
ANGEWANDTE MATHEMATIK UND INFORMATIK

UNIVERSIT

�

AT ZU K

�

OLN

Report No. 92.107

A fast linear time embedding algorithm

based on the Hopcroft-Tarjan planarity test

by

Petra Mutzel

1992

Das Titelbild zeigt eine Skizze der �altesten bekannten mechanischen Rechenmaschine

f�ur Addition, Subtraktion, Multiplikation und Division. Die Zeichnung entstammt

einem Brief ihres Er�nders Wilhelm Schickard an Johannes Kepler vom 25.02.1624.

Institut f�ur Informatik

UNIVERSIT

�

AT ZU K

�

OLN

Pohligstra�e 1

D-5000 K�oln 51



A fast O(n) Embedding Algorithm based on

the Hopcroft-Tarjan Planarity Test

Petra Mutzel

Institut f�ur Informatik, Universit�at zu K�oln

Abstract - The embedding problem for a planar undirected graph G = (V;E) consists of

constructing adjacency lists A(v) for each node v 2 V , in which all the neighbors of v appear

in clockwise order with respect to a planar drawing of G. Such a set of adjacency lists is

called a (combinatorial) embedding of G. Chiba presented a linear time algorithm based on

the `vertex-addition' planarity testing algorithm of Lempel, Even and Cederbaum using a PQ-

tree. It is very complicated to implement this data structure. He also pointed out that it is

fairly complicated to modify the linear `path-addition' planarity testing algorithm of Hopcroft

and Tarjan, such that it produces an embedding. We present a straightforward extension of

the Hopcroft and Tarjan planarity testing algorithm which is easy to implement. Our method

runs in linear time and performs very e�ciently in practice.

1. Introduction

A graph G is planar if it can be drawn on a plane with no two edges crossing each other

except at their vertices. Such a drawing is called a planar embedding of G. There are

essentially two di�erent linear time algorithms for the problem of testing planarity of a

graph. Lempel, Even and Cederbaum [LEC] presented the `vertex-addition' based algo-

rithm using PQ-trees, a very complicated data structure. It was proved to have a linear

time implementation in 1976 partly by Even and Tarjan [ET] and partly by Booth and

Lueker [BL], by introducing an st-numbering of a graph. The �rst linear time algorithm

was given by Hopcroft and Tarjan [HT] in 1974 using depth-�rst-search trees. This algo-

rithm, which is `path-addition' based, is generally considered to be more complicated than

the PQ-tree approach.

Many applications require not only testing planarity but also embedding a planar graph

in the plane. The embedding problem for a planar undirected graph G = (V;E) consists

of constructing adjacency lists A(v) for each node v 2 V , such that all the neighbors of v

appear in clockwise order with respect to a planar drawing of G. Such a set of adjacency

lists is called a (combinatorial) embedding of G.

1



In 1985, Chiba and Nishizeki [CN] presented an algorithm for constructing a combinatorial

embedding based on the PQ-tree approach. They wrote: \Hopcroft and Tarjan mentioned

that an embedding algorithm can be constructed by modifying their testing algorithm.

However, the modi�cation looks to be fairly complicated; in particular, it is quite di�cult

to implement a part of the algorithm for embedding an intractable path called `special

path'. " In fact, the presence of this `special path' makes the embedding problem more

di�cult. Nevertheless, it is possible to give a straightforward solution for the embedding

problem based on the Hopcroft and Tarjan planarity test. Our method runs in linear time

and space and performs very e�ciently in practice.

In section 2 we explain the main idea of the Hopcroft and Tarjan planarity testing algo-

rithm. Also we de�ne some notation and give some basic observations for the combinatorial

embedding. The main idea of the embedding algorithm is presented in section 3.1 together

with the necessary data structures and the most important procedures. In section 3.2 a

proof of the correctness of the embedding algorithm is given. Computational results are

presented in section 4.

2. Preliminaries

2.1 Planarity test

In the sequel we will consider a depth �rst search tree of the graph G = (V; T;B), where

V is the set of DFS numbers of the vertices, T is the set of tree edges and B the set of

back edges [M]. G is assumed to be biconnected.

The idea is the following: Suppose we identify a cycle, in the sequel called spine cycle,

starting in the root (node 1) of the DFS-tree consisting of tree edges followed by one back

edge leading to node 1 again. Such a back edge must exist, because of the biconnectedness

of G.

Consider the graph in Figure 1. Here C would be the cycle 1 !

T

2 !

T

3 !

T

4 !

T

5 !

T

6 !

B

1. Our aim is to get a plane embedding of G. We can avoid one intersection

by embedding the edge 5 ! 11 outside the cycle C. But then also edge 11 ! 2 has to

be embedded outside C. We notice that there are some dependencies between edges with

respect to the cycle C. After removing the cycle C from G, the graph G nC falls apart in

several `dependency components', called the segments with respect to cycle C.

In a �rst step (A) the planarity of every segment S(e

i

) together with the cycle C is tested,

before in a second step (B) the embeddings of the segments are merged together to get one

planar embedding of C [S(e

1

); : : :[S(e

k

), if possible. In order to solve (A) we determine

a new cycle in C [ S(e

i

), remove this one and repeat the above steps. So, this idea leads

us to a recursive algorithm. To describe this idea more detailed, a few de�nitions will be

necessary.

2



Depth First Search Tree

1

4

7

3

5

6
8

9

10

2

11

C

Figure 1.

3

5

6
8

9

10

2

11

5

7

5

3

4

2

S(e ) S(e )

S(e )

1 2

3 S(e )
4

1

3
4

e

e

e

e

2

G - C has 4 components =: ‘segments’

Let E = B [ T and e = (x; y) 2 E emanating from the spine cycle C. With e we associate

a segment S(e), a daughter cycle C(e), which is the spine cycle of the next recursion step,

the set of attachments A(e) and the set low (e) with respect to C as follows:

If e 2 B then S(e) and C(e) are de�ned to be the union of e and the tree path from y to

x. The set of attachments A(e) is the set fx; yg and low (e) = fyg. If e 2 T , then S(e)

is the subgraph of G that consists of e, the subtree T

e

of T rooted at y, and all the back

edges that emanate from vertices V

e

of T

e

. low(e) is de�ned to be the lowest endpoint of

all back edges starting in V

e

. The set of attachments A(e) is the set of endpoints of all

back edges in S(e) which end in tree ancestors of x. The daughter cycle C(e) is the tree

path from low(e) to one node w 2 V

e

with (w; low (e)) 2 B together with the back edge

(w; low (e)). Notice that there may be several choices of this cycle at this point. In (2.1)

an exact choice of the correct cycle will be given, but it is still not unique. This fact will

cause the major trouble in the embedding algorithm.

The daughter cycle C(e) is divided into its stem low (e) = w

0

!

T

� � �w

r

, the initial edge

e = (w

r

; w

r+1

), its spine path w

r+1

!

T

� � �w

k

and its only back edge (w

k

; w

0

) (see Figure

2). The spine path of the root cycle starting in node 1 consists of the path 1; : : : ; w

k

where

(w

k

; 1) 2 B (In this case the stem is empty). The initial edge e of a segment S(e) starting

at the spine path of C is called daughter edge of the cycle C.

C

C(e)

S(e)

y=wr+1 k
w

0

e
rx=w

Figure  2

low(e)=w

3



Let us consider Figure 1 again. Here the daughter cycle C(e

1

) with e

1

= (6; 7) of C could

be the stem 3 !

T

4 !

T

5 !

T

6 together with either the spine path 7 !

T

8 !

T

9 and

back edge (9; 3) or the one with spine path 7!

T

8!

T

10 and back edge (10; 3). The set

of attachments of S(e

i

) are A(e

i

) = f3; 5; 6g and low (e) = f3g.

A segment S(e) is called strongly planar if there exists a planar embedding of S(e), in

which the stem of the daughter cycle C(e) borders the outerface. The correctness of the

following lemma is obvious if you consider Figure 2 (see [M]).

Lemma 1

Let e be an edge emanating from a spine cycle C. Then C + S(e) is planar if and only if

S(e) is strongly planar.

Task (A) is solved if we will have an algorithm which tests strong planarity. Now, suppose

that all of the k segments S(e

i

) are strongly planar. Under what conditions can they be

combined to one planar embedding of C [ S(e

1

) [ : : : S(e

k

)?

Let e and e

0

emanate from a spine cycle C. Then the segments S(e) and S(e

0

) interlace if

either there exist vertices x; y; z; u 2 C with x < y < z < u and x; z 2 A(e) and y; u 2 A(e

0

)

or A(e) and A(e

0

) have 3 points together (see Figure 3).

C S(e’)

S(e)

u

z

y

x

z

y

C
S(e’) S(e)

Figure  3. Interlacing segments S(e)  and S(e’)

It is intuitively obvious and follows from the Jordan Curve Theorem that interlacing seg-

ments cannot be embedded on the same side of the cycle C. It is easy to construct the

interlacing graph IG(C) with respect to C: The vertices of this graph correspond to the

segments S(e

i

), where the edges e

i

, for i = 1; : : : ;m are all the edges leaving the spine

path of cycle C. Two nodes will be connected by an edge if and only if the segments

corresponding to these nodes interlace. The following lemma answers the above question.

4



Lemma 2

Let e be a tree edge, C(e) = w

0

!

T

w

1

!

T

: : : !

T

w

k

!

B

w

0

and e = (w

r

; w

r+1

). Let

e

1

; : : : ; e

m

be all the daughter edges of C(e) leaving the cycle in nodes w

j

, r < j � k. Then

S(e) is planar if and only if S(e

i

) is strongly planar for all i = 1; : : : ;m and IG(C(e))

is bipartite. More speci�cally, there exists a partition L, R of the set Sf(e

1

); : : : ; S(e

m

)g

such that no pair of segments of L or R interlaces.

Moreover, segment S(e) is strongly planar if and only if S(e) is planar and for every

component D of IG(C(e)) either w

1

; : : : ; w

r�1

\

S

S(e)2D\L

A(e) = ; or w

1

; : : : ; w

r�1

\

S

S(e)2D\R

A(e) = ; is satis�ed.

Proof: see [M].

Lemma 2 is intuitively obvious, although the proof of it is complicated. The condition

in the last part of the lemma tests exactly the fact if the stem of the spine cycle C(e)

borders the outerface. So, for example, for the segment S(e) in Figure 4 the condition is

not satis�ed, which is equivalent to the fact that S(e) is not strongly planar. This lemma

already suggests the algorithm: In order to test strong planarity of a segment S(e), just

test strong planarity for all the segments S(e

i

); i = 1; : : : ;m, construct the interlacing

graph IG(C(e)) and test the additional condition. For the e�ciency of the algorithm it is

important to sort the adjacency lists of the nodes initially. We de�ne the following weights

c((v;w)) for all edges e = (v;w). Note that each node is identi�ed with its DFS-number.

(2:1) c((v;w)) :=

8

<

:

2 � w; if (v;w) 2 B

2 � low1 (w); if (v;w) 2 T and low2 (w) � v

2 � low1 (w) + 1; if (v;w) 2 T and low2 (w) < v

where low1 (w) := min(fvg [ fz j w !

�

T

x !

B

zg) and low2 (w) := min(fvg [ fz j w !

�

T

x !

B

z with z 6= low1 (w)g) (w !

�

T

x denotes the tree path from node w to node x ).

Then we sort the adjacency list of each node in increasing order by these weights. Thus

edge e = (w

j

; z) is considered before edge e

0

= (w

j

; z

0

) if either low(e) < low (e

0

) or if

low (e) = low (e

0

) together with jA(e)j = 2 and jA(e

0

)j � 3 is satis�ed.

In the sequel we assume that the adjacency lists are sorted as described above. The spine

cycle of a segment S(e) = S((w

r

; w

r+1

)) is now easy to construct. Start with node w

r+1

and call the �rst node in its adjacency list w

r+2

. In the adjacency list of w

r+2

we �nd at

the �rst position w

r+3

, and so on, until we reach a back edge (w

k

; w

0

). This back edge

closes the cycle C(e). Note that w

0

= low(e) and the spine path of the segment S(e) is

w

r+1

!

T

� � �w

k

. The planarity testing algorithm can be described as follows.

5



Procedure stronglyplanar(e);

f Tests if the segment S(e), e = (w

r

; w

r+1

) is strongly planar. In this case the output is

the ordered list of attachments of S(e) g

(1) Construct the spine path of the segment S(e) in the following way: Start in node

w

r+1

and continue taking the �rst neighbor on every adjacency list until a back edge

(w

k

; w

0

) is encountered. The spine path is now w

r+1

; w

r+2

; : : : ; w

k

.

(2) For every edge e

i

emanating from the spine path of C(e) at w

k

; : : : ; w

r+1

do

(3) Call stronglyplanar (e

i

);

(4) If S(e

i

) is not strongly planar, then STOP f G is not planar g;

(5) Add S(e

i

) to the interlacing graph IG

(6) If the interlacing graph is not bipartite, then STOP

(7) f C(e) + S(e

1

) + : : :+ S(e

m

) is planar g

If C(e) + S(e

1

) + : : : + S(e

m

) is not strongly planar, i. e. the additional condition of

Lemma 2 is not satis�ed, then STOP f G is not planar g

This is just a basic version of the planarity testing algorithm of Hopcroft and Tarjan.

There are a few questions left open: The interlacing graph may have a quadratic number

of edges. In order to implement the algorithm in linear time and space it is not necessary

to store the interlacing graph speci�cally. Moreover, we have not yet described how to

test bipartitness in constant time. But it is not necessary to know such details in order to

understand the embedding algorithm. For interested readers [M] and [T] is recommended.

It is important though to understand the output of the planarity testing algorithm. The

procedure stronglyplanar (e) constructs the components of the interlacing graph IG(C(e)).

Every component D consists of the two interlacing sides L(D) and R(D). Let e

1

; : : : ; e

m

be all the daughter edges emanating from the cycle C(e). The function alpha is de�ned

by alpha : fS(e

1

); : : : ; S(e

m

)g ! fLS ;RSg with the condition that the function values of

all pairs of interlacing segments are di�erent.

So, for every segment S(e

i

) we get an entry alpha(S(e

i

)) which puts the interlacing seg-

ments on di�erent sides of the cycle C(e) in the way that

(2:2)

alpha (S(e

i

)) = RS implies that

alpha (S(e

i

)) = LS that

A(e

i

) 2 fw

0

g [ fw

r

; w

r+1

; : : : ; w

k

g and

A(e

i

) 2 fw

0

; w

1

; : : : ; w

r�1

; w

r

; : : : w

k

g:

Consequently, in most of the cases except a special one (see Observation 3), every segment

with the entry alpha(S(e

i

)) = RS can be embedded on the outer side of the cycle C(e).

(It is no problem to embed them inside the cycle C(e). But segments with the entry

alpha(S(e

i

)) = LS cannot be embedded on the outer side of the cycle in general, like S(e

i

)

in Figure 4).

6



2.2 Preliminaries for the embedding

Let C(e) be a spine cycle, e = (v

0

; v

1

), e

i

= (x; y) an edge emanating from the spine path

of C(e) and z be an attachment of the segment S(e

i

). z is called normal if z > low (e) and

special if z = low (e). z is called e-normal if z > low(e) and z < v

0

. A daughter cycle C(e

i

)

is called normal if either alpha (S(e

i

)) = LS is true or the conditions alpha (S(e

i

)) = RS

and low (e

i

) > low (e) are satis�ed. We will see later that the embedding of a normal cycle

is easy and that problems occur if the cycle is special. In the sequel three observations are

shown in order to get a feeling about the embedding problem and the involved notion.

Observation 1

Let C(e) be a normal cycle and e

i

an edge emanating out of the spine path of C(e). If

there is an e-normal attachment in A(e

i

), then the segment S(e

i

) must be embedded into

the cycle C(e) in all planar embeddings of the graph.

Proof: The edge e = (v

0

; v

1

) is emanating out of the spine path of C. Without loss of

generality, we assume that C(e) is embedded in the inner side of the cycle C. Suppose

S(e

i

) is embedded on the outer side of the cycle C(e) (see Figure 4).

C

C(e )

e
e

v0

v0-1

0

Figure  4

low(e)=w

i

The starting point of the edge e

i

is inside C. To reach a point between (low (e) + 1) and

(v

0

� 1) with a path starting in e

i

, either the cycle C(e) must be passed or the cycle C.

This is a contradiction to the planarity of the graph.

�

The daughters (v

i

; x

i

) of a cycle C(e) are all the edges e

i

emanating from the spine path

of C(e) and all the nodes v

i

are called sprouts . The corresponding cycles C(e

i

) and C(e)

are called daughter cycle and mother cycle. The edge e

i

is called left (right) if it emanates

to the left (right) side of the mother cycle (left/right with respect to the view from the

starting point to the endpoint of the spine path). This fact is also denoted by the expression

side(e

i

) = left or right, respectively. It is obvious that Observation 2 holds.

7



Observation 2:

Let C(e) be a mother cycle and side(e) = left (right), then for all daughters e

i

we have:

If alpha(S(e

i

)) = LS then the side(e

i

) = left (right) again, but if alpha (e

i

) = RS then e

i

has to be embedded to the other side, i. e. side(e

i

) = right (left).

An exceptional cycle C(e) is a cycle for which alpha (e) = RS and low (e) = low (e

0

), where

C(e

0

) is the mother cycle of C(e). This means the segment S(e) with alpha(S(e)) = RS

has a special attachment.

Consider the exceptional cycle C(e) in Figure 5. Let e = (w

r

; w

r+1

) = (v

0

; v

1

) and

~e = (w

k

; w

0

) the only back edge in C(e).

w

e

e
e

e

w

w

0

k

~
~

~

r

Figure  5

e

e

e i

i

0

0
j

Since alpha(S(e)) = RS , we must have low2 (v

1

) < v

0

. Every daughter edge e

i

of C(e)

with alpha(S(e

i

)) = LS has to be embedded on the outside of the cycle C(e), because

only edges e

j

with low (e

j

) 2 fw

0

g[fw

r

; : : : ; w

k

g can be embedded into C(e). In this case

Observation 1 does not hold any more.

Observation 3:

Let C(e) be an exceptional cycle and e

i

an edge emanating out of the spine path of C(e). If

alpha(S(e

i

)) = RS, then S(e

i

) must be embedded into the cycle C(e) and if alpha (S(e

i

)) =

LS, then S(e

i

) must be embedded on the outside of C(e).

If C(e) is an exceptional cycle, we will have additional problems with embedding it into its

mother cycle. A cycle is called orientated left if it is directed against the clock, otherwise

it is called orientated right.

8



3. The embedding algorithm

3.1 The idea

In a �rst phase we will run the algorithm stronglyplanar . The output is, in the case that the

graph is planar, an entry alpha(S(e

i

)) for every segment S(e

i

), which determines on which

side of its mother cycle the segment has to be embedded (see Observation 2). Then we start

the second phase, in which a planar map has to be determined. Therefore it is necessary

to �nd an algorithm which embeds the daughter segments S(e

i

) inside their mother cycle

C(e). This problem can be reduced to the problem of embedding the daughter cycles

C(e

i

) inside the cycle C(e). The correct embedding of the segments S(e

i

) is guaranteed

by recursion.

During the embedding of these cycles we construct a clockwise ordered neighbor list, con-

sisting of a list `ancestor', in which the unique tree ancestor of every node is recorded, a list

`successor', in which an entry of the �rst discovered successor of every node is entered and

a list of the remaining neighbors for every node. It is trivial to �ll up the lists `ancestor'

and `successor'. The hard task is to construct the clockwise ordered lists of the remaining

neighbors. Obviously, in every iteration an entry in one of those remaining neighbor lists

is necessary only for the initial edge and the back edge of the actual cycle.

The order of embedding the cycles is very important. It is exactly the same order as in

the procedure stronglyplanar. We assume again that the adjacency list of every node v is

sorted as in (2.1). This ordering leads to the following rules for embedding the cycles.

Rules for embedding the cycles

Let C(e) be the cycle w

0

!

T

w

1

!

T

� � �w

k

!

B

w

0

and e = (w

r

; w

r+1

). Let e

p

= (w

p

; x

p

)

and e

q

= (w

q

; x

q

) with p; q 2 fr + 1; � � � ; kg.

The daughter cycle C(e

p

) is embedded before the daughter cycle C(e

q

) if w

p

> w

q

.

If w

p

= w

q

, then for i; j 2 fp; qg C(e

i

) is embedded before C(e

j

) if low1 (x

i

) < low1 (x

j

).

If these two values are equal, then e

i

will be the �rst if low2 (x

i

) � w

i

. Moreover, we

have low1 (x

p

) � low1 (w

r+1

) and, because of the biconnectedness of G, the inequality

low1 (x

p

) < w

p

holds.

We can make the following observations in the case w

p

= w

q

and low1 (x

i

) = low1 (x

j

). If

both values low2 (x

p

) and low2 (x

q

) are greater than or equal to w

p

, then it does not matter

which cycle will be embedded �rst. If both values are smaller than w

p

= w

q

, then they

interlace. The planarity test took both segments on di�erent sides of the mother cycle.

So, it does again not matter which segment will be embedded �rst. Thus the ordering of

the edges, which is not uniquely determined, will not lead to any intersections.

9



In the sequel the general ideas are given for embedding the daughter cycles in its mother

cycle. Consider the edge e

i

= (w

i

; x

i

).

(A) The embedding of the �rst edge e

i

of the spine path of C(e

i

)

Claim: It is correct to embed e

i

directly next to the edge (w

i�1

; w

i

), where w

i�1

is the

tree ancestor w

i�1

of node w

i

in the cycle C(e) (see Figure 6a). This corresponds to the

insertion of node x

i

directly next to node w

i�1

into the neighborlist of node w

i

. Recall

that each node has exactly one tree ancestor, therefore it is su�cient to have one array for

all nodes to store their T -ancestors.

(B) The embedding of the back edge ~e

i

= (x

k

; z) of C(e

i

), if C(e

i

) is not an

exceptional cycle

Claim: The correct way to embed ~e

i

is next to the edge (w

l

; w

l+1

), where w

l

= z and w

l+1

denotes the successor of z in the cycle C(e) (see Figure 6b, the case where z is special).

This corresponds to the insertion of node x

k

directly next to node w

l+1

in the neighborlist

of z. Note that those successors are not necessarily identical with the ones in the list

successor . (In Figure 6b edge ~e

j

has to be embedded directly next to edge (w

r

; w

r+1

), but

the entry in the list successor is y). Therefore, we have to update this particular successor

in every iteration step.

C(e )

e

e

w

e

wi

i
i-1

e
i

e

z

C(e )

Figure  6a Figure  6b

j
je

r

r+1

w

w

kx’

z’xk

y

(C) The embedding of the back edge, if C(e

i

) is an exceptional cycle

Here only the node w

0

:= low1 (x

i

) = low1 (w

r+1

) is of interest. The idea is the following:

Given a mother cycle and any special daughter cycle, then there are exactly two possibilities

to embed the latter one correctly, depending on the relative position of C(e

i

) to C(e) (inside

or outside C(e)). This corresponds to the fact that there are exactly two possible positions

in the neighborlist of w

0

, where x

k

may be inserted. These two positions must be updated

before the embedding of the next cycle.

10



More detailed: before starting the embedding of the daughters of C(e), the only back edge

in the cycle C(e) is already added to the adjacency list of w

0

. After the corresponding

insertion in the neighborlist of w

0

, the positions next to the entry of edge ~e are marked.

So, the �rst daughter cycle C(e

i

) with minimum attachment w

0

will be embedded directly

next to this edge, say inside C(e). After the corresponding insertion into the neighborlist,

it is necessary to update the marked position inside C(e) in order to include the back edge

(w

0

k

; w

0

) of the next daughter cycle of C(e) correctly. Hence, it is necessary to �nd an

algorithm, which updates the correct positions after the embedding of a back edge (see

Figure 5).

3.2 The data structure

To realize the above ideas, it is necessary to construct the above described data structure,

the neighbor record. For every node we have a record �eld, nghbrec[v], which contains all

necessary data of the already embedded neighbors of v, among them the most important

two lists predlist and succlist which will be constructed during the run of the algorithm.

Grandcycle(v) denotes the �rst cycle containing v. All the neighbors of v which emanate

from or into the left side of the grandcycle(v) are stored in the list nghbrec[v].predlist. The

neighbors of v emanating from or into the right side of the grandcycle(v) are stored in

nghbrec[v].succlist. Each of the neighborlists nghbrec[v].predlist and nghbrec[v].succlist has

two pointers frmark and bhmark to mark those edges, after which the next neighbor of v

can be included. The ancestor of every node is stored in the record �eld nghbrec[v].ancestor.

Recall that every node has exactly one tree ancestor except the �rst one (node 1). Its tree

ancestor is determined to 0, which corresponds to the supposition that the �rst cycle C is

a loop at node 1 and the edge (1; 2) is the only daughter edge of C. The successor of v

in grandcycle(v) is stored in the record �eld nghbrec[v].successor. In the following we will

shorten the notation informally to predlist (v), succlist(v), ancestor (v) and successor (v).

1

2

3

4

5
6

7

8
list

successor

1 2 3 4 5 6 7

4 7 4 5 2 2

6 5 8 7

0 1 2 3

2 3 4 1 6 1

8 8

3 5 5

2

ancestor

Example  1. The neighbor record of the plane graph

left/right

11



In the above example the described data structure becomes clear.

Whenever a new daughter cycle will be considered, an entry is done in the list sname of

the sprout , i. e. the head of the initial edge. This entry contains the information to which

side of its mother cycle the path will be embedded, that is either on the left or on the right

side, which is important when (a few iterations later) a cycle with its back edge ending at

the sprout will be embedded. In this case we need the above information in order to decide

into which neighborlist (predlist or succlist) the entry has to be inserted. Because of the

partition of the neighborlist of v in predlist (v) and succlist(v) we do not have to construct

a clockwise ordering anymore. The new task is to construct the neighborlists predlist (v)

and succlist(v) in which the remaining neighbors occur.

As soon as all cycles are embedded, the new ordered adjacency list can be constructed

easily. Just concatenate the lists in the following way:

ancestor (v) [ predlist(v) [ successor (v) [ (succlist(v))

�1

.

The following procedures are crucial for the embedding algorithm. They include an edge e

at the correct position. The variable vlist carries information in which part of the list the

edge has to be included, i. e. either predlist or succlist . Recall that there is no di�erence

between including the edge e = (w; v) and inserting the node w into the list of v.

Procedure putinfront(e,vlist)

This procedure includes the edge e at the beginning of the neighborlist given by vlist . The

pointers frmark and bhmark are not changed.

Procedure append(~e,zlist)

The edge ~e will be included directly behind the pointer bhmark in the list zlist . Afterwards,

bhmark points to the new edge ~e in the list given by zlist .

Lemma 3

In the algorithm the procedure append includes the edge e to the end of the list given by

zlist.

Proof: We have to show that the pointer bhmark points to the last element of the list

given by zlist , whenever the procedure append is called in the algorithm. This is shown in

section 3.4.

�

In the following two procedures, let ~e = (w

j

; z) be the only back edge of the daughter

cycle C(e), which has to be embedded. The variable direction 2 fbefore ; behindg tells us

to which of the two marked positions, frmark and bhmark , the edge ~e has to be included.

The correct part of the neighborlist, predlist (z) or succlist(z), is given by the variable zlist .

12



Procedure rangout(~e, direction, zlist);

(1) If (direction = before) then

(2) Append edge ~e behind the �eld marked with frmark in the neighbor-

list of z given by zlist);

(3) Do not change frmark ;

(4) If (direction = behind ) then

(5) Append the edge ~e behind the �eld marked with bhmark in the list

given by zlist ;

(6) Let bhmark point to the actual included �eld, edge ~e is marked.

Procedure rangin(~e, direction, zlist);

This is the same as Procedure rangout with the only changes in lines (3) and (6):

(3') Set frmark to the new �eld;

(6') Do not change bhmark .

These two procedures have di�erent e�ects. In procedure rangout the cycles are embedded

to the outer side corresponding to the edge ~e, whereas in procedure rangin the daughter

cycles are embedded to the inner side corresponding to the edge e

0

= (z;w

l+1

). In this

case the edge e

0

stays marked the whole time. Now, it is easy to describe the algorithm.

3.3 The Embedding Algorithm

Let e = (v

0

; v

1

) be an edge emanating from C. Embed the cycle C(e) correctly into his

mother cycle. Then embed recursively all daughter cycles C(e

i

); i = 1; � � � ;m, of C(e).

(P) Procedure planarembedding(e, side)

(0) Walk along the spine of C(e) while determining the ancestors and successors of the

met nodes.

(1) Determine the actual value of side (Observation 2) and update sname(v

0

) to this value

(that is either left or right);

(2) Include node v

1

into the neighborlist of v

0

(embedding of the initial edge of the segment

S(e)) and then the node w

k

into the list of the endpoint w

0

of the segment S(e) (by

(PI) and (PE));

(3) Mark node v

1

in the neighborlist of v

0

;

(4) Mark node w

k

(~e = (w

k

; w

0

)) in the neighborlist of w

0

. Now, the segments of the

daughters can be included directly before and behind w

k

.

(5) For all daughter edges e

i

do

Call the procedure planarembedding (e

i

; side);

(6) Mark in the neighborlist of w

0

the correct two positions, where the next edges (sisters

of e) can be included (by (PM)).

13



(PI) Embedding in the starting point of edge e = (v;w)

(1) If (side = left) then

(2) vlist := predlist

(3) Else vlist := succlist ;

(4) Call procedure putinfront (e; vlist);

(PE) Embedding in the endpoint of the edge ~e = (w; z)

(1) If z is normal then

(2) If z has not been a sprout so far, then

(3) Call the procedure append (~e; zlist);

(4) Else f sname(z) 2 fleft; rightgg rangin(~e; direction ; zlist)

(5) Else f z is special g rangout (~e; direction ; zlist).

(PM) Determination of the pointers of the edge e

(1) Mark the correct two positions in the neighborlist of w

0

(~e = (w

k

; w

0

)).

The variable zlist depends on various parameters. The detailed rules how to set zlist ,

direction and side as well as a description of the procedure (PM) is given in the proof

of the correctness of the algorithm (see section 3.4). In the following example we give a

detailed run of the embedding algorithm.

Example

Let us consider the graph given by the following adjacency list, which is already sorted by

(2.1).

node 1 2 3 4 5 6 7

neighbors 2 3 1 4 5 1 1 7 6 1 2 1 4

The algorithm stronglyplanar gives us the information that the graph is planar and the

values of the function alpha . The �rst cycle C is (1! 2! 3! 1) with its only daughter

edge e = (3; 4). The cycle C(e) is (3 ! 4 ! 5 ! 1 ! 2 ! 3). The daughter edges

of that one are e

1

= (5; 7) and e

2

= (5; 6). Procedure stronglyplanar ((3; 4); left ) gives us

alpha(S(e

1

)) = RS and alpha (S(e

2

)) = LS (because the two segments S(e

1

) and S(e

2

)

interlace and the attachments of A(e

2

) 2 fw

0

+ 1; w

r

� 1g = f2g, see (2.2)). Observation

1 tells us to embed S(e

2

) into the cycle C, therefore S(e

1

) has to be embedded outside

C. Having this information we can draw the graph by hand, it has to look like Figure 7.

Let us see if our algorithm planarembedding gives the correct embedding. We start with

the edge (1; 2) and suppose that (1; 2) is on the left side of its mother cycle (the loop at

node 1). The position of the pointers frmark and bhmark are signi�ed by the underlines

or overlines respectively.

14



planarembedding ((1; 2); left ); Cycle: (1! 2! 3! 1);

Enter ancestor (i) and successor (i) for i = 1; 2 and 3;

(This step is trivial, therefore we will omit this step in the sequel);

Add edge (3; 1) at its endpoint by append : predlist (1): � ! 3;

Mark edge (3; 1): predlist (1): � ! 3;

planarembedding ((3; 4); left ); Cycle: (3 ! 4! 5! 1! 2! 3);

Add 4 to the starting point: predlist (3): � ! 4;

Add 5 to the endpoint by rangout(behind ): predlist(1): � ! 3! 5;

Mark node 4: predlist (3): � ! 4;

Mark edge (5; 1): predlist (1): � ! 3! 5;

planarembedding ((5; 6); left ); Cycle: (5! 6! 1! 2! 3! 4! 5);

Starting point (after marking): predlist (5): � ! 6;

Endpoint by rangout(behind ): predlist (1): � ! 3! 5! 6;

Mark edge (6; 1): predlist(1): � ! 3! 5! 6;

planarembedding ((6; 2); left); Cycle: (6! 2! 3! 4! 5! 6);

The change of the marks is not relevant for the embedding of edge (4; 2).

Therefore it will not carried out here;

Starting point (after marking): predlist (6): � ! 2;

Endpoint by append : predlist (2): � ! 6;

End of planarembedding ((6; 2); left);

Change marks: predlist (1): � ! 3! 5! 6;

End of planarembedding ((5; 6); left);

planarembedding ((5; 7); right ); Cycle: (5! 7! 1! 2! 3! 4! 5);

Starting point (after marking): succlist (5) : � ! 7;

Endpoint by rangout(before ): predlist (1): � ! 3! 7! 5! 6;

Mark edge (7; 1): predlist(1): � ! 3! 7! 5! 6;

planarembedding ((7; 4); right ); Cycle: (7! 4! 5! 7);

Here the changing of the marks are not relevant and compensate each other;

Starting point (after marking): succlist(7): � ! 4;

Endpoint by append : succlist(4): � ! 7;

End of planarembedding ((7; 4); right );

Change marks: predlist (1): � ! 3! 7! 5! 6;

End of planarembedding ((5; 7); right );

All daughter cycles of C((3; 4)) are embedded correctly at this point;

Change marks: predlist (1): � ! 3! 7! 5! 6;

End of planarembedding ((3; 4); left);

End of planarembedding ((1; 2); left );

15



1

2

345

6

7 pred/succ
list

successor

1 2 3 4 5 6 7

4

7

4

5

26

5

7

0

1

2

32

3 41

6

1

3

5

5

6 7

1 1

node

The plane graph .Figure  7.

ancestor

The neighbor record constructed by ‘planarembedding’

The algorithm planarembedding constructed the neighborlist in Figure 7. In fact, after

concatenating the lists we get a correct planar embedding of the graph.

node 1 2 3 4 5 6 7

neighbors 3 7 5 6 2 1 6 3 2 4 1 3 5 7 4 6 1 7 5 2 1 5 1 4

3.4 The correctness of the algorithm `planarembedding'

We prove the correctness of the algorithm in two steps. The lemma below implies the

correct embedding of the �rst daughter C(e

0

) in its mother cycle C(e).

Lemma 4

(1) After the embedding of a complete daughter segment S(e

0

) into its mother cycle (after

line (6) of planarembedding (e)) the correct two positions in every list nghbrec(z) with

z 2 A(e) are marked.

(2) If after the embedding of the already handled sister cycles C(e

j

) of C(e

0

) the correct

two positions are marked in every list nghbrec(z) with z 2

S

j

A(e

j

), then C(e

0

) will

be included correctly. After that the correct two positions in the neighborlist of low (e

0

)

are marked.

Lemma 5

The correctness of the algorithm planarembedding is shown if (1) and (2) of Lemma 4 are

proved.

16



Proof of Lemma 5: Start with the grandcycle C((1; 2)). By the recursiveness of the

algorithm the �rst daughter cycle of C will be embedded, then the �rst daughter cycle of

that one, and so on. Let C(e

1

) be the �rst of these cycles without daughter. Because of

(2) it will be embedded correctly into C(e), its mother cycle. By (2) in line (6) the correct

positions are marked and all sisters of C(e

1

) will be included correctly (using (1) and (2)).

�

Point (1) of Lemma 4 depends on what to do in line (6). This will be described in detail

in the second part of this section. In the �rst part point (2) of Lemma 4 is shown.

For the following proofs it is helpful to distinguish between the following four cases.

A: Father cycle C(e) is orientated left, e is left

B: Father cycle C(e) is orientated right, e is right

C: Father cycle C(e) is orientated left, e is right

D: Father cycle C(e) is orientated right, e is left

ee

e’

v0

0

v
e~

v
e~

v
e v

e
v

e

v
e~

v
e~

e eg g

A B C D

Figures of the four possible casesFigure  8.1.

Proof of (2) of Lemma 4:

The correctness of the embedding in the starting point

The embedding of the initial edge is independent of any marks and very easy to do. Let

C(e) be the mother cycle and e = (w

r

; w

r+1

). Claim 1 is obvious.

Claim 1: The edge e

0

will be included in predlist (v

0

) i� e

0

has the attribute left. If e

0

has

the attribute right, then it will be included into the list succlist(v

0

).

Claim 2: It is correct to include the edge e

0

= (v

0

; v

1

) to the beginning of the neighborlist

of v

0

.

Proof of Claim 2: If there is an already embedded edge e

0

in the list of v

0

, then it must

have a smaller or equal low-value. If the value is the same, then it is correct to include

17



the new edge before edge e

0

into the neighborlist of v

0

. If the edge e

0

has a smaller low-

value, then it must be included behind the new edge e

0

in the neighborlist (see Figure 6a).

�

The correctness of the embedding at the endpoint

Before this can be shown, we have to determine the variables zlist and direction needed in

(PE). Let ~e

0

= (w; z) be the only back edge in the cycle C(e

0

). The aim is to embed this

edge. There are several cases:

CASE I If ~e

0

is normal and z is not a sprout, then

If side(e

0

) = left then zlist(~e

0

) := predlist (z)

Else fside(e

0

) = rightg zlist(~e

0

) := succlist(z);

CASE II If ~e

0

is normal and z is a sprout, then

If sname(z) = left then zlist(~e

0

) := predlist(z)

If side(e

0

) = left then direction := before

Else fside(e

0

) = rightg direction := behind ;

Else fsname(z) = rightg zlist(~e

0

) := succlist(z)

If side(e

0

) = left then direction := behind

Else fside(e

0

) = rightg direction := before ;

CASE III If ~e

0

is special flow (e

0

) = low (e

v

)g and z is not a sprout, then

zlist(~e

0

) := zlist(~e

v

);

If zlist(~e

0

) = predlist (z) then

If side(e

0

) = left then direction := behind

Else fside(e

0

) = rightg direction := before ;

Else zlist(~e

0

) = succlist(z), then

If side(e

0

) = left then direction := before

Else fside(e

0

) = rightg direction := behind ;

CASE IV If ~e

0

is special and z is a sprout, then

If sname(z) = left then zlist(~e

0

) := predlist (z)

If side(e

0

) = left then direction := behind

Else fside(e

0

) = rightg direction := before ;

Else fsname(z) = rightg zlist(~e

0

) := succlist(z)

If side(e

0

) = left then direction := before

Else fside(e

0

) = rightg direction := behind ;

18



e

z

e

z

e

e

e

e

z z

A B C D

CASE IV:  e  is special and z is a sprout
~
0Figure  8.4.

before

behind

e

p
re

d
lis

t

s
u

c
c
lis

t

e~

before

behind

e

p
re

d
lis

t

s
u

c
c
lis

t
e~

z z

~CASE II: e  is normal and z is a sprout0Figure  8.2.

0e~

B

ze

e

gz’ e

e

g z’
z

C DA

before

behind

e

p
re

d
lis

t

s
u

c
c
lis

t

e~

before

behind

e

p
re

d
lis

t

s
u

c
c
lis

t

e~

z z

ze

e

gz’ e

e

g z’
z

e0

0
e ’ e ’

0

e
0

e
~

e
v

~

CASE III:  e  is special and z is not a sprout
~

0

A B C D

Figure  8.3.

Let us show the correctness of the �rst case.

CASE I: ~e

0

is normal and z has not been a sprout so far

Claim 1: It is correct to include the edge ~e

0

in predlist (z) if e

0

is left. Otherwise ~e

0

has

to appear in succlist(z).

Proof: The spine path has to be embedded together with ~e

0

to the same side of the mother

19



cycle. Claim 1 follows from the observation that each side of a cycle is related to exactly

one list (see Figure 8.1).

�

Claim 2: The edge ~e

0

has to be appended to the end of the neighborlist of z. This will be

done by procedure append .

Proof: First consider the case that e

0

is the �rst daughter of its mother cycle. Then Claim

2 is shown if Claim 3 is proven.

Claim 3: If C(e

0

) is the �rst daughter of its mother cycle, then the list zlist(~e

0

) in

which ~e

0

should be included is empty.

Proof: The initial edge (z;w

j

) of a previously embedded cycle cannot be included,

because v

0

> z (compare rules (2.1) and Figure 9.1, e

1

). For the same reason, no

endpoint of such a path can be embedded inside the cycle (see Figure 9.1, e

2

). Outside

the cycle this is not possible, because no such edges can exist in a depth-�rst-search

tree (see Figure 9.1, e

3

).

e

e

0

e

e1

2

3

0

e

z

e
e

e e

e

g

1

2

3

4

ge~

Figure  9.1 Figure  9.2

Proof of Claim 2: Assume now that the sister segments S(e

j

); j = 1; � � � ; l have already

been embedded. With the assumption of (2) the correct two positions in the neighborlist

of low (e

l

) and in every list of z with z 2 A(e

j

) are marked. We have to show that ~e

0

will

be included correctly and the two positions in low (e

0

) will be marked.

In the case that low (e

l

) = low (e

0

) = z, the last element of the list must be marked. With

the procedure append ~e

0

will be included to the end of the list and the new element will

be marked. If low(e

l

) < z, then either the list of z is still empty or previous embedded

sister segments contained the node z. With the assumption of (2) bhmark(z) must point

to the last element of the list.

�

20



CASE II: ~e

0

is normal and z is a sprout

The speciality in this case is that the edge e

g

= (v

0

; v

1

) was emanating from a cycle.

The edge e

g

has been included to the list of v

0

before. The array sname contains also

information about the attribute of the edge e

g

, that is if it is emanating on the left or

on the right side of its mother cycle. In general C(e

g

) is not the mother cycle of C(e

0

)

(see Figure 8.2, z). All the edges, which emanate from C(e

0

) and end in v

0

, have to be

included into the same list predlist(z) or succlist(z) of v

0

. On the other hand it is not

correct to include them at the beginning or at the end of the list. The edge e

g

is central

in the neighborlist of v

0

. All the back edges ending in v

0

have to be included directly next

to this edge. It is obvious that the following claims hold when considering the four cases

of Figure 8.2.

Claim 1: The procedure rangin works correctly. It includes new edges directly next to the

central edge e

g

.

Claim 2: It is correct to include the edge ~e

0

in list predlist (z) if and only if sname(v

0

) =

left and to include the edge ~e

0

in list succlist(z) if and only if sname(v

0

) = right .

Claim 3: In the case that ~e

0

is included into predlist (z), then if e

0

is left the variable

direction has to be before, otherwise it is behind . On the other hand: If ~e

0

is included

in succlist(z), then if e

0

is left the variable direction has the value behind , otherwise it is

before.

In the same way we can show cases III and IV.

Proof of (1) of Lemma 4:

The correct determination of the pointers 'frmark' and 'bhmark'

The correctness of the algorithm depends on the correct position of the pointers frmark

and bhmark . They must point to the correct positions in every list. As soon as C(e

0

) turns

into a mother cycle, the edge ~e

0

must be marked in the neighborlist. After the embedding

of segment S(e

0

) the control is given back to its mother cycle. At this point some changes

of the pointers frmark and bhmark are necessary. These changes will be determined in

the sequel. In the described algorithm line (6) of (P) can be substituted by the following

procedure.

(PM) Determination of the pointers of the edge ~e = (w

k

; w

0

)

(1) If in line (2) procedure rangin was not called, then

(2) If in line (2) the variable direction had the value behind , then

(3) frmark (w

0

) := oldfr ;

(4) Else bhmark (w

0

) := oldbh ;

21



(5) Else f rangin g

(6) If in line (2) the variable direction had the value behind , then

(7) bhmark (w

0

) := frmark(w

0

); frmark(w

0

) := oldfr ;

(8) Else frmark (w

0

) := bhmark (w

0

); bhmark (w

0

) := bhmark (w

0

):next ;

The variables oldfr and oldbh denote the values of the pointers after including the edge ~e

0

into the list ((2) of (P)), but before changing them (in (4) of (P)).

Observation 4

Let ~e

0

be a daughter of the cycle C(e). If C(e

0

) is without a daughter, then the e�ect of

setting the pointers in line (4) of (P) is neutralized by the setting of pointers in line (7).

It remains to prove the following:

Claim 1: Consider the algorithm during the embedding of the cycle C(e

v

). After the

complete embedding of its daughter cycles (in (6) of (P)), the correct two positions in all

lists of w with w 2 A(e

0

) are marked.

In the progress of the algorithm from the mothers to the daughters the correct two positions

are marked. After returning from the daughter cycle C(e

0

) back to its mother cycle C(e)

some of the marked positions may have become wrong in the meantime. But this can only

occur in the neighborlists of low (e

0

). In all the other lists the correct two positions are

still marked. Hence, we can substitute the above claim by the following.

Claim 1': After returning from the cycle C(e

0

) to its mother cycle C(e) the correct two

positions in the neighborlist of low (e

0

) = w

0

are marked.

Proof:

CASE I: The edge ~e

0

is normal and w

0

is not a sprout

~e’b

e
0

w
0

~

~e’b

e
0

w
0

~
e~

e
b

~

e
b

Changing  of the pointersEmbedding of edge e0
Figure  10.1.

22



Consider node w

0

= low(e

0

). All back edges of S(e

0

) with endpoints in w

0

have been

included by rangout . After including the last daughter, frmark points to the edge ~e

0

b

and

bhmark to the last edge ~e

b

included by rangout (behind ) (see Figure 10.1).

In (7) of (PM) the pointer bhmark will not be changed. The only possible way to include

the next daughter C(e

j

) of C(e) is by procedure append . Hence, the pointer frmark is of

no more interest in this case.

CASE II: The edge ~e

0

is normal and w

0

is a sprout

Consider node w

0

after the embedding of the daughter segments S(e

i

) of C(e

0

). If the

attribute of both edges e

0

and e

g

is the same, then the previous edges included into this

list must have been included by rangout or rangin . The pointer bhmark points to the

last edge ~e

b

included by rangout(behind ) or rangout (before). Because ~e

0

was included by

rangin(before), frmark is set to ~e

b

and bhmark to e

g

in line (8) of the procedure. Hence,

in the list of w

0

the correct positions are marked (see Figure 10.2). If the attribute of

both edges e

0

and e

g

is di�erent, then frmark points to the edge e

g

. The edge e

0

was

included by rangin(behind ). Thus, bhmark is set to e

g

and frmark is reset to the value of

the pointer frmark before the change in line (4). Hence, the marks are correct.

Changing  of the pointers

~e’b

w
0

e’

~e

eb
~

~e’b

w
0

e’
e~0

ge

Embedding of edge e
~

0Figure  10.2.

CASE III: The edge ~e

0

is special and w

0

is not a sprout

If both edges e and e

0

have the same attributes, then let ~e

b

be the last edge included by

rangout(behind ) in the list of w

0

. The pointer bhmark points to that edge, frmark to ~e

0

b

(see Figure 10.3). In line (3) frmark will be reset to the value before including e

0

, which

was ~e

u

. The correct two positions for the next daughter of C(e) are marked.

If both edges e and e

0

have di�erent attributes, then the following situation occurs. Before

the resetting frmark points to ~e

u

, bhmark to ~e

b

, but after line (4) bhmark points to ~e. The

sisters of C(e) can be included correctly.

CASE IV: ~e

0

is special and w

0

is a sprout

23



Changing  of the pointersEmbedding of edge e0
~

~e’b

e’

e~0

0
e

ev

e

~

u
~

0
e

~e’b

e’

e~0

0
e

ev

e

~

u
~

0

eb
~

e

e~

w

Figure  10.3.

This case is similar to case III, because e

0

has to be included by rangout and the pointers

frmark and bhmark point to the same positions.

�

So, the correctness of the algorithm is proven. Let us recall the whole algorithm. In a

�rst phase, the planarity testing algorithm stronglyplanar is run. The output is an entry

alpha(S(e)) for every segment determining the side of its mother cycle on which it will

be embedded. In the second phase, we embed cycle by cycle in a recursive way. In one

iteration step we take a cycle and embed it. That is, we walk along the cycle while noting

the ancestors and successors, and inserting the initial edge and the back edge of the cycle to

the correct position in the remaining neighborlist. These steps and the additional updates

need constant time. We consider the edges (cycles) in the same order as it is done in the

linear planarity testing algorithm. Hence, it is obvious that the algorihm runs in linear

time.

Theorem

Procedure planarembedding ((1; 2); left) generates a correct combinatorial embedding of the

graph G in time O(jEj) = O(jV j).

4. Computational Results

Both procedures stronglyplanar and planarembedding have been implemented in Pascal on

a SUN SPARCstation 2. We ran a series of randomly generated maximal planar graphs.

These graphs were generated in the following way. Start with the complete graph on three

nodes. In every step a face will be selected randomly, which will be divided into three new

triangles.

A graph generated this way has jEj = 3jV j � 6 edges and is planar. The results can be

seen in the table below. So, for example, to construct the embedding of a maximal planar

24



graph with 1000 nodes, it took us less than 1 second including the 0.47 secons for reading

the input data. To embed a graph of size 5 times larger, we needed less than 5 times more

running time.

#nodes #edges input prepare planarity embedding utime/sec.

100 294 0.05 0.00 0.02 0.02 0.08

500 1494 0.23 0.05 0.08 0.03 0.40

1000 2994 0.47 0.10 0.18 0.07 0.82

5000 14994 2.38 0.48 0.73 0.30 4.00

10000 29994 5.08 0.92 1.45 0.58 8.17

20000 59994 10.33 1.70 2.85 1.05 16.32

30000 89994 15.32 2.82 4.30 1.60 24.52

40000 119994 20.60 3.87 5.80 2.18 33.22

In Via Minimization problems arising in the VLSI-layout, the graphs have less edges, that

is about 2 times the number of nodes. Here the algorithm runs much faster. The table

below shows some examples.

#nodes #edges input prepare planarity embedding utime/sec.

827 1389 0.40 0.05 0.03 0.03 0.51

828 1693 0.45 0.05 0.08 0.03 0.62

1201 2129 0.45 0.08 0.07 0.03 0.67

1326 2393 0.52 0.08 0.13 0.03 0.77

1327 2757 0.72 0.08 0.13 0.07 1.02

1365 2539 0.57 0.08 0.10 0.05 0.82

The storage space needed for running the algorithms is also linear. These experimental

results show that our method is not just of theoretical interest but also suitable for practical

applications.

Acknowledgements

I would like to thank Petra Bauer for very carefully reading the �rst version of this paper

and for making a number of suggestions that substantially improved the presentation. I

would also like to thank Professor Michael J�unger for his helpful comments.

References

[BL] Booth, K.S. and G.S. Leuker, Testing for the Consecutive Ones Property, Interval Graphs,

and Graph Planarity Using PQ-tree Algorithms, J. of Comp. and Sys. Sci., vol. 13,

pp. 335-379, 1976.

25



[CN] Chiba, N. and T. Nishizeki, A Linear Algorithm for Embedding Planar Graphs Using

PQ-Trees, J. of Comp. and Sys. Sci., vol. 30, pp. 54-76,1985

[ET] Even, S. and R.E. Tarjan, Computing an st-numbering, Th. Comp. Sci., vol. 2, pp.

339-344, 1976.

[HT] Hopcroft, J. and R. Tarjan, E�cient Planarity Testing, JACM, vol. 21, No. 4, pp.

549-568, 1974.

[LEC] Lempel, A., S. Even and I. Cederbaum, An Algorithm for Planarity Testing of Graphs,

in Theory of Graphs, International Symposium, pp. 215-232, Rome, 1966.

[M] Mehlhorn, K., Graph Algorithms and NP-Completeness, Data Structures and Algo-

rithms, vol. 2, pp. 93-122, Springer-Verlag, 1984.

[T] Tarjan, R., An e�cient planarity algorithm, STAN-CS-244-71, Comput. Sci. Dep.,

Stanford U., 1971.

26


