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ABSTRACT 
Data provenance, a record that describes the origins and processing 
of data, offers new promises in the increasingly important role of 
artificial intelligence (AI)-based systems in guiding human 
decision making. To avoid disastrous outcomes that can result from 
bias-laden AI systems, responsible AI builds on four important 
characteristics: fairness, accountability, transparency, and 
explainability. To stimulate further research on data provenance 
that enables responsible AI, this study outlines existing biases and 
discusses possible implementations of data provenance to mitigate 
them. We first review biases stemming from the data’s origins and 
pre-processing. We then discuss the current state of practice, the 
challenges it presents, and corresponding recommendations to 
address them. We present a summary highlighting how our 
recommendations can help establish data provenance and thereby 
mitigate biases stemming from the data’s origins and pre-
processing to realize responsible AI-based systems. We conclude 
with a research agenda suggesting further research avenues. 
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1 Introduction 
As evidence-based decision making aided by data-driven artificial 
intelligence (AI) algorithms becomes increasingly common across 
all sectors of the economy, there is a growing concern among users 
about whether such algorithms are developed and implemented 
responsibly. Prior reports have already provided a glimpse into the 
disastrous effects of inaccurate and bias-laden AI recommendations 

in high-stakes applications, with examples from the healthcare and 
legal domains, such as incorrect patient treatment, exacerbated 
poverty [62], wrongful arrest [33], and unjust criminal sentencing 
[43]. The heightened awareness of concerns raised in recent 
movements for social justice has resulted in calls from professional 
associations [1] and researchers [18,34] for developing approaches 
that help establish responsible AI.  

Rapid innovations in data-generating technologies, such as sensors, 
social media, and mobile devices, have exacerbated the problems 
resulting from poor data quality that threaten the development of 
responsible AI systems. These technologies generate an 
unprecedented quantity and variety of data. While most 
applications have benefitted from explosive growth in data 
availability (in terms of volume, variety, velocity, veracity, etc.), 
limited attention has been given to data quality [66], in turn 
undermining the quality of recommendations generated using such 
data. Motivated by these concerns, this study examines how data 
provenance can help improve data quality and enhance the fairness, 
accountability, transparency, and explainability (FATE) of AI-
based systems. We argue that data provenance—a record that 
describes the origins and processing of data [9]—can help assess 
and improve the FATE of recommendations provided by AI 
algorithms and thus instill trust in them. Trust is enhanced by the 
capability to describe and follow the life of data (i.e., their origins, 
processing, and use) in both forward and backward directions [75]. 
The importance of provenance has long been recognized [14] in the 
pharmaceutical, food, and fashion industries. It helps establish a 
product’s origins and influences consumers’ decisions about 
purchase and use.  

Responsible AI is essentially related to a broad discourse, AI ethics, 
which has received significant attention among researchers in 
recent years. Scholars have identified different high-level ethical 
principles that should govern the development of AI systems 
[25,48,97]. While no universal consensus exists, fairness, 
accountability, and transparency [48] have received significant 
attention in this research community [27]. Simultaneously, research 
related to explainable AI has emerged [39], with recent discussions 
on its capability to bridge the gap between technical and ethical 
considerations [64]. AI explainability gives users and experts the 
ability to investigate and understand the inner workings of AI, 
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allowing them to identify potential biases. Bridging these two 
perspectives, we focus on four important and related characteristics 
of responsible AI—FATE. While there is ongoing research on other 
AI-based system characteristics, such as privacy and agency, we 
focus on how FATE can help organizations identify and mitigate 
the negative influences of biases within their data. We discuss how 
potential conflicts among different FATE characteristics emerge, 
how organizations can manage them, and where more research is 
needed. 

Most current researchers and practitioners in the field of 
responsible AI have emphasized the quality of algorithms. 
However, an algorithm’s recommendations or outputs also depend 
heavily on representations, structures, and data quality, which serve 
as the inputs. In this study, we focus on data provenance, an 
important aspect of data quality, in the development of responsible 
AI systems [13]. For example, data provenance can help uncover 
data quality concerns related to labor-intensive data labeling, which 
is often performed by unqualified workers [7] and otherwise 
remains concealed. This is particularly alarming, as the 
recommendations or outputs of AI algorithms are often used as 
inputs for other AI algorithms [53], further exacerbating the 
problem. For example, the classification of a radiology scan by an 
algorithm as benign or malignant may be used as an input for 
another algorithm that is used to create a risk score for patient 

readmission. In such situations, data provenance can help identify 
the causes of the AI algorithm’s poor performance, improve 
interpretability, or uncover that its seemingly acceptable 
performance was achieved for invalid reasons (e.g., when 
identifying a malignant tumor, the system was learning from the 
circle made by the radiologist on the scan rather than the data from 
the scan itself). By illuminating the origin and processing of the 
data [14], data provenance can mitigate these shortcomings and 
facilitate FATE assessments (see Table 1).  

The lack of data provenance is a serious concern in AI-based 
systems that are used to inform critical decisions. While the 
establishment of data provenance may increase short-term costs for 
organizations, it can provide long-term benefits by instilling trust 
in the implemented system and its recommendations. Specifically, 
our study addresses the following question: How does data 
provenance affect the four interrelated characteristics of 
responsible AI: fairness, accountability, transparency, and 
explainability? 

The paper analyzes biases related to origins and pre-processing of 
data, discusses the current state of practice and attendant  
challenges, and presents recommendations for addressing them. 
Our recommendations are intended to help establish data 
provenance and mitigate biases stemming from the data's origins 
and pre-processing to realize responsible AI-based systems. 

Table 1 – Overview of FATE characteristics and examples 

Characteristic Description Example 

Fairness AI-based systems may introduce discrimination 
because of imbalanced data [4]. The data used in 
training AI-based systems often reflect the 
discriminations existing in our society, which, in turn, 
lead to algorithmic bias [4]. 

Training the system using only medical records from male 
patients can lead to discrimination against female patients. 

Accountability Because of the increasing complexity of AI-based 
systems, it is difficult for a user to judge who is 
accountable for the results [49]. The individual services 
provided by AI algorithms are integrated into larger 
systems [19], further exacerbating opaqueness and 
ambiguity about ownership. 

When an AI-based system trained on photos depicting 
cancer on the epidermis (outer skin layer) is integrated into 
a larger system, it may also be inappropriately used on data 
from subcutaneous tissue (inner skin layer). It becomes 
unclear who is accountable for the resulting incorrect 
recommendation.  

Transparency An often-cited limitation of AI-based systems is their 
black box nature [2]. However, to understand the 
quality of recommendations and training data 
adequacy, we need transparency. 

The pharma industry has well-established practices for 
providing easy access to relevant information about drugs 
(either in the product package itself or in the accompanying 
documents), whereas AI systems seldom provide relevant 
information about the data used in developing 
recommendations.  

Explainability A lack of explainability of AI prediction outcomes can 
be caused by the black box nature of algorithms, which 
can lead to negligence of the inaccuracies and biases in 
data. Yet, understanding a prediction is an important 
aspect of their acceptance [84]. 

Evidence-based medicine rests on high standards of 
explainability of both algorithms and data, as medical 
decision making requires a sound understanding of the 
underlying disease mechanisms and treatments [88]. The 
lack of this understanding undermines the implementation of 
AI in healthcare [81].  
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In the following sections, we review key biases, such as systematic 
distortions [3], resulting from the failure to adopt appropriate data 
provenance practices in the development and implementation of 
AI-based systems. We also provide three key recommendations for 
establishing data provenance to enhance the FATE of AI-based 
systems. We propose a data provenance framework for responsible 
AI and discuss exemplary cases for its application. Before 
concluding, we present future research directions. 

2 Sources of Data Biases in AI-based Systems 
In contrast to the majority of existing research, which has focused 
on biases resulting from algorithms (e.g., [28,35]), we concentrate 
on the origins of the data and the data pre-processing rather than on 
the algorithm that uses the data as inputs. Data sources are often 
where the original data were collected to train and build AI-based 
systems. After data collection, data pre-processing [30], which 
commonly includes data preparation, integration, cleaning, 
normalization, and transformation, can also introduce biases [96]. 
We identify five categories of potential biases that may originate 
from data sources and five categories of biases that may be 
introduced during data pre-processing. For example, the data 
themselves might be subject to bias in the ways in which they are 
sampled or measured. Each bias has different implications for the 
FATE characteristics of AI-based systems. 

Table 2 – Summary of the effect of data biases on responsible 
AI 
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Adversarial 
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Transfer learning X X X   

2.1 Biases from the Data’s Origins 
Below, we identify five key instances in which biases arise in the 
data sources: population data, measurement error, data quality 
chasm, data repurposing, and data augmentation. We describe their 
implications regarding the FATE characteristics (see Table 2 for a 
summary).  

Population data. In every data science project, sampling the right 
data to ensure representativeness is important [33]. However, to 
develop and implement powerful AI-based systems, developers 
often rely on access to unique data. For example, data provided 
through projects, such as BigMedilytics, comprise the medical 
records of more than 11 million patients from eight countries. The 
retraining or recalibration of AI-based systems developed with such 
unique data to other contexts for the same purpose requires 
additional data that are representative of the new context.  

However, AI-based systems are often applied in new contexts 
without retraining or recalibration because of the significant 
challenges involved in collecting the necessary additional data. For 
example, when an algorithm is trained with data from one 
population but is used to develop predictions on another population, 
any differences in the frequency and nature of events in these 
datasets will result in poor performance [19]. When the data 
collection mechanisms impose selection bias or fail to recognize 
the mismatch between the training data and the target population, 
the transparency of the data’s origins is affected. In addition, 
spurious correlations and shortcut learning (i.e., decision rules that 
work well based on the training data because of spurious 
phenomena [32]) of the AI system will lead to unreliable and unfair 
recommendations [20] that will undermine possible explanations.  

Measurement error. Every study and every measurement 
instrument, however well designed, still generates some errors [72]. 
Many AI applications in domains such as medicine or business rely 
heavily on Bayesian statistics, as the results are always subject to 
probabilities. Data pre-processing and the use of another 
algorithm’s predictions as an input could further compound this 
issue because of the propagation of uncertainties or prior 
probabilities [61].  

However, in AI systems, the uncertainty of the input variables 
resulting either from the measurement itself or from pre-processing 
is often neglected. An AI-based system trained with such data 
without a particular focus on and caution about potential errors can 
result in a poorly performing model. Consequently, the precision of 
an AI-based system might be overestimated, as the AI system 
learns to fit against the error. The resulting recommendations would 
be at least distorted if not incorrect, leading to problematic 
outcomes. If the system provides corresponding explanations, a 
user can identify these inadequacies and correct them [19].  

Data quality chasm. Another challenge is the lack of data with 
adequate quality in settings where the AI system is used [61]. While 
the data may look homogeneous at the surface level, a more careful 
evaluation can suggest otherwise. For example, an AI algorithm 
may achieve superior prediction quality because of its access to 
state-of-the-art computed tomography (CT) scans. If CT scans from 
older equipment that generates lower-quality scans are used to 
retrain the AI-based system, the recommendations are likely to be 
inaccurate.  
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In contrast to the measurement error, in which the system has 
learned to predict based on errors, here, the AI-based system was 
trained using fine granular data that are no longer available later, 
thus resulting in poorer performance. This provides multiple 
challenges along the FATE characteristics. The poor performance 
can lead to suboptimal recommendations, and depending on the 
level of transparency provided initially, questions related to 
accountability between the system developer and system provider 
can arise. Creating transparency regarding the training data’s 
origins and the data used for the recommendations helps mitigate 
this issue. 

Data repurposing. In addition to biases resulting from sampling, 
data collection practices also introduce misuse and biases. 
Traditional data collection practices differ significantly from 
contemporary practices in AI systems development [33]. The 
traditional practice is to collect data for a specific purpose. For 
example, a clinical trial of a drug used to treat COVID-19 will 
collect experimental data to assess the drug’s side effects.  

However, repurposing data is the norm in AI-based systems. For 
example, a blood test result in a patient’s electronic healthcare 
record that has been captured to diagnose a certain disease may also 
be used by an AI-based system to diagnose other diseases. This can 
be a potential issue compromising the accountability characteristic 
of the algorithm. For example, while the quality of data from 
medical images can be sufficient for the original purpose, such as 
stroke detection, it may not meet the needs of subsequent data uses, 
such as finding new disease markers [5]. Repurposing data creates 
ambiguity about the data and their origins, making it difficult to 
clearly identify the person or entity accountable for any incorrect 
recommendations. 

Data augmentation. When the available dataset is not large 
enough for the intended computations, data augmentation might be 
used (i.e., increasing the size of the dataset with synthetically 
generated data or slightly modified copies of the existing data, for 
example, through translation, rotation, flip, or scale). For instance, 
augmented data are generated through the rotation, translation, and 
scaling of a prior dataset on liver lesions [26] when training a 
generative adversarial network (GAN). These modifications and 
the synthetically generated data can amplify existing biases within 
the dataset and mask the inadequacies of the collected data.  

Some AI algorithms rely solely on simulated data. For example, AI 
systems have been developed to design bridges and control robot 
arms using only simulation data [23]. Simulations can create useful 
data to learn from, especially when little input and manually labeled 
data are available. However, because deep learning can approach 
problems more intuitively by focusing on patterns in the core data, 
researchers have suggested that AI systems perform better without 
synthetic additions to the data [23].  

Therefore, data augmentation and the use of simulation data bring 
about new challenges to the fairness and accountability 
characteristics of AI algorithms. Data augmentation amplifies 
existing biases and creates opaqueness about the actual 
representativeness of the data, thus limiting transparency and 

making it more challenging to identify the cause of an incorrect 
recommendation.  

2.2 Biases from Data Pre-Processing 
Data processing is vulnerable to errors that introduce biases, such 
as dataset shifts, opaque pre-processing, data labeling, adversarial 
manipulation, transfer learning, and data augmentation. 

Dataset shifts. An easily ignorable fact is the non-stationary nature 
of the environment and the population from which all the input data 
of AI-based systems are generated [59]. For example, when a data 
shift occurs, an important predictor of a specific disease at one point 
in time can be more or less important at a later point in time because 
of improvements in the quality of care available. For instance, 
many predictions using the Medical Information Mart for Intensive 
Care dataset are confounded by changes in hospital operation 
practices [71]. Considering time as an influential variable shows 
dataset shifts caused by changing practices, which, in turn, result in 
significant changes in the observed data. Unless this data shift is 
identified and the AI algorithm is retrained or recalibrated [53], the 
performance of the system deteriorates, affecting the fairness, 
transparency, and explainability characteristics of the algorithm. 
Low performance can lead to incorrect recommendations that 
negatively affect users. If the data’s origins and subsequent changes 
in the environment are not made transparent, the derived 
explanations will be at least distorted. 

Opaque pre-processing. AI-based systems are often characterized 
as black boxes [2]. While some AI-based systems provide accurate 
predictions, the rationale behind their predictions remains opaque. 
In algorithms with intrinsic obscurity, such as deep neural 
networks, understanding the specific patterns being learned is 
difficult [53]. For example, in a study detecting hip fractures, an 
algorithm was confounded by the scanner model and by scans 
marked as “urgent” [8]. Therefore, assessing the potential biases 
introduced when using the output of an opaque algorithm as an 
input for another AI-based system is difficult. Opaque pre-
processing limits the transparency and explainability of AI-based 
system recommendations. If it is unclear what data were used to 
train the system, confounding indicators are more difficult to 
identify and assess, and they do not allow users to learn relevant 
insights. However, deriving explanations for the recommendations 
can help experts validate the model and its recommendations. 
Different types of explanations (e.g., feature extraction, pre-defined 
models, and sensitivity [87]) can help an expert evaluate, improve, 
and correct the model. 

Data labeling. While data quality chasm refers to data that may 
appear to be similar but have different qualities, another issue arises 
with data labeling, as the identification and development of labels 
are often not transparent. Data labeling is related to supervised 
learning, such as medical image classification. The outcome labels 
are used by supervised algorithms in the training stage. While 
automated techniques for data labeling (e.g., with weak 
supervision) are on the rise [50,76], labeling is often a labor-
intensive task and is frequently performed by unqualified or poorly 
trained ghost workers or through crowd-based platforms [7]. 
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Incorrect labels in the training data create erroneous or unfair 
recommendations and explanations developed by AI-based 
systems because of the inherent bias embedded in the training data. 
This bias affects the fairness, transparency, and explainability 
characteristics of the AI algorithm. Fairness is affected, as 
unqualified or poorly trained ghost workers will make mistakes and 
possibly bring their social biases into the data. As these are 
undesirable business practices, organizations seldom disclose 
them, thereby negatively affecting transparency. While these 
business practices introduce biases, hiding them from customers 
makes it difficult for both the user and the expert to benefit from 
explanations.  

As the majority of existing data are non-labeled and are usually 
very expensive to label, some researchers perceive the reliance on 
labeled data as even counterproductive to the development of 
effective AI [23]. A recent trend in the automatic labeling of data 
using AI [77] has emerged. The idea is simple. As labeling is often 
a bottleneck task in AI system development, we could use machine 
learning (ML) to extrapolate the labels. A labeling ML algorithm 
can be trained based on a limited number of available or easily 
attainable labels and can then be used to label a larger dataset. 
While this reduces the effort of manual labor, it may also increase 
the severity of biases already existing in the smaller sample, leading 
to erroneous or unfair recommendations and explanations. 

Adversarial manipulation. As AI-based systems derive their 
models based on nuanced variations in the data, sometimes, small 
changes in the data input can lead to significant differences in the 
output [38]. Therefore, AI-based systems are potentially 
susceptible to adversarial manipulation. For instance, images of 
benign moles may be misdiagnosed as malignant because of added 
adversarial noise or seemingly minor changes in the data [53]. 
These manipulations can be intentional, such as when an attacker 
changes the input of an algorithm to fool it, or unintentional, such 
as when a user accidentally rotates an image used as an input. 
Without sufficient transparency of the data preprocessing, 

identifying this potential threat in an otherwise effective model is 
difficult. These seemingly minor changes can result in significantly 
different outcomes that make explaining the recommendations 
difficult and the recommendation itself possibly incorrect. 

Transfer learning. Once an AI-based system is built, we may use 
the algorithm to solve similar problems. In particular, a new AI-
based system benefits from the information learned from another 
system. For example, a pre-trained model can be used to encode 
radiographic features in images before final re-training [8] to 
improve the sample efficiency for a reinforcement learning agent. 
Transfer learning can also improve AI system performance when 
predicting cancer for ethnic groups with limited data availability 
[29]. However, transfer learning only works when the source task 
is closely related to the new task. If not, transfer learning introduces 
biases and negatively affects performance [91]. As transfer learning 
also increases ambiguity about the AI-based system’s 
recommendations, it impedes clear accountability. Therefore, 
transfer learning should be made transparent to the user, as it 
otherwise adds to the system’s opaqueness. 

3 Recommendations for Implementing Data 
Provenance 

Considering the importance of mitigating data-induced biases 
originating from data sources and data pre-processing, 
organizations need to establish data provenance when 
implementing responsible AI-based systems that address the FATE 
characteristics. We propose a data provenance framework for 
responsible AI to enhance its FATE characteristics (Figure 1). 
Organizations can focus on three key areas: establishing 
organizational data governance, demanding data traceability, and 
leveraging technological advances, such as explainable AI. Below, 
we summarize current and future challenges and elaborate on 
actionable recommendations and how these enhance the specific 
characteristics of responsible AI (see Table 3).  

Table 3 – Overview of the current state, challenges, and recommendations 

Current state Challenges Recommendations 

Organizational data lineage and 
accountability are lacking. 

Governmental organizations demand 
control and protection of data integrity, 
confidentiality, and availability. 

Establishing Organizational Data Governance: 
- Managing meta-data 
- Conducting data audits 

Organizations rely on data from 
multiple data sources in their AI 
systems, creating heterogeneity and 
opaqueness. 
 
Many current AI-based systems rely 
heavily on manually labeled data.  

Organizations typically do not have a 
clear understanding of the source and 
processing of data, such as various 
experiences, goals, and perspectives of 
the people annotating the data. 

Demanding Data Traceability: 
- Guiding data acquisition 
- Benefitting from blockchain technology 

Technologies seek to increase the 
transparency of AI models. 

Little attention has been given to data 
opaqueness. 

Leveraging Technological Advances for Data 
Provenance: 
- Deriving rules for explanations 
- Identifying possible adversarial manipulations 
- Finding the inherent structure in the data 
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3.1 Establishing Organizational Data 
Governance 

Several governmental organizations have launched directives, 
laws, and regulations to provide control and protection of data 
integrity, confidentiality, and availability. Examples include the US 
Health Insurance Portability and Accountability Act (HIPAA) and 
the EU’s General Data Protection Regulation (GDPR). However, 
current data governance practices are often limited to master data 
management, that is, a set of processes related to the who, what, 
and where of business transactions, communications, and events. 
Seemingly, organizations too often mimic what their competitors 
do rather than being proactive and shaping the course of action. For 
example, many organizations are still seeking to become data 
driven. Yet, once they achieve this, they find that inadequate 
attention is given to data governance during the development of AI 
systems, which, in turn, creates additional challenges [44]. 

Organizations need to establish organizational data governance 
practices that enforce data lineage and accountability. This would 
help them not only meet increasingly strict regulatory requirements 
but also benefit from an overarching perspective of their data 
assets. Particularly, organizations need to manage their meta-data 
and conduct data audits in order to respond to the organizational 
challenges associated with inadequate data governance. 

For some organizations, these goals stand in a potential conflict. 
For example, data privacy seeks to protect individuals from being 
identified—often through personal identifiable information—or 
being associated with such information. Data lineage, on the other 
hand, refers to the visibility of the data’s origins and further 
processing. If the data’s origins and further processing are done by 
individuals, both concepts stand in conflict. An organization will 
have to manage this conflict by enhancing responsible AI under the 
condition of privacy policy compliance, such as the GDPR [98]. 
For example, an organization may allow identifiable data to be 
traced only for specific legal purposes. Organizations also need to 
leverage some privacy-preserving approaches, such as federated 
learning, to allow the safe sharing of identifiable data or models 
across entities [69]. 

Managing meta-data. Meta-data describe data and consist of 
detailed information about the data captured in a data source. Meta-
data help maintain the data within an organization in a manner that 
ensures the timely, efficient, and accurate retrieval of the required 
information [68]. It also helps ensure that processes and activities 
are documented in a transparent and verifiable way [78]. Generally, 
there are two practices that organizations use to manage meta-data: 
cataloging data and curating data. A data catalog stores information 
about the data, such as the rationale for choosing a data source, the 
stakeholders involved, and the content stored within it. Such 
information may also be documented in a datasheet [31].  

Extending these efforts, organizations should establish clear 
processes and responsibilities for data curation. Data curation 
identifies and leverages the data within the organization and helps 
assess the FATE of system recommendations. For example, 

organizations can identify representation and corresponding 
limitations by visualizing and clustering data annotations. These 
annotations facilitate the identification of discriminatory 
correlations between features, labels, and groups.  

Overall, managing meta-data through data catalogs and data 
curation helps increase the benefits of existing data through 
increased transparency [68] and helps reduce costs by avoiding 
unnecessary data collection. Managing meta-data also requires 
clear accountability for the different data sources. Meta-data help 
organizations benefit from transformation, weighting, and 
sampling techniques [4] by minimizing the extent to which data 
deviate from the objectives of responsible AI, thus helping ensure 
fairness of the recommendations.  

Conducting data audits. Enhancing data auditing capability in an 
organization is another approach to establishing data provenance 
through data governance [44]. Data auditing is the process of 
assessing whether the data are fit for a specific purpose. Given the 
recent increase in regulatory requirements, organizations should 
conduct data audits to assess the data used within their systems, 
similar to the way they assess and audit other aspects of their 
business operations. Data audits help uncover potential biases 
related to data processing and their associated consequences. With 
a reasonable and suitable guarantee of authenticity and reliability, 
data audits help enhance the accountability and fairness of AI-
based systems. This not only applies to high-reliability 
organizations that need to make high-stakes decisions but also 
provides benefits for other organizations that seek to act 
responsibly. Data audits consist of data profiling (e.g., assessing the 
availability and quality of data and the risks associated with data 
integration [45]) and impact analysis (assessing the impact of poor 
data quality on performance and profits) [57]. 

Data audits become increasingly important when individual 
services are integrated into larger systems [73]. Conducting data 
audits enhances the fairness of AI systems by ensuring a good fit 
between the data and their use. Conducting data audits also requires 
clear accountabilities for the appropriate handling of data. In 
addition to establishing data accuracy, data audits uncover data 
silos and areas where more depth and/or breadth of data is 
necessary for the AI-based system to provide valid 
recommendations. A data provenance record could document the 
data capturing and data processing entities for the dataset in 
question, simplifying the audit process. Data provenance records 
also help in understanding the data’s origins and pre-processing, 
thereby enhancing transparency. 

3.2 Demanding Data Traceability 
Managers need to be aware of the implications of using different 
data sources and processing methods, especially when they seek to 
achieve fair and transparent systems. Data traceability is gaining 
increasing attention as managers become aware of its importance. 
For example, it usually takes Walmart 6 days and 14 hours to 
identify the source of a farm product. When the supply chain data 
are maintained in a blockchain, however, it takes only 2.2 seconds 
to establish complete data traceability. Therefore, platform 
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providers need to enhance the traceability characteristic of data 
provenance in order to improve the efficiency of business and 
decision making.  

Enhanced traceability provides more information about the 
historicity of data and increases overall transparency. Transparency 
enables the creation of an intermediate representation of the 
original data [4] encoding the responsible AI objectives, such as 
fairness. As a result, organizations mitigate biases resulting from 
data sources and improve the fairness of their systems. Demanding 
data traceability may include guiding data acquisition and 
leveraging blockchain technology. 

Guiding data acquisition. Many current AI-based systems rely on 
manually labeled data. Despite the recent trend of increasingly 
using automated labeling practices, manual labeling is still 
indispensable. Manual labeling either applies to the entire dataset 
or only a subset of datapoints for later extrapolation. Either way, if 
organizations do not have a clear understanding of the various 
experiences, goals, and perspectives of the people annotating the 
data, they cannot account for the significant impact on data quality 
[51]. Organizations should develop procurement guidelines that 
take the traceability of data into consideration. For example, 
managers need to demand transparency regarding data origin and 
quality when acquiring external training datasets. A data 
provenance record identifies the true source and subsequent 
processing of data, uncovering the often-hidden history of the data. 
Recent end-to-end provenance projects have developed a set of 
tools, such as R packages, that allow organizations to establish data 
provenance through enhanced data traceability [24].  

Furthermore, some data used to train the system may not have been 
labeled by experts, whereas other data may have been procured 
from data brokers (organizations that collect data for the purpose of 
reselling them). Understanding the sources and methods used to 
acquire the data is critical to ensure that they are ethically and 
legally collected (e.g., with informed consent). Demanding 
traceability (e.g., through a data provenance record) increases 
transparency and helps organizations identify the accountable 
actors for mitigating risks related to the use of AI-based systems’ 
recommendations.  

For instance, an organization should provide the descriptive 
statistics of a dataset as part of its data provenance records, 
allowing users to identify the potential risk for discrimination. 
Based on these statistics, users can evaluate the AI-based system’s 
recommendations to correct, mitigate, and avoid future 
discrimination, either by altering the input data, modifying the 
algorithm, or changing the way in which predictions are made [4]. 
As a result, the user is likelier to perceive the recommendations of 
the AI-based system as fair.  

As data provenance relates to a record of the data’s origins and 
subsequent processing [9], it also increases transparency. For 
example, data provenance is needed to develop a data information 
sheet [31] that provides details on the most important variables 
influencing an AI-based system’s recommendations. As such, data 
provenance provides users with basic information about the data 

and their processing [17] before they are used by the AI black box. 
A user can ascertain whether the data used to train the system are 
suitable and relevant [36]. 

Benefitting from blockchain technology. Blockchain-based data 
provenance is a promising approach to enhance the traceability of 
data in responsible AI. Blockchains can record the meta-data and 
history of data objects. The important characteristics of 
blockchains, such as transparency and auditability, enable the 
security and traceability of the meta-data, which are crucial for data 
accountability. Data immutability in a blockchain also enhances the 
perceived fairness in the recommendations. Various data 
provenance architectures based on blockchain technology, such as 
ProvChain [60] and LineageChain [60], have been proposed. 
Blockchain technology has also been leveraged to handle dark data 
[99], which are the data that organizations collect but fail to utilize 
for their value. As a secured distributed ledger, blockchain has the 
potential to upgrade the value of the data and provide more efficient 
and transparent results [70].  

Increased transparency supports a consumer-centric strategy that 
organizations increasingly follow. For example, in healthcare, the 
notion of patient-centered care refers to being respectful and 
responsive to individual patient needs, values, and preferences; this 
requires health IT systems to prioritize data provenance and the 
transparency of patients’ personal health-related data. With 
increased transparency, patients are better informed and are 
therefore more empowered to seek clarification on diagnoses or 
recommendations [41]. This interaction improves the quality of 
healthcare. It also enhances patients’ confidence in the care 
provided and hence its effectiveness. Healthcare organizations’ 
attention to data provenance in electronic healthcare records 
improves the transparency of their decisions and recommendations. 

3.3 Leveraging Technological Advances for Data 
Provenance 

Given the opaque nature of many AI-based systems, data 
provenance is essential for understanding AI-based systems’ 
recommendations [74]. Recent technological advances include 
explainable artificial intelligence (XAI) methods, GANs, and deep 
learning with advances in small data techniques. 

Deriving explanations. XAI methods, such as LIME, LORE, and 
Anchor [29], push the traditional boundaries imposed by trade-offs 
between the accuracy and interpretability of AI systems’ 
recommendations. More recently, XAI solutions have allowed 
users to understand the most important features that lead to the 
outcomes, make changes to model features, and customize the 
model explanation [58].  

Explainable AI methods seek to increase the transparency of AI 
models, but little attention has been given to addressing data 
opaqueness. Data provenance provides a complementary 
perspective toward transparency for the user [6] by presenting 
information about the source and further processing of the data used 
to feed an AI-based system. Data provenance helps provide 
complementary information to the explanations provided by XAI 
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systems. For example, expanding the data provenance concept to 
AI algorithms facilitates the documentation of the data processing 
performed by an AI algorithm through global and local 
explanations [22]. While a global explanation creates transparency 
regarding the model used to make all recommendations (e.g., 
answering the question of how the AI makes its recommendations 
for all patients), a local explanation provides transparency for a 
specific recommendation (e.g., answering the question of why the 
AI makes a specific recommendation for a particular patient). For 
example, through explainable AI, healthcare providers and their 
patients can better understand the important factors that lead to an 
algorithm’s recommendations on a particular diagnosis or 
treatment, thereby enhancing the accountability of the parties 
responsible for and receiving care. Therefore, we suggest that 
organizations should strive to make the most of recent 
technological advances related to XAI.  

In particular, we suggest that organizations should leverage 
existing XAI methods, such as LIME and LORE, and XAI 
techniques, such as layer-wise relevance propagation [85] and 
gradient-based explanations, with supporting architectural 
frameworks, such as CaSE [55], to provide easily understandable 
explanations of AI-based recommendations. XAI methods, for 
example, derive rules that explain how a recommendation was 
reached by presenting cut-off values that lead to the predicted 
outcome or by identifying the factors that most strongly influence 
the recommendation. Such explanations help users better 
understand the AI system’s behavior and identify new patterns in 
the data.  

However, prior studies also suggest a potential conflict between 
explainability and other FATE dimensions. For example, a trade-
off exists between explainability and fairness [56]. While 
explainability seeks to simplify the complex nature of AI-based 
systems so that they can be understood by humans, there is an 
inherent loss associated with this simplification that may lead to 
new biases. Organizations can manage these conflicts, for example, 
by using multi-criteria decision-making methods (see [89] for an 
overview) to guide and prioritize different characteristics. In a 
given scenario, one characteristic might be more important than 
another. For example, if the adoption and use of the system are 
concerns, explainability could be one way of increasing the 
transparency of a system to increase trust [80]. In organizations that 
provide a process for users to participate in the evolution of the 
system in order to address potential fairness concerns [42], users 
are less likely to reject the system. 

The lack of explainability of AI prediction outcomes can be caused 
not only by the black box nature of algorithms but also by the biases 
in the data. While most research focuses on algorithm 
explainability, we suggest paying additional attention to how data 
provenance can enhance the explainability of outcomes. By 
allowing individuals to meaningfully interact with the system and 
by enhancing the explainability of AI-based systems, organizations 
facilitate autonomous decision making, detect errors, minimize 
biases, and thus safeguard justice [15].  

Managing noisy data. The presence of meaningless and irrelevant 
data is often referred to as noise within the data. Scholars have 
made significant progress in managing noisy data that 
organizations can benefit from. A distinction is made as to whether 
the noise relates to predictive attributes (referred to as attributed 
noise) or to target attributes (referred to as class noise). Different 
techniques are available for identifying and handling noise within 
the data. A recent systematic review provides a good overview of 
the current state of the art on the problems caused by noisy data in 
AI-based systems [40]. 

The management of noisy data is important for deriving fair 
recommendations. In fact, striving to achieve fairness without 
addressing the noise within a given dataset could backfire. For 
example, a prior study investigated the use of noise models for 
denoising data during subset selection [65]. Scholars applied noise 
models to select a subset of data from an existing larger data set. 
The goal was to generate a fair dataset so that the sub-dataset 
accounts for race while having noisy race data. The study points 
out that failing to account for noise has unintended side effects, as 
it decreases the fairness of the resulting subset selection.  

Different techniques are available to handle noise within data [40]. 
For example, organizations can use filtering techniques to identify 
and remove noise, or they can alter the data, sometimes referred to 
as data polishing. They key difference between responding to class 
noise and to attribute noise is that for class noise, organizations 
should also consider relabeling, whereas for attribute noise, 
organizations can use data imputation.  

A related technique is the use of GANs (sets of neural networks that 
seek to generate new data with similar characteristics as the training 
data). Organizations should use GANs to identify possible 
adversarial manipulations, thereby mitigating negative 
consequences. For example, GANs are used in image-to-image 
translations, such as the translation of low-dose CT scans that have 
noise in the data into regular-dose CT scans. In this case, a 
generator network translates the low-dose scan into a regular-dose 
scan, whereas a discriminator tries to distinguish the artificial from 
real regular-dose scans. As a result, the noise in image-to-image 
translation is reduced [96].  

Identifying inherent data structures. Deep learning for text, 
audio, and video recognition often involves performing a pre-text 
task to find an inherent structure in the data of their AI systems. 
The pre-text task is self-supervised learning with the purpose of 
generating a useful feature representation for the downstream task 
[12]. Pre-text tasks may force ML models to deconstruct data in 
order to enhance explainability [23]. For example, the Facebook AI 
Research group uses a combination of clustering and training based 
on rotated images to improve the quantity of unlabeled data used in 
their image classifier. After this pre-text task processing, the second 
stage of training uses conventional labeled data to create 
interpretable results [23]. 

Furthermore, advances in small data techniques help organizations 
improve the performance of AI-based systems. While many AI-
based systems rely on large data, some of the most valuable datasets 
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are only available in small quantities [51]. For example, the 
application of AI in the medical domain often requires data labeling 
by medical professionals, such as radiologists or physicians. A 
review by a radiologist is needed to reliably label an image scan 
with the correct diagnosis of the presence or absence of lung cancer. 
As medical professionals’ time is scarce and expensive, and the 
task of data labeling is quite repetitive, the creation of large datasets 
is a challenge. However, it is this high-quality human input that 
facilitates high-quality recommendations by AI-based systems. 

Overall, a clearer understanding of the system’s behavior and the 
data helps judge the fairness of recommendations. This is important 
because, for example, evidence-based medicine rests on high 
standards of explainability, as medical decision making requires a 
sound understanding of underlying disease mechanisms and 
treatments under particular conditions [88]. The lack of this 
understanding undermines the implementation of AI in healthcare 
[81]. This issue is crucial because of the promising benefits 
provided by AI in healthcare.  

 

 

Figure 1 – Data provenance framework for responsible artificial intelligence 

 

4  Exemplar Application of the Data Provenance 
Framework 

We discuss the application of our framework with two recent 
examples that highlight the problems associated with a lack of 
responsible AI. 

A recent example of data provenance concerns relates to the 
application of AI recommendations in healthcare. A recent study 
evaluated the performance of the AI-based system that is 
embedded within EPIC [100], a major electronic healthcare 
records system, to predict sepsis (a potentially life-threatening 
condition in which the body’s response to an infection damages its 
own tissues). As sepsis is the number one killer in US hospitals 
[67], hospitals attach great importance to identifying and treating 
conditions that may lead to sepsis. There is widespread adoption of 
sepsis prediction models, such as the one provided by EPIC. 
However, the study suggests that i) the AI-based system does not 
deliver the advertised performance, ii) important assumptions that 

underly the AI system require careful examination, and iii) the 
system’s high number of false positives contribute to alert fatigue 
for the medical staff [100].  

This case highlights four important biases: data repurposing, 
population bias, transfer learning, and data shifts. One important 
observation of the evaluation was that the data used in the 
development of the model may have been repurposed. To derive 
the predictions, EPIC measured positive sepsis cases based on 
billing codes but not on the clinical definition of sepsis. The 
decision to use billing codes also results in population bias, as the 
presence of sepsis relies on the identification of sepsis by the 
medical staff. Yet, the medical staff used the system with the 
expectation that it would help predict sepsis before medical 
personnel could identify it. In response to the study, EPIC has 
argued that transfer learning could explain the suboptimal 
performance. That is, transfer learning works only when the source 
task is closely related to the new task, so the sepsis prediction model 
developed using the data from one environment may not work well 
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in other environments. Transfer learning may have introduced 
biases, negatively affecting the performance of the sepsis 
prediction model using data from the University of Michigan 
Hospital [94] in contrast to data from the University of Colorado 
Hospital [10]. Lastly, the researchers also describe the potential for 
a dataset shift resulting from changed practices in treating sepsis 
and suggest the need to retire old models entirely. We suggest that 
organizations using prediction models such as this should establish 
organizational governance, conduct data audits, and leverage 
technological advances in the area of XAI to derive explanations 
for these prediction models. 

Organizational data auditing capability establishes data provenance 
through data governance [44], whereas data auditing refers to the 
process that assesses the fit of the data for a specific purpose. A 
data audit would allow healthcare organizations to evaluate the data 
used to train the AI system and identify possible concerns. In our 
example, a data audit would allow a medical expert to identify 
potential errors resulting from the use of billing codes as a proxy 
for the presence of a disease. Yet, billing codes are used in the 
administrative process and can deviate from the medical diagnosis 
(e.g., [93]). When used in research, billing codes are often a means 
to identify patients for another study in order to narrow down those 
who are likely to have a specific disease or condition (e.g., [86]).  

An organization’s capability to audit AI systems has become 
increasingly more pressing, as a recent study suggests a severe lack 
of transparency by AI system providers and a lack of oversight by 
the FDA [67]. Medical experts criticized the opaqueness and 
limited transparency offered by EPIC. As the AI system is 
protected by intellectual property rights, the developer has 
disclosed very limited information about the development of the 
prediction model. Medical professionals implicitly relied on the 
FDA’s oversight, but the recent study points out that the FDA’s 
oversight is limited [101]. Medical devices are rated by the FDA 
into three classes [16], with the highest class being reserved for life 
support systems. Those systems that make autonomous decisions 
(e.g., a pacemaker or an automated insulin pump) are required to 
meet the highest standards set by the FDA. AI-based systems that 
provide recommendations to healthcare providers (e.g., a sepsis 
prediction model) are often considered class II systems that have 
much lower FDA oversight. In the EPIC example, the study 
suggests that not even the reduced oversight was applied, as the 
system may have been checked upon market launch, but later 
additions are not subject to further FDA approval.  

Recent technological advances help organizations identify the 
needed adjustments. For example, explainable AI helps provide 
insights and feedback to AI developers so that they can then further 
refine the AI system by adjusting the network architecture or 
retraining the model. This concept is often referred to as human-in-
the-loop and has been advocated by scholars for the debiasing of 
AI systems [47]. Here, the technological advances in XAI can 
enhance data provenance by supporting feedback through human-
in-the-loop and, in turn, improve the transparency of the predictive 
model. For example, a medical expert could question the validity 
of the model for the early prediction of sepsis, while the most 

important prediction factor of the trained model is, in fact, the 
diagnosis of sepsis by medical staff (i.e., labels of the training data). 

The concerns described are not limited to the healthcare domain. 
Another example is the Amazon AI recruitment tool, which has 
received attention for its lack of adherence to the facets of 
responsible AI (e.g., [46]). Amazon developed an experimental 
hiring system that was designed to automatically screen the 
resumes of job applicants and identify the top candidates. Amazon 
later realized that the AI system did not select candidates for 
technical jobs in a gender-neutral way but was rather biased 
negatively toward female candidates. In hindsight, the explanation 
for this behavior seems obvious. It was reported that among 
Amazon’s entry- and mid-level corporate employees, women 
accounted for 31% of the workforce last year [52]. The system had 
been trained with data for the past 10 years, during which male 
candidates were predominantly chosen for technical jobs. 
Meanwhile, many high-technology companies have realized the 
gender discrepancy when hiring employees for tech jobs and have 
changed their hiring practices to recruit more women. In such cases, 
the data shift would require the developers of AI systems to discard 
older data and rely on more recent data to train their models.  

Amazon used its own recruitment data from the past 10 years in 
training the system. An auditing process would have helped 
enhance data provenance and thus uncover the presence of a dataset 
shift and population bias. Specifically, it would have highlighted 
that the hiring practices followed during the past 10 years have been 
significantly unfair to female candidates [54]. Further adjustments 
are necessary to ensure responsible AI recommendations. Thus, 
data auditing can help increase the fairness of a system by 
establishing data provenance. 

In a similar vein, the human-in-the-loop that has been advocated 
for debiasing HR recruitments systems [47] helps organizations 
evaluate the AI system. Technological advances in XAI enhance 
data provenance by supporting feedback through human-in-the-
loop and, in turn, help mitigate the negative impact of a dataset 
shift. XAI enhances the explainability of responsible AI through 
data provenance. 

 

5 Research Agenda 
Organizations continue adopting and using AI-based systems to 
support evidence-based decision making. A particular focus is on 
enhancing the FATE of the implemented AI-based systems. Our 
review of data-induced biases and discussion of how organizations 
can mitigate these by establishing data provenance within their 
organizations lead to three central recommendations for 
organizations. Yet, more research is needed to improve data 
provenance methods, tools, and practices for responsible AI. Thus, 
we develop recommendations for future research, identifying four 
central topics (see Table 4). 
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Table 1 – Exemplar research questions for responsible AI 

Research topic Exemplar future research question 

Conceptual 
Clarity 

How can we classify central terms related to 
data provenance and responsible AI? 

What are the relationships between AI 
explainability and AI interpretability? 

What are the relationships among FATE and 
what are the boundary conditions for the 
impact of date provenance on  the FATE of 
responsible AI? 

Resolving 
Tradeoffs 

What are the existing tradeoffs or conflicts 
among the goals of responsible AI, and how 
can we resolve them? 

How do different organizational profiles 
affect the design of responsible AI in 
organizations?  

AI ethics What are the regional differences in moral 
and legal concerns that impact responsible 
AI? 

 How do we ensure responsible AI with 
increasing role of AI in the future of work?  

How do we develop and implement 
scalable, responsible AI solutions? 

Designing 
responsible AI 

What are the design guidelines and 
principles for responsible AI systems? 

How do we design explainability to enhance 
interpretability, and what are the influential 
conditions? 

 

Conceptual clarity. Establishing a clear nomological network to 
better understand the distinction of terms and their relations is 
crucial for the development of data provenance for responsible AI. 
More research is needed to determine the unique nature of different 
concepts and possibly the interchangeability of some concepts. 
Scholars can use taxonomy development methods to identify 
classifications with mutually exclusive and collectively exhaustive 
dimensions. For example, explainability and interpretability are 
essentially two related but different concepts but often are used 
interchangeably; terms such as data lineage and data pedigree are 
closely related to data provenance, but they are distinct terms. With 
enhanced conceptual clarity, more research can be conducted to 
understand the relationships between ontologically different 
concepts. 

Understanding the conditions in which these relationships occur is 
also important. For example, having a fair dataset or fair 
recommendations does not necessarily guarantee high 
transparency. This can help explain conflicting evidence in existing 

research. For example, regarding the relationship between 
transparency and explainability, some scholars suggest that 
explainability enhances the transparency of systems [82], whereas 
others argue that explainability is a sub-characteristic of 
transparency [83]. More research is needed to develop a 
nomological network around data provenance for responsible AI.  

Resolving tradeoffs. Implementing data provenance for 
responsible AI can lead to tradeoffs or conflicts. For example, 
regulations, such as the GDPR, require the system to ensure data 
privacy, whereas other requirements demand more traceability, 
such as auditing requirements. The case of Twitter’s cropping 
algorithm shows a conflict in speed and consistency versus the risk 
of making incorrect predictions [95]. Furthermore, the trade-off 
between accuracy and interpretability is an often-mentioned 
conflict related to responsible AI [90]. More research is needed to 
identify these conflicts and develop corresponding resolutions. 
Researchers can benefit, for example, from specific research 
methods, such as conjoint analysis [37] and analytic hierarchy 
process (AHP) approach [79], in order to prioritize different 
characteristics or identify important configurations of 
characteristics in different context.  

In order to resolve these conflicts, we suggest two important 
avenues. First, scholars may benefit from research on multi-criteria 
decision making. Prior research can guide managers in making 
decision while accounting for multiple and potentially conflicting 
goals. These require extension and evaluation for responsible AI 
before they can be used to derive normative recommendations. 
Second, organizational or AI project profiles may be created to 
provide templates for  developing responsible AI projects. While 
prioritization may be the result of external forces, such as 
governmental regulations, they may also be the result of 
organizational values and culture. For example, an open and 
progressive organization may prioritize transparency and fairness 
over accountability concerns. In contrast, a risk-adverse 
organization may focus on accountability and performance over 
transparency. Similarly, different projects within an organization 
may need to emphasize different aspects of FATE. Future research 
could explore the role of organizational and AI project specific 
profiles in the development and use of responsible AI systems. 

AI ethics. Questions related to the fairness of responsible AI are 
often at the cross-section of research focused on novel technology 
and its ethical behavior [64]. Research related to ethics is closely 
associated with moral and legal questions. Legal research is often 
conducted at the national level according to the local needs of the 
judiciary system. By contrast, new technical challenges emerge 
during the development and deployment of responsible AI-based 
systems regardless of local needs. For example, responsible AI has 
the potential for solutions that are easily scalable from a technical 
perspective yet raise concerns when it comes to local legal 
requirements, such as the GDPR.  

Prior research also coined the term responsibility gap [49], 
describing a situation in which artificial agents are used to decide 
on a course of actions or in which they act themselves without 
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human involvement. As the rules by which they act are not 
inscribed during development, there is no individual who assumes 
responsibility for the machine’s actions. Current ethical and legal 
frameworks have not been designed for these situations, leading to 
a responsibility gap [63]. In addition to mitigating or eliminating 
the responsibility gap, organizations must often follow multiple 
goals, such as transparency and accountability [21], in the 
development of responsible AI systems. 

However, how governmental regulations that organizations must 
follow map toward different goals of responsible AI remains 
unclear. For example, future research should investigate whether 
and how we need to extend and modify regulations, such as HIPAA 
in the US and the GDPR in the EU, to allow platform providers to 
offer scalable yet responsible AI solutions. 

Designing responsible AI. Designing responsible AI provides a 
particular challenge for future research, as it requires us to instill 
human and social values into the AI system in a way that users see 
and appreciate it [21]. However, current research often focuses on 
the technical implementations of FATE. For example, much 
research related to explainable AI offers technical solutions for 
developing explanations. When an explanation is presented to the 
user, an interpretative process is triggered. The user will develop 
an autonomous interpretation of the explanation, a process that is 
often described as the interpretability of an explanation. This 
interpretation may or may not be in line with the expected 
interpretation intended by the system’s designer.  

Therefore, more research is needed to better understand the link 
between different design patterns and technological solutions 
related to explainability research and the interpretability of 
individual users. For example, certain user or task characteristics 
influence the interpretability of a user in the sense that an expert, 
compared with a novice, requires different explanations. We 
suggest that data provenance requires also more attentions, 
particularly in the XAI community, as it provides important 
complementary information that are crucial for the interpretation 
by the user. Future research could develop clear guidelines, design 
features, and design principles for designing responsible AI 
systems,  

6 Conclusion 
Data provenance is important to mitigate biases and improve 
responsible AI-based systems (see Figure 1). Existing practices 
view data provenance as a mandate of directives, laws, and 
regulations designed to ensure the control and protection of data 
integrity, confidentiality, and availability. Data provenance is 
viewed as the cost of staying compliant with these requirements. 
Such practices result from a lack of organizational commitment to 
developing responsible AI-based systems.  

By contrast, our recommended practices view data provenance as 
an important component of developing responsible AI-based 
systems. Organizations that are strategically committed to their 
FATE goals are likely to achieve long-term improvements in 
organizational performance. Our recommended practices view data 

provenance as an investment necessary to meet their FATE goals 
and recognize that the loss of data provenance at any point in the 
provenance chain leads to a loss of data provenance in all 
subsequent parts. Therefore, organizations need to recognize the 
importance of establishing a comprehensive provenance for critical 
data that serve as inputs to AI systems.  

In contemporary systems development projects, such as in the case 
of data-driven development and AI engineering, data repurposing 
is becoming more and more the norm. Recommended practices will 
help organizations benefit significantly from data provenance, as 
the data provenance established for one project is likely to benefit 
several other projects that use the same data. Therefore, when 
examining the costs and benefits of data provenance, organizations 
need to take a comprehensive view that spans across projects, as 
different projects often draw from the same data sources. Whereas 
existing practices view data provenance records as static, 
recommended practices recognize the need to maintain dynamic 
data provenance information that is updated throughout the data’s 
lifecycle.  

We have outlined the multiple benefits of data provenance along 
and beyond the FATE characteristics. However, organizations will 
need to prioritize their investments in data provenance efforts 
based, for instance, on the magnitude of benefits resulting from 
achieving FATE and the severity of negative consequences or the 
cost of failure that result from not achieving FATE. Organizations 
that view data provenance as an overhead cost are likely to neglect 
it when operating under budget or schedule constraints and, even 
worse, perhaps engage in undesirable practices, such as virtue 
washing [92].  

Investments in data provenance should be driven by an intrinsic 
motivation to improve the responsibility of AI-based systems. For 
example, adopting data provenance practices to achieve 
transparency is valuable because it enables users to understand, 
engage with, and audit the AI-based system and its outcomes. 
Similarly, data provenance that enables accountability is a means 
to ensure justice by clarifying responsibility and avoiding harm 
from deterrence [15]. As these examples show, FATE 
characteristics are instrumental in upholding the intrinsic values of 
core principles, such as human autonomy and justice. In addition, 
organizations that take a lifecycle perspective recognize that the 
costs incurred in the early phases of data acquisition and processing 
lead to benefits later in the AI-based system lifecycle. Yet, these 
benefits, such as increasing reputation, avoiding the loss of 
reputation, and establishing the desired FATE characteristics, are 
often difficult to quantify despite quickly outweighing negative 
implications. 

In high-reliability organizations, such as healthcare providers, 
suboptimal decisions can have severe consequences. The 
increasing reliance on AI-based systems and the lack of 
understanding of the data used to generate recommendations 
highlight the importance of data provenance. Establishing data 
provenance guidelines and policies can facilitate the FATE of AI-
based recommendations. For example, in the context of the 
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COVID-19 pandemic, the provenance of data is important for 
discerning the FATE of recommendations made by AI-based 
systems that rely on data from varied and disparate data sources. 
While more guidelines are needed to develop data provenance 
throughout the entire data lifecycle [11], implementing the 
recommended practices is an urgent task for organizations that aim 
to harness the benefits of AI-based systems. Our recommendations 
will help organizations enhance essential data provenance 
capabilities toward fair, transparent, accountable, and explainable 
evidence-based decision making by responsible AI-based systems. 
Our proposed research agenda suggests potential research avenues 
related to data provenance. We suggest that achieving conceptual 
clarity, resolving tradeoffs, observing AI ethics, and designing 
responsible AI require more research by scholars from different 
disciplines. 
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