




Chiral Magnets
in and out of Equilibrium

Inaugural-Dissertation
zur

Erlangung des Doktorgrades
der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität zu Köln
vorgelegt von

Lukas Georg Johannes Heinen
aus Frechen

Köln 2021



Berichterstatter:
(Gutachter)

Prof. Dr. Achim Rosch

Prof. Dr. Simon Trebst

Tag der mündlichen Prüfung: 21.10.2020







Contents

List of Figures vii

Symbols ix

Abstract xi

Kurzzusammenfassung xii

1 Chiral Magnets and Skyrmions 1
1.1 General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Models of Chiral Magnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Dipolar Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Cubic Anisotropy and the Phase Diagram 15
2.1 Magnetic Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Mapping the Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Signatures of the New Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Defects in Skyrmion Lattices 39
3.1 Lattice Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Rotating a Skyrmion Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Melting a Skyrmion Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Driving the Conical State Beyond the Linear Regime 53
4.1 Linear Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Beyond Linear Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Conclusion 61

Bibliography 63

Index 71

Danksagung 72

Erklärung 73

v





List of Figures

1.1 Crystal structures of MnSi and Cu2OSeO3 . . . . . . . . . . . . . . . . . . . . 2
1.2 Typical magnetic phase diagram of a chiral magnet and schematic views of the

phases of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Precession of spins with and without damping . . . . . . . . . . . . . . . . . . 6
1.4 Illustration of a phase transition from the Ginzburg–Landau model . . . . . . 9
1.5 Macrogeometry approach to PBCs . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Energy surfaces for cubic crystal anisotropy . . . . . . . . . . . . . . . . . . . 16
2.2 Magnetic phase diagram of Cu2OSeO3 for different magnetic field directions . 17
2.3 Reciprocal lattices of the four modulated states considered . . . . . . . . . . . 20
2.4 Parameter paths used to generate phase diagrams . . . . . . . . . . . . . . . . 21
2.5 Magnetic phase diagrams as a function of magnetic field and anisotropy param-

eters and exemplary energy functions . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Phase diagram of Cu2OSeO3 showing the new skyrmion lattice and tilted conical

phases with additional data on the new skyrmion lattice . . . . . . . . . . . . 26
2.7 Phase diagram as a function of r0 and Bz . . . . . . . . . . . . . . . . . . . . 27
2.8 Phase diagram as a function of K1 and Bz with and without dipolar interaction 29
2.9 Phase diagram as a function of sample shape and magnetic field . . . . . . . 30
2.10 Optimal conical direction as a function of anisotropy and magnetic field . . . 33
2.11 Real-space structure of exemplary conical states with q ∦ B . . . . . . . . . . 34
2.12 Energy surfaces for conical states with different anisotropy and magnetic field 35
2.13 Anisotropy energy surface for the direction of the magnetization with the

magnetization of three conical states . . . . . . . . . . . . . . . . . . . . . . . 36
2.14 Energy density as a function of the cutoff parameter n . . . . . . . . . . . . . 37

3.1 Construction of a 5-disclination-defect . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Construction of a 7-disclination-defect . . . . . . . . . . . . . . . . . . . . . . 40
3.3 A 5-7-dislocation-defect and its Burgers vector . . . . . . . . . . . . . . . . . 40
3.4 Magnon–skyrmion skew scattering . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Skyrmion lattice rotated by an incoming electron beam . . . . . . . . . . . . 42
3.6 Skyrmion-skyrmion interaction potential in 2D . . . . . . . . . . . . . . . . . 43
3.7 Energy density of a skyrmion lattice in 2D as a function of the lattice constant 43
3.8 Lattice deformation and breaking as a function of heat current . . . . . . . . 44
3.9 Snapshot of a particle simulation of a skyrmion lattice subject to a temperature

gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.10 Time series showing three of the processes governing the dynamics of the rotating

skyrmion lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.11 Skyrmion lattice domain wall in simulation and experiment . . . . . . . . . . 47
3.12 Effective skyrmion–skyrmion potential for different magnetic fields . . . . . . 51

4.1 Spin wave excitation modes of the conical state at k = 0 . . . . . . . . . . . . 54
4.2 Conical spectrum from micromagnetic simulations . . . . . . . . . . . . . . . 56
4.3 Non-linear spin waves in the conical state . . . . . . . . . . . . . . . . . . . . 57
4.4 Driving frequency dependence of the screw frequency ωscrew . . . . . . . . . . 58
4.5 Azimuthal angle difference showing the population of a second spin wave mode 59

vii
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a a vector
â a unit vector

êd unit vector in d-direction
r spacial coordinate

rij relative coordinate: rij := rj − ri
k wavevector
ad lattice spacing in d-direction
Vdc (volume of) a discretization cell
Ldc lattice of discretization cells
Vuc (volume of) a unit cell
Luc lattice of unit cells
L∗uc reciprocal lattice of Luc
M magnetization
m magnetic moment
B magnetic flux density1
H magnetic field
µ0 vacuum permeability
J exchange interaction strength
D Dzyaloshinskii–Moriya interaction strength
α LLG damping parameter
γ gyromagnetic ratio

NV demagnetization tensor
N(rij) demagnetization tensor field/demagnetization kernel

Ni demagnetization factor
W topological charge
ρ topological charge density
χ helicity
1n identity matrix in n dimensions
εijk Levi-Civita symbol

1We will also use “magnetic field” for B as well as H. ix





Abstract

In ordinary ferromagnets, individual magnetic moments tend to align with their neighbors,
as long as temperatures are below the critical Curie temperature of the material. Cubic
chiral magnets are a class of dominantly ferromagnetic, or rarer ferrimagnetic, materials with
a literal twist. Due to broken inversion symmetry, weak spin–orbit coupling can induce a
competing Dzyaloshinskii–Moriya interaction, which twists the magnetic texture into helical
structures. One of these textures is of special interest to us. In it, the magnetization twist
into whirl-like topological structures, called skyrmions.
In this thesis, we will explore various aspects of the equilibrium and non-equilibrium

properties of chiral magnets. The first chapter will give an introduction to the subject,
focusing on both the phenomenology of chiral magnets and the models we use to describe
them. Special attention will be given to the description and effects of dipolar interaction.

In the second chapter, we will explore the effects of cubic magnetocrystalline anisotropy on
chiral magnets. In particular, we will examine their effect on the magnetic phase diagram, and
compare the results to recent experiments performed by our collaborators on Cu2OSeO3. We
will find two new helimagnetic phases, a tilted conical phase with an unexpected propagation
vector q, and a second skyrmion lattice phase.

The third chapter will describe two studies that, as it turns out, both involve defects in
skyrmion lattices. In the first of these, we will explore the mechanism with which skyrmion
lattices rotate when driven by a radial heat current. This mechanism is based on continuous
plastic deformations of the skyrmion lattice. For the second project, we will set out to develop
a theoretical description of the two-step melting process of a skyrmion lattice, as observed in
experiments performed by our collaborators.

In the final chapter, we will discuss excitations of the conical phase of chiral magnets. The
existing theoretical description, based on linear response theory, successfully describes many
experiments in various chiral magnets. We will explore the effects of excitations beyond the
regime of validity of linear response theory. We will find that the existing description is
incomplete. The two homogeneous conical excitation modes both feature an Archimedean
screw-like rotation of the magnetic structure, on top of the previously known spin compression
waves.

xi



Kurzzusammenfassung

In gewöhnlichen Ferromagneten tendieren die einzelnen magnetischen Momente dazu sich
parallel aneinander auszurichten, solange die Temperatur unterhalb der kritischen Curie-
Temperatur liegt. Chirale Magnete sind Materialien die lokal ferromagnetisch, oder seltener
auch ferrimagnetisch, geordnet sind, sich auf größeren Distanzen jedoch anders verhalten. Da ih-
re Kristallstruktur keine Inversionssymmetrie besitzt, kann die schwache Spin–Bahn-Kopplung
eine sogenannte Dzyaloshinskii–Moriya Wechselwirkung erzeugen, die die Magnetische Textur
zu helikalen Strukturen verdrillt. Eine dieser Texturen ist dabei von besonderem Interesse
für uns. Sie besteht aus wirbelartigen topologischen Strukturen der Magnetisierung, die
Skyrmionen genannt werden.

In der vorliegenden Dissertation werden wir verschiedene Gleichgewichts- und Nichtgleich-
gewichts-Eigenschaften von chiralen Magneten untersuchen. Das erste Kapitel gibt eine
Einführung zur Phänomenologie chiraler Magnete, sowie zu den Modellen, die wir verwen-
den um sie zu beschreiben. Dabei werden wir insbesondere noch einmal auf die dipolare
Wechselwirkung eingehen.

Im zweiten Kapitel werden wir den Einfluss kubischer magnetischer Kristallanisotropie
auf chirale Magnete untersuchen. Insbesondere werden wir die Auswirkungen auf das magne-
tische Phasendiagramm betrachten, und die Ergebnisse mit an Cu2OSeO3 durchgeführten
Experimenten vergleichen. Dabei werden zwei neue helimagnetische Phasen auftauchen. Eine
gekippte konische Phase deren Wellenvektor q eine unerwartete Ausrichtung aufweist, sowie
eine zweite Skyrmion-Gitter Phase.
Im dritten Kapitel werden wir zwei Studien behandeln, in denen, wie sich herausstellt,

in beiden Fällen Defekte im Skyrmion-Gitter eine zentrale Rolle spielen. Für die erste
der beiden Studien werden wir den Mechanismus untersuchen, durch den Skyrmion-Gitter
rotieren, die einem radialen Wärmestrom ausgesetzt werden. Der Mechanismus basiert auf
der kontinuierlichen plastischen Deformation des Skyrmion-Gitters. Für die zweite Studie
werden wir versuchen eine Theorie für den zweistufigen Schmelzprozess von Skyrmion-Gittern
zu entwickeln, der in Experimenten an Cu2OSeO3 beobachtet wurde.
Im letzten Kapitel werden wir Anregungen der konischen Phase chiraler Magnete disku-

tieren. Die bisher existierende Theorie beschreibt, basierend auf der Theorie der linearen
Antwort, erfolgreich verschiedene Experimente an diversen chiralen Magneten. Wir werden den
Effekt von Anregungen jenseits der Grenzen der Validität der Theorie der linearen Antwort
untersuchen. Unsere Ergebnisse werden zeigen, dass die bisherige Theorie unvollständig ist.
Die zwei homogenen Anregungsmoden der konischen Phase weisen, jenseits der bekannten
Spin-Kompressionswellen, beide eine kontinuierliche Rotation um q auf, vergleichbar mit einer
Archimedischen Schraube.

xii



1
Chiral Magnets and Skyrmions

This chapter serves to introduce the reader to the study of chiral magnets in general, and
magnetic skyrmions in particular. We will start with a general introduction to the subject,
focusing on phenomenology and context. In the second section we will discuss the major
models used to describe chiral magnets, before focusing on the treatment of dipolar interaction
in the last section of the chapter.

1.1 General Introduction
Electrons are fermions. The electronic wavefunction in a magnetic material therefore has to
be antisymmetric under electron exchange. This leads to an effective interaction between the
spins of neighboring electrons. The symmetry of the crystal lattice determines the symmetry of
this interaction. In many magnetic materials the high symmetry of the crystal lattice ensures
that any contributions depending on anything other than the scalar product of the spins
involved cancel with their symmetry-related counterparts. The resulting effective interaction is
called Heisenberg exchange interaction and promotes either ferromagnetic or antiferromagnetic
behavior. In contrast to that, crystal lattices with lower symmetry can exhibit much more
complicated resulting interactions. In particular, in lattices with broken inversion symmetry,
some contributions no longer cancel each other, and the resulting interaction will generally
also break inversion symmetry. One of these contributions is called Dzyaloshinskii–Moriya
interaction (DMI) [1–3]. It is induced by weak spin–orbit interaction, and plays a crucial role
in this thesis.
Cubic chiral magnets are magnetic materials in the cubic crystal system whose crystal

structure does break inversion symmetry. They usually have the P213 space group, and most
have a B20 crystal structure, as depicted in figure 1.1a. Correspondingly, their point-group is
the chiral tetrahedral group T . The most notable exception is Cu2OSeO3, which also has
the P213 space group, but has a different crystal structure, as illustrated in figure 1.1b. The
resulting DMI competes with a usually dominant ferromagnetic exchange interaction. Since
this exchange interaction favors parallel alignment of spins, and DMI favors neighboring spins
to be perpendicular to each other, the combination of both prefers neighboring spins to be at a

1



1 Chiral Magnets and Skyrmions

(a) (b)

Figure 1.1: Crystal structures of
(a) MnSi and (b) Cu2OSeO3.
Spheres mark the positions of
(a) Mn, Si, (b) Cu, Se
and O atoms. Atomic posi-
tions are taken from (a) Nakan-
ishi et al. [3] and (b) Effenberger
et al. [4].

slight angle. Optimal spin configurations therefore feature a twisted, or helical, structure of the
magnetic texture. Again, Cu2OSeO3 is slightly different in that it is dominantly ferrimagnetic.
Note that while chiral magnets fall under the category of helimagnets, not all materials with
helimagnetic phases have a lattice breaking inversion symmetry. Helimagnetism can also be a
result of magnetic frustration [5], which we will not be considering here.
Most chiral magnets show a magnetic phase diagram very similar to the one depicted

in figure 1.2a. At high temperatures the system is paramagnetic. Upon cooling in strong
magnetic fields, the system undergoes a crossover to a ferromagnetically ordered phase. When
cooling instead without a magnetic field, the system first enters a fluctuation disordered
regime, before ordering into the helical phase. Figure 1.2c shows a uniform helical state,
characterized by a propagation vector q. In this state, all spins lie in the plane perpendicular
to q, and the magnetization is constant in the corresponding real-space directions. In the
direction parallel to q, the spins continuously rotate around q. Measurements, however, often
find the system in a state with multiple domains, characterized by different propagation
vectors q. The directions of these are determined by the easy axes of weak magnetocrystalline
anisotropy.1 The domains are separated by complicated domain walls [6]. Upon application
of a critical external magnetic field Hc1, the system undergoes a phase transition into the
conical phase. This phase is described by a single-q structure very similar to the helical state.
Here, however, the spins are not perpendicular to q, but rather tilted towards q, such that
together they form the mantle of a cone aligned with q, as shown in figure 1.2d. Also, the
direction of the q vector is no longer determined by anisotropy. Instead, it aligns with the
magnetic field. Finally, in a small range of temperatures and fields, just below the magnetic
ordering temperature, a phase historically called “A-phase” can be found. In their seminal
work from 2009 Mühlbauer et al. reported discovering this phase to host a triangular lattice
of skyrmions [7]. This sparked a large number of publications on chiral magnets and magnetic
skyrmions. Later, other materials and magnetic systems were discovered to host skyrmions as
well. This includes, among others, βMn-type compounds [8], lacunal spinels [9, 10] and, maybe
most importantly for potential applications, magnetic thin films and multi-layers [11, 12]. For
an overview see for example [13].
Skyrmions are named for Tony H. R. Skyrme, who proposed to describe nucleons as

topologically nontrivial quasi-particle excitation of pion fields in a nonlinear field theory [14].
Since then the concept was generalized and used to describe a wide array of physics, including
particle physics, liquid crystals, quantum hall states, and now chiral magnets— see for example
Schütte’s thesis for an overview [15].

1A more detailed description will follow in chapter 2.2
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Figure 1.2: (a) Typical magnetic phase diagram of a chiral magnet and (b–c) schematic views of
the phases of interest. (b) The skyrmion lattice phase (SkX) consists of a triangular lattice of
skyrmions. The symmetry axis is aligned with the magnetic field. (c) The helical phase typically
exhibits multiple domains like the one shown here, each oriented along an easy axis. (d) The
conical phase is similar to a single helical domain, but the spins are tilted in q-direction, which
aligns with B. Not illustrated are the paramagnetic (para) and field-polarized (FM) phases and
the fluctuation disordered regime (FD). For the newly discovered further phases of Cu2OSeO3,
we refer to chapter 2.

We will study magnetic skyrmions as they appear in chiral magnets. There, the term is
used to describe whirl-like configurations of the magnetic texture, as illustrated in figure 1.2b.
They can appear in a typically triangular lattice, as depicted, or isolated in a polarized
background. While the latter is more interesting for applications, the former constitutes the
mean-field description of the skyrmion lattice phase.
For a mathematical description of chiral magnets, we can use a continuous function

M : R3 → R3 to describe the coarse grained magnetization. At low temperatures, fluctuations
of the magnitude |M| are small, and the normalized magnetization M̂ : R3 → S2 contains
the essential information. Looking, for a moment, at the special case when the magnetization
is constant along a certain direction, call it z, and also constant at infinity (or equivalently
confined to a finite area A and constant along its boundary), we can map the relevant
parameter space as R3 7→ R2 7→ S2. We then arrive at a description M̂ : S2 → S2. As the
homotopy group of such functions is isomorphic to the integer numbers: π2(S2) ∼= Z, they

3



1 Chiral Magnets and Skyrmions

can be characterized by an integer. This number, often called topological charge or winding
number, can be calculated as

W
[
M̂
]

= 1
4π

∫∫

A

M̂ ·
(
∂xM̂ × ∂yM̂

)
dxdy ∈ Z, (1.1)

where x and y are defined to be perpendicular to z. The fact that this integral is quantized
to an integer under the stated conditions may not be immediately obvious. By realizing,
though, that the integrand corresponds to the infinitesimal solid angle spanned by M̂ on an
infinitesimal real-space area, it is clear that the integral gives the total solid angle spanned by
M̂ over A. Since M̂ is required to be constant on the boundary ∂A, this solid angle must be
a multiple of 4π, and hence W [M̂] ∈ Z.

Notice that while in two dimensions the winding number can be uniquely defined by fixing
the real-space orientation, in three spacial dimensions it is at most defined up to a sign. What
can be defined uniquely is the generalization of the topological charge density:

2D: ρ
[
M̂
]

= 1
4πM̂ ·

(
∂xM̂ × ∂yM̂

)
(1.2)

3D: ρi

[
M̂
]

= 1
8π εijkM̂ ·

(
∂jM̂ × ∂kM̂

)
, (1.3)

with W [M̂] =
∫∫

ρ[M̂] dxdy. In three dimensions, ρ[M̂] is an axial vector field parallel to
the axis along which the configuration is constant, if such an axis exists. For configurations
that are not constant along any axis, the situation is more complicated. Of course, we can
still choose an axis êz, and integrate ρ over an area A(z) perpendicular to it. If M̂ is still
constant along the boundary ∂A(z) of this area for any fixed z and everywhere continuous,
the result will still be an integer number. Since

Wz

[
M̂
]

=
∫∫

A(z)
êz · ρ

[
M̂
]

dx dy (1.4)

is then a continuous map z 7→ Wz[M̂] to the integers, it must be a constant function of z,
even if M̂ is not. Even on the boundary ∂A(z) M̂ may be a function of z, without changing
this fact, although it does depend on the choice of êz. If, however, M̂ is discontinuous
along z, while still being continuous within A(z) and constant on ∂A(z) for any fixed z,
Wz[M̂] becomes a function R → Z of z, that is not necessarily constant. Similarly, for M̂
discontinuous within A(z), or non-constant along its boundary ∂A(z), Wz[M̂] becomes a
function R→ R of z.

A skyrmion, in our convention, is then a localized configuration of the magnetization that
fulfills these requirements at least approximately, and has a winding number of W = −1
throughout its height. While this still leaves significant room for variety (see e. g. Müller’s
thesis [16]), the skyrmions that we will treat in this thesis will always be similar to those
depicted in figure 1.2b. A particularly noteworthy variation comes from the fact that the
winding number is invariant under rotations of all spins around the z-axis. The corresponding
degree of freedom is called helicity χ. We start from an axisymmetric skyrmion with the
central spins pointing down and rotating directly away from the central axis as we move
outward, until they point up at the boundary. A skyrmion with helicity χ can be generated

4



1.2 Models of Chiral Magnets

from this configuration by rotating all spins around the z-axis by an angle χ. Skyrmions
with χ = ±π2 are called Bloch-type (figure 1.2b shows skyrmions with χ = π

2 ), and those with
χ ∈ {0, π} are know as Néel-type. Which type of skyrmion occurs in a system depends on its
symmetry. Chiral magnets host Bloch-type skyrmions, where the sign of χ is determined by
the sign of the DMI strength D discussed in the next section. This, in turn, is determined by
the chirality of the underlying crystal structure, which can be left- or right-handed. Note,
though, that sample surfaces have lower symmetry, which is reflected in the configuration of
skyrmions at the surface. At surfaces perpendicular to the skyrmion-axis, the magnetization
twists, changing the local helicity [LH4, 17, 18]. Néel-type skyrmions are unstable in chiral
magnets. In other systems, like magnetic multi-layers and lacunal spinels, however, they
can be stable and may form the ground state [9–12]. Note that in some other conventions,
the name skyrmion also refers to comparable configurations with other winding numbers—
especially W = 1, which we would call an anti-skyrmion.
Due to their topological nature, skyrmions are often said to be topologically protected.

Indeed, under the assumption of a continuous magnetization with near-constant magnitude,
skyrmions can only be destroyed by moving them to the sample surface. In real materials,
however, so-called Bloch points may form, at which the magnetization formally becomes
discontinuous, and the underlying lattice can no longer be ignored. By introducing such Bloch
points, the topological protection of skyrmions is lifted, and skyrmions can be destroyed [19].
However, these processes require a sizable activation energy—the energy needed to create a
Bloch point, or even a pair of Bloch points, depending on the details of the process. Therefore,
the topological nature of skyrmions is associated with an energy barrier enhancing their
stability, see for example [20]. Interestingly though, this energy barrier is not the only major
factor determining the lifetime of skyrmions. While it has been shown to follow a typical
Arrhenius law with exponential dependence on the barrier and temperature, the associated
entropy-related prefactor varies by more than 30 orders of magnitude [21].

Interestingly, skyrmions were initially believed to occur only metastably in chiral magnets,
because they usually have higher energy than a conical state. It has been shown, however,
that in the small phase pocket of the skyrmion lattice, they have lower free energy [7]. Thus,
the skyrmion lattice phase is actually stabilized by thermal fluctuations.

Beyond purely academic interest for these topological quasi-particles, skyrmions have also
attracted significant interest for their promise for applications. They pose strong candidates
for possible so-called spintronic devices, due to their small size, exceptional stability, and
how readily they can be manipulated. They can be driven by oscillating magnetic fields [22],
thermal gradients [23], and electric currents [24, 25]. A number of possible applications have
already been proposed [26–31]. For further reading on chiral magnets, skyrmions and a review
of current research on the topic see for example [13, 26, 32–34].

1.2 Models of Chiral Magnets
Theoretical descriptions of chiral magnets are usually based on one of three closely related
models, or their generalizations. Here we will take a short look at all three of them, and
how they are related to each other. The first of these, usually called non-linear sigma model,
describes a coarse-grained magnetization as a continuous vector field M of constant magnitude.
For convenience, units are often chosen so that |M| = 1. In its basic form the model is

5



1 Chiral Magnets and Skyrmions

γS × BB

S

γM̂ × BeffBeff

M̂
αγM̂ ×

(
M̂ × Beff

)

(a) (b)
Figure 1.3: (a) Precession of a (classical) spin

in a magnetic field according to the Heisen-
berg equation (1.7). (b) Damped precession
of the magnetization according to the LLG
equation (1.8). Both are shown for negative γ
(electron-like).

governed by the following free energy functional:

Fbase,V [M] =
∫

V

fbase,V [M](r) d3r (1.5)

fbase,V [M](r) = −J2 M̂ ·
(

∆M̂
)

+DM̂ ·
(
∇× M̂

)
−B · M. (1.6)

With positive Heisenberg exchange coupling constant J > 0, the first term favors constant
magnetization. Together with the DMI described by the second term a helical configuration
is favored, where the sign of the DMI coupling constant D determines the chirality. The
third term gives the Zeeman coupling to the applied magnetic field B. Finally, the model is
routinely extended to incorporate further effects, such as dipolar interaction of spins described
by fdemag,V [M](r), which we will discuss in the next section. This model is the one most
amenable to analytical treatment and will serve as our reference.

Regarding the dynamics of the magnetization, we will first take a look at the Hamiltonian
dynamics of a single spin in a magnetic field. Using the simple Hamiltonian Ĥ = −γŜ · B
with the gyromagnetic ratio γ, the Heisenberg equation of motion for the spin reads

dŜ
dt = i

~

[
Ĥ, Ŝ

]
= γŜ × B, (1.7)

the result of which is a precession of the spin around the magnetic field which is illustrated
in figure 1.3a by a classical trajectory [35]. This precession of spins also translates to the
coarse-grained magnetization M. To describe its full dynamics, however, we need to take
dissipative processes like electron-phonon interaction into account. This is usually done
phenomenologically, resulting in the Landau–Lifshitz–Gilbert (LLG) equation:2

∂M̂
∂t

= γM̂ × Beff − α
γ

|γ|
M̂ × ∂M̂

∂t
. (1.8)

The second term, proportional to the dimensionless damping parameter α, describes the
simplest effect of non-spin-conserving dissipative processes. Importantly, the first term no
longer contains only the applied field B, but rather the effective magnetic field

Beff[M](r) = −δF [M]
δM(r) = − 1

|M|
δF [M]
δM̂(r)

(1.9a)

= J

|M|∆M̂− 2D
|M|∇× M̂ + B + Bextensions[M](r), (1.9b)

containing the effects of all interactions considered in the model, where Bextensions represents
all contributions coming from any extensions of F beyond Fbase,V . An exemplary solution

2Note that there are different conventions regarding the sign of γ. Equation (1.8) gives properly
damped results for any sign of γ, and a counter-clockwise precession for γ < 0.
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1.2 Models of Chiral Magnets

of the LLG equation for constant Beff is shown in figure 1.3b. Note that sometimes the
effective field Heff = 1

µ0
Beff is inserted instead of Beff. Correspondingly, there is an alternative

definition of γ, compensating for the relative factor.
The LLG equation was introduced by Gilbert [36, 37] as a refinement of the Landau-Lifshitz

equation [38], which reads

∂M̂
∂t

= γ′M̂ × Beff − λM̂ ×
(

M̂ × Beff

)
. (1.10)

It is equivalent to the LLG equation via the reparametrization γ′ = γ/
(
1 + α2), λ =

|γ|α/
(
1 + α2). Since the latter is effectively the result of solving the LLG equation for ∂

∂tM̂,
it is in most cases more convenient to use than the LLG equation, and we will in the following
not distinguish between the two.

Note that Beff = 0 is not required for local minima of the free energy, due to the constant
magnitude constraint on the magnetization. Instead, such configurations fulfill M(r) ‖ Beff(r)
and M(r) · Beff(r) > 0, which is just the requirement for attractive fixed points of the LLG
equation (1.8), as long as the external field is independent of time.

For numerical calculations we need some kind of discretization. When choosing to discretize
on an orthorhombic lattice in real space, we arrive at a Heisenberg-type model describing
discrete classical magnetic moments mi =

∫
Vdc

M(ri + r) d3r on a lattice Ldc 3 ri defined by
V = Ldc + Vdc = {r1 + r2|r1 ∈ Ldc, r2 ∈ Vdc}, where Vdc = axayaz is the volume of a single
cuboid discretization cell3 with edges ad. The free energy reads

Fbase,Ldc [m] = Vdc
∑

i,j∈Ldc
〈i,j〉

(
− J

2|rij |2
m̂i · (m̂j − m̂i) + D

|rij |
m̂i · (r̂ij × m̂j)

)
−
∑

i∈Ldc

B · mi,

(1.11)
where the indices i and j separately run over all sites ri ∈ Ldc such that they are nearest
neighbors, and rij := rj − ri connects the two coordinates and has length |ri,j | ∈ {ax, ay, az},
depending on direction. We assume all mi to have equal magnitude |m| = Vdc|M|, which
is a good approximation in the limit ad → 0. Note that the Heisenberg exchange term can
equivalently be written as m̂i · m̂j , like in the original Heisenberg model. Mathematically,
these two ways to write the interaction only differ by an inconsequential constant, but the
m̂i · m̂j term usually has inferior numerical accuracy due to rounding errors.4 This is why
implementations tend to use m̂i · (m̂j − m̂i) [39, 40].
There are, of course, other options for discretizing the non-linear sigma model, resulting

in energy functionals similar to equation (1.11). One option is to increase the range of
interactions with prefactors chosen to better approximate the original derivatives, see for
example [15, 16]. It is also possible to choose a lattice other than the orthorhombic lattice
we chose. The resulting models are, however, mostly relevant not as approximations to
the non-linear sigma model, but rather as atomistic models, where each magnetic moment
represents a single atomic spin instead of the many spins they represent for us. In this vein

3In our notation we will not distinguish between a set Vdc =
∏
d

[−ad/2, ad/2] ⊂ R3 and its volume
Vdc = axayaz .

4For a smooth magnetic texture, m̂i · m̂j is of order one, giving a large overall energy with small
relative differences between different configurations. m̂i · (m̂j − m̂i) on the other hand will be
much smaller, resulting in much larger relative differences (but mathematically equal absolute
differences). This form is therefore more accurate when rounding to the same number of significant
digits. A similar, if weaker, statement is also true for the effective field.
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1 Chiral Magnets and Skyrmions

some studies also looked at the effects of treating the spins quantum mechanically, instead of
classically, with a Hamiltonian similar to equation (1.11) [41, 42].
To describe the dynamics in the Heisenberg model, we discretize the LLG equation (1.8),

the result of which looks identical except for the replacement M̂ 7→ m̂. However, the effective
magnetic field is now defined as

Beff,i = −∂F [m]
∂mi

= − 1
|m|

∂F [m]
∂m̂i

(1.12a)

= Vdc
|m|

∑

j∈Ldc
〈i,j〉

(
J

|rij |2
(m̂j − m̂i)−

2D
|rij |

(r̂ij × m̂j)
)

+ B + Bextensions,i[m]. (1.12b)

While the result, in our case, is identical to discretizing the effective field (1.9b), the same
is not always true for more complicated energy functionals. There, it can be critical to use
equation (1.12a). The reason behind this discrepancy lies in the fact that some seemingly
innocuous operations for the continuous effective field, like applying the product rule to a
derivative, do not have a discrete counterpart [LH6].
Using equation (1.11) in conjunction with the LLG equation (1.8) and equation (1.12),

we can simulate the magnetization dynamics of chiral magnets [40, 39]. Such simulations
are known as micromagnetic simulations. Mathematically they amount to solving the initial
value problem of the LLG. Micromagnetic simulations are one of the most important tools
used to study chiral magnets.
The last model on our list is the Ginzburg–Landau model for the paramagnetic to heli-

magnetic phase transition, where the magnitude of the magnetization |M(r)| will be the
order parameter. For this, we lift the restriction of constant magnitude |M(r)|, and add
the free energy contributions r0M(r)2 + UM(r)4 to equation (1.6). The basic principle of
how these contributions describe a phase transition is illustrated in figure 1.4: with positive
r0 ∼ (T − Tc) /Tc the Energy is minimal for |M| = 0, while with negative r0 the ground state
is |M| =

√
−r0/2U . The details are much more involved, of course, when the full functional

is considered.
While the resulting model can be useful without any further modifications, we will only

consider a discrete version of it. However, in contrast to before, where we discretized in
real space, we will discretize this model in momentum space. This has the advantage
that local terms quadratic in M(r), and even the highly non-local dipolar interaction,
become simple. Assuming a periodic magnetic structure with a unit cell Vuc, we write
Mk = 1

Vuc

∫
Vuc

exp (− i k · r)M(r) d3r, and M(r) =
∑

k∈L∗uc
exp (i k · r)Mk, and arrive at the

mean free energy density functional

fbase,V [M] =
∑

k∈L∗uc

((
J

2 k2 + r0

)
Mk · M−k + iDM−k · (k × Mk)

)
(1.13)

+ U
∑

k,k2,k3,k4∈L∗uc
k+k2+k3+k4=0

Mk · Mk2Mk3 · Mk4 −B · M0,

where f·,V [M] is defined by f·,V [M] = 1
V F·,V [M] = 1

V

∫
V
f·,V [M](r) d3r. All sums run over

the reciprocal lattice L∗uc, and we assumed the magnetic field to be constant. Note that J and

8



1.3 Dipolar Interaction
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Figure 1.4: Illustration of a phase
transition from the Ginzburg–
Landau model. For r0 ≥ 0 the
ground state is |M| = 0, while
for r0 < 0 the ground state is
|M| > 0.

D are slightly different from those used in the two other
models. In those models, the two terms contain the dimen-
sionless normalized magnetic moments or magnetization,
respectively. Here, on the other hand, they contain the full
magnetization. Consequently, J and D differ by factors of
|M| from their values in the other models.
In contrast to the previous models, we unfortunately

do not know the equation of motion for Mk. While the
dynamics of the direction M̂ still has to obey the LLG
equation (1.8), the dynamics of the magnitude |M| re-
mains, to the best of our knowledge, unexplored. Thus,
we will have to resort to one of the previous models, when
studying the dynamics of chiral magnets. On the other
hand, by considering the energy functional as an action
and performing a saddle point approximation, it is possible
to factor in further fluctuations, beyond what is already
built into the Ginzburg–Landau model [7].

1.3 Dipolar Interaction
Dipolar interaction, as we discuss it here, stems from the fact that each spin carries a magnetic
dipole moment mi, which generates a magnetic field. This field, in turn, acts on all other
spins, resulting in the total energy

Fdipole[m] = µ0

8π
∑

i,j
i 6=j

mi · 13 − 3r̂ij ⊗ r̂ij
|rij |3

· mj . (1.14)

For atomistic models, this expression can immediately be used in place of Fdemag[m].
In the non-linear sigma model, however, we need an expression based on the continuous
magnetization. The Heisenberg model, on the other hand, which we derived from the non-
linear sigma model, should take into account that each discretization cell hosts many spins at
different locations within the cell. An obvious way to write a continuous term for the energy
would be to simply replace the double sum with two integrals. This limiting process, however,
results in a series that does not converge absolutely. The resulting integral would only be
semi-convergent and must be avoided. Following Brown [43, Ch. 2, § 3], we should instead be
careful about the definition of a magnetic dipole. It can be defined as a limit of either two
magnetic monopoles or an infinitesimal current loop, and either can be used. Depending on
which we choose, we rewrite the energy in terms of the potentials φ or A before taking the
limit. Finally, we arrive at one of the following expressions for the energy density in a volume
V due to dipolar interaction:

fdemag,V [M](r) = −µ0

2 M · Hdemag = −µ0

2 M ·
(

1
µ0

Bdemag −M
)

(1.15a)

= µ0

8πM(r) ·∇
∫

V

r− r′

|r− r′|3
· M(r′) d3r′ (1.15b)

9



1 Chiral Magnets and Skyrmions

= µ0

8πM(r) ·
(∫

V

r− r′

|r− r′|3
∇′ · M(r′) d3r′ −

∫

∂V

r− r′

|r− r′|3
n(r′) · M(r′) d2r′

)
(1.15c)

= µ0

8πM(r) ·
(
∇×

(∫

V

r− r′

|r− r′|3
× M(r′) d3r′

))
+ µ0

2 M(r)2 (1.15d)

= µ0

8πM(r) ·
(∫

V

r− r′

|r− r′|3
× (∇′ × M(r′)) d3r′

−
∫

∂V

r− r′

|r− r′|3
× (n(r′) × M(r′)) d2r′

)
+ µ0

2 M(r)2, (1.15e)

where n is the outward normal vector of the surface ∂V . It is important to note that the
derivatives and integrals in equations (1.15b) and (1.15d) may not be exchanged, as otherwise
the result would again be semi-convergent.

For the Heisenberg model, now, we need to find a discretization scheme for these integrals.
This task should not be underestimated, since the resulting integrals can be rather complicated,
and it is very easy to make mistakes by accidentally rewriting them into a semi-convergent
form. Fortunately, this problem has been studied in quite some detail [44–48]. A common
approximation is to assume that M is constant within each discretization cell. Using this
assumption and equation (1.15b), we can write

Fdemag,Ldc [m] = µ0

2
1
Vdc

∑

i,j

mi ·N(rij) · mj (1.16a)

N(rij) = 1
4πVdc

∫

Vdc

d3r∇⊗
∫

Vdc

d3r′
rij + r′ − r
|rij + r′ − r|3

. (1.16b)

Except for rij = 0, the remaining integrals in the demagnetization kernel N(rij), also called
demagnetization tensor field, can be expressed as surface integrals using Stokes’ theorem.
Those can then be evaluated either analytically [44] or numerically [49, 39]. For rij = 0, on
the other hand, N(rij)

∣∣
rij=0 is nothing but the demagnetization tensor of the discretization

cell NVdc . For any uniformly magnetized body the magnetostatic energy can be given in
terms of its demagnetization tensor:

Edemag = µ0

2 m ·NV · m/V . (1.17)

NV can easily be shown to be a symmetric real matrix, and as such it has a set of eigenvectors
forming an orthonormal basis of R3. The corresponding eigenvalues are called demagnetization
factors Ni, and can be calculated analytically for some geometries, such as cuboids and
ellipsoids [47, 48]. They can also be shown to always add up to one: tr(NV ) = Nx+Ny+Nz = 1.
In our case, the demagnetization tensor of the discretization cell is already diagonal, which
follows from the fact that the coordinate axes are aligned with the cuboid axes.
Expressing the dipolar interaction in terms of the kernel N(rij) has further advantages.

For example, it lets us consistently express the cases of point dipoles and integrated magnetic
moments by setting

Ndipole(rij) =
{

0 , rij = 0
Vdc
4π

13−3r̂ij⊗r̂ij
|rij |3

, else . (1.18)
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1.3 Dipolar Interaction

Figure 1.5: Macrogeometry approach to PBCs. Instead
of endlessly repeating copies of the unit cell as for true
PBCs, we can place a finite number of copies around our
system, effectively describing a much larger, but finite
system. Here we place pd copies of a rectangular unit
cell of size auc,d on each side of the main cell, which
in turn consists of nd discretization cells of size ad in
d-direction.

2p
y

+
1
un

it
ce
ll
co
pi
es

nx discretization cells
discretization cell volume Vdc =

∏
d
ad

unit cell volume Vuc =
∏
d
ndad =

∏
d
auc,d

total volume V =
∏
d

(2pd + 1)ndad =
∏
d

(2pd + 1) auc,d

It is also useful for practical purposes of micromagnetic simulations, since the kernel can be
computed in advance, so that during a simulation step only the sum has to be evaluated,
which can be done efficiently using fast Fourier transformations. Importantly, the kernel can
also be used to include the effects of periodic boundary conditions (PBCs).

For local interactions, PBCs are simple and straightforward. For long-ranged interactions,
such as dipolar interaction, on the other hand, they can present a significant problem. Each
spin interacts with every other spin, which, for a periodic and thereby infinite system, is an
infinite number. Since, however, there are only a finite number of spins per unit cell, we
can absorb the sum over unit cells into the kernel, leaving only the same sum over all pairs
of spins as for the open system, just with a different kernel. For one- and two-dimensional
PBCs the resulting infinite series in the kernel can be calculated numerically, effectively
describing rod-like or disk-like samples [50]. For three-dimensional PBCs on the other hand,
this series does not converge absolutely. Physically, this is because the energy of a magnetic
configuration depends on the shape of the sample in question. It depends on the details of
the boundary, no matter how large the sample, no matter how far the boundary is away.
Consequently, calculations using three-dimensional PBCs together with dipolar interaction
have to specify the shape of the surrounding sample in some way, and are formally, actually,
ill defined. One possibility, which we will use in a similar calculation for the Ginzburg–Landau
model, is to state the demagnetization tensor directly, since this is the only shape-dependent
parameter in the limit of a very large system, which we will show below. Alternatively, we
can use a so-called macrogeometry approach, by placing a finite number of copies next to
our system [51, 39], instead of the infinitely many copies for PBCs. It is also referred to as
quasi PBCs. From now on, we will write true PBCs when referring to the usual definition of
PBCs, while PBCs alone may refer to either true PBCs or quasi PBCs/macrogeometry. One
implementation of a macrogeometry for rectangular cells is illustrated in figure 1.5.

By choosing a large number of copies, we can then ensure that the influence of the sample
boundaries on the central cell is minimized, while retaining the convergence of the kernel sum.
Finally, the demagnetization factors can be controlled by changing the number of copies per
direction and thereby the aspect ratio of the larger sample. This approach does not model
the sample boundaries correctly any more than true PBCs do. Instead, they are assumed to
have the same magnetic texture as the central cell deep inside the bulk. However, it does
give the correct energy for such a configuration, including effects of the sample shape.
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1 Chiral Magnets and Skyrmions

After summation over periodic copies, we can write the demagnetization kernel as

NPBC(rij) =
∑

R∈Luc

N(rij + R), (1.19)

where Luc ⊂ R3 is the lattice of unit cells, defined by V = Luc + Vuc, for the volume V of the
total sample. The unit cell shown in figure 1.5 consists of a rectangular arrangement of nd
cuboid discretization cells in d-direction, with edges ad. Placing pd unit cell copies on each
side, we can write in this case

Luc =





∑

d∈{x,y,z}

mdndadêd

∣∣∣∣∣∣
md ∈ {−pd, . . . , pd} ∀d ∈ {x, y, z}



 . (1.20)

NPBC can then be used instead of N in equation (1.16a) to implement PBCs for dipolar
interaction in the Heisenberg model.

Some closely related considerations have to be made when including dipolar interaction in
the Ginzburg–Landau model. Here, we will assume the same type of magnetic configuration
as described above—periodic magnetization up to the finite boundary. For the continuous
magnetization, we can write this as

M′(r) = M(r)χV (r), (1.21)

where M′ is the proper magnetization, M is truly periodic with a unit cell Vuc, and χV
is the characteristic function of V , which is 1 inside and 0 outside of V . After a mostly
straightforward calculation, using the convention χV (k) = 1

(2π)3

∫
exp (− i k · r)χV (r) d3r, we

obtain

fdemag,V [M′] = µ0

2
∑

k1,k2∈L∗uc

Mk1 ·NV,k1,k2 · M−k2 (1.22a)

NV,k1,k2 = (2π)3

V

∫
χ∗V (k3 + k1)χV (k3 + k2)k̂3 ⊗ k̂3 d3k3 . (1.22b)

While this expression is exact under the stated assumptions, it is also not very useful, due to
the double sum and the generally very complicated and highly oscillating integral. Fortunately,
it simplifies significantly when V is much larger than Vuc in any direction where M is not
constant. Using that χV decays quickly in this case, it is not too difficult to show that

NV,k1,k2 ≈ δk1,k2NV,k1 (1.23a)

NV,k =
{

k̂⊗ k̂ , k 6= 0
NV , k = 0

. (1.23b)

Thus, for large V , we can write

fdemag,V [M′] ≈ µ0

2
∑

k∈L∗uc

Mk ·NV,k · M−k, (1.24)
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1.3 Dipolar Interaction

in correspondence to equation (1.16). Since the relation between M and M′ is fully determined
by specifying V , and for most purposes the two are identical, we will no longer distinguish
between them in the following text.

Besides the obvious benefits for calculating the energy of a magnetic configuration, compared
to equation (1.22), another important result of this calculation is that for large volumes
contributions to the magnetization with different wave vectors k1 and k2 are coupled only
negligibly by dipolar interaction. More accurately, for k1 − k2 in d-direction, their coupling is
proportional to (luc,d/ld)σd for a linear extend luc,d of the magnetic unit cell and ld of the
whole system, with a shape- and direction-dependent exponent σd. For a spherical V , we
find σd = 2, while σd ∈ [1, 3] for a cuboid. Specifically for the mean magnetization Mk

∣∣
k=0,

the remaining contribution gives the right-hand side of equation (1.17). This term is also
referred to as shape anisotropy, since it constitutes a generally anisotropic contribution to
the energy, that depends on the shape of the sample via the demagnetization tensor NV ,
see also section 2.1. Especially in an experimental context, its effect is often described by
combining the demagnetization field due to the mean magnetization Hdemag[Mk

∣∣
k=0] with

the uniform applied external magnetic field H into the total internal field Hint. Measurements
are then interpreted as functions of Hint, instead of H. For a usage example including some
explanation see [52]. It is often emphasized that for ellipsoid V , Hint is also uniform, but
this is actually only true if the whole system is truly in a single domain state. Also, for
regions deep in the bulk, the difference is usually irrelevant. Note also that the only remaining
information on the shape of V is contained in NV,k

∣∣
k=0 = NV , verifying our previous claim.
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2
Cubic Anisotropy

and the Phase Diagram
This chapter is about the influence of cubic magnetic anisotropy on chiral magnets, focusing
primarily on the phase diagram. The first section gives a short introduction to magnetic
anisotropy in the context of chiral magnets. In the following section, we will detail the method
we use, before exploring the effect of cubic anisotropy on the phase diagram, while comparing
the results with those of recent experiments on Cu2OSeO3. Finally, in the third section, we
will discuss the individual phases we find in more detail.

2.1 Magnetic Anisotropy
Magnetic materials usually have crystalline structure. Since crystal structures necessarily
break the continuous rotational symmetry of space, the magnetic properties do so as well,
retaining the same symmetries as the lattice. The simplest effect of such magnetic anisotropy
is that magnetic moments will preferentially align with certain directions, determined by the
crystal lattice.
Arguably the simplest type of magnetic anisotropy is uniaxial anisotropy, where a single

axis is distinguished. This anisotropy is either labeled easy-axis, if magnetic moments aligned
with this axis have lower energy, or easy-plane, if they have higher energy. To lowest order in
powers of M, it can be expressed as a term

funiaxial[M](r) = K (M · â)2 (2.1)

in the energy density, where it is easy-axis for K < 0 and â determines the axis. Uniaxial
anisotropy is present whenever a single axis is distinguished in the crystal structure— typically
in thin films, layered materials, and under application of uniaxial pressure.
While uniaxial anisotropy is often important, it does not play a role in the systems we

will be studying in this chapter. In cubic crystals, such as the cubic chiral magnets we are
interested in, the relevant type of anisotropy is cubic anisotropy. Textbook introductions
to magnetic anisotropy are often only concerned with ferromagnetic materials, and so they
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2 Cubic Anisotropy and the Phase Diagram
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Figure 2.1: Energy surfaces for cubic crystal anisotropy as given by equation (2.2). For a
magnetization pointing in a certain direction, both the radius and the color give the energy in
arbitrary units where the minimum is shifted to zero. The axes are aligned with 〈100〉-directions.
Depending on the parameters K1 and K2, any of the high-symmetry axes can be an easy- (e),
intermediate- (m), or hard-axis (h), as designated per panel. The specific parameters used for the
plots are: (a–c) K1 = −1, (a) K2 = 0, (b) K2 = −14, (c) K2 = −22, (d–f) K1 = 1, (d) K2 = 40,
(e) K2 = 6, (f) K2 = 0. Panels (a) and (f) are especially important to us, since we will be
neglecting K2.

usually give a free energy contribution like

f t.b.cubic[M](r) = −K1
(
α4

1 + α4
2 + α4

3
)
−K2α

2
1α

2
2α

2
3, (2.2)

where αi is the cosine of the angle between the magnetization and the crystal axis i—the
ith direction cosine of the magnetization. Since we will align the crystal and coordinate axes
we can write αi = cos(^ (M, êi)) = Mi/|M|. Note that equation (2.2) in a way contains all
symmetry-allowed contributions up to sixth order in the magnetization.1 While there are other
symmetry-allowed terms of the same order, they are equivalent to the terms in equation (2.2)
up to isotropic constants. For example we could write α2

1α
2
2 +α2

2α
2
3 +α2

1α
2
3, which is equivalent

to the K1 contribution via 2
(
α2

1α
2
2 + α2

2α
2
3 + α2

1α
2
3
)

+
(
α4

1 + α4
2 + α4

3
)

=
(
α2

1 + α2
2 + α2

3
)2 = 1.

Since we are concerned with the non-collinear magnetic structures of chiral magnets, we also
need to consider contributions of cubic anisotropy containing derivatives of the magnetization.
Such terms are sometimes called exchange anisotropy, but should not be confused with the
exchange bias in ferromagnet-antiferromagnet interfaces, also called exchange anisotropy.

1More accurately, we should do an expansion in powers of spin-orbit coupling, but for simplicity we
will consider the expansion in powers of M and the order of derivatives.
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2.2 Mapping the Phase Diagram

Figure 2.2: Magnetic phase diagram
of Cu2OSeO3 for different magnetic
field directions. (a) Overview of
the helimagnetic phases for B ‖
〈111〉. (b–d) Detail close to Tc for
B ‖ 〈100〉, 〈110〉, 〈111〉. Most of
the anisotropy evident in the dif-
ferences between these panels is
due to demagnetization effects [54].
Reproduced figure with permission
from [54]. Copyright 2012 by The
American Physical Society. 5 6 5 8 5 6 5 8 0

2 0

4 0

6 0

0 2 0 4 0 6 00
2 0
4 0
6 0
8 0

1 0 0
1 2 0

A

( b )   
B | | < 1 0 0 >

T  ( K )

 

 

T  ( K )

h

c

5 6 5 8

( c )   
B | | < 1 1 0 >

  

 

 T  ( K )

  

A

h

c

( d )   
B | | < 1 1 1 >

 T  ( K )

 B 
(m

T)

 

 

  

A

h

c

h e l i c a l

( a )   
B | | < 1 1 1 >

  B 
(m

T)

 

 

c o n i c a l

A - p h a s e

Some low-order terms allowed by the P213 space group are:

fderiv.cubic [M](r) = −K ′1
(
Mx∂

2
xMx +My∂

2
yMy +Mz∂

2
zMz

)
+K ′4M

(
∂4
x + ∂4

y + ∂4
z

)
M. (2.3)

Finally there is shape anisotropy, which is nothing but one of the effects of dipolar interaction.
For any magnetic sample whose symmetry group includes the cubic symmetry group the
demagnetization tensor is proportional to the three-dimensional identity matrix. This includes
all cube-like objects and spheres, but neither generic cuboids nor generic ellipsoids. For all
other samples the demagnetization tensor describes an anisotropic self-interaction of the mean
magnetization, as given by the k = 0 contribution in equations (1.24) and (1.23b).

Since cubic chiral magnets do not have a distinguished axis per se, uniaxial anisotropy does
not play a role for bulk samples, unless uniaxial pressure is applied. For thin film samples, on
the other hand, it can become a central contribution. It has been found to either increase
the range of stability of the conical phase, or instead stabilize a helical and a skyrmion
lattice phase, depending on the sign and magnitude of K [53]. Concerning bulk samples,
experimental studies found the influence of cubic anisotropy in several chiral magnets to be
small [54–56]. Figure 2.2 shows phase diagrams of Cu2OSeO3 for several directions of the
applied magnetic field by Adams et al. According to the authors, most of the differences
shown in panels (b–d) can be attributed to shape anisotropy, not cubic anisotropy.

2.2 Mapping the Phase Diagram
Originally, publications on Cu2OSeO3 reported a phase diagram as it is very typical for chiral
magnets [54, 57]. As shown in figure 2.2, it contained the usual helical, conical, polarized, and
skyrmion lattice (here still called A-phase) phases. Recent experiments, however, found the
phase diagram to be much richer [LH2, 58, LH3]. Among other new features, which we will
discuss in more detail below, they found another phase with a one-dimensionally modulated
spin structure, dubbed the tilted conical phase, at low temperatures. Usually, the propagation
vector q of such phases is either parallel to a high-symmetry axis, when pinned by anisotropy,
or parallel to the magnetic field, since, for these directions, the corresponding energy terms
lower their energy. For this new phase, these two directions are identical, but, very surprisingly,
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2 Cubic Anisotropy and the Phase Diagram

q points in a different direction. For B = 0, the anisotropy-preferred directions are the
〈001〉-directions, and this new phase was only observed when also B ‖ 〈001〉. Since it appears
only for some directions of the magnetic field, the mechanism for its stabilization must
clearly involve some kind of anisotropy. Since Cu2OSeO3 has cubic crystal structure, and
the experiments were conducted on unstrained samples, uniaxial anisotropy can be ruled out.
Furthermore, the tilted phase was also found in spherical samples [LH2], where no shape
anisotropy is present. We will therefore take a closer look at the influence of cubic anisotropy
on the magnetic phase diagram of chiral magnets.

To model the system, we will use an extension of the isotropic Ginzburg–Landau model of
equations (1.13) and (1.24). Technically, Ginzburg–Landau models represent expansions of the
free energy around a critical point or line. In our case, this is the paramagnetic to helimagnetic
transition, that occurs at the critical temperature Tc. It might therefore be a surprising
choice to use a Ginzburg–Landau model to describe effects occurring at temperatures well
below Tc. It has been demonstrated, however, that this model gives very good agreement
with experiments on a variety of chiral magnets [2, 7, 52]. Furthermore, we will not try
to achieve quantitative agreement with the experiments, due to the number of parameters
involved. Instead, we will establish phase diagrams taking the various contributions of cubic
anisotropy into account, and identify the relevant parameters governing the phase diagram of
Cu2OSeO3.

Since it is the low temperature regime, that we are interested in, we can neglect the effects
of thermal fluctuation beyond what is built phenomenologically into the Ginzburg–Landau
model. Such fluctuations were previously used to explain the thermodynamic stability of the
skyrmion lattice [7]. For now, we will also assume that there is no phase coexistence, and only
consider states with a homogeneous phase throughout the sample. Under these assumptions,
the problem of calculating a phase diagram reduces to a straight forward minimization of the
free energy density, for which we use

fV [M] = fbase,V [M] + fdemag,V [M] + fcubic,V [M], (2.4)

with

fcubic,V [M] =
∑

k∈L∗uc
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Here, K ′1, K ′2, and K ′3 parameterize all anisotropic contributions allowed by the P213 space
group up to order k2M2. Similarly, K1 gives the only symmetry-allowed term up to order
k0M4, see the previous section. Finally, we also include K ′4 as a common example for
higher-order terms. Note that the term proportional to K1 in equation (2.5) is not quite
identical to that from equation (2.2), since M is not normalized in the Ginzburg–Landau
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2.2 Mapping the Phase Diagram

(a) phase L∗uc-parameters reciprocal lattice L∗uc |L∗uc|
FM – {0} 1
conical n ∈ R, q ∈ R3 span (q) ∩Bn|q| 2n+ 1
�SkXA n, q ∈ R span (qêx, qêy) ∩Bnq ∼ πn2

�SkXB n, q ∈ R span
(
q√
2 (êx + êy) , q√

2 (êx − êy)
)
∩Bnq ∼ πn2

4SkX n, q, κ ∈ R
(

1 0 0
0 κ 0
0 0 1

)(
span

(
qêx, q2

(
êx +

√
3êy
))
∩Bnq

)
∼ 3.6n2

(b) phase symmetries n = 6: |L∗uc| f

FM Mk = M∗
−k 1 3

conical Mk = M∗
−k 13 39

�SkXA
Mk = M∗

−k, Mk = Rêz,−π/2 · MRêz,π/2·k, 113 48Mk = −Rêx,π · MRêx,π·k

�SkXB
Mk = M∗

−k, Mk = Rêz,−π/2 · MRêz,π/2·k, 113 48Mk = −Rêx,π · MRêx,π·k

4SkX Mk = M∗
−k, Mk = Rêz,π · MRêz,π·k, 127 100Mk = −Rêy,π · MRêy,π·k

Table 2.1: (a) States considered for calculation of phase diagrams and their reciprocal lattices. Also
listed are the parameters we use to describe L∗uc, and its cardinality |L∗uc|. A closed ball of radius
r around the origin is denoted by Br =

{
x ∈ R3

∣∣ |x| ≤ r
}
. (b) A list of symmetries assumed

for each phase, along with the cardinality |L∗uc| and the remaining degrees of freedom f after
the application of all symmetries—both for n = 6 where applicable. Note that with minimal
symmetry f = 3|L∗uc|, as is the case for the ferromagnetic and conical phases. Rotations by φ
around v are denoted by Rv,φ.

model. It should also be noted that equation (2.5) assumes that the coordinate system is
aligned with the crystal axes. We choose the conventional axes êx ‖ [100], êy ‖ [010], and
êz ‖ [001].
The free parameters of the model are the reciprocal lattice L∗uc and the components

Mk ∈ C3 of the magnetization. Due to the rather large number of degrees of freedom
involved when using large reciprocal lattices, we will treat each phase separately on a tailored
reciprocal lattice. This way, we are able to make use of the respective symmetries of the
states to decrease the number of free parameters for the minimization process by up to ∼ 86%,
enabling us to compute detailed phase diagrams in a reasonable time frame. Table 2.1 lists
the states we consider for those phase diagrams, together with details on the corresponding
parameters used for the minimization. They include a polarized state (FM), helical/conical
states, two skyrmion square lattices (�SkXA/�SkXB) rotated by π

4 relative to each other, and
a triangular skyrmion lattice (4SkX) with an additional parameter κ for allowing anisotropy-
induced deformation. The reciprocal lattices L∗uc of the four types of modulated states are
truncated using a spherical cutoff of radius n|q|, where q is a reciprocal lattice vector and
n ∈ R. In the case of the two-dimensional lattices, n is sometimes referred to as the “number
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2 Cubic Anisotropy and the Phase Diagram

(a) (b) (c) (d)conical �SkXA �SkXB 4SkXz
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Figure 2.3: Reciprocal lattices of the four modulated states considered. (a) For the conical state, the
lattice consists of points on a single line. This line can be oriented in any direction. (b) The first
square lattice is aligned with the x- and y-axes. (c) The second square lattice is simply rotated
by π

4 around z with respect to the first. (d) The triangular lattice is the only one that does not
use the same spherical momentum cutoff n|q| as the others. For κ > 1 (< 1) it effectively uses
an ellipsoid cutoff region that is elongated (shortened) in y-direction. Each lattice is drawn for
n = 3 and fixed |q|. The effect of the remaining parameters ((a) q̂ (b–c) none (d) κ) is hinted at
by a blurring effect.

of rings” in the lattice. Importantly, the cutoff scales with the reciprocal lattice vector during
the minimization procedure, which makes the algorithm simpler and more stable. For the
same reason, the deformation of the triangular skyrmion lattice by κ is applied after the
cutoff, see the definition of L∗uc for 4SkX in table 2.1a. Thereby, this lattice occasionally
includes points outside the cutoff region, or disregards points that would have been included
had the deformation been applied first. The four non-trivial reciprocal lattices are visualized
in figure 2.3.

While the mathematical description of each states is tailored towards a specific phase, each
of them can take on values corresponding to states of other phases. They are defined by the
respective reciprocal lattice L∗uc and the corresponding symmetries we enforce. A polarized
state M = |M|êz, for example, is a valid solution of any of the listed sets of symmetries and
lattices. The conical state, in particular, actually permits any one-dimensionally modulated
state. We use it to describe the conical, helical, and tilted conical phases. This phenomenon
can become a problem when the minimization results in a state corresponding to a different
than the intended phase. A particularly relevant example is how a minimization for strong
magnetic field will often result in a polarized state, even if we use the description intended
for a skyrmion lattice. In some cases, the intended phases would have lower energy and the
minimization simply get stuck in a higher-energy local minimum. However, even when the
result has lower energy that the intended phase, this complicates the generation of phase
diagrams, because we have to take care in identifying the phase the result corresponds to.
One way we use to mitigate this problem to some extend will be discussed below.
At selected points in parameter space, we also searched for phases that do not satisfy

the symmetries of any of the listed states. By using a general three-dimensional reciprocal
lattice with minimal symmetry Mk = M∗

−k, any magnetic configuration can, in principle,
be parameterized. All states identified in this manner were either close to one of the listed
states, or much higher in energy, see also below.

Having reduced the number of internal degrees of freedom by enforcing the symmetries we
expect the respective states to have, we can also reduce the number of external parameters
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2.2 Mapping the Phase Diagram

Figure 2.4: Three exemplary parameter paths used
to generate phase diagrams. Points mark the pa-
rameters for which a minimization is performed,
where the color shows the origin of the initial
configuration— from a script, a previous re-
sult, or an interpolation of previous results.
Points with two colors are visited twice with dif-
ferent types of inputs, where the top-left color
corresponds to the first minimization. Points
are visited along the paths ( ) through the
anisotropy–magnetic field parameter space. The
descending B-paths start at the highest B with
a non-polarized result ( )— see the main
text.
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by rescaling. Mapping

k 7→ k̃D
J
, M 7→ M̃ D√

JU
, fV 7→ f̃V

D4

J2U
,

r0 7→ r̃0
D2

J
, B 7→ B̃ D3

√
J3U

, K ′1/2/3 7→ K̃ ′1/2/3J , K ′4 7→ K̃ ′4
J3

D2 , K1 7→ K̃1U ,

we arrive at set of dimensionless parameters, while, at the same time, eliminating the
parameters J , D, and U from the model, at the price of introducing the new parameter τ = µ0J

D2

in front of fdemag,V . For the actual calculations we use this reduced set of dimensionless
parameters. For clarity, however, we will state the dimensionful parameters whenever
appropriate.
Neglecting anisotropy for a moment, τ is identical with the so-called internal conical

susceptibility χintcon = ∂|M|
∂|Hint| , which has been reported to be χintcon ≈ 1.76 in Cu2OSeO3 [52].

Although this identity no longer holds exactly in the presence of anisotropy, it will still
hold approximately, as long as the anisotropy is weak. Therefore, and since we do not
have any better data on its actual value, we will use τ = 1.76 for all calculations shown
here, unless otherwise stated. Since the experiments found the tilted conical phase for a
magnetic field B ‖ 〈001〉, we will also restrict the external field to such a direction and write
B = Bzêz, further reducing the number of external parameters. For the temperature-like
Ginzburg–Landau parameter r0, the demagnetization factors Ni, and the maximal order of
k-modes n we will use r0 = −100D2

J , Ni = 1
3 , and n = 6, respectively, unless otherwise stated.

For the minimization we use a quasi-Newton algorithm built into Wolfram Mathematica.
Since this is a method for searching local minima, we have to provide some starting configu-
ration. Depending on situation and objective, we do this in one of the following ways: by
choosing a random state, scripting a representative configuration by hand, inserting the result
from a previous minimization with similar external parameters, or interpolating from several
previous results. For selected parameter sets, we generated several thousand random configu-
rations as input for the minimization procedure on a minimal-symmetry reciprocal lattice, to
check for relevant states beyond those listed in table 2.1. We found that while all qualitatively
different results have significantly higher energy, there are often several similar configurations
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2 Cubic Anisotropy and the Phase Diagram

with comparable energy. This complicates the task of reliably identifying the minimal-energy
configuration across a range of external parameters. Therefore we implemented the following
procedure when compiling phase diagrams, which is also visualized in figure 2.4.

We start with a scripted configuration as input for a minimization without any anisotropy.
The resulting configuration is then used as input for a minimization with small anisotropy
δKi in one of the K ′1/2/3/4, K1 parameters. Successive minimizations with anisotropy
further increased in steps of δKi receive a configuration interpolated from the two preceding
minimizations as input until a target Ki is reached. At that point the same procedure is used
to first increase the magnetic field in steps of δB, but with the final result of the previous path
as initial input instead of a manually scripted configuration. Finally, we repeat the procedure
once more to decrease B again to 0. There, however we do not start at the final value of B
and the corresponding result, but rather at the highest value of B for which the resulting
configuration shows a minimum of spatial variation— i. e. a non-vanishing |Mk| for at least
one value of k 6= 0. The reason is that otherwise the minimization would in some cases start
with a polarized initial state, and often stay in this local minimum, instead of giving results
for the intended phase. When computing phase diagrams of other parameters, like r0, we
use the appropriate equivalent, adding a third path segment to tune up the corresponding
parameter where necessary. Note that some of the presented results, particularly those with
r0 = −1000D2

J , were obtained with simpler parameter paths, relying more on scripted input.
Beyond improving the stability of the minimization, the hysteresis-loop-like increasing–

decreasing-B part of this procedure is very useful whenever there is a first-order transition
between states of the same group. At low magnetic fields, for example, we often find a
triangular skyrmion lattice state featuring strongly elongated skyrmions, sometimes called
bimerons, approximating a helical state, which is much closer to the actual ground state in this
region. This state then changes to a state with properly localized nearly circular skyrmions
in a first order transition between metastable states. By first increasing then decreasing the
magnetic field, we are much more likely to find the optimal state for all parameters, even
in the vicinity of such transitions. For the final phase diagram, we select for each point the
state with minimal energy, considering and comparing all the different phases and ways of
generation.
Using this procedure, we compute several magnetic phase diagrams as a function of the

magnetic field and the various anisotropy parameters. For simplicity, we only choose one
anisotropy parameter to be non-zero for now. As candidate states we consider all states listed
in table 2.1. For the conical state specifically, we find that the best results are obtained by
fixing the direction of q, and repeating the minimization for different directions, tracing a path
in parameter space as described for each q̂. Since the individual anisotropic contributions
to the energy all favor q to be either parallel to 〈001〉, 〈111〉, or B ‖ êz, we expect q to lie
on the high-symmetry line between êz and (1, 1, 1)T . Using spherical coordinates for q, we
therefore fix its azimuthal angle to φ = π

4 for now and vary its polar angle as θ ∈ [0, 1], where
q ‖ (1, 1, 1)T corresponds to θ = arctan(

√
2) ≈ 0.955. In the next section, we will check this

assumption. Beyond that, the most likely candidate for a one-dimensionally modulated state
is a helical phase with q ‖ êx ⊥ B, which we also consider.
Figure 2.5 shows the resulting phase diagrams and a set of exemplary energy curves used

in generating these. In panel (a), the phase diagram as a function of K ′1 and BZ is shown.
For K ′1 = 0, we find the two phases expected in a bulk chiral magnet without anisotropy—a
conical phase with q ‖ B at low magnetic fields and a ferromagnetic phase (FM) at high fields.
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Figure 2.5: Magnetic phase diagrams as a function of magnetic field and anisotropy parameters
and exemplary energy functions. (a–d) Phase diagrams as a function of anisotropy K′1/2/3/4 and
magnetic field B ‖ êz ‖ [001]. Phases occurring are: polarized phase (FM, white), conical phase
with q ‖ B (light blue), helical/conical phase with q ∦ B (dark blue, for more information see
next section), and skyrmion lattice (SkX, red). (e) Phase diagram as a function of anisotropy K1
and magnetic field B ‖ êz ‖ [001]. Additional occurring phases are: metastable helical/conical
phase with q ∦ B (shaded dark blue) and metastable helical phase with q ‖ êx (shaded green).
(f) Exemplary energy density curves as used in the generation of the phase diagrams. Shown for
K1 = 0.004U as marked by the red arrow in (e). For better visibility a Bz-dependent offset was
subtracted from the energy densities. The respectively lowest energy density determines which
phase occurs in the phase diagram. Between Bz ≈ 6.3D3/

√
J3U and Bz ≈ 7.3D3/

√
J3U , the

lowest-energy metastable state is a tilted conical state (θ 6= 0, blue) or a helical state (q ‖ êx,
green). This defines the shaded regions in (e) and (f). For a more detailed discussion see the
main text.
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2 Cubic Anisotropy and the Phase Diagram

A helical phase does not appear for K ′1 = 0, since without anisotropy, the conical state will
have lower energy for any finite magnetic field, while at B = 0 the conical and helical states
are identical. For K ′1 > 0, we find no change in the phases up to the highest K ′1 we used.
This is easily understood by examining the structure of the K ′1-term. Since the conical state
with q ‖ B ‖ êz has Mz

k
∣∣
k 6=0 = 0, and the polarized state is not modulated, it evaluates to

zero for both of them. As the term can only be positive for positive K ′1, both states represent
local minima and are unchanged by K ′1 > 0. It should be noted though, that for very strong
anisotropy, the true ground state will likely be a very different state that we do not consider
in our analysis. Since the term does not vanish for helical or conical states with q ∦ 〈001〉,
we conclude that the easy axes for these states are the 〈001〉-directions. A phase transition
between distinct helical and conical phases should therefore exists for B ∦ êz.
For K ′1 < 0, the situation is different. First, we do find a helical-like one-dimensionally

modulated state with q ∦ B, that is distinct from the conical phase with q ‖ B. The
critical magnetic field required to transition to the conical phases rises with increasing |K ′1|.
Such behavior should be expected, given that stronger anisotropy should result in stronger
pinning. For an intermediate range of K ′1 values, a skyrmion lattice phase (SkX) appears on
the boundary between the 1D-modulated states. It only covers a relatively small range of
magnetic fields, but extends along the phase boundary. We will discuss the precise nature
of both the skyrmion lattice phase and the one-dimensionally modulated phase in detail in
the next section, but let us note that the latter mostly corresponds to a helical phase with
q ‖ (1, 1, 1)T . Important for now is the observation that it extends down to B = 0, which
does not match the experimental results for the tilted conical phase of Cu2OSeO3. Note that
for K ′1/3 < −

J
2 the model becomes unstable.

The phase diagram as a function of K ′2 and B, shown in figure 2.5b, is very similar to
that of K ′1 and B. By identifying K ′1 =̂ −K ′2/2, they appear nearly identical within the
region −J2 < K ′1 <

J
4 . Analytically this can be understood in a zeroth order approximation.

We first calculate the optimal conical solution for fbase,V [M] with B = 0 (i. e. no magnetic
field, dipolar interaction, or anisotropy), which is easy to obtain. Then, we calculate the
anisotropy energy of this solution, once with q = D

J êz and once with q = D
J (1, 1, 1)T . The

respective resulting energies are indeed identical if K ′1 = −K ′2/2. Numerically, we find the
terms typically differing by a few percent at most, except in cases where both are very small. It
should be noted, though, that this correspondence is not universal—not even approximately.
For example, according to the correspondence the model should become unstable at K ′2 > 1.
Numerically, we only find an instability at K ′2 > 2.

In contrast to the relevant contributions of the two previously discussed phase diagrams, the
K ′3-term directly couples to a conical state with q ‖ êz. Consequently, the conical–polarized
phase transition is not independent of K ′3, as is evident in figure 2.5c. Still, the resulting phase
diagram has several similarities with the previous ones. Again, we find a one-dimensionally
modulated state with q ∦ B at low fields, distinct from the usual conical state with q ‖ B at
higher fields. As before, we find a skyrmion lattice phase on the boundary between the two
phases above some critical anisotropy strength. Here, however, the skyrmion lattice extends
up to very high K ′3. It also occurs in a wider range of magnetic fields, relative to the other
helimagnetic phases.
The phase diagram for K ′4 in figure 2.5d is again similar to the previous one, but the

similarity is much less pronounced than in the case of K ′1 and K ′2. Here the similarity is
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2.2 Mapping the Phase Diagram

merely qualitative. Quantitatively, the two phase diagrams are rather different. In particular,
the skyrmion lattice phase occurs in a much narrower range of magnetic fields. Note that
the model becomes unstable for any K ′4 < 0, since a k4

i -term will always dominate the k2

Heisenberg exchange coupling at large ki, resulting in limki→±∞(fV ) = −∞ for a negative
prefactor.

Finally, the phase diagram as a function of K1 and Bz is shown in figure 2.5e. For K1 < 0
it loosely resembles the already discussed phase diagrams, in that it includes a conical phase
with q ‖ B at high fields and a one-dimensionally modulated state with q ∦ B at low fields.
Here, however, no skyrmion lattice phase appears on the boundary between the two up to
the highest negative K1 explored. Instead, such a phase appears between the polarized and
conical phases for K1 ' 7.6 · 10−4U . It covers a much larger portion of the phase diagram
than even the skyrmion lattice phase occurring for K ′3. The most significant difference to
the other phase diagrams, however, is the appearance of additional helical/conical states for
K1 ' 0.0028U . While these two states appear only metastably in the explored parameter
region, they do show the attributes we are looking for to explain the existence of a tilted
conical phase in Cu2OSeO3, namely q ∦ B and a minimal Bz > 0.
Since, for most parameter regimes, there are many possible metastable states, we should

take a closer look at why these states are special. Figure 2.5f shows the energy density of the
states we consider as a function of the magnetic field for K1 = 0.004U . This value is also
marked by a red arrow in figure 2.5e. The plots in panel (f) nicely demonstrate how the phase
diagrams are generated. For every point in parameter space, the phase with lowest free energy
density is identified as the ground state. In the present case, at K1 = 0.004U , this leads to a
conical state with θ = 0 (q ‖ êz) for low fields, followed by a triangular skyrmion lattice for
intermediate fields and a ferromagnetic phase for the highest magnetic fields. Note that while
the energy of the two square skyrmion lattices is always higher than that of the triangular
lattice, they come very close for Bz ≈ 7.5D3/

√
J3U . Indeed, around that value and above,

the energy of the second square lattice (�SkXB) is almost identical to that of the triangular
lattice. We will discuss this feature in more detail in the next section. Regarding the reason
why we single out these two states from all metastable states we consider, in their respective
regions they are the lowest-energy states that do not contain skyrmions. The absence of
skyrmions, as it turns out, might be a significant factor. Here, the extraordinary stability
of skyrmions comes into play. The same energy barrier that prevents skyrmions from being
easily destroyed can also prevent them from being easily created. After all, we are currently
discussing the low temperature regime, where skyrmions have been shown to be metastable
with very long lifetimes [20]. This could easily mean that, depending on the magnetic field
and temperature history, an experiment might well find a metastable tilted conical phase by
simply not being able to reach the skyrmion lattice phase in any reasonable amount of time.
At this point, we should take a closer look at the experimental results. Two independent

studies, explored the phase diagram of Cu2OSeO3 around the same time [LH2, 58]. Both
used small-angle neutron scattering (SANS) to image the momentum-space structure of the
magnetization. Both data sets show, besides the known phases and the tilted conical phase
we already mentioned, a weak ring-like structure of neutron intensity, shown in figure 2.6e. It
appears for very similar conditions as the tilted conical phase. Chacon et al. were able to
show that this ring actually corresponds to a disordered skyrmion lattice [LH2]. By slightly
rotating their sample back and forth in the magnetic field, the ring changed into the six-fold
pattern known from SANS images of triangular skyrmion lattices [7], as shown in figure 2.6f—

25
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0 150

30

60

(a) (b) (c) (d)

(e)

(f)

(g)
Figure 2.6: Phase diagram of Cu2OSeO3

showing the newly found skyrmion lattice
and tilted conical phases with additional
data on the new skyrmion lattice. The
T–B phase diagram is shown for mag-
netic fields (a) B ‖ [111] (b–d) B ‖ [001],
and with different measurement proto-
cols: (a–b) zero field cooling/field heating
(ZFC/FH), (c) field cooling (FC), (d) high
field cooling/field heating (HFC/FH), see
the main text for more information. Col-
ors are explained in the bottom center in-
set. The phase diagram is very hysteretic
as visible from the strong dependence on
the T -B-path. For all protocols, a sizable
tilted conical phase appears. The extend

of the newly found skyrmion lattice depends strongly on the protocol. In SANS-data it appears
as a ring (e), showing its lack of order. By slightly tilting the sample in the magnetic field, it can
be ordered, showing the usual six spots (f). By repeatedly raising and lowering the magnetic
field, the intensity of the skyrmion-related signal increases (g), indicating that the skyrmion
lattice actually is the ground state in that region and the tilted conical state is merely metastable.
Figure adapted from [LH2] with permission.

the skyrmion lattice ordered. Furthermore, as shown in figure 2.6g, by repeatedly raising and
lowering the magnetic field, they were able to enhance the corresponding signal by more than
a factor of five, indicating that the ground state might indeed be a skyrmion lattice in that
region.

Chacon et al. carefully mapped the phase diagram of a spherical single crystal of Cu2OSeO3.
Using the SANS patterns to identify the various phases, the performed different temperature–
magnetic field protocols to also explore its hysteretic properties. The results are summarized
in figures 2.6a to 2.6d. Panel (a) shows the same data as figure 2.2a, with B ‖ [111] and only
the commonly known phases occurring. The helical phase is shown in green, the skyrmion
lattice phase in orange, and the conical, polarized, and paramagnetic phases in white. The
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2.2 Mapping the Phase Diagram

Figure 2.7: Phase diagram as a func-
tion of r0 and Bz. Drawn together
with a part of the K1–Bz phase dia-
gram to visualize the connection. The
newly found skyrmion lattice phase
(SkX) covers much of the phase dia-
gram. Within is a small area where a
metastable tilted conical phase is the
lowest-energy state that does not con-
tain skyrmions. It surrounds an area
where a helical state fulfills this con-
dition. At low (high) fields we find
the usual conical (polarized) states.
Calculated for K1 = 0.004U as visu-
alized here and by the red arrow in
figure 2.5e.
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black arrow visualizes the measurement protocol used for this data. It consists of cooling
the sample without a magnetic field, turning the field up to the desired value, and only then
taking measurements while heating the sample. The abbreviated name for this scheme, zero
field cooling/field heating (ZFC/FH), is also given in the image. Figure 2.6b shows results
obtained with the same protocol, but for B ‖ [001]. It shows a significantly larger helical
phase, and above it the two new coexisting phases superimposed. The tilted conical phase
is shown in gray, while the new skyrmion phase is shown in magenta. In panel (c), data
measured with a different protocol is shown. Here, the sample was cooled under a magnetic
field B ‖ [001], while taking measurements (field cooled: FC). With this protocol, the newly
found skyrmion lattice phase is much diminished and confined to a small region inside the
tilted conical phase. The original skyrmion lattice phase, on the other hand, is metastably
extended down to the lowest measured temperatures, highlighting again the stability of
skyrmions. Finally, by following a temperature–magnetic field protocol similar to the first
one, where, instead of cooling without a magnetic field, they cooled in a strong field (high
field cooling/field heating: HFC/FH), they recorded the data shown in figure 2.6d. Here, the
new skyrmion lattice phase covers a large portion of the phase diagram.
An important observation is that for all three measurement protocols, the newly found

skyrmion lattice phase only appears after the system is driven through a rather small region
of the phase diagram, contained within the tilted conical phase. After it is generated, however,
it is remarkably stable. Together with the strengthening of the skyrmion signal when cycling
the magnetic field, we conclude that the new skyrmion lattice indeed represents the ground
state in some part of the phase diagram. Unfortunately, it is not possible to reliably determine
this region from the present data. We can only deduce the outer bounds of it by taking
the largest extend of the newly found skyrmion lattice phase throughout all measurement
protocols. The result is fully consistent with the prediction of a purely metastable tilted
conical phase surrounded by a skyrmion lattice.

In order to be better able to compare our theoretical results with the experimental temper-
ature–magnetic field phase diagram, we have to vary the temperature-like parameter r0. A
corresponding phase diagram is shown in figure 2.7. It was calculated for K1 = 0.004U ,
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2 Cubic Anisotropy and the Phase Diagram

as indicated by the red arrow in figure 2.5e. It is drawn together with most of the K1–Bz
phase diagram of figure 2.5e to visualize the context and connection. In it, we find a large
skyrmion lattice phase surrounding the metastable tilted conical phase. This fits nicely
with our interpretation of the experimental results. What the experiments did not find
is the metastable helical phase with q ‖ êx ⊥ B that replaces the tilted conical state as
the lowest-energy non-skyrmion state. There are several aspects to this. On the one hand,
since we do not have a full quantitative description of Cu2OSeO3 and the appearance of this
metastable state is a rather small effect that might well vanish for slightly different parameters,
this discrepancy should not be surprising. It notably does not invalidate our findings. On
the other hand, it might actually be a correct description of the system, but the experiments
simply did not detect this state. It is, after all, just a metastable state and it might simply
not have been realized in the sample. Interestingly, the area where we identify this helical
state corresponds rather well to the area where, in the experiments, the new skyrmion phase
was always generated. Chacon et al. already speculated that the tilted conical state might
help nucleate the skyrmion lattice. The same role might also be played by this helical state.
This is corroborated by the facts that its structure is much closer to that of the skyrmion
lattice than the structure of the tilted conical is, and that transitions between a helical and a
skyrmion lattice state are well documented, see for example [19] for a theoretical treatment.

Note that we do not map the region close to r0 = 0. It has been shown that the influence
of fluctuations is key for describing this area of the phase diagram such that it matches the
experimental results. In particular, the previously known skyrmion lattice phase was found
to critically depend on the presence of Gaussian fluctuations [7]. Since, however, we neglect
these fluctuations, we can not reliably make any predictions for this area. In particular, we
can not make any definite statements on the influence of anisotropy on the high-temperature
skyrmion lattice phase. Interestingly, however, we do see that the skyrmion lattice we find,
does not stretch up into the critical region. It rather ends at parameters, where we can
reasonably expect the mean-field approximation, i. e. neglecting Gaussian fluctuations, to hold.
We conclude that we most likely have two separate areas in the phase diagram with skyrmion
lattices. The previously known high-temperature phase, which is stabilized by fluctuations,
and the new low-temperature phase, which is stabilized by anisotropy. This matches well
with the experimental results. Even though this is not well visible in figure 2.6, even for the
HFC/FH B-T -protocol the high- and low-temperature skyrmion lattice phases have been
found to be separated by a small area with minimal skyrmion-related scattering intensity.

We have demonstrated that anisotropy of the K ′1/2/3/4-type is not easily able to stabilize a
tilted conical phase that only appears for finite B ‖ 〈001〉. While there might be a way to
achieve this by combining several competing contributions of this type, this would almost
certainly require fine tuning to work. K1, however, directly stabilizes such a state, no fine
tuning required. The fact that this tilted state is only metastable is not a problem, since
the experiments indicate that this is likely also true in Cu2OSeO3. Indeed, there is a simple
analytical argument why this works with K1, which is not valid for K ′1/2/3/4. To see it, let us
first look at the details of a conical state under the influence of a finite magnetic field B ‖ êz.
Its main qualitative effect is that the Mz

0 -component becomes non-zero. Other components
change as well, of course, but this is merely a quantitative change. The main effect of it is that
the total real-space magnitude is still approximately constant |M(r)| ≈

√
(D2 − 2r0J) /4JU ,

despite the change in Mz
0 . The suddenly non-zero Mz

0 , on the other hand, has significant
consequences. Decomposing the sum in the K1-contribution, one of the resulting terms can
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Figure 2.8: Phase diagram as a function of K1 and Bz with and without dipolar interaction.
(a) Similar to figure 2.5e, but using r0 = −1000D2/J , and n = 4, and with parameter ranges
adapted accordingly. (b) Same as (a) except for τ = 0. Except for trivial demagnetization
effects the main phase boundaries are only weakly affected. The metastable tilted conical phase
on the other hand is reduced to a much smaller area. This change is mostly driven by the
demagnetization energy of the competing polarized state, as discussed in the main text. Redrawn
from a similar figure in [LH2].

be written as
∆f1[M] = −6K1 (Mz

0 )2∑

k∈L∗uc\{0}

Mz
kM

z
−k. (2.6)

Without a magnetic field, ∆f1 does not contribute to the energy of a helical state, since
Mz

0 = 0. The usual conical state with q ‖ B ‖ êz is also unaffected since it has Mz
k = 0 for

k 6= 0. It only gets a contribution −K1 (Mz
0 )4 that does not come with the combinatorial

prefactor of 6. The same is true for the polarized state. In a tilted conical state with q ∦ êz,
on the other hand, both components are non-zero. Since ∆f1 5 0 if K1 > 0, it is energetically
favored by ∆f1, with a factor −6K1 (Mz

0 )2 that grows with the magnetic field. Thus, the
optimal q̂ may tilt away from B ‖ êz, even though q ‖ B is favored by the Zeeman term and
K1 > 0 favors q ‖ 〈001〉 at B = 0. Note that this effect requires a term of order Mn with
n = 4, which rules out K ′1/2/3/4. It does, however, also apply for skyrmion lattices, which
explains the extent of the corresponding phase.

One thing that remains to be explored, is the influence of dipolar interaction. Up to now,
we have simply taken the relevant factor as τ = 1.76, in order to match Cu2OSeO3. To
explore the influence of dipolar interaction, and gain an understanding of other materials,
we should also vary τ . Figure 2.8 shows two phase diagrams as a function of K1 and Bz,
computed with identical parameters, except one uses τ = 1.76, while the other neglects
dipolar interaction by using τ = 0. While quantitatively, the two phase diagrams are rather
different, there is only one major qualitative difference. In panel (a), as in figure 2.5e, we see
a metastable tilted conical phase in a sizable region of the phase diagram. Without dipolar
interaction, on the other hand, this shrinks down to a short and very narrow area, as shown in
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Figure 2.9: Phase diagram as a function of sample shape and magnetic field. The shape varies from
infinite rod (Nx = Ny = 1

2 , Nz = 0) to infinite disk (Nx = Ny = 0, Nz = 1). (a) Parameters
are K1 = 4 · 10−4U , r0 = −1000D2/J , and n = 4. The metastable tilted conical phase does not
reach down to Nz = 0. (b) Parameters as in (a) except K′1 = −0.06 J . Here, the tilted conical
phase does reach Nz = 0. (c) Dipolar interaction stabilizes regions of phase coexistence around
first order phase transitions. (d) Phase boundaries for samples of Cu2OSeO3 with different
demagnetization factors, determined from magnetization measurements. Notation: Ho

pm is the
lower (m = 1) or upper (m = 2) critical field of the skyrmion (p = s) or tilted (p = t) phase
measured with increasing (o = u) or decreasing (o = d) field. The tilted phase is found in all
samples down to lowest Nz. Redrawn with permission from a similar figure in [LH3]. Original
copyright 2018 by The American Physical Society.

panel (b). To understand this, remember that the definition of the shaded area required the
tilted phase to be the lowest-energy non-skyrmion state. The area does not shrink because
the tilted state becomes less stable by the lack of dipolar interaction, but rather because
the polarized state becomes energetically more favorable in comparison. The comparatively
strong dipolar interaction in Cu2OSeO3 with τ = 1.76 brings with it a significant energy
penalty µ0

2 Nz (Mz
0 )2 for the polarized state. Consequently, the tilted conical state with lower

mean magnetization M0 becomes relatively more favorable. Regarding the missing helical
state in both panels, compared to figure 2.5e, we refer to the next section.

Since the energy penalty on the polarized state is proportional to the demagnetization factor
Nz for M ‖ êz, the same effect can be observed by changing the sample shape. To be clear,
changing the sample shape is not the same as changing τ , as fdemag,V from equation (1.24)
contains other contributions without Nz, but the term including Nz is the most relevant
one for this effect. Figure 2.9a shows a phase diagram as a function of Nz and Bz. For the
parameters used, including r0 = −1000D2/J , and K1 = 4 · 10−4U , the tilted conical phase
does not extend down to Nz = 0. A series of experiments were performed by Halder et al. on
a range of differently shaped samples of Cu2OSeO3, determining the phase boundaries from
measurements of the magnetization and the susceptibility [LH3]. They found a tilted conical
phase even for the most elongated (low Nz) samples available, as is shown in figure 2.9d.

There are different ways this discrepancy can be alleviated or even removed. The first thing
to note is that, in the neutron scattering experiments, the system was always found to be in
a state with multiple tilted conical domains, instead of a single domain. This has the effect of
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reducing or eliminating the mean magnetization Mx
0 and My

0 . In our simulations, we only
consider single domain states which, for the tilted conical state, results in finite Mx

0 and My
0 .

Such components, however, are energetically penalized by dipolar interaction with an energy
cost of

µ0

2

(
Nx (Mx

0 )2 +Ny (My
0 )2
)
. (2.7)

This energy cost becomes even higher when Nz becomes small, as the demagnetization factors
have to obey Nx +Ny +Nz = 1. We can include the effect of the cancellation of the mean
magnetization by multiple domains into the model by artificially setting Nx = Ny = 0,
breaking this constraint. Thereby, the mean magnetization in x- and y-direction apparently
vanishes, as far as dipolar interaction is concerned. The local interactions, on the other hand,
still act on the full mean magnetization. The result is that the tilted conical state has lower
energy, widening the area where it represents the lowest-energy non-skyrmion state, although
we find that it still does not reach down to Nz = 0 for these parameters.

Another way to treat the discrepancy between theory and experiment is to simply take
further anisotropy contributions into account. Figure 2.9b shows the same Nz–Bz phase
diagram as panel (a), except that we additionally set K ′1 = −0.06 J in addition to K1 =
4 · 10−4U . There, the relevant area of the tilted conical state reaches down to Nz = 0,
removing the discrepancy.
We have thereby shown that adding cubic anisotropy of K1-type, together with dipolar

interaction, to the basic model for chiral magnets is sufficient to explain the appearance of the
two newly found phases in Cu2OSeO3. To get quantitative agreement with the experiments,
however, we would need to include further contributions, increasing the number of parameters
of model. Beyond that, there is one more basic aspect of these phase diagrams left to explore—
phase coexistence.

We find a number of different phase transitions throughout the space of explored parameters.
Most of these are of first order and between phases of different mean magnetization. In such
situations, dipolar interaction can broaden the transitions, creating parameter regions, were
the thermodynamic ground state is not a single homogeneous phase. Instead, it is a mixture
of the two bordering phases. One way to show this goes as follows.
We begin by making two simplifying assumptions, to be able to describe such a phase

mixture in a way that is both general and treatable. First, we assume that within the mixture,
the two phases interact solely through the homogeneous part of dipolar interaction. That
means we completely neglect all domain walls, as well as the spacial distribution of the
domains. Second, we assume that the transitions between the pure phases and the phase
mixture are smooth, in the sense that we can introduce a phase mixing parameter p, that is 0
if we have pure phase α, and 1 if we have pure phase β, and evolves continuously. Next, for
each pure phase we define

eα(M0) := min
Mk6=0

(
fV [M] + B · M0 −

µ0

2 M0 ·NV · M0

)
, (2.8)

which, by construction, is independent of B and NV . eα is simply the energy density excluding
the Zeeman coupling to the external field and the homogeneous part of dipolar interaction,
written as a function of M0 by minimizing over all remaining degrees of freedom of phase α.
Under the given assumptions, we can then write the mean Gibbs free energy of the phase
mixture as a function of the mixing parameter p and the individual values of the mean
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magnetization per phase as

g(p,M0,α,M0,β) = (1− p) (eα(M0,α)−B · M0,α) + p (eβ(M0,β)−B · M0,β)

+ µ0

2 ((1− p)M0,α + pM0,β) ·NV · ((1− p)M0,α + pM0,β) . (2.9)

The equilibrium condition is now that g is minimal, subject to the condition p ∈ [0, 1]. In
particular at the phase boundary between α and the mixed phase α + β, this condition
becomes

∂g

∂p

∣∣∣∣
p=0

!= 0 ⇒
eα(M0,α)−B · M0,α + µ0M0,α ·NV · M0,α

!=eβ(M0,β)−B · M0,β + µ0M0,β ·NV · M0,α.
(2.10)

Notice the interaction in the very last term. Instead of the critical field Bc,α, this can
also be interpreted as a condition for the internal critical field of phase α, defined by
µ0Hint

α,c = Bc,α − µ0NV · M0,α. It then reads

µ0Hint
α,c · (M0,α −M0,β) = eα(M0,α)− eβ(M0,β), (2.11)

which, importantly, is now independent of NV . All dependence on the demagnetization tensor
is contained in the relation between Hint

α,c and Bc,α. Specifically for Nz = 0 and M0,α ‖ êz (or
alternatively, unphysically NV = 0), Hint

α,c = Bc,α, and the condition reduces to one that is
equivalent to what we have been doing previously when neglecting phase coexistence. Thus,
we can infer the α↔ α+ β ↔ β phase boundaries from the single boundary acquired from
this special case via

Bc,α = µ0Hint
α,c + µ0NV · M0,α = Bc

∣∣∣∣
NV =0

+ µ0NV · M0,α. (2.12)

In the case of M0 ‖ B ‖ êz, this takes the simple form Bc,α,z = Bc,z
∣∣
Nz=0 + µ0NzM

z
0,α. The

resulting phase diagram as a function of Nz and Bz is shown in figure 2.9c. The original phase
transitions are broadened into wide areas of phase coexistence. Comparing these regions to
the much larger areas of coexistence shown in figures 2.6 and 2.9d is, however, not particularly
meaningful, as the latter are dominated by hysteresis effects, which we did not consider in
our analysis.
We have now explored the effect of cubic anisotropy on the phase diagram of chiral

magnets, with a particular focus on the two newly discovered phases in Cu2OSeO3. One is
a new skyrmion lattice phase, stabilized by anisotropy instead of thermal fluctuations and
disconnected to the previously known phase pocket. The other is a tilted conical phase,
which is only metastable, but is still realized in the experiments due to hysteresis effects.
Further, we have identified the relevant parameters for the appearance of these phases, and
have demonstrated that a comprehensive portrayal of a helimagnetic phase diagram should
take phase coexistence into account.

2.3 Signatures of the New Phases
After mapping the phase diagram of chiral magnets subject to cubic anisotropy in the previous
section, we will now examine the properties of the different phases in more detail. We will
examine the one-dimensionally modulated states first, before turning to the skyrmion lattices.
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Figure 2.10: Optimal conical direction as a

function of anisotropy and magnetic field.
Plotted is the optimal polar angle θ of q
with azimuthal angle φ = π

4 . This includes
states that are not the ground state for
the corresponding parameters because of a
skyrmion lattice has lower energy. Dashed
lines give the phase boundaries as shown in
figure 2.5, including skyrmion lattices. In
the ferromagnetic phase, this quantity can
not be uniquely defined, see the main text.
Accordingly, these areas are left blank. Parameters are as in figure 2.5, with all anisotropy
parameters except one vanishing. (a–d) For all types of anisotropy involving gradients (primed
prefactors), the phase with q ∦ êz is dominantly characterized by q being approximately parallel
to (1, 1, 1)T , with some turning towards B close to the sharp transition—these are the known
helical phases. They all extend down to B = 0. (e) For K1 < 0 we find an analogous phase
much like in (a–d). Only for K1 ' 0.0028U we observe a second (metastable) phase with q ∦ êz
that only exists for finite B. Usually it is obscured by the skyrmion lattice phase. For some
parameters it also shows a sharp internal transition between states with different θ. In the
partially transparent green area, the lowest-energy non-skyrmion state is a helical state with
q ‖ êx. It is drawn transparently to show the θ-structure of the tilted phase underneath. The
steps observed in some of the boundaries are due to limited resolution of the underlying data.
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Figure 2.11: Real-space structure of exemplary conical states with q ∦ B. (a) The low-B
helical/conical phases that appear for any of the explored anisotropy types have a structure very
close to an ordinary helix. They do have a slightly conical shape, though, and some further
deformations too small the see in this plot. Shown here for K′1 = 0.1 J and B = 4D3/

√
J3U êz.

The lower-B-part of the metastable tilted conical phase (medium blue for K1 > 0 in figure 2.10e)
also has this type of structure. (b) The upper-B-part of the metastable tilted conical phase
(dark blue for K1 > 0 in figure 2.10e) consists of single conical windings with polarized areas in
between. Shown here for K1 = 0.004U and B = 7D3/

√
J3U êz.

We have yet to identify the nature of the helical/conical phases with q ∦ B shown in
figure 2.5. A first step towards a proper classification is to look at the direction of their
respective propagation vectors q. In figure 2.10, we plot the polar angle θ of q of the
lowest-energy non-skyrmion state for the same parameters as in figure 2.5. Since the polarized
state is not modulated and therefore is not associated with a q-vector, the corresponding
areas are left blank. All five panels show a very similar picture for these phases. At B = 0,
we find q ‖ (1, 1, 1)T , immediately identifying these phases as the usual helical phases found
in almost all chiral magnets. Upon increasing B ‖ êz, however, we see the optimal angle θ
decreasing slightly, which corresponds to q tilting away from (1, 1, 1)T and towards êz, similar
to previous results for the helical phase [59]. This is accompanied by the development of
a small mean magnetization component parallel to q, which is synonymous with the state
becoming slightly conical, as shown in figure 2.11a. Close to the boundary to the regular
conical phase or the skyrmion lattice phase, the polar angle θ decreases much more strongly,
before falling to zero in a sharp transition.

The tilted conical phase, on the other hand, which exists metastably for K1 ' 0.0028U and
B ' 6D3/

√
J3U (at least for r0 = −100D2/J), is very different, as is evident in figure 2.10e.

Starting in the conical phase with q ‖ B at B = 0 andK1 ' 0.0028U , we increase the magnetic
field. Since we disregard skyrmion lattices at the moment, taking only one-dimensionally
modulated states into account, we stay in the conical phase until B ≈ 6D3/

√
J3U . At that

point, the optimal q-direction jumps away from B in a sharp transition to a value well away
from both êz and (1, 1, 1)T . Upon further increasing the magnetic field, for some parameter
values, we actually find another sharp transition with q tilting even further towards (1, 1, 1)T ,
before the polarized state finally becomes the lowest-energy non-skyrmion state. The most
striking difference between the tilted conical and the regular helical and conical phases, may,
however, be its real-space structure in the area above this internal transition. The lower-B
tilted states, just as the previously discussed helical phases, are rather well described by
the image of a continuously rotating helix with all spins tilted in q-direction. The upper-B
tilted states, on the other hand, are better described as single such conical windings that
have dissociated, with polarized areas in between, as shown in figure 2.11b. We find that the
distance between these single windings decreases upon increasing the magnetic field towards
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Figure 2.12: Energy surfaces for conical states with different anisotropy and magnetic field. For
each direction of q, the color and radius show the total energy. Radius is scaled per row to lie
between 1

2 and 3
2 , color is scaled per panel. The magnetic field B = B̃D3/

√
J3U points up and

changes per panel as given in the insets. Anisotropy changes per row and is given in the insets
on the left. The red spots highlight the minima, the red line in panel (a) highlights the high
symmetry line between êz and (1, 1, 1)T . For a detailed discussion see the main text.

the polarized regime. This raises the interesting question whether this transition could be
described as the melting or sublimation of a one-dimensional crystal of single conical windings.
In this region, the tilted conical phase may also have a very different spin wave spectrum, since
the individual windings are probably only weakly coupled. Unfortunately, these questions
can not easily be answered with the method at hand, as it would likely require a much larger
momentum-space cutoff.
Up to this point, we have not yet shown that the optimal q-direction for the tilted phase

actually lies on the high-symmetry line between êz and (1, 1, 1)T . We can do this and at the
same time gain a better understanding of the mechanism by examining the minimal energy
of a one-dimensionally modulated state with fixed q-direction for different directions and
parameters. To visualize this energy function, we can plot it per set of parameters in the
form of energy surfaces, like those in figure 2.1. There, we plotted for each direction of a
constant magnetization the energy according to the respective cubic anisotropy contributions
as the radius and color of a closed surface. Now, we will plot the total energy density of a
helical/conical state for each direction of its q vector in the same way. The result is shown in
figure 2.12 for K1 = 0.004U and K ′4 = 0.5 J3/D2, respectively, and several magnetic fields.
We have chosen K ′4 = 0.5 J3/D2 as a reference for the more intuitive and more commonly
known helical to conical phase transition. The series with K1 = 0.004U then covers the path
through the novel metastable helical and tilted conical phases. In each panel, the directions
with minimal energy are marked by a red area, which is simply a sphere whose radius is
slightly larger than the minimal energy. Specifically in panel (a), a red line marks the range
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2 Cubic Anisotropy and the Phase Diagram

of directions on the high-symmetry line which we considered for the calculation of the phase
diagrams.
First, we note that indeed, for the parameters shown here, the minimal-energy direction

lies always either on the high-symmetry line, or in a 〈001〉-direction. This was also the case
for all parameters we have checked. Now, let us examine the evolution of the energy surface
in the case where K ′4 = 0.5 J3/D2, while scanning through the helical/conical phase, as
shown in figures 2.12a to 2.12d. The K ′4 term is especially easy to understand, due to its
simple structure

(
k4
x + . . .

)
|Mk|2, where the entire anisotropy depends solely on q. Changes

in the structure of the state, meaning changes in Mk, only change the magnitude of the
anisotropy, not which directions are preferred. At B = 0, panel (a), the energy surface has
cubic symmetry, which is not yet broken by B. The 〈111〉-directions have lowest energy and
are thus preferred—we find a helical phase. With increasing magnetic field B ‖ êz, states
with q ‖ B and surrounding directions are lowered in energy, since they can more easily form
a mean magnetization with large M0 · B by becoming conical. Visually, this has the effect of
flattening the energy surface, albeit non-uniformly, as shown in figures 2.12b to 2.12d. This
in turn, has the effect of moving the minimum towards the z-direction—slowly at first and
quickly towards the transition to the conical phase, which is reached in panel (d).
In the case where K1 = 0.004U , as shown in figures 2.12e to 2.12h, the situation is very

different. At B = 0, panel (e), we start in the conical phase with an energy surface that has its
minima at the 〈001〉-directions. With a magnetic field, the surface flattens, as before, but it also
deforms. For the highest fields, shown in panels (g) and (h), the surface bulges outward on its
top and bottom parts, instead of inward, as for lower fields. This can be understood by looking
at the directions towards which the actual real-space magnetization points. In real space,
the K1 term is local and easier to understand. Figure 2.13 shows the bare anisotropy energy
surface for directions of the magnetization with K1 > 0, identical to that in figure 2.1f. It also
depicts the magnetization of three simple conical states with different q-directions and opening
angles entered appropriately with a common origin. Each of the three states is represented
by a different color. With a wide conical opening angle and q ‖ êz, as shown in green, the
magnetization points mainly in low-energy directions. These are the conical states with q ‖ B

Figure 2.13: Anisotropy
energy surface for the
direction of the magne-
tization with the mag-
netization of three con-
ical states. See main
text for discussion.

at low fields. With increasing field the opening angle decreases. If
then q ‖ (1, 1, 1)T , as shown in gray, the situation is similar. The
tilted conical states are somewhat like this. If, however, q ‖ B
with an opening angle in the vicinity of π4 , as shown in red, the
magnetization points mainly in high-energy directions. This is
the effect causing the energy surfaces of figures 2.12g and 2.12h,
which depict the total energy, to bulge outward at the top and
bottom, and it is thereby mainly responsible for the appearance
of the metastable tilted conical phase.
Interestingly, the energy surface shown in figure 2.12g is de-

formed so strongly, that the optimal q-direction is perpendicular
to the magnetic field. Thus, for these parameters, we draw a
metastable helical phase as lowest-energy non-skyrmion state into
the phase diagrams of figures 2.5e and 2.7. In figure 2.8, on the
other hand, we do not find a helical phase at the corresponding
position. The reason for that does not lie in the change of r0
between the figures, but rather in the different momentum cutoff
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2.3 Signatures of the New Phases

Figure 2.14: Energy density as a function of
the cutoff parameter n. (a) Helical and tilted
conical (θ = 1

2 , φ = π
4 ) energy for K1 =

0.004U and B = 6.65D3/
√
J3U êz. The

anharmonic structure the helical state needs
many q-modes to be properly described. For
these parameters it then has lower energy
than the tilted conical state. (b) Energy of
the three skyrmion lattices for K1 = 0.004U
and B = 7D3/

√
J3U êz. It is unclear which

lattice has lowest energy for n→∞.
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n|q|. Figure 2.14a shows the energy of a helical state and a tilted conical state with θ = 1
2 and

φ = π
4 fixed as a function of the cutoff parameter n. For low n the tilted state has significantly

lower energy, but above n = 2 it hardly changes. The energy of the helical state, on the other
hand, continues to fall, until at n = 6 it lies below that of the tilted conical state. Evidently,
the optimal helical state needs contributions of much higher q-order to be properly described,
compared with the tilted state. The reason for that becomes apparent by examining its
real-space structure. Similar to the tilted conical state close to the boundary to the polarized
state shown in figure 2.11b, the helical state consists of single helical windings with large
polarized areas in between. Such structures many more significant Fourier components than
the ordinary almost harmonic helical and conical states.
A similar complication also arises for the anisotropy-stabilized skyrmion lattices. Fig-

ure 2.14b shows the energy of the three different skyrmion lattice structures we consider as a
function of the cutoff parameter n. For the parameters used in this plot, we find at n = 1 a
significantly lower energy for the two square lattices. At n = 2, the situation is then reversed,
and for high n all three states are very close to each other in energy. In fact, with the states
so close in energy and not yet converged at n = 6, we can not with any certainty say which
lattice structure will have lower energy in the limit n→∞. While this problem does not exist
for all parameters (compare figure 2.5f), it is also not specific to K1. Generally, we find that
with weak anisotropy and low fields the triangular lattice has lower energy, while for stronger
anisotropy and higher fields, the situation is either reversed or unclear. The fact that the
different lattice structures are so close in energy for a wide range of parameters actually fits
rather well with the experiments. Remember that in neutron-scattering images, the newly
found skyrmion lattice primarily appeared as a ring of intensity, as shown in figure 2.6e, due
to disorder. Such disorder is exactly what should be expected from a crystallization process
at low temperatures, where two or more different lattice structures are very close in energy.

In the previous section, we have explored how the phase diagram of the Ginzburg–Landau
model for chiral magnets changes under the influence of cubic anisotropy, using extensive
numerical minimization. Qualitatively, the results from taking one particular contribution into
account match well with experiments on Cu2OSeO3. We found the newly discovered tilted
conical phase to be metastable, and found a new skyrmion lattice phase at low temperatures.
In the present section we then examined the individual phases in more detail. Particular focus
lay on the direction of q in the helical and tilted conical phases. We also briefly discussed
the role of the cutoff parameter n for the metastable helical phase and the structure of
the skyrmion lattice. It would be interesting to explore this last point further, in order to
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2 Cubic Anisotropy and the Phase Diagram

determine under which circumstances there might be structural transitions in the skyrmion
lattice.
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3
Defects in Skyrmion Lattices

This chapter describes two projects, both of which turn out to depend on the physics of
defects in skyrmion lattices. For this reason, we will start with a short introduction to lattice
defects, focusing specifically on skyrmion lattices. In the following section, we will discuss
the dynamics of a skyrmion lattice that is driven by the application of a radial heat current.
Finally, the third section is about the melting transition of a skyrmion lattice. Both projects
are related to experiments performed on Cu2OSeO3.

3.1 Lattice Defects
Like other lattices, the skyrmion lattices found in chiral magnets are not always perfect. Just
like atomic lattices, they can host lattice defects and undergo plastic deformation. Since
introductions to lattice defects often focus on three-dimensional materials and use cubic
lattices for illustration, we will have a very brief look at the specifics for skyrmion lattices.
In particular, we will work in two not three dimensions, with triangular not square lattices,
made from skyrmions not atoms.

(a) (b)Figure 3.1: Construction of a 5-
disclination-defect. One way to
construct a 5-defect (marked
by the blue point) from a per-
fect triangular lattice is to (a)
cut all bonds along the dashed
line and remove the separated
part of the lattice (shaded
blue). Then (b) bend the whole
lattice to close the resulting
gap and creating new bonds
where appropriate (light blue).
The ends of the blue lines, previously at an angle of π3 , are now approximately parallel.
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3 Defects in Skyrmion Lattices

(a) (b) Figure 3.2: Construction of
a 7-disclination-defect. One
way to construct a 7-defect
(marked by the red point)
from a perfect triangular lat-
tice is to (a) cut all bonds
along the dashed line and
bend the whole lattice to
open a gap large enough to
(b) insert a wedge-like addi-
tional crystal (shaded blue).
Create new bonds where ap-

propriate (light blue). The ends of the blue lines, previously parallel, are now at an angle of
about 2π

7 .

(a) (b) Figure 3.3: A 5-7-dislocation-defect
and its Burgers vector. The com-
bination of a 5- and 7-defect con-
stitutes a dislocation. (a) Color-
ing individual lattice-lines light
(dark) blue highlights the addi-
tional lattice-lines characteristic
of dislocations (drawn in red).
(b) The Burgers vector can be
constructed by moving on bonds
around the defect along a path

that would in a perfect lattice come back to the starting point. It is the vector connecting the
start and end points of the path (shown in red).20.0pt plus 6.0pt minus 6.0pt

Some types of defects present in atomic lattices, like impurity atoms, simply do not occur
in skyrmion lattices. Others, like vacancies and interstitial type dislocation loops, do not seem
to play a major role [LH1]. Furthermore, as skyrmion lattices are essentially two-dimensional
(ignoring effects of skyrmion deformation and Bloch points), several types of defects which only
exist in three-dimensional crystals, such as screw dislocations, do not occur either. Defects
that do occur are disclinations and dislocations. Both types of defects can be characterized
by the number of nearest neighbors the central skyrmions seem to have—their coordination
number. This is how we will identify them later. In a defect-free triangular lattice each site
has coordination number 6. A single skyrmion with coordination number 5 or 7 surrounded
only by skyrmions with 6 neighbors each is called a 5-defect or 7-defect, respectively, and
represents a disclination as illustrated in figures 3.1 and 3.2. The figures show how the lattice
has to bend, when constructing a 5- or 7-defect from a perfect triangular lattice. The resulting
change of the relative angles of lattice-lines is the defining characteristic of disclinations.
Combining a 5- and a 7-defect, the result is no longer a disclination, but a dislocation.

Figure 3.3a shows the additional lattice-lines introduced by the dislocation in red. While there
appear to be two such lines, carefully counting sites reveals that only one line was added—a
consequence of the three lattice vectors of the triangular lattice being linearly dependent.
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3.2 Rotating a Skyrmion Lattice

Dislocations have a topological invariant called the Burgers vector. It is defined as the
vector connecting the start and end points of a path enclosing the defect, where the path is
moving on bonds and is chosen such that it would be closed would it not circle the defect.
Since the Burgers vector is a topological quantity, use of any such path enclosing the defect
will result in the same vector, except for a sign which is given by the orientation of the path
and can be fixed by convention— it is an axial vector [60]. Construction of the Burgers vector
of a 5-7-defect is shown in figure 3.3b. An important observation on 5-7-defects can be made
from the fact that the Burgers vector is topological in nature. A single such defect can only
be created at the boundary of a lattice. In central regions, they can only be created in pairs
or larger groups.

3.2 Rotating a Skyrmion Lattice

Soon after the first discovery of a skyrmion lattice in a chiral magnet, Mochizuki et al. set
out to image such a skyrmion lattice in real space [23]. Using Lorentz transmission electron
microscopy (LTEM), they not only managed to do so, but also observed a rotation of the
skyrmion crystal. After ruling out other potential explanations, namely the electric current
of the electron microscope and the magnetic field created by it, the authors concluded the
rotation is caused by a small thermal gradient in the sample. This gradient is a direct
consequence of the electron beam of the microscope locally irradiating the sample, causing
equally localized heating. Consequently, an approximately radially symmetrical magnon
current is generated, interacting with the skyrmion lattice. Importantly, magnons scatter off
skyrmions asymmetrically in a process known as skew scattering [61]— see figure 3.4. For the
magnons, this results in a topological magnon Hall effect, where a magnon current in the
perpendicular direction—here: circular— is generated. So in a classical picture the magnons
are deflected from a radial movement to spiral-like trajectories. For the skyrmions on the
other hand, this results in a force driving them towards and to the side of the heat source.
After cancellation of the radial component by repulsive inter-skyrmion interactions (see also
below), the net effect is a force driving the skyrmions circularly. All this is illustrated in
figure 3.5.

The effect observed in these experiments raises questions regarding the dynamics of skyrmion
lattices under the influence of thermal gradients. While the forces required to depin a skyrmion
lattice are weak, they do not vanish. Thus, it would be unreasonable to assume that the
whole skyrmion crystal in a large sample rotates due to local heating without breaking up. So
unless the samples used in the experiments were so small as to allow a rotation of the whole
skyrmion lattice and the effect would vanish for larger samples, the rotational frequency must
decrease with increasing distance from the heat source, most likely vanishing completely after
some distance due to impurity pinning.
The mechanism behind this decrease in frequency is, however, unknown. One possible

scenario might be that the frequency drops in discrete steps, with nested rigid concentric
rings rotating at different speeds, separated by a layer of skyrmion liquid. To answer this
question is one of the major aims of this section. Unfortunately, simulating this system
micromagnetically is unfeasible, due to its large size. Instead we will model each skyrmion
as a point-like particle, and compare our results to the experiments performed by Pöllath

41



3 Defects in Skyrmion Lattices

Figure 3.4: Magnon–skyrmion skew scattering.
A magnon wave coming in from the left scat-
ters asymmetrically off a skyrmion, exerting
a force F on it. Due to its peculiar dynamics
(see below), the skyrmion thus moves per-
pendicular to the force towards the origin of
the incoming magnon wave at an angle Φ.
Reproduced figure with permission from [61].
Copyright 2014 by The American Physical
Society.

(I)e−

(II) (III)

(IV)

Figure 3.5: Skyrmion lattice rotated by an in-
coming electron beam. The electron beam
(I) locally heats the sample, creating a tem-
perature gradient (II). The resulting magnon
flow (III) is deflected by skew scattering off
the skyrmions. The counterforce causes the
skyrmion lattice to rotate (IV).

et al. on Cu2OSeO3 [LH1]. While this introduces another layer of approximation, the method,
often known as molecular dynamics simulation, has been applied successfully before [62, 63].
The motion of skyrmions can in a good approximation be described by the Thiele equa-

tion [64], named after Alfred A. Thiele who first derived a version of it to describe the motion
of magnetic bubble domains [65]. Starting from the non-linear sigma model (1.6) in 2D,
with the LLG equation (1.8), we assume that the magnetization is completely determined
by specifying the set {Ri} of all skyrmion coordinates: M(r) = M({Ri})(r). We can then
derive a version of the Thiele equation that takes the effects of the heat current-induced
magnon flow into account [64, 61, 66]:

G × (
Ṙi − v(Ri)

)
+ αDṘi − βDv(Ri) =

∑

j

Fi,j , (3.1)

where Fi,j are forces from skyrmion–skyrmion interaction, G = −4πêz is the gyrocoupling
vector, and α is the damping constant from the LLG equation. Here, we use a system of
rescaled units, where J = 1, D = 1, |M| = 1, γ = 1, lengths are given in units of J/D, and
energies in units of J . From the micromagnetic simulation of a single skyrmion, we have
determined the additional damping constant D as

Dδi,j =
∫

d2r
∂M
∂Ri

∂M
∂Rj

≈ 15.5 δi,j . (3.2)

The terms including the effective velocity v model the influence of heat currents. Assuming a
Gaussian profile ∼ e−(|r|/r0)2/2 for the electron beam, and using that v is proportional to the
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Figure 3.6: Skyrmion-skyrmion interaction
potential in 2D. Extracted from four mi-
cromagnetic simulations per data point,
as described in the main text. The fit is
then used to calculate the repulsive forces
between skyrmions in particle-based sim-
ulations.
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Figure 3.7: Energy density of a skyrmion lat-
tice in 2D as a function of the lattice con-
stant. The energy density shows a clear min-
imum, marking the equilibrium skyrmion
distance.

heat current [66], we obtain

v(r) = − r
|r|2

v0

(
1− e−(|r|/r0)2/2

)
, (3.3)

with the beam radius r0, and the base velocity v0, which will be our measure for the strength
of the heat current. Note that v points towards the heat source, reflecting the property of
skyrmions to move in that direction [61, 66, 67]. Furthermore, β should be negative and
much larger than α [66]. We use β = −0.3, but, for comparison, we have also performed
simulations for β = 0, with qualitatively similar results.

Finally, we need to model the skyrmion–skyrmion interaction Fi,j . To this end we calculate
the energy of two skyrmions in the Heisenberg model, using micromagnetic simulations. In a
large 2D simulation volume, we place two skyrmions at a distance r to each other, within a
polarized background. While holding them in place by fixing each central spin, we calculate
the minimal energy for a magnetic field of B = 0.65 êz in our units. To extract the potential,
we subtract the energy of the polarized background, and the energy of each skyrmion relative
to the background, which we obtain by a total of three additional simulations. The result is
shown in figure 3.6 as a function of skyrmion distance r. Evidently, V (r) ≈ 11.6 e−(|r|/3.33)1.44

is a good fit to the data, resulting in the force Fi,j = − (∇V ) (Rj −Ri). To model screening
of interactions and to avoid the computationally costly calculation of the distances between
all pairs of skyrmions, we cut off Fi,j using a hard cutoff at a distance of Rj −Ri = 12.

Unfortunately, even with this much simplified particle setup, we still cannot simulate on the
experimentally relevant timescale of tens of seconds, since the microscopic timescale is about
ten orders of magnitude smaller [52]. By applying current densities much larger that those in
the experiments, we can, however, still qualitatively reproduce the dynamics observed in the
experiments. For the simulations shown here we choose a current strength of v0 ∈ [0, 0.045],
with a beam radius of r0 ≈ 226, and damping of α = 0.05. With another set of micromagnetic
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(a)

v0 = 0

(b)

v0 = 0.01

(c)

v0 = 0.02

(d)

v0 = 0.03

5
7

Figure 3.8: Lattice deformation and breaking as a function of heat current ∼ v0. Most individual
skyrmions are not shown. The color corresponds to the local lattice orientation, as indicated
by the inset in the bottom right corner. 5-defects (7-defects) are marked by blue (red) points.
The outward heat current exerts a torque on the skyrmion lattice. For comparatively weak
heat currents the lattice stays mostly intact, merely being deformed, and reaches a stationary
state (a–c). Upon increasing the heat current, the deformation increases until at some critical
strength lattice defects begin to form, enabling the lattice to form rotating domains in the center,
never to reach a stationary state (d). See also figure 3.9.

simulations, similar to before and with identical parameters, we calculate the energy density
of a skyrmion lattice as a function of the lattice constant ask (i. e. the skyrmion distance at
equilibrium). As shown in figure 3.7, it is approximately ask ≈ 7.88 in our units.
We initialize an undisturbed triangular lattice of skyrmions at the equilibrium distance

on a disk with a radius of 100 ask. Translated to the experimental values for Cu2OSeO3, the
disk has a radius of approximately 15 µm. Since the particle based model that we use does
not contain information on the energy of skyrmions relative to the background, which would
determine the equilibrium distance, we fix the position of the outermost skyrmions. This has
the added benefit of simulating a pinned lattice at large distances, thereby preventing the
lattice from rotating as a whole, which might otherwise be a problem, since the model does
not contain any pinning holding skyrmions in place either. For this setup, we solve the initial
value problem of the Thiele equation of motion (3.1) by a straightforward application of the
standard 4th order Runge-Kutta method.
To analyze the results, we first perform a Delaunay triangulation on the set of skyrmion

coordinates, thereby identifying a lattice structure. For any triangulation of a set of points in
two dimensions, a set of lines between these points must be found, such that no two lines
cross, thus forming a set of triangles with the given points as corners. In order for it to be a
Delaunay triangulation, none of the given points may lie inside the circumcircle of any of
these triangles. In the resulting lattice, most skyrmions still have six nearest neighbors, as
in the unperturbed triangular lattice. For these skyrmions we can define the local lattice
orientation as ϕi = 1

6
∑
j ϕi,j , where the sum runs over nearest neighbors, and ϕi,j ∈ [−π, π]

is the angle between Rj −Ri and the x-Axis. ϕi is closely related to the orientational order
parameter Ψ6. Importantly, however, some skyrmions have a different number of nearest
neighbors—typically five or seven—representing lattice defects, where each individual 5-
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5-defect
7-defect
skyrmion

v0 = 0.03

Figure 3.9: Snapshot of a particle simulation of a skyrmion
lattice subject to a temperature gradient. The temper-
ature gradient induces a rotation of the lattice in the
central part of the simulation area. The color gradient
indicates the local lattice orientation according to the
legend in the top right corner. Skyrmions with 5 (7)
neighbors are marked by blue (red) points. Skyrmions
with the usual 6 neighbors are not marked in the main
figure, but marked by bond connections in the first mag-
nification (central right inset) as illustrated in the second
magnification (bottom right inset). The rotation of the
central area is made possible by the formation of 5-7-
defects and their accumulation into grain boundaries
separating skyrmion lattice domains with different ori-
entations. Adapted figure with permission from [LH1].
Original copyright 2017 by The American Physical Soci-
ety.

45



3 Defects in Skyrmion Lattices

(a) t = 0 (b) t = 32000 (c) t = 42000

(d) t = 0 (e) t = 15000 (f) t = 45000

(g) t = 0 (h) t = 20000 (i) t = 30000

500 nm 5 7

Figure 3.10: Time series showing three of the processes governing the dynamics of the rotating
skyrmion lattice. For a discussion of the processes see the main text. For a description of the
visualization see the previous figures. The scale bar shows the scale of all panels as calculated for
the experimental parameters of Cu2OSeO3. Adapted figure with permission from [LH1]. Original
copyright 2017 by The American Physical Society.

or 7-defect is a disclination and the combined 5-7-defect is a dislocation, as discussed in
section 3.1.
Figures 3.8 and 3.9 show snapshots of particle-based simulations, analyzed as described,

where the color gives the local lattice orientation, and 5-defects (7-defects) are marked by blue
(red) points. As visualized in figures 3.8a to 3.8c, for weak heat current the skyrmion lattice
stays intact despite the torque exerted by the heat current. It is merely being deformed,
as visible by the blue disk in the center (rotated counter clockwise) surrounded by a red
ring (rotated clockwise). The deformation increases with increasing heat current, visible in
the slightly increasing saturation of colors between figures 3.8b and 3.8c. At some critical
strength, which for the given parameters corresponds to a critical base velocity v0 between
0.02 and 0.025, 5-7-defects begin to form, as is visible in figures 3.8d and 3.9. The latter shows
a snapshot of the same simulation as the former, but at an earlier time and in more detail.
The defects mostly form at the boundary as single 5-7-defects, but also in other areas as pairs
of 5-7-defects with opposite Burgers vector. These dislocations move through the sample,
reducing strain in the process. Where previously the skyrmion crystal deformed elastically,
it now undergoes plastic deformation By arranging into lines, they begin forming domain
walls, separating skyrmion lattice domains with different orientation. As more 5-7-defects
accumulate on a domain wall, the angle difference between the adjacent domains increases
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(a) (b)
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Figure 3.11: Skyrmion lattice domain wall in simulation and experiment. (a) Magnification of
figure 3.9. (b) LTEM image of a thin film of Cu2OSeO3 by Pöllath et al. [LH1], processed as
described in the supplementary material of the reference and analyzed as described in the main
text here. The scale bar is accurate for panel (b) and panel (a) is scaled to match, according to
our calculations for the experimental parameters.

in accordance with Frank’s formula [LH1]. As the angle difference passes 30°, which is
the maximal relative angle between two triangular lattices, defects recombine, effectively
decreasing the number of defects again.
Such processes allow domains in the central area of the simulations to rotate and never

reach a stationary state. They also give the system surprisingly rich dynamics, some of
which is illustrated in figure 3.10. Panels (a–c) show the formation of a domain wall by the
accumulation of 5-7-defects, as already discussed. Panels (d–f) show a domain shrinking in
favor of another, by a recombination of the 5-7-defects involved in the domain wall. Meanwhile,
the whole lattice in the visible area is rotating, as is indicated by the slight change in color.
Panels (g–i) show two domain walls combining into one, thereby destroying the central domain.
Through processes like these, the domain-structure of the lattice is constantly changing, with
new domains being formed, while others are destroyed.

Figure 3.11 shows a comparison between a magnification of figure 3.9 and an experimental
LTEM image analyzed in the same way (after some image processing and skyrmion detec-
tion [LH1]). Both images show a single domain wall with the same structure: an alignment
of 5-7-defects such that 5- and 7-defects alternate, with domains of different orientation on
either side. The fact that the simulated lattice is more regular is most likely due to the fact
that the simulations are done for T = 0, opposed to low but finite experimental temperatures.
Interestingly, the lattice parameter ask does not match between the two images. This might
either also stem from temperature effects, it might stem from imperfect parameter scaling, or
it might be due to problems with the simulations which we used to calculate ask, for example
the approximation of the thin film as a strictly two-dimensional material. Not visible in
figure 3.11, but in the supplementary movie by Pöllath et al. [LH1], is how in the experiment
5-7-defects seem to appear and disappear at random. The experiment simply does not have
sufficient time resolution to capture the dynamics of the defects. With our simulations we
can close this gap and observe the full dynamics of the defects.
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With a moderate heat current, isolated 5- and 7-defects appear only rarely in the simulations.
They almost exclusively appear as bound pairs, forming a 5-7-defect. With even stronger
heat current, however, 5- and 7-defects increasingly start to dissociate, which mostly happens
by a recombination of multiple 5-7-defects. It might be tempting to call this regime, which
features rapidly decaying correlations, a skyrmion liquid. It is even preceded by the regime
featuring rotating domains with reduced but prevalent correlations, which one might call a
hexatic phase. These are, however, states far from equilibrium, and should not be confused
with thermal states. Therefore, we discourage this nomenclature and refer to the following
section instead, where such phases are discussed.

Even though we are unable to reach the parameter regime of the experiments, our simulations
nicely reproduce the experimental results and reveal details not accessible in the experiments.
In particular, we found that the mechanism behind the rotation of skyrmion lattice domains
under the influence of radial heat currents is based on 5-7-defects moving through the lattice
and forming domain walls. At present it is unclear how our results relate to other systems
with densely packed 2D lattices such as colloids, with Newtonian dynamics in contrast to the
gyrocoupling-dominated Thiele dynamics of the skyrmions. While the difference is clearly
significant for excitations of the lattice, where also the internal degrees of freedom of the
skyrmion are crucial [52], it is unclear if the same holds true for the effective dynamics of the
lattice defects.

3.3 Melting a Skyrmion Lattice
In thin slabs of chiral magnets the skyrmion lattice phase may extend down to lowest
temperatures [68, 18]. New experiments on a thin slab of Cu2OSeO3 by Huang et al. now
demonstrated that, in contrast to previous theoretical results [69], upon increasing the
magnetic field this system does not transition from the skyrmion lattice to the ferromagnetic
phase in a single first order transition. Instead, the system undergoes a series of phase
transitions from the skyrmion lattice through a hexatic skyrmion phase to a skyrmion liquid
phase before transitioning to the ferromagnetic phase [LH5].
The Kosterlitz–Thouless–Halperin–Nelson–Young (KTHNY) theory for melting in two

dimensions predicts exactly such a pair of transitions, from solid to hexatic to liquid. Years
before its development, Peierls and Landau [70, 71] noted that true long range order can
not generally exist in one or two dimensions, which is a consequence of the Mermin-Wagner
theorem as we now know [72]. Mermin, however, found that in two dimensions it is not replaced
by a disordered state with exponentially decaying correlations. Instead, two-dimensional
solids are characterized by power-law decay of translational correlations, in what is now
called quasi-long range order. They also show true long range orientational order, with the
corresponding correlations converging to non-vanishing constants. In their seminal work,
Kosterlitz and Thouless then predicted that such a 2D crystal might melt by a dissociation
of topological defects [73]. Young [74] and Nelson and Halperin [75] refined their results,
finding that, under certain conditions, a 2D crystal would indeed melt by a dissociation of
dislocations, but not into an isotropic fluid with exponential decay of all correlations. Instead,
they found a so-called hexatic phase with exponential decay of translational correlations and
either long range, or quasi-long range orientational order, depending on the substrate. This
phase would then transition into a typical liquid with exponentially decaying correlations via
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3.3 Melting a Skyrmion Lattice

the dissociation of disclinations. It is important to note, that the series of transitions predicted
by KTHNY theory does depend on some assumptions (mainly on the particle interaction),
and alternative scenarios exist. One such alternative was predicted by Kleinert [76]. For a
more detailed review see for example the article by Gasser et al. [77].
KTHNY theory can be described as a theory of thermodynamic plasticity. It is based on

the linearized theory of continuous elastic media, which can be found in many textbooks,
e. g. one by Landau and Lifshitz [78]. It is important to keep in mind, though, that most
books only treat the three-dimensional case, often without indication, where results subtly
differ from the two-dimensional case. Also, the various definitions of strain should not be
confused. For uniaxial strain, for example, the deformation in the perpendicular direction
might be fixed to vanish or be free to minimize the energy. To arrive at a theory of plasticity,
the elasticity theory is modified by allowing for the existence of lattice defects, which interact
with each other via elastic deformations [73]. Finally, in the vicinity of the phase transitions,
the variables pertaining lattice defects can be integrated out, using a renormalization group
(RG) scheme with the defect core size as the RG parameter. It serves as a cutoff determining
beyond which distance from the defect continuum elasticity theory can be applied. The elastic
constants, thus renormalized, tend towards fixpoints corresponding to the different phases in
question. Consequently, the phase boundary can be characterized by the separatrix of the
RG flow. The result most relevant for us here is one for the crystal–hexatic phase boundary.
There, the critical effective value of Young’s modulus, which is a measure of the crystals
stiffness against uniaxial strain, is predicted to be universal. In particular, it is predicted to
be 16π in units of kBT divided by the square of the lattice spacing of the underlying lattice.
This gives a convenient method of detecting the crystal–hexatic phase transition, see [79] for
a usage example.

To calculate Young’s modulus in the zero temperature limit, we use micromagnetic simula-
tions of a slightly strained skyrmion lattice. In contrast to the previous section, we simulate
in three dimensions, to take surface effects into account, and increase the accuracy of our
results. Since the skyrmion lattice is triangular, we use an enlarged unit cell, containing
two skyrmions, which is compatible with the employed implementation based on cuboid
discretization cells [39, 80]. By using simulation cells of different in-plane length and width
with periodic boundary conditions, we can calculate the energy area-density of the lattice
under both uniaxial and biaxial strain. In the absence of shearing, we can write the elastic
energy area-density in one unit cell of the skyrmion lattice to lowest order in the deformation
as

eelastic(lx, ly) = eeq + 1
2

(
2µ
(
l̃2x + l̃2y

)
+ λ

(
l̃x + l̃y

)2)+O
(
l̃3x, l̃

3
y

)
, (3.4)

where l̃i = (li − li,eq) /li,eq is the relative change of the length li of the unit cell in i-direction
away from its equilibrium value li,eq, eeq is the energy area-density of the undeformed lattice,
and µ and λ are the so-called Lamé coefficients. Any non-zero value of either l̃i constitutes
a deformation, which costs energy approximately proportional to some combination of µ
and λ. When thinking about the lattice deformation in terms of a toy model built from
balls and springs, µ, λ, and Y are directly related to the spring constants. Note that for a
system of spins, the relevant thermodynamic potential, i. e. the one which thermodynamics
minimizes, is the magnetic Gibbs free energy of the spins [81], not, say, the energy per
skyrmion. Consequently, at T = 0, the relevant quantity for the elasticity of the skyrmion
lattice is the energy area-density and not the energy of a unit cell. This is in contrast to a
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system of atoms without external pressure, where the Helmholtz free energy of the atoms,
and thereby the energy per unit cell, is mimimized. Fitting equation (3.4) to the energy of
the strained skyrmion lattice obtained by our simulations, we can calculate µ and λ as a
function of the external parameters— the applied magnetic field B in particular.
Results by Kang et al. for a strictly two-dimensional skyrmion lattice suggest that the

relations between different elastic constants derived from continuum elasticity theory hold
approximately [82]. By assuming they also hold for a three-dimensional skyrmion lattice, we
can calculate Young’s modulus as Y = 4µ µ+λ

2µ+λ . To compare with experimental results and
KTHNY theory, we furthermore have to assume that Y at low but non-zero temperatures does
not differ to much from its value at T = 0. When doing this, and simply inserting Y

∣∣
T=0 for

the experimental values of T = 22 K and |B| ≈ 98 mT [LH5], we find, however, a value almost
two orders of magnitude larger than the expected critical value of 16π. This is directly related
to the thickness of the sample. For skyrmion lattices, it turns out, Young’s modulus Y scales
linearly with the sample thickness. It is also important to note that with this procedure we
calculated the bare value of Young’s modulus and only the renormalized value is expected to be
16π. Since the experiments clearly demonstrate the two-step melting process via dissociation
of dislocations and disclinations predicted by KTHNY theory [LH5], we conclude that our
analysis overestimates the stiffness of the skyrmion lattice significantly. There are multiple
possible sources for this discrepancy. First, there is the already mentioned renormalization
by thermal fluctuations, i. e. using Y

∣∣
T=0 at finite temperature, and dislocations. Second,

there is considerable numerical inaccuracy in our results, although it seems unlikely, that this
would consistently overestimate the stiffness by two orders of magnitude. Lastly and maybe
most importantly, this discrepancy might simply be due to weak effects not included in our
analysis, if they drive the system close to a structural transition of the skyrmion lattice. For
example, surface effects or magnetocrystalline anisotropy could have such an effect, with the
latter being a particularly likely candidate, see figures 2.6 and 2.14b and the surrounding
text. Note that both sets of experiments were done on Cu2OSeO3.

While we did not manage to quantitatively reproduce the experimentally observed transition,
we see qualitative agreement when calculating an effective skyrmion–skyrmion interaction. In
the previous section, we calculated an interaction potential between strictly two-dimensional
skyrmions in a polarized background. In the more precise three-dimensional setup considered
here, however, this is not possible, simply because the polarized background is unstable
against the formation of a conical state for the relevant parameters. Additionally, in a conical
background the interaction gains a directional dependence due to the surface-magnetization
of the conical state, and the magnetic configurations involved differ significantly from those in
the skyrmion lattice. Instead, we perform the same sort of simulations of a skyrmion lattice
we used to calculate Young’s modulus. However, instead of independently straining in both
directions, we strain the lattice uniformly in the plane, such that the in-plane aspect ratio of
the unit cell is conserved, and the relative change of lx and ly is equal. From the energy of
the system under this deformation, we can easily compute an effective interaction potential
by comparing it to a lattice of point-like particles on a triangular lattice with pairwise nearest
neighbor interaction. Its energy per unit cell can be written as

Euc(lx) = 3V (lx) + Ebg(lx), (3.5)

with a pair potential V (|r|) on three bonds per unit cell. Each particle has six neighbors with
each bond contributing to two unit cells, giving the factor 3 for one unit cell. We included a
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3.3 Melting a Skyrmion Lattice

Figure 3.12: Effective skyrmion–skyrmion poten-
tial for different magnetic fields. The potential
was calculated by deforming a 3D skyrmion
lattice, as described in the main text. For
10 mT, 79 mT and 168 mT the minimum of the
potential is highlighted by a small circle. A
vertical line marks the corresponding equilib-
rium distance, which includes the energy of
the skyrmions relative to the background. Po-
tentials are given in units of kBT with the ex-
perimental temperature T = 22 K, to allow
estimating the impact of thermal fluctuations.
The skyrmion lattice is the ground state for
all fields where the minimum of the potential
is negative. For large magnetic fields, the po-
tential becomes increasingly flat, softening the
lattice. Each plot stops approximately where
the skyrmion lattice becomes structurally un-
stable. Redrawn from a similar figure in [LH5].
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background energy Ebg(lx) ∝ lxly proportional to the unit cell area to account for the fact
that in the magnetic system it is the energy density, that is minimized. Consequently, the
equilibrium particle distance lx,eq might not be at the minimum of the potential. In the
particle picture, this corresponds to the application of external pressure. For the skyrmion
lattice, there is simply no reason to assume otherwise.

Using equation (3.5) as the definition of an effective potential, and remembering that we use
an enlarged unit cell including two skyrmions, we first subtract the energy of the state with
lowest energy that does not contain any skyrmions, which is a conical state for the relevant
parameters. That way we obtain the results shown in figure 3.12, where the potential is given
in units of kB22 K. That way we obtain the results shown in figure 3.12, where we plot the
effective skyrmion–skyrmion potential as a function of their distance for different magnetic
fields. To allow estimating the impact of thermal fluctuations at the experimental temperature
of T = 22 K, the potential is given in units of kB22 K. By construction, parameters for which
the potential is negative correspond to the skyrmion lattice being the ground state. More
importantly, the potential becomes increasingly flat with increasing magnetic field, until it
becomes fully repulsive when the background state becomes polarized. With the flattening
potential, we expect the lattice to become softer and the elastic moduli to fall, which is
required for the transition into the hexatic phase. In that sense, our results qualitatively agree
with the experiments, even though we could not quantitatively demonstrate the transition to
the hexatic phase.

Comparing figures 3.12 and 3.6, it is interesting to note that the effective potential derived
here from a three-dimensional skyrmion lattice differs significantly from the potential calculated
for two-dimensional skyrmions in a polarized background. The former has a pronounced
minimum for all but the strongest magnetic fields, while the latter is fully repulsive. We can
conclude, that the approach used in the previous section is likely oversimplified. It would be
interesting to compute the elastic moduli resulting from both potentials, and compare them
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to more direct calculations as those we describe above. A natural next step to improve our
calculations would be to include anisotropy. In chapter 2 we have seen that cubic crystal
anisotropy drives the skyrmion lattice towards a structural transition which will likely be
accompanied by a softening of the lattice, i. e. a reduction of Y and other elastic moduli.
Since the experiments were done on thin slabs, uniaxial anisotropy might additionally also
play a role.
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4
Driving the Conical State
Beyond the Linear Regime

In this chapter, we will discuss the driving of the conical state of chiral magnets by microwave
fields. We start with a brief overview of the existing literature, the theoretical part of which is
based on linear response theory. Following that, we will discuss micromagnetic simulations of
a conical state driven by an oscillating magnetic field, where we will focus on effects beyond
the linear response.

4.1 Linear Response
In recent years, there has been increasing interest in new kinds of devices, called spintronic
devices for their use of spins instead of electrons for carrying and processing information.
Chiral magnets are a class of good candidate materials for such devices. They are particularly
interesting for their non-reciprocal properties, and their very efficient generation of spin
transfer torques [24]. To be able to design spintronic devices from them, however, we need to
understand their magnetic properties in greatest-possible detail— especially their spin wave
spectra.

Possibly the most important contribution towards this end on the theoretical side has been
made by Waizner et al. in a series of articles with different collaborators [52, 83–86]. Schwarze
et al. [52] present a comprehensive theory for spin waves in a variety of chiral magnets that
agrees very well with experiments on a variety of metallic, semiconducting and insulating
chiral magnets. It is based on linear response theory and depends only on few parameters,
all directly or indirectly accessible experimentally. Using the same basic Ginzburg-Landau
theory discussed in section 1.2, and used in equation (1.13) and chapter 2, it additionally
takes dipolar interaction and one kind of cubic anisotropy into account.

The principle of a (linear) spin wave calculation, such as those by Schwarze et al., is generally
as follows. For a set of parameters, the ground state is first identified by minimizing the energy.
Then, the equation of motion for the spins (the LLG equation (1.8) with or without damping)
is expanded to linear order in the deviation from this state. Finally, the resulting equation of
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Figure 4.1: Spin wave excitation modes of the conical state
at k = 0. (a) Conical state in equilibrium. (b) In the ex-
cited conical state each spin precesses (dark blue arrow).
The collective motion corresponds to spin compression
waves with neighboring spins more (blue) or less (red)
aligned than in the equilibrium state. These waves travel
(light blue arrows) parallel (+Q) or antiparallel (−Q)
to q. (c) Magnetic field dependence of the ±Q modes
(dark/light blue) and the ferromagnetic Kittel mode
(black), calculated for a cube of Cu2OSeO3. Without
dipolar interaction the ±Q modes become degenerate
and universal (dashed line).

motion is solved by Fourier transforming. Using a numerical implementation of this scheme,
the authors are able to reliably predict the homogeneous (k � 1/system size) excitation
modes of the helimagnetic and ferromagnetic phases. Kugler et al. [83] and Stasinopoulos
et al. [84] even successfully calculated and measured the full k � 1/system size magnon
spectrum of the helical phase, the ellipticity and other details, using the same method. For a
detailed review see the article by Garst et al. [85].
For the polarized, helical and conical phases specifically, the spectrum is even mostly

understood analytically [52, 85, 86]. For k = 0, the result is a generalization of the so-called
Kittel mode in the ferromagnetic case [87, 88], and two modes in the conical case, dubbed
±Q mode. Figure 4.1c shows the magnetic field dependence of the three modes, and it is the
latter two that we will focus on in the rest of this chapter. The motion of a single spin in
any of these modes is usually a simple precession, the direction of which is determined by
the sign of the gyromagnetic ratio γ of the material. Collectively, however, the mode can
be much more complicated, as described by the LLG equation (1.8). In the case of the +Q
and −Q modes, the collective motion can be described as spin compression waves that travel
parallel (+Q) or antiparallel (−Q) to the propagation vector q of the conical state, which
is the origin of their name. This motion is illustrated in figures 4.1a and 4.1b. Note that
with this naming convention, the relationship between the names and frequencies of these
two modes is not fixed and can be reversed, depending on the signs of γ and D, the DMI
strength, even though the spectrum is unaffected. The change of direction of the precession
is, of course, also present in the Kittel mode of the polarized phase. At the phase boundary,
the higher-frequency mode (+Q in figure 4.1c) connects continuously to the Kittel mode.
This is not only in terms of frequency, but also in the collective sense, as the conical angle
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becomes smaller and smaller upon increasing the magnetic field, continuously transitioning to
the polarized state.

4.2 Beyond Linear Response

As Schwarze et al. have shown, results from linear spin wave theory agree nicely with
experiments on chiral magnets. The non-linear character of the LLG equation (1.8) should,
however, not be dismissed completely, since it might have effects relevant for applications—
either as corrections to the results of the linearized theory, or by opening up completely new
applications. The straight-forward way to improve upon the existing results would be to
expand the LLG equation to higher order, and solve the resulting equations. This is tedious,
at the very least, to do analytical.

Here we will use a complementary approach instead. We will solve the full LLG equation,
including damping, numerically in micromagnetic simulations with an explicit oscillating
magnetic field driving the system [39, 80]. The obvious benefit is that we get the full dynamics,
up to numerical precision. On the flip side, we might have to perform many simulations
to explore the full parameter space, and need to mind the restrictions of the method, such
as finite size effects. These can easily skew the results, if the simulations are not executed
carefully. To calculate the spectrum, for example, we should run separate simulations for
each driving frequency. Each of these simulations needs to be long enough for the transients
to sufficiently decay. Note that while it is possible to extract the full spectrum from a single
simulation by applying a delta- or step-like excitation and decomposing the resulting response,
this method again relies on a linear approximation.

In order to keep things as simple as possible, we will not consider complications like cubic
anisotropy. We do have to consider dipolar interaction, however, as this significantly changes
the character of the conical excitations. Without it, the two modes are degenerate, and their
magnetic field dependence is universal, while with dipolar interaction, the modes are split and
depend on the shape and material of the sample, see figure 4.1c and [52, 86]. For concreteness,
we will set up our simulations to match a cube of Cu2OSeO3. Since we expect the system to
keep its effectively one-dimensional nature, we use a 1D simulation cell with macrogeometry
PBCs for that purpose. The length, of course, has to be commensurate with the conical
period. The number of wavelengths that fit into the simulation will be of interest later on.
For now, a single winding with PBCs is sufficient.
In a first step, we will do as described above, and calculate the spectrum from a series

of simulations with varying driving frequency. We set up a conical state in a background
magnetic field of B0 = 84 mT êz ‖ q, minimizing the energy to reach the equilibrium state.
We then drive the system with an oscillating magnetic field Bω0(t) = Bω0 sin (ω0t)êx ⊥ q,
Bω0 = 0.25 mT, which couples strongly to the ±Q modes [86]. Among other things, we
record the mean normalized magnetic moment mmean =

∑
i m̂i/|Ldc| = 〈M̂〉 during the

simulation. Here, |Ldc| is the cardinality of the discretization lattice, i. e. the number of
discretization cells. Since, in equilibrium, we have mmean ‖ q ‖ êz, the amplitude of the
oscillating perpendicular component mmean,x is a good measure of the response of the system
to the excitation. Plotting this as a function of the driving frequency ω0, as done in figure 4.2,
we get the conical spectrum at k = 0, including non-linear effects. The result nicely shows
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Figure 4.2: Conical spectrum from micromag-
netic simulations. The amplitude of the mean
normalized magnetic moment is a good mea-
sure of the response of the conical state to the
oscillating magnetic field. As a function of
driving frequency, it shows a clear two-peak
structure. The peak positions are in excel-
lent agreement with linear spin wave theory
(vertical lines).

two peaks, broadened by damping, corresponding to the ±Q modes. The peak positions are
in excellent agreement with the results from linear response theory, shown as vertical lines.
When taking a closer look at the magnetization dynamics, however, we notice a marked

difference to the dynamics described above and illustrated in figure 4.1. Each individual spin
no longer moves in a simple precession. Instead, their motion is reminiscent of a classical
spinning top, with a combination of precession and nutation. This is because, due to the
non-linearity, spins do not return to their original position after one oscillation. These shifts
accumulate, resulting in a rotation around q. Note that in linear response theory, it would
be impossible to obtain such a result from a simple oscillatory excitation. An excitation
with a single frequency would result in a response with the same single frequency. Using
micromagnetic simulations with the same single-frequency excitation, we obtain a response
characterized by two frequencies, one for the precession and one for the nutation. Figure 4.3
shows the path of one of the spins for the full motion in panel (c). Panels (a) and (b) show the
path decomposed into pure precession and pure rotation around q. The path of the combined
motion is also akin to a so-called prolate spherical trochoid—a generalized cycloid on the
surface of a sphere. This is, however, not an exact classification, because the ellipticity of the
precession of each spin changes over the course of the larger rotation, as a consequence of the
changing alignment with the oscillating magnetic field. Regarding the collective motion, the
spin compression waves are still in evidence. Additionally, however, the whole state rotates
continuously around q, reminiscent of an Archimedean screw. Due to the screw symmetry of
the underlying conical state, this rotation can also be understood as a translation of the spin
structure. This in turn can be understood in the context of a perturbative theory based on
linear spin wave theory. The linear motion of the conical state can be seen as an activation of
its translational Goldstone mode, due to interactions with the ±Q modes of linear spin wave
theory.
To quantify this new screw motion of the conical excitation modes, we need to determine

the corresponding angular frequency ωscrew from our simulations. While conceptually this is
rather trivial, doing so algorithmically is more difficult than one might expect. This is due
to a combination of the near periodicity of the state and its overlain oscillations. Together,
these properties make both directly reading off the frequency and determining it with a direct
simple fit difficult. We obtain the best results with the following procedure. We record the
direction of a single spin as a function of time. To the values of its azimuthal angle φ we
add multiples of 2π, such that the difference of successive values is minimal. To a good
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Figure 4.3: Non-linear spin waves in the conical state. In agreement with linear spin wave theory,
each individual spin precesses (a) and spin compression waves travel through the system (not
shown). Due to the non-linearity, spins don’t return to exactly the same direction after one
period. Instead, each oscillation rotates all spins by a small angle around q, which compounds
over time (b). Together, the full motion is reminiscent of a classical top with precession and
nutation (c). The collective motion combines spin compression waves with an Archimedean
screw-like rotation. Shown here is the +Q mode. A figure similar to (c) can be found in [LH7].

approximation, the resulting data consists of a sine wave and a linear slope superimposed,
while the raw φ might contain jumps of 2π. As long as the oscillations are smaller than the
opening angle of the conical state, the linear slope is just ωscrew. Thus we can easily determine
ωscrew by a simple linear fit that averages over many periods of the fast oscillations.

Using this technique, we can determine the dependence of ωscrew on the simulation param-
eters. Figure 4.4 shows ωscrew as a function of the driving frequency ω0. The first obvious
feature is its two-peak structure, corresponding to the resonances of the ±Q modes, where the
two modes feature rotation in opposite directions. It is noteworthy, that the peaks in ωscrew do
not line up perfectly with the ±Q modes from linear response theory. This stands in contrast
to the peaks in the oscillation amplitude shown in figure 4.2 that do align, even though both
figures are drawn from the same data set. So the fastest screw motion is not necessarily
achieved with the strongest oscillations in the magnetization. Interestingly, when interpreting
the screw motion as a translation, the corresponding velocity is antiparallel to q for the +Q
mode and parallel for the −Q mode—against the direction of the spin compression waves.
For comparison, figure 4.4 also shows analytical results, obtained by solving the LLG

equation (1.8) including contributions up to second order in the driving field [LH7]. The two
curves show very good but not perfect agreement. There are two obvious possible reasons for
this discrepancy. First, it might simply be corrections due to contributions of even higher
order in the driving field, that were not considered in the analytical calculation. Second, it
might be numerical inaccuracy. In particular, almost perfect agreement can be reached by
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Figure 4.4: Driving frequency dependence of
the screw frequency ωscrew. Determined from
micromagnetic simulations as described in the
main text (dark blue). Results fit well with
analytical results from solving the LLG to
second order in Bω0 [LH7] (light blue). The
±Q modes (locations marked by vertical lines)
have opposite sense of rotation, as defined
by the inset. A similar figure can be found
in [LH7].

assuming that the simulations were done for a not quite cubic sample with demagnetization
factors differing by up to about ∼ 7% from the analytical value for a cube of 1

3 . Although 7%
is a rather large deviation to be explained by numerical inaccuracy, we observe that there is
at least some inaccuracy in this part of the simulations.
Concerning other parameters, we find that ωscrew is approximately proportional to the

square of the amplitude of the driving magnetic field. This is in agreement with the analytical
results, where the first contribution also appears at second order [LH7]. It implicitly shows
that this effect is impossible to be obtained from a linear spin wave calculation, which only
accounts for terms linear in the oscillating field. We also find that without dipolar interaction,
the screw frequency is somewhat reduced, which makes sense considering that the ±Q modes
show opposite signs of ωscrew, and that without dipolar interaction they become degenerate.
It is also possible to go one step further, and perform a linear spin wave calculation by

expanding around this rotating steady state. Using Floquet theory, it is possible to show that
at some critical value of the oscillating magnetic field, one of the resulting excitation modes
becomes unstable [LH7]. This is in agreement with our simulations. When the amplitude
of the driving field becomes of the order of 1 mT,1 and the chosen simulation volume is
large enough, we see a marked change in the dynamics of the system. To visualize the
effect, we plot the difference in the azimuthal angle between the driven and undriven state
∆φ(r) = φ(r)−q · r. For weak driving, this is a simple sine-wave, due to the spin compression
waves traveling through the system. Above the critical driving, its structure is much more
complicated, as shown in figure 4.5. There, ∆φ shows evidence for the population of two
interacting spin waves. Beyond the spin compression waves of the +Q mode with wavelength
equal to λconical = 2π

|q| , and traveling to the right of the figure, it clearly shows modulation
on a longer scale, which propagates in the opposite direction. Apparently, these two spin
waves interact, which is visible in the modulation of the amplitude of the +Q mode, and
in the Fourier transform, shown in the bottom left inset. Note that, due to quasi PBCs, in
order for the new mode to be able to proliferate, without the system becoming chaotic, it is
important that its wavelength is commensurate with the system size. Correspondingly, we
see modes with different wavelength appearing, when changing the system size, with typical
values between λconical/8 and λconical/7. It is interesting to note that neither this wavelength,
nor the corresponding frequency of ω ≈ 0.8 GHz for the parameters of figure 4.5, appear to
be directly connected to any previously present length respectively time scale. This highlights
the spontaneous emergence of these new length and time scales.

1Note that the actual critical value depends on many factors, including damping and sample shape,
and may vary significantly.
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Figure 4.5: Azimuthal angle difference showing
the population of a second spin wave mode.
The modulation of ∆φ(r), as well as its
Fourier transform (bottom left inset), show
a second spin wave mode appearing with
λ = λconical/7. It propagates much more
slowly (ω ≈ 0.8 GHz) than the resonantly
driven +Q mode (λ = λconical, ω ≈ 26 GHz),
and in the opposite direction. The whole
graph rises with speed ωscrew. Parameters
as in figure 4.4, except Bω0 = 0.75 mT and
ω0 ≈ 26 GHz.
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We have shown that the physics of helimagnons is even richer than previously known. A
nominally weak effect, appearing to second order in the weak external drive, fundamentally
changes the character of the excitation modes of the conical state for any strength of driving.
This highlights that while linear spin wave theory gives approximately correct results, it only
strictly does so for short times, as even small deviations may easily compound, when the
system has a Goldstone mode.
The analogy with an Archimedean screw raises the question whether the translational

motion of the conical state might drive other processes. Natural candidates would be driving
a charge, spin, or heat current. Indeed, early calculations suggest that in a metalic system,
these modes should drive an electric current [LH7]. It is also interesting to speculate whether
it might be possible to construct an efficient magnon laser based on the spin wave mode
becoming unstable for strong driving. This might make the conical phase very interesting for
applications in spintronic devices.
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Conclusion

We have examined various aspects of the equilibrium and non-equilibrium properties of chiral
magnets. In chapter 2, we have explored the influence of cubic crystal anisotropy on their
phase diagram. We extended the well-known Ginzburg–Landau model of chiral magnets
to take various anisotropic energy contributions into account. Using extensive numerical
minimization, we found that any of these contributions can stabilize a helical phase and
a skyrmion lattice phase, beyond the conical and polarized phases that also exist without
anisotropy. For most types of cubic anisotropy, it remains to be explored whether the
skyrmion lattice phases we found are connected to the fluctuation-stabilized skyrmion phase
pocket close to Tc. However, for one type of anisotropy in particular, namely the

(
M4
x + . . .

)

term, we have argued that this is not the case. Using this term, we also found interesting
metastable helical and tilted conical states. These last results fit very nicely with experiments
on Cu2OSeO3, where both a skyrmion lattice in a second disconnected area and a tilted
phase with an unexpected q-direction were found. The former most likely poses the ground
state, while the latter probably only exists metastably. While the experiments did not find a
metastable helical state, we have argued that its existence might be crucial for the appearance
of the skyrmion lattice. We have also characterized the occurring phases. In the case of
the helical phase with q ‖ 〈111〉, we found that the reorientation towards the magnetic field
B ‖ 〈001〉 starts very slowly, but becomes much quicker when approaching the transition
to the conical phase. For the skyrmion lattice, we found that there are multiple competing
lattice structures. In wide areas of the phase diagram the energies of these are within the
range of numerical accuracy of each other. In the case of the metastable tilted conical states,
we found an intriguing real-space structure for some parameters, involving single conical
windings separated by polarized areas. These last two aspects would be very interesting to
explore in more detail, particularly with a focus on the spin wave spectrum of these phases.
The skyrmion lattice has been shown to be strongly disordered, which is likely a consequence
of the small energy difference between the different lattice structures. Such a disordered
state will no doubt have a rather different excitation spectrum than the perfectly ordered
lattice. In the tilted state, on the other hand, the almost isolated windings can move much
more freely. Consequently, the corresponding spin wave mode should become much softer.
Finally, it might also be worthwhile to extend our survey of phase diagrams of anisotropic
chiral magnets by using magnetic fields with different orientations. While, at first glance, it
might appear there is not much difference to a setup with, say B ‖ 〈111〉, the two situations
actually have different symmetries, which should have consequences for the phase diagram.

In chapter 3, we discussed two studies involving defects in skyrmion lattices. For the first
of these, we explored the mechanism with which skyrmion lattices rotate when subjected to a
radial heat current. We found that this rotation is realized by plastic deformations constantly
occurring throughout the skyrmion lattice. As in atomic lattices, this is best described by
the movement of lattice defects. These defects were found to arrange into grain boundaries
separating skyrmion lattice grains with different orientation. We observed the rich dynamics
resulting from the constant formation and destruction of these boundaries. To deepen our
understanding of the dynamics, and to better put it into context, a natural next step would
be to obtain an equation of motion for the defects. A particularly important aspect would be
the question whether or not it differs from that of defects in atomic lattices.

In section 3.3, we set out to develop a theoretical description of the experimentally observed
two-step melting process of a skyrmion lattice. We approached this based on the KTHNY
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theory of two-dimensional melting. Using micromagnetic simulations at T = 0 to determine
Young’s modulus Y yielded, unfortunately, a result almost two orders of magnitude larger than
the critical value expected from KTHNY theory. We also calculated an effective skyrmion–
skyrmion interaction potential from the same type of simulation. In increasing magnetic fields,
the resulting potential becomes very flat, which qualitatively agrees with the experiment. A
possible refinement of our approach would be to include cubic anisotropy into the simulations.
Since we have shown that these drive the skyrmion lattice close to a structural transition,
they will most likely have a strong impact on the elastic properties of the lattice, including
Young’s modulus.

Finally, in chapter 4, we discussed excitations of the conical phase of chiral magnets.
Previous theoretical descriptions of such spin waves were based on linear response theory.
Using micromagnetic simulations we have discovered a very interesting non-linear effect. The
collective motion of the known magnon modes involves a previously unknown Archimedean
screw-like rotation. Furthermore, we have seen the macroscopic activation of a second mode,
hinting at possible new applications. The question whether the Archimedean screw-like
rotation may drive an electric current is already being investigated.
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