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I would still go there

if only to await

the once-in-a-lifetime

opening of truth’s flower;

if only to escape

such bought freedom, and live,

prisoner of the keyless sea,

on the mind’s bread and water.

– R.S. Thomas, "Island",

No Truce with the Furies

To represent his tangled ball of musings in

a nutshell, he surmised from one side of his

mouth that Time existed to make eternity

pass more quickly, and from the other side

that it served to make it pass more slowly.

We gave him a standing ovation and then

started drinking.

– Jeffrey Ford, "At Reparata"





Abstract

It is commonly believed that the ubiquitous singularities of general relativity will be cured in a

theory of quantum gravity. In the absence of a complete such theory, one can still employ reduced

toy models to investigate how an avoidance of singularities could be facilitated. One particular

scenario for this is bouncing gravitational collapse: in it, quantum gravitational effects prevent

the matter from fully collapsing to a singularity, and instead cause it to re-expand.

In the discussion of such bounces two aspects turn out to be of particular importance. First,

the bounce necessitates quantum corrections not only in the high curvature region, but also at

the horizon. The question is then how the behavior of the horizon is modified to accommodate

the bounce. Second, since the ‘black hole’ is not the end result of the collapse anymore but an

intermediate state, its finite lifetime is crucial as a consistency check for bouncing collapse models.

In this thesis we construct and explore such models, especially with regard to these aspects.

We present a quantization of the marginally bound Lemaître-Tolman-Bondi model for inhomo-

geneous, spherically symmetric dust collapse, in which the model is split up into individual shells

of dust and reassembled after quantization. We show that this leads to singularity avoidance

via a bounce, a result that proves to be fairly robust under the quantization ambiguities. The

problem is explicitly formulated from the point of view of an observer comoving with the dust,

which avoids some notorious conceptual issues of quantum gravity but limits investigations of

horizon behavior and lifetime.

In order to go beyond these limitations, we construct a marginally bound quantum Oppenheimer-

Snyder model in which both the comoving observer and an observer exterior to the collapsing

matter are included. In preparation for this, we present a phase space formulation of the classical

Oppenheimer-Snyder model. The switch between the two observers is implemented by promoting

the transformation between their adapted coordinates to a canonical transformation. Due to the

complicated functional form of the Hamiltonian for the exterior observer an integral quantization

method is used, namely affine coherent states quantization, and we focus on the investigation of

quantum corrected phase space dynamics. For both observers a bounce emerges. However, for

the exterior observer the minimal radius of the bounce is so large that no horizon forms.

Finally, we investigate what exterior geometries can be matched classically to a bouncing

dust cloud. In particular, we show that static exteriors necessarily have a more involved causal

structure, and we discuss a specific dynamic exterior in which the horizon retracts into the

collapsing body at the moment of the bounce. The black hole lifetime for the latter turns out to

be proportional to the mass of the cloud, and we argue that this result also applies to a larger

class of dynamic exteriors.
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1. Introduction

The successes of the theory of general relativity (GR) are undeniable; from explaining the

perihelion motion of mercury [1], to the direct observations of its more decided departures from

Newtonian gravity, such as the detection of gravitational waves [2] and the imaging of a black

hole’s shadow [3], it has proven to be an exceptionally effective theory of gravity at astrophysical

and cosmological scales. And yet, in a sense GR is also a theory that predicts its own failure:

when in a region of spacetime the curvature grows too large, up to the point where even light

can’t escape anymore, that spacetime is according to GR necessarily singular.

A singular spacetime is one in which the free fall of a test particle can abruptly come to an

end; one also says that the spacetime is geodesically incomplete. In the cases we are interested

in this occurs because in certain regions the curvature of spacetime diverges. These regions,

so-called singularities, then have to be cut out of the spacetime, leading to sudden endpoints

for the trajectories of test particles that run into them. There are also other mechanisms for the

occurrence of singularities than diverging curvature, see e.g. Ref. [4], but those will not be of

further importance here.

If one takes this aspect of GR at face value, the test particle would not just stop falling, it would

cease to exist entirely at this endpoint (or equivalently, come into existence there). Obviously this

is not physically reasonable, so one usually considers the existence of singularities as a breakdown

of GR. Remarkably, as the Hawking-Penrose singularity theorems tell us [5], singularities are not

just mathematical curiosities restricted to a specific niche of spacetimes, maybe those with a high

degree of symmetry; they are rather a generic feature of GR, found in spacetimes used to describe

important facets of gravitational physics, such as cosmology and the study of black holes.

These two at first sight antithetical statements – singularities are a ubiquitous prediction of GR,

but are in themselves a bound on the predictive power of the theory – are what makes the study

of singular spacetimes in GR so interesting. The prevailing wisdom is that this tension will be

resolved in a theory of quantum gravity. Such a theory should contain classical gravity, but go

beyond it and be able to make predictions where GR can not.

It is then reasonable to assume that the classical singularities will be cured in some way when

quantum gravitational effects are taken into account. This poses an important question: what

replaces those singularities? When a singularity would form, what happens instead? In this thesis,
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1. Introduction

I will present my work on one particular scenario that strives to offer an answer, in particular

for singularities arising during gravitational collapse. Before I describe this scenario, let us first

cover the two ingredients that make up its construction: gravitational collapse and quantum

gravity.

1.1. Gravitational collapse

Gravitational collapse is the process of an object getting compressed more and more by its own

gravitational pull, eventually leading to the formation of a black hole complete with a singularity.

It will be helpful for what follows to explain this phenomenon with a simple example, along

with a few useful technical details. The most instructive model for gravitational collapse is the

Oppenheimer-Snyder (OS) model [6,7], which describes the collapse of a spherically symmetric

dust cloud with homogeneous mass density. Actually it was Datt who found this solution to

the Einstein equations shortly before Oppenheimer and Snyder, see Ref. [6], and accordingly

the model is sometimes called Oppenheimer-Snyder-Datt. I will stick here to the former, more

commonly used name.

Let me first explain the advantages of using dust as matter. In this context, dust means an

ideal fluid with vanishing pressure, only interacting with itself gravitationally. Its appeal lies

in this simplicity; using dust allows one to investigate purely gravitational phenomena without

additional matter-related effects. This makes it particularly well suited for the use in models for

gravitational collapse, since there one anyways expects gravity to eventually dominate over all

other forces. Another useful feature of dust is that it naturally provides a preferred notion of

time: thinking of the dust as a continuum of dust particles, one can pick out one of them, follow

it along its trajectory, and measure its proper time. Repeating this for all dust particles one can

then extend the dust proper time τ to a global time coordinate.

In the case of the OS model, there is a concise geometrical picture for this construction. Because

the model is spherically symmetric, the dust cloud does not rotate; more precisely we can say

that the velocity field tangential to the dust trajectories is non-rotational. One can show that

for every non-rotational vector field in a four-dimensional spacetime there exists a family of

three-dimensional hypersurfaces everywhere orthogonal to the vector field. This is essentially

a consequence of the so-called Frobenius’ theorem, see for example appendix B.3 in Ref. [8].
The global dust proper time can then be defined in such a way that it is constant on any given

hypersurface from this family. In this way one can synchronize the proper times of all these

individual dust particles, and merge them into τ.

The key insight of Datt, and shortly thereafter Oppenheimer and Snyder, was that dust proper

time is extremely useful for solving the Einstein equations for the collapsing dust cloud. They
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1. Introduction

can be reduced to an equation of motion for the radius of the surface of the cloud RS,

�dRS

dτ

�2
=

2GM
RS

, (1.1)

where M is the dust cloud’s total mass, and G is the gravitational constant. For simplicity we will

use units in which the speed of light is unity. Note that here we are only considering the special

initial condition that the dust cloud is marginally bound, meaning it is at rest for RS →∞. We will

come back to this shortly. Since we are using τ as a time coordinate, this equation describes the

collapse of the cloud from the point of view of the dust, or rather an observer co-moving with it.

That observer sees the dust cloud collapse with ever increasing velocity, until at RS → 0 the cloud

is condensed into a single point with diverging mass density, and the singularity appears.

Eq. (1.1) and its solution can be understood in two different ways. First, since the interior

of the dust cloud is homogeneous, so is its geometry. This geometry is then described by the

Friedmann-Lemaître-Robertson-Walker (FLRW) metric. The FLRW metric appears prominently in

cosmology, and the equations of motion for its remaining degree of freedom, the scale factor, are

well explored for various kinds of matter. Eq. (1.1) is simply the case of these so-called Friedmann

equations for that matter being dust. The collapse described above is then the time-reversal of a

dust-filled universe’s expansion: the formation of the singularity is a big bang in reverse.

The initial condition mentioned above can also be understood through this cosmological lens.

Readers acquainted with the basics of cosmology will know that the FLRW metric comes in three

different variations; spatial hypersurfaces of constant τ can be either positively or negatively

curved, or they can be flat. These three cases then correspond to three different classes of initial

conditions for the OS model. The dust cloud can start its collapse at rest from a finite radius, or

it can start from infinity either with non-vanishing or vanishing initial velocity.

According to the initial conditions chosen in Eq. (1.1), I will only consider the flat OS model.

From an astrophysical standpoint the closed (meaning positively curved) OS model, starting at

rest at a finite radius, is more interesting: before a star starts collapsing because it is burned

out, it is usually in a stationary state. However, at least qualitatively the behavior of the simpler

flat OS model as it approaches the singularity does not differ significantly from the closed case.

Further, there are some surprising technical difficulties one encounters in the closed case, which I

will comment on shortly.

While the analogy to the Friedmann models is obviously useful for understanding the OS model,

it cannot be exhaustively investigated via this avenue; the OS model describes the dynamics of an

isolated object, hence it is not complete without an exterior to this object. Imposing vacuum and

a vanishing cosmological constant in the exterior, the geometry outside of a isolated spherically

symmetric object has to be the Schwarzschild geometry, and uniquely so. This is known from a
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1. Introduction

uniqueness result called Birkhoff’s theorem, see for example §32.2 in Ref. [9]. The full geometry

of the OS model is then constructed by stitching together, or matching, the FLRW interior and

the Schwarzschild exterior across a hypersurface with curvature radius RS(τ). Details for how

this matching works on a technical level can be found in Ch. 5, see also Ref. [10].
At this point a second way to understand Eq. (1.1) emerges: it also describes the trajectory

of a marginally bound dust particle, radially falling towards a spherically symmetric body with

mass M , see for example Eq. (25.16a) in Ref. [9]. The connection between OS collapse and these

trajectories, which are geodesics in the Schwarzschild geometry, can be found in yet another

interesting feature of non-rotating dust: the dynamics of every spherically symmetric thin dust

shell is only determined by its initial velocity, and by the total mass of the dust contained inside it.

Every shell then moves as if under the influence of a spherically symmetric body with that mass,

which is exactly what Schwarzschild geodesics describe. This decoupling between different shells

of dust will be very useful in Ch. 2, see there for more details.

With the Schwarzschild metric another preferred notion of time besides τ enters the picture.

The Schwarzschild geometry is stationary, and with that there exists a time coordinate that makes

this stationarity explicit: the so-called Schwarzschild or Killing time T . This time coordinate is of

particular importance, because it is usually considered to be the time experienced by an observer

far away from the object in the center of the Schwarzschild geometry; it is for example the time

corresponding to us on earth observing a spherically symmetric black hole far away from us. In

Schwarzschild time T , the equation of motion for OS collapse is given by

�dRS

dT

�2
=
�

1−
2GM

RS

�2 2GM
RS

. (1.2)

As compared to Eq. (1.1), this equation leads to a very different behavior of RS. However, before

explaining this behavior one more concept needs to be brought up: that of a horizon.

There are quite a few different notions of horizons in GR, sometimes interchangeable but not

equivalent, see for example Ref. [11]. Due to its simplicity many of them are in fact interchange-

able when applied to the OS model. Here I will center the discussion on so-called apparent

horizons in spherically symmetric spacetimes. Such an apparent horizon is the boundary between

two regions in spacetime. In one region light rays behave like one would expect: outgoing light

rays move outwards, ingoing light rays inwards. However, on the other side of the horizon, both

out- and ingoing light rays move in the same direction. Regions where both families of light rays

move inward are called trapped, and regions where they move outward antitrapped, and their

associated horizons trapping and antitrapping.

What one calls the inside of a black hole is usually a trapped region (and the inside of a white

hole an antitrapped region), and a trapped region indeed forms during the collapse of the OS
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1. Introduction

model: since the Schwarzschild geometry is also used to describe a spherically symmetric black

holes, it contains a trapped region. When the dust cloud collapses past RS = 2GM that trapped

region, and with that its horizon with radius 2GM , is not covered by the dust cloud anymore and

emerges into the exterior. As one can see in Eq. (1.2), the horizon is of particular relevance to

the dynamics of the dust cloud as seen by the exterior observer.

According to (1.2) the dust cloud will not collapse fully, but only asymptotically approach

RS = 2GM ; from the point of view of the exterior observer, the dust cloud freezes right before a

horizon would form. Of course the dust cloud does fully collapse to a singularity, a horizon will

form at R = 2GM as soon as the dust cloud crosses that radius. All of this can be confirmed by the

comoving observer, but these events in the collapse are simply not visible from the perspective of

the exterior observer. To fully understand the collapse, one thus needs to consider the viewpoint

of both of these observers. Let me briefly emphasize the importance of this insight; it is one of

the central threads running through this thesis, and has guided much of my work shown here.

We will come back to it a bit further below, and discuss why it is so significant.

Once again identifying the trajectory of the dust cloud’s surface with geodesics in the Schwarz-

schild spacetime, one can connect the two observers, or rather their corresponding time coordi-

nates, via a coordinate transformation on that spacetime. This transformation, called Painlevé-

Gullstrand transformation for the marginally bound case (see Ref. [12] for a pedagogical intro-

duction), will play a crucial rule in Chs. 3 and 4, and to a lesser extent in Ch. 5. One can also find

analogous coordinate transformations for the other initial conditions for the OS model: see again

Ref. [12] for the transformation relevant for the open OS model, and Ref. [13] for the closed one.

However, they are more cumbersome to work with, and in particular the latter is only defined up

to a finite maximal radius. For this reason, extending the works in this thesis past the marginally

bound case is a more involved task than it might initially seem.

There are also two other models for gravitational collapse I want to mention briefly. The first

one is arguably even simpler than the OS model: it consists of an isolated spherical dust shell,

essentially the OS model hollowed out. Of particular importance is the limit in which the dust

moves at the speed of light, so-called null dust. For a concise summary of the collapse of such a

null dust shell (as well as some other simple collapse models) see Ref. [14].
Further, there is also a generalization of the OS model to dust with inhomogeneous mass

densities. This goes by the name Lemaître-Tolman-Bondi (LTB) model [15–17]. Originally

intended for and extensively used in cosmology [18], it can also straightforwardly be applied to

gravitational collapse. In a certain sense it is a more elegant construction than the OS model,

since there is no need to strictly distinguish between interior and vacuum exterior; one can simply

let the density of the dust go to zero over a finite range around the surface of the collapsing

object, which leads to the geometry smoothly approaching Schwarzschild.

T. Schmitz 12



1. Introduction

The dynamics of the LTB model are directly related to those of the OS model. As we have seen

above, every shell in a spherically symmetric dust cloud moves according to how much mass is

contained inside it, hence every individual shell in the (marginally bound) LTB model behaves

according to Eq. (1.1), but instead of the total mass of the dust cloud, M denotes the total mass

of the dust contained in the shell. It is then necessary to consider the mass as a field, varying

over these shells, which immediately hints at a drawback of the LTB model when it comes to

quantization: the OS model can essentially be treated as a mechanical theory, with its degree of

freedom RS only varying in time, whereas the LTB model is manifestly a field theory, and is as

such much harder to quantize. In Ch. 2 the LTB model and its quantization are discussed in more

detail.

1.2. Quantum gravity

As of yet, there is no fully consistent theory of quantum gravity, but there are quite a few

contenders. There are approaches that aim to unify GR with the standard model of particle

physics, such as string theory, and approaches that are content with quantizing gravity on its own

as a first step towards unification. Some approaches such as causal set theory [19] start from

speculative assumptions about the fundamental nature of spacetime, and attempt to construct a

theory with the correct classical limit from there. Others start from classical gravity and try to

quantize it. Of these, there are covariant approaches often based on a path integral, such as the

asymptotic safety program [20], causal dynamical triangulation [21], and spin foam models [22],
as well as canonical approaches starting from a phase space formulation, such as loop quantum

gravity and quantum geometrodynamics. Further, there are also approaches that do not quite

fit this categorization and make use of different windows to the problem, such as the AdS/CFT

correspondence [23].
For an introduction to some of these approaches see also for example Ref. [24], and for a more

complete exploration of the quantum gravity landscape see Ref. [25]. Here I want to very briefly

introduce one approach, quantum geometrodynamics (QGD). In this introduction I will largely

follow Ref. [24], but will focus on those aspects of the theory that are relevant for the rest of this

thesis. The interested reader can find the full story in Ref. [24] and the references therein.

QGD, also referred to as the Wheeler-DeWitt approach, is one of the more conservative

approaches to quantum gravity. It is the canonical quantization of a phase space formulation of

GR. While this sounds straightforward at first – and compared to other approaches it is – there

is an inherent tension in this statement: GR is manifestly covariant, it is not sufficient to only

consider a single coordinate frame, but a phase space formulation requires a choice of an external

time parameter. This conceptual obstacle will grow into the infamous problem of time, but for

T. Schmitz 13



1. Introduction

now let us solve it as follows.

In a construction similar to that of the dust proper time, one can decompose any spacetime with

a benign enough causal structure into a family of spatial, non-overlapping hypersurfaces. This is

called a foliation of the spacetime, and the individual hypersurfaces its leaves. There then exists

a coordinate frame adapted to this foliation: spatial coordinates x i adapted to each leaf, and a

time coordinate t that labels the leaves from past to future. At this point this constructions may

seem like it singles out this adapted coordinate frame. The key to keeping the theory explicitly

covariant is to not specify the foliation any further, to keep it as general as possible. In this way,

we have a distinguished time coordinate for the canonical formulation, but since this time is

arbitrary there is still the freedom to switch between coordinate frames.

According to the foliation one can now split up tensors on the spacetime into their spatial and

temporal parts. For example, the spacetime metric can be decomposed as

gµν =

 

NiN
i − N 2 N j

Nk h jk

!

, (1.3)

where greek letters denote spacetime indices, and latin letters purely spatial indices. Therein hi j

is the spatial metric on the leaves of the foliation, and N and N i are called the lapse and the shift

vector. The latter are closely related to the foliation, see Ref. [24] for a nice geometric illustration,

and different choices for lapse and shift correspond to different foliations of the spacetime.

Accordingly one can also decompose the Einstein-Hilbert action for GR, a process called

Arnowitt-Deser-Misner (ADM) decomposition [26], and bring it into canonical form, here with

vanishing cosmological constant,

SEH =
1

16πG

∫

d t d3 x
�

pi jḣi j − NH − N iHi

�

, (1.4)

where dots denote derivatives with regard to label time t, pi j is the canonically conjugate mo-

mentum to the spatial metric hi j, and H and Hi are called Hamiltonian constraint and momentum

or diffeomorphism constraints, defined as

H = 16πGGi jkl p
i j pkl −

p
h

16πG
(3)R , (1.5)

Hi = −2∇k pk
i, (1.6)

where (3)R is the spatial Ricci scalar computed from hi j, and Gi jkl is called the DeWitt metric. It

depends only on hi j, but its precise form is of no further importance here. What I want to focus

on is the general structure of the total Hamiltonian density NH + N iHi.

T. Schmitz 14



1. Introduction

The first thing to note is that lapse and shift are not dynamical quantities. They are arbitrary,

which makes sense given their connection to the foliation; a particular evolution of N and N i

with t would break GR’s general covariance. That is not to say that lapse and shift do not play a

role in the canonical theory. Varying the action with regard to them gives the equations H = 0

and Hi = 0, illustrating why the constraints are called constraints: they restrict the phase space

to what is called the constraint surface on which the dynamics of the theory take place. We can

then note that H and Hi fulfill a dual purpose; they form the total Hamiltonian, and they define

this constraint surface.

With N and N i out of the picture, the only dynamical quantity left is the spatial metric hi j.

Classical geometrodynamics is thus a formulation of GR in terms of three-dimensional, spacelike

geometries evolving with time. Making the jump to QGD, this then informs the arena it takes

place in: QGD deals with wave functionals Ψ[hi j] defined over this space of spaces, for which

Wheeler coined the term superspace [27]. Since we are dealing with a constrained system, not

every wave functional can be a physically viable state; one needs a quantum equivalent to the

constraint surface. To this end one can turn the constraints into operators Ĥ and Ĥi, for example

using Dirac’s prescription of replacing the momenta by functional derivatives, and only allow

states for which

Ĥ Ψ[hi j] =

�

−16πGħh2Gi jkl
δ

δhi j

δ

δhkl
−
p

h
16πG

(3)R

�

Ψ[hi j] = 0, (1.7)

Ĥi Ψ[hi j] = 2iħh∇k hi j
δ

δhk j
Ψ[hi j] = 0. (1.8)

Eq. (1.7) is called the Wheeler-DeWitt equation [27,28], while Eq. (1.8) does not have a special

name, and that is for good reason: going back to the classical diffeomorphism constraints for

a moment, one can show that acting on phase space functions via the Poisson bracket they

generate spatial diffeomorphisms – coordinate transformations on the leaves of the foliation.

(It is then tempting to think that all four constraints taken together would generate spacetime

diffeomorphisms, but the full story is a bit more complicated, see Ref. [24].) When one quantizes

the constraint as we did above, the corresponding operator fulfills the same role when acting on

wave functionals. Hence, Eq. (1.8) imposes that Ψ should be a constant spatial scalar.

Using a more precise definition of superspace, the equation can even be fulfilled automatically;

strictly speaking, superspace only refers to the space of all spatial geometries, and not all spatial

metrics, the difference between the two being that a metric depends on coordinates, while the

corresponding geometry is an invariant object. One should thus consider equivalence classes of

metrics connected by spatial diffeomorphisms as the elements of superspace. Ψ as a functional

over that space would then necessarily fulfill Eq. (1.8). However, technical difficulties make

T. Schmitz 15



1. Introduction

explicitly carrying out this construction infeasible; in practice one simply has to choose an ansatz

for Ψ that solves (1.8).

Unfortunately, implementing the Wheeler-DeWitt equation (1.7) turns out to be a bigger hurdle.

To start with, in it there is a product of two functional derivatives evaluated at the same point

in space, which is not well defined and requires some form of regularization. Further, since

the DeWitt metric contains hi j there is a factor ordering ambiguity that has to be resolved. Yet,

arguably the biggest obstacle one faces in QGD is of a more conceptual nature: time evolution in

QGD would be governed by a Schrödinger equation, but since the total Hamiltonian is a sum of

the constraints, any wave functional fulfilling Eqs. (1.7) and (1.8) simply vanishes when being

acted upon by it. Thus, time disappears from QGD entirely. This is the problem of time.

Obviously time has to reemerge at some point, and in fact one can show that in a semiclassical

approximation one can reclaim quantum field theory in a curved background from QGD. However,

the question still remains whether time should be present in the fundamental theory, and how

it could be reintroduced. On this depends the basic structure of the theory, and how its results

should be interpreted. Should observables be self-adjoint operators? Should the constraints

be? Is it even necessary to have a Hilbert space? Can one still interpret the wave functionals

probabilistically? The Klein-Gordon-like form of the Wheeler-DeWitt equation (1.7) (the DeWitt

metric turns out to be indefinite) certainly calls the latter into question. It is in any case rather

difficult to apply the standard Copenhagen interpretation to a quantum theory that aims to

describe the whole universe – there can hardly be an external measurement apparatus sharply

divided from it.

These issues are by no means exclusive to QGD. Since the problem of time is rooted in the

fundamentally conflicting concepts of time in quantum theories and GR, most approaches to

quantum gravity have to contend with it in some shape or form, even the covariant ones. As long

as this problem is not solved, along with the various other conceptual and technical difficulties

of the different approaches to quantum gravity, and there is no fully formed theory, one has to

resort to constructing various toy models to find indications how quantum gravitational effects

could feasibly change physical scenarios of interest.

This is exactly what we will concern ourselves with in this thesis: I will present my work in

which I have explored how quantum gravity could resolve the singular endstate of gravitational

collapse, and how those effects imprint themselves onto the spacetime regions further away

from the would-be singularity. Crucially, it is not primarily an investigation of QGD itself, I am

rather using methods from QGD to build toy models to help with this investigation. QGD turns

out to be very well suited to this task due to its straightforwardness. Once one circumvents the

aforementioned technical problems, it’s easy to see what happens during quantization if one is

familiar with standard quantum mechanics, and the problem of time notwithstanding, the use of
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1. Introduction

metric variables makes results comparatively simple to interpret.

Similar investigations by way of toy models, also those based on different approaches to

quantum gravity, often share some aspects of their construction that help evade the issues of the

full theories mentioned above. First, one often restricts the geometries considered in the model to

those with a particular symmetry, for example spherically symmetry or homogeneity and isotropy;

one then speaks of midi- or minisuperspaces. Especially the latter case simplifies matters quite a

lot. As we have mentioned in the last section, a homogeneous and isotropic spatial geometry has

only one degree of freedom, which only varies with time. The model thus loses its field theoretic

nature, and along with it many of its technical problems.

Further, one often sidesteps the problem of time by declaring one of the degrees of freedom of

the model, in most cases one associated with the matter content, as an internal time parameter.

That makes it possible to identify from the constraints a physical Hamiltonian, which generates

time evolution with regard to that parameter. In addition, particularly for gravitational collapse

models where one only aims to describe an isolated object, the interpretational issues become

less pressing. All of this combined makes it possible to construct and evaluate toy models for

quantum gravitational collapse completely analogous to standard quantum mechanics, as we will

see in Chs. 2 and 4.

Before we move on to that, let me first briefly highlight some results from similar related

investigations. In quantum cosmology, a particular scenario that has garnered interest in recent

years is one where the big bang singularity is replaced by a so-called bounce, see for example

Refs. [29–35]. Therein, the expansion of the universe is not preceded by that singularity, but by

the collapse of a previous iteration of that universe. Where the classical singularity would be,

there is now the transition between collapse and expansion, induced by quantum gravitational

effects when the universe is small. Together with for example Refs. [36,37], where it is shown

that eternal black holes might decay into white holes through quantum effects, the attentive

reader can probably guess what scenario presents itself for gravitational collapse.

1.3. Bouncing collapse models

In a variety of toy models for quantum gravitational collapse, based on different approaches

to quantum gravity, a similar picture has emerged: initially, the object collapses as it would

classically, but when it becomes small and dense enough quantum effects start to become relevant

and slow down the collapse. Eventually a turning point is reached, and the object starts expanding

outwards from its minimal size. The collapse does not end in a singularity anymore, instead

the object bounces. As examples, see Refs. [38–51] and for a review Ref. [52]; due to the

close connection between collapse and cosmology one can also charitably add some of the
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aforementioned quantum cosmological bounces to this list, although this application of these

models is not always made explicit.

Despite the variety of different bouncing collapse models, the underlying mechanism for the

bounce can be understood along similar lines: from a quantum mechanical perspective one can

say that the bounce is a superposition of the collapsing and expanding modes, while from a

spacetime perspective it is facilitated by effective negative pressures and energy densities near

the bounce, briefly turning gravity repulsive. Due to the simplicity of all of these models, that

bounce is almost always time-reversal-symmetric, the expansion is just the collapse in reverse.

However, it seems reasonable to assume that, when one moves towards more realistic models,

dissipative processes would introduce an asymmetry.

Let us look at a few examples of these bouncing collapse models. Already in 1979, Frolov and

Vilkovisky found that one-loop-corrections to the Einstein-Hilbert action consisting of a square of

the Weyl tensor, the traceless part of the Riemann tensor, can lead spherically symmetric null

shells to bounce [38]. The shells in fact reach R= 0, but the geometry does not become singular

and they expand out again. Apart from the behavior of the null shells, Frolov and Vilkovisky

also discuss how the exterior geometry is modified. Most importantly, this geometry significantly

differs from the classical case not only near the would-be singularity, but also far away from

it where the curvature is usually fairly small: at the horizon. Frolov and Vilkovisky speculate

that accumulated quantum effects cause the horizon to eventually retract inwards. In fact, they

predict the formation of an inner horizon in addition to the classical outer horizon. After the

bounce both horizons would start to approach each other and eventually meet up and disappear.

Unfortunately, the complexity of the equations prevented the discussion of an exact complete

spacetime for the bounce, and especially post bounce many aspects of it remain speculative.

The issue of horizons is one I will keep returning to throughout this thesis. It is straightforward

to see that the horizon cannot behave like it does classically: it cannot be a trapping horizon

throughout the bounce, otherwise the initially collapsing matter would not be able to fully expand

out again. In addition to the scenario of Frolov and Vilkovisky, a few resolutions to this issue

have been proposed in the literature, along with mechanisms for how quantum gravitational

effects can reach the horizon. We will comment on those in later chapters.

Similar results emerged in a model due to Hájíček and Kiefer, where a collapsing null shell (and

the resulting geometry) was quantized [40–42]. The construction of that quantum theory was

undertaken along geometrodynamical lines, but goes further in reducing the canonical theory

at the classical level: not only spherical symmetry was directly implemented, but also further

symmetries of the full classical solution, in order to make the action as simple as possible without

being trivial. Helpful in this procedure is that a subgroup of those symmetries is singled out,

which is connected to an exterior observer at asymptotic infinity. Hájíček and Kiefer are then
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able to construct a wave packet that vanishes at R = 0. From the expectation value of R with

regard to that wave packet the bounce then emerges.

Unfortunately, since the theory is reduced down to the bare essentials before quantization, this

result cannot tell us much about the exterior geometry. One can infer from the wave packet that

the bounce can take place inside of the Schwarzschild radius, and hence a horizon should form.

Hájíček and Kiefer then speculate that the horizon should be ‘grey’, in a superposition between

the horizons of a black and a white hole.

Ambrus and Hájíček have further investigated the model with regard to another important

aspect of bouncing collapse models [53]. Since the ‘black hole’ is only an intermediary state in

the process, it has a finite lifetime. This lifetime is important: the black hole should exist for long

enough to be consistent with astrophysical observations. However, Ambrus and Hájíček have

found that the black hole’s lifetime is proportional to its mass. Assuming a factor of proportionality

of the order of one, that is of the order of microseconds for a solar mass black hole, and with

that unfortunately much too short. One of the most disconcerting aspects of bouncing collapse

scenarios is that this estimate for the lifetime appears with worrying regularity [37,54,55].
These two big open questions of bouncing collapse, the behavior of the horizon and relatedly

the black hole lifetime, illustrate that it is crucial to understand how the exterior geometry is

affected by quantum gravitational effects to arrive at a fully consistent picture; only focusing on

the bouncing interior itself is not sufficient. Going back to OS collapse, this can be transferred to

the two observers that we discussed previously: not only in the classical, but also in the quantum

case it is important to consider the viewpoints of both a comoving and an exterior stationary

observer. This is what my work in bouncing collapse centers on, informing almost all aspects of

what is presented in upcoming chapters.

This idea is of course not new. It has for example recently been implemented in some of the

literature in a somewhat roundabout way: since it is significantly easier to just quantize the

collapsing matter and the geometry in its immediate vicinity, one can take this bouncing solution,

and investigate how it can be classically extended to a full geometry. This has been done for

a bouncing null shell, see Refs. [56–59], and to convert quantum cosmological bounces into

bouncing collapse models [60–64].
The other option is to directly introduce quantum gravitational effects into a full collapse model

with interior and exterior. Since quantum gravity is not advanced enough to simply directly

quantize such models, one has to resort to effective methods. This was done recently in Ref. [49],
where an improved dynamics scheme, in which loop quantum gravity inspired corrections to the

Hamiltonian lead to quantum corrections, is applied to the LTB model. The resulting equations

of motion can be solved exactly when restricted to the OS model, and lead to a bounce. A

trapped region complete with horizon forms, but intriguingly after the bounce this region only
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turns antitrapped in the interior of the dust cloud, but remains trapped outside of it. The causal

structure of this model was investigated in more detail in Ref. [65].
Further, the black hole lifetime was found to be proportional to the mass of the dust cloud

squared; long enough to pass the basic consistency check, but short enough for a bounce of

a small black hole formed during the early universe, a so-called primordial black hole, to be

observable today [66]. The same estimation for the lifetime was also suggested on dimensional

grounds in Ref. [56]. The price one has to pay for these nice features is that the spacetime is

only approximately covariant: spacetime scalars depend on the lapse and shift through terms

that vanish in the classical limit. Taking this model seriously would hence mean treating general

covariance as an emergent notion, rather than a fundamental one.

Of course bounces are not the only possible scenario for singularity avoidance. Other sugges-

tions are for example that the spacetime signature could change as the spacetime approaches

the singularity, see Ref. [67], or that instead of fully collapsing the matter configuration can

stabilize at some minimal size, either at the horizon or somewhere within it, see for example

Refs. [68–71]. The latter is not necessarily incompatible with a bounce; it could be that the

bounce is followed by another recollapse, leading to a cycle of collapses and bounces that stabilize

into a new equilibrium configuration through dissipative effects [47,48]. Further, there are also

other discussions of gravitational collapse in quantum gravity with a focus not on singularity

avoidance, but rather on the mass spectrum and entropy of the resulting black hole [72–74].
Related are also other quantum modifications of black holes, not necessarily connected to

the collapse process. From various regularized black holes [75–77] to horizonless compact

object such as gravastars [78] and fuzzballs [79], the proposals range from comparatively benign

corrections to GR to rather drastic diversions from what one would usually call a black hole. On a

similar note, and more relevant to our current considerations, there is also the notion of a Planck

star [80,81], essentially a slowly bouncing matter configuration that evaporates away some of its

mass via Hawking radiation before expanding out of its horizon.

In the following, I will not directly consider Hawking radiation. Whether this omission is

justified remains to be seen: if the black hole lifetime is significantly smaller than its evaporation

time, proportional to its initial mass cubed, then it seems reasonable to assume that Hawking

radiation will only be a small dissipative effect. If the lifetime is long enough, then it is clear

that Hawking radiation could potentially alter the scenario quite significantly. For a discussion of

backreaction of quantum fields in a bouncing collapse model, see for example [57].
As done in much of the existing literature in bouncing collapse, I operate under the assumption

that the two processes can be considered separately, but I am convinced that there is much to be

learned from the interplay between bouncing collapse and Hawking evaporation. On the one

hand, it would seem like a bounce would in principle be capable of resolving the information loss
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paradox: if what is inside the black hole escapes it again, the information previously thought lost

could be regained. This is in fact one of the main motivations to consider a scenario like Planck

stars. On the other hand, as mentioned above, Hawking radiation might be capable of changing

the course of the collapse. It might for example introduce a new equilibrium configuration for

the collapsing matter that does not feature in the models I will present here. I will leave this for

future investigations.

1.4. Structure of this thesis

This thesis is organized as follows. It is cumulative; in Chs. 2, 3, 4, and 5 I briefly introduce a

published article that I am the or an author of [82–85], as well as explaining my contribution to

the article. I conclude in Ch. 6. The Appendices A and B consist of two further articles [86,87],
to which my contribution is either smaller than to the articles in the main text, or for which

it is harder to separate my contribution from those of my co-authors due to particularly close

collaboration. Further, the results of these articles are somewhat less consequential. I still include

them here for completeness.

Ch. 2 deals with a quantization of the marginally bound LTB model. The article, Ref. [82],
co-authored by Claus Kiefer and me, is based on my master thesis, written under the supervision

of Prof. Dr. Claus Kiefer at the University of Cologne. The material was slightly reworked and

written up as the article as part of my doctoral studies. In it, we make quantizing the LTB model

as simple as possible. First, we note that the dynamics of the individual dust shells in the model

are effectively decoupled, as explained above, to argue that it is sufficient to only consider a single

shell. Thus, we do not have to contend with the field theoretic nature of the LTB model.

Further, we explicitly take the point of view of the comoving observer, formulating the problem

in terms of the dust proper time τ. This allows us to work with a physical Hamiltonian instead of

a constraint, generating the dynamics of a single shell in the marginally bound LTB model with

regard to τ. Quantization can then proceed in complete analogy to ordinary quantum mechanics;

the Hamilton function becomes a self-adjoint operator on a Hilbert space, which generates the

time evolution of states in the Hilbert space via a Schrödinger equation. Finding the domain of

this self-adjoint operator is the main addition to the article not present in my master thesis, which

puts the quantum model on a mathematically more rigorous footing. During this construction of

the model we keep the quantization ambiguities fairly open, we consider a large class of factor

orderings and all possible self-adjoint extensions of the Hamiltonian.

Investigations of the quantum model are then twofold. First, we discuss the asymptotic behavior

of unitarily evolving wave packets close to where the classical singularity is in configuration space.

We find that all of these wave packets, or rather the probability distributions for the radius of
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the shell based on them, vanish at the classical singularity. This we interpret as the quantum OS

model avoiding the singularity. Further, this avoidance takes place regardless of the self-adjoint

extension of the Hamiltonian, as long as the parameters controlling the factor ordering are chosen

outside of a small range, and for one specific self adjoint extension it even takes place for all

factor orderings; the singularity avoidance thus seems to be fairly generic.

Second, we construct a specific wave packet analytically. For this wave packet it is even possible

to calculate various expectation values exactly; we then find from the expectation value of the

radius of the shell that it avoids the singularity by bouncing. Based on this bouncing trajectory

we finally discuss various aspects of a possible quantum corrected, bouncing LTB model: we

compute the effective matter content that facilitates the bounce, which turns out to be an ideal

fluid with the pressure turning negative close to the bounce. Also, we discuss possible behaviors

of this horizon and determine based on the expectation value of the dust shell’s velocity how fast

it turns from trapping to antitrapping.

Further, we discuss the black hole lifetime. Since the model was explicitly constructed with

regard to dust proper time, this is not entirely straightforward: the relevant notion of time for

the lifetime is Schwarzschild Killing time, and the Painlevé-Gullstrand coordinate transformation

mediating between those two times cannot be defined in the framework of our quantum model.

We instead find the lifetime, via an ad hoc construction inspired by what was done in Refs. [54,55],
to be proportional to the mass of the dust cloud cubed. Unfortunately, this result does not hold

up under a more careful investigation of the lifetime in a different framework in Ch. 5.

Chs. 3 and 4 are two halves of a bigger undertaking: the construction of a quantum OS model.

The idea behind this model is to still take the point of view of particular observers, as in Ch. 2,

but to not restrict oneself to just the comoving observer; the exterior stationary observer will

be explicitly included as well. One then has a quantum OS model comprised of two individual

quantum models, one for each of the two observers. In this way, the structure of standard quantum

mechanics can still be employed to full effect, while hopefully covering some of the blind spots of

the approach in Ch. 2, most notably with regard to the lifetime and horizon behavior.

In the article in Ch. 3, Ref. [83], I construct a consistent phase space formulation of the classical

flat OS model, Friedmann interior and Schwarzschild exterior, in preparation for quantization.

To this end, I start from the canonical form of the Einstein-Hilbert action restricted to spherically

symmetric spacetimes, as used for example in Kuchař’s canonical quantization of the Schwarzschild

black hole [88], and add to it as matter content dust in a formulation due to Brown and Kuchař [89].
In this formulation, dust proper time τ directly appears as a canonical coordinate, and hence it is

suited particularly well to my purposes. I then proceed to reduce the phase space separately for

interior and exterior in accordance with the OS model: in the interior I impose that the geometry

be homogeneous and flat, and in the exterior I let the mass density of the dust vanish.

T. Schmitz 22



1. Introduction

In the interior this leads to a Hamiltonian constraint of the form Pτ +Hτ(RS, PS), where RS is

the radius of the dust cloud, PS is its canonically conjugate momentum, and Pτ is the momentum

to τ. I can thus identify Hτ as a physical Hamiltonian, generating evolution with regard to dust

proper time; this identification is called deparametrizing the constraint. Further, Hτ is identical to

the Hamiltonian for single shells in the marginally bound LTB model discussed in Ch. 2.

In the exterior, there is more work to be done. Kuchař has shown in Ref. [88] that one can

bring the canonical formulation of a Schwarzschild black hole into a fully deparametrizable form

via a series of canonical transformations; that means that one can find phase space functions

which are canonically dual to the system of constraints. The dynamics of the system then simply

imply that these phase space functions are superfluous and ultimately non-physical degrees of

freedom. In the case of Schwarzschild, the only degree of freedom left over is then the mass of

the black hole, which is of course constant. The quantized Schwarzschild black hole behaves

accordingly: the quantum constraints imply that states do not depend on the superfluous degrees

of freedom, but only on the mass.

The same procedure applies to the exterior in the OS model, only that not the mass of the black

hole remains, but instead the degrees of freedom describing the interior. However, since in the

case of the OS model one has the surface of the collapsing body as a boundary, which is not present

in the case of an eternal Schwarzschild black hole, one has to make sure that this boundary does

not spoil the canonical transformations. Taking this seemingly small technicality seriously proves

to be worthwhile: it turns out that from the condition that the boundary term resulting from these

transformations should vanish, one can find the Painlevé-Gullstrand coordinate transformation in

disguise, connecting the exterior geometry to the interior dynamics.

This transformation is then also used to finally replace the dust proper time by Schwarzschild

Killing time, by promoting it to a canonical transformation of the interior degrees of freedom.

This leads to a second form of the Hamiltonian constraint, explicitly containing the momentum

conjugate to Schwarzschild Killing time. However, since this constraint splits up into two branches,

one describing the outside of the horizon and one the inside, it is not quite in a deparametrizable

form. Further, the functional form of these branches is also much more complicated than what

one has to deal with in Hτ, containing square roots and hyperbolic functions. These issues will

be resolved in Ch. 4.

Finally I discuss quantization of the model in its two incarnations. As mentioned above, for the

comoving observer the Hamiltonian matches the one discussed in Ch. 2, so the investigation done

there carries over to the OS model. Although the exterior stationary observer is unfortunately less

cooperative, I still present a tentative quantization of the corresponding constraint by bringing

both branches into Klein-Gordon form and introducing a further ad hoc canonical transformation.

The result of this investigation is that a bounce is in principle possible, but the haphazard nature
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of this quantization makes it hard to learn much more from it. What few other aspects of the

bounce I speculate about unfortunately turn out to be misleading when compared to the more

careful quantization undertaken in Ch. 4.

In Ch. 4, containing Ref. [84] co-authored by Włodzimierz Piechocki and me, the quantization

of the OS model with regard to the two different viewpoints is discussed in much greater detail.

Due to the unusual form of the constraint for the exterior observer, we do not use Dirac’s

prescription for quantization as in the earlier chapters, but rather a method called affine coherent

states quantization (ACSQ) [90–92]. In this method, one identifies the phase space of the theory

one wants to quantize with the affine group; this is applicable to the OS model because the

radius of the dust cloud is always positive. It is then possible to construct coherent states on a

Hilbert space from elements of the affine group [93]. As is well known, a family of coherent

states admits a resolution of the identity; one can construct the identity on the Hilbert space by

integrating over projectors on the coherent states. To quantize a phase space function according

to ACSQ, one simply inserts that function into the resolution of the identity. In this way, it is at

least formally possible to quantize more complicated functions.

Another advantage of ACSQ is that it lends itself well to investigations of quantum corrections

to the system in question. Useful for this are lower symbols of phase space functions, which are the

expectation values of the corresponding operators with regard to coherent states. These can be

interpreted as semiclassical or quantum corrected versions of the original phase space functions.

Indeed, we show in Ch. 4 that the lower symbol to a Hamiltonian approximately generates the

dynamics of coherent states via the associated Hamilton equations, which can then be interpreted

as dynamics of the system in a quantum corrected phase space.

This we apply to the phase space formulation of the OS model from Ch. 3, first for the

Hamiltonian for the comoving observer. Remarkably, quantizing it via ACSQ yields an operator

identical to what one would find via Dirac quantization, which was already discussed in Chs.

2 and 3. This is usually not the case for operators found in ACSQ, and this is not even where

this analogy ends: computing the lower symbol of this Hamiltonian we find that it generates

exactly the same bouncing trajectory that emerged from the expectation value of the wave packet

from Ch. 2. Much of the previous analysis can then be applied to the comoving observer in our

quantum OS model, as already noted in Ch. 3.

Thanks to the advantages of ACSQ, it is also possible to discuss the exterior stationary observer

more carefully. First, we explain that one can turn the almost deparametrizable constraint into a

proper deparametrizable one by admitting a multivalued physical Hamiltonian with two branches,

one for the inside and one for the outside of the horizon. Multivalued Hamiltonians have been

discussed in the literature before, see for example Refs. [94–97], but this turns out to not be

relevant for our purposes: the operators to both branches of the Hamiltonian are well-defined,
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but still quite complicated integral operators, hence we restrict our discussion to the quantum

corrected dynamics of the lower symbol of the Hamiltonian, where we can treat the two branches

as largely independent of one another.

The result of these investigations is that from the viewpoint of the exterior observer the dust

cloud can still bounce, but with some unfortunate restrictions. First, this bounce does not occur

for every choice of the quantization ambiguities, and how one has to make that choice depends

on the mass of the dust cloud; there is no choice for these ambiguities for which every cloud will

bounce. Clouds which do not bounce instead behave very similarly to the classical case, they

approach the horizon asymptotically. Further, the minimal radius of the bounce is much higher

than for the comoving observer: it has to be outside of not only the horizon but also the photon

sphere at R = 3M . In the Schwarzschild case, the photon sphere is the outer boundary of the

region in which photons can be caught by the gravitational attraction of the central object. Its

photon sphere, or its analogue in non-spherically symmetric spacetimes, is closely related to a

black hole’s shadow [98]. The fact that no photon sphere can form for our quantum OS model

from the point of view of the exterior observer thus means that at no stage of the bounce the

dust cloud looks like a black hole.

In hindsight it is not hard to see why this happens: in the construction in Ch. 3 we have

apparently ingrained the classical Schwarzschild exterior too deeply into the model, through

the use of the Painlevé-Gullstrand coordinate transformation and the classical reduction of the

exterior variables. Thus, the model is forced to take the only path it can to unify a bounce and a

Schwarzschild exterior, and bounces far away from the horizon. Our efforts to investigate how

the exterior is affected by quantum gravitational effects to accommodate a bounce, via the detour

over the exterior stationary observer, has thus unfortunately not borne fruit.

Lastly in Ch. 4, we also discuss how the two quantum theories for the two observers can be

related at the quantum level. We present an approach in which a switch between those observers

can be done by modifying the canonical commutation relations. The quantum theories can then

be mapped onto each other purely at the level of their operator algebras; this map can not be

represented as acting on the Hilbert spaces. Useful for this switch at a technical level is the fact

that the identification between affine group and phase space in ACSQ is not unique. This will be

the topic of Appendix B.

In Ch. 5, containing Ref. [85], I finally directly investigate corrections to the Schwarzschild

exterior by determining what kind of exterior geometries can be matched classically to a bouncing

Friedmann interior. This can be done via a construction similar to the LTB model: I make an

ansatz that contains both the Friedmann interior and also possible exteriors, and then determine

from this the boundary conditions for the exterior metric at the surface of the dust cloud. The

result is a class of geometries with one free function and a particular boundary condition for this
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function depending on the trajectory of the cloud. This trajectory is kept open to begin with, not

fixing a particular form of the bounce.

Since there is then a huge amount of freedom in choosing this free function and with that

the exterior, I discuss two particular examples. First, there is a unique static exterior for every

trajectory of the interior. I demonstrate that the bounce has to happen in an untrapped region,

meaning that should one want a horizon to form in the exterior, there needs to be at least a

second one to match it. I further show that this horizon cannot be crossed in finite Killing time.

To be able to then still accommodate the bounce, the causal structure of the static exterior is

necessarily somewhat complicated: the dust cloud needs to be able to expand towards a different

asymptotic infinity than it started its collapse from. When one inserts the bouncing trajectory in

comoving time that appeared in Chs. 2. 3 and 4, the causal structure that emerges is similar to

that of a Reissner-Nordström black hole.

In order to evade these more involved causal structures one thus needs to consider dynamic

exteriors. A particularly simple example that I investigate in Ch. 5 is a generalization of the

Schwarzschild spacetime in Painlevé-Gullstrand form, where one allows the mass to vary with

dust proper time. This time-dependent mass is fully determined by the bouncing trajectory of

the dust cloud. The resulting exterior has a single dynamic horizon, trapping to start with. The

horizon contracts when the dust cloud approaches its minimal size, disappears at the moment

of the bounce, and emerges again afterwards as antitrapping. I discuss some aspects of this

procedure, in particular the timescales involved. With one of these I quantify how long it takes

the horizon to transition from trapping to antitrapping. This timescale turns out to have an upper

bound proportional to the mass of the dust cloud, and is thus comparatively short.

The other timescale is the familiar black hole lifetime. Due to the non-stationarity of the exterior,

we cannot use Killing time as a shorthand for a far-away observer. It is thus not straightforward

to find a good definition for this lifetime. I construct it by letting null geodesics be absorbed by

the horizon, and tracing them back to spatial infinity. Unfortunately, a familiar result emerges:

the black hole lifetime is proportional to the dust cloud’s total mass, similar to the transition

timescale. I argue that this result also applies to other dynamic exteriors, all with the same

classical limit as the one considered by me.

In Appendix A, containing Ref. [86] co-authored by Nick Kwidzinski, Jan J. Ostrowski, Włodz-

imierz Piechocki, Daniele Malafarina, and me, we construct Hamiltonians for gravitational

collapse with a different procedure than in Ch. 3, both for the OS model and for single shells

in the LTB model. We follow thereby Ref. [99], in which this is done for an isolated shell. The

procedure is as follows: we fix the time coordinate in the interior to be dust proper time, and

in the exterior Schwarzschild Killing time, and reduce the Einstein-Hilbert action accordingly.

During this, the dynamical quantities are the radius of the dust cloud, and the Schwarzschild
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mass. Further, the hyperbolic angle between the surfaces of constant dust proper time and those

of constant Schwarzschild Killing time turns out to be very useful. The resulting Hamiltonian is

then the total mass of the dust cloud. Unfortunately it is of a significantly more complicated form

than what I derived in Ch. 3, and thus does not seem suitable for quantization.

The largest difference between the approaches in Appendix A and Ch. 3 lies in the treatment of

time. While in Ch. 3 the two notions of time where identified from the phase space coordinates

fairly late in the procedure, the time coordinate in Appendix A was fixed with the foliation of the

spacetime right at the beginning, similarly to Ch. 2.

Finally, in the article in Appendix B, co-authored by Andrzej Góźdź, Włodzimierz Piechocki,

and me, a fairly technical aspect of ACSQ is discussed. I mentioned above that ACSQ is based

on an identification of the affine group with the phase space of the to-be-quantized theory. This

identification is by no means unique; one can choose to parametrize the affine group differently

with the phase space coordinates. We show that different such parametrizations lead to unitarily

inequivalent quantum theories.
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2. Singularity avoidance for collapsing

quantum dust in the

Lemaître-Tolman-Bondi model

C. Kiefer and T. Schmitz, Phys. Rev. D 99, 126010 (2019)

This article is concerned with a quantization of the marginally bound LTB model. The individual

dust shells in the model are split up, quantized individually, and then reassembled into a complete,

quantum corrected dust cloud. The problem is further explicitly formulated with regard to dust

proper time, corresponding to the point of view of a comoving observer. Particular care is taken to

leave open as many quantization ambiguities as possible, to be able to investigate the robustness

of the resulting quantum model and its behavior.

It is shown that the model quite generically avoids the classical singularity, as long as the

factor ordering is not of a particular class: unitarily evolving wave packets fall off towards the

singularity in such a way that the shell can never actually reach it. By investigating a particular

wave packet one can see that this singularity avoidance is facilitated by a bounce. Based on the

dynamics of this wave packet, a quantum corrected, bouncing LTB model can be constructed,

based on which the behavior of the horizon, the black hole lifetime, and the effective pressures

that cause the bounce from a spacetime perspective can be discussed.

Please note that the article is based on my master thesis titled “Singularity Avoidance of

the Quantum LTB Model for Gravitational Collapse” supervised by Prof. Dr. Claus Kiefer at the

University of Cologne. Accordingly, most of its content can already be found in that thesis, with

the exception of the construction of self-adjoint extensions for the Hamiltonian in Sec. IIIB and

Appendices A and B; I have reworked them to put the model on a mathematically more rigorous

footing. As a consequence, also the results concerning singularity avoidance in Sec. IIIC are

slightly changed, but the general sentiment remains the same. The wave packet discussed for the

rest of the paper did not need modification.

Over the course of working on my master thesis, the model discussed in the article has been

developed by me under the guidance of Claus Kiefer. I wrote the first draft of the article, including

the creation of all figures, which Claus Kiefer and I revised into its final form in collaboration.
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3. Towards a quantum

Oppenheimer-Snyder model

T. Schmitz, Phys. Rev. D 101, 026016 (2020)

In this article, a consistent phase space formulation of the classical OS model is presented, in

preparation of the construction of a quantum OS model in Ch. 4. This phase space formulation

contains the degrees of freedom of the homogeneous dust cloud, and initially field theoretic

degrees of freedom describing the spherically symmetric exterior as well. It is however possible

to reduce the latter out of the model via an elaborate series of canonical transformations.

Particular care is taken to make sure that the surface of the dust cloud as a boundary to the

exterior does not spoil those canonical transformations. From the condition that the resulting

boundary terms should vanish, one finds the Painlevé-Gullstrand coordinate transformation in

disguise. The same coordinate transformation, promoted to a canonical transformation on phase

space, is also used to switch between Schwarzschild Killing time and dust proper time in the

interior degrees of freedom. This results in two versions of this formulation of the OS model,

one from the point of view of the comoving observer and one from the point of view of the

exterior stationary observer. Quantization of these two versions is tentatively discussed, although

a detailed construction of the full quantum OS model is left for Ch. 4.

The article is single-authored; I have developed both its conceptual and technical aspects and

all writing is my own, including the creation of all figures.
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4. Quantum Oppenheimer-Snyder model

W. Piechocki and T. Schmitz, Phys. Rev. D 102, 046004 (2020)

In this article we present a quantum OS model, based on the classical formulation developed in Ch.

3. This model contains two separate quantum models, one using dust proper time as the notion

of time, and thus taking the viewpoint of the comoving observer, and one using Schwarzschild

Killing time for the exterior stationary observer. The quantization is undertaken using the integral

quantization method ACSQ, necessary due to the complicated form of the Hamiltonian for the

exterior observer. The focus is on quantum corrected phase space dynamics.

For the comoving observer, the quantum theory according to ACSQ resembles very closely that

achieved by Dirac’s usual prescription for quantization, which was discussed in Chs. 2 and 3.

Thus many of the results of those earlier chapters carry over, in particular the familiar bouncing

trajectory reappears.

For the exterior observer, the quantum corrected dynamics can also exhibit a bounce, but

unfortunately this bounce is less robust under quantization ambiguities than for the comoving

observer, and the minimal radius of the dust cloud is always outside of the photon sphere: nothing

resembling a black hole forms during the bounce. The limitations of the model possibly leading

to this result are discussed, along with potential avenues to reintroduce black holes.

Finally, a switch between the two quantum theories, and with that between the two observers,

by way of modifying the commutation relations is discussed. This switch can be understood as a

map between the operator algebras of the two theories, but it cannot be represented as a map

between the Hilbert spaces. Integral to how this switch is implemented is a particular feature of

ACSQ, discussed in more detail in Appendix B.

The article was co-authored by Włodzimierz Piechocki and me. Włodzimierz Piechocki intro-

duced me to ACSQ and proposed to apply it to the Hamiltonian describing the LTB model in Ch.

2. I expanded the scope of the project and applied the method to my canonical formulation of the

OS model discussed in Ch. 3, which includes the aforementioned Hamiltonian. All calculations

were done by me, as well as writing the first draft and creating all figures. I then revised this first

draft into the final article with the help of Włodzimierz Piechocki.
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4. Quantum Oppenheimer-Snyder model

Unfortunately I have to add a small erratum at this point: Fig. 2c in the article below was

accidentally replaced by a duplicate of Fig. 2b. In place of what is shown in the article as Fig. 2c,

the following figure should appear.

(c) M = 0.4 and β = 5.
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5. Exteriors to bouncing collapse

models

T. Schmitz, Phys. Rev. D 103, 064074 (2021)

In this article, possible exterior geometries of bouncing collapse models are discussed by way

of classical matching conditions to a bouncing Friedmann interior. A broad class of exteriors is

presented, constructed in a procedure inspired by the classical LTB model. Since this class is quite

large, two particular special cases are discussed, both for a general bouncing trajectory and for

the specific one from Chs. 2, 3 and 4.

For every bouncing trajectory there is a unique static exterior. Those exteriors necessarily

have a somewhat involved causal structure; the bounce takes place in an untrapped region, so

if an outer horizon exists, there needs to be a complementary inner horizon. Further, the dust

cloud needs to re-expand toward a different asymptotic infinity than it started its collapse from.

For the specific bouncing trajectory from earlier chapters, a causal structure similar to that of a

Reissner-Nordström black hole emerges.

To have a bounce with a more simple causal structure, one necessarily needs to consider dynamic

exteriors. A particularly simple example of such an exterior is considered, a generalization of a

Schwarzschild exterior where the mass is allowed to vary with dust proper time. There is then

just a single horizon, but its position varies with time: it starts out as trapping, retracts and

disappears during the bounce, and reemerges as antitrapping afterwards. Two timescales are

discussed, one for the transition of the horizon from trapping to antitrapping, and the black hole

lifetime. Both have an upper bound proportional to the total mass of the dust cloud. The latter

of these results seems to be fairly general, it should also apply to other dynamic exteriors.

The article is single-authored; I have developed both its conceptual and technical aspects and

all writing is my own, including the creation of all figures.

35



6. Conclusions

In this thesis we have seen that quantum gravitational effects can lead to an avoidance of the

classical singularity in gravitational collapse via a bounce: the collapse is halted at a minimal

radius before the singularity forms, and is followed by a re-expansion. We have investigated

this scenario via the construction of a few toy models. As already discussed in the introduction,

this bounce emerges in different models for gravitational collapse across various approaches to

quantum gravity, and in addition in Ch. 2 we have shown that it is robust with respect to the

quantization ambiguities in the model discussed there.

Unfortunately, a fully consistent model for bouncing collapse has turned out to be outside of

the grasp of our investigations. In the quantum OS model in Ch. 4, from the point of view of

the exterior stationary observer the bounce takes place outside of the photon sphere; no horizon

ever forms, and the bouncing object never resembles a black hole. When we directly constructed

exterior geometries to a bouncing interior through a classical matching procedure in Ch. 5, it

emerged that one can either have stationary ones with involved causal structures, or dynamic

exteriors for which the black hole lifetime is too short.

It might be the case that it is futile to search for a consistent semiclassical bounce, described

in terms of a spacetime, and one would be better advised to focus on its quantum nature.

The investigations in the spin foam formalism in [1,2] show that considering purely quantum

gravitational properties with no direct analogue in a spacetime picture can lead to a longer

black hole lifetime. In Ch. 2 a similar if more makeshift construction based on discrete states

for the bounce was shown to yield a lifetime proportional to M3, where M is the total mass of

the collapsing matter, a result that we also could not confirm in a quantum-corrected spacetime

picture. Further examples are the idea of a grey horizon in Ref. [3] and Ch. 2, and the appealing

bounce model from Refs. [4,5], for which the authors had to forego exact covariance.

Additional support for this assertion comes from Chs. 2 and 4, where we have found that the

minimal radius of the collapsing matter during the bounce is far in the sub-Planckian regime,

scaling with M−1/3. This could be taken as an indication that the region around the bounce is

truly quantum gravitational, and a spacetime description of it is insufficient. The black hole as an

intermediate state during the bounce would then have a small quantum core at its center. The

properties of this core cannot be expected to be largely agnostic with regard to different quantum
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6. Conclusions

gravity approaches.

However, all that we have observed of black holes so far points toward them being described

reasonably well in terms of a spacetime geometry. Those properties of bouncing collapse that

truly cannot be expressed in these terms should hence have observable effects small enough to

be out of reach today, or be hidden behind horizons in what one might call quantum censorship.

Going beyond the spacetime picture necessarily has to be succeeded by an investigation of these

observational aspects in a second step. It might thus be worthwhile to also interrogate other

assumptions and simplifications we have made use of to build our models.

For example, in Ch. 5 we have assumed an exact matching between bouncing Friedmann

interior and the exterior geometry, meaning the surface of the bouncing dust cloud as the

matching surface does not carry any additional energy. Non-exact matching plays a role in the

model from Refs. [4,5], and was discussed in general terms in Ref. [6].
Further, the inverse scaling of the minimal radius of the bounce with the mass of the dust cloud

in Chs. 2 and 4 suggests that an initially homogeneous bouncing dust cloud might necessarily turn

inhomogeneous close to the bounce: generalizing the relationship between mass and minimal

radius to other shells in the dust cloud than the outermost one, one finds that shells closer to the

center, with less mass contained inside them, should have a larger minimal radius than shells

closer to the surface. The cloud would then turn inside out, a process that certainly cannot

emerge from investigations restricted to homogeneity.

Another simplifying assumption was to only consider marginally bound dust clouds, corre-

sponding to flat interiors in the OS model. More relevant for astrophysical considerations would

be dust clouds starting their collapse at rest from a finite radius, corresponding to closed OS

models. Close to the singularity there is not much of a difference in the behavior of the dust

cloud in those two cases. However, during the re-expansion, the different initial conditions could

become relevant again, as explained for example in Refs. [7,8]: where the flat cloud expands

outwards indefinitely, the closed one would re-collapse from the radius it started its initial collapse

from, leading to oscillations between collapse and expansion. With some additional dissipative

mechanisms, these oscillations could stabilize into a new equilibrium configuration. We have

already mentioned that the closed case is technically more demanding to treat, especially when

considering the exterior stationary observer, but constructing a concrete closed bouncing model

to investigate these assertions would certainly be worth the trouble.

In this scenario consisting of multiple bounces, a short lifetime of every individual bounce

would even be an advantage, since it shortens the time it takes for the stable compact object

to form. It has also been argued elsewhere that a short lifetime makes bouncing collapse more

robust with regard to instabilities of the antitrapping horizon, namely Eardley’s instability due to

classical accretion [9], and instabilities due to backreaction from quantum fields [10]. In the latter
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reference, a different scenario was proposed as an alternative to oscillations between collapse and

expansion: a time-asymmetry was introduced into the model, such that the white hole horizon

can exist for short enough to not be unstable, but the black hole horizon has a long lifetime to be

consistent with observations. Taking into account the possibility of a similar time-asymmetry in

the exterior geometries from Ch. 5 would be interesting for future investigations.

These possible instabilities highlight that one should not be content to consider collapse models

in isolation, both in the sense that astrophysical black holes do not exist in a vacuum, and also by

allowing other (matter) fields in the models to begin with. Regarding the latter, it has already

been shown in Ref. [11] that backreaction from Hawking radiation can halt the classical collapse

close to the horizon. One could follow the same procedure to introduce Hawking evaporation

into a bouncing collapse model, for example with an exterior in accordance with Ch. 5.

Allowing interactions with an environment also opens up the possibility to discuss decoherence.

Decoherence has been applied before to quantum cosmology and also black holes, see for example

Refs. [12–14] and for an overview Ref. [15]. In particular, it has been shown in Ref. [13] that

for quantized two-dimensional dilatonic black holes, interaction with a scalar field leads on the

one hand to Hawking radiation, and on the other hand to a re-emergence of classical black holes

through decoherence. Thus the question presents itself whether bounces would be suppressed via

this mechanism, and whether a new avenue for singularity avoidance would appear. Concretely,

an investigation of this could for example involve coupling a bouncing model to an environment

of one’s choice, and finding the pointer basis for the bouncing model via a so-called predictability

sieve [16]; the pointer basis, the basis selected by the environment through decoherence, is then

the one that best preserves its purity throughout these environmental interactions.

Relatedly, a further interesting question concerns the behavior of entropy during the bounce.

Through their Bekenstein-Hawking entropy, black holes are considered highly entropic systems,

hence letting one disappear via a bounce or otherwise is no small feat. A similar issue is much

discussed in the context of Hawking evaporation. There, small remnants as the endstate of

evaporation are usually considered unphysical, since such remnants would need to carry a large

amount of entanglement entropy. However, much of this discussion of black hole entropy is based

on stationary, eternal black holes and their event horizons. Black holes from bouncing collapse

only have apparent horizons, with finite lifetime and possibly non-stationary according to Ch. 5,

so it should be carefully considered which arguments carry over, and which do not.

A complete discussion of this would also require including more realistic matter models.

Astrophysical collapse and black holes as they exist in the universe are much more complicated

systems than we have considered with our simple models, hence one could make the models

almost arbitrarily more involved. A further obvious avenue for such an improvement would be

to add rotation. This is a technically quite demanding ask, one only needs to compare the line
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elements for a Schwarzschild and a Kerr black hole to appreciate the difference in complexity,

but this step will eventually need to be taken if one wants to connect the bouncing models to

potential observations.

Possible observable effects of bouncing collapse have been discussed before [17–21], largely

qualitatively due to the simple nature of the bouncing collapse models available. Particularly

the relationship between lifetime and mass of the black hole is important, as it determines

the mass of black holes that can be observed to bounce today. In light of the astrophysical

observations connected to black holes in recent years, namely the detection of gravitational waves

and the imaging of a black hole’s shadow, naturally the question emerges whether one could find

signatures of quantum gravitational corrections there. So far, all observations agree very well

with the classical predictions of GR, but there are indications that with increased precision of the

measurements some quantum gravity predictions could be tested [22–25]. Previous investigations

in this direction wisely consider fairly arbitrary departures from classical GR, but it would be

interesting to see how in particular the shadow for a dynamical exterior with a non-stationary

horizon in the vein of Ch. 5 would be modified around the bounce.

In summary one can say that plenty of work remains to be done. As we have seen, there are

quite a few avenues one can follow to improve on the existing bouncing collapse models, and

hopefully find a consistent such scenario. While the investigations presented in this thesis were

not entirely successful in this regard, I believe that they will still be useful in future endeavors.

For example, how the LTB model was quantized in Ch. 2 by splitting it up into individual shells,

to be reassembled afterwards, can be adapted to other approaches to quantum gravity. The

construction in Chs. 3 and 4 can be generalized to closed quantum OS models to investigate

possible oscillations between collapse and expansion. The same can be done for the exteriors in

Ch. 5. Further, the method of finding possible exteriors in Ch. 5 via an LTB-like geometry is quite

general and much more convenient than directly considering the matching conditions.

Bouncing collapse might so far resist our efforts to fully explain how it might emerge from a

full theory of quantum gravity in a way that is consistent, both with present observations and our

rich conceptual understanding of black holes, but it is still a promising scenario for singularity

avoidance in quantum gravitational collapse; it only relies on basic features of quantum theories

and GR, and accordingly indications in its favor are found across many different approaches to

quantum gravity. Aside from presenting exciting possible observational windows into quantum

gravity, by necessitating quantum modifications of the geometry as far away from the singularity

as the near-horizon region, it is also a fascinating subject of study on purely conceptual grounds,

forcing us to re-evaluate many aspects of black holes usually taken for granted.
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A. Hamiltonian formulation of dust

cloud collapse

N. Kwidzinski, D. Malafarina, J. J. Ostrowski, W. Piechocki,

and T. Schmitz, Phys. Rev. D 101, 104017 (2020)

Hamiltonians for both the OS model and single shells in the LTB model are derived in an approach

where the foliation of the spacetime is fixed, in contrast to what was done in Ch. 3. In the interior,

surfaces of constant dust proper time are considered, and in the exterior surfaces of constant

Schwarzschild Killing time. The hyperbolic angle between these surfaces turns out to be a useful

quantity, which makes the derivation of the Hamiltonian much more tractable. The value of this

Hamiltonian turns out to match the total mass of the dust cloud, but is unfortunately of a much

more involved form than what was found in Ch. 3.

The article was co-authored by Nick Kwidzinski, Jan J. Ostrowski, Włodzimierz Piechocki,

Daniele Malafarina, and me. The project originally started with Nick Kwidzinski, Włodzimierz

Piechocki and Daniele Malafarina. I then joined after some time and worked closely with Nick

Kwidzinski to construct a canonical theory for the OS model, see Sec. III A and B, and Sec. IV.

This process was guided by Włodzimierz Piechocki and Daniele Malafarina. Jan J. Ostrowski

then applied our methods to the LTB model. Writing and revisions were done by everyone

collaboratively. Nick Kwidzinski and I wrote the first draft of the sections mentioned above.
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B. Dependence of the affine coherent

states quantization on the

parametrization of the affine group

A. Góźdź, W. Piechocki, and T. Schmitz,

Eur. Phys. J. Plus 136, 18 (2021)

During the construction of a quantum theory via ACSQ one has to identify the phase space of

the corresponding classical theory with the affine group: the affine group is parametrized with

the phase space coordinates. It is shown that different such parametrizations lead to unitarily

inequivalent quantum theories.

The article was co-authored by Andrzej Góźdź, Włodzimierz Piechocki, and me. The project

was based on my observation that different parametrizations of the affine group in ACSQ lead to

different quantization maps. Włodzimierz Piechocki and Andrzej Góźdź then worked out a proof

for the unitary inequivalence of the resulting quantum theories. In collaboration we revised their

manuscript. I further investigated how one can choose a suitable quantization by considering

commutation relations in different quantum theories, which can be found in Appendix B in the

final article.
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