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Abstract

The consequences of the climate crisis are already present and can be expected to be-
come more severe in the future. To mitigate long-term consequences, a major part of the
world’s countries has committed to limit the temperature rise via the Paris Agreement in
the year 2015. To achieve this goal, the energy production needs to decarbonise, which
results in fundamental changes in many societal aspects. In particular, the electrical power
production is shifting from fossil fuels to renewable energy sources to limit greenhouse
gas emissions.

The electrical power transmission grid plays a crucial role in this transformation. Not-
ably, the storage and long-distance transport of electrical power becomes increasingly im-
portant, since variable renewable energy sources (VRES) are subjected to external factors
such as weather conditions and their power production is therefore regionally and tempor-
ally diverse. As a result, the transmission grid experiences higher loadings and bottlenecks
appear. In a highly-loaded grid, a single transmission line or generator outage can trigger
overloads on other components via flow rerouting. These may in turn trigger additional
rerouting and overloads, until, finally, parts of the grid become disconnected. Such cas-
cading failures can result in large-scale power blackouts, which bear enormous risks, as
almost all infrastructures and economic activities depend on a reliable supply of electric
power. Thus, it is essential to understand how networks react to local failures, how flow is
rerouted after failures and how cascades emerge and spread in different power transmission
grids to ensure a stable power grid operation.

In this thesis, I examine how the network topology shapes the resilience of power grids
and other supply networks. First, I analyse how flow is rerouted after the failure of a single
or a few links and derive mathematically rigorous results on the decay of flow changes with
different network-based distance measures. Furthermore, I demonstrate that the impact
of single link failures follows a universal statistics throughout different topologies and
introduce a stochastic model for cascading failures that incorporates crucial aspects of flow
redistribution. Based on this improved understanding of link failures, I propose network
modifications that attenuate or completely suppress the impact of link failures in parts of
the network and thereby significantly reduce the risk of cascading failures. In a next step,
I compare the topological characteristics of different kinds of supply networks to analyse
how the trade-off between efficiency and resilience determines the structure of optimal
supply networks. Finally, I examine what shapes the risk of incurring large scale cascading
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Abstract

failures in a realistic power system model to assess the effects of the energy transition in
Europe.
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Zusammenfassung

Die Folgen der Klimakrise sind global bereits für viele Menschen spürbar und werden sich
in Zukunft voraussichtlich noch deutlich verschärfen. Um die langfristigen Folgen abzu-
mindern, hat sich ein Großteil der Staaten der Welt im Pariser Klimaabkommen im Jahr
2015 auf eine Begrenzung des Temperaturanstiegs verständigt. Die dafür erforderliche De-
karbonisierung in der Energieerzeugung erfordert grundlegende Veränderungen in vielen
gesellschaftlichen Bereichen. Zentral für eine erfolgreiche Reduktion des Ausstoßes kli-
mawirksamer Gase ist eine Abkehr von fossilen Brennstoffen bei der Stromerzeugung und
eine Umstellung letzterer auf erneuerbare Energiequellen.

Für ein Gelingen der Transformation spielt das Übertragungsnetz eine zentrale Rolle.
Die Erzeugung fluktuierender erneuerbarer Energien hängt von Wetterbedingungen und
anderen äußeren Faktoren ab und kann daher regional und zeitlich sehr unterschiedlich
ausfallen. Deshalb gewinnt neben der Speicherung von Energie die Übertragung über
große Distanzen zunehmend an Bedeutung. Dies führt zu Engpässen im Stromnetz und
trägt insgesamt zu dessen höherer Auslastung bei. In stark ausgelasteten Netzen kann der
Ausfall einer einzelnen Leitung oder eines Generators durch Verlagerung der Lastflüsse
zur Überlastung anderer Leitungen führen. Diese werden dann ebenfalls abgeschaltet, was
eine weitere Verlagerung hervorruft, bis schließlich Teile des Netzes nicht mehr mitein-
ander verbunden sind. Derartige kaskadierende Ausfälle können zu großflächigen Strom-
ausfällen führen. Da fast die gesamte Infrastruktur und ökonomische Aktivität von einer
verlässlichen Stromversorgung abhängt, sind Stromausfälle mit großen Risiken verbun-
den. Um eine stabile Stromversorgung zu gewährleisten, ist es daher zentral, zu verstehen,
wie Netzwerke auf lokale Störungen reagieren, wie Flüsse sich nach Ausfällen verlagern
und wie kaskadierende Ausfälle sich in verschiedenen Stromnetzen ausbreiten.

In dieser Arbeit untersuche ich, inwiefern die Netzwerktopologie von Stromnetzen und
anderen Versorgungsnetzwerken ihre Resilienz prägt. Zunächst analysiere ich die Verlage-
rung der Flüsse nach Ausfall einer oder mehrerer Leitungen im Detail und leite mathema-
tisch rigorose Ergebnisse für die Bedeutung verschiedener netzwerkbasierter Distanzmaße
zur Verminderung der Flüsse her. Weiterhin zeige ich, dass die Auswirkung eines ein-
zelnen Leitungsausfalls in verschiedenen Topologien einer universellen Verteilung folgt.
Hieraus leite ich ein stochastisches Modell für kaskadierende Ausfälle ab, welches den
zentralen Mechanismus der Verlagerung von Flüssen nach Ausfällen berücksichtigt. Ein
besseres Verständnis der Verlagerung von Flüssen nach Leitungsausfällen ermöglicht mir,
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Zusammenfassung

Anpassungen an der Netzwerktopologie herzuleiten, welche zu einer starken Verminde-
rung oder einer kompletten Aufhebung der Leistungsflussänderungen in ganzen Regionen
führen und somit das Risiko kaskadierender Ausfälle stark reduzieren. In einem nächsten
Schritt analysiere und vergleiche ich die topologischen Charakteristika verschiedener Ar-
ten von Versorgungsnetzwerken, um darzulegen, wie äußere Faktoren die Struktur opti-
maler Netzwerke prägen und beeinflussen. Abschließend untersuche ich in einem realisti-
schen Energiesystemmodell, welche Faktoren gefährliche kaskadierende Leitungsausfälle
begünstigen, um die Ausiwrkungen der Energiewende in Europa zu analysieren.
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1. Introduction

1.1. Why research on power grids is important:

climate change and the energy transition

In the Paris Agreement, most of the world’s countries have committed to “holding the in-
crease in the global average temperature to well below 2 °C above pre-industrial levels” [11].
In order to reach this target, a rapid transformation in many aspects of modern society is
necessary, as stated by the Intergovernmental Panel on Climate Change (IPCC) in the sum-
mary for policymakers [12]:

“Pathways limiting global warming to 1.5 °C with no or limited overshoot
would require rapid and far-reaching transitions in energy, land, urban and
infrastructure (including transport and buildings), and industrial systems (high
confidence). These systems transitions are unprecedented in terms of scale,
but not necessarily in terms of speed, and imply deep emissions reductions in
all sectors, a wide portfolio of mitigation options and a significant upscaling
of investments in those options (medium confidence).”

As a result, many of the world’s countries have implemented policies and committed to
net-zero emission targets which are, however, currently believed to be non-sufficient to
limit global warming to or below 2 °C [13–15].

For now, we focus on the transformation in the European Union and in particular its
member state Germany. In Germany, the ‘Federal Climate Protection Act’ establishes
emission reduction goals on a national level to fulfil the pledges given in the Paris Agree-
ment [16]. By 2030, Germany plans to reduce its greenhouse gas emissions by 55% as
compared to 1990, reaching net-zero emissions by 2050. In Figure 1.1, I show the annual
emissions in million carbon dioxide equivalents since 1990 based on data provided by the
German Environment Agency (”Umweltbundesamt”) [17]. As we can see, around 35%
of the emissions can be directly attributed to the energy industry. Furthermore, there is a
growing effort for electrification in other sectors as a means to reduce carbon emissions,
ranging from the transport sector via electric vehicles to industry [18–20] which altogether
account for much more than half of the emissions on average. For this reason, a decarbon-
isation of the electricity sector is one of the crucial ingredients to achieve the short- and
long-term emission reduction goals.
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Figure 1.1.: German greenhouse gas emissions in million carbon dioxide equivalents
(CO2-eq) by sector in the years 1990-2019 and governmental emission re-
duction target for the year 2030. A large share of Germany’s greenhouse gas
emissions results from the production of electrical power by the energy in-
dustry (very dark blue) while showing a strong decrease in recent years. Tak-
ing into account the fact that there is a growing electrification also in other
sectors such as the transport sector (dark blue) or industry (grey), a major part
of the emissions is directly related to electricity production. Data provided by
the German Environment Agency (Ref. [17]) and Figure self-designed. See
Ref. [17] for further information on how the data is calculated.

Throughout this thesis, I will focus on the electricity sector and in particular the electri-
city grid. As a result of the emission reduction goals, today’s energy system will need to
transform from a fossil-fuel based energy production to a production based on renewable
energy sources, which has far-reaching consequences for the power transmission grid [21–
23]. At present, the vast majority of electricity on a global scale is being produced by burn-
ing fossil fuels at centralised locations [24]. Typically, power production based on these
conventional carriers can be scheduled ahead and, for some power plants, changed mo-
mentarily if needed. In contrast to that, highly-renewable power production will rely on
a decentralised energy production and cannot easily be planned ahead or increased spon-
taneously due to the dependency of variable renewable energy (VRE) sources on weather
conditions. Extending today’s transmission grid is essential to compensate for this regional
variability of VRE and to account for the fact that the decentralised production tends to
increase the geographical distance between locations of generation and consumption of
electrical power [23, 25–27]. Thus, the power transmission grid will likely play a more
important role in future electric power systems [24]. For this reason, it is crucial to under-
stand how the future electricity grid can be operated reliably.
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1. Introduction

Figure 1.2.: Power grids as graphs. European power grid at the high-voltage transmission
level covering transmission lines with voltage levels 220kV, 300kV and 380kV
based on the open energy system model PyPSA-Eur [28] with the network
topology fully available online [29]. The network consists of nodes (black
circles) that represent buses to which consumers, generators or storages are
connected directly or via lower-voltage distribution grids. Pairs of nodes are
joint by edges (black and green lines) that connect pairs of buses and corres-
pond to transmission lines or transformers. Here, I present the power grid at
the transmission level that consists of high-voltage alternating current (HVAC)
lines (black) and high-voltage direct current (HVDC) lines (green).

1.2. Power grids and complex networks research

As we have seen, a decarbonisation of the power system is key to achieve emission reduc-
tion goals and prevent climate change. We will now turn to the question of how to model
the energy system to assess important issues of stability and efficiency that arise during
the energy transition. In Figure 1.2, I present the European power grid at the transmission
level. As clearly visible, the power grid is highly interconnected: high-voltage alternating
current (black) and direct current (green) transmission lines transport power over large
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1. Introduction

distances and connect buses (black circles) to which consumers or producers of electrical
power are connected either directly or via distribution grids. Using the language of graph
theory, we may interpret the buses as nodes and the lines as edges that together form a
graph.

This graph-theoretical perspective on power grids turns out to be fruitful in many re-
gards. Firstly, it allows applying methods from algebraic graph theory to power system
analysis [30, 31]. In algebraic graph theory, the interdependence of nodes and edges is
incorporated into matrices, which allows describing the network topology of power grids
compactly while making them more easily accessible from a theoretical point of view.
Furthermore, it establishes a link between power systems research and network science
as well as networked dynamical systems analysis and has thus attracted growing interest
from the physics and network science community [32–36].

Dynamical system models of power grids incorporate the topological aspects as well
as the dynamics, i.e. the time-dependent behaviour, of individual generators and loads at-
tached to the graph’s nodes. Purely topological analyses of power grid network structures
on the other hand allow comparing different grid structures to each other using tools from
network science [37]. In particular, the topological analysis has led to the development
of synthetic models of power grids that correspond to real-world power grids in terms of
different topological indicators [34, 38–41]. Finally, the purely topological perspective on
power grids allows comparing them to other types of supply networks or spatially embed-
ded networks in general [42].

1.3. Power system stability

Given the meshed structure of power transmission grids discussed in the last section, one
can imagine the effort it takes to keep a system of this dimension and complexity run-
ning stably. At present, the majority of electrical power in Europe is being produced by
synchronous generators that generate power in the form of alternating current via rotating
masses [43]. Remarkably, the generators in large geographical regions, called synchron-
ous regions, rotate synchronously with the grid’s nominal frequency ω0 in the absence of
major disturbances. The largest such region in the European power system spans main-
land Europe from Portugal to Turkey, excluding Scandinavia and the Baltics. Within this
region, buses are mostly connected via AC transmission lines, i.e. power is mainly being
transferred via alternating currents with the grid frequency of oscillations of ω0 = 50Hz.

Deviations of the grid frequency from its reference valueω0 can have severe consequences,
which is why it is one of the central indicators of power system stability [43]. As a con-
sequence, the transmission system operators in Europe are obliged to have control schemes
in place to keep the grid frequency close to its nominal value of ω0 = 50Hz. The schemes
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1. Introduction

are based on the time and magnitude the grid frequency deviates from its nominal value
and aim to keep the power system stable [44]. There is a direct connection between the grid
frequency and the synchronous generators connected to the power grid: In the first seconds
immediately following an increase or decrease in the power being consumed in the grid,
the grid frequency responds by a decrease or increase, respectively, which is governed
by the inertia constants of the generators [45, 46]. The physical mechanism behind this
behaviour is the following: If there is an overproduction of energy, the energy not being
consumed is transformed into kinetic energy and, as a result, the synchronous generators
start rotating faster than the nominal frequency.

One of the biggest threats to power system stability is given by cascading outages [47,
48]. A cascading outage is typically triggered by the failure of a single transmission line or
generator, whose failure leads to a rerouting of power flows in the network. This rerouting
mechanism typically increases the power flows on other transmission lines, which may be-
come overloaded and undergo an emergency shutdown. Again, power flow from the lines
being shut down is rerouted in the network, which may trigger additional overloads and
so forth. As a result of this cascading failure, parts of the power grid can become discon-
nected. In these so-called system splits, there typically is a significant mismatch between
power being produced and consumed in each of the disconnected parts of the grid, result-
ing in a sharp increase or decrease in the grid frequency as discussed in the last paragraph.
This whole process may happen within seconds as recent examples demonstrate [47, 49–
51]. For this reason, transmission system operators are left with only very few options to
limit the impact of large scale failures that result from the cascade once the entire process
is triggered. This is why different security measures are in place to prevent cascades from
happening in the first place. One such measure is the so-called ‘N-1 criterion’ by which
the TSOs are obliged to operate the grid only such that the failure of any transmission or
generation element will not trigger any additional failures [44, 52].

As a next step, we will turn to potential impacts of the energy transition on this aspect
of power system stability. Economic analyses have compared different pathways towards a
fully renewable power systems in Europe to identify cost-optimal transformation scenarios.
Some studies come to the conclusion that the cheapest transformation of Europe’s power
system can be achieved by building renewable energy sources at favourable, decentral-
ised locations distributed along the continent, which increases the need for electric power
transmission. As a result, the analyses conclude that transmission capacities between these
locations and between different countries have to be increased significantly [22, 23, 26,
53]. Thus, cost-optimal highly-renewable power grids likely require transmission expan-
sion. Until transmission expansion is completed, an increase in renewable energy sources
can result in higher transmission line utilisation and in some cases in network conges-
tion [54, 55] where renewables need to be curtailed to avoid levels of line loading that
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1. Introduction

would threaten stability. Note that the curtailment is also assumed to be caused by the
design of the electricity market [56, 57]. As a result, the risk for cascading failures in-
creases due to larger amounts of flows being redistributed after line failures.

1.4. Cascading outages as a major threat to power

system stability

As we have seen, cascading power outages present the major threat to power system sta-
bility [47]. In a cascading outage, the failure of a single or only a few transmission or
generation elements causes additional failures, which then lead to a sequence of failures
that propagate non-locally through the power grid [47, 58]. Cascading power outages can
leave millions of households without electricity as recent examples in Europe or the U.S.
have demonstrated [49, 50, 59, 60]. To illustrate the mechanisms involved in a cascading

Figure 1.3.: Cascading failures of transmission lines in the German transmission grid
(black and green lines) during the power outage in Europe in 2006. Initially, a
transmission line over the river Ems near the city of Oldenburg was shut down
for the passage of a ship (red cross). This shutdown caused a power flow rerout-
ing through other transmission lines, which became overloaded. As a result,
a sequence of transmission line failures occurred (numbers, crosses coloured
from light yellow to dark blue) until finally, the European grid was split into
multiple disconnected parts (see Figure 1.4). Crosses represent approximate
locations of the failure events. The sequence of events was obtained from the
report on the split by the UCTE [49, Appendix 3] provided by its successor
organisation, the ENTSO-E and network data is based on PyPSA-EUR [28,
29] showing today’s grid.
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1. Introduction

outage, I now turn to the European blackout of 2006 and discuss it in detail based on a
report by the union for the co-ordination of transmission of electricity (UCTE) [49]. The
propagation of the cascading outage through the German grid is shown in Figure 1.3.

The outage took place on November 4, 2006 and resulted in a disruption of electricity
supply for more than 15 million household. Let us first look at the situation in the power
grid before the outage happened. Initially, the transmission lines connecting Germany to
the Netherlands and the corresponding East-West connections within Germany were car-
rying large power flows due to cross-border trading and significant wind power generation
in Northern Germany. Around 10 pm, a transmission line in North-Western Germany on
top of the river Ems near the city of Oldenburg was shut down for the passage of a ship
(Figure 1.3, red cross). Shortly afterwards, the transmission system operator (TSO) of the
region decided to perform a small change in the power grid network topology by coupling
two buses at Landesbergen substation near the city of Hanover such that all connecting
transmission lines shared the same bus after the coupling. As a result, the transmission
line connecting the Landesbergen substation to the one in Wehrendorf near the city of
Osnabrück, which also carried significant power flows in East-West direction, tripped and
was shut down. The shutdown of the transmission lines resulted in a rerouting of the power
flows initially carried by the lines to other East-West connections which then became over-
loaded and resulted in further shutdowns in a sequence of events until, within seconds,
more than 20 transmission lines all over Europe tripped, and the European transmission
system was divided into three isolated regions.

Such events, where different regions that are otherwise connected and operated syn-
chronously become disconnected, are referred to as system splits. In the immediate after-
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Figure 1.4.: Cascading outage in the European power system in 2006. As a result of the
outage, the power system is split into three individual components that are no
longer connected to each other (shades of green, left). Significant deviations
from the system’s nominal frequency ω0 = 50Hz occur in the three isolated
components in response to the system split (right). Figure adapted and recom-
bined from the report on the split by the UCTE [49] provided by its successor
organisation, the ENTSO-E.
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1. Introduction

math, there may be a significant imbalance between load and generation in each of the
separated components due to the lack or surplus of power that is otherwise imported or
exported. This imbalance results in a frequency deviation from the nominal frequency of
ω0 = 50Hz whose rate of change is determined by the magnitude of the imbalance and
the inertia of the remaining generators in each component. Figure 1.4 shows the three
disconnected regions in Europe after the system split in 2006 (left) and the corresponding
frequency deviation over time (right). In the region experiencing an under-frequency (dark
green), which ranges from parts of Germany to Spain and Italy, the power system could
only be protected from a complete collapse by performing significant load shedding, i.e.
cutting electricity supply to customers. This underlines the severity of cascading outages
and demonstrates the importance to understand and prevent such events.

1.5. Scope of this thesis: resilience in linear flow

networks

In this thesis, I analyse what shapes a power grid’s resilience against perturbations – from
small failures to large scale cascades. I focus on the network structure as the central charac-
teristic of large scale power systems to understand which factors determine a grid’s struc-
tural stability. To this end, I analyse how flow is rerouted after failures in relationship to the
network topology. The linear approximation of power flows which is the main approach
used in this thesis allows to unveil a direct connection between network structure and flow
rerouting such that small- and large scale failures may be understood by focusing on the
network topology.

The aim of this thesis is thus to understand on a very fundamental level which network
structures make a given network more resilient to failures and which ones make it partic-
ularly vulnerable. Throughout this thesis, I will discuss and try to answer the following
questions: How do failures spread in different kinds of power grids and supply networks?
Is there a common trait that underlies all or most real-world networks, i.e. do they share
a common optimal design – and how are such traits related to network resilience? Does
vulnerability with respect to single link failures determine vulnerability in terms of cas-
cading failures? And finally: How can we design networks in such a way that dangerous
cascades and system splits are identified and prevented?

Since this thesis heavily relies on linear flow networks, I will briefly discuss why this
focus is advantageous for its scope in the following paragraph. Firstly, it largely increases
the generality of the results obtained and derived here. Linear flow models are not restric-
ted to linearised power flow models, but may be used to describe – among others – resistor
networks [31, 61], hydraulic networks [62] or leaf venation networks [63, 64]. Thus, find-
ings obtained for linear flow networks find a broad applicability. As a result, there is a large
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1. Introduction

body of historical literature about linear flow networks that dates back to early works by
Kirchhoff in 1847 [65] which we can profit from. Secondly, the linear treatment is more
accessible and allows even for rigorous results, as we will see in the following. Flow redis-
tribution after transmission element failures is determined purely by the network topology
in linear flow networks. Thus, the flow redistribution patterns leading to cascading fail-
ures may be understood mainly by analysing the network topology. Finally, with regard
to the applicability to power flow studies, in most cases linear flow networks capture the
relevant aspects well, in particular when looking at power flow rerouting and cascading
failures [66–69]. For this reason, they have been successfully applied to better understand
how cascading power outages emerge [70].

1.5.1. Structure of the thesis and publications

The thesis is structured as follows: In Chapter 2, I present three publications that lay the
foundation for understanding the impact of link failures in linear flow networks. First,
we explored the effect of a single link failure and the subsequent flow rerouting in Ref. [1]
(Section 2.1). We then extended the analysis to the interplay of two simultaneous failures in
Ref. [2] (Section 2.2). Finally, we found universal properties of flow rerouting throughout
different network topologies that we then exploited to come up with a probabilistic flow
redistribution model for cascading failures in Ref. [3] (Section 2.3).

In the next chapter, we turn to strategies counteracting cascading failures by analysing
network structures that limit the effect of link failures. In Ref. [4], we proved the existence
of a subgraph that completely suppresses the impact of link failures between subgraphs
that it connects (Section 3.1). We then extended on this result and suggested further con-
tainment strategies based on a fundamental lemma on the importance of specific path for
flow rerouting in Ref. [5] (Section 3.2).

As a next step, we turn to another fundamental aspect of network structure and con-
sider optimal network design in Chapter 4. In Ref. [6], we analysed a class of networks
whose structure provide resilience in an optimal way and minimise the dissipated energy
with a particular focus on the formation of loops (Section 4.1). In Ref. [7], we considered
a novel type of community structure and showed that these communities result from a
trade-off between resilience and costs in optimal supply networks and power grid models
(Section 4.2).

Finally, we move on to the topic of realistic cascading failures resulting in system splits,
as discussed in detail in the last section. In the last, unpublished manuscript, we considered
different transmission expansion scenarios and different levels of renewable energy sources
in the European power system and analysed and classified cascading outages resulting in
system splits to reveal which factors favour particularly dangerous splits.
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1. Introduction

In addition to the aforementioned publications, I contributed to several other manu-
scripts while working on my thesis that are, however, not part of the thesis: I contributed to
Ref. [8] where we studied multistability in power grid models, Ref. [9] where we used our
results on failure spreading in linear flow networks to shield specific solutions in coupled
oscillator models and Ref. [10] where we analysed specific states in coupled oscillator
networks.

12



2. Foundations of link failures and linear
flow networks

In the first three publications, we discuss the fundamentals of flow rerouting after the fail-
ure of a single or few transmission lines. This scenario is of utmost importance for the
understanding of power grid stability, as most large-scale blackouts can be traced back to
the outage of a single transmission element [47]. In Section 2.1, we review the mathemat-
ical description of link failures, outline a connection to classical electrostatics and analyse
the spatial distribution of flow rerouting with a focus on the role of different measures
of distance. In Section 2.2, we extend the analysis to the case of several simultaneously
failing links, with a focus on the different manifestations and the strengths of collective
effects. Section 2.3 complements these ‘microscopic’ results by a statistical analysis of
flow distribution factors, revealing universal properties throughout different power grid
topologies.

In regular networks where each node has the same amount of neighbours, for example in
square grids, flow rerouting turns out to be well-described by an analogy to electrostatics:
The failure of a single link induces a dipole-like pattern of flow changes. Here, I contrib-
uted to the publication by analysing additional regular networks such as triangular grids
and hexagonal grids and deriving simple scaling laws of flow changes with distance. To
study which of these analyses translates to more realistic networks, I extended the analysis
to sparse grids where an increasing share of links was removed from the regular networks.
Furthermore, I contributed by deriving parts of the theoretical results on the relationship
between flow rerouting and network topology. Finally, I contributed to writing the manu-
script and designing some of the figures.

Even though the analysis of link failures relies on linear flow networks, the simultaneous
failure of multiple links results in collective effects that cause flow patterns different from
the linear superposition of the two individual failures. In the second publication, we focus
on these collective effects: We demonstrate that two simultaneous link failures can amp-
lify or attenuate each other depending on the network topology. The latter effect provides
an effective strategy to contain damages caused by a single failure since the additional,
intentional removal of another link can actually increase the system performance – this is
known as Braess’ paradox [71]. But in which cases do these effects dominate, and when is
it sufficient to consider the failure of each link separately in a linear superposition? To an-
swer this question, we introduce a simple predictor that is based on the network topology

13



2. Foundations of link failures and linear flow networks

and performs very well in forecasting whether two links interact strongly collectively and
prove that it is a lower bound for the actual interactions. Here, I contributed by writing a
large part of the paper, deriving parts of the theoretical results and designing half of the
figures.

Now we shift perspective from an individual link failure to the statistics of all possible
single link failures in an entire network. Since the redistribution factor describing single
link failures is based purely on the network topology, the statistics of these factors is a
characteristic of a given network’s resilience. In the third publication, we compare this
statistics for different synthetic, random and test case grids. We find a universal statist-
ics of redistribution factors that displays a large similarity throughout different networks.
This finding offers an explanation for the scale-free nature of outage sizes observed in em-
pirical data, as we demonstrate by introducing a stochastic load redistribution model that
incorporates the universal redistribution statistics. Here, I contributed by performing all
numerical simulations and analyses, designing all figures and writing most of the paper.

2.1. A) Non-local impact of link failures in linear flow

networks

[1] Strake, J., Kaiser, F., Basiri, F., Ronellenfitsch, H. & Witthaut, D. Non-local impact of
link failures in linear flow networks. New Journal of Physics 21, 053009. doi:10.1088/
1367-2630/ab13ba (2019).

The article was published Open Access under a Creative Commons Attribution 3.0 In-
ternational License. A copy of this License is available at http://creativecommons.
org/licenses/by/3.0/.
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Abstract
The failure of a single link can degrade the operation of a supply network up to the point of complete
collapse. Yet, the interplay between network topology and locality of the response to such damage is
poorly understood.Here, we study how topology affects the redistribution offlow after the failure of a
single link in linearflownetworkswith a special focus on power grids. In particular, we analyze the
decay offlow changes with distance after a link failure andmap it to thefield of an electrical dipole for
lattice-like networks. The corresponding inverse-square law is shown to hold for all regular tilings. For
sparse networks, a long-range response is found instead. In the case ofmore realistic topologies, we
introduce a rerouting distance, which captures the decay offlow changes better than the traditional
geodesic distance. Finally, we are able to derive rigorous bounds on the strength of the decay for
arbitrary topologies that we verify through extensive numerical simulations. Our results show that it is
possible to forecast flow rerouting after link failures to a large extent based on purely topological
measures and that these effects generally decaywith distance from the failing link. Theymight be used
to predict links prone to failure in supply networks such as power grids and thus help to construct
grids providing amore robust and reliable power supply.

1. Introduction

The robust operation of supply networks is essential for the function of complex systems across scales and
disciplines. Almost all of our technical and economical infrastructure depends on the reliable operation of the
electric power grid [1, 2]. Biological organisms distribute water and nutrients via their vascular networks, for
instance in plant leaves [3], the human and animal circulatory system [4], or in protoplasmic veins of certain
slimemolds [5]. Huge amounts ofmoney and assets are exchanged through a complex financial network [6].
Structural damages to such networks can have catastrophic consequences such as a stroke, a power outage or a
major economic crisis.

In power grids, large scale outages are typically triggered by the failure of a single transmission or generation
element [7–11]. The outages in theUnited States in 2003, Italy in 2003 andWestern Europe in 2006 are verywell
documented and provide a detailed insight into the dynamics of a large scale network failure [12–14]. Each
outagewas triggered by the loss of a transmission line during a period of high grid load. Subsequently, the power
flowswere rerouted, causing secondary overloads and eventually a cascade of failures. In these three examples,
the cascades propagatedmostly locally—overloads took place in the proximity of previous failures. However,
this is not necessarily the case during power outages (see, e.g. [15]), raising the question of hownetworks flows
are rerouted after failures [16–23].

In biological distribution networks, robustness against link failure is a critical prerequisite that guards
against potentially life-threatening events such as stroke [24] or embolism [25, 26], but also to function
efficiently in the presence offluctuations [3, 27, 28]. Thus, biological networks are often (but not in all cases, such
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as in the penetrating arterioles of the cortical vasculature [29]) endowedwith highly resilient, redundant
topologies that optimize rerouting offlow in case of link failure to the network [28] and are generated through
adaptive developmentalmechanisms [30]. For the understanding of such life-threatening conditions it is
therefore crucial to investigate the behavior of the vascular network in the case of failure.

To understand the vulnerability of networks, we here provide a detailed analysis of the impact of link failures
in linearflownetworks.We focus on how the network topology determines the overall network response as well
as the spatial flow rerouting.We consider linear supply networkmodels, where the flowbetween two adjacent
nodes is proportional to the difference of the nodal potential, pressure or voltage phase angle. Linearmodels are
applied to hydraulic networks [31], vascular networks of plants and animals [28, 32–35], economic input–
output networks [36] aswell as electric power grids [37–42]. The linearity allows to obtain several rigorous
bounds forflow rerouting in general network topologies and to solve special cases fully analytically.

The paper is structured as follows; first, we formally introduce linear flownetworks in section 2 and present a
framework for studying line outages in such networks in section 3. Afterwards, we establish amathematical
analogy offlow rerouting after line outages and electric dipole fields on square grids in the continuum limit in
section 4.We then derive rigorous bounds on the strength of this effective dipole to describe how the flow is
rerouted on arbitrary network topologies in section 5. Finally, we establish a newdistancemeasure on networks,
the rerouting distance, which is able to predict theflow redistributionmuch better than the ordinary geodesic
distance in section 6. Furthermore, we study the effect of network sparsity on the dipole pattern offlow
redistribution and quantify this scalingwith distance from the failing link in the same section.

2. Linearflownetworks

Consider a network consisting ofNnodes (vertices) that are connected to each other via lines (edges) denoted by
( )m n, for a line going fromnodem to node n.We assume the network to be globally connected, otherwise
consider each connected component of the network separately. Assign a potential or phase angle q Îm to each
nodem in the network. Thenwe assume theflow Fm n between nodesm and n connected via line ( )m n, to be
linear in the potential drop along the line

q q= - ( ) ( )F b . 1m n mn m n

Here, =b bmn nm is the transmission capacity assigned to the line ( )m n, that describes its ability to carryflow.
This equationmay for example be used to describe hydraulic networks [31, 43] or vascular networks of plants
[28], where the qn denotes the pressure at some node n and the capacity bmn scales with the diameter of a pipe or
vein. Ourmain focuswill be its application to electric power engineering, where this linear approximation of the
powerflow equations is referred to as theDC approximation [38–40]. In this case, Fm n refers to the flowof real
power along a transmission line ( )m n, , qn is the voltage phase angle at node n and bmn is proportional to the
line’s susceptance. For the sake of consistency, we refer to the qn as ‘potentials’ throughout this paper. Since only
phase differences are involved in the flow calculation, these potentials are only defined up to a constant phase
shift. Typically, an arbitray node is selectedwhere the potential is set to zero, q = 0n .

In addition to that, we assume that Kirchhoff’s current law holds at the nodes of the networkwhich states
that the inflows and outflows at any nodem balance

å =
=

 ( )F P , 2
n

N

m n m
1

where the right-hand side denotes the inflow ( >P 0m ) or outflow ( <P 0m ) at nodem, commonly called the
‘power injection’ in power engineering. Equations (1) and (2) describe the state and the flowof the network up to
a constant phase shift as described above once the line parameters bmn and the injectionsPm are given.

These equationsmaybe convenientlywrittenusinga vectorial notation.Define the vector  q q q= ¼ Î( ), , N
N

1

of thenodalpotentials or voltagephase angles and the vector  = ¼ Î( )P P P, , N
N

1 ofnodal injections.Here and in
the following sections, the superscript ‘’denotes the transposeof a vectorormatrix.We further label all lines in the
gridby = ¼ℓ L1, , and summarize all lineflows in avector  = ¼ Î( )F F F, , L

L
1 . Equation (1)may thenbe

rewrittenas

q= ( )F B K , 3d

where Î ´Bd
L L is a diagonalmatrix containing the capacities ℓb of all edges. Furthermore, we defined the

node-edge incidencematrix Î ´K N L. To define thismatrix in an undirected graph, one typicallyfixes an
arbitrary orientation of the graph’s edges such that its components read

2
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= -

⎧
⎨⎪
⎩⎪

ℓ
ℓ ( )ℓK

n
n

1 if line starts at node ,
1 if line ends at node ,

0 otherwise.

4n,

The node-edge incidencematrix also relates the injections to the flows incident at a node.More specifically,
Kirchhoff’s current law(2)may be rewritten as follows

q q= = = ( )P KF KB K B . 5d

Here, we defined thematrix  = Î ´B KB Kd
N N commonly referred to as the nodal susceptancematrix in

power engineering.Mathematically, B is a weighted Laplacianmatrix [44, 45]with components

å
=

=

-
ÎL⎪

⎪

⎧
⎨
⎩ ℓ

ℓ ℓ

ℓ
B

b m n

b m n

if ;

if is connected to by .
mn

m

Here, Lm is the set of lines which are incident tom.

3. Algebraic description and analysis of line outages

An important question in network security analysis is how the flows in the network change if a line fails.
Denoting by Fℓ the initialflowof the failing line =ℓ ˆ ( )r s, , theflow changeDFe at a transmission line
=̂ ( )e m n, is written as

D = ( )ℓ ℓF FLODF . 6e e,

Adopting the language of power system security analysis [37, 38], we call the factor of proportionality the line
outage distribution factor (LODF). In the following, we present two alternative derivations aswell as a physical
interpretation of the linearflow rerouting problem.

3.1. Self-consistent derivation of LODFs
Toderive an explicit expression for the LODFs one generally starts with a related problem. Consider an increase
of the real power injection at node r and a corresponding decrease at node s by the amountDP . The new vector
of real power injections is then given by

n= + Dˆ ( )P P P , 7rs

where the components of n Îrs
N are+1 at position r,−1 at position s and zero otherwise. Here and in the

following, we use a hat to indicate the state of the network after a line outage or a similar change of the topology.
The change of the real power injections causes the following change in the real power flow

n nD = D
=

 ( )†

( )

BF b P. 8mn mn mn rs

:PTDF m n r s, , ,

Here, †B denotes theMoore–Penrose pseudo-inverse of the Laplacianmatrix B and the factor of proportionality
is referred to as the power transfer distribution factor (PTDF).

The LODFs can be expressed by PTDFs in the followingway [38]. To consistentlymodel the outage of line
( )r s, , one assumes that the line is disconnected from the grid by circuit breakers and that some fictitious real
powerDP is injected at node s and taken out at node r. The entireflowover the line ( )r s, after the opening thus
equals thefictitious injections = DF̂ Prs . Using PTDFs, we also know that

= + Dˆ ( )F F PPTDF .rs rs r s r s, , ,

Substituting = DF̂ Prs , solving forDP and inserting equation (8) yields

=
-

( )( ) ( )
( )

( )
LODF

PTDF

1 PTDF
. 9mn rs

m n r s

r s r s
,

, , ,

, , ,

For consistency, one usually defines the LODF for the failing line as follows: = -( ) ( )LODF 1rs rs, . In addition to
that, we exclude cases where the failing line is a bridge, i.e. a linewhose removal disconnects the graph, fromour
analysis in the following sections.

3.2. Algebraic derivation of LODFs
The LODFs can also be obtained in a purely algebraic waywithout any self-consistency argument [46]. As the
line =̂ℓ ( )r s, fails, the nodal susceptancematrix of the network changes as

n n = + D D =ˆ ( )B B B B B B, where , 10rs rs rs

3
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which causes a change of the nodal potentials or voltage phase angles respectively,

q q q y = +ˆ ( ). 11

Equation (5) for the perturbed grid now reads

q y+ D + =( )( ) ( )B B P. 12

Subtracting equation (5) for the unperturbed grid, we see that the change of the voltage angles is given by

y q n= - + D D = + D( ) ( ) ( )† †B B B B B F . 13rs rs

The change of flows after the outage of line ( )r s, and thus the LODFs are calculated from the change of the
voltage angles which yields





n y
n n
y yD = - =

= + D

( )
( ) ( )†B B

F b b

b F . 14

mn mn m n mn mn

mn mn rs rs

In principle, we could nowuse these equations to calculate the flow changes and the LODFs.However, this
would require to invert thematrix = + DB̂ B B separately for every possible line ( )r s, in the grid, which is
impractical. Nevertheless, we can simplify the expression using theWoodburymatrix identity,

  n n n n n n+ = - +( ) ( )† † † † † †B B B BB B .rs rs rs rs rs rs rs rs

Thuswe obtain

 n n n n n n+ = + -( ) ( ) ( )† † †B B BB B1 , 15rs rs rs rs rs rs rs rs
1

such that theflow change (14) reads




n n
n n

D =
-

´ ( )†
†

B

B
F

b

b
F

1
, 16mn

mn mn rs

rs rs rs
rs

which is identical to equation (9) obtained using the standard approach.

3.3. Electrostatic interpretation
Adeeper physical insight into the network flow rerouting problem is obtained by the analogy to discrete
electrostatics. Equation (13) can be rearranged into a linear set of equations for the change of the nodal potentials

^y n= ( )B F . 17rs rs

Here, B̂ is the Laplacian of the grid after the failure, i.e.the gridwhere line ( )r s, has been removed. Alternatively,
we can formulate the equation in terms of the original network topology, substituting equation (15) into
equation (13). This yields the linear set of equations

y = ( )B q 18

with the dipole source

n n n= - -( ) ( )†q Bb F1 . 19rs rs rs rs sr
1

As noted before, B and B̂ are Laplacianmatrices and the right-hand side of both equations (18) and (17) are
non-zero only at positions r and swith opposite sign.Hence, these equations are discrete Poisson equationswith a
dipole source and y is a dipole potential, see [47, ch 15] for a detailed analysis of this equation. Themain
complexity of the line outage problem thus arises from the network topology encoded in the Laplacian B, which
can be highly irregular.

The two equations (18) and (17) yield the same potential y, but are formulated on different topologies—
either on the original network topology or the topology after the outage. To compare the impact of different
failures it is beneficial to use the original topology, such that only the dipole inhomogeneity differs—not the
electrostatic problem itself. Then, the strength of the dipole depends on the network topology via the
prefactor n n- -( )†Bb1 rs rs rs

1.
Using the analogy to electrostatics we can solve the flow rerouting problem for regular network topologies

(section 4) and provide some general rigorous results (section 6.1). To understandflow rerouting in networks
with complex topologies, we thus have to account for the spatial spreading pattern described by †B (see
section 6.3) aswell as the dipole strength, which quantifies the gross response of the grid (see section 5).

4. Failures in regular networks and the continuum limit

To obtain afirst insight into the spatial aspects of flow rerouting, we consider an elementary example admitting a
solution in the continuum limit. Consider a regular square lattice embedded in a plane as depicted infigure 1
and studied in a slightly different form in [48]. All nodes are labeled by their positions = ( )r x y, in this

4
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two-dimensional embedding and the lattice spacing is denoted as h.We introduce continuous functionsψ and b
such that y ( )x y, is the potential of the node at ( )x y, and +( )b x h y2, is theweight of the link connecting the
two nodes at ( )x y, and +( )x h y, . The left-hand side of the Poisson equation (18) evaluated at position ( )x y,
reads



y y y y y
y y y y
y

= + - + + - - -
+ + - + + - - -

=-   +

( )( ) ( )[ ( ) ( )] ( )[ ( ) ( )]
( )[ ( ) ( )] ( )[ ( ) ( )]

· ( ( ) ) ( ) ( )

B x y b x h y x y x h y b x h y x y x h y

b x y h x y x y h b x y h x y x y h

h b x y h

, 2, , , 2, , ,

, 2 , , , 2 , ,

, . 202 3

Here, wemade use of the fact that the components of the gradient y y y = ¶ ¶( ),x y may be expressed as

y y y¶
¶

=
+ -



( ) ( ) ( )x y

x

x h y x y

h

,
lim

, ,
,

h 0

but did not take the limit yet. The derivative with respect to ymay be calculated analogously.
Before we proceed to the right-hand side, we remark that the flow changesDF according to equation (14)

are given by

y y
y y

D º D + = + + -
D + = + + -

( ) ( )( ( ) ( ))
( ) ( )( ( ) ( ))

/ /

/ /

F

F

F h x h y b x h y x h y x y

h x y h b x y h x y h x y

2, 2, , , ,

, 2 , 2 , , ,
mn x

y

where ( )m n, denotes the linkwhere the flow changes aremonitoredwhich is either oriented parallel to the
x-axis, thus consideringDFx or the y-axis, thus consideringDFy. If we divide by h and take the continuum limit
h 0 the overall continuous flow changes read thus

yD = ( ) ( ) ( ) ( )F x y b x y x y, , , . 21

Note that the expressionDF refers to the change inflowdue to the link failure here and should not be confused
with the continuous Laplace operator.

The right-hand side of the discrete Poisson equation (18)maybe calculated similarly noting that only two
nodes contributewith opposite signs. Let us assume that the failing link is parallel to the x-axis connecting nodes r
and s located at = ( )r x y,r r r and  = = +( ) ( )r x y x h y, ,s s s r r . Thediscrete version of the right-hand side reads

n n
n=

- †q
B

F

b1
.rs

rs rs rs
rs

Wewill nowderive the continuumversion of this equation. First, the flowon the failing link before the outage Frs
may be calculated as





q q
q

º + + -

=
¶
¶

+

= +

( )( ( ) ( ))
( ) ( )
( ) ( )F

F b x h y x h y x y

hb x y
x

h

h x y h

2, , ,

,

, ,

rs r r r r r r

r r

x r r

2

2

where q=( ) ( ) ( )F x y b x y x y, , , is the continuum flowbefore the outage. Second, the vector nrs can be
formally interpreted in terms of the two-dimensional delta function d ( )x y, and reads for the given link failure

Figure 1. Impact of a link failure in a homogeneous square lattice. (a)Normalized change of the nodal potentials yn, which are the
nodal phase angles when referring to power grids, for a networkwith uniform edgeweights for a single failing link located in the center
of the network. The size of the nodes aswell as the colorcode represent the strength of the change in potential. The change is strongest
close to the failing link and decays with distance. (b)Normalized change of the linkflowsDFmn for the same topology. Arrows and
color represent direction and strength of flow changes, respectively. The pattern corresponds to the one produced by an electrostatic
dipole in two dimensions.

5

New J. Phys. 21 (2019) 053009 J Strake et al





n d d
d

º - + - - - -

=
¶ - -

¶
+

( ) ( )
( ) ( )

x x h y y x x y y

h
x x y y

x
h

, ,

,
.

rs r r r r

r r 2

Finally, let us assume that a continuumversion of theGreen’s function †B exists. Then the denominatormay be
calculated as



 òn n d dº + ¶ - - ¶ - -

=
¶

¶ ¶
+

( )( ) ( ) ( ) ( )

( ) ( ) ( )

† †

†
Bb h b x h y x x y y b x y x x y y x y

h b x y
b x y

x y
h

2, , , , d d

,
,

,

rs rs rs r r y r r x r r

r r
r r

2

2
2

3

where ( )†b x y, is the aforementioned continuumversion.
Thus, in total we obtain after expanding the entire right-hand side to lowest order in the continuum limit

 d= - - +( ) ( ) ( ) ( ) ( )Fq x y h x y x x y y h, , , . 22r r r r
2 3

Here, ( )F x y,r r is assumed to be parallel to the dipole axis, i.e. the direction of the link failure, which is either the
x- or the y-direction for the given setting.

We can now formally divide left-hand side (20) and right-hand side (22) by h2 and take the limit h 0 to
obtain thefinal continuum limit of the Poisson equation,

y d  = -  - -· ( ( ) ) ( ) ( )qb x y x x y y, , , 23r r

where the source term is =( ) ( )q Fx y x y, ,r r r r , the unperturbed currentfield.We note that we obtain the same
continuum limit regardless of whetherwe use equation (17) or (18) to do the expansions. Thus, the non-locality
that is encoded in equation (18) is lost in the continuum formulation.

If the linkweights are homogeneous, =( )b x y b, , and the failing link is assumed to be located at the origin
=( ) ( )x y, 0, 0r r the solution is given by thewell-known two-dimensional dipole field

y =
 

( ) · ( )r
q r

r
, 24

2

D = -
   

⎛
⎝⎜

⎞
⎠⎟( ) · · ( )F r

q

r
r

q r

r
b 2 . 25

2 4

We thus obtain a fully analytic solution in the continuum limit. This solution reveals that the impact of link
failures decays algebraically in homogeneous lattices.We consider this decay along two different axes. Assume
the dipole to be located at the origin in x-direction, such that e= ( )q , 0 where e  1 is some small real
number. First, consider the decay in x-directionwhere = ( )r x, 0 . In this case, we obtain for the decay of the
potential and the flow changes




 

y
e

e e e

= µ

D = - = -⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

(( ) ) ·

(( ) )F

x
x

x x

x b
x

x
x

x
b

x

, 0
1

,

, 0 2 , 0 , 0 .

2

2 4 2

This decay in theflow changesmay also be observed in the discrete version of equation (22) and is shown in
figure 2(a), for a line failure in a discrete square grid. Along the same lines, wemay quantify the decay in
y-directionwhere e= ( )r y, for the same dipole orientation. In this case, we obtain






y e
e

e
e e

= µ

D » -
⎛
⎝⎜

⎞
⎠⎟

(( ) )

(( ) ) ∣ ∣F
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Here, we assumed the position vector to be dominated by its y-component, e  y such that »∣∣ ∣∣ ∣ ∣r y . In total,
we observe a -y 3-scaling in theflow changes in y-direction perpendicular to the dipole source and a -y 2-scaling
in y-direction parallel to the dipole source, see figures 2(a)–(c).

5. Rigorous bounds on the dipole strength

Wenow turn to realistic networks with irregular topologies. The change in the nodal potentials or voltage phase
angles yn andflowsD Fm n is determined by the discrete Poisson equation (18).We first consider the right-hand
side of this equation, the dipole strength, which describes the gross response of the networkflows to the outage.
This response is proportional to the initial flowof the failing edge Frs and the factor
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n n h- -- -( ) ≕ ( ( )) ( )†Bb r s1 1 , . 26rs rs rs
1 1

The factor h- ( )r s1 , describes the non-locality of the network response to a local perturbation at link
( )r s, . To see this, consider a gridwhere the real powerDP is injected andwithdrawn at the terminal nodes of the
link ( )r s, . The direct flowover the link is given by

n n h= D = D ( ) ( )†BF b P r s P, , 27r s rs rs rs

whereas the totalflow is just given byDP . The factor h ( )r s, thusmeasures the fraction of the flowwhich is
transmitted directly and h- ( )r s1 , is the fraction transmitted non-locally via other pathways.Hence,

h- ( )r s1 , can also be seen as ameasure of redundancy. A high non-local flow indicates that there are strong
alternative routes from r to s in addition to the direct link ( )r s, . If no alternative path exists, theflowmust be
routed completely via the direct link such that h- =( )r s1 , 0.

We conclude that the properties of alternative and direct paths are decisive for the understanding offlow
rerouting. Beforewe proceed, we thus review the formal definition of a path in graph theory.

Definition 1.Apath fromvertex r to vertex s is defined as an ordered set of vertices

= ¼ =( ) ( )v r v v v s, , , , , 28k0 1 2

where two subsequent verticesmust be connected by an edge andno vertex is visited twice. Two paths are called
independent if they share no common edge. The unweighted length of such a path is defined as the number of
steps k, while theweighted path length is given by the sumof the edgeweights along the path, å = -wj

k
v v1 j j1

. In this
work, the edgeweights are given by the inverse susceptances =w b1ij ij. The (weighted or unweighted) geodesic
or shortest path distance of two vertices r and s is defined as the (weighted or unweighted) length of the shortest
path from r to s.

The interpretation as a redundancymeasure directly relates the factor h- ( )r s1 , to the topology of the
network. Afirst rough estimate can be obtained from the topological connectivity l ( )r s,T , which is defined as

Figure 2. Scaling of LODFs versus geodesic distance to failing edge for different unweighted topologies and different levels of sparsity.
(a)–(c)LODFs are evaluated in different directions from the link failure and averaged over 100 realizations of square lattices from
which a fraction of =s 0 (black circles), =s 0.05 (red crosses) and =s 0.1 (blue plusses) links was removed randomly. The failing
edge is assumed to be located in x-direction at the center of a square grid of size 201×202, see figure 1. LODFs are calculated for (a)
links along the x-direction (between ( )x, 0 and +( )x 1, 0 ), (b) links along the y-direction parallel to failing link (between ( )y0, and
( )y1, ) and (c) links along the y-direction perpendicular to the failing link (between ( )y0, and +( )y0, 1 ). The -dist 2 (a), (b) and

-dist 3 (c) scaling agrees with the dipole scaling predicted using equation (25) as indicated by black lines. The levels of sparsity
considered here do not show any effect on the scalingwhen considering directions parallel to the dipole axis (a), (b), but the scaling
becomesmore long-rangedwith increasing sparsity in direction perpendicular to this axis (c). (d)The -dist 2 scaling is not unique to
square grids (purple squares, size 1000×1000) butmay also be observed for the two other regular tilings, namely the hexagonal grid
(orange hexagons, 150×150 hexagons) and the triangular grid (green triangles, size 1001×500). LODFswere again computed
along the shortest path in x-direction for links oriented parallel to the dipole. The branching for the hexagonal grid is due to the fact
that the path in x-direction is non-unique andnon-straight here, such that one of the shortest paths was chosen arbitrarily. Deviations
from the scaling occur for large distances due tofinite-size effects.
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the number of independent paths fromnode r to node s. A comparison for several test grids infigure 3 shows
that h ( )r s, decreases with l ( )r s,T on average as expected, but that there is a large heterogeneity between the
links.

To obtain a better topological estimate for the locality factorwe need to take into account the heterogeneity
of the linkweights. The topological connectivity l ( )r s,T counts theminimumnumber of edges which have to
be removed to disconnect the nodes r and s.We can define aweighted analog l ( )r s,F as theminimum capacity
which has to be removed to disconnect the nodes r and s. This is a classical problem in graph theory, where it is
referred to as theminimum cut [50].Wewill now elaborate this quantity in a definition. An ( )r s, -cut can be
defined as follows. Let Î Ìr S V and Î ⧹s V S be two vertices taken from the two disjoint sets. The ( )r s, -cut is
defined as the set of edges d = Î Î Î( ) {( ) ∣ ⧹S u v E u S v V S, , or Î Î ⧹ }v S u V S, connecting the two
disjoint vertex-sets. The set of edges d = Î Î Î+( ) {( ) ∣ ⧹ }S u v E u S v V S, , is referred to as the forward edges
of the cut. The capacityC of a cut d ( )S and the correspondingminimumcapacity l ( )r s,F between r and s are
then given by

åd

l d

=

=
dÎ

Ì Î Î

+

( ( ))
( ) ( ( ))

( ) ( )

{ ∣ ⧹ }

C S b

r s C S

,

, min .
i j S

ij

F
S V r S s V S

,

,

By virtue of themax-flow-min-cut theorem [51], l ( )r s,F is equivalent to themaximumflowwhich can be
transmitted from r to s respecting link capacity limits:



å

å

l =

"

= " ¹

=
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=
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∣ ∣ ( )
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r s F

F b m n

F m r s
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such that edges ,

and 0 , . 29

F
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r n

mn mn

n

N

mn
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1

Numerous efficient algorithms exist to calculate thismaximumflowwithout performing the optimization
explicitly [51]. The ratio l ( )b r s,rs F then gives the ratio of direct flow to totalflow from r to s and thus provides
an adequate topology-based estimate for the locality factor h ( )r s, . Indeed, we can prove that it provides a
rigorous lower bound.

Figure 3.The locality factor h ( )r s, generally decreases with the topological connectivity l ( )r s,T . Values of h ( )r s, for all links ( )r s,
with given value of l ( )r s,T are shown in a box-whisker-plot: the cross gives themean, the read line themedian, the box the 25%/75%
quantiles and the and the grey horizontal line the 9%/91%quantiles. Results are shown for three standard test grids: (a) ‘case118’, (b)
‘case1354pegase’, (c) ‘case2383wp’[49]. The values of Pearson’s correlation coefficient ρ andKendall’s rank correlation coefficient τ
are given for each test grid.
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Proposition 1.The algebraic locality factor h ( )r s, is bounded by

 
l

h( ) ( ) ( )b

r s
r s

,
, 1. 30rs

F

Aproof is given in appendix A.Numerical simulations for several test grids reported infigure 4 reveal that the
topological estimate not only provides a lower bound, but a high-quality estimate for the algebraic locality factor.
The Pearson correlation coefficient ρ between h ( )r s, and l ( )b r s,rs F exceeds 0.92 for the three grids under
consideration.

We arrive at the conclusion that the dipole strength given by h- -( ( ))F r s1 ,rs
1 generally decreases with the

redundancymeasures l ( )r s,T and l ( )r s,F .
An upper limit for the locality factor h ( )r s, can be obtained from an elementary topological distance

measure.We consider theweighted geodesic distance of the twonodes r and s after the failure of the direct link
( )r s, , whichwe denote by ( )r sdist ,1

w . The superscript w stands forweighted distance, the subscript 1 for the
distancemeasured in the graph after removal of the link ( )r s, .We then have the following upper bound.

Proposition 2.The algebraic locality factor h ( )r s, is bounded from above by

h +
´

-⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )r s

b r s
, 1

1

dist ,
. 31

rs 1
w

1

Aproof is given in appendix B.Numerical simulations for several test grids reported in figure 5 reveal that the
estimate in terms of the shortest path length not only provides an upper bound, but a high quality estimate for
the algebraic locality factor. The Pearson correlation coefficient ρ exceeds 0.94 for the three grids under
consideration.

We further note that the factor n n†Brs rs can also be interpreted as a distancemeasure—the resistance
distance [52, 53].We come back to the quantification of distances inflownetworks later in section 6.3.

6. Spatial distribution offlow rerouting

Wenow turn to the spatial aspects offlow rerouting in general network topologies.Wefirst discuss some
rigorous results, showing how the network topology determines the rerouting flows. Then, we return to the

Figure 4.The locality factor h ( )r s, is estimated by the topology basedmeasure l ( )b r s,rs F with high quality. Results are shown for
three standard test grids: (a) ‘case118’, (b) ‘case1354pegase’, (c) ‘case2383wp’[49]. The values of Pearson’s correlation coefficient ρ and
Kendall’s rank correlation coefficient τ are given for each test grid. The black line is the lower bound given by proposition 1.

9

New J. Phys. 21 (2019) 053009 J Strake et al



regular tilings and study the effect of increasing sparsity in these topologies on the dipole scaling. Finally, we
suggest a newmeasure of distance for flow rerouting and examine its performance on realistic network
topologies taken frompower grids.

6.1. Rigorous results
To start off, wefirst present a lemmadue to Shapiro [54], relating the flow changes after a link failure in an
unweighted graph solely to the topology of the underlying network.

Lemma1.Consider an unweighted network with a unit dipole source along the edge ( )r s, , i.e. a unit inflow at node r
and unit outflow at node s. Then the flow along any other edge ( )m n, is given by

 


=

 - 


( ) ( )
F

r m n s r n m s, , , ,
,m n

where  ( )r m n s, , is the number of spanning trees that contain a path from r to s of the form ¼ ¼r m n s, , , , ,
and  is the total number of spanning trees of the graph.

This lemma exactly gives the LODFs in terms of purely topological properties—the number of spanning
trees containing certain paths. A generalization of this theorem toweighted graphswas recently presented
in [55].

However, counting spanning trees is typically a difficult task such that these results are of limited use for
practical applications. Nevertheless, they reveal the importance of certain paths through networks whichwewill
analyze numerically inmore detail below. Beforewe turn to this issue, we derive someweaker, butmore easily
applicable rigorous results.

We expect that the flow changesDFmn decaywith distance as for the case of the square lattice analyzed in
section 4. Canwe establish some rigorous results on the decaywith distance for arbitrary networks? Consider the
outage of a single edge and assume that the network remains connected afterwards.We label the failing link as
( )r s, such that >F 0r s w.l.o.g.Wefirst consider the change of the nodal potential or voltage phase angle yn

and its decaywith distance to the failing link ( )r s, .More specifically, we define themaximumandminimum
values of yn attained at a given distance:

Figure 5.Anupper bound for the locality factor h ( )r s, is found in terms of the length of the shortest alternative path from r to s,
assigning to each link ( )m n, aweight -bmn

1. The black line is the lower bound given by proposition 2 and the blue dots give results for all
links in three standard test grids: (a) ‘case118’, (b) ‘case1354pegase’, (c) ‘case2383wp’[49]. High values of Pearson’s correlation
coefficient ρ andKendall’s rank correlation coefficient τ show that the expression in proposition 2 provides a good estimate for the
locality factor h ( )r s, , not only a lower bound.
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Here, ( )n rdist ,0
u denotes the geodesic distance between two nodes n and r in the initial unweighted

graph (indicated by the superscript u for unweighted and subscript 0 for the initial pre-contingency network).
We thenfind the following result.

Proposition 3.Consider the failure of a single link ( )r s, with >F 0r s in a flownetwork. Then themaximum
(minimum) value of the potential change yn decreases (increases)monotonically with the distance to nodes r and s,
respectively:

  
  

-

-ℓ ℓ
u u d d

d d
, 1 .

, 1 .
d d

d d

1 max

1 max

Aproof is given in appendix C.We thusfind that potential changes generally decreasewith the distance in
magnitude and so do theflow changes.Furthermore, we can exploit the analogy to electrostatics to gain an
insight into the scaling offlow changes with distance. As the flows are determined by a discrete Poisson equation,
a discrete version ofGauss’ theorem follows immediately.We note thatwe formulate this result in terms of the
original network topology, seeequation (18).

Lemma2.Consider the failure of a single link ( )r s, in a flownetwork and denote byV the set of vertices in the
network. For every decomposition of the network = +V V V1 2 with Îr V1 and Îs V2 we have

å hD = -
Î Î


-( ( )) ( )F F r s1 , . 32

m V n V
m n rs

,

1

1 2

That is, for each decomposition the total flow between the two partsV1 andV2 equals the dipole strength.

This lemma supports the intuitive expectation that on average flow changes decaywith distance inmeshed
networks: chooseV1 to include all nodes which are closer to r than to s and have a distance to r smaller than a
given value

 = Î{ ∣ ( ) ( ) ( )}V n V r n d r n s ndist , ; dist , dist , .1 0
u

0
u

0
u

With increasing value of d the number of nodes inV1 increases and typically the number of edges betweenV1

andV2 increases, too. The totalflowover these links remains constant according to lemma 2, such that the
average flowwill generally decrease. The exact scaling of the number of edges betweenV1 andV2 of course
depends on the topology of the network.

One can furthermore show that a sufficient connectivity is needed for perturbations to spread. Generally,
flow can be rerouted via an edge ( )m n, only if it can enter and leave the link via two independent paths. One can
thus prove the following statement [55, 56].

Proposition 4.The line outage distribution factor ℓLODFe, between two edges = ( )e m n, and =ℓ ( )r s, vanishes
if there are less than two independent paths between the vertex sets { }r s, and { }m n, .

6.2. Impact of network topology
Now that we derived rigorous results on the scaling of LODFs, wewant to study the influence of network
connectivity on the scaling inmore detail.

To do so, wefirst compare the scaling obtained for the square grid to the one in the other two regular tilings
of two-dimensional space, namely the hexagonal grid and the triangular grid. In perfect realizations of these
grids, each node has a degree of =deg 3hex and =deg 6tri , respectively, whereas the degree for the square grid
reads =deg 4sg . Infigure 2(d), the LODFs are evaluated for these three topologies with increasing geodesic
distance from the failing edge located again in the center of the networks between the nodes at =( ) ( )x y, 0, 0r r

and =( ) ( )x y, 1, 0s s . The quadratic scalingwith the geodesic distance in x-direction - x 2 (black, dotted line) is
preserved for all three topologies, i.e. the triangular grid (green triangles, bottom), the square grid (red squares,
center) and the hexagonal grid (blue hexagons, top). The grids used herewere of size 1000×1000 and
1001×500 nodes for the square grid and the triangular grid, respectively, and 150×150 hexagons for the
hexagonal grid.

Thus, the quadratic scaling is robust throughout different regular networks. However, real networks are in
general not regular. For this reason, we proceed by studying the effect of increasing sparsity in these regular
tilings. Define the sparsity x Î Ì[ ]0, 1 as the fraction of edges removed from the original graph.Wemake use
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of two differentmethods to achieve increasing sparsity. Our firstmethod is a completely random removal of
edges in the graph followed bymeasuring the LODFs along a specified path. If an edge along the path does no
longer exist, we simply skip the edge. The results obtained from thismethod are shown infigures 2(a)–(c). There
is no change visible in the scaling of LODFs, except for the direction perpendicular to the dipole in panel (c). In
particular, only small values of sparsity ξ can be studied using thismethod, since a random removal of edgesmay
easily result in disconnected graphs. For this reason, wemake use of anothermethod.

For the secondmethod, wefirst construct an arbitrary spanning tree of the network after removal of the
failing edge. Then, we subsequently remove random edges from the graph that are not part of the tree until a
fraction ξ of its original edges is removed from the graph. This way, wemake sure that thewhole graph stays
connected at all times.We continue by constructing the shortest path from the failing edge (( ) ( ))0, 0 , 1, 0 to the
node located at ( )x , 0max and quantify the LODFs along this path.Note that using thismethod tomake a
graph sparser, we need to take into account the graph-specificmaximal sparsity x Gmax, , i.e. the fraction of edges
whose removal would disconnect the graph. Assuming the initial tree to beminimal, this fractionmay be
calculated as x = 1 3max,hex , x = 1 2max,sg and x = 2 3max,tri for the hexagonal grid, square grid and triangular
grid, respectively.

Using this procedure, we can quantify the scaling of LODFs in grids with increasing sparsity. The direct
assessment of a scaling exponent is difficult for sparser graphs due to the large spread in LODF values, see
figure 6(a). This is whywe construct a differentmeasure to quantify this scaling.We consider the effective
exponent x( )k , where ξ is the graph’s sparsity, and assume a scaling of the form

x µ x-∣ ( )∣ ( )r rLODF , k

in some region of the geodesic distance =  rr from the link failure. This effective exponent is calculated as
follows

å
å

x
x

x
= - Î ´ - ´ +

Î - +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ∣ ( )∣

∣ ( )∣
[ ]

[ ]
k

r

r
log

LODF ,

LODF ,
,r w w

r w w
5

5 10 ,5 10

10 ,10

1 1

1 1

Figure 6. Increasing sparsity leads tomore long-ranged effects of link failures in regular grids. (a)Exemplary scaling of LODFs in a
square grid of size 500×500with increasing sparsity (colors fromdark to light purple), now achieved through the removal of edges
not contained in an arbitrary spanning tree. (b)Whereas the effective exponent shows no change and thus still obeys approximately
the inverse-square law for all topologies, (c) the logarithmic ratio between LODFswith andwithout sparsity at a certain distance
increases on averagewith increasing sparsitiy. Boxplots are shown for 100 realizations of the hexagonal grid (left, orange), square grid
(purple, center) and triangular grid (green, left) choosing a random spanning tree as the basis for edge removal for each realization and
value of sparsity.
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where Îw is a window specifying the range to average over in order to smooth the LODF values considered.
We chose awindow size of =w 2when calculating the effective exponent in practice whichwe found to result in
a good compromise between smoothing and completely removing the trend.However, we did not observe a
strong effect of thewindow size on the results. In addition to that, we chose to compare the LODFs at values
centered around r=101 and r= ´5 101when calculating the effective exponent since using this range allows
us to capture only the intermediate range of the curve. For larger distances from the failing link,finite size effects
prevent the assessment of the exponent whereas for smaller distances, the LODFdoes not yet decaywhen
considering high values of sparsity due to a lack of alternative paths, asmay also be observed infigure 6(a).
For a perfect inverse square law µ - ∣ ∣ rLODF 2 and a vanishingwindow =w 0, this parameter yields
= - =-( )k log 5 25

2 as required. Infigure 6(b), it can be observed that this effective exponent stays
approximately constant at »k 2 over different values of sparsity and the three different topologies considered,
where results for each value of sparsitywere obtained using 100 random realizations of edge removals andwith
the same grid sizes as stated previously.

To further quantify the effect of increasing sparsity in regular networks, wemake use of anothermeasure
whichwe refer to as the LODF ratio x( )Rw . It is simply calculated as the logarithmic ratio between the LODFs
with andwithout sparsity, again averaged over afixedwindow of distances
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Note that we evaluate this parameter at a distance of 101 butwe found the parameter to yield similar values for all
distances considered. A parameter of x =( )R 1w then represents a tenfold increase in the LODFs as compared to
the networkwithout any edges removed. Infigure 6(c), this parameter is shown for the different topologies and
sparsities. Here, a window size of =w 5was used. An increase with increasing sparsity is clearly visible. In
particular, the LODFs increase on averagemore than tenfold close to the highest possible values of sparsity.

In total, we observe that the scaling exponent derived from the dipole analogy in section 5 holds for the
regular networks evenwhen removing a large fraction of their edges. On the other hand, the LODF values at a
certain distance from the failing link show an increase with increasing sparsity, such that the actual effect of a link
failure can be up to tenfold stronger than for the corresponding regular gridwith no links removed. Thus, the
overall effect of a link failure ismore long-ranged in a sparser network, although no change in the effective
exponent can be observed.

6.3. Scalingwith distance
The impact of a link failure generally decays with distance.While the definition of distance is straightforward in
regular lattices, differentmeasures aremeaningful in networkswith complex topologies. The geodesic distance
of two links follows fromdefinition 1 for two vertices

= +
+

Î Î
[( ) ( )] ( )

{ } { }
r s m n v v

w w
edist , , , min dist ,

2
.

v r s v m n

rs mn
ge
w

, , ,
0
w
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Here,wrs = /b1 rs is the edgeweight assigned to the edge ( )r s, .When considering the unweighted analog, the
edge distance is defined analogously setting all edgeweights to one. The additional term +w w

2
rs mn ensures that

neighboring edges have non-zero distance, e.g. unity distance =edist 1ge
u in the unweighted case. However, this

distance is a bad indicator forflow rerouting in real-world irregular topologies. An example shown infigure 8
demonstrates that this simple distance is only weakly correlatedwith themagnitude of the LODFs for a real-
world power grid test case.

Instead, we need a distancemeasure based onflow rerouting. If a link ( )r s, fails, the flowmust be rerouted
through other pathways, as described by the electrical lemma 1.However, it is not feasible to take into account all
spanning trees which govern the flow rerouting. In order to still be able to estimate the impact on another link
( )m n, , wewill thus consider a path from r to s that crosses this link. Themain difference to the ordinary
graph theoretical distance is that we have to take into account a path back and forth.We are thus led to the
following definition.

Definition 2.A rerouting path fromvertex r to vertex s via the edge ( )m n, is a path

= ¼ = = ¼ =+ +( ) ( )v r v v m v n v v s, , , , , , , 33i i i k0 1 1 2

or

= ¼ = = ¼ =+ +( ) ( )v r v v n v m v v s, , , , , , , , 34i i i k0 1 1 2

where no vertex is visited twice. The rerouting distance between two edges ( )r s, and ( )m n, denoted by
[( ) ( )]r s m nedist , , ,re

u w is the length of the shortest rerouting path from r to s via ( )m n, plus the length of edge
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( )r s, . Equivalently, it is the length of the shortest cycle crossing both edges ( )r s, and ( )m n, . If no such path
exists, the rerouting distance is defined to be¥.

The definition of a rerouting path is illustrated infigure 7. Again, we consider aweighted and an unweighted
version of this distance indicated by the superscriptw and u, respectively.We note that the length of the edge
( )r s, is included in order tomake the distancemeasure symmetric. In appendixD, we show explicitly that this
definition satisfies the axioms of ametric and discuss how to compute the shortest rerouting path.

An example of rerouting distances in comparison to the LODFs is shown infigure 8 for a small test grid.We
observe amuch better correlation in comparison to the ordinary geodesic distance defined above. The limitation
of geodesic distances becomes especially clear for situations described by proposition 4. If exactly one
independent path exists between two links, the rerouting distance is¥, while the geodesic distance isfinite.
Hence, the latter fails to explainwhy the LODF between the two links vanishes.

To further investigate the importance of distance, we simulate all possible link failures in four test grids of
different size. For every failing link ( )r s, we evaluate the geodesic distance aswell the rerouting distance to all

Figure 7. Illustration of two different distancemeasures between two links ( )r s, and ( )m n, (coloured in yellow and dark blue).
(a)The common geodesic or shortest-path distance (indicated by lines coloured in light blue). (b)The rerouting distance is defined as
the length of the shortest path from r to s crossing the link ( )m n, and is indicated by thick arrows and lines colored in light blue. The
sample network in thisfigure is based on the topology of the IEEE 14-bus test grid [57].

Figure 8. Line outage distribution factors (LODFs) in comparison to the unweighted geodesic and rerouting distances. (a)Magnitude
of the LODFs in the IEEE 30-bus test grid ‘case30’ [57]. The failing link l ismarked in red. (b)The geodesic distance to the failing link
edistge

u . (c)The rerouting distance to the failing link edistre
u . (d), (e) LODFs versus geodesic and rerouting distance (blue dots) including

an exponential (red solid line) and an algebraic (black dashed line) least-squares fit to the data. Due to the lownumber of data points, a
clear decisionwhether the correlation is algebraic or exponential is not possible.
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other links in the grid. To quantify towhich extend the distance predicts themagnitude of the LODFs, we then
calculate theKendall rank correlation coefficient τ [58]. This coefficient is used on ordinal data and assumes
values in the interval -[ ]1, 1 . A value of (minus) one indicates perfect (anti)correlation, whereas a zero value
implies no correlation between the data. Table 1 shows the results, averaging over all trigger links ( )r s, in the
respective grid discarding bridges. The rank correlation is negative as LODFs generally decaywith distance. The
magnitude of the rank correlation is significantly higher for the rerouting distance. In particular for the test grid
‘case1354pegase’we see that the ordinary geodesic distance has a very limited predictive power for the LODFs
( t <∣ ∣ 0.25), while the rerouting distance is strongly correlated to themagnitude of the LODFs ( t >∣ ∣ 0.83).
Figure 9 illustrates this discrepancy in the distribution of τ values for the different distancemeasures for the test
grids ‘case118’ and ‘case1354pegase’.We are thus led to the conclusion that geodesic distances are of limited
interest when considering the impact of link failures and should be replaced by othermeasures such as rerouting
distances. Notably, we observe nomajor difference when comparingweighted and unweighted distances.

7. Conclusion

Link failures representmajor threats to the operation of complex supply networks across disciplines. In this
article, we examined the impact of such failures in terms of the induced flow changes, which are commonly
described by LODFs.We providemathematically rigorous results and extensive numerical simulationswith a
focus on the gross network response (i.e. the dipole strength), the scaling offlow changes with distance and the

Table 1.Average of theKendall τ rank correlation values formagnitude of
LODF versus different distancemeasures. The four different IEEE test cases
consistently show a higher degree of correlation between rerouting distances
and LODF than between geodesic distances and LODF in bothweighted and
unweighted cases, while the unweighted rerouting distance slightly
outperforms theweighted one. For examplary distributions of the τ values see
figure 9.

test grid
Rank correlation τ for ∣ ∣LODF versus distance

Geodesic distance Rerouting distance

unw. weighted unw. weighted

case30 −0.4027 −0.4015 −0.8528 −0.8440

case118 −0.6069 −0.5233 −0.8211 −0.7920

case1354pegase −0.2269 −0.1341 −0.8664 −0.8438

case2383wp −0.3604 −0.2318 −0.7213 −0.6066

Figure 9. ((a), (b), top)Normalized histograms of the Kendall τ rank correlation for themagnitude of LODF and unweighted geodesic
distance and ((c), (d), bottom) ∣ ∣LODF and unweighted rerouting distance between two links in the IEEE test cases 118 (a), (c) and
1354pegase (b), (d). Vertical red lines show the average of the distribution of tau values (see table 1). The stronger correlation of the
rerouting distancewith the LODFs as compared to the geodesic distance is clearly visible.
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role of network topology. These quantities are crucial to understand the global robustness of supply networks as
each failure can trigger a cascade of secondary failures with potentially catastrophic consequences.

First, we demonstrated rigorously that theflow changes created by a single failure in a square lattice
correspond to thefield of an electromagnetic dipole. Hence the effects of a failure decaywith the distance
following an inverse-square law. The dipole analogy developed here allows for an analytical expression
describing the spreading of link failures. Although this treatment is rigorously valid only in the continuum limit,
we showed that the observed scaling extends to the other regular tilings of two-dimensional space even after
removing a fraction of links. Thus, we conclude that the scalingmay be expected to hold also for realistic
topologies.

Increasing the sparsity of a network promotesmore long-ranged effects up to the point where two links are
only related by one independent pathway. Then, a rerouting between the two links becomes impossible and a
failure of one link does not affect the other.However, this also implies a lack of redundancy such that a link
failure can have catastrophic consequences locally. Our results thus suggest that sparsity promotes non-local
responses to line failures. This is of potential relevance to the understanding of cascading failures, where
previous outages increase sparsity, and deserves further study.

In real-world irregular networks, the gross response of a failure depends on the loading of the link as well as
the local network structure. Rigorous upper and lower boundswere given for the dipole strength relating it to the
redundancy of the failing link. Furthermore, the commonnotion of a geodesic graph distance is of limited use to
predictflow rerouting.We thus introduced a rerouting distancewhichwe showed to bemuchmoremeaningful
to predict the impact of failures.

Whereas the classical analysis of link failures relies heavily on simulation results, our results provide heuristic
methods and rigorous boundswhich allow for an analytical insight into the relationship between the structure of
a network and its robustness towards link failures. In particular for large networkswhere simulations are
difficult, our results allow for an a priori analysis of link failures andmight also be used to identify critical links,
for instance in terms of the locality factorwhich quantifies the response of a network to a single failure. This type
of analysis is aided by the general results on decay ofmaximalflow changes with geodesic and rerouting
distances.We expect that these results fit the better, themore heterogeneous or disordered a network is. Previous
studies [59] have shown that a strong heterogeneity of link parameters leads to a concentration offlows along the
shortest path. In this limit,flow rerouting should be fully dominated by the shortest rerouting path.

We expect our results to be applicable far beyond power grids since the linearized treatment extends to other
phenomena such as hydraulic or biological networks. The rerouting distance alongwith the bounds on the
locality factormay greatly simplify the study of link failures in all kinds of supply networks andmakes themmore
accessible.We expect our results on the scaling of LODFs for networks with increasing sparsity alongwith this
distancemeasure to help identifying critical parts and paths and improving the overall robustness of supply
networks.
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AppendixA. Proof of proposition 1

Proof.By definition, h ( )r s, is given by the flow DF Prs when the powerDP is injected at node r andwithdrawn
at node s, while there is no injection at any other node,

å å
å

= = D

= " ¹

 
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( )F F P

F m r s
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0 , ,
A.1n r n n n s

n m n

such that

h =
å
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
( ) ( )r s

F

F
, . A.2r s

n r n

For the sake of simplicity, we chooseDP such that q q- = 1r s w.l.o.g. Then, the inverse of h ( )r s, may be
calculated using the basic relation q q= - ( )F br s rs r s as

16

New J. Phys. 21 (2019) 053009 J Strake et al



åh
=( ) ( )b

r s
F

,
. A.3rs

n rn

Wecannowuse that the potential drop over all other links in the network is smaller than for the link ( )r s,
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see proposition 3. If q q- = 1r s we thus know that
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Comparing to the expression (29) for l ( )r s,F we see that two additional constraints have to be satisfied.
Additional constraints can only decrease the flow-valuewith respect to themaximum in equation (29) such that
we have
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Appendix B. Proof of proposition 2

Proof.Consider first a reduced network consisting only of the link ( )r s, and the shortest alternative path
between the two nodes, whichwe denote as = =( )j r j j j s, , , , n1 2 3 . Fixing the nodal potentials such that
q q- = 1r s as in A, the direct flowover the link ( )r s, is given by

¢ = ( )F b , B.1r s rs

whereas the indirect flowover the shortest alternative path is given by

¢ = ¢ = = ¢

= + + +
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Nowconsider the initial network, towhich all edges have been reintroduced, wherewe keep the same difference
in nodal potentials q q- = 1r s whichmight require a different power injectionDP . The direct flow thus
remains the samewhile the totalflow can only increase because new alternative pathsmay be present such that

å ¢ + ¢ = +   ( ) ( )F F F b
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1

dist ,
. B.3

n
r n r s r j rs

1
w2

Thuswe obtain (see equation (A.2))
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AppendixC. Proof of proposition 3

In this appendixwe first give the proof for proposition 3 and then showwhen the decay becomes strictly
monotonous.

Proof.The proof is carried out by induction starting from =d dmax.We only give the proof for themaximum,
the proof for theminimumproceeds in an analogousway.We assume that the network is large enough such that

d 2max , otherwise the statement is trivial anyway.
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(1) Base case =d dmax: Consider the node n of the network for which =( )n r ddist , max and yn assumes its
maximum y = un dmax

. By assumptionwe have ( )n rdist , 2 such that the node n cannot be adjacent to
the perturbed edge such that =q 0n . The n-th component of equation (18) yields
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and use some important properties of thematrix B:
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Wecan furthermore bound the values of ym in equation (C) by udmax
or -ud 1max

, respectively, such that we
obtain
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(2) Inductive step  -d d 1: We consider the node n of the network with =( )n r ddist , and y = un d .
Starting from equation (18) and using the same estimates as above, we obtain
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Note that the inhomogeneity q 0n for all nodes except for =n r .With the induction hypothesis
+u ud d1 this yields
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- +
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d d d
d d

1 1 1

1 1
1

which completes the proof.

,

AppendixD. Rerouting distance

The rerouting distance introduced in definition 2 is a proper distancemeasure in the sense that it satisfies the
axioms of ametric as shown in the following lemma. It can be calculated bymapping it to the two-edge disjoint
shortest path problem,which can be solved by Suurballe’s algorithm [60]. Themapping is provided by the
lemma 4.

Lemma3.Consider an undirected graphwith non-negative (all-equal) edge weights. Then the rerouting distance
[( ) ( )]r s m nedist , , ,re

w u of two edges ( )r s, and ( )m n, satisfies the following properties.

(i) Positive definiteness:

[( ) ( )]r s m nedist , , , 0.re
w u

(ii) Symmetry:

=[( ) ( )] [( ) ( )]r s m n m n r sedist , , , edist , , , .re
w u

re
w u
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(iii) Triangular inequality:

 +[( ) ( )] [( ) ( )] [( ) ( )]a b r s a b m n m n r sedist , , , edist , , , edist , , , ,re
w u

re
w u

re
w u

both in the weighted and unweighted case.

Proof.

(1) Positive definiteness: as long as all edge weights are non-negative, all paths lengths and hence also the
rerouting distances are non-negative.

(2) Symmetry: suppose

= ¼ = = ¼ =+( ) ( )v r v v m v n v s, , , , , D.1i i k0 1 1

is the shortest rerouting path from r to s via ( )m n, . Then

= ¼ = = ¼ =+ +( ) ( )v n v v s v r v v m, , , , , , , D.2i i k i1 2 0 1

is also a rerouting path from n tom via ( )r s, . One can then show that thismust be the shortest such
rerouting path via contradiction. So suppose that another path from n tom via ( )r s, ,

= ¼ = = ¼ =+ +( ) ( )ℓu n u u s u r u u m, , , , , , , D.3j j j1 2 0 1

is shorter. Then the path

= ¼ = = ¼ =+( ) ( )ℓv r v v m v n v s, , , , , D.4i i0 1 1

is a rerouting path from r to s via ( )m n, and it is shorter than than the one defined in equation (D.1). This
contradicts our initial assumption such that the path defined in equation (D.1) is the shortest rerouting path
from n tom via ( )r s, andwe obtain

=[( ) ( )] [( ) ( )] ( )r s m n m n r sedist , , , edist , , , . D.5re
w u

re
w u

(3) Triangle inequality: let the paths

= = ¼ = = ¼ =
= = ¼ = = ¼ =
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+
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ℓ

p v a v v m v n v b

p u m u u r u s u n

, , , , , ,

, , , , ,
i i

j j

1 0 1 1

2 0 1 1

be the shortest rerouting paths from a to b via edge ( )m n, and fromm ton via ( )r s, , respectively. Here, we
assume the paths to be oriented as =v mi , =+v ni 1 and = =+u r u s,i i 1 , but the proof is the same if
the order of these vertices in the path is reversed. In addition to that, we assume the two distances on the
right-hand side of the inequality to befinite, otherwise the proof is trivial.We can extend the path p2 to
become a cycle by adding the edge ( )n m, to the end of the path

= = ¼ = = ¼ = =+ +( )ℓ ℓc u m u r u s u n u m, , , , , .i i2 0 1 1

Nowwe can explicitly construct a rerouting path from a to b via ( )r s, . Let ºu vj p be thefirst vertex that
appears in both p1 and c2 and let ºu vk q the last such vertex. In this case, one of the following paths is a
rerouting path from a to b via ( )r s,

= = ¼ = ¼ = ¼ =
= = ¼ = ¼ = ¼ =

+ -

- +
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ℓ

p u a u u v v v u v u b
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, , , , , , , ,

or , , , , , , , , .

j p p q k q

j p p q k q

3 0 1 1 1

4 0 1 1 1

Assumewithout loss of generality that p3 is a rerouting path from a to b via ( )r s, . In this case, we obtain


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+
+ +

= + + +

= +
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1 2
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Note that again the length of a path is the sumof the edgeweights of all edges in the pathwhen considering a
weighted graph.

,
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Lemma4.The shortest rerouting path form r to s via edge ( )m n, is given by the union of the edge ( )m n, and the two
edge-independent paths r m and n s or r n and m s whichminimize the total path length.

Proof.Assume that we have found a solution to the two-disjoint shortest path problem, i.e. we have found two
edge-independent paths

= ¼ = = ¼ =( ) ( ) ( )v r v v m u s u u s, , , and , , D.6i j0 1 0 1

whichminimize the total path length. By assumption the two paths are edge-independent such that

= ¼ = = ¼ =( ) ( )v r v v m u s u u s, , , , , D.7i j0 1 0 1

is a valid rerouting path. Now it remains to show that this path is indeed the shortest possible. So assume the
contrary, i.e. that there exists a path

= ¼ = = ¼ =+( ) ( )w r w w m w n w s, , , , , D.8i i k0 1 1

which is shorter than (D.7). But then the two paths

= ¼ =( ) ( )w r w w m, , , D.9i0 1

= ¼ =+ +( ) ( )w n w w s, D.10i i k1 2

are edge independent and have a shorter total path length than the two pathsD.6. Contradiction. ,
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Abstract
The reliable operation of supply networks is crucial for the proper functioning ofmany systems,
ranging frombiological organisms such as the human blood transport systemor plant leaves toman-
made systems such as power grids or gas pipelines.Whereas the failure of single transportation links
has been analysed thoroughly, the understanding ofmultiple failures is becoming increasingly
important to prevent large scale damages. In this publication, we examine the collective nature of the
simultaneous failure of several transportation links. In particular, we focus on the difference between
single link failures and the collective failure of several links.We demonstrate that collective effects can
amplify or attenuate the impacts ofmultiple link failures—and even lead to a reversal offlows on
certain links. A simple classifier is introduced to predict the overall strength of collective effects that we
demonstrate to be generally stronger if the failing links are close to each other. Finally, we establish an
analogy between link failures in supply networks and dipolefields in discrete electrostatics by showing
thatmultiple failuresmay be treated as superpositions ofmultiple electrical dipoles for lattice-like
networks. Our results show that the simultaneous failure ofmultiple linksmay lead to unexpected
effects that cannot be easily described using the theoretical framework for single link failures.

1. Introduction

The failure of links can impede the operation of supply networks leading to potentially critical events [1–3].
Cascading failures in power grids can cause power outages affectingmillions of households [4–7], and embolism
in humans and plantsmay result in strokes [8, 9] or leaf death [10]. Such events are typically caused by the failure
of one or few transportation links [5].

In this article, we analyse the impacts ofmultiple link failures in linear flownetworks.We focus on electric
power grid operationwhile themathematical results apply to a variety of networks. In case of the power grid,
cascades triggered by a single failure are inmost cases prevented by the transmission grid operators. This is
typically achieved by running the gridN− 1 securewhichmeans that a single failing transmission or generation
element does not prevent stable operation of the power grid [11]. However, grid operators are now encouraged
to also take specific dangerousN− 2 contingencies into account [12] due to an increased vulnerability of the
grid. For instance, an increased risk of extremeweather events caused by climate change raises the risk of several
transmission elements failing, thus leading to power outages [13].More specifically, an increase in correlation
between transmission line outages, e.g. throughmore extremeweather events, was recently associatedwith an
increased risk of cascading outages, raising the relative contribution ofmultiple link failures to such cascades
[14]. In addition to that, future power systemswith a high share of renewable energy sources will have to
transport power over long distances using long transmission lines, thus also increasing the risk of dependent link
failures.

Many computational approaches towards studying and classifyingN− 2 outages have been developed in
order to identify contingencies that result in additional overloads [15–18]. Nevertheless, such outages still lack a
fundamental theoretical understanding. Basicmathematical tools have been developed extending the concept of
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LineOutageDistribution Factors (LODFs) originally used for single link contingencies [11] to includemultiple
link failures thereby allowing for amathematical description of these contingencies [19–21]. These tools
demonstrate that the nature ofmultiple outagesmay be fundamentally different from the outage of single lines,
thusmaking a direct transfer of understanding and intuition developed for single link failures [22] difficult. In
particular,multiple outages can enhance or attenuate each other in a counterintuitivemanner.Which
topologies drive such phenomena andwhich ones prevent them fromhappening is at present not fully
understood.

In this article we analyse the collective nature ofN− 2 failures in linearflownetworks, which describe
different systems including ACpower grids in the linear approximation [11].We demonstrate that two
simultaneous failures can cause a disturbance that strongly differs from the sumof the disturbances induced by
individual failures; they can amplify or attenuate the flow changes in a grid. In addition to that, we introduce a
predictor which allows us to understand underwhich circumstances these collective effects play an important
role andwhen they can be neglected.We then apply the predictor to different test grids and reveal its
performance in forecasting collective effects formultiple link failures quantitatively, outperforming also
distancemeasures proven to be good predictors in the case of single link failures. Finally, we extend on previous
work [22] that successfully established an analogy between flow rerouting after single link failures and the fields
of electromagnetic dipoles in regular grids by demonstrating that flows aftermultiple link failuresmay be treated
as a superposition ofmultiple individual dipole fields in such grids in the continuum limit.

2. Link failures in linearflownetworks

2.1. Fundamentals of linearflownetworks
Linear flownetworks describe the operation of various types of systems including ACpower grids [11, 23, 24],
DC electric circuits [25–27], hydraulic networks [28, 29], and vascular networks of plants [30]. In such networks,
theflow Î Fm n over a link (m, n) is assumed to be linear in the potential or pressure drop along this link,

( ) ( )q q= -F b . 1m n mn m n

In this article, we focus on applications to ACpower grids, where Fm n is the real powerflow, q Î n is the
voltage phase angle at node n and Î bmn is proportional to the link’s susceptance.We assume that the
susceptance is independent of the direction of the link, =b bmn nm, and that it vanishes if no link (m, n) exists. In
this context, the linear description is commonly referred to as theDC approximation due to its formal
equivalencewithDC resistor networks [11, 23, 24]. This approximation is typically good for transmission grids
withweak link loading, see [23] for details. In hydraulic or vascular networks, qn denotes the pressure at node n
while the transmission capacity bmn depends on the geometry of a pipe or vein [28–30]. Theflows are subject to
the continuity equationwhichmeans that at each node of the grid the sumof the networkflowsmust equal the
inflow to the grid;

( )å =
=

F P . 2
n

N

m n m
1

The inflowPm is positive if a current, power, orfluid is injected to the node and negative if it is withdrawn from
the node. In the following, we assume these in- and outflows to be balanced, å == P 0i

N
i1 .

Equations (1) and (2) fully describe the state and theflowof the network—up to a constant phase shift
applied to all voltage phase angles—once the link parameters bmn and the injections Pm are given.We introduce a
compact vectorial notation summarising the nodal potentials or voltage phase angles in the vector

( )q q q= ¼ Î , , N
N

1 and the nodal injections in the vector ( )= ¼ Î P P P, , N
N

1 . Here and in the
following sections, the superscript ‘’ denotes the transpose of a vector ormatrix.We further label all lines in the
grid by = ¼l M1, , andfix an orientation for each link. Summarising all linkflows in the vector

( )= ¼ Î F F F, , M
M

1 , equation (1) reads as

q= F B I ,d

with the diagonalmatrix of link strengths ( )= ¼ Î ´B b b bdiag , , ,d M
M M

1 2 . Furthermore, wemade use of
the node-edge incidencematrix Î ´I N M commonly used in graph theory. It establishes a correspondence
between the nodes in the graph and the edges connecting them andhas the components [31]

⎧
⎨⎪
⎩⎪

ℓ
ℓℓ = -I

n
n

1 if link starts at node ,
1 if link ends at node ,
0 otherwise.

n,

In the following, we use thismatrix to assign an (arbitrary) orientation to each link in the network such that
= - F Fm n n m. Using the node-edge incidencematrix we can further rewrite the continuity equation (2) in the
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compact form

( )q q= = =P IF IB I B . 3d

Thematrix = Î ´ B IB Id
N N is commonly referred to as the nodal susceptancematrix in power engineering.

Mathematically, B is a weighted Laplacianmatrix [31, 32]with components

⎧⎨⎩ ( )= å =
- ¹

=B
b m n

b m n

if ;

.
4mn

s
N

ns

mn

1

For a connected network, thismatrix has one zero eigenvalue l = 01 with eigenvector =v 11 such that
· =B v 01 . For this reason, it is not invertible. However, thematrix inverse appears naturally inmany different

contexts involving the spreading of failures in networks. To be able to nevertheless study these processes, one
typically considers theMoore–Penrose pseudoinverse †B which has properties similar to the actual inverse, see
e.g. [33, 34] for details.We are now ready to extend the notation to cover link failures as well.

2.2. Single anddouble link failures
Assume that a single link k in the network fails, thus losing its ability to carry any flow. Since the network after the
failure is still subject to the continuity equation (2), the failure will cause the flows on other links to change to
account for the remaining necessary transport. Assume that the newflows are given as [ ] ( )= + DF F Fk 0 , where
DF is the vector offlow changes and ( )F 0 is the preoutage flow. In general, wewill use the superscript (0), i.e.
round brackets, to indicate aflowbefore an outage and the superscript [ ]k , i.e. square brackets, to indicate aflow
after the failure of link k. Then the new vector fulfils the continuity equation (3),

[ ]=P IF .k

In power engineering, the changes offlows are typically captured in amatrix of LODFswhose element Ll,k
describes theflow changesmonitored on a link l after another link k fails. Suppose that ( )Fk

0 is theflowon link k
before the outage. Then the LODF is defined by its elements [11]

≔ ( )( )
D

L
F

F
. 5l k

l

k

, 0

For consistency, the effect of an outage of a line k onto itself is typically defined as = -L 1k k, . Importantly, the
LODFmay be expressed in purely algebraic formusing the (pseudo-) inverse of the graph Laplacian B [11],

( )†
†=

-





d B d

d B d
L b

b1
. 6l k l

l k

k k k
,

Here, we abbreviate the line susceptance bl l1 2
of a link ( )=l l l,1 2 by bl. Furthermore, we defined a vector Î dk

N

that characterises a link k=(r, s) and has the entries+1 at position r,−1 at position s and zero otherwise. Using
the standard basis vectors in N , this vectormay bewritten as = -d e ek r s. In power engineering, the
expression in the numerator is also referred to as the Power TransferDistribution Factor (PTDF) [11]. A PTDF
between links l and k is calculated as

†= d B dbPTDFl k l l k,

and describes the flow changes on link lupon a power transfer fromone end of link k to the other one. PTDFs are
typically defined for power injections andwithdrawals at arbitrary nodes in the network [11]. In the context of
link failures, however, it is useful to restrict them to power injection andwithdrawal taking place at the two ends
of a link. For this reason, power injection vectors dk have to correspond to the columns of the incidencematrix
in our setup such that ·=d I ek k, where Î ek

M is again the standard basis vector.
On the other hand, the link failuremay also be described on the nodal level. If we collect all changes in

voltage phase angles after the failure of link k in the vector [ ]y q q= -k , denoting phase angles after the failure
by [ ]q k , a Poisson-like equation describing the outage in terms of the phase differencesmay be derived [22],

( )[ ] ( )y =B dF . 7k
k k
0

Here, [ ]B k is the Laplacian of the network after removal of link k and ( )Fk
0 is the pre-outage flowon link k. This

equationwas studied in the past in different settings [35, 22, 36, 33]. The failure of single links is thus comparably
well understood [22, 37, 38], whereas the simultaneous failure ofmultiple links was not yet studied to the same
extend on a theoretical level.

For this reason, we now turn to the case ofmultiple link failures and derive an expression for the flow
changes on the remaining lines in the grid.Wewill focus on the case of two outages for now, but extend the
results tomore than two outages in section 4.Naively, we could just superpose theflow changes caused by the
two individual outages as described by equation (5). Assuming that two arbitrary links o and k fail, this naive
approach yields the following expression for the flow changes on link l,
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( )( ) ( )D = +F L F L F . 8l l k k l o o
naive

,
0

,
0

However, this approach neglects the effect of the outage of link k on link o and vice versa. To arrive at the correct
formula, we need to consider this interaction as follows; the outage of link o changes the flowon link k by

˜ ˜( )= +F F L F ,k k k o o
0

,

wherewe denote by F̃k the effective flowon link k as a result of the simultaneous failure of o and k. Note that this
is not the actual flowon link k, but rather an effective quantity used for calculation here since link k fails and thus
carries noflow after the outage. An analogous expression holds for the effect of the outage of link k on link o.
Inserting these corrected flows into equation (8), we arrive at the following result for the flow changes on link l
[17],

˜ ˜[ ]D = +F L F L F .l
o k

l k k l o o
,

, ,

Here, the superscript [o,k] is used to indicate thefloworflow changes on a link after the failure of both links o and
k. Finally, expanding this expression results in the following equation encoding the collective flow changes in a
compact form,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )[ ]

( )
( )D =

-
-

-

F L L
L

L

F

F
,

1

1
. 9l

o k
l o l k

o k

k o

o

k

,
, ,

,

,

1 0

0

The resulting expression for [ ]DFl
o k, is different from the simple linear combination (8) due to the interaction of

the two failing lines o and k, which is encoded in thematrix in the centre.More precisely, the collective effects are
governed by the LODFs of the interacting lines Lo,k and Lk,o forming the off-diagonal elements of thematrix. The
inversematrix in this formulamay be calculated as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

-
-

=
-

-L

L L L

L

L

1

1
1

1

1

1
.

o k

k o o k k o

o k

k o

,

,

1

, ,

,

,

Thus, theflow changes on a link l are given by

( ) · ( )[ ] ( ) ( ) ( ) ( )D = + + +F k o L F L F L L F L L F, ,l
o k

l k k l o o l k k o o l o o k k
,

,
0

,
0

, ,
0

, ,
0

where ( ) ( ) ≔=
-

 k o o k, ,
L L

1

1 k o o k, ,
is a symmetric prefactor.

The equation describing flow changes after the failure of two links thus differs from anaive overlay of the two
individual outages. In the following sections, wewill demonstrate inwhich cases these collective effects resulting
from the interaction of both outages are important and inwhich cases theymay be neglected.

2.3. Elementary examples
In this section, we elucidate different elementary examples that describe possible interactions between the
individual outages and allowus to understand the role played by collective effects inmore detail.

2.3.1. Amplifying single outages
To start with, we present a case where the naive superposition of two individual outages underestimates the
collective effects such that

∣ ∣ ∣ ∣[ ] D DF Fl
o k

l
, naive

for some link l. An elementary example of a networkwhere this is happening is shown infigure 1where the
topology is given by a network consisting ofN=9 nodes andM=12 links connecting them in a square grid.
This initial setup is shown in panel a. Panels b and c illustrate the flows on each link (numbers on links) after the
failure of two different individual links (coloured red). The bold number indicates the linkwithmaximalflow
for the given setup. Each single outage leads to amaximal flowon the top right link of ∣ ∣ =F 0.57max and
∣ ∣ =F 0.625max after the failure shown in panels b and c, respectively. Naively, wewould thus expect the failure of
both links to lead to aflowof

∣ ∣ » + + =F 0.125 0.07 0.5 0.72max
naive

by simply superposing the two individual outages. The actual outage of both links, however, results in amuch
largerflowon the link that reads as

∣ ∣ =F 1.0.max

Whereas the two individual outages separately lead to amoderate increase inflowon themost heavily loaded
link, their interaction results in a larger flowpotentially reaching the link limit. If the flowon all linkswas limited
to, say, =F 0.9limit , the naive superpositionwould thus predict no overload caused by the two link failures,
whereas in fact, the link loadedmaximally in panel d breaks down in this case. This example demonstrates that
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the results predicted by the theory of single link failuresmay differ drastically from the correct calculation that
takes into account the collective effects.

2.3.2. Effect of individual outages exceeding simultaneous outage
In addition to the effect presented in the last section, itmay also happen that an additional outage is beneficial for
themost heavily loaded link. Aminimal example is shown infigure 2. In this setup, we have a unit inflowof
power at the centre left node (coloured yellow),P=+1, and a unit outflow at the bottom right node (coloured
purple),P=−1, whereas all other nodes neither consume nor create power, P=0. The initial setup is shown in
panel a, where again (absolute)flows are indicated as numbers on the edges aswell as colour coded. Panels b and
c show the network after the single outage of two different links (coloured red). The edgewith the highest
absoluteflow is indicated by a bold face number in both cases. In panel b, we have ∣ ∣ =F 0.6max,b whereas for
panel c themaximumflow reads as ∣ ∣ =F 0.52max,c . The situation after the simultaneous outage of both links is
shown in panel d. The edgewithmaximum flownow carries an absoluteflowof ∣ ∣ =F 0.5max,d , i.e. the collective
effects attenuate the flowon the edgewith the highest flow compared to each individual outage. This effect can
be seen as a realisation of Braess’ paradox [39–42] since the outage of an additional link is beneficial in terms of
themaximumabsoluteflow in the network for each individual outage. Hence, cascades of failuresmay in some
situations be prevented by the intentional removal of a second, carefully chosen link after afirst link failure
threatens stability [1, 43].

2.3.3. Sign inversion through double outages
In this section, we discuss a highly surprising phenomenon that appears in the case ofmultiple interacting
outages: the collective effectsmay dominate in such away that purely collective effects can cancel (as shown in
the previous section) or even overcompensate the direct effects of individual link failures such that the flow
changes resulting from the failure of both links have a different sign compared to the flow changes after each of
the individual failures.

To study this inmore detail, wewill use the following notation in this section. Suppose that links o and k fail
andflow changes aremonitored on link l. Thenwe denote by [ ]DFl

o or [ ]DFl
k the flow changes on link lwhen link

o or k fail, respectively. For the simultaneous outage of both links o and k, we denote by [ ]DFl
o k, the actualflow

Figure 1.Collective effects can amplify the flow changes after the failure of two links, thus increasingmaximum link loading. The node
in the lower left corner (yellow) is assumed to be a producer of one unit of power and the node in the upper right corner (purple) a
consumer of the same amount. All links have a capacity of b=1 and the numbers on the edges indicate the absolute value of theflow
carried by the respective link. In addition to that, the colour code ranging fromdark blue (no loading) to bright yellow (maximal
loading) indicates the loading of the links. Bold face numbers indicate the linkwith the highest loading. The single link failures lead to
an increase of the flowon the upper right link by (b) 0.07 ( 0.5 0.57) and (c) 0.125 ( 0.5 0.625). If both links fail, theflows
increases by (d) > +0.5 0.07 0.125. Thus, the naive superposition underestimates theflowon themaximally loaded link in this case.
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change on link l.With this notation at hand, wewill construct examples where flow changes caused by individual
link failures [ ]DFl

o and [ ]DFl
k have the same sign, but the collective flow change [ ]DFl

o k, has the opposite sign.
A small example of a networkwhere such a situation occurs is shown infigure 3. In the initial setup, there is a

smallflow Fl=0.5 on link l (a, bold face number). For the failure of two individual links o and k shown in panels
b and c, respectively (red links), the flowon this link is amplified showing positive flow changes in both
situations, [ ]D =F 0.3l

o and [ ]D =F 0.1l
k , respectively. However, if both links fail simultaneously, the overall

flow change has the opposite sign, [ ]D = -F 0.7l
o k, , thus even inverting the direction of theflow = -F 0.2l with

respect to both, the individual setup and the situation after the failure of each individual link.
In the next paragraph, we explain this surprising phenomenon on a theoretical level inmore detail. For

simplicity, let us assume theflow changes due to the individual outages to be positive and the flow change in the
case of a simultaneous outage to be negative,

( )[ ] [ ] [ ]D < D > D >F F F0, 0, 0. 10l
o k

l
k

l
o,

Plugging in equation (9), we can cast these three conditions into the following formbased on LODFs,

( ) ( )
( )
( )

( ) ( ) ( ) ( )
( )
( )

+ < - +

>

>

L L F L L F L F L F

L F

L F

1 ,

2 0 and

3 0.

l o o k k l k k o o l k k l o o

l k k

l o o

, ,
0

, ,
0

,
0

,
0

,
0

,
0

Wecan assume that both the initialflows on the failing links and the LODFs between the failing links and the
reference link are positive, ( ) ( ) >F F L L, , , 0o k l o l k

0 0
, , , without loss of generality–this can always be accomplished

by redefining the orientation of one or both of the initial flows. Then the right-hand side of condition (1) is
negative. Hence, the condition can only be satisfied if the left-hand side is negative as well, which requires that
themutual LODFs are both negative, <L L, 0o k k o, , because they always have the same sign (see appendix A).
Note that we do not consider cases where both of the LODFs Lk,o and Lo,k are equal to (minus) one, thus keeping

( ) o k, finite. For notational convenience, let us now introduce positive constantsα andβ defined by the
following quotients;

Figure 2.Collective effects can attenuate flow changes after the failure of two links, thusmaking the contingency less severe. Colour
code of edges indicates the absoluteflowon the link going fromdark blue for noflow to bright yellow for linkswithmaximumflow.
The numbers on the links also represent theflowwith the arrows pointing in the direction of positiveflow. (a) Initialflow setup if there
is a unit inflow at the yellow node on the left and a unit outflow at the purple node on the bottom right. (b) Flow setup after the failure
of the top horizontal link (red). (c) Flow setup after the failure of the central, vertical link (red). (d) Flow setup after the failure of both
links.While themaximumflow after a single outage is given by (b) ∣ ∣ =F 0.6max and (c) ∣ ∣ =F 0.52max , the simultaneous outage of both
links lead to a smallermaximum flow (d) ∣ ∣ =F 0.5max . Thus, in both cases of individual failures, the failure of an additional linkwould
be beneficial in terms of themaximal absolute flow in the network. This is a realisation ofBraess’ paradox.
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( ) ( )( ) ( )a b= > = >o k F F l o k L L, 0 and , , 0.k o l k l o
0 0

, ,

We thus incorporated thewhole dependency on the linkmonitoring the flow changes l into the purely
topological constantβ, whereas any dependency on the flows, i.e. the specific power injections, is incorporated
intoα. Dividing the first condition (1) by its right-hand-side, we arrive at the following inequality

( )∣ ∣ ( )∣ ∣
( ) ( ) ( )a b

a b
+

+
>

o k L l o k L

o k l o k

, , ,

1 , , ,
1. 11o k k o, ,

This inequality can only be fulfilled if there is a strong degree of heterogeneity betweenα andβ, i.e. the ratio of
initialflows on links k and o differs strongly from the ratio of their LODFswith respect to link l. Furthermore, the
mutual LODFs Lo,k and Lk,o need to be both large inmagnitude in order to reduce the size of the denominator
compared to the numerator.Wewill see in the next sections that strongmutual LODFs also imply strong
collective effects caused by the simultaneous failure of links k and o.

Condition(11) can be simplified drastically if a b whichmay be realised e.g. through a very small initial
flowon link o compared to link k, such that ∣ ∣ ∣ ∣( ) ( )F Fo k

0 0 . The above inequality then reduces to

( )∣ ∣ ( )∣ ∣
( ) ( )

∣ ∣
( ) ∣ ∣a b

a b b
+

+
»  >

o k L l o k L

o k l o k

L

l o k
L L L

, , ,

1 , , , , ,
, .o k k o o k

l o o k l k
, , ,

, , ,

Wewill nowdemonstrate how to design a networkwhere this inequality is satisfied. The constructionworks as
follows; we design a network topologywhere two links o and k influence each other heavily (measured in terms
of LODFs)while a third link l is influenced very differently by each of the links. Formally, Lo,k and Lk,o both need
to be comparatively largewhile Ll,o and Ll,k should be very different in size, thus leading to a small value ofβ. To
observe flow sign reversal, we choose the power injections P in such away that the flowon link k ismuch larger
than the one on link o, which results in a b . Furthermore, our choice of power injections also needs tomake
sure thatflow changes on link l are positive [ ]D >F 0l

o . The resulting network fulfils the three conditions on the
flow changes given in the inequalities(10).

Indeed, we can find networkswhere the inequalities are fulfilled as shown infigure 3. The parameters in this
case are given by ( )a =o k, 20, ( )b »l o k, , 0.03, » -L 0.19o k, and » -L 0.23k o, . Inequality(11) then holds
and reads as

Figure 3.Collective effects can lead to a complete reversal of theflow changes compared to individual outages. Colour coded links
represent themagnitude offlow ranging fromblue for noflow to yellow formaximalflow. Red indicates failing links and arrows
denote the direction offlow.Note that this does not necessarily correspond to link orientation. Line susceptances are homogeneously
set to b=1. (a) Initial flow setupwith ( ) ( )= =F F20 1k o

0 0 . (b), (c) Flow setup after individual failure of two links (o and k
respectively, marked red). In both cases, theflowon the top right link (l, bold font) is larger than in the unperturbed grid; [ ]D »F 0.3l

o ,
[ ]D »F 0.1l
k . (d) Flow setup after simultaneous failure of both links. The flowon the top right link is smaller than in the unperturbed

grid. In fact, not only does theflow change reverse sign, the totalflowdirection is reversed, too; [ ] ( )D » - < - » -F F0.7 0.5l
o k

l
, 0 .
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· ·
·

+
+

= >
20 0.19 0.03 0.23

1 20 0.03
2.38 1.

As discussed previously, themutual LODFs Lo,k and Lk,o are both relatively large in this case. This is indicative of
strong collective interactions as illustrated in the following sections. The purely collective effects not only
overshadow the individual outages’ effects on link l, indeed they reverse the totalflowover the link.

3. Collective effects in complex networks

As shown above, the impact of a double link failure is not given by the simple sumof the individual outages’
effects, but strong collective effectsmay be present. Based on the intuition developed in the last section, wewill
introduce a quantifier in the following section thatmay be used to identify inwhich situations collective effects
need to be taken into account and inwhich situations theymay be neglected, thus being able to rely on results
obtained for single link failures.Wewill test this predictor on different test grids,mainly on the ones shown in
figure 4; the Scandinavian power grid extracted from the software package PyPSA-eur [44] (panel a) and the
IEEE test case 118 [45] (panel b).

3.1.Quantifying the strength of collective effects
Tounderstand the purely collective effects of a simultaneous outage of two given links o and k, wefirst calculate
the difference between the realflow changes in case of an outage of both links [ ]DF o k, and the naive prediction in
terms of the sumof individual flow changesDFnaive. The difference calculated according to equations (8) and (9)
reads as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )(( ) ( ) )[ ]

( )
( )D - D = + + F F L o k L L L L L L L L

F

F
, , .l

o k
l l o l k k o o k l k l o o k k o

k

o

, naive
, , , , , , , ,

0

0

The overall prefactor ( ) o k, is one if the product L Lo k k o, , is zero and tends to infinity as the product approaches
one. In order towrite this expressionmore compactly, we introduce thematrix X  : M2 which has the row
vectors

( )[( ) ( ) ]
≕ ( )[ ]( ) ( )

X = + +

X X





o k L L L L L L L L

o k

, ,

, , .

l l o l k k o o k l k l o o k k o

l l

, , , , , , , ,

1 2

Thismatrix includes the topological properties of the rerouting problem and ignores the initial flows ( )Fo
0 and

( )Fk
0 , which are determined by the specific power injections thatmay be time-dependent. The approach thus

allows to quantify the impact of collective effects purely based on the network topology.However, this comes at
the price of potentiallymissing situationswith very unusual flowpatterns inwhich the approach presented here
might not be valid anymore to predict collective effects. To get an overallmeasure of the purely collective part of
the failure of two specific links o and k, we define a single collectivity parameter ξ(o, k) by taking theℓ2-norm · 2

of thematrixΞ,

Figure 4.Two different network topologies are used to demonstrate the performance of the predictor for collective effects. (a)
Topology of the Scandinavian power grid extracted from an aggregated version of the PyPSA-eurmodel [44] after the removal of dead
ends. The resulting topology has 260 nodes and 361 edges. (b)Topology of the IEEE test case 118 designed for testing power flow
algorithms [45]. The topology has 118 nodes and 179 edges.
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⎛
⎝⎜

⎞
⎠⎟( ) ≔ ( ) [( ) ( ) ] ( )( ) ( )åx X + X

=

o k o k, , . 12
l

M

l l
1

1 2 2 2

1 2

The collectivity parameter thus quantifies the overall collective effects in thewhole network to be expected if
links o and k fail and indicates whether links o and k interact strongly or not. Since interpreting the collectivity
parameter ξ in this form is rather cumbersome andwe are looking for an easily accessible criterion that tells us
which pairs of links interact strongly, we further reduce this expression bymaking a few approximations. Since
the LODFs are bounded by one,-  L1 1a b, for all links a b, , and are typicallymuch smaller than one, in the
order of ( )- 10 3 , we expect terms of third order in LODFs to be negligible against terms of second order such
thatwe can on average neglect the former ones. In doing so, we arrive at the following approximation for the
collectivity parameter,

( )
( )

( ) ( ) [( ) ( ) ]
( ) ( ) ( ) ( ) ( )

x » å +

= å + å

=

= =





o k o k L L L L

o k L L L L

, ,

, .

l
M

l o o k l k k o

o k l
M

l o k o l
M

l k

1 , ,
2

, ,
2 1 2

,
2

1 ,
2

,
2

1 ,
2 1 2

Furthermore, we canmake the following observation allowing us to further simplify the expression: summing
over all links l in a large network, Ll,o and Ll,kwill vary a lot andmay thus essentially be treated as random
variables.We therefore expect the collectivity parameter ξ(o, k) to be predicted by the two non-varying quantities
Lo,k and Lk,o characterising the interaction between the two failing links. Since LODFs are in general non-
symmetric (see appendix A), both Lo,k and Lk,o need to be incorporated to successfully predict the collectivity
parameter ξ(o, k). In addition to that, we expect the prefactor ( ) ( )= - - o k L L, 1 o k k o, ,

1 to bewell
approximated by one in general, ( ) » o k, 1 since (absolute) LODFs are typically small.

Based on these considerations, we introduce a parameter that predicts the overall strength of collective
effects ξ and is defined as follows,

( ) ≔ ( )L o k L L, . 13o k k o, ,

This predictor takes into account the relative effect of the failing links o and k on one another: it is the geometric
mean of themutual LODFs between the two failing links. It is not only a good predictor for the collectivity
parameter ξ(o, k), but can also be shown to bound it frombelow as summarised in the following theorem.

Theorem1.Consider a connected network where two links o and k with non-vanishingmutual LODFs
¹L L, 0o k k o, , fail. Then the collectivity parameter (x o k, ) as defined in equation (12) is bounded from below by the

predictor ( )L =o k L L, o k k o, ,

( ) ( )x Lo k o k, , .

Aproof is given in appendix C. Figure 5 illustrates the performance of the predictor in forecasting collective
effects for the IEEE test case 118 (panel a) and the Scandinavian power grid (panel b)when averaging over all
possible trigger links. The predictorΛ(o, k) (abscissa) has a Pearson correlation coefficient with the collectivity

Figure 5.The predictorΛ(o, k) performs verywell in forecasting the collectivity parameter ξ(o, k) for a link failure of two links o and k.
In both the IEEE test grid ‘case118’ (a) and the Scandinavian grid (b) the relationship between collectivity parameter ξ(o, k) (ordinate)
and predictorΛ(o, k) (abscissa) appears to be linearwhen plotted on a log–log scale. The slope of the curve indicates a linear
relationship on the normal scale aswell. This implies a strong correlation between the two quantities as implied also by a very large
Pearson correlation coefficient of ρ=0.998 in both cases indicating a linear relationship. The histograms’ colour code indicates the
relative frequency of data points in the given bin. Double logarithmic plots were used to showcase the consistency of the scaling over
many orders ofmagnitude. Note that binningwas also done on a double logarithmic basis, leading tomuch smaller bins for lower
values ofΛ and ξ.
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parameter ξ (ordinate) of ρ=0.998 for both grids, thus indicating a linear relationship between the two
quantities.

The predictor performs equally well if we replace the Euclideanℓ2-norm in the definition of the collectivity
parameter ξ in equation (12) by otherℓ p-normsNormswith p>2 are dominatedmore by large values
compared to normswith p<2, therefore we also tested the p=10-norm and even up to the = ¥p -norm,
which simply takes themaximumvalue. The predictor performs verywell in forecasting collective effects also for
other test grids and norms as summarised in table 1. For all norms and all grids tested, we observe a very strong
correlation between predictor and collectivity parameter, exceeding ρ=0.9 inmost cases.We discuss the
predictor and the different norms used to calculate it inmore detail in appendix B.

To summarise, wefind that two links show the strongest collective interaction if theirmutual LODF values
are large, thus implying that a failure of one link has a strong effect on the flow going over the other one and
vice versa.

3.2. Impact of network distance
Distance is known to play an important role for failure spreading in power grids and other types of linearflow
networks [22, 49, 37, 50]. In this section, wewill examine if itmay also be used to successfully predict collective
effects inmultiple link failures. Typically, distances in networks aremeasured between twonodeswith themost
prominent distancemeasure being the geodesic distance. It is given by the sumof the lengths orweights of all
edges along a shortest path between the respective nodes,

ℓ( )
( )å=

Î

v vdist , min ,
p v v e p

e0
u w

1 2
paths ,1 2

where the superscript ‘u’ or ‘w’ denotes the unweighted orweighted distance, the subscript ‘0’ describes the
distance in the initial graph before any kind of outage, v1 and v2 are the nodes whose distance is calculated,

( )p v v,1 2 is a path from v1 to v2 andℓe is the length orweight of edge e, which is set to unity when calculating
unweighted distances. For our purposes, we use the inverse link strength as the length, le=1/be. Additionally,
one can define the geodesic distance between edges as the smallest possible distance between the nodes incident
to the corresponding edges plus half of each edge’s length,

ℓ ℓ[( ) ( )] ( ) ( )
{ } { }

( ) ( )= +
+

Î Î
r s m n v vedist , , , min dist ,

2
. 14

v r s v m n

r s m n
ge
u w

, , ,
0
u w

1 2
, ,

1 2

Here the subscript ‘ge’ denotes the geodesic distancewhile (r, s) and (m, n) are the respective edges given by the
nodes they are incident in. Aswe demonstrated in a recent publication [22], this distancemeasure does not
capture essential aspects of the flow rerouting after a link failure. Instead, we proposed the rerouting distance

[( ) ( )]r s m nedist , , , ,u w
re

given by the length of the shortest cycle crossing both edges (r, s) and (m, n). If no such cycle exists, the rerouting
distance is defined to be¥. This distancemeasure is strongly correlatedwith themagnitude of the LODFs as
shown in [22].

Table 1.Pearson correlation ρ between predictorΛ(o, k) and collectivity
parameter ξ(o, k) in the case of a double outage of links o and k for all possible
pairs of inks o and k and different test grids. Values are given for a number of
test grids, namely IEEE ’case30’, ’case118’ and ’pegase1354’ [45, 46] as well as
the Scandinavian grid, theGerman grid, [47, 48] a periodic square gridwith
20×20 nodes and another onewith a share of s=0.45 of its links removed,
and different norms used to calculate the collectivity parameter ξ(o, k).While ξ
(o, k) is predicted verywell for all norms, the 2-norm consistently yields the
best results, albeit by a smallmargin.

Pearson correlation ρΛ(o, k) versus ξ(o, k)

test grid 1-norm 2-norm 10-norm ¥-norm

case30 0.959 0.98 0.951 0.946

case118 0.947 0.984 0.972 0.97

pegase1354 0.933 0.974 0.967 0.966

Square grid 0.994 0.999 0.995 0.992

Sparse square grid 0.946 0.968 0.981 0.976

Scandinavia 0.909 0.964 0.968 0.967

Germany 0.869 0.951 0.927 0.921
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Figure 6 shows the scaling of ξwith distance between the failing links for a failure of two links.Here, we use
theKendall rank correlation τ to quantify the degree of general non-linear correlation between the two
quantities. The rerouting distance performs slightly better in predicting the collectivity parameter ξ than the
geodesic distance, where the former has a rank correlation of τ=−0.7 and τ=−0.62with ξ and the latter a
correlation of τ=−0.66 and τ=−0.51 in the test grid ’case118’ and the Scandinavian grid, respectively. Thus
both distancemeasures performmoderately in predicting the collectivity parameter although not nearly aswell
as the predictor introduced in the last section. Still, the distance seems to be an important factor in determining
the simultaneous outages’ effects–but contrary to the case of a single outage [22], other factors play an important
role, too.Wemay thus deduce that links that are closer to each other in both, the rerouting distance and the
simple edge distance tend to have a stronger collective response. This behaviour is expected given that the
predictor performing best is given by the product of themutual LODFs between the two failing links and the
rerouting distance is known to be a good predictor for the LODF [22].

3.3. Impact of community structures
Besides the effect of distance on failure spreading analysed in the last section, community structure is also known
to play an important role.We analyse this effect exemplarily for the Scandinavian gridwhose community
structure we present infigure 7(a). The communities are determined using spectral graph partitioning [51–53]
based on the sign of the eigenvector v2 of the Laplacianmatrix corresponding to the second smallest eigenvalue
l2, also referred to as Fiedler eigenvalue [31]. The affiliation of a node to one of the two communities is encoded
in red and blue colouring representing the value of the eigenvector at the respective node, such that two nodes
belong to the same community if they have the same colour. As shown infigure 7(b), we evaluate ξ for the case
were both trigger links are located in the same community (right, green boxplots) and different communities
(left, blue boxplots). Overall, we observe that community structure plays an important role for the overall
strength of collective effects; if both links, are located in the same community, the collectivity parameter is on
average three orders ofmagnitude larger evaluated in terms of the respectivemedian.

Community structure affects ξ directly and indirectly through the distance, because the distance between
two links tends to be higher if they are in different communities. To account for this effect, we also present the
collectivity parameter ξ in dependence of the rerouting distance (c, cf equation (14)) and the geodesic distance
(d).We consistently observe a stronger collectivity parameter for both distancemeasures when the trigger links

Figure 6.Distance performsmoderately in predicting the overall collective effects of a double link failure of two links o and k. In both
the IEEE test grid ‘case118’ (a), (b) and the Scandinavian grid (c), (d) the collectivity parameter ξ(o, k) is plotted against the unweighted
rerouting distance ( )o kedist ,re

u (a), (c) and unweighted geodesic distance ( )o kedist ,ge
u (b), (d), respectively. TheKendall rank

correlation τ is given in all cases. Although there is a clear trend towards smaller collectivity parameters for larger distances, the
correlation ismuch smaller than for the predictorΛ(o, k), thus indicating that effects other than distance play an important role for
collective effects as well. The histograms’ colour code indicates the relative frequency of data points in the given bin. Logarithmic plots
were used to resolvemore details for very small values of the collectivity parameter. Note that binningwas also done on a logarithmic
basis, leading tomuch smaller bins for lower values of ξ.
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are contained in the same communitiy (green, upper curve) compared to the case of trigger links contained in
different communities (blue, lower curve).We thus conclude that community structure also determines if two
links interact strongly collectively.

4. Extension to arbitrary link failures

Now that we analysed the simultaneous failure of two links in detail, wewill extend the theoretical framework to
more than two links failing. To this end, wewill derive a formula that describes this type of contingencies on a
nodal level and perform a continuum limit that is valid for infinitely large regular grids.

4.1.Derivation of generalized LODFs
Nowconsider the simultaneous outage ofK links { }¼l l, , K1 with <K M . Thenwe define the projection
matrix from the space of all links onto the subset of failing links   : M K via

d= ,kl l l, k

where dl l, k
denotes theKronecker delta. Consequently, let  D: K N be the projection of the node-edge-

incidencematrix  I: M N onto the subset of failing linkswhich reads as

( ) { }= = Î ¼ID I k K, for 1, 2, , .nk nk n l, k

With this definition the columns of thismatrix are the vectors dlk introduced in the definition of the LODF, as
per equation (6). As a reminder, they are defined by their entries being+1 at the node corresponding to the start
of the respective failing link,−1 at the node corresponding to the end of the failing link and 0 otherwise.
Furthermore, we define the projected branch reactancematrix  B : K K

out by

Figure 7. Location of the two trigger links in the same community increases the collectivity parameter ξ. (a) Fiedler vector colour
coded fromblue (negative values) to red (positive value) reveals community structure in the Scandinavian grid. (b) Logarithmic
collectivity parameter ξ (boxplots) evaluated for two failing links located in the same (left, blue) and in different communities (right,
green) for the Scandinavian power grid shown in panel (a). Collective effects are stronger if the two links are located in the same
community. Thewhiskers cover all data points that fall outside of the quantiles by atmost 150%of the inter-quantile range, while
crosses show the remaining outliers [54]. (c), (d)Collectivity parameter ξ consistently yields stronger values for two trigger links in the
same community (green, top) compared to two trigger links contained in different communities (blue, bottom)when plotted against
(c) the rerouting distance and (d) the geodesic distance. Lines indicatemedian valueswhereas shading represents 0.75 and 0.25
quantiles. For all plots, links with collectivity parameter almost zero (x < -10 12)were excluded from the analysis.
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( )= = ¼ B B b b bdiag , , , .l l lout d K1 2

Using thismatrix, we can also project the vector of all initialflows onto the failing links defined by

( )( ) ( ) ( ) ( ) ( )q= = =  F F B D F F F .l l lout
0 0

out
0 0 0

K1 2

The failure ofmultiple linksmay be regarded as a perturbation to the graph Laplacian B in the sameway as for a
single link, see [22],

ˆ = + DB B B,

where B̂ is the graph Laplacian after the failure of theK links. The corresponding perturbationmatrixDB may
then also be expressed using the projected node-edge-incidencematrix as

( )D = - B DB D . 15out

In addition to that, the failure causes the nodal potentials to change,

q̂ q y= + ,

where y is a vector of the changes in angles. Using the continuity equation (3) in the new grid,

( )( )q y= + D +P B B ,

subtracting from it the current balance for the old grid, and applying theMoore–Penrose-pseudoinverse to the
resulting equation, the change in potential is calculated as

( ) ( )†y q= - + D DB B B . 16

Wecan simplify this expression bymaking use of theWoodburymatrix identity [55] and arrive at the final result,

( ) ( )† ( )Py = - -B D F1 . 17K
1

out
0

Here, we defined a projection of the PTDFmatrix onto the subset of failing linksP  : K K given by

≔ †P =   B D B D PTDF .out

The change in phase anglesmay then be used to calculate theflow changes bymaking use of equation (1). The
vector offlow changes reads as

( ) ( )† ( )PD = - -F B I B D F1 . 18Kd
1

out
0

In principle, wemay nowmake use of equation (18) to calculate the flow changes after an arbitrary number of
simultaneous contingencies. The immediate insight into the structure of the contingency problem from this
equation is, however, limited.Wewill thus try to gainmore insight into the interplay ofmultiple outages by
rearranging the equation.

Starting with equation (17) expressing the change of voltage phase angles after the failure y, we can derive
the following Poisson-like equation similar to the case of a single link failure as presented in equation (7)

( )( )y =B DF , 19K

wherewe defined the vector offlowsweighted by the dipole source terms

≔ ( )( ) ( )P- -F F1 .K
K

1
out

0

Wemay thus rewrite equation (19) for the change in nodal potentials as follows,making the correspondence to
the Poisson equationmore apparent;

( )åy =
=

B q , 20
k

K

k
1

with the dipole sources

( )=q d Fk k k
K

and the dk being the rows of D, see also section 2.2. In addition to this expression, we can derive an analogous
equation for the graph Ĝ fromwhich all the failing links have been removed. Simply plugging equation (15) into
equation (16), we arrive at the following equation

ˆ ( )y =B DF .out
0

Weare thus left with a discrete Poisson equationwith potential y, which is analogous to the result obtained in
our previous work [22], sections3 and 4 for a single failing link. Instead of a single dipole source this equation is
governed byK dipole sources. However, this equation differs from the naive approach obtained by simply
superposing single dipole sources. To see this, consider the case ofK=2 link failures. Aswe have seen in the
previous section 3, collective effects play an important role in the interaction of the two links. In this case, a
simple superposition of two dipoles results in the equation
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y = +B q q ,naive
1
naive

2
naive

wherewe defined the dipole sources resulting from the naive approach

( )
( )

( )
( )

P

P

= -

= -

-

-

q d

q d

F

F

1 ,

1 .

1
naive

1 11
1

out,1
0

2
naive

2 22
1

out,2
0

On the other hand, using the exact approach in equation (20), the actual dipole sources read as

([( ) ] [( ) ] )
([( ) ] ( ) ] )

( ) ( )
( ) ( )

P P

P P

= - + -

= - + -

- -

- -

q d

q d

F F

F F

1 1

1 1

,

.

1 1 2
1

11 out,1
0

2
1

12 out,2
0

2 2 2
1

21 out,1
0

2
1

22 out,2
0

The naive approach thus underestimates the interaction between the two dipole sources encoded in thematrix
inverse ( )P- -12

1, as discussed in detail in section 3. In the following paragraph, wewill demonstrate, however,
that this collective effect can be neglected in the continuum limit, thusmaking the naive superposition approach
exact in that case.

4.2. Continuum limit for regular square lattice
Wewill nowdemonstrate howonemay derive an exact formula for the potential changes after an arbitrary
number of link failures for the setup of an infinite square lattice extending on our previous work [22]. Consider
the elementary example of a regular square lattice embedded in the plane 2. Label all nodes by their positions

( )=r x y, and let the lattice spacing be denoted by h. Now introduce continuous functionsψ and b such thatψ
(x, y) is the potential of the node at (x, y) and ( )+b x h y2, is theweight of the link connecting the two nodes at
(x, y) and ( )+x h y, and analogously for two nodes connected in y-direction.

For a small lattice spacing h 0 and an infinitely large grid, the left-hand side of the Poisson equation (20)
evaluated at position (x, y) can bewritten in a continuumversion as [22]

( )( ) ( ( ) ) ( ) ( )y y = - + B x y h b x y h, , . 212 3

Then, theflow changes according to equation (18) are given by

( ) ( ) ( )yD =F x y b x y x y, , , ,

whereDF refers to the change inflowdue to the link failures here and should not be confusedwith the
continuous Laplace operator.

The right-hand side of the Poisson equation (20)may be calculated similarly noting that atmost 2Knodes
contributewhenK links fail. Let any failing link { }Î ¼l l l l, , ,k K1 2 connect the nodes sk and tkwith positions
( )x y,s sk k

and ( )x y,t tk k
respectively. The discrete version of a single addend on the right-hand side reads:

[( ) ]
[( ) ]

( )
( )

P

P

= -

= å -

-

=
-

q F d

d F

1

1 .

k K k k

k i
K

K ki i

1
out

0

1
1

out,
0

Wewill now showhow this equationmay be interpreted in the continuumversion. First, the flowon a failing
link before the outage ( )Fl

0
i

may be calculated as

ˆ ( ) ( )( ) ( )= + FF h x y h, ,l s s
0 0 2

i i i

where ( ) ( ) ( )( ) q=F x y b x y x y, , ,s s s s s s
0

i i i i i i
is the continuumversion of the flowbefore the outage. Second, the

vector dk can be formally interpreted in terms of the two-dimensional delta function ( )d x y, and reads for a link
lk oriented in x-direction

ˆ ( ) ( )d= ¶ - - + d h x x y y h, .k x s s
2

k k

For links oriented in y-direction, we simply replace ¶x by ¶y . Finally, in order to calculate the continuumversion
of the inversematrix elements [( ) ]P- -1K ki

1 for two arbitrarily chosen links lk and li, assumewithout loss of
generality that both links are oriented in x-direction and that a continuumversion †b of theGreen’s function †B
exists. Then, the elements of the projected PTDFmatrixmay be calculated as

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

ˆ ( ) ( ) ( ) ( )

( ) ( ) ( )

†
†

†

P

ò d d

d

=

= ¶ - - ¶ - -

=
¶

¶ ¶
+ 

d B db

h b x y x x y y b x y x x y y x y

h b x y
b x y

x y
h

, , , , d d

,
,

.

ki k k i

s s y s s x s s

ki s s

s s

2

2
2

3

k k k k i i

k k

k k

All off-diagonal entries are zero due to the delta functions’ different arguments. Importantly, this observation is
independent of the orientation of the two links under consideration. The invertedmatrix is thus diagonal and
can be calculated as
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[( ) ] ˆ ( ) ( ( ))P P- = - = -- - - h1 1 1 .K ki ki
1 1 2 1

In total, we obtain after expanding the entire expression to lowest order in the continuum limit

( ) ( ) ( ) ( ) ( )( ) d= - - + Fq x y h x y x x y y h, , , . 22k s s s s
2 0 3

i i k k

Wecannow formally divide the left-hand side(21) and the right-hand side(22) by h2 and take the limit h 0
to obtain thefinal continuum limit of the Poisson equation,

( ( ) ) ( ) ( )åy d  = - - -
=

qb x y x x y y, , , 23
k

M

k s s
1

k k

where the source terms are ( ) ( )( )=q Fx y x y, ,k s s s s
0

k k k k
, the unperturbed currentfield.

If the linkweights are homogeneous, b(x, y)=b, the solution is given by the superposition ofK two-
dimensional dipole fields

( ) ( )
∣∣ ∣∣ ( )åy =

-

-=

r
q r r

r r
, 24

k

K
k k

k1
2

⎛
⎝⎜

⎞
⎠⎟( ) · ∣∣ ∣∣ ( ) · ( )

∣∣ ∣∣ ( )åD =
-

- -
-

-=

F r
q

r r
r r

q r r

r r
b 2 . 25

k

K
k

k
k

k k

k1
2 4

We thus obtain a fully analytic solution in the continuum limit. This solution reveals that in homogeneous
lattices the effects ofmultiple outages are given by the superposition of single outages.

5. Conclusion and outlook

In this article, we have shown thatmultiple link failures can lead to fundamentally different impacts than
expected from anaive superposition of single link failures.We have also established a parameter, namely the
predictorΛ(o, k), quantifying inwhich cases these effects have to be taken into account. In addition to that, we
have extended on previouswork demonstrating thatmultiple link failures correspond to the overlay of
correspondinglymany single dipoles in infinitely large regular grids, thus allowing for a description similar to
single link failures in this case. However, the strength of the effective dipoles is strongly determined by the
collective effects, i.e. the interplay of the failing links. Our results demonstrate that further understanding of
multiple link failures is an important task for the development and security of future power systems, thus
helping to understand inwhich cases additional link shutdowns can help or counteract overall system security.

We have presented several elementary examples which demonstrate the counterintuitive behaviour of
collective effects in some particular cases. Furthermore, we have shown that additional outages can be beneficial
for the overall grid loading, thus presenting another occurence of Braess’ paradox in power grids. In addition to
that, we have shown that collective effectsmay lead to a sign inversion offlowdirection compared to the
individual failure of each single link. Both phenomena are potentially of high relevancewhen operating power
grids as theymight help to resolve situations where a single link fails or a redispatch occurs. However, further
work should be dedicated to understanding and predicting these particular collective effects on amore
fundamental theoretical basis.

The predictor for collective flow changes introduced in thismanuscript allows for an easier understanding of
when collective effects become considerably important.Mostly, collective effects are small, they only become
relevant in cases where both failing links have a strong effect on one another. This is for example the case if the
links are in close proximity or if they are both bottlenecks. Conversely, this implies that the intuition developed
for single link failuresmay inmany cases also be applied to studymultiple link failures if the possibility of
collective effects is kept inmind.

Distance between the two failing links seems to play an important role for the overall collective effects.
Previouswork has addressed the role of distance inflow changes for single link failures where in particular the
rerouting distancewas shown to be a decisivemeasure in predicting the flow changes [22]. In predicting
collective effects, the rerouting distance between the failing links still seems to be an important quantity but not
to the same degree as it is important for single link failures. In the future, it would be interesting to extend the
rerouting distance tomore than two linkswhich could potentially also predict collective effects better.

Further work should address the role particular flowpatterns play inmore detail. In the approach used here,
we abstracted from individual flowpatterns and focused on topological aspects. This should be a good
approximation formany cases, in particular when dealingwith large power grids. However, theremight be cases
inwhich specific lines are nearly alwaysmore heavily loaded than other oneswhich should imply amore
important contribution of such lines to collective effects.
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AppendixA. Symmetry of LODFs

The LODFs according to equation (6) are given by

†
†=

-





d B d

d B d
L b

b1
.l

l k l
k

k k k
,

In this section, wewill study the symmetry of thismatrix in terms of interchanging the role of the failing link k
and the link l onwhichflow changes aremonitored. This symmetry describes the extend towhich the flow
change on one link l due to another, failing link k corresponds to the opposite flow change on link k if link l fails
instead and thus provides ameasure of symmetry for thewhole network. In particular, we analyse how the
matrix becomes asymmetric with an increasing degree of asymmetry in the links surrounding themonitored,
and failing link. This explains why both LODFs are important for predicting the strength of collective effects in
the predictor(13).

If we assumehomogeneous edgeweights for the time being such that ·=B b 1d , we notice that the
numerator in equation (6) is symmetric with respect to interchanging l and k. This numerator is also referred to
as PTDF in power engineering [11]. The symmetry can be seen by taking thematrix transpose of the expression

( ) ( )† † †= =    d B d d B d d B d .l k k l k l

On the other hand, the denominator is non-symmetric even in the case that line susceptances are uniform, as
it reads as · †- d B db1 k k for Ll,k and · †- d B db1 l l for Lk,l thus encoding the importance of the link that fails.
The LODFs are only completely symmetric if both links have not only the sameweights, but also the same
topological structure around them. This is for example the case for the periodic square grid, see figure A1, dark
blue dots corresponding to s= 0 in the legend.We analysed this expression in detail in our previous publication
[22] and showed that it can be predicted using theminimumcut that disconnects the two vertices k1 and k2. In
the case of uniformly distributed line susceptances, this expression simply reduces to thewell-studied resistance
distance [56, 57]. Thus, the asymmetry in LODFs is encoded in both, the asymmetry in connectivity in the
network, i.e. the variance in the node degree, and the asymmetry in the line susceptances.

In addition to the observationmade before, we can notice that themutual LODFs Ll,k and Lk,lwill always
have the same sign. This is due to the fact that as discussed above, the numerator is the same for both expressions.
On the other hand, the denominator is always positive or equal to zero

Figure A1.With increasing degree of sparsity s in square grids, the LODFs become less symmetric. (a)Whereas we observe fully
symmetric LODFs in a periodic square grid without any edges removed s = 0, removing edges increases the degree of asymmetry
continuously up to s = 0.45. This is due to the fact that the entries of the inverse Laplacian †B become increasingly heterogeneouswith
more edges removed. (b)The degree of asymmetry in LODFs induced by increased sparsity in periodic square grids also influences the
performance of the predictor for collective effectsΛ(o, k); it performs almost perfectly for a periodic square grid with no links removed
and homogeneous edgeweights, where also LODFs are perfectly symmetric.With increasing degree of sparsity, the performance
reduces slightly, see also table 1. For very high values of the predictor, the prefactor ( ) o k, dominates leading to the change from a
linear scaling to a nonlinear scaling for these values.
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†-  d B db1 0.k k k

Whereas this is not obvious from the above expression, it follows from the definition of the PTDFs given by
[ ]† = Î -d B db PTDF 1, 1k k k k k, [11]. Therefore wemay conclude thatmutual LODFs always have the

same sign.
Infigure A1, we demonstrate how asymmetry in LODFs arises with an increasing degree in inhomogeneity

in the nodal degrees for a periodic square lattice fromwhichwe randomly remove a fraction s of its total number
of links according to the procedure described in [22]. In this figure, we plot Ll,k against Lk,l for all possible
combinations of links l and k. Starting at s=0 for a perfect periodic square lattice with 50× 50 nodes, the LODF
is perfectly symmetric (dark blue dots).With increasing degree of sparsity sä{0.1, 0.2, 0.3, 0.4, 0.45} (dots from
dark blue to light blue), we observe an increasing spread of the LODFs indicating an increasing degree of
asymmetry in the LODFs.

Appendix B. A predictor for collective effects

To support the choice of the predictor for collective effects, consider figures B1(a) and (b).We show the
predictorΛ(o, k) and the remaining term, referred to as ‘other term’ in thefigure, for all possible combinations
of trigger links for the test case ‘pegase1354’ [46]. The remaining term is constructed by factoring out the
predictorΛ(o, k) defined in equation (13) from the expression for the collectivity parameter ξ(o, k) given in
equation (12) and assuming both LODFs Lk,o and Lo,k to be non-zero,
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Applying the approximations discussed in section 3 to this equation, this expression reduces to the following
equation,
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Based on this expression, we discuss certain limiting cases which explain the performance of the predictor.
Assume that Lo,k is very small keeping Lk,o constant andmuch larger than Lo,k. In this case, the expression is
dominated by ( ) ∣ ∣( ( ) )x » å =o k L L, k o l

M
l k, 1 ,

2 1 2 which is predictedwell by Lk,o. Performing the same
approximation for small values of Lk,o keeping Lo,k constant and large, the expression is well predicted by Lo,k. For
this reason, we need to keep both values in order to predict the overall collective effects. On the other hand, one
can easily check that the approximation is equally valid if both LODFs are of the same order.

Importantly, considering an arbitraryℓ p-norm instead, the conclusions differ only slightly. Anℓ p norm
 x p of an arbitrary vector Î x N is defined as

Figure B1. (a)The predictorΛ(o, k) performswell predicting the collectivity parameter ξ for the test case ‘pegase1354’ [46]. Predictor
and collectivity parameter are plotted on a log–log-scale. (b)The remaining termdoes not show any visible correlationwith the
collectivity parameter ξ. (c)The product of both terms exactly reproduces the collectivity parameter ξ as expected.
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For the predictor, we then have
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Therefore, the general expression to be considered does not change fundamentally when calculating theℓ p

norm instead.

AppendixC. Proof of theorem1

Proof.The collectivity parameter defined by equation (12) reads as
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Wewill demonstrate that ξ(o, k) is bounded frombelowbyΛ(o, k). First, since all addends in the sum are greater
than zero, neglecting any or all of themwill not increase the expression’s value.We can thus choose the addends
with l=o and l=k. The expression then reads as
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Nowwe canmake use of the fact that Lo,o=Lk,k=−1. In order to show that this expression is bounded from
belowbyΛ(o, k), we can square both sides of the inequality since all expressions considered here are positive.
This yields
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The last inequality follows from the following considerations
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which completes the proof. For ¹L L, 0o k k o, , , the inequality is strict. ,

Note that the proofmakes use of the fact that Lo,o=−1 for all links o, but we expect the statement to hold even
without this assumption.
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ABSTRACT Cascades of failures are among the biggest threats to supply networks such as power grids:
An initially failing element may trigger the failure of other elements, thereby eventually causing the entire
network to collapse. Here, we analyse the statistics of Line Outage Distribution Factors (LODFs), which
describe the rerouting of electric power flows after a line failure. In particular, we demonstrate that absolute
LODFs are approximately log-normally distributed throughout network topologies. We then illustrate that
this log-normal distribution of redistribution factors results in a heavy tailed distribution of outage sizes
in a simplified, stochastic cascade model over a certain range of parameters. This cascade model extends
previous stochastic cascade models by adding more realistic redistribution mechanisms as well as including
more realistic initial trigger events. Our results demonstrate that the statistics of redistribution factors is a
fundamental trait throughout different networks and presents a possible explanation for the vast occurrence
of heavy tailed distributions in real-world reanalyses of power outage sizes.

INDEX TERMS Transmission lines, network theory (graphs), graph theory, cascading failures, transmission
line outages, power grids.

I. INTRODUCTION
In our daily lives, we depend on a reliable supply with electri-
cal power. Large scale power outages can have a catastrophic
impact on society, economy and other infrastructure networks
as recent examples demonstrate [1], [2]. Remarkably, empir-
ical reanalyses of historic power grid blackouts have revealed
the scale-free nature of outage sizes: large scale outages are
not rare, but the size of outage sizes decays algebraically
[3], [4]. The reason for this scaling is still not fully under-
stood, but different possible explanations have been put
forward [5]–[8].

Blackouts are in most cases initiated by the failure of a
single or only very few transmission or generation elements
which cause the failure of other elements and so forth –
eventually leading to a cascade of failures where a large part
of the system breaks down [9]. A single step in a cascade
is essentially governed by two variables: The initial flows
in the network and the flow rerouting in the network after
a failure. The latter may be compactly summarised in terms
of the Line Outage Distribution Factors (LODFs) which arise

The associate editor coordinating the review of this manuscript and

approving it for publication was Giambattista Gruosso .

from a linearisation of power flows and relate the initial flows
to the flow changes after a failure [10]. Remarkably, LODFs
are a purely topological property of a network, i.e. they do
not depend on the power injections. Thus, a key indicator of a
given network’s resilience is their distribution. Previous work
on spatial aspects of flow rerouting has mainly focused on a
microscopic perspective on link failures, studying different
properties of individual failures such as the distribution of
flow changes after line outages [11] with a particular focus
on the decay with distance [12]–[16]. Here, we adopt a statis-
tical perspective on the distribution of LODFs for an entire
network which yields a structural indicator of a complex
network’s resilience with respect to perturbations.

The access to real-world power grid data such as network
topologies is limited due to the sensitive nature of the infor-
mation – power grids are considered to be a critical infras-
tructure. However, recent efforts increase the availability of
openly available power grid datasets that typically rely on
OpenStreetMap [17]–[19]. Different synthetic power grids
that are based on real-world grids have been designed for
power flow studies [20]–[24]. In addition to that, different
algorithms have been developed to generate synthetic net-
works that display the main topological properties of real

67364 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021
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world power grids [25]–[29]. Besides, several studies have
addressed the statistical properties of real world transmission
grids and the corresponding transmission lines [30].

In this article, we analyse the distributions of LODFs for
various real-world and synthetic grids systematically. To the
best of our knowledge, this is the first systematic analysis of
the distribution of LODFs for different real-world and syn-
thetic transmission grids. In fact, the distribution of LODFs
is purely based on the network topology and may thus be
considered as a network observable, similarly to the degree
distribution or betweenness measures that have been consid-
ered in previous analyses of power grids [26], [31], [32].

II. LINEAR FLOW NETWORKS AND LINE OUTAGE
DISTRIBUTION FACTORS
In most cases, cascades of failures are well-described by a
linearised approach to the power flow equations known as the
DC approximation. Here, we briefly review the mathematical
aspects and the derivation of LODFS using a more general
language that applies to power grids as well as to other types
of networks to facilitate a translation of our results.

A. THEORY OF LINEAR FLOW NETWORKS
Consider a linear flow network on a simple, connected graph
G(E,V ) withM = |E| edges andN = |V | vertices. Assume
that each edge ` = (j, k) in the graph is assigned a weight
b` ∈ R and each node has a potential ϑn ∈ R, n ∈
{1, . . . ,N }. In a linear flow network, the flow F` ∈ R, ` ∈
{1, . . . ,M}, on an edge ` = (j, k) connecting nodes j, k ∈ V
scales linearly with the potential drop along the line such
that [14]

F` = b` · (ϑj − ϑk ). (1)

Next, we assign an orientation to each edge ` = (j, k) in
the graph and say that the edge is oriented from node j to
node k such that F` > 0 is a flow from node j to node k
and a negative sign indicates a flow in the opposite direction.
This setup applies for example to power transmission grids
[14], [34], where F` is the flow of real power on a trans-
mission line `, ϑn denotes the nodal voltage phase angle and
b` is the line susceptance. This corresponds to the so-called
‘DC approximation’ of AC power flows that typically offers
a good description of the power flows if lines are lossless and
not too heavily loaded [34]. An equivalent description is also
used for hydraulic and vascular networks [35], where F` is
the flow of water or nutrients, ϑn is the local pressure and b`
the edge’s capacity.

Now assume that each node m has an in- or outflow pm.
Then the edge flows are related to the inflows by Kirchhoff’s
current law

pm =
∑
`∈0(m)

F`. (2)

Here, 0(m) ⊂ E(G) is the set of all edges connected to
vertex m with each edge sorted according to its orientation.

Combining Eqs. (1) and (2), we arrive at the following set of
equations

pm =
∑
`∈0(m)

b` · (ϑm − ϑk ), (3)

where the sum runs again over all edges ` = (m, k) whose
start point or terminal end is node m. As a next step, we can
define the graph Laplacian L ∈ RN×N that encodes the
topology of the graph in a compact form and is defined by
its entries as follows [36]

Ljk =


−b` if ` = (j, k) ∈ E(G)∑

m∈0(j)
bm if j = k

0 otherwise.

(4)

We will see in the following that this matrix is crucial to
describe link failures in linear flow networks. To write the
above set of equations more compactly, we define a vector of
potentials ϑ = (ϑ1, . . . , ϑN )> ∈ RN and a vector of in- and
outflows p = (p1, . . . , pN )> ∈ RN to write Equation (3)
compactly [14], [37]

Lϑ = p. (5)

The nodal potentials are thus subject to a Poisson-type equa-
tions. To solve for the vector of potentials, this equation needs
to be inverted. However, the Laplacian always has a vanishing
eigenvalue λ1 = 0 and is thus not invertible. This problem
is typically overcome by making use of the matrix’s Moore-
Penrose pseudoinverse L† which has properties similar to the
actual matrix inverse [38], [39].

B. SINGLE LINK FAILURES IN LINEAR FLOW NETWORKS
Assume that a single link e fails that carries the initial
flow F (0)

e . Then the flow change 1F` on another link ` can
be calculated as follows [10], [14]

1F` = LODF`,eF (0)
e .

The factor LODF`,e connecting the initial flows and the
flow changes is known as Line Outage Distribution Factor
(LODF) and measures the change in flow on a link ` when a
link e fails. Thus, the flow F` on a link ` after the failure may
be calculated as

F` = F (0)
` +1F` = F (0)

` + LODF`,eF (0)
e . (6)

Summarising the LODF for all possible failing links e and all
possible monitoring links `, we can define an LODF matrix,
LODF ∈ RM×M. Its entries may then be expressed in a
purely topological manner [10], [14]

LODF`,e = b`
qt`L

†qe
1− b`qteL

†qe
. (7)

Here, e = (r, s) ∈ E(G) is an edge, qe ∈ RN is a vector with
entry one at position r and entry minus one at position s and
t denotes the transposed vector. The LODF assumes values
between minus one and one, LODF`,e ∈ [−1, 1], i.e. only the

VOLUME 9, 2021 67365



F. Kaiser, D. Witthaut: Universal Statistics of Redistribution Factors and Large Scale Cascades

amount of flow that was present initiallymay be redistributed.
The diagonal elements are typically set to minus one for con-
sistency, i.e. LODF`,` = −1,∀` ∈ E(G). Furthermore, there
are several cases where the LODF vanishes, for example if
two parts of the network are only connected via a bridge [14],
[40] or via a network isolator [37], [41].

III. LOGARITHMIC LODFs ARE APPROXIMATELY
NORMALLY DISTRIBUTED
In this section, we analyse the distribution of LODFs for real-
world and synthetic power grids in detail.We use the term dis-
tribution synonymous to the probability density function here
and in the following. Since the absolute LODFs are bounded
by unity, theymay be naturally studied on a logarithmic scale.
For this analysis, we neglect the cases where the LODF van-
ishes since these are typically rare in large networks. We also
do not consider the diagonal elements LODF`,` = −1. The
distribution of LODFs is mainly governed by two factors:
Firstly, the distribution of edge weights bwhich we denote by
PB in the following. Secondly, it is governed the distribution
of entries of the Laplacian matrix’sMoore-Penrose pseudoin-
verse L† which we denote by PL† . Importantly, the former
distribution is in some sense incorporated into the latter one
since the off-diagonal elements of the Laplacian matrix are
again (summed) elements from the distribution of weightsPB.

The study of the elements of random matrices has led
to the development of random matrix theory. Typically, the
distribution of these elements is analysed using its eigenval-
ues [42]. On the other hand, research has addressed the spec-
tra of complex networks as encoded in the graph’s adjacency
matrix or its Laplacian matrix [43]–[45]. The Moore-Penrose
pseudoinverse L† - as the actual inverse - has eigenvalues
inverse to the eigenvalues of the Laplacian L except for the
zero eigenvalue. Thus, diagonalizing both matrices using the
eigenvalues λ1 = 0, λ2, . . . λN ordered by magnitude and
corresponding eigenvectors Ev1 = E1/

√
N , Ev2, . . . , EvN of the

Laplacian matrix, we may write [39]

L = (Ev1, Ev2, . . . , EvN )


0 0 . . . 0
0 λ2 . . . 0
. . . . . . . . . . . .

. . . . . . . . . λN



Ev>1
Ev>2
. . .

Ev>N



⇒ L† = (Ev1, Ev2, . . . , EvN )


0 0 . . . 0
0 λ−12 . . . 0
. . . . . . . . . . . .

. . . . . . . . . λ−1N



Ev>1
Ev>2
. . .

Ev>N

 .
Understanding the spectrum of the graph Laplacian and thus
the topology of the underlying graph is key to understanding
the spectrum of the pseudo-inverse L† and thus the distribu-
tion of LODFs. In addition to that, the Laplacian eigenvalues
determine the dynamical properties of power grids [46].

A. DISTRIBUTION OF LINE SUSCEPTANCES
In this section, we analyse the distribution of transmission
line susceptances PB. It has been demonstrated that the

distribution of line reactances xe follows approximately an
exponential distribution Px(xe) = λe−λxe by making use of
the Kullback-Leibler divergence [30]. The DC approximation
of the power flow is based on the assumption that transmis-
sion lines are purely inductive [34]. In this case, the line
reactance and susceptance are related by be ≈ −x−1e , i.e. we
can obtain the distribution of line susceptances by taking the
inverse distribution of the distribution of line reactances Px .
We will make use of this fact to compare the distribution of
LODFs in networks with unit line susceptances and sucep-
tances following an inverse exponential distribution.

B. DISTRIBUTION OF INITIAL LINE LOADINGS
Here, we consider the distribution of line flows as it appears
in a dispatch of the open energy systemmodel ‘PyPSA-EUR’
which models the European energy system [33]. To this end,
we evaluate the absolute flow |F (0)

i | on a line i and divide it
by the maximal flow Fmax

i on the line to evaluate the relative
loading

L(0)i =
|F (0)
i |

Fmax
i

. (8)

We then examine the statistics of relative loadings for a
dispatch spanning an entire year in hourly resolution. The
network has 4428 lines and 3037 nodes and, as a result,
there is a detailed statistics of relative loadings. For the given
dataset, the flow on a line is limited to 80% of the maximal
flow to incorporate a security constraint.

We find that the relative loadings are approximately expo-
nentially distributed, i.e. they are described by the probability
density function PL(L(0)) = λe−λL

(0)
(see Figure 1). The

maximum likelihood estimator for an exponential distribution
is calculated as

λ̂ = 〈L(0)〉−1, (9)

where 〈·〉 denotes the average. For the empirical distribution
of line loadings in ‘PyPSA-EUR’, we observe an estimate of
λ̂ ≈ 5 with small monthly variations.

C. DISTRIBUTION OF LODFS
To preprocess the data for evaluating the logarithmic distri-
bution, we first create the set of all pairs of edges for which
the LODF has non-zero entries

L = {`, k ∈ E(G)|LODF`,e 6= 0 ∧ ` 6= k}.

In Figure 2, we present the distribution of LODFs for two
different topologies: The MATPOWER test case ‘2736sp’
that represents the Polish power grid during peak conditions
in summer of 2004 [21] (top row) and a 100 × 100 square
grid with unit line susceptances (bottom row). Whereas the
distribution of logarithmic LODFs closely corresponds to a
log-normal distribution (a,d) with significantly stronger tails
in both cases (b,e), the distribution of Laplacian eigenvalues
differs greatly for the two topologies (c,f). Thus, there is
a surprising similarity between the distribution of LODFs
for vastly different topologies. Here, Gaussian fits are based
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FIGURE 1. Distribution of absolute line loadings in a high-resolution energy system model. (a) We evaluate the magnitude of the relative line loadings
L(0) over a year of demand and generation patterns in hourly resolution occurring in the European energy system model ‘PyPSA-EUR’ [33] described in
table 1. The dispatch is calculated via an optimal power flow algorithm including a security margin, |L(0)

i | ≤ Lthresh = 0.8, as a proxy for N − 1 security
(cf. Eq. (17)). The probability density function is well approximated by an exponential distribution with parameter λ̂ ≈ 5.26 estimated using the maximum
likelihood estimator in Eq. (9). (b,c) The given dataset contains a weak seasonal effect, displaying slightly higher relative loading in winter months (b)
than in summer months (c) that result in a steeper exponent of the distribution of relative loadings in the latter case.

FIGURE 2. The distribution of absolute LODFs is approximately log-normal for both real-world and artificial network structure. We analyse the
distribution of LODFs and Laplacian eigenvalues for (a-c) the real-world power grid ‘2736sp’ that corresponds to the Polish power grid during summer
peak 2004 with edge weights representing the link susceptance and (d-f) a regular square lattice of size 100× 100 with unit edge weights. (a,d) The
distribution of LODFs (dark blue histogram) follows approximately a log-normal distribution (light blue) except for the tails at low values for both the
‘2736sp’ grid (a) and the square grid (d). (b,e) The heavy tails (dark blue) – as compared to the Gaussian distribution (light blue) – become clearly visible
when analysing the distributions on a log-log scale. (c,f) Even though the distributions of LODFs have a similar shape for both networks, the spectra of
the Graph Laplacian differ significantly between the two topologies. For the real-world grid, the distribution is clearly bimodal and spreads over 4 orders
of magnitude – note the logarithmic x-scale. In contrast, for the regular lattice, the distribution differs considerably and spans only 1 order of magnitude.
Thus, although both quantities are purely topological, the similarity in the log-normal distribution of LODFs cannot easily be understood in terms of the
Laplacian spectrum alone.

on the maximum likelihood estimates of the mean µLN
and variance σ 2

LN for a log-normal distribution which are
given by [47]

µ̂LN =

∑N
i=1 log(Xi)
N

, (10)

σ̂ 2
LN =

∑N
i=1

(
log(Xi)− µ̂LN

)2
N

, (11)

where Xi are the realizations of the random variable ‘‘X ’’
under consideration.

To further examine the characteristics of the distribution
of LODFs, we systematically evaluate different moments
of the underlying distribution for different grids [48]. First,
we calculate the mean of the absolute logarithmic LODFs

µ =
1
|L|

∑
`,k∈L

log(|LODF`,e|). (12)
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FIGURE 3. Statistical properties of the logarithmic LODF distribution and the network structure for synthetic grids, real world grids and random graphs.
We analyse 11 random graphs, 4 synthetic grids and 20 test case grids that are inspired or correspond to real world grids (see tables 1 and 2 for details).
(a,b,c) Attributes of the network topologies underlying the grids: The topological attributes span a wide range in terms of their number of nodes N , their
number of edges M and their average degree 〈k〉. (c,d,g,h) We analyse the first, second, third and fourth moment (see sec. III) of different real-world,
random and synthetic grids (see tables 1 and 2). Although the grids are of different sizes (d) and different connectivities (g,h), the statistical properties
are similar: the (logarithmic) mean lies approximately at µ ≈ −4, the variance around σ2 ≈ 2 except for the random grids which are much more regular,
the skewness γ1 is slightly negative and the excess kurtosis κ positive for almost all grids, indicating that large deviations are more likely than for
Gaussian distributions. Test cases are taken from Refs. [20]–[24], [33] (see table 1 for details).

Second, we calculate the variance σ 2

σ 2
=

1
|L|

∑
`,k∈L

(log(|LODF`,e|)− µ)2. (13)

To specifically compare the distributions to log-normal dis-
tributions, we also calculate the normalized third and fourth
moment, namely the skewness γ1

γ1 =
1
|L|

∑
`,k∈L

(
log(|LODF`,e|)− µ

σ

)3

, (14)

and the excess kurtosis

κ =
1
|L|

∑
`,k∈L

(
log(|LODF`,e|)− µ

σ

)4

− 3. (15)

The skewness vanishes for a Gaussian distribution due to its
symmetry. The excess kurtosis measures the deviation from
a kurtosis of three observed for the Gaussian distribution and
indicates if rare events happen more (κ > 0) or less (κ < 0)
frequently than for a Gaussian distribution [49].

Finally, we make use of another indicator that is related
to the upper tail of the distribution of LODFs and gives a
measure of a grid’s vulnerability: We calculate the relative
number of LODFs exceeding a threshold of 0.1∣∣{`, k ∈ L||LODF`,e| > 0.1}

∣∣
M(M− 1)

, (16)

and refer to this measure as the ‘strongly affected links’. The
measure may be interpreted as the probability that the failure
of a randomly chosen link results in the increase of the flow

on another randomly chosen link by more than 10% of the
flow carried initially by the failing link.

We analyse these properties of the distribution of loga-
rithmic LODFs for different power grids in Figure 3(e-h).
In particular, we consider test case grids that are based on
power system test cases and synthetic grids that are cre-
ated using a synthetic power grid algorithm (see Table 1 in
the Appendix). To get a better statistics and benchmark the
results, we also consider random graphs that are generated
either from regular grids or random network models (see
Table 2 in the Appendix).

All grids are similar in terms of their average degree 〈k〉
except for the random graphs that – in some cases – display a
much higher number of edges which results in larger average
degrees (see panels (a-c)). The mean of the logarithmic abso-
lute LODFs isµ = −3.91 for all grids tested and the variance
is σ 2 = 1.73, except for the random graphs where a much
lower value of a variance close to unity may be observed. This
is likely due to the fact that the randomgraphs considered here
are inmost cases very regular in terms of the graph degree and
thus much more homogeneous than realistic power grids. The
skewness is negative for almost all distributions tested with
a mean skewness of γ1 = −0.26 evaluated over all grids,
indicating distributions with a peak located at values larger
than the mean value. For the excess kurtosis, we observe
almost exclusively values larger than zero, in most cases
exceeding unity, with a mean of κ = 0.60. This indicates that
almost all LODF distributions have heavier tails than a log-
normal distribution. In terms of the network vulnerability as
measured by the strongly affected links, we observe a mean
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of 9.5 · 10−3 with the synthetic grid models displaying a
much higher vulnerability with a mean of 2.5 · 10−2. Thus,
we conclude that the distribution of LODFs displays a high
degree of similarity for different power grids and synthetic
networks. In Figures 7,8,9 and 10 in the Appendix, we show
the actual statistics of LODFs for 24 test case grids and
synthetic grids, for which aggregated statistical properties are
summarized in Figure 3.

IV. APPLICATION: A CASCADE MODEL WITH
LOG-NORMAL LOAD REDISTRIBUTION
Based on our finding that LODFs are log-normally distributed
over a wide range of topologies, we will now discuss a sim-
ple probabilistic cascade model that incorporates this effect.
To this end, we will study a modification of the ‘CASCADE’
model due to Dobson et al. [7], [8].

A. THE CASCADE MODEL AND A POSSIBLE EXTENSION
Consider a simple network consisting of N components.
Initially, each component j is assumed to have a load L(0)j
that is smaller than its maximal load Lmax

j . If a component
exceeds its maximal load, the component breaks down and
a redistribution mechanism is triggered that distributes the
load to the other components in the network. These may in
turn trigger further breakdowns, resulting in a cascade of
breakdowns that eventually stops if the network has broken
down entirely or if no further overloads occur.

In the original setup by Dobson et al., the initial loads
L(0) are drawn from a uniform distribution, i.e. L(0) ∈
U(Lmin,L thresh) where Lmin is the minimum loading in the
distribution and L thresh ≤ Lmax is the threshold loading,
potentially incorporating a security margin to the maximal
loading Lmax. Redistribution after failures is incorporated by
increasing the load on all components in the network by a
constant addend D1. Furthermore, the cascade of failures is
triggered by an initial shock that increases the load on all
components by an added D0. Thus, the loading on a com-
ponent i in a network after the failure of M components is
calculated as

L(1)i = L(0)i + D0 +MD1.

Choosing critical values of these parameters that depend on
the system size N , Dobson et al. demonstrate that this model
yields a power law of the number of components failing –
in close correspondence with power laws of blackout sizes
observed empirically in historic power blackout sizes [3].

Inspired by the redistribution of real power flow after line
failures in power transmission grids as described in Eq. (6),
we suggest extending this mechanism as follows:

1. Security margin and distribution of line loadings:
Typically, real-world power grids are operated using theN−1
security criterion which means that upon the failure of any
transmission or generation element, no other line becomes
overloaded. This is approximately taken into account in the

Algorithm 1 Stochastic cascade model
% Randomly choose initial trigger element k ∈

{1, . . . ,N } and add it to set of failing components C
C ← k
repeat
has_overloads← 0
% Redistribute load from all failed components:
for all remaining components do

% Update ∀i ∈ {1, . . . ,N }, i 6∈ C :
Li← Li +

∑
k∈C (−1)

mLLk , .

% Reset set of current failures and remove failed
components
C ← {}
if |Li| > Lmax then
Add i to set of current failures C
has_overloads← 1

end if
end for

until has_overloads = 0

model by a security margin

L thresh = c · Lmax (17)

which limits the maximal initial loading to a share c ∈ [0, 1]
of the maximal Lmax. In the following, we simply set
Lmax

= 1 for all components such that our model emulates
relative loading of components.

We then consider either a uniform distribution of com-
ponent loadings as in the original ‘CASCADE’ model such
L(0) ∈ U(−L thresh,L thresh), or an exponential distribution that
we have found empirically in a large-scale energy system
model (see Sec. III-B). In the latter case, we initially draw
all loadings from an exponential distribution PL(L(0)) =
λe−λL

(0)
with λ ≈ 5. If the initial loading on an element

i exceeds the threshold value, we simply reset it with the
threshold value L(0)i := L thresh.

2. Redistribution after failures: Inspired by our findings on
log-normally distributed LODFs, we adopt a redistribution
scheme after failures in the spirit of the redistribution of real
power flow on transmission lines as introduced in Eq. (6).
Assume that the component k with initial load L(0)k fails.
We suggest updating the load on another component i by

L(1)i = L(0)i + (−1)mLL(0)k , ∀i 6= k ∈ {1, . . . ,N }. (18)

Here, L ∈ Lognormal(µ, σ ) is drawn from a log-normal
distribution with mean µ and standard deviation σ and m
assumes the values one or zero with equal probability to
model the randomly chosen sign. This update rule thus corre-
sponds to a probabilistic version of the update rule (6) if we
insert the relative loadings (see Eq. (8)) and assume that all
lines have the samemaximal loading. Thus, our model adopts
the redistribution scheme observed in power transmission
grids in the DC approximation and takes into account the fact
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FIGURE 4. Distribution of outage sizes for different random redistribution models. We show the likelihood P(N∗) of an outage of size N∗ for (a) the
CASCADE model, (b) the log-normal redistribution model with uniform initial loads and (c) with exponentially distributed initial loads. The effective
parameters in the CASCADE model are chosen to be consistent to the parameters in the other models or their averages, respectively (see Eq. (19)).
Colour code (from dark blue to light blue) represents increasing values of redistribution constant D1 for the CASCADE model (a) and variance of the
Gaussian distribution of logarithmic redistribution factors σ2 for the other models (b,c). While the CASCADE model displays an abrupt transition point at
which either less or all components in the system fail, the transition is smoother for the suggested models. Note the peak in the histogram at the system
size N = 1500 for the CASCADE model (a), which indicates that the entire system fails with a high likelihood. The system considered here has N = 1500
elements for all panels, the mean of the distribution is set to µ = −5 for panels (b) and (c) and parameters for CASCADE model are calculated using the
parameters shown in b) and Eqs. (19) and (20). Grey dotted lines represent least-square fits of linear functions on the intermediate range of failure sizes
performed on the log-log scales for the two top curves along with the resulting scaling exponent. The range of parameters is chosen such that it agrees
with typical values found in statistics of LODFs in test case and synthetic grids (see Table 1).

FIGURE 5. Distribution of outage sizes for different random redistribution models. We show the exceedance P(N∗ > N) which is the likelihood that an
outage will result in the failure of N or more elements. The distributions shown here are the same as in Figure 4.

that LODFs are log-normally distributed throughout different
topologies.

3. Initial trigger event: In contrast to the ‘CASCADE’
model, we assume that the initial event triggering the cascade
of failures is the failure of a single element as well, i.e. the
cascade is triggered by the same mechanism that makes it
propagate. This corresponds to the mechanism for cascading
failures in real power transmission grid, where large scale
cascades are often triggered by a single link failure that
triggers other link failures and so forth [9], [14], [15].

We summarise this cascade model in the Algorithm 1.
The proposed model thus incorporates crucial aspects of

flow rerouting and cascading failures in power flow models
while remaining entirely probabilistic and, in this regard,
extending previous models. Similar to the ‘CASCADE’
model, this has the advantage that there is no need to
consider a particular grid topology and allows approach-
ing the statistics of cascading failures purely from a prob-
abilistic viewpoint. Thus, the model fills a gap between
realistic, but non-probabilistic models and purely proba-

bilistic models that are ruled by less realistic redistribution
schemes [4], [50]–[52].

B. HEAVY TAILS OCCUR OVER WIDE RANGE
OF PARAMETERS
Outage sizes in empirical data have been demonstrated to
have heavy tails [53]. Different explanations for this scaling
law have been put forward, ranging from an interpretation
of the power system being in a critical state [4], [7] to
relating the power law to power laws in city size distri-
butions [5]. A recent analysis of the probability distribu-
tion of the number of customers affected per outage in the
U.S. has found a load dependency of the scaling exponent
with typical values ranging from −2.1 to −2.8 [54]. Here,
we demonstrate that power laws of outage sizes occur over
a wide range of parameters in our extended CASCADE
model. Our model incorporates essential properties of fail-
ure cascade in linear flow models while being entirely
probabilistic.

67370 VOLUME 9, 2021



F. Kaiser, D. Witthaut: Universal Statistics of Redistribution Factors and Large Scale Cascades

TABLE 1. Distribution of topological parameters and moments of the logarithmic LODF distribution for 24 different test grids. We refer to the 20 first grids
as ‘test case grids’ since they are mostly based on power system cases except for the two grids taken from PyPSA-Eur and to the latter four as ‘synthetic
grids’. Test grids are either taken from the publicly available test case archive of MATPOWER [20]–[22] or taken from the University of Washington power
systems test case archive [24]. The Scandinavian grid data and the central European topology where extracted from the open energy system model
PyPSA-Eur [33] which are based on the publicly available network data by the transparency platform of the European Network of Transmission System
Operators (ENTSO-E). ‘case_ACTIVSg’ are synthetic power grids inspired by real-world North American power grids [23].

TABLE 2. Distribution of topological parameters and moments of the logarithmic LODF distribution for different regular and random graphs. Link weights
were either set to unity or calculated based on the inverse parameters of an exponential distribution with λ = 0.02. To produce the Voronoi lattics,
we distributed 2000 points randomly in the unit square [0,1]× [0,1] and calculated their Voronoi tessellation. For the Erdős–Rényi (ER) random graph we
used a connection probability of p = 0.2.

To be able to compare the proposed model to the
CASCADE model, we choose the redistribution parameter
D1 in the CASCADE model as the expected value of the
product probability distribution between initial loadings L(0)

and redistribution factors L, such that

D1 := E
(
|L · L(0)|

)
. (19)

If a large number of components fails, we thus have the formal
equivalence in the update equations

L(1)i = L(0)i +

M∑
k=1

|L · L(0)k | ≈ L(0)i +MD1.

Furthermore, we choose the initial trigger parameter D0 to
be equal to the initial security margin to which we add

a small value

D0 := (Lmax
− L thresh)+ E

(
|L · L(0)|

)
, (20)

since below this value, the initial trigger event cannot result
in a cascade and this value simulates a behaviour close to
criticality, where power-laws of cascade sizes have been
observed.

In Figure 4, we compare the resulting cascade sizes
obtained for a large number of simulations of the model with
the parameters indicated. We analyse the likelihood P(N ∗)
that a given number of components N ∗ fails, calculated over
108–109 realisations of the initial conditions and randomly
chosen trigger elements. We consider (a) the CASCADE
model, (b) the stochastic load redistribution model suggested
at the beginning of this section IV with uniform initial
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FIGURE 6. Distribution of outage sizes in the stochastic load redistribution model for systems of different sizes. We compare the likelihood P(N∗) of an
outage of size N∗ for systems with initial element loadings drawn uniformly (left) and exponentially (right) for systems with different number of
elements (a-e). We fix the mean of redistribution factors to µ = −5 and choose the range of variances σ2 for each system size such that power laws of
outage sizes occur. The range of parameters considered here matches typical values found in redistribution factors for synthetic and test case grids
(see Table 1).
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FIGURE 7. Distribution of absolute LODFs for the first six test grids listed in table 1. We plot the frequency of occurence of logarithmic absolute LODFs
and a Gaussian fit (see sec. III) with a linear y-scale (left) and a logarithmic y-scale (center). In most cases, the frequency of occurence of logarithmic
absolute LODFs is well-approximated by the Gaussian fit. Furthermore, we plot the frequency of occurrence of absolute LODFs (right).

loadings and (c) with exponential initial loadings. Typical
values for the log-normal statistics of redistribution factors
used in the stochastic load redistribution model are extracted
from the parameters obtained for test case and synthetic grids
listed in Table 1 and discussed in section III-C: We choose
a mean of µ = −5 which is in the typical range of µ ∈
[−3,−6] observed for the logarithmic mean and a variance of
σ 2
∈ [1.3, 1.5] which also matches the typical range of

σ 2
∈ [1, 3] observed for actual grid datasets. In Figure 6

in the Appendix, we analyse the sensitivity of these results
for varying system sizes and varying variance σ 2 chosen
in the critical range. Note that values differing from the
critical range will result in either only a small share of the
components or the entire system failing due to a limited
system size. Furthermore, we fix the security margin on the
relative loading to c = 0.7. Note that this ‘‘70%-rule’’ is
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FIGURE 8. Distribution of absolute LODFs for the sixth up to the twelfth test grids listed in table 1. We plot the frequency of occurence of
logarithmic absolute LODFs and a Gaussian fit (see sec. III) with a linear y-scale (left) and a logarithmic y-scale (center). In most cases,
the frequency of occurence of logarithmic absolute LODFs is well-approximated by the Gaussian fit. Furthermore, we plot the frequency of
occurrence of absolute LODFs (right).

a common way to ensure approximate N − 1 security also
when operating andmodelling real-world power transmission
grids [55]–[57].1

1 Note that in the dataset shown in Figure 1 the security margin is set to
Lthresh = 0.8, i.e. 80% of the maximal loading. We make use of this dataset
to estimate the scaling exponent since flows are not strongly affected by the
threshold in this case which would otherwise result in a peak at L(0) = 0.7
as an indication of positive shadow prices, i.e. a possible economic optimum
with higher line flows [58]. Thus, we estimate the exponent from this
distribution to be able to use the entire range of loadings for estimation of
the scaling exponent.

Whereas the CASCADEmodel (a) displays a rather abrupt
transition point for which either fewer components or the
entire system fail, the curves are smoother for all parameters
in the models suggested here. In particular, the curves in
the suggested models are more flat for all parameters under
consideration indicating a power law over a wider range of
parameters. Thus, we conclude that our model can reproduce
essential features observed in the CASCADE model while
presenting power laws over a wide range of parameters. For
the critical cases where power laws occur, we find that the
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FIGURE 9. Distribution of absolute LODFs for the twelfth up to the eighteenth test grids listed in table 1. We plot the frequency of occurence of
logarithmic absolute LODFs and a Gaussian fit (see sec. III) with a linear y-scale (left) and a logarithmic y-scale (center). In most cases, the frequency of
occurence of logarithmic absolute LODFs is well-approximated by the Gaussian fit. Furthermore, we plot the frequency of occurrence of absolute
LODFs (right).

scaling exponents (dotted lines, Figure 4) matches the scaling
exponents found in empirical data with values in the range of
−2 to −3. To confirm this result, we also analyse the likeli-
hood of exceedance P(N ∗ > N ), which is the likelihood that
the outage size exceedsN elements, for the same distributions
of outage sizes in Figure 5 in the Appendix and analyse the

scaling of the probability of outage sizes for systems with
different number of elements in Figure 6 in the Appendix.

V. DISCUSSION AND CONCLUSION
In this manuscript, we analysed the distribution of Line
Outage Distribution Factors for different real-world- and
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FIGURE 10. Distribution of absolute LODFs for the final six test grids listed in table 1. We plot the frequency of occurence of logarithmic absolute
LODFs and a Gaussian fit (see sec. III) with a linear y-scale (left) and a logarithmic y-scale (center). In most cases, the frequency of occurence of
logarithmic absolute LODFs is well-approximated by the Gaussian fit. Furthermore, we plot the frequency of occurrence of absolute LODFs (right).

synthetic grids. In particular, we analysed how this distri-
bution changes throughout different synthetic and real-world
topologies:We found that the distribution of the magnitude of
LODFs is approximately log-normal, but additionally shows
heavy tails throughout the topologies analysed here.Wemade
use of this finding to introduce a stochastic load redistribu-
tion model for cascading failures that incorporates essential
mechanisms of link failures in linear flow models – such as

the aforementioned log-normal distribution of redistribution
factors. The model, as a result of the log-normal distribution
of LODFs, offers a potential explanation for the widespread
occurrence of power laws in empirical data of power outage
sizes.

In contrast to microscopic studies that analyse the impact
of individual failures, our approach is a macroscopic
one, focusing on the statistics of redistribution factors.
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This approach has been demonstrated to be fruitful in many
regards. On the one hand, it allows shifting the focus from
the small-scale network structure to the vulnerability of a
network as a whole. The distribution may thus be used to
characterise network resilience, and potentially come up with
a single index for an entire network – similar to the rel-
ative number of ‘‘strongly affected links’’ suggested here.
Furthermore, this distribution could be used to evaluate
whether a given synthetic network topology corresponds to
realistic power grid topology in terms of network resilience.
Our results demonstrate that there is a strong correspon-
dence between the distributions of LODFs for vastly different
topologies and even random graphs. Although the calculation
of LODFs is based purely on the network topology via the
pseudoinverse of the graph Laplacian, we could not find a
simple theoretical explanation for this universal scaling.

On the other hand, a focus on the statistics of LODFs
rather than individual values allows studying cascade models
that feature more realistic flow redistribution. These models
remain entirely probabilistic and thus do not require any
assumptions about network topology. In this manuscript,
we laid a first foundation by proposing such a cascade model
that we study numerically. However, in principle, the a priori
knowledge of the statistics of loadings and redistribution
will also allow estimating cascade statistics analytically. This
could help to shed further light on empirical observation of
cascade sizes in real-world outages.

The stochastic load redistribution model for cascading fail-
ures introduced here focuses on the number of the failing
components as an indicator for the severity of blackout sizes.
This is due to the fact that the statistics of LODFs can be most
easily and most directly related to the failure of individual
components and thus outage sizes. Nevertheless, a number
of other indicators has been proposed that aim to classify
the severity of blackouts such as the number of customers
affected, the unserved power or the value of lost load to name
but a few [5], [7], [59], [60]. However, in order to extend our
model with one or several other indicators, we would have
to tune additional parameters to estimate e.g. the statistics
of power consumption, which is why we leave this question
open for future studies.

APPENDIX
TABLE OF POWER GRID TEST CASES
See Table 1 and 2.

APPENDIX
ADDITIONAL FIGURES
See Figure (5)–(10).
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3. Reducing the impact of link failures:
topology and symmetry

As we have analysed in the last chapter, link failures are among the biggest threats to the
stability of supply networks. For this reason, strategies to limit their impact and prevent
cascading outages are of great importance. An intuitive strategy to limit the impact of
failures is given by reducing the connectivity between the part of the network where the
failure happened and another part that shall be protected against the impact of the failure,
in some cases even disconnecting parts of the network [72, 73]. However, as discussed
in detail in the introduction, future power transmission systems require more long-range
transport and thus more connectivity. In our publications, we overcome this problem by
introducing network isolators – subgraphs that connect different parts of the network and
completely inhibit failure spreading between these parts. Network isolators may be realised
at an arbitrary degree of connectivity and completely suppress flow changes as a result of
link failures while letting power flows pass. Thus, they help to design reliable future power
systems by allowing for more connectivity and increasing security at the same time.

In the first publication, we introduce the concept of network isolators by rigorously
proving that network isolators have the desired effect: They completely suppress any flow
changes in the shielded parts in linear flow networks. We then discuss different possible
applications of network isolators and their robustness with respect to small modifications in
the isolator topology and their ability to suppress cascade propagation. Here, I contributed
most of the text, designed all figures and performed all numerical simulations (see author
contribution statement in the manuscript).

The second publication builds upon the first one. Here, we develop a novel understand-
ing of failure spreading in linear flow networks by analysing the importance played by
certain paths. To this end, we trace back the problem of flow rerouting to spanning trees
in the network, making use of a formula already introduced by Kirchhoff in the context of
resistor networks [65]. We then exploit this formulation of flow rerouting to analyse why
certain graph structures attenuate failure spreading. In particular, we come up with a dif-
ferent perspective on network isolators: They introduce symmetry into the spanning trees
that govern flow rerouting, making these trees balance each other and thus completely sup-
pressing flow changes. Here, I wrote most of the text, designed all figures and performed
all simulations.

73



3. Reducing the impact of link failures: topology and symmetry

3.1. D) Network isolators inhibit failure spreading in

complex networks

[4] Kaiser, F., Latora, V. & Witthaut, D. Network isolators inhibit failure spreading in com-
plex networks. Nature Communications 12, 3143. doi:10.1038/s41467-021-23292-9
(2021).

The article was published Open Access under a Creative Commons Attribution 4.0 In-
ternational License. A copy of this License is available at http://creativecommons.
org/licenses/by/4.0/.
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In our daily lives, we rely on the proper functioning of supply networks, from power grids to

water transmission systems. A single failure in these critical infrastructures can lead to a

complete collapse through a cascading failure mechanism. Counteracting strategies are thus

heavily sought after. In this article, we introduce a general framework to analyse the

spreading of failures in complex networks and demostrate that not only decreasing but also

increasing the connectivity of the network can be an effective method to contain damages.

We rigorously prove the existence of certain subgraphs, called network isolators, that can

completely inhibit any failure spreading, and we show how to create such isolators in syn-

thetic and real-world networks. The addition of selected links can thus prevent large scale

outages as demonstrated for power transmission grids.
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Complex networked systems are subject to external per-
turbations, damages or attacks with potentially cata-
strophic consequences1,2. The loss of even a single edge

can cause a blackout in a power grid3,4, the dieback of a biological
network5, or the collapse of an entire ecological network6. It is
thus essential to understand how the structure of a network
determines its response to perturbations and its global
resilience7–11. Here, we propose a general framework to model
the redistribution of flows in a complex network that follows a
small and local failure, and we suggest novel and more efficient
strategies to improve network resilience. Our findings reveal that
propagation of damages can be better limited by adding selected
links instead of removing links and can turn very useful to
construct more robust networks or to improve existing ones.

The division of a network into weakly coupled parts provides
the most intuitive method to inhibit the spreading of failures, thus
improving system resilience12–15. An example is shown in Fig. 1a
for an elementary supply network with two weakly connected
modules. The response to an edge failure is strong locally, but it is
reduced in the other module of the network which has only few
links connecting to the part where the failure happened. A similar
effect is observed in a real-world case: the Scandinavian power
grid in Fig. 1d. The study of community structures in both natural
and man-made systems is an integral part of network science: a
variety of methods has been developed to define and identify the
weakly connected modules of a network16–18, and the important
role of community structures in network dynamics is today well
recognised.

Limiting connectivity for the sake of additional security is,
however, not always desirable. For instance, microgrid concepts
and intentional islanding are heavily discussed in energy systems
research19,20, but the overall demand for electric power trans-
mission actually increases21,22. Other methods to contain per-
turbations or damages in complex networks are thus needed.
Indeed, an exceptionally strong interconnectivity between two
modules can also suppress failure spreading as shown in Fig. 1b,
e. Notably, a strong interconnectivity can be realised in different
ways. In the random network example in Fig. 1b, a high number
of links connects a subset of nodes of the two modules. In real

vascular networks of leaves the suppression of failure spreading
occurs naturally because the central vein between the left and
right parts has an exceptionally large weight (Fig. 1e, cf. also23).

Remarkably, failure spreading can be completely stopped by
certain subgraphs which we refer to as network isolators in the
following, an example being shown in Fig. 1c. The failure of an
edge in the right part of the network does not affect the flows in
the left part at all. Real world networks can be made perfectly
resistant to failure propagation by the ad-hoc addition of few
links to create network isolators, as demonstrated for the Scan-
dinavian power grid in Fig. 1f consisting of three weakly coupled
modules. The suppression of failure spreading is readily gen-
eralised to networks with more than two modules.

Results
A model for supply networks. Our results are based on a general
framework that allows a theoretical analysis of the interplay of
network connectivity and robustness in the context of supply or
transportation networks. Consider a simple graph G with edge set
E and vertex set V consisting of L= ∣E∣ edges and N= ∣V∣ ver-
tices. Many such systems can in fact be modelled by linear flow
networks where the flow over an edge e= (i, j) 2 E(G) depends
linearly on the gradient of a potential function across the edge,

Fi!j ¼ Aij � ðϑi � ϑjÞ: ð1Þ

In particular, this description applies to power transmission
grids2,24–26, where F is the real power flow, ϑi denotes the nodal
voltage phase angle and Aij is given by the line susceptance. Non-
linear effects in electric power grids will be discussed below.
Furthermore, the description (1) applies to hydraulic and vascular
networks27,28, where F is the flow of water or nutrients, ϑi is the
local pressure and Aij the edge’s weight. Equivalent problems arise
in the linearisation of general diffusively coupled networks of
dynamical systems around an equilibrium or limit cycle29. We
discuss these and other applications of linear flow models in
detail in Supplementary Note 1.

Now assume that there are sources and sinks attached to the
nodes in the network Pi 2 R; i 2 VðGÞ where Pi > 0 represents a

Fig. 1 Different network structures inhibit the spreading of failures in complex networks.We simulate the impact of a single failing link (red) for different
network structures; resulting flow changes are colour coded. a, b Both a weak and a strong interconnectivity can suppress the spreading of failures between
two modules of a complex network. c Failure spreading is prevented completely by a network isolator (blue shading); flow changes on the grey links are
exactly zero. d The Scandinavian power grid consists of three weakly connected modules, which suppresses failure spreading between the modules44.
e The vascular network of a Bursera hollickii leaf contains a strong central vein47, which suppresses failure spreading between the two sides of the leaf.
f Same as in (d) but with the addition of two links (blue shading) to create a network isolator. See Methods and caption of Fig. 2 for further information on
the graphs used here.
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source and Pi < 0 a sink. Then the flows at each node have to
balance with the sources and sinks

Pi ¼ ∑
N

j¼1
Fi!j 8i 2 VðGÞ: ð2Þ

This equation is known as continuity equation or Kirchhoff’s
current law. If the sources and sinks Pi are given, Eqs. (2) and (1)
completely determine the potentials in the network (up to a
constant shift to all potentials). In a power grid, the sources and
sinks are the power injections or withdrawals as a result of power
production or consumption, respectively. When looking at the
stable, operational fixed point of a power grid they are balanced
such that

∑
N

i¼1
Pi ¼ 0; ð3Þ

we therefore assume this to hold in the following sections.
For further use, we introduce a compact vectorised notation,

defining the vector of injections P
!¼ ðP1; ¼ ; PNÞ> and the

vector of potentials ϑ
!¼ ðϑ1; ¼ ; ϑN Þ>, where the superscript ⊤

denotes the transpose. The coupling coefficients Aij=Aji are
summarised in the weighted adjacency matrix A 2 RN ´N .
Furthermore, we define the diagonal matrix D 2 RN ´N with
entries Dii=∑jAij as well as the weighted graph Laplacian30

L ¼ D� A: ð4Þ
Kirchhoff’s equations then assume the compact form

L ϑ
!¼ P

!
: ð5Þ

Notably, the Laplacian matrix is also useful to infer the large scale
connectivity and the community structure of a given network31.

Modelling link failures. The impact of a damage in linear
flow networks can be calculated analytically. Assume that an
edge ℓ= (r, s) fails, and summarise the response at all nodes i=
1,…,N in terms of the vector of changes in nodal potentials

Δ ϑ
!¼ ðΔϑ1; ¼ ;ΔϑNÞ>. The response can be calculated by

subtracting Eq. (5) for the new and the old network which yields
after some manipulations (Ref. 25, Supplementary Note 2)

L Δ ϑ
!¼ q‘ ν

!
‘; ð6Þ

where ν!‘ is a vector with+1 at position r and−1 at position s,

and q‘ ¼ 1� Ars ν
!>

‘ L
�1 ν!‘ is a source strength25. We thus find

that the response of a network to failures is essentially determined
by the Laplacian L.

To quantify the effect of connectivity on failure spreading, we
have studied the impact of different failures in a variety of
synthetic networks as well as in several real-world networks. For a
given initial failure of an edge ℓ, we compute the flow changes

ΔFi!j ¼ Aij � ðΔϑi � ΔϑjÞ ð7Þ
for all edges e= (i, j) in a given subgraph G0 of the network.
Furthermore, we must take into account that the impact of a
failure generally decreases with distance25,32,33. As an overall
measure of the impact of a failure we thus consider the expression
hjΔFi!jjiði;jÞ2G

0

d
, which gives the magnitude of flow changes

averaged over all edges ði; jÞ 2 G0 at a given distance d to the edge
ℓ (see Methods for details on the notion of distance used here).
The prime question is now whether the impact differs
substantially between the communities or moduli of a network.
Here, we assume that the moduli or communities are known for
the network under consideration and thus do not address the

question how to determine them. We thus plot the ratio

Rð‘; dÞ ¼
hjΔFi!jjiði;jÞ2O

d

hjΔFi!jjiði;jÞ2 S
d

: ð8Þ

between the module of the network G0 ¼ O without initial
failures and the module G0 ¼ S containing the failing edge ℓ. If
this ratio approaches or reaches zero, this is indicative of a very
strong suppression of failure spreading into the other part of the
network.

The impact of network connectivity on failure spreading. To
study how the impact of failure spreading depends on the net-
work structure, we considered synthetic graphs obtained by
connecting two Erdős–Rényi (ER) random graphs to each other
at preselected, randomly chosen vertices with a tunable prob-
ability μ 2 [0, 1]34 (see Methods). The resulting graphs have a
connectivity structure ranging from two weakly connected com-
munities for low values of μ shown in Fig. 1a to strongly con-
nected parts shown in panel b. In the limit μ= 1, the two modules
are connected via a complete bipartite graph as shown in Fig. 1c.
This is a possible realisation of a network isolator, since it com-
pletely suppresses flow changes. We will explain the concept of
network isolators and provide a rigorous definition in the next
section.

The corresponding adjacency matrices clearly indicate the
connectivity structure, revealing the strong or weak coupling
between the two modules of the networks (Fig. 2a, b, d).
Remarkably, evaluating the quantity R(ℓ), obtained by averaging
the ratio over flow changes R(ℓ, d) over all distances d for a
specific trigger link ℓ, for a varying connectivity structure tuned
by μ, we find that the spreading of failures is largely suppressed
for both weak and strong connectivity between the two modules
as shown in Fig. 2c. Note that this finding is not limited to the
interconnectivity of two modules, but can be readily generalised
to three—or more—modules as we demonstrate in Supplemen-
tary Fig. 3. Distance plays a minor role for the ratio of flow
changes R(ℓ, d) as illustrated in Supplementary Fig. 2.

Network isolators inhibit failure spreading. Network symme-
tries are known to play an important role for the dynamics and
synchronisability of a network35–37. Network isolators as a spe-
cific connectivity structure completely inhibit the spreading of
failures from one network module to another. They manifest also
as particular, symmetric patterns in the region of the adjacency
matrix describing the connectivity between the two parts of the
network as we have seen in Fig. 2d. To see this, we make use of
Eq. (4) to rewrite the Laplacian matrix L of the entire network as
follows

L ¼ L1 þ D1 �A12

�A>
12 L2 þ D2

� �
ð9Þ

Here, L1 and L2 are the Laplacian matrices of the two parts of the
network which consist of N1 and N2 nodes, A12 2 RN1 ´N2 is the
region of the weighted adjacency matrix encoding the con-
nectivity between the two parts of the network and D1 and D2 are
the degree matrices of these mutual connections, i.e. the matrices
containing the nodes’ weighted degrees on the diagonals. Then
network isolators are characterised by the following theorem.

Theorem 1 Consider a linear flow network composed of two
modules 1,2 and let A12 denote the weighted adjacency matrix of
the mutual connections as described in Eq. (9). An edge failure in
one module does not affect the flows in the other module if rank
(A12)= 1. For unweighted networks this criterion is fulfilled if
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A12 describes a complete bipartite graph. The subgraph connect-
ing the two modules is referred to as a network isolator.

A proof can be found in Supplementary Note 3. Note that,
while network isolators prevent failure spreading, we found that
they do not influence network controllability as we illustrate in
Supplementary Note 4 and Supplementary Fig. 8.

Since most real world examples of networks do not contain
perfect network isolators, we have studied the robustness of a
network isolator against modifications of the topology. Starting
from a unit rank matrix, we perturb the adjacency matrix A12

iteratively (see Methods for details). The deviation of the
perturbed matrix A12 from a unit rank matrix is then quantified
using its coherence statistics defined as38,

ξðA12Þ ¼ 1�min
i;j

h a!i; a
!

ji
k a!i kk a!j k

; ð10Þ

where a!i; i ¼ 1; ¼ ;m are the matrix columns. Note that the

latter expression cosðff a!i; a
!

jÞ ¼
h a!i; a

!
ji

k a!ikk a
!

jk
may also be inter-

preted via the angle between two matrix columns, a!i and thus ξ
(A12) approaches a value of unity if all columns are parallel. The
performance of the isolator is then measured by calculating the
ratio of flow changes R, which is obtained from R(ℓ, d) by
averaging over all possible trigger links and distances. A perfect
isolator is characterised by ξ(A12)= 0 and enables a complete
containment of failure spreading such that R= 0. For perturbed
isolators, we find that R increases approximately algebraically
with ξ(A12), see Fig. 2e and Supplementary Fig. 5. Hence, the
isolation effect persists for small perturbations, albeit with
reduced efficiency. Note also that network isolators are not
limited to two connected modules, but can be readily generalised
to the interconnectivity of three—or more—modules that are
mutually shielded against failures as we demonstrate in
Supplementary Fig. 4. Finally, we illustrate that network isolators
do not increase the vulnerability of a network in case a link
located in the isolator fails in Supplementary Fig. 6.

Constructing network isolators in real-world graphs. Network
isolators are not limited to the particular situation shown in
Fig. 1. In Fig. 3a–c, we identify several subgraphs that allow to
easily introduce network isolators into existing topologies. For
subgraphs with a prior low connectivity, as measured by a small
vertex cut (Fig. 3a) or a small edge cut (Fig. 3b, c), network
isolators may be introduced with small network modifications—
by adding (a,b) or removing and adding (c) selected links with
weights adjusted such that Theorem 1 is fulfilled. For a given
graph these recipes may thus be applied as follows: (1) Identify
modules of the graph that are weakly connected to one another as
measured by a low vertex cut or edge cut of the vertices or edges
connecting them. (2) Depending on the target—e.g. whether
building new edges or vertices is costly or, on the other hand, a
minimum connectivity between the modules is required after the
modification—identify the optimal strategy to achieve a complete
bipartite connectivity between the modules by adding or
removing vertices and edges. Here, the recipes shown in the
Figure may be applied directly if the prior connectivity has the
indicated edge or vertex cuts. (3) Tune the edge weights such that
rank(A12)= 1 is achieved, i.e. a network isolator is realised.

We illustrate each of the strategies in real-world power grids.
We consider the British grid (d), the Scandinavian power grid (e)
and the Central European power grid (f) and add a network
isolator to each of the networks by making use of the strategies
shown in panels a–c. We then simulate the failure of a single link
to illustrate that network isolators suppress failure spreading in
each situation. Thus, network isolators can be used to make
various real-world power grids more resilient to failures. In a
Supplementary Fig. 7, we compare the situation with the isolator
to the situation before constructing the isolator for each of the
networks.

Network isolators suppress cascade propagation. Perfect net-
work isolators can be easily constructed to improve the resilience
of complex networked systems. As a practical example we show
an application to electric power grids, where large scale blackouts

isolator

Fig. 2 Effectiveness and robustness of shielding network structures. a, b Adjacency matrices for the graphs shown in Fig. 1a, b. Two random graphs
G(30,0.4) are inter-connected via a fraction c= 0.2 of their nodes chosen at random, and links are added with probability μ, interpolating between weak
(a) or strong (b) interconnectivity (see Methods for details). c The average ratio of flow changes R(ℓ) in the two components (Eq. (8)) is strongly
suppressed for both high and low interconnectivity μ. The blue line represents the median value over all distances and the shaded region indicates the
0.25- and 0.75-quantiles. d Adjacency matrix for the six-regular graph shown in Fig. 1c and containing a network isolator. Note that all nodes in the graph
including those in the network isolator have degree equal to six, which allows us to exclude any potential impact of heterogeneity in the degree on failure
spreading in this case. e The ratio of flow changes R, now averaged over all possible trigger links ℓ and distances d, vanishes for a network isolator
described by the condition ξ(A12)= 0 and increases algebraically with the coherence parameter ξ (cf. Eq. (10)) when perturbed (see Methods for details
on the simulation). Again, median and 0.25- and 0.75-quantiles are shown resulting from averaging over all distances and then trigger links.
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are typically triggered by the outage of a single transmission
element which leads to a cascade of failures3,39. We demonstrate
the impact of network isolators against cascading failures in the
case of the Scandinavian grid.

In the original grid layout, the modules are weakly connected,
thus failure spreading between these modules is reduced—but it is
possible. A failure in one area can spread to other areas and cause
a global cascade of failures, as demonstrated in Fig. 4a, b for a
cascade emerging in Western Norway. This spreading may in
principle be prevented by decoupling different areas of the grid,
but this is highly undesired. In fact, future energy systems will
require more connectivity, not less, to transmit an increasing
amount of renewable electric power21,22. In contrast, building a
network isolator can completely inhibit failure spreading at
increased connectivity. A perfect isolator can be realised with
moderate effort by reconstructing two substations in Norway,
such that they effectively form two nodes each. The new nodes
must be linked by internal connections and one additional two-
circuit overhead line, whose parameters are optimised such that
the condition rank(A12)= 1 is satisfied (Fig. 4c). A simulation for
such an optimised grid layout shows that the spreading of the
cascade is completely suppressed (Fig. 4d). The network remains
connected and load shedding is no longer necessary as a
containment strategy2,3. To demonstrate that network isolators
effectively suppress cascade propagation for different networks
and initial failure patterns, we evaluate the statistics of cascade
sizes in networks with and without network isolators (see
Supplementary Fig. 9). To analyse how the relatively localised
flow changes involved here lead to a non-local cascade, individual
steps of the cascade are shown in Supplementary Fig. 12.

Network isolators beyond linear flow networks. The concept of
network isolators has been established for linear flow networks,
but can be extended in two ways. (1) We can rigorously prove that
network isolators determine the response to structural damages
for a class of non-linear networked dynamical systems with dif-
fusive coupling. More precisely, the isolator effect is still rigorously

valid if the dynamics of a node i depends on the state of the other
nodes xj only through the term fi(∑jLijxj), where L is the Laplacian
and the function fi satisfies fi(0)= 0, but is arbitrary otherwise (see
Supplementary Note 3, Corollary 2). (2) For many non-linear
systems of practical importance, the impact of failures or pertur-
bations is well described by a linearisation around an equilibrium
or limit cycle (see ref. 29) for which an approximate isolation can
be achieved (see Supplementary Note 3, subsection 4).

To systematically analyse how non-linearity affects failure
spreading through network isolators we first consider a natural
extension of the linear flows in Eq. (1), replacing the linear
coupling by its sinusoidal counterpart

~Fi!j ¼ Aij � sinðϑi � ϑjÞ; ð11Þ

which yields the well-known Kuramoto model40,41. If phase
differences between neighbouring vertices are small, one can
expand the sine function as sinðϑi � ϑjÞ ¼ ðϑi � ϑjÞ þ
Oððϑi � ϑjÞ3Þ (see Supplementary Note 1). Hence, our previous
result remain valid to linear order, whereas a higher degree of
non-linearity may gradually weaken the effects. In particular, the
effectiveness of a network isolator depends on the relative load of
the edges j~Fi!jj=Aij. We study this numerically by increasing the
injections Pi at all nodes proportionally, thus increasing the
relative edge loads and the importance of the non-linearity of the
sine function.

We then analyse the non-linear flow changes Δ~Fð‘Þ after the
failure of a single link for different degrees of non-linearity in
Fig. 5a, b (light to dark lines). To systematically evaluate the
degree of non-linearity, we analyse the maximal absolute non-
linear flow j~Fjmax in the entire network. Due to the sinusoidal
character of the coupling (see Eq. (11)) and since edge weights are
set to unity for the Figure, a relative loading close to unity
indicates a highly non-linear system. As expected, the flow
changes decrease with distance independently of the non-linearity.
However, even for the strongest degree of non-linearity considered
here, flow changes in the module shielded by the isolator are still

Fig. 3 Different ways of constructing isolators in real-world power grids. a–c Alternative methods of creating an isolator in a given network. We show the
network structure before (top left) and after (top right) the addition of a network isolator, as well as corresponding adjacency matrices (bottom) with
the different shades of blue representing the weight Aij of the respective edge. A lower prior connectivity simplifies the creation of isolators as measured by
the vertex cut (a) or edge cut (b, c) which is visible in the adjacency matrix (entries colored red). The creation of network isolators results in characteristic
patterns in the adjacency matrix in terms of the capacities of the isolator edges (shades of blue). d–f Realisation of network isolators in real-world power
grids. We construct network isolators in the British power grid (d), the Scandinavian power grid (e) and the Central European power grid (f) using the
recipes illustrated in (a–c). For each power grid, we colour code the flow changes after the failure of a single link carrying a unit flow (red). In each case, the
network isolator inhibits flow changes, i.e. ΔF= 0, (light grey) in the part of the network that is shielded by the isolator.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23292-9 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3143 | https://doi.org/10.1038/s41467-021-23292-9 | www.nature.com/naturecommunications 5



several orders of magnitude lower than at the same distance in the
module containing the trigger link. We confirm this result by
evaluating the non-linear version of the flow ratio (8) for different
graphs, network conditions and degrees of non-linearity in
Supplementary Fig. 10. Furthermore, we demonstrate that
introducing a network isolator may slightly improve the system’s
resilience against dynamically induced failures due to transient
overloads in Supplementary Fig. 11.

We now study the robustness of this effect in several regards
and elucidate possible ways to designing robust network isolators
for non-linear systems. The condition rank(A12)= 1 allows for
different possible realisations of network isolators in terms of the
edge weights. In linear flow networks, all these realisations are
equally efficient: They completely suppress flow changes in the
module shielded by the network isolator by virtue of Theorem 1.
But which combination of edge weights provides the strongest
isolating effect in weakly non-linear systems?

To examine this question systematically we consider a simple
but non-trivial realisation of a network isolator where two nodes
in one module are connected to two nodes in the other module
(see e.g. Fig. 3a, right). The isolator is thus formed by four edges,
and we fix the overall possible available edge weight to build the
network isolator to a constant value A 2 R. Hence, the weights
of the four edges in the isolator have to satisfy two conditions,

a1 þ a2 þ a3 þ a4 ¼ A and a1a4 � a2a3 ¼ 0;

leaving two degrees of freedom to optimise the isolator
performance (see Methods for details). In Fig. 5c we examine
the network isolator’s performance measured by the averaged,
non-linear flow changes in the module shielded by the isolator for
all possible failing links in the other module for a weakly non-

linear system with flows described by Eq. (11). On the other hand,
we analyse the worst-case available N− 1 weight, i.e. the overall
edge weight connecting the two modules if the edge in the
network isolator with the largest weight fails. We find that
network isolators with strongly heterogeneous edge weights a1
and a2 inhibit failure spreading the most in the weakly non-linear
system under consideration. However, the uniform choice ai ¼
A=4; i 2 f1; 2; 3; 4g yields the highest the available N− 1 weight,
while still inhibiting failure spreading relatively strongly. Note
that other choices to estimate the impact of removing a single link
in the network isolator, e.g. the size of the cascade caused by the
failure of the link in the isolator or the reduction in shielding
provided by the isolator after the failure might come to a different
conclusion which choice of weights yields the “bestˮ network
isolator.

We now further extend the results on non-linear systems by
considering the full load flow equations that describe power flows
in power grids with line losses. The results of the numerical
simulations are reported in Fig. 6: First, we consider the impact of
a single failing line for a realistic dispatch and realistic line
weights in the British power grid without any modification, where
flows are now evaluated based on the full non-linear AC load
flow42. For a given vertex i 2 V(G) they are calculated as
(Supplementary Note 1, Eq.(8))

Pi ¼ ∑
N

k¼1
jVijjVkjðGik cosðϑi � ϑkÞ þ Bik sinðϑi � ϑkÞÞ;

Qi ¼ ∑
N

k¼1
jVijjVkjðGik sinðϑi � ϑkÞ � Bik cosðϑi � ϑkÞÞ:

ð12Þ

Note that this set of equations again reduces to the linear flow

Fig. 4 Network isolators can contain cascading failures in power grids. a Line loading (colour code) on the Scandinavian grid in units relative to maximal
loading before the initial failure of a single line (coloured red). b The initial failure results in a cascade of overloads (red coloured lines) until the grid
disconnects into several parts. c Magnification of the grid structure in Eastern Norway (grey box, a). A small modification of the grid enables the
construction of a network isolator: adopting the recipe presented in Fig. 3a, we select two nodes (left) that are further split up into two separate nodes each
which are mutually connected via a network isolator by adding four edges (right, green). Note that the removal of these two nodes would disconnect the
network into two separate parts, i.e. they form a vertex cut of size two. d Introducing the network isolator completely suppresses the spreading of failures
from Western Norway to the rest of the grid thus inhibiting the cascade observed in (b). The first two steps of this cascade are shown in Supplementary
Fig. 12.
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model in Eqs. (2) and (1) in the so-called DC approximation (see
Supplementary Note 1). As a result, failures spread to both the
Northern part of the power grid and the Southern part equally
(panel a). After introducing a network isolator by adding two
links, flow changes are completely suppressed in the linear
approximation of power flows (panel b), but also significantly
reduced when calculating the flow changes based on the full non-
linear AC power flow: Comparing the non-linearly calculated
flow changes in the initial scenario and the scenario with the
isolator, we observe an ~100-fold reduction at all distances to the
failing link in the module shielded by the network isolator (panel
d). Thus we conclude that isolators also suppress failure
spreading in non-linear models.

Discussion
In conclusion, connectivity determines the resilience of complex
networks in manifold ways. As expected, a division of a network
into weakly coupled modules suppresses the spreading of failures
from one module to the others. Remarkably, we have found that a
strong interconnectivity can equally well suppress the spreading
in both flow networks and in networks of non-linear dynamical
systems. We have demonstrated that an even stronger effect can
be obtained by certain subgraphs called isolators, which com-
pletely inhibit the spreading of failures in linear systems.

We then showed that isolators can be easily created in a net-
work to mitigate cascading failures, for instance in electric power
grids, while enabling an arbitrary degree of connectivity between
the different parts of the network. These results widen our per-
spective on the large scale organisation of complex networks in
general, showing that very diverse structural patterns can exist
that isolate functional units and improve network resilience.

Furthermore, our results show that algebraic properties of
networks can have striking effects on their function and robust-
ness—depending on the type of flow model. Similar effects are
not present in simple models where flows are rerouted along the
shortest paths only4,9, but they can become essential in physical
supply network models where various paths contribute and
interact in a non-trivial way.

Methods
Creating graphs with strong or weak inter-module connectivity. We introduce
a model to create ensembles of graphs consisting of two subgraphs with weak or
strong interconnectvity similar to the approach in ref. 43, see Figs. 1 and 2. We start
with two disconnected Erdős–Rényi random graphs G1(N1, p1) and G2(N2, p2),
where N denotes the number of nodes in the graph and p the probability that two
randomly chosen nodes are connected by an edge34. Then we randomly choose
n1= [c ⋅N1] nodes v ¼ fv1; :::; vn1 g in G1 and n2= [c ⋅N2] nodes w ¼ fw1; :::;wn2

g
in G2. Here, c 2 ½0; 1� � R is a constant representing the share of nodes connecting

Fig. 5 Robust design of network isolators in the Kuramoto model. a To
study the effect of non-linearity on network isolators, we simulate the failure of
a single link (red) in a network consisting of two modules that are connected
via a network isolator. b We consider the median absolute non-linear flow
changes jΔ~Fð‘Þj (Eq. (11)) on a link ℓ after the removal of the link shown in (a).
We analyse the effect of edge distance to the failing link (x-axis) and increasing
degree of non-linearity (colour code from light to dark). We compare the flow
changes in the lower module that contains the failing link (curves on the upper
left) and the isolated module (curves on the lower right) by averaging the flow
changes over all links in the given module at a fixed distance. As expected, flow
changes in the upper module are lowest for a weakly non-linear system (bright
line) and increase with the non-linearity, but a strong isolation effect persists
even for a high degree of non-linearity (dark purple line). Shaded region
indicates the 0.25- and 0.75-quantiles evaluated over the given distance. c We
fix the overall available edge weight of the four edges forming the isolator to
∑iai=4 and systematically scan over the remaining degrees of freedom,
measuring the isolator performance in terms of the mean logarithmic flow
changes hlog10ðjΔ~FjÞi for a fixed degree of (intermediate) non-linearity. We
observe that a heterogeneous isolator where the weights differ strongly
provides the best shielding. d We evaluate the available worst-case N− 1
weight, i.e. the overall edge weight connecting the two modules after the failure
of a single link in the isolator, for the same set of edge weights as in (c). Here,
isolators with homogeneous weights perform best. Edge weights of all non-
isolator edges are set to unity, Aij= 1, 8ði; jÞ 2 E(G) in all panels.

Fig. 6 Network isolators suppress failure spreading in full non-linear AC load flow. a An initially failing link with unit flow (red) in the British power grid
results in changes of real power flow (colour code) throughout the whole network, as obtained by computing a non-linear full AC power flow44. b, c After
introducing a network isolator based on the strategy presented in panel (a of Fig. 3), failure spreading is perfectly inhibited in the linear power flow
approximation, and still significantly reduced in the non-linear full AC load flow. d We compare the median absolute flow changes, calculated using the
non-linear load flow (Eq. (12)), after the failure of the link in the initial grid (dashed lines, a) and the modified grid (dotted lines, c). Whereas the flow
changes in the lower module of the power grid (dark blue nodes) stay approximately the same after the grid modification (dark blue lines), they are
significantly reduced in the grid’s upper module (light blue nodes) that is shielded by the network isolator (light blue lines).
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to the other subgraph and [⋅] denotes the nearest integer. Out of all possible edges
e ¼ fðv1;w1Þ; :::; ðvn1 ;w1Þ; :::; ðvn1 ;wn2

Þg between the two sets of nodes v and w, we
randomly add a share of μ 2 [0, 1]. The parameter μ controls the connectivity of
the two subgraphs G1 and G2: They remain disconnected for μ= 0 and they are
connected via a complete bipartite graph for for μ= 1. For c= 1 and μ= p1= p2
we recover a single Erdős–Rényi random graph with N=N1+N2 nodes. Note that
this procedure is in principal not limited to ER random graphs. We apply it to
study other types of graphs as shown in Supplementary Fig. 1.

Calculating the distance between edges. The notion of distance used throughout
the manuscript is the unweighted edge distance. This notion of distance measures
the length of the shortest path between two edges ℓ= (r, s) and e= (m, n) and is
defined as follows25

distð‘; eÞ ¼ min
v12fr;sg;v22fm;ng

dðv1; v2Þ þ 1; ð13Þ

where d(v1, v2) is the unweighted shortest-path or geodesic distance between nodes
v1 and v2 and the addition of unity ensures that neighbouring edge have a non-
vanishing distance.

Perturbing network isolators. The robustness of network isolators to structural
perturbations is analysed as follows. Let G= (E,V) be a graph whose nodes are split
into two subsets V1 and V2 consisting of N1 and N2 nodes, respectively. Further-
more, let A12 be the N1 ×N2 weighted adjacency matrix that encodes the mutual
connections between the two parts as described in Theorem 1. Without loss of
generality we can order the nodes of the network in such a way that the matrix has
the structure

A12 ¼
a!1 � � � a!m 0

! � � � 0
!

0
! � � � 0

!
0
! � � � 0

!

 !
; ð14Þ

where we assume that n nodes of the first subset are connected to m nodes of the
other subset and thus a!1; ¼ ; a!m 2 Rn . According to Theorem 1, a perfect
network isolator is found if rank(A12)= 1, i.e. if all vectors a!1; ¼ ; a!m are lin-
early dependent.

To investigate the robustness of network isolators, we start from a unit rank
matrix rank (A12)= 1 and perturb it iteratively. In each step we choose one of the
vectors a!i; i ¼ 1; ¼ ;m at random and perturb it according to

a!0
i ¼ a!i þ e!k a!i k. The elements of the perturbation vector e! are chosen

uniformly at random from the interval [−β, β], where β is a small parameter, here
β= 0.05.

The deviation of the perturbed matrix A12 from a unit rank matrix is quantified
using its coherence statistics38, Eq. (10),

ξðA12Þ ¼ 1�min
i;j

h a!i; a
!

ji
k a!i kk a!j k

;

where 〈⋅, ⋅〉 denotes the standard scalar product on Rn and ∥⋅∥ denotes the ℓ2-
norm. For a matrix A12 of unit rank we have ξ(A12)= 0 as all vectors are linearly
dependent. For vectors deviating from linear dependence, the measure increases
until it reaches its maximum value if two vectors are orthogonal with ξ(A12)= 1.

To create Fig. 2e, we repeated this process 1000 times starting from the perfect
isolator shown in panel c. Edge weights were randomly chosen from a normal
distribution N ð10; 1Þ with mean μ= 10 and variance σ2= 1 except for the isolator.
The network isolator consists of four nodes in the left subgraph that are completely
connected to four nodes in the other subgraph (see Fig. 1c). We select groups
of four edges that are connected to a single node in one subgraph and to all
four nodes in the other subgraph to have the same weight such that initially rank
(A12)= 1. For each perturbed network, we evaluate ξ(A12) and the ratio of flow
changes R according to Eq. (3) averaged over all possible trigger links ℓ and
distances d. For a perfect isolator, this ratio vanishes due to a vanishing numerator.

Power grid data and cascade model. Power grid data has been extracted from the
open European energy system model PyPSA-Eur, which is fully available online44.
The model includes the topology as well as the susceptance bℓ and the line rating
Fmax
i!j for each high voltage transmission line in Europe. We consider the Scandi-

navian synchronous grid spanning Norway, Sweden, Finland and parts of Den-
mark. This grid is coupled to other synchronous grids (central European grid,
British grid and Baltic grid) only via high voltage DC transmission lines. Power
flow on these lines are actively controlled and can thus be considered constant, thus
leading to constant real power injections at the coupling nodes. The Scandinavian
grid has 269 nodes and 370 edges, counting multiple-circuit lines only once.

Cascading failures are simulated for fixed power injections Pi for each node
corresponding to an economic dispatch for the entire PyPSA-Eur model that
includes a security margin given by the constraint jFi!jj≤ 0:8 � Fmax

i!j . The cascade is
triggered by the failure of a single line (r, s) which is effectively removed from the
grid. The simulation then proceeds step-wise; In each step, we first calculate the
nodal phase angles ϑi and real power flows Fi→j for all nodes and lines, respectively,

by solving the continuity equation Pi=∑jFi→j with Fi→j= Aij(ϑi− ϑj). Then we
check for overloads: Any line (i, j) with jFi!jj>Fmax

i!j undergoes an emergency
shutdown and is removed from the grid. The simulations are stopped when no
further overload occurs or when the grid is disconnected.

Note that this mechanism for cascading failures is different from the cascading
failure mechanism typically analysed in node capacity load models (see e.g.
refs. 45,46). The redistribution of nodal loads or flows after failures in such models is
typically based on the neighbourhood of nodes, on shortest path betweenness
measures or on other ‘intelligent’ redistribution schemes whereas the redistribution
of flows after failures in linear flow networks or power grids studied using AC load
flow analysis are given by the physical laws governing electrical networks.
Furthermore, in most cases nodes—not edges—are assumed to fail, which is not the
typical case in real power grids.

Processing leaf data. The leaf venation network is based on a microscopic
recording of a leaf of the species Bursera hollickii provided by the authors of ref. 47.
Edge weights Aij are assumed to scale with the radius rij of the corresponding vein
(i, j) as Aij / r4ij according to the Hagen–Poisseuille law, see ref. 28 for a detailed
discussion. We used the radius in pixel scanned at a resolution of 6400 dpi.

Parametrising network isolators with four edges. Consider a network isolator
that connects two vertices from one module with two vertices in the other module
and consists of four edges in total (see Fig. 3a, right). Denote the weights of the four
edges by a1, a2, a3, a4 and assume that we fix the overall available weight to build
the network isolator. Including the rank conditions, the edge weights have to satisfy
two constraints,

∑
4

‘¼1
a‘ ¼ A ¼ 4

rank
a1 a2
a3 a4

� �� �
¼ 1 ) a1 � a4 ¼ a2 � a3;

thus leaving two degrees of freedom. We can then solve this set of equations for
two variables and treat the remaining ones, a3, a4, as parameters that are varied
independently:

a1 ¼ a3
ðA� a4 � a3Þ

a3 þ a4
; a2 ¼ a4

ðA� a4 � a3Þ
a3 þ a4

:

For the simulations shown in Fig. 5c, d. we have set A ¼ 4.

Varying the degree of non-linearity. To vary the degree of non-linearity sys-
tematically in Fig. 5, we first randomly assign 25% of the nodes to be identical
sources and the remaining ones to be identical sinks and choose their value such
that Eq. (3) is fulfilled. We then calculate the non-linear flows by combining Eq. (2)
with the non-linear flows (Eq. (11)). For sources, we set Pi= 0.09 (bright line)
initially and then systematically increase (decrease) the injections at all sources
(sinks) by the factors 3.5, 6.0, 8.5, 11 (lines from light to dark) up until a maximum
value of Pi= 0.99 is reached (black line) which corresponds to a maximum flow in
the network of j~Fjmax ¼ 0:89.

Data availability
The topology of the Scandinavian power grid, the Central European power grid and the
British power grid have been extracted from the open European energy system model
PyPSA-Eur44, which is fully available online at https://doi.org/10.5281/zenodo.3886532.
Leaf data was provided by the authors of ref. 47 and is available from the respective
authors upon reasonable request.

Code availability
Computer code will be made available at https://github.com/FNKaiser/
Inhibiting_Failure_Spreading upon publication.
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Supplementary Figure 1. Averaged ratio of flow changes decays with high and low connectivity for different random graphs. All
panels show ratio of flow changes R averaged over all links and distances against connectivity parameter µ (see methods) along
with corresponding graph for low values of the connectivity parameter. a Two ER graphs with parameters Ni = 50, pi = 0.3
connected with probability µ = 0.02 at a randomly chosen share of c = 0.2 their nodes. b Same as in (a), but with parameters
Ni = 30, pi = 0.4, µ = 0.03, c = 0.2. c A similar scaling is observed if two BA random graphs with parameters Ni = 40, ki = 4
are connected with probability µ = 0.016 at a randomly chosen share of c = 0.2 their nodes. d The scaling is also preserved if
two 4-regular, random graphs are connected with parameters N = 50, µ = 0.01, c = 0.2. Blue line represents median value over
all distances and shaded region indicates 0.25- and 0.75-quantiles for all graphs.
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Supplementary Figure 2. Ratio of flow changes depends weakly on distance. We examine the scaling of link flow changes with
distance for two ER random graphs G(120, 0.02) that are connected at c = 0.2 nodes with changing probabilities µ = 0.02
(left), µ = 0.3 (centre) and µ = 0.9 (right). We only consider the largest component from each of the two random graphs and
remove all dead ends as they result in vanishing flow changes. a to c Normalised absolute flow changes decay with distance when
averaging over all possible trigger links. We always assume a unit flow on the failing link before the failure. We distinguish
flow changes in the same (blue, top) and the other (purple, bottom) module of the graph. Flow changes are consistently higher
in the same module for all distances. d to f Ratio of flow changes averaged over all possible trigger links R(d) reveals a weak
dependence of the ratio on distance. Blue line represents median value over all distances and shaded region indicates 0.25- and
0.75-quantiles for all graphs.
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Supplementary Figure 3. Increasing or decreasing connectivity between more than two modules reduces failure spreading
equally well. Here, we demonstrate a possible extension of the synthetic network model described in the Methods section to
more than two modules. For each panel, we simulate a single link failure (red) that results in flow changes (colour coded). a to
c Three ER random graphs G(30, 0.3) (right), G(50, 0.2) (bottom) and G(40, 0.4) (top left) that are mutually interconnected
with probability µ = 0.05 at 20 percent, i.e., c = 0.2, thus resulting in three mutually weakly connected modules. d to f
Connecting the same modules as shown in a to c with probability µ = 0.85, thus resulting in strong inter-module connectivity,
reduces failure spreading equally well.
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Supplementary Figure 4. Networks isolators can be generalised to network consisting of more than two modules. a Topology
of a network consisting of three ER random graphs G(40, 0.4) (left), G(20, 0.3) (top) and G(30, 0.2) (bottom right) that are
mutually connected through network isolators. b to d Link failures in each of the individual subgraphs (red lines) do not change
flows (colour code) in any of the other subgraphs.
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Supplementary Figure 5. Robustness of network isolators shows the same scaling with perturbations for different graphs.
Robustness of network isolators measured by ratio of flow changes R averaged over all links against measure of perturbations
to network isolators ξ(A1,2). a Graph created from the graph ensemble and shown in Fig. 1c was modified in such a way that it
contains a network isolator connecting five nodes from one part to five nodes of the other part through a bipartite connectivity
structure. Edge weights are drawn randomly from a normal distribution N (10, 1) except for the network isolator where the
randomly chosen weights of five edges starting in the same node and connecting to all connecting nodes in the other part were
chosen as basis weights for all other connections between the two parts. b The isolator robustness shows qualitatively the same
scaling as for the 6-regular graph shown in Fig. 1c. Perturbations were applied in 1000 repetitions choosing a perturbation
strength of α = 0.05. Dotted line takes into account the fact that the curve goes through the point ξ = R = 0 for a perfect
isolator.
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Supplementary Figure 6. Network isolators do not generally increase grid vulnerability. a Failure of a link with unit flow in
the Scandinavian grid before the construction of the network isolator yields a strong response in terms of absolute flow changes
|∆F |. b After adding two links to create a network isolator (blue shaded region, see Figure 3c), we simulate a failure of one of
the links in the isolator. We observe that both, the failure within the isolator (panel b) as well as a failure in the initial grid
in close proximity to the location where the isolator is constructed (panel a) yield a similar effect. In this case, the network’s
vulnerability is thus not increased by including the network isolator. However, a failure in the isolator may potentially affect
the whole network.
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Supplementary Figure 7. Network isolators may be realised in various real-world power grids. All grid topologies and line
susceptances were extracted from the open European energy system model PyPSA-Eur, which is fully available online[1]. a,c,e
Initial failure of a link (red) with unit flow results in flow changes in the whole network for Scandinavia a,c as well as the
central European grid e. b,d,f After introducing network isolators to the grids, failure spreading to other parts of the network
is completely stopped. The construction of isolators follows the “recipes” illustrated in Figure 3.
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Supplementary Figure 8. Isolators do not generally prevent the controllability of a network. a An example of an undirected
network with two weakly connected components that requires ND = 2 driving nodes (in orange) to be controlled. This can be
calculated from the graph adjacency matrix, which has, by construction, an eigenvalue λM = −1 with algebraic multiplicity
δ(λM ) = 2 (See Eq. 20 and Ref. [2]). d After adding a few links to create a network isolator, we have ND = 1 and only one node
(colored orange) is necessary to control the entire network, i.e., the network isolator has in this case increased the controllability
of the network. b We show the flows obtained by our linear flow model for a single source of power P = 1 at the node colored
in red and a single sink with P = −1 at the node colored in blue. The resulting (absolute) flows are color-coded: The flow can
easily reach from the red node to the blue node. e Adding the isolator, flow can still propagate freely from the source node
(red) to the target node (blue) in the same way as in panel b. Hence, the isolator does not prevent the propagation of flows. c
Simulating the failure of a single link (red), we observe that flows do also change in the other part of the network. f Conversely,
the isolator does prevent propagation of flow changes caused by a link failure in the right part of the network to its left part.
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Supplementary Figure 9. Cascade propagation is strongly suppressed in the presence of network isolators. a We consider the
six-regular graph shown in Figure 1c with unit edge weights and 7 · 104 different initial conditions where we randomly assign
25% of the nodes to be sources with Pi = 2 and the remaining ones to be sinks with Pi = − 2

3
. We then simulate the failure of

any possible link in the left module of the network for each initial condition using the linear flow model and monitor the size
of the resulting cascade of failures, setting the line limit to Fmax

i→j = 1.0 (see Methods). We compare two different graphs: the
six-regular graph containing a network isolator (light green, dotted) and a corresponding six-regular graph where to links have
been rewired (dark green). b,c For both graphs, we compare the cascade sizes in the module where the failure was triggered (b)
and the other module (c). As a result, cascade sizes are significantly smaller if the other module is shielded by a network isolator
although the overall connectivity between the modules is higher in this case. d-f We perform the same set of simulations for
the graph shown in panel d which conforms the result of reduced cacade sizes in the presence of network isolators. Parameters
for panels d-f are given by Pi = 0.9 for sources and Pi = −0.3 for sinks.
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Supplementary Figure 10. Network isolation effect persists for non-linear flows. a We consider the six-regular graph shown in
Figure 1c and simulate 50 different initial conditions where we randomly assign 25% of the nodes to be sources with Pi = 0.9 · δ
and the sinks correspondingly to balance the sources. Here, δ is a prefactor tuning the degree of non-linearity in the non-linear
flows F̃i→j = Ai→j · sin(ϑi − ϑj). b For each initial condition, we analyse the maximum flow in the network |Fmax| as an

indicator of non-linearity for different degrees of non-linearity δ. c We then evaluate the ratio R̃ of non-linear flow changes
which is obtained from Eq.(8) by replacing the flow changes ∆F by their non-linear counterpart and averaging over all distances
and trigger links in the left module. To examine to what extent network isolators prevent perturbation spreading from the left
module to the right module, we plot this ratio against the non-linearity factor. With increasing degree of non-linearity, there
is no longer exact isolation, i.e. R = 0, but a strong shielding effect persists. d-i We perform the same type of analysis for two
three-regular graphs (d) and two random graphs G(16, 0.3) (g) connected via network isolators and observe a similar scaling of

the ratio R̃ with the non-linearity factor. Shaded regions indicate half a standard deviation evaluated over all initial conditions
for all plots.
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Supplementary Figure 11. Transient amplitudes are slightly reduced in the presence of network isolators. a We analyse a network
consisting of two modules that are connected via three links and add a fourth link (dotted) to create a network isolator. We
randomly assign 25% of the nodes to be generator nodes (squares) and the remaining ones to be load nodes (triangle). We then
simulate the removal of a single link (red) and monitor the corresponding response in the dynamic nonlinear system described
by the second order Kuramoto model (Eq. (10)). c Non-linear dynamics of the flows in the upper module after the failure of a
single link at time zero (dotted, vertical line) in the network before (straight lines) and after the addition of the isolator link
(dotted lines). We monitor the maximum Amplitude T of the transient dynamics comparing the fixed point before and after the
failure (inset). e To analyse the impact of network isolators on transient overloads, we compare the transient amplitudes before
(Tno isolator) and after (Tisolator) constructing the isolator in the upper module for all possible link failures in the lower module.
In most cases, the transient amplitudes stay the same after introducing the network isolator as confired by the mean close to
zero (black, dashed line). However, evaluating only the 95% changes in amplitudes with the largest changes in magnitudes
(dotted line), we observe a significant shift towards positive values indicating a reduced risk of transient overloads when network
isolators are present. b,d,f The result is confirmed by performing the same analysis for a different network containing a larger
network isolator. Inertia constants are given by M = 1 and damping constants by D = 0.3 for all nodes and panels (see
Eq. (10)).
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Supplementary Figure 12. Non-locality of cascade propagation and decay of flow changes We illustrate the first three steps of
the cascade in the Scandinavian power grid for shown in Figure 4 in the main text for the grid without a network isolator. a
Line loading in the Scandinavian grid prior to the initial failure with the initially failing link highlighted. Note that line loading

is heterogeneously distributed within the network. b Relative flow changes |∆F`/F
(0)
fail | for any link ` as a result of the failure

of the link shown in (a). Flow changes are normalized by the flow carried by the failing link F
(0)
fail (a, arrow) before the failure,

such that the maximum relative flow change is unity. The flow changes clearly decay with distance from the failing link. c Line
loading after the initial failure: although flow changes decay with distance, the next failing link is relatively far apart from the
initially failing link when considering the geographic or geodesic network distance. d Relative flow changes after the failure of
the link shown in c, normalised again by the flow that the link shown in c carries before the failure. Again, the flow changes
are localised. e Line loading after the failure of both links shown in panels a and c. The next failure is closer to the failing link
shown in c, but even farther apart from the initially failing link, leading to an overall non-local cascade of failures. f Again,
relative flow changes as a result of the link failure shown in panel e are strongly localised.
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SUPPLEMENTARY NOTES

Supplementary Note 1: Flow networks

In this section, we briefly review the theory and applications of linear flow networks.

Mathematical description

In this work, the main model of interest is a linear flow network model which we introduce more formally in this
section. Consider a connected graph G = (E, V ) consisting of N = |V | nodes and L = |E| edges. Assign to each node
in the network a potential ϑn ∈ R, n ∈ V (G) and to each edge a weight Aij ∈ R+, ` = (i, j) ∈ E(G). Now we assign
a flow Fi→j ∈ R to each link ` = (i, j) ∈ E(G) in the network that is assumed to be linear in the potential drop

Fi→j = Aij · (ϑi − ϑj) = −Fj→i. (1)

Suppose that there are sources and sinks attached to the nodes of the networks Pi ∈ R, i ∈ V (G). In this case, the
in- and outflows at each node have to balance with the sources and sinks

Pi =

N∑

k=1

Fi→k. (2)

This equation is known as continuity equation or Kirchhoff’s current law. If the sources and sinks Pi are given,
Eqs. (2) and (1) completely determine the potentials in the network (up to a constant shift to all potentials). In
a power grid, the sources and sinks are the power injections or withdrawals as a result of power production or
consumption, respectively. When looking at the stable, operational fixed point of a power grid they are balanced such
that

∑
i Pi = 0 – we therefore assume this to hold in the following sections. The theory of linear flow networks applies

resistor networks, as well as AC power grids in the DC approximation, hydraulic networks and networks of limit cycle
oscillators, which will be discussed in detail in this section.

Now we introduce a compact, vectorial notation which facilitates the analysis of perturbations or damages to the
network. Note that the flow is a signed quantity that depends on the orientation of the edges that we arbitrarily
fix for this purpose and say that the flow is directed from node i to node j in this case. We can write the flows in

vectorial notation ~F = (F1, ..., FL)> ∈ RL as follows;

~F = KI>~ϑ. (3)

Here, K = diag(K1, ...,KL) ∈ RL×L is the graph’s weight matrix that collects the edge weights and I> is the transpose
of the the graph’s edge-node incidence matrix I ∈ ZN×L that determines the orientation of the graph’s edges by the
following relationship

Ij` =





+1 if edge ` =̂ (j, k) starts at node j,
−1 if edge ` =̂ (j, k) ends at node j ,

0 otherwise.
(4)

Furthermore, ~ϑ = (ϑ1, ..., ϑN )> ∈ RN is a vector of potentials or voltage phase angles. We can also define a vector of

power injections ~P = (P1, ..., PN )> ∈ RN such that the continuity equation reads as

~P = I ~F . (5)

In this expression, the correspondence between the power balance and Kirchhoff’s current law becomes manifest: it
states that the in- and outflows at each node have to balance the injections and withdrawals of power. Combining

Eq.s (3) and (5), we may find a relationship between angles ~ϑ and power injections ~P , thus defining the graph’s
weighted Laplacian matrix L = IKI> ∈ RN×N , by

~P = IKI>~ϑ = L~ϑ. (6)

The weighted Laplacian matrix used here has the following entries

Lij =




−A` if i is connected to j via ` = (i, j),∑

`=(i,k)∈E(G)A` if i = j,

0 otherwise.
(7)
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The Laplacian matrix plays an important role in graph theory [3]. If the underlying graph G is connected, it has

one zero eigenvalue λ1 = 0 with corresponding eigenvector ~v1 = ~1/
√
N . Therefore, the matrix is not invertible. In

many cases, it would nevertheless be desirable to invert the matrix, e.g. in order to find the phase variables given
the power injections in Eq. (6). This problem is typically overcome by making use of the matrix’s Moore-Penrose
pseudoinverse L†. It may be used to invert Eq. (6) in the same way as for the ordinary matrix inverse in the case
of balanced power injections [4]. The Moore-Penrose pseudoinverse of the graph Laplacian L allows for the following
representation: using L’s eigenvalues sorted by magnitude λ1 = 0, λ2 ≤ ... ≤ λN with corresponding eigenvectors
~v1 = ~1/

√
N,~v2, ..., ~vN , we can express its pseudoinverse L† as [5]

L† = (~v1, ~v2, ..., ~vN )




0 0 ... 0
0 λ−12 ... 0
... ... ... ...
... ... ... λ−1N


 (~v1, ~v2, ..., ~vN )

>
.

The second eigenvalue λ2 is usually referred to as Fiedler eigenvalue or algebraic connectivity and is an indicator of
the graph’s overall connectivity. If we assume the overall graph to be connected, this eigenvalue is strictly greater than
zero λ2 > 0. Importantly, a large difference between second and third eigenvalue λ3 − λ2 implies a strong modularity
in the graph and thus indicates the existence of a community structure [6–8].

Before we proceed, let us briefly fix the notation for the following sections: we will refer to an edge ` = (`1, `2) ∈ E(G)
and its index ` in the ordered set of all edges interchangeably or refer to it by its terminal nodes `1 and `2. If we
assume the edge space to be spanned by vectors in the two element field GF (2), we may express the edge by a unit

vector ~l` = (0, ..., 1︸︷︷︸
l

, ..0)> ∈ GF (2)L which we refer to as the edge’s indicator vector. The edge-node incidence

matrix I then maps this unit vector to the corresponding unit vectors in the field of vertices GF (2)N . We thus get
the following result for the edge expressed in terms of its starting vertex `1 and terminal vertex `2:

~ν` = I ·~l` = ~e`1 − ~e`2 =




0
...
1
...
−1
...



}`1

}`2
,

where ~e`1 and ~e`2 are basis vectors in GF (2)N

~e`1 =




0
...
1
...
...
0



}`1, ~e`2 =




0
...
...
1
...
0


 }`2

.

This formulation allows us to easily switch between the edges expressed in edge space and the nodes corresponding
to its terminal ends.

Applicability of linear flow models

The theoretical framework in the last section has many different applications. We will demonstrate its applicability
to the following systems in this section:

1. Power grids [9, 10],

2. Resistor networks [11],

3. Hydraulic networks [12, 13],

4. Limit cycle oscillators [14].
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Application to power grids

The power flow equations describing the steady state of a power system at an arbitrary node i are given by [9]

Pi =
N∑

k=1

|Vi||Vk|(Gik cos(ϑi − ϑk) +Bik sin(ϑi − ϑk)),

Qi =
N∑

k=1

|Vi||Vk|(Gik sin(ϑi − ϑk)−Bik cos(ϑi − ϑk)).

(8)

Here, Pi and Qi are the real and reactive power generated or consumed at node or bus i, ϑi is the voltage angle at the
same bus and |Vi| is the voltage magnitude. The matrices G ∈ RN×N and B ∈ RN×N with elements Gij and Bij ,
respectively, are the real part and the complex part of the complex nodal admittance matrix Y = G + iB ∈ CN×N .
Note that the matrices B and G are not actually matrices of susceptances and conductances, respectively. Instead,
their entries read as follows

Bij =




−bij if (i, j) ∈ E(G), i 6= j,
bshunti +

∑
(i,k)∈E(G) bik if i = j,

0 otherwise,

where bshunti denotes the shunt susceptance of node i and bij is the susceptance of the circuit connecting node i to
node j. G has an analogous structure with elements

Gij =




−gij if (i, j) ∈ E(G), i 6= j,
gshunti +

∑
(i,k)∈E(G) gik if i = j,

0 otherwise,

where gij are the conductances of the circuit between nodes i and node j. The matrices B and G thus have the
structure of a Laplacian matrix except for the diagonal entries which contain additional terms given by the shunt
susceptances and conductances. The off-diagonal elements of the nodal admittance matrix thus read as

Yjk = −yjk, ∀j 6= k; yjk = gjk + ibjk =
1

rjk + ixjk
,

with the circuit’s reactance xjk and resistance rjk. Note that line susceptances b` = −x
r2+x2 are thus negative. The

Eqs. (8) reduce to the lossless power flow equations in the case where the real part of the nodal admittance matrix is
negligible G ≈ 0, i.e., lines are purely inductive.

We will focus on the so called DC approximation of this full AC power flow equations. This approximation is based
on three assumptions [9]:

1. Voltages vary little, i.e., |Vi| ≈ const, ∀i with respect to their base values,

2. Angular differences are small, i.e., sin(ϑi − ϑj) ≈ ϑi − ϑj , ∀(i, j) ∈ E(G),

3. Transmission lines are purely inductive, i.e., Bij � Gij , ∀(i, j) ∈ E(G).

Typically, these assumptions are fulfilled for high voltage transmission grids if the line loading is not too large [15].
Using these approximations, Eq. (8) reduces to

Pi =
N∑

k=1

|Vi||Vk|Bik︸ ︷︷ ︸
Aik

(ϑi − ϑk),

thus revealing the analogy to Eq. (2).

Application to resistor networks

Resistor networks are another example which may be described using linear flow networks [16]. They have been
studied for a long time leading to many fundamental results of graph theory [11]. We will briefly introduce the theory



18

of resistor networks and use the symbol =̂ to refer to the corresponding quantity in the mathematical framework of
linear flow networks as introduced in section 1. For resistor networks, the flow along the graph’s edges is a current

flow ~i ∈ RL=̂~F between nodes of different voltage ~V ∈ RN =̂~ϑ. The line weights are given by the inverse resistances,
i.e., the conductances, of the lines G ∈ RL×L=̂K such that Eq. (3) reads in this case

~i = GI>~V ,

where I is again the node-edge incidence matrix. Along the same lines, Eq. (5) translates to

~iin = I~i.

Here, ~iin ∈ RN =̂~P is a vector of currents injected at the graph’s nodes and the Equation is again a manifestation of
Kirchhoff’s current law. We may thus apply the same theoretical framework to resistor networks.

Applications to hydraulic networks

The same formalism can also be shown to apply to water transport networks that we refer to as hydraulic networks
or pipe networks. Consider a hydraulic network consisting of pipes that connect to each other at junctions. Then
we form the underlying graph by assigning a vertex to each of the junctions and put an edge between two vertices if

they are connected via a pipe. The nodal quantity of interest in this case is the pressure ~p ∈ RN =̂~ϑ. If we assume
the pipes to be much longer than their radius r � L and the flow across all pipes in the network to be laminar with

a Newtonian, incompressible fluid flowing through it, we can approximate the fluid flow ~Q ∈ RL=̂~F across a pipe
` = (i, j) by the Hagen–Poiseuille equation

Q` = K` · (pi − pj).

Here, we collected different parameters describing the pipe and the fluid in the line parameter

K` =
πr4`

8µL`
,

with the pipe radius r`, the pipe length L` and the fluid’s dynamic viscosity µ. Conservation of mass then requires
that inflows and outflows balance as in Eq. (2). Important applications of this framework are blood vessels in humans
and animals [17], the vascular system of plants [13] or hydraulic networks [18]. For vascular networks, the system does
not consist of pipes but rather of smaller vascular bundles such that the scaling of line parameter K with the radius
r4 does not necessarily exactly hold [19].

Applications to limit cycle oscillators

The linear flow model may be regarded as a linearisation of the Kuramoto model which naturally appears in many
cases, in particular when approximating weakly coupled oscillator systems near a stable limit cycle [14].

Consider a connected, simple graph G = (E, V ). The Kuramoto model describes a set of weakly coupled oscillators

with phase angles ~ϑ ∈ RN attached to the graph’s vertices that are coupled via the graph’s edges through coupling
constants Aij , (i, j) ∈ E(G), see e.g. Ref. [20]. The oscillators’ tendency to synchronise through the coupling is
counteracted by each oscillator’s natural frequency ωj that is written compactly as a vector ~ω = (ω1, ..., ωN )> ∈ RN .
Then the dynamics of the phase angle ϑi attached to node i, where i ∈ {1, ..., N}, reads

ϑ̇i = ωi −
∑

k

Aik sin(ϑi − ϑk).

As before, we fix an orientation of the graph’s edges and summarise the coupling coefficients for all edges (i, j) ∈ E(G)
in the diagonal coupling matrix K ∈ RL×L, such that the vectorised dynamics reads

~̇ϑ = ~ω − IK sin(I>~ϑ). (9)

Here, I is again the graph’s node-edge incidence matrix (4) and the sine function is understood to be taken element-
wise, i.e

sin(I>~ϑ) = (sin([I>~ϑ]1), ..., sin([I>~ϑ]L))>.



19

Fixed points of the dynamics are defined by a vanishing time derivative ~̇ϑ = ~0. Therefore, the equation characterising

the phase angles at the fixed point ~ϑ∗ reads

~ω = IK sin(I>~ϑ∗).

If the angular differences on all edges are small, we may reduce this to the linear equation sin(I>~ϑ) ≈ I>~ϑ, again
retrieving an expression analogous to the discrete Poisson equation (6).

The second-order Kuramoto model

An extension of the Kuramoto model presented in Eq. (9) is given by the second-order Kuramoto model that is
also frequently used in power systems analysis to describe synchronising generators [21–23], where it is also referred
to as Kuramoto model with inertia. The model contains an additional second-order time derivative of phase angles
representing the generators’ inertia and reads as

M ~̈ϑ = −D ~̇ϑ+ ~ω − IK sin(I>~ϑ). (10)

Here, M = diag(M1, ...,MN ) ∈ RN×N and D = diag(D1, ..., DN ) ∈ RN×N are diagonal matrices incorporating the
generators’ inertia coefficients and damping coefficients, respectively [21] and the other quantities are defined the same
way as for the first order Kuramoto model (9). The vector of frequencies in this model corresponds to the power

injections ~ω ∈ RN =̂~P . Fixed points of the second order model with phase angles ~ϑ∗ are characterized by both, first

and second order time derivative vanishing ~̈ϑ = ~̇ϑ = ~0 resulting in the same equation as for the first order model

~ω = IK sin(I>~ϑ∗).

Again, this model reduces to the linear flow model if phase differences at the fixed point are small sin(I>~ϑ∗) ≈ I>~ϑ∗.

Supplementary Note 2: Description of link failures

In this section, we will briefly review the analysis of link failures within the linear flow theory setting. We will first
demonstrate how the effects of a link failure may be approached on the nodal level [10]. Assume that a link k = (r, s)

with preoutage flow F̂k fails, which does not disconnect the graph. This induces a change in the potentials

~ϑ′ = ~ϑ+ ∆~ϑ

by virtue of the discrete Poisson equation (6). Here, we introduced the vector of potential changes ∆~ϑ ∈ RN and a

vector of potentials after the failure ~ϑ′ ∈ RN . The corresponding equation for the new grid reads as

~P = (L + ∆L)(~ϑ+ ∆~ϑ).

Here, ∆L is the change in the Laplacian matrix due to the removal of link k and takes the form ∆L = KkI~lk(I~lk)>.
If we subtract the discrete Poisson equation for the old grid before the failure of link k from this equation, we arrive
at the expression

∆~ϑ = −(L + ∆L)†∆L~ϑ.

Finally, we can use the Woodbury Matrix identity to rewrite the expression into the following form [10]

L∆~ϑ = qk~νk, (11)

where

qk = (1−Kk(I ·~lk)>L†I ·~lk)−1F̂k

is a source term and ~νk = ~ek − ~ej . Similar expressions appear naturally when analysing resistor networks and have
been studied, for example, in Refs. [4, 24]. After calculating the potential changes based on this equation, the flow
changes on a link ` = (`1, `2) are given by the following equation

∆F`1→`2 = K` · (∆ϑ`1 −∆ϑ`2).
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Supplementary Note 3: Network isolators inhibit failure spreading completely

In this section we formally establish the existence of network isolators. To this end we first fix some notation.

Fundamentals and notation

We consider a linear flow network consisting of two parts, i.e. its vertex set V is written as V = V1 ∪ V2. We now
label the nodes in V as follows without loss of generality

1, . . . ,m1 : nodes in V1 that are connected to V2

m1 + 1, . . . , n1 : nodes in V1 that are not connected to V2

n1 + 1, . . . , n1 +m2 : nodes in V2 that are connected to V1

n1 +m2 + 1, . . . , n1 + n2 : nodes in V2 that are not connected to V1.

Then the weighted adjacency matrix of the network can be written as

A =

(
A1 A12

A>12 A2

)
,

A12 =

(
a 0
0 0

)
,

with A1 ∈ Rn1×n1 , A2 ∈ Rn2×n2 , A12 ∈ Rn1×n2 and a ∈ Rm1×m2 . Furthermore, we define the degree matrices D1,
D2 and d associated with the adjacency matrices A1, A2 and a, that is

dkl =

{ ∑
p akp for k = l

0 k 6= l
,

and the Laplacian matrices L1 = D1 − A1 of subnetwork 1, L2 = D2 − A2 of subnetwork 2 and L of the whole
system.

Main theorem on network isolators

In this subsection, we proof the main Theorem 1 on network isolators. Consider the Theorem on network isolators.

Theorem 1. Consider a linear flow network composed of two modules 1,2 and let A12 denote the weighted adjacency
matrix of the mutual connections. An edge failure in one module does not affect the flows in the other module if
rank(A12) = 1. For unweighted networks this criterion is fulfilled if A12 describes a complete bipartite graph.

Proof. Assume that the adjacency matrix of the mutual connections has unit rank rank(A12) = rank(a) = 1. We first
proof that for any vector ~y ∈ Rn1 the following statement holds

~x =

(
d−1a 0
0 0

)
~y = c




1
...
1
0
...
0



, (12)

where c ∈ R is some real number. This result can be obtained by writing ~x ∈ Rn2 in components. For all j ∈
{1, . . . ,m2} we have

xj =

∑
k ajkyk∑
k ajk

.
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Since a has unit rank all its rows are linearly dependent such that we can write ajk/a1k = aj1/a11 for all k ∈
{1, . . . , n1}, such that ajk = a1kaj1/a11. Hence,

xj =
aj1/a11 ×

∑
k a1kyk

aj1/a11 ×
∑

k a1k

=

∑
k a1kyk∑
k a1k

= x1 =: c,

and all elements of the vector are equal. The remaining n2 − m2 elements of the vector vanish, xj = 0, ∀j ∈
{m2 + 1, ..., n2}, because the corresponding adjacency matrix A12 has only zero entries at the respective positions.

We now compute the impact of a failure of link k in G(V1) via the discrete Poisson equation (11)

L∆~ϑ = qk~νk.

We decompose this equation as well as the vectors ∆~ϑ and ~ν into two parts corresponding to the two parts of the
network

∆~ϑ =

(
∆~ϑ1
∆~ϑ2

)
, ~ν =

(
~ν1
~0

)
,

where ∆~ϑ1, ~ν1 ∈ Rn1 and ∆~ϑ2, ~ν2 ∈ Rn2 . Then the lower part of Eq. (11) corresponding to the vertices n1+1, . . . , n1+
n2 reads

[
L2 +

(
d 0
0 0

)]
∆~ϑ2 =

(
a 0
0 0

)
∆~ϑ1, (13)

using the notation established above. Using the prior result (12) and multiplying by the matrix
(
d−1 0
0 1

)
,

this equation can be rewritten as

[(
d−1 0
0 1

)
L2 +

(
1 0
0 0

)]
∆~ϑ2 =

(
d−1a 0
0 0

)
∆~ϑ1 = c




1
...
1
0
...
0



.

Now one can easily check via a direct calculation that

∆~ϑ2 = c




1
...
1




is a solution to this equation. Furthermore, this solution is unique as the linear system of equation has full rank. This
is most easily seen for Eq. (13), as the matrix on the left hand side is normal and positive definite.

We have thus shown that the nodal potentials in V2 are shifted by the same constant c when a link in G(V1) fails.
Hence the flow changes are given by

∆F`1→`2 = A`(∆ϑ`1 −∆ϑ`2) = 0 ∀`1, `2 ∈ V2.

Corollary 1 (Complete bipartite graphs are network isolators). Consider a linear flow network consisting of two
modules with vertex sets V1 and V2 and assume that a single link in the induced subgraph G(V1) fails, i.e. a link (r, s)
with r, s ∈ V1. If the subgraph G′ of mutual connections between the two modules is a complete bipartite graph with
uniform edge weights K = K` = Km, ∀`,m ∈ E(G′), then the subgraph is a network isolator. If the whole graph is
unweighted, G′ always has uniform edge weights, thus a complete bipartite graph of mutual connections always is a
network isolator for any unweighted network.
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Proof. If the subgraph G′ is complete and bipartite (ignoring all connections within both induced subgraphs G(V1)
and G(V2)), its adjacency matrix takes the form

A′ = K ·
(

0 1m1×m2

1>m1×m2
0

)
.

We can immediately see that the matrix in the upper right corner, i.e. A′12 = K1m1×m2
has unit rank, such that by

theorem 1, G′ is a network isolator.

Network isolators in non-linear systems

We will now demonstrate how to extend the concepts of network isolators from linear systems to a certain class of
non-linear networked systems

~f(L~x) = (f1([L~x]1), ..., fN ([L~x]N ))> : ~x ∈ RN → ~f(L~x) ∈ RN

be a continuous function on the real numbers that depends on the product of Laplacian matrix L and vector ~x.
Here, [L~x]j denotes the j-th row of the standard matrix-vector product L~x. We assume that the underlying network
topology is again separated into two subgraphs G(V1) and G(V2), see the beginning of this section. We further assume
that

fj(0) = 0, ∀j ∈ {1, ...N},
i.e., each of the functions vanishes at the origin. Note that the functions fj([L~x]j) can be different and non-linear, as
long as they vanish at the origin. Consider a dynamical system of the form

~̇x = ~f(L~x) (14)

that admits a fixed point solution ~x∗ with vanishing time derivative ~̇x = ~0 that fulfils

~0 = ~f(L~x∗). (15)

Now add a perturbation vector

∆~P =

(
∆~P1

~0

)
(16)

to the system that has non-zero entries only at the nodes of the first induced subgraph G(V1) and assume that the
dynamical system (14) relaxes to a new fixed point ~x′ with

∆~P = ~f(L~x′). (17)

Then the following corollary holds

Corollary 2 (Isolation in non-linear systems). Consider a non-linear dynamical networked system of the form (14)
that consists of two modules with vertex sets V1 and V2 which are connected by a network isolator as of Theorem 1.
Assume that the system admits a fixed point solution as given in Eq. (15). Assume that a perturbation as in Eq. (16)
is applied to the nodes in the first induced subgraph G(V1) and that the system relaxes to a new fixed point as in
Eq. (17). Then the new fixed point has the following form

~x′ =

(
~x′1
c~12

)
,

where c ∈ R is a constant.

The second module is thus isolated against perturbations in the first module and vice versa in the sense that a
perturbation in one module results in a constant shift in the other module.

Proof. The proof is analogous to the proof of Theorem 1. Applying the function ~f to Eq. (13) describing the fixed
point in the non-perturbed subgraph G(V2), we see that the system is still solved by

~x′ =

(
∆~x′1
c~12

)
.
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Approximate isolation for diffusively coupled non-linear oscillator networks

Even if not rigorously valid, we find that strong network isolation persists for an even larger class of non-linear
systems that we will discuss in this section. Note that our analysis here closely follows a linear response theory analysis
of Kuramoto oscillators that can be found in Ref. [14].
Consider a networked non-linear dynamical system of the form

~̇xi = ~f(~xi)i +
N∑

k=1

Aikg(xi − xk). (18)

Here, ~x ∈ RN is a vector of nodal dynamical variables, ~f is a differentiable function of self-interactions of these variables
and ~g(~x) is a differentiable, odd function that depends only on the differences of nodal variables at neighbouring nodes.
Odd functions are characterised by the property that ~g(−~x) = −~g(~x) and this property results in a diffusive coupling
between neighbouring nodes as is present for example in case of the sinusoidal coupling used in the Kuramoto model
(see Eq. (9)). The strength of interactions is encoded in the graph’s adjacency matrix A. Assume that the system

relaxes to a fixed point with ~̇xi = 0 where ~x(t) = ~x∗. If we perturb the network locally at a node or an edge, we can
compute the change in this fixed point using linear response theory [14]: to leading order, we obtain a linear system
as above.
Assume that we perturb a single edge (n,m) by modifying its edge weight by a small number ∆Aij such that

Aij → A′ij = Aij + ∆Aij

∆Aij =

{
0 if (i, j) 6= (n,m)

∆A if (i, j) = (n,m)
.

Assume that this modification causes a change of the fixed point by

x∗j → x′j = x∗j + ∆xj , ∀j ∈ {1, ..., N},

where ∆xj is the change in the fixed point that is assumed to be small such that the fixed points lie closed to each
other. We can expand the dynamics to leading order in terms of the new fixed point

∂f(x∗j )

∂xj
∆xj +

N∑

k=1

Ajk

∂g(x∗j − x∗k)

∂xj
(∆xj −∆xk) + sj = 0.

Here, sj is a source term that vanishes if node j is not part of the edge (n,m), j 6= n,m. The sum in this expression

may be compactly written in terms of an effective Laplacian matrix L̃

N∑

k=1

Ajk

∂g(x∗j − x∗k)

∂xj
(∆xj −∆xk) = [L̃∆~x]j ,

where the Laplacian matrix has the off-diagonal entries

L̃jk = −Ajk

∂g(x∗j − x∗k)

∂xj
.

Thus, if the underlying graph contains a network isolator, we can apply Theorem 1 to the system and see immediately
that each component is (approximately) isolated against small perturbations in the other one. Note that this result is
only valid if the change in the fixed point as well as the perturbation are small and relies on the fact that the system
relaxes to a new fixed point after the perturbation. In particular, this description applies to Kuramoto oscillators
(Eq. (9)) perturbed at a few nodes or edges and powergrids described by AC load flow equations 8 subject to a link
failure. We can thus get approximate isolation in both models as shown in Figure 5 for the AC load flow model and
Figures 4 and Supplementary Figure 10 for the Kuramoto model.

Supplementary Note 4: Linear controllability of complex networks

We now turn to a different theoretical concept in complex networks research: the controllability of a network. In
this section, we briefly analyse the influence of network isolators on the controllabilty of complex systems with a linear



24

dynamics. In general, we find that introducing a network isolator to a complex network has no generic influence on
its controllability.
Consider a linear dynamical system on a network with N nodes with a state vector ~x ∈ RN whose dynamics is given
by [2]

~̇x = A~x+ B~u. (19)

Here, A ∈ RN×N denotes the graph’s adjacency matrix, ~u ∈ Rm is a (potentially time-varying) input vector that is
supposed to achieve control of the network and B ∈ RN×m is the control matrix. Then one definition of controllability
is the following: Can we find a set of m driver nodes identified by the controllability matrix B such that the system
may be driven from any initial state ~x0 to any final state ~xf in finite time? If yes, the system is said to be controllable
and a measure of its controllability is given by the minimum number of driving nodes Nd ≤ N necessary to achieve
full controllability [2, 25, 26].
We identify this set of driver nodes necessary for exact controllability for a small sample network using a method
due to Yuan et al. [2] who demonstrated that the minimum number of driver nodes Nd can be found by determining
the multiplicity of the eigenvalues of the graph’s adjacency matrix A [2]. Assume that the underlying network is
undirected such that its adjacency matrix is symmetric as for the networks studied in this manuscript. In this case,
we can calculate the algebraic multiplicity δ(λi) for all eigenvalues λi of this matrix to calculate the minimum number
of driver nodes, ND, necessary to control the network (cf. Eq.4, Ref. [2])

ND = maxi [δ(λi)] . (20)

This approach has the advantage that the driver nodes necessary to control the network, i.e., the controllability of a
network, may immediately be identified, which is more complicated when using the classical Kalman rank condition [2].
In Figure 8, we illustrate a potential application of this formalism to network isolators. The adjacency matrix of the
graph reported in panel (a) has the eigenvalue λM = −1 with multiplicity δ(λM ) = 2, while all other eigenvalues have
multiplicity one. An eigenvalue λM = −1 in the adjacency matrix can easily be constructed by connecting two nodes
to the other nodes in a network in exactly the same way [4]. Thus, by the criterion (20), only two nodes are required
to control the network. These nodes have been determined using the method described in Ref. [2] and are highlighted
in orange. After introducing the isolator into the system (panel (d)), the maximum multiplicity of any eigenvalue of
the graph’s adjacency matrix is one, i.e., δ(λi) = 1, ∀i, which implies that the graph can be controlled by a single node
(colored red). Therefore, in this case, the controllability of the network is increased after constructing the isolator.
We emphasize that the network isolator prevents only flow changes, but not flows from passing as demonstrated in
panels (b,c) and (e,f) .
For the remaining network isolators constructed in throughout this manuscript, we did not find any influence of the
introduction of network isolators on the controllability of the underlying network and thus conclude that isolators do
not generically influence network controllability.
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Link failures in supply networks can have catastrophic consequences that can lead to a complete collapse of the
network. Strategies to prevent failure spreading are thus heavily sought after. Here, we make use of a spanning
tree formulation of link failures in linear flow networks to analyze topological structures that prevent failure
spreading. In particular, we exploit a result obtained for resistor networks based on the matrix tree theorem to
analyze failure spreading after link failures in power grids. Using a spanning tree formulation of link failures, we
analyze three strategies based on the network topology that allow us to reduce the impact of single link failures.
All our strategies either do not reduce the grid’s ability to transport flow or do in fact improve it—in contrast to
traditional containment strategies based on lowering network connectivity. Our results also explain why certain
connectivity features completely suppress any failure spreading as reported in recent publications.

DOI: 10.1103/PhysRevResearch.3.023161

I. INTRODUCTION

The theory of linear flow networks provides a powerful
framework, allowing one to study systems ranging from water
supply networks [1,2] and biological networks, such as leaf
venation networks [3–6], to resistor networks [7–9], or ac
power grids [10,11]. Failures of transportation links in these
networks can have catastrophic consequences up to a com-
plete collapse of the network. As a result, link failures in linear
flow networks and strategies to limit their consequences are a
field of active study [12–19].

The study of linear flow networks is intimately related
to graph theory since most phenomena can be analyzed on
purely topological grounds [7]. This connection dates back to
work by Kirchhoff [8], who analyzed resistor networks and
introduced several major tools that are now the basis of the
theory of complex networks, such as the matrix tree theorem
[7,8,20]. These tools can now serve as a basis for the analysis
of failure spreading in ac power grids, which can be modeled
as linear flow networks based on the dc approximation [11]. A
substantial part of security analysis in power grids is dedicated
to the study of transmission line outages since they can lead
to cascading outages in a series of failures [21–23].

The topological approach to failure spreading has been
exploited to demonstrate that the strength of flow rerouting
after link failures decays with distance to the failing link
[12–15]. In particular, the so-called rerouting distance based
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on cycles in the network has been found to predict flow rerout-
ing very well [12]. However, the analysis of flow rerouting
still lacks a theoretical foundation. Here, we demonstrate that
these observations made for flow rerouting may be understood
based on a formalism originally developed to study current
flows in resistor networks that uses spanning trees (STs) of the
underlying graph. Moreover, the formalism explains recent
results regarding the shielding against failure spreading in
complex networks.

This paper is structured as follows. In Sec. II, we give an
overview over the theory of linear flow networks and present
an important lemma that relates the current flows in these
networks to STs. In Sec. III, we demonstrate the analogy
between such networks and ac power grids in the dc approx-
imation and relate the ST formulation to line outages studied
in power system security analysis. Finally, in Sec. IV we show
how this formulation may be used to understand why certain
connectivity features inhibit failure spreading extending on
recent results [19].

II. FUNDAMENTALS OF RESISTOR NETWORKS

Resistor networks are a prime example of linear flow
networks and have inspired research throughout centuries
[7,8,24]. A resistor network can be described using a graph
as follows. Let G = (E ,V ) be a connected graph with vertex
set V = {v1, . . . , vN } and M edges in the edge set E . Then
we assign a weight wk to each edge ek = (a, b) in the graph
given by the inverse resistance wk = R−1

k between its terminal
vertices a and b. If there is a potential difference vk = Va − Vb

between the terminal vertices of edge ek = (a, b), according to
Ohm’s law there is a current flow ik between the two vertices
given by

ik = vk

Rk
= Va − Vb

Rk
. (1)
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In order to give a direction to the current flow, we assign an
arbitrary orientation to each edge in the graph that is encoded
by the graph’s edge-node-incidence matrix B ∈ RN×M defined
as [7]

Bn,� =
⎧⎨
⎩

1 if line � starts at node n
−1 if line � ends at node n

0 otherwise.
(2)

The current flows and voltages are then subject to Kirchhoff’s
circuit laws [8]. The first of the laws, typically referred to as
Kirchhoff’s current law, at an arbitrary node j ∈ V (G) reads
as

M∑
ek∈�( j)

ik = I j .

Here, I j ∈ R is the current injected into or withdrawn from
node j, and �( j) ⊂ E (G) is the set of all edges that connect
to node j respecting their orientation. The current law may
be regarded as a continuity equation and thus states that the
inflows and outflows at each node in the network have to
balance with the current injections at the respective node. It
may be written more compactly making use of the node-edge-
incidence matrix

Bi = I, (3)

where i = (i1, . . . , iM )� ∈ RM is a vector of current flows and
I = (I1, . . . , IN )� ∈ RN is a vector of current injections. On
the other hand, we can also introduce a more compact nota-
tion for Ohm’s law (1) by defining a vector of nodal voltage
levels V = (V1, . . . ,VN )� ∈ RN and a diagonal matrix of edge
resistances R = diag(R1, . . . , RM ) ∈ RM×M such that Ohm’s
law reads as

Ri = B�V. (4)

Combining Ohm’s law with Kirchhoff’s current law, we arrive
at the following relationship between nodal voltages V and
nodal current injections I:

I = BR−1B�V. (5)

This Poisson-like equation has been analyzed in different
contexts [7,12,25]. Note that Kirchhoff’s voltage law is au-
tomatically satisfied by virtue of Eq. (3), because the resulting
vector of potential differences v = BT V vanishes along any
closed cycle due to the duality between the graph’s cycle space
and its cut space [7,26]. In addition to that, the potential at one
node may be chosen freely without affecting the result.

The matrix connecting the two quantities is referred to
as a weighted graph Laplacian or Kirchhoff matrix L =
BR−1B� ∈ RN×N and characterizes the underlying graph
completely. It has the following entries [7]:

Lmn =
{∑

�∈�(m)
w� if m = n

−w� if m is connected to n by �.
(6)

Here, the weight of an edge � is again given by its inverse
resistance w� = R−1

� . For a connected graph, this matrix has
exactly one vanishing eigenvalue λ1 = 0 with corresponding
unit eigenvector v1 = 1/

√
N such that L1 = 0. For this rea-

son, the matrix is noninvertible. This is typically overcome by

making use of the graph’s Moore-Penrose-pseudoinverse L†,
which has properties similar to the actual inverse [27].

With this formalism at hand, we can in principle now
determine the current on any edge given a particular injection
pattern I and edge resistances R. As a start, consider the
situation where each edge has a unit resistance R = diag(1)
and a unit current is injected into a particular vertex s and
withdrawn at another one t such that I = es − et , where ei =
(0, . . . , 1︸︷︷︸

i

, . . . , 0)� ∈ {0, 1}M are the unit vectors with en-

try one at position i and zero otherwise. In this situation, the
current across any edge in the graph � = (a, b) is given by the
following lemma, which dates back to Kirchhoff [8,20] and
has been popularized by Shapiro [7,28].

Lemma 1. Put a 1-A current between the vertices s and t of
a connected, unweighted graph G such that I = es − et . Then
the current on any other edge (a, b) is given by

iab = N (s, a → b, t ) − N (s, b → a, t )

N ,

where N (s, a → b, t ) is the number of STs that contain a path
from s to t of the form s, . . . , a, b, . . . , t and N is the total
number of STs of the graph.

Whereas this lemma only holds for graphs where all links
have unit resistances, real-world resistor networks or other
types of linear flow networks are typically weighted with non-
homogeneous resistances. However, the extension to weighted
networks is straightforward as summarized in the following
corollary (see, e.g., Theorem II.2 in Ref. [7]).

Corollary 1. Put a 1-A current between the vertices s and t
of a connected, weighted graph G such that I = es − et . Then
the current on any other edge (a, b) is given by

iab = N ∗(s, a → b, t ) − N ∗(s, b → a, t )

N ∗ , (7)

where N ∗ = ∑
T ∈T

∏
e∈T we is the sum over the products of

the weights we of all edges e ∈ T that are part of the respective
spanning tree T ; T is the set of all STs in the graph. Similarly,
N ∗(s, a → b, t ) equals the sum over all STs that contain a
path of the form s, . . . , a, b, . . . , t , where each ST is weighted
with the product of the weight we of all edges that are part of
it. We thus assign a weight to each ST given by the product of
the weights of the edges on the ST and replace the unweighted
STs in Lemma 1 by weighted STs.

We will demonstrate in the following sections how this
lemma and corollary may be made use of to understand how
failure spreading may be mitigated in linear flow networks
such as ac power grids in the dc approximation.

III. ANALOGY BETWEEN RESISTOR NETWORKS AND
POWER FLOW IN ELECTRICAL GRIDS

Importantly, the theoretical framework developed in the
last section may be applied not only to resistor networks but
also to power grids. In this section, we demonstrate how these
results may be used to gain insight into the mitigation of
failure spreading in power grids.
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TABLE I. Analogy between resistor networks and ac power grids
in the dc approximation.

dc approximation Resistor network

Quantity Symbol Quantity Symbol

Power injections P Nodal current I
Real power flow F Current flow i
Nodal phase angles ϑ Nodal voltages V
Line susceptances be Inverse edge resistance r−1

e

A. Modeling power grids as linear flow networks

Most electric power transmission grids are made up of ac
transmission lines and are, as such, governed by the nonlinear
ac power flow equations [11]. However, the real power flow
over transmission lines can be simplified to a linear flow
model in what is referred to as the dc approximation of the
ac power flow. This approximation is based on the following
assumptions [29].

(i) Nodal voltage magnitudes vary little.
(ii) Transmission lines are purely inductive; that is, their

resistance is negligible compared with their reactance r� �
x�, ∀� ∈ E (G).

(iii) Differences between nodal voltage angles ϑn, n ∈
V (G), of neighboring nodes n, m are small |ϑn − ϑm| � 1.

Typically, these assumptions are met if the power grid is
not heavily loaded and if the power grid is modeled at the
transmission level where line resistances are small [29]. As a
result, the real power flow F� along a transmission line e� =
(n, m) ∈ E (G) in the dc approximation depends linearly on
the nodal voltage phase angles ϑn of neighboring nodes

F� = b�(ϑn − ϑm). (8)

Here, b� ≈ x−1
� is the line susceptance of line �. Thus the

vector of real power flow along the transmission lines in the
power grid F = (F1, . . . , FM )� ∈ RM takes the role of current
flow vector in the case of resistor networks. On the other hand,
the nodal voltage phase angles ϑ = (ϑ1, . . . , ϑN )� ∈ RN take
the role of the nodal voltages V, and line weights are given by
the line susceptances bk of an edge ek in correspondence with
the inverse resistances R−1

k in the case of resistor networks.
Thus Ohm’s law (4) translates to power grids as

F = Bd B�ϑ.

Here, Bd = diag(b1, . . . , bM ) ∈ RM×M is the diagonal matrix
of line susceptances. Again, Kirchhoff’s current law (3) holds,
and we may express it using vector quantities as follows
[11,12]:

BF = P.

Here, P = (P1, . . . , PN )� ∈ RN is the vector of nodal power
injections, which thus takes the role of nodal current injections
I. We summarize these equivalences in Table I.

B. Sensitivity factors in power grid security analysis

In power grid security analysis, linear sensitivity factors
are used to study and prevent line overloads which could
cause disturbances to power system operation and result in

power outages [11]. One of these factors is the power transfer
distribution factor (PTDF). The PTDFs,t,k then quantifies the
change in flow �Fk on line ek ∈ E (G) if a power �P is
injected at node r and withdrawn from node s. It is calculated
as [11]

PTDFr,s,k = �Fk

�P
. (9)

Now assume that a single line em fails, for example, as a result
of an overload, and is disconnected from the network. The
change in power flow on a line ek may then be calculated by
using the line outage distribution factor (LODF) [11]

LODFk,m = �Fk

F (0)
m

. (10)

Here, F (0)
m is the flow on line em before the outage. Mathemat-

ically, we can map the flow changes after a failure to the flow
changes after changes in the injection patterns by considering
power injections that effectively compensate for the flow on
the link that is assumed to fail (see Refs. [11,12]). As a result,
the two quantities are related as follows if em = (r, s) is the
failing link [11]:

LODFk,m = PTDFr,s,k

1 − PTDFr,s,m
. (11)

Note that the description of link failures using LODFs relies
on the dc approximation of the nonlinear ac power flow equa-
tions. However, extended descriptions have been proposed
that incorporate nonlinear terms [31]. Furthermore, the dc
approximation and thus the LODF-based description of link
failures are commonly used to model cascading failures in
power grids, where a single link triggers the failure of other
links [23,32,33]. A comparison of the effect of link failures in
linear and nonlinear models of power flows can, for example,
be found in Ref. [34].

C. Spanning tree description of link failures

On the basis of the analogy between electrical grids and
resistor networks developed in the last sections, we will now
show how the ST formula presented in Corollary 1 may be
used for power system security analysis. In the language of
power grids, the lemma yields the PTDFs,t,m for an edge em =
(a, b) if a unit power �P is injected at node r and withdrawn
from node s. For this reason, the PTDF may be calculated as
follows:

PTDFs,t,m = N ∗(s, a → b, t ) − N ∗(s, b → a, t )

N ∗ . (12)

Based on Eq. (11), which yields the LODF expressed in terms
of the PTDF, we can make use of this expression to derive
an equivalent expression for the LODF. If ek = (r, s) is the
failing link and em = (a, b) is the link where the flow changes
are monitored, the expression based on Eq. (12) reads as

LODFm,k = N ∗(r, a → b, s) − N ∗(r, b → a, s)

N ∗ − [N ∗(r, r → s, s) − N ∗(r, s → r, s)]

= N ∗(r, a → b, s) − N ∗(r, b → a, s)

N ∗ − N ∗(r, r → s, s)

= N ∗(r, a → b, s) − N ∗(r, b → a, s)

N ∗
\{k}

. (13)
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|ΔF | ≈ 1.0 · 10−3

(a) Initial grid strengthened link

|ΔF | ≈ 2.8 · 10−5

(b)

added nodes

|ΔF | ≈ 3.1 · 10−4

(c) added network isolator

|ΔF | = 0

(d)
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FIG. 1. Different methods for mitigating failure spreading in linear flow networks. (a) The failure of a single link (red) with unit flow results
in flow changes �F (color scale) throughout the Scandinavian power grid. (b) Failure spreading to Finland may be reduced by strengthening
a link that horizontally separates Sweden and Finland. (c) Adding nodes, thus increasing the length of the rerouting path, reduces failure
spreading to Finland as well. (d) Adding two links to construct a network isolator results in a complete vanishing of flow changes in the other
part of the grid. Grid topology was extracted from the open energy system model PyPSA-Eur [30].

Here, N ∗
\{k} denotes the weight of all STs in the graph evalu-

ated after removing the edge ek from the set of trees T . We
thus found an expression for the LODFs that is based purely
on certain STs in the graph. This equation is the basis of our
analysis of subgraphs inhibiting failure spreading which we
will perform in the following sections. Note that a similar
expression for the LODFs based on spanning 2-forests has
recently been derived by Guo et al. [16].

IV. MITIGATING FAILURE SPREADING

We have seen in the last section that the spreading of
failures is studied using LODFs in power system security
analysis. To prevent large flow changes on other links after the
failure of a link ek which may potentially trigger dangerous
cascades of failures, it is desirable for overall power system
security to keep the LODFs small. A natural question to ask
is thus the following: Can we design or alter the network
topology in such a way that LODFs stay small? Based on
Eq. (13) expressing the LODF in terms of STs, this question
may be addressed in a purely topological manner. In particu-
lar, we deduce three strategies to reduce the effect of failure
spreading.

(1) Fixing long paths between trigger link ek and monitor-
ing link el leaves only few degrees of freedom, which reduces
the relative contribution of the numerator in Eq. (13).

(2) Fixing specific paths between trigger link ek and mon-
itoring link el can force links of large weights to be not

contained in the numerator, thus reducing its relative contri-
bution to Eq. (13).

(3) Introducing symmetric elements between parts of the
network may lead to a complete balancing between the two
contributions in the numerator of Eq. (13).

In Fig. 1 we illustrate three possible ways to realize these
strategies to mitigate the impact of the failure of a single link
(red) in a real power grid. All three strategies provide sig-
nificant relief to the right module of the Scandinavian power
grid, which represents Finland, after a link failure occurred in
the left module. Remarkably, all these strategies are intimately
related to the graph’s topological properties as we will see in
the following sections.

A. The role of the rerouting distance

With Eq. (13) expressing LODFs using STs at hand it is in-
tuitively clear that certain paths in the network should play an
important role in predicting the overall effect of line outages.
In particular, we can see immediately that for a given failing
link ek , the numerator in Eq. (13) depends on the paths going
through the link monitoring the flow changes el whereas the
denominator does not. Therefore we expect the flow changes
to be smaller on another link em that has a longer minimum
path going through em and ek compared with link el . This is
due to the fact that reducing the number of possible paths in
the sum over all STs N ∗(r, a → b, s) effectively reduces the
number of STs by fixing a certain path.

023161-4



TOPOLOGICAL THEORY OF RESILIENCE AND FAILURE … PHYSICAL REVIEW RESEARCH 3, 023161 (2021)

20 40
len(p)

1039

1046

1053

1060

τ
(G

/p
)

(a)

e−1.13 len(p)

6 8 10 12 14
edistre[(r, s), (m,n)]

10−3

10−1

|L
O

D
F
e,
l|

(b)

ER single link

5 10 15
edistre[(r, s), (m,n)]

10−3

10−1

〈|L
O

D
F
e,
l|〉

ed
is
t

(c)

ER average

5 10 15 20
len(p)

10146

10152

10158

10164

τ
(G

/p
)

(d)

e−3.32 len(p)

10 20 30
edistre[(r, s), (m,n)]

10−5

10−3

10−1

|L
O

D
F
e,
l|

(e)

IEEE118 single link

10 20 30
edistre[(r, s), (m,n)]

10−5

10−3

10−1

〈|L
O

D
F
e,
l|〉

ed
is
t

(f)

IEEE118 average

FIG. 2. Flow changes decay exponentially with cyclic paths in different networks. (a) and (d) Number of spanning trees (STs) τ (G/p) in
an Erdős-Rényi (ER) random graph G(200, 300) with 300 edges and 200 vertices (a) and in the power flow test case “IEEE 118” [35] (d) that
contain a randomly chosen cyclic path p (y axis) plotted against the length of the path len(p) (x axis). The number of STs decays exponentially
with the length of the path, thus appearing linear on a logarithmic y scale. (b) and (e) The rerouting distance scales exponentially with the
LODF evaluated here for a single trigger for both grids. (c) and (f) The exponential scaling is preserved when averaging over all possible
trigger links. Shading indicates 0.25 and 0.75 quantiles, a line represents the median. In Figs. 8 and 9 in the Appendix we demonstrate that the
scaling robustly occurs for ER random graphs by analyzing 20 random realizations.

This intuitive idea is demonstrated to hold also quantita-
tively in Figs. 2(a) and 2(d): We illustrate that the number
of STs τ (G/p) scales approximately exponentially with the
length of the cyclic path contained in the STs for an un-
weighted Erdős-Rényi (ER) random graph G(200, 300) with
300 edges and 200 vertices [36] [Fig. 2(a)] and the power flow
test case “IEEE 118” [35,37] [Fig. 2(d)]. To study this scaling,
we contract a cyclic path p between two arbitrarily chosen
edges and quantify the number of STs using Kirchhoff’s ma-
trix tree theorem [8]. The theorem states that the number of
STs in a graph may be calculated using the determinant of the
graph’s Laplacian matrix [7]

τ (G) = det(Lu).

Here, Lu is the matrix obtained from the Laplacian matrix L
of G obtained by removing the row and column correspond-
ing to an arbitrarily chosen vertex u ∈ V (G). The number
of STs τ (G/p) containing a path p may be calculated by
contracting the path in the graph and the Laplacian matrix
and then taking the determinant of the resulting Laplacian.
Taking the difference in the numerator of Eq. (13) between
the path and a reversed path will in general not affect the
exponential scaling since the difference of two exponential
functions with different exponents or different prefactors will
again scale exponentially. In Fig. 8 in the Appendix, we show

that the same scaling robustly occurs in ER random graphs by
analyzing it for 20 different random realizations of ER graphs.

We may thus expect an exponential decay of LODFs with
the length of fixed, cyclic paths. This result complements
recent progress made in the understanding of the role played
by distance for failure spreading in linear flow networks. In
Ref. [12], it was shown that flow changes after a link failure
are not captured well by the ordinary graph distance between
the failing link and the link monitoring flow changes. Instead,
a different distance measure referred to as rerouting distance
captures this effect much better. It is defined as follows:

Definition 1. A rerouting path from vertex r to vertex s via
the edge (m, n) is a path

(v0 = r, v1, . . . , vi = m, vi+1 = n, vi+2, . . . , vk = s)

or

(v0 = r, v1, . . . , vi = n, vi+1 = m, vi+2, . . . , vk = s)

where no vertex is visited twice. The rerouting distance be-
tween two edges (r, s) and (m, n) denoted by

edistre[(r, s), (m, n)]

is the length of the shortest rerouting path from r to s via
(m, n) plus the length of edge (r, s). Equivalently, it is the
length of the shortest cycle crossing both edges (r, s) and
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FIG. 3. Spanning trees (STs) may be used to explain the shielding effect of certain connectivity structures between different parts of a
network. (a) and (b) A square grid is divided into two parts by either weakening the links connecting two parts [(a), blue, we = 0.1] or
strengthening the links perpendicularly separating the two parts [(b), blue, we = 10]. (c) and (d) For both divisions, the failure of a single link
with unit flow (red) significantly reduces failure spreading to the other part of the network. (e)–(h) Different STs (black) that contain specific
paths of the form (v0 = r, v1, . . . , vi = m, vi+1 = n, vi+2, . . . , vk = s) used to calculate the flow changes on link (m, n) for a failure of link
(r, s) by virtue of Eq. (7). (e) and (f) For the weakly connected network shown in (a) and (c), a monitoring link in the same part (e) may lead
to STs that contain only one weak link (blue shading). Thus the contribution of this ST to the sum over all STs is much stronger than for a
monitoring link in the other part, where STs have to contain at least two weak links [(f), blue shading]. (g) and (h) For the strongly connected
network shown in (g) and (h), the STs with the highest contribution are the ones containing all edges with strong weights [(g), blue shading]. (h)
If links (m, n) and (r, s) are in different parts, no ST may contain all edges with strong weights (blue shading), thus reducing failure spreading
in this case.

(m, n). If no such path exists, the rerouting distance is defined
to be ∞.

Note that we include the weight of the edge (r, s) to make
sure the rerouting distance is symmetric. The rerouting dis-
tance defined this way is a proper distance metric as shown
in Ref. [12]. With the arguments made before at hand it is
intuitively clear why the rerouting distance performs very well
in predicting the effects of line outages. Indeed, we observe
an exponential scaling of the LODFs for a given trigger link
in the ER random graph [Fig. 2(b)] and in the test case “IEEE
118” [Fig. 2(e)]. The same observation still holds if we av-
erage over all monitoring links located at a fixed rerouting
distance to the possible trigger links over which we average
thereafter [Figs. 2(c) and 2(f)]. In Fig. 9 we show that the
observed scaling robustly appears by comparing it for 20
different realizations of ER random graphs.

B. The role of strong and weak network connectivity

Our second strategy to reduce failure spreading after link
failures is based on fixing specific paths in the network in
such a way that they cannot contain certain links with large
weights. This way, the numerator in Eq. (13) does not contain
the contribution of the links with large weights whereas the
denominator does, thereby reducing the overall impact of the
link failure. Note that in contrast to the last section, the fixed

paths do not necessarily have to be long to prevent failure
spreading. We will demonstrate this strategy for two cases:
First, we use this reasoning to demonstrate that weakening
the links between two parts of the network—thus effectively
dividing it into communities—may reduce failure spreading
between them. This is expected as weakly connected networks
generally suppress failure spreading from one part to the other
one, but this also limits the possibility of power flow between
the parts. This is no longer true for the second strategy: We
illustrate why also strengthening the links that separate two
parts of the network perpendicularly to the community bound-
ary reduces the impact of link failures.

The two strategies are illustrated for a simple 3 × 6 square
grid in Fig. 3. We divide the square grid into two parts by
either weakening the links that separate the parts [Fig. 3(a)] or
strengthening the links perpendicular to these links [Fig. 3(b)].
We then monitor the flow changes (color scale) after the fail-
ure of a single link (red) in both cases [Figs. 3(c) and 3(d)].
For weak connectivity, the failure of link ek = (r, s) (dashed
orange line) leads to a different contribution of the numerator
in Eq. (13) if the monitoring link e� = (m, n) (green line) is
contained in the same part [Fig. 3(e)] as compared with a
different, weakly connected part [Fig. 3(f)] in an otherwise
symmetrical situation. Note that the distance between moni-
toring link and trigger link is also the same in both Fig. 3(e)
and Fig. 3(f). For a link in the same part, the numerator also
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FIG. 4. Network isolators that lead to a complete vanishing of LODFs are created using certain symmetric paths in the network. (a) STs
that contain a path starting at node r and terminating at node s and containing the edge (m, n) (blue) or (n, m) (red) have to cross the subgraph
consisting of dotted, colored edges in the center. Since each path can contain each vertex and edge only once, each ST passing through the
subgraph in one way (blue) has a counterpart passing through the subgraph in the other way (red). (b) Failure of a link (red) results in vanishing
LODFs (color scale) in the part connected by a network isolator as predicted using the ST formulation of link failures.

contributes with STs containing only one weak link (thin line,
blue shading). For a trigger link located in the other part, each
ST connecting trigger link and monitoring link has to contain
at least two weak links (shaded blue). Since the contribution
in the numerator is proportional to the product of all weights
along the ST and the situation is otherwise symmetric, we
expect a weaker LODF and thus a shielding effect if the two
links are contained in different, weakly connected parts.

A similar observation holds in the case of strong con-
nectivity: If the monitoring link e� = (m, n) is contained in
the same part of the network as the trigger link ek = (r, s)
[Fig. 3(g)], now separated through strong connections, span-
ning trees connecting the two links may contain two—or
generally, all—strong links. For a trigger link in the other
part of the network, the spanning tree connecting them can
contain maximally one—or generally, all minus one—strong
links. Again, the term in the numerator scales with the link
weights contained in the spanning trees. Therefore we expect
the effect of link failures to be stronger for links located in the
same part as compared with links contained in the other part,
which is confirmed when simulating the failure of a single link
in Fig. 3(d).

C. The role of symmetry

As a third strategy for reducing failure spreading, we sug-
gest building networks in such a way that the terms in the
numerator of Eq. (13) balance. In this case, failure spreading
reduces to zero for the respective links. In order to balance
the terms in the numerator of Eq. (13), we need the spanning
trees passing through the monitoring link e� = (a, b) in both
directions to have exactly the same weight

N ∗(r, m → n, s) = N ∗(r, n → m, s)

⇒
∑

T ∈T (r,m→n,s)

∏
e∈T

we =
∑

T ∈T (r,n→m,s)

∏
e∈T

we.

Here, T (r, m → n, s) is the set of all spanning trees con-
taining a path of the form (r, . . . , m, n, . . . , s). This equality
is, for example, fulfilled if for each tree T ∈ T (r, m → n, s)
there is a counterpart T ∈ T (r, n → m, s) of the same weight.
This may be accomplished by introducing certain symmet-
ric elements, referred to as network isolators [19], into the

graph as demonstrated in Fig. 4: For each ST connecting
trigger link ek = (r, s) and monitoring link e� = (m, n) and
containing a path of the form (r, . . . , m, n, . . . , s) (gray and
blue lines) there is an ST containing a path of the form
(r, . . . , n, m, . . . , s) (gray and red lines). If we compare the
product of weights for a single tree T0 ∈ T (r, m → n, s) and
its counterpart T ∗

0 ∈ T (r, n → m, s), such that both contain
exactly the same edges except for the edges connecting the
two parts, i.e., the links marked as blue and red arrows in
Fig. 4(a), we can see that these products are equal except for
the links r1 and r2 (red links) being contained only in T0, and
b1 and b2 (blue links) being contained only in T ∗

0 . We can thus
conclude that the above equality is fulfilled, i.e., the product
of weights is equal for both trees T0 and T ∗

0 , if

b1 · b2 = r1 · r2.

In this case, a failure of link ek = (r, s) does not result in
any flow changes on link e� = (m, n) at all. This reasoning
has been generalized recently, where the concept was termed
network isolators [19]. We also note that similar arguments
were put forward by Guo et al. [16]. On general grounds,
network isolators are defined as follows [19].

Lemma 2. Consider a linear flow network consisting of two
parts with vertex sets V1 and V2 and assume that a single link in

FIG. 5. Sign reversal of LODFs by symmetric subgraphs. (a) and
(b) Modifying the subgraph connecting two graphs from the two
parallel lines to the two crossing lines leads to a sign reversal of the
LODFs in the connecting subgraphs (shades of gray). This is in line
with the compensatory effect of the symmetric subgraphs used to
create the network isolator in Fig. 4.
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the induced subgraph G(V1) fails, i.e., a link (r, s) with r, s ∈
V1. If the adjacency matrix of the mutual connections has unit
rank rank(A12) = 1, then the flows on all links in the induced
subgraph G(V2) are not affected by the failure; that is,

�Fm,n ≡ 0 ∀m, n ∈ V2.

The subgraph corresponding to the mutual interactions is re-
ferred to as a network isolator.

Note that network isolators of arbitrary size may be un-
derstood using the same reasoning as presented above for a
network isolator consisting of only four links.

1. Sign reversal of flow changes

Based on the symmetric elements—the network
isolators—introduced in Sec. IV C, we can demonstrate
yet another application of the ST formulation to link failures:
We can modify the grid in such a way that the LODFs
and thus the flow changes change their sign. This is again
based on the symmetry of LODFs in terms of the paths
(r, . . . , m, n, . . . , s) and (r, . . . , n, m, . . . , s). If we apply a
symmetric modification such that paths of the first form are
replaced by parts of the latter one, we can reverse the sign of
the resulting flow changes in the other part. In particular, if
we interchange the two terms appearing in the nominator of
Eq. (13) for a subset of edges, we can change the sign of the
LODF for these edges

N ∗(r, m → n, s) → N ∗(r, n → m, s)

N ∗(r, n → m, s) → N ∗(r, m → n, s)

⇒ LODF�,k → −LODF�,k .

This can be achieved using a modification similar to the one
shown in Fig. 4(a): If the initial network contains the subgraph
indicated by blue dashed arrows in the center, we can revert
the sign of the LODF�,k by changing this subgraph to the
one indicated by red dashed arrows. This is demonstrated
in Fig. 5: Changing the subgraph in the center connecting
the two graphs from the “x”-shaped subgraph [Fig. 5(a)] to
the “=”-shaped subgraph [Fig. 5(b)] leads to a sign reversal
of the LODFs in the second graph (shades of gray), while
the magnitude of LODFs is the same in both panels. This
modification thus allows us to simultaneously change the sign
of all LODFs in a subgraph, which may prevent overloads that
are caused by flows going in a particular direction.

D. Comparison of strategies for mitigating failure spreading

Our theoretical analysis has led to three different strategies
to mitigate failure spreading by optimizing the network topol-
ogy. We will now quantify to what extent these modifications
in topology improve the overall network resilience in terms of
the impact of a single line failure.

To begin with, we quantify the suppression of failure
spreading between two preselected parts of the network. As an
indicator we use the ratio of the LODFs evaluated at a given
distance d to the failing link m suggested in Ref. [19]

R(m, d ) = 〈|LODFk,m|〉ek∈O
d

〈|LODFk,m|〉ek∈S
d

. (14)
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FIG. 6. Failure spreading between Finland and the rest of Scan-
dinavia is suppressed for all three strategies. We evaluate the ratio
of LODFs, R̄(m) := 〈R(m, d )〉d , averaged over distance d [Eq. (14)]
between the right part of the grid, i.e., Finland, and its left part,
i.e., the remainder of Scandinavia (see Fig. 1). We average the ratio
over all distances d for a given trigger link m and sort the values by
magnitude for the initial Scandinavian power grid (dark blue circles).
We then analyze the ratio for the three strategies outlined in Sec. IV B
and shown in Fig. 1. We observe that all strategies consistently yield
reduced failure spreading between the two parts. Strengthening a
specific link [blue triangles; cf. Fig. 1(b)] inhibits failure spreading
more than increasing the length of the rerouting path [light blue
squares; cf. Fig. 1(c)], while adding a network isolator [light blue
diamonds; cf. Fig. 1(d)] completely suppresses failure spreading.

Here, O and S are the two preselected parts of the network
that are supposed to be protected against each other in terms
of failure spreading, m ∈ S is the failing link located in part
S, and d is the unweighted edge distance between trigger link
m and monitoring link k. We average the absolute LODF over
all links k located in the other (O, numerator) and the same
(S, denominator) part located at the fixed distance d . The ratio
assumes values between R ≈ 1 if LODFs in both parts assume
similar values and R ≈ 0 if failure spreading to the other part
O is suppressed completely.

In Fig. 6 we analyze to what extent the three strategies
shown in Fig. 1 are able to reduce failure spreading between
Finland and the remainder of Scandinavia. We analyze the
LODF ratio for all possible trigger links m that are present
in both the modified and the initial grid and compare the
ratio for a given link by averaging the ratio over the distance
d . Thereby, we are able to compare to what extent failure
spreading caused by the failure of a given link is reduced
in each grid modification scenario. We observe that all three
strategies consistently suppress failure spreading to the other
part as measured by a reduction in the LODF ratio. Whereas
strengthening a single link [Fig. 1(b)] suppresses spreading
more strongly than an increase in rerouting [Fig. 1(c)], adding
a network isolator [Fig. 1(d)] provides the strongest reduction
in failure spreading by setting the LODF ratio to zero.

While all three strategies suppress failure spreading be-
tween the two parts, we did not yet consider their overall
impact on the entire network, i.e., including their impact on
the same part where the trigger link is located. To quantify the
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FIG. 7. Systematic analysis of the overall impact of a given strategy for mitigating failure spreading. We compare the impact of each of the
strategies shown in Fig. 1 on the overall grid resilience measured by the LODF ratio R̄(m) := 〈R(m, d )〉d averaged over distance d [Eq. (15)],
which expresses to what extent the impact of the failure of a given link m on the network differs from its impact in the grid without the
modification. We average the ratio over all distances to calculate a link-based measure of grid resilience. (a) We observe that strengthening a
single link has an overall positive impact on grid resilience and reduces the LODF ratio up to tenfold (dark blue links), with only a few links
showing an increase (red). (b) An increase in rerouting as shown in Fig. 1(c) improves resilience in most links as well; the effect is, however,
less pronounced than in the previous case. (c) Adding a network isolator strongly improves resilience in Finland, while slightly weakening it
in the rest of Scandinavia. Thus all three strategies consistently have a positive impact on link-based resilience in Finland.

overall impact, we now consider the ratio of LODFs before
and after the grid modification

R(m, d ) = 〈|LODFk,m|〉ek∈G′
d

〈|LODFk,m|〉ek∈G
d

. (15)

Here, G is the initial network, and G′ is the network after the
topology has been modified according to a chosen strategy.
As before, m denotes the failing link, and the magnitudes of
the LODFs are averaged over all links k at a given distance
d to the trigger link m. Only links which are present in
both G and G′ are considered as trigger links. While being
defined similarly to the ratio of LODFs in Eq. (14), the main
difference between the two quantities is the following: The
ratio considered here compares the impact of a link failure in
two different networks, while the ratio in Eq. (14) compares
the impact on two different parts of the same network. The
ratio defined here thus quantifies whether a given modification
leads to lower average LODFs in the entire grid or whether it
increases the vulnerability of some links. It assumes values of
unity, R(m, d ) ≈ 1, if the impact of the failure on the entire
grid is approximately the same in the initial and the modified
grid and deviates from unity if the impact of a failure of the
given link m on links at a distance d is reduced [R(m, d ) < 1]
or increased [R(m, d ) > 1].

In Fig. 7, we analyze this ratio for the Scandinavian grid for
each strategy and the resulting grid modification at the border
between Finland and the remainder of Scandinavia shown
in Fig. 1. To be precise, we evaluate the distance-averaged
LODF ratio R̄(m) := 〈R(m, d )〉d for all possible trigger links
m. For all three strategies, we observe a reduction in failure
spreading, i.e., R̄(m) < 1, if the trigger link m is located
in the bulk of Finland or in western Norway. The benefits
are strongest if a network isolator is added [Fig. 7(c)] and
weakest if rerouting distance is increased [Fig. 7(b)]. For a
trigger link m located in the central part of the grid, i.e., in
Sweden, the addition of an isolator has a slightly negative
effect such that R̄(m) > 1, which is, however, much weaker
than the positive effects on the other parts of the grid. The

two other strategies have a negligible impact if m is in this
part of the grid. In all cases, the ratio indicates an increase
in failure spreading for a few trigger links that are located in
the vicinity of the topology modification. To conclude, we
observe that the choice of a favorable strategy depends on
the goal to be achieved. If trigger links in Sweden or in the
vicinity of the border between Sweden and Finland have been
identified as links that are likely to fail, none of the strategies
will strongly increase grid resilience or will even deplete it.
If, on the other hand, the goal is to protect the grid against
likely link failures that emerge in Finland, all three strategies
consistently provide a certain benefit to grid resilience which
is also confirmed by the results in Fig. 6. In this case, adding
a network isolator most likely provides the best results.

In total, the LODF ratios R(m, d ) and R(m, d ) provide a
complementary view on the different strategies by measuring
the extent to which failures are suppressed between the two
parts of a network, on the one hand, and the impact of a
strategy on the network as a whole on the other one. For this
reason, they can be used to balance the pros and cons of a
grid modification and thus allow one to find which strategy
performs best for the given grid or even allow one to study the
impact of a combination of different strategies.

V. CONCLUSION

We demonstrated how a spanning tree formulation of link
failures may be used to understand which topological patterns
aid the mitigation of failure spreading in power grids and
other types of linear flow networks. In particular, we derived
and explained three strategies for reducing the effect of link
failures in linear flow networks based on spanning trees. Our
results offer an understanding of previous strategies used to
inhibit failure spreading in power grids and may thus help to
increase power grid security.

All strategies analyzed here for reducing failure spreading
are based on extending—or at least not reducing—the net-
work’s ability to transport flows. This is in contrast to typical
containment strategies in power grid security which are based
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FIG. 8. Exponential decay of the number of spanning trees (STs) τ (G/p) in Erdős-Rényi (ER) random graphs, with length of randomly
chosen cyclic path len(p), occurs robustly. Each panel shows the number of STs in a different, random realization of an ER graph G(200, 300)
with 300 edges and 200 vertices after collapsing a randomly chosen cyclic path. We analyze 200 randomly chosen cyclic paths for each
ER graph (dots) and perform a least-squares fit of an exponential function on the semilog scale (dashed lines). The number of STs decays
exponentially with the length of the path, thus appearing linear on a logarithmic y scale.

on islanding the power grid, i.e., reducing the connectivity for
the sake of security. We illustrated how to exploit the intimate
connection to graph theory to find and analyze subgraphs that
allow for improving both power grid resilience and efficiency
at the same time.

Our results offer a new understanding on a graph-
theoretical level of network structures that have been found to
inhibit or enhance failure spreading. We illustrated the fruitful
approach of analyzing failure spreading in power grids by us-
ing spanning trees for several subgraphs but are confident that
other subgraphs for enhancing or inhibiting failure spreading
may be unveiled using this formalism.

Finally, the question arises regarding to what extent our
theoretical results are relevant for the stability of real-world
power grids, in particular, the stability to large-scale black-
outs. In fact, a power grid blackout is typically triggered by

the outage of a single transmission element, more rarely a
single generation element [21]. When such a transmission line
outage occurs, power flow is redistributed to parallel transmis-
sion paths, which may cause secondary overloads. Hence the
scenario considered in this paper is of high practical relevance.

Our results have been derived for the linearized dc approxi-
mation; hence they will hold only approximately for scenarios
where the dc approximation is no longer valid. In particular,
there is no longer an exact analogy between resistor networks
and ac power grids when flows are calculated nonlinearly
using ac power flow models. However, the impact of line
failures in high-voltage grids is typically well described by the
linearized dc approximation [19,34]. Deviations occur mainly
for high-loading scenarios, but even then the dc approximation
usually gives a reasonable first-order estimate of the flow
redistribution. It must be noted that the assumptions leading
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FIG. 9. Decay of averaged LODFs with rerouting distance to the trigger link is robust throughout 20 different realizations of Erdős-Rényi
(ER) random graphs. Each panel shows the decay of LODFs for a different, random realization of an ER graph G(200, 300) with 300 edges
and 200 vertices. We observe an approximately exponential scaling of LODFs with rerouting distance when averaging over all possible links
located at a fixed rerouting distance to the trigger link. Shading indicates 0.25 and 0.75 quantiles; a line represents the median.

to the dc approximation are not necessarily violated during
the initial stages of a cascade. Secondary overloads occur
when the current or real power flow exceeds a threshold. If
the reactance x� is not too large, this will happen well before
the angle difference becomes large. During the final stages of
a cascade, nonlinear and dynamical effects must be taken into
account.

Nevertheless, the focus of our study is on flow networks
where flow distribution and redistribution after failures are
governed by Kirchhoff’s laws. Further studies are necessary
to assess whether parts of our results may in some sense
be transferred to topological models where flows are routed
along shortest paths [38–40].
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APPENDIX

In this Appendix, we demonstrate that the scaling robustly
occurs for ER random graphs by analyzing 20 random real-
izations (Figs. 8 and 9).
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4. Designing optimal resilient supply
networks

Now we turn from strategies to make a network resilient against failures to a more general
perspective on network optimisation. To this end, we consider networks that are optimal in
the sense that they minimise the dissipated energy. Again, this analysis relies on linear flow
networks which allows us to draw an analogy to resistor networks: The dissipated energy is
also known as Joule heating for resistor networks and manifests in resistive wires heating
up and glowing as a result of a current flowing through the wire. A striking feature of
power grids and other optimised supply networks is the presence of loops, i.e. redundant
connection between pairs of nodes. But why do some networks display a large amount of
loops while others do not show any? And what do loops tell us about network resilience?

In the first manuscript, we focus on the transition from non-loopy to loopy networks
when varying costs for new connections or randomly damaging the network for a fluctu-
ating supply. While previous work has shown that loops form in such optimised networks
subject to fluctuations and damages, we analyse how they form. In fact, we demonstrate
that loops arise via a discontinuous transition through what is, mathematically speaking,
a saddle-node bifurcation: New minima of the network dissipation emerge separately in-
stead of forming out of existing ones. Here, my contribution was as follows: I designed all
figures, performed almost all numerical simulations – all except for the simulations on the
edge-damage model – evaluated the results and wrote a major part of the text (see author
contribution statement in the manuscript).

In the second publication, we focus on a different aspect of optimal networks and analyse
their large scale structure. Again, we demonstrate that this large scale structure is shaped by
fluctuations of supply and resilience to failures. Depending on the strength of fluctuations,
optimal supply networks display either a primal community structure – a well-known type
of communities where densely connected parts of a network are mutually weakly con-
nected [74, 75] – or a novel type of community structure termed dual communities that
are based on loops in the network. In the case of dual communities, the different parts of a
network are exceptionally strongly connected. The transition to dual communities happens
for dissipation-optimised networks as well as power transmission grids cost-optimised via
the high-level open energy system model PyPSA-Eur [28]. In the latter case, an increase
in fluctuations as a result of an increase in energy produced by variable renewable energy
sources induces a transition to dual communities. In this project, I performed almost all
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4. Designing optimal resilient supply networks

numerical simulations – all except for generating the optimised power grids – designed all
figures and wrote most of the paper. This manuscript has been submitted for publication.

4.1. F) Discontinuous transition to loop formation in

optimal supply networks

[6] Kaiser, F., Ronellenfitsch, H. & Witthaut, D. Discontinuous transition to loop formation
in optimal supply networks. Nature Communications 11, 5796. doi:10.1038/s41467-
020-19567-2 (2020).

The article was published Open Access under a Creative Commons Attribution 4.0 In-
ternational License. A copy of this License is available at http://creativecommons.
org/licenses/by/4.0/.
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The structure and design of optimal supply networks is an important topic in complex

networks research. A fundamental trait of natural and man-made networks is the emergence

of loops and the trade-off governing their formation: adding redundant edges to supply

networks is costly, yet beneficial for resilience. Loops typically form when costs for new edges

are small or inputs uncertain. Here, we shed further light on the transition to loop formation.

We demonstrate that loops emerge discontinuously when decreasing the costs for new

edges for both an edge-damage model and a fluctuating sink model. Mathematically, new

loops are shown to form through a saddle-node bifurcation. Our analysis allows to heur-

istically predict the location and cost where the first loop emerges. Finally, we unveil an

intimate relationship among betweenness measures and optimal tree networks. Our results

can be used to understand the evolution of loop formation in real-world biological networks.
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The reliable function of supply networks is essential for
biological as well as technical systems. Leaf venation net-
works supply plant leaves with water and nutrients1 and

vascular systems supply vertebrates with oxygen and nutrients2.
On the other hand, society relies on man-made supply networks
such as power grids3 or hydraulic networks4. Finally, networks
that formed over time such as drainage basins show a similar
structure5. Understanding the design principles of such networks
is a central challenge in network science6.

The evolution or construction of supply and transportation
networks is essentially determined by the trade-off between cost
and resilience7–9. Cost limits the number of connections in the
network, as resources are generally scarce. Resilience requires
additional connections to cope with damages or perturbations.
Many actual networks contain loops to establish a certain level of
topological resilience, hence they stay connected and operational
even if some elements fail10. The interplay of topology and resi-
lience is analysed in various disciplines including traffic net-
works8, communication networks11 or dynamical networks12.
Finally, a variety of results on structural resilience, that is the
ability of a network to remain connected when a fraction of nodes
or links fails, have been obtained in network science13,14.

In this article, we focus on linear flow networks modelling
power grids, hydraulic networks or vascular networks3,4,15.
Different structural patterns are observed in nature, consisting
of both networks with and without loops. For instance, leaf
venation networks are loopy in general, except for a few old
species such as Ginkgo. In electric power systems, large-scale
transmission grids are strongly meshed, while local distribution
grids are topological trees (Fig. 1). Optimal network structures
balancing costs and resilience have been analysed via extensive
numerical simulations in the setting where a single source
supplies the remaining network, such as in plant leaves15–17.
The optimal structure does not contain any loops if connections
are reliable and perturbations are weak, for instance in dis-
tribution grids. Loops come into being when sources or sinks
fluctuate strongly or connections are subject to damages, such
as in transmission grids or newer leaf species. While some work
has been done in the context of networks optimising transport

time18, the exact mechanism of loop formation in minimal-
dissipation networks is still not fully understood.

Here, we analyse the transition to loop formation on a theo-
retical basis and derive several analytical results. We consider
optimal network structures in the sense that function is optimised
while costs are constrained or vice versa. Two aspects of resilience
are studied in detail—damage to edges and fluctuations of supply
and demand. In particular, we investigate the optimal structure as
a function of the severity of damage and the strength of fluc-
tuations. In contrast to prior work, we focus on the occurrence of
the very first loop, which enables an analytical approach to loop
formation and yields several rigorous results. We first establish
this approach for an elementary sample network and then gen-
eralise it to networks of arbitrary size and compare analytic
predictions and numerical results.

In particular, we demonstrate that the transition to loop for-
mation is generally discontinuous in the sense that optimal edge-
capacities jump discontinuously when fluctuations increase or
costs decrease. Loopy network structures emerge as new local
minima of the dissipation function that form via a saddle-node
bifurcation, and not via a bifurcation of an already existing
minimum. Hence, a large number of local minima may exist
simultaneously and we establish a purely topological expression
based on the edge betweenness to understand their structure. As a
direct application of our analysis, we derive a simple criterion to
predict the location of the first loop in the transition from a tree
network.

Results
Modelling supply networks. We consider a simple supply net-
work model which was previously used to study loop formation
in generic distribution networks15,16. Mathematically, the supply
network is constructed from a graph G with node set V and edge
set E. At each node n ∈ V, there is an in- or outflow with a
strength Pn, where Pn > 0 denotes a source and Pn < 0 a sink. The
in- and outflows may either represent individual supply nodes or
allocated demands associated with the node19. An edge in the
network is either labelled by its index e ∈ E or by its terminal

a b

c d

Fig. 1 Loopy and non-loopy real-world supply networks. a The leaves of Ginkgo biloba and c the distribution grid IEEE123 form loopless supply networks. b
The venation network of Prunus serrulata and d the Scandinavian power grid on the transmission level form loopy supply networks. Leaf venation networks
extracted from photographs, distribution grid taken from ref. 50 and transmission grid topology extracted from the open power system model PyPSA-Eur49.
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nodes e = (n, m) which we use interchangeably. For each edge, we
fix an orientation which is encoded in the node-edge incidence
matrix I 2 RjV j ´ jEj with elements

In;e ¼
1 if edge e starts at node n;

�1 if edge e ends at node n;

0 otherwise:

8><
>: ð1Þ

Each edge is assigned a capacity ke 2 Rþ and a flow whose
strength or value is denoted as Fe 2 R. Fixing the orientation of
an edge e = (n, m) means that Fe > 0 describes a flow from node n
to node m and Fe < 0 describes a flow from node m to node n.
The flows satisfy the continuity equation or Kirchhoff’s current
law (KCL) at every node of the network,X

e2E
In;eFe ¼ Pn; 8 n 2 V : ð2Þ

In addition to that, we assign a potential θn to each node in the
network. In terms of physical quantities, this potential θn 2 R
can represent the pressure at the nodes of a hydraulic network,
the voltage in DC resistor networks or the nodal voltage phase
angle in linearised AC power grids4,15,20,21. For these systems, the
flow on a link e = (n, m) scales linearly with the potential drop
θn − θm along the link and can be calculated as

Fe ¼ keðθn � θmÞ: ð3Þ
Together with the continuity equation (2), this linear set of

equations determines the values of the potentials θn up to a global
constant. The resulting flows automatically satisfy Kirchhoff’s
voltage law (KVL) which states that the flow around any closed
loop expressed in terms of the edges C ¼ fec1 ; ec2 ; :::; ecmax

g
vanishes [ref. 22, pp. 40] X

e2C
zeFe ¼ 0: ð4Þ

Here, the factor ze ∈ { − 1, 1} is used to keep track of the
orientation of an edge e with respect to the orientation of the edge
in the loop C, i.e.

ze ¼
1 if edge e ¼ ðe1; e2Þ is oriented from e1 to e2;

�1 if edge e ¼ ðe1; e2Þ is oriented from e2 to e1:

�

Optimising supply networks: minimum dissipation topologies.
We now illustrate how to determine the optimal supply network
that is described by the above the set of equations. To this end, we
want to find the edge capacities that determine the network
structure that is optimal for performing a given task. Throughout
this manuscript, we call the network structure optimal if the edge
capacities are such that the overall network dissipation is mini-
mised, as suggested for example in refs. 15–17. The network dis-
sipation may be calculated as

D ¼
X
e2E

F2
e

ke
: ð5Þ

In addition to that, we assume that the resources to build the
network are limited. This resource constraint takes the formX

e2E
kγe ¼ Kγ; ð6Þ

where the cost parameter γ > 0 depends on the type of problem
under consideration. For instance, assuming Poiseuille flow
through cylindrical pipes of fixed length and radius Re, ke � R4

e ,
such that γ = 1/2 fixes total fluid volume and γ = 1/4 fixes total
pipe mass15–17,23,24. The parameter K corresponds to the overall
available budget. Note that different definitions of optimal
networks arise in other applications, e.g. in hydraulic engineering

where typically the cost is minimised while the dissipation is
constrained25. In Supplementary Fig. 5 and Supplementary
Note 5, we demonstrate that the same kind of discontinuous
transition is observed when extending our analysis to this setup.

In general, it is neither useful nor meaningful to allow arbitrary
connections between the nodes. Geometric constraints apply to a
variety of networks. For instance, leaf vascular networks or river
basins are naturally planar. To take into account such constraints
and keep the problem feasible one typically fixes a set of potential
edges E such that E � E. These edges are often taken from a
square grid16, a triangular grid15, or various types of disordered
tessellations7,26. Note that while planarity of the network
described by the set of potential edges E simplifies the theoretical
analysis, our results are not limited to planar networks as we
demonstrate for a simple, non-planar network in Supplementary
Fig. 6.

We focus on two different models here: a model with
fluctuating sources and sinks and a model of stochastic damage
to the edges. Both models can be thought of as quantifying
network resilience: We call a network resilient if it is able to
function properly under the uncertainties induced by edge
damage or fluctuating inputs. For both models, our main
question will be the following: Under which conditions does the
optimal network structure contain loops and how do these loops
emerge?

Fluctuating sink model: First, we introduce the fluctuating sink
model. In this model, we include fluctuations by treating the Pn as
random variables. For each random realisation, the sources and
sinks are balanced, i.e. they sum to zero,X

n2V
Pn ¼ 0: ð7Þ

Network structures are then optimised to have a minimum
average dissipation

hDi ¼
X
e2E

hF2
ei
ke

; ð8Þ

for a given set of resources. Here, the brackets 〈⋅〉 denote the
expected value taken over all realisations of the random variables
Pn. Note that the fluctuations affect only the flows directly by
virtue of Eq. (3), whereas the network topology is assumed to be
fixed by the construction of the network such that the average is
taken over the squared flows only. Equation (8) can be minimised
analytically with respect to the ke, where the resource constraint is
taken into account via the method of Lagrange multipliers.
Calculating the optimal edge capacities by extremising the
Lagrange function yields16 (Supplementary Note 1)

ke ¼
ðhF2

eiÞ
1

1þγ

P
a2EðhF2

aiÞ
γ

1þγ

h i1=γ K: ð9Þ

This expression depends on the second moments of the flows
hF2

ei, which in turn depend on the capacities ke. Hence, Eq. (9)
can be interpreted as a self-consistency condition which has to be
solved together with Eq. (3).

Edge-damage model. A second class of dissipation-optimised
networks that is relevant to biology and engineering seeks to find
optimal networks subject to damage. For instance, leaf vascu-
lature might be attacked by a herbivorous insect, or a power grid
might lose a power line due to an outage. In the following, we
generalise the broken-bond model considered in ref. 15 by
allowing partial damage to the network capacities instead of
complete removal of edges.

In this edge-damage model, the sources and sinks are still
balanced but do not fluctuate stochastically. Instead, we assume
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that all nodes but one are sinks with Pj > 1 ¼ ��P supplied by a
single node with P1 ¼ ðN � 1Þ�P, where N is the number of nodes.

To model partial damage of edge l, we modify the edge
capacities according to

ke ! ð1� ΔðlÞ
e Þke; ð10Þ

with the damage fraction

ΔðlÞ
e ¼

0 if e≠ l;

Δ 2 0ð ; 1� if e ¼ l:

�
ð11Þ

Thus, a damage parameter Δ = 1 corresponds to complete
removal of the damaged edge. We now define the average over all
possible damage scenarios. Specifically, if g(ke) is some function of
the capacities ke, we define

hgðkeÞi
0 ¼ 1

jEj
XjEj
l¼1

gðΔðlÞ
e keÞ; ð12Þ

where ∣E∣ is the number of edges in the network. Here and in the
following, we use the notation h�i0 to distinguish the average over
damage scenarios from the average over fluctuating sources
and sinks.

As before, the central objective is to minimise the average
dissipation of the network,

hDi ¼
X
e

F2
e

ke

� �0
; ð13Þ

taken over all possible damaged edges under the resource
constraint Eq. (6).

We now proceed to study loop formation in the two models
outlined above in detail.

Discontinuous transition to loop formation in small network.
As an illustrative example, let us consider an elementary network
as sketched in Fig. 2a and analyse the transition to loop formation
in both, the fluctuating sink model and the edge-damage model.

Disontinous transition in fluctuating sink model: The network
consists of four variable sinks at nodes 2, 3, 4, 5 (circles) that are
modelled as iid Gaussian random variables P2;3;4;5 � Nðμ; σÞ and
four edges (arrows) connecting them with capacities ki and flows
Fi, i ∈ {1, 2, 3, 4}. A fifth, potential edge is shown as a dotted
arrow. If it exists, it carries flow ~F5 and has capacity k5 = κ
(Fig. 2a). The central question we will study for this setup is the
following: When is the optimal network tree-like (κ = 0) and
when is it loopy (κ > 0)—and how does κ behave at the
transition point?

We first consider the case where the loop is not present, i.e.
κ = 0. In this case, the network is a tree and we can calculate the
second moments hF2

i i; i 2 f1; 2; 3; 4g explicitly in terms of the
capacities: they are determined by the statistics of the source and
the sinks by virtue of the continuity equation (2). Using the
optimal capacities for a tree network (6), we obtain an explicit
equation for the optimal dissipation 〈Dtree〉 that only depends on
the statistics of the sinks (Supplementary Note 4)

hDtreei ¼
2ðσ2 þ μ2Þ

γ
γþ1 þ 2ð2σ2 þ 4μ2Þ

γ
γþ1

h iðγþ1Þ=γ

K
:

ð14Þ

How does this result change if we allow closing the loop as
illustrated in Fig. 2a, i.e. if we include the corresponding edge in
the set of potential edges E?

Let us assume that the loop carries a flow ~F5 and has a non-
zero capacity k5 = κ > 0. In the following, we denote the flows and
capacities in the loopy network with a tilde. In the presence of a
loop, we can no longer determine the flows using the continuity
equation (2) alone. Instead, we have an additional degree of
freedom: a cycle flow f around the newly formed edge such that
~F1 ¼ F1 � f , ~F3 ¼ F3 þ f and ~F5 ¼ f . The strength of the cycle
flow can be determined using the KVL (4)

f
κ
þ

~F3

~k1
�

~F1

~k1
¼ 0: ð15Þ

This approach allows us to eliminate the dependence on the
cycle flow strength f, and we can evaluate the dissipation 〈Dloopy〉
of the loopy network by inserting the result into Eq. (8)
(Supplementary Note 4). The new expression for the dissipation
no longer contains the flows explicitly, which considerably
simplifies finding the optimal topology: we no longer have to
take care of the interdependence of flows and capacities, but can
minimise 〈Dloopy〉 in terms of only the capacities ~ki.

We proceed to evaluate the optimal network structure fixing
the mean of fluctuations to μ = −1 and the resource constraint to
K = 1. To examine the effect of the two remaining parameters
separately, we analyse the transition to loop formation for γ = 0.9
fixed while varying σ and for σ = 3 fixed with varying γ. We then
compute the dissipation 〈Dloopy〉 as a function of the capacities κ
and k1 and compare it to the dissipation 〈Dtree〉 of the
corresponding tree network. Note that the capacities in the
optimum tree network are explicitly given by Eq. (9) such that
〈Dtree〉 is fixed. For the loopy network, we still need to determine
the optimum structure, i.e. we compute the minima of 〈Dloopy〉 as

a b ck2, F2 n = 3

n = 5n = 4

n = 1

n = 2
k1, F1

k3, F3

k4, F4

k5 = n

m

F5 =

Source
Edge set L

Edge set R

New link
(m, n)

Fig. 2 Graph set up to analyse the transition from tree networks to loopy networks. a Elementary network to study spontaneous loop formation in
optimum supply networks. The network consists of five nodes (green circles) where node n = 1 has an inflow of four, P1 = 4, and all other nodes have an
outflow of unity. These in and outputs determine the flows Fi, i ∈ {1, 2, 3, 4, 5} along with the links with capacities ki. The optimum topology for this set-up
is a tree network. If the in- and outputs are fluctuating, an additional edge (dotted arrow) may be beneficial to reduce the average dissipation. This edge
introduces a new degree of freedom expressed as a cycle flow f. b For a larger network, we generalise this setup as follows: we start from a tree network
and then consider the impact of a new edge at an arbitrary position (n, m) (dotted, red arrow). We then collect the edge sets L (shaded green) and R
(shaded blue) along the shortest path from the source to the newly formed edge. This edge induces a cycle flow f. c A network formed from a triangular
grid with a set of potential edges E coloured in grey which we will analyse throughout the manuscript. Realised edges (black) correspond to a global
minimum of the dissipation for the fluctuating sink model where a single, fluctuating source (large circle) supplies the remaining network.
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a function of κ and ~k1 recalling that ~k3 ¼ ~k1, ~k4 ¼ ~k2 and ~k2 is
then fixed by the resource constraint Eq. (6).

For both varying fluctuations σ and varying costs γ, we find
that the transition to loop formation is discontinuous: the loop
starts to form with a non-zero capacity κ when analysing the
globally optimal network structure (Fig. 3a, c, thick, orange line).
Analogously, the capacity k1 bifurcates (red line).

But what is the nature of this transition? In fact, we find that new
minima emerge through a saddle-node bifurcation independently of
the parameter we vary. Thus, new minima do not form from the
existing tree minimum but instead emerge elsewhere in the energy
landscape. To support this claim, we plot the capacity at the saddle
in Fig. 3 (dotted, coloured lines) and analyse the dissipation
landscape close to the bifurcation point (Supplementary Fig. 3).
Using these results, we can also map out the parameter region
where loop formation is beneficial (Supplementary Fig. 2). In
Supplementary Fig. 7, we illustrate the nature of this transition for
an even simpler network and find a closed-form solution for the
region of the parameter space where loop formation is beneficial.

Discontinuous transition in edge-damage model: We now turn
to the edge-damage model and analyse the optimal topology
again for the graph shown in Fig. 2a. Most importantly, we find
that the transition between a tree-like and a loopy optimal
network is also discontinuous in the damage model in both the
cost parameter γ and the damage parameter Δ, and new extrema
appear again through saddle-node bifurcations (Fig. 3b, d). This
demonstrates that despite the fact that in the damage model, the
optima follow a different scaling law from those in the fluctuation
model15, the mechanism and type of the transition from tree-like
to loopy optimum is generic.

Discontinuous transition persists beyond the first loop.
Whereas the transition to the first loop that forms is important in
many real-world supply networks, such as the Gingko leaf and the
distribution grid shown in Fig. 1, other networks display several
loops, such that their formation beyond the first loop becomes
important. In particular, the tree has mainly theoretical impor-
tance in many applications such as hydraulic networks where
spanning trees in loopy networks play an important role in
modelling and optimisation25,27–29. Remarkably, we can
demonstrate numerically that the discontinuous character of loop
formation persists beyond the first loop.

In Fig. 4, we analyse this transition for the fluctuating sink
model with cost parameter γ = 0.5 for a larger, globally optimal
tree network which was formed from a set of potential edges E
corresponding to a triangular grid as shown in Fig. 2c. We map
out the order in which new loops form (colour code) when
decreasing the cost for new edges and slightly perturbing the
previous network structure. All new loops emerge discontinu-
ously with a non-zero capacity from an existing loopy network
topology (Fig. 4c). Note that in contrast to Fig. 3, the optimal
capacities are obtained here using an iterative approach for
finding local minima of the dissipation that is due to ref. 16 (see
“Methods” section). In a Supplementary Fig. 8, we demonstrate
that an analogous transition exists for varying fluctuation
strength σ and fixed cost parameter γ.

Identifying optimal trees for networks of arbitrary size. We
now generalise our reasoning to larger networks with an arbitrary
number of nodes N. For this analysis, we focus on the fluctuating
sink model. Again we assume that all nodes j = 2, …, N act as
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Fig. 3 Discontinuous transition in dissipation minimum appears throughout models and parameters. Capacities at the global minimum (thick lines)
show a discontinuity for different models when analysing the topology shown in Fig. 2a. a, cWe analyse the edge capacities ke at the local minima (straight
lines) and saddle (dotted lines) for varying cost parameter γ (a) and varying fluctuation parameter σ (c) for the fluctuating sink model with fluctuation
mean μ = −1 and total capacity K = 1. For both parameters, the capacity at the loop κ (light orange) undergoes a saddle-node bifurcation which causes a
discontinuous transition in the global minima (thick lines) from non-loopy to loopy networks. b, d An analogous saddle-node bifurcation in the capacities ke
may be observed in the generalised damaged bond model in terms of both the cost parameter (b) and the damage parameter (d). For all four plots, dotted
black lines denote the matching values in the other plot.
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sinks with Pj being random variables and that the source j = 1
balances the sinks. We start from a tree network and analyse at
what value of the cost parameter γ it becomes beneficial to add a
single edge thus closing a single loop. This setup is sketched in
Fig. 2b. We first demonstrate how to calculate the dissipation in
such a setting and then illustrate the procedure to minimise it.

In an arbitrary tree network, the flows do not depend on the
link capacities but only on the topology of the network as
illustrated in the last section. This is due to the fact that for each
node j = 2, 3, … there is only one path from the respective node
to the root j = 1 of the tree. The flow Fe on an edge e is thus
directly given by the KCL Eq. (2). Here, we fix the orientation of
the flows such that they point away from the source as illustrated
in Fig. 2b. Therefore, flows in tree networks are always positive.

To express the flows Fe in terms of the sources and sinks Pj, we
introduce the tree matrix T 2 RjEj ´ jEj by

T e;j ¼
þ1 if edge e is on the path fromnode

jþ 1 to the root j ¼ 1

0 otherwise:

8><
>: ð16Þ

This yields an explicit expression for the flows,

Fe ¼ �
XN
j¼2

T e;j�1Pj : ð17Þ

We can insert this result into the network dissipation (Eq. (8)),
which yields

hDtreei ¼
X
e2T

XN
i;j¼2

T e;j�1T e;i�1hPiPjik�1
e ; ð18Þ

where T = E(G) is the set of all edges in the tree, i.e. before the
addition of a loop.

From trees to loopy networks: optimising networks with a
single loop. Remarkably, we can also find an explicit expression
for the dissipation eliminating the flows in a near-tree network by
exploiting the KVL to eliminate the new degrees of freedom,
similar to the strategy in the previous section.

We consider a network that consists of a tree plus a single link
ℓ = (m, n) with capacity κ as sketched in Fig. 2b. The edges on the
paths from nodes n and m to the root node are summarised in the
edge sets L and R, respectively, which we define as follows:
Denote by p(m) and p(n) the set of all edges along the shortest
path from the source node to the node m and n, respectively,

oriented in the direction pointing away from the source. Note
that these paths are unique in a tree network. Then define the
following sets:

L ¼ pðnÞnðpðmÞ \ pðnÞÞ;
R ¼ pðmÞnðpðmÞ \ pðnÞÞ;

ð19Þ

such that the union of the edge set L ∪ R ∪ {(m, n)} forms a cycle.
As we will see in the following, this definition turns out to be
useful when studying the dissipation in the presence of a
single loop.

Due to the presence of the loop, we have a new degree of
freedom, the cycle flow strength f. According to the KCL Eq. (2),
the flows in the loopy network are given by

~Fe ¼

f if e ¼ ðm; nÞ
Fe þ f if e 2 RðmÞ
Fe � f if e 2 LðnÞ
Fe otherwise:

8>>><
>>>:

ð20Þ

The value of f is fixed via the KVL:P
e2L

�Feþf
~ke

þ
P
e2R

Feþf
~ke

þ f
κ ¼ 0

) f ¼ κ�1 þ
P

e2L∪R

~k
�1
e

� ��1 P
e2L

Fe
~ke
�
P
e2R

Fe
~ke

� �
:

ð21Þ

We can now evaluate the dissipation Eq. (8) in the presence of
the new edge (m, n) by plugging in the relations (20) and (21),

Dloopy ¼
X
e2T

F2
e

~ke
� κ

1þ
P

e2L∪R

κ
~ke

X
e2L

Fe

~ke
�
X
e2R

Fe

~ke

 !2

: ð22Þ

The average dissipation thus reads

hDloopyi ¼
X
e2T

hF2
ei

~ke
� κ

1þ Cm;nκ
Bm;n; ð23Þ

where we introduced the abbreviations

Bm;n ¼
X
e2L

Fe

~ke
�
X
e2R

Fe

~ke

 !2* +

Cm;n ¼
X

e2L∪R

~k
�1
e ;

ð24Þ

which are functions only of the updated capacities ~ke along the
sets of edges L and R. Importantly, the resulting expression no
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Fig. 4 Discontinuous transition to loop formation persists beyond the first loop. a, b We order the loops in a colour code according to their appearance
with increasing cost parameter γ: the darker the edge colour, the earlier the edge appears. For the loop that appears as the i-th loop, we denote its critical
cost parameter γci where the loop starts to become beneficial for the dissipation-optimised network. c The transition to loop formation is discontinuous
beyond the first loop: loops appearing at higher values of γ again appear with a non-zero capacity as shown in detail in the inset. Fluctuation strength is
fixed to σ = 0.5 for all panels.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19567-2

6 NATURE COMMUNICATIONS |         (2020) 11:5796 | https://doi.org/10.1038/s41467-020-19567-2 | www.nature.com/naturecommunications



longer contains the updated flows ~Fe, but only the flows in the
tree network Fe, which are determined by Eq. (17). This allows us
to minimise the dissipation with respect to the updated capacities
~ke without having to take into account the interdependence of
flows and capacities.

Now that we have derived an explicit equation for the
dissipation in near-tree networks, we will demonstrate how to
minimise the resulting expression. For tree networks, the minima
of the dissipation may be calculated explicitly using the method of
Lagrange multipliers (see Supplementary Note 2). In contrast to
that, we have to take into account an inequality constraint κ ≥ 0
for near-tree networks as local minima may exist also at the
boundaries of the domain. This can be done using the
Karush–Kuhn–Tucker (KKT) conditions with the new Lagrange
type function

~Lð~ke; κÞ ¼
X
e2T

hF2
ei

~ke
� κ

1þ Cm;nκ
Bm;n

� ~λ Kγ �
X
e2T

~k
γ � κγ

 !
� μκ ;

ð25Þ

where ~λ; μ 2 R are KKT multipliers. The minimum is then
determined by the KKT conditions (see “Methods” section).

This approach results in explicit equations for the optimal edge
capacities ~ke, κ in near-tree networks for which we could,
however, not find a closed-form solution for arbitrary networks
and values of γ (Supplementary Note 2). Still, we can make use of
the resulting equations to gain insight into the process of loop
formation. In particular, the KKT condition for the newly added
edge (m, n) with capacity κ reads

Bm;n ¼ ð1þ Cm;nκÞ
2κγ�1γ~λ _ κ ¼ 0; ð26Þ

i.e. the capacity of the new edge either vanishes (κ = 0) or has the
non-zero value given above. Importantly, we can obtain insights
into the process of loop formation even without explicitly solving
these equations.

How do loops emerge?We now illustrate how to make use of Eq.
(26) to understand the process of loop formation. In particular,
we rigorously demonstrate that loops form discontinuously as
illustrated for the small tree network. Furthermore, we show that
the tree remains a local minimum of the average dissipation even

after the formation of a loop. We summarise these results in the
following.

Theorem 1 (Tree remains KKT point) Consider a linear flow
network subject to the resource constraint with γ ∈ (0, 1). Then the
following statements hold for the KKT points of the average
dissipation 〈Dloopy〉:

1. There is always a KKT point at κ = 0, i.e. the tree is always a
(potential) local minimum.

2. The KKT point at κ = 0 is isolated in the sense that we can
find a real number ε > 0 such that there are no other KKT
points for κ ∈ (0, ε).

The proof makes use of the fact that we can find lower and
upper bounds for the functions Bm,n, ~λ and Cm,n even without
explicitly solving Eq. (26) and can be found in Supplementary
Note 3. We note that the fact that the tree remains a local
minimum is well-known for deterministic sources17,24.

We thus showed rigorously that for γ < 1, KKT points that
characterise a loopy network cannot emerge through a bifurcation
of the local optimum describing a tree network since the KKT
point at κ = 0 is isolated. Instead, new local minima of the
dissipation generally emerge elsewhere and the transition to loopy
networks is discontinuous. Having understood the mechanism of
loop formation, we now proceed to analyse which edges will form
the first loops.

Where do loops emerge first? We now study the location of the
first loop that appears in the globally optimal network as the
parameters of the model are varied. We start from the regime
where the global optimum is a topological tree. Consider the
expression for the average loopy dissipation 〈Dloopy〉 to which a
single edge (m, n) of capacity κ was added, as calculated in Eq.
(23). We can find the location where loops form first by making
the following approximation: assume that after the addition of the
loop, the capacities of the edges e along the shortest path from the
source to the loop, e ∈ R ∪ L, change only by a constant factor c
(γ, e), i.e. ~ke ¼ cðγ; eÞ ke, whereas the other edges remain
unchanged such that c(γ, e) = 1 for these edges. Looking at
Fig. 3a, we can see that this is a reasonable assumption for the
small network considered there. Note that the prefactor can be
expected to be close to unity c(γ, e) ≈ 1 even for edges e ∈ L ∪ R if
we assume that the network is very large because then the new
edge will emerge with a very small capacity due to the resource

a b
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Critical cost parameter �c
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×1013c

2.0 × 1013 4.0 × 1013 5 10 15

Pressure drop 〈(�m − �n)
2

〈(
� m

 −
 �

n)
2

Fig. 5 Average pressure drop predicts the order of appearance of new loops as the cost parameter is varied. a The average squared pressure drop
hðθm � θnÞ2i (colour code, cf. Eq. (28)) calculated for the global tree optimum of dissipation allows predicting the location of the edges where loop
formation first becomes beneficial. b Starting from a globally optimal tree network with cost parameter γ = 0.4, we slowly increase the cost parameter. We
then determine in which order and at which critical value of the critical cost parameter γc new edges appear closing a loop. c The pressure drop is strongly
correlated with the critical cost parameter γc where the given loop starts to form. Colour code corresponds to order of appearance of edges from dark (first)
to light (last).
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constraint
P

e
~k
γ

e þ κγ ¼ Kγ. With this approximation, the loopy
dissipation reads

hDloopyi �
X
e2T

hF2
ei

cðγ; eÞke
� κ

cðγ; eÞ2 1þ Cm;nðkeÞκ
cðγ;eÞ

� �Bm;nðkeÞ: ð27Þ

Here, we defined the quantities Bm,n(ke) and Cm,n(ke) which we
obtain from Bm,n and Cm,n (Eq. (24)) by replacing the updated
capacity ~ke by the tree capacity ke. The last expression can then be
simplified considerably by making use of Eq. (3),

Bm;nðkeÞ ¼
X
e2L

Fe

ke
�
X
e2R

Fe

ke

 !2* +

¼ ðθn � θmÞ
2	 

:

ð28Þ

Thus, the emergence of loops is essentially governed by the
potential drop across neighbouring vessels. Similar to how cracks
in brittle materials form to relieve high elastic stresses, loop
formation is determined by the relief of large pressure drops. Our
explicit prediction is consistent with the idea that the reduction of
pressure drops may have driven the evolution of leaf venation30.
From a developmental perspective, it connects to work explaining
plant vein formation using models where mechanical stress relief
is a crucial ingredient31–33. We confirm the ‘stress relief’ by loop
formation in terms of the potential drop by analysing the pressure
drop before and after the formation of the loop in Supplementary
Fig. 1.

We now study the predictions made using Eq. (28) numerically
(see “Methods” section for details). Starting from an optimal tree
network, we first calculate the pressure drop (Fig. 5a). We then
successively decrease the cost for new edges and monitor the
order in which new loops form (Fig. 5b). Again, the transition to
loop formation is discontinuous, such that loops emerge with a
non-zero capacity at a critical value of the cost parameter γc,
which is highly correlated to the pressure drop (Fig. 5c). We may
thus predict the location and cost parameter where loops form
based on the potential drop.

Edge betweenness determines network dissipation. As we have
demonstrated, all trees are—and remain—locally optimal structures
and loopy networks emerge via saddle-node bifurcations. Thus,

there may be a multitude of different local minima for a given set of
network parameters, so a natural question that arises is the fol-
lowing: How can we determine which of the local minima have less
dissipation than others and how can we find an order of different
topologies, e.g. to find the topology that globally minimises the
dissipation? Remarkably, we can trace back the answer to a purely
topological property: the edge betweenness centrality.

We start by simplifying the locally optimal dissipation of the
tree networks. In Eq. (17), we expressed the flows Fe in a tree
network using the tree matrix T . If we plug this expression into
the self-consistency equation for the capacities Eq. (9), set the
overall available capacity to K = 1, and plug everything into the
dissipation Eq. (8) we arrive at the locally optimal dissipation in
tree networks

hD�
treei ¼

XN�1

e¼1

XN
i;j¼2

T e;j�1T e;i�1hPiPji
 ! γ

γþ1

2
4

3
5

γþ1
γ

: ð29Þ

Importantly, the entries appearing in this expression only
depend on the mixed moments of the sinks and their second
moments. Since the sinks are i.i.d. Gaussian random variables,
these moments are identical for different sinks and are given by

hP2
i i ¼ μ2 þ σ2; i > 1

hPiPji ¼ μ2; i; j > 1:
ð30Þ

Thus, the sum runs over identical entries and we can calculate
the dissipation as

hD�
treei ¼

XN�1

e¼1

NpðeÞ � σ2 þ NpðeÞ
2 � μ2

� � γ
γþ1

" #γþ1
γ

: ð31Þ

Here, Np(e) is the sum over the column of the tree matrix T
that corresponds to edge e. In fact, Np(e) has the following
interpretation: it is the number of paths from the source s to any
other node v that go through the edge e and may thus be
identified as a measure of shortest-path edge betweenness34,35

(see “Methods” section). What can we learn from this analysis for
loopy networks?

To estimate the contribution of a single edge to the overall
network dissipation in a loopy network, we first calculate its edge
betweenness (Fig. 6a) and, based on this, the contribution it
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Fig. 6 Edge betweenness centrality determines the network dissipation at local minima in the fluctuating sink model. a Edge betweenness centrality
Np(e) (numbers and colour code), determined with respect to a single source on the left, is closely related to the network dissipation. b The contribution
NpðeÞ � σ2 þ NpðeÞ2 � μ2
� � γ

γþ1 of a single edge to the minimal network dissipation in a tree network hD�
treei as given in Eq. (31) may be used to estimate the

actual network dissipation at minima. Parameters used here are given by σ = 0.5, μ = 1 and γ = 0.9. c The tree estimate hD�
treei correlates strongly with the

actual network dissipation at local minima 〈D〉 with high-cost γ = 0.7 and low fluctuations σ = 0.5 since on average only 〈NL〉 = 1.44 loops form for this set
of parameters (Pearson correlation coefficient of r = 1.0). d Moving to networks containing many loops, 〈NL〉 = 36.66 on average, obtained by minimising
the dissipation for lower cost γ = 0.8 and more fluctuations σ = 1.0, the tree estimate still strongly correlates with the dissipation at minima as measured
by a Pearson correlation coefficient of r = 0.82. Results were obtained by applying the relaxation method 100 times for each set of parameters where the
set of potential edges E forms a triangular network with N = 169 nodes as shown in Fig. 2c.
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would have to the dissipation in a tree network (Fig. 6b). Adding
up the resulting expressions, we arrive at the tree estimate of the
dissipation in a loopy network hD�

treeiðNpðeÞÞ. For near-tree
networks, the correlation between the estimate and the actual
dissipation at local minima is almost perfect as predicted by Eq.
(31) (Fig. 6c). Increasing the number of loops by tuning the noise
parameter σ and the cost parameter γ, edge betweenness and
dissipation remain correlated even when there is a significant
number of loops present in the network (Fig. 6d). Thus, we can
still understand the minimal dissipation in loopy networks based
on this topological measure.

We further discuss the possibility of characterising the global
tree minima of the network dissipation in Supplementary Note 6.

Discussion
In summary, we demonstrated that the transition to loop for-
mation in optimal supply networks is discontinuous throughout
different models and parameters. We explored this discontinuity
in detail for a small example network and rigorously proved that
the discontinuous nature of the transition persists for larger
networks as well. We showed that loops emerge through a saddle-
node bifurcation, explaining the discontinuous transition.

Our results shed light on recent advances in the study of
optimal supply networks. While the emergence of loops through
fluctuations or damage was discovered recently15,16, the theore-
tical nature of this transition was until now not well understood.
Here, we closed this gap by analysing the nature of the transition
to loop formation in more detail. In particular, we obtained a
measure of network stress that allowed us to predict the location
and parameters where loops start to form. This opens a new
pathway to the understanding of loop formation in natural net-
works such as leaves10.

Our results offer a new understanding of the interplay between
the structure and function of supply networks. By unveiling the
relationship between the network’s topological edge betweenness
and its average dissipation, we established a new link between the
form and function of networks. These results may aid in the
understanding and design of globally optimal network structures
such as biological vasculature, electrical grids, or neural networks.
Our explicit prediction is consistent with the idea that the
reduction of pressure drop variations may have been a factor in
the evolution of leaf venation30. More generally, we show that
globally optimal network structures may be obtained by following
simple local rules for adding new links, in contrast to previous
work based on pruning an existing network26,36.

Let us finally discuss how our results derived for linear flow
models relate to other types of networks and systems. The starting
point of our analysis was the fundamental trade-off between cost
and resilience, which determines the optimal structure of a net-
work, and which extends far beyond the theory of supply net-
works. Resilience requires additional capacity or links which can
take over the load in the presence of failures or fluctuations—but
these are generally costly. From a practical view of network
design, the fundamental question is thus: Where and how should
new connections be added that increase resilience in an
optimal way?

Firstly, we discuss the question where new links should be
added. A large body of literature in network science approaches
aspects of resilience from the viewpoint of percolation theory.
The fundamental question in this purely structural treatment is:
Given a network, how many nodes or links may fail before the
network gets disconnected? It has been shown that a decisive
quantity to assess the resilience to random failures is given by the
ratio of the second and first moment of the degree distribution,

〈k2〉/〈k1〉37,38. These fundamental results were then used to
optimise network resilience with respect to both random failures
and targeted attacks13,14. In the case of failures, it is beneficial to
add links between nodes which already have a high degree to
effectively increase 〈k2〉. This result might appear very different
from the findings of the present paper at first glance, but there are
in fact common underlying principles. In supply network models,
new links should be added where they will potentially attract a
high flow. In percolation type models, new links should be added
where they will potentially attract a high betweenness—a quantity
which can also be interpreted as a flow34,39. As a result, one
should pick nodes whose characteristic quantity, either potential
θn or degree k, differs from their surrounding.

Secondly, we consider the question of how new links should be
added. The main finding of our work is that new links emerge in a
discontinuous way with a finite non-zero capacity. That is, to be
beneficial for the network, new links must have a certain mini-
mum connection strength. This result has no direct equivalence
in percolation approaches to network resilience since the vast
majority of studies in this field considers unweighted networks
only. However, there is a strong interest in network formation
processes, which induce discontinuities in macroscopic con-
nectivity of the network—including competitive percolation
models40,41, as well as transportation network models42. In the
context of network resilience, it has been shown that inter-
dependencies and cascade effects can make the percolation
transition discontinuous43.

Methods
Numerical simulation of loop formation. When analysing the transition to loop
formation such as in Figs. 4 and 5, we start from an optimal tree network T for
given parameters μ, σ and γ corresponding to the dissipation minimum shown in
Fig. 2c. As a next step, we add all non-tree edges from the underlying triangular
grid with a very small capacity that corresponds to 1% of the minimum capacity in
the optimal tree, kf ¼ 0:01 �mine2T ðk�e Þ, and then renormalise all capacities to
make sure the resource constraint (6) holds. Finally, we then apply the iterative
method described in ref. 16 to let the new topology relax to a local minimum. If this
minimum contains loops despite having started very close to the (global) tree
minimum, and if its dissipation is lower than the one of the tree, we conclude that
the given loopy topology is favourable.

To analyse the predictive power of the pressure drop in Fig. 5, we initially
consider a large optimised tree network with N = 169 nodes and cost parameter
γ = 0.4 for which we calculate the pressure drop (Fig. 5a) and then increase the cost
parameter from γ = 0.7 to γ = 0.99, reoptimising the network for each value of
gamma. Using the procedure outlined above, we compare the predicted positions
of the first loops as indicated by the initial pressure drop hðθm � θnÞ

2i with the
actual order in which they appear (Fig. 5b).

Evaluating edge betweenness. In Eq. (31), we derived an alternative expression
for the network dissipation at local minima that is based on the edge betweenness
Np(e). The edge betweenness is defined as34,35,38

NpðeÞ ¼
X
t2V

σðs; tjeÞ
σðs; tÞ : ð32Þ

Here, σ(s, t) is the number of shortest paths from node s to node t and σ(s, t∣e) is
the number of these shortest paths that contain the edge e. In the given setting, we
consider this measure with respect to a single source s that is identified as the
source node of the network. Furthermore, when analysing tree networks, there is
only one path from the source to every node σ(s, t) = 1 and thus σ(s, t∣e) = 1 ∨ = 0.

In the main text, the edge betweenness is calculated using a method
implemented in PYTHON’s NETWORKX library44–46.

Finding minima of a function with inequality constraints using KKT condi-
tions. Consider the function D(k) of some real vector k ¼ ðk1; :::; kNÞ

> 2 RN that
is subject to the equality constraint h(k) = 0 and the inequality constraint g(k) ≤ 0
which we assume to be described by differentiable, real-valued functions
g; f : RN ! R. To identify potential maxima or minima of the function subject to
the constraints, we can make use of the KKT conditions. To this end, we consider
the Lagrange type function

~LðkÞ ¼ DðkÞ þ ~λhðkÞ þ μg ðkÞ; ð33Þ
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where ~λ; μ 2 R are called KKT multipliers. Then the following conditions, the KKT
conditions, are a necessary condition for a point k* being a minimum of D(k)47,48

∂~L
∂k�i

¼! 0; 8i 2 f1; :::Ng;
f ðk�Þ ¼ 0;

gðk�Þ≤ 0;
μ≥ 0;

μg ðk�Þ ¼ 0:

ð34Þ

This formulation may be used to find out whether adding a single loop to a tree
network may reduce its dissipation.

Data availability
Photographs of leaf venation networks in Fig. 1 are available upon request. The topology
of the Scandinavian power grid has been extracted from the open European energy
system model PyPSA-Eur49, which is fully available online at https://doi.org/10.5281/
zenodo.3886532. Distribution grid in Fig. 1c was extracted from ref. 50.

Code availability
Computer code will be made available at https://github.com/FNKaiser/Optimal_Supply_
Networks upon publication.
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SUPPLEMENTARY FIGURES

a b

c d

Supplementary Figure 1. Adding a new loop significantly reduces the average squared potential drop along the
corresponding vein. a,b We allow for a loop to be added to a tree network whose capacities are optimised for the fluctuating
sink model with cost parameter γ = 0.84, mean µ = −1 and standard deviation σ = 0.5. c,d The loop formation significantly
reduces the average squared potential drop along the corresponding edge (marked by arrows). The reduction is by approximately
42% of the original potential drop and thus provides significant stress relief for the network.
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Supplementary Figure 2. Phase diagram of the globally optimal network structure for the small five node network
shown in Figure 2. In the grey region in the upper right corner, loop formation is beneficial for the network dissipation.
Interestingly, loop formation starts to be beneficial at a nonzero value of the fluctuation strength σ for any value of the cost
parameter γ. Sinks have mean µ = −1 in this setting.
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a b c

d e f

Supplementary Figure 3. Emergence of loops for the five node network shown in Figure 2. The landscape of dissipation
for the loopy network has a single minimum for γ = 0.87 a as marked by a red circle. However, increasing the cost parameter to
γ = 0.885, a second, local minimum emerges through a saddle node bifurcation b. Note that the second minimum is a local one
for this set of parameters which turns into a global one for γ > γc ≈ 0.888. c Moving along the white line indicated in panels
(a) and (b) for varying values of γ, the emergence of a second, local minimum becomes visible. d,e We plot log10(Dloopy/Dtree)
as a function of the edge capacities k1 and k5 = κ in the loopy network. For γ = 0.87 we have Dloopy > Dtree for all values
of k1 and κ. Hence the optimum network is a tree. (e) For γ = 0.9 there is a global minimum of Dloopy with Dloopy < Dtree

(blue). Hence, the optimum network is loopy. f The ratio of dissipations Dloopy/Dtree for the optimum loopy and optimum
tree networks as a function of the scaling exponent γ. This plot was produced for parameters σ = 3, µ = −1 and K = 1.
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Supplementary Figure 4. Edge betweenness may be used to identify the global minima of dissipation. a-d Numbers
on edges give the value of edge betweenness for different exemplary spanning trees on small triangular networks. e-h Measure
of edge betweenness Np(e)σ2 +Np(e)2µ2 for mean of fluctuations µ = 1 and standard deviation σ = 0.5. i-l Taking the measure
of edge betweenness to the power of γ/(γ + 1) where here γ = 0.5 to calculate the contribution of an edge to the tree network
dissipation, we can identify the globally minimising topology: we can conclude that the network shown in panels a and e is the
globally optimal network, since it minimises the sum over all edges. This is due to the fact that the quasi-norm has a concave
structure such that the minima are located at the boundaries of the domain: the network in panels (a,e,i) maximises the spread
between the individual values of edge betweenness, accumulating as much flow as possible on as few edges as possible and thus
minimises the dissipation.
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Supplementary Figure 5. Discontinuous transition for minimum cost topologies Capacities at the global minimum
(thick lines) show a discontinuous transition to loop formation for different models for the five node network shown in Figure
2: Here, we minimise the cost while keeping the average network dissipation fixed at a given value D. a,c We analyse the
edge capacities ke at the local minima (straight lines) and saddle (dotted lines) for varying cost parameter γ (a) and varying
fluctuation parameter σ (c) for the fluctuating sink model with fluctuation mean µ = −1. For both parameters, the capacity
at the loop κ (light purple) undergoes a saddle node bifurcation which causes a discontinuous transition in the global minima
(thick lines) from non-loopy to loopy networks. b,d An analogous saddle-node bifurcation in the capacities ke may be observed
in the generalised damaged bond model in terms of both the cost parameter (b) and the damage parameter (d). The dissipation
is fixed to D = 90 in panels (a) and (c) and to D = 1 in panels (b) and (d).
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Supplementary Figure 6. Discontinuous transition to loop formation in non-planar network a To analyse the transition
to loop formation in the simplest non-planar graph, the set of potential edges E is chosen as the edge set of the complete graph
on five nodes K5. Similar to the network setup shown in Figure 2a, we choose the node on the left as the node supplying the
entire network and start from the tree network indicated by grey edges. b We then increase the cost parameter γ and perturb
the edge capacities according to the procedure described in the methods section to monitor when new edges form. Again, we
observe a discontinuous transition to loop formation. Due to the high degree of symmetry in the network, we observe that all
potential loops form simultaneously with a non-zero capacity κ.
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Supplementary Figure 7. Three node network to analyse the transition to loop formation. a Elementary network
to study spontaneous loop formation in optimum supply networks. The network consists of three nodes (green circles) where
node n = 1 has an inflow of two, P1 = 2, and all other nodes have an outflow of unity. These in and outputs determine the
flows Fi, i ∈ {1, 2, 3} along the links with capacities ki. The optimum topology for this set-up is a tree network. If the in-
and outputs are fluctuating, however, an additional edge (dotted arrow) may be beneficial to reduce the average dissipation.
This edge introduced a new degree of freedom expressed as a cycle flow f . b The points where the function f(κ, γ) as defined
in Eq. (6) crosses the dotted, black line at unity determine determine potential KKT points κ∗, where the loop in panel a is
closed. The single peak crossing the dotted line clearly illustrates the saddle-node character of the bifurcation. c There are
two potential KKT points κ∗ which can be determined by finding the points where f(κ, γ) is unity. One represents the saddle
(empty circle) and the other one a minimum (filled circle). d Since the function shown in panel a has a single peak M(γ) for
these values of the cost parameter γ, the critical value γc where the loop starts to form can be determined by determining
the value of γ for which this maximum reaches unity. e As a result of Eq. (7), we can find the critical value of the effective
fluctuation strength σ2

c = σ2/µ2 in dependence of the cost parameter γ by using the maximum M(γ) and thus identify the
region of the parameter space, where loop formation becomes beneficial.
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Supplementary Figure 8. Discontinuous transition beyond the first loop for varying fluctuation strength σ a,b
We order the loops in a colour code according to their appearance with increasing fluctuation strength σ: the darker the edge
colour, the earlier the edge appears. For the loop that appears as the i-th loop, we denote its fluctuation strength σc where
the loop starts to become beneficial for the dissipation-optimised network. c The transition to loop formation is discontinuous
beyond the first loop: loops appearing at higher values of σ again appear with a non-zero capacity as shown in detail in the
inset. Cost parameter is fixed to γ = 0.85 for all panels.
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SUPPLEMENTARY NOTES

Supplementary Note 1: Minimising dissipation using Lagrange’s method

In this section, we illustrate how to minimise the dissipation with an equality constraint for a tree network using
the method of Lagrange multipliers. The minimisation problem thus reads

Minimise 〈Dtree〉 =
∑

e∈E

〈F 2
e 〉
ke

subject to
∑

e∈T
kγe = Kγ .

This can be solved by minimising the Lagrange function

L(ke) =
∑

e∈E

〈F 2
e 〉
ke
− λ

(
Kγ −

∑

e∈E
kγe

)
.

The optimum edge weights are then found by taking the derivative and setting it to zero;

∂L
∂ke

= −〈F
2
e 〉
k2e

+ λγkγ−1e
!
= 0,

⇒k∗e =

( 〈F 2
e 〉
λγ

) 1
1+γ

.

Substituting this result into the capacity constraint yields the value of the Lagrange multiplier λ

λ =
1

γ

[∑
a∈E(〈F 2

a 〉
γ

1+γ

Kγ

] γ+1
γ

.

Then we finally obtain

k∗e =
(〈F 2

e 〉)
1

1+γ

[∑
a∈E(〈F 2

a 〉)
γ

1+γ

]1/γK.

This yields the minimised average dissipation

〈D∗tree〉 =

[∑N−1
a=1 (〈F 2

a 〉)
γ

γ+1

](γ+1)/γ

K
.

Supplementary Note 2: Minimising dissipation using Karush-Kuhn-Tucker conditions

When minimising the dissipation in the tree network with a single additional edge, we have to take into account an
inequality constraint κ ≥ 0 for the newly added edge (m,n). We have the optimisation problem

Minimise 〈Dloopy〉 =
∑

e∈T

〈F 2
e 〉
k̃e
− κ

1 + Cm,nκ
Bm,n

subject to
∑

e∈T
k̃γe = Kγ − κγ ,

κ ≥ 0.

(1)
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This problem can be solved by using a generalisation of the method of Lagrange multipliers due to Karush, Kuhn
and Tucker [1]. We first define the following Lagrange-type function

L̃(k̃e, κ) =
∑

e∈T

〈F 2
e 〉
k̃e
− κ

1 + Cm,nκ
Bm,n

− λ̃
(
Kγ −

∑

e∈T
k̃γ − κγ

)
− µκ.

Now we can proceed constructing the KKT conditions, whose solutions are potential local minima of the problem
under the constraint and referred to as KKT points

∂L̃
∂k̃e

!
= 0, ∀e ∈ T ∪ {`}

Kγ =
∑

e∈T
k̃γ + κγ ,

−κ ≤ 0

µ ≥ 0,

µκ∗ = 0.

We first compute the derivatives of the Lagrange function L̃. In order to do so, we distinguish two types of edges:
the ones that lie on the shortest path from the source to the new edge `, i.e. where e ∈ L ∪R, and the other ones as
sketched in Figure 2,b. For all edges e /∈ L,R that are not on the path we find

∂L̃
∂k̃e

= −〈F
2
e 〉
k̃2e

+ λ̃γk̃γ−1e
!
= 0,

⇒k̃e =

( 〈F 2
e 〉
λ̃γ

) 1
1+γ

. (2)

That is, we have the same result as in the tree except for a different normalisation factor λ̃. To get rid of the
dependence of λ̃ on the edges not on the path e /∈ R,L, we make use of the equality constraint

∂L̃
∂λ̃

!
= 0⇒ Kγ =

∑

e∈T
k̃γ + κγ .

Now summing over all edges that are not located on the path, we get

Kγ−
∑

e∈L∪R
k̃γe − κγ =

∑

e/∈L∪R
k̃γe

=
∑

e/∈L∪R

( 〈F 2
e 〉
λ̃γ

) γ
1+γ

,

⇒λ̃ =
1

γ

[ ∑
e/∈L∪R(〈F 2

e 〉)γ/(γ+1)

Kγ −∑e∈L∪R k̃
γ
e − κγ

](γ+1)/γ

, (3)

thus eliminating the entire dependence of λ̃ on k̃e, e /∈ L ∪R. For all edges on the path, e ∈ L ∪R, we find

∂L̃
∂k̃e

!
=0

⇒ 〈F
2
e 〉
k̃2e

=− κ

1 + Cm,nκ

∂Bm,n

∂k̃e

+
κ2Bm,n

(1 + Cm,nκ)2
∂Cm,n

∂k̃e
+ λ̃γk̃γ−1e .
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The derivatives appearing here can be readily calculated letting the edge e ∈ L, wlog;

∂Cm,n

∂k̃e
= − 1

k̃2e
,

∂Bm,n

∂k̃e
= −2

〈F 2
e 〉
k̃3e

− 1

k̃2e

∑

a∈L,a6=e

〈FeFa〉
k̃a

+
2

k̃2e

∑

a∈R

〈FeFa〉
k̃a

.

For the new edge ` = (m,n) we obtain

∂L̃
∂κ

= − Bm,n
(1 + Cm,nκ)2

+ λ̃γκγ−1 − µ !
= 0,

⇒µ = − Bm,n
(1 + Cm,nκ)2

+ λ̃γκγ−1.

The last KKT condition, the complementary slackness, thus yields

µκ = 0 ⇒ − κBm,n
(1 + Cm,nκ)2

+ λ̃γκγ
!
= 0,

⇒ Bm,n = (1 + Cm,nκ)2κγ−1γλ̃ ∨ κ = 0.

Note that Bm,n, Cm,n and λ̃ depend on the updated capacities k̃e. In general, i.e. for arbitrary network topologies
and arbitrary parameters γ, σ and µ, the resulting set of equations does not have an analytical solution. However, it
may be used to gain insight into the general structure of the minima as we will see in the next section.

Supplementary Note 3: Proof of Theorem 1

In this section we prove Theorem 1.

Proof. To prove this, we will make use of the last KKT condition, the complementary slackness in Eq. (19) in the
main text

Bm,n = (1 + Cm,nκ)2κγ−1γλ̃. (4)

Now let 1� ε > 0 be a small positive number and let the loop capacity be κ = ε. We will now demonstrate that this
capacity cannot be arbitrarily close to zero, i.e. that

∃ C ∈ R>0 s.t. κ = ε ≥ C.

Let k̃min = mine∈L∪R k̃e > 0 be the minimum optimal capacity after the addition of the loop with capacity κ = ε
which can be obtained by solving the KKT problem resulting from Eq. (1). Now we can bound Bm,n from above by

∞ > Bmax
m,n = k̃−2min

〈(∑

e∈L
Fe −

∑

e∈R
Fe

)2〉

≥ Bm,n =

〈(∑

e∈L

Fe

k̃e
−
∑

e∈R

Fe

k̃e

)2〉
.

On the other hand, we know that the first term on the right-hand side of Eq. (4) is larger than one (1+Cm,nκ)2 > 1
since both expressions are positive, Cm,n > 0 and κ > 0, such that we can bound the entire right-hand side from
below by

κγ−1λ̃γ < κγ−1λ̃γ(1 + Cm,nκ)2.
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Finally, we can also upper bound the Lagrange multiplier λ̃. To achieve this, we make use of the expression in Eq. (2)
and Eq. (3) which relate the multiplier to the capacity of an edge e 6∈ R ∪ L that is not located on the shortest
path connecting source and added edge. First we note that all edges have to have capacities smaller than the overall
capacity k̃e < K by virtue of the capacity constraint. Thus we find

λ̃ =
1

γ

[∑
e/∈L∪R(〈F 2

e 〉)γ/(γ+1)

∑
e 6∈L∪R k̃

γ
e

](γ+1)/γ

,

>λ̃min =
1

γKγ+1

[ ∑

e/∈L∪R
〈F 2
e 〉γ/(γ+1)

](γ+1)/γ

,

⇒ 1

λ̃
<

1

λ̃min
.

Thus, upper bounding the left-hand side and lower bounding the right-hand side of Equation 4, we arrive at

κγ−1λ̃ <
Bmax
m,n

γ
,

⇒κγ−1 < Bmax
m,n

γλ̃min
,

⇒κ >
(
Bmax
m,n

γλ̃min

)1/(γ−1)
:= C.

The last step holds due to the fact that γ ∈ (0, 1) such that the last manipulation results in the reciprocal on both
sides of the inequality. Therefore we demonstrated that the optimal capacity of the loop κ has to be larger than the
threshold parameter C if it is non-vanishing.

Supplementary Note 4: Minimising the dissipation explicitly for the five- and three node network

Set of equations for five node network

Tree network Here, we explicitly derive the optima topology for the network shown in Figure 2,a. The network
consists of four variable sinks at nodes 2, 3, 4, 5 (circles) and four edges (arrows) connecting them with capacities ki
and flows Fi, i ∈ {1, 2, 3, 4}. A fifth, potential edge is shown as dotted arrow. If it exists, it carries flow F̃5 and has
capacity κ. We first consider the case of a tree network, i.e. κ = 0.

In the fluctuating sink model, we describe the sinks as i.i.d. Gaussian random variables,

P2,3,4,5 ∼ N (µ, σ).

The source at node 1 balances the sinks

P1 = −
5∑

j=2

Pj .

While generic local minima with asymmetric capacities ke exist, networks close to the global minimum generally
show a high degree of symmetry [2, 3]. Therefore, in the following we consider symmetric optimal networks with
capacities k3 = k1 and k4 = k2. If there is no loop (κ = 0), the flows may be calculated directly using the continuity
equation (2)

F1 = −(P2 + P4), F2 = −P4,

F3 = −(P3 + P5), F4 = −P5,

which results in the following expressions for the second moments of flows

〈F 2
1 〉 = 〈F 2

3 〉 = 4µ2 + 2σ2, 〈F 2
2 〉 = 〈F 2

4 〉 = µ2 + σ2,

〈F1F3〉 = 4µ2, 〈F2F4〉 = µ2,

〈F1F2〉 = 〈F3F4〉 = 2µ2 + σ2.
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Using the optimal capacities and this set of equations, we can deduce explicit equations for the optimal capacities
and thus the dissipation (see first section of this SI)

〈Dtree〉 =

[
2(σ2 + µ2)

γ
γ+1 + 2(2σ2 + 4µ2)

γ
γ+1

](γ+1)/γ

K
.

Loopy network How does this result change if we allow to close the loop as illustrated in Figure 2a, i.e., if we
include the corresponding edge in the set of potential edges E?

Let us assume a non-zero capacity k5 = κ > 0 with flow F̃5. In the following, we denote the flows and capacities in
the loopy network with a tilde. In the presence of a loop, we can no longer determine the flows using the continuity
equation alone.We can exploit Kirchhoff’s voltage law Eq. (5)to eliminate the additional degree of freedom: it is given
by a cycle flow f around the newly formed edge such that

F̃1 = F1 − f, F̃2 = F2,

F̃3 = F3 + f, F̃4 = F4,

F̃5 = f

Using Kirchhoff’s voltage law (Eq. (5)) we can express the cycle flow in terms of the remaining flows as

f

κ
+
F̃3

k̃1
− F̃1

k̃1
= 0,

⇔ f =

(
2 +

k̃1
κ

)−1
× (F1 − F3) .

Finally, we can use this result to calculate the second moments of the flows as

〈F̃ 2
1 〉 = 〈F̃ 2

3 〉 = 4µ2 + 2σ2

[
1− 2κ

2κ+ k̃1
+

2κ2

(2κ+ k̃1)2

]

〈F 2
2 〉 = 〈F 2

4 〉 = µ2 + σ2,

〈F̃ 2
5 〉 = 〈f2〉 = 4σ2

(
2 +

k̃1
κ

)−2
.

Using the KKT conditions, we can derive a closed-form solution for the loopy capacity κ. For the five node network,
the dissipation of the loopy network reads

〈Dloopy〉 =
2(σ2 + µ2)

k̃2
+

2(4µ2 + 2σ2)

k̃1
− 4σ2κ

k̃21 + 2κk̃1
.

Here, we made use of the symmetries in the network such that k̃1 = k̃3 and k̃2 = k̃4 and we used that in the situation

at hand the two constants appearing in the expression are given by Bm,n = 4σ2

k̃21
and Cm,n = 2/k̃1. Taking the

derivatives of the Lagrange function and setting them to zero, we arrive at the following set of equations

k̃1 = k̃3,

k̃2 = k̃4 =

(
µ2 + σ2

λ̃γ

)1/(1+γ)

,

⇒λ̃ =
(µ2 + σ2)

γ

[
2

Kγ − 2k̃γ1 − κγ

] γ+1
γ

,

4σ2

k̃21
= (1 + 2κ/k̃1)2κγ−1γλ̃ ∨ κ = 0,

γλ̃k̃γ+1
1 = (4µ2 + 2σ2)− 4σ2κ(κ+ k̃1)

(k̃1 + 2κ)2
.
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From this expression, we can also immediately read off the Lagrange multiplier representing the inequality constraint
in the case where κ 6= 0;

µ =
4σ2

k̃21
− (1 + 2κ/k̃1)2κγ−1

[
2(µ2 + σ2)

γ
γ+1

Kγ − 2k̃γ1 − κγ

] γ+1
γ

. (5)

Inserting the expression for the Lagrange multiplier λ̃ into the last two equations, we arrive at the following set of
equations for the two variables κ and k̃1;

(1 + 2κ/k̃1)2κγ−1(µ2 + σ2)

[
2

Kγ − 2k̃γ1 − κγ

](γ+1)/γ

=
4σ2

k̃21
∨ κ = 0,

(µ2 + σ2)

[
2

Kγ − 2k̃γ1 − κγ

] γ+1
γ

k̃γ+1
1

= (4µ2 + 2σ2)− 8σ2κ

k̃1 + 2κ
+

4σ2κ2

(k̃1 + 2κ)2
.

However, these equations are still hard to solve analytically for arbitrary parameters µ, γ and σ.

Set of equations for three node network

We now turn to an even simpler network to shed further light on the transition to loop formation. In Figure 7a,
we present a simple three node network with a potential loop with capacity κ and cycle flow F̃3 = f .
The average dissipation in the presence of the loop can be readily calculated using the expression in Eq. 1 and is given
by

〈Dloopy〉 = 2
σ2 + µ2

k̃1
− 2κσ2

k̃21 + 2κk̃1

The KKT conditions for this problem thus read

2λγk̃γ+1
1 = 2(σ2 + µ2)− 4σ2κ(κ+ k̃1)

(k̃1 + 2κ)2

1 = 2k̃γ1 + κγ

λγκγ−1(2κ+ k̃1)2 = 2σ2 ∨ κ = 0

Putting everything together, we arrive at the following self-consistent equation for the loopy capacity κ

1 +
µ2

σ2
=

2κ
(
κ+

(
1
2 (1− κγ)

)1/γ)

(
2κ+

(
1
2 (1− κγ)

)1/γ)2 +
2
(
1
2 (1− κγ)

)(γ+1)/γ
κ1−γ

(
2κ+

(
1
2 (1− κγ)

)1/γ)2 .

Note that the critical value of γ saturates for high values of σ2 as shown in Figure 2. We can thus try to calculate
this critical, saturated value γc by setting µ = −1, w.l.o.g., and letting σ2 →∞ to arrive at a self-consistent equation
involving only γ and κ

1 =
2κ
(
κ+

(
1
2 (1− κγ)

)1/γ)
+ 2

(
1
2 (1− κγ)

)(γ+1)/γ
κ1−γ

(
2κ+

(
1
2 (1− κγ)

)1/γ)2
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Now we want to find for which value of γ there is a κ > 0 that solves the above equation. To this end, we define the
function

f(κ, γ) =
2κ
(
κ+

(
1
2 (1− κγ)

)1/γ)
+ 2

(
1
2 (1− κγ)

)1+1/γ
κ1−γ

(
2κ+

(
1
2 (1− κγ)

)1/γ)2 (6)

and plot it for different values of κ and γ in Figure 7,b. Thus, the critical value of the cost parameter where the loop
starts to form, γc, can be calculated by finding the minimum value of the function where it approaches unity

γc = min ({γ ∈ (0, 1)|∃κ ∈ (0, 1) s.t. f(κ, γ) = 1}) .

Looking at the graph of f(κ, γ) in Figure 7,b, we see that the function has a single maximum in terms of κ for a
given value of γ. We can thus calculate the critical value γc by determining, for which value this maximum reaches
unity for the first time. Denote by M(γ) = maxκ∈(0,1) f(κ, γ = γ) the maximum of the function for a given value of
γ. Then we can also find the critical value γc as

M(γc) = 1.

We now turn back to non-infinite values of the fluctuation strength to map out the relationship between the critical
fluctuation amplitude σc and the critical value of the cost parameter γc, similar to the phase diagram shown in
Figure 2. For non-infinite values of the fluctuation strength σ, the above equation becomes

M(γ) = 1 +
µ2

σ2

⇒ σ̃c =
1√

(M(γ)− 1)
(7)

where we defined the rescaled fluctuation strength σ̃ = σ/µ. Finally, we can also calculate the minimum rescaled
fluctuation strength necessary for a loop to exist. To this end, we calculate limγ→1M(γ) which may be calculated
analytically and note that the maximum M(γ) strictly increases with the cost parameter γ

lim
γ→1

M(γ) = maxκ∈(0,1) lim
γ→1

f(κ, γ) = maxκ∈(0,1)

[
6κ2 + 2

(3κ+ 1)2

]

⇒ ∂f(κ, γ = 1)

∂κ
=

12(κ− 1)

(1 + 3κ)3
< 0 ∀κ ∈ (0, 1).

The derivative is strictly decreasing for the given interval, the maximum thus occurs at the boundary of the domain.
The value at limκ→0 f(κ, γ = 1) is given by M(γ) = 2. We can thus determine the minimum necessary fluctuation
strength for the loop to exist as

σc,min =
1√

2− 1
= 1.

Supplementary Note 5: Minimising cost using Karush-Kuhn-Tucker conditions

Instead of finding the capacities that minimise the dissipation for a given system cost, we can consider a dual
problem: Minimising the system cost while fixing the average dissipation. Again, we want to find out when the first
loop emerges. So denote by D the fixed, average dissipation and by C the cost. Formulating the KKT conditions for
this related problem, we are thus left with the following optimisation problem

Minimise C =
∑

e∈T
k̃γe + κγ

∑

e∈T
k̃γe

subject to

D =
〈F 2
e 〉
k̃e
− κ

1 + Cm,nκ
Bm,n

κ ≥ 0.

(8)
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We again define the following Lagrange-type function

L̃(k̃e, κ) =
∑

e∈T
k̃γe + κγ

− λ̃
(∑

e∈T

〈F 2
e 〉
k̃e
− κ

1 + Cm,nκ
Bm,n −D

)
− µκ.

Similarly, we can now identify the KKT points via the following set of equations

∂L̃
∂k̃e

!
= 0, ∀e ∈ T ∪ {`}

D =
∑

e∈T

〈F 2
e 〉
k̃e
− κ

1 + Cm,nκ
Bm,n,

−κ ≤ 0

µ ≥ 0,

µκ∗ = 0.

Supplementary Note 6: Identification of global minima of dissipation for tree networks using edge
betweennees

Suppose we assign a vector v(T ) ∈ R|E| to each tree T , where the entry at position i of edge e corresponds to
the measure of edge betweenness Np(e)σ

2 + Np(e)
2µ2. These vectors will in general contain mainly zero entries for

tree networks. In this case, finding the globally optimal tree network corresponds to finding the vector v(T ) that is
globally minimal with respect to the quasi-norm induced by γ

γ+1 ∈ [0, 0.5], i.e. the tree T ∗ for which ‖v(T ∗)‖ γ
γ+1

is

minimal. Note that the ratio of cost parameters γ
γ+1 < 1 is smaller than one, such that it does not induce a proper

Lp-norm.
For the topology used throughout this paper, i.e. the network constructed by cutting out edges and nodes of a

triangular grid such that it corresponds to the shape of a leaf (see Figure 2c), we can demonstrate how to find the
global minimum. In Figure 4, we show different realizations of spanning trees for a small sample network and the
according edge betweenness as numbers on the edges which can then be used to form the vectors v(T ). In panels (e-h),
we compare the entries of this vector for the spanning trees. Notably, the network shown in panels (a,e) displays the
highest allocation of edge betweenness on as few links as possible and thus the highest imbalance in the vectors v(T ).
Indeed, taking the entries to the power of γ/(γ + 1) in order to calculate each edge’s contribution to the dissipation
(panels i-l), we observe that the tree with the highest allocation has the minimum dissipation. This can easily be
seen by adding up the values on the three edges connected to the source in the four panels and noting that the other
values remain the same, even if distributed among the edges differently.

We also numerically tested this argument by randomly sampling the local tree minima, but also the shortest path
trees for larger networks and did not find any network with less dissipation.



19

SUPPLEMENTARY REFERENCES

[1] Kuhn, H. W. & Tucker, A. W. Nonlinear programming. In Proceedings of the Second Berkeley Symposium on Mathematical
Statistics and Probability, 481–492 (University of California Press, Berkeley, Calif., 1951).
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Abstract

Both human-made and natural supply networks are built to operate reliably in changing condi-

tions full of external stimuli. Many of these spatial networks exhibit community structures. Here,

we show the existence of a second class of communities. These dual communities are based on

an exceptionally strong mutual connectivity and can be found for example in leaf venation net-

works. We demonstrate that traditional and dual communities emerge naturally as two different

phases of optimised network structures that are shaped by fluctuations and that they suppress fail-

ure spreading, which underlines their importance in understanding the shape of real-world supply

networks.
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Community structures are a fundamental trait of complex networks and have found nu-

merous applications in systems from social networks [1] to biological networks [2, 3] and

critical infrastructures [4]. Typically, communities are defined by a strong connectivity

within each community compared to a relatively weak connectivity between them [1, 5, 6].

Intuitively, community structures play an important role for failure spreading, i.e. small

perturbations stay within the community, which is both predicted by theory [7, 8] as well as

observed in experiments [9].

Many human-made and biological networks are spatially embedded and planar [10–13].

For planar graphs, it is possible to define a dual graph. Every node of the dual graph

corresponds to a facet of the original graph’s planar drawing (see Fig. 1a). If two facets

share an edge, their corresponding dual nodes are connected by a dual edge. Dual graphs

turn out to be useful not only when analysing resistor networks, power grids or natural gas

networks [14–17], but also to study fixed points in coupled oscillator systems [18, 19].

Remarkably, the analysis of dual graphs allows to reveal patterns in the network structure

that are hidden in the primal graph, such as dual communities. We show that not only a

relatively weak connectivity, but also a relatively strong connectivity between parts of the

network may be used to define community structures. This is due to the fact that strong

connections in the primal graph translate into weak connections in the dual graph.

Consider a weighted, simple graph G(V,E,W ) with vertex set V containing N = |V |
vertices and edge set E of M = |E| edges. Spectral bisection is a commonly used method

to determine the community structure of a graph that dates back to Fiedler [20] and makes

use of the graph Laplacian L. This an N ×N matrix defined as [21]

Lij =





−wij if i is connected to j,
∑

(i,k)∈E wik if i = j,

0 otherwise.

(1)

Here, wij > 0 is the weight of an edge (i, j). Let us label the graph’s edges as ` = 1, 2, . . . ,M

and fix an orientation for each edge. Based on this orientation, we can define the graph’s

weighted incidence matrix I ∈ RM×N as

I`n =





√
w` if line ` starts at node n,

−√w` if line ` ends at node n,

0 otherwise.

(2)
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dual

Fiedler vector

Repeated spectral 
clustering

dual

Repeated spectral 
clustering

dual

Repeated spectral 
clustering

Cut level

Figure 1. Communities and hierarchies in spatial networks. (a) A planar graph with edges char-

acterised by either large (dark green), small (light green) or intermediate edge weights, and its

dual graph. To construct the dual, each face is transformed into a dual node and a dual edge is

added if two faces share an edge, where an edge with large weight is transformed into a weak link

in the dual (see Eq. (4)). (d) Spectral clustering by means of the Fiedler vector v2 reveals the

community structure in both the graph (left) and its dual (right). (g) Based on repeated spectral

clustering, the graphs are further decomposed into a hierarchy of smaller subunits which is different

in the graph (left) and its (dual). (b,e,h) If we perform the same analysis on the venation network

of a leaf of Acer platanoides, the resulting hierarchies in the original graph do not provide useful

information ((h),left). The hierarchies in the dual graph, however, correspond to the functional

components ((e),(h),right). (c-i) For the Continental European power grid ((i),left) and its dual

(right) both primal and dual hierarchies provide different, but equally useful information about the

network structure.

The Laplacian can be rewritten in terms of the incidence matrix as L = I>I ∈ RN×N , where

‘>’ denotes the matrix transpose.

We now construct the dual graph G∗. The concept of dual graphs is based on the duality

between a graph’s cut space and its cycle space [22]. This duality may be expressed more

formally by making use of the fact that the fundamental cycles of a graph form the kernel

3



of the weighted incidence matrix. This relationship can be written compactly introducing

the weighted edge-cycle incidence matrix C ∈ RM×N∗
as

I>C = 0, (3)

where N∗ = M − N + 1 is the number of independent cycles in the graph [22]. Thus, the

elements of C are given by

C`c =





1/
√
w` if edge ` is part of cycle c,

−1/
√
w` if reversed edge ` is part of cycle c,

0 otherwise.

Finally, we can then define the Laplacian matrix of the dual graph as

L∗ = C>C ∈ RN∗×N∗
. (4)

Thus, edges in the dual graph are weighted with the inverse of edge weights in the primal

graph.

Dual communities can be extracted by means of any community detection algorithm ap-

plied to the dual graph, see e.g. Ref. [23]. We focus on spectral graph bisection to unveil the

graph’s community structure because it is immediately obtained from the graph Laplacian.

Spectral graph bisection methods rely on the fact that the community structure is encoded

in the second smallest eigenvalue of the graph Laplacian λ2 ≥ 0, known as the algebraic

connectivity or Fiedler value, which vanishes if the graph consists of two disconnected com-

ponents and increases with increasing connectivity between them. The graph’s nodes are

then assigned to one of two communities based on the corresponding eigenvector v∗2, the

(dual) Fiedler vector [5]: two dual vertices j∗ and i∗ are in the same community if they

share the same sign of the dual Fiedler vector, sign((v∗2)i − m) = sign((v∗2)j − m), where

m ∈ R is a threshold parameter. Here, we choose m = 0. As we demonstrate in Fig. 1b,e,

dual communities appear naturally in real-world networks such as the vascular networks of

leaves. Instead of weakly connected components, the two communities are separated by a

strong vein with large edge weights [24].

Dual communities reveal hierarchical organisation of supply networks. The spectral clus-

tering method for community detection can be applied to both the primal and the dual

graph, revealing different structural information about the network (Fig. 1d). Furthermore,
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Figure 2. Primal and dual communities emerge naturally in optimal supply networks. (a-c) We

consider a triangular supply network with two fluctuating sources located at the leftmost and

the rightmost node and Gaussian sinks attached to all other nodes. We impose additional weak

(a) and strong (b) fluctuations with variance σ2
D on the sources and optimise the edge weights

to minimise the average dissipation. We observe a transition from primal to dual communities

measured by the Fiedler vectors (coulour code) of (a) the primal or (b) dual graph and (c) scaling

of the corresponding primal (λ2, circles) and dual (λ∗2, crosses) Fiedler value. (d-f) Similarly,

the European power grid experiences a transition from (d) primal to (e) dual communities when

transmission line capacities are optimised for different carbon-dioxide (CO2) emission reduction

levels. (f) Again, the result is confirmed by the scaling of primal and dual Fiedler values for

increasing emission reduction which corresponds to an increasing share of fluctuating renewables

(lower axis). The grids were obtained using the high-resolution European energy system model

’PyPSA-EUR’ [25] to minimise the cost for transmission expansion [26]. Cost parameter for (a,b)

is γ = 0.9.

we can use this approach to extract a network’s hierarchical organisation as follows. Starting

from the initial network, we compute the Fiedler vector, identify the communities and then

split the network into two parts at the resulting boundary by removing all edges between

the communities. Then we iterate the procedure starting from the subgraphs obtained in

the previous step. Repeated application of this procedure reveals different boundaries and

thus different hierarchies in the primal graph and its dual (Fig. 1g).

Consider the venation network of a leaf as shown in Fig. 1b and provided by the authors
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of Ref. [27]. Such a supply network consists of two clearly visible parts separated by a central

vein that can be identified as dual communities, whereas the same structural pattern is not

visible in the primal community structure (Fig. 1e). Remarkably, we can use the hierarchical

decomposition to reveal that this central organisational pattern repeats in a hierarchical

order: dual communities are split by secondary veins in a repeated manner (Fig. 1h) while

the same decomposition in the primal graph does not provide useful information. Thus, leaf

venation networks clearly display a dual community structure.

We now turn to another type of supply networks: power grids. Fig. 1c shows the Eu-

ropean power transmission grid and its dual graph. Again, a hierarchical decomposition

reveals different levels of hierarchies in the grid that correspond to its functional compo-

nents. These components may also be interpreted geographically: the mountain ranges such

as the Pyrenees or the Alps as well as the former Iron Curtain are clearly visible in the

decomposition. Remarkably, both primal and dual decompositions provide useful structural

information here. In particular, there is a dual community boundary at cut level three that

closely corresponds to a system split in Eastern Europe that occurred on January, 8th, 2021,

where the European power grid was split into two parts along this boundary.

Although mathematically similar [24, 28, 29], the two types of networks we studied dis-

play different structural hierarchies and communities. Whereas leaf venation networks are

evolutionarily optimised, the structure of power grids depends strongly on historical aspects

and their ongoing transition to include a higher share of renewable energy sources. This

transition aspect also manifests in their community structure as we will see in the next

section.

Fluctuations shape community structures in optimal flow networks. Understanding how

the structure of optimal supply networks emerges is an important part of complex networks

research [30–33]. For networks where a single source supplies the entire network, it is well

established that fluctuations in the supply can cause a transition from a tree-like to loopy

network [29–31]. We extend this result by studying how does the increase in fluctuations in-

fluences the optimal network structure in supply networks with multiple strongly fluctuating

sources and weakly fluctuating sinks.

To interpolate between strongly fluctuating sources and weakly fluctuating ones, we use

a similar setup as in Ref. [31]. We consider a linear flow network consisting of a triangular

lattice with N nodes of which Ns are sources and with sinks whose outflows are fluctuating
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iid Gaussian random variables. Additionally, we add fluctuations only to the sources of the

networks that can be tuned by the additional variance of fluctuations σ2
D without affecting

the statistics of the sinks. We then tune the edge weights w` such that they minimize the

average network dissipation 〈D〉 = trace
(
P>L†P

)
while fixing the overall cost

∑N
`=1 w

γ
`

to build the network. Here L† is the Moore-Penrose pseudoinverse of the Laplacian, P =

(P1, ..., PN)> ∈ RN is the vector of sources and sinks attached to the nodes 1, ..., N of the

network, and γ ∈ R is a cost parameter [26].

Whereas the optimal network structure shows primal communities for weakly fluctuating

sources, σ2
D ≈ 1, it undergoes a transition to a dual community structure for strong fluc-

tuations, σ2
D � 1 (see Fig. 2). We can capture this transition in terms of the primal and

dual Fiedler values (Fig. 2c). Thus, optimal supply networks have a community structure –

whether it is primal or dual depends on the degree of fluctuations.

Strikingly, an analogous transition is observed for actual power transmission grids when

optimising the network structure for different levels of fluctuating renewable energy sources.

We consider the European power transmission grid and optimise its network structure for

different carbon dioxide (CO2) emission reduction targets compared to the year 1990 ranging

from 60% to 100% reduction using the open energy system model ’PyPSA-Eur’ [25]. We

then obtain the network structure by setting the edge weight to the overall transmission

capacity. With increasing penetration of fluctuating renewables, we observe a decrease

in the dual Fiedler value λ∗2 and an increase in the primal Fiedler value λ2 and thus a

transition from primal to dual communities. Note that the generation mix in the optimised

power system changes for different emission scenarios from conventionally-dominated grids

to highly-renewable grids [26].

Dual communities determine robustness of supply networks. To study the robustness of a

linear flow network with respect to small perturbations, we make use of a sensitivity factor.

We add an inflow ∆P at a node e1 and an outflow of the same amount at another node e2

and study how much this will change the flow ∆F` on a link `. Here, we focus on the case

where e1 and e2 are the terminal nodes of an edge e = (e1, e2) and treat the more general

case of inflows at two arbitrary nodes in the SI [26]. The sensitivity factor ηe1,e2,` = ∆F`

∆P
that

relates the flow changes to the inflow is given by [26, 34, 35]

ηe1,e2,` =

√
w`
we

l>` IL
†I>le, (5)
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(a)

λ∗2

(b)

(c) (d)

10−3 10−1 100 101 103

w` of connecting edges

10−2

100

R

(e)

c · λ2

c · λ∗2

10−3 10−2 10−1
|∆F |

Figure 3. Primal and dual communities inhibit failure spreading. A square grid is divided into (a)

two primal communities by weakening the links connecting two parts of the network or (b) into two

dual communities by strengthening the links horizontally separating the two parts. The Fiedler

vector (colour code) reveals the community structure. (c,d) Both primal and dual communities

inhibit flow changes |∆F | (colour coded) in the other community after the failure of a single link

(red) with unit flow. (e) We interpolate between primal and dual communities in a square grid

of size 21 × 10 by tuning the weight we of the horizontal edges or vertical edges (see a,b). The

flow ratio R reveals that failure spreading to the other community is largest for w` = 1. It decays

for either type of community as measured by primal and dual Fiedler values λ2 (crosses) and λ∗2

(circles), respectively. The green line represents the median value and the shaded regions indicate

the 25% and 75% quantiles.

where le ∈ ZM is the indicator vector of edge e which is equal to one at the positions indicated

by the subscript and zero otherwise. Importantly, the sensitivity factor may also be used to

simulate the failure of a link e = (e1, e2) by choosing the inflow ∆P accordingly [26] and is

well-known in the context of power system security analysis, where it is referred to as power

transfer distribution factor [34].

Sensitivity to changes in the flow patterns is determined by the primal community struc-

ture of a linear flow network measured by the Fiedler value λ2 [7, 26, 28, 36]. Remarkably,
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we can find an analogous description in the dual graph [15]

ηe1,e2,` = −
√
w`
we

l>` C(L∗)†C>le. (6)

The dual Laplacian L∗ contributes to the sensitivity factor ηe1,e2,` in the same way as the

primal Laplacian. Hence, primal and dual community structures determine network flows

in an equivalent manner: if a network admits a dual community structure and λ∗2 is small,

then changes in one community will only weakly affect the other one.

Consider an inflow and simultaneous outflow ∆P at two nodes `1 and `2, respectively,

that are connected via an edge ` = (`1, `2). We compare the resulting flow changes in the

same (S) and the other (O) community as the given edge by evaluating their ratio R(`, d)

at a given distance d to the link [28]

R(`, d) =
〈|∆Fk|〉k∈O

d

〈|∆Fr|〉r∈S
d

=
〈|η`1,`2,k|〉k∈O

d

〈|η`1,`2,r|〉r∈S
d

.

We then average over all possible trigger links and distances to arrive at the mean flow ratio

R = 〈R(`, d)〉`,d. The mean flow ratio ranges from R ≈ 0 if the other module is weakly

affected, i.e. there is a strong community effect, to R ≈ 1 if there is no noticeable effect.

We note that R describes flow changes after perturbations in the in- and outflows as well as

flow changes as a result of the complete failure of links [26].

Fig 3 illustrates that both primal and dual communities suppress flow changes in the

other community. The flow ratio R decays for either community structure and the decay is

well-captured by the Fiedler value of the primal (λ2) and the dual (λ∗2) graph (see SI [26]).

Discussion and Conclusion. We have introduced a new way to define and identify com-

munity structures in planar graphs that we refer to as dual communities. We demonstrated

that both primal and dual community structures emerge as different phases of optimized

networks – whether the one or the other is realised in a given optimal network depends on

the degree of fluctuations. In addition to that, both types of communities have the ability

to suppress failure spreading – they are thus optimised to limit the effect of link failures or

other perturbations.

An important difference between primal and dual communities is the fact that the former

are based on a weak connectivity, while dual communities require a strong connectivity.

This has important consequences for supply networks such as power grids. While preventing

failure spreading, dual communities will not affect the network’s ability to transport energy
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between them, or may even increase the supply capabilities. This is in stark contrast to

primal communities that limit failure spreading from one community to the other one, but

also supply. Thus, the construction of dual communities may also serve as a strategy against

failure spreading, in line with other ideas brought forward recently [28].
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Supplementary Figure S1. Primal and dual communities emerge naturally in optimal supply

networks. (a-c) We consider a supply network consisting of three fluctuating sources on the left

and the right of every network and iid Gaussian sinks attached to all other nodes in a triangular

grid. We then optimize the capacities of every edge using the model used in Refs. [1] and [2] with

a constrained, overall capacity with parameter γ = 0.5. We impose additional fluctuations on the

sources through additive dirichlet variables whose variance can be tuned by a parameter α ∈ [0,∞]

interpolating between weak (a, α � 1) to strong (c, α � 1) fluctuations. The resulting network

has either a primal (a) or dual (c) community structure which we demonstrate by color-coding

the Fiedler vectors of the primal (d,e) or dual network (f). (h) The Fiedler of both primal (λ2,

circles) and dual (λ∗2, crosses) graph scale reversely with the variance of the additive dirichlet noise

imposed on the sources indicating that the minimum dissipation network has a primal community

structure for small fluctuations and a dual one for strong fluctuations.
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Supplementary Figure S2. Total power generation in open energy system model by generator

type for two exemplary months and different emission reduction levels. (a) Total generation for

January (left) and August (right) over time for the entire European grid obtained via transmission

system optimisation using the open energy system model ’PyPSA-Eur’ (see Methods). (b-c) We

analyse different carbon-dioxide (CO2) emission levels as compared to the emissions in the year

1990 where a CO2 level of 0.4 corresponds to 40% of the emissions in 1990. With decreasing levels

of CO2 we observe an increased generation of renewable energy sources. In Figure S3 we show the

corresponding aggregated generation on the network level.
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Supplementary Figure S3. Total aggregated generation on the network level by generator type for

two exemplary months and different emission reduction levels. (a) Total aggregated generation for

January (left) and August (right) for the entire European grid obtained via transmission system

optimisation using the open energy system model ’PyPSA-Eur’ (see Methods). (b-c) We analyse

different carbon-dioxide (CO2) emission levels as compared to the emissions in the year 1990 where

a CO2 level of 0.4 corresponds to 40% of the emissions in 1990. With decreasing levels of CO2

we observe an increased generation of renewable energy sources. Colour code corresponds to the

colour code in Figure S2.
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Supplementary Figure S4. Dual community structure of an Acer platanoides leaf. The leaf

is divided into two dual communities using the method shown in Figure 1. (a,d) The two dual

communities clearly show the venation network when plotting the dual graph with edge width

proportional to the thickness of the dual veins. (b,e) Fiedler vector of the two communities reveals

the finer network structure. (c.f) The resulting sorted dual Fiedler v∗2 vectors may be used to

classify and distinguish leaves of different genera.
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Supplementary Figure S5. Dual community structure of an Corylus avellana leaf. The leaf

is divided into two dual communities using the method shown in Figure 1. (a,d) The two dual

communities clearly show the venation network when plotting the dual graph with edge width

proportional to the thickness of the dual veins. (b,e) Fiedler vector of the two communities reveals

the finer network structure. (c.f) The resulting sorted dual Fiedler v∗2 vectors may be used to

classify and distinguish leaves of different genera.
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Supplementary Figure S6. Dual community structure of an Carpinus betulus leaf. The leaf

is divided into two dual communities using the method shown in Figure 1. (a,d) The two dual

communities clearly show the venation network when plotting the dual graph with edge width

proportional to the thickness of the dual veins. (b,e) Fiedler vector of the two communities reveals

the finer network structure. (c.f) The resulting sorted dual Fiedler v∗2 vectors may be used to

classify and distinguish leaves of different genera.
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Supplementary Figure S7. Dual community structure of an Parkia nitida leaf. The leaf is

divided into two dual communities using the method shown in Figure 1. (a,d) The two dual

communities clearly show the venation network when plotting the dual graph with edge width

proportional to the thickness of the dual veins. (b,e) Fiedler vector of the two communities reveals

the finer network structure. (c.f) The resulting sorted dual Fiedler v∗2 vectors may be used to

classify and distinguish leaves of different genera.
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Supplementary Figure S8. Dual community structure of an Bursera simaruba leaf. The leaf

is divided into two dual communities using the method shown in Figure 1. (a,d) The two dual

communities clearly show the venation network when plotting the dual graph with edge width

proportional to the thickness of the dual veins. (b,e) Fiedler vector of the two communities reveals

the finer network structure. (c.f) The resulting sorted dual Fiedler v∗2 vectors may be used to

classify and distinguish leaves of different genera.
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Supplementary Figure S9. Dual community structure of an Protium sp. nov. 8 leaf. The

leaf is divided into two dual communities using the method shown in Figure 1. (a,d) The two

dual communities clearly show the venation network when plotting the dual graph with edge width

proportional to the thickness of the dual veins. (b,e) Fiedler vector of the two communities reveals

the finer network structure. (c.f) The resulting sorted dual Fiedler v∗2 vectors may be used to

classify and distinguish leaves of different genera.
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SUPPLEMENTARY METHODS

Linear flow networks

Linear flow networks describe a generic model for many types of supply networks including

AC power grids [3–5], DC electric circuits [6–8], hydraulic networks [9, 10], and vascular

networks of plants [1]. Assume that the underlying network is given by a simple graph

G = (E, V ) with N = |V | nodes and M = |E| edges. Then we assign a potential θn ∈ R
to each node n ∈ V . This potential has the following interpretation: In AC power grids in

the DC approximation, it denotes the voltage phase angle whereas in DC electric circuits, it

refers to the voltage level at node n. Finally, in hydraulic or vascular networks, θn denotes

the pressure at node n. Then the flow F` along a link ` = (m,n) is given by

F` = w`(θm − θn). (1)

Here, w` is the weight of the link `. In AC power grids, w` is proportional to the link’s

susceptance, in resistor networks it is given by the link’s conductance and in a hydraulic

or vascular network it depends on the geometry of the pipe or vein. Note that we assume

that the weights are independent of the orientation of the link, i.e. w`=(`1,`2) = w`=(`2,`1).

Since this equation involves only phase differences, the potentials θn are only determined up

to a constant phase shift applied to all nodes. This problem may be solved by assigning a

reference potential to a preselected node n, e.g. setting θn := 0.

Now assume that there is an inflow Pm at every node m. Pm is positive if a current,

power, or fluid is injected to the node and negative if it is withdrawn from the node. The

flows F` along the edges ` ∈ E may then determined using Kirchhoff’s current law, the

continuity equation, ∑

`∈E
Ĩ`,nF` = Pn, ∀n ∈ V. (2)

Here, Ĩ`,n are the entries of the graph’s unweighted edge-node incidence matrix which we

use to assign an orientation to the graph’s edges. The entries are given by [11]

Ĩ`,n =





1 if edge ` starts at node n,

−1 if edge ` ends at node n,

0 otherwise.

Note that in contrast to the definition of the weighted node-edge incidence matrix in Equa-

tion (2) in the main text, this definition does not explicitly include the weights of the edges.

The potentials θn which fulfil the continuity equation (2) and the equation for the flows (1)

automatically satisfy Kirchhoff’s voltage law which states that the potential drop around

any closed loop C needs to vanish
∑

(n,m)∈C
θn − θm = 0. (3)
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Defining a vector of flows F = (F1, .., FL)> ∈ RM , a vector of potentials θ = (θ1, ..., θN)> ∈
RN and a vector of inflows P = (P1, ..., PN)> ∈ RN , we can write these relationships more

compactly. Kirchhoff’s current law (2) in vectorized form reads as

Ĩ>F = P .

Here and in the following, we assume that the in- and outflows sum to zero,
∑N

i Pi = 0, and

call them ’balanced’. In addition to that, we can write the relationship between flows and

potentials in vectorized form,

F = WĨθ. (4)

Here, W = diag(w1, ..., wL) ∈ RM×M is a diagonal matrix summarising the edge weights.

Now we can put together the last two Equations to arrive at a discrete Poisson equation for

the nodal potentials

Lθ = P . (5)

Here, L is the Laplacian matrix (see Eq. (1)).

Quantifying the impact of perturbations - primal graph

We now use the notation developed in the last section to study the effect of links failures.

In particular, we derive the expression for the sensitivity factor ηi,k,` given in Equation (6)

in the main text. Assume that we have an inflow ∆P at one node i and an outflow of the

same amount at another node k. Then we can write the vector of changes in the inflows as

∆P = ∆P (ei − ek).

This causes a change in the nodal potentials θ′ = θ + ∆θ, where θ′ denotes the potentials

after the change in inflows. The new potentials have to fulfill the Poisson equation (5), so

we can subtract the Poisson equation in the for the potentials before and after the change

in inflows to arrive at an explicit equation for the change in nodal potentials

L∆θ = ∆P (ei − ek).

Note that the Laplacian matrix of a connected graph always has one zero eigenvalue ([11]).

Thus, we cannot simply invert this equation to calculate the change in the nodal potentials

∆θ. This problem is typically solved by making use of the Moore-Penrose pseudoinverse of

the Laplacian matrix L† which has properties similar to the matrix inverse [12].

Now we can use Kirchhoff’s current law (2) to calculate the resulting changes in the flows

∆F = WĨL†(ei − ek)∆P.

12



Finally, we can read off the change of the flow on line `

∆F` = l>` ∆F = w`l
>
` ĨL

†(ei − ek)∆P =
√
w`l
>
` IL

†(ei − ek)∆P := ηi,k,`∆P,

⇒ ηi,k,` =
∆F`
∆P

(6)

where we inserted the weighted incidence matrix Ĩ. Note that the sensitivity factor is purely

topological, i.e. it may be calculated only based on the network topology and weights and

does not depend on the in- and outflows. If the two nodes i and k are the terminal nodes of

an edge p = (i, k), we can identify

ei − ek = Ĩ>lp,

where lp is again the indicator vector of edge p, such that the above expression reduces to

the expression appearing in the main text.

Quantifying the impact of perturbations - dual graph

The discussion of perturbations in the in- and outflows developed in the last section was

recently extended to the dual graph [13, 14]. We will briefly cover this here and derive the

dual expression for the sensitivity factor η. To this end, assume again that there is an inflow

∆P at one node i and an outflow of the same amount at another node k which results in

a vector of inflows ∆P = ∆P (ei − ek). By subtracting Kirchhoff’s current law (2) for the

situation before and after the change in inflow, we arrive at

Ĩ>∆F = ∆P (ei − ek),

which leaves us with is an underdetermined system of equations: We have M − N + 1

unknown flow changes ∆F`, but only N equations. We can solve this problem by using the

duality relationship (4) in the main text. The kernel of the node-edge incidence matrix is

spanned by the cycle-edge incidence matrix

Ĩ>C̃ = 0,

where we defined the unweighted cycle-edge incidence matrix

C̃`c =





1 if edge ` is part of cycle c,

−1 if reversed edge ` is part of cycle c,

0 otherwise.

Thus, we can decompose the flow changes into a particular solution ∆Fpart ∈ RM and a

vector of cycle flows f ∈ RM−N+1 - one for each cycle - such that

∆F = ∆Fpart + C̃f . (7)
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Thus, there is an additional degree of freedom given by the cycle flows. To determine the

cycle flows, we make use of Kirchhoff’s voltage law (Eq. 3), which may be written compactly

as

C̃>I∆θ
!

= 0,

⇔ C̃>W−1∆F
!

= 0,

⇒ C̃>W−1C̃f = −C̃>W−1∆Fpart,

⇔ L∗f = −C̃>W−1∆Fpart,

where we inserted the relationship (4) between potential changes ∆θ and flow changes in the

second step and the definition of the dual Laplacian in the last step. We thus found a discrete

Poisson equation for the cycle flows with the dual Laplacian L∗ in direct correspondence

to its primal counterpart (5). We can now proceed as for the primal graph: Inverting the

discrete Poisson equation for the cycle flows and plugging the result into Eq. (7), we thus

arrive at

∆F = (1M − C̃(L∗)†C̃>W−1)∆Fpart.

Here, 1M denotes the identity matrix of dimensions M × M . As a last step, we need

to determine a particular solution ∆Fpart. This can be accomplished as follows [14]: Let

T ik ∈ RM be a vector determining an (arbitrary) path between the node i with inflow ∆P

and node k with the same outflow. The entries of T ik are given as follows

T ike =





1 if edge e is element of the path i→ k,

−1 if reversed edge e is element of the path i→ k,

0 otherwise.

Then a particular solution is given by ∆Fpart = T ik∆P and we can plug this into the above

equation

∆F = (1M − C̃(L∗)†C̃>W−1)T ik∆P,
⇒ ∆F` = l>` ∆F =

(
l>` T ik − l>` C̃(L∗)†C̃>W−1T ik

)
∆P.

If nodes i and k are the two terminal ends of an edge e = (i, k) 6= `, the path vector may be

identified with the edge’s indicator vector, T ik = le. In this case, the above expression reads

∆F` = −w−1p l>` C̃(L∗)†C̃>le∆P,

where the first expression vanishes since l>` le = δ`e. Thus, we can identify the sensitivity

factor ηi,k,` as

ηi,k,` = −w−1e l>` C(L∗)†C>le = −
√
w`
we
l>` C(L∗)†C>le
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Modelling link failures

The sensitivity factor ηi,k,` may also be used to describe the failure of links. Assume that

a link e fails, thus loosing its ability to carry flow and setting the weight to zero, we = 0.

Instead of removing the link from the network, we can find an analogous description based

on the sensitivity factor [3, 15].

Assume that the link e = (e1, e2) carries a flow Fe before the outage. Now we model

the removal of the link by an in- and outflow at the two ends of the link: To this end,

we assume that the line was disconnected from the network and consider a fictious flow F̂e

which is the result of a (fictious) inflow ∆P = F̂e at the starting node e1 and an outflow of

the same amount at the terminal node e2 of link e. On the other hand, we can also calculate

the flow F̂e flowing on line e after the injection by a self-consistency argument: It can be

calculated using the sensitivity factor

F̂e = Fe + ηe1,e2,e∆P = Fe + ηe1,e2,eF̂e

⇒ ∆P = F̂e = Fe(1− ηe1,e2,e)−1.
Now we can calculate the change in the flow on another link ` due to the failure of link e as

∆F` = ηe1,e2,`∆P =
ηe1,e2,`

1− ηe1,e2,e
Fe.

We can thus calculate the flow change ∆F` on any link ` due to the failure of another link e

based on the initial flow on link e and the sensitivity factor η. The fraction appearing here

ηe1,e2,`(1− ηe1,e2,e)−1 is known as Line Outage Distribution Factor in power system security

analysis [3].

Thus both, link failures and changes in the inflows can be captured by the sensitivity

factor. To quantify the effect of (dual) communities on network robustness in linear flow

networks we defined the ratio of flow changes in the main text (see Ref. [16]),

R(`, d) =
〈|∆Fk|〉k∈Od

〈|∆Fr|〉r∈Sd

.

Importantly, the ratio can be used to quantify both, the community effect on changes in the

inflow patterns and the community effect on failure spreading. For an inflow and outflow of

∆P at the two terminal ends of the link `, `1 and `2, respectively, the ratio is calculated as

R(`, d) =
〈|∆Fk|〉k∈Od

〈|∆Fr|〉r∈Sd

=
〈|η`1,`2,k∆P |〉k∈Od

〈|η`1,`2,r∆P |〉r∈Sd

=
〈|η`1,`2,k|〉k∈Od

〈|η`1,`2,r|〉r∈Sd

.

On the other hand, if we instead calculate the ratio for the failure of a link ` with initial

flow F`, we arrive at

R(`, d) =
〈|∆Fk|〉k∈Od

〈|∆Fr|〉r∈Sd

=
〈|η`1,`2,k(1− η`1,`2,`)−1F`|〉k∈Od

〈|η`1,`2,r(1− η`1,`2,`)−1F`|〉r∈Sd

=
〈|η`1,`2,k|〉k∈Od

〈|η`1,`2,r|〉r∈Sd

. (8)
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Thus, in both cases, the ratio is determined by the sensitivity factor η which is in turn

governed by the Pseudo-inverse of the Laplacian matrix L† or the Pseudo-inverse of the

dual Laplacian (L∗)† when formulating the problem in the dual graph.

Connectivity structure determines network response to link failures

In this section, we will demonstrate why a weak connection between two components of

a network limits the flow changes in one component when a link in the other one fails. Our

analysis follows the approach towards perturbation spreading used in Manik et al. [17, 18]

that is based on Rayleigh-Schrödinger perturbation theory [19].

Perturbation theory reveals scaling of flow changes after failures with connectivity

Consider a connected graph G = (E, V ) with N nodes and L edges consisting of two sub-

graphs G1 = (E1, V1) and G2 = (E2, V2) with n1 nodes and n2 = N −n1 nodes, respectively,

that are mutually weakly connected. Here, a weak connection between the two subgraphs

may either be realised through a (relatively) weak number of links in case of an unweighted

graph or the overall weight of the connections between the two subgraphs being small [20].

We then sort the graph’s vertices V in such a way that the first n1 vertices belong to the

first subgraph G1 and the other n2 vertices belong to the second one G2. We may regard

the weak connections between the to subgraphs as a perturbation to the graph in which the

two subgraphs are disconnected. In terms of the graph Laplacian L, we thus write

L = L0 + L̃ =

(
L1 0n1×n2

0n2×n1 L2

)
+

(
D12 −A12

−A>12 D21

)
.

Here, L0 is the graph Laplacian for the graph when disconnecting the two subgraphs, ex-

pressed in terms of their Laplacian matrices L1 ∈ Rn1×n1 and L2 ∈ Rn2×n2 and L̃ is the

perturbation matrix with the diagonal degree matrices D12 and D21 denoting the degree for

the graph connecting the two subgraphs. A12 is the adjacency matrix for this graph that is

assumed to be relatively sparse, thus indicating the weak inter-subgraph connections.

To examine the effect of link failures, we need to study the pseudoinverse of this matrix.

Therefore, we denote by X = L† the Moore-Penrose pseudoinverse of the overall graph

Laplacian and by X1 = L†1 and X2 = L†2 the Moore-Penrose pseudoinverses of the sub-

graphs’ Laplacian matrices L1 and L2, respectively. For the inverse X0 of the unperturbed

Laplacian L0, we then get

X0 =

(
X1 0n1×n2

0n2×n1 X2

)
.
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In order to calculate the matrix inverse X, we can expand this matrix using the Neumann

series (see e.g. Ref. [21]) [22]

X = (L0 + L̃)† =
[
L0

(
1 +X0L̃

)]†
=
[(

1 + L̃X0

)
L0

]†

= X0

[(
1− (−X0L̃)

)]†
= X0

∞∑

k=1

(−1)k(L̃X0)
k,

where we inserted the Neumann series in the last step. We can thus approximate the matrix

inverse of the graph Laplacian as

X = X0 −X0L̃X0 +O(L̃2),

where O(L̃2) denotes terms of at least order two in the perturbation matrix L̃.

Now we can use these expressions to calculate a first order approximation for the sensi-

tivity factor ηi,k,` in the weakly connected limit. Assume we are monitoring the flow changes

on line l with indicator vector ~ν` = I ·~l` = ~e`1 −~e`2 as a result of a power transfer along line

k = (k1, k2) with indicator vector ~νk. We can then calculate the sensitivity factor as

ηk1,k2,` = w`~ν
>
` X~νk.

Now we distinguish two cases; First assume that ` and k are contained in the same subgraph,

say G1. In this case, we can write with slight abuse of notation ~ν` = (~̂ν`,~0n2)
> and ~νk =

(~̂νk,~0n2)
>, where ~̂νl denotes the projection of the vector onto the subspace of vertices the

first subgraph G1 and the whole vector ~ν` is still understood as a vector in GF (2)N . In this

case, we may write the sensitivity factor as

ηk1,k2,` = w`(~̂ν
>
` ,~0

>
n2

)X

(
~̂νk
~0n2

)
= w`~̂ν

>
` X1~̂νk +O(L̃). (9)

Now consider the case where ` and k are contained in different modules of the network.

In this case, we may write ~ν` = (~̂ν`,~0n2)
> and ~νk = (~0n1 , ~̂νk)

> and calculate the sensitivity

factor as

ηk1,k2,` = w`(~̂ν
>
` ,~0

>
n2

)X

(
~0n1

~̂νk

)

= w`(~̂ν
>
` ,~0

>
n2

)
[
X0 +X0L̃X0

](~0n1

~̂νk

)
+O(L̃2)

= w`

[
0 + (~̂ν>` X1,~0

>
n2

)L̃

(
~0n1

X2~̂νk

)]
+O(L̃2).

We thus observe that the leading order contribution of the perturbation matrix to the

sensitivity factor is L̃0 if both links are contained in the same module and L̃1 if they are
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contained in different modules.

Now we compare this to the scaling of Laplacian eigenvalues with the perturbation ma-

trix. The first eigenvector of L0 is given by the constant shift ~v1 = N−1/2~1N and has

eigenalue λ1 = 0. In the weakly connected limit considering only L0, the Fiedler eigenvalue

vanishes as well λ
(0)
2 = 0, and has an associated eigenvector [17]

~v
(0)
2 = N−1/2(

√
n2/n1, ...,

√
n2/n1︸ ︷︷ ︸

n1 times

,−
√
n1/n2, ...,−

√
n1/n2︸ ︷︷ ︸

n2 times

)>.

Here, we use the superscript (0) to denote the eigenvector and eigenvalue in the unberturbed

case. A first order estimate for the Fiedler value may thus be calculated by using Rayleigh

Schrödinger perturbation theory as

λ
(1)
2 = (~v

(0)
2 )>L̃~v(0)2 +O(L̃2). (10)

For weakly connected graphs, we thus expect the sensitivity factor η`1,`2,k to scale with the

connectivity of the graph in the same way as the Fiedler value of the graph if l and k lie

in different communities due to the fact that λ
(1)
2 ∝ L̃ and expect it to be to leading order

independent of the Fiedler value if l and k are in the same community.

Flow ratio scales with increasing connectivity between weakly connected modules

In the main part of the manuscript, we consider the ratio R(`, d) between the flow changes

within the other community ∆FO and the flow changes in the same community ∆F S after

a link failure. It is well established that the flow changes typically decay with distance to

the failing link [15, 23–25]. To be able to neglect this effect on the flow changes, we take the

average absolute flow changes at a fixed distance d denoted by 〈|∆Fi→j|〉(i,j)∈Sd for the same

community and 〈|∆Fi→j|〉(i,j)∈Od for the other community where we average over all edges

` = (i, j) within the respective community that are located at an unweighted edge distance

of d to the failing link. With this formalism at hand, we can now estimate the scaling of this

ratio with the strength of the perturbation. Suppose that link k = (r, s) is failing. Then the

flow ratio reads (cf. Eq. (8))

R(`, d) =
〈|η`1,`2,k|〉k∈Od

〈|η`1,`2,r|〉r∈Sd

.

Now we can make use of our results on the scaling of the sensitivity factors with increasing

connectivity between the subnetworks. From Eqs. (9) and, (10) we see that this ratio scales
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with the first order of the perturbation

R(`, d) =

〈∣∣∣∣∣w`(~̂ν
>
` X1,~0

>
n2

)L̃

(
~0n1

X2~̂νk

)∣∣∣∣∣

〉k=(i,j)∈O

d

+O(L̃2)

〈∣∣∣w`~̂ν>` X1~̂νr

∣∣∣
〉r=(p,q)∈S

d
+O(L̃)

⇒R ∝ L̃+O(L̃2)

in the weakly connected limit assuming without loss of generality that the failing link is

located in the first subgraph G1, ` ∈ E(G1). Since we deduced in Eq. (10) that the Fiedler

value scales with the perturbation in the first order as well, we expect the two quantities to

show a similar scaling with the perturbation matrix L̃.

Note that the derivation works exactly the same way for the dual graph G∗ and dual Fiedler

value λ∗2: We simply have to replace the sensitivity factor η`1,`2,k by its dual representation.

Fluctuating sink model with additive Dirichlet noise

We will first briefly cover the fluctuating sink model and then explain our modification

to it. We will use the model analysed by Corson [2]. Consider a linear flow network on a

graph G with N nodes and M edges summarized in the node set V and edge set E. Then

we choose one vertex to be the source of the network while all the others are sinks and order

all nodes such that the source node has the first index w.l.o.g. We assume the sinks to be

uncorrelated, iid Gaussian variables Pi ∼ N (µ, σ), i ∈ {2, ..., N} which fluctuate in time

and that sources and sinks have to balance at any point in time such that

N∑

i=1

Pi = 0. (11)

This equation immediately yields the statistical properties of the source as a consequence of

the statistics of the sinks

〈P1〉 = −(N − 1)µ,

where 〈·〉 denotes the mean over different realisations of the Gaussian variables.

For a given topology, we then seeks to find the link weights w` that minimise the aver-

age dissipation

〈D〉 =
M∑

`=1

〈F 2
` 〉
w`

.

Here, 〈F 2
` 〉 is the second moment of the flows which are determined by the statistics of

the sources and sinks by virtue of the continuity equation (2). However, we assume that

19



our budget for constructing or strengthening edges is limited: there is a resource constraint

which limits the overall available edge weights and needs to be taken into account when

minimsing the dissipation ∑

`∈E
wγ` = 1.

Here, γ is a cost parameter that controls how expensive it is to increase the weight of an edge.

The main challenge when performing the minimisation is the interdependence between link

weights and flows which cannot be varied independently. Corson [2] and Katifori et al [1]

independently came up with a procedure to identify edge weights that locally minimise the

network dissipation by using the method of Lagrange multipliers. Starting from random

edge weights that satisfy the resource constraint, the optimal edge weights have to satisfy

w` =
〈F 2

` 〉1/(1+γ)(∑
e∈E〈F 2

e 〉γ/(1+γ)
)1/γ .

Then, the locally minimal edge weights can be found by iteratively updating the edge weights

based on this formula and then the flows they result in until no further changes occur.

Now we extend this set-up to a network with multiple sources. Assume that we again

label the nodes such that the first Ns nodes are sources and the remaining N − Ns nodes

sinks, which are still uncorrelated, iid Gaussian variables. However, when considering more

than one source, Ns > 1, the distribution of the sources is not completely determined by

Equation (11), but has additional degrees of freedom - in contrast to the case of a single

source. We use this degree of freedom to put additive Dirichlet noise Xi ∼ Dir(α) on the

sources. Since in- and outflow match at any point in time, we have

Ns∑

i=1

Pi = −
N∑

j=Ns+1

Pj. (12)

We thus have the following set of equations:

Ns∑

i=1

µsi = (N −Ns)µ

and
Ns∑

i=1

〈PiPj〉 = −
N∑

i=Ns+1

〈PiPj〉

= −(N −Ns)µ
2 − σ2, if j > Ns,

Ns∑

i=1

〈PiPj〉 = −
N∑

i=Ns+1

〈PiPj〉 if j ≤ Ns,
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where the equalities follow from Eq. 12 and the fact that the variables are uncorrelated.

Now assume that we model the sources as iid Gaussian variables Psi ∼ N (µs, σs), as above,

but now add Dirichlet noise with identical parameter α

Psi = − 1

Ns

N∑

i=Ns+1

Pi +K

(
1

Ns

−Xi

)
, Xi ∼ Dir(α).

Here, K ∈ R is a scaling parameter. Then we can calculate the mean and variance of the

Gaussian distribution governing the sources as

µs =
N −Ns

Ns

µ, σ2
s =

N −Ns

Ns

σ2,

as follows from plugging the expression for Psi into the above equations. Importantly, the

Dirichlet variables sum to unity
∑Ns

i=1Xi = 1 at any point in time. Therefore, they have the

mean

〈Xi〉 =
1

Ns

and second moment

〈X2
i 〉 =

(Ns − 1)

N2
s (Nsα + 1)

+
1

N2
s

and are correlated with the following correlation

〈XiXj〉 = − 1

N2
s (Nsα + 1)

+
1

N2
s

.

Note that this results in a vanishing sum over the second moments

Ns∑

i=1

〈XiXj〉 = 0,

by virtue of the definition of the Dirichlet parameter and the first equation. Now we can

shift to new random variables Yi = K
(

1
Ns
−Xi

)
with zero mean, 〈Yi〉 = 0, and the following

second moments

〈YiYj〉 = K2

〈(
1

Ns

−Xi

)(
1

Ns

−Xj

)〉

= K2

(
− 1

N2
s

+ 〈XiXj〉
)

= −K2 1

N2
s (Nsα + 1)

, i 6= j,

〈Y 2
i 〉 = K2

〈(
1

Ns

−Xi

)2
〉

= K2 (Ns − 1)

N2
s (Nsα + 1)

such that the sum over the second moment still vanishes
∑Ns

i=1〈YiYj〉 = 0.
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Thus, using the Dirichlet noise, we can tune the variance of the sources without affect-

ing the statistics of the sinks or the fact that the sources and sinks have to balance at any

point in time (Eq. (11)).
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5. Understanding which conditions shape
network vulnerability: cascading failures
and system splits

Finally, we turn to a different aspect of network vulnerability. We consider once again
networks that are economically optimised using the open energy system model PyPSA-
EUR [28], but focus on the risk of system splits. In Section 1.4, we discussed the system
split in Europe in 2006 which demonstrates that cascading failures, and in particular system
splits, pose a critical threat to power system stability. A more recent example is given by
the system split in Europe in January 2021, even if the consequences were much less severe
in this case [76]. But how do these dangerous splits emerge?

Understanding which factors favour or even cause such splits is essential for power sys-
tem security. Importantly, the essential mechanism governing cascading failures that lead
to system split – the iterative pattern of flow rerouting and subsequent line overloads – is
well-captured by linear flow networks and thus by the cascading mechanisms discussed
in previous sections. Therefore, we can profit from the knowledge about link failures de-
veloped throughout this thesis in understanding which conditions favour dangerous system
splits.

In this manuscript draft, we analyse and classify possible system splits in the German
power transmission system. We consider networks optimised using the open energy sys-
tem model PyPSA-EUR and presented in Ref. [55]. We evaluate different possible system
splits in the German power grid using different network topologies and weather scenarios
representing the years 2013-2018. To this end, we consider an economic dispatch repres-
enting the load and generation for the entire historic German transmission grid in hourly
resolution and simulate the failure of every possible transmission line. We then monitor
whether a system split occurs and estimate the resulting frequency response that character-
ises the severity of the given split. Here, my contribution was the following: I wrote most of
the source code to analyse the optimised PyPSA-Eur networks, performed the evaluation,
wrote most of the paper and designed all figures. This manuscript is not yet published and
has not been submitted.
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The world’s power systems are undergoing a rapid transformation, shifting away from centralised,
carbon-intensive power generation to a decentralised generation based on variable renewable energy
(VRE). As a result, there is a growing importance of long-distance transport of electrical power
and the power transmission system will have to be able to deal with increasing line loadings. A
major threat to present and future transmission systems is given by cascading outages where an
initial failure triggers a subsequent cascade of failures and eventually results in a system split that
disconnect parts of the grid. Here, we analyse to what extent the risk of dangerous system splits
increases with a growing share of renewable power production. We systematically analyse and
quantify the risk of system splits for different carbon emission reduction scenarios that we generate
using high-level energy system models of the European grid. To this end, we identify potential
vulnerabilities of a given grid using statistical analyses and identify the most likely splits for a given
scenario. Finally, we examine to what extent the increase in VRE corresponds to higher frequency
responses as a result of system splits.

I. INTRODUCTION

Mitigating the impact of climate change is one of the
biggest challenges in the upcoming decades [1, 2]. In
the Paris Agreement, most of the world’s countries have
committed to reducing their carbon footprint to work
towards this goal [3]. While the overall reduction target
can only be met by a wide range of measures in different
sectors [2], a major share of carbon emissions is gener-
ated directly or indirectly by the production of electrical
energy [4].

As a result, a shift from fossil fuel-based energy pro-
duction to a production based on renewable energy re-
sources is essential. This ongoing transition requires a
fundamental transformation of nowadays power system
which has immediate consequences for the security and
reliability of the energy supply: Energy production shifts
from centralised, easily controllable generating facilities
to a decentral, more volatile power production which is
subject to varying weather conditions[5, 6]. The conse-
quences are manifold and not necessarily intuitive and
thus not easily compensated: While energy production
will not be limited to a few centralised production facil-
ities, localised weather patterns and different potential
yield of different production sites can lead to more long-
ranged transport of electricity [7]. In addition to that,
changing weather patterns make it harder to predict con-
gestion, which causes the need to resolve the bottlenecks
using costly congestion management measures such as re-

∗ f.kaiser@fz-juelich.de
† p.boettcher@fz-juelich.de
‡ d.witthaut@fz-juelich.de

dispatch and curtailment[8, 9]. Finally, conventional gen-
erators provide inertia to the power system by their large
rotating masses, while the most prominent renewable re-
sources, i.e. wind and solar, are typically connected to
the grid via power electronics which do not naturally pro-
vide inertia [10, 11].

The changes resulting from this transformation might
critically deteriorate power system security. On the one
hand, at present, the most common strategies to stabilise
the power grid after unforeseen events such as power out-
ages are based on power system inertia [11, 12]. Replac-
ing a large amount of inertia-providing conventional gen-
eration with inverter-based, non-inertia generation facil-
ities might thus endanger the stable operation of future
power systems [10, 13]. Increased line loading and longer
range transport, on the other hand, increase the likeli-
hood of a line exceeding its transmission capacity and
tripping, which can lead to a cascade of failing transmis-
sion elements [14, 15]. In the worst case, a cascade of fail-
ures can disconnect parts of the grid, i.e. a system split
occurs, which has severe consequences for the electric-
ity supply as recent examples demonstrate [16, 17]. For
example, the Western European power outage in 2006,
where millions of households had to be disconnected from
the electricity grid in one of the components, resulted
from a cascade of failures that caused a system split [18–
20]. While both phenomena on their own threaten power
system security, a combination of both can be fatal for
power system security: An increased risk of large scale
cascades in combination with a decrease in system inertia
might result in more frequent system splits in which one
of the split components has a significant lack of inertia.
In such cases, the transmission system operators (TSOs)
are left with very few drastic containment strategies such
as load shedding, where consumers are cut-off from the
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electricity supply [21, 22]. It is therefore of utmost im-
portance to understand which conditions favour system
splits, which splits are the most dangerous ones and how
these can be prevented.

In this work, we evaluate the likelihood of system splits
occurring under different conditions and classify situa-
tions that are exceptionally harmful to the power sys-
tem. To this end, we make use of the open energy system
model PyPSA to calculate the power generation for dif-
ferent weather scenarios using an economic dispatch [23].
The underlying topology represents the transmission grid
of Germany throughout the different years. We then
simulate link failures to identify situations where system
splits occur and classify them by how dangerous they
are. This enables us to identify transmission elements
that are either responsible for a dangerous system split
or are often involved in a subsequent cascade. Knowledge
of the elements that are involved in system splits allows
to expand the transmission capacities of these elements
or modify the system to increase the resilience of their
power system.

II. METHODS

A. AC power grids in the DC approximation

We describe the power grid using a simple graph
G(V,E), where individual nodes i ∈ V (G) correspond
to buses in the power grids and collect all loads, storages
and generators attached to the bus and transmission lines
are described by weighted edges ℓ ∈ E(G). We assume
that the grid has N = |V (G)| nodes and M = |E(G)|
edges. The power flow in the network may then be cal-
culated using the AC load flow equations. The AC load
flow equations relate the injections of real power Pi and
reactive power Qi at a given node i ∈ V (G) to the power
flows through the network. They are calculated as [24]

Pi =
N∑

k=1

|Vi||Vk|(Gik cos(ϑi − ϑk) +Bik sin(ϑi − ϑk)),

Qi =

N∑

k=1

|Vi||Vk|(Gik sin(ϑi − ϑk)−Bik cos(ϑi − ϑk)).

(1)

Here, Vi and ϑi is the voltage magnitude and voltage
phase angle, respectively, at node i and Gik and Bik are
the elements of the network’s nodal conductance and sus-
ceptance matrices, respectively. Here, we focus on the
DC approximation of the AC power flow equations. This
approximation is based on the following assumptions

• Magnitudes of nodal voltages are constant in the
p.u. system, i.e. |Vi| ≈ 1, ∀i ∈ V (G).

• Transmission lines are purely inductive, i.e. their
resistance vanishes when compared to the reactance
rℓ ≪ xℓ, ∀ℓ ∈ E(G).

• Differences between nodal voltage angles ϑn, n ∈
V (G) of neighbouring nodes n,m are small |ϑn −
ϑm| ≪ 1.

Typically, this approximates the real power flows well for
power grids on the transmission level if line loadings are
not too high [25]. As a result, the flow of real power
fm→n along a transmission line eℓ = (m,n) ∈ E(G) that
connects two nodes m and n is approximated by the lin-
ear drop in the voltage phase angles ϑm

fm→n = bℓ(ϑm − ϑn). (2)

Here, bℓ is the inverse line reactance bℓ = 1/xℓ of the
transmission line ℓ, i.e. it corresponds to the elements
of the susceptance matrix bℓ = −Bmn. The power flows
are determined by the effective power injections or with-
drawal pn at a node n by virtue of Kirchhoff’s current
law

pn =
∑

e∈Γ(n)

fe, ∀n ∈ V, (3)

where Γ(n) denotes the set of all edges connected to node
n. In the following, we assume that the power injections
in the grid are balanced at any point in time, i.e. that
the injections sum to zero,

∑

n∈V (G)

pn = 0. (4)

Together, Eqs. (3) and (2) fully determine the power
flows in the network up to a constant shift applied to
all voltage phase angles once the power injections pn at
any node n ∈ V (G) is known.

In addition to Kirchhoff’s voltage law (3) and Kirch-
hoff’s current law (2), the power flow problem, i.e. the
solution to the above equations, may be subject to addi-
tional constraints. Each transmission line ℓ ∈ E(G) has
a maximal loading

|fℓ| ≤ fℓ,max

that, if violated, leads to a shutdown of the corresponding
line. Here we assume that the maximal loading is the
same independent of the direction of the flow.

To ensure a stable power supply in the case of un-
foreseen events, most power grids are operated in N − 1
security which means that power system stability is not
threatened even in case of the failure of a single transmis-
sion or generation element. Here, we incorporateN−1 se-
curity via a ’rule of thumb’ which we refer to as the ’70%-
rule’ that simplifies the underlying optimisation problem
considerably. It states that N − 1 security is approxi-
mately satisfied if no transmission element is loaded more
heavily than 70% of its maximal loading and is commonly
used for power flow calculations [5, 26, 27].
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FIG. 1. Links that fail: Likely system splits in the German transmission grid for different dispatch and transmission grid
scenarios representing the years 2013, 2015, 2016 and 2018 (a-d). Top row: empirical probability ⟨pℓ⟩ that a given link will fail
during a system split that results in at least two large connected components. Note that this probability is evaluated based
only on the events resulting in large connected components, i.e. it gives the probability that an edge will fail provided that a
split resulting in large components happens at all. Bottom row: Probability that a given link will fail during a cascade that
results in at least two large components evaluated over an entire year and provided that a single link failed. We observe that
the pattern of links that are likely to fail changes: Whereas the links connecting Eastern and Western Germany in are the most
likely to fail in 2013, the most likely failures in later years occur between Eastern Germany and South-Eastern Germany, on
the one hand, and South-Eastern and South-Western Germany on the other one. This is likely due to a transmission expansion
in the region connecting Eastern Germany with South-Eastern Germany (”Thüringer Strombrücke”).

B. Energy system models

All networks analysed in this study were optimised us-
ing the open energy system model PyPSA-Eur [23]. We
focus on the German power grid at the transmission level
as presented in Ref. [28] at a resolution of N = 306 nodes
with M = 403 edges in the year 2013 up to M = 407
edges in the year 2018 due to transmission expansion,
counting multiple circuit lines only once. The assump-
tions underlying the optimisation procedure can be found
in detail in Ref. [28]. We briefly summarise these in the
following paragraph.

The power system data used for the analysis is based
on an economic dispatch of the generator and storage
fleet of the respective year. The overall generation has
to match the corresponding historical demand data that
is disaggregated from a country-based to a nodal level
using a predefined heuristic. Finally, the transmission
grid is based on the transmission map provided by the
ENTSO-E and the line capacities and building status are
based on information provided by the transmission sys-
tem operators.

C. Cascading failures and system splits

Algorithm 1 Algorithm for cascading failures.

for All scenarios and target years do
for all hours in the respective year do

Determine the dispatch
for all pre-specified trigger events do

Remove the trigger transmission elements
Simulate cascade of failures
if a system split occurred then

Store key variables:
– Load imbalance ∆P in each connected compo-
nent
– Inertia estimate in components

end if
end for

end for
end for

To study the probability of a system splits and to iden-
tify to what extent a given system split threatens power
system security, we study the scenario outlined in Sec-
tion II B in depth. To this end, we simulate the failure
of each non-bridge link for each possible hour in a given
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FIG. 2. Links that cause failures: Probability of primary failures in the German transmission grid for different dispatch and
transmission grid scenarios representing the years 2013, 2015, 2016 and 2018 (a-d). We analyse the probability of primary
failures which a given link causes a system split that results in large split components evaluated over each hour in the year.
To obtain the probability, we simulate the failure of the link for each hour in the year and monitor the (potential) system split
that it causes.

scenario as we outline in the following, schematic algo-
rithm:

D. Identifying critical system splits

After identifying all possible system splits, we now turn
to the impact of a given split on power system security.
The severity of a split is characterised by the response in
the grid frequency: If the grid frequency in a given dis-
connected part drops slowly, primary control may be able
to balance the mismatch that causes the drop and restore
the grid frequency. A system split may, however, result in
a very fast drop of the grid frequency, such that the grid
operators are left with no other option than performing
emergency load shedding where parts of the consumers
are disconnected from the power supply. Whether the
frequency drops or increases fast is characterised using
the Rate of Change of Frequency (RoCoF) [29]. The Ro-
CoF measures the instantaneous frequency response of
the grid with respect to the grid frequency ω0 immedi-
ately after a change in the power injections by an amount
∆P , e.g. through the loss of a generating unit. It is cal-
culated as

RoCoF =
ω0∆P

2
∑M

i=1 HiSmax,i

. (5)

Here, Smax,i and Hi are the apparent power rating, i.e.
the maximal power output, and inertia constant, respec-
tively, of the synchronous machine with index i. The
higher the RoCoF, the larger the frequency response af-
ter the perturbation and thus the more dangerous the
given failure is. In particular, a system split can lead
to a mismatch in load and generation which causes po-
tentially large frequency excursions – depending on the
available inertia remaining in each of the split compo-
nents.

Here we assume that a certain class of conventional
generators and storages participate in power system in-

ertia generation (see Table I). For simplicity, we assume
that all generators and storages have the same inertia
constant H = 6s which is in the typical range of inertia
constants for conventional generators [30, Table 16.1]. As
a result, we approximate the RoCoF after a system split
that results in a load imbalance of ±∆P in the resulting
component C

RoCoF′ =
50

2 · 6
∆P∑

i∈C Smax,i
Hz · s−1. (6)

E. Classifying system splits

To classify the system splits on the network level, we
suggest two metrics that relate the probability of a given
split to the network structure. Similar to Ref. [31], we
evaluate the empirical probability that a given edge will
fail during a cascade. However, since we are mostly con-
cerned with cascades that result in a system split, we
condition this probability on the fact that the cascade
resulted in at least two individual connected components
consisting of m nodes each. Here and in the following, we
set m = 10. Furthermore, we do not distinguish between
edges that trigger the cascade or edges that fail at some
point during the cascade at this point. We thus calculate
the probability

⟨psℓ(m)⟩T =
1

|T |
∑

t∈T

psℓ(m, t) (7)

where psℓ(m, t) is the probability that link ℓ was involved
in a cascade at time t that lead to a division of the net-
work into two or more connected components of which
two or more consist of at least m nodes and T is the set
of points in time under consideration. In the following,
we will omit the argument (m) since we fix m = 10 and
simply write ⟨psℓ⟩ := ⟨psℓ(m = 10)⟩T .
The probability that a given link fails during a system

split provides a detailed perspective on how the cascades



5

(a)

pn = 0.70

2013 (b) 2015 (c) 2016 (d) 2018

pn = 0.99

FIG. 3. Likely system splits in the German transmission grid evaluated on the level of nodes for different dispatch and
transmission grid scenarios representing the years 2013, 2015, 2016 and 2018 (a-d). We analyse the components of the German
transmission grid that are likely to remain connected after a large system split happened. Top: We set the nodal probability
to pn = 0.7 and thus group nodes together (colours from purple to blue) that are contained in the same component after a
system split in 70% of all analysed cases. Bottom: Same as top but evaluated for pn = 0.99. Notably, there is no strong
difference between the components evaluated in the top row and the bottom one, which means that even in 99% of all splits,
the corresponding nodes end up in the same component. A major difference between the top and the bottom row is a new
component that emerges in the North-Western part of Germany and contains a large share of wind power production.

propagate in the grid and allows to compactly visualise
the system splits on a network level. However, it does
not provide information about likely causes of danger-
ous splits. This is accomplished by the probability of a
primary failure

⟨ppℓ ⟩ =
1

|T |
∑

t∈T

ppℓ (t) (8)

which measures the probability that a given link ℓ causes
such a system split if it fails [31]. Here, we calculate this
probability again for a split that results in at least two
components with size m = 10.

To understand which parts of the grid are likely to re-
main connected after a split, we consider a node-based

metric: we evaluate the nodal probability p
(m)
n that a

given set of nodes is contained in the same subgraph af-
ter a split. Again, we condition this probability on the
set of all splits that results in at least two connected sub-
graphs of which two have at least m nodes. Since we
evaluate this probability again for m = 10 nodes, we will

simply denote it by pn = p
(10)
n . By increasing the value of

pn, we can thus visualise smaller and smaller subgraphs
after a split and thereby identify splits of smaller and
smaller sizes. Thus, nodes that are assigned to the same
component for a value of e.g. pn = 0.9 remain connected
after 90% of the splits that were evaluated.

III. RESULTS

A. Identifying likely splits in the German
transmission grid

We first analyse the results with regard to the prob-
ability of certain system splits and components of the
network that likely remain connected. In Figure 2, we en-
code the empirical probability of secondary failures ⟨psℓ⟩
(Eq. (7)) for the German transmission grid for the four
different scenario years 2013, 2015, 2016 and 2018 (a-d)
corresponding to historical transmission expansion, and
load and generation patterns. We calculate the prob-
ability conditioned on two different events: Firstly, we
consider the probability that a given line fails during a
system split, provided that a system split happens at
all (top). Secondly, we analyse probability that such a
failure happens provided that a single transmission line
fails, evaluated over the dispatch of an entire year. In the
year 2013, we observe that transmission lines connecting
Eastern Germany and Western Germany are the most
likely ones to fail during a split, reaching values of around
⟨psℓ⟩ ≈ 3 · 10−3 for the empirical probability conditioned
on the failure of any transmission line. In the year 2015,
we observe that the probability of failure for these lines is
slightly reduced, with the most likely failures occurring
now on the transmission lines connecting South-Eastern
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generator type CCGT OCGT coal lignite nuclear oil ror biomass
storage type pumped hydro

TABLE I. Generator types and storage types assumed to participate in inertia generation.
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(d) Total splits: 6148

2018

RoCoF′ = −8.29 RoCoF′ = −13.93 RoCoF′ = −11.42 RoCoF′ = −8.82

FIG. 4. RoCoF estimate (see Eq. (6)) evaluated for the system splits in the German power transmission system for different
dispatch and transmission grid scenarios representing the years 2013, 2015, 2016 and 2018 (a-d). We present a histogram that
gives the number of splits and associated RoCoF estimate on a logarithmic scale (top). We then show the transmission grid
for the worst case negative RoCoF that occurred and encode the corresponding distribution of effective generation (yellow)
and load (grey) at each bus with the size being proportional to the absolute power attached to the corresponding node and
highlight the links that failed during the split (red). For all years, the worst case negative RoCoF appears for a split separating
South-Eastern Germany and the remainder.

Germany with the remainder. After the completion of
parts of the ”Thüringer Strombrücke” in the year 2016
that extends the transmission capacities between East-
ern Germany and Southern Germany, we observe that
for both years 2016 and 2018, the connections between
Western and Eastern Germany are much less likely to
fail, while the risk for the lines connecting South-Eastern
Germany with the remainder is increased. In addition
to that, we observe a gradual increase in the secondary
failure probability for a set of transmission lines located
in North-Western Germany over the years, which is likely
connected to an increase in power being produced by
wind turbines in that region. In total, we observe that
the transmission expansion likely reduces the risk of sys-
tem splits that separate Eastern Germany and Western
Germany while potentially increasing the risk for splits
that separate South-Eastern Germany from the rest.

But what causes the secondary failures that result
in these cascades? To understand how the failure cas-
cades propagate through the grid and to identify poten-
tial causes, we now turn to the empirical probability of
primary failures ⟨ppℓ ⟩ (Eq. (7)). This measure evaluates

how likely a system split with two components of size at
least m = 10 occurred in the simulations after the line
ℓ failed. We present this probability in Figure 2 for the
same data set. Again we observe a similar effect of the
transmission expansion on system security: The proba-
bility of primary failures for transmission lines connect-
ing Eastern Germany and Western Germany decreased
throughout the years until it vanished for the years 2016
and 2018. Remarkably, a single transmission line seems
to be responsible for the majority of failures throughout
all years analysed here. It connects Eastern Germany
and South-Eastern Germany, namely the substations of
Remptendorf and Redwitz, which is a known bottleneck
in the German power transmission grid [32]. In the years
2015, 2016 and 2018, the empirical probability of primary
failure for this transmission line is around ⟨ppℓ ⟩ = 0.5, i.e.
its failure caused a system split in almost 50% of all hours
analysed.

Finally, we want to adopt a different perspective to
study which components of the grid are likely to remain
connected in case of system splits. To this end, we con-
sider the nodal probability pn (see Sec. II E) and evalu-
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ate it for the German transmission grid for each of the
scenario years. For a nodal probability of pn = 0.7 (top
row), i.e. when considering nodes that end up in the same
component with 70% empirical probability, we observe
very similar results for the years 2015, 2016 and 2018
(b-d) whereas the resulting components differ slightly for
the dataset of 2013 (a). In the former ones, only splits
separating South-East Germany from the remainder are
visible (coloured nodes) while the resulting components
for the year 2013 also include a separated component
that corresponds to Eastern Germany for this value of
pn. When increasing the probability to pn = 0.99 (bot-
tom row), we observe similar components. For the year
2013, smaller components appear, which indicates that
the splits do not always propagate along the same set of
edges when separating Eastern Germany from the rest of
the grid. The components for the other years strongly
coincide with the components obtained for pn = 0.7. In
the year 2018, however, a new component becomes visi-
ble (dark purple, bottom right) that separates the coast-
lines in North-Western Germany from the rest of the grid.
This might indicate high power flows from the offshore
wind facilities located in this region to the remainder of
the grid for this year.

B. Evaluating the risk of a given split for the
German transmission grid

Finally, we focus on the analysis of the risk that a given
system split poses to system security. To this end, we
consider the effective RoCoF’ as calculated using Eq. (6)
to quantify how severely a given split will affect the grid
frequency. We focus mainly on negative values of the
RoCoF’ for the following reason: Negative values of the
RoCoF correspond to an underproduction of power in
the component where they occur, i.e. the generation is
smaller than the consumption. Typically, this power mis-
match will result in load shedding where consumers have
to be disconnected from the grid and are no longer sup-
plied with electrical power. This is due to the fact that
system splits typically happen within a few seconds, such
that the available generators typically cannot ramp up
power production fast enough to account for the miss-
ing power. In contrast to that, a positive mismatch is
typically easier to balance by curtailing power and, as a
result, has less severe consequences.

In Figure 4, we show the statistics of the effective Ro-
CoF’ for the four sample years considered here and all
system splits that result in large connected components.
We analyse the frequency of occurrence of RoCoF’ values
throughout the years (a-d, top). For every year, we then
present the transmission grid for the single split with the
most negative value of the RoCoF’ along with the ef-
fective consumption or generation at every node and the
failing lines (bottom). While the number of splits is much
higher for the years 2015, 2016 and 2018 than it is for the
year 2013, this seems to lead mainly to more positive Ro-

CoF values. The worst case negative RoCoFs are compa-
rable for all years, ranging from RoCoF′ ≈ −8.3Hz · s−1

for the year 2013 to RoCoF′ ≈ −13.9Hz · s−1 for the year
2015.
In all cases, the worst case split separates South-

Eastern Germany from the rest of the grid and the split
results in the failure of a similar set of links for all years.
In addition to that, the generation and consumption pat-
terns (yellow and grey circles with size proportional to
magnitude) are similar for all four worst-case splits: Af-
ter the split, around 6GW of generation are missing in
South-Eastern Germany where relatively large consumers
of power are located for all four scenarios. A major dif-
ference between the splits in the years 2013 and 2015,
on the one hand, and the ones in 2016 and 2018 on the
other one, is the amount of power being generated by
the lignite power plants in Eastern Germany. For the
former splits, these are among the largest generators and
are visible in the map by eye whereas for the latter ones,
there is less power production in Eastern Germany, but
a higher share of wind power production in the North-
Western coastal area. This fact does, however, not seem
to strongly influence the worst case split since the Ro-
CoF’ is comparable in all four splits.
Note that the values observed here for the positive

value of the effective RoCoF’ are orders of magnitude
larger than typical values observed in the operation of
real-world power grids of 1 − 2Hz · s−1 as tolerable val-
ues for a stable operation to around 6Hz · s−1 in extreme
situations such as blackouts [33, 34]. We will discuss
the shortcomings of our approach that might have driven
these high values in the next section.

IV. DISCUSSION AND CONCLUSION

In this manuscript, we analysed and classified system
splits in the German power system at the transmission
level using scenarios from the years 2013 to 2018. We
found that the transmission expansion between East-
ern Germany and South-Eastern Germany (”Thüringer
Strombrücke”) likely changed the way disturbances prop-
agate through the grid: While Eastern Germany and
Western Germany are likely disconnected in system splits
before 2015, splits after 2015 are more likely to result in
South-Eastern Germany being disconnected from the re-
maining grid. Finally, we found that system splits pose
increasingly larger threats to system stability as mea-
sured by the Rate of Change of Frequency, which in-
creases slightly over the years, and by the increase in the
number of system splits.
Our results confirm the observations that with an

increasing share of inverter-based renewable energy
sources, the risk of incurring situations where one of the
components after a system split has a very high RoCoFs
increases [17]. Thus, low inertia power systems will have
to rely on different strategies and observables other than
the frequency to ensure a stable power supply even in the
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case of contingencies [10]. On the other hand, inverters
connected to renewable energy sources may be designed
such that they provide virtual inertia to the system – an
approach not considered in the present work.

Even though our approach allows gaining insight into
likely splits and provides a solid basis for further studies,
there are some shortcomings in the methodology used
here that could trigger unusually high values of the Ro-
CoF and might result in an overestimation of the num-
ber of splits that occur. Firstly, we consider the German
transmission grid effectively in island mode, i.e. disre-
garding its interconnection with the Central-European
grid. As a result, the components resulting from each
split are comparably small islands and cases where a
large share of the renewable energy sources is contained
in one of the islands occur frequently. Secondly, the sce-
narios analysed here incorporate N − 1 security via the
70% rule and – as a result – the risk of system splits is
likely to be overestimated. With a reduced risk of sys-
tem splits, we also expect fewer events with an unusually
high RoCoF. Thirdly, we neglect the ability of renew-
able energy sources connected to grid-forming inverters

that may contribute to system inertia [35–37] – again po-
tentially overestimating the RoCoF. Finally, the scenario
analysed here displays unusually high levels of conges-
tion for the high spatial resolution considered here due
to load being allocated to the wrong nodes in some cases
(see Ref. [28]). Therefore, we expect that this unusually
high line loading leads to yet another increase in the fre-
quency of occurrence of large scale blackouts and thus
system splits.
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6. Discussion and Conclusion

In this thesis, I have analysed how the structure of a supply network determines its resili-
ence against failure spreading. I have focused mainly on power grids, but have extended
some results also to other supply networks that are well-described by linear flow networks,
such as leaf venation networks. Using the direct mathematical connection between net-
work topology and flow rerouting after failures, I have unveiled fundamental mechanisms
of failure spreading and have introduced novel containment strategies that are based on
results from graph theory. These strategies were found to be very effective in reducing, or
even inhibiting failure spreading completely, thereby greatly improving a supply network’s
resilience against cascading failures. Finally, I have demonstrated how different types of
optimal networks are shaped by fluctuations and damages, pinpointing to potential impacts
of the energy transition on the structure of the underlying network. These findings could
aid transmission expansion scenarios that aim to build reliable future power systems: They
allow to combine the ability of the grid to transport more power over long distances while
increasing the overall power system security. While my results improve the understanding
of power system stability and security for power transmission grids under most circum-
stances, there are different possible ways to extend the present work, some of which I will
discuss in the following sections.

6.1. Power flows beyond linear flow models

Whereas the present thesis focuses mainly on linear models of power flows, the load flow
equations that describe the transport of apparent power in AC power grids are in fact highly
nonlinear. A first, natural extension of the linear model can be obtained by replacing the
linear difference of potentials by a sinusoidal interaction, which reduces to the linear model
for small arguments sin(x) ≈ x, x ≪ π/2. Different studies compare the two models and
suggest under which circumstances to extend the linear model with its non-linear counter-
part, see e.g. Refs. [66, 77]. Physically, the non-linear extension captures power flows over
transmission lines that are more heavily loaded such that the linear model may no longer
be exactly valid. It has been demonstrated that the two models differ in some aspects. In
particular, the non-linear model results in additional stable states for the power grid where
the (power) flows are no longer uniquely determined by the (power) injections: The system
is multistable [78, 79]. We have analysed how this extended model affects our results on
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failure spreading in parts in Ref. [4] and also in Ref. [9] that is not part of this thesis. Nev-
ertheless, additional studies could shed further light on how to extend the present results
to these non-linear models.

While both the linear analysis and its extension are suitable for high-voltage transmis-
sion grids where resistive losses are typically negligible, resistive losses play an import-
ant role in distribution grids or other medium- to low-voltage grids [80]. In the resulting
model, an additional term is included into the balance between flows and injections that
corresponds to the losses. Recent works of ours [8] and others [81] have demonstrated that
losses induce yet additional possible stable states. Again, the flows are no longer uniquely
determined by the power injections in that case, but the mechanism underlying this non-
uniqueness is different compared to the model featuring only sinusoidal interactions: Dif-
ferent levels of losses need to be compensated for by different levels of power generation.
Since losses are highly relevant for medium voltage and distribution grids, extending my
results on failure spreading to these types of power grids will require models that include
losses.

Finally, the results presented in this thesis and the extensions discussed so far focus en-
tirely on real power flows. However, complex power flows also include an imaginary part
which is known as reactive power flow. We have focused on real power flows due to the
fact that many phenomena relevant for power system security, such as transmission line
overloads as a result of overheating, are governed by real power flows and these are typ-
ically orders of magnitude larger than the reactive ones, in particular in the case of the
linear approximation under consideration. In addition to that, power grid analyses in the
physics community have focused mainly on the real power flow, due to its formal similarity
to synchronisation models [82, 83]. Nevertheless, there are approaches that combine the
assumption of lossless transmission lines with reactive power flow analyses [84]. Further-
more, reactive power flows are intimately related to voltage related stability issues such as
voltage collapse [85, 86]. In the future, the results on failure spreading presented in this
thesis should be extended to include power system failures related to reactive power flow.

6.2. Dynamic stability of power grids

Until now, we have focused on static models of power systems. However, given that energy
production and consumption patterns clearly vary over time and unforeseen events such
as failures result in changes of power flows, the variables describing the state of the power
system evolve dynamically over time. Whereas the static perspective on power systems
approximates many crucial aspects of power system stability very well, others can only be
understood from a point of view of dynamical systems.

The dynamical analysis of power system stability gives rise to additional phenomena
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that are not present in the static model. A networked dynamical system can respond in
manifold ways to a perturbation, such as a link failure. For example, a new unstable state
may exist, such that a naive static analysis might conclude that the system is in a new
state which it will, in fact, never reach. In the simplest case, power grids are modelled
by Kuramoto-type models, where consumers and producers of power form a network of
diffusively coupled phase-oscillators that describe rotating motors. For this setup, the only
dynamical variables, that describe the time evolution of each motor, are the voltage phase
angle and the motor’s frequency of rotation [36, 82, 87, 88].

Recently, two types of behaviour have been analysed in these dynamical models that
are not easily captured by static models. First, the power flow limits of transmission lines
might be exceeded during the transient phase where the system moves dynamically from
one state to the other one, although they are not exceeded in the final state described by the
static analysis. In this case, static theory would predict a new state, although the dynamical
overloads might result in a transmission line failure, and eventually in a cascade of failures,
before the new state is reached [89, 90]. Secondly, the generators in the power system might
actually desynchronise as a result of the failure and thus never reach the new state predicted
by static theory [91, 92]. The latter phenomenon is well-known in the context of transient
analysis of power system stability [93].

In Refs. [4, 9], we performed a first analysis on which results on the inhibition of failure
spreading may be applied to non-linear dynamical models of power flows, with a partic-
ular focus on network isolators. We found that isolators can reduce the risk of transient
cascading failures and decrease the control effort necessary to keep the power system at
its nominal frequency in the presence of fluctuations. However, further research would
be beneficial to examine how the proposed strategies may be adapted to reduce failure
spreading or prevent desynchronisation in dynamical models.

Already for the simplest dynamical models of power grids where networks of Kuramoto
oscillators are considered, there are different ways of representing the consumers and gen-
erators that may affect how the system reacts to perturbations [94, 95]. Actual exact mod-
els of synchronous machines involve nine or more dynamical variables per machine, thus
making a network based analysis of an entire grid very challenging [43]. If we extend
Kuramoto-type models by considering a third dynamical variable – the voltage level at
every motor – a novel type of instability emerges known as voltage collapse [86, 96, 97].
Such voltage-induced instabilities can play an important role in cascading failures [51].
Further research is necessary to assess to which extent the presented methods may also
be used to prevent voltage-induced cascading failures and how they can be extended to be
able to prevent failure spreading in this case.
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6.3. Power grid stability and the energy transition

The power system is undergoing a rapid transformation from fossil-fuel based to carbon-
free energy production that poses new challenges to its stability, as discussed in the intro-
duction. We will conclude the discussion about power grids by analysing how the results
presented in this thesis can help to ensure the stable operation of future power systems.

Whereas traditional power production is typically centralised and easily scheduled ahead
of dispatch, potentials for variable renewable energy sources (VRES) are more decentral-
ised and their power production varies stronger over time due to weather dependencies.
On the other hand, potentials for some VRES such as offshore wind are strongly local-
ised at the coastlines, which at present leads to highly loaded transmission grids [98] and
causes high costs via redispatch [99, 100] or even significant curtailment at peak gener-
ation times [101, 102]. For this reason, long-range transport of electrical power becomes
increasingly important to smooth localised weather patterns and to be able to transport
all the power generated by VRES to the consumers even at peak times [21–23]. In this
thesis, I addressed this problem by proposing strategies to limit failure spreading and cas-
cade propagation that rely on building additional transmission lines while at the same time
increasing power grid security.

Additionally, the energy transition poses new challenges to the dynamical stability of
power grids. VRES are typically connected to the power grid via power electronics such
as inverters which – unlike traditional power generators that are typically based on large
rotating masses – do not naturally provide inertia to the power systems [45] and whose
behaviour depends on their design [103–106]. However, traditional control mechanisms
to dynamically stabilise the grid rely on inertia [45, 46]. Thus, the question of how low-
inertia or zero-inertia power systems can be operated stably is under investigation [45,
46, 107]. In particular, cascading failures that lead to system splits can become even more
critical in low-inertia systems if power in one of the split components is produced mainly by
VRES [108]. We have laid a first foundation for quantifying the effect of decreased system
inertia on the risk of dangerous system splits in Section 5. However, further analyses are
necessary, in particular to predict and counteract the most critical splits in a constantly
changing energy mix.

6.4. Network structure and flow networks beyond

power grids

Linear flow networks do not only describe power grids, but can also be used to describe a
variety of other systems. In this section, I would like to broaden the perspective again to
extend the discussion to other types of supply networks.
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As we have seen in Chapter 4, there is a surprising degree of similarity between the op-
timal structures of different types of supply networks. I have focused on comparing optimal
structures of leaf venation networks, dissipation-optimised networks and power grids due
to the similarity in their mathematical description and due to data availability. Neverthe-
less, other spatial networks such as hydraulic networks [62] or resistor networks [65] are
described by the same model and the question of optimal network design plays an import-
ant role also in water distribution system research [109, 110]. Finally, similar models also
emerge in transportation networks [111, 112]. Thus, it would be interesting to see if the
presented approach to loop formation and optimal networks can be extended to other types
of networks and flow models. In addition to that, topological analyses play an important
role also in purely structural, i.e. non-model-based approaches, for spatial [42, 113] and
non-spatial networks [74, 114, 115] throughout disciplines. The dual community approach
that we used to describe optimal networks shaped by fluctuations and damages [7] could
be applied to unveil structural information also for other types of networks.

In addition to optimal network structure, network resilience against failures, the other
central topic of this thesis, also plays an important role for other types of networks. In
this thesis, I focused on link failures and perturbations in flow models ruled by Kirch-
hoff’s laws, which results in flows being rerouted along different parallel paths in a net-
work. Other network-based models incorporate different failure or cascading mechanisms,
such as shortest path routing of flows [116–118], redistribution to neighbouring nodes or
edges [119–122] or contagion between topological neighbours [123].

However, the insight gained about cascading failures from topological models may dif-
fer considerably from power flow models [69, 124]. In particular, depending on the type
of model, different conclusions can be drawn about strategies to limit cascading failures
and failure spreading. In line with experimental observations [125, 126], different models
identify that a reduction in connectivity between different parts of a network limits the
spreading of failures or cascades between them [122, 127–129]. Many recent approaches
that analyse cascading failures using power flow models come to the similar conclusion that
limiting connectivity between different parts of the network or even islanding it, i.e. cutting
all connections between the parts, is a promising strategy to mitigate failure spreading [72,
73, 130, 131]. Our approaches presented in Refs. [4, 5] complement these approaches by
presenting a strategy against failure spreading that is based on a targeted increase in con-
nectivity by adding or strengthening selected links between different parts of the networks.
Further research is necessary to determine if our results may be transferred to other cas-
cading and failure spreading models.
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6.5. Outlook: recent developments related to the

manuscripts

In the final part of this thesis, I would like to comment on recent studies that appeared
after or during the completion of the manuscripts that form the basis for this thesis. I will
discuss the manuscripts presented in each of the chapters separately.

6.5.1. Recent work on link failures and linear flow models

(Chapter 2)

I will start with recent developments regarding the impact of single link failures and col-
lective effects of multiple failures in linear flow networks.

Notably, inverse square laws, such as the one we have identified as a characteristic of
the decay of flow changes with distance in regular grids in Ref. [1], seem to emerge more
generally in linear flow networks. A recent publication has found an inverse square law for
the change in permeability in homogeneous spatial networks upon removal of a single link
in linear flow networks [132]. The main difference of the approach used in this reference
compared to the one that we used is the following: While in power grid-inspired linear flow
models, the nodal power injections are typically fixed for all nodes and the power flows
and nodal potentials can be directly calculated from these, the setup used in Ref. [132]
is applied to biologically inspired networks, where a fixed pressure difference between a
set of nodes is often considered. This corresponds to fixing nodal voltage angles or nodal
potentials for a set of nodes in the power grid context, which is not typically the case for
power systems. It would be interesting to see whether the findings on power laws may be
connected, or whether similar scaling laws can be identified in other setups.

Regarding the aspect of multiple link failures that we studied in Ref. [2], the result-
ing generalised Line Outage Distribution Factors (GLODFs) were analysed recently in
Ref. [133] where the generalised formula for addressing the impact of multiple failing
links was considered. The authors focus on bridge-block decompositions and demonstrate
that not only the LODFs, but also the GLODFs vanish between for links that are contained
in different blocks using a spectral representation of GLODFs.

6.5.2. Recent work on reducing the impact of link failures

(Chapter 3)

Now we turn to recent publications that relate to our work on suppressing the impact of
link failures. A recent series of papers [131, 133, 134] examines strategies to limit failure
spreading based on a spectral representation of Line Outage Distribution Factors (LODFs).
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This approach is similar to our work presented in Ref. [5] since both approaches derive
strategies to limit failure spreading based on a spanning tree formulation of LODFs. How-
ever, the focus of our work and the aforementioned publications is slightly different: While
the latter focus mainly on identifying possible bridge-block decompositions, i.e. regions
of a network with a particularly low connectivity, and suggest an algorithm to achieve this
in the most efficient way in Ref. [133], our work focuses on network isolators and other
network structures that limit failure spreading while increasing connectivity. Nevertheless,
further research may allow to combine the approaches, e.g. via extending the algorithm
proposed in Ref. [133] by allowing to include other network structures such as network
isolators.

6.5.3. Recent work on optimal network design (Chapter 4)

The analysis of optimal supply networks is a field of very active and broad research. A
recent manuscript examines loop formation in multi-commodity networks [135] with a
set-up similar to the one used in our work [5]. The authors analyse how loop formation
is altered in the presence of multiple commodities that each fulfil the conservation laws
we fix for a single commodity and that share the same network infrastructure. They find
that including multiple commodities changes the parameter space where optimal networks
contain loops compared to the single commodity case. It would be interesting to see which
results about discontinuous transitions that we found for the single commodity case may
be translated to optimised networks of multiple commodities.

In Ref. [136], the authors consider three-dimensional, intertwined linear flow networks
inspired by real-world biological examples such as liver or kidney networks. Again, the
networks are locally optimised to minimise the dissipation, but there is an additional term
that accounts for the distance between the two different networks expressed in terms of the
tube radii. Again, a transition to loop formation is observed that occurs robustly throughout
different parameters and a unified description of this transition independent of the para-
meters is identified. Interestingly, the transition to loop formation appears to be continuous
in this case even though the approaches are formally similar. Further research is necessary
to determine whether a discontinuous transition can also be identified in this setting.
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vorgelegen hat;

• dass sie - abgesehen von unten angegebenen Teilpublikationen und eingebundenen
Artikeln und Manuskripten - noch nicht veröffentlicht worden ist sowie,
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