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1 Summary 
The aim of the study was to identify main regulators of mitochondrial biogenesis in a 

skeletal muscle differentiation model. To investigate candidate factors we used the cytochrome c 

promoter as a representative promoter since cytochrome c levels correlate well with respiratory 

chain complexes. We chose the AMP activated kinase (AMPK) and cyclic AMP-response 

element binding protein 1 (CREB-1) as promising candidates, which could control the process of 

mitochondrial proliferation.  

To analyze whether AMPK regulates the cytochrome c promoter, a cell line stably 

expressing a constitutively active AMPKα1-CA was generated. Indeed, AMPKα1-CA kinase 

activity was found to be increased in these clones. However, AMPKα1-CA and dominant 

negative AMPKα constructs did not change cytochrome c promoter activity in reporter gene 

assays, total AMPK activity was unchanged during muscle differentiation suggesting that it is 

not involved in the regulation of mitochondrial biogenesis in this model. In contrast, the 

constitutively active CREB construct, C2/CREB, elevated cytochrome c promoter activity. This 

increased promoter activity was diminished in the presence of a dominant negative CREB (A-

CREB) construct showing that CREB-1 directly activates the cytochrome c promoter. Western 

blot analysis revealed two different CREB-1 isoforms: CREB-1α and CREB-1∆. Myoblasts 

contain predominantly CREB-1∆, while myotubes have preferably the CREB-1α isoform. The 

phosphorylation state of these isoforms changed in parallel with their protein levels suggesting a 

functional isoform switch during differentiation. Two appropriate, alternatively spliced isoforms 

of CREB-1 mRNA were found but their ratio did not change during differentiation. This 

suggests that posttranslational modifications and/or recruitment of the CREB-1 isoforms by other 

factors of the transcriptional complex play a dominant role in determining their cellular levels. 

To elucidate, which upstream factors regulate the activity of CREB-1, kinase and phosphatase 

inhibitors were used. A PKA activator and two phosphatase inhibitors increased the 

phosphorylation of CREB-1 at Ser-133, which is thought to be necessary for its activation. 

Furthermore, Cyclosporin A not only enhanced phosphorylation of CREB-1, but also the 

cytochrome c promoter activity. Therefore, it is likely that PP2B (calcineurin) regulates the 

phosphorylation of CREB-1 during muscle differentiation. Intracellular resting calcium levels 

were found to be smaller in myotubes compared to myoblasts, thus changes in steady-state 

calcium levels seem not to be a key regulator of mitochondrial biogenesis in muscle cells. 

In summary, these data indicate that phosphorylation and an isoform switch of CREB-1 

could play a major role in the regulation of cytochrome c promoter and thus mitochondrial 

biogenesis during muscle differentiation.       *** 



                                                                                                                             Zusammenfassung 

 2

Das Ziel der vorliegenden Arbeit war es, wichtige Regulatoren der mitochondrialen 

Biogenese in einem Skelettmuskel-Differenzierungsmodell zu identifizieren. Zur Untersuchung 

relevanter Faktoren wurde repräsentativ der Cytochrom c-Promotor verwendet, da der 

Cytochrom c-Gehalt mit dem Gehalt der Atmungskettenkomplexe korreliert. Das Enzym AMPK 

(AMP activated kinase) und CREB-1 (cyclic AMP-response element binding protein 1) wurden 

als vielversprechende Kandidaten bei der Regulation der mitochondrialen Proliferation 

ausgewählt. 

Zur Untersuchung des regulatorischen Einflusses von AMPK auf den Cytochrom c-

Promotor wurde eine Zelllinie generiert, die stabil eine konstitutiv aktive AMPKα1-CA 

exprimiert. Tatsächlich zeigten diese Klone eine erhöhte konstitutiv aktive Kinase-Aktivität. In 

Reporter-Genassays wurde dennoch keine durch AMPKα1-CA oder dominant negativen 

AMPKα-Konstrukts veränderte Cytochrom c-Promotor-Aktivität beobachtet, die gesamte 

Kinase-Aktivität ist während der Differenzierung unverändert geblieben, was darauf hindeutet, 

dass AMPKα1 nicht an der Regulation der mitochondrialen Biogenese in diesem Modell 

beteiligt ist. Im Gegensatz dazu erhöhte der konstitutiv aktive CREB-Konstrukt, C2/CREB, die 

Cytochrom c-Promotor-Aktivität. Diese erhöhte Promotor-Aktivität wurde in Gegenwart eines 

dominant negativen CREB-Konstrukts (A-CREB) vermindert und weist damit auf eine direkte 

Aktivierung des Cytochrom c Promotors durch CREB-1 hin. Zwei unterschiedliche CREB-

Isoformen konnten mittels Western Blot-Analysen gefunden werden: CREB-1α und CREB-1∆. 

Myoblasten enthalten vorrangig CREB-1∆, während Myotuben hauptsächlich die CREB-1α 

Isoform exprimieren. Der Phosphorylierungsstatus der beiden Isoformen veränderte sich 

entsprechend ihrer Proteinexpression. Dies deutet auf einen funktionellen Wechsel der Isoformen 

im Zuge der Differenzierung hin. Zwei entsprechende, alternativ gespleißte Isoformen der CREB 

mRNA werden nachgewiesen, deren Verhältnis sich jedoch während des 

Differenzierungsprozesses zueinander nicht änderte. Dies lässt vermuten, dass posttranslationale 

Modifikationen und/oder die Rekrutierung der CREB-1 Isoformen durch andere Faktoren des 

Transkriptionsapparates eine große Rolle bei der Regulation ihres zellulären Gehalts einnehmen. 

Um aufzuklären, welche vorgeschalteten Faktoren die Aktivität von CREB-1 aktivieren, wurden 

Kinase- und Phosphatase-Inhibitoren eingesetzt. Die Phosphorylierung von CREB-1 an der 

Position Ser-133, die für dessen Aktivierung wichtig ist, wurde durch einen PKA-Aktivator und 

zwei Phosphatase-Inhibitoren erhöht. Des Weiteren steigerte Cyclosporin A nicht nur die 

Phosphorylierung von CREB-1, sondern auch die Cytochrom c Promotor-Aktivität. Daher ist es 

wahrscheinlich, dass PP2B (Calcineurin) die Phosphorylierung von CREB-1 während der 

Muskeldifferenzierung reguliert. In Vergleich zu Myoblasten waren aber die basalen 

intrazellulären Kalziumlevels bei Myotuben geringer. Demnach scheinen Veränderungen des 
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basalen Kalziumlevels in Muskelzellen keine Schlüsselfunktion während der mitochondrialen 

Biogenese zu haben. 

 Zusammengefasst weisen diese Daten darauf hin, dass die Phosphorylierung und der 

Wechsel zwischen den CREB-1 Isoformen eine wichtige Rolle bei der Regulierung des 

Cytochrom c-Promotors und somit der mitochondrialen Biogenese bei der 

Muskeldifferenzierung einnehmen können. 
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2 Introduction 
The aim of the present work was to understand the regulation of mitochondrial biogenesis, 

which we define as an increase in mitochondrial number and/or mass [1]. The main questions in 

this field are i) how a cell can sense the need for enhanced mitochondrial mass and ii) what are 

the regulatory pathways involved in the resulting proliferation of mitochondria. To address this 

issue we chose a cell culture model: satellite mouse muscle myoblasts were differentiated to 

multinucleated myotubes, because the amount of mitochondria increases during this process [2]. 

Based on former results of our laboratory [3] we analyzed the AMP-activated kinase (AMPK) 

and the cyclic AMP response element binding protein 1 (CREB-1), since it was suggested that 

these proteins participate in the process of mitochondrial proliferation [4,5]. 

 

2.1 Mitochondria 
Mitochondria are thought to have evolved from a symbiotic relationship between aerobic 

bacteria (α-proteobacteria) and primordial anaerobic eukaryotic cells [6,7]. As the site of 

oxidative phosphorylation, these double-membrane organelles provide a highly efficient route 

for eukaryotic cells to generate ATP from energy-rich molecules. Electrons from oxidized 

substrates are transferred to oxygen, via a series of redox reactions, to generate water. In this 

process, protons are pumped from the matrix across the mitochondrial inner membrane by 

respiratory complexes I, III, and IV. When protons return to the mitochondrial matrix down their 

electrochemical gradient, ATP is synthesized via complex V (ATP synthase) [8]. Although the 

vast majority of the (1000 to 1500) mitochondrial proteins are encoded by the nuclear genome 

and imported into the mitochondria, mitochondria also maintain a genome that is essential for 

their respiratory function [9]. The 16 kilobase circular mitochondrial DNA (mtDNA) genome 

contains 37 genes. Thirteen of these genes encode protein subunits of respiratory complexes I, 

III, IV, and V; only complex II is solely composed of proteins encoded by nuclear genes. 

mtDNA also encodes 22 mitochondrial tRNAs and 2 rRNAs that are essential for translation of 

mitochondrial transcripts [8]. When mitochondria were discovered, ATP synthesis and Krebs 

(citric acid) cycle were claimed to be their most important function. But besides this, 

mitochondria form the compartment for other essential metabolic pathways such as β-oxidation 

of fatty acids, urea cycle and biosynthesis of pyrimidines, amino acids, phospholipids, Fe-S 

clusters and heme [10]. In the beginning, mitochondria were thought to have a rigid morphology, 

however in the past 10 years it became clear that they form a functional reticulum whose steady-

state morphology is regulated by dynamic fission, fusion and motility events [11]. The 



                                                                                                                                        Introduction 

 5

mitochondrial fusion and fission processes are controlled by a growing set of ‘mitochondria-

shaping’ proteins, which also appear to influence mitochondrial pathways of cell death, but the 

underlying mechanisms are largely unknown [12]. As mitochondria play a central role in the 

“usual daily” physiology of the cell, an increasing number of degenerative diseases are 

recognized to be produced by a failure of mitochondrial functions mentioned above [10]. 

In contrast to their vital function, several organisms are known to lack classical 

mitochondria. These include Microsporidia (e.g. Encephalitozoon cuniculi), Apicomplexa (e.g. 

Cryptosporidium parvum), Diplomonads (e.g. Giardia intestinalis), Entamoeba (e.g. Entamoeba 

histolytica) and Trichomonads (e.g. Trichomonas vaginalis). However, these organisms have 

two alternative forms of mitochondria-like organelles to carry out essential functions: the so-

called hydrogenosomes in Trichomonads, fungi and anaerobic ciliates and mitosomes in 

Microsporidia, Diplomonads, Apicomplexa and Entamoeba [6,13]. 

2.2 Biogenesis of mitochondria 
The most energy demanding organs contain the highest amount of mitochondria including 

brain, heart, skeletal muscle, brown adipose tissue (BAT) and liver. The amount of mitochondria 

changes during tissue differentiation and adaptation processes. These processes of controlled 

mitochondrial biogenesis are well studied in skeletal muscle and BAT. BAT in contrast to white 

adipose tissue (WAT) contains high numbers of mitochondria in order to perform non-shivering 

thermogenesis, which are uncoupled due to the presence of the brown-fat-specific uncoupling 

protein-1 (UCP-1). When brown adipocytes differentiate during late fetal development, they 

accumulate lipid in smaller, several vacuoles and acquire a high content of mitochondria 

compared to WAT. This mitochondrial differentiation takes place in the absence of an 

environmental thermogenic stress, and can be modeled with precursor cells differentiating into 

brown adipocytes in cell culture [14]. During cold exposure of small rodent a massive 

mitochondrial proliferation occurs in brown adipose tissue [15]. The mitochondrial mass in 

skeletal muscle increases during embryonic muscle differentiation, following the repair of adult 

muscle after injury and during endurance training [16,17]. Since the latter processes have been 

extensively investigated for decades we decided to further analyze the question how 

mitochondrial biogenesis is regulated in muscle cells. 

Mitochondrial proliferation is a unique, precisely controlled mechanism including the 

expression of nuclear encoded mitochondrial genes (NEM or NUGEM) and mtDNA encoded 

mitochondrial genes (MEM) (Figure 1). Calcium plays a crucial role in this process especially in 

muscle. When action potentials are evoked at the neuromuscular junction, muscle action 

potentials open the calcium channels of sarcoplasmatic reticulum (SR) and calcium ions bind to 

http://en.wikipedia.org/wiki/Entamoeba
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troponin, thus actin filaments can interact with myosin. Besides activating contraction, calcium 

can also directly trigger the calcium/calmodulin dependent protein kinases (CaMKs) and 

probably indirectly induces AMPK, which are postulated to the activate the peroxisome 

proliferator-activated receptor (PPAR) γ coactivator 1α (PGC-1α), believed to be a master 

coactivator of MEM genes (Figure 1 and [18]).  

 
Figure 1. A scheme of mitochondrial biogenesis in muscle, fusion/fission and apoptosis [18] 

For details see text below. 

 

 Changes of the cytoplasmatic calcium concentration were shown to be very important for 

the expression of genes regulating the muscle differentiation program. The upregulation of the 

structural muscle protein α-actin was completely absent in the presence of L-type calcium 

channel inhibitors in cultivated muscle cells [19]. Intermittent exposure to the calcium ionophore 

ionomycin, or to the SR calcium channel activator caffein elevated the protein expression of δ-

aminolevulinic acid synthase (ALAS), a mitochondrial key enzyme of heme synthesis and 

COXI, the mitochondrial encoded subunit I of cytochrome oxidase complex IV. EGTA, 

suppressing the effect of ionomycin or dantrolene, which blocks the calcium channels of SR, 

hence counteracting with caffeine, strongly prevented the calcium induced expression of 

mitochondrial enzymes [20]. In addition, caffeine was shown to activate the expression of PGC-

 6
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1α and mitochondrial transcription factor A (TFAM), which is crucial for mtDNA replication 

and transcription as well as the DNA binding activity of nuclear respiratory factor-1 and 2 (NRF-

1, NRF-2), and these effects were completely inhibited with dantrolene. The elevated 

intracellular calcium concentration was thought to activate CaMKs, which could also be 

involved in the regulation of mitochondrial proliferation, since the CaMK inhibitor KN93 

diminished the caffeine induced expression of mitochondrial enzymes [21]. Cytochrome c 

mRNA levels as well as the cytochrome c promoter activity was also shown to be regulated by 

calcium mediated signals, since both were elevated with the calcium ionophore A23187 

treatment, while EGTA preincubation diminished these effects. In these studies PKC but not 

CaMKII, IV or PKA was identified as the calcium activated kinase [22]. These results suggest 

that calcium besides regulating myogenesis is necessary for the execution of mitochondrial 

biogenesis. On the other hand, Gros and colleagues showed that calcium is responsible for MHC 

(myosin heavy chain) II to MHC I fiber transition but not for altered mitochondrial enzyme 

activities upon fast to slow twitch fiber type transformation [23,24]. The authors observed a 

moderately elevated resting, intracellular calcium concentration in primary muscle cells upon 

electrostimulation [24].  

Upon muscle contraction ATP:ADP ratio may decrease, which could increase AMP levels 

via the myokinase reaction: 2 ADP↔AMP+ATP. AMP-activated protein kinase has been 

described as an AMP-sensing signal transducer. A rise of AMP levels leads to allosteric 

activation of AMPK and it phosphorylates its substrates (e.g. acetyl-CoA carboxylase, HMG-

CoA reductase) but may also trigger the function of the transcriptional co-activator PGC-1α 

(Figure 1). PGC-1α also autoregulates its own gene along with the expression of NRF-1 and 

NRF-2. These are factors activating the transcription of many nuclear genes encoding 

mitochondrial proteins. NRF-1 also induces the expression of TFAM that, along with other 

nuclear-encoded mitochondrial proteins, is imported into mitochondria by the protein import 

machinery (PIM). TFAM regulates the expression of the 13 mtDNA encoded genes of the 

respiratory chain complexes [25]. Mitochondrial proteins encoded by the nucleus as well as by 

the mtDNA are assembled to form the multi-subunit enzyme complexes performing oxygen 

consumption and ATP synthesis. CREB-1 is proposed to activate PGC-1α, as Figure 1 shows, 

CREB-1 with PGC-1α is involved in the transcription of the PGC-1α gene.  

The figure also shows that the mitochondrial phenotype is altered through fusion and 

fission events. Mitofusion-2 (Mfn-2) influences the fusion of discrete populations of 

mitochondria into a larger mitochondrial reticulum, whereas Fis 1 is a protein involved in 

organelle fission. A high mitochondrial membrane potential (∆ψ) is also associated with the 

production of reactive oxygen species (ROS) from the electron transport chain complexes 
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(ETCs). Elevated ROS levels can trigger the opening of the mitochondrial permeability transition 

pore (mtPTP) and the release of pro-apoptotic factors such as cytochrome c and apoptosis-

inducing factor (AIF). Liberation of these proteins is the primary step in the mitochondrially 

mediated apoptotic program [18].  

2.3 Rationale for studying AMPK and CREB-1 
 Former experiments in our laboratory suggested a role of AMPK and CREB-1 proteins 

regulating the proliferation of mitochondria. In these studies, luciferase reporter gene assays 

were performed in the murine muscle cell line C2F3. The promoters of three different nuclear 

encoded mitochondrial genes (cytochrome c, TFAM, COXIV) were tested to identify sequence 

elements and proteins influencing their expression. The activities of all three promoters were 

highly increased upon differentiation comparing myoblasts with differentiated myotubes, 

respectively [3]. Site directed mutagenesis of the upstream CREB-1 binding site abolished the 

activation of the cytochrome c promoter during myogenesis [3]. Cytochrome c is used as a 

marker of mitochondrial density [26,27] because the amount of cytochrome c protein correlates 

well with the mitochondrial respiratory chain protein levels [28]. The rat somatic cytochrome c 

promoter has several binding sites for transcription factors e.g. NRF-1, CREB-1/ATF-1 and Sp1 

(Figure 2). Sp1 sites were found to responsible for the cytochrome c promoter activity in 

mammalian cells transfected with cytochrome c reporter constructs [29]. In addition, both CRE 

sequences contributed to the cytochrome c promoter activation upon increased cAMP level [30]. 

Furthermore, serum induction also enhanced cytochrome c promoter activity, and mutating the 

CREB-1 or NRF-1 binding cis-elements disturbed upregulation of promoter activity, so 

phosphorylated CREB-1 and NRF-1 are suggested to be involved in this process [5]. 
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Figure 2. Schematic structure and expression of the gene of cytochrome c  

A The promoter structure of rat somatic cytochrome c is shown with the transcription factor binding sites 

thought to be important for its regulation in muscle. The cis-acting element analysis was performed by the 

Genomatix MatInspector tool [31] and those, which had matrix similarity higher than 0.8 were chosen. One 

should note that the functionality of every single element was not verified. B A simplified scheme of 

expression of cytochrome c during contractile activity in muscle cells [16]. 

 
Based on our own [3] and these results [5,30], cytochrome c was chosen as a model promoter to 

search for candidate transcription factors and their regulators, which could play a role in 

mitochondrial biogenesis during muscle differentiation.  

 Gopalakrishnan and Herzig et al. investigated the in vitro promoter activation upon cAMP 

as well as serum induction in COS and fibroblast cells, respectively [5,30]. In contrast, we have 

chosen a more physiological model of muscle differentiation, which we believe may be closer to 

the in vivo situation of mitochondrial biogenesis. The cytochrome c promoter activity was 

increased upon treatment with AICAR, a well-known activator of AMPK in myoblasts as well as 

in myotubes [3]. In addition, comparing the metabolite profiles between myoblasts, confluent 

cells and myotubes, it was found that the AMP concentration increased strikingly during the 

differentiation program [3]. These results suggested an important role of AMPK in this 

myogenic process and thus we further studied the role of AMPK. The cytochrome c promoter 

was shown to be strongly stimulated during myogenesis, since myotubes showed highly elevated 

 9
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cytochrome c promoter activity. In order to find the cis-elements controlling the promoter during 

muscle differentiation, several deleted cytochrome c promoter constructs were analyzed in 

promoter assays. A single point mutation in the downstream CRE element abolished the basal 

promoter activity in myoblasts, but more importantly the upregulation during differentiation as 

well [3]. Nuclear proteins prepared from myoblasts and myotubes bound to the sequence of the 

downstream CRE element and anti-CREB as well as anti-P-CREB antibodies bound to this 

complex performed a supershift in myotubes [32]. As these results suggested that CREB-1 

directly activates the cytochrome c promoter, we further clarified its role in mitochondrial 

biogenesis. 

2.4 The role of AMPK in mitochondrial biogenesis  
The evolutionary conserved AMP activated kinase belongs to the Ser/Thr protein kinase 

family. It forms a heterotrimeric complex consisting of the α (63 kDa), β (38 kDa) and γ (35 

kDa) subunits [33]. In mammals, each subunit is encoded by multiple genes (α1, α2, β1, β2, γ1, 

γ2, γ3) with additional splice variants. AMP activates the kinase activity by three different 

mechanisms; it allosterically activates AMPK, triggers the upstream kinase (LKB1) to 

phosphorylate the important Thr-172 site in the α subunit of AMPK, and inhibits the 

dephosphorylation of this site by blocking a protein phosphatase. All effects of AMP are 

antagonized by high amounts of ATP emphasizing the role of AMPK as an energy sensor. 

Briefly, the major function of the kinase is to activate the catabolic, energy producing pathways, 

such as fatty acid oxidation, glycolysis, etc and inhibit anabolic, ATP consuming pathways, such 

as fatty acid synthesis or gluconeogenesis. In addition to its acute metabolic role, it is also 

believed to participate in the regulation of proteins involved in mitochondrial biogenesis, e.g. by 

upregulating the gene for NRF-1 and PGC-1α (Table 1) [34].  
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Table 1. Examples of AMPK substrates and their biological effects [34]

 
“Primary targets” are direct targets for AMPK where the phosphorylation site(s) have been identified. 

“Secondary targets” are either regulated indirectly or the direct target remains unclear. 

 

AICAR is a widely used AMPK activator. Upon chronic AICAR treatment in rats, mRNA 

and protein levels of UCP-3 (uncoupling protein 3) as well as enzyme activities of citrate 

synthase and hydroxyacyl-CoA-dehydrogenase (HADH), which are known to increase in 

proportion to mitochondrial volume, were increased in muscle [4,35], but the MHC based fiber 

type transition did not occur [4]. In another study, chronic AICAR treatment increased the 

activity of the mitochondrial enzymes citrate synthase, succinate dehydrogenase, and malate 

dehydrogenase as well as the cytochrome c and ALAS protein levels in white quadriceps [36]. β-

guanidinopropionic acid (β-GPA; 1% enriched diet), a creatine analog that is known to induce 

mitochondrial proliferation similar as in exercise training was used to activate AMPK in rat 

muscle. β-GPA treatment results in an energetic deficit with increased levels of ALAS mRNA 

and enhanced NRF-1 binding activity to the ALAS promoter sequence. Cytochrome c protein 

and mitochondrial density were also elevated upon β-GPA treatment [37].  

AICAR and β-GPA are not specific activators of AMPK, but also could activate other 

AMP-binding proteins [38] and other programs and their efficiency and specificity depends on 

their uptake [39], which restrict their usage in experiments. For this reason constitutively active 

(CA) and dominant negative (DN) AMPK constructs were created to modulate the kinase 

activity more specifically [40]. Overexpression of the AMPKα1-CA construct and AICAR were 

shown to enhance glucose transport in a rat liver epithelial cell line [41]. In addition, in H-2Kb 

mouse muscle cells, ectopic AMPKα1-CA expression increased glucose uptake and the 
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expression of the glucose transporters GLUT-1 and GLUT-4, which are suggested to regulate 

glucose transport in this cells [42]. 

Silencing AMPK expression by siRNA showed that it is also involved in GLUT-3 

mediated glucose uptake [43]. Furthermore, muscle specific transgenic mice showed that a 

dominant AMPKα2 inhibitory mutant completely blocked the hypoxia or AICAR activated 

glucose uptake in skeletal muscle, while the contraction stimulated glucose uptake was only 

partially inhibited [44]. Analyzing skeletal muscle of these mice showed that AMPKα2 

participates in the induction of CaMKIV, PGC-1α, cytochrome c [45]. Deletion of both catalytic 

subunits (α1 and α2) in mouse resulted an embryonic lethal phenotype [34]. However, α1−/− KO 

showed no defect in glucose homeostasis, while α2−/− KO exhibited high plasma glucose level, 

low plasma insulin level, reduced muscle glycogen synthesis and insulin resistance [46]. AICAR 

induced glucose uptake was abolished in skeletal muscle of α2−/− KO mice, which was not 

visible in mice deficient in the subunit α1, although in none of the knock-out mice, glucose 

uptake induced by the contraction was affected [47]. In conclusion, the function of AMPK in 

vivo is not clear yet and there are many unsolved details how this kinase regulates cell 

metabolism, especially the process of mitochondrial biogenesis. 

2.5 CREB-1 protein: a point of convergence 
The cyclic AMP (cAMP) response element (CRE)-binding protein 1 (CREB-1) belongs to 

the bZIP (basic leucine zipper) transcription factor superfamily and comprises a subcategory 

including CREB-1, CREM (cAMP response element modulator) and ATF-1 (activating 

transcription factor 1) [48]. CREB-2 (ATF-4) [49], CREB-3 (Luman) [50], CREB-4 [51] and 

CREB-5 (CRE-BPa) [52] have also been identified but they do not belong to the classical 

CREB-1 family. The CREB-1 protein contains two glutamine rich domains called Q1 and 

Q2/CAD (constitutive active domain) (Figure 3). The Q2/CAD domain interacts with the basal 

transcription factor TAF130, a component of TFIID complex and TFIIB. The KID (kinase 

inducible domain) lies between these domains containing Ser-133, the phosphorylation of which 

is a prerequisite for the transcriptional activity of CREB-1. This domain has other amino acids 

(e.g. Ser-142), which could be also phosphorylated but their functions are not clear yet. The C-

terminal bZIP domain is rich in the positively charged basic amino acids lysine, arginine and 

leucine. The heptad repeat of leucine forms the so-called Leucine zipper motif connecting two 

monomers. The CREB-1 family members can form homo- or heterodimers, but in the latter case 

they are restricted to heterodimerize with each other and not with other bZIP transcription 

factors, with the exception of C/EBPβ.  
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Figure 3. The structure of CREB-1 isoforms [48] 

Exon organization of the CREB-1 gene is shown by the upper graphic, exon 5 is spliced out to form CREB-1∆ 

mRNA and exon 2 is spliced out to form CREB-1β mRNA. Black boxes indicate the translated regions. Q1 

and Q2: glutamine rich regions, α: exon 5, KID: kinase inducible domain, CAD: constitutive active domain, 

bZIP: basic leucine zipper domain. 

 

The CREB-1 gene contains 11 exons (Figure 3). By alternative splicing several isoforms of 

CREB-1 are produced; the full length CREB-1 isoform is called CREB-1 α (coding 341 amino 

acid), if the 5th (α) exon is spliced out CREB-1 ∆ (coding 327 amino acid) is formed, and if the 

2nd exon is also missing, CREB-1 β is generated (Figure 3). They are the best known CREB-1 

isoforms but their detailed function remains obscure. Alternative splicing of the gene of CREM 

creates transcriptional activators (CREM α and τ) or the repressors ICER (inducible early cAMP 

repressor) or S-CREM, while ATF-1 derived from a third gene serves as an activator of 

transcription [48].  

To increase the complexity of CREB-1 effects, it is known that the “CREB-1-

transcriptosome” differs dramatically from cell type to cell type according to the presence of 

other transcription factors, transcriptional coactivators, enhancers and silencers [53]. CREB-1 is 

localized in the nucleus and got its name due to its binding to the octamer, cis-acting CRE 

element 5´-TGACGTCA-3´, which is responsible for the reaction to increased levels of cAMP. 

The G protein coupled catecholamine receptors (GPCRs) start a signal cascade on the cell 

membrane (Figure 4). After a ligand (e.g. dopamine or norepinephrine) binds to the receptor, 

adenylate cyclase (AC) is stimulated to increase the level of cAMP, which activates protein 

kinase A (PKA), so that its catalytic subunits translocate to the nucleus and phosphorylate Ser-

133 of the CREB-1 protein. Upon Ser-133 phosphorylation, CREB-1 is activated as it recruits 

the CREB binding protein (CBP) or its paralogue p300, which are transcriptional coactivators 

with histone acetyl transferase (HAT) activity. CBP or p300 serves as a molecular bridge that 

allows transcription factors to stabilize the RNA polymerase II transcription initiation complex. 

The CREB-1-CBP/p300 complex binds to the basal transcription factors (TFIIB, TFIID) and to 
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the RNA helicase A (RHA), completing the initiation of transcription and transcriptional 

elongation can start [48].  

 

PP2B

CaMK IV

PP1

PP2A

 
Figure 4. The CREB-1 signal transduction pathway 

For details see text above. 

 

GPCRs are not the only receptors transmitting the signal for CREB-1 activation; Ca2+ channels, 

growth factor receptors (GFRs), activated RAC1 (Rho GTPase) are first sensors of cells to 

induce the transcription of genes activated by CREB-1. Other known CREB-1 phosphorylating 

kinases besides PKA are the MSK1 (Mitogen and stress activated protein kinase 1), AKT 

(Protein kinase B α), RSK (Ribosomal protein S6 kinase) and CaMK IV (Figure 4). Beside 

protein kinases, protein phosphatases are also contributing to modify the activity of CREB-1. 

Protein phosphatase 1 (PP1), 2A and 2B (calcineurin) dephosphorylate Ser-133, thus preventing 

its interaction with CPB/p300 and inhibit CREB-1 activated gene expression (Figure 4) [48].  
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CREB-1 is one of the best-characterized stimulus-induced transcription factors. CREB-1 

has pleiotropic functions as it is critical for many distinct cellular processes and it is puzzling 

how such a widely expressed transcription factor activated in many situations can facilitate so 

diverse but still so specific functions [54]. It plays a role in the control of memory, cell 

proliferation, differentiation, adaptive responses, glucose and lipid metabolism.  

Brain seems to be the best studied organ to clarify the function of CREB-1 and the protein 

is involved in the process of learning and memory, addiction, depression, anxiety [55] and even 

was reported to be modulated in suicide behavior [56]. Complete CREB-1 KO is lethal in mice, 

but not during embryogenesis but rather immediately after birth. The main cause of death is 

respiratory distress with strong reduction of nerve cell mass in corpus callosum and the anterior 

commissures but also impaired T-cell development [57]. In order to investigate the function of 

CREB-1 in the absence of CREM, which may compensate the effect of CREB-1, neuronal 

CREB-1 KO mice were crossed with CREM KO mice. The descendent animals neither have 

CREB-1 nor CREM in their brains. During development of neurons in the central nervous 

system, extensive apoptosis was found and in postnatal forebrain the hippocampus showed 

progressive neurodegeneration [58]. These results suggest that CREB-1 is essential for neuronal 

survival signal pathways. 

 Besides neuronal tissue, CREB-1 is also involved in transcriptional processes in 

adipocytes, hepatocytes and muscle. In adipocyte differentiation, it binds the promoter of several 

adipocyte specific genes such as phosphoenolpyruvate carboxykinase (PEPCK), fatty acid 

binding protein (FABP), CCAAT-enhancer binding protein β (C/EBP β) and activates the 

expression of PPAR-γ2 [59]. Upon the insulin induced differentiation of adipocytes, CREB-1 

becomes activated and, besides PPAR-γ2 and FABP, also induces the expression of GLUT-4 and 

leptin [60]. In mature adipocytes, CREB-1 regulates both the survival and apoptotic pathways 

and seems to be important as an anti-apoptotic protein [61]. In addition, CREB-1 coordinates 

hepatic lipid and glucose metabolism during fasting through induction of PGC-1α [62] and 

inhibition of PPAR-γ  [63].  

 In skeletal muscle, CREB-1 is associated with MyoD in C2.7 cells and targeted to the 

retinoblastoma (RB) gene promoter to enhance its transcription. The elevated level of RB protein 

is essential for myoblast cell cycle arrest, therefore for terminal differentiation and for survival of 

myocytes [64]. Recently it was shown that CREB-1 is also required for Wnt-directed myogenic 

gene expression and Wnt proteins could also stimulate CREB-1 mediated transcription [65].  

 Muscle differentiation is strictly dependent on the function of mitochondria [66]. CREB-

1 also controls the expression of several genes involved in the function of mitochondria. 

Mitochondrial dysfunction, i.e. complete absence of mtDNA in rho0 cells or depleting the 



                                                                                                                                        Introduction 

 16

mtDNA with ethidium bromide (rho− cells) was found to activate CRE sequence containing 

promoters (c-Fos and α-inhibin). This induction was blocked by expressing CREB-1 dominant 

negative constructs suggesting a role of CREB-1 in the proliferation defects observed in these 

cells. Phosphorylation of CREB-1 at Ser-133 was increased in the presence of disturbed 

mitochondrial function and CaMKIV was identified as the CREB-1 phosphorylating upstream 

kinase [67]. The amount of cytochrome c protein was elevated and promoter activity of 

cytochrome c was increased in rho0 cells, which was again blocked by the expression of CREB-1 

dominant negative constructs. Interestingly, the authors detected an increased mitochondrial 

amount in rho0 cells and concluded that the depletion of mtDNA causes a counteracting 

stimulation of mitochondrial biogenesis [68]. In addition, mitochondrial dysfunction in 

adipocytes caused by blocking complex III induced elevated levels of triglycerides (TG) and 

CREB-1 activation was needed for this TG accumulation, which was shown to be due to the 

induction of several adipogenetic genes [69]. Taken together, mitochondrial dysfunction seems 

to cause a kind of retrograde stimulation of mitochondrial biogenesis, in which CREB-1 is also a 

key regulator.  

In hepatocytes, CREB-1 stimulates the promoter of liver carnitine palmitoyltransferase I, 

which is the rate limiting enzyme in mitochondrial fatty acid oxidation, shown by treatment with 

a cAMP analogue and PGC-1α coactivates this effect of CREB-1 [70]. PGC-1α was originally 

identified as a coactivator of PPAR-γ and a regulator of brown fat differentiation, but it turned 

out that together with PGC-1β, it is also a main regulator of mitochondrial biogenesis in muscle 

[9].  

Recently a new CREB-1 coactivator family was identified called transducers of regulated 

CREB activity (TORCs). TORC-1, 2 and 3 proteins are considered to bind the bZIP domain of 

CREB-1 and recruit it to TAFII 130, independently of the phosphorylation state of Ser-133 [71]. 

TORC function is essential for CRE-mediated gene expression induced by cAMP, calcium, 

GPCRs and the nuclear transport of TORC1 was sufficient to activate CRE dependent 

transcription [72]. TORC1 was the most potent PGC-1α activator from 10,000 screened human 

cDNAs. TORC2 and 3 also elevate PGC-1α transcription in a CREB-1 dependent manner. 

Overexpression of all the TORCs enhanced mitochondrial oxidative capacity in muscle cells, and 

all of them increased the level of cytochrome c mRNA [73]. 

Cytochrome c was the first mitochondrial gene to be studied intensively and shown to be a 

target promoter regulated by CREB-1. In quiescent fibroblasts, serum induced proliferation 

elevates mitochondrial respiration as well as the level of mRNA, protein and promoter activity of 

cytochrome c [5]. The serum induced proliferation activates the cytochrome c promoter through 
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the PGC-1 related coactivator (PRC) [74]. CREB-1 and NRF-1 bind to the PRC promoter but 

they are also required for the stimulation of the cytochrome c promoter by PRC [75].  

Against the dogma, which says that CREB-1 resides exclusively in the nucleus, 

extranucleic CREB-1 was found associated to mitochondria. Mitochondrial CREB-1 and 

phospho-CREB-1 were detected in rat forebrain and the authors suggest that they are localized in 

the mitochondrial matrix or in the inner membrane. Increased calcium levels decreased the 

phosphorylation state of mitochondrial CREB-1 meaning that calcium could regulate 

mitochondrial CREB-1 function [76]. In brain, CREB-1 and phospho-CREB-1 were partially 

colocalized with cytochrome c and in CREB-1 KO mice the phospho-CREB-1 immunoreactivity 

was completely diminished. Three different CRE elements were detected in the sequence of the 

regulatory D-loop region of mouse mtDNA and all of them were able to bind CREB-1. CREB-1 

was also shown to slightly increase ND2 and ND4 transcripts of complex I, while the dominant 

negative A-CREB protein decreased transcripts of ND5 and ND6 of complex I as well as its 

enzyme activity. The mitochondrial CREB-1 appears to regulate neuronal pro-survival effects 

because upon treatment with a mitochondrial toxin 3-nitropropionic acid, A-CREB stimulated 

the cell death and the release of cytochrome c caused by the toxin [77]. However, a more recent 

study suggests that phospho-CREB-1 immunoreactivity in neurons is the phospho-pyruvate 

dehydrogenase E1 α subunit, due to crossreactivity with the antibody against phospho-CREB-1 

[78]. Although in the latter study a mitochondrial CRE binding activity could not be shown, the 

former study found a clear CRE binding activity supershifted with an anti-CREB-1 antibody and 

even shown an in vivo interaction between the mtDNA D-loop region and CREB-1 by chromatin 

immunoprecipitation (ChIP) [77]. In conclusion, while CREB-1 involvement in the regulation of 

mtDNA is still controversial, it upregulates the promoter of cytochrome c and many other 

mitochondrial genes encoded in the nucleus directly and via enhancing coactivators, and could 

be a key factor for mitochondrial biogenesis. 

2.6 Aim of the study 
In spite of intensive investigations, many questions concerning the regulation of 

mitochondrial biogenesis have not been solved yet. Our main question was, which factors 

activate the cytochrome c promoter and thus may be involved in stimulation of mitochondrial 

proliferation. If the factors were identified, how do they control the complex process of 

mitochondrial biogenesis, where hundreds of genes have to be coordinated. Which upstream 

signals are involved in controlling these “regulator” proteins? To study these questions, muscle 

precursor cells were differentiated to multinucleated myotubes, which is accompanied by a 

marked increase of mitochondrial enzymes. 
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AMPK was the first studied candidate and cell lines expressing constitutively active 

AMPKα1 were created to investigate its role. CREB-1 and its isoform was the second factor of 

choice and its expression was analyzed at the levels of mRNA and protein, together with 

investigation of its phosphorylation status. This was followed by assessment of its activity by 

using siRNA knock-down, constitutively active and dominant negative constructs in reporter 

gene assays. 
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3 Materials and Methods 

3.1 Materials  

3.1.1 Chemicals 

All chemicals were purchased from the companies Merck, Sigma-Aldrich or Roth, unless 

otherwise specified. 

 

Coelenterazine        Biotium 

D-Luciferin         Biotium 

ExGen          Fermentas 

Fura-2 AM         TEFLabs 

Lipofectamine 2000        Invitrogen 

Metafectene         Biontex 

Mini complete® Proteaseinhibitor-Cocktail (EDTA free)   Roche 

Rp-8-CPT-cAMPS        BioLog 

Sp-5,6-DCI-cBIMPS        BioLog 

Trizol          Invitrogen 

3.1.2 Equipment 

Agarose gel chamber   Easycast   Owl Scientific  

Cell counter    CASY®1 Modell TT   Schärfe System 

Centrifuge        Eppendorf 

Hybridisation oven       Amersham Pharmacia 

Fluorescence microscope  Axiovert 100   Zeiss 

Fluorescence microscope   Axiophot    Zeiss  

Incubators    HeraCell   Heraeus 

Liquid Scintillation Counter   LS 6500   Beckman 

Luminometer    Sirius-1   Berthold Detection Systems 

Medical X-Ray Film    Super RX   Fuji 

Microplate Reader    µQuant   BioTek Instruments 

PCR-Thermocycler   PTC-100   MJ Research Inc. 

SDS-PAGE chamber   Tall Mighty Small  Hoefer    

Spectrophotometer       Beckman  

UV-Crosslinker    UVC500   Hoefer 
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3.1.3 Organisms 

Bacterial organism    Escherichia coli DH5α [79] 

F- gyrA96 (Nalr) recA1 relA1 endA1 thi-1 hsdR17 (rk
-mk

+) glnV44 deoR ∆(lacZYA-argF) U169 

[φ80d∆(lacZ)M15] 

  

Mammalian cell lines  

  C2F3  mouse muscle cell line [80] 

 C2C12  mouse muscle cell line (ATTC Number: CRL-1772) [80] 

3.1.4 Materials for cell culture  

Cell culture dishes      TPP, Costar Corning  

DMEM with Glutamax I, 4.5 g/l Glucose    Gibco BRL Cat.No. 61965-026 

DMSO, cell culture tested     Sigma Cat.No. D-4540 

FCS         PAA Cat.No. A15-043 

Horse serum       Sigma Cat.No. H 1270 

MEM Nonessential Amino Acids 100x   Gibco BRL Cat.No. 11140-035 

Na-Pyruvate 100 mM (sterile filtered)   Gibco BRL Cat.No. 11840-048 

OptiMEM       Gibco BRL Cat.No. 51985-026 

PBS        Gibco BRL Cat.No. 18912-014 

Trypsin-EDTA 0.05 % in HBSS    Gibco BRL Cat.No. 25300-054 

 

Additives to the media: 

1 mM sodium pyruvate 

1x nonessential amino acids  

1 % penicillin streptomycin  

10 % FCS for cultivating the cells, or 2 % horse serum for differentiation media 

3.1.5 Antibiotics 

End concentration 

Ampicillin   Sigma      50 µg/ml 

Carbenicillin   Sigma      50 µg/ml 

G418    PAA      700 µg/ml 

Hygromycin B  PAA/InvivoGen    700 µg/ml 

Penicillin   Gibco BRL     1 % 
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Streptomycin   Gibco BRL     1 % 

3.1.6 Materials for standard molecular biology 

3.1.6.1 Oligonucleotides 

mCREB-103-5´  5´-ACATTAGCCCAGGTATCCATGCCAG-3´ 

mCREB-396-3´  5´-GGCCTCCTTGAAAGGATTTCCCTTCG-3´ 

mCREB 418 5´  5´-GACTTATCTTCTGATGCACCAGG-3´ 

mCREB 962 3´  5´-GGTTTTCAAGCACTGCCACTC-3´ 

Oligonucleotides were synthetised by Sigma-Genosys or by Operon. 

3.1.6.2 Nucleic acids 

Vectors 

pcDNA-AMPKα1-CA     gift from Dr. Carling 

pGL3-cytochrome c-Firefly     made by Dr. Goffart 

pRL-CMV       Promega 

pRL-SV40       Promega 

pTRE2-Hyg       Clontech 

pRSETA       gift from Dr. Goffart 

pCMV        gift from Dr. Thiel 

pTRE2-Firefly      gift from Prof. Brüning 

pCMV-Flag-C2/CREB     gift from Dr. Thiel 

pEBGN-CREB      gift from Dr. Thiel 

pEBGN-K-CREB      gift from Dr. Thiel 

pCMV-A-CREB       gift from Dr. Thiel 

α-inhibin-Firefly      gift from Dr. Arnould 

siRNAs 

siRNA SMART pool against CREB-1 NM 133828   Dharmacon 

siCONTROL negative #1      Dharmacon 

siCONTROL negative pool      Dharmacon 

siCONTROL TOX       Dharmacon 

3.1.6.3 Enzymes 

Taq-Polymerase     Fermentas 

Klenow-Fragment    Fermentas 

T4-DNA-Ligase    Fermentas 



                                                                                                                       Materials and Methods 

 22

Shrimp alkaline phosphatase   Amersham 

Lambda protein phosphatase   Upstate 

Restriction enzymes    New England Biolabs/Fermentas 

3.1.6.4 Kits  

Chroma spin columns (for DNA purification)  Clontech 

Dynabeads mRNA DIRECT Kit    Invitrogen 

ECL-Kit       PerkinElmer 

GenElute Plasmid Maxiprep Kit    Sigma 

QIAamp DNA Mini Kit     Qiagen 

QIAGEN Plasmid Midi Kit     Qiagen 

QIAEX II Gel Extraction Kit     Qiagen 

QuantiTect Reverse Transcription Kit   Qiagen 

QIAquick PCR Purification Kit    Qiagen 

Random Primed DNA-Labeling Kit     Roche 

5x Passive lysis buffer     Promega 

3.1.6.5 Radiochemicals 

α32P-ATP  5,000 Ci/mmol  Hartmann Analytics 

γ32P-dCTP  5,000 Ci/mmol  Hartmann Analytics 

3.1.6.6 Markers, dyes 

1kb-Ladder      Gibco BRL 

GeneRuler 100 bp Marker    Fermentas 

PageRuler Prestained Protein Ladder  Fermentas 

6x DNA loading dye     Fermentas 

RiboRuler RNA ladder, High range   Fermentas 

3.1.6.7 Antibodies 

First antibodies      Cat.No. Working dilution

Monoclonal anti-β-actin  Sigma-Aldrich A 1978  1:5,000 

Monoclonal anti-β-tubulin  Sigma-Aldrich T 4026   1:1,000 

Monoclonal anti-c-myc  Santa Cruz B.  sc-40   1:1,000 

Monoclonal anti-Histone H1  Santa Cruz B.  sc-8030  1:1,000 

Monoclonal anti-Myogenin (F5D) Santa Cruz B.  sc-12732  1:400 

Monoclonal anti-MHC (1F11) gift from Dr. F. Pons     1:2 (IHC) 
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Polyclonal anti-α-actinin 4  ImmunoGlobe  0042-05 1:1,000-1:3,000 

Polyclonal anti-AMPKα  Cell Signaling T. 2532   1:1,000(WB) 

           1:100 (IP) 

Polyclonal anti-AMPKα1  gift from Dr. Carling     1:50 (IP) 

Polyclonal anti-CREB-1  Cell Signaling T. 9192  1:500-1:1,000 

Polyclonal anti-CREB-1α  Santa Cruz B.  sc-58   1:1,000 

Polyclonal anti-CREB-1  Upstate  06-863   1:2,000 

Polyclonal anti-Phospho-CREB-1 Cell Signaling T. 9191   1:1,000 

 

Secondary antibodies         Cat.No.  Working dilution 

Donkey-anti-rabbit IgG-HRP  Dianova 711-035-152   1:1,000 

Goat-anti-mouse IgG-HRP  Dianova 115-035-062  1:5,000-1:10,000 

Goat-anti-mouse IgG-Cy3        1:50 
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3.2 Methods 

3.2.1 Standard molecular biology 

3.2.1.1 E. coli cultivation 

Eschericia coli DH5α strain was used as a tool for plasmid DNA amplification. Bacteria were 

inoculated from an LB-agar plate (complemented with the appropriate antibiotic) into LB 

medium (with the antibiotic) for overnight incubation with shaking at 37°C. Plasmid preparation 

was made from overnight bacterial cultures. 

LB-Medium/Agar 1 % NaCl  

   1 % bacto trypton 

   0.5 % yeast extract 

   pH 8.0 

   (1.5 % bacto agar) 

3.2.1.2 Preparation of transformation-competent E. coli 

Eschericia coli strain DH5α was streaked from −80°C frozen stock on a fresh LB plate and 

grown overnight at 37°C. A single colony was inoculated into 10 ml LB. It was grown overnight 

with shaking at 37°C. 1 ml was inoculated into 200 ml LB and shaken at 37°C until OD600=0.5. 

The flask was chilled on ice for 5 minutes and the bacteria were centrifuged for 5 minutes at 

5,500 x g. The pellet was resuspended in 80 ml ice cold Buffer 1 and incubated in ice for 5 

minutes. It was centrifuged for 5 minutes at 5,500 x g again, the pellet was resuspended in 8 ml 

ice cold Buffer 2 and chilled on ice for 15 minutes. 200 µl aliquots were made in 1.5 ml tubes, 

flash-frozen in liquid nitrogen and then stored at −80oC.  

Buffer 1   30 mM potassium acetate pH 5.8 

100 mM RbC12

10 mM CaCl2

50 mM MnC12

15 % glycerol  

Buffer 2   10 mM MOPS/KOH pH 6.5 

75 mM CaC12

10 mM RbC12

15 % glycerol 
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3.2.1.3 Plasmid DNA preparation 

Plasmid preparations were made from transformed E. coli overnight culture according to the 

manual of the Kits used. The plasmid DNA was eluted with H2O or with 10 mM Tris pH 8.0 and 

the concentration was measured spectrophotometrically at 260 nm. 

3.2.1.4 Transformation 

A 200 µl aliquot of E. coli competent bacteria was thawed on ice. Plasmid DNA was added and 

mixed gently. They were incubated on ice for 10 minutes followed by a heat shock for 1 minute 

at 42°C. The bacteria were incubated for 5 minutes on ice, 1 ml LB was added and shaken for 1 

hour at 37°C. The whole bacterial supernatant or a part of it was plated on LB-agar (with 

antibiotic) and incubated overnight at 37°C. 

3.2.1.5 Glycerol stock 

For long time storage of transformed bacteria, 15 % glycerol stocks were made in LB medium 

and stored at –80°C. After storage the bacteria were scraped with a sterile loop onto LB-agar 

completed with the appropiate antibiotic and incubated overnight at 37°C. 

3.2.1.6 Nucleic acid gel electrophoresis 

The separation of DNA fragments were analyzed in 1-2 % agarose gels in 1x TAE buffer with 

0.5 µg/ml ethidium bromide. 6x DNA loading dye (Fermentas) or 10x DNA loading dye was 

added to the probes. A molecular weight marker was also loaded to determine the molecular size 

of the fragments. The samples were run at 80-90 V for 30-40 minutes and were documented 

using a CCD video camera. 

50x TAE    2 M Tris 

1 M acetic acid 

     50 mM EDTA pH 8.0 

10x DNA loading dye  0.06 % bromophenol blue 

     0.06 % xylene cyanol 

     50 % glycerol 

     20 mM Na-EDTA pH 8.0 

     180 mM Tris pH 7.5 

3.2.2 Principle of Tet-Off system 

In the Tet-Off system, the transactivator protein (tTA) consists of a tetracycline repressor (tetR) 

and a VP16 activation domain, working as a tetracycline sensitive activator [81] (Figure 5). It 

binds on the TRE sequence of the second plasmid with the gene of interest and activates its 
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transcription. In the presence of tetracycline (Tet) or its derivative doxycycline (Dox), the 

transactivator protein binds the ligand resulting in the inhibition of transcription. The system got 

its name since in the presence of Tet, the transcription of the gene of interest is “switched off”. 

The ligand is present in the phase of creating stable cell lines and removing it induces the 

expression of the gene of interest.  

 

 
Figure 5. The principle of Tet-Off system  

The transactivator (tTA) protein is continuously expressed driven by the CMV promoter. It binds to the TRE 

sequence of the plasmid containing the gene of interest and enhances the transcription of the gene in the 

absence of Tetracycline or Doxycycline. In the presence of Tet or Dox the tTA protein is inhibited to bind to 

the TRE sequence, which causes the lack of transcription. 

 

3.2.3 Cloning of rat AMPKα1-CA into pTRE2-Hyg vector 

The DNA sequence of the AMPKα1-CA was cloned into the mammalian expression vector 

pTRE2Hyg, which has a Tetracycline response (TRE) promoter and resistance genes against 

Ampicillin and Hygromycin B. The pTRE2Hyg vector was digested with PvuII, purified with the 

QIAquick PCR Purification Kit and digested with SalI enzymes (Appendix Figure 1 A and B). 

To diminish self-ligation the free phosphate group was dephosphorylated by SAP phosphatase 

and the vector was purified from agarose gel. The pcDNA3-AMPKα1-CA construct was 

digested first with KpnI enzyme cutting out AMPKα1-CA from the pcDNA3 vector, purified 

with the QIAquick PCR Purification Kit (Appendix Figure 1A) and the overhanging nucleotides 

were filled up using Klenow enzyme to generate blunt ends. The AMPKα1-CA blunt ended 

fragment was purified from agarose gel and digested with XhoI enzyme (Appendix Figure 1B) 
 26
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followed by a gel purification by QIAEX II Gel Extraction Kit. The PvuII/SalI cut pTRE2Hyg 

vector and the XhoI/blunt ended AMPKα1-CA fragments were ligated with T4 DNA ligase for 1 

hour at 22°C according to the blunt ends (PvuII and filled KpnI) and the compatible sticky ends 

(SalI and XhoI). The ligation mixture was transformed into competent E. coli DH5α bacteria and 

several growing colonies were checked with restriction digestion. Test digestions verified that 

AMPKα1-CA was integrated into the pTRE2Hyg vector. The sequence was verified by 

sequencing the AMPKα1-CA region starting from the commercially available pTRE2-Hyg 

primers. PstI enzyme cut the pTRE2Hyg-AMPKα1-CA construct into two fragments, which are 

4324 bp and 1988 bp (Appendix Figure 1C) in contrast to the empty vector, which is linearized 

having only one PstI site. The cloned AMPKα1-CA insert contains two HindIII restriction sites. 

HindIII digestion of the pTRE2Hyg-AMPKα1-CA construct resulted in three fragments with the 

length of 5205, 876 and 231 bp (Appendix Figure 1D).  

3.2.3.1 Cultivation 

The murine muscle cell lines (C2C12 and C2F3) were cultivated at 37°C, 5 % CO2 and in 

humidified air on cell culture plates or flasks. Both cell lines were routinely cultivated in 

DMEM+10 % FCS. The cells were split on every second or third day (cells should have not been 

more confluent than 85 %) and seeded 2-3 x 105 cells on a 10 cm cell culture dish for two days. 

Cells were detached with trypsin, centrifuged at 200 x g and resuspended in PBS for counting. 

Differentiation was induced by growning the myoblasts to 100 % confluency followed by 

changing growing medium (DMEM+10 % FCS) to differentiation medium (DMEM+2 % horse 

serum). For the myotubes, the medium was changed every day and experiments were done with 

myotubes, which had been cultivated in DMEM+2 % horse serum for 3-7 days.  

3.2.3.2 Freezing and thawing of cells 

For long time storage about 106 cells were centrifuged at 200 x g, the cell pellet was resuspended 

in 1 ml FCS+10 % DMSO, cooled down in an isopropanol filled box to −80°C and latter 

transfered to liquid N2.  For thawing, the cells were warmed up quickly at 37°C and were seeded 

out into a 10 cm cell culture dish.  

3.2.3.3 Transfection 

3.2.3.3.1 Stable transfection 

In order to transfect the constitutively active form of AMPKα1 into mammalian cells, C2C12 

myoblasts were transfected with purified pTRE2-Hyg-AMPKα1-CA vector. To analyze, which 

transfection method is suitable to reach high transfection efficiency using C2C12 cells, three 
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different transfection approaches were applied: Metafectene, ExGen or calcium phosphate-based 

transfections were performed.  

 

Metafectene  

15-15 µg plasmid DNA was transfected with 30-30 µl Metafectene into cells seeded on two 10 

cm dishes according to the manual of the manufacturer.  

ExGen  

8 µg plasmid DNA was transfected with 53 µl ExGen into cells seeded on a 10 cm dish 

according to the manual of the manufacturer.  

Calcium phosphate 

Cells were transferred to 6 % CO2 for 30 minutes before and after transfection. 30 µg pTRE2-

Hyg-AMPKα1-CA plasmid DNA was mixed with 24 µg pRSETA in 1 ml 0.22 M CaCl2 

solution. They were incubated for 20 minutes and then mixed in small amounts with 1 ml 2x 

HBS. The calcium phosphate-DNA solution was incubated for 20 minutes, vortexed well and 2 

ml solution was given to two 10 cm dishes (1 ml solution/10 cm dish). Next day the calcium 

phosphate precipitate was discarded by washing the cells three times with PBS. 

2x HBS (Hepes-buffered saline)  280 mM NaCl 

10 mM KCl 

1.5 mM Na2HPO4

12 mM α-D-glucose 

50 mM HEPES 

pH 7.05 

3.2.3.3.2 Transient transfection 

Plasmid DNA transfection 

In order to perform reporter gene assays myoblasts were transfected at the stage of 30-50 % 

confluency. Usually 2-3 x 104 cells were seeded per one well of a 12-well plate one day before 

transfection. Metafectene was used as transfection reagent and was applied according to the 

manual of the manufacturer. Briefly, plasmid DNAs were mixed with OptiMEM and 

Metafectene was separately mixed with OptiMEM. Then the two solutions were combined and 

incubated at room temperature for 20 minutes. 100 or 200 µl plasmid DNA−Metafectene 

complex in OptiMEM was given to a well of a 12-well plate or a well of a 6-well plate. 0.5-1 µg 

DNA was transfected in a 1:3.33 ratio with Metafectene or in a 1:5 ratio with Lipofectamine 

2000 per one well of a 12-well plate. Non-confluent myoblasts were analyzed 24 hours, 
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confluent myoblasts 48-72 hours after transfection, myotubes were analyzed 96-144 hours after 

transfection. 

siRNA transfection 

In order to knock-down the mRNA of CREB-1 siRNA against the CREB-1 mRNA was 

transfected with Lipofectamine 2000 into 30-50 % confluency C2F3 cells. 9x 104 cells were 

seeded per one well of a 6-well plate one day before transfection. 5-100 nM siRNA was 

transfected with 4-15 µl Lipofectamine 2000 per well of a 6-well plate. Medium was changed 6-

24 hours after transfection. 

siRNA and plasmid DNA cotransfection 

In order to analyze the effect of CREB-1 acting on the cytochrome c promoter pGL3-cytochrome 

c-Firefly+pRL-CMV and siRNA SMARTpool against CREB-1 (NM 133828) or the appropiate 

siCONTROL siRNAs were cotransfected into 30-50 % confluency C2F3 cells. Usually 2-3 x 104 

cells were seeded per one well of a 12-well plate one day before transfection. 0.3 µg plasmid 

DNAs were cotransfected with 5 nM, 20 nM, 50 nM, 100 nM siRNAs and 1 µl, 1 µl, 2.5 µl and 

5 µl Lipofectamine 2000 per well, respectively. Promoter activity was analyzed 24 hours after 

transfection.  

3.2.4 Nucleic acids 

3.2.4.1 Total RNA preparation from C2F3 cells 

C2F3 myoblasts were seeded on 10 cm dishes and cultivated to 70-80 % confluency (non-

confluent myoblasts), to 100 % confluency (confluent myoblasts) or after myotube formation 

had been induced by a change to differentiation medium. Cells were harvested with trypsine, 

centrifuged (at 200 x g for 5 min at 4°C) and washed two times with ice cold PBS. After the last 

washing step the pellet was lysed in Trizol for 5 minutes. 0.2 ml chloroform was added, and the 

mixture was shaken vigorously for 15 seconds followed by a three minutes incubation. The tubes 

were centrifuged at 12,000 x g for 15 minutes at 4°C. The mixtures were separated to a lower red 

phenol-chloroform phase (proteins, DNA), an interphase (DNA) and a colourless upper aqueous 

phase (RNA). The RNA (aqueous) phase was transferred into a fresh tube and precipitated 

overnight by addition of 0.5 ml isopropanol at −80°C. The tubes were centrifuged at 12,000 x g 

at 4°C for 10 minutes, the supernatants were removed and the pellets were washed first with 

100 % ethanol (centrifuged at 7,500 x g for 5 minutes at 4°C) and then two times with 75 % 

ethanol. Then the pellets were air-dried for 20 minutes at room temperature and resuspended in 

15-30 µl RNAse-free DEPC-water. The RNA concentration was measured at 260 nm and 1 µg 
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RNA was loaded onto a 1 % agarose gel to check the integrity of the RNAs (without RNAse) 

stained with ethidium bromide.  

3.2.4.2 PolyA+ mRNA preparation from C2F3 cells 

C2F3 myoblasts were seeded on 10 cm dishes and cultivated to 70-80 % confluency (non-

confluent myoblasts) or to 100 % confluency (confluent myoblasts) or after at 100 % confluency 

myotube formation was induced by a change to differentiation medium (myotubes). Cells were 

harvested with trypsine, centrifuged (at 200 x g for 5 min at 4°C) and washed two times with ice 

cold PBS. After the last washing step the pellet was lysed in 1250 µl Lysis/Binding buffer and 

the protocol was continued according to the instructions of the Invitrogen Direct mRNA isolation 

kit. Briefly, the polyA-mRNAs were bound to Oligo(dT) Dynabeads, collected with a Dynal 

MPC-S magnetic bar, the unspecifically bound nucleic acids were washed off and the polyA-

mRNAs bound to the beads were eluted in 40 µl RNA loading buffer (see 3.2.4.4). Usually 20 µl 

from the eluate was used for Northern blot analysis.  

3.2.4.3 Random primed labeling of DNA 

The mouse CREB DNA sequence from 418 till 962 basepairs was amplified by PCR to generate 

a CREB probe (see 3.2.5.2). The PCR product was purified with PCR purification kit to discard 

the primer dimers and eluted in 30 µl 10 mM Tris (pH 8.0). 50 ng double stranded DNA was 

denatured by boiling at 100°C for 5 minutes. 40 µCi αP32-dCTP was used for the labeling by 

Klenow fragment with Random Primed DNA-Labeling Kit. The reaction was incubated for one 

hour at 37°C and the unincorporated αP32-dCTP was discarded by Chroma spin columns. The 

eluted radioactive probe was boiled at 100°C for 5 minutes and after a short centrifugation it was 

placed to ice before adding it to the hybridisation buffer. 

3.2.4.4 Northern Blot  

10 µg total RNA or 20 µl of polyA-mRNA samples in RNA loading buffer (without RNA 

loading dye) were heated to 65°C for 15 minutes, spin centrifuged, directly put on ice and 

completed with the RNA loading dye. Then they were loaded onto a 1.2 % denaturing agarose 

gel (with 1x MOPS buffer+ 6.5 % formaldehyd) and electrophoretically separated at 80 V for 5-

6 hours untill the bromphenol blue was migrated 10.5 cm from the top of the gel. The RNA was 

capillary transfered overnight in 10x SSC to a Gene Screen Plus Hybridization transfer nylon 

membrane and was crosslinked with 0.12 J/cm2 UV-light (wavelength 254 nm) for 1 min. The 

membrane was prehybridised at 50°C overnight in dextran sulfate hybridisation buffer then 

hybridised with the radioactively labelled mouse CREB probe in hybridisation buffer at 50°C for 

24 hours. The unspecifically bound, radioactively labelled probe was washed away with low 
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stringency buffer (usually two times for 7 minutes) and optionally with high stringency buffer 

(one to two times for 7 minutes). Fuji medical X-ray film (Super RX) was used to detect the 

specific mRNA signals and was usually exposed at −80°C for 24-48 hours.  

10x formaldehyde RNA loading dye   1 mM EDTA, pH 8.0 

       0.25 % bromphenol blue 

       0.25 % xylene cyanol 

       50 % glycerol 

RNA loading buffer     10 µg total RNA in 4.5 µl RNAse free water 

       1x MOPS 

       6.5 % formaldehyde 

       50 % formamide 

       2x RNA loading dye 

10x MOPS      0.4 M MOPS 

0.1 M sodium acetate 

0.01 M EDTA pH 8.0 

dextran sulfate hybridisation buffer    10 % dextran sulfate  

       1 M NaCl 

       1 % SDS 

low stringency buffer     2x SSC  

0.1 % SDS 

high stringency buffer    0.1x SSC  

0.1 % SDS 

20x SSC      3 M NaCl 

       0.3 M sodium citrate 

RNAse free water     0.1 % DEPC in distilled water 

3.2.5 Polymerase chain reaction (PCR) 

3.2.5.1 Reverse transcription 

In order to produce a probe against the gene of mouse CREB-1 and analyze the presence of 

CREB-1 isoforms total RNA was isolated from C2F3 cells (according to 3.2.4.1). Reverse 

transcription was made from 1 µg total RNA of myoblasts, confluent cells and myotubes using 

QuantiTect Reverse Transcription Kit according to the manual of the manufacturer (20 µl final 

volume).  
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3.2.5.2 PCR 

2 µl of the cDNA samples of growing myoblasts, confluent myoblasts and myotubes were used 

as a template in the CREB isoform specific PCR reaction with mCREB-103-5´ and mCREB-

396-3´ primers. 2 µl cDNA sample of growing myoblasts was used in CREB probe PCR reaction 

with mCREB 418 5´ and mCREB 962 3´ primers. 10 µl of PCR reactions were run on a 2 % 

agarose gel to visualize the PCR products. 

Usual PCR reaction 

2 µl cDNA 

1.5 mM MgCl2 

0.25 mM dNTP 

1 µM primer 1 and 2 

1x PCR buffer without MgCl2 

2.5-5 U Taq-Polymerase 

 

CREB isoform specific PCR 

92°C  2 min 

92°C  30 sec 

 

66°C  1 min 

72°C  1 min 

72°C  10 min 

4°C  ∞ 

CREB probe PCR 

92°C  2 min 

92°C  30 sec 

57°C  1 min   
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30x
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4°C  ∞ 
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   1 % NP-40 

   1 mM MgCl2 

   0.5 mM EDTA 

   0.1 mM EGTA 

   10 mM β-glycerophosphat 

   10 mM NaF 

   5 mM DTT 

   0.5 mM Na3VO4  

   1 mM PMSF 

3.2.6.2 Nuclear and cytoplasmatic protein preparation 

Cells were washed with ice cold PBS, scraped in PBS+phosphatase inhibitors and centrifuged at 

200 x g at 4°C for 10 minutes. The pellet was resuspended in 1 ml hypotonic buffer (HB) and 

centrifuged at 200 x g at 4°C for 5 minutes. The pellet was resuspended in 200 µl HB+0.2 % NP-

40 buffer, and centrifuged at 17,700 x g at 4°C for 30 seconds. The supernatant was considered 

the cytoplasmatic fraction and the pellet was considered the nuclear fraction. The cytoplasmatic 

fraction was stored at –80°C and the nuclear fraction was resuspended in 20-100 µl HB+20 % 

glycerol buffer. The same volume (20-100 µl) HB+20 % glycerol+0.8 M NaCl buffer was added, 

the samples were incubated at 4°C for 30 min with constant mixing on a rotating wheel and 

centrifuged at 17,700 x g at 4°C for 10 minutes. The supernatant (nuclear extract) was aliquoted 

and stored at –80°C. Protein concentration was determined by Biorad Protein Assay according to 

Bradford [82]. 

PBS+phosphatase inhibitors  1 mM Na3VO4

5 mM NaF  

10 mM nitrophenylphosphate 

10 mM β-glycerophosphate 

in PBS 

Hypotonic buffer (HB)  20 mM Hepes (pH 7.9) 

1 mM Na3VO4

5 mM NaF 

10 mM nitrophenylphosphate 

10 mM β-glycerophosphate 

1 mM Na2MO4

0.1 mM EDTA 

1x protease inhibitors cocktail (Boehringer/Roche) 
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Hypotonic buffer+0.2 % NP-40 

Hypotonic buffer+20 % glycerol 

Hypotonic buffer+20 % glycerol+0.8 M NaCl 

3.2.6.3 Protein gel electrophoresis 

Denaturing SDS polyacrylamide gel electrophoresis (SDS-PAGE) was done according to 

Lämmli [83]. A 4 % SDS stacking gel and a 12.5 % SDS separation gel were cast in a Hoefer 

Tall Mighty Small SDS-PAGE chamber. Each sample was boiled for 5 minutes in 6x SDS 

loading dye before loading. Per lane, 6-8 µg nuclear protein or 30 µg total protein was loaded. 

The size of separated proteins was estimated using the PageRuler Prestained Protein Ladder. The 

gel was run in running buffer at 10-15 mA with constant current for 3-4 hours. 

stacking gel    0.1 % SDS 

     125 mM Tris pH 6.8 

    4 % acrylamide/bisacrylamide (29:1) 

    0.1 % APS 

    0.01 % TEMED 

separation gel    0.1 % SDS 

     375 mM Tris pH 8.8 

    12.5 % acrylamide/bisacrylamide (29:1) 

    0.1 % APS 

     0.01 % TEMED 

10x running buffer   250 mM Tris 

2 M glycine 

1 % SDS 

6x SDS protein loading dye  125 mM Tris pH 6.8 

     3 mM EDTA 

     20 % glycerol 

     9 % SDS 

     0.05 % bromphenolblue 

     10 % β-mercaptoethanol 

3.2.6.4 Western Blot 

After the run, the separation gel was transferred to an Optitran BA-S 85 reinforced nitrocellulose 

membrane (Whatmann) in western blot transfer buffer by 12.5 V for two and a half hour in a 

Hoefer transfer chamber. To ensure equal protein loading, Ponceau S staining was done. The 

membrane was saturated in blocking buffer for 1 hour, probed with the first antibody in blocking 
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buffer for 1 hour (at room temperature) or overnight (at 4°C). The membrane was washed in 

TBST three times for 10 minutes, then probed with the secondary antibody conjugated with 

horseradish peroxidase (HRP) in blocking buffer at room temperature for 1-2 hours and washed 

in TBST five times for 10 minutes. An Enhanced chemiluminescence (ECL) detection kit was 

used to visualize the horseradish peroxidase conjugated secondary antibody-first antibody 

complex and light emission was captured on Fuji medical X-ray film (Super RX) by 

autoradiography. To reprobe a membrane it was stripped in stripping buffer at 50°C for 30 

minutes. Then it was washed 5 times in TBST and blocked again in blocking buffer for 1 hour 

followed by probing with the new first antibody. 

transfer buffer    25 mM Tris 

0.2 M glycine 

0.1% SDS 

20 % methanol 

10x TBST    20 mM Tris pH 7.5 

     150 mM NaCl 

0.5 % Tween-20 

blocking buffer   5 % (w/v) non-fat milk powder 

     1x TBST 

stripping buffer   50 mM Tris pH 6.8 

     2 % SDS 

     0.1 M β-mercaptoethanol 

3.2.6.5 Immunoprecipitation 

In order to determine the kinase activity of endogenous AMPKα1 or the AMPKα1-CA, the 

kinase was immunoprecipitated with a specific antibody. The cells were washed two times with 

PBS and dried in air. 0.75 ml lysis buffer was added (per 10 cm dish) and incubated at 4°C for 

30 min with constant mixing on a rotating wheel. The cells were scraped and centrifuged at 

13,000 x g at 4°C for 20 min. The supernatant was put into a new 1.5 ml tube and protein 

concentration was measured according to Bradford. 200 µg of protein was taken and the volume 

was adjusted to 1 ml with lysis buffer. In the preclearing step, 10 µl Protein A-G-beads were 

given to the lysate and incubated at 4°C for 1 hour with constant mixing on a rotating wheel. The 

samples were centrifuged at 610 x g for 5 minutes and the supernatant was transferred into a new 

1.5 ml tube. AMPKα1-CA was immunoprecipitated by 10 µg anti-c-myc antibody, the 

endogenous AMPKα was immunoprecipitated by 1:100 anti-AMPKα antibody (Cell Signaling) 

or by 1:50 anti-AMPKα antibody (gift from Dr. Carling) at 4°C for 1 hour with constant mixing 
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on a rotating wheel. 40 µl Protein A-G-beads were added to the samples and incubated at 4°C 

overnight with constant mixing on a rotating wheel. The immunoprecipitated proteins were 

pelleted by centrifugation at 610 x g at 4°C for 1 minute. The supernatant was kept for western 

blot. The pelleted complex was washed two times with buffer A and two times with buffer B. 

One half of the beads was mixed with 6x SDS loading dye for Western blotting, the other half 

was analyzed in the kinase assay. 

Lysis buffer (Buffer A)  50 mM Tris pH 7.5 

1 mM EDTA 

1 mM DTT 

10 % glycerol 

50 mM NaF 

5 mM sodium pyrophosphate 

1 mM benzamidine 

0.1 mM PMSF 

1 % Triton-X 100 

Buffer B    50 mM Tris pH 7.5 

1 mM EDTA 

10 % glycerol 

1 mM DTT 

3.2.6.6 Kinase assay 

In order to measure the kinase activity of endogenous AMPKα1 or the AMPKα1-CA, kinase 

assay was performed. The AMPK kinase bound beads were resuspended in 30 µl kinase buffer 

and incubated at 30°C for 30 minutes. The reaction was stopped by centrifugation at 9,000 x g 

for 30 seconds and the supernatant was transferred into a new 1.5 ml tube. 15 µl supernatant was 

applied onto a phosphocellulose P81 Whatman cation exchange paper. It was washed with 1 % 

H3PO4 three times for 20 minutes each, then it was finally washed with acetone and dried in air. 

The immunoprecipitated AMPK enzyme phosphorylates the SAMS peptide 

(HMRSAMSGLHLVKRR), so the SAMS peptide labelled with radioactive phosphate was 

measured with scintillation counting. 

Kinase buffer    40 mM Na-Hepes pH 7.0 

0.2 mM AMP  

80 mM NaCl  

0.8 mM DTT  

5 mM MgCl2  



                                                                                                                       Materials and Methods 

 37

10 % glycerol  

0.2 mM SAMS peptide  

0.18 mM ATP (cold)+0.02 mM 2 µCi 32P γATP (hot) 

3.2.6.7 Phosphatase treatment of nitrocellulose membrane 

In order to analyze the phosphorylation status of the CREB-1 double bands SDS-PAGE was 

performed and the proteins were transferred to Optitran BA-S 85 reinforced nitrocellulose 

membrane (Whatman). The membrane was blocked in blocking buffer for one hour and then 

incubated in phosphatase buffer with constant mixing on a rotating platform at 4°C overnight. 

The membrane was washed with PBS-0.1 % Tween 20 for 5 minutes, then with TBST three 

times for 10 minutes each. Afterwards the normal western blot protocol was followed with the 

first antibody probing and etc. 

Phosphatase buffer   1 % BSA 

     0.1 % Triton X-100 

     2 mM MnCl2

     5 mM DTT 

     1200 U/ml lambda-phosphatase 

     in TBS 

3.2.7 Reporter gene assay 

The promoter activities were determined by luciferase reporter gene assay with two expression 

vectors. pRL-CMV vector consists of a constitutively active cytomegalovirus promoter (CMV) 

upstream of the renilla luciferase gene of the sea pansy Renilla reniformis. The second plasmid 

with the promoter of interest had the cytochrome c pro moter fragment to be analyzed upstream 

of the firefly luciferase gene of the firefly Photinus pyralis. The plasmids were transfected into 

logarithmically growing (12-well plate seeded) myoblasts with Metafectene or with 

Lipofectamine 2000. Usually 3-6 parallel samples were used. Non-confluent myoblasts were 

analyzed 24 hours after transfection, confluent myoblasts 48-72 hours after transfection, 

myotubes were analyzed 96-144 hours after transfection. The cells were washed with PBS and 

lysed in 200 µl Passive lysis buffer per well. After 5 minutes incubation the cells were collected 

and centrifuged at 20,000 x g at 4°C for 10 minutes. The supernatant was transferred in a new 

tube and a 50 µl aliquot was used in 400 µl firefly buffer+100 µl injected firefly substrate buffer. 

A second 50 µl aliquot was used in 400 µl renilla buffer+100 µl injected renilla substrate buffer. 

Light emission was detected with a Sirius luminometer for 10 seconds. The values from 
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transfected cells were corrected with the values of untransfected cells and each firefly value was 

normalized to its renilla value according to the following equation: 

Renilla  tonormalized lueFirefly va
cells) cted(untransfeRLUcells) ed(transfectRLU
cells) cted(untransfeRLUcells) ed(transfectRLU

RenillaRenilla

FireflyFirefly

=
−
−

 
 

Firefly buffer    25 mM glycine-glycine pH 7.8 

     1 mM DTT 

     15 mM KH2PO4 

15 mM MgSO4 

   4 mM EGTA 

Firefly substrate buffer  25 mM glycine-glycine pH 7.8 

     15 mM MgSO4 

     4 mM EGTA 

     2 mM DTT 

     0.2 mM D-Luciferine 

Renilla buffer    0.5 M NaCl 

     0.1 M KH2PO4 

     1 mM EDTA 

     0.02 % BSA 

     0.6 mM NaN3 

     pH 7.6 

Renilla substrate buffer  renilla buffer+0.2 µM coelenterazine 

3.2.8 Microscopy 

3.2.8.1 Indirect immunofluorescence 

C2C12 cells were grown on a 4 cm cell culture dish and differentiated to myotubes with horse 

serum for 4-7 days. Cells were washed twice with PBS and fixed with methanol at −80°C for 10 

minutes. Then the cells were washed twice with PBS and twice with PBS-0.2 % gelatine. Mouse 

monoclonal 1F11 anti-MHC antibody was used in a dilution of 1:2 at 37°C for 45 minutes. The 

cells were washed twice with PBS, two times with PBS-0.2% gelatine and fluorescein-

conjugated antibody raised against mouse IgG was added in 1:50 dilution at 37°C for 30 

minutes. The cells were washed twice with PBS, twice with PBS-0.2% gelatine and the nuclei 

were stained with 1 µg/ml Hoechst 33258 diluted in PBS. After two final washing steps with 

PBS, the treated area of the dish was quickly dried and covered with 10 µl Mowiol buffer and a 
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cover slip. The fluorescein labelled antibody was visualized with a Zeiss Axiophot 

immunofluorescence microscope and fusion index was determined with the help of Perfect 

Image software according to the following equation: Fusion index [%]=(nuclei in myotubes/total 

nuclei) x 100. Four independent areas were analyzed and an average of them was calculated. 

Mowiol buffer   2.4 g Mowiol 4-88 

6 g glycerol 

    6 ml H2O 

    12 ml 0.2 M Tris pH 8.5 

    2.5 % 1,4-diazobicyclo-(2.2.2)-octane DABCO 

3.2.8.2 Intracellular calcium measurement 

To determine the intracellular calcium concentration of cells, they were raised on cover slips. 

Before the measurement, the culture medium was aspirated and the cells were washed two times 

with PSS buffer, then loaded with PSS buffer containing 5 µM Fura-2 AM usually for 30-60 

minutes. All measurements and the incubation steps were performed at 37°C. To reduce the 

background, Fura-2 AM was removed before the measurement by washing the cells with PSS 

buffer. Dual wavelength measurements of Fura-2 AM fluorescence were performed using a setup 

based on a Zeiss microscope equipped with a PLAN Neofluar 16x objective. Emission 

wavelength of 510 nm and excitation wavelength of 340 nm/380 nm were achieved with a 

multiway wavelength illumination system (POLYCHROME II). Spatiotemporal Ca2+ 

distributions were determined using a CCD-camera with 100 ms exposure time and 2 fold 

binning. Acquisition and analysis of the fluorescence images was done by TillVision (v4.01) 

software. All signals were background corrected and the ratio of the excitation at 340 nm/380nm 

was used for analysis. 

PSS buffer   118 mM NaCl  

5 mM KCl  

1.6 mM CaCl2  

1.2 mM MgCl2

24 mM HEPES 

10 mM glucose 

pH 7.4 



                                                                                                                       Materials and Methods 

 40

3.2.9 Statistical analysis 

Calculating the significance between the samples two-tailed, Student´s t-test was performed with 

unpaired, unequal distribution and p value was illustrated to be significant, when the value was 

less than or equal with 0.5. 

3.2.10 Software tools 

AIDA 2.1  

TillVision v4.01 

Perfect Image 
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4 Results 

4.1 In vitro model for muscle differentiation and mitochondrial 

biogenesis 
The mouse skeletal muscle cell lines C2C12 and C2F3 retain their potency to differentiate 

from mononucleated, growing myoblasts in a “muscle progenitor” stage through a stage of 

confluent, quiescent myoblasts to multinucleated myotubes in an end-differentiated stage [80]. 

We chose this model to study mitochondrial biogenesis because the cells are easy to maintain 

and differentiate and the amount of mitochondria increases during differentiation [2,3].  

 

 
Figure 6. C2F3 cells during differentiation  

Growing myoblasts were split every two to three days, but were not allowed to reach confluence since this 

decreases the differentiation capacity. For differentiation, cells were seeded at 50-80 % confluence. After 

reaching 100% confluence, growth medium was changed to differentiation medium containing 2 % horse 

serum and the cells were kept for additional three to five days. The differentiation level increased with time 

and reached a stationery phase after three to five days. Myotubes were distinguishable from myoblasts under 

the light microscope, as they were larger and had several nuclei. 

4.1.1 Expression of differentiation markers during myogenesis 

Since it is not possible to induce a state of 100 % differentiation, every myotube culture 

contains myoblasts as well. To quantify differentiation, we calculated the fusion index, the ratio 

of nuclei in myotubes vs. all nuclei by double staining for a differentiation marker (MHC) and 

nuclei, respectively (Figure 7).  
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Figure 7. MHC expression of differentiated C2C12 myotubes  

After cell fixation the differentiation marker myosin heavy chain (MHC) was stained with an anti-myosin 

heavy chain antibody (red) while the nuclei were visualized with Hoechst 33258 staining (blue). The right 

panel shows the overlay of the two staining. The numbers illustrate the calculated fusion indices of the 

representative areas at the right side.  

 

The number of nuclei in MHC positive myotubes were divided by the total number of nuclei, 

resulting in the fusion index. Usually the fusion index was between 40-78 %.  

During muscle differentiation several other proteins like myogenin, MyoD, myf5 and 

MRF-4 are also upregulated [84]. Western blot analysis was performed from nuclear extracts of 

C2F3 cells to visualize the myogenin protein, which is a good marker for the activated muscle 

differentiation program. Figure 8 shows that myogenin is not present in growing myoblasts, but 

appears in confluent myoblasts and remains in myotubes. MHC and myogenin expression 

indicate that by fusion, the muscle differentiation program of C2C12 and C2F3 muscle cells is 

indeed executed. 
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Figure 8. Myogenin expression in differentiating C2F3 cells  

Nuclear extracts were prepared from four parallel samples of myoblasts, confluent cells and myotubes and 

were probed by Western blot with antibodies against myogenin or β-actin, which was used as a loading 

control. 

 

4.1.2 Intracellular calcium levels in myoblasts and myotubes 

As a second messenger, calcium is involved in several physiological pathways and plays 

an important role in the muscle differentiation process [19]. The elevation of intracellular 

calcium by the ionophore A23187 was shown to moderately induce transcription of cytochrome 

c and its promoter activity [85] as well as the phosphorylation level of AMPK [22]. Furthermore 

CaMKIV, which is one of the protein kinases phosphorylating and thus activating CREB-1 and 

which is also known to be involved in the mediation of mitochondrial proliferation [86], 

upregulates the expression of mitochondrial enzymes upon increased intracellular calcium 

concentrations [21]. Thus, we addressed the question whether resting intracellular calcium 

concentration differs between myoblasts and myotubes. Calcium levels were measured by 

staining with a fluorescent calcium binding dye, Fura-2 and it was found that the 340/380 ratio, 

reflecting the calcium concentration, was significantly higher in myoblasts compared to 

myotubes (Figure 9). 
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Figure 9. Calcium concentration in C2C12 cells during the differentiation process 

Intracellular calcium concentration was determined by fluorescence measurement of the calcium indicator 

Fura-2 and the 340/380 ratios are illustrated on the y axis. C2C12 myoblasts and myotubes were loaded for 60 

minutes with Fura-2 followed by a 5-10 minutes post incubation. Data are mean ± standard deviation obtained 

from three independent experiments. ** indicates a significant difference (p<0.01) between myoblasts and 

myotubes. 

 

However, time course experiments showed that Fura-2 uptake was higher in myotubes 

compared to myoblasts (data not shown). Thus, to exclude artifacts according to an unequal 

concentration of Fura-2 in myoblasts vs. myotubes, fluorescence was determined every 10 

minutes during the loading period and five minutes after the loading. We observed a solid 

increase in the 340 or 380 nm mean fluorescence values during loading reflecting the rising level 

of Fura-2 in the cytosol (Figure 10A), but the ratio of 340/380 increased only moderately with 

the loading time (Figure 10B). In every time point, myotubes picked up more Fura-2 than 

myoblasts, but the ratio of 340/380 of myotubes was always smaller or similar to myoblasts 

during the whole loading process (Figure 10). 
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Figure 10. Calcium concentration of C2C12 cells during the loading procedure 

Intracellular calcium concentration was determined by fluorescence measurement of the calcium indicator 

Fura-2. C2C12 myoblasts (blue) and myotubes (orange and red color) were loaded from 10 to 60 minutes with 

Fura-2 followed by a five minutes post incubation period. Data are mean ± standard deviation obtained from 

three myoblast and four myotube samples. A the individual fluorescence intensities at 340 nm, 380 nm as well 

as B the ratios of 340/380 are illustrated on the y axis. ** indicates a significant difference (p<0.01), *** 

indicates a significant difference (p<0.001) between myoblasts and myotubes. Unless it is not indicated there 

were no significant differences between myoblasts and myotubes. 
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Since differentiation and probably mitochondrial biogenesis is initiated at the step of confluence, 

we measured calcium level in the confluent stage, in which cells were incubated either with 

differentiation medium containing horse serum or cultivated in fetal calf serum. It was suggested, 

that 100 % confluence is needed to execute the muscle differentiation program, while horse 

serum alone is not sufficient to induce differentiation. To study how cell density influences 

resting calcium, cells were seeded at low to high densities. The calcium concentration was 

significantly increased in confluent cells seeded at high cell density (95 %) in the presence of 

horse serum compared to cells cultivated at the same densities in fetal calf serum (Figure 11, 

right columns). However, cells seeded at low densities (30 and 60 %) did not show elevated 

calcium concentration upon change to horse serum (Figure 11, first four columns). Surprisingly, 

the fluorescence intensity of Fura-2 at 340 nm was enhanced about to two-three fold by horse 

serum, independent of the starting cell concentration (Figure 11, white columns). In conclusion, 

intracellular calcium levels were found to be higher in myoblasts compared to myotubes, while 

differentiation medium alone seems to increase calcium concentration in confluent cells, 

suggesting that calcium elevation occurs after the confluent stage during muscle differentiation. 

 

 
Figure 11. Calcium concentration in confluent C2C12 cells 

Intracellular calcium concentration was determined by fluorescence measurement of the calcium indicator 

Fura-2. The individual fluorescence intensities at 340 nm or the 340/380 ratios are illustrated on the y axis. 

Cells were seeded at 30, 60, 95 % cell densities two days before the experiment and cultivated in FCS. Cells 

were then cultivated with (+HS) or without horse serum (−HS) for additional 16 hours. Confluent myoblasts 

were loaded with Fura-2 for 1 hour followed by a 15 minutes post incubation period. Data are mean ± standard 

deviation obtained from five samples. *** indicates a significant difference (p<0.001) of 340 nm fluorescence 

values in the presence or absence of HS. ## indicates a significant difference (p<0.01) of 340/380 ratios in the 

presence or absence of HS. Unless it is not indicated there were no significant differences of 340/380 ratios in 

the presence or absence of HS. 
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4.1.3 α-actinin4 localization during differentiation 

Goffart et al. have recently identified a new palindromic sequence, which was found to be 

common in a large number of nuclear encoded mitochondrial genes. Proteins binding to this 

sequence were identified by preparative EMSA and MALDI/TOF. One of these cis-element 

binding proteins, α-actinin4, was shown to have an altered binding pattern in EMSA when 

myoblasts were compared to myotubes [87]. Thus, Western blot analysis from nuclear and 

cytoplasmic extracts of myoblasts and myotubes were performed to verify possible altered 

expression of α-actinin4. The levels of α-actinin4 in the cytoplasmic fraction of myoblasts, 

confluent cells and myotubes were equal (Figure 12A and C). However, compared to myoblasts 

the nuclei of myotubes and confluent cells showed a significant, two- to threefold higher content 

of α-actinin4 (Figure 12B and D). In both cellular fractions, two different proteins, β-actin and 

β-tubulin for cytoplasmic fractions and β-actin and histone H1 for nuclear fractions, respectively 

were used as loading controls. The expression levels of these loading controls correlated well 

with each other. The purity of nuclei was confirmed by additional Western blot analysis. β-actin 

is expressed about equally in cytoplasmic and nuclear fractions, histone H1 was only observed in 

the nuclei and as expected β-tubulin was found mainly in the cytoplasmic fractions (Figure 12E). 

The α-actinin4 nuclear translocation occurring during myogenesis indicates that it is a possible 

transcription factor, which binds the newly identified cis-element and may transactivate muscle 

specific genes. 
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Figure 12. Expression of α-actinin4 in nuclear and cytoplasmic fractions of C2F3 cells 

Western blots of A cytoplasmic and B nuclear fractions were prepared from myoblasts, confluent cells or 

myotubes and probed with antibodies as indicated. The intensity of bands was evaluated densitometrically for 

C cytoplasmatic and D nuclear fractions. Data are mean ± standard deviation obtained from four samples 

normalized to the loading controls. * indicates a significant difference (p<0.05), ** indicates a significant 

difference (p<0.01) of the α-actinin4/histone H1 ratio between myoblast values and confluent cells/myotube 

values. ## indicates a significant difference (p<0.01) of the α-actinin4/β-actin ratio between myoblast and 

myotube values. E Nuclear (N) and cytoplasmic proteins (C) were analyzed by Western blot side-by-side to 

control the purity of the nuclear fraction. 
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4.2 The role of AMPK in cytochrome c promoter regulation 

4.2.1 Cloning of AMPKα1-CA into pTRE2Hyg vector  

The truncation of the full-length AMPKα1 protein at position 312 creates an AMPK 

lacking the interaction domain with β and γ subunit, but preserves the kinase domain. This 

constitutively active AMPKα1-CA was successfully used in former studies [40,41,88] to 

investigate the effect of the kinase without the need of phosphorylation by the upstream kinase. 

The pcDNA3-AMPKα1-CA construct contains the sequence of the rat AMPKα1-CA 

downstream of a viral, constitutively active promoter. Our initial aim was to create a muscle cell 

line expressing AMPKα1-CA protein in an inducible manner. Therefore, we chose the 

Tetracycline (Tet) regulated system, in which the expression of the gene of interest is activated 

by the TRE (Tetracycline response element) promoter in the presence of the transactivator 

protein producing helper vector. In the presence of Tetracycline or its derivatives Doxycycline 

(Dox), the transactivator protein binds the ligand resulting in the inhibition of transcription (Tet-

Off system).  

In order to express the AMPKα1-CA in mammalian cells, its cDNA sequence was cloned 

from pcDNA3-AMPKα1-CA into the mammalian expression vector pTRE2Hyg. 

4.2.2 Generation of stable cell lines expressing tTA transactivator  

C2C12 E6 and C2C12 D3 clones were provided by Prof. Brüning (Köln), stably expressing 

the transactivator from the inserted plasmid pCMV-tTA and were tested for their Dox sensitivity 

using a pTRE2Hyg-Firefly reporter plasmid, which was transiently transfected to test the 

inducibility (Figure 13). Both clones expressed the Firefly protein, but D3 gave a higher absolute 

luciferase activity. In both cases the transcription from the TRE promoter was blocked in the 

presence of Dox, and 1 µg/ml was enough for at least a 5-fold decrease. However, an enzyme 

activity still remained with even 5 µg/ml Dox suggesting that the system is leaky. In the 

following experiments the C2C12 D3 clone was used and transfected with the pTRE2Hyg-

AMPKα1-CA plasmid to generate stable clones. 

 



                                                                                                                                                Results 

 
Figure 13. TRE promoter activity in TRE transactivator (tTA) expressing cells 

Firefly luciferase activity was measured in (A) C2C12 E6 or in (B) C2C12 D3 cells driven by the TRE 

promoter in the presence or absence of Dox. Data are mean ± standard deviation obtained from six samples. 

RLU: relative light units 

 

 C2C12 E6 and D3 cell lines were also tested for the optimal amount of Hygromycin B, the 

selection antibiotic to eliminate those cells, which did not take the plasmid. 100, 300, 500, 700, 

900 µg/ml Hygromycin B concentrations were given to the cell culture medium and the cell 

viability was monitored for five days. 700 µg/ml was enough to kill all the cells in five days, 

therefore this concentration was used in further experiments. 

4.2.3 Transfection, isolation and selection of AMPKα1-CA clones 

The C2C12 D3 cells were transfected with the pTRE2Hyg-AMPKα1-CA construct. The 

selection was started after two days in the presence of G418 (Neomycin) and Hygromycin B. 

Dox was also included in the medium to inhibit the expression of AMPKα1-CA. Growing clones 

were isolated after two weeks and transferred to separate wells. From 300 isolated clones 71 
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were further cultivated to a high scale. AMPKα1-CA expression was induced by removal of Dox 

for two days, total protein was extracted and the samples were tested for the expression of 

AMPKα1-CA by Western blot analysis. 

4.2.4 Analysis of AMPKα1-CA clones 

The AMPKα1-CA contains an N-terminal c-myc tag, which was used to detect the 

AMPKα1-CA expression in the transfected cells. Purified Myc-tagged coronin 7 protein was 

used as positive control while C2C12 D3 untransfected cells served as negative control (Figure 

14). The AMPKα1-CA protein has a predicted molecular weight of 37 kDa, but unfortunately in 

this range an artificial background band also appeared, which was present in the negative control 

D3 cells as well.  

 

 
Figure 14. AMPKα1-CA clones using anti-c-myc antibody 
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Western blot analysis of AMPKα1-CA expressing C2C12 D3 clones in the presence (+) or absence (−) of 

Dox. C2C12 D3 cells were used as negative control, purified coronin-7 Myc-fusion protein as positive control. 

The size of molecular weight markers is given in kDa. 
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To exclude this artifact we changed our strategy and used an AMPKα specific antibody instead 

of anti-c-myc antibody, which recognizes the endogenous wild-type AMPKα subunits (white 

arrow, molecular weight 63 kDa) but also well detects the truncated AMPKα1-CA protein (black 

arrow) at 37 kDa (Figure 15 and Appendix Figure 2).  

 

 
Figure 15. Western blot of AMPKα1-CA clones using anti-AMPKα antibody (showed 

partially) 

Western blot analysis of AMPKα1-CA expressing C2C12 D3 clones in the presence (+) or absence (−) of 

Dox. C2C12 D3 cells were used as negative control. White arrow shows the endogenous and black arrow the 

AMPKα1-CA proteins. The complete screening of AMPKα1-CA clones illustrated in the Appendix Figure 2. 

The size of molecular weight markers is given in kDa. 

 

Table 2 summarizes the results: From 71 clones 68 were analyzed and 49 were found to be 

positive for AMPKα1-CA expression, but none of them were Dox regulated, as AMPKα1-CA 

was produced also in the presence of Dox. Some clones seemed to be regulated by Dox, but this 

was not reproducible in further experiments. Clone 27 was chosen as strong expressor, clone 5 as 

intermediate and clone 1 as no expressor to analyze the effect of the constitutively active 

AMPKα1 subunit in latter experiments.  
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Table 2. Summary of the AMPKα1-CA clones1

 

Name*
Exp.#  Name Exp.  Name Exp.  Name Exp.  Name Exp. 

CA-1 -  CA-16 +  CA-31 -  CA-46 +  CA-61 + 

CA-2    CA-17 +  CA-32 -  CA-47 +  CA-62 - 

CA-3 -  CA-18 +  CA-33 +  CA-48    CA-63 + 

CA-4 +  CA-19 +  CA-34 +  CA-49 +  CA-64 + 

CA-5 +  CA-20 +  CA-35 +  CA-50    CA-65 - 

CA-6 -  CA-21 -  CA-36 -  CA-51 +  CA-66 + 

CA-7 -  CA-22 +  CA-37 +  CA-52 +  CA-67 + 

CA-8 +  CA-23 +  CA-38 +  CA-53 +  CA-68 + 

CA-9 +  CA-24 +  CA-39 -  CA-54 +  CA-69 + 

CA-10 -  CA-25 +  CA-40 +  CA-55 +  CA-70 + 

CA-11 -  CA-26 +  CA-41 +  CA-56 +  CA-71 + 

CA-12 -  CA-27 +++  CA-42 +  CA-57 -    

CA-13 +  CA-28 +  CA-43 +  CA-58 +    

CA-14 +  CA-29 -  CA-44 +  CA-59 +    

CA-15 -  CA-30 -  CA-45 +  CA-60 -    

 
1 The table summarizes the results of Western blot analysis from Figure 15 and Appendix Figure 2 illustrating  

the induction level of AMPKα1-CA. 

* indicates the name of the AMPKα1-CA clones, 

# illustrates the expression (+) or the lack (-) of AMPKα1-CA protein from whole cell extracts, 

+++ indicates strong AMPKα1-CA expression. 

 

4.2.5 Immunoprecipitation of AMPKα1-CA 

In order to study whether the AMPKα1-CA expressing cell line has an increased kinase 

activity, kinase assays were performed. The AMPKα1-CA protein was immunoprecipitated from 

an extract of the strong expressor CA-27 clone. To test the efficiency of the commercial antibody 

in immunoprecipitation experiments, different amounts were used and proteins bound to the 

beads were detected with the same AMPKα antibody. As depicted in Figure 16A, the AMPKα 

antibody could not completely deplete the expressed AMPKα1-CA protein from the supernatant 

of CA-27. Therefore, AMPKα1-CA protein was immunoprecipitated with a c-myc antibody. 

Figure 16B shows that 10 µg c-myc antibody was enough to completely precipitate the 

AMPKα1-CA protein from the cell lysate, as no protein was visible after immunoprecipitation in 

the supernatant. The beads specifically bound the AMPKα1-CA protein expressed by clone 27, 
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while beads incubated with extracts from clone 1, which does not express the fusion protein, 

showed no specific protein binding. Strong immunoreactivity is present in the molecular range of 

AMPKα1-CA, but a distinct AMPKα1-CA band is detected in the beads sample of clone 27, 

while it is missing from the beads sample of clone 1 (Figure 16B, rectangles). 

 

 
Figure 16. Immunoprecipitation of AMPKα1-CA by AMPKα or c-myc antibodies  

Western blot was probed with commercial AMPKα antibody. A Samples were prepared from AMPKα1-CA-

27 (strong expressor) cell lysate with 0.1, 1 or 5 µg AMPKα antibody (Cell Signaling) B The samples were 

prepared from AMPKα1-CA-27 and CA-1 (non expressing) cell lysates with 10 µg c-myc antibody. Lysate: 

cell lysate before immunoprecipitation, Supernatant: cell lysate after immunoprecipitation, Beads: proteins 

eluted from the beads after immunoprecipitation 

 

4.2.6 AMPKα1 and AMPKα1-CA kinase assay 

The kinase activity of AMPKα1-CA was determined from clone 27, clone 1 and C2C12 

D3 untransfected cells. The strong expressor cell line clone 27 showed an elevated AMPKα1-

CA kinase activity compared to the non-expressing clone 1 and the untransfected control (Figure 

17A). The presence of Dox did not influence the kinase activity in agreement with its inability to 

inhibit the expression of AMPKα1-CA. To compare the constitutively active to the endogenous 
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AMPKα1 activity, the endogenous kinase was immunoprecipitated with a commercial anti-

AMPKα antibody. Interestingly, no or very low kinase activity was obtained (Figure 17B), 

which could be a consequence of incomplete immunoprecipitation (Figure 16A). Thus, to study 

the endogenous AMPKα1 kinase activity an antibody provided by Dr. Carling was used to 

immunoprecipitate the endogenous AMPKα1 (Figure 17B). The basal kinase activity was found 

to be similar in myoblasts, confluent cells and myotubes (Figure 17C). However, the endogenous 

kinase activity was about eight times higher as the highest AMPKα1-CA kinase activity (Figure 

17A and C).  

In conclusion, we established a cell line expressing the AMPKα1-CA continuously, which 

has an elevated kinase activity. However, comparing AMPKα1-CA to the endogenous kinase 

activity there is an eight times difference between them. 

 
Figure 17. Endogenous AMPKα1 and AMPKα1-CA kinase assays  

A Kinase activity of the anti-c-myc Ab immunoprecipitated AMPKα1-CA from myoblasts of C2C12 D3 and 

AMPKα1-CA-1 (negative control) and CA-27 (strong expressor) cell lines in the presence (+) or absence (−) 

of Dox. B Endogenous AMPKα1 activity immunoprecipitated by Cell Signaling anti-AMPKα or anti-

AMPKα1 Ab provided by Dr. Carling. C Endogenous AMPKα1 activity immunoprecipitated by anti-

AMPKα1 Ab provided Dr. Carling from C2C12 myoblasts, confluent cells and myotubes. Data are from a 

single experiment. cpm: counts per minutes 
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4.2.7 Analysis of cytochrome c promoter activity in AMPKα1-CA 

expressing cells 

To investigate whether the constitutively active AMPKα1 activates the cytochrome c 

promoter we transfected stable AMPKα1-CA clones with a cytochrome c reporter gene construct 

containing the full length rat cytochrome c promoter upstream a firefly reporter gene and with a 

control CMV promoter-activated renilla reporter gene. The cell lysate used for luciferase 

measurement was also tested by Western blot to check the expression level of AMPKα1-CA. 

These results confirmed the former experiments, namely clone 1 used as negative control does 

not express the AMPKα1-CA, clone 5 expresses it in a moderate level and clone 27 is a strong 

expressor of the fusion protein (Figure 18).  

 

 
Figure 18. AMPKα1-CA protein expression level in AMPKα1-CA clones 

Western blot probed with anti-AMPKα Ab (Cell Signaling) was performed from the lysate of C2C12 D3, 

clone 1, clone 5 and clone 27 cell lines used for luciferase assays. All cells were maintained in the absence of 

Dox. White arrow shows the endogenous AMPKα and the black arrow the AMPKα1-CA proteins. 

 

Despite of the expression of AMPKα1-CA the cytochrome c promoter activity was neither 

elevated in the intermediate expressor clone 5 nor in the strong expressor clone 27 (Figure 19A). 

Confirming earlier experiments, Dox did not change the expression of AMPKα1-CA (Figure 18) 

hence it did not have any effect on the cytochrome c promoter activity (Figure 19A). The 

approach to transiently overexpress the AMPKα1-CA efficiently enough was not successful (Dr. 

Carling, personal communication). In order to come to the conclusion, we finally transiently 

cotransfected two dominant negative constructs, dominant negative AMPKα1 and α2, together 

with cytochrome c firefly and renilla reporter vectors. Cytochrome c promoter activity was 

determined in myoblasts, confluent cells and in myotubes. Overexpression of AMPK dominant 

negative constructs did not change the cytochrome c promoter activity, neither in myoblasts nor 

in confluent cells nor in myotubes (Figure 19B). However, the activity of cytochrome c promoter 

was increased several fold upon differentiation comparing myoblasts to myotubes, verifying the 

induction of the promoter upon myogenesis, previously shown [32]. 
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Figure 19. Cytochrome c promoter activity in (A) AMPKα1-CA stablely transfected cell 

lines or (B) transiently transfected cells  

A The promoter activity was measured in C2C12 D3 untransfected myoblasts or in stable myoblasts of clone 

1, 5, 27 in the presence (+) or absence (−) of Dox. B The promoter activity was measured in the presence of 

pcDNA3 empty vector, AMPKα1-DN or AMPKα2-DN (dominant negative) vectors in myoblasts, confluent 

cells or myotubes. Data are mean ± standard deviation obtained from (A) six or (B) nine samples. 
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4.3 CREB-1 is involved in cytochrome c promoter regulation 
 Former experiments of the laboratory suggested that CREB-1 is necessary for the 

activation of the cytochrome c promoter during muscle differentiation (see 2.3 and [32]).  

4.3.1 CREB-1 and ATF-1 during myogenesis 

 The expression pattern of CREB-1 isoforms was investigated in C2F3 myoblasts, confluent 

cells and myotubes. The total amount of CREB-1 proteins decreased during the differentiation 

program (Figure 20A and B) but the level of phosphorylated CREB-1 level remained unchanged 

(Figure 20C and D). Surprisingly, both the anti-CREB and anti-P133-CREB antibody, which 

recognizes Ser-133 phosphorylated CREB-1 proteins, detected two CREB-1 immunoreactive 

bands (Figure 20A and C) with an almost similar molecular weight (42 and 43 kDa). We called 

them CREB-1α and CREB-1∆ (see below), being the possible products arising from two 

different alternatively spliced isoforms of the CREB-1 gene product. The anti-CREB antibody 

also recognizes the ATF-1 protein with about 37 kDa molecular weight. The amount of ATF-1 

decreased during the differentiation as well (Figure 20A and G), while the P-ATF-1 level was 

highest in myoblasts, significantly decreased in confluent cells and increased again in myotubes 

(Figure 20C and H). One should note that for visualizing ATF-1 expression, the Western blot 

had to be exposed for much longer time periods, than for detecting CREB-1. However, this 

longer exposure time does not mean a lower ATF-1 level in these cells, as the antibody is only 

72 % homologous to the ATF-1 protein sequence in contrast to the 100 % homology to the 

CREB-1 protein. Ratios were calculated from the intensity of the upper (CREB-1α) and the 

lower CREB immunoreactive band (CREB-1∆). The CREB-1α/CREB-1∆ ratio increased about 

threefold during myogenesis (Figure 20A and E), while the P133-CREB-1α/P133-CREB-1∆ 

ratio was elevated significantly about eightfold in myotubes compared to myoblasts (Figure 20C 

and F).  
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Figure 20. Protein expression of CREB-1 family members during muscle differentiation 

Nuclear extracts were made from myoblasts, confluent cells and myotubes. A CREB-1 and ATF-1, or C P133-

CREB-1 and P-ATF-1 proteins were detected with the antibodies indicated on the left side of the picture. 

Histone H1 level was used as internal loading control and values were normalized to it. The total B CREB-1, 

D P133-CREB-1 or G ATF-1 level were densitometrically evaluated as well as the E CREB-1α/CREB-1∆, F 

P133-CREB-1α/P133-CREB-1∆ ratios or H P-ATF-1 protein amounts. Data are mean ± standard deviation 

obtained from three samples. * indicates a significant difference (p<0.05), ** indicates a significant difference 

(p<0.01), *** indicates a significant difference (p<0.001) between myoblast values and confluent/myotube 

values. Unless it is not indicated there were no significant differences between myoblast values and 

confluent/myotube values. 
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4.3.2 CREB-1 isoforms in C2F3 cells 

Western blots showing double CREB-1 immunoreactive bands initially led us to the first 

hypothesis that they are phosphorylated and unphosphorylated forms of CREB-1. By incubation 

with phosphatase, both phospho-133 CREB immunoreactive bands however disappeared, while 

the intensity of the CREB-1 immunoreactive bands remained unchanged (Figure 21), indicating 

that both bands are phosphorylated. 

 

  
Figure 21. Phosphatase treatment of CREB-1 immunoreactive bands  

Nuclear extracts of confluent cells were separated with SDS-PAGE and blotted to a nitrocellulose membrane. 

The membrane was treated with (+) or without (−) phosphatase followed by antibody probing, as indicated 

above the picture. 

 

Thus, alternatively, these double bands could be the CREB-1 family members CREB-1 and 

CREM. To investigate this, specific CREB-1 recognizing antibodies were used in nuclear 

extracts of C2F3 cells. The anti-CREB antibody from Cell Signaling recognizes every CREB-1 

family member: CREB-1, CREM and ATF-1, while the antibody from Upstate recognizes only 

CREB-1, but not CREM and ATF-1. A specific antibody was used from Santa Cruz directed 

against the exon 5 domain, which is present in CREB-1α but spliced out from the mRNA of 

CREB-1∆.  

The results showed that Cell Signaling and Upstate antibodies recognize the same double 

bands (Figure 22), which exclude the presence of the CREM protein. The Santa Cruz antibody 

detects only a single immunoreactive band with the same molecular weight as the upper band 

detected by Cell Signaling and Upstate antibodies. These Western blots thus indicate that these 

bands are the CREB-1α (upper band) and CREB-1∆ (lower band) isoforms present in C2F3 cell 

nuclei. 
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Figure 22. Identification of CREB-1α and CREB-1∆ protein isoforms by Western blot 

Nuclear extracts of confluent cells were probed with antibodies recognizing every CREB-1 family member 

(Cell Signaling), only the CREB-1 isoforms (Upstate) or exclusively the CREB-1α isoform. 

 

To further support the existence of CREB-1 isoforms generated by alternative splicing, 

semiquantitative RT-PCR reverse transcription was performed from mRNA of C2F3 cells. The 

primer pairs used for the PCR reaction were chosen to be specific for the two isoforms. PCR 

products for both isoforms were detected in myoblasts, confluent cells and myotubes as well 

(Figure 23A). Samples were taken from 22 to 36 cycles to determine the logarithmic phase of the 

PCR reaction for semiquantitative measurements. At 30 cycles the reaction was not in the 

exponential phase anymore, while 27 cycles were found to be still in the log phase (Figure 23A 

and B).  

 

 
Figure 23. Determining the log phase for semiquantitative RT-PCR 

A Reverse transcription was performed from mRNA of myoblasts (B), confluent cells (C) and myotubes (T). 

CREB-1 PCR, using primers specific for both isoforms was performed from 22 to 36 cycles. B 

Densitometrical evaluation of the intensity of CREB-1α and CREB-1∆ PCR products.  
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27 cycles were used to amplify cDNA samples of myoblasts, confluent cells and myotubes. 

However, no difference was found in the intensity of the CREB-1α and CREB-1∆ PCR products 

during muscle differentiation (Figure 24).  

 

 
Figure 24. Distribution of CREB-1α and CREB-1∆ mRNA isoforms during myogenesis 

A Reverse transcription was performed from mRNA of myoblasts, confluent cells and myotubes and CREB-1 

PCR using primers specific for both isoforms was performed for 27 cycles. B Densitometrical evaluation of 

the intensity of CREB-1∆/CREB-1α PCR products. Data are mean ± standard deviation obtained from three 

samples. There were no significant differences between myoblast values and confluent/myotube values. 

 

To further analyze the transcription products of the CREB-1 gene, Northern blot analysis 

was performed from mRNA samples of C2F3 cells (Figure 25). However, in contrast to previous 

NCBI database information, the mRNA of mouse CREB-1α is 8431 nucleotides, of CREB-1∆ is 

8389 nucleotides long according to most recent data. Since, the only difference between the two 

sequences is the 42 bp exon 5 coding 14 amino acid, it was impossible to separate the 8.4 and 8.3 

kb sequences from each other with Northern blot technique. In these muscle cells, beside CREB-

1α and ∆, CREB-1β was also present at mRNA level and further experiments suggested that the 

double bands showed by Figure 23 and 24 correspond to CREB-1α and ∆ (data not shown). 
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Figure 25. CREB-1 gene expression detected by Northern hybridization 

PolyA-mRNA was prepared from myoblasts, confluent cells and myotubes and hybridized to a probe against a 

mouse CREB-1 sequence, which is common in both isoforms. At the left, sizes of RNA molecular weight 

marker are given in bp. 

 

4.3.3 Knock-down of CREB-1 by siRNA technology 

In order to further analyze whether CREB-1 regulates the cytochrome c promoter, we 

wanted to specifically inhibit its expression by siRNA directed against the mRNA of CREB-1. 

Four different siRNA sequences were used in a pool and they were able to decrease the protein 

level after one to three days. The highest knock-down effect was reached 24 hours after 

transfection, thus this time point was used in latter experiments (Figure 26A and B). However, 

the negative pool siRNA used as a negative control also inhibited CREB-1 protein expression, 

although the difference was not as strong as in the case of CREB-1 siRNA (Figure 26A and B). 

To exclude such off-target effects caused by high amounts (100 nM) of siRNA, in the next 

experiment 25-100 nM siRNA were tested. However, each concentration of negative controls 

(negative #1 and negative pool) interacted with the endogenous CREB-1 protein expression, and 

even in the presence of the transfection reagent Lipofectamine 2000 alone, a similar effect was 

detected (Figure 26C and D).  
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Figure 26. siRNA against CREB-1 decreases CREB-1 protein 

A C2F3 cells were transfected with 100 nM negative pool (neg.) control siRNA or with 100 nM siRNA against 

CREB-1 for 1-3 days, nuclei were extracted and CREB-1 protein amount was checked by Western blot. B 

Densitometrical evaluation of the intensity of the CREB-1 protein bands normalized to β-actin given in % of 

untransfected control. C 25-100 nM negative #1 or negative pool siRNA were used as siRNA control and 25-

100 nM siRNA against CREB-1 was transfected to knock-down CREB-1 protein expression. The nucleus 

preparation was performed 24 hours after transfection and CREB-1 protein amount was checked by Western 

blot. D Densitometrical evaluation of the intensity of the CREB-1 protein bands normalized to β-actin given in 

% of untransfected control. C: untransfected control, L: Lipofectamine 2000 alone. 

 

This means that the transfection procedure itself unspecifically counteracted with the 

endogenous CREB-1 protein expression, although the specific siRNA decreased CREB-1 

expression according to the siRNA concentration (25 nM, 50 nM, 100 nM siRNA caused 74 %, 

82 %, 85 % knock-down of CREB-1 protein level, respectively) (Figure 26C and D). 

 Nevertheless, we cotransfected the CREB-1 siRNA with a cytochrome c reporter construct 

to see whether knock-down of CREB-1 could interact with the promoter activity. Different 

concentration of siRNA against CREB-1 decreased the cytochrome c promoter activity as did the 

negative control #1 or negative pool control (Figure 27). This experiment and the Western blots 

showed again that the transfection itself could cause an unspecific off-target effect counteracting 

with the CREB-1 protein expression and/or with the cytochrome c promoter activity. Thus, the 

siRNA approach was not suitable to answer the question whether CREB-1 interacts with the 
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cytochrome c promoter. Therefore, to solve this problem we changed our strategy using a 

constitutively active and dominant negative form of CREB-1, respectively. 

 

 
Figure 27. Cytochrome c promoter activity upon siRNA cotransfections 

5-100 nM control siRNA (negative #1 and negative pool) or 5-100 nM siRNA against CREB-1 were 

cotransfected with cytochrome c promoter-firefly and renilla reporter vectors. The cytochrome c promoter 

activity was measured 24 hours after transfections, normalized to renilla values and given in % of 

untransfected control. Data are mean ± standard deviation obtained from three samples.  

 

4.3.4 The effect of CREB-1 constructs on the cytochrome c promoter 

C2/CREB is a constitutively active form of CREB-1, which contains the activation domain 

of CREB-2 fused to the basic DNA binding/Leucine zipper dimerization domain (bZIP) of 

CREB-1 and acts as a CREB-1 transcriptional activator, independently of the phosphorylation 

state. It was cotransfected with cytochrome c promoter-firefly and renilla reporter vectors in the 

presence or absence of a dominant negative CREB construct called A-CREB (plasmids were 

kind gifts of Prof. Thiel, Homburg). A-CREB consists of only the basic DNA binding/Leucine 

zipper dimerization domain (bZIP) but lacks the N-terminal activation domain. Therefore it 

serves as a specific repressor by dimerizating with the endogenous CREB-1 and thus forming an 

inactive CREB-1/A-CREB dimer. The α-inhibin promoter was used as a positive control as it 

contains well-described CRE sequences [88]. Cytochrome c and α-inhibin promoters were 

upregulated four and twelve times, respectively in confluent cells compared to myoblasts (Figure 

28A and B). The C2/CREB construct significantly activates the cytochrome c and α-inhibin 

promoters in myoblasts as well as in confluent cells (Figure 28A and B). Cotransfecting the 

dominant negative A-CREB significantly diminished the C2/CREB overactivated promoter 
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activity, in myoblasts and also in confluent cells (Figure 28A and B). This suggests that CREB-1 

directly regulates the cytochrome c promoter. 

 

 
Figure 28. Cytochrome c and α-inhibin promoter activities modulated by CREB-1 

Cytochrome c or α-inhibin promoters were cotransfected with renilla control and with C2/CREB constitutively 

active (light grey column) or with pCMV empty (dark grey column) or with A-CREB dominant negative 

vector (black column). A Cytochrome c or B α-inhibin promoter activities were measured from myoblasts or 

confluent cells and normalized to the basal promoter activities of myoblasts. Data are mean ± standard 

deviation obtained from 12 samples and normalized to the transfected cells lacking the C2/CREB plasmid. # 

indicates a significant difference (p<0.05), ### indicates a significant difference (p<0.001) in the presence or 

absence of C2/CREB construct (white and light grey columns). * indicates a significant difference (p<0.05), 

*** indicates a significant difference (p<0.001) between C2/CREB construct alone (light grey column) and 

C2/CREB+pCMV (dark grey column) or C2/CREB construct alone (light grey column) and C2/CREB+A-

CREB constructs (black column). Unless it is not indicated there were no significant differences among the 

samples. 

 

4.3.5 Modulating the activity of PKA and PP2 phosphatases 

Since Ser-133 phosphorylation of CREB-1 is necessary for its transcriptional activity, we 

finally addressed the question, which kinase(s) or phosphatases modulate its phosphorylation in 
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muscle cells. The activity of protein kinase A (PKA) and PP2 phosphatases were blocked or 

activated by a specific activator or inhibitors, respectively. PP2A phosphatase was blocked with 

okadaic acid, while PP2B (calcineurin) was inhibited by Cyclosporin A. PKA was activated with 

a specific activator called Sp-5,6-DCI-cBIMPS and inhibited with the inhibitor Rp-8-CPT-

cAMPS. The toxicity of the applied chemicals was monitored for 4-5 days (data not shown) and 

concentrations, which were not toxic, were used in the latter experiments. The phosphorylation 

of CREB-1 was analyzed by Western blot with the phosphoserine-133 specific antibody in C2F3 

myoblasts. Okadaic acid and Cyclosporin A phosphatase inhibitors increased the 

phosphorylation of CREB-1 (Figure 29A, B and 30A, B). Sp-5,6-DCI-cBIMPS activated and 

Rp-8-CPT-cAMPS blocked the phosphorylation of CREB-1 as they are supposed to activate or 

inhibit the activity of PKA, respectively (Figure 29C, D and 30C, D). However, 5 nM Okadaic 

acid seemed to modify the cell shape of differentiated C2F3 myotubes, since in contrast to long 

myotubes in untreated or with 50 pM or 500 pM Okadaic acid treated wells, round myotubes 

appeared on the 5 nM Okadaic acid treated wells (data not shown). 

 

 
Figure 29. PKA and PP2 phosphatases influences the phosphorylation status of CREB-1 

Myoblasts were treated for 24 hours in the presence of phosphatase and PKA inhibitors or PKA activator. 

Western blots of isolated cell nuclei were probed with P133-CREB antibody and representative pictures are 

shown. A PP2A was inhibited with Okadaic acid B PP2B (calcineurin) with Cyclosporin A, C PKA was 

activated with Sp-5,6-DCI-cBIMPS D and inhibited with Rp-8-CPT-cAMPS with the given concentrations. 

Cells were treated with DMSO as negative control.  
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Figure 30. Quantitation of phospho133-CREB-1 intensities upon treatment with 

phosphatase and PKA inhibitor or PKA activator  
Myoblasts were treated for 24 hours in the presence of phosphatase and PKA inhibitors or PKA activator. 

Western blots of isolated cell nuclei were probed with P133-CREB antibody and evaluated densitometrically, 

normalized to β-actin and given as the % of untransfected control. Cells were treated with DMSO as negative 

control. A PP2A was inhibited with Okadaic acid B PP2B (calcineurin) with Cyclosporin A, C PKA was 

activated with Sp-5,6-DCI-cBIMPS D and inhibited with Rp-8-CPT-cAMPS with the given concentrations. A-

B data are mean ± standard error obtained from 2-3 independent experiments C-D data are mean ± standard 

deviation obtained from 2-3 samples. * indicates a significant difference (p<0.05), *** indicates a significant 

difference (p<0.001) between chemical treated and untreated samples. Unless it is not indicated there were no 

significant differences among the samples. 

 

 These activator and inhibitors were also included in cytochrome c promoter assays to 

evaluate whether alterations of Ser-133 phosphorylation of CREB-1 could change the activity of 

the promoter. Only Cyclosporin A increased moderately the cytochrome c promoter activity in 

C2F3 myoblasts, while other chemicals did not interact with our model promoter (Figure 31A). 

In differentiated myotubes none of the chemicals were able to change the cytochrome c promoter 

driven luciferase activity (Figure 31B). In summary, Cyclosporin A increased the Ser-133 

phosphorylation of CREB-1 as well as the cytochrome c promoter activity suggesting a possible 

role of PP2B (calcineurin) regulating the function of CREB-1 in muscle cells. 

 68



                                                                                                                                                Results 

 
Figure 31. Cytochrome c promoter activity in the presence of phosphatase and PKA 

inhibitors or PKA activator 
Cells were treated for A 24 or B 120 hours with the indicated kinase or phosphatase inhibitors or activator. 

PP2A was inhibited with Okadaic acid, PP2B (calcineurin) with Cyclosporin A and PKA was activated with 

Sp-5,6-DCI-cBIMPS and inhibited with Rp-8-CPT-cAMPS with the given concentrations. Cytochrome c 

promoter activity was determined A in myoblasts or B in differentiated myotubes. Data are mean ± standard 

deviation obtained from three samples. * indicates a significant difference (p<0.05) between untreated control 

and 2 µM Cyclosporin A treated cells. 

 

 

 69



                                                                                                                                          Discussion 

 70

5 Discussion 
Mitochondrial biogenesis is a well controlled and complex process. The pathways 

responsible for transmitting the signals for an increased amount of mitochondria are not well 

understood. To investigate candidates involved in this process, regulation of cytochrome c 

promoter during skeletal muscle differentiation was used as a representative model. Specifically, 

we asked the question whether the AMP activated kinase (AMPK) or the cyclic AMP-response 

element binding protein 1 (CREB-1) are responsible for regulating mitochondrial biogenesis in 

this situation.  

5.1 Comparison of undifferentiated and differentiated muscle cells 

5.1.1 Enhanced myogenic marker gene expression in differentiating muscle 

cells 

C2F3 or C2C12 mouse skeletal muscle cell lines were used to study mitochondrial 

biogenesis upon muscle differentiation in vitro. During this process, the mitochondrial amount as 

well as mitochondrial enzyme activities are elevated comparing multinucleated myotubes with 

precursor myoblasts [2]. The differentiation program of skeletal muscle is mediated by the 

family of myogenic regulatory factor (MRFs) proteins. The primary MRFs, MyoD and Myf-5 

determine the cell faith, while the secondary MRFs, myogenin and MRF-4 induce myoblasts to 

fuse with each other to myotubes. MRFs heterodimerize through their basic helix-loop-helix 

domain (bHLH) with other bHLH transcription factors and bind the E-box cis-element of muscle 

specific gene promoters [89]. Myosin heavy chain (MHC) can be also used to determine the 

differentiation state of muscle cells, as its expression can be detected first at the time of myoblast 

fusion and remains high in muscle fibers, but is missing in growing myoblasts [90].  

Skeletal muscle cell lines were induced to differentiate by fusion of growing myoblasts to 

quiescent myotubes. Myogenin was detected by Western blot in confluent cells and myotubes 

but not in growing subconfluent C2F3 myoblasts (Figure 8). In parallel, MHC protein was 

exclusively expressed in differentiated C2C12 myotubes investigated by indirect 

immunofluorescence, showing that these cells were successfully differentiated.  

5.1.2 Altered intracellular calcium levels during differentiation 

 Calcium is an intracellular messenger involved in many cellular functions. In muscle cells 

after membrane depolarization calcium channels open in the sarcoplasmatic reticulum (SR) and 

the increase of intracellular calcium concentration is a prerequisite for actin-myosin interaction. 

Furthermore, calcium activates several calcium dependent protein kinases and phosphatases and 
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is essential for the ordered sequence of muscle differentiation. It has been shown that cell 

commitment, phenotypic differentiation as well as cell fusion need an increase of the 

intracellular calcium concentration [91]. In the presence of EGTA, an extracellular calcium 

chelator, myoblast differentiation was diminished, while the calcium ionophor A23187 promotes 

muscle differentiation, increasing the number of fused myotubes [92]. Upon chelating the 

intracellular calcium with the membrane permeable BAPTA-AM, the number of differentiated 

myotubes detected by immunofluorescence was suppressed in a dose dependent manner. 

Additionally, BAPTA-AM not only decreased the resting calcium level of treated myoblasts, but 

also the activated calcium influx mediated by storage activated calcium channels [93]. L-type 

calcium channels were found to contribute to the elevation of the intracellular calcium level in 

cultivated muscle cells, and inhibiting this calcium channel with specific inhibitors decreased 

expression of myogenin and disturbed myoblast fusion. At the same time, suppressing the rise of 

intracellular calcium by inhibiting the sarcoplamatic reticulum calcium channels, also diminished 

the number of differentiated myoblasts [19]. In muscle cells NMDA glutamate receptors were 

also found to be responsible for the calcium influx upon muscle differentiation, since glutamate 

treatment elevated the number of fused myoblasts, while a specific NMDA inhibitor suppressed 

this effect [94]. Recent detailed analyses indicate that post-natal myoblasts can use three 

alternative mechanisms to elevate their intracellular calcium level: the release from internal 

stores, the influx through storage and through voltage operated channels [93]. Mitochondria are 

also involved in the maintenance of intracellular calcium level mediated by its Na+/Ca2+ 

exchanger and Ca2+ uniporters. Challet et al. indicated a ryanodine receptor (RyR) dependent 

oscillation in mitochondrial calcium, suggesting that mitochondria communicate very tightly 

with the SR in myotubes [95].  

The ratios of 340 and 380 nm fluorescence intensities suggest that myoblasts have 

significantly higher calcium concentrations compared to myotubes (Figure 9). Enhanced 

intracellular calcium is involved in muscle fiber type fast-to-slow twitch transformation [96], 

since chronic low-frequency stimulation (CLFS) of fast-twitch muscle fibers generates a long-

term, two to three-fold time higher calcium concentration as in unstimulated muscle fibers and 

cause massive upregulation of mitochondria in vivo [97]. Kubis et al. also reported an elevated 

calcium level upon electrostimulation of cultured cells, which in contrast with the repetitive 

peaks of short calcium transients seemed not to be involved in the activation of calcineurin-

NFATc1 pathway. This signal pathway contributes to the fast-to-slow fiber type transition in 

skeletal muscle cells via upregulating slow myosin heavy chain gene expression [24]. CLFS 

suppressed the SR Ca2+-ATPase activity [97] and it was suggested that decreased ATP levels 

may reduce the calcium flux into the SR producing an increased intracellular calcium 
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concentration. Indeed an elevated cytosolic calcium concentration was found in fibroblasts of 

MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) patients, 

harboring a point mutation of mtDNA in the gene coding for the mitochondrial leucine-tRNA. 

The fibroblasts of affected patients showed normal levels of ATP, but an impaired mitochondrial 

membrane potential, suggesting that not the mitochondrial ATP production rather than its 

calcium sequestering capacity may contribute to this increased calcium level [98]. Depleting 

mtDNA by ethidium bromide or poisoning the mitochondrial respiration with different inhibitors 

also invoke a higher resting calcium concentration in C2C12 cells. These interventions decreased 

the cellular ATP level and enhanced the ryanodine receptor 1 mRNA and protein levels, which is 

thought to play a role in the contraction triggered calcium influx [99]. Thus, calcium may be an 

important initial trigger for mitochondrial biogenesis and an insufficient ATP production by 

mitochondria may be a retrograde signal for transmitting the need for an increased mitochondrial 

mass. Indeed, initial differentiation by high confluence and serum withdrawal leads to a 

significant rise in intracellular calcium (Figure 11, 95 % starting cell density). This was not 

observed under suboptimal condition of cell confluence (Figure 11, 30 and 60 % starting cell 

densities).  

However, muscle differentiation is a slow, genetically determined process, hence the 

changes of activating pathways and the resulting biological answers happen during a different 

time scales. Several calcium activated processes invoke spatially and temporally distinct calcium 

waves such as single spikes, sustained low plateaus or repeating oscillations [99]. Our calcium 

imaging microscopic tool was not suitable to monitor intracellular calcium concentration over 

several days so an important calcium peak during initiation of differentiation may have been 

missed, which may crucial to trigger the following events.  

In conclusion, we observed that in the beginning of differentiation at the myoblast stage, 

C2C12 cells have an increased level of calcium when comparing them to the end-stage 

differentiated myotubes (Figure 9), and the intracellular calcium is elevated during the 

differentiation process upon serum withdrawal (Figure 11). Thus calcium may be important for 

muscle differentiation and therefore calcium activated phosphatases were studied later. 

5.1.3 α-actinin4 translocates to the nuclei of myotubes 

In our laboratory, a new sequence motif was detected, which was found in the promoter 

sequence of cytochrome c, TFAM, COXIV as well as many other nuclear encoded mitochondrial 

gene promoters. This sequence was shown by EMSA experiments to bind a protein complex and 

the abundance and binding affinity of these DNA binding proteins were different in myoblasts 

compared to myotubes. The complexes isolated from nuclear extracts of myotubes contained 
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several proteins and one of them was α-actinin4, identified by mass spectrometry. 

Immunofluorescence experiments showed that myoblasts contain α-actinin4 in a diffuse pattern 

but the protein is localized mainly in the nucleus in myotubes [87].  

Western blots verified the results of the immunofluorescence staining, since nuclear levels 

of α-actinin4 were enhanced two to three times in myotubes compared to myoblasts, although 

the cytoplasmic level of the protein remained unchanged (Figure 12). α-actinin4 is usually 

localized outside of the nucleus and it is thought to regulate the interaction of plasma membrane 

and cytoskeleton, since it is involved in several endo- and exocytosis processes [100,101]. 

However, in distinct cancer cell lines a nuclear localization of α-actinin4 was also shown [102] 

and in podocytes it is present at the plasma membrane, while in transformed kidney cells (HEK) 

it is found in the perinuclear cytosol [103]. Thus, the localization of this protein strongly depends 

on the cell type or physiological conditions. The presence of α-actinin4 in the nucleus suggests 

its possible involvement in transcription processes, and one of its isoforms, α-actinin2 was 

recently shown to function as a coactivator [104]. Thus  α-actinin4 could also be involved in 

DNA binding or may act as a coactivator in the formation of a transcriptional complex at the 

promoter of nuclear genes encoding mitochondrial proteins.  

5.2 Overexpression of AMPKα1-CA in C2C12 cells 
 To investigate whether AMPK mediates mitochondrial biogenesis in muscle cells, we 

chose the Tet-Off system, which is a method to suppress the expression of the gene of interest in 

the presence of Tet or Dox and to switch on its expression by withdrawal of the antibiotics. The 

cDNA of the constitutively active AMPKα1 was cloned into the vector pTRE and this construct 

was transfected into C2C12 D3 cells, which express the TRE transactivator. Clones were isolated 

and were analyzed by Western blot for expression of AMPKα1-CA. However, Dox did not 

regulate the levels of the AMPKα1-CA protein at all (Figure 15 and Appendix Figure 2). The D3 

transactivator expressing cell line had been tested for Dox suppression of the TRE promoter and 

a ten times decreased, but not silent promoter activity was obtained in the presence of 1 µg/ml 

Dox (Figure 13B). These results suggest that there are other factors, which impair in these cells 

the ability of Dox to inhibit the transactivator protein. Obviously, a low level of transcription was 

enough to produce similar amounts of AMPKα1-CA protein as in activated cells in the absence 

of Dox (Figure 15 and Appendix Figure 2). Other results of our laboratory confirm this 

phenomenon, since C2C12 E6 cells expressing EGFP driven by the TRE are also unable to 

inhibit its expression in the presence of Dox (Franko and Darvas, unpublished data). Indeed, 

Sommer et al. reported that the Tet-Off system was leaky in C2C12 cells, since they also 
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obtained transgene expression in the non-activated state [105]. To overcome this limitation, these 

authors generated an autoregulatory Tet-Off system, which provided higher induction factors 

with low basal expression in the non-induced state [106]. The Tet-Off system was recently 

compared with other inducible expression systems and the results indicate that this system 

although reaching the highest maximum expression level, is comparably leaky and has only a 

small induction capacity [107]. Personal communications with the company providing the 

vectors (Becton Dickinson) also indicated that this Tet-Off system is not universally suitable for 

every cell line. To confirm this, the TRE promoter containing a firefly luciferase reporter 

plasmid was transfected into C2F3 and C2C12 cells. Interestingly, we achieved a high amount of 

luciferase activity driven by the TRE promoter and Dox did not affect this expression (Figure 

32). This unwanted expression from the TRE promoter denotes that there are transcription 

factors in these cells, which could bind and induce the transcription from the TRE promoter even 

in the absence of the specific transactivator protein. An alternative explanation for this 

constitutive expression could be that the chromosomal environment triggers the activation of the 

transgene even in the presence of Dox due to the presence of activator or enhancer sequences. 

However, Dox was able to inhibit the expression of the transgene in C2C12 D3 cells, which have 

the TRE transactivator, but its suppressing capacity was lower as in previous experiments, 

compare Figure 32 and 13B. Altogether, cell lines were established, which constitutively express 

the AMPKα1-CA protein, but with no possibility of regulation.  

 

 
Figure 32. TRE promoter activity in muscle cell lines  

A TRE promoter driven firefly luciferase reporter plasmid was cotransfected with an SV-40 promoter driven 

renilla luciferase control vector into C2F2, C2C12 cells or C2C12 D3 (TRE transactivator expressing) cell 

lines. Luciferase activity was determined 24 hours after transfection in the presence (+) or absence (−) of 

doxycycline (Dox). The firefly luciferase values were normalized to renilla values and data are mean ± 

standard deviation obtained from 5 samples. 
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 The activity of AMPKα1-CA was confirmed by kinase assays, and accordingly Dox did 

not affect the kinase activity (Figure 17A). The endogenous AMPKα1 kinase activity was also 

determined and was found to be about nine times higher as the maximal activity of AMPKα1-

CA (Figure 17B). Calculating the phosphate amount incorporated into the SAMS peptide, 

AMPKα1-CA phosphorylated 1.8 pmol/min/mg phosphate, while the endogenous kinase 

phosphorylated 15.7 pmol/min/mg phosphate (calculated from the dark grey column of Figure 

17A and the light grey column of Figure 17B). The difference between the endogenous α1 and 

AMPKα1-CA kinase activity is in line with data obtained by Stein et al., who also found a much 

higher endogenous compared to the AMPKα1-CA activity obtained after transfection [40]. They 

suggested that due to the inability to bind the regulatory β and γ subunits, the truncated 

AMPKα1-CA may not localize normally and that this may explain the low kinase activity [40]. 

Only when using an adenoviral system, the AMPKα1-CA kinase activity was higher as the 

endogenous [108], meaning that a high transfection efficiency is also a prerequisite for an 

appropriately high activity. However, this does not fully explain the low kinase activity in stable 

clones, where every cell expresses the construct.  

Nevertheless, cytochrome c promoter expression was not different in clone 27 or clone 5, 

which express AMPKα1-CA at high or intermediate levels, respectively (Figure 18 and 19A). 

Also, in transient transfection experiments the cytochrome c promoter activity remained the 

same upon cotransfection of dominant negative forms of AMPKα1 or AMPKα2 proteins, 

confirming that AMPK does not regulate the cytochrome c promoter (Figure 19B). In addition, 

the endogenous kinase activity was measured but no difference was detected among myoblasts, 

confluent cells and myotubes (Figure 17C).  

In conclusion, we generated cell lines expressing AMPKα1-CA, which despite of its 

constitutive kinase activity was not able to alter the expression of the cytochrome c promoter, 

indicating that either AMPKα1 itself is not involved in this process or that the total AMPK 

activity we achieved was not high enough to trigger an appropriate answer.  

5.3 CREB-1 regulates the cytochrome c promoter 
Former studies of our laboratory and other results suggested that CREB-1 is important for 

regulating nuclear encoded mitochondrial genes [32] and a model of a CREB-1 transcriptosome 

was built according to these results (Figure 33). 
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Figure 33. A model for a transcriptosomal complex on mitochondrial genes 

The black line illustrates the DNA sequence of a model promoter with chosen cis-elements thought to play a 

role during the process of muscle differentiation. The grey circle represents the RNA II polymerase and the 

broken arrow shows the transcriptional start site. 

 

To investigate this hypothesis in more detail, the expression level of CREB-1 was analyzed 

by Western blot. We found a decrease in the overall CREB-1 amount without changing the 

overall Ser-133 phosphorylation status of the protein (Figure 20A-D). Thus, the overall Ser-133 

phosphorylated CREB-1 compared to the total CREB-1 protein is elevated upon muscle 

differentiation suggesting a role of phosphorylated CREB-1 in this process. The transcription 

factor ATF-1, which also belongs to the CREB-1 family, dropped during differentiation and 

phospho-ATF-1 levels reduced (Figure 20A, C, G and H) denoting that ATF-1 could be 

important in the first stage of muscle differentiation. Surprisingly, Western blot analysis showed 

that in the 42-43 kDa molecular weight range, two CREB-1 reactive bands were detected, which 

reacted with anti-CREB as well as with anti-Ser-133 phospho-CREB antibodies (Figure 20A and 

C). In further experiments we identified these double bands as the CREB-1α and CREB-1∆ 

products of the same gene generated probably by alternative splicing (Figure 21 and 22). The 

presence of the isoforms was also proven at the mRNA level and CREB-1∆ was found to be the 

predominant mRNA, and the ratio of CREB-1α and CREB-1∆ mRNA remained the same during 

the differentiation process (Figure 23 and 24). 

5.3.1 CREB-1 isoforms are present in different tissues 

Although the presence of CREB-1α and ∆ isoforms was discovered already in 1990, the 

function of them still remains obscure. Yamamoto et al. showed that in rat brain the predominant 

isoform is the CREB-1∆ on the mRNA as well as the protein level as well. They found that in 
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vitro, the capacity for transactivation of the rat CREB-1α isoform is approximately 10 times 

higher as CREB-1∆ [109]. However, another study indicated that the two human CREB-1 

isoforms bind to their DNA target with similar strength [110]. Also, the mouse CREB-1α and ∆ 

transcriptional activities were found to be equal, but the mRNA ratio showed, as in the former 

studies, that CREB-1∆ is the mainly expressed isoform [111]. The discrepancy of the α domain 

causing different transcriptional activity in vitro in the three species were explained by minor 

amino acid variations among them [111]. In addition to the α- and ∆-isoforms, other CREB-1 

isoforms were detected, namely CREB-1αγ, γ, Ω, Ψ. They differ by the presence or absence of 

further domains derived from alternatively spliced exons, but all originate from the same gene. 

All of them are truncated proteins lacking the bZIP domain, thus they have been suggested to 

rather function as repressors counteracting CREB-1α or ∆. Expression of CREB-1 γ and αγ was 

strongly induced upon spermatogenesis, indicating a role in this process [111]. Also, the nuclear 

localization signal of CREB-1∆ was determined to be at the amino acid positions 287-295, which 

is situated in the bZIP domain, suggesting a cytoplasmatic localization of all shorter isoforms 

lacking this domain [112]. Two other mouse CREB-1 isoforms were discovered latter and named 

CREB-1∆-14 and CREB-1∆-35, due to the absence of 14 nucleotides of exon 9 or 35 nucleotides 

of exon 8. Since they lack the bZIP domain, they were indeed localized in the cytosol but still 

had a capacity for blocking the transcriptional activity of CREB-1α in CRE reporter gene assays. 

As these isoforms are cytoplasmic and the full length CREB-1 is located in the nucleus, the 

hypothesized role for their action is that they act as pseudosubstrates of PKA and thereby 

decrease the phosphorylation of endogenous CREB-1. Both of them were shown to be widely 

expressed in several tissues but they were enriched in brain, thymus and testis [113]. 

Homologues of these CREB-1 isoforms were observed in Aplysia brain as well. While the full 

length CREB-1a serves as an activator of long term facilitation in this organism, CREB-1b is a 

repressor and CREB-1c is thought to be an activator of long term memory dependent on CREB-

1a [114].  

Disrupting the second exon of CREB-1 in mice caused a complete loss of CREB-1α and ∆ 

expression, but CREM, which belongs to the classical CREB-1 family and a new CREB-1 

isoform, called CREB-1β, were upregulated and compensated the loss of CREB-1α and ∆ in 

these animals [115,116]. In wild-type tissues CREB-1β and CREB-1α mRNA are expressed to 

about the same level, and both contribute to about 1/3, while CREB-1∆ is thought to contribute 

to about 2/3 of the overall CREB-1 mRNA pool. CREB-1β was able to transactivate CRE-

sequence containing model promoters, so it was considered to be a transcriptional activator as 

well [116]. Analyzing their performance, these KO mice showed an impaired long term memory 
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in the hippocampus, although CREB-1β was expressed there [117]. When the CREB-1α/∆ 

deficient mice were further investigated, it was found that although they were highly expressed, 

CREB-1β and CREM were unable to bind to and transactivate other nuclear transcription factors 

in the absence of CREB-1α and ∆ [118]. This was in contradiction to the initial study of Blendy 

et al. [116], which showed that CREB-1β does have transcriptional activity. However, these 

authors transfected a CREB-1β plasmid into cells, in which the wild-type CREB-1α and ∆ 

isoforms were probably also present. In contrast, in the latter study [118] there was no expression 

of CREB-1α or ∆ at all, which dissolves the apparent inconsistency between the two studies. In 

conclusion, CREB-1β probably has transcriptional activity, but only in the presence of the 

CREB-1α and ∆ isoforms. 

The presence of CREB-1α and ∆ isoforms was verified in more recent studies: For 

example, both isoforms were equally upregulated in hippocampus and cortex of depressive 

transgenic mice model with impaired glucocorticoid receptor function upon antidepressant 

treatment, although the predominant isoform at the mRNA level remained CREB-1∆, consistent 

with the earlier studies [119]. In CREB-1α overexpressing transgenic mice, CREB-1α was 

observed to enhance its own transcription as well. Furthermore, in these animals the expression 

of CREB-1β as well as CREB-1∆ were also increased [120].  

Our results revealed that in C2F3 muscle cells, CREB-1∆ is the predominant isoform at the 

mRNA level, both in myoblasts as well as in myotubes, in accordance with these previous 

studies. However, at the protein level there was a marked shift in the CREB-1α/CREB-1∆ ratio: 

While myoblasts expressed high amounts of CREB-1∆, myotubes switched to the CREB-1α 

isoform (Figure 20A and E). This indicates that in myotubes, in spite of the higher level of 

CREB-1∆ mRNA, an unknown mechanism elevates CREB-1α protein. Hoeffler et al. and 

recently Sato et al. suggested that the regulation of CREB-1 function may take place 

predominantly at the level of translation or by posttranslational modifications [121,122]. 

Irrespective of the isoform, the phosphorylation status was maintained, indicating that the 

isoforms are functionally phosphorylated at Ser-133 as soon as they are available for the 

kinase(s) (Figure 20C and F). 

What is the functional difference between CREB-1α and ∆, why do cells express two 

isoforms and what does a shift mean for CREB-1 function? These questions have not been 

answered yet in spite of 17 years of intensive research. The exon 5 encoded α-domain has a 

proposed α-helical, basic, hydrophobic structure. Disrupting this domain caused a strongly 

decreased activity in driving promoters with CRE sequences and inserting the α-domain into the 

sequence of CREB-1∆ elevates promoter activity compared to the ∆ isoform [109]. The authors 
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hypothesized that the α-domain, due to its basic residues, is able to bind to the phosphorylated 

Ser-133 KID (kinase inducible) domain in the same molecule and thus elevates the 

transcriptional activity of the protein. However, it can function autonomously as well in the 

absence of KID domain through its postulated interaction with other proteins of the 

transcriptional complex [109]. Analyzing the potential posttranslational modifications of the 

mouse CREB-1 protein domain encoded by exon 5 using bioinformatic tools [123], we observed 

two possible serine phosphorylation sites at position 89 and 98, a likely lysine glycosylation site 

at position 94 and one probable YinOYang (O-ß-GlcNAc glycosylation on cytoplasmic/nuclear 

proteins) modification site at position 88. Although the two latter observed modifications are not 

referred yet, CREB-1 was shown to be phosphorylated by many kinases in addition to PKA, such 

as PKC, Akt, Msk, Rsk, p38, CaMKII, CaMKIV and dephosphorylated by multiple 

phosphatases, for example calcineurin (PP2B), PP2A and PP1 (Figure 4). Besides the Ser-133 

phosphorylation, which is essential for the recruitment to CBP/p300, other phosphorylation sites 

are also known, e.g. Ser-142, which was indicated to play a role in entrainment of the 

mammalian circadian clock [124]. Therefore, unique phosphorylation and other modification 

sites of the α domain could play a role in CREB-1α activation, for example by providing new 

docking sites for other transcriptional coactivators.  

5.3.2 CREB-1 activates the cytochrome c promoter 

 To modulate the endogenous level of CREB-1 we used first an siRNA approach. 

However, transfecting any siRNA into C2F3 cells induced an unspecific drop of CREB-1 levels 

as well as a drop in cytochrome c promoter activity (Figure 26 and 27). This phenomenon was 

caused probably by the transfection reagent itself (Figure 26C and D), thus in further 

experiments, constitutive active and dominant negative constructs of CREB-1 were applied to 

promote or inhibit the endogenous CREB-1 activity, respectively. Transfecting the constitutively 

active C2/CREB enhanced promoter activity and the dominant negative A-CREB suppressed this 

upregulation (Figure 28). These results indicate that CREB-1 indeed activates the cytochrome c 

promoter. To verify that CREB-1 directly binds the promoter, the downstream CRE sequence 

had been analyzed in EMSA experiments on nuclear extracts of C2F3 myoblasts and myotubes. 

A specific DNA binding protein-CRE element complex was visible in myoblasts as well as in 

myotubes [32]. Antibodies against CREB-1 or Ser-133 phosphorylated CREB-1 caused a further 

retardation of the DNA binding protein-CRE element complex, suggesting that CREB-1 and P-

CREB-1 binds to the CRE element of cytochrome c promoter in vitro. In addition, chromatin 

immunoprecipitation experiments detected a direct interaction between a fragment of mouse 

cytochrome c promoter containing both CRE elements and CREB-1 and Ser-133 phospho-
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CREB-1 in myoblasts, confluent cells and myotubes. CREB-1α was also observed to bind to this 

promoter sequence in confluent cells and myotubes but was completely missing in myoblasts 

[32]. This observation is in agreement with the results of the Western blot analysis, where 

CREB-1α/CREB-1∆ ratio as well as the P133-CREB-1α/P133-CREB-1∆ ratio was the lowest in 

myoblasts but increased in confluent cells and myotubes (Figure 20). According to the results 

mentioned above we set up a model for the interaction of CREB-1 and the cytochrome c 

promoter (Figure 34). In myoblasts, CREB-1∆ is the predominant isoform and binds to the 

downstream CRE element. During myogenesis the level of CREB-1∆ drops in parallel with an 

increase of CREB-1α, which ends up in a situation, where CREB-1α and not CREB-1∆ binds to 

the downstream CRE sequence. We hypothesize that upon different isoform binding different 

transcriptional responses are invoked via CREB-1α or CREB-1∆, respectively. 

 

 
Figure 34. An interaction model of CREB-1 and cytochrome c promoter 

The black line illustrates the DNA sequence of the cytochrome c promoter with chosen cis-elements thought to 

play a role during the process of muscle differentiation. The grey circle represents the RNA II polymerase and 

the arrow shows the transcriptional start site. PGC-1α protein was found to be absent in these cells ([125] and 

data not shown). 
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In conclusion, these results suggest that CREB-1 binds in vitro as well as in vivo to the 

cytochrome c promoter and enhances its activity and that through these effects CREB-1 is 

involved in the regulation of mitochondrial biogenesis during myogenesis. This conclusion 

correlates well with the recently discovered role of the TORCs (transducer of regulated CREB) 

activating PGC-1α upon muscle differentiation [73], and the role of CREB-1 in mitochondrial 

biogenesis induced by mitochondrial dysfunction [67,68,69].  

5.3.3 CREB-1 regulating upstream signals 

In order to study the enzymes, which may modify the activity of CREB-1 by 

phosphorylation or dephosphorylation of Ser-133, PKA activators and inhibitors as well as 

protein phosphatase inhibitors were applied to C2F3 muscle cells. 24 hours treatment with 

Okadaic acid or Cyclosporin A, inhibiting the PP2A or PP2B phosphatases, respectively, 

elevated CREB-1 phosphorylation at Ser-133 (Figure 29 and 30A and B). A specific PKA 

activator, Sp-5,6-DCI-cBIMPS enhanced CREB-1 Ser-133 phosphorylation and Rp-8-CPT-

cAMPS, which is a selective PKA inhibitor, suppressed it (Figure 29 and 30C and D). These 

chemicals were then used in cells transfected with a reporter plasmid to analyze whether these 

interventions could alter the expression of the cytochrome c promoter. Cyclosporin A activated 

the promoter in myoblasts, but the PKA modulating chemicals as well as the PP2A inhibitor 

Okadaic acid did not change significantly the promoter activity, neither in myoblasts nor in 

myotubes (Figure 31). These results indicate that PKA, PP2A and PP2B (calcineurin) are able to 

modify the phosphorylation status of CREB-1 in muscle cells, but reducing the calcineurin 

dephosphorylating step was the only signal, which slightly induced the cytochrome c promoter 

activity, probably via increased CREB-1 phosphorylation. It is known that PP2A, PP2B and 

PKA have several other substrates beside CREB-1, thus for changing the activity of the 

cytochrome c promoter other transcription factors may be needed, which could be regulated as 

well via posttranslational modifications such as phosphorylation. 

 Protein kinase A was the first identified enzyme mediating CREB-1 phosphorylation 

triggered by the increase of cAMP [48]. Later on, new observations suggested that not just 

kinases but also phosphatases are involved in regulating CREB-1 phosphorylation and 

transcriptional activity independently of the level of cAMP. Besides mediating CREB-1 

phosphorylation, these proteins participate in the regulation of myogenesis as well. Initially 

Okadaic acid treatment was shown to block the differentiation of C2C12 cells, when applied in a 

concentration of 62 nM, which is thought to decrease the activity of PP1 phosphatase. A lower 

concentration (6 nM) only counteracting with the activity of PP2A did not affect the 
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differentiation status of the cells [126]. The 5 nM maximum concentration, which was used in 

our study is thus thought to alter only the activity of PP2A, leaving PP1 unaffected [126]. In 

contrast to the altered cell morphology and the increased Ser-133 phosphorylation, 5 nM 

Okadaic acid did not modify the expression of cytochrome c promoter indicating that PP2A 

dephosphorylation of CREB-1 does not play a crucial role in the transcriptional activity of 

CREB-1 in these muscle cells. This idea correlates with the results of Alberts et al. who showed 

that in the NIH3T3 cell line PP1, but not PP2A is the main phosphatase, which alters the 

phosphorylation status and transcriptional activity of CREB-1 [127]. In contrast, another study 

indicated that in liver nuclear extracts PP2A is responsible for the dephosphorylation of CREB-1 

and that it has 30 times higher activity than PP1 [128]. Zákány et al. also showed that 20 nM 

Okadaic acid treatment, which is supposed to block PP2A activity, increased the Ser-133 

phosphorylation of CREB-1 in chicken limb bud cell cultures [129]. Recently, a new 

proteosomal targeting motif was identified in the amino acid sequence of CREB-1 and was 

shown to regulate CREB-1 degradation via serine phosphorylation and ubiquitination. 1 nM 

Okadaic acid was detected to increase the overall serine phosphorylation of CREB-1 

contributing to the phosphorylation status of Ser-133, the proteosomal targeting motif and other 

motifs. These authors postulated that PP1 is the phosphatase responsible for CREB-1 

dephosphorylation [130]. 

In conclusion, both PP1 and PP2A phosphatases are able to dephosphorylate the Ser-133 

phosphate group of CREB-1 in distinct tissues and through this dephosphorylation they change 

the gene regulation activity of CREB-1. At the concentration of Okadaic acid, which was applied 

in the present work, the activity of PP2A was inhibited and since this inhibition increased the 

Ser-133 phosphorylation of CREB-1, this phosphatase seems to be mainly involved in this 

process in our cells. 

 Calcineurin (PP2B) was also shown to be able to dephosphorylate CREB-1. It was 

observed to regulate Ser phosphorylation of the NMDA glutamate receptor, and via this pathway 

increased phosphorylation of Erk1/2 and CREB-1 was detected in the presence of the calcineurin 

inhibitor Cyclosporin A in neurons of rat striatum [131]. In C2C12 cells, 5 µM Cyclosporin A 

enhanced the level of Ser-133 phosphorylated CREB-1 indicating that calcineurin could be an 

upstream CREB-1 modifier in muscle cells as well [132]. Calcineurin not only regulates the 

phosphorylation status of CREB-1 but is also involved in the muscle differentiation program. 

Calcineurin phosphatase activity was demonstrated to be temporally induced at the onset of 

muscle differentiation in C2C12 cells. Overexpression of calcineurin enhanced the number as 

well as the myosin heavy chain expression of differentiated myotubes. [133]. In other studies, 

calcineurin was demonstrated to induce myogenin and myosin heavy chain expression of C2C12 
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cells [134]. This effect of calcineurin was also detected in primary myoblast cultures and L6 

myoblasts investigated by Friday et al. [91]. Nuclear factor of activated T cells (NFATc3) and 

myocyte enhancer factor (MEF2) are other transcription factors regulated by calcineurin 

[133,135]. In C2C12 cells, MEF2 was demonstrated to be activated by calcineurin and by this 

mechanism calcineurin also induced the promoter of PGC-1α, a transcriptional coactivator, 

postulated to participate in the transcriptional complex of the cytochrome c promoter as well. 

However, in this cell line PGC-1α is absent and is thus not a good candidate to be involved in 

transcriptional regulation [125]. A conservative CRE sequence was also found in the promoter of 

PGC-1α and the result of this study indicates that CaMKIV regulates the promoter upon 

activation of CREB-1 [135]. These observations suggest that during enhanced intracellular 

calcium concentration both CaMKIV and calcineurin are activated and work synergistically 

and/or additively together causing elevated PGC-1α promoter activity via CREB-1 and MEF2, 

respectively. A-CREB transfection of C2C12 cells showed a decreased PGC-1α promoter 

activation through CaMKIV and calcineurin, which indicates that CREB-1 is indeed a crucial 

factor for the transactivation of the PGC-1α promoter [135]. In addition, calcineurin was shown 

to regulate the expression of PGC-1α promoter constructs transfected into rat tibialis anterior 

muscle as well. However, overexpression of a constitutive form of calcineurin did not enhance 

the expression of the cytochrome c promoter fragment −326 to +863 [136], which is shorter 

upstream but longer downstream than the promoter sequence used in our study (−631 to +135) 

(Figure 2A). These results suggest that PGC-1α is a good candidate as a transcriptional mediator 

regulated by calcineurin, although the cytochrome c promoter construct analyzed in this study 

[136] lacks possible cis-elements, which could participate in the PGC-1α controlled 

mechanisms. The rat cytochrome c promoter, used in our study, was investigated by a 

transcription factor binding site analysis software (Genomatix, MatInspector) [31] and Figure 2A 

illustrates the cis-elements, which are thought to be involved in muscle specific transcription. 

According to this analysis, a MEF3 binding site is identified in the cytochrome c promoter at 

−355 to −344, which is missing from the promoter sequence studied by Guerfali et al. [136]. 

Since calcineurin modulates the transcriptional activity of MEF2 it could be possible that MEF3 

is also a substrate for calcineurin and in the absence of a MEF3 cis-element, calcineurin is not 

able to modify the cytochrome c promoter activity. Xu et al. demonstrated that calcineurin 

indeed transactivates an artificial promoter containing a MEF3 binding site, although it activated 

the myogenin promoter in the absence of a MEF3 cis-element as well [134]. This shows that 

CREB-1 is not the only transcription factor regulated by calcineurin, and transcription factors 

binding to MEF3 site could be also crucial in the transactivation of the cytochrome c promoter. 
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The fact that the cytochrome c promoter does not contain any MEF2 cis-element consolidates the 

possible importance of MEF3 sequence.  

 In conclusion, CREB-1 is definitely involved in the regulation of the cytochrome c 

promoter. The enzymes, which modulate the phosphorylation status of CREB-1, are not 

completely identified, but PKA, PP2A and calcineurin are good candidates since they are able to 

alter the phosphorylation of CREB-1. As blocking the activity of PP2B increases the 

phosphorylation of CREB-1 (Figure 29 and 30B) and the cytochrome c promoter activity (Figure 

31A), as well as the fact that calcineurin is postulated to regulate muscle differentiation, this 

phosphatase could be a possible key enzyme modulating the effect of CREB-1 in the process of 

mitochondrial biogenesis in myogenic cells.  
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6 Appendix 
Appendix Figure 1. Cloning procedures of AMPKα1-CA into pTRE2Hyg vector 

 

 
 

A and B pTRE2Hyg and pcDNA3-AMPKα1-CA constructs were digested with the illustrated restriction 

enzymes, and the digested DNA fragments were isolated from the gel (dashed rectangles and scissors). C and 

D Test digestions of the pTRE2Hyg-AMPKα1-CA construct verify the presence of AMPKα1-CA insert. The 

pTRE2Hyg-AMPKα1-CA construct or the empty vector was incubated with the illustrated restriction enzymes 

or in their absence (−). M: Molecular weight marker. 
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Appendix Figure 2. Western blot analysis of AMPKα1-CA clones 

 

 

 

 86



                                                                                                                                            Appendix 

 87

 

Western blot analysis was performed from protein extracts of AMPKα1-CA expressing C2C12 D3 clones in 

the presence (+) or absence (−) of doxycycline. C2C12, C2C12 D3 or the CA-1 clone, which turned out to be 

not expressing the protein of interest and served as negative controls, CA-27 clone as positive (AMPKα1-CA 

expressing) control. Whitehead arrow shows the endogenous AMPKα and blackhead arrow the AMPKα1-CA 

proteins. The size of molecular weight markers is given in kDa. 
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	2 µl of the cDNA samples of growing myoblasts, confluent myo
	Usual PCR reaction
	2 µl cDNA
	1.5 mM MgCl2
	0.25 mM dNTP
	1 µM primer 1 and 2
	1x PCR buffer without MgCl2
	2.5-5 U Taq-Polymerase
	CREB isoform specific PCR
	92°C  2 min
	92°C  30 sec
	66°C  1 min
	72°C  1 min
	72°C  10 min
	4°C  \(
	CREB probe PCR
	92°C  2 min
	92°C  30 sec
	57°C  1 min
	72°C  1 min
	72°C  10 min
	4°C  \(
	Protein
	Preparation of whole cell extracts


	Trypsinesed cells were washed two times i�
	Totex buffer  20 mM Hepes pH 7.9
	400 mM NaCl
	20 % glycerol
	1 % NP-40
	1 mM MgCl2
	0.5 mM EDTA
	0.1 mM EGTA
	10 mM (-glycerophosphat
	10 mM NaF
	5 mM DTT
	0.5 mM Na3VO4
	1 mM PMSF
	Nuclear and cytoplasmatic protein preparation

	Cells were washed with ice cold PBS, scraped in PBS+phosphatase inhibitors and centrifuged at 200 x g at 4(C for 10 minutes. The pellet was resuspended in 1 ml hypotonic buffer (HB
	PBS+phosphatase inhibitors  1 mM Na3VO4
	5 mM NaF
	10 mM nitrophenylphosphate
	10 mM (-glycerophosphate
	in PBS
	Hypotonic buffer (HB)  20 mM Hepes (pH 7.9)
	1 mM Na3VO4
	5 mM NaF
	10 mM nitrophenylphosphate
	10 mM (-glycerophosphate
	1 mM Na2MO4
	0.1 mM EDTA
	1x protease inhibitors cocktail (Boehringer/Roche)
	Hypotonic buffer+0.2 % NP-40
	Hypotonic buffer+20 % glycerol
	Hypotonic buffer+20 % glycerol+0.8 M NaCl
	Protein gel electrophoresis

	Denaturing SDS polyacrylamide gel electrophoresis (SDS-PAGE)
	stacking gel    0.1 % SDS
	125 mM Tris pH 6.8
	4 % acrylamide/bisacrylamide (29:1)
	0.1 % APS
	0.01 % TEMED
	separation gel    0.1 % SDS
	375 mM Tris pH 8.8
	12.5 % acrylamide/bisacrylamide (29:1)
	0.1 % APS
	0.01 % TEMED
	10x running buffer   250 mM Tris
	2 M glycine
	1 % SDS
	6x SDS protein loading dye  125 mM Tris pH 6.8
	3 mM EDTA
	20 % glycerol
	9 % SDS
	0.05 % bromphenolblue
	10 % (-mercaptoethanol
	Western Blot

	After the run, the separation gel was transferred to an Opti
	transfer buffer    25 mM Tris
	0.2 M glycine
	0.1% SDS
	20 % methanol
	10x TBST    20 mM Tris pH 7.5
	150 mM NaCl
	0.5 % Tween-20
	blocking buffer   5 % (w/v) non-fat milk powder
	1x TBST
	stripping buffer   50 mM Tris pH 6.8
	2 % SDS
	0.1 M (-mercaptoethanol
	Immunoprecipitation

	In order to determine the kinase activity of endogenous AMPK(1 or the AMPK(1-CA, the kinase was immunoprecipitated with a specific antibody. The cells were washed two times with PB
	Lysis buffer (Buffer A)  50 mM Tris pH 7.5
	1 mM EDTA
	1 mM DTT
	10 % glycerol
	50 mM NaF
	5 mM sodium pyrophosphate
	1 mM benzamidine
	0.1 mM PMSF
	1 % Triton-X 100
	Buffer B    50 mM Tris pH 7.5
	1 mM EDTA
	10 % glycerol
	1 mM DTT
	Kinase assay

	In order to measure the kinase activity o�
	Kinase buffer    40 mM Na-Hepes pH 7.0
	0.2 mM AMP
	80 mM NaCl
	0.8 mM DTT
	5 mM MgCl2
	10 % glycerol
	0.2 mM SAMS peptide
	0.18 mM ATP \(cold\)+0.02 mM 2 µCi 32P�
	Phosphatase treatment of nitrocellulose membrane

	In order to analyze the phosphorylation status of the CREB-1
	Phosphatase buffer   1 % BSA
	0.1 % Triton X-100
	2 mM MnCl2
	5 mM DTT
	1200 U/ml lambda-phosphatase
	in TBS
	Reporter gene assay

	The promoter activities were determined by luciferase report
	Firefly buffer    25 mM glycine-glycine pH 7.8
	1 mM DTT
	15 mM KH2PO4
	15 mM MgSO4
	4 mM EGTA
	Firefly substrate buffer  25 mM glycine-glycine pH 7.8
	15 mM MgSO4
	4 mM EGTA
	2 mM DTT
	0.2 mM D-Luciferine
	Renilla buffer    0.5 M NaCl
	0.1 M KH2PO4
	1 mM EDTA
	0.02 % BSA
	0.6 mM NaN3
	pH 7.6
	Renilla substrate buffer  renilla buffer+0.2 µM coelenterazi
	Microscopy
	Indirect immunofluorescence


	C2C12 cells were grown on a 4 cm cell cul�
	Mowiol buffer   2.4 g Mowiol 4-88
	6 g glycerol
	6 ml H2O
	12 ml 0.2 M Tris pH 8.5
	2.5 % 1,4-diazobicyclo-(2.2.2)-octane DABCO
	Intracellular calcium measurement

	To determine the intracellular calcium concentration of cell
	PSS buffer   118 mM NaCl
	5 mM KCl
	1.6 mM CaCl2
	1.2 mM MgCl2
	24 mM HEPES
	10 mM glucose
	pH 7.4
	Statistical analysis

	Calculating the significance between the samples two-tailed,
	Software tools

	AIDA 2.1
	TillVision v4.01
	Perfect Image
	Results
	In vitro model for muscle differentiation and mitochondrial 

	The mouse skeletal muscle cell lines C2C12 and C2F3 retain t
	Figure 6. C2F3 cells during differentiation
	Growing myoblasts were split every two to three days, but we
	Expression of differentiation markers during myogenesis

	Since it is not possible to induce a state of 100 % differen
	Figure 7. MHC expression of differentiated C2C12 myotubes
	After cell fixation the differentiation marker myosin heavy 
	The number of nuclei in MHC positive myotubes were divided b
	During muscle differentiation several other proteins like my
	Figure 8. Myogenin expression in differentiating C2F3 cells
	Nuclear extracts were prepared from four parallel samples of
	Intracellular calcium levels in myoblasts and myotubes

	As a second messenger, calcium is involved in several physio
	Figure 9. Calcium concentration in C2C12 cells during the di
	Intracellular calcium concentration was determined by fluorescence measurement of the calcium indicator Fura-2 and the 340/380 ratios are illustrated on the y axis. C2C12 myoblasts
	However, time course experiments showed that Fura-2 uptake w
	Figure 10. Calcium concentration of C2C12 cells during the l
	Intracellular calcium concentration was determined by fluorescence measurement of the calcium indicator Fura-2. C2C12 myoblasts (blue) and myotubes (orange and red color) were load
	Since differentiation and probably mitochondrial biogenesis 
	Figure 11. Calcium concentration in confluent C2C12 cells
	Intracellular calcium concentration was determined by fluorescence measurement of the calcium indicator Fura-2. The individual fluorescence intensities at 340 nm or the 340/380 rat
	(-actinin4 localization during differentiation

	Goffart et al. have recently identified a new palindromic sequence, which was found to be common in a large number of nuclear encoded mitochondrial genes. Proteins binding to this
	Figure 12. Expression of (-actinin4 in nuclear and cytoplasmic fractions of C2F3 cells
	Western blots of A cytoplasmic and B nuclear fractions were prepared from myoblasts, confluent cells or myotubes and probed with antibodies as indicated. The intensity of bands was
	The role of AMPK in cytochrome c promoter regulation
	Cloning of AMPK(1-CA into pTRE2Hyg vector


	The truncation of the full-length AMPK(1 protein at position 312 creates an AMPK lacking the interaction domain with ( and ? subunit, but preserves the kinase domain. This constitu
	In order to express the AMPK1-CA in mammalian cells, its cD
	Generation of stable cell lines expressing tTA transactivato

	C2C12 E6 and C2C12 D3 clones were provide�
	Figure 13. TRE promoter activity in TRE transactivator (tTA)
	Firefly luciferase activity was measured in (A) C2C12 E6 or in (B) C2C12 D3 cells driven by the TRE promoter in the presence or absence of Dox. Data are mean ( standard deviation o
	C2C12 E6 and D3 cell lines were also tested for the optimal 
	Transfection, isolation and selection of AMPK(1-CA clones

	The C2C12 D3 cells were transfected with the pTRE2Hyg-AMPK(1-CA construct. The selection was started after two days in the presence of G418 (Neomycin) and Hygromycin B. Dox was als
	Analysis of AMPK(1-CA clones

	The AMPK(1-CA contains an N-terminal c-myc tag, which was used to detect the AMPK(1-CA expression in the transfected cells. Purified Myc-tagged coronin 7 protein was used as positi
	Figure 14. AMPK(1-CA clones using anti-c-myc antibody
	Western blot analysis of AMPK(1-CA expressing C2C12 D3 clones in the presence (+) or absence (() of Dox. C2C12 D3 cells were used as negative control, purified coronin-7 Myc-fusion
	To exclude this artifact we changed our strategy and used an AMPK( specific antibody instead of anti-c-myc antibody, which recognizes the endogenous wild-type AMPK( subunits (white
	Figure 15. Western blot of AMPK(1-CA clones using anti-AMPK( antibody (showed partially)
	Western blot analysis of AMPK(1-CA expressing C2C12 D3 clones in the presence (+) or absence (() of Dox. C2C12 D3 cells were used as negative control. White arrow shows the endogen
	Table 2 summarizes the results: From 71 clones 68 were analyzed and 49 were found to be positive for AMPK(1-CA expression, but none of them were Dox regulated, as AMPK(1-CA was pro
	Table 2. Summary of the AMPK(1-CA clones1
	Name*
	Exp.#
	Name
	Exp.
	Name
	Exp.
	Name
	Exp.
	Name
	Exp.
	CA-1
	-
	CA-16
	+
	CA-31
	-
	CA-46
	+
	CA-61
	+
	CA-2
	 
	CA-17
	+
	CA-32
	-
	CA-47
	+
	CA-62
	-
	CA-3
	-
	CA-18
	+
	CA-33
	+
	CA-48
	 
	CA-63
	+
	CA-4
	+
	CA-19
	+
	CA-34
	+
	CA-49
	+
	CA-64
	+
	CA-5
	+
	CA-20
	+
	CA-35
	+
	CA-50
	 
	CA-65
	-
	CA-6
	-
	CA-21
	-
	CA-36
	-
	CA-51
	+
	CA-66
	+
	CA-7
	-
	CA-22
	+
	CA-37
	+
	CA-52
	+
	CA-67
	+
	CA-8
	+
	CA-23
	+
	CA-38
	+
	CA-53
	+
	CA-68
	+
	CA-9
	+
	CA-24
	+
	CA-39
	-
	CA-54
	+
	CA-69
	+
	CA-10
	-
	CA-25
	+
	CA-40
	+
	CA-55
	+
	CA-70
	+
	CA-11
	-
	CA-26
	+
	CA-41
	+
	CA-56
	+
	CA-71
	+
	CA-12
	-
	CA-27
	+++
	CA-42
	+
	CA-57
	-
	CA-13
	+
	CA-28
	+
	CA-43
	+
	CA-58
	+
	CA-14
	+
	CA-29
	-
	CA-44
	+
	CA-59
	+
	CA-15
	-
	CA-30
	-
	CA-45
	+
	CA-60
	-
	1 The table summarizes the results of Western blot analysis 
	the induction level of AMPK(1-CA.
	* indicates the name of the AMPK(1-CA clones,
	# illustrates the expression (+) or the lack (-) of AMPK(1-CA protein from whole cell extracts,
	+++ indicates strong AMPK(1-CA expression.
	Immunoprecipitation of AMPK(1-CA

	In order to study whether the AMPK(1-CA expressing cell line has an increased kinase activity, kinase assays were performed. The AMPK(1-CA protein was immunoprecipitated from an ex
	Figure 16. Immunoprecipitation of AMPK(1-CA by AMPK( or c-myc antibodies
	Western blot was probed with commercial A�
	AMPK(1 and AMPK(1-CA kinase assay

	The kinase activity of AMPK(1-CA was determined from clone 27, clone 1 and C2C12 D3 untransfected cells. The strong expressor cell line clone 27 showed an elevated AMPK(1-CA kinase
	In conclusion, we established a cell line expressing the AMP
	Figure 17. Endogenous AMPK(1 and AMPK(1-CA kinase assays
	A Kinase activity of the anti-c-myc Ab immunoprecipitated AMPK(1-CA from myoblasts of C2C12 D3 and AMPK(1-CA-1 (negative control) and CA-27 (strong expressor) cell lines in the pre
	Analysis of cytochrome c promoter activity in AMPK(1-CA expressing cells

	To investigate whether the constitutively active AMPK(1 activates the cytochrome c promoter we transfected stable AMPK(1-CA clones with a cytochrome c reporter gene construct conta
	Figure 18. AMPK(1-CA protein expression level in AMPK(1-CA clones
	Western blot probed with anti-AMPK( Ab (Cell Signaling) was performed from the lysate of C2C12 D3, clone 1, clone 5 and clone 27 cell lines used for luciferase assays. All cells we
	Despite of the expression of AMPK(1-CA the cytochrome c promoter activity was neither elevated in the intermediate expressor clone 5 nor in the strong expressor clone 27 (Figure 19
	Figure 19. Cytochrome c promoter activity in (A) AMPK(1-CA stablely transfected cell lines or (B) transiently transfected cells
	A The promoter activity was measured in C2C12 D3 untransfected myoblasts or in stable myoblasts of clone 1, 5, 27 in the presence (+) or absence (() of Dox. B The promoter activity
	CREB-1 is involved in cytochrome c promoter regulation

	Former experiments of the laboratory suggested that CREB-1 i
	CREB-1 and ATF-1 during myogenesis

	The expression pattern of CREB-1 isoforms was investigated in C2F3 myoblasts, confluent cells and myotubes. The total amount of CREB-1 proteins decreased during the differentiation
	Figure 20. Protein expression of CREB-1 family members durin
	Nuclear extracts were made from myoblasts, confluent cells and myotubes. A CREB-1 and ATF-1, or C P133-CREB-1 and P-ATF-1 proteins were detected with the antibodies indicated on th
	CREB-1 isoforms in C2F3 cells

	Western blots showing double CREB-1 immunoreactive bands ini
	Figure 21. Phosphatase treatment of CREB-1 immunoreactive ba
	Nuclear extracts of confluent cells were separated with SDS-PAGE and blotted to a nitrocellulose membrane. The membrane was treated with (+) or without (() phosphatase followed by
	Thus, alternatively, these double bands could be the CREB-1 family members CREB-1 and CREM. To investigate this, specific CREB-1 recognizing antibodies were used in nuclear extract
	The results showed that Cell Signaling and Upstate antibodies recognize the same double bands (Figure 22), which exclude the presence of the CREM protein. The Santa Cruz antibody d
	Figure 22. Identification of CREB-1( and CREB-1( protein isoforms by Western blot
	Nuclear extracts of confluent cells were probed with antibodies recognizing every CREB-1 family member (Cell Signaling), only the CREB-1 isoforms (Upstate) or exclusively the CREB-
	To further support the existence of CREB-1 isoforms generate
	Figure 23. Determining the log phase for semiquantitative RT
	A Reverse transcription was performed from mRNA of myoblasts (B), confluent cells (C) and myotubes (T). CREB-1 PCR, using primers specific for both isoforms was performed from 22 t
	27 cycles were used to amplify cDNA samples of myoblasts, confluent cells and myotubes. However, no difference was found in the intensity of the CREB-1( and CREB-1( PCR products du
	Figure 24. Distribution of CREB-1( and CREB-1( mRNA isoforms during myogenesis
	A Reverse transcription was performed from mRNA of myoblasts, confluent cells and myotubes and CREB-1 PCR using primers specific for both isoforms was performed for 27 cycles. B De
	To further analyze the transcription products of the CREB-1 gene, Northern blot analysis was performed from mRNA samples of C2F3 cells (Figure 25). However, in contrast to previous
	Figure 25. CREB-1 gene expression detected by Northern hybri
	PolyA-mRNA was prepared from myoblasts, confluent cells and 
	Knock-down of CREB-1 by siRNA technology

	In order to further analyze whether CREB-1 regulates the cyt
	Figure 26. siRNA against CREB-1 decreases CREB-1 protein
	A C2F3 cells were transfected with 100 nM negative pool (neg.) control siRNA or with 100 nM siRNA against CREB-1 for 1-3 days, nuclei were extracted and CREB-1 protein amount was c
	This means that the transfection procedure itself unspecific
	Nevertheless, we cotransfected the CREB-1 siRNA with a cytoc
	Figure 27. Cytochrome c promoter activity upon siRNA cotrans
	5-100 nM control siRNA (negative #1 and negative pool) or 5-100 nM siRNA against CREB-1 were cotransfected with cytochrome c promoter-firefly and renilla reporter vectors. The cyto
	The effect of CREB-1 constructs on the cytochrome c promoter

	C2/CREB is a constitutively active form of CREB-1, which contains the activation domain of CREB-2 fused to the basic DNA binding/Leucine zipper dimerization domain (bZIP) of CREB-1
	Figure 28. Cytochrome c and (-inhibin promoter activities modulated by CREB-1
	Cytochrome c or (-inhibin promoters were cotransfected with renilla control and with C2/CREB constitutively active (light grey column) or with pCMV empty (dark grey column) or with
	Modulating the activity of PKA and PP2 phosphatases

	Since Ser-133 phosphorylation of CREB-1 is necessary for its
	Figure 29. PKA and PP2 phosphatases influences the phosphory
	Myoblasts were treated for 24 hours in the presence of phosp
	Figure 30. Quantitation of phospho133-CREB-1 intensities upo
	Myoblasts were treated for 24 hours in the presence of phosphatase and PKA inhibitors or PKA activator. Western blots of isolated cell nuclei were probed with P133-CREB antibody an
	These activator and inhibitors were also included in cytochr
	Figure 31. Cytochrome c promoter activity in the presence of
	Cells were treated for A 24 or B 120 hours with the indicated kinase or phosphatase inhibitors or activator. PP2A was inhibited with Okadaic acid, PP2B (calcineurin) with Cyclospor
	Discussion
	Mitochondrial biogenesis is a well controlled and complex pr
	Comparison of undifferentiated and differentiated muscle cel
	Enhanced myogenic marker gene expression in differentiating 


	C2F3 or C2C12 mouse skeletal muscle cell lines were used to 
	Skeletal muscle cell lines were induced to differentiate by 
	Altered intracellular calcium levels during differentiation

	Calcium is an intracellular messenger involved in many cellu
	The ratios of 340 and 380 nm fluorescence intensities sugges
	However, muscle differentiation is a slow, genetically deter
	In conclusion, we observed that in the beginning of differen
	(-actinin4 translocates to the nuclei of myotubes

	In our laboratory, a new sequence motif was detected, which was found in the promoter sequence of cytochrome c, TFAM, COXIV as well as many other nuclear encoded mitochondrial gene
	Western blots verified the results of the immunofluorescence staining, since nuclear levels of (-actinin4 were enhanced two to three times in myotubes compared to myoblasts, althou
	Overexpression of AMPK(1-CA in C2C12 cells

	To investigate whether AMPK mediates mitochondrial biogenesis in muscle cells, we chose the Tet-Off system, which is a method to suppress the expression of the gene of interest in
	Figure 32. TRE promoter activity in muscle cell lines
	A TRE promoter driven firefly luciferase reporter plasmid was cotransfected with an SV-40 promoter driven renilla luciferase control vector into C2F2, C2C12 cells or C2C12 D3 (TRE
	The activity of AMPK(1-CA was confirmed by kinase assays, and accordingly Dox did not affect the kinase activity (Figure 17A). The endogenous AMPK(1 kinase activity was also determ
	Nevertheless, cytochrome c promoter expression was not different in clone 27 or clone 5, which express AMPK(1-CA at high or intermediate levels, respectively (Figure 18 and 19A). A
	In conclusion, we generated cell lines expressing AMPK(1-CA, which despite of its constitutive kinase activity was not able to alter the expression of the cytochrome c promoter, in
	CREB-1 regulates the cytochrome c promoter

	Former studies of our laboratory and other results suggested
	Figure 33. A model for a transcriptosomal complex on mitocho
	The black line illustrates the DNA sequence of a model promo
	To investigate this hypothesis in more detail, the expression level of CREB-1 was analyzed by Western blot. We found a decrease in the overall CREB-1 amount without changing the ov
	CREB-1 isoforms are present in different tissues

	Although the presence of CREB-1( and ( isoforms was discovered already in 1990, the function of them still remains obscure. Yamamoto et al. showed that in rat brain the predominant
	Disrupting the second exon of CREB-1 in mice caused a complete loss of CREB-1( and ( expression, but CREM, which belongs to the classical CREB-1 family and a new CREB-1 isoform, ca
	The presence of CREB-1( and ( isoforms was verified in more recent studies: For example, both isoforms were equally upregulated in hippocampus and cortex of depressive transgenic m
	Our results revealed that in C2F3 muscle cells, CREB-1( is the predominant isoform at the mRNA level, both in myoblasts as well as in myotubes, in accordance with these previous st
	What is the functional difference between CREB-1( and (, why do cells express two isoforms and what does a shift mean for CREB-1 function? These questions have not been answered ye
	CREB-1 activates the cytochrome c promoter

	To modulate the endogenous level of CREB-1 we used first an siRNA approach. However, transfecting any siRNA into C2F3 cells induced an unspecific drop of CREB-1 levels as well as a
	Figure 34. An interaction model of CREB-1 and cytochrome c p
	The black line illustrates the DNA sequence of the cytochrome c promoter with chosen cis-elements thought to play a role during the process of muscle differentiation. The grey circ
	In conclusion, these results suggest that CREB-1 binds in vitro as well as in vivo to the cytochrome c promoter and enhances its activity and that through these effects CREB-1 is i
	CREB-1 regulating upstream signals

	In order to study the enzymes, which may modify the activity
	Protein kinase A was the first identified enzyme mediating C
	In conclusion, both PP1 and PP2A phosphatases are able to de
	Calcineurin (PP2B) was also shown to be able to dephosphorylate CREB-1. It was observed to regulate Ser phosphorylation of the NMDA glutamate receptor, and via this pathway increas
	In conclusion, CREB-1 is definitely involved in the regulati
	Appendix
	Appendix Figure 1. Cloning procedures of AMPK(1-CA into pTRE2Hyg vector
	A and B pTRE2Hyg and pcDNA3-AMPK(1-CA constructs were digested with the illustrated restriction enzymes, and the digested DNA fragments were isolated from the gel (dashed rectangle
	Appendix Figure 2. Western blot analysis of AMPK(1-CA clones
	Western blot analysis was performed from protein extracts of AMPK(1-CA expressing C2C12 D3 clones in the presence (+) or absence (() of doxycycline. C2C12, C2C12 D3 or the CA-1 clo
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