering me in the right direction, for motivating me when needed and for
always being available.

102


	Introduction
	Publications
	One-Dimensional Gapped Systems
	Matrix Product States
	Parent Hamiltonians
	DMRG

	Symmetry Protected Topological Order
	Projective representations
	Classification of topological order
	Time reversal and inversion symmetry

	Measuring Order
	String order parameters
	Non-local Unitary transformations

	Conclusions

