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1 Introduction

The Coulomb interaction between individual electrons plays an important role
for many transition-metal compounds. Whereas they are expected to exhibit
metallic behavior due to their partially �lled d shells, many transition-metal com-
pounds have shown to be insulating by experiment [1]. A variety of fascinating
phenomena has been observed such as high-temperature superconductivity and
colossal-magneto resistance [2�4]. The physical model which has proven success-
ful in describing the remarkable properties of these so-called correlated electron
systems is the Hubbard model [5,6]. It accounts not only for the energy gain due
to charge delocalization, but also adds a term which describes the on-site Coulomb
repulsion between individual electrons. It follows a splitting of the valence band
into a lower and an upper Hubbard band. As a consequence of charge localization,
the atomic degrees of freedom, like spin, charge, and orbital, retain their meaning
in these correlated insulators [7]. A competition between the individual degrees
of freedom arises and complex spin, orbital, and charge ordering phase diagrams
have been observed.

In the framework of this thesis a variety of transition-metal compounds is inves-
tigated by means of spectroscopic ellipsometry in the energy range from 0.75 eV
to 5.5 eV for temperatures ranging from 15K to 490K. Ellipsometry measures the
change of the polarization state of a polarized light beam which is re�ected from
the sample surface. The technique of ellipsometry bears two signi�cant advantages
over conventional re�ection measurements. It acquires two independent parame-
ters, which are needed to describe the state of polarization, at each wavelength.
As a consequence, it yields both, the real and the imaginary part of the complex
dielectric function directly without a Kramers-Kronig transformation. Further-
more, it is a self-normalizing technique and no reference measurement is required.
Due to its high accuracy, ellipsometry is particularly well suited to determine the
precise temperature dependence of the optical spectral weights.

The optical spectra of correlated insulators are dominated by Mott-Hubbard ex-
citations, i.e. an electron transfer between neighboring transition-metal sites i
and j, and charge-transfer excitations, i.e. an electron transfer from the ligand
oxygen 2p band to the transition-metal 3d band. Depending on the relative en-
ergy cost of charge-transfer and Mott-Hubbard excitations, one distinguishes be-
tween two kinds of correlated insulators. In a Mott-Hubbard insulator the lowest
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2 1. Introduction

dipole-allowed excitation corresponds to a Mott-Hubbard excitation, whereas the
charge-transfer excitation is the lowest dipole-allowed excitation in a so-called
charge-transfer insulator. Typically, early transition-metal compounds belong to
the group of Mott-Hubbard systems, while late ones are characterized as being of
charge-transfer type. Due to the multiplet splitting of Mott-Hubbard and charge-
transfer absorption bands in these multi-orbital systems, the optical conductivity
shows a complex multi-peak structure. The spectral weight of the Mott-Hubbard
excitations is very sensitive to nearest-neighbor spin-spin and orbital-orbital cor-
relations [8, 9]. A change of spin and orbital correlations with temperature leads
to a characteristic spectral-weight transfer between the individual components of
the optical multiplets [10]. This has been very nicely demonstrated for the 3d4

systems LaMnO3 and LaSrMnO4 [11, 12]. Here, the orbital occupation is inde-
pendent of temperature because of the large ligand-�eld splitting of the singly
occupied eg orbitals, thus the spectral-weight transfer of the Mott-Hubbard exci-
tations is mainly governed by the spin-spin correlations. However, the behavior
of the 3d1 Mott-Hubbard insulators YTiO3 and SmTiO4 is still not understood
in this context [13]. It is the aim of this thesis to systematically study the im-
portance of spin/orbital correlations and also excitonic e�ects on the temperature
dependence of the optical spectra.

First, the focus lies on the 3d2 systems RVO3 (R=Y, rare earth ion). Undoped
RVO3 can be characterized as a Mott-Hubbard insulator with pseudocubic per-
ovskite structure. The orbital degree of freedom plays a decisive role in RVO3.
The coupling of the orbitals to the lattice is only weak in these systems with active
t2g orbitals and as a consequence orbital and spin degrees of freedom are intimately
related to each other. The hopping amplitude between orbitals on adjacent lattice
sites determines both the size and the sign of the magnetic exchange coupling be-
tween spins. It follows a complex spin and orbital ordering phase diagram which is
expected to be re�ected in a pronounced anisotropy and temperature dependence
of the optical spectra. It is still not clear under which circumstances the orbitals
themselves may be considered as a truly low-energy degree of freedom displaying
low-energy excitations, in other words, to establish compounds with strong orbital
�uctuations. The typical situation in most Mott-Hubbard insulators is that the
orbitals are strongly coupled to the lattice, i.e. the crystal �eld, opening a gap
in the orbital excitations of a few 100meV or larger. In this case, it usually is
su�cient to consider rigid orbital order with no �uctuations. However, it has been
claimed that orbital �uctuations may be strong in the Mott-Hubbard insulators
RVO3. For YVO3 the observation of a one-dimensional orbital liquid, of an orbital
Peierls phase, and of bi-orbitons has been reported [8, 10, 14�18]. On the other
hand, other groups rule out strong orbital �uctuations in YVO3 due to a sizable
crystal-�eld splitting [19,20] but support the importance of orbital �uctuations for
compounds with larger R ions such as LaVO3. Here, it is aimed to approach the
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determination of low-energy orbital �uctuations by means of optical spectroscopy.
The observed absorption bands can be described in terms of the di�erent 3d3 mul-
tiplets which form the upper Hubbard band. A comparison of the experimental
results for R=Y, Gd, and Ce with a theory based on a low-energy spin-orbital
superexchange Hamiltonian [8,10] should lead to a conclusion about the character
of the orbital degree of freedom. Optical data of undoped RVO3 (R=Y, La)
are well present in the literature [21�23]. However, di�erent data sets strikingly
disagree with each other, calling for a clari�cation.

Further optical investigations focus on the compound LaSrFeO4. The correlated
insulator LaSrFeO4 is of interest because it lies on the border between Mott-
Hubbard and charge-transfer systems. The layered structure of LaSrFeO4 is ex-
pected to give rise to a pronounced anisotropy of the optical spectra, which can
be used to disentangle Mott-Hubbard and charge-transfer absorption bands and
thereby shed light on the character of LaSrFeO4.
LaSrFeO4 exhibits a high-spin 3d5 electron con�guration on the Fe3+ sites with a
Néel temperature of TN = 366K. As a consequence, spin-spin and orbital-orbital
correlations between nearest neighbors do not vary strongly below room temper-
ature. Thus, the temperature dependence of the Mott-Hubbard excitations is
expected to be rather small, which makes LaSrFeO4 an interesting candidate for
the investigation of other e�ects on the temperature dependence of the spectral
weight, such as the thermal expansion of the lattice, bandstructure e�ects, or ex-
citonic contributions.

Yet another concern of this thesis lies on the physics of cobaltates. The focus
is on the pseudocubic perovskites LaCoO3 and EuCoO3 with electron con�gu-
ration 3d6 on the Co3+ sites, and the single-layered perovskites La2−xSrxCoO4

(x = 0, 0.33, 0.45, 0.5, 0.9) and La1.5Ca0.5CoO4, which contain both, Co3+ ions
with 3d6 electron con�guration and Co2+ ions with 3d7 electron con�guration. The
physics of cobaltates is dominated by the spin-state issue. Particularly the spin
state of the 3d6 electron con�guration of the Co3+ ions can act as an additional
degree of freedom, which is expected to control electronic and magnetic properties.
A 3d6 electron con�guration in an octahedral surrounding is particular interesting
as a competition arises between the crystal-�eld splitting and the Hund exchange.
While the domination of the former gives rise to a nonmagnetic low-spin state
(spin S = 0), the latter favors parallel spins, i.e. a magnetic high-spin state with
spin S = 2. Also the compromise in form of an intermediate-spin state with spin
S = 1 has been discussed to become energetically favorable due to band-structure
e�ects or large distortions of the oxygen octahedra [24,25].
The magnetic susceptibility of the pseudocubic perovskite LaCoO3 exhibits quite
unusual behavior which has been attributed to a thermal population of higher spin
states from a low-spin ground state starting at T & 25K [25, 26]. The cobaltates
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can be characterized as charge-transfer insulators. A change of the spin state
of the Co3+ ions is supposed to greatly a�ect the reachable �nal states of the
charge-transfer excitations. However, temperature-dependent re�ectivity data on
LaCoO3 hardly vary across the so-called spin-state transition [27]. In EuCoO3

the spin-state transition is shifted to much higher temperatures. The literature
on single-layered cobaltates gives evidence for both, temperature and a doping in-
duced spin-state transitions taking place on the Co3+ sites [28�32]. The elaborate
ellipsometric analysis presented in this work focuses on three di�erent aspects,
the temperature, polarization, and doping dependence of the optical spectra. It
is the aim of this investigation to study the impact of the Co3+ spin-state on the
optical spectra and to gain further insight into the physics of this interesting class
of materials.

The structure of this thesis is as follows: In chapter 2 the physics of correlated
electron systems is brie�y discussed. A short introduction into the �eld of optical
spectroscopy is given in chapter 3. The second part of chapter 3 is exclusively
devoted to ellipsometry. A description of the experimental setup and a discussion
of the analysis of the ellipsometric data follows in chapter 4. The results of the
detailed optical investigations on RVO3 are presented in chapter 5. Chapter 6
discusses the optical data of LaSrFeO4. Finally, chapter 7 deals with the results
of the elaborate optical study on pseudocubic and single-layered cobaltates. The
thesis ends with a conclusion in chapter 8.



2 Electronic structure of
correlated electron systems

2.1 The Hubbard model

In a correlated electron system the Coulomb repulsion between individual electrons
of the valence band plays a signi�cant role. As a consequence, the electronic
properties of these systems cannot be described by band theory. Band theory
makes use of an independent electron approximation, i.e. an electron moves in a
mean potential of all other electrons. It is very successful in classifying a great
number of crystalline solids as metals or insulators. However it fails e.g. in the
description of transition-metal compounds with partially �lled d shells, which are
classi�ed as metals by band theory, but some of them show insulating behavior
in experiments [33]. A model which includes correlation e�ects between electrons
that go beyond band theory is the so-called Hubbard model. The single-band
Hubbard model represents its most simple form [5,6]:

H = Ht +Hint = −t
∑
〈i,j〉 σ

(c†iσcjσ + h.c.) + U
∑
i

ni↑ni↓ (2.1)

Here, ni↑(↓) is the occupation number operator, it counts the electrons with spin
↑ (↓) at lattice site i, c†iσ (ciσ) creates (annihilates) an electron with spin σ = ↑, ↓
at lattice site i and the sum over 〈i, j〉 is carried out over nearest neighbors. The
�rst term of Eq. 2.1 is the ordinary band term which describes the behavior of
electrons in a periodic potential. The electrons gain kinetic energy by hopping
from lattice site i to the neighboring lattice site j. The strength of the hopping
amplitude t is given by the overlap between neighboring orbitals. The second
term of Eq. 2.1 stems from the on-site Coulomb repulsion between two electrons,
double occupancy has to be paid for by the Coulomb energy U . At half �lling, i.e.
one electron per lattice site, the electronic properties of the system are governed
by the ratio U/t. On the one hand, the movement of an electron results in an
energy gain t, but on the other hand, it generates double occupancy costing the
energy U . While the system is a Mott-Hubbard insulator with one electron per
lattice site in the limit U/t � 1 (strong coupling limit) where double occupancy
is prevented by the large energy cost U , the system has metallic properties for
U/t� 1. The variation of U/t thus leads to a metal-insulator transition [33,34].

5



6 2. Electronic structure of correlated electron systems

The insulating behavior can be visualized by a splitting of the valence band [33],
as sketched in Fig. 2.1. It has to be noted, however, that the resulting "bands"
cannot be understood in a single-electron picture, but are a result of the inter-
actions among electrons. Instead of the density of states in a single-electron pic-
ture, one sketches the (N − 1)-particle states (i.e. the spectrum of photoemission
spectroscopy) as well as the (N + 1)-particle states (i.e. the spectrum of inverse
photoemission spectroscopy). The valence band is split into the band with (N−1)
particles, the so-called lower Hubbard band (LHB) and the band with (N + 1)
particles, the so-called upper Hubbard band (UHB). The bands are separated from
each other by the Coulomb energy U . As hole and double occupancy can move
freely, the bands have a �nite band width W , which is determined by the hopping
amplitude t and the number of nearest neighbors z. In a crystal with cubic sym-
metry it is given by W = 2zt [33]. LHB and UHB are far away from each other in
the limit U/t � 1 representing insulating behavior, whereas the overlap of LHB
and UHB in the other limit U/t� 1 characterizes a metallic system.
In Eq. 2.1 hopping only takes place between nearest neighbors, also the model
only accounts for a Coulomb interaction between electrons on the same lattice
site. Furthermore, the single-band Hubbard model is restricted to one orbital
per lattice site and does not allow for di�erent (degenerate) orbitals on each site.
However, depending on the physical system under investigation, the model can be
expanded by the relevant terms (see Sec. 2.3 below).

Intensity

Energy

Figure 2.1: The valence band is split into the lower Hubbard band (LHB) and the
upper Hubbard band (UHB). See the main text for details.
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2.2 On-site properties

2.2.1 Crystal structure and crystal-�eld splitting

The discussion of the on-site electronic properties is of great importance for the un-
derstanding of our optical spectra. The transition-metal compounds investigated
within the framework of this study crystallize either in a (distorted) perovskite-
type crystal structure or in a (distorted) single-layered perovskite-type structure.
The (pseudo-) cubic perovskites have the chemical formula ABX3, for the com-
pounds investigated within this these, A refers to a rare-earth ion or Y, B repre-
sents a transition-metal ion, and X is an oxygen ion. The chemical formula of the
single-layered perovskites is A2BX4. The unit cell of both structures is depicted in
Fig. 2.2. Most of the crystals examined within the framework of this study show
a distortion away from the ideal cubic or tetragonal crystal structure. Compared
to the ideal perovskite the BX6 octahedra are rotated, tilted, and distorted. The
distortions away from the cubic/tetragonal arrangement are mainly due to a mis-
match of ionic sizes, so-called steric e�ects. The crystal symmetry is often reduced
to orthorhombic. The lattice constants of the orthorhombic unit cell characteriz-
ing the pseudocubic perovskite are related to the ones of the ideal cubic structure
(with lattice constant ac) by a ≈ b ≈

√
2ac and c ≈ 2ac. Figure 2.3 shows the

orthorhombic unit cell of the distorted structure. In the case of the tetragonal
symmetry of the single-layered structure, the BX6 octahedra (being neither tilted
nor rotated) are elongated along the c axis. The lattice constants of the distorted
layered structure are related to the ones of an ideal layered perovskite (with lattice
constants atet and ctet) by a ≈ b ≈

√
2atet and c ≈ ctet.

The relevant physics takes place in the 3d shell of the transition-metal (TM) ions
which are surrounded by the oxygen octahedra. Both, the rare-earth ions (or
Y) and the oxygen ions have closed shells in a purely ionic scenario. Since the
compounds of interest can be characterized as correlated insulators, the electrons
are mostly localized on their lattice sites. The compound YVO3, for instance, is
composed of the ions Y3+ = [Kr]4d0, V3+ = [Ar]3d2, and O2− = [He]2s22p6 and
e.g. LaSrFeO4 consists of La3+ = [Xe]5d0, Sr2+ = [Kr]5s0, Fe3+ = [Ar]3d5, and
O2− = [He]2s22p6.
The local properties of the TM ion are derived by the use of the so-called crystal-
�eld theory [33, 35, 36]. It considers a scenario in which the TM ion is placed in
the potential of point-like charges of the surrounding ligands. The electric �eld
lifts the degeneracy of the 3d level. A cubic crystal �eld splits the �ve 3d orbitals
into a lower-lying, triply degenerate t2g level (the dxy, dyz, and dzx orbitals) and
a higher-lying, doubly degenerate eg level (the dx2−y2 and d3z−r2 orbitals), the
resulting orbitals are sketched in Fig. 2.4. The energetic separation is commonly
denoted by 10Dq. Typical values of 10Dq in TM compounds amount to 1− 5
eV [9, 12, 37�39]. The eg orbitals lie higher in energy because their lobes point
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directly onto the negatively charged oxygen ions, whereas the lobes of the t2g or-
bitals avoid them (see Fig. 2.4) [35]. The degeneracy of the t2g and eg levels is
further lifted by a distortion of the BX6 octahedra. In addition to steric e�ects,
also the Jahn-Teller e�ect is an important driving force for lifting the degeneracy.
It is active if the number of electrons cannot be uniformly distributed over the
degenerate orbitals [40]. Up to a certain limit, the energy that can be gained
by lowering the energy of the occupied orbitals with respect to the unoccupied
ones outweighs the energy cost for distorting the octahedra. Also the spin-orbit
coupling leads to a level splitting. However, its e�ect is comparably small in the
compounds of interest for this work and can mostly be neglected.
Crystal-�eld theory is not always su�cient for the description of the compounds
of interest relevant for this work as it does not account for hybridization. The hy-
bridization of the TM ions with the surrounding oxygen ions might, however, play
an important role for the understanding of our optical spectra. A theory that goes
beyond crystal-�eld theory is the so-called molecular-orbital theory. Molecular-
orbital theory is able to describe the phenomena of chemical bonding. Molecular
orbital wave functions are constructed out of linear combinations of the atomic
orbital wave functions [41].

2.2.2 Multiplets

In the case that more than one electron resides in the 3d shell, the on-site properties
are determined by many-electron wave functions. In the following discussion we
assume cubic symmetry, e�ects resulting from deviations thereof will be discussed
in the relevant chapters. Here, we will follow the argumentation of Ref. [35].
The many-electron wave functions in the cubic case are constructed out of the
single-electron functions t2g and eg. Let us consider the simple case of placing two
electrons into the t2g shell. There are 6 possibilities for placing the �rst electron in
the shell (as one can choose between three t2g orbitals and spin up or down) and 5
possibilities for the second electron (respecting the Pauli principle). One obtains
15 states (as the product of 6 × 5 has to be divided by 2 to avoid double counting),
which have the same energy if the Coulomb interaction between the electrons is
neglected. The many-electron wave function is, however, not simply a product of
the single-electron functions as the antisymmetry of the fermionic wave function
has to be taken into account. This is ensured by making use of Slater determinants.
The Coulomb interaction between the electrons leads to a splitting of the energy
levels of the many-electron states. The eigenstates corresponding to a certain
energy level are the basis of an irreducible representation Γ of the octahedral
symmetry group. Since there is no spin operator in the crystal-�eld Hamiltonian,
the eigenstates have a de�nite spin quantum number S. The di�erent energy levels
are called dn multiplets and are denoted by 2S+1Γ. They have (2S + 1)× (Γ) fold
degeneracy, where (Γ) denotes the dimension of the irreducible representation Γ.
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Figure 2.2: Left: Crystal structure of the ideal cubic perovskite with chemical
formula ABX3 (cubic, space group Pm	3m), Right: Crystal structure
of the ideal single-layered perovskite with chemical formula A2BX4

(tetragonal, space group I4/mmm), the BX6 octahedra are elongated
along the c axis. Taken from Ref. [42].

The eigenenergy value of each multiplet depends on the spin con�guration and
the orbital occupation. It is described by the three Racah parameters A, B, and
C, which describe the Coulomb interaction between two electrons on the same
ion1, and the crystal-�eld parameter 10Dq, describing the t2g − eg splitting [35].
In the Sugano-Tanabe-Kamimura diagrams the multiplet energies are plotted as
a function of Dq/B. It is possible to reduce the number of parameters since
the energy splitting between the multiplet states is independent of the Racah
parameter A (A determines the absolute energy value only). Furthermore the
ratio C/B is nearly independent of the number of electrons in the d shell as well
as of the atomic number and deviates only slightly from the free-ion value (which is
mostly known from spectroscopic data) [35,44]. We will make use of the Sugano-
Tanabe-Kamimura diagrams for the peak assignment of our spectroscopic data
(see the relevant chapters). The approximate values of Dq/B are mostly known

1The Racah parameters A, B, and C follow from the Slater integrals F 0, F 2, and F 4

by A = F 0 − 49/441 F 4, B = 1/49F 2 − 5/441 F 4, C = 35/441 F 4 with F k =∫∞
0
r21dr1

∫∞
0
r22dr2R

2
d(r1)R2

d(r2)rk</r
k+1
> , where Rd denotes the radial wave function and

r< and r> are the minimum and maximum values of r1 and r2, respectively [35].
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A
B
X

Figure 2.3: Crystal structure of the distorted perovskite (orthorhombic, space
group Pbnm ). The orthorhombic (red) and the cubic (blue) unit
cell are displayed. Taken from Ref. [37].

Figure 2.4: The cubic crystal �eld of the surrounding oxygen (O2−) octahedron
splits the d level of the transition-metal ion into a lower-lying triply
degenerate t2g level (dxy, dyz, and dzx) and a higher-lying doubly dege-
nerate eg level (dx2−y2 and d3z2−r2). The value of the splitting amounts
to 10Dq. Taken from Ref. [43].
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from the literature. The crystal-�eld parameter 10Dq depends mainly on the size
of the TM−O octahedra. For a detailed discussion of crystal-�eld theory we refer
e.g. to Refs. [35,36].

2.3 The multi-orbital Hubbard model

The orbital degree of freedom is of great importance for the systems under investi-
gation in this work with partially �lled 3d shells. A multi-orbital Hubbard model
has to be considered which allows for di�erent (possibly degenerate) orbitals per
lattice site. The system Hamiltonian in this case is given by [45]:

H = Ht +Hint (2.2)

with
Ht =

∑
〈i, j〉, α, β, σ

tαβ(c†iασcjβσ + h.c.) (2.3)

and

Hint =
∑

i, α, β, σ, σ′

(1− δαβδσσ′)Uαβniασniβσ′ −
∑
i, α, β

JαβH
~Siα · ~Siβ(1− δαβ) (2.4)

Here, the hopping amplitude tαβ depends on the type of the involved orbitals,
it is zero if there is no overlap between the orbitals α and β [45]. In the TM
compounds considered in this work the intersite hopping takes place via σ or π
bonds of the ligand oxygen orbitals. Also the on-site Coulomb repulsion Uαβ

varies depending on the pair of orbitals considered. The last term in Hint stems
from the on-site Hund exchange interaction, stating that parallel spin alignment
is preferred to antiparallel alignment for electrons in di�erent orbitals. The values
of Uαβ and JαβH are determined by the Racah parameters A, B, and C, which have
been introduced in the previous section.

2.4 Superexchange

The ground state of the single-band Hubbard model in the atomic limit (hopping
amplitude t = 0) has 2N fold degeneracy in the case of half �lling (N = number
of lattice sites). Electrons on di�erent lattice sites do not interact and each spin
can be either up or down. For a small value of t the hopping term Ht of the
Hamiltonian in Eq. 2.1 can be treated as a weak perturbation of the Hubbard
interaction Hint [34]. In the strong coupling limit U/t � 1 double occupancy
is suppressed for low energies and further considerations can be restricted to the
subspace of singly occupied lattice sites. Making use of a canonical transformation
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and considering perturbation terms up to second order, one obtains the low-energy
superexchange Hamiltonian [34]:

Heff = J
∑
〈i,j〉

~Si · ~Sj (2.5)

This is the Hamiltonian of the well-known Heisenberg model with superexchange
constant J ∝ t2/U . For positive values of J the coupling is antiferromagnetic
(AFM). In the case of 180◦ bonds, the ground state of the single-band Hubbard
model at half �lling has thus AFM spin order. Antiparallel spins gain kinetic en-
ergy by virtual hopping processes to neighboring sites, whereas hopping is blocked
in the ferromagnetic (FM) case by the Pauli principle. These virtual charge ex-
citations that cause an interaction between electrons on neighboring lattice sites
are called superexchange interactions [46].
In the more complex case of the TM compounds with partially �lled 3d shells
di�erent terms contribute to the superexchange interactions between neighboring
lattice sites. These di�erent contributions result from the multiplet structure of
the virtually excited states and not only the spin degree of freedom but also the
orbital degree of freedom plays an important role. Figure 2.5 exempli�es on a
simple model of a system with one electron and two orbitals per lattice site how
FM and AFM correlations can emerge.
Kugel and Khomskii were the �rst to derive low-energy e�ective superexchange
Hamiltonians for compounds with partially �lled degenerate orbitals [47]. These
so-called spin-orbital models tread coupled spin and orbital degrees of freedom.
They allow for both, FM and AFM spin correlations. They are successful in ex-
plaining the splitting of degenerate orbitals due to superexchange and describe
orbital ordering phenomena. In addition to the actual orbital state, these com-
plex spin-orbital models are controlled by only a small number of physical param-
eters, the superexchange constant J ∝ t2/U and the normalized Hund exchange
JH/U [8]2. It has to be noted, however, that as opposed to the spin part, where
interaction between neighboring lattice sites are exclusively mediated by superex-
change, the orbital occupation of neighboring lattice sites can additionally be a
a�ected by orbital-lattice coupling (i.e. steric e�ects or the cooperative Jahn-Teller
e�ect, see Sec. 2.5 below). In the case of orbital degeneracy, the superexchange
interactions are composed of virtual charge excitations to the various multiplet
states forming the UHB. The e�ective low-energy Hamiltonian, which connects
the lattice sites i and j, can thus be written as a superposition of each individual

2Here, U is the on-site intra-orbital Coulomb interaction energy, JH is Hund exchange element
which depends on the involved orbitals and t is the e�ective hopping element between the
relevant orbitals of the system under consideration.
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contribution to the superexchange [8]:

Heff =
∑
n

∑
〈i,j〉||γ

Hγ
n(ij) (2.6)

The individual charge excitations which contribute to superexchange are labeled
by n. Since the orbital operators depend on the bond direction, the index γ =
a, b, c has been introduced to specify the di�erent crystallographic directions [8].
We will see in Sec. 2.6 that the e�ective low-energy Hamiltonian of Eq. 2.6 also
determines the intensity of the high-energy optical transitions across the band
gap. The intersite transitions that are seen in optics are thus intimately related to
the low-energy superexchange interactions [8,10]. In chapter 5 we will make use of
this interrelation to understand the temperature dependence of the complex multi-
peak structure observed in the optical spectra of the compounds RVO3 (with R
= rare-earth ion or Y).

Figure 2.5:
Simple model of a system with one elec-
tron and two orbitals (a and b) per lat-
tice site. The correlations can be FM
due to the Hund coupling or AFM due
to the Pauli principle.

2.5 Orbital correlations due to orbital-lattice

coupling

In addition to the superexchange which mediates an interaction between spins and
orbitals on neighboring lattice sites, also the coupling of the orbitals to the lattice
has to be taken into account as a potential source for orbital ordering [48,49]. In
Sec. 2.2.1 we have already discussed steric e�ects and the Jahn-Teller e�ect as
possible causes for the level splitting on one particular TM site. The interrelation
between the individual oxygen octahedra in a crystal lattice can induce a collective
lattice distortion (see Fig. 2.6), the so-called collective Jahn-Teller e�ect.
The collective Jahn-Teller e�ect and the superexchange interactions do not nec-
essarily support the same kind of orbital ordering pattern. The competition be-
tween di�erent mechanisms for orbital ordering can be the source of a rich spin
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Figure 2.6:
Simple sketch of a collectively distorted crystal
structure, the so-called collective Jahn-Teller e�ect.

and orbital ordering phase diagram. In systems with active eg orbitals the cou-
pling to the lattice typically plays an important role. In the eg system LaMnO3

with 3d4 electron con�guration for instance, the collective Jahn-Teller e�ect in-
duces an orbital ordering phase transition taking place at a temperature as high
as TOO = 780K [11], therefore the superexchange between orbitals can be ne-
glected [8, 49]. In the t2g system YVO3 with 3d2 electron con�guration, however,
the competition between steric e�ects, the Jahn-Teller e�ect, and superexchange
interactions is recognized to be the origin of a complex spin and orbital ordering
phase diagram [14,48,49] (which will be presented in Sec. 5).

2.6 Mott-Hubbard excitations and their

temperature dependence

The absorption spectra of TM compounds in the energy region relevant for this
work, ranging from the near infrared to the middle ultraviolet region (0.75 eV −
5.5 eV), are dominated by two types of electronic excitations: the Mott-Hubbard
(MH) excitations and the charge-transfer (CT) excitations. In this section we
address the former whereas the latter are discussed in the next section. A MH
excitation corresponds to an electron transfer between neighboring TM ions, |d1

i

d1
j〉 → |d2

i d
0
j〉 (considering the simpli�ed case of one electron per lattice site �rst),

where dn refers to the d shell of a TM ion that is occupied by n electrons. The dou-
ble occupancy of lattice site i costs the Coulomb-interaction energy U . The MH
excitations are the real counterparts of the virtual charge excitations discussed
in Sec. 2.4 in the context of superexchange. Their optical spectral weight is inti-
mately connected to the low-energy superexchange interactions. Let us consider
the simpli�ed case of a 1D single-band Hubbard chain at half �lling in the strong
coupling limit (U/t � 1), see Fig. 2.7. We only consider electric dipole transi-
tions since the intensities of magnetic dipole and electric quadrupole transitions
are smaller by a factor of 10−5 − 10−6 [50, 51]. According to the spin selection
rule, the total spins of the initial and the �nal state have to be equal, i.e. Szi = Szf
(assuming that the orbital moment is quenched or the spin-orbit coupling is small,
as appropriate for the systems of interest for this work). In the case of AFM spin
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order, the excited state resulting from a MH excitation corresponds to a double
occupancy of lattice site i with electrons of opposite spin (see Fig. 2.7 (a)). In
contrast, the electron transfer is blocked for FM spin order by the Pauli principle
(see Fig. 2.7 (b)). This simple model greatly demonstrates that the optical spec-
tral weight of a MH excitation depends sensitively on nearest-neighbor spin-spin
correlations.

(a) (b)

Figure 2.7:
Depending on the orientation of neigh-
boring spins, the MH excitation is either
allowed ((a) AFM spin order) or forbid-
den ((b) FM spin order).

A more di�cult situation comes up
in the case of partially �lled degene-
rate orbitals. The MH excitations have
the general form: |dni dnj 〉 → |dn+1

i

dn−1
j 〉. The complex multiplet struc-
ture of the excited state is re�ected in
a complex multi-peak structure of the
optical spectra [8,9]. In addition to the
spin selection rule also the orbital selec-
tion rule has to be taken into account,
which is determined by the overlap be-
tween orbitals on neighboring lattice

sites. In a cubic perovskite with 180◦ bonds, t2g and eg orbitals do not over-
lap, there is only overlap between t2g orbitals of the same type, whereas all eg
orbitals have overlap with each other. Consequently, the optical spectral weight
of a MH excitation into a certain |dn+1

i dn−1
j 〉 multiplet is determined by the orbital

occupation of neighboring lattice sites. A change of the nearest-neighbor spin-spin
or orbital-orbital correlation function with temperature leads to a spectral weight
transfer between the individual components of the optical multiplets [10]. The op-
tical intensity of a MH excitation into a certain multiplet state labeled by n along
the cubic axis γ is related to the respective contribution to the superexchange
Hamiltonian of Eq. 2.6 via the optical sum rule [8, 10]:∫ ∞

0

σ(γ)
n (ω)dω ∝

〈
H(γ)
n (ij)

〉
(2.7)

Here, σ(γ)
n (ω) denotes the contribution to the real part of the optical conductivity

σ1(ω) stemming from the excitation into the multiplet state n along γ. One
great example for this correlation is given by ellipsometric data on the 3d4 system
LaMnO3 (with t32ge

1
g, S = 2 electron con�guration) [11]. As discussed above, the

coupling of the eg orbitals to the lattice is strong and orbital ordering sets in
at TOO = 780K in LaMnO3, far above the spin ordering temperature of TN =
150K. Consequently, only the spin degree of freedom has to be considered at
lower temperatures. The spin ordering below TN is of A type, i.e. parallel spins in
the ab plane and antiparallel spins along the c axis, see the inset of Fig. 2.8, left
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panel. The low-energy band at approx. 2 eV− 2.5 eV in the optical spectra (see
Fig. 2.8, left panel) has been assigned to the MH excitation |3d4

i 3d4
j〉 → |3d5

i 3d3
j〉

into the 3d5 high-spin (S = 5/2) state. Due to the high-spin character, parallel
spins on adjacent sites in the initial state are expected to give rise to a larger
spectral weight than antiparallel spins. As a consequence, an increase of spectral
weight is expected in the ab direction when lowering the temperature across TN ,
whereas a reduction of spectral weight is expected along c. This is in striking
agreement with the observations (see Fig. 2.8) and greatly demonstrates that
the peak assignment is correct. In the opposite sense, optical spectroscopy can
be applied as an e�ective tool for the investigation of nearest-neighbor spin-spin
and/or orbital-orbital correlations in TM compounds. We will use this concept
for the analysis of our spectra of the 3d2 compounds RVO3 (R=Y, Gd, Ce) (see
Sec. 5). In contrary to the eg system LaMnO3 the coupling to the lattice is rather
weak for these compounds with active t2g orbitals and coupled spin-orbital degrees
of freedom have to be considered.

2.7 Mott-Hubbard and charge-transfer insulators

A second type of intersite transition that is of importance for the understanding
of our ellipsometric data is the CT excitation. It corresponds to an electron
transfer from the ligand oxygen 2p band to the TM 3d band (UHB): |p6 dn〉 → |p5

dn+1〉. The energy separation between the two bands is given by the CT energy
∆. Depending on the relative size of Ueff and ∆eff , the lowest intersite transition
corresponds to a MH or a CT excitation3. Accordingly, the TM compounds are
classi�ed into so-called MH (Ueff < ∆eff ) and CT (∆eff < Ueff ) insulators
within the Zaanen-Sawatzky-Allen scheme [52], see Fig. 2.9. Early transition-
metal compounds (e.g. TM = Ti, V) are typically classi�ed into the group of MH
insulators, whereas late ones (e.g. TM = Ni, Cu) are identi�ed as being of CT
type [53�57]. With increasing atomic number U increases whereas ∆ decreases
[53, 57], which re�ects the decreasing spatial extension of the 3d orbitals and the
increasing electronegativity of the TM ions, respectively. Both intersite transitions
are sketched in Fig. 2.10. In TM oxides, typical values for the real part of the
optical conductivity σ1(ω) are of a few 1000 (Ωcm)−1 for CT excitations, whereas
for MH excitations the value of σ1(ω) typically amounts to only a few 100 (Ωcm)−1

[1, 12, 23, 57, 58]. The di�erence is due to the fact that CT excitations are a �rst
and MH excitations a second order process since the di− dj electron transfer that
corresponds to a MH excitation takes place via the ligand O 2p orbital. This
results in σ1(ω) ∝ t2pd/∆ for CT and σ1(ω) ∝ t4pd/∆

2 for MH excitations, where

3Here, the e�ective charge-transfer energy ∆eff and the e�ective Coulomb-interaction energy
Ueff refer to the lowest excitation energies of the CT excitations and the MH excitations in
a multi-orbital system, respectively.
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tpd is the TM−O hopping amplitude. A further important di�erence between MH
and CT excitations is the fact that CT excitations are expected to be independent
of magnetic properties [59]. As the O 2p band is completely �lled the oxygen can
provide both, up and down spin, and a CT excitation is not blocked by a certain
spin alignment on the TM ion (see Fig. 2.10). Consequently, as opposed to the MH
excitations, one expects no changes of the spectral weight of a CT excitation across
magnetic ordering temperatures. However, due to hybridization an excitation is
never of pure MH or CT type in a realistic picture. Therefore the above mentioned
is only true in a �rst approximation.

Figure 2.8: Left panel: The dielectric function ε of LaMnO3 corresponding to
E ‖ b (a) and E ‖ c (b) for di�erent temperatures as obtained by
Kovaleva et al. [11] by the use of ellipsometry. Here the focus lies
on the temperature dependence of the low-energy absorption band at
≈ 2 eV− 2.5 eV (marked in red). The inset sketches the spin and or-
bital ordering pattern. Right panel: Spectral weight of the low-energy
absorption band for E ‖ b and E ‖ c in terms of the e�ective carrier
concentration Neff which results from a Lorentz �t to the measured
data. The dashed lines refer to the result of theoretical calculations
based on a superexchange model for the low-temperature ordered and
the asymptotic high-temperature disordered phase. Both �gures are
taken from Ref. [11].
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Figure 2.9: Sketch of the photoemission (PES) and inverse photoemission spec-
tra (IPES) of (a) a Mott-Hubbard insulator and (b) a charge-transfer
insulator. Full symbols represent fully occupied bands, whereas open
symbols represent unoccupied bands.

3d 2p 3d 3d 2p 3d

(a) Mott-Hubbard excitation (b) Charge-transfer excitation

Figure 2.10: Sketch of (a) a Mott-Hubbard excitation and (b) a charge-transfer
excitation. While the Mott-Hubbard excitations depend on the spin-
spin correlations the charge-transfer excitations are independent of
the spin alignment.



3 Optical Spectroscopy

Optical spectroscopy is a very popular technique in solid state physics that is
used to investigate the band structure of solids. Furthermore, a variety of excita-
tions, e.g. phonons, magnons, or interband excitations can be detected. Within
the framework of this thesis the optical technique ellipsometry is applied, which
makes use of the polarization properties of electromagnetic waves.
The chapter on hand is organized as follows. The �rst section introduces the op-
tical constants, i.e. the quantities of interest in optical spectroscopy. To embed
their meaning in a general context, a short introduction into linear response theory
is given. The di�erent formulations of the optical constants are presented and the
Kramers-Kronig relation is introduced. The re�ection properties of electromag-
netic waves are brie�y discussed and model functions for the optical constants are
presented, which are needed for the analysis of the measured data. The second
section of this chapter deals exclusively with ellipsometry.

3.1 Linear response functions and optical

constants

3.1.1 Linear response theory

Every spectroscopic experiment is based on the principle of response theory. One
probes the response of a physical system to the application of an external pertur-
bation. Optical spectroscopy makes use of the interaction properties of electro-
magnetic waves with matter. The perturbation of a system by an electromagnetic
wave leads to a response that is characteristic for its physical properties. Thus,
for an external perturbation, the record of the response yields information about
the properties of the physical system under consideration. The response X(~r, t) of
the system is linked to the external perturbation S(~r, t) by the response function
R(~r, t). While S(~r, t) is an externally controllable quantity, the response func-
tion R(~r, t) is an intrinsic characteristic of the physical system [34]. The relation
between perturbation and response is in general very complicated. However, a
linear approximation can be applied if the perturbation operator yields only a
small contribution to the Hamiltonian and can be treated in �rst order. In this
case the functional relation between response and external perturbation has the

19
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form [34]:

X(~r, t) =

∫
R(~r, ~r ′, t, t′)S(~r ′, t′)d(~r ′, t′) (3.1)

Due to the law of causality the perturbation cannot cause an e�ect before actually
acting, the response function is thus a retarded function, i.e. R(~r, ~r ′, t, t′) = 0 for
t < t′.
For optical frequencies, an external perturbation in form of an electric �eld gives
rise to phenomena like dispersion, refraction, absorption, and re�ection, whereas
the interaction of a magnetic �eld with matter can mostly be neglected.
Many systems ful�ll the following conditions:

� The Hamiltonian of the system does not explicitly depend on time. In this
case the response function depends only on the di�erence between the time
coordinates, R(~r, ~r ′, t, t′) = R(~r, ~r ′, t− t′) [34].

� The crystal is translationally invariant with lattice constants much smaller
than the optical wavelengths. In this case the response function depends only
on the di�erence of the coordinates of space, R(~r, ~r ′, t, t′) = R(~r − ~r ′, t, t′)
[34].

If the above mentioned conditions are ful�lled, it is convenient to express Eq. 3.1
in frequency and momentum space. Temporal and spatial Fourier transformation
leads to the relation:

X(~k, ω) = R(~k, ω) · S(~k, ω) (3.2)

It follows from Eq. 3.2 that a monochromatic perturbation which acts at a fre-
quency ω will produce a response of the same frequency. The same holds true
for the momentum ~k. A peak of the function X(~k, ω) at a certain frequency ω
and momentum ~k corresponds to a peak of the response function R(~r, t) at the
same frequency and momentum. It is thus in principle possible to extract the full
dispersion relation of the excitations of the system by the use of a linear response
measurement [34].
Due to the dispersion relation of light (ω = c

n
· |~k|; c : velocity of light in vacuum;

n : refractive index, see below) the order of magnitude of the momentum |~k| is
much smaller than the order of magnitude of the reciprocal lattice vectors for
optical frequencies. Thus, one can assume |~k| ≈ 0. As a consequence, optics does
only allow for excitations with momentum |~k| ≈ 0. However, �nite momenta are
possible if the photon of the electromagnetic wave interacts with more than just
one particle of the system, in this case only the sum of the individual momenta
has to be equal to zero.
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3.1.2 The optical constants

The interaction of an electric �eld ~E(ω) with matter induces a complex polariza-
tion ~P (ω). The response function which relates electric �eld ~E(ω) and polarization
~P (ω) to each other is called electric susceptibility χ(ω) [60, 61]:

~P (ω) = ε0χ(ω) · ~E(ω) (3.3)

In general, χ(ω) = χ1(ω) + iχ2(ω) is a complex second-order tensor, which be-
comes a complex scalar in the case of an isotropic medium. The permittivity of
vacuum ε0 amounts to 8.8542 · 10−12C2N−1m−2 [62].
The electric susceptibility χ(ω) is related to the real part of the optical conduc-
tivity σ1(ω) and the real part of the dielectric function ε1(ω) by [60]

χ(ω) = χ1(ω) + iχ2(ω) = ε1(ω)− 1 + i
1

ε0ω
σ1(ω). (3.4)

In the limit ω = 0, σ1(ω = 0) corresponds to the DC electrical conductivity σDC
which is known from Ohm's law (~j = σDC · ~E, where ~j denotes the current density).
Both quantities, σ1(ω) and ε1(ω), are functions of the microscopic elements of the
system. They describe the optical properties of the solid and depend on its possible
excitations, e.g. lattice vibrations, free carrier absorption in a metal, excitations
across the band gap in an insulator, excitonic excitations, orbital excitations, spin
excitations, etc. [60].
Combining Eq. 3.3 and Eq. 3.4 leads to:

~P (ω) = ε0χ1(ω) ~E(ω) + i
1

ω
σ1(ω) ~E(ω) (3.5)

= Re
[
~P (ω)

]
+ i

1

ω
~j(ω) (3.6)

While the real part of the polarization Re
[
~P (ω)

]
describes the electric dipole

moment that is induced per unit volume, the imaginary part corresponds to an
induced current density ~j(ω) which leads to a loss of energy, i.e. absorption.
The complex dielectric function (also called dielectric tensor in the anisotropic
case)

ε(ω) = ε1(ω) + iε2(ω) = ε1(ω) + i
1

ε0ω
σ1(ω) = χ(ω) + 1, (3.7)

the complex optical conductivity

σ(ω) = σ1(ω) + iσ2(ω) = σ1(ω) + iε0ω(1− ε1(ω)), (3.8)

and the complex electric susceptibility χ(ω) are di�erent formulations of the so-
called optical constants. While ε(ω) and χ(ω) are dimensionless, the optical con-
ductivity σ(ω) has the unit [σ] = Ω−1cm−1. Only ε1 and σ1 are de�ned for ω = 0.
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The wave equation for the propagation of electromagnetic waves in a medium with
dielectric function ε can be derived from Maxwell's equations [60]. It follows:

∇2 · ~E =
ε

c2

∂2 ~E

∂t2
(3.9)

Harmonic plane waves represent solutions of the wave equation:

~E(~r, t) = ~E0e
i(~k~r−ωt) (3.10)

with
~k2 =

ω2

c2
· ε (3.11)

The complex index of refraction N , which is yet another representation of the
optical constants, is de�ned as

N = n+ ik = (ε1 + iε2)
1
2 . (3.12)

Inserting Eq. 3.12 into Eq. 3.10 leads to

~E(~r, t) = ~E0e
i(ω

c
n~nk~r−ωt) · e−

ω
c
k~nk~r. (3.13)

The refractive index n is linked to the phase speed in the material, while the imag-
inary part of the complex index of refraction k is a measure of the loss of intensity
caused by absorption when the electromagnetic wave is propagating through the
material. Here, ~nk is the unit vector pointing into the direction of propagation.
Although the optical constants are represented by arbitrary second-order tensors
in the general case, for a system with orthorhombic or higher symmetry they are
represented by tensors with vanishing o�-diagonal elements [63] (if the magneti-
zation can be neglected):

εorthorhombic(ω) =

 εa(ω) 0 0
0 εb(ω) 0
0 0 εc(ω)

 (3.14)

In the case of orthorhombic crystal symmetry the tensor axes coincide with the
crystallographic axes.

3.1.3 The Kramers-Kronig relation

The law of causality implies that real and imaginary part of the response function
are related to each other. They obey a functional relationship that is called
Kramers-Kronig relation. For the dielectric functions ε(ω) the relation has the
form [61]:

ε1(ω)− 1 =
2

π
P

∫ ∞
0

ω′ε2(ω′)

ω′2 − ω2
dω′ (3.15)
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ε2(ω) = −2ω

π
P

∫ ∞
0

ε1(ω′)− 1

ω′2 − ω2
dω′ (3.16)

Here, P denotes the Cauchy principal value of the integral. This relationship
gives additional information for the acquisition of the optical constants from ex-
periments. The application of the relation requires the knowledge of the real or
imaginary part of the response function for ω ranging from 0 to ∞. However, a
�nite energy range in combination with a reasonable extrapolation is often su�-
cient in order to get a good result. The Kramers-Kronig relation allows for the
determination of the optical constants from, e.g., re�ectivity measurements alone.
Otherwise, if the real and imaginary part of the optical constants are both de-
duced from the experiment independently, the consistency can be checked with
the help of the Kramers-Kronig relation. The latter applies to an ellipsometric
measurement, as will be discussed in the second part of this chapter (Sec. 3.2).

3.1.4 Re�ection properties of electromagnetic waves

Ellipsometry is based on the re�ection of an electromagnetic wave from the surface
of the sample under consideration. In the following, the relevant physics is brie�y
introduced. The angle between the normal to the sample surface and the beam
incident on, and re�ected from the sample are called the angle of incidence Φi,
and the angle of re�ection Φr, respectively. The incoming beam of light and the
normal to the sample surface constitute the plane of incidence. The electric �eld
vector of the transversal electromagnetic wave is decomposed into its components
parallel (Ep) and perpendicular (Es) to the plane of incidence. The following
expressions are used for the incoming, re�ected, and transmitted wave:

~Ei =

(
Ei
p

Ei
s

)
ei(

~ki~r−ωit); ~Er =

(
Er
p

Er
s

)
ei(

~kr~r−ωrt); ~Et =

(
Et
p

Et
s

)
ei(

~kt~r−ωtt)

(3.17)
The following important relations can be deduced from Maxwell's equations [64]:

� ωi = ωr = ωt

�
~ki, ~kr, and ~kt lie in the plane of incidence.

� angle of incidence Φi = angle of re�ection Φr = Φ.

� The law of refraction (also called Snell's law) which is given by

sin Φi = n sin Φt

can be derived in the simple case of an isotropic sample. Here, Φt denotes
the angle between the normal to the sample surface and the transmitted
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beam of light and n is the refractive index of the sample (which has been
introduced in Eq. 3.12).

� If we assume only linear changes of the initial �eld amplitudes upon re�ection
from the sample surface, incoming and re�ected electric �eld vectors ~Ei and
~Er are related by [63](

Er
p

Er
s

)
=

(
rpp rsp
rps rss

)(
Ei
p

Ei
s

)
. (3.18)

The complex quantities rpp, rss, rps, rsp are functions of the dielectric tensor
of the sample, the angle of incidence, and in the case of an anisotropic sam-
ple of its orientation. They are given by the Fresnel formulas, which follow
directly from Maxwell's equations.

Let us de�ne the ellipsometer coordinate system (x, y, z) according to Ref. [65]
(see Fig. 3.1). The x axis lies in the sample surface, aligned parallel to the plane
of incidence. The y axis lies in the sample surface, aligned perpendicular to the
plane of incidence. The z axis is normal to the sample surface and points into the
sample, in agreement with a right-handed coordinate system.
The o�-diagonal elements rps and rsp of Eq. 3.18 vanish for isotropic media and for
orthorhombic crystals that are oriented such that the crystallographic axes (a, b, c)
are parallel to the ellipsometer coordinate system (x, y, z). If the crystallographic
axes (a, b, c) are parallel to (x, y, z), respectively, rpp and rss are given by [66]:

rpp =
Er
p

Ei
p

=

√
εaεc cos Φi −

√
εc − sin2 Φi√√

εaεc cos Φi + εc − sin2 Φi

(3.19)

rss =
Er
s

Ei
s

=
cos Φi −

√
εb − sin2 Φi

cos Φi +
√
εb − sin2 Φi

(3.20)

rps = rsp = 0 (3.21)

If the symmetry is lower than orthorhombic, the o�-diagonal elements can be �nite
for any orientation. Finite o�-diagonal elements can also occur as a consequence
of depolarizing e�ects. The ratios of rpp, rss, rps, and rsp represent the measured
variables of ellipsometry1, Fig. 3.2 shows an exemplary plot of rpp

rss
as a function of

the angle of incidence Φi for di�erent isotropic media at a �xed energy.

1They will be discussed in detail in Sec. 3.2.
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Figure 3.1: The ellipsometer coordinate system is de�ned by (x, y, z).
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Figure 3.2: The ratio of rpp = |rpp| ei∆pp and rss = |rss| ei∆ss as a function of the
angle of incidence for a material with n = 1.5 and k = 0 (left) and for
crystalline and amorphous silicon at E = 3 eV (right). The ratio of

the amplitudes
∣∣∣ rpprss ∣∣∣ is shown in the upper panels, whereas the lower

panels show the phase di�erence ∆pp −∆ss. The simulation has been
performed by the use of the software WVASE32 (J.A.Woollam).
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3.1.5 Modeling the dielectric function

To extract the optical constants of the system under investigation from the mea-
sured data, it is useful to describe the dielectric function by a parametric model.
In the following di�erent models are introduced that are used for the analysis of
our ellipsometric data.

The Drude-Lorentz model for the dielectric function is based on the assumption,
that the solid consists of a set of non-interacting, damped, harmonic oscillators j
with e�ective mass mj

e�, e�ective charge eje�, damping γj, and center energy ωj0.
The resulting ε(ω) is given by a sum of Lorentz oscillators [60]:

ε(ω) = ε∞ +
∑
j

nj(eje�)2

ε0m
j
e�

· 1

(ωj0)2 − ω2 − iωγj
, (3.22)

where nj denotes the number of oscillators j per unit volume. The contributions
to ε1 that result from oscillators with center energies ω0 far above the measured
energy range are given by the real number ε∞. In the absence of such contri-
butions ε∞ equals unity. The strength of the oscillator j is given by its plasma

frequency ωp =

√
nj(ej

e�
)2

ε0m
j
e�

, whereas the damping γj is a measure of the width of

the corresponding peak in ε2. The Drude-Lorentz model is consistent with the
Kramers-Kronig relation. It is also suited to describe the free-carrier absorption
of a metal by adding oscillators with center energies ω0 = 0, the so-called Drude
terms.

The focus of this work is on the interband excitations across the band gap. These
excitations often consist of a great number of continuously overlapping excita-
tions. The dielectric function can therefore be composed of a sum of several
Lorentz oscillators resulting in a total line shape that can strongly deviate from a
Lorentzian form. In particular, using the Drude-Lorentz model for the description
of the dielectric function close to a band edge does not often yield a good �t. In
this spectral range the line shape of ε2(ω) is much better reproduced by the real,
asymmetric Tauc-Lorentz oscillator

ε2(ω) =
A ω0 γ (ω − ωg)2

(ω2 − ω2
0)2 + γ2ω2

· Θ(ω − ωg)
ω

, (3.23)

which is determined by its center energy ω0, strength A, damping γ, and band
edge ωg. Here, Θ(ω) denotes the step function (Θ(ω) = 1 for ω ≥ 0 and Θ(ω) = 0
for ω < 0), consequently ε2(ω) is zero per de�nition below the band edge ωg. The
Kramers-Kronig transformation yields ε1(ω).
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We have experienced that, frequently, the form of ε2(ω) is best described by a
sum of real Gaussian oscillators. A Gaussian oscillator does not have the long tail
characteristic for the Lorentzian line shape and therefore often yields a better �t
to the experimental data especially in the spectral range of a strong absorption
edge. More precisely, the Gaussian oscillator is de�ned by

ε2(ω) =
∑
j

Aje−
(

ω−ω
j
0

Γj

)2

− Aje
−
(

ω+ω
j
0

Γj

)2 , (3.24)

with Brj = Γj ·2
√

ln(2) being the full width at half maximum (FWHM). Here, ωj0
and Aj denote the center energy and the amplitude of the oscillator j, respectively.
Again, one obtains ε1 by applying a Kramers-Kronig transformation.
An example for ε2 consisting of a single Lorentz, Gaussian and Tauc-Lorentz os-
cillator, respectively, is shown in Fig. 3.3.
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Figure 3.3: Example for ε2 consisting of a single Lorentz, Gaussian, and Tauc-
Lorentz oscillator, respectively. (Parameters: Lorentz: ω2

p/(ω0γ) = 1,
ω0 = 3 eV, γ = 0.2 eV; Gaussian: A = 1, ω0 = 3 eV, Br= 0.2,eV;
Tauc-Lorentz: A = 18 eV, ω0 = 3 eV, γ = 0.5 eV, ωg = 2.5 eV. )

The dielectric function in the non-absorbing spectral range of semiconductors or
insulators can be modeled by the use of the Cauchy model [65],

n(λ) = A+
B

λ2
+
C

λ4
, (3.25)

where A, B, and C are real numbers. The parameter A represents the index of
refraction for in�nite wavelength λ =∞ (corresponding to energy ω = 0), whereas
the dispersion terms B and C have to be chosen so that they generate a positive
slope for decreasing wavelengths.
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3.2 Ellipsometry

Ellipsometry makes use of the polarization of light to determine the optical proper-
ties of materials. For a known polarization of the incoming wave, the polarization
of the re�ected wave can be measured by acquiring the ratio of the intensities of
two independent components and their relative phase shift. The determination
of two independent parameters is an advantage of ellipsometry compared to a
common re�ectivity measurement as there is no need of a Kramers-Kronig trans-
formation to obtain the complex optical conductivity. Furthermore, no reference
measurement is necessary as only the ratio of two intensities is relevant. Due to
the determination of a relative phase shift, ellipsometry is a very precise measuring
method. As the phase shift is particularly sensitive to the surface properties of
the re�ecting material, ellipsometry is very well suited to study surface structures
or thin surface layers. On the other hand, if the bulk properties of a single crystal
are of importance, possible surface layers have to be taken into account in the
modeling of the data.
A basic sketch of an ellipsometric experiment is shown in Fig. 3.4. The incoming
wave has a known polarization, which in general is changed upon re�ection from
the sample surface. The polarization state of the re�ected wave is measured. The
change of the polarization state is a function of the optical constants of the sample,
the angle of incidence, the wavelength of the incoming wave, and the optical con-
stants and the thickness of a possible surface layer. In the case of an anisotropic
sample, the change of the polarization state depends also on the orientation of the
sample.
The measurement of a polarization state should lead to the acquisition of the
optical constants of the re�ecting sample. Therefore a formalism is needed to de-
scribe the propagation of electromagnetic waves through an optical system. In Sec.
3.2.1, two di�erent formalisms are introduced, the Jones and the Mueller-matrix
formalism. While the Jones formalism is only suited to describe the propagation
of totally polarized light, it has the advantage of being more straight forward. The
propagation of only partially polarized light can be described by the more complex
Mueller-matrix formalism. A formal description of all optical elements, which are
relevant for the experimental setup, is derived in both formalisms and the mea-
sured variables of both formalisms are introduced. Major parts of these sections
follow the argumentations of Ref. [63]. In Sec. 3.2.2 it is shown which information
can be directly deduced from the measured variables without any data analysis.
In Sec. 3.2.3 the working principle of the ellipsometer is presented. Finally, in
Sec. 3.2.4, some parameters that are of importance for the �tting procedure are
introduced.
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Figure 3.4: Sketch of an ellipsometric experiment.

3.2.1 Jones and Mueller-matrix formalism

In this section the Jones formalism and the Mueller-matrix formalism are intro-
duced. The approach outlined in the following mainly reproduces the argumenta-
tion of Ref. [63].

Jones formalism

In the Jones formalism the polarization state of an electromagnetic wave is ex-
pressed by a vector of two components, the so-called Jones vector, while an optical
element is expressed by a 2 × 2 matrix, the so-called Jones matrix. The change
of polarization state upon passing an optical element is described by multiplying
the Jones vector with the Jones matrix. Let us begin with the introduction of the
Jones vector.
In general, a monochromatic electromagnetic wave is elliptically polarized.

~E =

(
Ep
Es

)
=

(
|Ep| ei∆p

|Es| ei∆s

)
ei(

~k~r−ωt)

= (|Ep|2 + |Es|2)
1
2

(
sin Ψei(∆p−∆s)

cos Ψ

)
ei(

~k~r−ωt+∆s)

= (|Ep|2 + |Es|2)
1
2 ~JΨ∆ · ei(

~k~r−ωt+∆s)
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with

~JΨ∆ =

(
sin Ψei∆

cos Ψ

)
; Ψ ∈

[
0;
π

2

]
; ∆ = ∆p −∆s; ∆ ∈]− π; π]

The normalized vector ~JΨ∆ is the Jones vector. The variables Ψ and ∆ determine

the polarization state. Both, the absolute value of the vector
(
|Ep| ei∆p

|Es| ei∆s

)
, which

is proportional to the intensity of the wave, and the absolute phase of the wave
are not relevant for the description of the polarization state. A measurement of
the polarization state does thus imply the determination of the Jones vector, i.e.
the acquisition of the variables Ψ and ∆ for each frequency.
The sign of ∆ determines the sense of precession of the polarization ellipse. For
positive values of ∆ it is clockwise and the polarization is called right-handed.
For negative values of ∆ it is counter-clockwise and the polarization is called
left-handed.
The Jones vectors of linearly polarized light in the plane of incidence, perpendic-
ular to the plane of incidence, right-handed circularly polarized light, and left-
handed circularly polarized light are [63]

~Jp =

(
1
0

)
, ~Js =

(
0
1

)
, ~Jσ+ =

1√
2

(
i
1

)
, and ~Jσ− =

1√
2

(
−i
1

)
, (3.26)

respectively.

As already mentioned, the change of the polarization state of a beam of light upon
passing an optical element is described by the multiplication of the Jones vector
with the Jones matrix Ĵ characterizing the optical element:(

E ′a
E ′b

)
= Ĵ

(
Ex
Ey

)
=

(
J11 J12

J21 J22

)(
Ex
Ey

)
(3.27)

It is important to note that the Jones matrix depends on the coordinate system,
which can be di�erent for the incoming and the re�ected wave. In Eq. 3.27 the
coordinate systems (x, y) and (a, b) in the plane of polarization are used for the
incoming and re�ected wave, respectively. The z axis points towards the respec-
tive direction of propagation. In Eq. 3.27 only linear changes of the polarization
state of a fully polarized monochromatic wave are considered.

In the following the Jones matrices of the optical elements relevant for our exper-
imental setup are derived. Therefore a matrix is needed which links two coordi-
nate systems (x, y) and (x′, y′). Let the coordinate system (x′, y′) originate from
a counter-clockwise rotation of the coordinate system (x, y) by an angle α about
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the common z axis. If
(
Ex
Ey

)
und

(
Ex′
Ey′

)
specify the same polarization state

in the di�erent coordinate systems (x, y) and (x′, y′), respectively, it follows [63]:(
Ex′
Ey′

)
= R̂J(α)

(
Ex
Ey

)
=

(
cosα sinα
− sinα cosα

)(
Ex
Ey

)
(3.28)

where R̂J(α) is the rotation matrix. With the help of Eq. 3.28 the transformation
properties of the Jones matrix can be derived [63]. Let the coordinate systems
(x′, y′) and (a′, b′) originate from a rotation of the (x, y) and (a, b) coordinate
systems, respectively, by the angle α about the common z axis.(

Ex′
Ey′

)
= R̂J(α)

(
Ex
Ey

)
;

(
E ′a′
E ′b′

)
= R̂J(α)

(
E ′a
E ′b

)
(3.29)

Therewith it follows for the Jones matrices Ĵ and Ĵ ′ which describe the same
transformation in di�erent coordinate systems (x, y)(a, b) and (x′, y′)(a′, b′), re-
spectively [63] (

E ′a
E ′b

)
= Ĵ

(
Ex
Ey

)
;

(
E ′a′
E ′b′

)
= Ĵ ′

(
Ex′
Ey′

)
(3.30)

the relation
Ĵ ′ = R̂J(α) Ĵ R̂J(−α). (3.31)

To create a polarized beam of light, a polarizer is needed in the experimental
setup. A linear polarizer changes any polarization state of the beam of light to
linear polarized light. In the following the Jones matrix of a linear polarizer with
an arbitrary polarization axis is introduced. For a polarizer with polarization axis
parallel to the x axis, the Jones matrix is given by [63]:

ĴPol =

(
1 0
0 0

)
. (3.32)

Here, an ideal linear polarizer with no attenuation and zero phase shift is as-
sumed. If the polarization axis is rotated by an angle P away from the x axis the
corresponding Jones matrix has the form [63]:

ĴPolP = R̂J(−P )

(
1 0
0 0

)
R̂J(P ) (3.33)

Another component of the experimental setup is a linear retarder. In an ideal lin-
ear retarder, the light polarized linearly along its so-called slow axis experiences
a phase retardation by an angle ∆r. A linear polarizer with variable angle P in
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combination with a variable retarder can produce any arbitrary elliptic polariza-
tion. If the slow axis is oriented along the x axis the Jones matrix of the linear
retarder ĴRet∆r

becomes [63]:

ĴRet∆r
=

(
e−i∆r 0

0 1

)
(3.34)

If the slow axis is rotated by an angle R away from the x axis, the Jones matrix
transforms as

ĴRet∆r,R
= R̂J(−R)

(
e−i∆r 0

0 1

)
R̂J(R). (3.35)

The measured variables of the Jones formalism are the entries of the Jones matrix
Ĵsample which describes the re�ection of the electromagnetic wave on the sample
surface: (

Er
p

Er
s

)
= Ĵsample ·

(
Ei
p

Ei
s

)
=

(
rpp rsp
rps rss

)(
Ei
p

Ei
s

)
(3.36)

The Jones matrix consists of four complex re�ection coe�cients. As ellipsometry
does not determine the absolute phase and absolute intensity of the re�ected
wave, six independent measured variables remain. Mostly, they are de�ned as
follows [63]:

ρpp =
rpp
rss

= tan Ψpp · ei∆pp (3.37)

ρps =
rps
rpp

= tan Ψps · ei∆ps (3.38)

ρsp =
rsp
rss

= tan Ψsp · ei∆sp (3.39)

In the case of an isotropic sample, the o�-diagonal elements rps and rsp van-
ish and the measured variables are reduced to the complex quantity ρpp [63, 65].
The quantities Ψpp and ∆pp that de�ne ρpp are called the ellipsometric variables.
As ellipsometry acquires two independent parameters per measuring point, one
measurement su�ces to obtain Ψpp and ∆pp. To determine the six independent
parameters of an anisotropic crystal, data has to be acquired for three di�erent po-
larization states of the incoming wave. As the measured variables of an anisotropic
sample are not sensitive to all entries of its dielectric tensor, data has to be taken
at di�erent orientations of the crystal to obtain the full optical properties. To
already mention a key aspect of the detailed discussion of Sec. 3.2.2, the Jones
matrix of an anisotropic crystal that is oriented with its crystallographic axes par-
allel to the ellipsometer coordinate system has vanishing o�-diagonal elements.
This simpli�es the measuring process considerably: A proper oriented anisotropic
crystal can be measured in the time-saving isotropic measuring mode (data for one
polarization state of the incoming wave su�ces) acquiring only the ellipsometric
variables Ψpp and ∆pp.
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Mueller-Stokes formalism

In contrast to the Jones formalism the Mueller-Stokes formalism deals with the
problem of only partially polarized light. Here, the polarization state is repre-
sented by a vector of four components, the so-called Stokes vector. An optical
element is represented by a 4× 4 matrix, the so-called Mueller matrix [63]. In op-
position to Jones vector and Jones matrix, the entries of Stokes vector and Mueller
matrix are real numbers. The Stokes vector is de�ned using the (p, s) coordinate
system in the plane of polarization, where p and s denote the component which is
polarized parallel and perpendicular to the plane of incidence, respectively. The
four Stokes parameters, which are written in a column vector ~S, are given by [63]:

~S =


S0

S1

S2

S3

 =


I0

Ip − Is
I45◦ − I−45◦

Iσ+ − Iσ−

 (3.40)

Here, I0 denotes the total intensity of the analyzed beam, Ip and Is denote the
intensity of the component which is polarized along p and s, respectively, I45◦ and
I−45◦ denote the intensity of the component which is polarized at an angle of 45◦

and −45◦ away from the p direction, respectively. Finally, Iσ+ and Iσ− denote
the intensity of the component which is right-handed and left-handed circularly
polarized, respectively.
The Stokes vectors of linear polarizations along p and s, right-handed and left-
handed circular polarizations are [63]:

~Sp = I0


1
1
0
0

 , ~Ss = I0


1
−1
0
0

 , ~Sσ+ = I0


1
0
0
1

 , ~Sσ− = I0


1
0
0
−1

 ,

(3.41)

respectively.
The Stokes vector of a totally elliptically polarized beam ~SΨ∆ that is characterized
by the variables Ψ and ∆ (which have been introduced on page 29) reads:

~SΨ∆ = I0


1

− cos(2Ψ)
sin(2Ψ) cos ∆
− sin(2Ψ) sin ∆

 (3.42)

It can be derived from the corresponding Jones vector as follows:

S0 = I0
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S1 = Ip − Is = I0(sin2 Ψ− cos2 Ψ) = −I0 cos(2Ψ)

S2 = I45 − I−45 = I0

∣∣∣∣ 1√
2

(
1
1

)(
sin Ψei∆

cos Ψ

)∣∣∣∣2 − I0

∣∣∣∣ 1√
2

(
1
−1

)(
sin Ψei∆

cos Ψ

)∣∣∣∣2

= I0

{
1

2

∣∣sin Ψei∆ + cos Ψ
∣∣2 − 1

2

∣∣sin Ψei∆ − cos Ψ
∣∣2} =

I0

{(
1

2
+ sin Ψ cos Ψ cos ∆

)
−
(

1

2
− sin Ψ cos Ψ cos ∆

)}
= I0 sin(2Ψ) cos ∆

S3 = Iσ+ − Iσ− = I0

∣∣∣∣ 1√
2

(
i
1

)(
sin Ψei∆

cos Ψ

)∣∣∣∣2 − I0

∣∣∣∣ 1√
2

(
−i
1

)(
sin Ψei∆

cos Ψ

)∣∣∣∣2

= I0

{
1

2

∣∣i sin Ψei∆ + cos Ψ
∣∣2 − 1

2

∣∣−i sin Ψei∆ + cos Ψ
∣∣2} =

I0

{(
1

2
− sin Ψ cos Ψ sin ∆

)
−
(

1

2
+ sin Ψ cos Ψ sin ∆

)}
= −I0 sin(2Ψ) sin ∆

The degree of polarization PΨ∆ refers to the fraction of polarized intensity in the
total intensity. It can be directly derived from the Stokes vector [63]:

PΨ∆ =

√
S2

1 + S2
2 + S2

3

S0

(3.43)

The degree of polarization adopts values from zero for fully unpolarized light to
unity for totally polarized light. The Stokes vector of a fully unpolarized beam
reads [63]:

~Sunpol = I0


1
0
0
0

 (3.44)

The Stokes vector of a partially polarized beam has the form [63]:

~SPΨ∆
= I0

PΨ∆


1

− cos(2Ψ)
sin(2Ψ) cos ∆
− sin(2Ψ) sin ∆

+ (1− PΨ∆)


1
0
0
0


 (3.45)
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Analogous to the Jones formalism, the Mueller-Stokes formalism describes the
propagation of a polarized beam through an optical system by successively mul-
tiplying the corresponding Stokes vector with the Mueller matrices M̂ which de-
scribe the actions of the individual optical elements. Without depolarization, the
4× 4 Mueller and the 2× 2 Jones matrix are directly related to each other [63]:

M̂ = Â · (Ĵ ⊗ Ĵ∗) · Â−1 (3.46)

The symbol ⊗ denotes the direct product of two matrices. The matrix Â has the
form:

Â =


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

 (3.47)

Equation 3.46 does not hold true if depolarizing e�ects are present, as depolar-
ization cannot be expressed by the Jones formalism. Since the Stokes vectors are
de�ned with respect to a speci�c coordinate system within the plane of polar-
ization, the Mueller matrix also depends on the chosen coordinate system. The
de�nition of the Stokes vector implies that the polarization state of the incoming
and re�ected beam is expressed in the (p, s) coordinate system. However, Stokes
vector and Mueller matrix could alternatively be expressed in any other coordi-
nate system that lies in the plane of polarization.
To obtain the Mueller matrix of the optical elements, as in the Jones formalism, a
matrix is needed that links two coordinate systems, which result from each other
by a rotation by an angle α. It has the form [63]:

R̂M(α) =


1 0 0 0
0 cos(2α) sin(2α) 0
0 − sin(2α) cos(2α) 0
0 0 0 1

 . (3.48)

Equation 3.31 holds true for the Mueller-Stokes formalism when replacing the
Jones matrix by the Mueller matrix and the matrix R̂J(α) by R̂M(α).
The Mueller matrix of an ideal linear polarizer with the polarization axis rotated
by an angle P away from the plane of incidence is given by [63]:

M̂PolP = R̂M(−P )
1

2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 R̂M(P ) (3.49)

The Mueller matrix of a linear retarder, which induces a phase shift ∆r between
the component which is rotated by an angle R away from the p axis and the
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thereto perpendicular component has the form [63]:

M̂Ret∆r,R
= R̂M(−R)


1 0 0 0
0 1 0 0
0 0 cos ∆r sin ∆r

0 0 − sin ∆r cos ∆r

 R̂M(R) (3.50)

The measured quantities of the Mueller-Stokes formalism are the 16 entries of the
Mueller matrix which describe the re�ection of the beam of light on the sample
surface. In the special non-depolarizing case of an isotropic or orthorhombic crys-
tal with crystallographic axes parallel to the ellipsometer coordinate system the
Mueller matrix can be written as [63]:

M̂sample, isotropic =
|rpp|2 + |rss|2

2
·


1 − cos(2Ψpp) 0 0

− cos(2Ψpp) 1 0 0
0 0 sin(2Ψpp) cos ∆pp sin(2Ψpp) sin ∆pp

0 0 − sin(2Ψpp) sin ∆pp sin(2Ψpp) cos ∆pp



=
|rpp|2 + |rss|2

2


1 −N 0 0
−N 1 0 0

0 0 C S
0 0 −S C

 (3.51)

It is directly related to the corresponding Jones matrix by Eq. 3.46. Here, be-
tween N , C, and S holds the relation N2 + C2 + S2 = 1, i.e. N , C, and S are
not independent of each other. Just as in the Jones formalism, the independent
parameters are Ψpp and ∆pp. In the Mueller matrix of Eq. 3.51, 10 entries are zero
or unity. A deviation thereof indicates either that the crystallographic axes of an
anisotropic crystal are not aligned parallel to the ellipsometer coordinate system
or that depolarization is important.
The Mueller matrix of a sample with simple depolarizing properties is given by [63]:

M̂sample, γ = γM̂sample, P + (1− γ)


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (3.52)

Here, γ ∈ [0, 1] is the fraction of polarized light in the re�ected beam and M̂sample, P

is the Mueller matrix of the non-depolarizing sample. Hence, the Mueller matrix
now contains an additional independent parameter. In the case of an isotropic
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material the Mueller matrix of Eq. 3.52 has the form

M̂sample, isotropic, γ =
|rpp|2 + |rss|2

2


1 −Ñ 0 0

−Ñ γ 0 0

0 0 C̃ S̃

0 0 −S̃ C̃

 (3.53)

with
Ñ = γ · cos(2Ψpp)

C̃ = γ · sin(2Ψpp) sin ∆pp

S̃ = γ · sin(2Ψpp) cos ∆pp

and

γ =

√
Ñ2 + C̃2 + S̃2. (3.54)

In contrast to the non-depolarizing case, Ñ , C̃, and S̃ are independent parameters.
A partially depolarized re�ected wave can be caused by various phenomena. Back-
side re�ections which interfere incoherently with the main beam can occur in suf-
�ciently transparent samples. Rough sample surfaces can be another reason for
depolarization. Real monochromators produce a beam of light with a �nite band
width, which also leads to depolarization.

3.2.2 The pseudo-dielectric function

For an isotropic sample the optical constants can be directly obtained by inverting
the ellipsometric variables Ψpp and ∆pp with the help of the Fresnel equations. In
this case, a bulk crystal without surface layers is assumed. However, thin cover
layers due to oxides or contaminations are always present to some extent. The
dielectric function obtained by simple inversion is thus called pseudo-dielectric
function < ε > = < ε1 > + i < ε2 >.

< ε > = < ε1 > + i < ε2 >= sin2(Φ)

(
1 +

[
1− ρpp
1 + ρpp

]2

tan2(Φ)

)
(3.55)

Again, Φ is the angle of incidence. The pseudo-dielectric function is just another
representation of the ellipsometric variables Ψpp and ∆pp. In contrast to Ψpp and
∆pp, it does not depend on the angle of incidence. However, surface layers or
backside re�ections can lead to a Φ dependence of < ε >. Hence, a comparison
of < ε > measured at di�erent Φ values can give information about the possible
existence of surface layers.
For an orthorhombic system the whole dielectric tensor consisting of three com-
plex numbers is needed to describe the optical properties. At �rst sight, Eq. 3.55
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is not of any use in this case. However, D.Aspnes [67] has theoretically shown the
following:

� Inserting the Ψpp and ∆pp values that are obtained by measuring a biaxial
sample into Eq. 3.55 yields mainly the component of the dielectric tensor
that lies in the cross-section of the sample surface and the plane of incidence.
As a consequence, if the crystallographic axes of an anisotropic crystal are
oriented parallel to the ellipsometer coordinate system the approximate com-
ponents of the dielectric tensor can be directly read o� from the measured
pseudo-dielectric function without any data modeling.

The statement of D.Aspnes [67] only holds true if the following conditions are
ful�lled [67]:

� εa, εb, and εc are given by

εa = εmean + ∆εa (3.56)

εb = εmean + ∆εb (3.57)

εc = εmean + ∆εc (3.58)

where εmean is a suitable isotropic mean value. The additional terms rep-
resent anisotropic corrections which are small and can be treated in �rst
order.

� |εmean| is moderately large, i.e. on the order of 10.

� Typical angles of incidence of about 70◦ are assumed.

To obtain the exact components of the dielectric tensor, including possible surface
layers, a modeling of the ellipsometric data is necessary.
Since the data that is obtained from the measurement of an anisotropic crystal is
not sensitive to all three components εa, εb, and εc of the dielectric tensor, data has
to be taken at di�erent orientations of the crystal. To obtain the optical constants
of a uniaxial material, data has to be taken at least at two di�erent orientations of
the sample. For incidence, a (100) plane could be measured with the optical axis
(c axis) lying parallel and perpendicular to the plane of incidence. The full optical
information of a biaxial material can only be obtained by measuring at least three
di�erent orientations of the sample. Here, at least two di�erent sample surfaces
are necessary. In this case, data could be taken from a (001) surface with the a
and the b axis lying in the plane of incidence, respectively, and a (100) surface
with the c axis lying in the plane of incidence.
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3.2.3 The working principle of a rotating analyzer
ellipsometer

The measurements reported in this work are carried out with a "rotating analyzer
ellipsometer" (RAE). Its working principle will be introduced in this section. The
combination of a variable polarizer and a variable retarder in front of the sample
produces any arbitrary elliptic polarization state of the beam of light leaving the
monochromator. The modi�ed polarization state of the re�ected wave is deter-
mined by using a second linear polarizer with a harmonically rotating transmission
axis, which is called rotating analyzer. The detector signal is proportional to the
intensity of the beam of light hitting the detector. In the following an expression is
derived for the light intensity that enters the detector. It depends on the polarizer
angle P , the retardation ∆r introduced by the retarder, the analyzer angle A(t),
and the Mueller-matrix elements mij of the sample. Using the Mueller-Stokes
formalism, the Stokes vector of the transformed wave ~Sr results from the Stokes
vector of the incoming wave ~Si by successively multiplying the Mueller matrices
describing the optical elements:

~Sr = M̂PolA(t)
· M̂sample · M̂Ret∆r,R=0

· M̂PolP · ~Si (3.59)

The detector measures the time-dependent total intensity which is the �rst com-
ponent of the Stokes vector. Inserting the expressions of Eqs. 3.49 and 3.50 into
Eq. 3.59 one obtains [43]:

Sr0 =
1

2
(T0 + T1 cos(2A(t))− T2 sin(2A(t)) =

1

2
T0(1 + α cos(2A(t)) + β sin(2A(t))

(3.60)
where

T0 =
1

2
(m11 +m12 cos(2P )) + (m13 cos ∆r −m14 sin ∆r) sin(2P )

T1 =
1

2
(m21 +m22 cos(2P )) + (m23 cos ∆r −m24 sin ∆R) sin(2P )

T2 =
1

2
(m31 +m32 cos(2P )) + (m33 cos ∆r −m34 sin ∆r) sin(2P )

The intensity at the detector does not depend on the fourth row of the Mueller
matrix. As a consequence, it cannot be determined by a measurement using
the above mentioned setup. A second retarder between sample and analyzer is
necessary for its determination. Closer inspection of the above equations reveals,
that without a retarder between polarizer and sample also the last column of the
Mueller matrix could not have been determined.
The measured variables are the Fourier coe�cients α and β of Eq. 3.60. To deduce
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the Mueller-matrix elements from α and β data has to be acquired at di�erent
values of P and ∆r. The ellipsometer software acquires more data than necessary
and obtains the Mueller-matrix elements through regression. In the special case
of an isotropic sample without a retarder (∆r = 0) α and β obey the following
equations [65]:

α =
tan2 Ψpp − tan2 P

tan2 Ψpp + tan2 P
(3.61)

and
β =

2 tan Ψpp cos ∆pp tanP

tan2 Ψpp + tan2 P
(3.62)

Hence, Ψpp and ∆pp are determined by:

tan Ψpp =

√
1 + α

1− α
| tanP | (3.63)

and
cos ∆pp =

β√
1− α2

tanP

| tanP |
(3.64)

The highest measuring precision is reached when α = β = 0 [63]. This corresponds
to circularly polarized light entering the detector. In order to achieve this condition
one must have ∆pp = π

2
and Ψpp = P . Consequently, the best measurement

conditions are achieved by adjusting the polarizer angle P in order to approach
the value of Ψpp. The condition ∆pp ≈ π

2
is ful�lled if the angle of incidence is close

to the Brewster angle. Since only the cosine of ∆pp is determined, a high noise
level is expected for ∆pp being close to 0 or π. Additionally, the cosine of ∆pp does
not yield the sign of ∆pp. Both issues are solved by the variable retarder placed
between polarizer and sample. The determination of the sign of ∆pp requires data
at two di�erent retarder positions. It should also be mentioned that a circularly
polarized re�ected beam of light reduces several instrument errors that a�ect the
measuring precision [63].

3.2.4 A brief presentation of the quantities relevant for the
�tting procedure

The data analysis is performed with the help of the software of the ellipsometer
WVASE32 (J.A.Woollam). Further details concerning the data analysis are given
in Sec. 4.2. A physical model of the sample has to be developed. The software
WVASE32 uses this model together with the Mueller-Stokes or Jones formalism
to anticipate the result of a measurement on a sample of known optical properties.
The physical parameters of the model are adjusted in order to obtain calculated
data which best agree with the experimental data [65]. The software WVASE32
makes use of the Levenberg-Marquardt multivariate regression algorithm for the
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�tting procedure. The quality of the agreement between the experimental data
and the calculated data is given by the mean-squared error (MSE) [65]:

MSE =
1

2N −M

N∑
i=1

(
ρmodi (~x,~a)− ρexpi

σexpi

)2

(3.65)

Here, ρexpi are the experimentally obtained and ρmodi the calculated parameters,
N is the number of measured parameters, M refers to the number of variable
parameters of the physical model, and σexpi are the standard deviations of the
experimentally obtained parameters. The calculated parameters ρmodi depend on
the known parameters of the model ~x (e.g. angle of incidence, photon energy, etc.)
and the desired parameters ~a.
The curvature matrix

αkl =
N∑
i=1

1

(σexpi )2

∂ρmodi

∂ak

∂ρmodi

∂al
(3.66)

can be used to check if the �t is sensitive to all �t parameters or if strong correla-
tions between the parameters prevail. Here, aj are the components of the vector
~a. WVASE32 determines the �gure of merit (FOM) to specify error bars of the
parameters aj. It is de�ned in the WVASE32 manual (Ref. [65]) as:

FOMk = 1.65 ·
√
Ckk ·

√
MSE (3.67)

The covariance matrix C follows from the curvature matrix α by [65]

C = (α)−1. (3.68)

The correlation between two parameters k and l is speci�ed by the two parameter
correlation function which is given by [65]:

Skl =
Ckl√

Ckk
√
Cll

(3.69)

An absolute value of Skl close to unity is an indication for possible correlations
between the parameters ak and al.2

2The sta� of the J.A.Woollam Co. considers 0.92 as a critical value. If Skl exceeds this value,
the parameters ak and al are strongly correlated and the model should be revised.





4 Data acquisition and analysis

The �rst part of this chapter discusses the experimental work that has been per-
formed within the framework of this thesis. The di�erent components of the
ellipsometer are introduced and the sample preparation is discussed. Working
procedures such as the mounting of the sample into the ellipsometer, the calibra-
tion routine, and the measuring process at variable temperatures are presented.
The second part of this chapter deals with the analysis of the experimental data.
It has already been discussed in Sec. 3.2 that the desired optical constants of the
sample cannot be extracted directly from the ellipsometric measurement. The
analysis of the ellipsometric data is as challenging as the data acquisition itself.
The company J.A.Woollam provides the softwareWVASE32 that is used for both,
the control of the measurement and the data analysis.

4.1 Data acquisition

4.1.1 The experimental setup

The main components for the ellipsometric studies at variable temperatures are
a commercial ellipsometer (VASE, J.A.Woollam) and a liquid-He �ow cryostat
(KONTI cryostat, CryoVac). The ellipsometer with cryostat at hand for this
work is shown in Fig. 4.1. The setup of the ellipsometric measurement is sketched
in Fig. 4.2. As light source a broad-band Xe-lamp (190 nm− 2000 nm) is used. A
Czerny-Turner monochromater based on double grating selects the desired wave-
length. A chopper modulates the light in order to make use of synchronous detec-
tion which allows for measurements in an illuminated room. An optical �bre of a
thickness of 200µm couples the beam to the input unit. The �bre shows strong
absorption in the energy range 1350 nm− 1450 nm, this energy range is thus not
accessible for data acquisition. The input unit comprises a collimator consisting
of a MgF2 lens and a linear polarizer (Rochon prism, MgF2), with arbitrary po-
larization axis. The polarizer is mounted on a rotation unit, which works at high
accuracy due to a stepper motor. The input unit further comprises a variable
retarder, which consists of a computer controlled MgF2 Berek waveplate. The
prepared beam of light leaves the input unit and hits the sample, which is placed
inside the cryostat. The cryostat has six windows in order to make light propa-
gation through the cryostat possible, see Fig. 4.1. Depending on the positioning

43
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of the cryostat, measurements at angles of incidence of 50◦, 55◦, and 70◦ are pos-
sible. The measurements at variable temperatures that are performed within the
framework of this thesis are carried out at an angle of incidence of 70◦. Room-
temperature measurements on air can be conducted without the cryostat making
use of a simple sample holder. In this case variable angles of incidence between 20◦

and 90◦ can be used. The re�ected beam of light passes a continuously rotating
analyzer (rotating polarizer, rochon prism, MgF2) and the time-dependent inten-
sity is detected by the use of a stacked detector consisting of Si (185− 1100 nm)
and InGaAs (800− 1700 nm), which switches automatically. All components are
controlled by the computer utilizing the same software WVASE32 which is used
for the data analysis. Figure 4.3 shows the whole ellipsometer setup, including
the box holding the monochromator and the Xe-lamp, the control unit VB-400,
and the temperature controller.
Within the framework of this thesis, it is further made use of an ellipsometer
working in the infrared (IR) frequency range. The IR ellipsometric measurements
have been performed on the IR ellipsometer of the workgroup of D.Basov at the
University of California San Diego. The IR ellipsometer is a variable-angle spec-
troscopic ellipsometer for the infrared from the J.A. Woollam Co., that uses a
Fourier-transform infrared spectrometer as the light source. It covers the fre-
quency range from 0.07 eV to 0.65 eV. Inside the cryostat, measurements can only
be performed at an angle of incidence of 60◦. The cryostat does not allow for
measurements above room temperature.

Figure 4.1:
The ellipsometer (J.A.Woollam, VASE)
equipped with the liquid helium �ow cryo-
stat. The input unit comprising the po-
larizer (right), two windows of the cryostat
(middle), and the output unit comprising
the detector (left) can be seen.
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Figure 4.2: Sketch of the setup of the ellipsometric measurements.

.

Figure 4.3: The ellipsometer with the box (HS-190) holding monochromator and
Xe-lamp. On the right one sees the control unit VB-400 and the
temperature controller which is placed above the VB-400.
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4.1.2 Sample preparation

The single crystals analyzed in this work are prepared using the �oating-zone
method. Details can be found in Refs. [68�70]1. The purities, stoichiometries,
and single-phase structures of the crystals are checked by x-ray di�raction and
thermo-gravimetry.
The single crystals are oriented with the help of the Laue method. The software
Cologne Laue Indexation Program (CLIP) is used for the analysis of the Laue
patterns. An exemplary Laue pattern of a single crystal of GdVO3 is depicted
with the respective �t in Fig. 4.4.
The oriented samples are sawed making use of an inside-hole saw to obtain the
desired surface.
For an ellipsometric measurement the samples have to be polished in order to
obtain a very clean re�ecting surface. This is done with the help of a commercial
polishing machine (Logitech PM2), which is depicted in Fig. 4.5.
Before the actual polishing process, the samples are lapped, i.e. �ne grinded, to ob-
tain coplanar sample surfaces. Therefore the polishing machine is equipped with a
plate made of cast iron and a suspension which consists of abrasive aluminum-oxide
powder (fused aluminum oxide, 3micron, Logitech LDT) in water is used. For the
samples of La2CoO4, which are sensitive to water, the suspension is replaced by
aluminum-oxide powder in ethylene glycol (ethan diole, HOCH2CH2OH).
The actual polishing process takes place on a plate coated with a polyurethane
foam, which has small holes to hold the suspension. Here, the suspension is a
colloid containing SiO2 with a grading of 0.032 µm (SF1, colloidal silica, Logitech
LTD). It is replaced by a suspension of cerium-oxide polishing powder (0.5micron,
Logitech LDT) in ethylene glycol for watersoluble La2CoO4.
The polished samples are removed from the sample holder by the use of a bath of
acetone. Afterwards, they are cleaned consecutively in an ultrasonic bath of fresh
acetone, of distilled water, of ethanol, and of distilled water. Straight after the
polishing procedure the samples are mounted into the ellipsometer (see the next
section).

1The vanadates YVO3, GdVO3, and CeVO3 have been provided by A.A.Nugroho and
T.T.M.Palstra (Zernike Institute for Advanced Materials, University of Groningen, The
Netherlands; Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, In-
donesia). The single crystal of LaSrFeO4 has been prepared by N.Qureshi (II. Physikalisches
Institut, Universität zu Köln). All layered cobaltates La2−xSrxCoO4 and La1.5Ca0.5CoO4

have been grown by A.C.Komarek (II. Physikalisches Institut, Universität zu Köln; Max-
Planck-Institut CPfS, Dresden). Single crystals of LaCoO3 and EuCoO3 have been prepared
by M.Reuter (II. Physikalisches Institut, Universität zu Köln).
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Figure 4.4: Exemplary Laue pattern of GdVO3 (left) with �t (right).

Figure 4.5: The polishing machine working at the lapping procedure. One sees the
sample holder which is placed on top of the plate of cast iron (right)
and the bowl containing the suspension (left), which drips slowly on
the rotating plate.
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4.1.3 Mounting, aligning, and calibrating the sample

For measurements at variable temperatures the sample is glued with silver paint
onto a copper plate and mounted on the cold �nger of the cryostat. For small
samples (area of the sample surface . diameter of the beam of light) a cone made
out of brass is used instead of the copper plate. This has the advantage that the
light which does not hit the sample is not scattered into the detector but re�ected
away. The surface of the cone is polished to obtain good re�ection properties. A
picture of the cone is shown in Fig. 4.6.

Figure 4.6:
For samples with a small diameter the
sample holder has the form of a cone
which is made out of brass. This has the
advantage that the light which does not
hit the sample is re�ected back far away
from the detector.

Next to the sample a piece of a sili-
con wafer, which is needed for the cali-
bration routine, is placed on the cold
�nger as well. The cryostat is evac-
uated by the use of a series of two
turbo pumps until the pressure is be-
low ≈ 10−7 mbar. Due to the surface
sensitivity of ellipsometry an even bet-
ter vacuum is necessary. Otherwise an
ice layer is formed on top of the sample
surface at lower temperatures [43]. To
prevent this problem a bake out routine
is applied by heating the system for
50 h at 400K and cooling down for an-
other 24 h. The so obtained end pres-
sure amounts to about 5 · 10−10 mbar
at room temperature. By cooling the
system with liquid helium, a minimum
temperatures of 15K can be reached.

The high-temperature limit is 490K. The temperature Tellipsometer at the cooling
unit deviates from the temperature Tsample holder at the position of the sample on the
cold �nger [43]. It is made use of a calibration curve obtained by A.Gössling [43]
for the determination of the sample temperatures. A.Gössling is a former member
of the optics group in Cologne who put the ellipsometer at hand into operation.
The calibration curve is depicted in Fig. 4.7.
Before being able to start the measuring process or the calibration routine, the
sample has to be aligned properly. Therefore an alignment detector is used which
is placed in front of the input unit. A picture of the setup used for the sample
alignment is shown in Fig. 4.8. The beam of light passes through the alignment
detector before hitting the sample. The alignment detector consists of a silicon
photo diode which is divided into four quadrants. It contains a hole in the middle,
i.e. in the intersection of the four quadrants. Alignment takes place at an angle of
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Figure 4.7:
Calibration curve as obtained
by A.Gössling [43]. The tem-
perature di�erence between
the temperature Tsample holder

at the position of the sam-
ple on the cold �nger and the
temperature Tellipsometer at the
cooling unit has been deter-
mined as a function of tem-
perature by mounting a sec-
ond thermometer directly at
the sample holder.
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incidence of 0◦ so that the beam of light is re�ected back from the sample into the
alignment detector. The software WVASE32 is used to adjust the sample holder
in order to have equal intensity in each of the four quadrants of the alignment
detector.
Before starting the measuring process a calibration routine is required. It deter-
mines both the absolute positions of polarizer and analyzer and the attenuation of
the AC signal at the computer compared to the DC signal at the detector, caused
by the signal processing electronics [65]. A sample with good re�ection properties
is required, i.e. no depolarization, surface roughness, or anisotropy. The standard
silicon wafer with a thin cover layer of approx. 20 nm SiO2 is a good choice. During
the calibration routine, the time-dependent detector signal is acquired for di�erent
polarizer and analyzer positions. Subsequently, the desired variables are obtained
by applying a �tting procedure.

Figure 4.8: Input unit without (left) and equipped with (right) the alignment de-
tector. The alignment detector is placed in front of the input unit for
the sample alignment.
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If the cryostat is used for the data acquisition process, also the knowledge of the
window e�ects is needed. The windows of the cryostat lead to an anisotropic
change of the polarization state of the incoming and re�ected wave. To determine
the window e�ects, data has to be acquired on a sample with known optical prop-
erties, i.e. one has to make use of the silicon wafer again. A comparison of the
measured and calculated data yields the e�ects of the windows. The thickness of
the SiO2 cover layer which is present on top of the crystalline silicon is varied in
a �t.
When the calibration routine is completed, the actual measuring process can be
initialized. The measuring process is fully computer controlled by the software
WVASE32 (J.A.Woollam). It can be chosen between di�erent measuring set-
tings. That means, for instance, all accessible Mueller-matrix elements can be
acquired or the data acquisition can be limited to the ellipsometric variables Ψpp

and ∆pp (see Sec. 3.2.1 where the Mueller matrix and the ellipsometric variables
Ψpp and ∆pp are introduced).

4.2 Data analysis

This section deals with the analysis of the raw ellipsometric data. It is performed
by the use of the softwareWVASE32 (J.A.Woollam), which contains all necessary
tools to build physical models that describe the optical properties of any layered
or anisotropic physical system. A variety of parametric models or tabulated op-
tical constants are available for the description of the dielectric functions. In the
following, a brief introduction is given how to use the software WVASE32 for the
analysis of data taken on anisotropic bulk single crystals. Finally, the spectral
weight of an optical excitation is introduced and it is shown how the optical data
is further analyzed in order to obtain meaningful information about the temper-
ature dependence of di�erent absorption bands.
All data of this work are acquired on properly aligned single crystals, i.e. with
the crystallographic axes parallel to the ellipsometer coordinate system2. Conse-
quently it is su�cient to acquire the ellipsometric variables Ψpp and ∆pp (cf. Sec.
3.2.1), which reduces the data acquisition time considerably. This is desirable
since temperature dependent ellipsometric data should be taken consecutively in
one temperature sequence in order to detect even small temperature-dependent
variations of the spectral weights. However, in all cases all accessible Mueller-
matrix elements are acquired at room temperature to check for possible misalign-
ment or depolarization. In most cases only the ellipsometric variables Ψpp and ∆pp

are used for the �nal �tting process (for details see the chapters of the individual
compounds).

2The ellipsometer coordinate system has been introduced in Sec. 3.1.4 , Fig. 3.1.
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4.2.1 Surface e�ects

Despite the elaborate polishing procedure it is assumed that a thin cover layer
due to oxidation or contamination develops on the surface of the single crystals.
As ellipsometry is very sensitive to surface e�ects this has to be accounted for in
the data modeling. Room-temperature data are acquired on the single crystals of
interest for this work at di�erent angles of incidence Φ. The data show that the
pseudo-dielectric function < ε > is nearly independent of Φ, indicating an only
thin cover layer < 100Å (see Sec. 3.2.2 where the pseudo-dielectric function < ε >
is introduced). The spectra are thus mainly determined by the bulk properties
of the single crystals, while the cover layer only leads to minor e�ects. We have
experienced that the cover layer produces an energy-dependent vertical shift of the
measured < ε(ω) > spectrum but does hardly a�ect the temperature dependence
of the spectral weights of individual absorption bands, which is the main interest
of this work. Nevertheless, it is desirable to describe the cover layer accurately in
the data modeling to come as close as possible to the actual absolute value of the
optical constants of the bulk material.
As the cover layer is too thin to be fully characterized, it is modeled by the use of
the layer Srough of the Software WVASE32 which simulates a surface roughness.
It consists of 50% Void (vacuum) and 50% of space are �lled with the sample
optical constants. Most information about the cover layer, e.g. the thickness, can
be extracted from a non-absorbing energy range (ε2 ≈ 0) of the sample. Here,
the data can be modeled using the Cauchy layer 3 of the software WVASE32 for
the substrate and the layer Srough with thickness D for the cover layer. A �t
yields the parameters of the Cauchy layer and the thickness D of the layer Srough
which is �xed in the remaining �tting process. The crystals examined within the
framework of this work yield values for D between 10Å and 80Å. If a crystal is
absorbing in the whole accessible energy range a reasonable surface roughness has
to be estimated. Figure 4.9 exemplary shows the results for εa2 following from the
�t to the measured data on LaSrFeO4 assuming a surface roughness of 10Å and
60Å, respectively.

4.2.2 Parametric models

In this work the optical constants of the anisotropic crystals under examination
are described by parametric models. A parametric model ensures Kramers-Kronig
consistency and it reduces the number of parameters that have to be varied in a
�t. Furthermore, the use of a parametric model has the advantage that a slight
variation of the parameters su�ces to describe the dielectric function of samples
with similar physical properties (e.g. substitution of the rare earth ion, variation of

3The Cauchy layer uses the Cauchy model (see Sec. 3.1.5) to describe the optical constants of
semiconductors or insulators.
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Figure 4.9: The pseudo-dielectric function < εa2 > (green curve) corresponds to the
measured data on LaSrFeO4. The results for εa2 following from the �t
to the measured data on LaSrFeO4 assuming a surface roughness with
a thickness of 10Å (red curve) and 60Å (blue curve) are shown. The
deviations from zero below approx. 2.2 eV of < εa2 > are an artifact of
the pseudo-dielectric function. One obtains εa2 ≈ 0 for ω . 2.2 eV as
expected below the band gap of LaSrFeO4 when assuming a surface
roughness with a thickness of 60Å in the physical model used for the
�t.

the doping levels) or of the same sample at di�erent temperatures. Here, it is made
use of the General oscillator layer of the software WVASE32 which provides a
great amount of parametric (oscillator) models (including the Lorentz-, Gaussian-,
and Tauc-Lorentz oscillator models as introduced in Sec. 3.1.5) to choose from.
Furthermore, ε∞ can be varied and poles4 can be added outside the measured
range. To describe the dielectric tensor of an anisotropic material, a General
oscillator layer is needed for each independent entry of the dielectric tensor. In
the case of an orthorhombic crystal three General oscillator layers are needed
to describe εa, εb, and εc, respectively. The full physical model thus consists
of a General oscillator layer with a certain amount of �t parameters for each
independent entry of the dielectric tensor and a cover layer Srough with �xed
thickness D (that has been determined in advance) for each sample surface. The

4A pole is a Lorentz oscillator without damping (γ = 0), it has a pole at ω0 and shows ε2 = 0
for ω 6= ω0. A pole outside the measured range thus e�ects only ε1. As opposed to ε∞ a
pole leads to a dispersion in ε1.
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model is �t to all experimental data sets that are available for the sample (obtained
from measurements on di�erent sample surfaces and for di�erent orientations)
simultaneously.5 At the very end of the �tting process, the �nal results for the
dielectric function of the sample can be read o� the General oscillator layers.6

4.2.3 The spectral weight

Besides the determination of the pure form of the dielectric function, the aim of
this work is the study of the temperature dependence of the individual absorption
bands constituting the dielectric function. An important quantity is the optical
spectral weight (SW ), which is de�ned as the integral over the real part of the
optical conductivity σ1(ω):

SW =

∫ ∞
0

σ1(ω) dω. (4.1)

To apply this formula, σ1 must be given in units of 1/(Ωm) and the energy ω
equals 2πν with frequency ν in Hertz.
Often the spectral weight is speci�ed in the form of an e�ective carrier concentra-
tion Neff , which is de�ned as:

Neff =
2mV

πe2
·
∫ ∞

0

σ1(ω) dω (4.2)

Here, m is the free electron mass, e the elementary electric charge, and V is the
volume per magnetic ion. The e�ective carrier concentrationNeff is dimensionless.
If the physical model used for the data analysis consists of a number of Lorentz
or Gaussian oscillators which describe the di�erent absorption bands, the spectral
weight of an individual absorption band can directly be obtained by the use of
the parameters of the corresponding oscillator. The spectral weight of a single
Lorentz oscillator (as de�ned in Sec. 3.1.5) is related to its plasma frequency ωp
by: ∫ ∞

0

σ1(ω) dω =
π

2
ε0 ω

2
p (4.3)

or

Neff =
mV ε0ω

2
p

e2
(4.4)

5The General oscillator layers for the di�erent entries of the dielectric tensor are incorpo-
rated into the layer Biaxial of the software WVASE32. The layer Biaxial also contains the
information on the sample orientation that corresponds to the experimental data sets.

6A detailed description of the data modeling with the softwareWVASE32 of ellipsometric data
on anisotropic bulk single crystals can be found in my diploma thesis (Ref. [71]).
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where the frequencies ω and ωp correspond to 2πν with frequency ν in Hertz. If
the plasma frequency ωp is given in units of eV, the e�ective carrier concentration
Neff can be calculated by the use of the following formula7:

Neff =
mV ε0ω

2
p

~2
(4.5)

The spectral weight of a single Gaussian oscillator (parameters as de�ned in Sec.
3.1.5) is given by: ∫ ∞

0

σ1(ω) dω = ε0

√
π · AΓω0, (4.6)

or
Neff =

2mV

πe2
ε0

√
π · AΓω0, (4.7)

The amplitude A is dimensionless, Γ and ω0 correspond to 2πν with frequency ν
in Hertz. If ω0 and Γ are given in units of eV, the e�ective carrier concentration
Neff can be calculated by the use of the following formula8:

Neff =
2mV

π~2
ε0

√
π · AΓω0 (4.8)

It has to be pointed out that in a �rst step a model has to be found that achieves
a very good description of the experimentally measured data. It is desirable to
use as few oscillators as possible, but enough oscillators to not miss any relevant
features of the line shape. The analysis of the spectral weight of individual ab-
sorption bands can be done in a second step. In some cases it is well possible
to describe individual absorption bands by single Lorentz or Gaussian oscillators
and analyze their spectral weights by the above mentioned formulas. In other
cases, however, the absorption bands overlap strongly which leads to a model
with overlapping oscillators. Also the line shape of some absorption bands has to
be described by several oscillators rather than a single one. In these cases it does
not appear physically meaningful to analyze the spectral weights of the individual
oscillators. Therefore other ways have to be considered to obtain none the less
a result for the temperature dependence of the spectral weights of the individual
absorption bands. This can be done by analyzing, e.g., the sum of the spectral
weights of several oscillators, the mathematical integral over a part of the σ1(ω)
spectrum, or the value of σ1(ω) at a speci�c energy ω′, etc.

7Within the General oscillator layer of the software WVASE32 the parameters of the Lorentz
oscillator in style Lor.0 [eV] are Amp, En, and Br, the parameter Amp is dimensionless,
En and Br are given in units of eV. The square of the plasma frequency ω2

p in eV2 can be
obtained from Amp, En, and Br by multiplication: ω2

p = Amp · En ·Br.
8Within the General oscillator layer of the softwareWVASE32 the parameters of the Gaussian
oscillator in style Gau.0 [eV] are Amp, En, and Br, the parameter Amp is dimensionless,
En and Br are given in units of eV. Our parameter A corresponds to Amp, ω0 corresponds
to En, and Γ corresponds to Br/2

√
ln2 (Br is the FWHM in eV).



5 Probing orbital �uctuations in
RVO3 (R=Y, rare earth ion)

The competition between orbital, spin, and lattice degrees of freedom is the origin
of a great number of fascinating physical properties observed in the oxovanadates
RVO3 (R=Y, rare earth ion). The compounds undergo a series of temperature-
induced phase transitions between phases with di�erent spin and orbital ordering
patterns. The temperature-dependent changes of spin and orbital correlations
are expected to be re�ected in a pronounced dependence on temperature and po-
larization of the optical spectra [8, 10�12, 21, 23]. Here, a detailed ellipsometric
analysis of the optical conductivity σ1(ω) of YVO3, GdVO3, and CeVO3 in the
energy range from 0.75 eV to 5.0 eV for temperatures ranging from 15K to 490K
is presented. The optical spectra are analyzed considering predictions based on
nearest-neighbor spin-spin and orbital-orbital correlations.
There is a striking disagreement concerning the optical data reported for the com-
pound YVO3 in the literature [21�23], none of the di�erent experimental data sets
is in agreement with theoretical predictions. It is the aim of this chapter to clarify
these discrepancies.
Furthermore, the importance of orbital �uctuations in RVO3 is studied. Di�er-
ent groups have claimed that orbital �uctuations may be strong in the Mott-
Hubbard insulators RVO3 [8, 10, 14�17, 37]. Their claim is based on the fact
that the orbital-lattice coupling is relatively weak in these systems with partially
�lled t2g orbitals. As a consequence, coupled spin/orbital degrees of freedom
have to be considered, which leads to strongly frustrated spin-orbital superex-
change interactions on a nearly cubic lattice and quantum energy can be gained
from �uctuating orbitals [14]. Experimentalists claim for YVO3 the observation
of e.g. a one-dimensional orbital liquid, of an orbital Peierls phase, and of bi-
orbitons [15,18]. On the other hand, LDA+U (local density approximation + U)
and LDA+DMFT (local density approximation + dynamical mean-�eld theory)
studies rule out strong orbital �uctuation in YVO3 due to the sizable crystal �eld
splitting, but consider �uctuating orbitals to be important for compounds with
larger R ions such as LaVO3 [19, 20].
The experimental determination of low-energy orbital �uctuations is a di�cult
task. Optical spectroscopy o�ers an e�cient means by taking advantage of the
sensitive dependence of the optical spectral weight on nearest-neighbor spin-spin

55
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and orbital-orbital correlations. A comparison of our experimental results for
R=Y, Gd, and Ce with a theory based on a low-energy spin-orbital superexchange
Hamiltonian leads to a conclusion about the importance of orbital �uctuations in
RVO3.
The line shape of the optical conductivity gives evidence for the importance of
excitonic e�ects in RVO3. It is argued that not only the Coulomb interaction,
but also the kinetic energy plays an important role for exciton formation in Mott-
Hubbard insulators.

The chapter on hand is organized as follows. In the �rst section the structural and
physical properties of the compounds RVO3 are discussed. Due to their fascinating
magnetic properties as well as the importance of coupled spin and orbital degrees
of freedom, the series RVO3 has attracted a huge research activity over the past
years. A brief summary of the results that are most important for our optical
investigations is presented. It follows the presentation of the experimental data in
the second section of this chapter. The discussion of the data in the third section
includes the peak assignment, the comparison of our measured data with the data
reported in the literature, and the analysis of the importance of orbital �uctuations
in RVO3. The fourth section deals with our observation of an excitonic resonance
in the data of RVO3. Finally, a conclusion is given in the last section of this
chapter.

5.1 The compounds RVO3 (R=Y, rare-earth

ion)

5.1.1 The crystal structure

At room temperature, perovskite-type RVO3 exhibits an orthorhombic crystal
structure with space group Pbnm [68, 72�75]. It emerges from the cubic per-
ovskite structure (space group Pm3m) with lattice constant ac by the so-called
GdFeO3 distortion, i.e. a tilting and rotation of the corner sharing VO6 octahedra,
resulting in lattice constants a ≈ b ≈

√
2ac and c ≈ 2ac (see Fig. 5.1). Structural

investigations of the compounds RVO3 show that smaller rare-earth ions R favor
stronger tiltings of the VO6 octahedra [72, 74], indicating the in�uence of steric
e�ect. The compound LaVO3 is thus among the less distorted members of the
series, the compound on hand YVO3 is hugely distorted. A measure for the de-
gree of orthorhombic distortion is the orthorhombic splitting ε = 2|b− a|/(b+ a)
between the lattice parameters a and b. It amounts to 0.06 for R=Y and Gd,
and only 0.006 for Ce [72, 74, 76]. The values of the orthorhombic splitting ε are
summarized in Fig. 5.2 for RVO3. The degree of orthorhombic distortion is fur-
ther re�ected in the V−O−V bond angle, which increases from ≈ 144◦ in YVO3
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to ≈ 156◦ in LaVO3 [68, 74, 77].
By lowering the temperature, the compounds RVO3 undergo a second-order struc-
tural phase transition at TOO where the crystal structure changes to monoclinic
(space group P21/b) [68,72�74,78]. The compounds with smaller R ions (Lu, Yb,
Ho, Er, Y) recover the orthorhombic crystal structure with space group Pbnm
below a phase transition of �rst order at TS < TOO [68, 72, 73,78] (see Fig. 5.3).

Figure 5.1: At room temperature RVO3 exhibits an orthorhombic crystal struc-
ture with space group Pbnm. The oxygen octahedra are rotated
and tilted compared to the ideal cubic perovskite structure. The or-
thorhombic unit cell (Pbnm, red) and the cubic unit cell (Pm	3m; dark
blue) are shown. Taken from Ref. [37].
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Figure 5.2:
Orthorhombic split-
ting ε = 2|b−a|/(b+a)
of the compounds
RVO3. The �gure is
taken from Ref. [37],
where the values of
the lattice parameters
a and b are taken from
Refs. [72,76,77,79,80].



58 5. Probing orbital �uctuations in RVO3 (R=Y, rare earth ion)

5.1.2 Spin and orbital ordering phase diagram

The compounds RVO3 are Mott-Hubbard (MH) insulators with two localized elec-
trons in the 3d shell of the vanadium V3+ ion. In the ground state, both electrons
occupy t2g orbitals with total spin 1. The value of Dq, which determines the size
of the t2g− eg, splitting has been determined to be approx. 2 eV for YVO3 [23,37].
The t2g manifold is split into dxy, dzx, and dyz orbitals, the total splitting is on
the order of 0.1 eV− 0.2 eV [18,20,81,82]. As the Jahn-Teller coupling is weak for
partially occupied t2g orbitals, the intrinsic frustration between spin and orbital
degrees of freedom is the origin of a complex spin and orbital ordering phase dia-
gram [14] (see Fig. 5.3). This is in contrast to systems with eg orbital degeneracy.
Here, the orbital degeneracy is usually lifted due to the strong coupling of the or-
bitals to the lattice leading to a structural phase transition which takes place well
above the magnetic ordering temperature [16]. In the orbitally ordered phases of
RVO3, the dxy orbital is occupied by one electron at each V site. The occupation
of dxz and dyz by the second electron can be viewed as a pseudospin, and both
spins and pseudospins have been reported to show ordering patterns of either the
G type (antiferro along all bonds, i.e., dzx and dyz alternate) or the C type (ferro
along c, antiferro within the ab plane), see Fig. 5.4.
In RVO3 C -type spin order is observed below the Néel temperature TN , which
is continuously shifted to higher temperatures with increasing R-ion radius [68,
73, 78, 83, 84], from 104K for YbVO3 [85] to 143K for LaVO3 [73]. This can be
reasoned by the decrease of the octahedra tilt angle with the increase of the R-ion
radius, which in turn can be recognized as the origin of an increased V−O−V
superexchange. The structural phase transition which occurs at TS only in com-
pounds with smaller rare-earth ions (Lu, Yb, Ho, Er, Y) is accompanied by a
change of the spin ordering pattern. Below TS the spin order is observed to be
of G type. It is well established that the G-type SO is accompanied by C -type
orbital order (see Fig. 5.4 (b)) [14, 20, 23, 68, 72, 74, 86]. The correct description
of the orbitals in the monoclinic phase is controversial. Orbital order of G type
(see Fig. 5.4 (a)) setting in at TOO has been predicted on the basis of neutron and
x-ray di�raction studies [68,86].
Miyaska et al. [78] use the known magnetic and structural properties of Refs.
[83, 84, 86�88] in combination with their measurements of speci�c heat, magne-
tization, and Raman-scattering spectra to extract the spin and orbital ordering
phase diagram of RVO3, as shown in Fig. 5.3, left panel. It is interesting to note
that the orbital ordering temperature TOO shows a non-monotonic dependence
on the radius of the rare-earth ion R. According to Ref. [78] the behavior of the
compounds with large R ions LaVO3 and CeVO3 is strikingly di�erent. Here,
magnetic ordering is reported to set in even above the structural phase transition
at TOO, which is accompanied by the onset of G-type orbital order. Results from
synchrotron x-ray di�raction [73] con�rm these �ndings for LaVO3, whereas they
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are in disagreement with Ref. [78] in the case of CeVO3. The dispute concerning
the phase-transition temperatures in CeVO3 is discussed in detail in Sec. 5.1.5.
A modi�ed phase diagram has been proposed by Sage et al. [74], see Fig. 5.3, right
panel. They report on a detailed study of the spin and orbital ordering phase dia-
gram of RVO3 by high-resolution x-ray powder di�raction and thermal expansion.
According to Sage et al. [74] a phase with coexisting orbital orderings of C type
and G type and coexisting monoclinic and orthorhombic crystal structure sets in
at a temperature T ∗S closely below TN for intermediate size rare-earth ions (R =
Tb, Gd, Eu, and Sm). The C -type phase fraction is reported to increase with the
degree of octahedral tilting.
Horsch et al. [48] apply a theoretical approach based on a microscopic theory
to analyze the phase diagram of RVO3. They treat coupled spin-orbital degrees
of freedom in an extended spin-orbital model, which includes the superexchange
interaction, the crystal-�eld splitting that is induced by the GdFeO3-type dis-
tortion, orbital-orbital interaction resulting from the orbital-lattice coupling, and
orbital-strain coupling [48]. They point out that the non-monotonic behavior of
TOO is a result of the competition between the Jahn-Teller term and the orbital
occupation favored by the orthorhombic distortion of the VO6 octahedra. They
show that the inclusion of the coupling of the orbitals to the lattice distortion is
an important ingredient in order to reproduce the general trends observed for the
spin and orbital ordering transition temperatures TN and TOO, respectively. The
main results of Ref. [48] are shown in Fig. 5.5.

5.1.3 Importance of orbital �uctuations

Di�erent groups have pointed out that orbital �uctuations may be strong in RVO3

in the intermediate-temperatue phase, the monoclinic phase with C -type magnetic
order. In the following the most relevant studies concerning the orbital degree of
freedom of RVO3 are brie�y discussed.
Khaliullin, Horsch, and Oles [14] report theoretical investigations based on a spin-
orbital model to investigate the role played by quantum �uctuations among or-
bitals. Starting point is the assumption that the Jahn-Teller coupling is only
weak for the t2g orbitals in RVO3. In this case, superexchange interactions among
spins and orbitals are highly frustrated on a nearly cubic lattice. This scenario
is supported by the occurrence of two strikingly di�erent magnetic and orbital
ordering patterns in RVO3, depending on the temperature and the size of the
rare-earth ion. Also Hartree-Fock calculations indicate that indeed C - and G-
type spin ordered phases are energetically close [89]. The authors of Ref. [14]
recognize the Jahn-Teller e�ect as the dominant driving force for the orbital and
spin ordering pattern observed in the low-temperature orthorhombic phase of the
hugely distorted compounds with smaller R ions (Lu, Yb, Ho, Er, Y). They point
out that the Jahn-Teller coupling favors a C -type orbitally ordered ground state
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Figure 5.3: Left: Spin and orbital ordering phase diagram of RVO3 as proposed
by Miyasaka et al. [21] as a function of the radius of the R ion (orbital
ordering temperature TOO: �lled circles, Néel temperature TN : open
circles, phase-transition temperature into phase with changed spin and
orbital order TS: open triangles). Right: Spin and orbital ordering
phase diagram of RVO3 as proposed by Sage et al. [74] (TOO: �lled
squares, TN : �lled triangles, TS: �lled stars. Additionally, a transition
into a phase with coexisting C -type and G-type orbital ordering is
proposed for compounds with intermediate R radius at a transition
temperature T ∗S , represented by open stars.). Taken from Refs. [21]
and [74].

which is accompanied by antiferromagnetic (AFM) spin order along all three di-
rections (spin order of G type). According to Ref. [14] the Jahn-Teller energy is
overbalanced by the energy that can be gained from orbital �uctuations at higher
temperatures. Due to the large spin S = 1 at the V3+ sites it is assumed that the
spins pick up a classical con�guration in such a way that the energy gain from
orbital �uctuations is maximized [14]. The degeneracy of the dyz and dzx orbitals
is supposed to not be lifted by lattice distortions and to control the orbital su-
perexchange interactions along c [14]. Orbital quantum energy can be gained for
parallel spins when dyz and dzx orbitals along the c axis form an orbital singlet.
The ferromagnetic (FM) spin con�guration is additionally favored by the Hund
exchange. Thus, the classical orbital order in the intermediate-temperature phase
is assumed to involve only the dxy orbital, which is occupied by one electron at
each V site, leading to AFM superexchange interactions in the ab plane. The
superexchange interactions involve virtual d3 states with doubly occupied dxy or-
bitals, which are considered to block orbital �uctuations in the ab plane. The
authors of Ref. [14] point out that the �uctuations of the t2g orbitals along the c
axis, which release high entropy, can be recognized as the origin of a C -type spin
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(a)

(b)

Figure 5.4: (a) G-type orbital order with C -type spin order, (b) C -type orbital
order with G-type spin order. The vertical axis corresponds to the c
axis.
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Figure 5.5:
The result obtained by Horsch et al.
[48] for the spin ordering temperature
TN (red line) and orbital ordering tem-
perature TOO (blue line) in RVO3 for
varying rare-earth radius (denoted as
rR). The full (TOO) and empty (TN)
circles correspond to the experimental
results of Ref. [78]. Taken from Ref.
[48].

ordered phase with 1D orbital disorder. The less distorted crystal structure of the
compounds with larger R ions is supposed to stabilize this exotic phase down to
lowest temperatures.
Magnetic neutron scattering data on YVO3 collected by Ulrich et al. [15] reveal
an anomalously small magnitude and large canting angle of the ordered moment
in the intermediate-temperature phase, giving experimental evidence for the im-
portance of strong orbital �uctuations. Reehuis et al. [72, 75] report an ordered
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magnetic moment that is considerably smaller than the free-ion value also for
CeVO3, NdVO3, and TbVO3. Ulrich et al. [15] further observe (i) a splitting of
the FM spin waves into optical and acoustic branches and (ii) a FM exchange cou-
pling along c that is much stronger than the in-plane AFM exchange. This is in
contradiction with the Goodenough-Kanamori-Anderson rules according to which
AFM superexchange interactions are generally stronger than FM interactions. The
authors argue that the optical/acoustic splitting can be described by alternating
FM exchange bonds along c, which may be a strong indication for the highly un-
usual orbital correlations. By the use of the model introduced in Ref. [14], that
requires degenerate dyz and dzx orbitals, they show that the quasi-one-dimensional
band of spin-orbital �uctuations along c is unstable against dimerization and that
this so called orbital Peierls instability may be the origin of the unusual magnetic
properties [15,16]. The instability towards dimerization along the FM direction in
the intermediate-temperature phase has been further claimed theoretically based
on a spin-orbital model with spin S = 1 [17,90]. The formation of dimer states is
supposed to release high entropy holding the key for the stabilization of the exotic
C-type AFM order observed in the intermediate-temperature phase [17,90].
On the contrary, Fang and Nagaosa [19] argue based on their LDA+U calculations
that the quantum orbital �uctuations are suppressed in YVO3 and LaVO3 due to
the large Jahn-Teller distortion. They point out that the splitting of the spin-wave
dispersion in the intermediate-temperature phase observed by Ulrich et al. [15] can
be well reproduced within a Jahn-Teller picture assuming two inequivalent VO2

layers with di�erent ab plane exchange parameters instead of the orbital Peierls
state [19]. Studies based on LDA+DMFT [20] �nd that orbital �uctuations are
negligible in LaVO3 in the C -type AFM monoclinic phase but support strong
orbital �uctuations at room temperature, whereas for compounds with smaller R
ions such as YVO3 quantum e�ects are also suppressed at 300K due to the larger
crystal-�eld splitting.
Evidence for the importance of inter-atomic orbital-exchange interactions is pro-
vided by optical data collected by Benckiser et al. [18]. The temperature and
polarization dependence of an absorption band observed in the optical spectra of
YVO3 and HoVO3 for polarization E ‖ c at 0.4 eV strongly suggests the interpre-
tation in terms of an excitation based on the exchange of two orbital occupations
on adjacent sites [18]. In other words, it has been attributed to a direct excitation
of two orbitons, termed two-orbiton excitation. Furthermore, two broad bands at
around 43meV and 62meV observed in the resonant Raman scattering spectra of
LaVO3, NdVO3, and YVO3 have also been interpreted in terms of two-orbiton ex-
citations, as they show a remarkable resonance with the MH gap transition [91,92].
However, the emergence of these bands only below TN = 116K in YVO3 questions
this interpretation since orbital order is already observed below TOO = 200K. A
di�erent interpretation of the observed Raman modes in YVO3 is proposed in
Ref. [93], where the bands at around 43meV and 62meV are interpreted in terms
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of a one-orbiton excitation and a Jahn-Teller phonon mode, respectively. Instead,
another Raman peak has been assigned to a two-orbiton excitation in Ref. [93].
The results of Ref. [94] for the V−O bond length pattern obtained in the frame-
work of a detailed structural investigation of HoVO3 by the use of a combination
of single-crystal neutron di�raction and synchrotron x-ray and neutron powder
di�raction give further evidence for the importance of orbital �uctuations, but on
the other hand the structural data strongly indicate that the orbital �uctuations
may not be strong enough to cause a long-range orbitally dimerized state as the-
oretically predicted [94].
To sum up, the question concerning the role played by orbital �uctuations in
RVO3 is still a highly debated issue. Clear experimental evidence for or against
the importance of �uctuating orbitals is still missing. Our approach involves a
very detailed analysis of the temperature dependence of the optical conductivity.
Ellipsometry is our method of choice as it has proven to be very successful in cap-
turing the temperature dependent changes of the optical spectral weights [11,12].
In the case of LaMnO3 and LaSrMnO4, for example, the result for the spectral-
weight transfer which originates from changes in the nearest-neighbor spin-spin
correlation function agrees astonishingly well with the theoretical predictions (cf.
Sec. 2.6 and Refs. [11, 12]).

5.1.4 Details on YVO3

The compound YVO3 has been extensively studied experimentally as well as the-
oretically. Many of the results have already been discussed in the previous sec-
tion. The structural properties of YVO3 have been elaborately investigated by
Blake et al. [68] and Reehuis et al. [72] by the use of neutron and synchrotron x-
ray di�raction. The lattice parameters for various temperatures are summarized
in table 5.1. The system undergoes a second-order structural phase transition
at TOO = 200K from the room-temperature orthorhombic phase (space group
Pbnm) to the intermediate-temperature monoclinic phase (space group P21/b).
Structural investigations yield three di�erent V−O bond distances within one
VO6 octahedron above 200K. For the monoclinic phase below 200K two sym-
metrically unequivalent V sites have been reported, V(1) and V(2), that alternate
along c. This leads to overall six di�erent V−O bond distances. Each V(1)O6

and V(2)O6 octahedron consists of two only slightly di�erent bond distances and
one long distance. The long distance lies in the ab plane and alternates along c, in
accordance with the claim for G-type orbital order in this phase. AFM order of
C type is observed below TN = 116K [83]. The coupled spin and orbital degrees
of freedom are recognized as the origin of a number of exotic properties observed
in this phase, as discussed in the preceding section. The spin order changes to
G type and the orthorhombic crystal structure is recovered below the �rst-order
structural phase transition at TS = 77K. Below 77K all V sites are equivalent,
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again a long V−O bond distance is present in the ab plane, which now has a
constant direction along c, in accordance with orbital order of C type. Optical
and neutron spectroscopy studies on YVO3 single crystals give evidence that the
symmetry in the monoclinic phase is lower than P21/b, proposing the monoclinic
space group Pb11. The symmetry Pb11 allows for dimerization along the c axis,
in accordance with results from neutron scattering, suggesting an orbital Peierls
state for the monoclinic phase [15], see the discussion in the preceding section.
However, Reehuis et al. [72] did not succeed in resolving the small deviation of the
atomic positions in Pb11 compared to P21/b in their synchrotron x-ray di�raction
data.

Temp. space group a(Å) b(Å) c(Å) α (◦) Ref.
5K Pbnm 5.28551(6) 5.59264(5) 7.55615(7) 90 [72]
65K Pbnm 5.28164(3) 5.58868(3) 7.55030(4) 90 [68]
80K P21/b 5.27243(3) 5.62058(3) 7.53254(4) 89.977(3) [68]
85K Pbnm 5.28547(7) 5.62399(7) 7.53979(1) 90 [72]
85K P21/b 5.27650(5) 5.62401(5) 7.53980(7) 89.980 [72]
100K P21/b 5.27272(3) 5.61940(3) 7.53499(4) 89.979(3) [68]
140K P21/b 5.27393(3) 5.61602(3) 7.54235(4) 89.973(3) [68]
180K P21/b 5.27474(4) 5.61126(3) 7.55316(4) 89.978(3) [68]
230K Pbnm 5.27953(8) 5.61072(8) 7.57214(1) 90 [72]
240K Pbnm 5.27574(3) 5.60679(3) 7.56714(4) 90 [68]
295K Pbnm 5.27722(3) 5.60453(3) 7.57294(4) 90 [72]
295K Pbnm 5.27839(3) 5.60608(3) 7.57421() 90 [68]

Table 5.1: Temperature dependence of the lattice parameters of YVO3.

5.1.5 Details on CeVO3

The crystal and magnetic structure of CeVO3 has been studied in detail by Reehuis
et al. [75] making use of high-resolution x-ray powder di�raction and single-crystal
neutron di�raction. A structural phase transition from the orthorhombic phase
(space group Pbnm) to the monoclinic phase (spacegroup P21/b) has been ob-
served at TOO = 136K. In the monoclinic phase two out of four V−O bonds that
lie almost in the ab plane are strongly elongated in consistence with an orbital
ordering pattern of G type. Spin ordering of C type is reported to set in at the
Néel temperature TN = 124K [75]. Both transition temperatures are considerably
lower than those observed in other compounds of the series RVO3.
A second study based on high-energy synchrotron x-ray di�raction in combina-
tion with speci�c heat measurements performed by Ren et al. [73] reveal transition
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temperatures that are about 20K higher. According to Ren et al. [73] the crys-
tal symmetry is lowered to monoclinic P21/b together with the onset of orbital
ordering at TOO = 154K at a second-order phase transition. They con�rm the
orbital ordering pattern of G type in the monoclinic phase. Ref. [73] reports that
Néel ordering takes place at TN = 134K and is accompanied by a sudden lattice
change at a phase transition of �rst order.
Also the sequence of the spin and orbital ordering transitions in CeVO3 has
been disputed. The opposite sequence has been reported by Miyasaka et al.
[78] (TN = 133K and TOO = 122K) and M�unoz et al. [76] (TN = 136K and
TOO = 124K). We trust the sequence reported in Ref. [75] and Ref. [73] as single-
crystal neutron di�raction is expected to be more sensitive than the neutron pow-
der di�raction used in Ref. [76]. This sequence is further con�rmed by Fujioka et
al. [95]. They investigate the spin/orbital ordering phase diagram for mixed crys-
tals of Pr1−xLaxVO3 by the use of magnetization and speci�c heat measurements.
With an increasing La-doping concentration x in Pr1−xLaxVO3 the GdFeO3-type
orthorhombic distortion is found to be systematically reduced. It is reported that
TOO is still higher than TN for a doping concentration of x = 0.73. For this value
of x the e�ective rare-earth radius is almost identical to that of CeVO3. TOO be-
comes lower that TN only just before x = 1 (LaVO3) is reached. For our analysis
we use the values of TOO and TN reported in Ref. [73], since they use the same
high-quality single crystals for their analysis as us, produced by A.A. Nugroho
and T.T.M. Palstra.
According to Reehuis et al. [75] the magnitude of the unit cell volume of CeVO3

deviates from the monotonic dependence on the size of the rare-earth ion that is
observed for the other compounds RVO3. A possible explanation is given in terms
of a deviation of the Ce valence from 3+, resulting in a contraction of the Ce ion
due to its higher charge. The lattice constants of CeVO3 that have been deduced
by Reehuis et al. [75] from their synchrotron powder x-ray di�raction data are
reproduced in table 5.2.

Temp. space group a(Å) b(Å) c(Å) α (◦)
10 K P21/b 5.52347(2) 5.57933(2) 7.71817(3) 90.0798(3)
160 K Pbnm 5.51680(2) 5.55429(2) 7.79260(3) 90

Table 5.2: Temperature dependence of the lattice parameters of CeVO3 as ob-
tained by Reehuis et al. [75].
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5.1.6 Details on GdVO3

The compound GdVO3 has been investigated to a much lesser extent compared
to YVO3 and CeVO3. The structural properties have been extracted by Sage et
al. [74] through a combined study of high-resolution x-ray di�raction and thermal
expansion on powdered samples within the framework of a very detailed investiga-
tion of the orbital ordering phase diagram of a huge number of RVO3 compounds
(R = Tb, Gd, Eu, Sm, Nd, Pr, see the discussion in Sec. 5.1.2). They con�rm the
orthorhombic crystal structure (space group Pbnm) at room temperature and the
transition to a G-type orbitally ordered monoclinic phase (space group P21/b)
taking place at TOO ≈ 210K. Néel ordering of C type is reported to set in at
TN ≈ 130K. The authors of Ref. [74] �nd evidence for a coexistence of phases
with monoclinic and orthorhombic symmetry which develops shortly below TN at
T ∗S . The data provides strong evidence that orbital order of G (C ) type is present
in the monoclinic (orthorhombic) phase fraction. However, Voigt [96] acquired
infrared re�ectance and transmittance data on our GdVO3 single crystals by the
use of a Fourier-transform spectrometer, which clearly indicate that our samples
do not show phase coexistence. A transition to a phase-separated state should be
visible in the phonon spectrum by the emergence of additional modes, but such
modes have not been observed [96]. In Ref. [74] it has been claimed that the
fraction of the orthorhombic phase increases from 0% at T ∗S up to approx. 67% at
T = 60K and remains constant at lower temperatures. Consequently, we expect
that the modes which are only visible in the monoclinic phase should loose weight
with decreasing temperature starting at T ∗S . However, this has not been observed
either [96], see Figs. 5.6 and 5.7. Further evidence for the absence of phase coex-
istence in our single crystals comes from the analysis of the spin-forbidden local
crystal-�eld excitations (3d2 → 3d2,∗) by means of transmittance measurements
performed by Voigt [96]. He compares his data on GdVO3 with data on YVO3

and HoVO3 of Ref. [37]. The 5K data of GdVO3 show similar features as the data
of YVO3 and HoVO3 in the monoclinic phase. The peak structure characteristic
for the low-temperature orthorhombic phase of YVO3 and HoVO3 is not visible
at any temperature in the data of GdVO3, see Fig. 5.8. It can therefore be safely
concluded that our single crystals of GdVO3 show a homogeneous C -type spin
and G-type orbitally ordered phase below TN .
The lattice constants at room temperature amount to a = 5.342 Å, b = 5.604
Å, and c = 7.637 Å [97]. The phase-transition temperatures as extracted from
the spin and orbital ordering phase diagram presented by Miyasaka et al. [78] are
TOO = 208K and TN = 122K.
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Figure 5.6: Phonon spectrum of GdVO3 in the energy range from 100 cm−1 to
650 cm−1 (≈ 0.01 eV− 0.08 eV) as obtained by Voigt [96]. Taken from
Ref. [96].
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Figure 5.7: Oscillator strength of the phonon modes of GdVO3 (the numbers corre-
spond to the numbering of the modes in Fig. 5.6) which become visible
across the structural phase transition at 208K from the orthorhom-
bic to the monoclinic phase. A transition to a phase separated state
developing below TN should be re�ected in a loss of their oscillator
strengths with decreasing temperature, which is not observed. The
modes corresponding to the a (c) axis are shown in the upper (lower)
panel. Taken from Ref. [96].
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Figure 5.8: Comparison of the spin-forbidden local crystal-�eld excitations (3d2 →
3d2,∗) in GdVO3, YVO3, and HoVO3. The upper panels show the data
corresponding to the G-type spin and C -type orbitally ordered low-
temperature orthorhombic phase of YVO3 and HoVO3, wheres the
lower panels depict the data corresponding to the C -type spin and G-
type orbitally ordered monoclinic phase of YVO3 and HoVO3. Both
data sets originate from Ref. [37]. The data of GdVO3 of Ref. [96]
are displayed in the middle panels. They do not show any signatures
which can be attributed to a G-type spin ordered phase. Taken from
Ref. [96].
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5.1.7 Mott-Hubbard excitations in RVO3

We expect two types of electronic excitations in the investigated energy range from
0.75 eV to 5.5 eV: Mott-Hubbard (MH) excitations |d2

i d
2
j〉 → |d1

i d
3
j〉 between di�er-

ent vanadium ions i and j and charge-transfer (CT) excitations |p6d2〉 → |p5d3〉,
between the oxygen 2p and the vanadium 3d level. According to the Zaanen-
Sawatzky-Allen scheme, RVO3 belongs to the group of MH insulators where the
on-site Coulomb repulsion U is lower than the CT energy ∆. Due to the inversion
symmetry on the V site the onsite d− d excitations are not dipole allowed but can
yield �nite spectral weight by the coupling to phonons. A detailed optical study
of the local d− d excitations has been reported by Benckiser et al. [18] focusing
on the mid- and near-infrared frequency range. In the spectral range relevant for
this work local d− d excitations can be neglected because of the overlap with the
strongly dipole-allowed MH excitations.
Due to the multiorbital character of RVO3, the �nal |d1

i d
3
j〉 states of the MH ex-

citations are split into a complex multiplet structure, which is supposed to be
re�ected in a multi-peak structure of the optical data [8, 10]. Since the splitting
between the t2g level and the eg level amounts to 10Dq ≈ 2 eV in RVO3, we may
neglect the eg orbitals for a discussion of the lowest excited states. For the sake of
simplicity, we assume cubic symmetry and neglect the crystal-�eld splitting within
the t2g levels of roughly 0.1 eV− 0.2 eV. In the ground state, the t22g con�guration
shows 3T1 symmetry with spin 1, in agreement with Hund's rule. The excited
states |t12gt32g〉 have to be distinguished according to the t32g sector because the t

1
2g

con�guration always has the same energy. The t32g state splits into four levels
4A2, 2E, 2T1, and 2T2 with 2E and 2T1 being degenerate [8, 10, 23]. A sketch of
the t22g ground state and the t32g excited states is shown in Fig. 5.9. The energies
of these levels amount to U − 3JH (4A2), U (2E,2 T1), and U + 2JH (2T2) (see
Fig. 5.10) [8,10] with the on-site Coulomb repulsion U ≈ 4 eV− 5 eV [19,54]. The
value of the Hund exchange JH ≈ 0.55 eV− 0.7 eV has been determined from the
energy of spin-forbidden orbital excitations in YVO3 [18]. The complex spin and
orbital ordering phase diagram of RVO3 is supposed to be the origin of a com-
plex temperature dependence of the optical spectra [8, 10]. A change of spin and
orbital correlations is expected to be re�ected in a characteristic spectral-weight
transfer between the individual components of the optical multiplets [10]. The
temperature dependence of the individual absorption bands can be understood by
considering the spin and orbital selection rules for the electron transfer between
neighboring lattice sites (the total spin of the initial and �nal state has to be
equal: Siz = Sfz ; in cubic symmetry t2g orbitals generally only have overlap with
the same t2g orbital on the neighboring lattice site, cf. Sec. 2.6 ). We will use this
concept to analyze the temperature dependence of the experimental data in Sec.
6.3.2.



5.1 The compounds RVO3 (R=Y, rare-earth ion) 71
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Figure 5.9: Sketch of the t22g ground state multiplet 3T1 of RVO3 (left) and the t32g
multiplets 4A2, 2E, 2T1, and 2T2 and the lowest t22ge

1
g multiplets 4T2

and 4T1, all corresponding to possible excited states resulting from a
MH excitation.
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Figure 5.10:
Energy separation between the t32g multiplets
4A2, [2E, 2T1], and 2T2.

5.1.8 Probing orbital �uctuation by the use of ellipsometry

As discussed in Sec. 5.1.3, di�erent groups have claimed that orbital �uctuations
may be strong in the monoclinic phase of RVO3. The experimental determina-
tion of orbital �uctuations is challenging. Our experimental approach is based
on theoretical studies performed by Khaliullin, Horsch, Ole±, and Feiner [8, 10].
They study the optical properties of strongly correlated transition-metal oxides
on the basis of spin-orbital superexchange models and show that the expected
temperature dependence of the optical spectra is strikingly di�erent for scenar-
ios with either strongly �uctuating orbitals or rigid orbital order. In Sec. 2.6 we
have seen that the MH excitations are the real counterparts of the virtual hopping
processes that constitute the superexchange interactions between neighboring lat-
tice sites. Thus the MH excitations are intimately connected with the spin-spin
and orbital-orbital correlation functions. In the case of RVO3 the multi-orbital
superexchange model includes coupled spin and orbital degrees of freedom. Ac-
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cording to Refs. [8, 10] the intensity of a MH excitation
∫∞

0
σ

(γ)
n dω into a speci�c

multiplet state labeled by n along the cubic axis γ is related to the respective
contribution to the e�ective low-energy superexchange Hamiltonian (Eq. 2.6 on
page 13) H(γ)

n (ij) via the optical sum rule [10],

a0~2

e2

∫ ∞
0

σ(γ)
n (ω)dω = −π

〈
H(γ)
n (ij)

〉
= −π

2
K(γ)
n (5.1)

where a0 is the distance between magnetic ions. The second equality relates
the superexchange energy to the associated kinetic energy K(γ)

n via the Hellman-
Feynman theorem [10].
Khaliullin, Horsch, Ole±, and Feiner [8, 10] made extensive use of this concept
to study the optical properties of strongly correlated transition-metal oxides and
determined the expected temperature and polarization dependence of the di�erent
multiplet transitions which contribute to the optical conductivity. Khaliullin,
Horsch, Ole±, and Feiner [8,10] specify H(γ)

n (ij) in terms of the on-site intraorbital
Coulomb interaction energy U , the e�ective hopping element t of d − d charge
excitations between transition-metal ions, and the Hund exchange JH . They use
their results to calculate the optical spectral weights of the MH excitations into
the 4A2 (n = 1), [2T1,

2E] (n = 2), and 2T2 (n = 3) multiplets within the ab
plane (γ = ab) and along the c direction (γ = c) in terms of the kinetic energies
K

(γ)
n based on a mean-�eld concept for cubic crystal symmetry. Ole± et al. [8]

calculate the optical spectral weights assuming rigid orbital order with TOO =∞
on the example of LaVO3 for the phase with C -type spin and G-type orbital
order and YVO3 for the low-temperature phase with G-type spin and C -type
orbital order. They apply a mean-�eld approximation and separate the spin and
orbital correlations from each other. The obtained values at T = 0 and above the
magnetic transition at T = 0.85J (≈ 300K) are summarized in table 5.3. The
kinetic energy terms are depicted in the left panel of Fig. 5.11 as a function of
normalized temperature T/J for the transition into the phase with C -type spin
and G-type orbital order. Khalliullin et al. [10], on the contrary, allow for quantum
e�ects that go beyond the mean-�eld theory and include �uctuating orbitals as
well as coupled spin-orbital degrees of freedom. They set TOO = TN . The so
obtained optical spectral weights for the transition into the phase with C -type
spin and G-type orbital order as a function of normalized temperature T/J are
shown in right panel of Fig. 5.11.
It has been outlined in Sec. 5.1.3 that orbital quantum �uctuations are expected
to be strong along the c axis in the monoclinic phase where orbital �uctuations
and FM spin order support each other [14]. Khaliullin, Horsch, Ole±, and Feiner
[8, 10] have demonstrated that the temperature evolution of the optical spectral
weight of the excitation into the 4A2 multiplet for E‖c (which is proportional
to K

(c)
1 ) gives valuable information about the strength of orbital �uctuations.
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LaVO3 YVO3

C -type AFM phase G-type AFM phase
0 K 300K 0K 300K

−K(c)
1 1.640 1.181 0.0 0.0

−K(c)
2 0.0 0.280 0.586 0.494

−K(c)
3 0.0 0.0 0.465 0.392

−K(ab)
1 0.219 0.471 0.249 0.471

−K(ab)
2 0.961 0.532 0.871 0.532

−K(ab)
3 0.436 0.253 0.415 0.253

Table 5.3: Optical spectral weights in terms of the kinetic energies K(γ)
n (in units

of the superexchange constant J = 4t2

U
) for the MH excitations into

the 4A2 (n = 1), [2T1,
2E] (n = 2), and 2T2 (n = 3) multiplets along

the c direction (K(c)
n ) and within the ab plane (K(ab)

n ) on the example
of LaVO3 (G-type OO and C -type SO) and YVO3 (C -type OO and
G-type SO) at T = 0 and above the magnetic transition at T = 0.85 J
(≈ 300 K) as obtained by Ole± et al. [8] under the assumption of classical
orbital order with TOO =∞ in the cubic approximation.

The superexchange Hamiltionian of Eq. 5.1 for this transition (n = 1, γ = c)
reads [8, 10,98]:

H
(c)
1 = −J

3
R(2 + ~Si · ~Sj)(

1

4
− τi · τj) (5.2)

The orbital pseudospins T = 1/2 are described by the operators τi which are de-
�ned by the (initially degenerate) orbital doublet dzx and dyz at site i. Both of
them are active along the c axis as there is precisely one electron in these two
orbitals at each site i. Here, (2+ ~Si · ~Sj) is the projection operator in the high-spin
state for S = 1 spins [8,10]. The superexchange constant J is given by 4t2

U
and the

parameter R is de�ned as R = 1/(1− 3η) with η = JH/U . In order to determine
the strength of orbital �uctuations, one has to study the detailed temperature
dependence of the spectral weight, which thus is the most interesting quantity.
Both results for K(c)

1 (taken from Fig. 5.11 of Refs. [10] and [8]) as a function of
normalized temperature T/J are displayed in Fig. 5.35 (b) on page 105, see below.
We draw a conclusion about the importance of orbital �uctuations in RVO3 by
comparing our experimental results with the predictions for both scenarios, rigid
orbital order versus �uctuating orbitals, in Sec. 5.3.3.
Equation 5.2 can also be used to extract the expected total spectral-weight change
of the excitation into 4A2 for E ‖ c when going from a completely disordered state
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Figure 5.11: Optical spectral weights in terms of the kinetic energies K(γ)
n (in

units of J (left panels) and 2J (right panels), in the left panels K(γ)
n

are de�ned with opposite signs to obtain positive quantities) for the
MH excitations into the 4A2 (n = 1), [2T1,

2E] (n = 2), and 2T2

(n = 3) multiplets along the c direction (K(c)
n ) and within the ab

plane (K(ab)
n ), and the total (tot) spectral weights (

∑
nK

(γ)
n ) as a

function of normalized temperature T/J for the transition into the
phase with C -type spin and G-type orbital order. The left panels
show the results obtained by Ole± et al. [8]. They set TN = 0.4 J
and assume rigid orbital order with TOO = ∞ (the �gure has been
taken from Ref. [8]). The right panels show the results of Khaliullin
et al. [10] who assume �uctuating orbitals with TN = TOO = 0.4 J
(the �gure has been taken from Ref. [10]). Both results refer to
cubic crystal symmetry. In the upper panels (a) the e�ective carrier
concentration of the double-peak structure between 1 eV and 3 eV in
σc1(ω) of LaVO3 (black circles) as obtained by Miyasaka et al. [21] is
reproduced (see Sec. 5.3.2) after scaling to match the value of K(c)

1

at T → 0.
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into the state with fully ordered spins and orbitals, of C and G type, respectively.
It amounts to 33 % for the spin part and 50% for the orbital part. Accordingly,
multiplication yields an expected total change of spectral weight of approx. 66%.
We will compare this value with our experimental result in Sec. 5.3.3 and thereby
verify the peak assignment.
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5.2 Experimental data

In this section the experimental results obtained on YVO3, GdVO3, and CeVO3

are presented. Variable-temperature measurements have been performed inside
the cryostat at an angle of incidence of 70◦. All samples were oriented such
that the crystallographic axis were parallel to the ellipsometer coordinate system.
Consequently, it was su�cient to acquire the ellipsometric variables Ψpp and ∆pp

(cf. Sec. 3.2.1). All accessible Mueller-matrix elements have been obtained at room
temperature to check for possible misalignment or depolarization.

5.2.1 Optical conductivity of YVO3

All accessible Mueller-matrix elements have been acquired for anisotropic YVO3

for four di�erent orientations, using two di�erent polished sample surfaces, an ab
plane and an ac plane (measurement series 1). The size of the sample surfaces
amounts to approx. 6mm × 6mm. To obtain the dielectric function εγ (γ = a, b, c)
the experimental data is �t by a sum of two Tauc-Lorentz oscillators to describe
the data close to the band gap and four Gaussian oscillators at higher energies for
εa(ω) and a sum of one Tauc-Lorentz oscillator and �ve Gaussian oscillators for
εc(ω) (for temperatures below TS two Tauc-Lorentz oscillators and four Gaussian
oscillators are used to describe εc(ω)). Two of the Gaussian oscillators account
for the steep increase of ε2(ω) above ≈ 4.5 eV (see Fig. 5.13). The parameters of
the Tauc-Lorentz and Gaussian oscillators are summarized in tables 5.4 and 5.5
for the data sets at T = 15K, 100K, and 300K. Figure 5.12 shows an exemplary
�t to the measured data at 140K. The �t describes the measured data very well,
yielding an MSE (see Sec. 3.2.4) of approx. 0.9 for T > TS (= 77K) and approx.
1.8 for T < TS. The quality of the �t is remarkable, keeping in mind that the
model parameters are simultaneously �t to all accessible Mueller-matrix elements
that have been obtained for 4(!) di�erent sample orientations. It turned out that
the use of Tauc-Lorentz oscillators for the description of the line shape close to the
band gap yields a better �t than a model consisting of Gaussian oscillators alone.
A model consisting of Lorentz oscillators is not able to reproduce the line shape of
the measured data close to the band gap (see Fig. 5.33 below). In the �t a surface
roughness with a thickness ranging from 35Å to 80Å depending on the sample
surface is assumed. The thickness of the surface layer has been deduced from the
transparent region of YVO3 (ε2(ω) ≈ 0) below 1.5 eV, as has been described in Sec.
4.2.1. The dielectric function along all three crystallographic directions a, b, and
c is plotted in Fig. 5.13. The left panel of Fig. 5.14 shows the optical conductivity
σ1(ω). A close-up view of the multiplet structure below 4.5 eV is presented in the
right panel of Fig. 5.14. The data show a striking polarization dependence between
the ab plane and the c axis. Only a very small anisotropy is observed between the
a and the b axis, the main features, including the temperature dependence, are
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the same in both directions. The analysis of the anisotropy within the ab plane is
not the objective of this work, therefore we will not go into further detail.
The main focus of this work is on the determination of the temperature dependence
of the optical data. The number of temperature curves turned out to be not
enough for a detailed analysis. Particularly, more data is needed close to the spin
and orbital ordering temperatures TN and TOO, respectively, and it is desirable
to acquire data at temperatures above room temperature. In the framework of
a second measurement series (measurement series 2), the data acquisition was
restricted to the ellipsometric variables Ψpp and ∆pp. As we want to neglect the
anisotropy within the ab plane, it was su�cient to make use of only one polished
sample surface of another sample, an ac plane (size of the sample surface 5mm ×
2.5mm), which has been measured in two di�erent orientations, with the a and
the c axis parallel to the plane of incidence, respectively. To obtain the dielectric
function, the same set of oscillators is used in the �t as before. Here, the data below
1.5 eV yield a surface roughness with a thickness of 23Å that has been included in
the �t. Figure 5.15 shows the Tauc-Lorentz and Gaussian oscillators that compose
ε2(ω). Figure 5.16 compares the optical conductivity σ1(ω) of YVO3 at 140K as
obtained from measurement series 1 and measurement series 2, respectively. The
data for the c axis agree very well, slightly larger deviations are observed for
the data corresponding to the ab plane. One reason for the deviations is given
by the fact that no b axis data has been acquired within measurement series 2.
However, the main features of both data sets corresponding to the ab plane are
the same. The dielectric function ε(ω) for various temperatures as obtained in
the framework of measurement series 2 is shown in Fig. 5.17. Figure 5.18 displays
the optical conductivity σ1(ω) in the energy range from 1.0 eV to 4.5 eV. In the
framework of the second measurement series, data has been acquired only above
the structural phase transition temperature TS at 77K, as samples tend to break
when undergoing the phase transition (see Sec. 5.3.2 below). As we are mainly
interested in a detailed T dependence around TN and TOO, we want to avoid this
problem.
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Figure 5.12: Experimentally obtained Ψpp (top) and ∆pp (bottom) of YVO3 for
two di�erent sample orientations at T = 140K with �t. Data that
have been acquired on an ac plane with the c axis parallel to the
plane of incidence (orange squares) and on an ab plane with the a
axis parallel to the plane of incidence (blue squares) are shown.
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Figure 5.13: Dielectric function ε(ω) of YVO3 for the a, b, and c direction between
1.25 eV and 5.0 eV for di�erent temperatures (measurement series 1).
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Figure 5.14: Optical conductivity σ1(ω) of YVO3 for the a, b, and c direction be-
tween 1.25 eV and 5.0 eV (left panel) and a close-up view of the mul-
tiplet structure between 1.5 eV and 4.5 eV (right panel) for di�erent
temperatures (measurement series 1).
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Figure 5.15: The measured data of YVO3 is best �t by a sum of two Tauc-Lorentz
oscillators and four Gaussian oscillators for εa2(ω) and one Tauc-
Lorentz and �ve Gaussian oscillators for εc2(ω). Two of the Gaussian
oscillators describe the steep increase of ε2(ω) above ≈ 4.5 eV. (The
data have been obtained within measurement series 2.)
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Figure 5.17: Dielectric function ε(ω) of YVO3 for the a and c direction between
0.75 eV and 5.0 eV as obtained from a second measurement series for
T > TS only (measurement series 2). (Not all temperatures are shown
for clarity.)
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Figure 5.18: Optical conductivity σ1(ω) of YVO3 for the a and c direction between
1.0 eV and 4.5 eV as obtained from a second measurement series for
T > TS only (measurement series 2). (Not all temperatures are shown
for clarity.)
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Table 5.4: Parameters of the �t to the measured data of YVO3 (measurement
series 1) with Gaussian (GA) and Tauc-Lorentz (TL) oscillators (a and
b axis). The parameters of the oscillators are de�ned in Sec. 3.1.5 in
Eq. 3.24 and Eq. 3.23, respectively. Apart from the amplitude A of the
Gaussian oscillator, which is dimensionless, all parameters are given in
eV.

a axis GA1 GA2 GA3 GA4 TL1 TL2

ω0 3.4898 4.2329 4.8797 5.1158 A 4.3248 2.4971
T = 15K Br 0.7029 1.3061 0.2989 0.2535 ω0 1.7624 2.3614

A 0.3763 0.3617 1.5247 1.9824 γ 0.4353 1.0358
ωg 1.7165 1.6651

ω0 3.2016 4.2799 4.8001 5.0584 A 7.0268 1.0089
T = 100K Br 0.8171 1.6123 0.1941 0.4422 ω0 1.7526 2.3994

A 0.1862 0.3083 0.5406 2.1177 γ 0.5245 0.6249
ωg 1.6472 1.6155

ω0 3.0494 4.4456 4.7719 5.1331 A 12.2301 5.5061
T = 300K Br 0.5855 1.4270 0.2999 0.5405 ω0 1.5525 2.2855

A 0.0324 0.1825 0.7330 2.1556 γ 0.5379 0.6408
ωg 1.6439 1.9723

b axis GA1 GA2 GA3 GA4 TL1 TL2

ω0 3.4834 3.8346 4.7627 5.0759 A 11.8495 6.7074
T = 15K Br 0.5673 1.0642 0.1951 0.3778 ω0 1.7905 2.2238

A 0.2632 0.4264 0.8976 2.6538 γ 0.4080 0.6110
ωg 1.7885 2.0196

ω0 3.4478 4.2030 4.7649 5.1536 A 12.9100 0.8399
T = 100K Br 1.0790 0.7446 0.2269 0.5163 ω0 1.6821 2.3995

A 0.3281 0.1645 0.7474 2.2319 γ 0.4454 0.5733
ωg 1.6969 1.5953

ω0 3.0109 3.9458 4.7610 5.2184 A 5.9605 3.1006
T = 300K Br 0.9089 1.0590 0.3220 0.6190 ω0 1.7212 2.3611

A 0.1415 0.1884 0.5606 2.2607 γ 0.4550 0.6824
ωg 1.5340 1.7137
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Table 5.5: Parameters of the �t to the measured data of YVO3 (measurement
series 1) with Gaussian (GA) and Tauc-Lorentz (TL) oscillators (c axis).
See the caption of table 5.4 for the de�nition of the parameters.

c axis GA1 GA2 GA3 GA4 GA5 TL1 TL2

ω0 3.7313 4.4578 4.8178 5.0646 A 4.8745 0.8722
T = 15K Br 0.9905 0.5964 0.1792 0.3916 ω0 1.7389 2.4927

A 0.3916 0.1710 1.6280 3.3541 γ 0.6381 0.7608
ωg 1.7375 1.5543

ω0 2.4446 2.6255 4.4114 4.8293 5.1361 A 14.4352
T = 100K Br 0.4144 0.9777 0.9168 0.2578 0.4638 ω0 1.8026

A 0.2790 0.5400 0.1796 1.2111 2.6678 γ 0.3762
ωg 1.6418

ω0 2.4196 2.6494 4.2180 4.7780 5.1378 A 2.6747
T = 300K Br 0.4031 1.1357 1.2159 0.2473 0.6024 ω0 1.7648

A 0.1465 0.4099 0.2596 0.5506 2.4715 γ 0.3573
ωg 1.4713
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5.2.2 Optical conductivity of GdVO3

The dielectric function ε(ω) of anisotropic GdVO3 is deduced from the ellipsome-
tric variables Ψpp and ∆pp, which have been acquired on a single polished sample
surface, an ac plane. The surface has been measured in two di�erent orientations,
with the a and the c axis parallel to the plane of incidence, respectively. The �t to
the experimental data is based on a model consisting of seven Gaussian oscillators
for εa2(ω) and εc2(ω), respectively, three of them describe the steep increase of ε2(ω)
above ≈ 4.5 eV, see Fig. 5.19. The parameters of the Gaussian oscillators for the
data sets at 15K, 280K, and 460K are summarized in tables 5.6 and 5.7. The
�t is remarkably good, yielding an MSE between 0.6 and 0.9, depending on the
temperature. An exemplary �t to the measured data at T = 130K is presented
in Fig. 5.20. The noise in the experimental data, which is most pronounced for
energies & 3.5 eV, originates from the smallness of the sample. The size of the
sample surface amounts to only 3mm × 2mm. This leads to a low intensity at
the detector as part of the light beam is re�ected away from the brass cone which
serves as the sample holder (see Fig. 4.6 in Sec. 4.1.3). A surface roughness with
a thickness of approx. 25Å is deduced from the data below 1.5 eV (ε2(ω) ≈ 0).
The dielectric function ε(ω) is presented in Fig. 5.21. Figure 5.22 shows the optical
conductivity σ1(ω) in the whole measured energy range from 0.75 eV to 5.5 eV,
whereas a close-up view of the multiplet structure below 4.5 eV is presented in
Fig. 5.23.
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Figure 5.19: The measured data of GdVO3 is best �t by a sum of seven Gaussian
oscillators for εa2(ω) and εc2(ω), respectively. Three of the Gaussian
oscillators describe the steep increase of ε2(ω) above ≈ 4.5 eV.
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Figure 5.20: Experimentally obtained Ψpp (left panel) and ∆pp (right panel) of
GdVO3 for two di�erent sample orientations at T = 130K. The data
have been acquired on an ac plane with the c axis (orange squares)
and the a axis (blue squares) parallel the plane of incidence, respec-
tively.
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Figure 5.21: Dielectric function ε(ω) of GdVO3 for the a and c direction between
0.75 eV and 5.5 eV for di�erent temperatures. (Not all temperatures
are shown for clarity.)
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Figure 5.22: Optical conductivity σ1(ω) of GdVO3 for the a and c direction be-
tween 0.75 eV and 5.5 eV for di�erent temperatures. (Not all temper-
atures are shown for clarity.)
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Figure 5.23: Close-up view of the optical conductivity σ1(ω) of GdVO3 for the a
and c direction between 1.0 eV and 4.5 eV for di�erent temperatures.
(Not all temperatures are shown for clarity for σa1(ω).)
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Table 5.6: Parameters of the �t to the measured data of GdVO3 with Gaussian
(GA) oscillators (a axis). The center energy ω0, the FWHM Br, and
the amplitude A (dimensionless) of the Gaussian oscillators are de�ned
in Sec. 3.1.5 in Eq. 3.24. The parameters ω0 and Br are given in eV.

a axis GA1 GA2 GA3 GA4 GA5 GA6 GA7

w0 1.9591 2.2886 3.1104 4.266 4.7633 5.0177 5.6048
T = 15K Br 0.3371 0.5461 1.0770 1.1872 0.2348 0.4618 0.9137

A 0.1469 0.2165 0.4566 0.3270 0.6968 1.4550 2.1601
w0 1.8155 2.2796 2.8744 4.1351 4.7019 4.9870 5.7341

T = 280K Br 0.3478 0.6614 0.9839 1.4237 0.3276 0.5399 1.1322
A 0.2058 0.3583 0.3431 0.3336 0.7200 1.3708 2.4066
w0 1.7751 2.2750 2.8725 3.9963 4.6403 4.9515 5.9380

T = 460K Br 0.3955 0.6756 0.9895 1.1972 0.3984 0.6162 1.4307
A 0.2133 0.3463 0.3210 0.2502 0.5569 1.2767 2.8005

Table 5.7: Parameters of the �t to the measured data of GdVO3 with Gaussian
(GA) oscillators (c axis). See the caption of table 5.6 for the de�nition
of the parameters.

c axis GA1 GA2 GA3 GA4 GA5 GA6 GA7

w0 1.9207 2.2867 2.7464 4.2958 4.7567 4.9953 5.5297
T = 15K Br 0.3143 0.6096 0.8880 0.6327 0.2647 0.4127 0.7121

A 1.0699 1.2013 0.7481 0.2098 1.6203 1.8844 2.6067
w0 1.8075 2.3601 2.9867 4.1597 4.6965 4.9581 5.5244

T = 280K Br 0.3357 0.7413 0.6629 1.3884 0.3444 0.4624 0.7541
A 0.3448 0.7281 0.2887 0.3113 0.9022 1.6643 2.5540
w0 1.7794 2.3300 2.8973 3.9895 4.6597 4.9683 5.7258

T = 460K Br 0.4007 0.6933 0.6334 1.6614 0.3745 0.6315 0.8973
A 0.3100 0.5791 0.2493 0.2385 0.6469 1.6598 2.9444
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5.2.3 Optical conductivity of CeVO3

The ellipsometric variables Ψpp and ∆pp have been obtained for two di�erent
orientations of a single crystal of CeVO3. A polished ac surface has been measured
with the a and the c axis parallel to the plane of incidence, respectively. To obtain
the dielectric function from the measured data, a �t based on four (�ve) Gaussian
oscillators for εa(ω) (εc(ω)) yields a good result. One (two) oscillators account for
the steep increase of εa2(ω) (εc2(ω)) above ≈ 4.5 eV, see Fig. 5.24. The parameters of
the Gaussian oscillators for the data sets at 60K, 250K, and 490K are summarized
in tables 5.8 and 5.9. The quality of the �t increases with increasing temperature,
yielding an MSE that decreases from approx. 2.5 for T = 60K to approx. 1 for
T = 490K. Figure 5.25 shows an exemplary �t to the measured data at 145K.
Similar to the case of GdVO3, the single crystal of CeVO3 on hand is very small,
the size of the sample surface amounts to only 2.5mm × 1.5mm. As a result, part
of the light beam does not hit the detector as it is re�ected away from the sample
holder consisting of a brass cone (see Fig. 4.6 in Sec. 4.1.3). The low intensity
at the detector leads to the noise in the experimental data, which is especially
pronounced in the higher energy region. A surface roughness with a thickness of
60Å has been deduced from the data below 1.2 eV.
Figure 5.26 displays the dielectric function ε(ω) . The optical conductivity σ1(ω)
between 0.75 eV and 5.0 eV is shown in Fig. 5.27, whereas a close-view of the
multiplet structure below 4.5 eV is displayed in Fig. 5.28.
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Figure 5.24: The measured data of CeVO3 is best �t by a sum of four Gaussian
oscillators for εa2(ω) and �ve Gaussian oscillators for εc2(ω). One (two)
of the Gaussian oscillators describe(s) the steep increase of εa2(ω)
(εc2(ω)) above ≈ 4.5 eV.
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Figure 5.25: Experimentally obtained Ψpp (left panel) and ∆pp (right panel) of
CeVO3 for two di�erent sample orientations at T = 145K. The data
have been acquired on an ac plane with the c axis (orange squares)
and the a axis (blue squares) parallel to the plane of incidence, re-
spectively.
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Figure 5.26: Dielectric function ε(ω) of CeVO3 for the a and c direction between
0.75 eV and 5.0 eV for di�erent temperatures. (Not all temperatures
are shown for clarity.)



92 5. Probing orbital �uctuations in RVO3 (R=Y, rare earth ion)

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

1 2 3 4 50

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

 6 0  K  
 1 0 0  K
 1 2 0  k
 1 3 0  K
 1 3 5  K
 1 4 0  K
 1 5 0  K
 1 6 0  K
 2 5 0  K
 4 9 0  K

 

 
σ 1((Ω

cm
)-1 )

C e V O 3

a  a x i s

 

 

σ 1((Ω
cm

)-1 )

E n e r g y  ( e V )

c  a x i s

Figure 5.27: Optical conductivity σ1(ω) of CeVO3 for the a and c direction between
0.75 eV and 5.0 eV for di�erent temperatures. (Not all temperatures
are shown for clarity.)
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Figure 5.28: Close-up view of the optical conductivity σ1(ω) of CeVO3 for the a
and c direction between 0.75 eV and 4.5 eV for di�erent temperatures.
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Table 5.8: Parameters of the �t to the measured data of CeVO3 with Gaussian
(GA) oscillators (a axis). The center energy ω0, the FWHM Br, and
the amplitude A (dimensionless) of the Gaussian oscillators are de�ned
in Sec. 3.1.5 in Eq. 3.24. The parameters ω0 and Br are given in eV.

a axis GA1 GA2 GA3 GA4

ω0 1.8459 2.0031 3.1121 4.9376
T = 60K Br 0.3276 0.7111 1.9496 0.8037

A 0.1480 0.2041 0.7822 2.3066
ω0 1.7085 2.1893 3.0756 4.9421

T = 250K Br 0.3910 0.7581 2.3021 0.9016
A 0.3499 0.4600 0.6672 2.6068
ω0 1.6728 2.1830 2.9568 4.9369

T = 490K Br 0.4543 0.7147 2.3713 1.0443
A 0.3329 0.3617 0.6826 2.5505

Table 5.9: Parameters of the �t to the measured data of CeVO3 with Gaussian
(GA) oscillators (c axis). See the caption of table 5.8 for the de�nition
of the parameters.

c axis GA1 GA2 GA3 GA4 GA5

ω0 1.8099 2.2184 2.58301 4.7058 5.9375
T = 60K Br 0.3422 0.7520 2.9387 0.3264 1.7900

A 2.0768 1.4926 0.7192 1.5316 5.2904
ω0 1.7272 2.2034 3.1534 4.6919 5.2837

T = 250K Br 0.3587 0.7506 2.8612 0.3765 1.3601
A 0.3797 0.4887 0.7770 0.6737 2.3950
ω0 1.6907 2.1932 2.6811 4.7380 5.7022

T = 490K Br 0.4283 0.6258 2.3935 0.6172 2.2920
A 0.3262 0.2829 0.7932 0.8773 2.5003



5.3 Discussion 95

5.3 Discussion

5.3.1 Multiplet assignment and temperature dependence

The overall behavior of the optical conductivity σ1(ω) is very similar for YVO3,
GdVO3, and CeVO3 (see Figs. 5.14, 5.22, and 5.27). The main di�erence is that
YVO3 shows the low-temperature phase with C -type OO below TS = 77K with
a pronounced peak at 3.5 eV. Figure 5.29 compares the optical conductivity of all
three compounds at two di�erent temperatures. In all three compounds, the Mott
gap is about 1.6 eV to 1.8 eV, in excellent agreement with infrared-transmittance
data [18]. Above the gap we observe the MH excitations |d2

i d
2
j〉 → |d1

i d
3
j〉. At 4.5

eV, σ1(ω) steeply rises up to roughly 1500 (Ωcm)−1, corresponding to the onset of
CT excitations |p6d2〉 → |p5d3〉 between the oxygen 2p and the vanadium 3d level.
This general picture is well accepted [21�23, 99, 100]. According to Sec. 5.1.7, we
now focus on a consistent assignment of the MH excitations to the t32g multiplets
4A2, [2T1,

2E], and 2T2 under the assumption of cubic symmetry, neglecting the
crystal-�eld splitting within the t2g levels. We aim to understand the temperature
dependence of the individual absorption bands observed in our measured data on
the basis of variations of nearest-neighbor spin-spin and orbital-orbital correla-
tions according to the spin and orbital ordering phase diagram of RVO3. If the
excitation into a certain t32g multiplet is allowed or forbidden strongly depends
on polarization and temperature. Figure 5.30 sketches the allowed excitations
|t22g,it22g,j〉 → |t12g,it32g,j〉 in the di�erent ordered phases of RVO3. To deduce their
expected optical spectral weights we make use of table 5.3 on page 73.
The multiplet structure of σ1(ω) below 4.5 eV constitutes of four absorption peaks
at roughly 1.7 eV− 2.2 eV (peak A), 2.3 eV− 2.5 eV (peak B), 2.8 eV− 3.6 eV (peak
C), and 3.6 eV− 4.4 eV (peak D) in the a direction, whereas peak C is missing
in the c direction. See Figs. 5.14, 5.18, 5.23, 5.28, and 5.29. The modeling of
the ellipsometric data uses two oscillators (Tauc-Lorentz or Gaussians, see Figs.
5.15 and 5.19) to describe the line shape of peak B at approx. 2.4 eV in σc1(ω)
of YVO3 and GdVO3. This does not necessarily mean the existence of two mi-
croscopically di�erent excitations as the line shape of the absorption band might
not be Gaussian or Tauc-Lorentz like but can be dominated by bandstructure ef-
fects. Furthermore, peaks C and D (the spectral weight between 3 eV and 4.5 eV)
in σa1(ω) are modeled by a single Gaussian oscillator for the data of CeVO3, see
Fig. 5.24. This is due to the noise in the experimental data of CeVO3 (see Fig.
5.25), which is especially pronounced in the a axis spectrum in the energy range
from 3 eV to 4 eV. The line shape in this energy range is only approximate, the
experimental data does not yield enough information to de�nite determine the
parameters of two oscillators.
The lowest multiplet 4A2 is a high-spin state in which the xy, xz, and yz orbitals
are occupied by one electron each (see Fig. 5.9 on page 71). Due to the high-spin
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character, parallel spins on adjacent sites in the initial state give rise to a larger
spectral weight than antiparallel spins. In contrast, the other t32g multiplets [

2E,
2T1] and 2T2 all are low-spin states (see Fig. 5.9), thus, the spectral weight is larger
for antiparallel spins. This yields the following clear predictions for the phase with
C -type SO [8, 10, 99] in which spins are parallel along the c axis and antiparal-
lel within the ab plane (see Fig. 5.4). (1) The spectral weight of the excitation
into the lowest multiplet 4A2 is expected to be larger in σc1 than in σa1 . (2) With
decreasing temperature, spin-spin and orbital-orbital correlations are enhanced,
thus, σc1 is expected to increase whereas σa1 is expected to decrease for the lowest
multiplet. (3) The opposite temperature dependence is expected for the higher
multiplets. A comparison of these predictions with our data clearly shows that
both peaks A and B at ≈ 2.0 eV and ≈ 2.4 eV, respectively, have to be assigned
to the lowest 3d3 multiplet 4A2. We observe a spectacular increase of the double-
peak structure consisting of peak A and B in σc1 when the temperature is lowered
below TOO (see Figs. 5.18, 5.23, and 5.28). In opposition, peaks A and B loose
spectral weight with decreasing temperature in σa1 . The temperature dependence
of combined peak A and B in σc1 will be discussed in further detail in Sec. 5.3.3 in
the context of the investigation of the importance of orbital �uctuations in RVO3.
According to theory [8] (see table 5.3), the excitation into 4A2 in σa1 retains a
�nite transition probability for fully antiferro orbital and spin correlations even in
a perfect cubic structure since excitations to a state with S = 3/2 and |Sz| = 1/2
are possible. This explains the �nite spectral weight of peaks A and B in σa1 in
the C -type spin-ordered phase (see Figs. 5.18, 5.23, and 5.28).
Peak C is located roughly 3JH above peak A in σa1 in agreement with the ex-
pectations for the [2E, 2T1] multiplets. The spectral weight of the excitation into
[2E, 2T1] vanishes for parallel spins [8, 10, 99] (see table 5.3) and therefore, peak
C is absent in σc1 (see Figs. 5.18, 5.23, 5.28, and 5.29). Within the ab plane the
excitation into [2E, 2T1] is expected to gain weight when entering the spin and
orbitally ordered phase. This is in agreement with our observation as peak C
increases below TOO in σa1 (see Figs. 5.18, 5.23, 5.28). The dramatic changes ob-
served at TS = 77K in YVO3 (see Fig. 5.14) unambiguously prove that our peak
assignment is correct. At TS, the nearest-neighbor correlations along c change
from ferro to antiferro for the spins and vice versa for the orbitals, thus, two ad-
jacent sites show the same orbital occupation below TS with, e.g., xz occupied
on both sites. In this case, according to the orbital selection rule, an excitation
into 4A2 requires hopping from xz on one site to yz on a neighboring site, which
is forbidden along c in cubic symmetry (see table 5.3), explaining the spectacular
suppression of peaks A and B below TS (see Fig. 5.14). The �nite spectral weight
at low T is due to deviations from cubic symmetry [22]. At the same time, the an-
tiferromagnetic and ferro-orbital correlation along c strongly allow the transition
into the 2T1 multiplet explaining the emergence of peak C below 77K in the data
of YVO3 (see table 5.3). The strong increase in spectral weight of peak C also
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in σa1 across TS = 77K (see Fig. 5.14) cannot be explained on the basis of spin
and orbital ordering, as the ordering pattern does not change across the phase
transition within the ab plane [87]. It most likely originates from the change of
the crystal structure across the structural transition since a change of the VO6

octahedra tilt leads to a modi�cation of the transition probabilities between xz
and yz orbitals within the ab plane.
The highest t32g multiplet

2T2 is roughly expected at U + 2JH i.e., 5JH > 2.7 eV
above the lowest peak. It is thus reasonable to assume that this excitation is
located above the onset of CT excitations at 4.5 eV. Peak D at 3.6 eV− 4.4 eV lies
about 10Dq = 1.9 eV above peaks A and B and thus can be assigned to the 4T2

multiplet, the lowest t22ge
1
g multiplet (S = 3/2). In cubic symmetry, the excitation

from a t2g orbital on site i to an eg orbital on a neighboring site is forbidden, but
deviations from cubic symmetry yield a �nite spectral weight. The excitation into
4T2 favors parallel spins on neighboring sites and should therefore gain weight in
the phase with C -type spin order in σc1. However, we observe the opposite tem-
perature dependence (see Figs. 5.18, 5.23, 5.28, and 5.29). A possible explanation
could be the overlap with the CT excitations. The CT edge is shifted to higher
energies for decreasing temperatures (see Figs. 5.14, 5.22, and 5.27) which leads
to a loss of spectral weight between 4.0 eV− 4.5 eV. Within the ab plane, the ex-
citation into 4T2 remains weakly spin allowed also in the spin-ordered phase since
excitations to a state with S = 3/2 and |Sz| = 1/2 are possible. However, peaks
C and D can hardly be separated from each other in σa1 (see Figs. 5.15, 5.19,
and 5.24). The increasing weight of peak C when entering the spin-ordered phase
might also a�ect the spectral weight of peak D. A distinct determination of the
individual temperature dependences of peaks C and D is di�cult.
To summarize this section, we present a detailed analysis of the observed absorp-
tion bands in terms of di�erent 3d3 multiplets. Our peak assignment is consistent
with the observed temperature dependence. The assignment of both, peaks A
and B to the high-spin 4A2 multiplet is unambiguous due the only small energetic
separation of peaks A and B, but particularly due to the distinct temperature
dependence. An explanation for the double-peak structure of the excitation is
given in Sec. 5.4. The temperature dependence of the absorption band observed
at approx. 3 eV (peak C) in σa1(ω) clearly supports our interpretation in terms of
the [2E, 2T1] multiplet. The FM spin order along c in the C -type spin-ordered
phase strongly suppresses the excitation into the low-spin multiplet [2E, 2T1] in
σc1(ω). We suggest that the spectral weight at approx. 3.6 eV− 4.4 eV (peak D)
originates from the excitations into the lowest t22ge

1
g multiplet

4T2.
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Figure 5.29: Comparison of the optical conductivity σ1(ω) of YVO3, GdVO3, and
CeVO3 for the a and c direction for two di�erent temperatures.
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peak A,B C D
multiplet 4A2 [2E, 2T1] 4T2

Table 5.10: The table summarizes the peak assignment.

Figure 5.30: Sketch of MH excitations to �nal t32g multiplets. The allowed exci-
tations in a simple one-electron picture for di�erent spin and orbital
ordering patterns are marked by black arrows. The possible �nal
multiplets are indicated below the sketches.
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5.3.2 Comparison with literature

We are not the �rst to acquire temperature-dependent optical data of RVO3.
However, there is a striking disagreement between di�erent experimental data
sets existent in the literature, which call for clari�cation. Miyasaka et al. [21]
investigated LaVO3 and YVO3 by re�ectivity measurements and obtained the
temperature-dependent optical conductivity from 0.06 eV up to 5 eV by a Kramers-
Kronig analysis. Their result is depicted in Fig. 5.31. In agreement with our data,
they observe the strongly temperature-dependent double-peak structure (peaks A
and B) at around 2 eV for E ‖ c. However, the expected jump of the spectral
weight at TS for YVO3 is missing. Tsvetkov et al. [23] report an optical study of
the electronic excitations across the MH gap in YVO3 by the use of ellipsometry,
see Fig. 5.32. The interesting behavior of the intermediate temperature phase
for E ‖ c is only analyzed at a single temperature T = 80K. Here, the strong
absorption band consisting of two peaks at around 2 eV is completely absent,
whereas the pronounced peak at 3.5 eV, characteristic for the low-temperature
phase, is already visible at 80K. It is not seen at any temperature in Ref. [21].
The data of Miyasaka et al. [21] have recently been corrected by re�ectivity data
of Fujioka et al. [22] on YVO3 and LaVO3 within the framework of a detailed
study focusing on the doping variation of the optical conductivity of Y1−xCaxVO3

and La1−xSrxVO3. The data of Ref. [22] show the expected jump of the spectral
weight at TS for YVO3, but both this jump and the temperature dependence
above TS are much smaller than in our data. We attribute this di�erence to the
di�erent experimental techniques. As ellipsometry is a self-normalizing technique,
it is much better suited for a precise determination of the temperature dependence
than re�ectivity measurements with a subsequent Kramers-Kronig analysis.
Con�icting with our assignment, peaks A and B have been attributed to the two
lowest multiplets 4A2 and [2E,2T1] in Refs. [21�23]. Between these multiplets, a
splitting of 3JH > 1.5 eV is expected, which is incompatible with the observed
splitting between A and B of only 0.5 eV. In other words, the previous assignment
of peaks A and B to two di�erent multiplets yields a nonphysically small value
of JH [99]. Moreover, this scenario is inconsistent with the fact that the spectral
weights of peaks A and B show the same temperature dependence, as discussed
in Sec. 6.3.2.
Both, the incorrect assignment and the discrepancies of the data can be traced
back to problems with the sample temperature. Samples of YVO3 tend to break
at the �rst-order structural transition at TS, often leading to a loss of thermal
contact [22, 37]. We were able to avoid this problem by very slow cooling. A
comparison of our data and the data of Fujioka et al. [22] shows that the seemingly
contradictory data of Refs. [21] and [23] can be reconciled with each other by taking
into account problems with the sample temperature across TS.
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Figure 5.31: Optical conductivity σ1(ω) of (a) LaVO3 and (b) YVO3 for E ‖ c and
E ⊥ c as obtained by Miyasaka et al. [21] by the use of re�ectivity
measurements at di�erent temperatures. Taken from Ref. [21].

Figure 5.32: Dielectric function ε = ε1 + iε2 (here: ε = ε′ + iε′′) of YVO3 for the
a, b, and c direction as obtained by Tsvetkov et al. [23] by the use of
ellipsometry at di�erent temperatures. Taken from Ref. [23].
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5.3.3 Temperature dependence of the spectral weight:
strength of orbital �uctuations

The correct assignment of peaks A and B to the lowest multiplet 4A2 is crucial for
the discussion of the role played by orbital �uctuations. As discussed in Sec. 5.1.3
the spectral weight of the 4A2 multiplet in σc1(ω) depends sensitively on spin-spin
and orbital-orbital correlations between adjacent sites [8, 10, 99]. For a detailed
analysis of the temperature dependence of peaks A and B, we �t the measured
data by a sum of Lorentz oscillators (see Sec. 3.1.5). The �t to εa (εc) is based on
four (three) Lorentz oscillators describing peaks A, B, C, and D (peaks A, B, and
D; ), respectively , see Figs. 5.33 and 5.34. The strong increase of the spectral
weight above 4.5 eV attributed to the onset of CT excitations is reproduced in
the �t by two Gaussian oscillators. There are no severe correlations between the
individual parameters of the Lorentz and Gaussian oscillators, as all entries of the
two-parameter correlation function Skl do not exceed the critical value of 0.92 (see
Sec. 3.2.4). The �t with Lorentz oscillators is not able to reproduce the line shape
of ε2(ω) very well, particularly strong deviations are observed in the energy region
of the onset of electronic excitations above the band gap at about 1.6 eV− 1.8 eV,
see Figs. 5.33 and 5.34. However, the e�ective carrier concentration Neff of peaks
A and B obtained from the Lorentzian �t parameters is well suited to analyze the
changes of spectral weight with temperature. The deviations of the Lorentzian
line shape from the precise line shape of ε2(ω) compensate in Neff (T ) when re-
stricting the attention to temperature dependent changes of Neff (T ). We do not
infer the temperature dependence of peaks A and B in εc2(ω) from the parameters
of the Tauc-Lorentz and Gaussian oscillators, that have been used to deduce the
precise line shape of ε2(ω) from the measured data. Due to its asymmetric line
shape the Tauc-Lorentz oscillator is not well suited for the determination of the
spectral weight of an individual absorption band. Furthermore, the line shape of
some absorption bands could best be described by more than one oscillator (see
Figs. 5.15, 5.19, and 5.24). In particular, peaks A and B in εc2(ω) are modeled by
the use of three oscillators for YVO3 and GdVO3. The �t based on Tauc-Lorentz
and Gaussian oscillators is thus not necessarily physically meaningful. The right
panels of Fig. 5.34 display the sum of the e�ective carrier concentrations of peaks
A and B in εc2(ω) for YVO3, GdVO3, and CeVO3, respectively, as deduced from
the Lorentzian �t parameters by the use of Eq. 4.4 on page 53. In Fig. 5.35 (a)
the sum of the spectral weights of peaks A and B in εc2(ω) scaled to one for the
lowest temperature on a normalized T axis with TN = 1 is shown.
According to theory (see the discussion of Eq. 5.2 in Sec. 5.1.8), comparing a
fully polarized ferromagnetic and G-type orbitally ordered state (T = 0) with a
disordered orbital and spin state (T = ∞), the spectral weight of the excitation
into the 4A2 multiplet along c in the later case is reduced to 1/3 from low tem-
peratures to high temperatures. This is valid in any scenario, i.e., it applies to
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both rigid orbital order and strong orbital �uctuations. We observe a reduction
of spectral weight of approx. 60% (see Fig. 5.35 (a)). This is in good agreement
with the theoretical predictions and further proves that our peak assignment is
correct. The small deviation can be attributed to a background originating from
excitations at higher energies or surface e�ects.
Figure 5.35 (b) displays two di�erent theoretical results (see Sec. 5.1.8) forNeff (T )
of the lowest MH excitation (4A2 multiplet) along c. The blue line reproduces the
result of Ole± et al. [8] who assume rigid orbital order with TOO = ∞, whereas
the red line represents the result of Khaliullin et al. [10] who allow for �uctuat-
ing orbitals and set TN = TOO (cf. the discussion in Sec. 5.1.8 and Fig. 5.11 on
page 74). The blue line for rigid orbital order shows only the reduction of spec-
tral weight by a factor of 2/3, stemming from the spin part, because it assumes
TOO = ∞. The key feature of this comparison is not the di�erence in absolute
value but the temperature dependence above the ordering temperature. For rigid
orbital order, the spectral weight is nearly constant for T > TN and exhibits
a clear kink right at TN . In contrast, there is no pronounced e�ect at TN for
strong quantum �uctuations. The smoking gun for strong �uctuations is a strong
temperature dependence far above TN or TOO, most of the change occurs above
the ordering temperature. The comparison of these predictions with our results
(shown in Fig. 5.35 (a)) yields the following result: For all compounds we �nd
nearly constant spectral weights above TOO, a clear kink at TOO, and also a kink
at TN . These �ndings are in excellent agreement with the expectations for rigid
orbital order. The fact that the changes above TOO are much smaller than below
rules out strong orbital �uctuations in RVO3. The line shape of Neff (T ) in the
case of CeVO3 agrees particularly well with the predictions for rigid orbital order.
This clearly shows that orbital �uctuations are suppressed not only in strongly
distorted YVO3 but also for large R ions such as in pseudocubic CeVO3.
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Figure 5.33: Fit to the measured data of YVO3 with Tauc-Lorentz and Gaussian
oscillators (left panel), and Lorentz oscillators (right panel). The
�t with Lorentz oscillators is only used to analyze the temperature
dependence of the spectral weight of the absorption bands.
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Figure 5.34: Left panels: Result of the Drude-Lorentz �t to the measured data
of YVO3 (upper panel), GdVO3 (middle panel), and CeVO3 (lower
panel) at T = 100K (black line). The dielectric function εc2(ω) is de-
scribed by a sum of three Lorentz oscillators in the energy range below
4.5 eV, labeled peak A (red line), B (blue line), and D (orange line),
respectively. The displayed function εc2 (pink line) refers to the result
of the �t to the measured data based on Tauc-Lorentz and Gaussian
oscillators, that has been discussed in Secs. 5.2.1− 5.2.3. Right pan-
els: Sum of the e�ective carrier concentrations Neff of peaks A and
B resulting from the Lorentzian �t parameters according to Eq. 4.4
on page 53.
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Figure 5.35: (a) Sum of the spectral weights of peaks A and B in σc1(ω) normalized
to one for the lowest measured temperature for GdVO3 and CeVO3.
For YVO3, Neff (T ) is scaled to equal the value of Neff [GdVO3] at
T = 80K. (b) Theoretical results for Neff (T ) of the lowest MH ex-
citation (4A2 multiplet) in σc1 for strong orbital �uctuations (red,
TN = TOO) and rigid orbital order (blue, TOO = ∞, i.e., only the
reduction of the spin part to 2/3 is taken into account). Reproduced
from Refs. [10] and [8] and scaled to one for T = 0.
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5.4 Observation of an excitonic resonance in

RVO3

Figure 5.36:
Optical conductivity of YTiO3 in the energy
range of the Mott-Hubbard excitations as ob-
tained by Gössling et al. [13]. Peak (A) of the
double-peak structure (A)/(B) at approx. 2 eV
has been interpreted in terms of an excitonic res-
onance. Taken from Ref. [13].

Finally, we address the double-
peak structure A/B of the ex-
citation into the lowest 3d3

multiplet. Similar double- and
multi-peak structures of the
lowest multiplet have been re-
ported for LaMnO3 and YTiO3

(see Fig. 5.36) [11, 13]. The
peak splitting has been as-
signed to either excitonic or
band-structure e�ects, which
both have been neglected thus
far in our discussion of local
multiplets. We propose that
peak A is an excitonic reso-
nance, i.e., not a truly bound
state below the gap but a
resonance within the absorp-
tion band. Due to an at-
tractive interaction between a
d3 state in the upper Hub-
bard band and a d1 state
in the lower Hubbard band,
the energy of the resonance
(peak A) is less than the en-
ergy of peak B, where peak
B re�ects an excitation to
|d1d3〉 without attractive in-
teraction. In order to sub-
stantiate this claim, we dis-
cuss results from photoemis-
sion spectroscopy (PES) [101,
102] and from band-structure
calculations [20,99,100].
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5.4.1 Literature on photoemission spectroscopy and band
structure calculations

Using LDA+U , Fang et al. [99] calculated the optical conductivity of LaVO3 and
YVO3 for di�erent polarizations and for di�erent ordering patterns of spins and
orbitals. The results are displayed in Fig. 5.37. The two lowest peaks (called α
and β in Ref. [99]) correspond to the two lowest multiplets of our local approach,
i.e., to the double-peak A/B and peak C, respectively. Accordingly, the spectral
weight of peak α (β) in σc1 decreases (increases) in YVO3 across the phase transi-
tion from the intermediate-temperature phase with C -type spin order to the low-
temperature phase with G-type spin order, as observed experimentally for peak
A/B (C). Peak α is the lowest peak, well separated from the higher-lying excita-
tions, and clearly consists of a single peak only, both for YVO3 and LaVO3 [99].
The experimentally observed splitting into peaks A and B is absent in the LDA+U
results, which neglect excitonic e�ects. For the intermediate-temperature phase of
YVO3, Fang et al. [99] predict peaks α and β (with β observable for E ⊥ c only)

Figure 5.37: LDA+U results of Fang et al. [99] for the optical conductivity of
YVO3 at 65K and 100K, and of LaVO3 at 10K for di�erent magnetic
structures. The results for the most stable spin structure are framed
in red. Taken from Ref. [99].
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at about 1.7 eV and 2.9 eV, respectively, both signi�cantly lower than peaks B and
C in experiment, but in LDA+U results, the peak energies depend sensitively on
the particular choice of U . Considering only the energies, one may be tempted
to assign peaks α and β to peaks A and B, but this is clearly ruled out by the
dependence of the spectral weight on both temperature and polarization as well as
by the value of JH , as discussed in Secs. 6.3.2 and 5.3.2. Also the LDA+U study
of Solovyev et al. [100] reports on the optical conductivity of LaVO3, the result is
displayed in Fig. 5.38. In agreement with the results of Fang et al. [99], there is no
splitting of the lowest excitation. Solovyev et al. [100] �nd the band gap at 0.7 eV
and the CT gap at about 3.5 eV, while the lowest absorption band is peaking at
about 1.7 eV. Since both gaps are about 0.7 eV− 1 eV lower than in experiment, we
assign the lowest peak from LDA+U at 1.7 eV to peak B in our data. As mentioned
above, the peak energy depends sensitively on the choice of U . The LDA+DMFT
study of De Raychaudhury et al. [20] does not report on the optical conductiv-
ity, but it shows the electron-removal and -addition spectra (as measured by PES
and inverse PES) for LaVO3 and YVO3, see Fig. 5.39. For LaVO3, the electron-
removal spectrum shows contributions from all three t2g orbitals, peaking at about
1.2 eV− 1.4 eV below the Fermi energy EF [20]. The small splitting re�ects the
crystal-�eld splitting within the t2g level. The �rst peak of the electron-addition
spectrum lies at about 1.2 eV above EF . Neglecting excitonic e�ects, one may thus
expect the �rst peak in the optical conductivity at about 2.4 eV− 2.6 eV, which is
in agreement with peak B. For YVO3, the electron-removal and -addition spectra
peak at about -1.4 eV to -1.5 eV and +1.2 eV, respectively [20], thus, the peak in

Figure 5.38:
Calculated optical conductivity of LaVO3 by Solovyev
et al. [100] using LDA+U . The solid (dotted) line con-
siders only t2g (all 3d) states. The dashed line shows the
experimental results for σ1(ω) of LaVO3 at room tem-
perature acquired by Arima et al. [57] using re�ectivity
measurements. Taken from Ref. [100].
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the optical conductivity is expected at a slightly larger energy in YVO3 than in
LaVO3, in agreement with our experiment. The calculated electron-removal and
-addition spectra for YVO3 show small shoulders at about -1.1 eV and +0.7 eV.
However, similar features are absent in the calculated spectra of LaVO3. In strong
contrast, peak A in the optical conductivity is much more pronounced in LaVO3

(see Fig. 5.31 taken from Ref. [21]) than in YVO3. Our results on YVO3, GdVO3,
and CeVO3 show that the strength of peak A in the optical conductivity increases
for increasing radius of the rare-earth ion. In summary, band-structure calcula-
tions do not provide any explanation for the observed splitting of about 0.5 eV
between peaks A and B.
Experimental photoemission spectra of LaVO3 and YVO3 show a single peak

lying about 1.5 eV− 1.8 eV below EF [101, 102], see Fig. 5.40. For LaVO3, the
combination of PES and inverse PES has been reported by Maiti and Sarma [101],
see Fig. 5.41. The separation between the highest peak below EF and the lowest
peak above EF amounts to roughly 3 eV, but the inverse PES data were mea-
sured with a resolution of only 0.8 eV. These results are in agreement with the
LDA+DMFT study of Ref. [20] discussed above. Neither band-structure calcula-
tions nor the PES data provide any explanation for the splitting of peaks A and
B. Electron-removal and -addition spectra do not re�ect excitonic e�ects in con-
trast to the optical conductivity. Altogether, this strongly supports an excitonic
interpretation of peak A.

Figure 5.39: LDA+DMFT results of De Raychaudhury et al. [20] for the spectral
matrix Am,m′ of LaVO3 (left) and YVO3 (right). Am,m′ is given in the
crystal-�eld basis consisting of the di�erent t2g orbitals. The black
line refers to the LDA density of states. Taken from Ref. [20].
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Figure 5.40:
Photoemmision results of Mossanek et
al. [102] showing the V 3d valence band
spectra of SrVO3, CaVO3, and LaVO3.
Taken from Ref. [102].

Figure 5.41:
Results of
Ref. [101] from
ultraviolet PES
and inverse PES
on LaVO3. Taken
from Ref. [101].
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5.4.2 Exciton formation in correlated insulators

The mechanism for exciton formation, i.e. the binding of a particle and a hole, in
the upper Hubbard band of correlated insulators has been investigated elaborately
by both, experimentalists and theorists [103�111]. While in simple band insula-
tors, exciton formation is driven by a lowering of the Coulomb energy whereas the
kinetic energy increases, it is well established that the kinetic energy plays an im-
portant role for exciton formation in the case of a 2D Mott insulator with AFM ex-
change on a square lattice [105,107,110]. Transitions of excitonic origin, that show
a signi�cant dispersion, have been observed in the 2D cuprates (e.g. in LaCuO4,
Sr2CuO2Cl2), which can be characterized as being of CT type [104,109�111]. Ac-
cording to the model proposed by Zhang and Ng [105], CT exciton formation
results in two spinless Cu sites, a spinless Cu1+ (3d10, S = 0) ion and a neighbor-
ing Cu2+ (3d9, S = 1/2)−O (2p5, S = 1/2) hole singlet, which can move freely in
the antiferromagnetically ordered CuO2 (Cu2+ 3d9, S = 1/2) planes, see Fig. 5.42.
Exciton formation thus leads to a reduction of the kinetic energy. This mechanism
for exciton formation might also be of importance for the understanding of Cooper
pair formation in high-TC superconductors [105,112�114].
It has been proposed by the authors of Ref. [13] that a similar mechanism for exci-
ton formation operates in the case of antiferro-orbital order. In the following, we
reproduce the simple argumentation of Ref. [13], that has been applied to the case
of the 3d1 MH insulator YTiO3. The actual situation is simpli�ed by considering
a 1D model with only two orbitals per site, e.g., yz and zx, for a chain running
along the z direction. Hopping is only allowed between orbitals of the same type,
it is zero between yz and zx orbitals. The situation is illustrated in Fig. 5.43.
The two types of orbitals are denoted by circles and squares, occupied orbitals are
represented by black and gray symbols, whereas empty symbols refer to empty
orbitals. The occupation of yz and zx orbitals alternates in the antiferro-orbital
ordered ground state (see Fig. 5.43 (a)). The empty orbitals are higher in energy
because of, e.g., the ligand-�eld splitting. Figure 5.43 (b) exempli�es an excita-
tion from the lower to the upper Hubbard band, i.e. |d1d1〉 → |d2d0〉 in YTiO3.
Site 2 is empty while site 3 is doubly occupied. Figures 5.43 (c) and (d) illustrate
the motion of the double occupancy to sites 4 and 5, respectively. Since hopping
is only allowed within the same type of orbitals, on sites 3 and 4 the orbitals of
higher energy are occupied (gray symbols in Fig. 5.43). Consequently, a trace
of orbitally excited states emerges and the bandwidth is reduced from the bare
bandwidth ∼ t to the energy scale of the orbital excitations, corresponding to an
increase in kinetic energy. The trace of the excited orbitals can be healed out if
the hole accompanies the double occupancy, i.e., by the formation of an exciton
(dashed line in Fig. 5.43). The exciton can thus hop on a larger energy scale
than the hole or the double occupancy alone. The antiferro-orbital order does not
constrain the motion of the exciton, in other words, exciton formation results in
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a gain of kinetic energy.
An exciton in a Mott-Hubbard insulator is referred to by the term Hubbard exci-
ton. To sum up, a Hubbard exciton denotes a bound state of a doubly occupied
site and an empty site that moves in the background of singly occupied sites.

Figure 5.42:
Mechanism of exciton formation in 2D
cuprates as proposed by Zhang and Ng
[105]. The O atoms are denoted by
open circles, the Cu atoms are denoted
by full circles, the arrows refer to the
spins of holes. Exciton formation re-
sults in a spinless Cu1+ site (which is
empty in a hole picture) and a spin sin-
glet which is formed by one hole on the
O ligands and another hole on the cen-
tered Cu2+ ion. Taken from Ref. [105].

5.4.3 Hubbard exciton in RVO3

The situation that has been outlined above can be applied to the antiferro-orbital
order of RVO3 both within the ab plane and along c in the monoclinic phase below
TOO with C -type spin and G-type orbital order. Here, the hopping of either a
single d3 state or a single d1 state leaves a trace of orbitally excited states whereas
the motion of a bound state is not hindered by the antiferro-orbital background.
In RVO3, the ratio SWA/SWB (see Fig. 5.44) of the spectral weights of peaks A
and B in σc1 strongly increases from R =Y via Gd to Ce. Interestingly, this ratio
also depends sensitively on the temperature, but only below the orbital-ordering
temperature TOO (see Fig. 5.44). Below TOO, the spectral weights of both peaks
A and B increase, but this increase is much more pronounced for the excitonic
peak A. This clearly demonstrates the signi�cant role played by orbital order for
exciton formation in the MH insulators RVO3. It follows from Hund's rule that
the kinetic energy is assumed to play a more signi�cant role for the formation
of Hubbard excitons in the case of parallel spin alignment, which justi�es that
peak A is much more pronounced in σc1 compared to σa1 , especially below the spin-
ordering transition at TN .
This scenario is further supported by Novelli et al. [115]. They performed pump-
probe spectroscopic measurements on YVO3 in the energy range from 1.65 eV to



5.4 Observation of an excitonic resonance in RVO3 113

2.75 eV, covering the frequency range of peaks A and B. They make use of our
static ellipsometric data on YVO3 to analyze the pump-induced time-dependent
changes of the spectral weight of peak A and peak B in σc1(ω) separately, and dis-
entangle thermal and nonthermal contributions. Figure 5.45 displays the nonther-
mal contributions to the pump-driven spectral weight variations at t = 50± 30ps
(well beyond the electronic relaxation) at di�erent equilibrium temperatures. The
central result is the observation of a direct transfer of spectral weight between
peaks A and B (named HE (Hubbard exciton) and SP ("single-particle" band),
respectively, in Ref. [115]), i.e., a conservation of the total spectral weight. This
con�rms the claim, that both excitations correspond to the same multiplet and
corroborates the excitonic nature of peak A. It is evident from Fig. 5.45 that
photo-induced spectral-weight transfer from peak A to peak B only takes place
below the orbital ordering temperature TOO and is further increased below TN in
the C -type spin ordered phase. This can be recognized as a further clear indica-
tion for the importance of the kinetic energy contribution to exciton formation.
The spectral weight loss of peak A after the pump excitation is explained in terms
of the pump-induced spin disorder. Novelli et al. [115] argue that spin disorder
suppresses the kinetic energy gain of the excitonic resonance, leading to a spectral-
weight transfer from excitonic peak A to peak B (for a detailed discussion, see
Ref. [115]). It is further interesting to note that only peak B contributes to the
fast response (t < 3 ps), whereas the spectral weight of peak A seems to be un-
changed within the �rst few picoseconds after the pump excitation. This gives
further evidence that only peak B is of single-particle origin since the excitonic
band has more of a localized character and consequently is not expected to be
perturbed immediately after the event of the pump [115].

To summarize this section, results from band-structure calculations and photoe-
mission spectroscopy do not give any explanation for the splitting of peaks A and
B. We thus suggest that peak A has to be interpreted in terms of an excitonic
resonance in the upper Hubbard band, i.e. a bound state of a doubly occupied site
and an empty site. The temperature dependence of our data clearly substantiates
the importance of the kinetic energy for Hubbard exciton formation. While the
motion of either a single d3 state or a single d1 state is hindered by the antiferro-
orbital ordered background, a bound state can move around freely, which leads to
a reduction of the kinetic energy.



114 5. Probing orbital �uctuations in RVO3 (R=Y, rare earth ion)
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Figure 5.43: Simple sketch of the formation and propagation of a Hubbard exciton
(dashed line) as suggested in Ref. [13]. Here, two types of orbitals
(illustrated by circles and squares, e.g., yz and zx orbitals) per site
are considered. According to the orbital selection rule, hopping is
only allowed between orbitals of same type. Full (open) symbols
represent occupied (empty) orbitals. (a) Antiferro-orbital ordered
ground state. (b) Formation of a hole and a double occupancy on
sites 2 and 3, respectively. (c)− (f) Motion of the hole, the double
occupancy, or the exciton. More details are given in the text. Taken
from Ref. [13].
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Figure 5.44: Ratio of the spectral weights of peaks A and B in σc1(ω), normalized
to the value at 300K.

Figure 5.45: Nonthermal spectral-weight changes of peaks A (green circles) and B
(gray triangles) in σc1 of YVO3, named HE (Hubbard exciton) and SP
("single-particle"), respectively, that result from time-domain spec-
troscopic data obtained by Novelli et al. [115] at di�erent equilibrium
temperatures. The error bars were estimated from the �tting. Taken
from Ref. [115].
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5.5 Conclusion

We present a detailed analysis of the temperature dependence of the optical con-
ductivity σ1(ω) of YVO3, GdVO3, and CeVO3 in the energy range from 0.75 eV
to 5.0 eV for temperatures ranging from 15K to 490K. The steep increase of the
optical conductivity above 4.5 eV is attributed to the onset of charge-transfer ex-
citations, while the multiplet structure below 4.5 eV clearly re�ects the multiplet
splitting of the 3d3 �nal states of Mott-Hubbard excitations. We derive a peak
assignment that consistently explains the temperature dependence of our data
on the basis of nearest-neighbor spin-spin and orbital-orbital correlations and we
thereby solve the controversies concerning the optical data of YVO3 reported in
the literature. A comparison of our data with a theory based on a low-energy
spin-orbital superexchange Hamiltonian leads us to the conclusion that orbital
�uctuations can not be strong in RVO3. The Mott-Hubbard excitation into the
lowest 3d3 multiplet shows a pronounced double-peak structure, which we at-
tribute to an excitonic resonance, i.e. not a truly bound state below the gap but
a resonance within the absorption band. The distinct temperature dependence of
the double-peak structure clearly indicates that not only the Coulomb attraction
between a doubly occupied site and an empty site but also the kinetic energy plays
an important role for exciton formation in Mott-Hubbard insulators.



6 Ellipsometry on LaSrFeO4

The chapter on hand presents the ellipsometric studies of the compound LaSrFeO4.
The chapter is structured as follows. In Sec. 6.1 a motivation is given for the optical
investigations on LaSrFeO4 and the crystal and electronic structure is shortly
introduced. The experimental data is then presented in Sec. 6.2. In Sec. 6.3
the expected multiplet splitting of Mott-Hubbard and charge-transfer absorption
bands is discussed, then it is turned to the peak assignment and �nally the analysis
of the temperature dependence of the Mott-Hubbard excitations is presented. The
chapter ends with a conclusion in Sec. 6.4.

6.1 The compound LaSrFeO4

6.1.1 Motivation

The compound LaSrFeO4 can be characterized as a correlated insulator with 3d5

electron con�guration on the Fe3+ sites. As discussed in Sec. 2.7, one distinguishes
between two kinds of correlated insulators, depending on the relative size of the
on-site Coulomb interaction energy U and the charge-transfer (CT) energy ∆ be-
tween the highest occupied oxygen 2p band and the transition-metal 3d band [52].
In a CT insulator with U > ∆, the charge gap is formed between O 2p and the
upper Hubbard band (UHB). In contrast, Mott-Hubbard (MH) insulators show
U < ∆, and the states closest to the Fermi level predominantly have transition-
metal character, see Fig. 2.9 in Sec. 2.7. Compounds with intermediate-size tran-
sition metals such as Fe or Mn are close to the transition between CT systems and
MH systems. Here, the hybridization between the ligand O 2p and the transition
metal 3d bands plays an important role. Particularly, the character of Mn3+ has
been discussed controversially. On the basis of optical data, both LaMnO3 and
LaSrMnO4 have been interpreted either as of CT type [57, 59, 117�119] or of MH
type [11,12,120�123] while recently a dual nature of the optical gap has been pro-
posed [124]. This controversy arises due to the strong hybridization between the
Mn 3d and the O 2p states. Figure 6.1 displays a sketch of a correlated insulator
for the di�erent cases, U � ∆, U & ∆, and U � ∆. Early on, Mizokawa and
Fujimori [54] pointed out that U > ∆ in LaMnO3, but that the highest occupied
O 2p band shows a large admixture of 3d character. It has been emphasized in
Ref. [12] (see also the Phd thesis of A. Gössling [43]) that the symmetry of the

117
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U



Ueff

O2p

LHB UHB

EFNB
B AB

Figure 6.1: Sketch of a Mott-Hubbard insulator (top row, U � ∆) and of a charge-
transfer insulator (bottom row, U � ∆) for a single half-�lled 3d
orbital and degenerate O 2p orbitals. The black dashed line depicts
the increase of U from top to bottom, EF depicts the Fermi level
(dash-dotted). Due to hybridization, one has to distinguish bonding
(B), non-bonding (NB), and anti-bonding (AB) bands. For U & ∆,
the highest occupied anti-bonding band may still be classi�ed as the
lower Hubbard band with symmetry properties derived from the 3d
character, yielding an e�ective value Ueff < ∆ (cf. Fig. 1 in Ref. [12]
and Fig. 2 in Ref. [56]). [116]

highest occupied, strongly hybridized band is determined by the 3d band, which is
essential for the optical selection rules and thus for a quantitative analysis of the
optical data. It has been suggested that the manganites can be viewed as e�ective
Mott-Hubbard systems, where an e�ective Coulomb interaction energy Ueff has
to be considered, which is strongly renormalized by hybridization (see Fig. 6.1).
This scenario is supported by recent measurements on transition-metal di�uorides
MF2 using x-ray emission spectroscopy [56]. Due to the element selectivity of this
technique, the contribution of the transition-metal lower Hubbard band (LHB) to
the highest occupied states can be revealed even for U > ∆.
At �rst sight, the situation is more transparent in the case of the ferrites RFeO3

with trivalent Fe ions. Compared to the 3d4 manganites, the stability of the high-
spin 3d5 state of Fe3+ gives rise to a comparably large energy of MH excitations
of roughly U + 4JH , where JH denotes the intra-atomic Hund exchange. Indeed,
these compounds commonly are identi�ed as CT systems [54, 57, 117, 125]. How-
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ever, the case of layered LaSrFeO4 is still under discussion. LaSrFeO4 has also
been interpreted as a CT insulator based on optical re�ectivity data measured up
to 36 eV at room temperature with in-plane polarization of the electric �eld [126].
In contrast, Omata et al. [127] conclude from their resonant photoemission data
that the valence band in LaSrFeO4 is formed by a mixture of Fe 3d and O 2p
states. Thus they characterize LaSrFeO4 as an intermediate type CT and MH
insulator, but they also mention that the states at the valence band edge mainly
show O 2p character.
The aim of this chapter is to gain further insight into the character of LaSrFeO4

by analyzing the optical conductivity σ1(ω). Due to the layered structure of
LaSrFeO4, σ1(ω) is expected to show a pronounced anisotropy. The anisotropy
of the optical spectra can be used to disentangle MH excitations and CT excita-
tions. The distinction between MH and CT excitations is still a valid classi�cation
scheme even in the presence of hybridization since the hybridized states retain
their original symmetry and thus follow the same selection rules. As discussed
in Refs. [12] and [43] for the case of LaSrMnO4, MH excitations only contribute
to σa1 , i.e. for polarization of the electric �eld within the 2D layer, but not to σc1.
This re�ects that Fe − Fe hopping between adjacent FeO2 layers is negligible. On
the contrary, CT excitations are observed in both, σa1(ω) and σc1(ω), as each Fe
site is surrounded by an oxygen octahedron.
Additionally, the temperature dependence of the spectral weight is investigated.
As discussed in Secs. 2.6− 2.7, CT and MH excitations generally show di�erent
spin and orbital selection rules and only the spectral weight of the MH excitations
is expected to be strongly a�ected by a change of the nearest-neighbor spin-spin
and orbital-orbital correlation functions [8�13,49,99]. It has been discussed in Sec.
5 that the spectral weight of the lowest absorption band in σc1(ω) of 3d2 RVO3

increases by a factor of 2− 3 due to the ordering of spins and orbitals, in agree-
ment with theoretical expectations. Also in LaMnO3 and LaSrMnO4 pronounced
changes of the spectral weight with temperature have been observed, which can
be attributed to changes of the spin-spin correlations [11,12]. This clearly demon-
strates the e�ective MH character of these systems. However, the behavior of the
3d1 MH insulators YTiO3 and SmTiO4 is still puzzling in this context [13]. Tem-
perature dependent ellipsometric data of YTiO3 and SmTiO4 have been acquired
by A.Gössling, see Refs. [13, 43]. In YTiO3, the spectral weight of the lowest
MH excitation is expected to change by 25% between the paramagnetic and the
ferromagnetic state [8]. However, the increase around the ordering temperature
TC amounts to only 5%, while, at the same time, larger changes are observed
up to 300K [13]. Due to the three-dimensional character of the magnetic order,
these larger changes far above TC cannot be explained by a change of the spin-spin
correlations. In the G-type antiferromagnet SmTiO3, spin ordering is expected
to suppress the spectral weight of the lowest MH excitation by about 50% for all
crystallhographic directions [8], but the observed e�ects are again much smaller
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and show even the wrong sign along the b and the c axis [13]. This behavior has
been attributed to small changes of the orbital occupation [13]. It is important to
quantify the possible strength of other e�ects such as excitonic contributions, the
thermal expansion of the lattice, or bandstructure e�ects. In this context, layered
LaSrFeO4 with its stable 3d5 state is an interesting candidate for a reference sys-
tem. Long-range antiferromagnetic spin order sets in at TN = 366K [69,128,129]
thus one expects only very small changes of the spin-spin and orbital-orbital cor-
relation functions below room temperature.

Thus far, not much is known about the optical spectra of LaSrFeO4. Room tem-
perature data has been obtained by the means of di�use re�ectance on powdered
samples [130] and by re�ectivity measurements on single crystals [126, 131] but
only for in-plane polarization of the electric �eld.

6.1.2 Structure, spins, and orbitals

The compound LaSrFeO4 crystallizes in the single-layered perovskite structure of
K2NiF4 with tetragonal symmetry I4/mmm. The Fe3+ ions are octahedrally coor-
dinated by oxygen ions, building perfect FeO2 square planes with 180◦ Fe−O−Fe
bonds. The lattice constants at room temperature are a = 3.8744(1)Å and
c = 12.7134(3)Å [69]. Nominally, there are �ve electrons in the 3d shell per
Fe3+ site. In the high-spin ground state, these �ve electrons yield a total spin of
5/2. Antiferromagnetic order has been observed below TN = 366K [69,128]. The
crystal and magnetic structure is visualized in Fig. 6.2. Our crystals do not exhibit
any evidence for an additional magnetic phase transition [69]. In cubic approxi-
mation, the 3d level is split into the lower-lying t2g and the higher-lying eg levels.
The magnitude of the t2g − eg splitting ∆t2g−eg = 10Dq is mainly determined by
the Fe−O bond lengths, it can be estimated to be roughly 10Dq=1.0 eV− 1.5 eV
in LaSrFeO4 [12, 132]. The FeO6 octahedra show a sizable tetragonal distortion
with Fe−O bond lengths of 1.9354Å in the plane and 2.1486Å perpendicular to
it at 10K [69]. Therefore, the t2g manifold is split into the lower-lying doublet
e′g (yz and zx) and the higher-lying b2g (or xy) level. At the same time, the eg
level splits into a1g (3z2−r2) and b1g (x2−y2), where the energy of the former is
signi�cantly reduced compared to the energy of the latter. In LaSrMnO4, these
splittings have been determined from optical data, yielding ∆t2g(d

4) = 0.2 eV and
∆eg(d

4) = 1.4 eV [12]. For LaSrFeO4, a similar value of ∆t2g is expected, but the
value of ∆eg is expected to be smaller, since ∆eg is enhanced in LaSrMnO4 due
to the additional Jahn-Teller splitting of the singly occupied eg level, which is
evident from the larger value of c/a. It has to be emphasized that the pronounced
elongation of the octahedra in LaSrFeO4 gives rise to a sizeable value of ∆eg, even
in the absence of a Jahn-Teller contribution. The results below yield ∆eg ≈ 0.8 eV.
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Figure 6.2: Tetragonal unit cell and visualization of the magnetic structure of
LaSrFeO4. Taken from Ref. [69].
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6.2 Experimental data

Figure 6.3: The dielectric function ε2(ω) below the charge gap as determined from
transmittance measurements on a single crystal with a thickness of
39µm.

Measurements of the ellipsometric variables Ψpp and ∆pp have been performed on
a polished ac surface in two di�erent orientations, with the a and c axis parallel
to the plane of incidence, respectively, for temperatures from 15K to 250K. The
ellipsometric measurements have been performed by K. Shportko. The dielectric
functions εa(ω) and εc(ω) are obtained by �tting the measured data of both ori-
entations simultaneously with a series of Gaussian oscillators for ε2(ω). In the
analysis a �nite surface roughness is taken into account. The properties of the
surface are determined in a frequency range where the investigated bulk sample is
transparent, i.e., ε2(ω) ≈ 0. To determine the suitable energy range, it is made use
of infrared transmittance data between 0.5 eV and 2.5 eV which have been acquired
by L. Fels. The transmittance measurements have been performed with a Fourier-
transform spectrometer (Bruker IFS 66/v) on a single crystal which was polished
to a thickness of 39µm. The observed interference fringes are used to determine
the refractive index n, which in turn allows the determination of ε2(ω) from the
transmittance. The results are displayed in Fig. 6.3. These data show only very
weak parity- and spin-forbidden local crystal-�eld excitations between 0.5 eV and
2.0 eV, thus ε2(ω) ≈ 0 is a valid approximation below 2 eV. Using this result for
the analysis of the low-energy ellipsometry data yields a surface roughness with a
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Figure 6.4: Comparison of the dielectric function εc2 and the pseudo-dielectric func-
tion < εc2 > of LaSrFeO4 at T = 15K. For the former, a surface
roughness of 6 nm has been taken into account. The pseudo-dielectric
function < εc2 > results from the measurement on an ac surface with
the c axis parallel to the plane of incidence (cf. Sec. 3.2.2).

thickness of approx. 6 nm. In Fig. 6.4 the resulting εc2(ω) is compared to the so-
called pseudo-dielectric function < εc2 >, which is obtained by direct inversion of
the measured Ψpp and ∆pp values obtained from the measurement on the ac plane
with the c axis parallel to the plane of incidence, cf. Sec. 3.2.2. Figure 6.4 shows
that the overall features are well reproduced by < εc2 >, but large discrepancies
are observed below the onset of strong absorption at about 3.5 eV, where < εc2 >
shows a spurious background. The transmittance data prove that this background
is an artefact present only in < εc2 > which has to be accounted for by assuming
a �nite surface roughness in the data modeling. It has to be pointed out that a
similar feature has been observed in optical data of BiFeO3 published by Pisarev
et al. [125] where only the pseudo-dielectric functions are discussed.
The resulting dielectric function ε(ω) = εl1 + iεl2 (l = a, c) of LaSrFeO4 from 1.5 eV
to 5.5 eV is displayed in Fig. 6.5. The real part of the optical conductivity σl1(ω)
is shown in Fig. 6.6. Figure 6.7 displays the di�erent Gaussian oscillators that
compose ε2(ω) in the �t. The Gaussian �t parameters are summarized in tables
6.2 and 6.3 at the end of this chapter. Overall, the data agree with the room-
temperature data of σa1(ω) reported in Refs. [126, 131]. Thus far, data for σc1(ω)
has not been reported, a striking anisotropy between σa1(ω) and σc1(ω) is found in
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our data. Both σa1(ω) and σc1(ω) show a strong absorption band at 4 eV− 5.5 eV.
However, in σa1(ω) an additional peak is found at 3 eV and the shoulder at 3.8 eV is
much more pronounced. In the following it is argued that the latter two features
correspond to MH excitations.
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Figure 6.5: Dielectric function ε(ω) of LaSrFeO4 for the a and c direction for
temperatures between 15K and 250K.
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(green) outside the measured range that accounts for higher lying ex-
citations as well as for the small values of absorption below 3.5 eV in
εc2.
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6.3 Discussion

6.3.1 Charge-transfer and Mott-Hubbard excitations

The observed absorption bands can be assigned to MH and CT excitations. The
role played by local crystal-�eld (i.e., valence-conserving 3d5 → 3d5,∗) excitations
can be neglected in our analysis of the ellipsometry data. In LaSrFeO4 they are for-
bidden both by the parity and by the spin selection rule. Accordingly, they show
a very small spectral weight with typical values of σ1 < 10 (Ωcm)−1 [133, 134].
Their signatures are visible in the transmittance data below the charge gap, see
Fig. 6.3.
First, we focus on the physics of CT excitations, which result from the transfer of
an electron from a ligand O 2p orbital to a Fe 3d orbital, |3d5 2p6〉 → |3d6 2p5〉.
Pisarev et al. [125] present a detailed theoretical analysis of the CT excitations for
undistorted FeO6 octahedra. The highest occupied O states are of non-bonding
character with symmetry t1g(π), t2u(π), t1u(π), and t1u(σ). Their relative ener-
gies are determined by, e.g., the di�erent Madelung energies of 2p(π) and 2p(σ)
orbitals and by the 2p(π)− 2p(π) overlap [125]. The t1g(π) level is expected to be
the highest in energy. Quantum-chemistry calculations [125] for LaFeO3 predict
that t2u(π), t1u(π), and t1u(σ) are lower by 0.8 eV, 1.8 eV, and 3 eV, respectively.
The lowest unoccupied states are the anti-bonding t2g(π) and eg(σ) orbitals with
hybrid Fe 3d−O 2p character, and these are split by ∆t2g−eg = 10Dq. Accord-
ing to the parity selection rule, the even-even (from g type to g type) transitions
from the t1g(π) level at the top of the O band to the unoccupied t2g(π) and eg(σ)
orbitals are forbidden. Additionally, the matrix elements for transitions from π
to σ levels vanish for a single octahedron, thus only π - π and σ -σ transitions
give rise to strong absorption. In summary, the onset of CT excitations is gov-
erned by the dipole-forbidden transition t1g(π) → t2g(π), followed by the strong
dipole-allowed transitions t2u(π) → t2g(π) and t1u(π) → t2g(π). The next transi-
tion t1u(σ)→ eg(σ) is roughly 2 eV higher in energy due to the splitting between
t2g(π) and eg(σ) on the one hand and between 2p(π) and 2p(σ) states on the other
hand. Thus in cubic approximation there are only two strong excitations in the
energy range relevant to us. For the layered structure of LaSrFeO4, one has to
expect additional splittings. However, the large splitting ∆eg of the eg level is not
important for the lowest CT excitations, which correspond to an electron transfer
into the t2g(π) level.
Let us now address the MH excitations, which result from the transfer of an

electron between neighboring Fe sites i and j via the σ or π bonding of the ligand
O 2p orbital, |3d5

i 3d5
j〉 → |3d4

i 3d6
j〉. Starting from the cubic approximation, the

initial 3d5 state has 6A1 symmetry, corresponding to the (2S + 1) = 6-fold degen-
erate t32ge

2
g high-spin state (see Fig. 6.8 (a)). According to the orbital selection

rule, there is no overlap between t2g and eg orbitals on neighboring sites due to the
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Figure 6.8: Sketch of (a) the initial state |3d5
i 3d5

j〉 and (b,c) the �nal states
|3d4

i 3d6
j〉 of the MH excitations in cubic approximation. In layered

LaSrFeO4 with tetragonal crystal symmetry, three MH peaks are ex-
pected in σa1 . They correspond to (d) an electron transfer between
orbitals of the same type, energy E, (e) a transfer from x2−y2 to
3z2−r2, energy E − ∆eg, and (f) a transfer from 3z2−r2 to x2−y2,
energy E + ∆eg.

undistorted 180◦ bonds in LaSrFeO4. From the [6A1g(d
5); 6A1g(d

5)] initial state
one can reach the �nal states [5T2g(t

2
2g, e

2
g);

5T2g(t
4
2g, e

2
g)] (corresponding to an elec-

tron transfer between t2g orbitals, see Fig. 6.8 (b)) and [5Eg(t32g, e
1
g);

5Eg(t
3
2g, e

3
g)]

(corresponding to an electron transfer between eg orbitals, see Fig. 6.8 (c)). All
reachable 3d4 and 3d6 states have total spin S = 2. The spectral weight of these
transitions therefore strongly depends on the nearest-neighbor spin-spin correla-
tions [8, 10, 49], favoring antiparallel alignment of spins on neighboring sites (see
Fig. 6.8), as given in the antiferromagnetically ordered state below TN = 366K.
Since the orbital quantum number is preserved in the transition (cf. Figs. 6.8
(b) and 6.8 (c)), both excitations have approximately the same energy1. As a
consequence, only one MH peak is expected in the optical spectra in the cubic
approximation.
However, deviations from cubic symmetry play an important role in the tetrag-
onal structure of LaSrFeO4. First of all, the matrix elements for MH excita-

1Here, it is neglected that the value of 10Dq (3dn) depends on the number n of electrons.
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Table 6.1: Matrix elements for MH excitations between nearest-neighbor Fe sites
along the x direction as given by the Slater-Koster table [135]. The
electron transfer takes place via the σ or π bonding of the ligand O
2p orbital. The orbital character changes only for excitations from
x2−y2 to 3z2−r2 or vice versa (third column), in all other cases the
orbital character is preserved. According to Ref. [135], the relation
Vpdσ = Vpdπ ·

√
3 holds true.

x2−y2 3z2−r2 x2−y2/3z2−r2 xy yz zx
3
4
V 2
pdσ

1
4
V 2
pdσ −

√
3

4
V 2
pdσ V 2

pdπ 0 V 2
pdπ

tions between di�erent FeO2 layers can be neglected, thus MH excitations do not
contribute to σc1(ω). Second, lifting the degeneracy in particular of the eg level
enhances the number of observable absorption bands in σa1(ω). An eg splitting
∆eg = ∆[(x2−y2) − (3z2−r2)] on the order of 1 eV is expected due to the elon-
gation of the FeO6 octahedra, as discussed in Sec. 6.1.2. In the following, the
much smaller spitting ∆t2g within the t2g levels is neglected. It will be shown that
∆eg is crucial in order to pull the lowest MH absorption band below the onset
of CT excitations. The matrix elements for nearest-neighbor Fe−Fe transitions
are summarized in table 6.1. Due to the undistorted 180◦ bonds of LaSrFeO4,
these hopping processes conserve the orbital character. The single exception is
the �nite overlap between 3z2−r2 on site i and x2−y2 on a neighboring site. One
thus expects three di�erent MH peaks (referred to as MH1, MH2, and MH3 in
the following) in σa1(ω) with energy separation ∆eg: (1) The electron transfer from
x2−y2 to 3z2−r2 (MH1, see Fig. 6.8 (e)). (2) The excitation from any orbital on
site i to an orbital of the same type on the neighboring site (MH2, see Fig. 6.8
(d)). This excitation is expected at an energy of ∆eg above MH1. The individual
contributions have approximately the same energy because the orbital quantum
number is preserved2. (3) The excitation from 3z2−r2 to x2−y2 (MH3, see Fig.
6.8 (f)). This excitation is expected at an energy of 2∆eg above MH1. The matrix
elements of table 6.1 are used to calculate the relative spectral weight of the MH
peaks. Summing up the individual contributions one �nds that the spectral weight
of MH1 and MH3 is identical, whereas the spectral weight of MH2 is expected to
be 3.8 times larger.

2Again, it is neglected that the value of 10Dq (3dn) depends on the number n of electrons.
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6.3.2 Peak assignment

A �rst tool to distinguish CT and MH excitations is the spectral weight. In
transition-metal oxides, typical values of σ1(ω) are of a few 1000 (Ωcm)−1 for CT
excitations but only a few 100 (Ωcm)−1 for MH excitations (cf. Sec. 5 on pseu-
docubic vanadates and Refs. [12, 13, 57]). The di�erence is due to the fact that
the matrix elements are of �rst order in the Fe − O hopping amplitude for CT
excitations and of second order for MH excitations. To further disentangle CT
excitations and MH excitations, the observed anisotropy can be used. In layered
LaSrFeO4, MH excitations do not contribute to σc1(ω) since the interlayer Fe − Fe
hopping is strongly suppressed.
The strong absorption band observed at 4 eV− 5 eV in σc1(ω) clearly has to be
attributed to CT excitations. The analysis of the ellipsometric data uses three
Gaussian oscillators to describe the line shape, see Fig. 6.7. This does not imply
the existence of three microscopically di�erent excitations since the line shape of
the absorption band is not necessarily Gaussian but re�ects bandstructure e�ects.
The analysis of the a-axis data requires three very similar oscillators, in particular
with a similar spectral weight. The peak energies di�er by up to 0.4 eV for the
two crystallographic directions, which most probably re�ects the di�erent on-site
energies of apical and in-plane O ions. This band at 4 eV− 5 eV is attributed to
the two strong dipole-allowed CT excitations t2u(π)→ t2g(π) and t1u(π)→ t2g(π)
(in cubic approximation, see discussion in Sec. 6.3.1). The splitting between these
two excitations is expected to be about 1 eV according to quantum-chemistry cal-
culations for LaFeO3 [125]. In LaSrFeO4, the next higher-lying peak is observed
at about 7 eV in the in-plane data of Refs. [126,131]. This large energy di�erence
to the peak at 5 eV supports the interpretation that both t2u(π) → t2g(π) and
t1u(π) → t2g(π) contribute to the absorption band between 4 eV and 5 eV. Note
that both excitations correspond to a transfer to a 3d t2g(π) state, and that the
crystal-�eld splitting of the t2g(π) level is expected to be only small, about 0.2 eV
(see Sec. 6.1.2). Moreover, the matrix elements for transitions into the t2g manifold
do not di�er very strongly between a and c, even for an elongated octahedron,
in contrast to the matrix elements for transitions into the x2−y2 orbital. The
similar spectral weights along a and c between 4 eV and 5 eV therefore support
this assignment.
The a-axis data show two additional features at 3.0 eV and 3.8 eV, see Figs. 6.6
and 6.7. For the feature at 3.0 eV, both its lower spectral weight with σa1(3 eV)
peaking at about 250 (Ωcm)−1 and the observed anisotropy support an interpreta-
tion in terms of a MH excitation. Moreover, the splitting between the two lowest
MH excitations is expected to be roughly ∆eg≈ 1 eV (see Fig. 6.8), in very good
agreement with the di�erence of 0.8 eV between the observed peak energies of 3.0
and 3.8 eV. The third MH excitation is expected roughly 2∆eg above the lowest
one, i.e., within the strong CT band. As far as the relative spectral weight is con-
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cerned, one roughly expects a factor of 3.8 between the two lowest MH excitations
(see Sec. 6.3.1). Experimentally, the spectral weight of MH1 and MH2 is rather
similar. However, the simple estimate does not take into account hybridization
e�ects and is based on a local approach. Furthermore, an accurate determination
of the experimentally observed relative spectral weight of MH1 and MH2 is rather
di�cult due to the overlap with the much stronger CT excitations, see also the
discussion in Sec. 6.3.3 below.
At �rst sight, it is unexpected that the lowest absorption band is of MH type
because the 3d5 con�guration is stabilized by the intra-atomic Hund exchange
JH . In cubic approximation, a �rst rough estimate of the MH excitation energy
yields U+4JH with 4JH ≈ 3 eV. This is much larger than in the 3d4 mangan-
ites, for which one expects U−JH . However, MH1 in the layered structure of
LaSrFeO4 corresponds to a transfer from x2−y2 to 3z2−r2, thus it is ∆Fe

eg lower
in energy than in cubic approximation. In comparison, the lowest MH excita-
tion in LaSrMnO4 requires the opposite transfer from 3z2−r2 to x2−y2, raising
the excitation energy to EMn = U−JH +∆Mn

eg . In LaSrMnO4, this MH excita-
tion is observed at EMn≈ 2 eV [12]. We thus expect MH1 in LaSrFeO4 at about
E(MH1)≈ EMn+5JH−∆Fe

eg −∆Mn
eg , i.e., roughly at 3 eV− 4 eV. Here, the slight

increase of U from Mn to Fe is neglected, but it is also neglected that the 3d4 and
3d6 states relevant for the MH1 excitation both are Jahn-Teller active (cf. Fig.
6.8 (d)), which reduces E(MH1). Moreover, these estimates neglect the e�ect of
hybridization depicted schematically in Fig. 6.1. Therefore, the assignment of the
peak at 3.0 eV to MH1 appears feasible.
However, alternative scenarios have to be discussed, too. As outlined in Sec. 6.3.1,
the lowest CT excitation t1g(π)→ t2g(π) is dipole-forbidden and expected at about
0.8 eV below the lowest dipole-allowed CT excitation. Firstly, the spectral weight
of the peak at 3 eV is too large for a dipole-forbidden excitation, and secondly, only
a modest anisotropy of this excitation is expected. Possibly, this dipole-forbidden
excitation may explain the small but �nite values of σc1(ω) between 2 eV and 3.5 eV.
In a further scenario, the peak at 3.0 eV may be interpreted as a CT exciton. Note
that this peak is lying at about 0.5 eV below the CT absorption edge and that a
truly bound state with such a large binding energy is very unlikely. Again, it is
not obvious why such an exciton should show a pronounced anisotropy. Moreover,
an exciton with such a large binding energy is expected to show a larger spectral
weight and a smaller line width.
Summarizing this section, strong evidence has been found that the lowest dipole-
allowed absorption band in LaSrFeO4 is of MH type, which is made possible by
the strong splitting ∆eg caused by the layered structure and by the Fe 3d−O 2p
hybridization. It has to be added that in LaSrFeO4 the energy of the lowest dipole-
forbidden CT excitation may be comparable to the energy of MH1. Furthermore,
the MH excitation from x2−y2 at site i to a t2g orbital on a neighboring site is
lower in energy than MH1, but the matrix element for this excitation vanishes. It
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should be emphasized that this results do not disagree with the common interpre-
tation that non-layered ferrites belong to the class of CT insulators. The di�erent
character can be explained by the absence of a large ∆eg in the non-layered com-
pounds. Pisarev et al. [125] studied the optical properties of a series of di�erent
ferrites with trivalent Fe ions. Many of these compounds show a shoulder in the
vicinity of the onset of strong CT absorption, which has been attributed to the
parity-forbidden excitation t1g(π)→ t2g(π) [125]. The peak observed at 3.0 eV in
LaSrFeO4 is much too strong for such a dipole-forbidden excitation. However, our
results suggest that MH excitations may not be neglected for a quantitative anal-
ysis of the non-layered ferrites, they may for instance provide a better explanation
for a shoulder close to the absorption edge than the dipole-forbidden excitation
discussed above.

6.3.3 Temperature dependence

We have seen in Sec. 5 that in the case of the pseudocubic vanadates the tem-
perature dependence of the spectral weight of MH excitations allows to study
the temperature dependence of nearest-neighbor spin-spin and orbital-orbital cor-
relations. As discussed in the motivation of this chapter (Sec. 6.1.1) the tem-
perature dependence of MH excitations has also attracted a lot of interest for
other transition-metal compounds [8�13, 49, 99]. In LaSrFeO4 one expects that
the temperature dependence of nearest-neighbor spin-spin and orbital-orbital cor-
relations is only small below 300K. Actually, the spin-spin correlations change
only gradually even above the ordering temperature due to the two-dimensional
character [13]. This ferrite thus may serve as a reference compound to study the
role of other e�ects such as the thermal expansion of the lattice or bandstructure
e�ects.
As expected, the MH excitations at 3.0 eV and 3.8 eV show only a modest tem-
perature dependence, see the upper panel of Fig. 6.6. According to the �t using
Gaussian oscillators (see Fig. 6.7), the spectral weight of MH2 at 3.8 eV changes
only by about 10% between 5K and 250K, see Fig. 6.9. At the same time, the
peak width increases by about 15%, and the peak frequency decreases by about
1%. For the peak MH1 at 3.0 eV, a quantitative analysis is more challenging. Both
the spectral weight and the width of the Gaussian oscillator depicted in Fig. 6.7
increase strongly with temperature, while the frequency of the oscillator increases
by about 1% from 5K to 250K. As mentioned above, there is not necessarily a
one-to-one correspondence between the Gaussian oscillators and the microscopic
excitations with di�erent line shapes, which is corroborated by the unexpected
behavior of the oscillator parameters such as the hardening of the frequency with
increasing temperature. This gives clear evidence that the change of MH1 is cov-
ered by the temperature-induced smearing of the much stronger CT excitations.
To determine the temperature dependence of MH1 more reliably, MH1 is sepa-
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Figure 6.9: Temperature dependence of the normalized spectral weight of MH1

and MH2 in σa1(ω) of LaSrFeO4.

rated from the higher-lying excitations by �tting εa2 in the range 0.75 eV− 3.75 eV
simultaneously by an exponential function and a Gaussian oscillator (see Fig.
6.10). The former accounts for the CT band edge and its shift with temperature,
the latter describes the remaining spectral weight below the CT edge. With this
procedure an increase of the spectral weight of MH1 of merely 15% between 15K
and 250K has been found, see Fig. 6.9. Obviously, also this value has to be taken
with care, since it depends strongly on the line shape assumed for the onset of the
CT absorption band. In fact, the opposite trend is expected, namely a reduction
of spectral weight with increasing temperature as the a axis lattice constant in-
creases from 3.8709(1)Å to 3.8744(1)Å between 10K and room temperature [69].
An increased Fe−O distance should result in a reduction of the Fe 3d−O 2p
overlap which in turn should reduce the spectral weight of both MH and CT ex-
citations.
It has to be concluded that an accurate determination of the temperature depen-
dence of the spectral weight of the MH excitations is a di�cult task in LaSrFeO4

due to the overlap with the much stronger CT excitations. A clear separation
of strong CT excitations and weaker MH excitations is an obvious prerequisite
in order to reliably determine the spectral weight of the latter. However, it can
safely be concluded that the thermal expansion of the lattice has only a modest
impact on the spectral weight of MH excitations below room temperature.
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Figure 6.10: Solid lines: Fit of the excitation MH1 at 3.0 eV and of the CT band
edge by using a Gaussian oscillator and an exponential function (de-
picted by dashed lines). The temperature dependence clearly is dom-
inated by the change of the band edge.
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Table 6.2: Parameters of the �t to the measured data with Gaussian oscillators
(a axis). The center energy ω0 and the FWHM Br of the Gaussian
oscillators are de�ned in Sec. 3.1.5 in Eq. 3.24. Both parameters are
given in eV. The e�ective carrier concentration Neff of a Gaussian
oscillator is introduced in Sec. 4.2.3 in Eq. 4.7.

a axis MH1 MH2 CT1 CT2 CT3 background

Neff 0.042 0.062 0.058 0.14 1.05055 −
T = 15K ω0 2.96 3.82 4.00 4.65 4.68 −

Br 0.60 0.26 0.43 0.48 1.40 −
Neff 0.042 0.064 0.058 0.135 1.06 −

T = 50K ω0 2.95 3.81 4.01 4.65 4.68 −
Br 0.61 0.25 0.43 0.47 1.40 −
Neff 0.045 0.063 0.058 0.128 1.08 −

T = 100K ω0 2.96 3.81 4.00 4.65 4.68 −
Br 0.64 0.26 0.43 0.47 1.40 −
Neff 0.052 0.065 0.058 0.12 1.08 −

T = 150K ω0 2.97 3.80 4.01 4.63 4.67 −
Br 0.72 0.27 0.43 0.46 1.39 −
Neff 0.064 0.069 0.059 0.094 1.09 −

T = 200K ω0 2.98 3.79 4.02 0.44 4.66 −
Br 0.84 0.28 0.43 0.47 1.37 −
Neff 0.073 0.070 0.059 0.079 1.098 −

T = 250K ω0 2.99 3.78 4.02 4.60 4.64 −
Br 0.90 0.30 0.43 0.43 1.36 −
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Table 6.3: Parameters of the �t to the measured data with Gaussian oscillators (c
axis). See the caption of table 6.2 for the de�nition of the parameters.

c axis MH1 MH2 CT1 CT2 CT3 background

Neff − − 0.059 0.78 0.12 461.85
T = 15K ω0 − − 4.03 4.89 5.02 10.42

Br − − 0.43 1.09 0.38 7.62
Neff − − 0.059 0.78 0.11 9.96

T = 50K ω0 − − 4.02 4.89 5.02 10.42
Br − − 0.43 1.08 0.37 7.62
Neff − − 0.059 0.76 0.12 9.96

T = 100K ω0 − − 4.02 4.88 5.02 10.42
Br − − 0.43 1.06 0.37 7.62
Neff − − 0.059 0.74 0.11 9.96

T = 150K ω0 − − 4.02 4.88 5.01 10.42
Br − − 0.43 1.05 0.39 7.62
Neff − − 0.059 0.75 0.096 9.96

T = 200K ω0 − − 4.02 4.89 4.99 10.42
Br − − 0.43 1.04 0.38 7.62
Neff − − 0.059 0.75 0.084 9.96

T = 250K ω0 − − 4.02 4.88 4.96 10.42
Br − − 0.43 1.03 0.39 7.62
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6.4 Conclusion

We present a detailed analysis of the optical conductivity of layered LaSrFeO4 for
temperatures ranging from 15K to 250K in the frequency range from 0.5 eV to
5.5 eV by the use of spectroscopic ellipsometry in combination with transmittance
measurements. We make use of infrared transmittance data from 0.5 eV to 2.5 eV
to reliably determine the energy range with ε2 ≈ 0. This information is needed
for the determination of the surface properties of the bulk single crystal, which
have to be included in the modeling of the ellipsometric data.
A multipeak structure is observed in both σa(ω) and σc(ω), which we attribute
to Mott-Hubbard and charge-transfer excitations. To disentangle both types of
excitation, we take advantage of the anisotropy of the optical spectra. Due to the
layered structure of LaSrFeO4, Mott-Hubbard excitations are expected to con-
tribute to σa1(ω) only. A further tool to distinguish both types of excitations is
their di�erence in spectral weight. We present a consistent assignment of all ab-
sorption bands. The data gives strong evidence that the lowest dipole-allowed
excitation is of Mott-Hubbard type. This is against expectations at �rst sight,
as the 3d5 electron con�guration of Fe3+ is particularly stable due to the intra-
atomic Hund exchange JH . We argue that the lowest Mott-Hubbard excitation is
pulled below the onset of the charge-transfer excitations because of Fe 3d−O 2p
hybridization and particularly the large splitting of the eg orbital in the tetragonal
structure, which partially compensates this large intra-atomic exchange contribu-
tion. These results are in agreement with recent studies of non-layered ferrites.
Here, the splitting of the eg level is absent which justi�es the identi�cation as
charge-transfer insulators.
We further demonstrate that the spectral weight of the Mott-Hubbard excita-
tions in LaSrFeO4 shows only a weak dependence on temperature, which can be
attributed to the fact that spin-spin and orbital-orbital correlations between near-
est neighbors do not vary strongly below room temperature in this high-spin 3d5

compound with a Néel temperature of TN = 366K. This is in contrast to other
transition-metal compounds such as RVO3 (see Sec. 5) and LaMnO3/LaSrMnO4

[11,12], where pronounced changes of the nearest-neighbor spin-spin and/or orbital-
orbital correlations lead to a strong temperature dependence of the spectral weight
of the Mott-Hubbard excitations. However, a detailed analysis of the temperature
dependence of the Mott-Hubbard excitations in LaSrFeO4 turned out to be rather
di�cult due to the overlap with the much stronger charge-transfer excitations.





7 Ellipsometry on cobaltates

Cobaltates show a large number of interesting physical properties. The most
prominent examples are unconventional superconductivity, that has been observed
in two-dimensional CoO2 layers if they are separated by a thick insulating layer of
Na ions and H2O molecules [136], and giant magnetoresistance, that has been re-
ported for the mixed Co3+ and Ni3+ perovskite-type compound (RE )Ni0.3Co0.7O3

[137]. The physics of cobaltates has further attracted a lot of research interest
because of the spin-state issue, in particular the spin state of the Co3+ ions with
3d6 electron con�guration in a cubic crystal �eld behaves as an additional degree
of freedom. It has been shown that di�erent spin states lie energetically close for
a 3d6 electron con�guration in an octahedral surrounding [35]. The crystal-�eld
splitting 10Dq competes with the on-site Hund exchange. If the former is domi-
nant, the nonmagnetic low-spin (LS) state (S = 0, t62ge

0
g) is realized, whereas the

Hund exchange favors the magnetic high-spin (HS) state (S = 2, t42ge
2
g ). Also

the intermediate-spin (IS) state (S = 1, t52ge
1
g ) has been discussed as a possible

spin state of the Co3+ ions. It might become energetically favorable due to band-
structure e�ects [24] or large distortions [138,139]. The experimental observation
of unexpected behavior of various physical parameters has often been attributed
to a spin-state transitions of the Co3+ ions [25, 70,140,141].
Undoped LaCoO3 shows a pseudocubic perovskite crystal structure. It can be
characterized as a nonmagnetic insulator at low temperatures (T . 25K), while
the Sr-doped compounds La1−xSrxCoO3 are ferromagnets with a resistivity ρ that
exhibits metallic behavior for doping concentrations x & 0.18 [70]. The magnetic
susceptibility of LaCoO3 shows unusual behavior above T ≈ 25K, which has been
discussed in terms of a thermal population of higher spin states from a LS ground
state, the spin-state transition is absent in the Sr-doped compounds for doping
concentrations x & 0.125 [142]. In undoped EuCoO3, the spin-state transition is
shifted to a much higher temperature [25].
For the layered cobaltates La2−xSrxCoO4 and La2−xCaxCoO4 indications for both,
a thermally-induced and a doping-induced spin-state transition are discussed in
the literature (see references below).
The excitations across the band gap that are observed in optics are expected to
be sensitive to the spin state of the Co3+ ions. As the cobaltates are classi�ed
into the group of charge-transfer (CT) insulators, the lowest electronic excita-
tion has the form of an electron transfer from the oxygen 2p shell to the Co 3d
shell [57, 143�145]. Whereas a LS Co3+ state fully blocks the excitation to the
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Co3+ t2g shell, CT excitations to the Co3+ t2g shell should yield �nite spectral
weight in the case of a Co3+ HS con�guration. A temperature-induced or doping-
induced spin-state transition should therefore be well visible in optics. However,
temperature-dependent re�ectivity data of LaCoO3 hardly vary across the spin-
state transition [27].
A detailed doping- and temperature-dependent ellipsometric analysis of the op-
tical conductivity of both, the pseudocubic perovskites RCoO3 (R = rare earth
ion) and the single-layered compounds La2−xSrxCoO4 and La2−xCaxCoO4 is still
missing. Here, we present optical data of LaCoO3, EuCoO3, La2−xSrxCoO4 (x =
0, 0.33, 0.45, 0.5, 0.9), and La1.5Ca0.5CoO4 for temperatures ranging from 15K to
490K. The data has been acquired by the use of ellipsometry for energies from
0.07 eV to 5.5 eV for LaCoO3 and 0.75 eV to 5.5 eV (or 5.0 eV) for all other com-
pounds. Applying optical investigations, we aim to shine further light on the
hugely debated spin-state issue from a di�erent point of view.
This chapter is organized as follows: In the �rst section the physics of cobaltates is
brie�y discussed, focusing in particular on the spin-state issue. The ellipsometric
data is presented in the second section. Finally, a discussion of the results follows
in the third section and the chapter ends with a conclusion.

7.1 The compounds

7.1.1 The compounds LaCoO3 and EuCoO3

Structural properties

LaCoO3 crystallizes in a nearly cubic perovskite structure. A small rhombohedral
distortion has been observed. Compared to the ideal cubic perovskite structure,
the crystal is distorted along the [111] direction of the cubic unit cell [146]. The
rhombohedral unit cell is twice as large as the cubic cell, the rhombohedral lattice
constants run along the face diagonals [110] of the cubic cell, as can be seen
in Fig. 7.1. The rhombohedral lattice parameters have been determined to be
αrhom = 60.8◦ and arhom = 5.379Å [25], the lattice parameter arhom is related
to the one of the cubic cell ac by arhom ≈

√
2ac. The space group of LaCoO3

at room temperature has been determined to be R	3c [25, 146�148]. Maris et al.
[149] conclude from their high-resolution single-crystal x-ray di�raction data that
LaCoO3 shows a small monoclinic distortion, that could be induced by a collective
Jahn-Teller e�ect for temperatures 20K ≤ T ≤ 300K and propose the subgroup
I2/a of R	3c. Kobayashi et al. [148] have shown that the rhombohedral distortion is
reduced with increasing temperature, at about 1610K a structural phase transition
of second order is reported to take place with an adoption of the ideal cubic
structure. Also the space group R	3 has been discussed for temperatures T & 650K
[146,150]. However, the small distortions away from the cubic arrangement do not
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play an important role for our optical investigations.
The substitution of the La3+ ions by the smaller Eu3+ ions leads to an increased
chemical pressure. As a consequence, the cell volume is reduced by about 6 %
(from 56Å3 in LaCoO3 to 52.75Å3 in EuCoO3) [25] and the symmetry is reduced
to orthorhombic with space group Pnma. The lattice parameters of EuCoO3

amount to a = 5.370Å, b = 5.255Å, and c = 7.477Å [25].

Figure 7.1: Rhombohedral unit cell of LaCoO3. The parameter of a pseudocubic
unit cell ac, the parameters of a hexagonal unit cell aH and cH , and
the rhombohedral angle αR are marked. Taken from Ref. [146].

Magnetic and electrical properties

The electrical properties of LaCoO3 and EuCoO3 are determined by the open 3d
shell of the Co3+ ion that comprises six electrons and is surrounded by an O2−

octahedron. The crystal �eld of the oxygen ions splits the 3d level into the lower
lying t2g orbitals and the higher lying eg orbitals. See the discussion in Sec. 2.2.1
and Fig. 2.4.
In the ground state, LaCoO3 and EuCoO3 show insulating behavior. The resisti-
vity ρ(T ) of La1−xEuxCoO3 is shown in Fig. 7.2. One observes an activation-type
behavior ρ ∝ exp(∆act/T ) below 400K. The activation energy of LaCoO3 amounts
to ∆act ' 1200K ≈ 0.1 eV/kB. Above w 400K a steep drop is observed in the
resistivity curve of LaCoO3, which is discussed in the literature in terms of an
insulator-to-metal transition occurring at TIM ≈ 480K [25,27, 151]. The resistiv-
ity of LaCoO3 above TIM amounts to about 1mΩ cm, which is characteristic for
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Figure 7.2: Electrical resistivity of La1−xEuxCoO3 as function of temperature for
di�erent values of the doping concentration x. The data on a reciprocal
temperature scale is depicted in the inset. Taken from Ref. [25].

a fairly poor metal [25, 27, 70, 152�154]. For increasing Eu content the resistivity
ρ is drastically enhanced. This can be explained by the increasing distortion of
the crystal structure away from a cubic perovskite structure. The hopping prob-
ability of the charge carriers is reduced in EuCoO3 due to the strong deviations
of the Co−O−Co bond angles from 180◦ [25]. As a consequence, the activation
energy ∆act of EuCoO3 exceeds the one of LaCoO3 by about a factor of 3 [25].
The insulator-to-metal transition is shifted to TIM ≈ 600K in EuCoO3, the shift
of TIM is thus much less pronounced than the one of ∆act. Further evidence
for the insulator-to-metal transition in LaCoO3 comes from optical conductivity
data [27]. With increasing temperature, the absorption edge is signi�cantly shifted
to lower energies starting at around 400K [27]. The insulator-to-metal transition
in LaCoO3 is also evident from anomalies in the speci�c heat and thermal expan-
sion around TIM [155,156].
The magnetic susceptibility χ(T ) of La1−xEuxCoO3 is depicted in Fig. 7.3. It
shows quite unusual behavior. The increase of χ(T ) towards lowest tempera-
tures has been ascribed to magnetic impurities and/or oxygen nonstoichiome-
tries [25, 147, 151, 157]. It is quite established that the nonmagnetic behavior
of LaCoO3 at low temperatures can be attributed to the Co3+ LS ground state
(LS: S = 0, t62ge

0
g). The rise of the magnetic susceptibility above about 25K

and the maximum at about 100K have been ascribed to a spin-state transi-
tion [25, 158]. The spin-state transition is not a phase transition in the ther-
modynamic sense [158]. Neither the thermal expansion nor the speci�c heat of
LaCoO3 show a pronounced anomaly at a speci�c temperature, they rather just
show a broad Schottky-type anomaly [25, 158]. The spin-state transition corre-
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sponds to a thermal population of higher spin states, the HS (HS: S = 2, t42ge
2
g)

or the IS (IS: S = 1, t52ge
1
g) state, while the LS state stays the state of lowest

energy. Also structural parameters are reported to change across the spin-state
transition [141].
The maximum in χ(T ) is continuously reduced and shifted to higher temperatures
for increasing doping concentration x, indicating that the spin-state transition is
shifted to a higher temperature in EuCoO3. The enhanced crystal-�eld splitting
in EuCoO3 caused by the stronger chemical pressure is assumed to stabilize the
LS state [25].
In the lower panel of Fig. 7.3 a background is substracted from the raw suscep-
tibility data to focus on the Curie susceptibility of the Co3+ ions. One further
observes a shoulder in the χ(T ) data of LaCoO3 around the metal-insulator tran-
sition. Like TIM deduced from the ρ(T ) data this shoulder shifts to higher tem-
peratures for increasing x [25]. However, compared to the signi�cant shift of the
spin-state transition temperature, the shift of TIM is very moderate, indicating
that the insulator-to-metal and the spin-state transition occur independently of
each other [25].

The Co3+ spin-state issue of LaCoO3

The spin state of the Co3+ ions has attracted researchers interest since the 1950s
[159, 160]. As discussed in the introduction, the spin state of the 3d6 electron
con�guration of the Co3+ ions is subject to a competition between the crystal-
�eld (CF) splitting ∆CF between the t2g and the eg level and the on-site Hund
exchange. The Tanabe-Sugano-Kamimura diagram of a d6 system, which presents
the energies of the di�erent d6 mulitplets in a cubic crystal �eld as a function of
the crystal-�eld splitting, is depicted in Fig. 7.4 [35] (cf. Sec. 2.2.2). The state of
lowest energy for a rather weak crystal �eld is the 5T2g multiplet (S = 2, t42ge

2
g),

which is usually referred to as the HS state. It is 15-fold degenerate (5-fold spin
and 3-fold orbital). For an increasing strength of the crystal �eld, the 1A1g mul-
tiplet (S = 0, t62ge

0
g) becomes lower in energy at some point. The 1A1g multiplet,

which is not degenerate, is the so-called LS state. Another low-energy multiplet
is the 3T1g multiplet (S = 1, t52ge

1
g ), it is 9-fold degenerate (3-fold spin and 3-fold

orbital) and is usually referred to as the IS state [35]. The 3T2g multiplet (3-fold
spin and 3-fold orbital degeneracy) is another IS state (S = 1) with t52ge

1
g electron

con�guration, but it lies higher in energy due to the Coulomb interaction. The
LS, IS, and HS con�gurations are sketched in Fig. 7.5. According to the multiplet
calculation of a 3d6 electron con�guration in a cubic crystal �eld, the IS state can
never be the ground state, see Fig. 7.4. This can be understood on the basis of
the following simple argumentation. Assuming an energy loss of ∆CF for each
electron occupying the eg level and an energy gain of JH for each electron pair
with parallel spins, the di�erent spin con�gurations have the following energies:
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Figure 7.3: The upper panel shows the magnetic susceptibility of La1−xEuxCoO3.
The contribution from the van Vleck susceptibility of the Eu3+ ions
becomes more dominant with increasing doping concentration. The
lower panel shows the susceptibility of the Co3+ ions. A background
susceptibility has been substracted from the raw data that consists
of a Curie-Weiss contribution caused by magnetic impurities and/or
oxygen nonstoichiometry, the van Vleck susceptibility of both the Co3+

and the Eu3+ ions, and a contribution caused by the diamagnetism of
the core electrons. Taken from Ref. [25].

ELS = −6JH , EIS = −7JH + ∆CF and EHS = −10JH + 2∆CF . Figure 7.6 shows
the energies of the di�erent multiplets as a function of ∆CF/JH in a purely ionic
picture. However, in a realistic picture both e�ects, spin-orbit coupling and hy-
bridization between the O 2p and the Co 3d bands, which are neglected in this
simple ionic picture, might play an important role.
In agreement with crystal-�eld theory, early publications suggest a scenario of a
thermal population of Co3+ HS states to explain the steep increase observed in
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Figure 7.4: Tanabe-Sugano-Kamimura diagram of a d6 system (cf. Sec. 2.2.2). The
HS (5T2g), IS (3T1g), and LS (1A1g) states are marked in orange, blue,
and red, respectively. Taken from Ref. [35].

the magnetic susceptibility χ(T ) of LaCoO3 starting at about 25K. In this sce-
nario the LS state remains the state of lowest energy [146,151,161�163]. In 1996,
Korotin et al. [24] published local-density approximation plus Hubbard U band-
structure calculations (LDA+U) that demonstrate that the hybridization between
the Co eg and O 2p levels may stabilize the IS state. However, eg orbital ordering
is needed in the IS state as this state is calculated to be a metal otherwise [24].
Many publications followed that attribute the spin-state transition to a thermal
population of the IS state [149,157,164�166].
It has been pointed out by Zobel et al. [158] and Baier et al. [25] that particularly
the magnetic susceptibility χ(T ) of LaCoO3 below TIM can only be consistently
described in a scenario assuming a thermal population of a state with a magnetic
moment of 1, referred to as the IS state [25,158]. The �t to the measured suscep-
tibility data yields a g-factor of ≈ 2.2 and an energy splitting between the LS and
the thermally populated state of approx. 180K, the �t to the susceptibility data
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Figure 7.5: The low-spin (LS), intermediate-spin (IS), and high-spin (HS) 3d6 elec-
tron con�guration of a Co3+ ion in a cubic crystal �eld. The 1A1g, 3T1g,
and 5T2g multiplets are the lowest multiplets with spin S = 0, S = 1,
and S = 2, respectively [35].
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Figure 7.6: Sketch of the energies of the LS state (1A1g multiplet with S =
0, t62ge

0
g), the IS state (3T1g multiplet with S = 1, t52ge

1
g), and the HS

state (5T2g multiplet with S = 2, t42ge
2
g) as a function of the crystal-

�eld splitting ∆CF between the t2g and the eg level. The crystal �eld
splitting is scaled by JH .
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of EuCOO3 yields a energy splitting of approx. 2200K [25]. A model assuming
a thermal population of a state with a magnetic moment of 2 overestimates the
experimentally observed value of χ(T ) at 100K signi�cantly [25, 158]. In agree-
ment with Korotin et al. [24], the populated IS state is found to show no orbital
degeneracy. The lifting of the orbital degeneracy is attributed to the Jahn-Teller
e�ect, which is active for partially �lled eg orbitals [25, 149, 158]. The suscepti-
bility data of EuCoO3 can be slightly better described with a model assuming an
IS state which is three-fold orbital degenerate. As the spin-state transition occurs
at a much higher temperature in EuCoO3, it is speculated that the Jahn-Teller
e�ect of the IS state is suppressed by thermal �uctuations and/or the elevated
charge-carrier density above TIM [25, 167]. Zobel et al. [158] and Baier et al. [25]
further observe an interesting scaling behavior between the magnetic susceptibility
χ(T ) and the thermal expansion α(T ) of LaCoO3. They obtain a good description
within a scenario of a thermal population of the IS state without orbital degener-
acy. Figure 7.7 shows the result of Kriener [167] for the occupation number of the
LS and the thermally populated IS state of LaCoO3 and EuCoO3 as a function of
temperature. According to this simple calculation, the population of the IS state
amounts to w 70% in LaCoO3 (TIM w 480 K), while it amounts to only w 7%
in EuCoO3 (TIM w 600K) at the metal-insulator transition temperature [25,167].
For T → 1000K the magnetic susceptibility χ(T ) approaches a similar value of
1.4× 10−3 emu/mole for all doping concentrations x in La1−xEuxCoO3, indicating
that the spin state at T & 1000K is independent of x [25].
Further evidence for a thermal population of the IS state comes from infrared
spectroscopy on LaCoO3 [157]. An anomalous splitting of the phonon modes and
a variation of their intensity has been reported to occur with the spin-state tran-
sition. It has been attributed to a Jahn-Teller splitting of the eg orbitals, which is
characteristic for the IS state [157]. Changes of the phonon modes across the spin-
state transition, that have been attributed to a collective Jahn-Teller e�ect of the
IS states, have also been detected in Raman spectroscopy [164]. Indications for a
Jahn-Teller distortion come further from the analysis of powder and single crystal
x-ray di�raction data. An alternation of short and long Co−O bonds in the ab
plane has been observed giving evidence for orbital ordering [149]. As the distor-
tions increase with temperature, it has been concluded that a thermal activation
of the IS state takes place. Also a pair density function analysis of pulsed neu-
tron data give evidence for a Jahn-Teller e�ect characteristic for an IS state [165].
In addition, the thermal expansion α(T ) of LaCoO3 gives clear evidence for the
population of higher spin states starting at T ≈ 25K. The anomalous increase
above 25K can be attributed to increasing Co−O distances coming along with
the population of eg levels [25, 158]. Saitoh et al. [166] perform a cluster-model
analysis of their photoemission and x-ray absorption data and obtain the best
description within a scenario of thermally populated IS states from a LS ground
state.
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Soft x-ray absorption spectroscopy (XAS) and magnetic circular dichroism (MCD)
studies performed by Haverkort et al. [26] have changed the discussion of the spin-
state issue considerably. They seem to solve the spin-state issue of LaCoO3. A
good description of the data is obtained by the use of a con�guration-interaction
cluster model within a scenario of an inhomogeneous mixture of LS and thermally
excited HS states. The model accounts for spin-orbit coupling and includes the
full atomic multiplet theory and hybridization between Co 3d and O 2p bands.
The e�ective activation energy from the LS to the HS state is found to change with
temperature, it increases from 20meV ≈ 230K·kB at 50K to 80meV ≈ 930K·kB
at 650K. This leads to a signi�cantly reduced population of the HS state at higher
temperatures. Consequently, the di�erence in occupation numbers of higher spin
states between LaCoO3 and EuCoO3 at the metal-insulator transition is not as
drastic as in the LS/IS scenario with �xed activation energy as assumed in Fig.
7.7. Haverkort et al. [26] point out that spin-orbit coupling plays an important
role in LaCoO3. The spin-orbit coupling partly lifts the 15-fold degeneracy of the
HS state. The resulting states of di�erent energy have a pseudo total momentum
of �J=1, 2, or 3, where the triplet with �J= 1 has the lowest energy. This state has
Lz = 0.6 and Sz = 1.3. Haverkort et al. [26] emphasize that it is consequently
not surprising that this three-fold degenerate HS state with Sz close to one has
been wrongly identi�ed with the IS state within many investigations. Haverkort
et al. [26] strictly rule out the IS state scenario because it is incompatible with the
large orbital momentum deduced from the MCD data. Also electron spin reso-
nance data [168,169] and inelastic neutron scattering data [170] give clear evidence
that the lowest-energy excited state from the LS ground state is the spin-orbit split
triplet of 5T2g. A g-factor of approx. 3− 3.5 is found, which cannot be ascribed
to an IS state. This �nding is in disagreement with the result of Zobel et al. [158]
and Baier et al. [25], who deduced a g-factor of approx. 2.2 from the �t to their
susceptibility data. However, the susceptibility data can well be described within
a scenario of g-factor of approx. 3− 3.5 and a thermal population of the spin-orbit
split HS state with a magnetic moment of 1, when a temperature-dependent ac-
tivation energy is assumed. Also various other experimental �ndings can be well
explained within this picture. The �t to the XAS and MCD data of Haverkort et
al. [26] yields a larger 10Dq for the LS Co3+ sites (10Dq = 0.7 eV) than for the
HS sites (10 Dq = 0.5 eV). This con�rms the �nding of Zobel et al. [158] of the
anomaly of the coe�cient of thermal expansion at the spin-state transition. Fur-
thermore, a recent combined extended x-ray absorption �ne structure and neutron
pair distribution function analysis performed by Sundararm et al. [171] con�rms
the LS/HS scenario. Sundararm et al. [171] conclude from their analysis that the
Jahn-Teller distortions of LaCoO3 reported in Ref. [149], that led the authors of
Ref. [149] to the conclusion of an IS state scenario, can only be small.
In conclusion, it has to be pointed out that many publications assigned the spin-
state transition to a thermal population of the IS state instead of the HS state
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Figure 7.7: Calculated occupation numbers of the LS and IS state for LaCoO3

(red) and EuCoO3 (blue) as a function of temperature by Kriener [167].
The curves have been calculated by use of the thermodynamic distri-
bution function assuming an energy splitting between the LS and the
IS state of approx. 200K for LaCoO3 and approx. 2300K for EuCoO3.
Taken from Ref. [167].

from the LS ground state. They assumed the activation energy to be indepen-
dent of temperature. If one allows for a temperature dependent activation energy,
the experimentally observed behavior of the magnetic susceptibility can well be
described within the LS/HS scenario. Furthermore, various publications such as,
e.g., Refs. [157,164] come to the conclusion of a thermal population of the IS state
based on their observation of individual Jahn-Teller distorted octahedra. How-
ever, these interpretations have to be regarded with care. A distinction between a
scenario of individual Jahn-Teller distorted octahedra or a scenario consisting of a
mixture of larger HS (which might also be distorted to some extend) and smaller
LS octahedra might be challenging.

Metal-insulator transition of La1-xEuxCoO3

As obvious from both, electrical resistivity data and optical conductivity data,
LaCoO3 shows an insulator-to-metal transition at around 480K [25, 27]. As op-
posed to the spin-state transition, the metal-insulator transition is a real phase
transition in the thermodynamic sense, as being revealed by an anomaly in the
speci�c heat around TIM [155]. With increasing x in La1−xEuxCoO3, the shift
of the metal-insulator transition to higher temperatures is much less pronounced
than the shift of the spin-state transition [25]. This indicates that both transi-
tions occur independently of each other and the metal-insulator transition is not
a�ected by the population of higher spin states of the Co3+ ions [25]. Its origin
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is still discussed controversially. Many di�erent scenarios have been proposed.
Korotin et al. [24] attributed the spin-state transition to a thermal population of
IS states with eg orbital ordering on the basis of their LDA+U calculations and
proposed that the insulator-to-metal transition at around 480K in LaCoO3 can
be attributed to a melting of this orbital order. The resulting IS state without
orbital order is calculated to be a metal [24]. In the LS/IS scenario, a melting
of the Jahn-Teller distortion in the metallic phase which re-establishes the or-
bital degeneracy of the IS state could also explain the enhanced susceptibility
close to TIM [25, 158, 167]. It has furthermore been suggested that ferromagnetic
(FM) correlations above TIM are responsible for the observed increase of χ(T )
at the metal-insulator transition [25, 27]. This has been proposed in analogy to
hole-doped La1−xSrxCoO3, where the ground state can be characterized as being
metallic with FM correlations for doping concentrations x & 0.18 [70]. However,
the Co3+ compound LaCoO3, although showing more or less metallic behavior
above TIM , is hardly comparable to the mixed Co3+ and Co4+ compounds, where
the ferromagnetism has been explained by a double exchange between Co3+ and
Co4+ ions. Other explanations for the rise of the magnetic susceptibility close to
TIM include scenarios that are based on three di�erent spin-states [141,166,172].
A population of the IS state at the spin-state transition and the HS state around
the metal-insulator transition has been proposed [172]. A good description of χ(T )
within these scenarios requires a temperature dependence of the energies of the
IS and the HS state [172]. A comparison between temperature-dependent optical
conductivity data of LaCoO3 and doping dependent optical conductivity data of
La1−xSrxCoO3 reveals a strong similarity [27]. The authors of Ref. [27] thus sug-
gest, that the thermally induced insulator-to-metal transition can be characterized
as a Mott transition of a correlated electron system [27,152]. Various other scenar-
ios have been proposed to explain the metal-insulator transition, e.g. the closing
of the energy gap between the occupied t2g states and unoccupied eg states [173],
or a thermal population of eg states. The latter has been suggested on the basis
of the observation of an increasing Co−O bond length around TIM [146].

7.1.2 The compounds La2-xSrxCoO4 and La2-xCaxCoO4

Structural properties

The compounds La2−xSrxCoO4 and La2−xCaxCoO4 crystallize in the single-layered
K2NiF4-type perovskite structure. An orthorhombic distortion away from the
tetragonal K2NiF4-type structure has been observed already at room tempera-
ture for the parent compound La2CoO4 The orthorhombic unit cell of La2CoO4

is depicted in Fig. 7.8. The degree of orthorhombic distortion can be reduced by
hole doping. Cwik [42] has shown that it is fully suppressed at room temperature
beyond a doping concentration of x = 0.3 in the compounds La2−xAxCoO4 with
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A = Ca, Sr, or Ba. The orthorhombic distortion can be described by a rotation
and tilting of the corner-sharing CoO6 octahedra, which is due to an ionic size
mismatch. The phase-transition temperature from the high-temperature tetrago-
nal (HTT) phase with space group I4/mmm to the low-temperature orthorhombic
(LTO) phase with space group Bmab decreases upon increasing doping concen-
tration x. The Sr-doped compound La1.7Sr0.3CoO4, for instance, enters the LTO
phase only below 227K [174], while the half-doped compound La1.5Sr0.5CoO4 is
reported to retain its tetragonal structure down to lowest temperatures [175].
Indications for a phase transition into a new low-temperature tetragonal phase
(LTT) taking place at T = 135K have been reported by Ref. [176] for the parent
compound La2CoO4, whereas no indications for a LTT phase have been found for
La1.7Sr0.3CoO4 in Ref. [42]. The observed behavior of the doped cobaltates is very
similar to the phase diagram of the isostructural compounds La2−xSrxNiO4 and
La2−xSrxCuO4.
The lattice parameters of the compounds relevant for this work are summarized
in table 7.1.

Magnetic and electrical properties

Let us now focus on the magnetic properties of La2−xSrxCoO4 and La2−xCaxCoO4.
The parent compound La2CoO4 is an antiferromagnetic (AFM) insulator with
TN = 275K [176], similar to the isostructural compounds La2CuO4 and La2NiO4.
A sketch of the spin arrangements in the CoO2 planes of La2CoO4 as proposed by
Cwik [42] is shown in Fig. 7.9. The spins show an AFM nearest-neighbor coupling
within the CoO2 planes with a spin moment that lies within the planes. Short-
range AFM spin order has been reported to set in below ∼ 130K in La1.7Sr0.3CoO4

[42]. The spin correlations in La1.7Sr0.3CoO4 are similar to the arrangements ob-
served in the parent compound La2CoO4. Commensurate spin order is not lost
in the compound with the relative high doping concentration of x = 0.3 [42].
In contrast, commensurate spin order is destroyed already at a doping concen-
tration of x = 0.024 and x = 0.135 in La2−xSrxCuO4 and La2−xSrxNiO4, re-
spectively [177�179]. The high stability of the AFM ordered phase observed in
La2−xSrxCoO4 is believed to be a consequence of the high charge localization be-
ing re�ected in the high electrical resistivity [28] (see below).
Further hole doping beyond x > 0.3 suppresses long-range magnetic order and

a spin-glass phase is realized at low temperatures [42]. For doping levels x > 0.3
short-range incommensurate spin ordering has been observed [42]. The incommen-
surate modulation vector increases nearly linearly with the doping concentration
x. This is similar to the case of doped cuprates and nickelates. The linear depen-
dence has been attributed to a stripe phase, i.e. the doping induced TM3+ ions
(TM = Cu, Ni, Co) are grouped into stripes that separate the AFM ordered spins
of the TM2+ ions. While the stripe ordering is lost above a Sr concentration as low
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Figure 7.8: Orthorhombic unit cell of La2CoO4 at room temperature (space group
Bmab). Compared to the tetragonal layered perovskite structure
(space group I4/mmm), the CoO6 octahedra are tilted and rotated.
Taken from Ref. [42].

doping x a (Å) b(Å) c(Å) space group Ref.
0 5.521(3) 5.486(3) 12.631(5) Bmab [30]
0.3 3.8556(1) 3.8556(1) 12.6499(5) I4/mmm [42]
0.45 3.8458(1) 3.8458(1) 12.5934(2) I4/mmm [42]

0.5 (Sr) 3.8392(1) 3.8392(1) 12.5345(5) I4/mmm [42]
0.5 (Ca) 3.8299(1) 3.8299(1) 12.3949(3) I4/mmm [42]

0.9 3.8109(1) 3.8109(1) 12.4837(2) I4/mmm [42]

Table 7.1: Lattice parameters of La2−xSrxCoO4 and La1.5Ca0.5CoO4 at room tem-
perature as deduced by Cwik [42] (for x > 0) from x-ray di�raction
data on single crystals.
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Figure 7.9: Left panel: Spin-ordering pattern of La2CoO4 in Bmab notation.
Dashed circles indicate Co2+ ions of an adjacent CoO2 layer. Right
panel: Spin-ordering and checkerboard charge-ordering pattern of
magnetic Co2+ and nonmagnetic Co3+ ions within the ab plane of
the tetragonal unit cell (in I4/mmm notation) of La1.5Sr0.5CoO4 as
proposed by Cwik [42]. The positions of the Co ions in the adjacent
CoO2 layer are indicated by dashed circles. The symmetry of the
charge-order unit cell is Bmmm, the magnetic unit cell is shown in
green. The in-plane and out-of-plane AFM exchange couplings are de-
noted by J1 and J2, respectively. Both �gures are taken from Ref. [42].

as ≈ 0.14 in the cuprates, it persists up to a Sr concentration of ≈ 0.6 and ≈ 0.5
in layered cobaltates and nickelates, respectively [174,178�180]. In La2−xSrxNiO4

and La2−xSrxCuO4 the stripe phase is reported to be most stable near x = 1/3
and x = 1/8, respectively [178, 179]. In the cobaltates, the half-doped compound
La1.5Sr0.5CoO4 exhibits the most robust charge and spin order with a maximum in
the spin- and charge-order correlation lengths (ξchargeab ≈ 26Å, ξchargec ≈ 8Å, and
ξspinab ≈ 70Å, ξspinc ≈ 10Å) and the highest spin-freezing temperature (TS ≈ 30K)
[174,181]. For x = 0.5 the Co2+ and Co3+ ions show a checkerboard-like ordering
pattern. Short-range checkerboard-like charge ordering is reported to set in below
TC = 825K [175]. The charge-ordering temperature TC = 825K of La1.5Sr0.5CoO4

is extremely high compared to similar systems, e.g. charges order at TC = 217K in
La0.5Sr1.5MnO4 [182] and TC = 480K in La1.5Sr0.5NiO4 [180]. The huge di�erence
between the charge-ordering temperature and the spin-ordering temperature in
La1.5Sr0.5CoO4 suggests that both phenomena are independent of each other [181].
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The magnetic ordering in La1.5Sr0.5CoO4 has been reported to be nearly commen-
surate, Fig. 7.9 depicts a sketch of the spin-order and charge-order arrangement
that has been proposed by Cwik et al. [42,174]. They conclude from their neutron
scattering data a pattern of ordered S = 3/2 Co2+ HS ions and nonmagnetic Co3+

ions. The magnetic Co2+ ions are claimed to show an e�ective AFM coupling via
next-nearest neighbor bonds Co2+−O−Co3+−O−Co2+ and a weak coupling
between nearest Co2+ neighbors of adjacent CoO2 layers. The phase diagram of
La2−xSrxCoO4 as obtained by Cwik et al. [174] is shown in Fig. 7.10.
Checkerboard-like charge order has also been observed in the half-doped Ca com-
pound La1.5Ca0.5CoO4 with correlation lengths that are �ve times longer (ξchargeab ≈
115Å and ξchargec ≈ 59Å) than in the Sr-doped counterpart [183]. In addition,
La1.5Ca0.5CoO4 shows long-range magnetic order below TS ≈ 50K [184] (or TS ≈
8K according to Ref. [30]) with correlation length ξspinab = 195Å and ξspinc = 22Å.
Horrigane et al. [184] explain their neutron scattering data on La1.5Ca0.5CoO4 by
a magnetic four-domain model, considering two types of AFM ordering patterns
and a twin structure of their single crystal.
The in- and out-of-plane resistivities ρab and ρc of La2−xSrxCoO4 as obtained
by Benomar et al. [185] for 0.4 ≤ x ≤ 0.8 are shown in Fig. 7.11. La2CoO4

and LaSrCoO4 are categorized into the group of CT insulators. La2−xSrxCoO4

shows insulating or semiconducting behavior at least for doping concentrations
0.0 ≤ x ≤ 1.5 [186]. For 0.4 ≤ x ≤ 0.7 it shows insulating behavior with an
activation energy of ∼ 500meV (≈ 5800K·kB). The highest magnitude of ρab is
observed for the half-doped compound, ρab is signi�cantly reduced beyond a dop-
ing concentration of x = 0.7. It has to be pointed out that the magnitude of ρab
in La2−xSrxCoO4 is signi�cantly larger than in various isostructural compounds
(e.g. an activation energy of ∼ 70meV has been reported for LaSrMnO4 [126]).
The highly insulating behavior can be explained by the spin-blockade mechanism
which is active in La2−xSrxCoO4. It is discussed in the next section (Sec. 7.1.2)
together with the spin-state degree of freedom of the Co3+ ion.

The Co3+ spin-state issue of La2-xSrxCoO4 and La2-xCaxCoO4

The layered cobaltates La2−xSrxCoO4 and La2−xCaxCoO4 contain both, Co3+ ions
with electron con�guration 3d6 and Co2+ ions with electron con�guration 3d7 in
a ratio of x/(1− x). While it is well established that the 3d7 con�guration of the
Co2+ ions shows the HS electron con�guration (S = 3/2, t52ge

2
g, the lowest HS state

corresponds to the 4T1g multiplet in cubic symmetry) [28,29,139], see Fig. 7.53 on
page 198, the spin state of the Co3+ 3d6 ions is widely disputed. The HS, IS, and
LS electron con�guration of a Co3+ ion in a tetragonal crystal �eld is depicted in
Fig. 7.54 on page 199. The Co3+ spin state of the mixed Co2+−Co3+ compounds
La2−xSrxCoO4 and La2−xCaxCoO4 has been extensively investigated.



7.1 The compounds 155

Figure 7.10: Phase diagram of La2−xSrxCoO4 as proposed by Cwik et al. [174].
Taken from Ref. [174].

Wang et al. [31] propose that there are two doping-induced spin-state transitions
in La2−xSrxCoO4 in the doping range 0.0 < x < 1.1 on the basis of their unre-
stricted Hartree-Fock calculations. According to Ref. [31] an AFM HS state is
realized for x < 0.39 which transforms into a FM HS state for x > 0.39, while an
HS/LS ordered state is proposed to set in at x = 0.52.
In the framework of their neutron scattering study on La1.5Sr0.5CoO4 revealing
Co2+−Co3+ checkerbord-like charge order, Zaliznyak et al. [175, 181] proposed
that the Co3+ ions in the half-doped Sr compound are in an IS state which is
nonmagnetic due to quenching by strong planar anisotropy. This is in contrast to
more elaborate neutron scattering studies performed by Cwik [42]. He �nds alter-
nating smaller Co3+O6 and larger Co2+O6 octahedra, the Co3+O6 octahedra are
found to be not Jahn-Teller active. He proposes the Co3+ LS state to be realized
in La1.5Sr0.5CoO4 at room temperature. Horigane et al. [183], who detected the
checkerboard-like Co2+−Co3+ charge ordering in La1.5Ca0.5CoO4 by the use of
neutron and resonant x-ray scattering, suggested a mixed IS/HS state of the Co3+

ions in the half-doped Ca compound with the help of their �uorescence spectra
and magnetic susceptibility data. Indications for magnetic scattering intensities
that may originate from Co3+ spin order are found in elastic neutron di�raction
data [184]. The authors of Ref. [184] thus propose that the Co3+ ions realize the
magnetic HS state in La1.5Ca0.5CoO4.
Moritomo et al. [28] study the spin-state properties of La2−xSrxCoO4 (0.4 ≤ x ≤
1.0) by measuring magnetic and transport properties in the temperature range
from 100K to 300K and applying a Curie-Weiss analysis of the magnetic suscep-
tibility. While they con�rm that the Co2+ ions are in a HS state, they claim that
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Figure 7.11: Arrhenius plot of the DC electrical resistivity of La2−xSrxCoO4. The
in-plane component ρab of the resistivity is shown in (a), the out-of-
plane component ρc is shown in (b). The experimental data have
been acquired by Benomar [185]. Taken from Ref. [42].

a spin-state transition takes place on the Co3+ ions from the HS (x ≤ 0.6) to the
IS state (x ≥ 0.8) [28]. Their claim is based on the fact that the e�ective magnetic
moment drops from 3.4µB to 2.6µB with increasing doping level x beyond x = 0.7,
at the same time they observe a signi�cant decrease of the Weiss temperature and
the in-plane resistivity ρab (at 400K) [28]. They point out that the Co3+ IS state
supports the eg electron transfer between Co3+ and Co2+ and thereby triggers a
FM superexchange in competition with the original AFM superexchange, which
explains the reduction of the Weiss temperature. NMR measurements support
this result [187].
However, Hollmann et al. [188] question the results of Moritomo et al. [28] as they
claim that the application of a Curie-Weiss analysis is not appropriate in the com-
pounds La2−xSrxCoO4 with rather strong spin-orbit coupling. They investigate
the spin state of La2−xSrxCoO4 (0.5 ≤ x ≤ 0.8) by the use of magnetic susceptibil-
ity data for temperatures up to 1000K together with a multiplet calculation [29].
In agreement with Moritomo et al. [28], their data support the HS state for Co2+

ions. But they conclude from the observed anisotropy and temperature depen-
dence that the Co3+ ions are in the LS state at low temperatures, while higher
spin states are thermally populated at higher temperatures. The excited states are
either HS or IS states, both states cannot be distinguished by the use of magnetic
susceptibility data. The activation energy between the spin states is determined
to be around 2000K. This is much higher than the activation energy reported for
the pseudocubic compound LaCoO3. This is in agreement with structural data.
For LaCoO3 the Co−O bond length has been determined to be 1.91Å, whereas
the in-plane bond length of the Co3+ ions in La1.5Sr0.5CoO4 is reported to be only
1.89Å [42]. The increased crystal �eld in the layered compound is thus expected to
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stabilize the LS state. The temperature dependence of the infrared-active phonon
modes in La1.5Sr0.5CoO4 and La1.5Ca0.5CoO4 detected by Lee et al. [32] also gives
evidence for a population of higher spin states above T ≈ 400K and T ≈ 600K for
the Sr-doped and Ca-doped compound, respectively. Taking into account struc-
tural data of Refs. [42,181,181], which exhibit a huge increase of the c-axis lattice
constant above 400K, Lee et al. [32] conclude that the populated state is the IS
state as the e1

g electron con�guration favors an elongation of the CoO6 octahedra.
The susceptibility data of Hollmann et al. [188] at lower temperatures (T <
400K) for 0.3 ≤ x ≤ 0.8 indicate that the ground state of Co3+ must be the LS
state at least for x ≥ 0.4. The structural data acquired by Cwik [42] reveal a spec-
tacular drop of the c-axis lattice parameter beyond x = 0.45 in La2−xSrxCoO4,
which is due to a decrease of the elongation of the CoO6 octahedra. It is attributed
to a doping-induced spin-state transitions from a HS Co3+ to a LS Co3+ state.
Wu and Burnus [139] use local spin density approximation plus Hubbard U cal-
culations (LSDA+U) to shed light on the controversies regarding the spin state
of Co3+ in La1.5Sr0.5CoO4. For their calculations they made use of the structural
data reported in Ref. [42] and included also spin-orbit coupling and the multiplet
e�ect. Their analysis strongly suggests that Co3+ realizes the LS state, in agree-
ment with Hollmann et al. [188]. An IS con�guration lies higher in energy by
122meV (≈ 1400K ·kB) and further gives rise to strong in-plane FM correlations
and an out-of-plane magnetism, both in strong disagreement with experimental
observations [188]. Also the HS Co3+ state lies higher in energy by 310meV
(≈ 3600K ·kB) and it can further be ruled out as it would result in strong HS
Co3+−HS Co2+ AFM coupling, in disagreement with the observed spin freezing
temperature of TS ≈ 30K.
These �ndings are also strongly supported by an x-ray absorption spectroscopy
study performed by Chang et al. [189]. They demonstrate that the Co3+ LS state
must be realized in La1.5Sr0.5CoO4, both at room temperature and below the spin
freezing temperature. They furthermore show that a scenario of charge-ordered HS
Co2+ and LS Co3+ ions naturally explains many of the observed remarkable prop-
erties of La1.5Sr0.5CoO4. The high charge-ordering temperature TC = 825K and
the extremely insulating behavior can be attributed to the so called spin-blockade
mechanism [30, 189, 190]: The Co3+−Co2+ electron hopping is remarkably sup-
pressed as it results in a pair of wrong spin states, costing a huge amount of energy,
see Fig. 7.12. This further explains the rapid suppression of the AFM spin order
in the doped compounds compared to the parent compound La2CoO4 [30, 174].
The strong charge localization is further stabilized by the extreme eg occupation
di�erence between LS Co3+ (t62ge

0
g) and HS Co2+ (t52ge

2
g), resulting in hugely dif-

ferent Co−O distances. Additionally, Chang et al. [189] outline that the lowest
unoccupied band of the LS Co3+ ions has almost pure 3z2 − r2 character (the eg
splitting between 3z2 − r2 and x2 − y2 amounts to ≈ 0.7 eV). Since 3z2 − r2 has
only small overlap with the in-plane O 2pxy band, the bandwidth of the conduction
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band is signi�cantly reduced compared to e.g. cuprate, nickelate, and manganite
compounds (where the x2 − y2 orbital forms the conduction band), which further
contributes to the highly insulating character of La1.5Sr0.5CoO4.
It has to be pointed out that the IS state can indeed safely be ruled out on the
basis of various theoretical studies. It can only be stabilized for a huge t2g− eg
splitting beyond ≈ 2 eV, which is much larger than the actual splitting of ≈ 0.7 eV
in La1.5Sr0.5CoO4 [30, 138,139,189].
Jia et al. [190] theoretically con�rm the scenario of a Co3+ LS state as proposed
by Refs. [139] and [189] also for the Ca-doped compound La1.5Ca0.5CoO4 by the
use of the full-potential linearized augmented plane-wave method [190]. The Co3+

LS state is further con�rmed by neutron scattering experiments on La1.5Sr0.5CoO4

performed by Helme et al. [191].
Also the spin state of the pure Co3+ compound LaSrCoO4 has been investigated.
Intuitively, one would expect that the IS state is lowest in energy due to the elon-
gation of the CoO6 octahedra in these layered systems and the resulting splitting
of the eg level [28, 138, 192�194]. Furthermore, the e�ective magnetic moment
of the IS state µeff = 2.8µB is in good agreement with the measured value of
µeff = 2.6µB [28]. However, the experimental data have to be regarded with
care. The crystal growers of our institute in Cologne made the experience that
it is extremely challenging to produce single crystals of LaSrCoO4. On the basis
of unrestricted Hartree-Fock calculation under the assumption of a cubic crystal
�eld, Wang et al. [79] propose a mixture of LS and HS states being realized in
LaSrCoO4. Besides his theoretical investigations on the half-doped compound
La1.5Sr0.5CoO4, Wu [138] also performed LSDA+U calculations to study the spin
state of the pure Co3+ system LaSrCoO4, again including the multiplet e�ect,
spin-orbit coupling, and accounting for the tetragonal distorted crystal structure.
A comparison of his results with experimental data con�rms the �ndings of Wang
et al. [79] claiming that the HS/LS mixed state has the lowest energy. A HS/LS
mixed state yields µeff ≈ 2.7µB which agrees also well with the measured value
of µeff ≈ 2.6µB [28, 138]. A mixed Co3+ HS/LS state leads to a competition
between AFM and FM interactions in LaSrCoO4. High-spin Co3+ neighbors favor
AFM coupling, on the contrary, �uctuations between neighboring HS Co3+ and LS
Co3+ ions lead to ferromagnetism [30]. This is in agreement with the simultaneous
observation of FM and AFM features in the magnetic susceptibility in Ref. [28].
Recent near-edge x-ray absorption �ne structure measurements performed by Merz
et al. [30] on La2−xCaxCoO4 (x = 0, 0.5, 1, 1.5) give clear evidence for the fol-
lowing spin-state scenario: In La2CoO4 all Co2+ ions are in the HS state. In
La1.5Sr0.5CoO4 the Co2+ HS state and the Co3+ LS state is realized, while in
LaSrCoO4 55 % of the Co3+ ions are in the LS and the other 45% are in the HS
state. The �ndings of Merz et al. [30] on the Ca-doped compound are thus in
agreement with the studies of Refs. [29, 139, 188, 189, 191] on the Sr-doped coun-
terpart.
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To conclude, the most probable ground state of the Co3+ ions in the layered
compound La2−xSrxCoO4 with doping levels 0.4 . x . 0.8 is the LS state
(S = 0) [29, 30, 42, 139, 188�191], while higher spin states might be populated
at higher temperatures above T ≈ 500K, as suggested by Hollmann et al. [29].
For doping concentrations x & 0.8 a mixed HS/LS state might be realized [79,138],
while Cwik [42] speculates that a HS Co3+ scenario might be possible for doping
concentrations x < 0.4.

Figure 7.12:
The spin-blockade mechanism: The
transfer of an electron from a HS Co2+

ion to a LS Co3+ ion would result in en-
ergetic unfavorable spin con�gurations.
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7.2 Experimental data

In this section the ellipsometric data is presented. First, we brie�y discuss the
acquisition and analysis of the various data sets. An exemplary plot of the exper-
imentally acquired data on La1.55Sr0.45CoO4 at 15K with �t is shown in Fig. 7.13.
The MSE of the �t to the data amounts to 1.5. A summary of the information on
the data acquisition and analysis of the various measured cobaltate samples can
be found in table 7.2 on page 189 at the end of this section.
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Figure 7.13: Experimentally obtained Ψpp (top) and ∆pp (bottom) on
La1.55Sr0.45CoO4 for two di�erent sample orientations at T = 15K.
Data that has been acquired on an ac plane with the a axis lying
in the plane of incidence (blue squares) and the c axis lying in the
plane of incidence (orange squares) are shown.
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7.2.1 Optical conductivity of LaCoO3 and EuCoO3

� LaCoO3

The ellipsometric variables Ψpp and ∆pp have been acquired on a polished
sample surface of pseudocubic LaCoO3 with a diameter of about 4mm. In
the energy range from 0.75 eV to 5.5 eV covered by the VIS/UV ellipsometer
at hand in Cologne, data has been acquired inside the cryostat at an angle
of incidence of 70◦ for temperatures ranging from 15K to 490K. The data
is �tted with 6 Gaussian oscillators, see Fig. 7.14. The parameters of the
oscillators are summarized in Figs. 7.20 and 7.21. In the �t, a surface rough-
ness with a thickness of 10Å is assumed. The �t to the data is very good, it
yields an MSE of about 0.4− 0.8. The dielectric function ε(ω) of LaCoO3 is
depicted in Fig. 7.15, Fig. 7.16 shows the optical conductivity σ1(ω). As the
data show an interesting temperature dependence between 40K and 80K,
additional measurements have been performed in this temperature range in
small steps of 5K. Since these data has been taken within a second mea-
surement series (measurement series 2), the absolute values of the resulting
ε2(ω) and σ1(ω) are slightly di�erent, see Fig. 7.17. The di�erence can be
attributed to surface e�ects. Therefore, the additional data between 40K
and 80K are not shown in Figs. 7.15 and 7.16, but referred to in the discus-
sion.
The optical conductivity of LaCoO3 at lower energies between 0.07 eV and
0.65 eV has been acquired with the help of an IR ellipsometer at the Univer-
sity of California San Diego. The low-temperature measurements have been
performed at an angle of incidence of 60◦. Unfortunately, the cryostat did
not allow for measurements above room temperature. The IR data is �tted
together with the data at higher energies. The resulting dielectric function
ε(ω) and the optical conductivity σ1(ω) are shown in Figs. 7.18 and 7.19,
respectively. The parameters of the Gaussian oscillators used in the �t to
the IR data are embedded in Figs. 7.20 and 7.21.
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Figure 7.14: Left panel: The model for the dielectric function of LaCoO3 is based
on a sum of six Gaussian oscillators. The oscillators describing ε2 at
15K are represented by solid lines, whereas the oscillators describing
ε2 at 300K are represented by dashed lines. While the Gaussian os-
cillator at ≈ 0.7 eV (peak 1) describing the low-energy spectral weight
is missing for low temperatures below 80K, an additional oscillator is
needed at ≈ 2 eV (peak 4) for T < 80K. Right panel: The model for
the dielectric function of EuCoO3 is based on a sum of seven Gaussian
oscillators.
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Figure 7.15: Dielectric function ε(ω) of LaCoO3 between 0.75 eV and 5.5 eV for
temperatures ranging from 15K to 490K.



7.2 Experimental data 163

1 2 3 4 50

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

 1 0 0  K
  8 0  K
  4 0  K
  1 5  K

 1 8 0  K
 1 4 0  K
 1 2 0  K

 4 9 0  K
 4 7 0  K
 4 5 0  K
 4 0 0  K
 3 5 0  K
 3 0 0  K
 2 5 0  K
 2 2 0  K

 

 

 

σ 1((Ω
cm

)-1 )

E n e r g y  ( e V )

L a C o O 3

Figure 7.16: Optical conductivity σ1(ω) of LaCoO3 between 0.75 eV and 5.5 eV for
temperatures ranging from 15K to 490K.
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0 1 2 3 4 50

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

 

 

σ 1((Ω
cm

)-1 )

E n e r g y  ( e V )

 3 0 0  K
 2 5 0  K
 2 2 0  K
 1 8 0  K
 1 2 0  K
 8 0  K
 1 5  K

L a C o O 3

Figure 7.19: Optical conductivity σ1(ω) of LaCoO3 for di�erent temperatures be-
low 300K. Additional data has been acquired down to energies of
0.07 eV by the use of an IR ellipsometer.



7.2 Experimental data 165

0 . 0 0

0 . 0 1

0 . 0 2

0 . 0 3

0 . 5
0 . 6
0 . 7
0 . 8

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

 

 N eff

P e a k  1

 

 

ω
0 (e

V)

 

 

Br 
(eV

)

T e m p e r a t u r e  ( K )

0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 8
0 . 9
1 . 0
1 . 1
1 . 2
1 . 3

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 00 . 4
0 . 6
0 . 8
1 . 0
1 . 2

 

 N eff

P e a k  2

 

 

ω
0 (e

V)

 

 

Br 
(eV

)
T e m p e r a t u r e  ( K )

0 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8

1 . 4
1 . 5
1 . 6
1 . 7
1 . 8

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0 . 4
0 . 5
0 . 6
0 . 7

 

 N eff

P e a k  3

 

 

ω
0 (e

V)

 

 

Br 
(eV

)

T e m p e r a t u r e  ( K )

0 . 0 0 0
0 . 0 0 5
0 . 0 1 0
0 . 0 1 5
0 . 0 2 0

1 . 9 6
1 . 9 8
2 . 0 0
2 . 0 2
2 . 0 4

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0 . 3 8

0 . 4 0

0 . 4 2

 

 

N eff

P e a k  4

 

 

ω
0 (e

V)

 
 

Br 
(eV

)

T e m p e r a t u r e  ( K )

Figure 7.20: Results of the �t to the measured data of LaCoO3 with Gaussian
oscillators. The parameters of the Gaussian oscillators are de�ned
in Sec. 3.1.5 (Eq. 3.24). The e�ective carrier concentration Neff (as
de�ned in Eq. 4.6 in Sec. 4.2.3), the center energy ω0, and the FWHM
Br are shown as a function of temperature. The four panels refer to
the four oscillators with the lowest energies. The full symbols (blue,
red, and black) represent the best �t parameters that result from the
�t to the VIS/UV data alone, the full orange symbols represent the
best �t parameters that result from the �t to both data sets, VIS /UV
and IR data. The open symbols (blue, red, and black) are the best
�t parameters to data that has been taken within another measuring
cycle (for temperatures 40K ≤ T ≤ 80K). The Gaussian oscillators
corresponding to peaks 1− 4 are visualized in Fig. 7.14. See the main
text for details.
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Figure 7.21: Results of the �t to the measured data of LaCoO3 with Gaussian
oscillators. The three panels refer to the three oscillators with the
highest energies. See the caption of Fig. 7.20 for more information.
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� EuCoO3

The ellipsometric variables Ψpp and ∆pp have been acquired on a polished
sample surface of pseudocubic EuCoO3 with a diameter of approx. 4mm in
the energy range from 0.75 eV to 5.0 eV for temperatures ranging from 15K to
490K. The angle of incidence was 70◦. The �t to the measured data is based
on seven Gaussian oscillators, a surface roughness with a thickness of 10Å
is assumed. The �t to the data yields an MSE of 0.3− 0.5. The dielectric
function ε(ω) of EuCoO3 is shown in Fig. 7.22, the optical conductivity
σ1(ω) is shown in Fig. 7.23. The parameters of the Gaussian oscillators are
summarized in Figs. 7.24 and 7.25.
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Figure 7.22: Dielectric function ε(ω) of EuCoO3 between 0.75 eV and 5.0 eV for
temperatures ranging from 15K to 490K.
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Figure 7.24: Results of the �t to the measured data of EuCoO3 with Gaussian
oscillators. The parameters of the Gaussian oscillators are de�ned
in Sec. 3.1.5 (Eq. 3.24). The e�ective carrier concentration Neff (as
de�ned in Eq. 4.6 in Sec. 4.2.3), the center energy ω0, and the FWHM
Br are shown as a function of temperature. The four panels refer to
the four oscillators with the lowest energies. The Gaussian oscillators
corresponding to peaks 1− 4 are visualized in Fig. 7.14. See the main
text for details.
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Figure 7.25: Results of the �t to the measured data of EuCoO3 with Gaussian
oscillators. The three panels refer to the three oscillators with the
highest energies. See the caption of Fig. 7.24 for the de�nition of
the parameters and Fig. 7.14 for the visualization of the Gaussian
oscillators.
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7.2.2 Optical conductivity of La2-xSrxCoO4 (x = 0, 0.33,
0.45, 0.5, and 0.9) and La1.5Ca0.5CoO4

The measurements on layered cobaltates have all been performed with the help of
the VIS/UV ellipsometer at hand in Cologne, that covers the frequency range from
0.75 eV to 5.5 eV. The data have been taken inside the cryostat for temperatures
ranging from 15K to 490K at an angle of incidence of 70◦. Details on the data
acquisition and analysis of the various data sets are discussed below.

� La2CoO4

All accessible Mueller-matrix elements have been acquired for La2CoO4. The
data used for the �t have been taken on a polished ac surface (the a axis
refers to the a axis of a tetragonal unit cell, space group I4/mmm). Measure-
ments have been performed in two di�erent orientations, with the tetragonal
a axis and the c axis parallel to the plane of incidence, respectively. The �t
to the measured data is based on three Gaussian oscillators for εa and four
Gaussian oscillators for εc. In the �t a surface roughness with a thickness of
30Å is assumed. The MSE amounts to 0.6− 1.2. Figure 7.26 shows the di-
electric function εγ(ω) (γ = a, c), Fig. 7.27 presents the optical conductivity
σγ1 (ω) of La2CoO4. It is important to note that the a axis spectra refer to the
a axis of a tetragonal unit cell. The parameters of the Gaussian oscillators
are summarized in Figs. 7.37 and 7.38. Additional data have been acquired
on an ab plane with the a axis of the tetragonal unit cell and the a axis of
the orthorhombic unit cell (space group Bmab) lying parallel to the plane of
incidence, respectively. The di�erence of both data sets lies within the ex-
perimental error, which proves that there is no observable optical anisotropy
within the ab plane. This data is not used for the �nal �t, as it covers far
less di�erent temperatures.

� La2−xSrxCoO4, x = 0.33, 0.45, and 0.5

The dielectric function εγ(ω) (γ = a, c) of anisotropic La2−xSrxCoO4 (x =
0.33, 0.45, and 0.5) is deduced from the ellipsometric variables Ψpp and ∆pp,
which have been acquired on a single polished sample surface, an ac plane.
The ac plane has been measured in two di�erent orientations, with the a
and the c axis lying parallel to the plane of incidence, respectively (again,
the a axis refers to the a axis of a tetragonal unit cell with space group
I4/mmm). The �t is based on four Gaussian oscillators for both, εa and εc,
see Fig. 7.28. A surface roughness with a thickness of 30Å is assumed in
the �t. The MSE of the �ts does not exceed 1.5, it mostly is on the order
of 0.5. The resulting dielectric functions εγ(ω) (γ = a, c) are presented in
Figs. 7.29 (x = 0.33), 7.31 (x = 0.45), and 7.33 (x = 0.5). Figures 7.30,
7.32, and 7.34 show the optical conductivity σγ1 (ω). The parameters of the
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Figure 7.26: Dielectric function ε(ω) of La2CoO4 for the a and c direction between
0.75 eV and 5.5 eV for di�erent temperatures ranging from 15K to
490K.

Gaussian oscillators are summarized in Figs. 7.37 and 7.38. The diameters
of the sample surfaces amount to:
x = 0.3 : 6mm; x = 0.45 : 4mm; x = 0.5 : 5mm
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Figure 7.27: Optical conductivity σ1(ω) of La2CoO4 for the a and c direction be-
tween 0.75 eV and 5.5 eV for temperatures ranging from 15K to 490K.
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Figure 7.28: The model for the dielectric function of La1.55Sr0.45CoO4 is based on
a sum of four Gaussian oscillators for the a and c axis, respectively.
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Figure 7.29: Dielectric function ε(ω) of La1.67Sr0.33CoO4 for the a and c direction
between 0.75 eV and 5.5 eV for di�erent temperatures ranging from
15K to 480K.
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Figure 7.30: Optical conductivity σ1(ω) of La1.67Sr0.33CoO4 for the a and c direc-
tion between 0.75 eV and 5.5 eV for temperatures ranging from 15K
to 480K.
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Figure 7.31: Dielectric function ε(ω) of La1.55Sr0.45CoO4 for the a and c direction
between 0.75 eV and 5.5 eV for di�erent temperatures ranging from
15K to 490K.
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Figure 7.32: Optical conductivity σ1(ω) of La1.55Sr0.45CoO4 for the a and c direc-
tion between 0.75 eV and 5.5 eV for temperatures ranging from 15K
to 490K.
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Figure 7.33: Dielectric function ε(ω) of La1.5Sr0.5CoO4 for the a and c direction
between 0.75 eV and 5.5 eV for di�erent temperatures ranging from
15K to 480K.
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Figure 7.34: Optical conductivity σ1(ω) of La1.5Sr0.5CoO4 for the a and c direction
between 0.75 eV and 5.5 eV for temperatures ranging from 15K to
480K.
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� La1.5Ca0.5CoO4

The ellipsometric variables Ψpp and ∆pp have been acquired on two di�erent
polished sample surfaces of La1.5Ca0.5CoO4, an ab plane (size of the sample
surface: approx. 3mm × 3mm) and an ac plane (size of the sample surface:
approx. 4mm × 2mm) (a corresponding to the a axis of the tetragonal unit
cell). Each surface has been measured in two di�erent orientations with the
a and b axis of the ab plane and the a and c axis of the ac plane parallel to the
plane of incidence, respectively. In the �t to the experimental data, a surface
roughness with a thickness of 30Å is assumed. Four Gaussian oscillators are
used to describe both, εa and εc. The �t is remarkably good, yielding an
MSE of 1.5 to 3.5, depending on temperature. The MSE is slightly higher
compared to the �t to the data of La2−xSrxCoO4 (x = 0.33, 0.45, 0.5)
because for La1.5Ca0.5CoO4 the oscillator model is �tted to four di�erent data
sets simultaneously (in the case of La2−xSrxCoO4 with x = 0.3, 0.45, and
0.5, only two data sets were available). The dielectric function εγ(ω) (γ =
a, c) of La1.5Ca0.5CoO4 is presented in Fig. 7.35, the optical conductivity
σγ1 (ω) is shown in Fig. 7.36. The parameters of the Gaussian oscillators are
summarized in Figs. 7.37 and 7.38.
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Figure 7.35: Dielectric function ε(ω) of La1.5Ca0.5CoO4 for the a and c direction
between 0.75 eV and 5.5 eV for di�erent temperatures ranging from
15K to 490K.
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Figure 7.36: Optical conductivity σ1(ω) of La1.5Ca0.5CoO4 for the a and c direction
between 0.75 eV and 5.5 eV for temperatures ranging from 15K to
490K.
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Figure 7.37: Results of the �t to the measured data of La1−xSrxCoO4 (x =
0, 0.33, 0.45, and 0.5) and La1.5Ca0.5CoO4 with Gaussian oscilla-
tors. The parameters describing εa2 are shown. The parameters of
the Gaussian oscillators are de�ned in Sec. 3.1.5 (Eq. 3.24). The
e�ective carrier concentration Neff , the center energy ω0, and the
FWHM Br are shown as a function of temperature. Neff follows
from the parameters of the Gaussian oscillators by the use of Eq. 4.7
(in Sec. 4.2.3). The Gaussian oscillators corresponding to peaks 1− 4
are visualized in Fig. 7.28.
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Figure 7.38: Results of the �t to the measured data of La1−xSrxCoO4 (x =
0, 0.33, 0.45, and 0.5) and La1.5Ca0.5CoO4 with Gaussian oscilla-
tors. The parameters describing εc2 are shown. The Gaussian oscilla-
tors corresponding to peaks 1− 4 are visualized in Fig. 7.28. See the
caption of Fig. 7.37 for the de�nition of the parameters.
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� La1.1Sr0.9CoO4

The dielectric function εγ(ω) (γ = a, c) of anisotropic La1.1Sr0.9CoO4 is de-
duced from the ellipsometric variables Ψpp and ∆pp, that have been acquired
on two di�erent polished sample surfaces, an ab and an ac plane (a corre-
sponding to the a axis of the tetragonal unit cell). Each surface has been
measured in one orientation. The ab plane (ac plane) has been measured
with the a axis (c axis) being parallel to the plane of incidence. The �t to
the experimental data is based on a model consisting of six (four) Gaussian
oscillators for the a axis (c axis), see Fig. 7.39, and a surface roughness with
a thickness of 30Å. The MSE of the �ts amounts to approx. 1.6. The ex-
perimental data originating from the measurement of the ac plane is very
noisy, especially for energies E ≥ 3.5 eV. The noise is due to the smallness
of the sample. The size of the sample surface amounts to only approx. 1mm
× 2mm. This leads to a low intensity at the detector, as part of the beam
of light is re�ected away from the brass cone, which serves as the sample
holder (see Fig. 4.6 in Sec. 4.1.3). The dielectric function εγ(ω) (γ = a, c) is
presented in Fig. 7.40, Fig. 7.41 shows the optical conductivity σγ1 (ω). The
parameters of the Gaussian oscillators are summarized in Figs. 7.42, 7.43,
and 7.44.
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Figure 7.39: The model for the dielectric function of La1.1Sr0.9CoO4 is based on
a sum of six (four) Gaussian oscillators for the a (c) axis. For the a
axis, the oscillators at two temperatures are shown as the �ts di�ers
considerably.
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Figure 7.40: Dielectric function ε(ω) of La1.1Sr0.9CoO4 for the a and c direction
between 0.75 eV and 5.0 eV for di�erent temperatures ranging from
30K to 490K.
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Figure 7.41: Optical conductivity σ1(ω) of La1.1Sr0.9CoO4 for the a and c direction
between 0.75 eV and 5.0 eV for temperatures ranging from 30K to
490K.
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Figure 7.42: Results of the �t to the measured data of La1.1Sr0.9CoO4 with Gaus-
sian oscillators. The parameters describing εa2 are shown. The four
panels refer to the four oscillators with the lowest energies. The
Gaussian oscillators corresponding to peaks 1− 4 are visualized in
Fig. 7.39. See the caption of Fig. 7.37 for the de�nition of the pa-
rameters.
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Figure 7.43: Results of the �t to the measured data of La1.1Sr0.9CoO4 with Gaus-
sian oscillators. The parameters describing εa2 are shown. The two
panels refer to the two oscillators with the highest energies. The
Gaussian oscillators corresponding to peaks 5 and 6 are visualized
in Fig. 7.39. See the caption of Fig. 7.37 for the de�nition of the
parameters.
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Figure 7.44: Results of the �t to the measured data of La1.1Sr0.9CoO4 with Gaus-
sian oscillators. The parameters describing εc2 are shown. The Gaus-
sian oscillators corresponding to peaks 1− 4 are visualized in Fig.
7.39. See the caption of Fig. 7.37 for the de�nition of the parame-
ters.
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compound size of orien- surface MSE of number of
the sample tation the �t oscillators

LaCoO3 diameter 10Å 0.4− 0.8 6
4mm

EuCoO3 diameter 10Å 0.3− 0.5 7
4mm

La2CoO4 diameter ac 30Å 0.6− 1.2 3 (a axis)
5mm ab 4 (c axis)

La1.67Sr0.33CoO4 diameter ac 30Å 0.3− 0.6 4 (a axis)
6mm 4 (c axis)

La1.55Sr0.45CoO4 diameter ac 30Å 0.9− 1.5 4 (a axis)
4mm 4 (c axis)

La1.5Sr0.5CoO4 diameter ac 30Å 0.3− 0.6 4 (a axis)
5mm 4 (a axis)

La1.5Ca0.5CoO4 3mm × 3mm ab 30Å 1.5− 3.5 4 (a axis)
4mm × 2mm ac 4 (c axis)

La1.1Sr0.9CoO4 1.5mm × 2.5mm ab 30Å 0.3− 0.6 6 (a axis)
1mm × 2mm ac 4 (c axis)

Table 7.2: Information on the data acquisition and analysis of the measured cobal-
tate samples.
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7.3 Discussion

7.3.1 Results on LaCoO3 and EuCoO3

LaCoO3 and EuCoO3 can be characterized as CT insulators [57, 143�145, 166].
One therefore expects the lowest interband excitation from the O 2p band to the
Co 3d band. As discussed in Sec. 7.1.1, it is well established that the Co3+ ions
with 3d6 electron con�guration realize the LS state in the ground state. In the
LS state, the t2g level is fully occupied, while the eg level is empty, see Fig. 7.5 on
page 146. Charge-transfer excitations can therefore only take place between the
O 2p band and the eg level. A Co3+ IS or HS state, on the contrary, allows for
CT excitations to both, the t2g level and the eg level. We therefore expect that
a thermal population of higher spin states from a Co3+ LS state is well visible in
the optical spectra. Surprisingly, optical data of LaCoO3 published by Tokura et
al. [27] do hardly vary across the spin-state transition between 9K and 293K, see
Fig. 7.45. These data have been acquired by the use of re�ectivity measurements
with a subsequent Kramers-Kronig analysis. Also valence-band photoemission
and x-ray absorption spectra acquired on LaCoO3 show only small changes across
the spin-state transition [166]. The calculated spectra obtained on the basis of a
cluster model, on the other hand, are considerably di�erent for an initial LS or
HS state [166].

Figure 7.45:
Optical conductivity of
LaCoO3 as obtained by
Tokura et al. [27] by the use of
re�ectivity measurements with
a subsequent Kramers-Kronig
analysis. Taken from Ref. [27].
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We have made the experience that ellipsometry is very well suited for a de-
tailed analysis of the temperature dependence. The optical conductivity σ1(ω)
of LaCoO3 and EuCoO3 is shown in Figs. 7.16 and 7.23, respectively. Figure 7.46
compares the optical conductivity of LaCoO3 and EuCoO3 at 15K, 300K, and
470K. The spectra of both compounds show strong similarities. One observes
rather complex spectra, the �t to the measured data is based on a large num-
ber of Gaussian oscillator (six Gaussian oscillators are needed to describe ε2 of
LaCoO3, while seven Gaussian oscillators are needed to describe ε2 of EuCoO3,
see Fig. 7.14). At �rst sight, one does not see pronounced changes of the op-
tical conductivity of LaCoO3 across the spin-state transition temperature. In
agreement with the observation of Tokura et al. [27], the optical conductivity of
LaCoO3 gains spectral weight at low energies around 1 eV for increasing temper-
ature. This can be recognized as a signature of the metal-insulator transition
taking place at T ≈ 480K. The �t to the measured data of LaCoO3 describes the
spectral weight at low energies by a Gaussian oscillator at around 0.7 eV, which
gains weight with increasing temperatures and is completely absent for temper-
atures below 80K, see Figs. 7.14 and 7.20. Our MIR ellipsometric data reveals
that a �nite energy gap is still present at T = 300K, see Fig. 7.19. Unfortunately,
it was not possible to acquire MIR data at higher temperatures. The value of
σ1(ω) at 1 eV at low temperatures is lower in our data than in the data of Tokura
et al. [27] (our data: σ1 (1 eV,15K)≈ 250 (Ωcm)−1, Tokura et al. [27] : σ1(1 eV,
9K)≈ 400 (Ωcm)−1), which demonstrates that we succeed in a better description
of the band gap. Furthermore, our data show a subtle peak structure at approx.
2 eV at lower temperatures, which is absent in the data of Tokura et al. [27] (see
discussion below).
Due to the complexity of the spectra of LaCoO3 and EuCoO3, a detailed assign-
ment of the observed absorption bands in terms of CT excitations |2p63d6〉 →
|2p53d7〉 seems di�cult. Nevertheless, to gain information about the 3d7 �nal
states, we consider the Tanabe-Sugano-Kamimura diagram of a d7 system, see
Fig. 7.47. If the Co3+ ions realize the LS state, CT excitations are only possi-
ble in states with S = 1/2, according to Fig. 7.47 the 3d7 �nal states with the
lowest energies are the 2E, the 2T1, and the 2T2 multiplet. On the other hand,
if the Co3+ ions realize the HS state, excitations are only possible in states with
S = 3/2. In this case, the 3d7 �nal states with the lowest energies are the 4T1 and
the 4T2 multiplet. We can read o� the relevant value of Dq/B for LaCoO3 from
the Tanabe-Sugano-Kamimura diagram of the d6 system (Fig. 7.4). For competing
HS and LS states, Dq/B amounts to approx. 2. It can be seen from the Tanabe-
Sugano-Kamimura diagram of the d7 system (Fig. 7.47), that for Dq/B ≈ 2 the
energies of both, the 2E and the 4T1 multiplet, and the (2T1, 2T2) and the 4T2

multiplet are very similar. This might o�er an explanation for the similarity of
the optical spectra of LaCoO3 for temperatures below and above the spin-state
transition temperature. However, more elaborate theoretical investigations are
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necessary to fully understand the optical spectra. The optical spectra of LaCoO3

and EuCoO3 might be dominated by the oxygen 2p bands. Furthermore, strong
hybridization between the oxygen 2p bands and the Co 3d bands are assumed to
play an important role in LaCoO3 and EuCoO3. Particularly the hybridization
between the Co eg states and O 2p states is assumed to be very strong [144,166].
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Figure 7.46: Comparison of the optical conductivity σ1(ω) of LaCoO3 and EuCoO3

at 15K, 300K, and 470K.

We conduct further investigations of the temperature dependence of the optical
spectra of LaCoO3 and EuCoO3 with the aim to detect signatures of the spin-state
transition in the data of LaCoO3. Close inspection of the temperature dependence
of the optical conductivity σ1(ω) of LaCoO3 and EuCoO3 reveals some important
di�erences, see Fig. 7.46 and also Figs. 7.16 and 7.23. While σ1(ω) of EuCoO3

shows two pronounced peak structures at around 1.7 eV and 3 eV, that show the
expected broadening with increasing temperature, σ1(ω) of LaCoO3 shows some
peculiarities. The value of the optical conductivity σ1(ω) of LaCoO3 at around
2 eV shows a particular decrease with increasing temperature, which is particularly
pronounced between 40K and 150K, indicating a correlation with the spin-state
transition. Figure 7.48 presents the detailed temperature dependence of the optical
conductivity σ1(ω) of LaCoO3 between 40K and 80K. The distinct temperature
dependence of σ1(ω) of LaCoO3 at around 2 eV becomes obvious from Figs. 7.49
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Figure 7.47: Tanabe-Sugano-Kamimura diagram of a d7 system (cf. Sec. 2.2.2). If
the Co3+ 3d6 ions realize the LS state, possible Co2+ 3d7 �nal states
of CT excitations have S = 1/2. The corresponding multiplets with
the lowest energies 2E, 2T1, and 2T2 are marked in red. If the Co3+

ions realize the HS state, possible 3d7 �nal states have S = 3/2. The
corresponding multiplets with the lowest energies 4T1 and 4T2 are
marked in blue. Taken from Ref. [35].

and 7.50, where the values of σ1(ω) of LaCoO3 at 2 eV and EuCoO3 at 1.85 eV are
plotted as a function of temperature 1. In the �t to the measured data of LaCoO3,
the absorption band at 2 eV is described by a Gaussian oscillator (peak 4 in Figs.
7.14 and 7.20), which is only present for temperatures below 80K, see Figs. 7.14
and 7.20. Also the neighboring oscillator at approx. 1.7 eV (peak 3 in Figs. 7.14
and 7.20) looses signi�cant weight with increasing temperature. The jump of the
parameters of peak 3 (see Fig. 7.20, in particular Br and Neff ) between 75K and
80K is an artifact of the �t. As oscillator peak 4 is missing for T > 80K, peak 3
compensates part of its weight. However, it is very obvious from Figs. 7.16 and
7.48, that the pronounced peak structure at 2 eV is absent above T = 80K.
Furthermore, the optical conductivity of LaCoO3 shows interesting behavior around
3.2 eV, see Figs. 7.16, 7.46, and 7.48. The value of the optical conductivity σ1(ω)

1For EuCoO3 the value of σ1(ω) at ω = 1.85 eV is plotted as this value amounts to the position
of the local maximum of σ1(ω), for LaCoO3, where no local maximum is present around
ω = 2 eV in σ1(ω), the peculiar behavior becomes most obvious around ω = 2 eV.
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of LaCoO3 at 3.2 eV is plotted as a function of temperature in Fig. 7.49. For com-
parison, the corresponding value of the optical conductivity σ1(ω) of EuCoO3 is
shown in Fig. 7.50, here σ1(3.5 eV) does not show this peculiar behavior 2. Close
inspection of the line shape of σ1(ω) around 3 eV (see Figs. 7.16, 7.46, and 7.48)
gives the impression that an absorption band is present at approx. 3.2 eV, that
shows an unusual decreasing peak frequency for decreasing temperature. This
subtle softening of the peak frequency with decreasing temperature is visible up
to 300K, for higher temperatures the broadening of the underlying broad ab-
sorption band is dominant and leads to a degrease of σ1(3.2 eV) with increasing
temperature. The �t to the measured data with Gaussian oscillators describes the
spectral weight around 3 eV by two largely overlapping broad oscillators at approx.
2.2 eV− 2.5 eV and at approx. 3 eV, denoted as peak 5 and peak 6, respectively,
in Figs. 7.14 and 7.21. Peak 5 shows the usual hardening of the peak energy and
decreasing width with decreasing temperature. The unexpected behavior of the
line shape of σ1(ω) around 3.2 eV becomes most obvious from the parameters of
peak 6. The width of peak 6 decreases upon increasing temperatures by nearly
15% between 15K and 470K, see Fig. 7.21.
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Figure 7.48: Optical conductivity σ1(ω) of LaCoO3 between 40K and 80K.

2The value of σ1(ω) of EuCoO3 is considered at a higher energy (ω = 3.5 eV) for EuCoO3 than
for LaCoO3 (ω = 3.2 eV), because the maximum of σ1(ω) around 3 eV is shifted to higher
energies by 0.3 eV in EuCoO3 (σ

max
1 (ω) is located at ω ≈ 3.1 eV) compared to LaCoO3 (σ

max
1

is located at ω ≈ 2.8 eV).
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Figure 7.49: Value of the optical conductivity of LaCoO3 at 2 eV (blue circles)
and 3.2 eV (red squares) normalized to one at the lowest measured
temperature. The open symbols refer to data that has been obtained
within measurement series 2.
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Figure 7.50: Value of the optical conductivity of EuCoO3 at 1.85 eV (blue circles)
and 3.5 eV (red squares) normalized to one at the lowest measured
temperature.
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To conclude, due to the high quality of our data, we succeed in revealing some
interesting peculiarities in the temperature dependence of the optical conductiv-
ity of LaCoO3, that are not visible in the data of Tokura et al. [27]. As these
peculiarities are absent in the data of EuCoO3, we attribute them to signatures
of the spin-state transition.

7.3.2 Results on La2-xSrxCoO4 (x = 0, 0.33, 0.45, 0.5, 0.9)
and La1.5Ca0.5CoO4

Optical data of La2−xSrxCoO4 and La2−xCaxCoO4 are rare in the literature.
Room-temperature re�ectivity data of La2−xSrxCoO4 for E ‖ ab are available
in Ref. [195] for doping concentrations x = 0.0, 0.5, and 0.8, see Fig. 7.51, and in
Ref. [126] for doping concentration x = 1. Temperature-dependent optical data
of La1.5Sr0.5CoO4 and La1.5Ca0.5CoO4 for temperatures up to 850K have been
published by Lee et al. [32], but only for E ‖ ab. The data have been obtained by
re�ectivity measurements with a subsequent Kramers-Kronig analysis. The data
are shown in Fig. 7.52. However, the authors of Ref. [32] do not give a detailed
explanation of the origin of the observed absorption peaks. Furthermore, we have
experienced that ellipsometry is much better suited for a precise analysis of the
temperature dependence. In the following, we will discuss our ellipsometric data
of layered cobaltates and compare them with the data existent in the literature.

Figure 7.51:
Optical conductivity of La2−xSrxCoO4

(x = 0.0, 0.5, and 0.8) for E ‖ ab as
obtained by Uchida et al. [195] by the
use of re�ectivity measurements with
a subsequent Kramers-Kronig analysis.
Taken from Ref. [195].
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Figure 7.52: Optical conductivity of (a) La1.5Ca0.5CoO4 and (b) La1.5Sr0.5CoO4 for
E ‖ ab for various temperatures as obtained by Lee et al. [32] by the
use of re�ectivity measurements with a subsequent Kramers-Kronig
analysis. Taken from Ref. [32]

Electron con�guration

The CoO6 octahedra of the layered compounds are signi�cantly elongated. The
out-of-plane bond lengths Co2+−Oapical and Co3+−Oapical of the half-doped Sr
compound La1.5Sr0.5CoO4 amount to 2.190Å and 2.075Å, respectively, and the
in-plane bond lengths Co2+−Obasal and Co3+−Obasal have been determined to
be 1.954Å and 1.888Å, respectively [42]. In a one-electron picture the 3d orbitals
thus order, from lowest to highest energy: xz/yz, xy, 3z2−r2, x2−y2 [138]. The
HS Co2+ t52ge

2
g electron con�guration is sketched in Fig. 7.53. According to Wu et

al. [139], the crystal �eld splitting between xz/yz and xy is on the order of 30meV,
the HS Co2+ con�guration has one t2g hole in the xy orbital [139]. The Co3+ LS
ion has a closed t2g shell (electron con�guration t62g) with a splitting between xz/yz
and xy of about 70meV. The splitting is enhanced for Co3+ compared to Co2+ due
the smaller Co−O bond length in the former [139]. In the Co3+ HS con�guration
two electrons are promoted to the eg level, resulting in the electron con�guration
t42ge

2
g with spin S = 2. The Co3+ IS state has one electron in the eg shell, which

resides in the 3z2 − r2 orbital, due to the 3z2 − r2/x2 − y2 splitting of the eg
manifold of 0.7 eV [139, 189]. The IS con�guration has one hole in the t2g level.
In a one-electron picture one would expect the hole to reside in the xy orbital.
However, Wu and Burnus [139] have pointed out that the multiplet e�ect and the
spin-orbit coupling play a signi�cant role for the IS state. Due to the stronger
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Coulomb repulsion between 3z2 − r2 and xz/yz than between 3z2 − r2 and xy,
the hole rather resides in the xz/yz level. The degeneracy of the partially �lled
xz/yz level is then lifted by spin-orbit coupling, resulting in the following electron
con�guration of the IS state: t32gxy

1(xz + iyz)1(3z2 − r2)1 [139]. A sketch of the
Co3+ LS, IS, and HS electron con�guration in the crystal �eld of the tetragonally
distorted O2−

6 octahedra is shown in Fig. 7.54.

Figure 7.53: Sketch of the HS electron con�guration (S = 3/2) of the 3d7 Co2+

ion in the crystal �eld of the elongated O2−
6 octahedra of the layered

compounds. The t2g band is split into the lower-lying xz/yz level and
the higher-lying xy level, the magnitude of the splitting amounts to
30meV [139]. The eg band is split into the lower-lying 3z2 − r2 level
and the higher-lying x2 − y2 level, which are both singly occupied.

Peak assignment

Our spectra for E ‖ ab of the compounds La1.5Sr0.5CoO4 and La1.5Ca0.5CoO4

are generally in good agreement with the results of Lee et al. [32] and Uchida
et al. [195], see Figs. 7.52 and 7.51. The broad absorption band around 2.5 eV
is clearly visible in all data sets. For La1.1Sr0.9CoO4, our spectra for E ‖ ab re-
veal a splitting of the broad absorption band into two bands at around 1.5 eV
and 2.7 eV, this observation is in agreement with the one of Uchida et al. [195]
on La1.2Sr0.8CoO4 and the one of Moritomo et al. [126] on LaSrCoO4. However,
the spectrum for E ‖ ab of La2CoO4 of Uchida et al. [195] di�ers from our re-
sult. While the broad band around 2.5 eV is not visible in the room-temperature
data of Uchida et al. [195], we do observe this broad band around 2.5 eV in the
data corresponding to T = 300K, but �nd its suppression at higher temperatures
starting at T & 320K.
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Figure 7.54: Sketch of the LS (S = 0), IS (S = 1), and HS (S = 2) electron
con�guration of the 3d6 Co3+ ion in the crystal �eld of the elongated
O2−

6 octahedra of the layered compounds. The t2g band is split into
the lower lying xz/yz level and the higher lying xy level and the eg
band is split into the lower lying 3z2 − r2 level and the higher lying
x2 − y2 level. The t2g splitting ∆t2g amounts to 70meV, the eg split-
ting ∆eg has been calculated to be 0.7 eV [139]. Simply considering
the sequence of the energy levels one would expect the t2g hole of
the IS state to be located in the higher lying xy level, however, Wu
and Burnus [139] have pointed out that the multiplet e�ect plays an
important role for the IS state electron con�guration. The t2g hole
resides in the lower lying xz/yz level rather than in the higher lying
xy level due to the stronger Coulomb repulsion between 3z2− r2 and
xz/yz than between 3z2 − r2 and xy [139].

As already discussed in Sec. 7.1.2, Wu et al. [138,139] performed density-functional
calculations using the LSDA+U for the mixed Co2+/Co3+ system La1.5Sr0.5CoO4

and the pure Co3+ system LaSrCoO4. Within their calculations they include
the multiplet e�ect and spin-orbit coupling and further account for the strong
tetragonal distortion of the CoO6 octahedra. As discussed above, they conclude
Co3+ to be in the LS state in La1.5Sr0.5CoO4 and in a HS/LS mixed state in
LaSrCoO4. The Co2+ ions of La1.5Sr0.5CoO4 are assumed to be in a HS state.
The spectra obtained by Wu et al. [138, 139] are shown in Figs. 7.55 and 7.56.
They will be used for the peak assignment.

To compare the data of the compounds with di�erent doping concentrations x,
Figs. 7.57, 7.58, and 7.59 show the optical conductivity σ1(ω) of La2−xSrxCoO4

(x = 0, 0.33, 0.45, 0.5, 0.9), La1.5Ca0.5CoO4 and LaCoO3 for T = 15K, 300K, and
490K, respectively.
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Let us �rst focus on the spectra of the ab plane. In σab1 one observes a pro-
nounced peak at around 2.5 eV for the layered compounds with x ≤ 0.5 (see Figs.
7.57− 7.59 and also Figs. 7.27, 7.30, 7.32, 7.34, and 7.36). The main features of
the �ts to the measured data of the layered compounds with x ≤ 0.5 are similar.
In the �ts, the pronounced peak at around 2.5 eV is modeled mainly by a Gaus-
sian oscillator, see Fig. 7.28. The �ts further consist of two Gaussian oscillators at
higher energies, that account for the pronounced increase of σab1 (ω) above 4 eV (for
the undoped compound La2CoO4 one Gaussian oscillator su�ces). In addition, a
small Gaussian oscillator is used to model a small feature in the data at around
1 eV. The parameters of the Gaussian oscillators are presented in Fig. 7.37. The
Gaussian oscillators are denoted peak 1 to 4 according to their energetic position,
see Figs. 7.28 and 7.37, the oscillator around 2.5 eV is peak 2.
In the following, the peaks are assigned to CT excitations O 2p6 Co3+3d6 → O
2p5 Co2+3d7 and O 2p6 Co2+3d7 → O 2p5 Co1+3d8 using the results of Wu et
al. [138, 139] (Figs. 7.55 and 7.56). The broad absorption band around 2.5 eV is
assigned to two distinct excitations, involving both, HS Co2+ and LS Co3+ sites.
The lowest in-plane optical excitation is expected from the Obasal 2p orbital. The
Obasal 2p density of states of La1.5Sr0.5CoO4 is shown in the lower panel of Fig.
7.55 (O1 2p, green line). The density of states of the di�erent 3d orbitals of the
HS Co2+ and the LS Co3+ ions are presented in the upper and middle panel of
Fig. 7.55, respectively. The xy orbital of the HS Co2+ ions is only partially �lled.
It is located approx. 2 eV above the Fermi level. As it yields �nite overlap with
Obasal 2p, the broad absorption band around 2.5 eV is assigned to the excitation
from Obasal 2p to the HS Co2+ xy orbital. In addition, also the unoccupied eg
orbitals x2 − y2 and 3z2 − r2 of the LS Co3+ ions yield �nite overlap with Obasal

2p, they are also located approx. 2 eV above the Fermi level. We thus propose
that the excitation from Obasal 2p to LS Co3+ x2 − y2 and 3z2 − r2 gives a second
contribution to the broad peak for the doped compounds. This interpretation
is in agreement with the one suggested by Wu and Burnus [139] on the basis of
the room-temperature re�ectivity data published by Uchida et al. [195] where the
broad peak at around 2.5 eV is also clearly visible, see Fig. 7.51.
As opposed to the partially �lled xy orbital of the HS Co2+ ions, the x2 − y2 and
3z2 − r2 orbitals of the LS Co3+ ions are unoccupied. As a consequence excita-
tions to x2 − y2 and 3z2 − r2 of LS Co3+ are possible in both spin channels and
thus the spectral weight of the broad peak should increase with increasing doping
concentration. The upper panel of Fig. 7.60 presents the local maximum value of
the optical conductivity σab1 (ω) around 2.5 eV. Indeed, it is seen from the upper
panel of Fig. 7.60 and also from Fig. 7.57 that the peak height of the absorption
band around 2.5 eV is reduced when reducing the Sr doping from x = 0.5 over
x = 0.33 to x = 0. We calculated the spectral weight of the broad band by
making use of the parameters of peak 2 of the �t with Gaussian oscillators, see
Fig. 7.37. In agreement with our expectations, the spectral weight is considerably
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smaller for the undoped compound La2CoO4 compared to the doped compounds
(for T . 400K, for higher temperatures see the discussion of the temperature
dependence in Sec. 7.3.2). But we do not observe an increasing spectral weight
for increasing doping concentration x for the compounds with x > 0. It is however
highly questionable if the spectral weight calculated from the parameters of the
Gaussian oscillator peak 2 is physically meaningful. The broad absorption band
around 2.5 eV is assigned to two distinct excitations, although it is modeled by a
single Gaussian oscillator in the �t. Peak 2 has further considerable overlap with
the higher lying peak 3. The energetic position of peak 3 and therefore also the
overlap with peak 2 varies with doping concentration (see Fig. 7.37). Particularly,
the spectral weight of the compound with x = 0.33 exceeds the one of the com-
pounds with x = 0.45 and x = 0.5 because the Gaussian oscillator peak 2 is much
broader for this compound (see Fig. 7.37).
Above 4 eV, a pronounced increase of σab1 (ω) is observed. This strong absorption
could be attributed to the CT excitation from Obasal 2p to the partially �lled
eg orbitals of the HS Co2+ ions. The density of states of the down spin chan-
nel of x2 − y2 and 3z2 − r2 peaks at about 3.5 eV− 5 eV above the Fermi level
in La1.5Sr0.5CoO4, see upper panel of Fig. 7.55. However, within this picture
a decreasing spectral weight with increasing doping concentration x is expected,
which is not observed. The spectral weight above 4 eV could further originate from
CT excitations from Obasal 2p bands that lie 2 eV− 4 eV below the Fermi level to
the LS Co3+ eg orbitals and the HS Co2+ xy orbital. In this case an increasing
spectral weight with increasing doping concentration is expected. In agreement,
the spectral weight above 4 eV is reduced in the pure Co2+ compound La2CoO4

compared to the compounds with x > 0.
The spectra of the layered compound with doping concentration x = 0.9 look sig-
ni�cantly di�erent. The pronounced peak in the ab plane spectra at around 2.5 eV
of the compounds with doping concentration x ≤ 0.5 is split into two bands at
around 1.5 eV and 2.7 eV, see Fig. 7.39. A similar peak structure is visible in the
room-temperature re�ectivity data of La1.2Sr0.8CoO4 and LaSrCoO4 in Refs. [195]
and [126], respectively, see Fig. 7.51. This change of the optical spectra supports
the claim of Wu [138] of a doping-induced spin-state transition in La2−xSrxCoO4

from a Co3+ LS con�guration in La1.5Sr0.5CoO4 to a mixed Co3+ HS/LS state in
the pure Co3+ compound LaSrCoO4. Wu's result [138] for the density of states of
the Co 3d and O 2p orbitals within a mixed Co3+ HS/LS scenario of LaSrCoO4 is
presented in Fig. 7.56. We propose that the absorption band around 2.7 eV in σab1

of La1.1Sr0.9CoO4 corresponds to the broad band around 2.5 eV of the compounds
with x ≤ 0.5, it can be assigned to the CT excitation from the Obasal 2p orbital
to the x2 − y2 and 3z2 − r2 orbitals of the LS Co3+ ions, while the contribution
of the CT excitation from Obasal 2p to the HS Co2+ xy orbital should be rather
small due to the only small content of Co2+ in La1.1Sr0.9CoO4. In agreement with
Wu [138], we assign the peak at about 1.5 eV to the CT excitations from the Obasal
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2p orbital to the partially �lled xy and xz−iyz orbitals of the HS Co3+ ions, which
are located about 0.9 eV above the Fermi level [138] (see Fig. 7.56).
Within the �t with Gaussian oscillators to the measured data of La1.1Sr0.9CoO4

(see Fig. 7.39), the absorption band at about 1.5 eV is described by a Gaussian
oscillator with Neff ≈ 0.33 (peak 2), while the band at about 2.7 eV is described
by a broad Gaussian oscillator with Neff ≈ 1.4− 2.4 (peak 3) and an additional
small oscillator with Neff ≈ 0.03 (peak 4). See Figs. 7.42 and 7.43 for the pa-
rameters of the oscillators. The line shape of εab2 is further described by a small
Gaussian oscillator at 0.6 eV (peak 1, Neff ≈ 0.013), and two Gaussian oscillators
at higher energies accounting for the spectral weight above 4 eV (peak 5 and 6).

Let us now focus on the c axis spectra. The spectra of the layered compounds with
doping concentrations x ≤ 0.5 show a pronounced peak at 3.5 eV− 4 eV in σc1(ω)
(see Figs. 7.57− 7.59 and also Figs. 7.27, 7.30, 7.32, 7.34, and 7.36). Along c, the
2p orbitals of Oapical have �nite overlap with the 3d orbitals of the Co ions. The
density of states of the Oapical 2p orbitals is shown in the lower panel of Fig. 7.55
for La1.5Sr0.5CoO4 (red line: Oapical of the Co3+ ions (O2a), blue line: Oapical of the
Co2+ ions (O2b), the density of states is di�erent for Co3+ and Co2+ as the Co−O
distances are not the same). It can be seen from the lower panel of Fig. 7.55 that
the Oapical 2p density of states is shifted to lower energies compared to the Obasal

2p density of states. The pronounced absorption at 3.5 eV− 4 eV is assigned to
the CT excitation from the Oapical 2p band to the empty LS Co3+ 3z2− r2 orbital,
whereas the overlap between Oapical 2p and the empty LS Co3+ x2 − y2 orbital is
zero along c for perfect 180◦ bonds. The peak at 3.5 eV− 4 eV is also clearly visible
in the spectra of the pure Co2+ compound La2CoO4, although its peak height is
signi�cantly reduced, see Fig. 7.57. Therefore, an excitation involving the Co2+

3d orbitals must also give a contribution to the peak. Let us consider the upper
panel of Fig. 7.55, where the density of states of the HS Co2+ 3d orbitals is shown.
It can be seen that only the xy orbital and the x2− y2 orbital, which do not yield
overlap with O 2p along c, have �nite density of states above the Fermi level at
energies relevant for the peak at 3.5 eV− 4 eV. The 3z2 − r2 orbital does overlap
with O 2p along c, �nite density of states can only be found at approx. 4.5 eV
above the Fermi level, which is too high to account for the absorption at about
3.5 eV− 4 eV. However, the t2g crystal-�eld splitting between xy and xz/yz is only
on the order of 30meV in Co2+, as a consequence the spin-orbit coupling plays
an important role and mixes the xy and xz/yz levels [139]. Therefore, excitations
to empty t2g states of Co2+ can well account for the peak at about 3.5 eV− 4 eV
in σc1(ω) of La2CoO4. Furthermore, due to the deviation of the bond angles from
180◦ in the orthorhombic distorted crystal structure of La2CoO4, excitations to
the xy and the x2−y2 orbitals along c might give a small contribution to the peak
at 3.5 eV− 4 eV.
Below the pronounced peak at 3.5 eV− 4 eV �nite structureless spectral weight
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is observed in the optical conductivity, see Fig. 7.57. It is probably due to the
smearing out of the O 2p bands. Above about 4.5 eV, σ1(ω) steeply increases.
This higher lying absorption could be ascribed to the CT excitation from Oapical

2p to the HS Co2+ 3z2 − r2 orbital or to CT excitations from lower lying Oapical

2p bands to the LS Co3+ 3z2 − r2 orbital.
In the �t to the measured data, four Gaussian oscillators are used to describe
εc2(ω), see Fig. 7.28. A broad Gaussian oscillator accounts for the pronounced
spectral weight below 3 eV (peak 1), two Gaussian oscillators describe the peak at
about 3.5 eV− 4 eV (peak 2 and 3) and the fourth oscillator models the spectral
weight above ≈ 4.5 eV. See Fig. 7.38 for the parameters of the Gaussian oscillators.
However, the di�erent oscillators overlap signi�cantly, we therefore do not expect
the parameters of the individual oscillators to have a signi�cant physical meaning.
We now consider the c axis spectra of the compound La1.1Sr0.9CoO4, which di�er
signi�cantly form the spectra of the compounds with x ≤ 0.5. A broad peak is
observed at about 1.5 eV− 3.5 eV (see Figs. 7.57− 7.59 and also 7.41), which is
modeled in the �t to the measured data by three Gaussian oscillators (peak 1− 3
in Fig. 7.39). It can be assigned to the excitations from the broad Oapical 2p bands
to the HS Co3+ xz − iyz orbital at lower, and the LS Co3+ 3z2 − r2 orbital at
somewhat higher energy, see Fig. 7.56. A fourth Gaussian oscillator is used in the
�t to account for the spectral weight above 4 eV. See Fig. 7.44 for the parameters
of the Gaussian oscillators. Due to huge overlap between the individual absorp-
tion bands, we do not expect the parameters of the Gaussian oscillators to be
physically meaningful.

To summarize this section, we have found a consistent peak assignment in terms
of CT excitations from the O 2p bands to the di�erent Co2+ and Co3+ 3d or-
bitals, making use of the calculated density of states published by Wu and Bur-
nus [138, 139]. The polarization dependence of the data is mostly due to the
di�erent energetic positions of the Obasal 2p and Oapical 2p bands. Our doping
dependent analysis of the layered cobaltates reveals, that the spectra look sig-
ni�cantly di�erent for a Co3+ LS and a Co3+ HS con�guration. The spectra of
the mixed Co3+ LS/HS system La1.1Sr0.9CoO4 di�er signi�cantly from the spec-
tra of the Co3+ LS systems La2−xSrxCoO4 with x 6 0.5, both for E ‖ ab and
E ‖ c. It is therefore surprising, that the changes across the spin-state transition
are only small in the three dimensional system LaCoO3. It becomes obvious from
Figs. 7.57− 7.59, that the spectra of La1.1Sr0.9CoO4 and LaCoO3 look similar, in
particular for E ‖ ab. This is in agreement with the expectations at higher temper-
atures, when both systems contain Co3+ LS and Co3+ HS ions. However, LaCoO3

is assumed to be a pure Co3+ LS system at lowest temperatures. It is possible
that the spectra of the pseudocubic perovskites and the layered compounds are
dominated by the structure of the oxygen 2p bands.
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Figure 7.55: Density of states (DOS) of the Co2+ HS / Co3+ LS ground state
of La1.5Sr0.5CoO4 as obtained by Wu and Burnus [139] by the use of
LSDA+U calculations including spin-orbit coupling and the multiplet
e�ect. The upper panel shows the DOS of the HS Co2+ 3d orbitals,
the middle panel shows the DOS of the LS Co3+ 3d orbitals, and
in the lower panel the DOS of the O 2p orbitals is shown (green
line: Obasal 2p DOS (O1), red line: Oapical 2p DOS belonging to the
Co3+O2−

6 octahedra (O2a), blue line: Oapical 2p DOS belonging to the
Co2+O2−

6 octahedra (O2b)). The HS Co2+ con�guration t52ge
2
g with

a t2g hole on the xy orbital is sketched in Fig. 7.53 , the LS Co3+

con�guration t62g with a closed t2g shell is sketched in Fig. 7.54. The
Fermi level is located at E = 0. Taken from Ref. [139].
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Figure 7.56: Density of states (DOS) of the Co3+ HS / Co3+ LS mixed ground
state of LaSrCoO4 as obtained by Wu [138] by the use of LSDA+U
calculations which include spin-orbit coupling and the multiplet ef-
fect. Upper panels: DOS of the LS Co3+ 3d orbitals, middle panels:
Oapical 2p DOS belonging to the Co3+LS O2−

6 octahedra (LS a-O 2p),
Obasal 2p DOS (p-O 2p) and Oapical 2p DOS belonging to the Co3+HS
O2−

6 octahedra (HS a-O 2p), lower panels: DOS of the HS Co3+ 3d
orbitals. Blue (red) lines correspond to the up (down) spin. Taken
from Ref. [138].
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Figure 7.57: Optical conductivity σ1(ω) of La2−xSrxCoO4 (x =0, 0.33, 0.45, 0.5,
0.9), La1.5Ca0.5CoO4, and LaCoO3 for T = 15K (T = 30K for x =
0.9).
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Figure 7.58: Optical conductivity σ1(ω) of La2−xSrxCoO4 (x =0, 0.33, 0.45, 0.5,
0.9), La1.5Ca0.5CoO4, and LaCoO3 for T = 300K.
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Figure 7.59: Optical conductivity σ1(ω) of La2−xSrxCoO4 (x = 0, 0.33, 0.45, 0.5,
0.9), La1.5Ca0.5CoO4, and LaCoO3 for T = 490K.
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Figure 7.60: Upper panel: Maximum value of the optical conductivity σab1 (ω)
at the broad peak around 2.5 eV in σab1 (ω) of La2−xSrxCoO4 (x =
0, 0.33, 0.45, 0.5) and La1.5Ca0.5CoO4. Lower panel: Maximum value
of the optical conductivity σc1(ω) at the pronounced peak around
3.5 eV− 4 eV in σc1(ω) of La2−xSrxCoO4 (x = 0, 0.33, 0.45, 0.5) and
La1.5Ca0.5CoO4.
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Temperature dependence

As already discussed, temperature-dependent optical data of La1.5Sr0.5CoO4 and
La1.5Ca0.5CoO4 have already been published by Lee et al. [32], see Fig. 7.52. Lee
et al. [32] �nd that the optical gap decreases signi�cantly with increasing temper-
ature for T & 400K. It vanishes completely at ∼ 850K. They observe an isobestic
point at ∼ 2 eV. A low-energy excitation develops at ∼ 1 eV with increasing tem-
perature, whereas the pronounced peak at ∼ 2.5 eV is signi�cantly suppressed
for T > 700K. The increase of the spectral weight at around 1 eV sets in at
lower temperatures in the Sr-doped compound (∼ 400K) than in the Ca-doped
counterpart (∼ 600K). As the changes of the optical spectra appear at tempera-
tures signi�cantly lower than the charge-ordering temperature of approx. 850K in
La1.5Sr0.5CoO4 and La1.5Ca0.5CoO4, Lee et al. [32] attribute them to a spin-state
transition from a Co3+ LS state at lower temperatures to a Co3+ HS or IS state
at higher temperatures. They argue that the spin-blockade mechanism is lost as
a consequence of the spin-state transition and the electronic system gains kinetic
energy. According to Lee et al. [32], this scenario is in agreement with the temper-
ature dependence of structural data. The structural data collected by Cwik [42]
reveal a huge increase of the c-axis lattice constant above 400K in La1.5Sr0.5CoO4.
The phonon spectra of La1.5Sr0.5CoO4 and La1.5Ca0.5CoO4 collected by Lee et
al. [32] reveal a splitting of the apical oxygen bending mode above 400K and
600K for La1.5Sr0.5CoO4 and La1.5Ca0.5CoO4, respectively. As discussed in Sec.
7.1.2, the magnetic susceptibility data collected by Hollmann et al. [29] also give
evidence for a temperature-induced spin-state transition in La1.5Sr0.5CoO4.
Unfortunately, the pronounced temperature-dependent changes at T & 500K of
the optical spectra of La1.5Sr0.5CoO4 and La1.5Ca0.5CoO4 cannot be seen in our
data, as the highest measured temperature amounts to merely 490K. However,
the �ndings of Lee et al. [32] for La1.5Sr0.5CoO4 and La1.5Ca0.5CoO4 resemble our
�ndings for La2CoO4. For La2CoO4, we observe the drastic changes of the opti-
cal spectra at reduced temperatures starting at ∼ 320K. The peak at ∼ 2.5 eV
is completely suppressed at the maximum measured temperature of 490K and
the spectral weight around 1 eV increases signi�cantly. However, in opposition to
the �ndings of Lee et al. [32] for La1.5Sr0.5CoO4 and La1.5Ca0.5CoO4, the spectral
weight is not conserved in La2CoO4, see Fig. 7.61. The loss of spectral weight at
around 2.5 eV is not counterbalanced by the gain of spectral weight around 1 eV.
The temperature-dependent optical data of La2CoO4 indicate an increased car-
rier mobility at higher temperatures. As the pure HS Co2+ compound La2CoO4

does neither show charge ordering, nor is the spin-blockade mechanism at work,
these changes cannot be attributed to a melting of one of these phenomena. The
magnetic ordering temperature of La2CoO4 amounts to 275K. Although the pro-
nounced changes in our optical spectra set in a higher temperature of ∼ 320K, one
might speculate, that the temperature dependence of the data of La2CoO4 is as-
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sociated with the melting of the magnetic order. However, this is only speculation
and the exact origin is still unclear.
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Figure 7.61: Integrated spectral weight
∫ ω2

ω1
σ1(ω)dω of La2CoO4 (upper panels),

and La2−xSrxCoO4 (x = 0, 0.33, 0.45, 0.5, 0.9) and La1.5Ca0.5CoO4

(lower panels) for the ab plane and the c axis, normalized to one
for the lowest measured temperature.
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7.4 Conclusion

We perform a very detailed doping, temperature, and polarization dependent el-
lipsometric analysis on the pseudocubic perovskites LaCoO3 and EuCoO3 and the
single-layered cobaltates La1.5Ca0.5CoO4 and La2−xSrxCoO4 (x=0, 0.33, 0.45, 0.5,
0.9) in the energy range from 0.75 eV to 5.5 eV for temperatures ranging from 15K
to 490K.
For the single-layered cobaltates with mixed Co2+ 3d7 and Co3+ 3d6 sites, we
succeed in a consistent peak assignment. La2−xSrxCoO4 and La1.5Ca0.5CoO4 be-
long to the group of charge-transfer systems. The observed absorption bands are
assigned to charge-transfer excitations from the O 2p level to the di�erent Co3+

and Co2+ 3d orbitals. According to our interpretation, the polarization depen-
dence of the optical spectra is mostly due to the di�erent energetic positions of
the Obasal 2p and Oapical 2p bands. While the optical spectra of the compounds
with doping concentrations x ≤ 0.5 show strong similarities, the optical spectra
of La1.1Sr0.9CoO4 di�er signi�cantly, both in σab1 and σc1. Whereas it is well es-
tablished that the 3d7 Co2+ ions realize the HS state (t52ge

2
g, S = 3/2), the spin

state of the Co3+ ions with 3d6 electron con�guration has been widely disputed
for a long time. However, recently evidence accumulated that the Co3+ ions are in
the LS state (t62g, S = 0) for doping concentrations 0.4 . x . 0.8, while a mixed
spin-state system of Co3+ HS (t42ge

2
g, S = 2) and LS sites is realized for x & 0.8.

We can therefore conclude from our results on layered cobaltates that the optical
spectra di�er signi�cantly for a Co3+ HS and a Co3+ LS electron con�guration.
The ground state of the pure Co3+ systems LaCoO3 and EuCoO3 is the LS state.
A thermal population of the HS state takes place in LaCoO3 at T & 25K, the
spin-state transition is shifted to much higher temperatures in EuCoO3. We do
observe remarkable changes in the optical conductivity of LaCoO3 across the spin-
state transition temperature, that are absent in the data of EuCoO3. However,
these changes are much smaller than expected from our results on layered cobal-
tates. The spectra of LaCoO3 resemble the spectra of the mixed Co3+ HS/LS
system La1.1Sr0.9CoO4 already at lowest temperatures.



8 Conclusion

Within the framework of this thesis the optical spectra of di�erent transition-metal
oxides with open 3d shells are studied by means of spectroscopic ellipsometry. The
investigated compounds belong to the group of Mott-Hubbard or charge-transfer
insulators. The main concern lies on the interband transitions from the lower to
the upper Hubbard band and their interrelation with low-energy spin and orbital
degrees of freedom. The optical excitations from the lower to the upper Hub-
bard band are a sensitive probe of orbital and spin correlations. A change of
nearest-neighbor spin-spin or orbital-orbital correlations greatly a�ects the opti-
cal spectral weights, leading to a pronounced dependence on both, temperature
and polarization. Our spectra show distinct multi-peak structures which re�ect
the complex multiplet structure of the excited states. The assignment of the dis-
tinct absorption bands can be veri�ed by taking the temperature and polarization
dependence into account.

Ellipsometry

The optical investigations are performed by the use of a rotating-analyzer ellip-
someter (VASE, J.A.Wollam), which is equipped with a retarder between polar-
izer and sample. It works in the energy range from 0.75 eV to 5.5 eV. Measurements
at temperatures ranging from 15K to 490K are performed at an angle of incidence
of 70◦ inside a UHV cryostat with a pressure below 10−9 mbar. To obtain the di-
electric tensor of the anisotropic single crystals, measurements are carried out on
di�erent polished surfaces. The di�erent data sets are analyzed simultaneously.
Since ellipsometry is a surface-sensitive technique, a �nite surface roughness is
taken into account in the analysis of the ellipsometric data.

Probing orbital �uctuations in RVO3 (R =Y, rare earth ion)

We apply spectroscopic ellipsometry to perform an elaborate temperature-depen-
dent analysis of the optical conductivity of the pseudocubic perovskites YVO3,
GdVO3, and CeVO3 for temperatures ranging from 15K to 490K. Undoped RVO3

(R=Y, rare earth ion) can be characterized as a Mott-Hubbard insulator which
exhibits a 3d2 electron con�guration on the V3+ sites. We assign the observed ab-
sorption bands to Mott-Hubbard excitations, |d2

i d
2
j〉 → |d1

i d
3
j〉, and charge-transfer

excitations, |p6d2〉 → |p5d3〉. The complex multi-peak structure observed in the
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optical spectra re�ects the multiplet splitting of the 3d3 �nal states. The coupling
of the orbitals to the lattice is only weak in the t2g systems RVO3. As a conse-
quence, a competition between spin and orbital degrees of freedom arises which
is re�ected in a complex spin and orbital ordering phase diagram. We arrive at
a consistent peak assignment and understand the temperature dependence of the
optical spectra on the basis of nearest-neighbor spin-spin and orbital-orbital cor-
relations.
The lowest absorption band in σc1(ω) shows a pronounced double-peak structure
and its spectral weight changes by a factor of 2 to 3 due to the ordering of spins
and orbitals. We compare our result with a theory which calculates the tempera-
ture dependence of the optical spectral weight based on a low-energy spin-orbital
superexchange Hamiltonian [8,10]. The temperature dependence is expected to be
di�erent for rigid orbital order or strong orbital �uctuations. Our results clearly
rule out that orbital �uctuations are strong in RVO3. We attribute the double-
peak structure to an excitonic resonance, i.e. not a truly bound state below the gap
but a resonance within the absorption band. The spectral weight of this excitonic
resonance is greatly enhanced when entering the orbitally ordered phase. This
clearly indicates that the so-called Mott-Hubbard exciton becomes energetically
favorable not only due to the attractive interaction between a 3d3 state in the
upper Hubbard band and a 3d1 state in the lower Hubbard band, but also due to
a gain of kinetic energy. Recent pump-probe measurements on YVO3 substantiate
this interpretation [115].

Ellipsometry on LaSrFeO4

We acquire ellipsometric data on the correlated insulator LaSrFeO4 with single-
layered perovskite structure for temperatures between 15K and 250K. The el-
lipsometric data is analyzed in combination with transmittance data from 0.5 eV
to 2.5 eV. The character of LaSrFeO4, being either a charge-transfer or a Mott-
Hubbard system, is still debated. We succeed in identifying Mott-Hubbard and
charge-transfer excitations by exploiting the strong anisotropy between the in-
plane and out-of-plane optical selection rules of the layered structure. We attribute
the lowest interband transition, which is visible in σa1(ω) only, to a Mott-Hubbard
excitation and thus conclude that LaSrFeO4 belongs e�ectively to the group of
Mott-Hubbard insulators. We point out that this result is rather unexpected, as
the 3d5 electron con�guration of Fe3+ is particularly stable due to the intra-atomic
Hund exchange JH . Accordingly, recent optical measurements on non-layered fer-
rites are interpreted in terms of charge-transfer systems [125]. We justify our
interpretation by taking the large splitting of the eg orbitals in the tetragonal
structure into account. The strong hybridization between the Fe 3d and the lig-
and O 2p bands further contributes to the positioning of the lowest Mott-Hubbard
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excitation below the onset of charge-transfer excitations.
In agreement with the fact that nearest-neighbor spin-spin and orbital-orbital cor-
relations hardly change below room temperature in this high-spin 3d5 compound
with a Néel temperature of TN = 366K, the Mott-Hubbard excitations show only
a weak dependence on temperature. However, the overlap of the Mott-Hubbard
excitations with the much stronger charge-transfer excitations makes a detailed
analysis of the temperature dependence of the former unfeasible.

Ellipsometry on cobaltates

We present a detailed temperature-dependent ellipsometric analysis of the opti-
cal spectra of the pseudocubic perovskites LaCoO3 and EuCoO3 and the doped
single-layered perovskites La1−xSrxCoO4 with doping concentrations x =0.0, 0.33,
0.45, 0.5, and 0.9, and the half-doped Ca compound La1.5Ca0.5CoO4.
While the compounds LaCoO3 and EuCoO3 exhibit a 3d6 electron con�guration
on the Co3+ sites, the single-layered perovskites are mixed Co3+ 3d6 and Co2+

3d7 systems. The 3d6 electron con�guration is particularly interesting as a com-
petition arises between the crystal-�eld splitting and the Hund exchange. As a
consequence, di�erent 3d6 multiplets lie energetically close. These are (in cubic
symmetry) the 1A1g multiplet, the so-called low-spin (LS) state with S = 0 (t62ge

0
g

electron con�guration), the 3T1g multiplet, referred to as the intermediate-spin
(IS) state with S = 1 (t52ge

1
g electron con�guration), and the 5T2g multiplet, which

is the so-called high-spin (HS) state with S = 2 (t42ge
2
g electron con�guration).

LaCoO3 and EuCoO3 are paramagnetic insulators at low temperatures, the ground
state of Co3+ is the LS state. Whereas a thermal population of Co3+ HS states
takes place in LaCoO3 above T & 25K, the so-called spin-state transition is shifted
to much higher temperatures in EuCoO3 [25,26]. While it is well established that
the Co2+ sites of the layered cobaltates with 3d7 electron con�guration realize the
HS state (S = 3/2, t52ge

2
g), doping- and temperature-induced spin-state transitions

have been discussed to take place on the Co3+ sites [28�32]. Recently evidence
accumulated that the Co3+ ions are in the LS state for doping concentrations
x . 0.8, while a mixed spin-state system of Co3+ HS and LS sites is realized for
x & 0.8.
The studied cobaltates are characterized as charge-transfer systems. Due to the
strikingly di�erent electron con�gurations realized in the LS and the HS state,
we expect a spin-state transition to be well visible in the optical spectra. Ac-
cordingly, we �nd that the optical spectra of the mixed Co3+ HS/LS compound
La1.1Sr0.9CoO4 di�er signi�cantly from the spectra of the pure Co3+ LS com-
pounds La1−xSrxCoO4 with doping concentrations x ≤ 0.5 and La1.5Ca0.5CoO4.
This clearly indicates that Co3+ LS and Co3+ HS electron con�gurations lead
to very di�erent optical spectra. We achieve a consistent peak assignment in
terms of charge-transfer excitations from the O 2p bands to the di�erent Co3+
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and Co2+ 3d orbitals. The polarization dependence of our data indicates that the
density of states of the O 2p bands plays a signi�cant role for the determination
of the optical conductivity. Interestingly, temperature-dependent optical data on
LaCoO3 published by Tokura et al. [27] hardly vary across the spin-state transition
temperature. The data have been acquired by re�ectivity measurements with a
subsequent Kramers-Kronig analysis. Our elaborate temperature-dependent ellip-
sometric analysis of the optical conductivity of LaCoO3 reveals some remarkable
changes across the spin-state transition temperature, that are absent in the data
of EuCoO3. However, these changes are much smaller than expected. The spectra
of LaCoO3 resemble the spectra of La1.1Sr0.9CoO4 already at low temperatures.
This might be due to the fact that the optical spectra of the cobaltates are dom-
inated by the O 2p bands.
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Abstract

Within the scope of this thesis di�erent transition-metal oxides with open d shells
are investigated by means of spectroscopic ellipsometry in the energy range from
0.75 eV to 5.5 eV for temperatures ranging from 15K to 490K. The focus is on
spin and orbital degrees of freedom and their impact on the optical spectra. The
multipeak structures observed in the optical conductivity show a pronounced de-
pendence on both temperature and polarization. We analyze the spectra in terms
of multiplets which form the upper Hubbard band.
Our optical analysis of the multi-orbital Mott-Hubbard insulators YVO3, GdVO3,
and CeVO3 yields a consistent description of the observed absorption bands in
terms of 3d3 excited states which constitute the upper Hubbard band and thereby
solves the discrepancies of the optical spectra of YVO3 reported in the literature.
The temperature and polarization dependence of the optical spectra re�ects the
complex spin and orbital ordering phase diagram of RVO3 (R=Y, rare earth ion).
A comparison of our data with theoretical predictions based on either rigid orbital
order or strong orbital �uctuations leads us to the conclusion that orbital �uctu-
ations cannot be strong in RVO3. The line shape and temperature dependence
of a feature observed in the optical conductivity at around 2 eV gives evidence
for an excitonic Mott-Hubbard resonance, i.e. not a truly bound state below the
gap but a resonance within the absorption band, and demonstrates the important
role played by the kinetic energy for exciton formation in orbitally ordered Mott-
Hubbard insulators.
Due to the layered structure of the correlated insulator LaSrFeO4 the optical spec-
tra strongly depend on polarization. This anisotropy in combination with their
di�erent spectral weights o�ers an e�cient tool to disentangle Mott-Hubbard exci-
tations, corresponding to an electron transfer between neighboring Fe3+ sites, and
charge-transfer excitations, corresponding to an electron transfer from the oxygen
2p band to the Fe 3d band. We arrive at a consistent peak assignment and �nd
that the lowest dipole-allowed excitation, which contributes to the in-plane optical
conductivity only, is of Mott-Hubbard type. This result is rather unexpected at
�rst sight as the 3d5 electron con�guration of Fe3+ is particularly stable due to
the intra-atomic Hund exchange. We argue that the Fe 3d−O 2p hybridization
and particularly the large splitting of the eg level originating from the tetragonal
structure justify our result. The temperature dependence of the Mott-Hubbard
excitations is only weak. This �nding is in accordance with the fact that variations
of nearest-neighbor spin-spin and orbital-orbital correlations are not strong below
room temperature in LaSrFeO4 with a Néel temperature of 366K.
A further concern of this work lies on the correlated insulators LaCoO3 and
EuCoO3 with Co3+ 3d6 electron con�guration, which have attracted a lot of inter-
est because of the spin-state degree of freedom. The low-spin state (S = 0, t62ge

0
g),

the intermediate-spin state (S = 1, t52ge
1
g), and the high-spin state (S = 2, t42ge

2
g)
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lie energetically close in these pseudocubic perovskites. It is well established
that a thermal population of the high-spin state takes place from the low-spin
ground state at T & 25K in LaCoO3. This so-called spin-state transition is
shifted to much higher temperatures in the sister compound EuCoO3. In ad-
dition, we present optical data of the single-layered perovskites La2−xSrxCoO4

(x = 0, 0.33, 0.45, 0.5, 0.9) and La1.5Ca0.5CoO4, which contain both Co3+ 3d6 and
Co2+ 3d7 ions. In agreement with claims of the literature for a doping-induced
spin-state transition from a Co3+ low-spin state being realized in La2−xSrxCoO4

for doping concentrations x . 0.8 to a state of mixed Co3+ low-spin and high-spin
ions in LaSrCoO4, our optical spectra of La1.1Sr0.9CoO4 di�er considerably from
the spectra of the compounds with x 6 0.5. We assign the observed absorption
bands to charge-transfer excitations from the oxygen 2p bands to the upper Hub-
bard bands. Surprisingly, we observe only small changes in the optical spectra
of LaCoO3 across the spin-state transition temperature, our spectra of LaCoO3

resemble the spectra of La1.1Sr0.9CoO4 already at low temperatures.
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Kurzzusammenfassung

Im Rahmen dieser Arbeit werden die temperaturabhängigen optischen Spektren
verschiedener Übergangsmetalloxide mit o�enen d Schalen mit der Methode der
spektroskopischen Ellipsometrie im Energiebereich von 0.75 eV bis 5.5 eV für Tem-
peraturen von 15K bis 490K bestimmt und analysiert. Der Schwerpunkt liegt
auf den Spin- und orbitalen Freiheitsgraden und deren Auswirkung auf die op-
tischen Spektren. In der optischen Leitfähigkeit werden Multipeakstrukturen
beobachtet, welche eine starke Temperatur- und Polarisationsabhängigkeit zeigen.
Die Spektren werden im Sinne von Multiplettanregungen in das obere Hubbard-
Band analysiert.
Unsere Analyse der optischen Daten an den multiorbitalen Mott-Hubbard-Iso-
latoren YVO3, GdVO3 und CeVO3 mit 3d2-Elektronenkon�guration liefert eine
konsistente Beschreibung der beobachteten Absorptionsbänder in Form von Mott-
Hubbard-Anregungen, einem Elektronentransfer zwischen benachbarten V3+-Io-
nen, in die verschiedenen 3d3-Multipletts, welche das obere Hubbard-Band bilden.
Die existierendenWidersprüche in der Literatur, welche sowohl die experimentellen
optischen Daten an YVO3 als auch deren Interpretation betre�en, können somit
gelöst werden. Die starken Temperatur- und Polarisationsabhängigkeiten der opti-
schen Spektren spiegeln das komplexe Phasendiagramm der Spin- und orbitalen
Ordnung von RVO3 (R=Y, seltene Erde) wider. Der Vergleich unserer experi-
mentellen Daten mit theoretischen Vorhersagen, welche entweder klassische or-
bitale Ordnung voraussetzen oder aber �uktuierende Orbitale zulassen, führt uns
zu dem Ergebnis, dass orbitale Fluktuationen in RVO3 nicht stark sein können.
Die Linienform eines Absorptionsbandes, welches bei ca. 2 eV in der optischen Leit-
fähigkeit beobachtet wird, deutet auf das Vorliegen einer exzitonischen Resonanz
hin. Damit ist nicht ein wirklich gebundener Zustand unterhalb der Bandlücke
gemeint sondern vielmehr eine Resonanz innerhalb des Absorptionsbandes. Die
beobachtete Temperaturabhängigkeit stellt die Wichtigkeit der kinetischen En-
ergie für Exzitonenbildung in Mott-Hubbard-Isolatoren heraus.
Aufgrund der geschichteten Struktur des korrelierten Isolators LaSrFeO4 zeigen
dessen optische Spektren eine ausgeprägte Polarisationsabhängigkeit. Die be-
obachteten Absorptionsbänder werden Mott-Hubbard-Anregungen und Ladungs-
transferanregungen zugeordnet. Sowohl deren unterschiedliche spektralen Gewich-
te als auch die Anisotropie der Spektren können dazu genutzt werden, beide Typen
von Anregungen in den Spektren zu identi�zieren. Uns gelingt eine konsistente
Peakzuordnung und wir kommen zu dem Resultat, dass die niedrigste dipoler-
laubte Anregung eine Mott-Hubbard-Anregung ist. Dieses Ergebnis ist recht
unerwartet, da die 3d5-Elektronenkon�guration der Fe3+-Ionen durch die Hund-
sche Kopplung besonders stabil ist. Das Resultat kann jedoch durch Fe-3d O-
2p-Hybridisierung und vor allem durch die recht groÿe Aufspaltung des eg-Levels,
welche durch die tetragonale Struktur hervorgerufen wird, begründet werden.
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Ein weiterer Schwerpunkt dieser Arbeit liegt auf der Analyse der korrelierten
Isolatoren LaCoO3 und EuCoO3 mit Co3+ 3d6-Elektronenkon�guration. Diese
Verbindungen sind von besonderem Interesse aufgrund ihres Spinfreiheitsgrades.
Der LS-Zustand mit S = 0, der IS-Zustand mit S = 1, und der HS-Zustand
mit S = 2 liegen energetisch dicht beieinander. Es ist wohl bekannt, dass in
dem pseudokubischen Perowskiten LaCoO3 eine thermische Besetzung höherer
Spinzustände vom LS-Grundzustand ab T & 25K statt�ndet. In der Verbindung
EuCoO3 ist dieser thermisch induzierte Spinübergang zu viel höheren Tempera-
turen verschoben. Auÿerdem werden optische Daten an den einfach geschichteten
Perowskiten La1.5Ca0.5CoO4 und La2−xSrxCoO4 (x=0, 0.33, 0.45, 0.5, 0.9) vorge-
stellt, sie beinhalten sowohl Co3+ 3d6- als auch Co2+ 3d7-Ionen. In Übereinstim-
mung mit Behauptungen der Literatur eines dotierungsinduzierten Spinübergangs
von einem Co3+ LS-Zustand für Dotierungen x . 0.8 in einen gemischten Zus-
tand bestehend aus LS-Co3+- und HS-Co3+-Ionen in LaSrCoO4, unterscheiden
sich unsere optischen Spektren an La1.1Sr0.9CoO4 signi�kant von den Spektren
an La2−xSrxCoO4 mit x 6 0.5. Die beobachteten Absorptionsbänder werden
Ladungstransferanregungen vom Sauersto�-2p-Band in das obere Hubbard-Band
zugeordnet. Erstaunlicherweise sind die Änderungen der Spektren an LaCoO3 bei
Überqueren der Spinübergangstemperatur nur klein. Die Spektren an LaCoO3

ähneln denen an La1.1Sr0.9CoO4 schon bei tiefen Temperaturen.
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