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Kurzfassung 

Die Staubdeposition ist eine Schlüsselkomponente des Staubzyklus, allerdings sind 

die Depositionsmechanismen noch nicht vollständig verstanden. Dies limitiert die 

Fortentwicklung der Staubforschung. Die Hauptaspekte dieser Studie sind daher die 

Gewinnung verlässlicher Daten zur trockenen Deposition von Staubpartikeln, die 

Validierung existierender Staubdepositionsschemata sowie die Verbesserung der 

Parametrisierung der Staubdepositionsprozesse.  

Zu diesem Zweck wurde eine Reihe von Experimenten im Windtunnel durchge- 

führt. Um Geschwindigkeit und Größe der Staubpartikel festzustellen, die den 

Messbereich passierten, wurde eine laserbasierte PDPA („Phase Doppler Particle 

Analyzer“) Technik angewandt. Mit Hilfe eines Aerosolspektrometers wurde die 

Staubkonzentration gemessen. Wind- und Turbulenzmessungen wurden mit einem 

Schallanemometer und weiteren im Windtunnel üblichen Messgeräten durchgeführt. 

Es wird außerdem eine neue Methode zur Datenverarbeitung vorgestellt. Die 

Staubdepositionsgeschwindigkeit wird für verschiedene Partikelgrößen, Wind- und 

Bodenoberflächenbedingungen auf Basis der PDPA-Daten bestimmt.  

Durch die Windtunnelexperimente konnte auf diese Weise ein zuverlässiger 

Datensatz erstellt werden, auf dessen Grundlage zwei repräsentative Depositionssch- 

emata validiert werden konnten, nämlich das Schema von Slinn und Slinn (1980) für 

glatte Oberflächen und das Schema von Slinn (1982) für Vegetationsbedeckung. Es 

zeigte sich hierbei, dass die Schemata die Depositionsgeschwindigkeit insbesondere 

für raue Oberflächen leicht unterschätzen. Der Effekt der Interzeption hingegen wird 

in den Schemata deutlich unterschätzt. 

Ein neues Staubdepositionsschema wird in der vorliegenden Studie vorgestellt. 

Hierin wird der Zusammenhang zwischen Staubdeposition und Impulsvernichtung 

etabliert. Zur Beschreibung der Deposition wird die „drag partition“ Theorie inklusive 

der Bodenoberflächenparametrisierung eingeführt. Die verbesserte Parametrisierung 

kann nun sowohl auf glatte als auch auf raue Bodenoberflächen angewendet werden. 

Es zeigen sich gute Übereinstimmungen der Ergebnisse des neuen Depositions- 

modells mit den Windtunnelmessungen. Durch eine Sensitivitätsanalyse konnte der 

neu eingeführte Oberflächenparameter, der Element-Frontalflächenindex, als vorwie- 

gender Einflussfaktor auf die Kollisionseffizienz der Bodenoberfläche identifiziert 



 

werden. Somit hat der Index starken Einfluss auf die Deposition von Partikeln aller 

Größen.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Abstract 

Dust deposition is a key component of the dust cycle in the Earth system. The lack of 

understanding for the mechanisms of dust deposition has been a major bottle neck to 

the development of the dust-related research field. The focus of this study is to obtain 

data for dust dry deposition, to validate the existing dust deposition schemes and to 

improve the parameterization for dust deposition processes. 

A series of dust deposition experiments are carried out in a wind-tunnel laboratory. 

A laser-based PDPA (Phase Doppler Particle Analyzer) technique is employed to 

measure the velocity and size of the dust particles which pass through the sampling 

area. Dust concentration is measured using an Aerosol Spectrometer and wind and 

turbulence are measured using a sonic anemometer and other conventional 

wind-tunnel instruments. A new method for processing the data is proposed. The 

PDPA data are used to derive the dust deposition velocity for different particle sizes 

and wind and surface conditions. 

A reliable dataset is obtained through the wind-tunnel experiments, which are then 

used to validate two representative dust deposition schemes, the Slinn and Slinn (1980) 

scheme for smooth surfaces and the Slinn (1982) scheme for vegetation canopies. It is 

found that the schemes tend to underestimate dust deposition velocity, especially for 

rough surfaces. The effect of interception is seriously underestimated in the schemes.  

A new dust deposition scheme is proposed in this study. The relationship between 

dust deposition and momentum depletion is established. The drag partition theory 

including the surface parameterization method is introduced to describe dust 

deposition. The improved scheme is suitable for both rough and smooth surfaces. The 

predictions of the new scheme are found to agree well with the experimental data. By 

sensitivity analysis, it is found that the newly introduced surface parameter, element 

frontal area index, has a predominant effect on surface collection efficiency and 

influences the deposition of particles of all sizes. 
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Chapter 1  

Introduction 

Dust are small mineral particles with diameter less than 20 μm. The motion of dust in 

the Earth system forms a dust cycle which consists of processes of dust emission, 

transport and deposition. Dust deposition can be divided into dry and wet deposition, 

depending on whether precipitation is involved in the removal process. Dust dry 

deposition, to be studied in this thesis in detail, refers to the removal of dust particles 

from atmosphere onto surface in the absence of precipitation. In addition to the effect 

of gravitational settling which is related to the dust particle characteristics, other 

factors such as atmosphere turbulences and surface properties are also important to 

this process. Throughout this thesis, dust dry deposition will be simply referred to as 

dust deposition, unless otherwise stated.  

Airborne dust plays an important role in the climatic system. Dust aerosols 

influence the atmospheric radiation budget via scattering and absorbing shortwave 

and longwave radiation components (Pérez et al., 2006) and affect the optical 

properties and lifetime of clouds (Sokolik et al., 2001). According to the reports of the 

IPCC (Intergovernmental Panel for Climate Change), the uncertainty in aerosol 

radiative forcing is among the largest of all forcings on the climate system (IPCC 

Fourth Assessment Report, 2007). In addition, the transport of dust is closely related 

to the global cycle of minerals and nutrients. It also affects the process of soil 

formation (Reheis et al., 1995) and the evolution of surface topography on geological 

time scales (Wells et al., 1987). Moreover, airborne dust in the lower part of the 

atmosphere causes visibility degradations (Malm et al., 2003) and detrimental health 

impacts (Pope and Dockery, 1999), which strongly influence the human life. 

In recent years, a number of dust models have been developed by coupling 

modules for atmospheric, land-surface and aeolian processes with land-surface 

parameter databases, for example, by Shao et al. (2003), Ginoux et al. (2004), Tanaka 
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and Chiba (2006). One of the main research problems facing the dust modeling 

community is how surface dust fluxes, including emission and deposition, can be 

quantified through parameterization. These are both complex dynamic processes 

involving a number of environmental factors. Our knowledge of these processes is, 

however, far from complete (Shao, 2008; Petroff et al., 2008a). Dust deposition is 

particularly poorly understood, although the process has been studied over the last few 

decades by a number of research groups. 

Numerous experimental studies on dust deposition have been carried out, using 

various measurement methods, such as collection method, gradient method and eddy 

correlation method. A database of experimental results of dust deposition over various 

surfaces and under different conditions exists (Chamberlain, 1966 and 1967; 

Sehmel, 1971 and 1973; Wedding and Montgomery, 1980; Nicholson, 1993; Pryor et 

al., 2006 and 2007). However, a comparison of the different experimental results 

remains difficult due to the lack of information on detailed experimental conditions 

and the poor comparability between the measurement techniques (Wesely et al., 1985; 

Hicks et al., 1989; Goossens and Rajot, 2008).  

On the other hand, several theoretical schemes have been proposed to describe the 

deposition process under different situations (e.g. Bache, 1979a and 1979b; Slinn, 

1982; Wesely et al., 1985; Petroff et al., 2008b). Some mechanisms including 

turbulence transfer, gravitational settling and surface collection are introduced to 

predict the quantity of dust deposited on the surface. But the disagreement between 

the model results and experimental data is significant (Ruijgrok et al., 1995), which 

indicates that these schemes still have weaknesses in accurately describing the 

complex deposition processes. One of the obvious deficiencies of the existing 

schemes is for instance that a rough surface is normally considered to consist of a 

uniform roughness elements and the total surface collection efficiency is based on 

consideration of one of the uniform roughness element. These schemes are thus 

difficult to apply to surfaces with multi-size roughness elements. Also the effect 

arising from the interactions among the roughness elements on the process of dust 

collection is neglected. 

A thorough literature review reveals, as detailed in Chapters 2 and 3 of this thesis, 
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that our knowledge of dust deposition is rather incomplete. The large uncertainties in 

the dust-deposition estimates in dust models, due to the lack of high quality 

dust-deposition data for comparison, the employment of poorly-tested dust-deposition 

schemes and the unreliable parameter databases required for the deposition schemes, 

have been a major bottle neck to the development of the entire research field. 

The general aims of this study are to better understand the mechanisms of dust 

deposition, to collect data for dust deposition scheme validation and to develop better 

dust deposition schemes. The following targets are achieved through this study. 

 A series of wind-tunnel experiments on dust deposition over several surfaces is 

carried out and a reliable and comprehensive dataset is obtained. 

 The dataset is used to validate representative existing dust deposition schemes. 

The differences between the experimental data and the scheme- predicted results 

are analyzed and the deficiencies of the schemes are examined. 

 An improved dust deposition scheme with a new parameterization is proposed to 

account for the effect of surface roughness elements interactions. 

The thesis is structured as follows: Chapter 2 describes the basic theory of dust 

deposition velocity, including the most important concepts and the main mechanisms 

for dust deposition. The traditional experimental methods and prevalent theoretical 

schemes are also described in Chapter 2. In Chapter 3, the wind-tunnel laboratory and 

the equipment used for the experiment, as well as the design of the wind-tunnel 

experiments, are introduced. The methodology of data processing and the 

experimental data are presented in Chapter 4. Also shown in Chapter 4 is a 

comparison between the measurements and the dust deposition schemes. In Chapter 5, 

the new dust deposition scheme is presented and validated against the wind-tunnel 

measurements. Finally, the summary of the work, along with an outlook for future 

studies, is given in Chapter 6.  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Chapter 2 

Basic Theory and Study Review 

Dust deposition as a scientific problem has attracted the attention from the 

environmental investigators since as early as the 1900s (Mili and Lempfert, 1904; 

Winchell and Miller, 1918). In the past century, more systematic research on the 

topic has been carried out and a wealth of knowledge accumulated, which forms the 

basis of this study. In this chapter, the basic concepts and hypotheses of dust 

deposition will be introduced and the dust deposition mechanisms described. Theories, 

parameterization schemes, and experimental techniques will be reviewed. 

2.1 Basic theory 

2.1.1 Influencing factors 

Dust deposition is the transport of dust particles from atmosphere onto earth surface. 

This process is influenced by a number of factors related to the proprieties of the 

airborne dust particles, atmospheric flow conditions and the underlying surface 

characteristics. 

 

Airborne dust 

The physical properties of the airborne dust particles, including shape, size and 

density, affect their dynamic behavior and hence their motion in air. As shown in 

Figure 2-1, the shape of dust particles is mostly complex and irregular. Due to this fact, 

the size of a dust particle is often described using an equivalent diameter (Dp) which is 

the diameter of a spherical object possessing the same physical property as the dust 

particle (e.g., aerodynamic characteristics in the study of dust deposition). Dust 

particles are therefore assumed to be spherical in many relevant theoretical works, as 
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well as in this study. The size of airborne dust distributes over a considerable range, 

from a few nanometers (nm) to several tens of micrometers (μm). The typical number 

and volume distributions of aerosols (including dust) are as shown in Figure 2-2. 

 

 
 

Figure 2-1: Electron microscope images of anthropogenic (A-C) and natural airborne (D-I) particles 
(Gieré and Querol, 2010). Therein, D, E and F are collected from the Saharan dust.    

 

 

Figure 2-2: Typical number and volume distributions of aerosols (Seinfeld and Pandis, 2012) 

Another physical quantity of interest to deposition is particle density, ρp, which 
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refers to the mass per unit volume of the particle itself. Particle density influences the 

kinetic properties of the particle and its value is dependent on the particle structure 

and composition. However, the density of dust particles (of quartz, clays, feldspath, 

calcite etc.) is typically 2650 kg·m-3 (Rajot et al., 2008). 

The gravitational force acting on a spherical particle, G, can be calculated as  

 gDG pp ⋅⋅= 3

6
1 ρ    (2.1) 

where g is the gravitational acceleration. 

 

Atmosphere (air)  

Drag force arising from the relative movement between air and particle is another 

main reason for dust motion in the atmosphere. Wind therefore plays an important 

role in the process of dust deposition. In neutral atmospheric boundary layers, the 

profile of the mean wind speed is approximately logarithmically (Shao, 2008), i.e.,  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

0

* ln)(
z
z

k
uzu                (2.2) 

for surfaces with low roughness elements or  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⋅=

0

* ln)(
z

zz
k
uzu d   (2.3) 

for surfaces with high roughness elements, where u(z) is the mean wind speed 

(horizontal) at height z and k the von Karman constant ( ~ 0.4). The friction velocity, 

*u , is defined as: 

  
a

u
ρ
τ

=*  

with τ being the surface shear stress and ρa the air density. The roughness length, z0, is 

the height at which u(z) in Eq. (2.2) or (2.3) becomes zero and describes the capacity 

of the surface for momentum absorption. The zero-displacement height, zd, is 

introduced to describe the change of the centreoid of momentum absorption on 

high-rough surface. 
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Surface  

Both the roughness length (z0) and zero-displacement height (zd) are integral 

parameters related to the roughness of the surface but not the real sizes of the 

roughness elements (obstacles). For studying surface dust collection, the real sizes of 

the roughness elements need to be used. For simplicity, a roughness element is usually 

considered to be cylinders standing perpendicular to the ground (Figure 2-3), with hc 

and dc representing respectively its height and diameter. 

 

 
Figure 2-3: Illustration of a roughness element. 
 

2.1.2 Assumptions 

Some assumptions are required to simplify the complex dust deposition processes and 

to propose feasible dust deposition schemes. The main ones commonly made in dust 

deposition studies are summarized in this section.  

 

Constant flux in vertical   

The most important assumption for dust deposition studies is that dust flux, i.e. mass 

transfer per unit area per unit time, in the atmospheric surface layer is constant in 

vertical. This also implies that in the absence of dust emission, the dust flux at any 

given height, from the top of roughness element to the reference height zr = 100z0 + zd 

[about 100 m for typical forest according to Businger (1986)], is equal to the dust 

deposition flux at the surface.  

Roughness element  

Ground hc 

dc 
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The constant-flux assumption is not expected to hold for an instant time and 

location, but is tenable if dust fluxes are averaged over a sufficiently large surface for 

given time and/or over sufficiently long time period for given location. This 

assumption provides a way to establish a relationship between dust motion in air and 

dust deposition to the surface. It also underpins the theory for the deposition flux 

measurement on surface. 

 

Surface homogeneity 

The assumption of surface homogeneity is made in many dust deposition studies. The 

size and distribution of roughness elements on the surface are supposed to be uniform. 

Furthermore, the horizontal flow field is also supposed to be homogeneous.  
 

2.1.3 Key variables 

Deposition velocity  

Deposition velocity, wd(z), for a given height, z, can be defined as the deposition flux, 

Fd, normalized by the concentration, C(z), (Pryor et al., 2008): 

 
)(

)(
zC

F
zw d

d −=         (2.4)  

According to this definition, deposition velocity changes with dust concentration 

for the constant flux assumption. If dust is completely absorbed when it reaches the 

surface (i.e. C(0) = 0), then the deposition velocity at the surface would be infinite. 

For position far away from the surface, the effect of concentration depletion is small. 

This high position is normally selected as the reference height, zr. In previous studies, 

deposition velocity is generally referred to wd given by Eq. (2.4) for level zr, namely 

wdr in Figure 2-4, unless otherwise stated. The ideal profiles of deposition velocity, 

dust concentration and flux are as shown in Figure 2-4. 
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Figure 2-4: Idealized profiles for dust concentration, C, deposition velocity, wd, and deposition 

flux, Fd, which is considered to be constant in vertical. Fs = Fd is the flux of dust deposited to the 

surface. Dust concentration increases with height. And hence, dust deposition velocity decreases 

with height. wdr is the deposition velocity at reference height, zr, where the effect of concentration 

depletion is minimum. 

 

Surface collection efficiency  

Surface collection efficiency, ξ, is defined as (Bache, 1979a) 

 
doseArea
doseTrap

=ξ     (2.5) 

where the “trap dose” represents the number of particles deposited to a unit surface 

area and “area dose” refers to the number of particles flowing through an imaginary 

frame of unit area cross-section, perpendicular to the wind direction. This approach 

was originally proposed by Gregory and Stedman (1953) and then was widely applied 

to the studies of dust-surface interactions. 

For a roughness element on rough surface, the element collection efficiency, E, 

represents the collected fraction of all dust particles initially moving on a collision 

course with the element (Figure 2-5a). The surface collection efficiency is essentially 

the synthesized effect of all roughness elements on the surface. The relationship 

between ξ and E depends on the size and location distribution of the roughness 

elements. If the roughness elements are uniform and distributed as shown in Figure 

2-5b, the surface collection efficiency would be equal to the element collection 

rz  

dw  

dF  

rdw  
sF  )( rzC  

C 
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efficiency, i.e. ξ = E. This situation is assumed in many existing dust deposition 

schemes, e.g., Slinn and Slinn (1980) (SS80 hereafter), Slinn (1982) (S82 hereafter) 

and Zhang et al. (2001). 

 

 
Figure 2-5: Top view of surface with roughness elements. (a) Illustration of element collection 

efficiency. An air parcel containing dust particles moves towards a roughness element. (b) The 

case for equal value between surface collection efficiency and element collection efficiency, i.e.  

ξ = E. (c) The case for different surface collection efficiency and element collection efficiency, i.e. 

ξ < E. 

 

In general, surface collection efficiency is contributed to several surface collection 

mechanisms, including Brownian motion, impaction and interception, as discussed in 

more detail in Section 2.1.4. We therefore have the following relationship: 

 )( inimBR ξξξξ ++⋅=   (2.6) 

where ξB, ξim and ξin are respectively the contribution of the Brownian motion, 

impaction and interception. R is a reduction factor of surface collection efficiency due 

to particle rebound. 
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2.1.4 Mechanisms for dust deposition 

Part 1: Deposition in air 

Gravitational settling 

Airborne particles are forced by gravity (G, as 

expressed as Eq. (2.1) and shown in Figure 

2-6) and move downwards. Dust deposition 

due to this process is called gravitational 

settling. For simplicity, we assume that the air 

is static. As a particle falls through the static 

air, a resisting force (fr, aerodynamic drag) 

occurs due to the particle-to-air relative 

motion. The magnitude of the aerodynamic drag increases with the particle-to-air 

relative velocity, and its effect is to counteract the acceleration of gravity (Figure 2-6). 

When the aerodynamic drag balances the gravity force, the particle is no longer 

accelerated and the particle-to-air relative velocity reaches a maximum, which is 

known as the particle terminal velocity.  

For small spherical particles, the relationship between the aerodynamic drag and 

the particle-to-air relative velocity is (Hinds, 2012): 

 
c

rp
r C

wD
f

πμ3
−=    (2.6) 

where μ is the air dynamic viscosity, Dp the particle diameter, wr= wp - wa the relative 

velocity between the particle with velocity wp and the air with velocity w. The 

negative sign means that the direction of the aerodynamic drag is opposed to the 

direction of the particle-to-air relative velocity. Cc is the Cunningham correction 

factor which accounts for non-continuum effects when calculating the drag on small 

particles, which is found to be (Seinfeld and Pandis, 2012) 

( )mpD

p

m
c e

D
C λλ /55.04.0257.121 −++=  

where  

G 

rf  

pw
 

Figure 2-6: Gravitational settling. 
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pD
TK

a

B
m 22π

λ =      

is the particle mean free path, KB is the Boltzmann constant, T temperature, p pressure 

and Da the effective diameter of air molecule.  

Suppose only gravity and aerodynamic forces are exerted on the airborne particle 

(Figure 2-6). Then, at equilibrium, we have:  

 0=+= Gf
tr wwr      (2.7) 

where tw  is terminal velocity, i.e. the maximum particle-to-air relative velocity a 

particle falling through air under gravity can reach.  

A combination of Eq. (2.1), Eq. (2.6) and Eq. (2.7) leads to the expression of 

particle terminal velocity:  

 g
DC

w ppc
t ⋅=

μ
ρ
18

2

     (2.8)  

In other words, if we release a particle in still air and allow it to fall over a sufficiently 

long time, then the final particle velocity would be 

 atfinalp www +=        (2.9) 

The first part on the right side of Eq. (2.8) is the particle relaxation time 

 
μ

ρ
τ

18

2
ppc

p

DC
=                (2.10) 

which characterizes the time required for a particle to adjust or "relax" its velocity to a 

new condition of forces. It follows that Eq. (2.8) can also be rewritten as 

 gw pt ⋅=τ                              (2.11) 

 

Diffusion 

Diffusion is another important mechanism for dust transfer, which results in mixing or 

mass transport without requiring bulk motion. To describe the effect of diffusion, the 

quantities under consideration are separated into their mean and fluctuating 
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components (Stull, 2009), e.g.,  

 aaa ′+=                        (2.12) 

where a  is the mean component of a  and a′  the deviation of a  from a . By 

averaging Eq. (2.12), we have 

 0=′a                          (2.13) 

We can now partition the quantities relevant to dust deposition as follows: 

 aaa uuu ′+=      (2.14a) 

 aaa www ′+=       (2.14b) 

 ppp www ′+=         (2.14c)  

 CCC ′+=           (2.14d) 

where ua and wa are respectively horizontal and vertical velocity of air. The vertical 

dust flux averaged over a time interval can be calculated as:  

 CwCwFFCCwwF pp
diff

d
mean

dppd ′′+⋅=+=′+⋅′+= )()(        (2.15) 

The above expression implies that the total vertical dust flux consists of two 

components, namely, a component of dust transport by the mean movement, mean
dF , 

and a component by fluctuations or the diffusion flux, diff
dF . Suppose the average 

vertical wind speed is zero. Then, the mean movement of dust is gravitational settling 

with flux g
dF , i.e., 

 CwFF t
g

d
mean

d ⋅==                   (2.16) 

The diffusion flux is mainly due to dust Brownian motion, B
dF , and air turbulence, 

T
dF , i.e., 

 T
d

B
d

diff
d FFF +=                        (2.17) 

 

(a) Brownian diffusion B
dF  

Airborne dust particles are constantly and randomly bombarded from all sides by air 
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molecules. If the particles are sufficiently small, then the bombardments cause them 

to move irregularly in air, i.e. Brownian motion. Brownian motion diffuses particles 

from regions of higher concentration to lower. This process is termed as Brownian 

diffusion. The effect of Brownian diffusion can been shown experimentally to obey 

the Fick's Law of diffusion (Fick, 1855), i.e., the Brownian diffusion flux can be 

calculated by 

 
z
CkF p

B
d ∂

∂
⋅−=       (2.18) 

where 

p

cB
p D

CTKk
πμ3

⋅⋅
=  

is the diffusion coefficient. The negative sign means the direction of flux is opposed to 

the concentration gradient.  

 

(b) Turbulent diffusion flux e
dF  

Turbulence is an important characteristic of air movement. Atmospheric turbulence 

can be generated by a number of different conditions, but in the atmospheric boundary 

layer primarily by wind shear and buoyancy. Turbulence can be visualized as 

consisting of irregular swirls of motion, called eddies, with different sizes and 

superimposed on each other (Stull, 2009). 

The mechanism through which turbulence generates a dust flux is illustrated in 

Figure 2-7. Suppose an eddy exists near the surface as shown in Figure 2-7a. Air 

parcels will be exchanged between Position 1 (high level) and Position 2 (low level). 

Dust particles move following the air parcels and mix with the environment. If the 

average concentration at Position 1 is higher than that at Position 2, the amount of 

downward moving dust particles is more than that of upward moving, i.e., dust is 

transported downward by the eddy. When air parcels from Position 1 with higher 

concentration (C′  > 0) move downwards ( pw′ < 0), they result in a negative flux 

(downward). Likewise, the upward moving parcels ( pw′  > 0), being associated with a 

lower concentration (C′ < 0), also result in a negative flux. Both the upward and 
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downward moving air parcels contribute to a negative Cwp ′′ . Thus, for the case 

shown, the average turbulent dust flux is negative.   

 

 

Figure 2-7: Illustration of turbulent dust flux. Air parcels exchange places between Position 1 and 

2, with more dust moving downward and less upward. As a result, dust is transferred downwards. 

 

The above discussions suggest that eddy diffusion is determined by two factors: 

particle fluctuating motion caused by turbulence and concentration gradient. This 

allows us to use an expression similar to Eq. (2.18) to calculate the eddy dust flux 

 
z
CKF p

T
d ∂

∂
⋅−=    (2.19)  

where Kp is particle eddy diffusivity and C  mean dust concentration.  

For the fluctuating motion of dust particles caused by turbulence, the relationship 

between particle eddy diffusivity and eddy viscosity TK  can be expressed as 

 TTp KScK ⋅=    (2.20) 

where TSc  is the turbulent Schmidt number which depends on the property of 

turbulence and the particle relaxation time. Csanady (1963) derived a specific 

expression of Eq. (2.20) by taking the trajectory-crossing effect into consideration.       

The relevant result of Csanady’s theory is 
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where β  is a dimensionless coefficient and σ  is the standard deviation of the 

turbulent velocity.  

For a neutral atmospheric surface layer, TK  is normally expressed as 

 zkuK T *=       (2.22) 

In summary, if the vertical mean velocity of air is zero, the dust deposition flux in 

air consists of the following parts 

 Cw
z
CK

z
CkFFFF tpp
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∂
∂

⋅−=++=        (2.23) 

The gravitational settling flux is dependent on particulate size, density and shape, 

and is important in general for particles larger than 10 μm. Diffusion is effective for 

small particles. At relatively high levels in the atmospheric surface layer, flow is 

predominantly turbulent and the diffusion flux occurs mainly through eddy transfer. 

Close to the surface where turbulence is weak, Brownian diffusion dominates. For 

particles smaller than 0.1 μm, Brownian diffusion is the dominant mechanism for dust 

transfer in the absence of turbulence. 

Part 2: Deposition on surface (surface collection process) 

Laminar layer and Quasi-laminar layer 

The laminar layer as shown in Figure 2-8a is a thin layer adjacent to the surface, 

where turbulence is suppressed and flow is laminar. The thickness of the laminar layer, 

δ, over a smooth surface (small roughness-element Reynolds number) is in direct 

proportion to air kinematic viscosity, ν (m2s-1) and inversely proportional to friction 

velocity, *u , (Shao, 2008), i.e.: 

 */~ uνδ    (2.24) 

In the case of a rough surface, a quasi-laminar layer with thickness, δ ′ , can be 

defined as a sublayer adjacent to the surface and envelops all obstacles (Figure 2-8b). 
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Figure 2-8: Illustration of (a) a lamina layer and (b) a quasi-laminar layer. 

 

The particles which enter and cross the laminar layer (or quasi-laminar layer) may 

contact the surface and be collected. This is the so called surface collection process. 

The mechanisms for surface collection include sedimentation, Brownian motion, 

impaction and interception. Hence, the flux of dust collected by the surface, Fs, can be 

expressed as 

 in
s

im
s

B
s

g
ss FFFFF +++=      (2.25) 

where g
sF , B

sF , im
sF , in

sF  respectively relate to the contribution of sedimentation, 

Brownian motion, impaction and interception.  

 

Sedimentation  

Due to gravity, particles, especially large particles ( > 10 μm), fall through the laminar 

layer (or quasi-laminar layer), leading to gravitational sedimentation (Droppo, 2006). 

Gravitational settling flux is independent on the type of the surface (rough or smooth) 

but on the surface horizontal projection area. g
sF  can be expressed as 

 δδ CwF t
g

s ⋅= ,               (2.26) 

where δC  is the typical dust concentration of the laminar (or quasi- laminar) layer. 

Considering the possible aggregation of hygroscopic particle in humid laminar (or 

quasi-laminar) layer over wet surfaces, the size of dust particle may grow to δ,pD and 

δ,tw  is relevant terminal velocity. Methods for predicting size growth of hygroscopic 

particles exist (e.g. Fitzgerald, 1975; Gerber, 1985) and have been applied to dust 

deposition schemes (e.g. SS80; Zhang et al., 2001). 

 

(b)   

δ ′
δ
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Brownian motion  

Brownian motion is the dominant mechanism for very fine particles (Dp < 0.1 μm) to 

cross the laminar layer (Droppo, 2006). According to the definition of surface 

collection efficiency [i.e., Eq. (2.5)], the Brownian diffusion deposition flux can be 

expressed as  

 B
a

B
s CuF ξδδ ⋅⋅= ,         (2.27) 

where δ,au  is the typical horizontal wind speed of the laminar (or quasi-laminar) 

layer. 

It has been suggested that the surface collection efficiency due to Brownian 

motion, Bξ , can be expressed as  

 aB Sc−=ξ           (2.28) 

where the Schmidt number pkSc ν= is the ratio of the kinematics viscosity of air, 

ν , to the particle molecular diffusivity, pk . The parameter a usually lies between 1/2 

and 2/3 with larger values for rougher surfaces (S82). Zhang et al. (2001) suggested a 

varies between 0.50 and 0.58 depending on different land-use categories. 

   Petroff et al. (2008b) suggested the collection efficiency for a roughness element 

(a cylinder perpendicular to the flow), EB, as 

 13/2 Re −−= Bn
B

B ScCE            (2.29) 

where Re is the Reynolds number for the roughness element. BC  and Bn  are 

parameters depending on flow regimes as shown in Table 2-1. 

 

Table 2-1: Typical values of CB and nB in Eq. (2.29) for different Reynolds numbers (Petroff et al., 

2008b). 

Re CB nB 

1-4×103 0.467 1/2 

4×103-4×104 0.203 3/5 

4×104-4×105 0.025 4/5 
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Impaction 

Suppose a dust particle moves along with the airflow near the surface. If the particle is 

too large to follow the directional change of the airflow, then it may collide with the 

surface. This process is called impaction. Particles with a diameter of 2 μm or larger 

can be effectively collected by impaction (Droppo, 2006). Impaction is further divided 

into turbulent impaction and element impaction depending on the mechanisms for the 

directional change of the flow, as shown in Figure 2-9. 

 

Figure 2-9: Schematic illustration for impaction for the particles which cannot follow the flow 

stream line and hit the surface. Airflow is represented by the solid lines and the particle paths the 

dashed lines. The grayish region represents the laminar layer around the surface. (a) Turbulent 

impaction on smooth surface (without roughness elements). Flow direction changes due to eddy. 

(b) Elemental impaction on a roughness element. Flow direction changes due to the presence of 

roughness element.  

 

Turbulence is ubiquitous for atmospheric motion. A dust particle may disengage 

from the eddy due to inertia and hit the surface (as shown in Figure 2-9a). This is 

called turbulent impaction. The turbulent impaction may occur over any kind (smooth 

or rough) of surfaces. Similar to Eq. (2.27), the impaction deposition flux can be 

expressed as  

 im
Ta

im
sT CuF ξδδ ⋅⋅= ,  (2.30) 

where im
Tξ  is the surface collection efficiency of turbulent impaction, which is 

related to dimensionless particle relaxation time (Liu and Agarwal, 1974) 
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SS80 suggested a semi-empirical formulation for surface collection efficiency as 

follow 

 
+−= pim

T
τξ /310    (2.32) 

As shown in Figure 2-9b, the direction of air flow changes near the roughness 

element (i.e. obstacle). The particle with big inertia may disengage from the stream 

line and hit the roughness element. This is called elemental impaction. The elemental 

impaction only occurs around the roughness element. The collection efficiency for a 

roughness element due to elemental impaction, im
eE , is normally considered as a 

function of the Stokes number (St). For example, S82 suggested 

 2

2

1 St
Stim

e +
=ξ     (2.33) 

where cp duSt /*τ=  and cd  is the dimension of the roughness element. Petroff et al. 

(2008b) used the following form for isolated cylinders, 
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e     (2.34) 

In summary, the surface collection efficiency caused by impaction can be expressed as 

 )( im
e

im
T

im
e

im
T

im Ef+=+= ξξξξ    (2.35) 

The function f depends on the distribution of the roughness elements. For the case as 

shown in Figure 2-5b, im
e

im
e EEf =)( . 

 

Interception 

Interception occurs when particles of small inertia, which perfectly follow the 

streamlines of the airflow, but are held back because the distance between the particle 

centre and the surface is smaller than the radius (Fuchs, 1964). The predominant 

collection mechanism for particles in the size range of 0.2 to 2 μm is often assumed to 

be interception (Droppo, 2006).  
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Figure 2-10: As Figure 2-9b but is for interception. The particle follows the streamline well but 

contacts with the roughness element due to proximity. 

 

Similar to impaction, interception also may be caused by air turbulence. But the 

particles which can follow the air well should be very small, even compared with the 

thickness of the laminar layer. When these small particles move into the laminar layer, 

they will be barely affected by the turbulence. Hence, almost no interception occurs 

because of turbulence, i.e. 0≈im
Tξ .  

As shown in Figure 2-10. Interception mainly occurs around roughness element. 

Specification of interception’s contribution to the elemental collection efficiency, in
eE , 

is unclear. The estimate is mainly based on the theoretical results for potential flows, 

such as (Fuchs, 1964)  

 
c

pin
e d

D
E ⋅=

2
1     (2.36)  

Similar to Eq. (2.35), the surface collection efficiency caused by interception can be 

expressed as 

  )( in
e

in
e

in Ef== ξξ        (2.37) 

S82 suggested the surface (vegetation) collection efficiency caused by interception as  
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where cd is average drag coefficient for vegetation, cv the portion of cd arising from 

viscous drag (as opposed to form drag), s
cd  characteristic dimension (e.g. diameter ) 

of small collectors in a canopy, l
cd  characteristic dimension of large collectors in a 

canopy, and c fraction of the total collected momentum collected by small collectors. 
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Rebound 

Particle rebound is possible after particle-surface collision. This phenomenon is 

related to the kinetic energy of the incident particle and the nature of the impact. It 

also depends on the adhesive conditions of the surface. It is thought to have a strong 

influence on the deposition of coarse particles larger than 5 μm (Chamberlain, 1967). 

According to S82, the reduction in collection caused by rebound, R , can be 

expressed as  

 ( )StbR −= exp     (2.39) 

where b  is an empirical constant, assumed to be 2 based on grass deposition 

measurements (Chamberlain, 1967). In the studies of Giorgi (1988) and Zhang et al., 

(2001), b is set to 1.    

The other mechanisms, such as electrophoresis, diffusiophoresis and 

thermphoresis, may also contribute to dust deposition, but the magnitude is considered 

small compared with the ones introduced above (Davidson and Wu, 1990). 

2.1.5 Deposition steps 

The process of dust deposition consists of three steps, as shown in Figure 2-11.  

 Firstly, dust particles move downwards due to the combined effect of turbulent 

diffusion and gravitational settling from the atmosphere to a very thin layer of 

stagnate air adjacent to the surface.  

 Then, the particles pass through the thin laminar layer to reach the surface. In the 

laminar layer, turbulence is suppressed. Brownian diffusion (for small particles) 

and gravitational settling (for large particles) are the main factors driving the 

deposition process.  

 Finally, the particles are collected by the surface due to impaction, interception 

and Brownian motion. They are either retained to or rebounded from the surface, 

depending on a combination of surface and particle properties. 
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Figure 2-11: Dust deposition steps and mechanisms. Dust is firstly transferred downwards by eddy 

diffusion and gravitational settling from free air to the layer adjacent to surface. Brownian motion, 

interception and impaction lead to particle crossing the laminar layer to contact the surface. There, 

the particles are either retained or rebound. 

 

2.2 Review of dust deposition experiments 

Over the past few decades, numerous experimental studies on dust deposition have 

been performed. The experimental results have been summarized in the studies of 

McMahon and Denison (1979), Sehmel (1980), Nicholson (1988), Wesely and Hicks 

(2000), Pryor et al. (2008) and Petroff et al. (2008a). The measurement results are 

obtained under different surfaces, particles and wind conditions by using a variety of 

techniques. Here, the measurement methods and techniques involved are reviewed 

briefly.  

2.2.1 Measurement methods 

As stated in Eq. (2-4), dust deposition velocity, dw , is dust deposition flux divided by 

dust concentration. Measuring dust flux is the main challenge, for which a wide range 

of methods has been developed. These methods can be roughly divided into the 
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general categories of direct and indirect methods (Seinfeld and Pandis, 2012). Direct 

methods explicitly determine the dust deposition flux by collecting dust deposited on 

the surface or by measuring the vertical dust flux in air near the surface. Indirect 

methods derive dust deposition fluxes by measurements of quantities such as dust 

concentration. 

 

Direct methods 

(a) Surface collection method  

Dust deposition flux is obtained by measuring the amount of dust collected by a 

natural or surrogate surface. The measurements are local and do not represent dust 

deposition over a large area unless in homogeneous conditions, but are easy to 

perform. A wide variety of surrogate surfaces, such as filters, plastic and glass 

surfaces, has been used (Goossens and Offer, 1994). Foliar extraction (e.g. leaf 

washing or analysis of snow) enable the natural surface to be employed in dust 

deposition measurements. The associated throughfall technique is widely used to 

measure the dust deposition on canopies (Garland, 2001).  

The accumulation method and the trace method are usually used in conjunction 

with the surface collection method. For accumulation method, the total amount of dust 

deposited on the surface is collected for certain time duration. It can be readily carried 

out but contains no details of the measurement process, and it is not suitable for 

studying the influences of the meteorological conditions on dust deposition. 

The tracer method is based on chemically or radioactively labeled particles, which 

are introduced into the field or the wind tunnel for measurement purposes. The 

uncertainties in aerosol granulometry and measurement reliability are usually low as 

the introduced aerosols are pre-characterised. This method has been widely used in 

wind-tunnel studies with different surface types, such as grass (Chamberlain, 1967), 

water (Sehmel and Sutter, 1974), moss (Clough, 1975), spruce (Ould-Dada, 2002) etc.  

 

(b) Eddy-correlation method 

Turbulent dust flux can be expressed as the covariance of particle velocity and dust 
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concentration 

 CwF p
T

d ′′=        (2.40) 

For sufficiently small dust particles, ap ww ≈ , such that the above equation becomes 

 CwF a
T

d ′′≈   (2.41) 

Thus, if the instantaneous wind velocity and particle concentration can be 

simultaneously sampled, then turbulent dust flux can be calculated by use of Eq. 

(2.41). This method is called eddy-correlation method which requires fast particle 

sampling (Businger, 1986). To quantify the particles, various methods have been 

employed in the previous studies, based on analyzing the different properties of the 

particles, such as electric charge (Wesely et al., 1977; Lamaud et al., 1994), 

photometry (Hicks et al., 1982; Wesely et al., 1985; Hicks et al., 1989), optical 

refraction (Gallagher et al., 1997; Bleyl, 2001) or liquid condensation into nuclei or 

Aitken particles (Buzorius et al., 1998; Nemitz et al., 2002). Another method, termed 

eddy-accumulation method, operates in a similar fashion, but a distinction is made 

between the upward and downward moving particles (Wesely and Hicks, 2000). 

Both the eddy-correlation and eddy-accumulation methods are micro- 

meteorological methods for measuring turbulent fluxes (Businger, 1986). But for dust 

flux measurements, the dust particles must be small enough, such that they behave 

similarly as traces in turbulent flows. As averaging over certain time duration is 

required to estimate the covariance, the measurement conditions must be assumed to 

be stationary, horizontally homogeneous and there is no particle source in the near 

field, such that the dust fluxes measured at a certain height can be considered to be 

identical to that at the surface. However, the results obtained by using this method do 

not include the contribution of gravitational settling. 

 

Indirect methods 

(c) Gradient method 

Dust deposition flux is determined by measuring the vertical gradient of dust 

concentration and using the flux-gradient relationship [such as Eq. (2.19)] to infer to 
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the associated deposition flux. This method, often be used for smooth surface or low 

canopies, is not entirely applicable to rough canopies such as forests because the 

concentration gradient on the accessible measurement height is often weak, and 

samplers with great precision are necessary. Another limitation of this method is that 

the required dust diffusivity is often associated with large uncertainties (Cellier and 

Brunet, 1992).  

2.2.2 Experimental data 

Here, we don’t repeat the work of reviewing the details of the dust-deposition 

experiments carried out over the past decades (McMahon and Denison, 1979; 

Sehmel, 1980; Wesely and Hicks, 2000; Pryor et al., 2008; Petroff et al., 2008a), but 

summarize the representative results to assess the state of the existing datasets. Figure 

2-12 shows the dust deposition velocity as a function of particle size for different 

surface types, obtained from both wind-tunnel and field experiments. The line shows 

the predicted results using the S82 scheme for a representative forest.  

As shown, the deposition velocity for large particles exhibits a much smaller 

scatter and fits well to the S82 scheme. That is because gravitational settling is the 

main mechanism for the deposition of large particles, which depends primarily on 

particle size and is relatively easy to estimate. A much larger scatter in the wd 

measurements exists for small particles, ranging from less than 0.01 to 10 cm·s-1. This 

wide range of variations may be related to the different experimental conditions, such 

as differences in meteorological conditions and surface types. It is also found that the 

results of field measurements are always higher than those from the wind-tunnel 

experiments, but detailed descriptions of the conditions for many experiments are 

lacking.   

Different measurement methods and equipment used may be another cause for the 

large scatter. The use of surrogate surfaces may lead to under-collection of depositing 

particles. Further, it is questionable to extend these devices to represent the natural 

surfaces. For micrometeorological techniques to work well, spatial homogeneity and 

temporal stationary are assumed for the successful use of these techniques. However, 

it is often difficult to fulfill all requirements in experiments under field conditions. 
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Figure 2-12: Measurements of deposition velocities against particle size for different surfaces and a theoretic prediction. 

 



2.3 Review of schemes 29

Besides the errors in the techniques themselves, accurate measurements of the size 

distribution of airborne dust was not involved in most deposition measurements. 

Therefore, it cannot be ruled out that the higher deposition velocities were caused by 

sedimentation effects of large particles. The gap between the dw  values derived from 

field and wind-tunnel experiments is considerable and requires further clarification. 

 

2.3 Review of schemes 

Over the past few decades, several schemes have been developed to parameterize dust 

deposition. A concept of deposition resistance (or its invers, the conductance) is 

widely applied and it has proved to be useful to interpret the deposition process in 

terms of an electrical resistance analogy (Hicks et al., 1987; Wesely and Hicks, 2000; 

Seinfeld and Pandis, 2012).  

2.3.1 Resistance model  

The resistance approach uses an analogy to electrical circuits to establish a scheme 

that incorporates the various processes of dust deposition. The dust concentration 

gradient over the surface corresponds to the potential (in analogy to voltage drop) for 

deposition and the deposition flux is considered as current. The total deposition 

process is considered to function as a circuit and the deposition velocity is the inverse 

of the total resistance of this circuit. Following the description of the deposition 

mechanisms and steps, the deposition flux (like a current) flows through two parallel 

pathways. As shown in the right hand of Figure 2-11, the different resistances 

correspond to the different deposition steps. And the deposition velocity is expressed 

as: 

 tcbad wrrrw +++= −1)(   (2.42) 

where ar  is the aerodynamic resistance related to dust diffusivity and air stability. 

For a neutral atmospheric boundary layer, it can be approximated as (Seinfeld and 

Pandis, 2012): 
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br  represents the resistance to transfer across the laminar (or quasi-laminar) layer and 

is named laminar (or quasi-laminar) layer resistance. br  depends on the surface 

collection process and according to Zhang et al. (2001) we have 

 
ξε Ru
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1
=   (2.44) 

where 0ε  is an empirical constant ( ~ 3). cr  is the surface resistance defined as  

 
d

c F
Cr )0(

=     (2.45) 

where )0(C  is the dust concentration at the surface. tw  represents the contribution 

of gravitational settling treated as a parallel conductance (Figure 2-11). 

It is usually assumed that all particles adhere to the surface (i.e., 0)0( =C ), so 

that cr  is normally neglected. And considering the gravitational settling is not a 

gradient-driven flux and does not fit into the resistance concept, a modified version of 

the resistance scheme is proposed by Hicks et al. (1987):  

 t
tbaba

d w
wrrrr

w +
⋅⋅++

=
1         (2.46) 

2.3.2 Analytical scheme 

The analytical scheme is generally derived from the governing equation of dust 

deposition [i.e. Eq. (2.23)]. The atmosphere is usually divided into several layers to 

describe the deposition process. The constant flux assumption and continuity of dust 

concentration is required to connect the adjacent layers. According to the number of 

the layers, the existing schemes can be categorized as a single-layer model and a 

multi-layer (mostly two-layer) model.   

(a) Single-layer model 

In a single-layer model, the surface layer is treated as a bulk entity (Owen and 

Thomson, 1963; Chamberlain, 1967; Sehmel, 1980; Raupach et al., 2001). For 

instance, in the Raupach et al. scheme, the deposition velocity is the bulk single-layer 
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conductance made up of three components acting in parallel  

 Bimtd GGww ++=        (2.47) 

where imG  the impaction conductance and BG  the Brownian diffusion conductance 

are assumed to be proportional to the bulk aerodynamic conductance for momentum 

( raM uuG 2
*= , ru  is the mean wind speed at reference height rz ) which is 

contributed by the form or pressure drag ( formaMG , ) and viscous or skin-friction drag 

( viscaMG , ), i.e. 

viscaMformaMaM GGG ,, +=  

Furthermore, the following assumptions are made by Raupach et al. (2001) scheme, 
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where fa  and va  are factors in the order of 1 accounting for the roughness 

sheltering effects. Finally, the deposition velocity is expressed as 
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where formf  is the fraction of the total drag exerted as form drag. 

The single-layer model of Raupach et al. (2001) is a great simplification of the 

real deposition steps, but includes the main physics to capture the dependence of the 

three major processes (gravitational settling, impaction and Brownian diffusion) on 

particle diameter and wind speed. The effect of the interaction between the roughness 

elements (sheltering effect) to the deposition process is considered. 

   

(b) Two-layer model for smooth surface 

SS80 used a two-layer model to explain dust deposition over water surface considered 

as a smooth (without roughness elements) and wet (leading to hygroscopic growth of 

particles). The atmosphere below a certain height is divided into two layers, an upper 

constant flux layer of depth h , where turbulent diffusion is dominant, and a lower 
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deposition layer of depth δ , where molecular diffusion is dominant and dust is 

transferred by impaction, Brownian diffusion and gravitational settling to the surface 

(Figure 2-13). 
 

 

Figure 2-13: A schematic illustration of the two-layer model for dust deposition to a smooth 

surface (SS80) 

 

The dust deposition velocity over the water surface is expressed as 
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is the transfer velocity for the upper layer, and )( pt Dw is the particle terminal velocity 
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is the transfer velocity for the low deposition layer, where m ′′ represents the 

contribution from diffusiophoresis and 310=α cm·s-1/(1g·cm-2·s-1). Hygroscopic 

growth of particles is taken into account via the particle growth theory proposed by 

δ
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Fitzgerald (1975). pD  and wpD ,  represent the diameter of dry and wet particle, 

respectively. )( ,wpt Dw  is the terminal velocity for the wet particles. Here, both the 

Schmidt number ( Sc ) and the dimensionless relaxation time ( +
pτ ) relate to the wet 

particle diameter. 

(c) Two-layer model for canopy surface 
 

 

Figure 2-14: Schematic illustration of a two-layer model for dust deposition on canopy. 

 

In most cases, a multilayer model is applied to study the dust deposition over canopy 

surfaces (Bache, 1979a, b; S82; Zhang et al., 2001 and Petroff et al., 2008b). The 

atmosphere is generally split into two layer, a canopy layer (or the so-called 

quasi-laminar layer) with the depth of canopy height h  and the upper layer from the 

top of the canopy to the reference height ( rz ), where the concentration depletion 

caused by the canopy collection is minimal. The representative work is proposed by 

S82. The terminal velocity is added to the deposition velocity calculated from the 

following equation which only includes the effect of turbulent and Brownian diffusion  
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where α  is the surface area of vegetation per unit volume. 
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Based on a series of approximations and assumptions, the solution for above 

equation can be found and the dust deposition velocity shown to be 

 tsad wrrw ++= −1)(        (2.54) 

where  

 2
*

)()(
u

huzur ara
a

−
=          (2.55) 

and sr  is the resultant effect of both rb and rc. It is found that 
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where ua(zr) and ua(h) are horizontal wind speeds at the reference height and the 

canopy top, respectively, u* is friction velocity and ξ  is the surface collection 

efficiency determined by the combination of Eq. (2.6), (2.28), (2.32), (2.33), (2.38), 

and (2.39) . γ is a parameter characterizing the wind profile in a canopy, expected to 

be in the range from 2 to 5. 

Venkatram and Pleim (1999) pointed out that “the electrical analogy does not 

apply to modeling dry deposition of particles”, because the formulation is not 

consistent with mass conservation as expressed in Eq. (2.23). The same critique 

applies to the Raupach et al. (2001), SS80 and S82 schemes. Venkatram and Pleim 

(1999) suggested an analytical expression of deposition velocity by solving Eq. (2.23) 
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with boundary condition C(0) = 0, and 
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However, problems remain with the approach of Venkatram and Pleim (1999), 

because Eq. (2.23) does not describe surface collection process and it is problematic 

to set the lower limit of the integral, Eq. (2.58), to zero. A more serious problem is 

that the boundary condition C(0) = 0 is often incorrect. Besides, the confusion 
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between surface collection efficiency and element collection efficiency has limited the 

veracity of these schemes. In many schemes, the canopy surface is considered to be of 

uniform roughness elements and no parameter is proposed to describe the effect of the 

canopy architecture. 

None of the existing schemes has been well validated, due to the lack of 

high-quality experimental data as motioned in Section 2.2. So the tasks of this study 

are to produce a cohesive experimental dataset and to propose a more reasonable 

scheme which satisfies the governing equation of dust transport [Eq. (2.23)] and 

includes new parameters to describe the effect of the canopy architecture to the dust 

deposition process.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Chapter 3 

Wind-tunnel Experiments  

Wind tunnel is an experimental facility which basically consists of a fan and a tubular 

passage (or working section, Figure 3-1). Airflow is generated by the fan and 

manually controlled, so that a desired flow in the working section is achieved. The 

parameters of interest are measured using relevant equipments. 
 
  

 
Figure 3-1: Sketch map of the wind tunnel of LZU. 

 

Since the 1960s, a number of wind-tunnel experiments on dust deposition have 

been carried out (e.g. Chamberlain, 1966, 1967; Sehmel, 1973; Little, 1977; 

Ould-Dada, 2002) and a considerable amount of dust-deposition data has been 

accumulated. However, large uncertainties exist in the data set, due to the limitations 

of the dust observing equipments and the poor comparability between the measuring 

techniques. There is also a lack of descriptions on the details of the experiments. As a 

consequence, the quality of the existing datasets does not meet the requirement of the 

in-depth dust deposition studies. To remedy this problem, we carried out a series of 

wind-tunnel experiments on dust deposition. But firstly, the wind-tunnel setup and 
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instrumentation are described in this chapter. 

3.1 Introduction of the wind-tunnel experiment 

Our experiments are carried out in the “Environmental Mechanics” Key Laboratory of 

the Lanzhou University (LZU) of China. The research facilities are maintained by the 

Key Laboratory for both wind-tunnel and relevant measurement devices, such as 

Phase Doppler Particle Analyzer (PDPA) used to measure particle size and velocity, 

Aerosol spectrometer (AS) used to measure dust concentration and Ultrasonic 

anemometer used to measure wind speed. 

3.1.1 Facility and instrumentation 

(a) Wind tunnel 

The LZU wind tunnel is a blow-down wind tunnel, which is in total 55 m long, 

including a powerful fan system, a rectification section, a working section and a 

diffuser (Figure 3-1). High-speed and turbulent wind can be generated by a fan of 

75 kW in the first part. Then, the turbulent air flows into the rectification section. Here, 

the flow speed is slowed down because of a bigger cross-section. Turbulent eddies in 

the original flow generated by the fan are destructed by a combination of honeycomb 

and damping screens (rectangular grids) deployed in this part. After passing the 

rectification section, the air flow becomes uniform. The rectified air flow is 

accelerated in the working section which has a smaller but uniform cross-section of 

1.3 m (width)×1.45 m (height).  
 

 
 
Figure 3-2: Illustration of the LZU wind tunnel. (a) Fan; (b) Roughness elements; (c) Working 

section. 

The length of the working section is about 22 m. Some spires or roughness 

(b) (a) (c) 
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Figure 3-3: Dust feeder. 

elements (or both) are set up in the front of this section to generate a turbulent 

boundary layer. Finally, the air flows out from the diffuser with an increasing 

cross-section. The wind tunnel is controlled by a computer and the wind speed can be 

adjusted between 3 and 40 m·s-1. Figure 3-2 shows some pictures of the wind tunnel 

of LZU. 
 
(b) Dust feeder 

For creating a dust-deposition condition, a 

device is required to supply dust particles 

steadily and continuously into the tunnel. 

For this purpose, we designed a dust feeder 

as shown in Figure 3-3. The main parts of 

the dust feeder are illustrated in Figure 3-4. 

A rotary feeder is used for supplying the 

dust stored in the upper hopper into a circulatory connected underneath. The feeding 

speed is controlled by the rotating speed of the rotary feeder. Air is driven by a blower 

in the circulatory and moves circularly with high speed. The supplied dust particles 

are well mixed in air and another blower then pumps the dusty air from the circulatory 

part slowly and continuously into the wind tunnel. 

 

 

Figure 3-4: Illustration of the dust feeder specially designed for the project. 
 

 

(c) Phase Doppler Particle Analyzer (PDPA) 
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PDPA is a non-contact optical instrument which combines laser-based optical 

transmitter, optical receiver, electronic signal processor and software for capturing and 

analyzing data (Figure 3-5).  
 

 
Figure 3-5: Appearance of the PDPA (by Dantec). (a) Laser generator; (b) Probes (laser transmitter 

and receiver); (c) Signal processor. 

 

 

 
 
Figure 3-6: Basic structure of the PDPA. Velocity and size of particles which passes the sampling 

area are obtained by analyzing the light scattered by the particles. 

 

As shown in Figure 3-6, by using a beam splitter, the laser beam is split into two 
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Figure 3-7: Doppler burst. 

tΔ

Time 

Si
gn

al
 A

m
pl

itu
de

 

beams which are then transmitted and managed to intersect in their respective beam 

waists. Interference occurs in the intersection region of these two coherent and 

intersecting laser beams. Then the fringes of brightness and darkness with distance of 

fδ  will be produced. The value of fδ  depends on wavelength of the laser, lλ , and 

the angle between the incident beams, θ  (Dantec Dynamics A/S, 2006) 

 
)2/sin(2 θ

λδ l
f =         (3.1) 

This intersection region is the sampling 

area. When a particle passes through this 

area, it alternates between the bright and 

dark fringes, and scatters light with different 

intensities. The varying scattered light is 

detected by a photo-detector fixed in the 

receiver probe to produce current pulse 

depending on the intensity of the received 

light. Then, a Doppler burst signal is gained (as shown in Figure 3-7). The time 

interval tΔ  between the adjacent peaks of the Doppler burst signal represents the 

transit time between the known spacing of the adjacent fringes ( fδ ). Then the particle 

velocity component orthogonal to the fringes can be determined as  

 tV fp Δ= /δ                (3.2) 

The size of the particle which passes through the sampling area is gained by 

analyzing the phase differences of the scattered light between the different detectors. 

The different detectors are actualized by aperture plates (as shown in Figure 3-6). The 

whole light sensor is divided into several parts as different light detectors with 

different azimuth angles (such as U1, U2, and U3 in Figure 3-6). As an example, we 

discuss the phase differences between detector 1 and detector 2 (Figure 3-8). The 

Doppler bursts of the passing particle are received by different detectors (1 and 2) 

with same frequency but different phases. The corresponding phase difference is  

 1212 2 tf Δ⋅= πφ         (3.3) 
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where f is the frequency of the scattered light, and 12tΔ  can be obtained by 
analyzing the burst signal of detector 1 and detector 2 (Figure 3-8b). 

 

 
 

 

 

 

 

 

 

Figure 3-8: (a) The light scattered from a reflecting spherical particle is received by two 

photo-detectors; (b) The phase difference between two detectors at different azimuth angles. 

 

For spherical particle, the phase difference of the scattering light between two 

various detectors can be calculated as (Durst, and Zaré, 1976) 

 )( ijp
l

ijij D ϕϕ
λ
πφφφ −×=−=          (3.4) 

Here, the subscripts i and j represent different detectors; iφ  is the phase of the  

Doppler signal received by detector i; ϕ  is a geometrical factor fixed by the 

scattering model and the setup of the optic parameters; and pD  is the particle 

diameter. Finally, the particle size is obtained by the combination of Eq. (3.3) and 

Eq. (3.4).  

The Phase-Doppler method requires no calibration (Dantec Dynamics A/S, 2006) 

because the measured results (particle size and velocity) only depend on the laser 

wavelength and relevant optical configuration. The beam attenuation or deflection, 

which occurs in air of dense particle and influence on light intensity, will not degrade 

the precision of PDPA.    

It should be noted that this method of diameter measurement only works well for 

spherical particles, because the mathematical relationship between the phase 

difference and the particle size, i.e. Eq. (3.4), is based on ideal spherical particles. 

PDPA detects discrete burst signals from the passing particles to produce the 
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Figure 3-9: Aerosol Spectrometer.  

information of arrival time, transit time, velocity and size for the particles. But if more 

than one particle is present in the sampling area simultaneously, the detected burst 

signal will fluctuate and is the sum of the effect from all particles in the sampling 

area. 

 The PDPA employed in our experiments is manufactured by Dantec. The 

specified accuracy is 1% for velocity measurement and ±0.5 μm for particle-size 

measurement. This device is suitable for measuring particle velocity in the range 

between −100 m·s-1 and 200 m·s-1 and particle size in the range between 0.5 μm and 

2000 μm. For data collecting, the Burst mode is selected and the scattering angle is 

150°. The sampling area is an ellipsoid (about 4.55×10-11 m-3 ) with semi-principal 

axes of length 0.149 mm, 0.1489 mm and 3.921 mm. 

 

(d) Aerosol Spectrometer (AS) 

Aerosol Spectrometer (Model 1.109, Figure 

3-9) is a portable device used for continuous 

measurement of aerosol concentration and 

size distribution. This equipment detects 

aerosols in the size range between 0.25 μm 

and 32 μm in 31 size channels (0.25- 0.28- 0.3- 0.35- 0.4- 0.45- 0.5- 0.58- 0.65- 0.7- 

0.8- 1- 1.3- 1.6- 2- 2.5- 3- 3.5- 4- 5- 6.5- 7.5- 8.5- 10- 12.5- 15- 17.5- 20- 25- 30- 

32 μm ) . The results of each size range are determined in one of the two basic modes: 

particle counts or mass concentration. The fastest sampling rate of the device is 1 Hz 

and the highest suitable concentration is 2×109 particles per m3. 

As shown in Figure 3-10a, the air with dust is drawn into the device through an 

internal volume-controlled pump at a rate of 1.2 liters per minute. The dust particles 

move following the sample air directly into the measuring chamber and are detected 

through light scattering inside the chamber. After the measuring chamber, almost all 

particles are collected by a filter and the clean air then flows back to the ambient. 

Figure 3-10b is a sketch map of the measuring chamber assembly, containing a 

laser optical system which allows particle counting by collecting the scattered light 

from individual particles with a detector. A laser diode is used to generate the laser 
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beam. By means of illumination optics, the laser beam is focused to a flat elliptical 

strip. The sample air is led as a particle flow at a certain speed to through the focus of 

the beam. The scattering light pulse of every single particle is detected by a second 

optic device under a scattering angle of 90°. The size of the particle is estimated by 

the intensity of corresponding scattering light. Then the concentrations of particles 

with different diameter are obtained (Grimm Aerosol Technik GmbH & Co. KG., 

2010).  

The entire sampling dust will be collected by the filter. Then the gravimetrical 

analysis can be performed to estimate the density of dust particles and to validate the 

reported aerosol mass. In addition, chemical analysis is made possible. 

 

 

Figure 3-10: Illustration of aerosol spectrometer (Grimm Aerosol Technik GmbH & Co. KG., 

2010). (a) Interior flow of ambient-air; (b) Laser measuring chamber; (c) Measuring principle. 

(Grimm Aerosol Technik GmbH & Co. KG., 2010) 
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Figure 3-11: Anemometer head 
(Campbell Scientific, Inc., 2007) 
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CSAT3 is a 3-D ultrasonic anemometer used 

to measure wind speed in three dimensions. 

Three pairs of non-orthogonally oriented 

transducers are employed to sense the wind. 

As shown in Figure 3-11, each pair of trans- 

ducers transmits and receives the ultrasonic 

signal. The speed of ultrasonic is directly 

related to the wind speed along the sonic 

transducer axis. Accordingly, the value of wind speed can be estimate by analysis the 

flight time of the ultrasonic. The specified accuracy of CSAT3 is ±0.01 m·s-1 and the 

sampling frequency can be set between 1Hz and 60 Hz (Campbell Scientific, Inc., 

2007). Although the size of the anemometer head is somewhat large (47.25 cm×

42.44 cm, Figure 3-11) for wind-tunnel measurements, CSAT3 can still be employed 

to monitor information of flow field. 

 

(f) Artificial surfaces and dust 
 

 
 

Figure 3-12: A series of surfaces: (a) Water; (b) Sticky (Oiled) wood plane; (c) Sand; (d) Sandy 

loam; (e) Gobi surface; (f) Trees. 

 

A series of surfaces as shown in Figure 3-12 are prepared for the wind-tunnel 

experiments, including (a) water; (b) oiled wood plane; (c) sand (mean diameter: 

200 μm); (d) sandy loam; (e) Gobi surface; (f) artificial trees (height 23 cm, spacing 
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20 cm).  

For sandy surfaces, some particles may be lifted under high wind conditions, 

which may cause the emission of small particles and influence the measurements of 

dust deposition. To handle this problem, the surface is wetted by a water sprayer and 

then air-dried to produce a crust to prevent the motion of surface particle. Apart from 

that, we planned to study dust dry deposition over a sticky surface. As high humidity 

may cause particle growth, lubricating oil was used to oil the wood plane. In addition, 

artificial landscape trees made of plastics are employed to simulate canopy surface. 

To facilitate the preparation of the surfaces, trays are used (Figure 3-13a). Figure 

3-13b and Figure 3-13c show the dimensions of the trays. In addition, four wheels are 

mounted on each tray and it is thus easy to move the trays along the orbits fixed on 

the floor of tunnel. The trays are then filled with water, sand or sandy loam and are 

arrayed along the midline of the work section of the tunnel to produce the relevant 

surfaces. 

 

 
Figure 3-13: (a) Picture of the trays; (b) Top view; (c) Side view. 

 

As mentioned before, PDPA works best for spherical particles. Therefore, the 

optical characteristics and spherical degree of the particles are important factors which 

affect the reliability of the PDPA measurements. The white powder (Figure 3-14a) is 

selected as the dust source for our experiments. The chemical composition of this 

powder is Silicon Dioxide (SiO2) and the density is 2200 kg·m-3. The particles have a 

good spherical degree (Figure 3-14b) and the mean diameter is 10 μm. The particle 
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size distribution is shown in Figure 3-14c. The powder (SiO2) used in our experiments 

is different from natural dust in shape (irregular, as shown in Figure 2-1), color and 

density (because of different chemical components). But the white and spherical 

particles have good performance in light reflection and well meet the requirements of 

the PDPA.  

 

 
Figure 3-14: Dust powder. (a) Appearance; (b) Microscopic figure; (c) size distribution (measured 

by Particle Size Analyzer (Model: S3500). 

3.1.2 Purposes of the experiments 

We intend to measure the deposition velocities for different surfaces, different particle 

sizes and different wind speeds. The data will then be used to validate the existing and 

newly developed dust deposition schemes, such as those of SS80 and S82. We are 

therefore interested in the following variables:  

(a) Dust concentration profile 

Dust concentration is measured by the Aerosol Spectrometer (AS). The measurements 

can be repeated at different heights in sequence to obtain dust profiles.  

(b) Wind structure 

Wind profile is obtained by measurements of wind speed at different heights. While 

CSAT3 is generally useful for measuring wind speed and turbulence intensity, it is not 

available for the regime close to the surface because of the relatively large anemo- 

meter head. Fortunately, some wind information, such as horizontal wind speed can be 

derived from the PDPA particle velocity measurements of small particles (more than 

95% of the particles are smaller than 20 µm, as Figure 3-14c shows), which can be 
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placed near the surface. 

(c) Dust deposition velocity 

While dust deposition velocity cannot be measured directly, it can be derived from the 

particle velocity and size measured by the PDPA, as described in Chapter 4. 

3.1.3 Experiment configuration and device setup 

The configuration of our wind-tunnel experiments is as shown in Figure 3-15. A 6 m 

long roughness-element section is located in the front of the wind-tunnel working 

section to generate a deep turbulent boundary layer. Downstream of this section is the 

test surface. The dust feeder is placed at the beginning of the working section to inject 

dust into the tunnel through a tubular manifold which consists of two rows of six 

outlets with even spacing of 20 cm (Figure 3-15a). The manifold is adjusted such that 

the bottom and the top rows are at approximately 20 cm and 40 cm above the top of 

the surface. After release, the dust particles are fully dispersed in the turbulent 

boundary layer over the test surface. 

Several devices, including the PDPA, AS and CSAT3, are located near the end of 

the working section (Figure 3-15c). The sampling area of the PDPA coincides with the 

midpoint of the transducer pairs of the CSAT3. The sampling point of the AS is 15 cm 

behind the measuring point of the PDPA to avoid the influence of the air-pump on the 

flow at this point. All probes are fixed on adjustable frames to allow measurements at 

different heights, and the distance between the measurement area and the dust outlet is 

about 10 m to ensure sufficient development of the turbulent boundary layer and dust 

dispersion. 



 

 

 
Figure 3-15: Configuration of the wind-tunnel experiments. (a) The manifold of the dust feeder; (b) Wind-tunnel working section, with a roughness-element surface 

and a test surface; (c) Arrangement of the PDPA, AS and CSAT3 sensors.
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The laser light emitted from an Argon-Ion laser of the PDPA is split through a 

beam splitter into three pairs in green lines with wavelength of 514.5 nm, blue lines of 

488 nm and violet lines of 476.5 nm. These six laser lines intercross at the sampling 

area and the 3D-velocity and the size of the particles passing through this area are 

measured. According to the size of the wind-tunnel cross section, the focal length of 

the front lens of the transmitting and receiving optics of the PDPA, the back scatter 

setup is arranged with a scattering angle of 150 degrees. The sampling frequency of 

the CSAT3 is set to 20 Hz. 

3.1.4 Experimental procedure 

We conducted a series of experiments for different surface types (Figure 3-12). For a 

given surface, measurements are repeated for 3 different flow speeds. For each case, 

at least 3 successful runs are made. The procedure of the experiment is as follows:   

Step 1: Preparation  

The surfaces as shown in Figure 3-12 are structured in the working section, according 

to the configuration shown in Figure 3-15. In addition, the height of the roughness 

elements is adjusted to match the leeward surface to generate a logarithmic wind 

profile. 

Step 2: Profile Measurement  

Wind speed, dust concentration and dust mean velocity are measured at different 

heights by the CSAT3, AS and PDPA, respectively. About 10 points with different 

heights are selected from the lowest possible point depending on the probe size to 

about 0.2 m. Measurements are successively made at the different height points. For 

each point, the measuring period is 3 minutes. 

Step 3: Point Measurement  

A point, about 5 cm above the surface, is selected for point measurement. 

Dust-particle velocity and size at this point is measured by the PDPA. Simultaneously, 

dust concentration is monitored by the AS at same height and 15 cm downstream. If 

possible, the CSAT3 is used to measure the air flow speed for the sampling area of the 

PDPA. The measurement for this step takes 10 minutes. 
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Step 4: Repeat  

The surface is re-prepared and the Steps 2 and 3 are repeated.  

The experiments are carried out under different situations as shown in Table 3-1. 

 
Table 3-1: List of wind-tunnel experiments. 

Fan speed & Repeat times 
Surfaces 

3000 rpm 6000 rpm 9000 rpm 12000 rpm 

Water 3 3 3 / 

Sticky wood plane 3 / 3 3 

Sand 3 3 4 / 

Sandy loam 3 3 3 / 

Gobi surface 3 3 3 / 

Tree 3 3 / 3 

 

3.2 Test of the experimental conditions 

Before the formal experiment, the experimental conditions are tested to make sure that 

they are adequate for our purposes. 

3.2.1 Stability and reproducibility of the environment 

Some simple tests are carried out over the flat wood surface to examine the stability 

and reproducibility of the wind field and dust concentration. The wind speed is 

monitored using the CSAT3 at 6 cm height (the anemometer head of the CSAT3 is 

positioned flat to keep the x-z plane horizontal). The tests of 10 minutes are repeated 

under three different fan-rotation speeds of 3000, 6000 and 9000 rpm. 

Figure 3-16 shows the monitoring results of the horizontal wind speed. As shown, 

wind speed fluctuates with time but is always close to the mean velocity. The blue 

lines represent the 3-minute running means, which corresponds to the minimum 

length (3 minutes) of the measuring period in the formal experiments. The running 

means confirm the stability of the wind field over time spans longer than 3 minutes.  
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Figure 3-16: Test results for wind-tunnel flow stability at 60 mm height. The lines with color of 

black, red and green are experimental data for fan speed 3000, 6000 and 9000 rpm, respectively. 

The blue lines represent the 3-minute running means. 
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Figure 3-17: Test results for wind-tunnel flow reproducibility at 60 mm height with fan speed 

6000 rpm. The measurements are repeated for three times and the results are shown in different 

color. 

 

To validate the reproducibility of the wind filed, the measurements are repeated 3 

times at 60 mm and with fan speed 9000 rpm. The results (Figure 3-17) show the 

mean speeds are very close to each other for the repeated runs. 

Figure 3-18 shows the results of dust concentration (number per cubic meter) 

measured by AS with a sampling rate of 1/6 Hz. The fan rotating speed is set to 
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9000 rpm, and the height of the sampling point 50 mm above the surface. The 

measurements are repeated three times. The data, shown as symbols in Figure 3-18, 

varies with time as a consequence of wind turbulence and the changing feeding speed 

of the dust feeder, but the mean dust concentrations for the repeated runs are close to 

each other.   
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Figure 3-18: Test results for dust concentration at 50 mm height and 9000 rpm fan speed. The 

symbols are the raw data of dust concentration and the lines corresponding mean concentration. 

 

3.2.2 Structure of wind field and dust concentration profile 

One of the main goals of the wind tunnel experiment is to physically model the 

turbulent boundary layer. Based on the atmosphere boundary-layer theory, the profile 

of the mean horizontal wind under neutral conditions obeys the logarithmic law as Eq. 

(2.2) or Eq. (2.3).  

To measure the wind profiles over different surfaces is an important part of the test. 

For the CSAT3 probe is too big to work near the surface, the particle-velocity 

measurements of the PDPA at different heights are used to infer to wind speed. The 

horizontal component of the particle velocity is considered to be identical to the local 

air speed. The results are shown in Figure 3-19, where the symbols are the PDPA data 

and the lines follow Eq. (2.2) or Eq. (2.3).  
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For low-roughness surfaces, such as water, wood, sand, and sandy loam, the PDPA 

wind profiles can be well fitted to Eq. (2.2), while for high-roughness surfaces, such 

as trees, the displacement height needs to be considered [Eq. (2.3)]. 

 

10

100

1 2 3 4 5 6 7 8 9 10

 Water
 Stick wood
 Sand 
 Sandy loam
 Gobi surface

Fan speed: 9000 rpmLines: Eq. (2.2)

200

z 
(m

m
)

ua (ms-1)

  

10

100

0 2 4 6 8 10 12

 z
 (m

m
)

ua (ms-1)

 Tree
Line: Eq. (2.3) 700

 
Figure 3-19: Wind profiles over different surfaces. The symbols are particle velocities extracted 

from the PDPA measurements and are used to represent the local winds. The lines are wind 

profiles fitted by Eq. (2.2) or Eq. (2.3) to the measurements. 
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Figure 3-20: Normalized dust concentration profiles over different surfaces for a fan speed of 9000 

rpm. The symbols are AS measurements and the blue line is an ideal profile, satisfied Eq. (2.23), 

over the sandy loam surface.  

Dust concentration profile is measured by AS, over different surfaces for fan 



3.3 Summary                                     

 

55

speed of 9000 rpm. The dust profiles, normalized with dust concentration at 200 mm, 

are shown in Figure 3-20. The dust-concentration profiles with a positive gradient are 

successfully reproduced in the wind tunnel. The blue line in Figure 3-20 is an ideal 

concentration profile of dust driven by turbulent diffusion and gravitational settling 

with constant flux [i.e. satisfies the solution of Eq. (2.23)]. 

3.3 Summary  

In this chapter, the facilities and equipments for our wind-tunnel experiments are 

described. The components, principles and specifications of the instruments are 

presented. The design, purposes, configurations and procedures of the experiments are 

discussed. Also, the results of a series of test experiments are shown. It can be 

concluded that the wind-tunnel experimental conditions are similar to those of a 

neutral atmosphere boundary layer. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Chapter 4 

Experimental Data and Scheme Validation 

Deposition velocity is the quantity to be determined in this study, but it is not directly 

measured. A method is required to extract this quantity through a combination of the 

PDPA and AS measurements. In this chapter, we describe the methodology of data 

processing and compare the experimental results with the scheme estimates.  

  

4.1 Methodology of data processing 

4.1.1 Processing method for deposition velocity 

A method is developed to derive deposition velocity from particle velocity and size 

which are directly measurable. 

 

 
Figure 4-1: Illustration of one particle’s contribution to concentration and flux. (a) Sampling area 

(shadow) and particle image; (b) Monitoring results of concentration.
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We confine our discussion to the vertical direction. As shown in Figure 4-1, the 

sampling (shadow) area with volume V is monitored. If no particle appears in the area, 

then the concentration and velocity for this area are zero and, of course, no dust 

transfer occurs. If a particle (with index i ) of mass im  passing through the sampling 

area with (vertical) velocity piw , then the corresponding concentration is Vmi  

during the transit time itΔ  and deposition flux is 

 pi
i

i w
V
mF ⋅=                 (4.1) 

Suppose the sampling time interval is T, and N particles pass through the sampling 

area during this time interval. Then, the average flux Fd and concentration C  are 

respectively  
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According to Eq. (2.4), the deposition velocity can be expressed by combining Eq. 

(4.2) and (4.3) as  
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where piD  (particle diameter), piw  and itΔ  are measured simultaneously by the 

PDPA.  

4.1.2 Quality control 

Error detection 

The deposition velocity calculated with Eq. (4.4) includes the contributions of 

Brownian diffusion, eddy diffusion, gravitational settling and possibly mean vertical 

wind. The mean vertical wind is generally considered to be zero, but in our 

wind-tunnel experiment, it may be locally of the magnitude comparable with the 



4.1 Methodology of data processing  

 

59

particle terminal velocity. Even if the average vertical wind is zero, error in flow 

measurements may still occur because a small alignment error in the PDPA vertical 

with respect to the surface normal may result in interpreting a component of the 

horizontal wind as the vertical wind and causing a serious bias in deposition velocity 

estimates. Therefore, we have to remove the effect of vertical mean wind, aw , from 

the PDPA measurements. 

The particle velocity considered in this study, pw , is defined from Euler's point of 

view. As shown in Figure 4-2a, a thin layer with thickness dz at height z is to be 

monitored. At time ti, a particle i enters the layer and leaves it after itΔ , and the 

particle velocity is pip ww = . If no particle passes by, then pw is zero. If there are more 

than one particle passing through this layer at same time, then pw  is the average 

velocity of all these particles. Suppose several particles pass through this layer at 

different times during the sampling time T. Then, the particle velocity ),( tzwp  and air 

velocity ),( tzwa  may behave as illustrated in Figure 4-2b. During each time interval, 

the particle velocity may relax to the local air velocity. But as particles are discrete, 

the particle velocities for different time intervals are initially independent. 

 
Figure 4-2: (a) Particle velocity for the sampling area; (b) Sketch of time series of air velocity 

(black line) and particle velocity (blue line) for the sampling area. 

 

For the vertical particle velocity component, the equation of particle motion can 

be written as 
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Now we separate the motion of air into mean and fluctuating components by  
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is the mean of aw  over the time interval itΔ  and aw′  is the fluctuation. Likewise, 

the particle velocity pw  can be split into two parts: 

 ptpp www
i

′+= Δ             (4.7) 

Substituting Eq. (4.6) and Eq. (4.7) to Eq. (4.5), and averaging the latter over itΔ  

yields 
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where terminal velocity tw  can be calculated with Eq. (2.8). 

Eq. (4.8) is valid for .ip tΔ<<τ  If itΔ  is also sufficiently small and particles 

with the same properties (diameter, density and shape) pass the sampling area one by 

one, then 
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Further, the sum of Eq. (4.8) over N particles gives  
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 tap www +=              (4.10) 

where pw  and aw  are mean particle and air velocities for the sampling area during 

monitoring time T, respectively.  

The purpose of Eq. (4.10) is to estimate aw  from the measurement of pw  and  

wt (function of particle size). So that pw  is reliably determined, it requires the 

number of particles to be sufficiently large and the sampling is not biased. 

Unfortunately, the sampling is biased due to the vertical variation of dust particle 
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concentration. As shown in Figure 4-3, the dots represent the particle velocity 

measured by the PDPA, the solid line wa+wt and the red dashed line pw .  

An iterative method is applied to determine the value of pw . For initialization, 

pw  is set to ( +
pw + −

pw )/2, where +
pw  and −

pw  are respectively the mean values 

of all positive and negative particle velocities. Then, the full dataset for each run is 

divided into four sub-sets: 

(1) ),0( pp ww ∈ ;  

(2) )2,( ppp www ∈ ;  

(3) pp ww 2> , if pw >0 (or pp ww 2< ,  if pw <0); and 

(4) 0<pw , if pw >0 (or 0>pw ,  if pw <0). 

The number of measurements of sub-set j is counted and denoted with Nj (j=1, 2, 3, 

4). For sub-set j  the average of particle velocity deviation jN
pp ww − is calculated. 

Finally, pw  is determined iteratively to satisfy 
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Figure 4-3: Illustration of the PDPA data of particle velocity. Dots are the PDPA measurements. 

Blue and green dots represent positive and negative particle velocities, respectively. The solid line 

is wa+wt. As an example for 0>pw , the whole dataset is divided into four parts: (1) 

pp ww <<0 ; (2) ppp www 2<< ; (3) pp ww 2> ; and (4) 0<pw .  
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Error correction 

The method used to correct the estimated deposition velocity is to remove the mean 

particle velocity and then add back the gravitational settling velocity. Particles are 

divided into size groups, and for a given size group the deposition velocity can be 

modified from Eq. (4.4) to 

 
( )

( )
tpN

i
ipi

N

i
ipipi

d ww
D

wD
w +−

Δ⋅

Δ⋅⋅
=

∑

∑

=

=

1

3

1

3

t

t
           (4.12) 

where pw  is iteratively determined with Eq. (4.11) and tw  is computed with Eq. 

(2.8). 

 

Discussion of uncertainty 

The PDPA cannot distinguish the particles appearing in the sampling area 

simultaneously and misinterprets these particles as one single large particle, causing 

uncertainties in its measurements. However, the volume of the sampling area is 

4.55 ×10-11 m-3 and the number concentration of dust in our experiments is about 109, 

the possibility for more than one particle appearing in the sampling area 

simultaneously is very low.  

Although the low dust concentration has little effect to degrade the precision of 

the PDPA, it affects the number of particles sampled by the PDPA. Indeed, the 

number of big particles (e.g. bigger than 50 μm) sampled by the PDPA is very low 

with respect to the size distribution of the dust used for our experiments. This may 

lead to a serious uncertainty for the estimation of the mean motion for these big 

particles [Eq. (4.11)], because of the low sample space. However, since the terminal 

velocity is calculated theoretically and is dominant for big particles [Eq. (4.12)], this 

uncertainty remains relatively small value. 

4.1.3 Method of data process 

The raw data of the PDPA includes the diameter, velocity and transit time of the 

particles which pass the sampling area. The whole data is divided into a number of 
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particle size groups. The following size channels are considered: 0.5- 1.5- 3- 5- 10- 

15- 20- 25- 30- 50- 80- 100- 150- 200 μm. For each channel, the particles are 

considered to be mono-dispersed with the median size of each channel, i.e., 1, 2.25, 4, 

7.5, 12.5, 17.5, 22.5, 27.5, 40, 65, 90, 125 and 175 μm. Then, the deposition velocity 

for each particle size group is obtained by using Eq. (4.12).  

4.2 Results and comparison with schemes 

4.2.1 Dust deposition on water surface 

 

  
Figure 4-4: Dust deposition measurement over water surface. (a) Flat water surface under zero 

wind speed. (b) Wavy water surface under high wind speed. 

 

Water is a special surface with perfectly wet and sticky characteristics. The shape of 

the water surface changes with the speed of the airflow. If there is no airflow, then the 

water surface is flat and smooth (Figure 4-4a), but in case of airflow, waves develop 

(Figure 4-4b) and change the capacity of the water surface to absorb momentum. A 

wavy water surface also has higher capacity of collecting dust particles. Besides, if the 

particles are hygroscopic, their sizes will increase under the high humid condition and 

thereby enhancing the effect of gravitational settling.  

The wind profiles over the water surface are shown in Figure 4-5 for three 

different fan speeds. As shown, the profiles obey the logarithmical law (Eq. (2.2)) 

very well. Both the friction velocity and roughness length (determined by fitting Eq. 

(2.2) to the measurements) increase with the fan speed. These results indicate that the 

wavy water surface indeed enhances air turbulence and the momentum transfer 

downwards. 

(a) (b) 
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Figure 4-5: Wind profiles measured over the water surface. The symbols are the mean horizontal 

speed of the particles which pass the measurement point and are used to represent the local 

horizontal air speed. The error bars show the standard deviation of the speed. The curves are wind 

profiles fitted to the logarithmic law. The fan speeds are set to 3000, 6000 and 9000 rpm for the 

three experiments.  
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Figure 4-6: Deposition velocity against particle size under different wind conditions over water 

surface. The symbols are averaged results of wd and the error bars represent the variability of the 

results. The curves are the results predicted with the SS80 scheme. The solid lines are obtained 

with RH = 100%, and the dashed lines with RH = 0%. The height of the measuring point is 25 mm 

above the water surface. 
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The deposition velocities at 25 mm over the water surface are shown in Figure 4-6 

as function of particle diameter. For particles in the size range between 1 and 12.5 μm, 

the values of deposition velocity are close to each other. For 15.0* =u  m·s-1, 

deposition velocity is about 0.02 m·s-1. Similarly, for 36.0* =u  m·s-1, we have 

05.0=dw  m·s-1 and for 57.0* =u  m·s-1, 10.0=dw  m·s-1. The values of the 

deposition velocity obtained in this study are obviously higher than those reported in 

the literature, e.g., the deposition velocity measured by Sievering (1981) at 2m over a 

lake surface is (0.7±0.3)×0.006 m·s-1 for the aerosol particles in the size range of 0.6 

and 1.5 μm. This may be attributed to that the measuring point in our experiment is 

closer (25mm) to the surface. 

Error bars are also shown in the figures to indicate the variabilities of the 

measurements. The wind speed shown in Figure 4-5 is represented by the particle 

velocity measured by the PDPA. Generally, the number of the measurements for each 

height is more than 5000, which is enough to estimate the variability. But for 

deposition velocity (i.e. Figure 4-6), there are only three repeated measurements for 

each particle size. So the error bars in Figure 4-6 (also for the other similar figures in 

this thesis) are only indicative of the variability among the repeated measurements 

rather than a statistically meaningful evaluation.   
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Figure 4-7: Dust deposition velocity normalized with friction velocity as a function of particle 

size.  
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As shown, dust deposition velocity increases with friction velocity. For particles in 

the size range of 1 to 12.5 μm, the deposition velocities, normalized with u*, are 

almost a constant of 0.17 (Figure 4-7). 

SS80 proposed a scheme for particle deposition for water surfaces. They treated 

water as a flat, sticky and wet surface. The mechanisms of turbulence transfer, 

gravitational settling, Brownian diffusion, impaction and particle size growth are 

considered (refer to Section 2.3.2b). Using the wind-tunnel flow field parameters, the 

deposition velocities estimated by using the SS80 scheme are also shown in Figure 

4-6. If the relative humidity (RH) of the air near the surface is set to 0%, then the 

scheme obviously underestimates the deposition velocities (dashed line in Figure 4-6). 

If RH is set to 100%, the effect of particle growth is considered and the predicted 

results (solid line in Figure 4-6) agree better with the measurements.  A problem is, 

however, that the mechanism of particle growth embedded in the scheme is 

introduced for predicting the behavior of hygroscopic particles, not for the Silicon 

Dioxide (SiO2) particles used in our experiments. Hence, the effect of particle growth 

is overestimated by the scheme. On the other hand, the effect of waves and bubbles or 

spray droplets emitted from the water surface, which should be important for dust 

deposition, is neglected in the scheme. This implies that the good agreement between 

the scheme and the measurements is achieved by setting RH = 100% for the wrong 

reason.  

4.2.2 Dust deposition on sticky and smooth surface 

 
 

 
Figure 4-8: Measurement above smooth wood plane. The plane is oiled and sticky. 
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For a sticky and smooth surface, particle rebound and element collection do not 

occur. Hence, dust deposition to such a sticky and smooth surface is determined by 

gravitational settling, Brownian diffusion and impaction. 

The wind profiles over the sticky and smooth wood surface, shown in Figure 4-9, 

also obey the logarithmical law. Similar to the water surface case, the friction velocity 

also increases with fan speed. But the roughness length is smaller than the wavy water 

surface and decreases with friction velocity. This increase in friction velocity and 

decrease in roughness length indicate that intensified turbulence intrudes into the layer 

adjacent to the surface and reduces the thickness of the laminar layer, and enhances 

dust deposition.  
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Figure 4-9: As Figure 4-5, but is for sticky and smooth wood surface and fan speed of 3000, 9000 

and 12000 rpm. 

 
 

Figure 4-10 shows the observed deposition velocity for the wood surface. As can 

be seen, deposition velocity is small for low friction velocity and increases with 

friction velocity. This is most obviously for particles in the size range of 4 to 22.5 μm, 

because turbulent impaction is effective for this particle size range and is sensitive to 

friction velocity. The SS80 scheme originally proposed for water surfaces can also be 

applied to other smooth surfaces but without particle growth. The predictions of the 

SS80 scheme are also shown in Figure 4-10. The scheme estimates are comparable to 
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the measurements and are somewhat smaller. It is perceivable that the underestimation 

of the deposition velocity by the scheme is caused by the underestimation of the effect 

of turbulent transfer in high layer or turbulent impaction in low layer. 

Besides, the measured deposition velocities for small particles (about 1 μm, as 

shown in the lower right corner of Figure 4-10) under higher friction velocity are 

negative. This may be caused by the re-suspension of the deposited particles. 
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Figure 4-10: As Figure 4-6, but is for sticky and smooth wood surface and measurement height 

15 mm. 

 

4.2.3 Dust deposition on low-roughness surface 

 

 
 

Figure 4-11: Deposition measurement over the sand surface. 
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The common characteristics of the low-roughness surfaces, including the sand, sandy 

loam and Gobi surfaces tested in our experiments, is that they can be considered as a 

flat surface superposed with some roughness elements. These roughness elements, 

although small in height, enhance turbulence in the surface layer and the collection 

efficiency of the surface.  
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Figure 4-12: Measurements of dust deposition to the sand surface. (a) As Figure 4-5, but is for 

sand surface. (b) As Figure 4-6, but is for sand surface and the height of measuring point is 15 

mm. 
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In comparison to the wood surface, the roughness length of the sand surface is 

larger (Figure 4-12a). The corresponding enhancement of air turbulence is reflected in 

the increased friction velocity. Before the experiment, the sand surface is wetted and 

then air-dried, so that a crust forms to suppress the motion of sand particles during the 

measurement. The observed and the SS80 scheme predicted deposition velocities are 

shown in Figure 4-12b. The measurements show that the deposition velocity for the 

sand surface increases with particle size and friction velocity. The main difference 

between the sand and wood surface is that the deposition velocities do not markedly 

decrease for particles smaller than 4 µm. This can be attributed to the contribution of 

elements (sand particles) collection. It appears that the SS80 scheme cannot well 

predict the deposition velocity for the particles less than 4 μm, because the effect for 

element collection is neglected. 

Deposition over the sandy loam and Gobi surfaces are similar to that over the sand 

surface, but the process seems to be enhanced for the rougher surface (Figure 4-13).  

 

  
 

Figure 4-13: (a) Sandy loam and (b) Gobi surface used in the wind-tunnel experiments. 

 

Before the experiment, the sandy loam and Gobi surfaces are exposed under high 

wind speed for about 5 minutes to remove the loose particles, so that few particles are 

released from the surface during the experiments to disturb the observations. The 

experimental data for the sandy loam and Gobi surfaces are shown in Figure 4-14. 

As shown in Figure 4-14a and 4-15a, the wind profiles over the sandy loam and 

Gobi surfaces follow Eq. (2.2). Over the sandy loam surface, the deposition velocity 

increases with particle size and friction velocity. Compared to the sand surface (Figure 

4-12), dust deposition is enhanced because of the rougher surface and stronger 

turbulence. Over the Gobi surface, air turbulence is further enhanced and hence, 

(a) (b) 
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deposition velocity further increased except for the case of ∗u > 0.67 m·s-1, due to 

dust re-suspension.  

The measurements also show that the rougher the surface, the higher friction 

velocity (for given fan speed), and hence the higher the deposition velocity is. 
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Figure 4-14: Deposition to sandy loam surface. (a) Wind profile; (b) Deposition velocity.  
 

(a) 

(b) 



4.2 Results and comparison with schemes  

 

72

      

0

50

100

150

200

0 2 4 6 8 10

z 
(m

m
)

Symbol: Experimental data
Line:      ua(z)=(u*/0.4)log(z/z0)

ua (ms-1)

  Fan speed=3000 rpm
  u*=0.19485 ms-1

           z0=1.57746 mm

  Fan speed=6000 rpm
  u*=0.42771 ms-1

          z0=1.08821 mm

  Fan speed=9000 rpm
  u*=0.67363 ms-1

          z0=1.05447 mm

 
 

  

1 10 100
1E-4

1E-3

0.01

0.1

1

10

1 10

-0.3

0.0

0.3
 

 
Dp (μm)

w
d (m

s-1
)

 u*=0.19 ms-1

 u*=0.43 ms-1

 u*=0.67 ms-1

 wt

w
d (

m
s-1

)

Dp (μm)
200

 
         

Figure 4-15: Deposition to Gobi surface. (a) Wind profile; (b) Deposition velocity.   

  

4.2.4 Dust deposition on canopy surface 

Artificial plastic trees of 230 mm high are fixed on the floor of the working section in 

the wind tunnel, with a spacing of 200 mm, to imitate forest canopies (Figure 4-16). 

The trees are oiled before the experiment to avoid particle rebound. 

 

(a) 

(b) 



4.2 Results and comparison with schemes  

 

73

  

Figure 4-16: Surface with artificial trees tested in the wind-tunnel experiments. 

 

The wind profiles over the tree surface are shown in Figure 4-16. For the region 

above the canopy, the profiles follow the logarithmic law. By fitting the experimental 

data to Eq. (2.3) and setting the zero-plane displacement height to 200 mm, the 

parameters of the wind field, such as friction velocity and roughness length, are 

obtained as shown in Figure 4-17. Below the canopy, the wind profiles fit to 

[ ])/1(exp)(/)( cc hzhuzu −−= γ  (S82) and the γ parameter estimated from the 

fitting. As shown, the friction velocity increases with the fan speed, but the roughness 

length becomes smaller for higher fan speed.  The γ values fall in the range of 3.5 to 

4.5. 

The deposition velocity measurements for the tree surface are shown in Figure 

4-18. Deposition velocity increases with particle size and friction velocity. Not only 

the particles bigger than 4 μm, but also the smaller ones in the range of 1 to 4 μm have 

a considerable deposition velocity. .  

The predicted results with the S82 scheme are also shown in Figure 4-18. The 

wind parameters required by the scheme are obtained from the wind profiles shown in 

Figure 4-17. The surface parameters, such as the characteristic dimension of the large 

collectors ( 5=l
cd mm), and that of the small collectors ( 100=s

cd μm), are evaluated 

according the size of the artificial trees employed in the experiments. c, the fraction of 

the total interception by the small collectors, is hard to estimate and is set to 1% 

following S82.  

As shown, the results of the S82 scheme agree with the experimental data well for 

the cases of low friction velocity. For the cases of high friction velocity, the scheme 

underestimates the deposition velocity and the scheme-measurement discrepancy 

increases with the friction velocity. However, if the effect of interception is made 
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larger in the scheme by decreasing 2 orders of magnitude of s
cd , then the predicted 

results agree better with the measurements. This implies that the effect of interception 

is related to friction velocity and is underestimated in the S82 scheme. 
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Figure 4-17: As Figure 4-9, but is for the tree surface and the wind profiles over the canopy are 

fitted to Eq. (2.3). The zero-plane displacement height is set to 200 mm. The wind profiles under 

the trees are fitted to [ ])/1(exp)(/)( cc hzhuzu −−= γ  (S82) where hc is the height of the trees. 
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Figure 4-18: As Figure 4-9, but is for tree surface. l
cd  and s

cd  are respectively the sizes of the 

large and small collectors. c is the fraction of the total interception by the small collectors. By 

decreasing s
cd  so that the effect of interception is increased, the S82 scheme can be made to 

agree with the experimental data (dashed line). 
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4.3 Conclusions 

The experimental results show: 

 Over water surface, the deposition velocities for the particles in the size range of 

1 to 12.5 μm do not significantly differ from each other and their values increase 

almost linearly with friction velocity;  

 Deposition velocity for particles in the size region of 1 to 40 μm over dry surface 

increases with particle size and friction velocity; 

 Impaction is sensitive to friction velocity and is important for the deposition of 

particles in the size range of 4 to 22.5 μm. Both turbulent impaction and element 

impaction must be considered for deposition to rough surfaces; 

 Interception is effective for particles in the size range of 1 to 4 μm and is 

sensitive to friction velocity, especially for the canopy surface. 

 

The schemes of SS80 (for smooth surface) and S82 (for canopy) are tested against 

the experimental data: 

 The deposition velocity on water surface can be well predicted by the SS80 

scheme, but the effect of particle growth is overestimated for hydrophobic 

particles. The contribution of waves and bubbles or spray droplets emitted from 

water surface is neglected in the scheme, but is important to deposition on the 

water surface. The SS80 scheme somewhat underpredicts the deposition velocity 

for the sticky and smooth wood surface;  

 The SS80 scheme underestimates deposition velocity over low-roughness 

surfaces, especially for particles smaller than 7.5 μm;  

 The S82 scheme can well predict the deposition velocity over the canopy surface 

for low friction velocity, but underestimates for high friction velocity. The 

scheme-measurement disagreement increases with friction velocity. The S82 

scheme can well predict the deposition velocity over the canopy surface for low 

friction velocity, but underestimates for high friction velocity. The 

scheme-measurements disagreement increases with friction velocity.    
 



                                        

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                        

 

Chapter 5 

Improved Parameterization 

An improved dust deposition scheme is introduced in this chapter. It is a two-layer 

scheme for rough surfaces but reduces to a parameterization for smooth surfaces. Dust 

deposition velocity is determined by solving the equation for particle motion and is 

expressed as a function of resistance series. A new parameterization for surface 

resistance is proposed based on the surface collection mechanisms and the aero- 

dynamic effect of surface roughness elements. Based on this surface parameterization 

method, a new dust dry deposition scheme is then proposed and is tested against the 

experimental data presented in the previous chapters. Finally, the driving parameters 

of the new scheme are identified through a sensitivity analysis.  

5.1 Scheme improvement 

5.1.1 Assumptions  

The surface is supposed to be a flat ground surface superposed with roughness 

elements (e.g. trees) which will be simply referred to as roughness elements to 

facilitate description. It is assumed that the wind field is in steady state and horizontal- 

ly homogeneous. The size and distribution of the roughness elements on the surface 

are assumed to be uniform (homogeneity). It is further assumed that the dust flux is 

vertically constant. 

5.1.2 Framework of the new model 

The atmospheric boundary layer is divided into two parts (Figure 5-1). The lower part 

is the collection layer with thickness of  

 δ+= chh            (5.1) 
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 where hc is the element height and δ  the thickness of the laminar layer over the 

elements. The laminar layer may be broken at the top of the elements and hc is usually 

much larger than δ . Therefore, in general, the thickness of the collection layer is ch  

for a rough surface and δ  for a smooth surface. The dust collection process takes 

place in this layer. 

 

 
Figure 5-1: Illustration of the two-layer model. The lower layer, from the ground to the top of the 

quasi-laminar layer, is the collection layer where the dust collection process takes place. Over the 

collection layer is the transfer layer, where turbulent transfer and gravitational settling are 

dominant and the dust flux is vertically constant. Air flow is represented by the dash lines. 

 

The upper part above the collection layer is the transfer layer. In this layer, dust is 

transported mainly by eddy diffusion and gravitation settling and the dust flux is 

vertically constant.  

Based on the assumptions of steady state and horizontal homogeneity, the dust 

flux, Fd, in the transfer layer obeys Eq. (2.23). Since the formulation of the earlier 

resistance-based schemes (i.e. Eq. (2.45)) does not satisfy the mass conservation 

requirement of Eq. (2.23), we estimate dust deposition velocity by directly solving Eq. 

(2.23) and have found that 
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with boundary condition C(h) = Fd /wd (h). ar is the aerodynamic resistance, 
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accounting for the turbulent dust diffusion 

 ∫ +
=

z

h pp
a dz

kzK
zr

)(
1)(  (5.3) 

rg is the gravitational resistance defined as the inverse of the terminal velocity 

 
t

g w
r 1

=  (5.4) 

and rs is the surface collection resistance which can be calculated by 
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)(
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==  (5.5) 

5.1.3 Parameterizations 

Aerodynamic resistance ar  

In the transfer layer, pk is much smaller than pK . It follows from Eq. (5.3) that 

 ∫≈
z

h p
a dz

zK
zr

)(
1)(    (5.6) 

According to Eq. (2.20) and Eq. (2.21), pK can be calculated as 
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where KT is the eddy viscosity, β a dimensionless coefficient and σ the standard 

deviation of the turbulent velocity. In this study, β is taken as 1 and σ as friction 

velocity *u . 

For a neutral atmospheric boundary layer, we take  

)(* dT zzkuK −=  

where k is the von Karman constant, and d the zero-plane displacement height. 

Then integrating Eq. (5.6) yields 
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As h is about hc, we have  
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For a smooth surfaces h is approximately δ and zd is zero, and thus  
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As it is difficult to obtain the exact value of δ, Eq. (5.10) can be approximately written 

as 
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with 1B  being an empirical constant determined by the airflow characteristic over 

the surface. The term B1/ScT is set to 0.6 for SS80 and 1 for Zhang et al. (2001). In 

this study, the value of B1 is estimated to be 0.45, based on the measurements over the 

water surface.  

 

Gravitational resistance rg  

In the Stokes regime, rg can be calculated as 

  
gDC

r
ppc

g 2

18
ρ

μ
=     (5.12)  

where μ  is air viscosity, cC the Cunningham correction factor which accounts for 

non-continuum effects when calculating the drag on small particles, pD  particle 

diameter, pρ  particle density and g gravitational acceleration. 
 

Surface collection resistance rs 

Parameter of surface 

As illustrated in Figure 2-3, a rough surface can be considered to be a smooth surface 

superposed with elements. Apart from roughness element size (height hc and diameter 

dc), roughness frontal area index, λ, is introduced to characterize the rough surface. 
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For cylindrical elements, λ can be expressed as  

 ccdnh=λ   (5.13) 

where n is element number density (number of elements per unit area, Figure 5-2).  
 

 
Figure 5-2: A unit area homogenous surface with n uniform roughness elements.  

 

Drag partition 

We first consider the process of momentum transfer over a rough surface. Momentum 

flux is generated by eddy diffusion and Brownian diffusion, equivalent to a shear 

stress consisting of the Reynolds shear stress (caused by eddy diffusion) and viscous 

shear stress (caused by Brownian diffusion). The momentum transferred downwards 

is finally absorbed by the surface.   

On the rough surface, the total momentum flux is absorbed by different parts of 

the surface and the total shear stress (or drag) can be split into three parts to represent 

the relevant contributions to the depletion:  

 rsc ττττ ++=   (5.14) 

where cτ  is the form or pressure drag exerted on the roughness element, sτ  is the 

ground surface drag due to the momentum transfer to the ground surface and rτ  is 

the roof surface drag due to the momentum transfer to the roof of the roughness 

elements, as illustrated Figure 5-3.  

Top view
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Figure 5-3: Conceptual map for drag partitioning over a rough surface. Shaded area represents the 

fraction of roughness elements on surface. η is the basal area index representing the fractional 

surface occupied by the elements. Blue arrows represent the drags exerted on the different parts of 

the surface. Momentum is transferred mainly by eddy diffusion. The total momentum flux, τ, is 

split into τr exerted on the roof of the elements, τs exerted on the ground surface and τc as a 

pressure drag on the elements. 

 

The drag partition theory has been developed by many researcher, e.g. Arya 

(1975), Raupach (1992) and Shao and Yang (2005). In this study, we use the 

following results of Shao and Yang (2005),  
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with c1=6 and c2=0.1. λ is the frontal area index and η is the basal area index of the 

elements. β is the ratio of the drag coefficient for isolated roughness element to that 

for bare surface. 

 

Dust flux partition 

Dust transfer is closely related to momentum transfer. Similar to Eq. (5.14), the total 
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deposition flux can be split into three parts: 

 rdsdcdd FFFF ,,, ++=  (5.17) 

where cdF ,  is the quantity of dust collected by the elements, sdF ,  is that deposited 

on the ground surface and rdF ,  on the roof of the elements. 

Based on the definition of the elemental collection efficiency (refer to Section 

2.1.4), the amount of dust collected by an isolated roughness element, ciq , can be 

calculated as  

 ccaci hdEuCq ⋅⋅⋅=  (5.18) 

where C is dust concentration, ua horizontal wind speed, E dust collection efficiency 

of an isolated element.  

Per definition, the drag force exerted on an isolated element is: 

 2
accadci uhdCf ⋅⋅⋅= ρ     (5.19) 

where dC , the drag coefficient for isolated roughness element, is approximately 0.3 

(Shao, 2008), and ρa is air density. A combination of Eq. (5.18) and Eq. (5.19) yields 
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f
qA

ρ
⋅==   (5.20) 

Eq. (5.20) describes the relationship between the amount of dust collected by an 

element and the amount of momentum depleted by the element (drag on the element). 

The parameter Aqf is the ratio of ability of the element to collect dust and to absorb 

momentum. 

For a rough surface with cτ  exerted on the roughness elements, the quantity of 

dust collected by the roughness elements can be reasonably expected to be 

  C
C
E

u
AF

daa

c
qfccd ⋅⋅⋅=⋅=

ρ
τ

τ
τ

τ,   (5.21) 

The term ττ c  in Eq. (5.21) can be evaluated by Eq. (5.15). The element dust 

collection efficiency, E, consists of the contributions of Brownian motion, impaction 

and interception, BE , imE  and inE , i.e.,  

 inimB EEEE ++=   (5.22) 
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where BE could be evaluated by Eq. (2.29) and imE  evaluated by Eq. (2.34). 

However, the knowledge of interception is still lacking. In this study, the following 

expression, modified from Eq. (2.36), is used 

 
c

pSt
in

in

d
D

uAE δ,
*

2
10 ⋅⋅⋅= −    (5.23) 

According to the definition, interception describes the behaviors of particles which 

can follow the flow well. The term St−10  is introduced to satisfy this requirement, as 

it approaches 1 for very small particles. As shown by the experimental data, the 

interception collection efficiency is enhanced by friction velocity. To consider the 

effect of micro-roughness characteristics (e.g. hair on roughness element), the term 

*uAin  is introduced, with Ain being an empirical parameter related to the 

micro-roughness characteristics of the element surface, e.g., the ratio of hair size to 

element size and hair distribution.  

Both the element roof and the ground surface can be considered to be smooth, on 

which dust deposition is caused by the mechanisms of gravitational settling, Brownian 

diffusion and impaction: 

 im
rd

B
rd

g
rdrd FFFF ,,,, ++=               (5.24a) 

 im
sd

B
sd

g
sdsd FFFF ,,,, ++=               (5.24a) 

where g
rdF ,  and g

sdF ,  are caused by gravitational settling, B
rdF ,  and B

sdF ,  by 

Brownian diffusion and im
rdF ,  and im

sdF ,  by impaction. 

The amount of dust deposited by gravitational settling can be calculated as 

 ηδ ⋅⋅= CwF t
g

rd ,,       (5.25a) 

 )1(,, ηδ −⋅⋅= CwF t
g

sd      (5.25b) 

Taking account of the possible particle growth, the terminal velocity near the surface,  

 )( ,, wptt Dww =δ   (5.26) 

can be calculated using Eq. (2.8) but particle size wpD , which can be estimated 

following Fitzgerald (1975) or Gerber (1985). 
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Figure 5-4: An illustration of Brownian diffusion on smooth surface.  

 

Brownian diffusion is mainly responsible for dust to move across the laminar layer. 

The process of dust transfer is similar to that of momentum transfer (Figure 5-4). Dust 

particles, for which Brownian diffusion is effective, usually do not rebound from the 

surface (Chamberlain, 1966). For these particles, the surface dust concentration, C(0), 

can be assumed to be zero. We therefore have  

  η
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B
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= ⋅ ⋅          (5.27b) 

A combination of (5.27a) and (5.27b) leads to  
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u

F
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, ρ
τ            (5.28) 

As shown in Figure 5-3, the shear stress exerted on the ground surface is  

 rcs ττττ −−=   (5.29) 

The pressure drag term, cτ− , leads to a momentum reduction of the mean flow 

by production of turbulence, and the enhanced turbulence has a positive contribution 

to the Brownian diffusion over the ground surface. Further, we neglect the difference 

in concentration between the element height and the top of laminar layer. In analogy 

to Eq. (5.27a), the deposition flux caused by Brownian diffusion to the ground surface 

is  
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Dust is also collected by the surfaces due to turbulent impaction. Studies show 

that turbulent impaction is depended on turbulence near the surface and the 

dimensionless particle relaxation time. Following SS80, dust deposition due to 

impaction on a upward facing surface can be expressed as 
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It follows from Eq. (5.17)- Eq. (5.31) that  
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According to Eq. (5.5) and taking account of the rebound effect, the surface 

resistance is found to be 
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where R is the correction factor of rebound (S82), and 

)(hu
w

aa
dm ⋅

=
ρ

τ
 

is the conductance for momentum. For smooth surfaces, dmw  is given by  

*2 uBwdm ⋅=  

where 2B  is an empirical constant of 3 (Zhang et al., 2001).  

To sum up, the parameters used in the new scheme are organized and shown in 

Table 5-1. Some terms, such as wpD , , ττ c , R and E , are evaluated by using 

existing works and are not shown in the Table. 
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Table 5-1: Summary of the improved dust deposition scheme. Input parameters are shown in the 
third row. 

 

 

 

5.2 Scheme validation 

Dust deposition is determined both by dust transport in the transfer layer and dust 

collection in the collection layer. In the absence of roughness elements, dust collection 

is achieved through turbulent impaction, Brownian motion and gravitational settling. 

Particle rebound does not occur for the sticky surface. Because gravitational settling 

in this study is calculated from particle size and the PDPA can only identify particles 

bigger than 0.5 μm, which are too large for Brownian motion, the experimental data 

for the wood surface can only be used to evaluate the parameterization of turbulent 

diffusion and impaction. Figure 5-5 shows that the predictions of the new scheme for 

the wood surface agree with the experimental data well and better than the SS80 

scheme. 
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Figure 5-5: Comparison of deposition velocity, dw , as function of particle diameter, Dp, predicted 

by the new scheme (solid lines) and the SS80 scheme (dashed lines) with the wind-tunnel 

measurements (symbols) for the sticky and smooth wood surface for three different wind 

conditions. 
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Figure 5-6: As Figure 5-5, but is for the sand surface. The parameters used in the new scheme 

include dc = Dsand (average diameter of sand particles), hc = dc/2, λ = 0.125, b = 1 and Ain = 1. The 

wind field parameters are selected according to Figure 4-12a. 

 

The difference between the rough and smooth surfaces is that the elements 
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exposed on the rough surface not only enhance turbulence in the transfer layer but 

also improve the surface collection efficiency. Sand surface is a rough surface 

although the sizes of the roughness elements are small. The sand surface is used here 

as the second case to test the new scheme (Figure 5-6). The size of the elements is 

taken as the average diameter of the sand particles and element height half that 

diameter. The sand particles are assumed to be distributed uniformly on the surface 

and the distance between them is assumed to be twice the diameter. The other surface 

parameters, such as the frontal area and basal area indices can be calculated according 

to these assumptions. The rebound effect is taken into account and the b parameter is 

set to 1. As sand grains are smooth (no hair), Ain in Eq. (5.23) is set to 1.  

Again, the predictions of the new scheme agree well with the experimental data. 

Compared with the SS80 scheme, the new scheme is obviously an improvement, 

especially for the particle size range from 2 to 10 μm. The enhancement of deposition 

velocity can be attributed to better treatment of interception in the new scheme, which 

is neglected in the SS80 scheme. The results show that even small roughness elements 

on a surface can play an important role in the process of dust deposition.   
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Figure 5-7: As Figure 5-5, but is for the tree surface. The solid lines are predictions of the new 

model and the dashed lines correspond to S82. The parameters used for the new scheme are 

dc = 5 mm, hc = 230 mm, λ = 0.4, b = 0.01 and Ain = 150. The parameters for the wind field are 

selected according to Figure 4-17. 
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The third case tested is the tree surface with rather complex structures. The 

roughness element (tree) size is 5=cd  mm and the height 230=ch  mm. Taking 

account of the effect of leaves, we set 150=inA  and 0.4=λ . The results of the new 

scheme shown in Figure 5-7 agree well with the experimental data and are better than 

the results of the S82 scheme.  

 We also tested the new scheme for the water surface. As shown in Figure 5-8, 

taking account of particle growth due to high humidity, the predicted deposition 

velocity with both the new and the SS80 scheme agrees with the experimental data. 

But the good agreement may be for the wrong reason: the Silicon Dioxide particles 

used in the experiments are not hygroscopic, to which the particle growth theory 

(Fitzgerald, 1975) does not apply. On the other hand, waves are visible on the water 

surface (Figure 4-4b). It is thus unreasonable to consider the water surface as a 

smooth surface. 

The new scheme allows however to better describe the deposition of hydrophobic 

dust on the water surface. The water surface is treated as a rough surface, because 

under wind conditions, waves develop and bubbles or spray droplets are emitted from 

the surface. These waves, bubbles and droplets act as roughness elements. The input 

parameters used in the new scheme are taken as 030zhc = , 1.0=cd  mm and the 

distance between the adjacent elements is supposed to be equal to hc. The other 

surface parameters, including element density and frontal area index, can be computed 

from these parameters. Taking account of bubbles or spray droplets, which behave 

like hair on the water surface, we set 100=inA . Using the wind field parameters 

derived from the wind-tunnel experiments, the deposition velocities for different 

particle sizes are calculated. The results shown in Figure 5-9 confirm the good 

agreement between the scheme predictions with the experimental data. We have 

shown that the enhanced deposition over the water surface is indeed not due to 

particle growth, but to the enhanced collection capacities of the water surface caused 

by waves, bubbles and spray droplets. 
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Figure 5-8: As Figure 5-5, but is for the water surface. 
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Figure 5-9: As Figure 5-5, but is for water surface. The surface is considered to be rough and the 

surface parameters are hc = 30z0, dc = 0.1 mm, b = 0, Ain = 100 and the distance between the 

adjacent elements (waves) is equal to hc. The wind field parameters are selected according to 

Figure 4-5. 
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The parameters used for the various surfaces discussed above are list in Table 5-2. 

 

Table 5-2 Parameters used for the discussion of various surfaces 

 
zr 

(mm) 

u* 

(m/s) 

z0 

(mm) 

zd 

(mm)

hc 

(mm)

dc 

(mm)
λ Ain b 

ρp 

(kg·m-3)

0.12 0.075 0 0 0 0 1 0 2200 

0.40 0.033 0 0 0 0 1 0 2200 
Sticky 

wood 
15 

0.54 0.032 0 0 0 0 1 0 2200 

0.14 0.153 0 0.2 0.1 0.125 1 1 2200 

0.32 0.143 0 0.2 0.1 0.125 1 1 2200 Sand 15 

0.49 0.135 0 0.2 0.1 0.125 1 1 2200 

0.24 5.927 200 230 5 0.4 150 0.01 2200 

0.50 2.877 200 230 5 0.4 150 0.01 2200 Tree 250 

1.06 2.106 200 230 5 0.4 150 0.01 2200 

0.15 0.300 0 30z0 0.1 0.538 100 0 2200 

0.36 0.306 0 30z0 0.1 0.538 100 0 2200 Water 25 

0.57 0.309 0 30z0 0.1 0.538 100 0 2200 

 

5.3 Sensitivity analysis 

The results shown in the previous section highlighted the good performance of the 

new scheme when compared with the experimental data. As the scheme performance 

depends on the certainty of the input parameters listed in Table 5-1, it is important to 

examine the scheme sensitivity to these parameters and to identify the most influential 

ones.  

Table 5-1 shows that dust deposition depends on particle properties (size and 

density), aerodynamic conditions (friction velocity, roughness length and zero-plane 

displacement) and surface characteristics (roughness element size, density, frontal 

area index and rebound ability). In general, these parameters do not necessarily 

change independently. For example, while roughness length and zero-plane 
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displacement are used to describe wind profiles, they also reflect the characteristics of 

the surface. The variations in surface parameters, such as roughness element density 

and frontal area index, also cause changes in wind profiles.  

First, we consider the sensitivity of dust deposition to particle properties. The 

typical behavior of deposition velocity as a function of particle size has been shown 

many times (e.g. Figure 5-5): it is large for small particles ( < 0.01 μm) because of 

Brownian diffusion and it is also large for big particles ( > 50 μm) because of 

gravitational settling. Dust deposition is suppressed for particles in the range from 

0.01 to 50 μm, because they are too big for Brownian diffusion and too small for 

gravitational settling. Normally, the minimum deposition velocity occurs in the range 

from 0.1 to 1 μm (Figure 5-5 and 5-6), but the enhancement of interception shifts this 

range to smaller particles (Figure 5-7 and 5-9). 

Particle density influences gravitational settling and the processes related to 

particle inertia, such as impaction. As shown in Figure 5-10, the variability of particle 

density mainly affects the deposition of coarse particles larger than 5 μm, through the 

modification of gravitational settling.  
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Figure 5-10: Sensitivity of deposition velocity to particle density. The deposition velocity is 

calculated for the reference height zr = 100 z0 + d. The aerodynamic and surface parameters 

are u* = 0.3 m·s-1, z0 = 10 mm, d = 100 mm , hc = 150 mm, dc = 5 mm, Ain = 100 and b = 1.   
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Figure 5-11: Sensitivity of deposition velocity to friction velocity. Dust density is ρp = 1000 kg·m-3. 

The other parameters are the same as for Figure 5-10.  

 

Secondly, we consider the aerodynamic parameters. Friction velocity is an 

aerodynamic parameter which influences the entire deposition process from turbulent 

diffusion to surface collection. As shown in Figure 5-11, the influence of friction 

velocity is predominantly for particles smaller than 10 μm, for which the deposition is 

largely determined by turbulent transfer. An increased friction velocity improves 

surface collection due to impaction and interception and hence a noticeable 

enhancement of deposition for particles between 0.1 and 10 μm.  

Thirdly, we consider the sensitivity of deposition to surface characteristics. 

Roughness element size affects the element collection efficiency and two parameters 

are used to describe the element size in the new scheme. One is element diameter, dc, 

and the other the micro-roughness parameter, Ain. Micro-roughness features, such as 

hair on the element, enhance the element collection efficiency due to interception 

(Chamberlain, 1976; S82). For smooth elements ( 1=inA ), the influence of dc can be 

readily analyzed. To highlight the effect of impaction and interception, a large friction 

velocity (0.6 m·s-1) is selected here. As Figure 5-12 shows, element size mainly affects 

the deposition of particles in the size range of 0.1 to 10 μm, because it determines the 

collection efficiency due to impaction and interception. For particles in the range of 
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0.1 to 5 μm, deposition velocity is increased for small element size because of the 

improved interception. For particles from 5 to 50 μm, impaction increases with 

element size and so does deposition velocity.    

 

0.01 0.1 1 10 100

1E-4

1E-3

0.01

0.1

1

wt

w
d (

m
s-1

)

u*=0.6 ms-1

 dc=1  mm
 dc=5  mm
 dc=10 mm

Ain=1

Dp (μm)

 
Figure 5-12: Sensitivity of deposition velocity to roughness element size. The friction velocity is 

u* = 0.6 m·s-1. Ain = 1 and the other parameters are the same as for Figure 5-10. 
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Figure 5-13: Sensitivity of deposition velocity to surface micro-roughness. The other parameters 

are the same as for Figure 5-10.  
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While cd  is usually too large to affect interception, the influence of inA  is 

significant and most profound on the deposition of particles in the size range of 0.1 to 

10μm (Figure 5-13).  

The parameter R describes the rebound probability when a particle collides with 

the surface. The influence of R on the deposition is visible for coarse particles larger 

than 5 μm (Figure 5-14).  
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Figure 5-14. Sensitivity of deposition velocity to rebound probability. The friction velocity is set to 

u* = 0.6 m·s-1. The other parameters are the same as for Figure 5-10. 

 

Roughness element frontal area index is a parameter used to describe the element 

distribution on the surface, used in the drag partition theory. We now test its influence 

on dust deposition in the absence of micro-roughness. As shown in Figure 5-15, 

deposition velocity first increases, then decreases with frontal area index. The 

influence affects all particle sizes, especially for particles in the range of 0.1 to 1 μm. 

Figure 5-15 suggests that in case of small frontal area index, the elements make the 

surface rougher and enhance the surface collection, but as the number of elements 

further increases, the surface becomes again smoother and the surface collection 

efficiency is decreased. The influences of element frontal area index on surface 

resistance and deposition velocity for particles with diameter 1 μm are shown in 



5.3 Sensitivity analysis                                                       

 

97

Figure 5-16. 
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Figure 5-15: Sensitivity of deposition velocity to element frontal area index. We have set ρp = 

2200 kg·m-3, Ain = 1 and the other parameters as for Figure 5-10.  
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Figure 5-16: The influence of element frontal area index on (a) surface resistance and (b) 

deposition velocity for particles with diameter of 1 μm. The other parameters are the same as for 

Figure 5-10. 
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5.4 Summary  

A new dust deposition scheme is proposed by taking account of the impact of 

roughness elements on turbulent diffusion and surface collection. The relationship 

between the aerodynamics and surface collection process is established, and the effect 

of the interactions between the elements is introduced into the scheme in analogy to 

the drag partition theory. Besides, a modified expression for interception is proposed 

to account for the micro-roughness effect of the elements. 

The new scheme is tested against the experimental data and good agreement 

between the scheme predictions and the observations is achieved. A new and more 

physical explanation based on the new scheme is proposed for the deposition of 

hydrophobic dust on water surface.    

The sensitivity of the new scheme to some of the important input parameters has 

been tested. It is found that dust density and particle rebound probability mostly 

influence the deposition of coarse particles larger than 5 μm; the size and 

micro-roughness characteristics of the roughness elements influence interception 

noticeably and hence the deposition of particles in the size range of 0.1 to 10 μm; 

friction velocity affects the entire deposition process and influences the deposition of 

particles of all sizes; element frontal area index has a predominant effect on surface 

collection efficiency and influences the deposition of particles of all sizes. 

 

 

 

 

 

 
 

 



 

 

Chapter 6 

Summary and Outlook 

In this dissertation, we have described a study on dust deposition, including 

wind-tunnel experiments and an improved parameterization of dust deposition. The 

conclusions of this research are summarized in this chapter and recommendations for 

future research are made. 

6.1 Summary and conclusions 

In Chapter 1, the topic of this study, namely dust deposition, is introduced together 

with a brief description of the background of the study. The aims of this study are as 

follows: 

 to conduct wind-tunnel experiments to obtain a comprehensive and cohesive 

dataset for dust deposition; 

 to validate existing dust deposition schemes using the experimental data; and 

 to improve the dust deposition parameterization. 

 

In Chapter 2, the basic theory of dust deposition is presented. The relevant 

concepts are introduced and the current knowledge of dust deposition mechanisms is 

summarized. The traditional experimental methods are described. The shortcomings 

of the measurement techniques and existing experimental data are summarized. It is 

found that there is a lack of information on previous experimental details and the 

measuring techniques have poor comparability. Also, the prevalent dust deposition 

schemes are shown in Chapter 2. The shortcomings of the existing schemes, such as 

the inadequate treatment of gravitational settling in the resistance scheme and the lack 

of suitable parameterization for surface collection processes are presented.
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In Chapter 3, the facilities and equipments for the wind-tunnel experiments are 

described. The components, principles and specifications of the instruments as well as 

the design, purposes, configurations and procedures of execution are presented. The 

wind-tunnel experimental conditions are tested to measure the stability and profile of 

wind and dust concentration. It is shown that the wind-tunnel experimental conditions 

conform to those of a neutral atmosphere boundary layer and satisfy the requirements 

of our experiments.    

In Chapter 4, the methodology of data processing is described. The deposition 

velocities for different particles are extracted from the experimental data and used to 

test the SS80 (for smooth surface) and S82 (for canopy) schemes. The following 

results are found: 

 The measurements indicate that deposition velocity for the particle bigger than 

1 μm increases with particle size and friction velocity. The elements on the 

surface can significantly enhance dust deposition, especially for dust smaller 

than 4 μm.  

 Over water surface, the deposition velocities for the particles in the size range 

of 1 to 12.5 μm do not significantly differ from each other and their values 

increase almost linearly with friction velocity. 

 Dust deposition on water surface can be well predicted by the SS80 (1980) 

scheme in which particle growth caused by humidity is considered. But the 

good scheme performance may be due to a wrong reason, because the particles 

(SiO2) used in our experiment is hydrophobic.  

 Dust deposition on dry surface is underestimated by the SS80 and S82 

schemes. On smooth surface, particles with diameter larger than 4 μm are 

effectively deposited by impaction which has been considered in the schemes 

but underestimated; on rough surface, the serious underestimation of the 

deposition velocity for particles in the size range of 1 to 4 μm may be caused 

by the underestimation of interception. 

 The S82 scheme can predict the deposition velocity well by selecting a suitable 

value of small-collector size. But the characteristic dimension of the small 

collectors is difficult to estimate. 
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In Chapter 5, a new scheme with improved parameterization for the surface collection 

process is proposed. The relationship between the aerodynamics and surface 

collection process is established, and the effect of interaction between the elements is 

introduced to the parameterization scheme in analogy to the drag partition theory. A 

sensitivity analysis is carried out. The results are  

 Dust density and particle rebound probability mostly influence the deposition 

of coarse particles larger than 5 μm;  

 The size and micro-roughness characteristics of the roughness elements 

influence interception noticeably and hence the deposition of particles in the 

size range of 0.1 to 10 μm;  

 Friction velocity effects the entire deposition process and influences the 

deposition of particles of all sizes;  

 Element frontal area index has a predominant effect on surface collection 

efficiency and influences the deposition of particles of all sizes. 

In conclusion, a series of wind-tunnel experiments have been successfully carried 

using the most sophisticated instrument available to date to produce a reliable and 

comprehensive dataset. We have used the experimental data to test the most 

representative existing dust deposition schemes. By analyzing the differences between 

the predictions and experimental data, the shortcomings of the existing schemes have 

been identified. This has allowed us to propose a new dust deposition scheme by 

incooperating the drag partition theory. Comparison with the data has demonstrated 

the new scheme performs better than the existing schemes. 

6.2 Outlook 

Through the theoretical work and the wind-tunnel experiments presented in this study, 

our understanding on dust deposition is improved, and with the development of the 

new scheme, our capacity for dust deposition parameterization improved. However, 

some questions remain unanswered and we recommend that future research should 

focus on the following issues:  

The effect of wind intermittency 

In our study, we assumed the wind is steady and the effect of wind intermittency is 
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neglected. But wind intermittency probably seriously affect the dust deposition, 

including dust transport in the upper layer and dust collection in the lower layer 

(Figure 5-1). While some studies on the topic already exist, e.g., the treatment of the 

effect of wind intermittency on aerodynamic resistance by Zhang et al. (2001) and 

Seinfeld and Pandis (2012), the influence of wind intermittency on the dust collection 

process deserves further research.  

Deposition on complex surfaces  

Only surfaces with relatively simple and uniform elements are tested in our study, but 

natural surfaces are much more complex. For example, how to predict dust deposition 

to surfaces with multi-size elements is important for regional and global dust models.  

Effect of element-interaction on element collection efficiency 

In analogy to the drag partition theory, an expression for describing the distribution of 

total deposited dust on different parts of the surface (elements or up-facing surface) is 

proposed in our study. But the element collection efficiency is evaluated based on the 

study of isolated elements. The effect on element collection efficiency due to the 

interactions between the roughness elements remains rather unclear. 

Mutual promotion between deposition scheme and drag partition theory 

In our work, a relationship between dust deposition and drag partition is proposed. An 

opportunity of mutual promotion exists between the studies on dust deposition and 

drag partition. The drag partition theory could improve the quality of deposition 

scheme. The deposited dust can be treated as a ‘tracer element’. By measuring the 

quantity of dust deposited on different part of the surface could improve our 

understanding of drag partition. 



  

 

List of Symbols 

inA  
Empirical parameter for surface micro-roughness 

characteristics 
/ 

qfA
 

Ratio of ability of the element to collect dust and to 

absorb momentum 
/ 

a 
Numerical constant in surface collection efficiency due 

to Brownian motion 
/ 

B1, B2 Empirical constant  / 

b Numerical constant in rebound expression / 

C Dust concentration kg·m-3 

cC  Cunningham correction factor / 

Cd Drag coefficient for obstacle / 

c 
Fraction of the total collected momentum collected by 

small collectors (e.g. vegetative hairs) 
/ 

cd cd is average drag coefficient for vegetation / 

cv 
The portion of cd arising from viscous drag (as opposed 

to form drag), 
/ 

aD  The effective diameter of air molecule  m 

pD , awD  Dry/wet particle diameter m 

cd , 
l
cd , 

s
cd  

Dimension of the roughness elements, large collector 

(i.e. roughness elements) and small collector 
m 

E , 
BE , 

inE , 
imE  Element collection efficiency for different mechanisms / 

dF , mean
dF , diff

dF , 

g
dF , B

dF , T
dF  

Dust deposition flux caused by different mechanisms Kg·m-2·s-1 
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sF , g
sF , B

sF , im
sF , 

in
sF  

Flux of dust collected by surface due to different 

mechanisms  
Kg·m-2·s-1 

rf  Aerodynamic drag N 

G  Gravity N 

imG , BG  Impaction and Brownian diffusion conductance m·s-1 

aMG  Aerodynamic conductance for momentum m·s-1 

g  Gravitational acceleration m·s-2 

h  Thickness of surface layer m 

ch  Height of roughness element m 

BK  Boltzmann constant J·K-1 

pK  Particle eddy diffusivity m2·s-1 

TK  Turbulent (or eddy) viscosity m2·s-1 

pk  Brownian diffusion coefficient m2·s-1 

k  von Karman constant / 

n Element density  m-2 

R Reduction in collection caused by rebound / 

Re Reynolds number / 

ar , br , cr  
Aerodynamic, laminar (or quasi-laminar) layer, and 

surface resistance  
s·m-1 

sr  
Surface collection resistance including the effect of both 

br and cr  
s·m-1 

gr  Resistance of gravity (inverse of terminal velocity) s·m-1 

Sc  Schmidt number / 

TSc  Turbulent Schmidt number / 

St  Stokes number / 
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au  Horizontal velocity of air m·s-1 

*u  Friction velocity m·s-1 

V Volume of the sampling area m3 

Vp Resultant velocity of particle m·s-1 

aw , pw , rw  Vertical velocity for air, particle and particle-to-air m·s-1 

dw  Deposition velocity m·s-1 

tw  Terminal velocity m·s-1 

z , rz  Height and reference height  m 

0z , dz  Roughness length and zero-plane displacement m 

 

Greek symbols 
γ  A parameter characterizing the wind profile in canopy / 

δ , δ ′  Thickness of laminar layer or quasi-laminar layer  m 

fδ  Distance between the brightness and darkness fringes m 

η  Basal area index / 

θ  The angle between the incident beams of PDPA degree 

λ  Frontal area index / 

mλ  
Mean free path of molecular motion ( ~3.5×10-10m) m 

lλ  Wavelength of laser  m 

μ  Dynamic viscosity of air kg·m-1·s-1 

ν  Kinematic viscosity of air m2·s-1 

ξ , Bξ , imξ , inξ  Surface collection efficiency for different mechanisms / 

pρ , aρ  Particle/air density kg·m-3 

τ , cτ , sτ , rτ  Drag exerted on different parts of the surface N·m-2 

pτ  Relaxation time of particle  s 
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+
pτ  Dimensionless particle relaxation time  / 

φ  Phase difference for Doppler signals  / 

ϕ  Geometrical factor of PDPA / 
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