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This paper presents a self-contained introduction into algorithmic and com-
putational aspects of the traveling salesman problem and of related problems,
along with their theoretical prerequisites as seen from the point of view of an
operations researcher who wants to solve practical problem instances.

Extensive computational results are reported on most of the algorithms de-
scribed. Optimal solutions are reported for instances with sizes up to several
thousand nodes as well as heuristic solutions with provably very high quality for
larger instances.

This is a preliminary version of one of the chapters of the volume “Networks”
edited by M.O. Ball, T.L. Magnanti, C.L. Monma, and G.L. Nemhauser, of
the series Handbooks in Operations Research and Management Science, to be
published by North-Holland, Amsterdam.
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1. Introduction

A traveling salesman wants to visit each of a set of towns exactly once, starting
from and returning to his home town. One of his problems is to find the shortest
such trip.

The traveling salesman problem, TSP for short, has model character in many
branches of Mathematics, Computer Science, and Operations Research. Heuris-
tics, linear programming, and branch and bound, which are still the main compo-
nents of todays most successful approaches to hard combinatorial optimization
problems, were first formulated for the TSP and used to solve practical problem
instances in 1954 by Dantzig, Fulkerson and Johnson.

When the theory of NP-completeness developed, the TSP was one of the first
problems to be proven NP-hard by Karp in 1972. New algorithmic techniques
have first been developed for or at least have been applied to the TSP to show
their effectiveness. Examples are branch and bound, Lagrangean relaxation, Lin-
Kernighan type methods, simulated annealing, and the field of polyhedral combi-
natorics for hard combinatorial optimization problems (polyhedral cutting plane
methods and branch and cut).

This work was partially supported by EEC Contract SC1-CT91-0620
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This chapter presents a self-contained introduction into algorithmic and com-
putational aspects of the traveling salesman problem along with their theoretical
prerequisites as seen from the point of view of an operations researcher who wants
to solve practical instances. Lawler et al. (1985) motivated considerable research
in this area, most of which became apparent at the specialized conference on
the TSP which took place at Rice University in 1990. This chapter is intended
to be a guideline for the reader confronted with the question of how to attack
a TSP instance depending on its size, its structural properties (e.g., metric),
the available computation time, and the desired quality of the solution (which
may range from, say, a 50% guarantee to optimality). In contrast to previous
surveys, here we are concerned with practical problem solving, i.e., theoretical
results are presented in a form which make clear their importance in the design
of algorithms for approximate but provably good, and optimal solutions of the
TSP. For space reasons, we concentrate on the symmetric TSP and discuss re-
lated problems only in terms of their practical importance and the structural
and algorithmic insights they provide for the symmetric TSP.

For the long history of the TSP we refer to Hoffman and Wolfe (1985). The
relevant algorithmic approaches, however, have all taken place in the last 40
years. The developments until 1985 are contained in Lawler et al. (1985). This
chapter gives the most recent significant developments. Historical remarks are
confined to achievements which appear relevant from our point of view.

Let Kn = (Vn, En) be the complete undirected graph with n = |Vn| nodes and
m = |En| =

�
n

2

�
edges. An edge e with endpoints i and j is also denoted by ij,

or by (i, j). We denote by IREn the space of real vectors whose components are
indexed by the elements of En. The component of any vector z ∈ IREn indexed
by the edge e = ij is denoted by ze, zij , or z(i, j).

Given an objective function c ∈ IREn , that associates a “length” ce with every
edge e of Kn, the symmetric traveling salesman problem consists of finding a
Hamiltonian cycle (a cycle visiting every node exactly once) such that its c-length
(the sum of the lengths of its edges) is as small (large) as possible. Without loss
of generality, we only consider the minimization version of the problem. From
now on we use the abbreviation TSP only for the symmetric traveling salesman
problem.

Of special interest are the Euclidean instances of the traveling salesman prob-
lem. In these instances the nodes defining the problem correspond to points in
the 2-dimensional plane and the distance between two nodes is the Euclidean
distance between their corresponding points. More generally, instances that sat-
isfy the triangle inequality, i.e., cij + cjk � cik for all three distinct i, j, and k,
are of particular interest.

The reason for using a complete graph in the definition of the TSP is that for
such a graph the existence of a feasible solution is always guaranteed, while for
general graphs deciding the existence of a Hamiltonian cycle is an NP-complete
problem. Actually, the number of Hamiltonian cycles in Kn, i.e., the size of
the set of feasible solutions of the TSP, is (n − 1)!/2. The TSP defined on
general graphs is shortly described in Section 2 along with other combinatorial
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optimization problems whose relation to the TSP is close enough to make the
algorithmic techniques covered in this chapter promising for the solution with
various degrees of suitability. In Section 3 we discuss a selection of practical
applications of the TSP or one of its close relatives. The algorithmic treatment
of the TSP starts in Section 4 in which we cover approximation algorithms
that cannot guarantee to find the optimum, but which are the only available
techniques for finding good solutions to large problem instances. To assess the
quality of a solution, one has to be able to compute a lower bound on the value of
the shortest Hamiltonian cycle. Section 5 presents several relaxations on which
lower bound computations can be based. Special emphasis is given to linear
programming relaxations, which serve as a basis for finding optimal and provably
good solutions within an enumerative environment to be discussed in Section 6.
We do not address the algorithmic treatment of special cases of the TSP, where
the special structure of the objective function can be exploited to find the optimal
solution in polynomial time. Surveys on this subject are, e.g., Burkard (1989),
Gilmore, Lawler and Shmoys (1985), van Dal (1992), van der Veen (1992), and
Warren (1993). Finally, in Section 7 we report on computational experiments for
several TSP instances.

2. Related problems

We begin with some transformations showing that the TSP can be applied in
a more general way than suggested by its definition (for some further examples
see, e.g., Garfinkel (1985)).

We give transformations to some related problems or variants of the TSP. It
is often convenient to assume that all edge lengths are positive. By adding a
suitable constant to all edge lengths we can bring any TSP instance into this
form. However we do have to keep in mind that there are algorithms whose
performance may be sensitive to such a transformation.

Since we are concerned with practical computation, we can assume rational,
and thus, integer data.

Traveling salesman problems in general graphs
There may be situations where we want to find shortest Hamiltonian cycles

in arbitrary graphs G = (V, E), in particular in graphs which are not complete.
Depending on the requirements we can treat such cases in two ways. We discuss
the first possibility here, the second one is given below in the discussion of the
graphical TSP.

If it is required that each node is visited exactly once and that only edges of
the given graph must be used then we do the following. Add all missing edges
giving them a sufficiently large weight M (e.g., M >

�
e∈E

ce) and apply an
algorithm for the TSP in complete graphs. If this algorithm terminates with an
optimal solution containing none of the edges with weight M then this solution
is also optimal for the original problem. If an edge with weight M is contained
in the optimal solution then the original graph does not contain a Hamiltonian



4 M. Jünger, G. Reinelt and G. Rinaldi

cycle. Heuristics cannot guarantee to find a Hamiltonian cycle in G even if one
exists, such a guarantee can only be provided by exact algorithms.

The second way to treat such problems is to allow that nodes may be visited
more than once and edges be traversed more than once. If the given graph is
connected we can always find a feasible round trip under this relaxation. This
leads us to the so-called graphical traveling salesman problem.

The graphical traveling salesman problem
As in the case of the TSP we are given n cities, a set of connections between the

cities represented in a graph G = (V, E), and a “length” ce for each connection
e ∈ E. We assume that G is connected, otherwise no feasible solution exists. The
graphical traveling salesman problem consists of finding a trip for the salesman
to visit every city requiring the least possible total distance.

To define a feasible trip the salesman has to leave the home town (any node
in the graph), visit any other town at least once, and go back to the home town.
It is possible that a town is actually visited more than once and that an edge of
G is “traveled” more than once. Such a feasible trip is called a tour . To avoid
unbounded situations every edge has nonnegative weight. Otherwise we could use
an edge as often as we like in both directions to achieve an arbitrarily negative
length of the solution.

This is sometimes a more practical definition of the TSP because we may have
cases where the underlying graph of connections is not Hamiltonian.

We transform a graphical TSP to a TSP as follows. Consider the TSP on
the complete graph Kn = (Vn, En), where for each edge ij ∈ En the objective
function coefficient dij is given by the c-length of a shortest path from i to j in
the graph G. Solving the TSP in Kn gives a Hamiltonian cycle H ⊆ En. The
solution of the graphical TSP can be obtained by replacing each edge in H that
is not in G with the edges of a shortest path that connects its endpoints in G.

Hamiltonian and semi-Hamiltonian graphs
A graph is called Hamiltonian if it contains a Hamiltonian cycle and it is

called semi-Hamiltonian if it contains a Hamiltonian path, i.e., a path joining
two nodes of the graph and visiting every node exactly once. Checking if a graph
G = (V, E) is Hamiltonian or semi-Hamiltonian can be done by solving a TSP
in a complete graph where all edges of the original graph obtain weight 1 and
all other edges obtain weight 2. If the length of an optimal Hamiltonian cycle in
the complete graph is n, then G is Hamiltonian and therefore semi-Hamiltonian.
If the length is n + 1, then G is semi-Hamiltonian, but not Hamiltonian. And,
finally, if the length is n + 2 or more, G is not semi-Hamiltonian.

The asymmetric traveling salesman problem
In this case the cost of traveling from city i to city j is not necessarily the

same as for traveling from city j to city i. This is reflected by formulating the
asymmetric traveling salesman problem (ATSP) as finding a shortest directed
Hamiltonian cycle in a weighted digraph. Let D = (W, A), W = {1, 2, . . . , n},
A ⊆ W ×W , be the digraph for which the ATSP has to be solved. Let dij be
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the distance from node i to node j, if there is an arc in A with tail i and head j.
We define an undirected graph G = (V, E) by

V = W ∪ {n + 1, n + 2, . . . , 2n},

E = {(i, n + i) | i = 1, 2, . . . , n} ∪ {(n + i, j) | (i, j) ∈ A}.

Edge weights are computed as follows

ci,n+i = −M for i = 1, 2, . . . , n,

cn+i,j = dij for (i, j) ∈ A,

where M is a sufficiently large number, e.g., M =
�

(i,j)∈A
dij . It is easy to

see that for each directed Hamiltonian cycle in D with length dD there is a
Hamiltonian cycle in G with length cG = dD − nM . In addition, all edges with
weight −M are contained in an optimal Hamiltonian cycle in G. Therefore, this
cycle induces a directed Hamiltonian cycle in D.

In our discussion on computational results in Section 7 we report on the solu-
tion of a hard asymmetric TSP instance that we attacked with symmetric TSP
methods.

The multisalesmen problem
Instead of just one salesman we have m salesmen available who are all located

in city n + 1 and have to visit cities 1, 2, . . . , n. The cost of the solution is the
total distance traveled by all salesmen together (all of them must travel). This
is the basic situation when in vehicle routing m vehicles, located at a common
depot, have to serve n customers.

We can transform this problem to the TSP by splitting city n+1 into m cities
n + 1, n + 2, . . . , n + m. The edges (i, n + k), with 1 � i � n and 2 � k � m,
receive the weight c(i, n + k) = c(i, n + 1), and all edges connecting the nodes
n + 1, n + 2, . . . , n + m receive a large weight M .

The rural postman problem
We are given a graph G = (V, E) with edge weights c(i, j) and a subset F ⊆ E.

The rural postman problem consists of finding a shortest tour, containing all
edges in F , in the subgraph of G induced by some subset of V . We call such a
tour a rural postman tour of G. As for the graphical TSP we have to assume
nonnegative edge weights to avoid unbounded situations.

If F induces a connected subgraph of G, then we have the special case of a
Chinese postman problem which can be solved in polynomial time using matching
techniques (Edmonds and Johnson (1973)). In general the problem is NP-hard,
since the TSP can easily be transformed to it. First add a sufficiently large
number to all edge weights to guarantee that triangle inequality holds. Then
split each node i into two nodes i and i�. For any edge (i, j) generate edges (i�, j)
and (i, j�) with weights c(i�, j) = c(i, j�) = c(i, j), and the edges connecting i
to i� and j to j� receive zero weights. F consists of all the edges (i, i�).
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Conversely, we can transform the rural postman problem to the TSP as follows.
Let GF = (VF , F ) be the subgraph of G induced by F . With every node i ∈ VF

we associate a set Si = {sj

i
| j ∈ N(i)} where N(i) is the set of neighbors of

node i in GF . Construct the weighted complete graph G� = (V �, E�, c�) on the
set V � =

�
i∈VF

Si. The edge weights c� are defined as follows.

c�(sh

i
, sk

i
) = 0 for i ∈ VF and h, k ∈ N(i), h �= k

c�(sh

i
, sk

j
) =

�
−M if i = k and j = h
d(i, j) otherwise for all i, j ∈ VF , i �= j,

h ∈ N(i),
k ∈ N(j),

where we denote by d(i, j) the c-length of a shortest path between i and j in G.
It is trivial to transform an optimal Hamiltonian cycle in G� to an optimal rural
postman tour in G. We can easily generalize this transformation for the case in
which not only edges, but also some nodes are required to be in the tour. Such
nodes are simply added to the resulting TSP instance, and all new edges receive
as weights the corresponding shortest path lengths. In Section 7 we report on
the solution of some instances that we obtained using this transformation.

The shortest Hamiltonian path problem
We are given a graph G = (V, E) with edge weights cij . Two special nodes, say

vs and vt, of V are also given. The task is to find a path from vs to vt visiting
each node of V exactly once with minimum length, i.e., to find the shortest
Hamiltonian path in G from vs to vt.

This problem can be solved as a standard TSP in two ways.
a) Choose M sufficiently large and assign weight −M to the edge from vs

to vt (which is created if it does not belong to E). Then compute the shortest
Hamiltonian cycle in this graph. This cycle must contain edge vsvt and thus
solves the Hamiltonian path problem.

b) Add a new node 0 to V and edges from 0 to vs and to vt with weight 0.
Each Hamiltonian cycle in this new graph corresponds to a Hamiltonian path
from vs to vt in the original graph with the same length.

If only the starting point vs of the Hamiltonian path is fixed we can solve the
problem by introducing a new node 0 and adding edges from all nodes v ∈ V \{vs}

to 0 with zero length. Now we can solve the Hamiltonian path problem with
starting point vs and terminating point vt = 0 which solves the original problem.

If also no starting point is specified, we just add node 0 and connect all other
nodes to 0 with edges of length zero. In this new graph we solve the standard TSP.

The bottleneck traveling salesman problem
Instead of Hamiltonian cycles with minimum total length one searches in this

problem for those whose longest edge is as short as possible. This bottleneck
traveling salesman problem can be solved by a sequence of TSP instances. To
see this, observe that the exact values of the distances are not of interest under
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this objective function, only their relative order matters. Hence we may assume
that we have at most 1

2n(n− 1) different integral distances and that the largest
of them is not greater than 1

2n(n − 1). We now solve problems of the following
kind for some parameter b:

Is the graph consisting of all edges with weights at
most b Hamiltonian?

This is exactly the problem discussed above. By performing a binary search on
the parameter b (starting, e.g., with b = 1

4n(n− 1)) we can identify the smallest
such b leading to a “yes” answer by solving at most O(log n) TSP instances.

We have seen that a variety of related problems can be transformed to the TSP.
However, each such transformation has to be considered with some care, before
actually trying to use it for practical problem solving. For example, the shortest
path computations necessary to treat a graphical TSP as a TSP take time O(n3)
which might not be acceptable in practice. Many transformations require the
introduction of a large number M . This can lead to numerical problems or may
even prevent the finding of feasible solutions at all using heuristics. In particular,
for LP-based approaches, the usage of the “big M” cannot be recommended. Here
it is preferable use “variable fixing techniques” (see Section 6) to force edges
with cost −M into the solution and prevent those with cost M in the solution.
Moreover, in general, the transformations described above may produce TSP
instances that are difficult to solve both for heuristic and exact algorithms.

3. Practical applications

Since we are aiming at the development of algorithms and heuristics for practi-
cal traveling salesman problem solving, we give a survey on some of the possible
applications. The list is not complete but covers some important cases. We start
with applications that can be modeled directly as one of the variants given in
the previous section.

Drilling of printed circuit boards
A direct application of the TSP is the drilling problem whose solution plays an

important rôle in economical manufacturing of printed circuit boards (PCBs). A
computational study in an industry application of a large electronics company
can be found in Grötschel, Jünger and Reinelt (1991).

To connect a conductor on one layer with a conductor on another layer, or to
position (in a later stage of the PCB production) the pins of integrated circuits,
holes have to be drilled through the board. The holes may be of different di-
ameters. To drill two holes of different diameters consecutively, the head of the
machine has to move to a tool box and change the drilling equipment. This is
quite time consuming. Thus it is clear at the outset that one has to choose some
diameter, drill all holes of the same diameter, change the drill, drill the holes of
the next diameter, etc.
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Thus, this drilling problem can be viewed as a sequence of TSP instances,
one for each hole diameter, where the “cities” are the initial position and the
set of all holes that can be drilled with one and the same drill. The “distance”
between two cities is given by the time it takes to move the drilling head from
one position to the other. The aim here is to minimize the travel time for the
head of the machine.

X-Ray crystallography
An important application of the TSP occurs in the analysis of the structure of

crystals (Bland and Shallcross (1987), Dreissig and Uebach (1990)). Here an X-
ray diffractometer is used to obtain information about the structure of crystalline
material. To this end a detector measures the intensity of X-ray reflections of the
crystal from various positions. Whereas the measurement itself can be accom-
plished quite fast, there is a considerable overhead in positioning time since up
to hundreds of thousands positions have to be realized for some experiments. In
the two examples that we refer to, the positioning involves moving four motors.
The time needed to move from one position to the other can be computed very
accurately. The result of the experiment does not depend on the sequence in
which the measurements at the various positions are taken. However, the total
time needed for the experiment depends on the sequence. Therefore, the prob-
lem consists of finding a sequence that minimizes the total positioning time. This
leads to a traveling salesman problem.

Overhauling gas turbine engines
This application was reported by Plante, Lowe and Chandrasekaran (1987) and

occurs when gas turbine engines of aircraft have to be overhauled. To guarantee
a uniform gas flow through the turbines there are so-called nozzle-guide vane
assemblies located at each turbine stage. Such an assembly basically consists
of a number of nozzle guide vanes affixed about its circumference. All these
vanes have individual characteristics and the correct placement of the vanes can
result in substantial benefits (reducing vibration, increasing uniformity of flow,
reducing fuel consumption). The problem of placing the vanes in the best possible
way can be modeled as a TSP with a special objective function.

The order-picking problem in warehouses
This problem is associated with material handling in a warehouse (Ratliff and

Rosenthal (1981)). Assume that at a warehouse an order arrives for a certain
subset of the items stored in the warehouse. Some vehicle has to collect all items
of this order to ship them to the customer. The relation to the TSP is immediately
seen. The storage locations of the items correspond to the nodes of the graph.
The distance between two nodes is given by the time needed to move the vehicle
from one location to the other. The problem of finding a shortest route for the
vehicle with minimum pickup time can now be solved as a TSP. In special cases
this problem can be solved easily, see van Dal (1992) for an extensive discussion
and for references.
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Computer wiring
A special case of connecting components on a computer board is reported in

Lenstra and Rinnooy Kan (1974). Modules are located on a computer board and
a given subset of pins has to be connected. In contrast to the usual case where a
Steiner tree connection is desired, here the requirement is that no more than two
wires are attached to each pin. Hence we have the problem of finding a shortest
Hamiltonian path with unspecified starting and terminating points.

A similar situation occurs for the so-called testbus wiring. To test the manu-
factured board one has to realize a connection which enters the board at some
specified point, runs through all the modules, and terminates at some specified
point. For each module we also have a specified entering and leaving point for
this test wiring. This problem also amounts to solving a Hamiltonian path prob-
lem with the difference that the distances are not symmetric and that starting
and terminating point are specified.

Scheduling with sequence dependent process times
We are given n jobs that have to be performed on some machine. The time to

process job j is tij if i is the job performed immediately before j (if j is the first
job then its processing time is t0j). The task is to find an execution sequence for
the jobs such that the total processing time is as short as possible. Clearly, this
problem can be modeled as a shortest (directed) Hamiltonian path problem.

Suppose the machine in question is an assembly line and that the jobs corre-
spond to operations which have to be performed on some product at the work-
stations of the line. In such a case the primary interest would lie in balancing the
line. Therefore, instead of the shortest possible time to perform all operations
on a product, the longest individual processing time needed on a workstation is
important. To model this requirement a bottleneck TSP is more appropriate.

Sometimes the TSP comes up as a subproblem in more complex combinato-
rial optimization processes that are devised to deal with production problems
in industry. In such cases there is often no hope for algorithms with guaranteed
performance, but hybrid approaches proved to be practical. We give three ex-
amples that cannot be transformed to the TSP, but share some characteristics
of the TSP, or in which the TSP comes up as a subproblem.

Vehicle routing
Suppose that in a city n mail boxes have to be emptied every day within a

certain period of time, say 1 hour. The problem is to find the minimum number
of trucks to do this and the shortest time to do the collections using this number
of trucks. As another example, suppose that n customers require certain amounts
of some commodities and a supplier has to satisfy all demands with a fleet of
trucks. The problem is to find an assignment of customers to the trucks and
a delivery schedule for each truck so that the capacity of each truck is not
exceeded and the total travel distance is minimized. Several variations of these
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two problems, where time and capacity constraints are combined, are common
in many real-world applications.

This problem is solvable as a TSP if there are no time and capacity constraints
and if the number of trucks is fixed (say m). In this case we obtain an m-salesmen
problem. Nevertheless, one may apply methods for the TSP to find good feasible
solutions for this problem (see Lenstra and Rinnooy Kan (1974)).

Mask plotting in PCB production
For the production of each layer of a printed circuit board, as well as for layers

of integrated semiconductor devices, a photographic mask has to be produced. In
our case for printed circuit boards this is done by a mechanical plotting device.
The plotter moves a lens over a photosensitive coated glass plate. The shutter
may be opened or closed to expose specific parts of the plate. There are different
apertures available to be able to generate different structures on the board.

Two types of structures have to be considered. A line is exposed on the plate
by moving the closed shutter to one endpoint of the line, then opening the shutter
and moving it to the other endpoint of the line. Then the shutter is closed. A
point type structure is generated by moving (with the appropriate aperture) to
the position of that point then opening the shutter just to make a short flash,
and then closing it again. Exact modeling of the plotter control problem leads
to a problem more complicated than the TSP and also more complicated than
the rural postman problem. A real-world application in the actual production
environment is reported in Grötschel, Jünger and Reinelt (1991).

Control of robot motions
In order to manufacture some workpiece a robot has to perform a sequence of

operations on it (drilling of holes of different diameters, cutting of slots, plan-
ishing, etc.). The task is to determine a sequence of the necessary operations
that leads to the shortest overall processing time. A difficulty in this applica-
tion arises because there are precedence constraints that have to be observed.
So here we have the problem of finding the shortest Hamiltonian path (where
distances correspond to times needed for positioning and possible tool changes)
that satisfies certain precedence relations between the operations.

4. Approximation algorithms for the TSP

When trying to solve practical TSP instances to optimality, one quickly en-
counters several difficulties. It may be possible that there is no algorithm at
hand to solve an instance optimally and that time or knowledge do not permit
the development and implementation of such an algorithm. The instances may
be simply too large and therefore beyond the capabilities of even the best algo-
rithms for attempting to find optimal solutions. On the other hand, it may also
be possible that the time allowed for computation is not enough for an algorithm
to reach the optimal solution. In all these cases there is a definite need for ap-
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proximation algorithms (heuristics) which determine solutions of good quality
and yield the best results achievable subject to the given side constraints.

It is the aim of this section to survey heuristics for the TSP and to give guide-
lines for their potential incorporation for the treatment of practical problems.
We will first consider construction heuristics which build an initial Hamiltonian
cycle. Procedures for improving a given cycle are discussed next. The third part
is concerned with particular advantages one can exploit if the given problem in-
stances are of geometric nature. A survey of other recently developed techniques
concludes this section.

There is a huge number of papers dealing with finding near optimal solutions
for the TSP. We therefore confine ourselves to the approaches that we think
provide the most interesting ideas and that are important for attacking practical
problems. This section is intended to give the practitioner enough detail to be
able to design successful heuristics for large-scale TSP instances without studying
additional literature. For further reading we recommend Golden and Stewart
(1985), Bentley (1992), Johnson (1990) and Reinelt (1992, 1994).

An important point is the discussion of implementation issues. Although some-
times easily formulated, heuristics will often require extensive effort to obtain
computer implementations that are applicable in practice. We will address these
questions along with the presentation of the heuristics. We do not discuss tech-
niques in detail. The reader should consult a good reference on algorithms and
data structures (e.g., Cormen, Leiserson and Rivest (1989)) when doing own
implementations.

Due to limited space we will not present many detailed computational results,
rather we will give conclusions that we have drawn from computational testing.
For our experiments we used problem instances from the public problem library
TSPLIB (Reinelt (1991a, 1991b)). In this chapter we refer to a set of 30 Euclidean
sample problems with sizes ranging from 105 to 2392 with known optimal solu-
tions. The size of each problem instance appears in its name, e.g., pcb442 is a
TSP on 442 nodes. Since these problems come from real applications, our find-
ings may be different from experiments on randomly generated problems. CPU
times are given in seconds on a SUN SPARCstation 10/20. Some effort was put
into the implementation of computer codes. However, it was not our intention
to achieve ultimate performance, but to demonstrate the speedup that can be
gained by careful implementation. Except for specially selected edges, distances
were not stored but always computed by evaluating the Euclidean distance func-
tion. All CPU times include the time for distance computations.

Before starting to derive approximation algorithms, it is an interesting theoret-
ical question, whether efficient heuristics can be designed that produces solutions
with requested or at least guaranteed quality in polynomial time (polynomial in
the problem size and in the desired accuracy). Whereas for other NP-hard prob-
lems such heuristics do exist, there are only negative results for the general TSP.
For a problem instance let cH denote the length of the Hamiltonian cycle pro-
duced by heuristic H and let copt denote the length of an optimal cycle. Sahni
and Gonzales (1976) show that, unless P=NP , for any constant r � 1 there does
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not exist a polynomial time heuristic H such that cH � r · copt for all problem
instances.

A fully polynomial approximation scheme for a minimization problem is a
heuristic H that for a given problem instance and any ε > 0 computes a feasible
solution satisfying cH/copt � 1 + ε in time polynomial in the size of the instance
and in 1/ε. Such schemes are very unlikely to exist for the traveling salesman
problem. Johnson and Papadimitriou (1985) show that, unless P=NP , there
does not exist a fully polynomial approximation scheme for the Euclidean trav-
eling salesman problem. This also holds in general for TSP instances satisfying
the triangle inequality. The results tell us that for every heuristic there are prob-
lem instances where it fails badly. There are approximation results for problems
satisfying the triangle inequality some of which will be addressed below.

It should be pointed out that running time and quality of an algorithm derived
by theoretical (worst case or average case) analysis is usually insufficient to
predict its behavior when applied to real-world problem instances.

In addition, the reader should be aware that polynomial time algorithms can
still require a substantial amount of CPU time, if the polynomial is not of low de-
gree. In certain applications algorithms having running time as low as O(n2) may
not be acceptable. So, polynomiality by itself is not a sufficient criterion for effi-
ciency in practice. It is our aim to show that, in the case of the traveling salesman
problem, algorithms can be designed that are capable of finding good approxi-
mate solutions to even large sized real-world instances within rather moderate
time limits. Thus, the NP-hardness of the TSP does not imply the nonexistence
of reasonable algorithms for practical problem instances. Furthermore, we want
to make clear that designing efficient heuristics is not a straightforward task.
Although ideas often seem elementary, it requires substantial effort to design
practically useful computer codes.

The performance of a heuristic is best assessed by comparing the value of the
approximate solution it produces with the value of an optimal solution. We say
that a heuristic solution value cH has quality p% if 100 · (cH − copt)/copt = p. If
no provably optimal solutions are known, then the quality can only be estimated
from above by comparing the heuristic solution value with a lower bound for the
optimal value. A frequently used such lower bound is the subtour elimination
lower bound (see Section 5). This bound can be computed exactly using LP
techniques or it can at least be approximated using iterative approaches to be
discussed in Section 6.

4.1. Construction heuristics

For the beginning we shall consider pure construction procedures , i.e., heuris-
tics that determine a Hamiltonian cycle according to some construction rule, but
do not try to improve upon this cycle. In other words, a Hamiltonian cycle is
successively built, and parts already built remain in a certain sense unchanged
throughout the algorithm. We will confine ourselves to some of the most com-
monly used construction principles.
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Nearest neighbor heuristics
One of the simplest heuristics for the TSP is the so-called nearest neighbor

heuristic which attempts to construct Hamiltonian cycles based on connections
to near neighbors. The standard version is stated as follows.

procedure nearest neighbor

(1) Select an arbitrary node j, set l = j and W = {1, 2, . . . , n} \ {j}.
(2) As long as W �= ∅ do the following.

(2.1) Let j ∈ W such that clj = min{cli | i ∈ W}.
(2.2) Connect l to j and set W = W \ {j} and l = j.

(3) Connect l to the node selected in Step (1) to form a Hamiltonian cycle.

A possible variation of the standard nearest neighbor heuristic is the double-
sided nearest neighbor heuristic where the current path can be extended from
both of its endnodes.

The standard procedure runs in time O(n2). No constant worst case perfor-
mance guarantee can be given. In fact, Rosenkrantz, Stearns and Lewis (1977)
show that for arbitrarily large n there exist TSP instances on n nodes such that
the nearest neighbor solution is Θ(log n) times as long as an optimal Hamiltonian
cycle. This also holds if the triangle inequality is satisfied.

If one displays nearest neighbor solutions one realizes the reason for this poor
performance. The procedure proceeds very well and produces connections with
short edges in the beginning. But as can be seen from a graphics display, several
nodes are “forgotten” during the algorithm and have to be inserted at high cost
in the end.

Although usually rather bad, nearest neighbor solutions have the advantage
that they only contain a few severe mistakes. Therefore, they can serve as good
starting solutions for subsequently performed improvement methods, and it is
reasonable to put some effort in designing heuristics that are based on the nearest
neighbor principle. For nearest neighbor solutions we obtained an average quality
of 24.2% for our set of sample problems (i.e., on the average Hamiltonian cycles
were 1.242 times longer than an optimal Hamiltonian cycle). In Johnson (1990)
an average excess of 24% over an approximation of the subtour elimination lower
bound is reported for randomly generated problems.

The standard procedure is easily implemented with a few lines of code. But,
since running time is quadratic, this implementation can be too slow for large
problems with 10,000 or 100,000 nodes, say. Therefore, even for this simple
heuristic, it is worthwhile to think about speedup possibilities.

A basic idea, that we will apply for other heuristics as well, is the use of a
candidate subgraph. A candidate subgraph is a subgraph of the complete graph
on n nodes containing reasonable edges in the sense that they are “likely” to be
contained in a short Hamiltonian cycle. These edges are taken with priority in
the various heuristics, thus avoiding the consideration of the majority of edges
that are assumed to be of no importance. For the time being we do not address
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the question of how to choose such subgraphs and of how to compute them
efficiently. This will be discussed in the subsection on geometric instances.

Because a major problem with nearest neighbor heuristics is that, in the end,
nodes have to be connected at high cost, we modify it to avoid isolated nodes.
To do this we first compute the 10 nearest neighbor subgraph, i.e., the subgraph
containing for every node all edges to its 10 nearest neighbors. Whenever a node
is connected to the current path we remove its incident edges in the subgraph.
As soon as a node not contained in the path so far is connected to fewer than
four nodes in the subgraph, we insert that node immediately into the path (elim-
inating all of its incident edges from the subgraph). To reduce the search for an
insertion point, we only consider insertion after or before those nodes of the path
that are among the 10 nearest neighbors of the node to be inserted. If all isolated
nodes are added, the selection of the next node to be appended to the path is
accomplished as follows. We first look for nearest neighbors of the node within
its adjacent nodes in the candidate subgraph. If all nodes adjacent in the sub-
graph are already contained in the partial Hamiltonian cycle then we compute
the nearest neighbor among all free nodes. The worst case time complexity is
not affected by this modification.

Substantially less CPU time was needed to perform the modified heuristic com-
pared to the standard implementation (even if the preprocessing time to compute
the candidate subgraph is included). For example, whereas it took 15.3 seconds
to perform the standard nearest neighbor heuristic for problem pr2392, the im-
proved version required a CPU time of only 0.3 seconds. As expected, however,
the variant still seems to have a quadratic component in its running time.

With respect to quality, insertion of forgotten nodes indeed improves the length
of the nearest neighbor solutions. In contrast to the quality of 24.2% on average
for the standard implementation, the modified version gave the average quality
18.6%. In our experiments we have chosen the starting node at random. The
performance of nearest neighbor heuristics is very sensitive to the choice of the
starting node. Choosing a different starting node can result in a solution whose
quality differs by more than 10 percentage points.

Insertion heuristics
Another intuitively appealing approach is to start with cycles visiting only

small subsets of the nodes and then extend these cycles by inserting the remaining
nodes. Using this principle, a cycle is built containing more and more nodes of
the problem until all nodes are inserted and a Hamiltonian cycle is found.

procedure insertion

(1) Select a starting cycle on k nodes v1, v2, . . . , vk (k � 1) and set W = V \

{v1, v2, . . . , vk}.
(2) As long as W �= ∅ do the following.

(2.1) Select a node j ∈ W according to some criterion.
(2.2) Insert j at some position in the cycle and set W = W \ {j}.
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Figure 1. Insertion heuristics.

Of course, there are several possibilities for implementing such an insertion
scheme. The main difference is the choice of the selection rule in Step (2.1). The
starting cycle can be just some cycle on three nodes or, in degenerate cases, a
loop (k = 1) or an edge (k = 2). The selected node to be inserted is usually
inserted into the cycle at the point causing shortest increase of the length of the
cycle.

The following are some choices for extending the current cycle (further variants
are possible). We say that a node is a cycle node if it is already contained in the
partial Hamiltonian cycle. For j ∈ W we define dmin(j) = min{cij | i ∈ V \W}.

nearest insertion: Insert the node that has the shortest distance to a cycle
node, i.e., select j ∈ W with dmin(j) = min{dmin(l) | l ∈ W}.

farthest insertion: Insert the node whose minimum distance to a cycle node
is maximum, i.e., select j ∈ W with dmin(j) = max{dmin(l) | l ∈ W}.

cheapest insertion: Insert the node that can be inserted at the lowest increase
in cost.

random insertion: Select the node to be inserted at random and insert it at
the best possible position.

Figure 1 visualizes the difference between the insertion schemes. Nearest inser-
tion adds node i to the partial Hamiltonian cycle in the following step, farthest
insertion chooses node j, and cheapest insertion chooses node k.
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All heuristics except for cheapest insertion are easily implementable to run in
time O(n2). Cheapest insertion can be executed in time O(n2 log n) by storing
for each external node a heap based on the insertion cost at the possible insertion
points. Due to an O(n2) space requirement it cannot be used for large instances.

For some insertion type heuristics we have worst-case performance guarantees.
For instances of the TSP obeying the triangle inequality, Hamiltonian cycles
computed by the nearest insertion and cheapest insertion heuristic are less than
twice as long as an optimal Hamiltonian cycle (Rosenkrantz, Stearns and Lewis
(1977)). The result is sharp in the sense that there exist instances for which
these heuristics yield solutions that are 2 − 2/n times larger than an optimal
solution. Hurkens (1991) gave examples where random and farthest insertion
yield Hamiltonian cycles that are 13/2 times longer than an optimal Hamiltonian
cycle (although the triangle inequality is satisfied).

On our set of sample problems we obtained average qualities 20.0%, 9.9%, and
11.1% for nearest, farthest, and random insertion, respectively. An average excess
over the subtour bound of 27% for the nearest insertion and of 13.5% for the
farthest insertion procedure is reported in Johnson (1990) for random problem
instances. Though appealing at first sight, the cheapest insertion heuristic only
yields an average quality of 16.8% (with substantially longer running times).
Performance of insertion heuristics does not depend as much on the starting
configuration as in the nearest neighbor heuristic. One can expect deviations of
about 6% for the random insertion variant and about 7-8% for the others.

There are also variants of the above ideas where the node selected is not
inserted at cheapest insertion cost but as a neighbor of the cycle node that is
nearest to it. These variants are usually named “addition” instead of insertion.
Bentley (1992) reports that the results are slightly inferior.

Heuristics based on spanning trees
The heuristics considered so far construct Hamiltonian cycles “from scratch” in

the sense that they do not exploit any additional knowledge. The two heuristics
to be described next use a minimum spanning tree as a basis for generating
Hamiltonian cycles. They are particularly suited for TSP instances obeying the
triangle inequality, but can, in principle, also be applied to general problems.

Before describing these heuristics we observe that, if the triangle inequality
is satisfied, we can derive from any given tour a Hamiltonian cycle that is not
longer than this tour. Let vi0 , vi1 , . . . , vik be the sequence in which the nodes
(including repetitions) are visited in the tour starting at vi0 and returning to
vik = vi0 . The following procedure obtains a Hamiltonian cycle.

procedure obtain cycle

(1) Set T = {vi0}, v = vi0 , and l = 1.
(2) As long as |T | < n perform the following steps.

(2.1) If vil �∈ T then set T = T ∪ {vil}, connect v to vil and set v = vil .
(2.2) Set l = l + 1.

(3) Connect v to vi0 to form a Hamiltonian cycle.
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If the triangle inequality is satisfied, then every connection made in this pro-
cedure is either an edge of the tour or is a shortcut replacing a subpath of the
tour by an edge connecting its two endnodes. Hence the resulting Hamiltonian
cycle cannot be longer than the tour.

Both heuristics to be discussed next start with a minimum spanning tree and
differ only in how a tour is generated from the tree.

procedure doubletree

(1) Compute a minimum spanning tree.
(2) Take all tree edges twice to obtain a tour.
(3) Call obtain cycle to get a Hamiltonian cycle.

The running time of the algorithm is dominated by the time needed to obtain
a minimum spanning tree. Therefore we have time complexity Θ(n2) for the
general TSP and Θ(n logn) for Euclidean problems (see Subsection 4.3).

If we compute the minimum spanning tree with Prim’s algorithm (Prim
(1957)), we could as well construct a Hamiltonian cycle along with the tree
computation. We always keep a cycle on the nodes already in the tree (starting
with the loop consisting of only one node) and insert the node into the current
cycle which is added to the spanning tree. If this node is inserted at the best
possible position this algorithm is identical to the nearest insertion heuristic. If
it is inserted before or after its nearest neighbor among the cycle nodes, then we
obtain the nearest addition heuristic.

In Christofides (1976) a more sophisticated method is suggested to make tours
out of spanning trees. Namely, observe that it is sufficient to add a perfect match-
ing on the odd-degree nodes of the tree. (A perfect matching of a node set W ,
|W | = 2k, is a set of k edges such that each node of W is incident to exactly one
of these edges.) After addition of all matching edges all node degrees are even
and hence the graph is a tour. The cheapest way (with respect to edge weights)
to obtain a tour is to add a minimum weight perfect matching.

procedure christofides

(1) Compute a minimum spanning tree.
(2) Compute a minimum weight perfect matching on the odd-degree nodes of

the tree and add it to the tree to obtain a tour.
(3) Call obtain cycle to get a Hamiltonian cycle.

This procedure takes considerably more time than the previous one. Com-
putation of a minimum weight perfect matching on k nodes can be performed
in time O(k3) (Edmonds (1965)). Since a spanning tree may have O(n) leaves,
Christofides’ heuristic has cubic worst case time.

Figure 2 displays the principle of this heuristic. Solid lines correspond to the
edges of a minimum spanning tree, broken lines correspond to the edges of a
perfect matching on the odd-degree nodes of this tree. The union of the two
edge sets gives a tour. The sequence of the edges in the tour is not unique. So
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Figure 2. Christofides’ heuristic.

one can try to find better solutions by determining different sequences. We do
not elaborate on this since the gain to be expected is small.

A minimum spanning tree is not longer than a shortest Hamiltonian cycle and
the matching computed in Step (2) of christofides has weight at most half
of the length of an optimal Hamiltonian cycle. Therefore, for every instance of
the TSP obeying the triangle inequality, the double tree heuristic produces a
solution which is at most twice as large as an optimal solution, and Christofides’
heuristic produces a solution which is at most 1.5 times as large as an opti-
mal solution. Cornuéjols and Nemhauser (1978) show that there are instances
where Christofides’ heuristic yields a Hamiltonian cycle that is 1.5− 1/(2n) times
longer than an optimal cycle.

It was observed that computing exact minimum weight perfect matchings in
Step (2) does not pay off. Because of this and for reducing the running time,
the necessary matching is usually computed by a heuristic. We have used the
following one. First we double all edges incident with the leaves of the spanning
tree, and then we compute a farthest insertion cycle on the remaining (and
newly introduced) odd-degree nodes. This cycle induces two perfect matchings
and we add the shorter one to our subgraph. Time complexity is reduced to O(n2)
this way. It was observed in many experiments that the Christofides heuristic
does not perform as well as it might have been expected. Although it has the
best known worst case bound of any TSP heuristic, the experiments produced
solutions which rarely yield qualities better than 10%.

For our set of sample problems the average quality was 38.08% for the double
tree and 19.5% for the modified Christofides heuristic which coincides with the
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findings in Johnson (1990). Running times for pr2392 were 0.2 seconds for the
double tree and 0.7 seconds for the modified Christofides heuristic (not including
the time for the minimum spanning tree computation).

Savings methods
The final type of heuristic to be discussed in this subsection was originally

developed for vehicle routing problems (Clarke and Wright (1964)). But it can
also be usefully applied in our context, since the traveling salesman problem
can be considered as a special vehicle routing problem involving only one vehicle
with unlimited capacity. This heuristic successively merges subtours to eventually
obtain a Hamiltonian cycle.

procedure savings

(1) Select a base node z ∈ V and set up the n − 1 subtours (z, v), v ∈ V \ {z}
consisting of two nodes each.

(2) As long as more than one subtour is left perform the following steps.
(2.1) For every pair of subtours T1 and T2 compute the savings that is

achieved if they are merged by deleting in each of them an edge to
the base node and connecting the two open ends.

(2.2) Merge the two subtours which provide the largest savings. (Note that
this operation always produces a subtour which is a cycle.)

An iteration step of the savings heuristic is depicted in Figure 3. Two subtours
are merged by deleting the edges from nodes i and j to the base node z and
adding the edge ij.

In the implementation we have to maintain a list of possible mergings. The
crucial point is the update of this list. We can consider the system of subtours as
a system of paths (possibly having only one node) whose endnodes are thought
of as being connected to the base node. A merge operation essentially consists
of connecting two ends of different paths. For finding the best merge possibility
we have to know for each endnode its best possible connection to an endnode
of another path (“best” with respect to the cost of merging the corresponding
subtours). Suppose that in Step (2.2) the two paths [i1, i2] and [j1, j2] are merged
by connecting i2 to j1. The best merging now changes only for those endnodes
whose former best merging was the connection to i2 or to j1, or for the endnode i1
(j2) if its former best merging was to j1 (i2). Because we do not know how many
nodes are affected we can only bound the necessary update time by O(n2) giving
an overall heuristic with running time O(n3). For small problems we can achieve
running time O(n2 log n), but we have to store the matrix of all possible savings
which requires O(n2) storage space. Further remarks on the Clarke/Wright al-
gorithm can be found in Potvin and Rousseau (1990). The average quality that
we achieved for our set of problems was 9.8%.

We apply ideas similar to those above to speed up this heuristic. We again
assume that we have a candidate subgraph of reasonable connections at hand.
Now, merge operations are preferred that use a candidate edge for connecting
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Figure 3. A savings heuristic.

two paths. The update is simplified in that for a node whose best merge pos-
sibility changes, only candidate edges incident to that node are considered for
connections. If during the algorithm an endnode of a path becomes isolated,
since none of its incident subgraph edges is feasible anymore, we compute its
best merging by enumeration.

Surprisingly, the simplified heuristic yields solutions of similar average quality
(9.6%) in much shorter time. For problem pr2392 CPU time was 5.1 seconds
with quality 12.4% compared to 194.6 seconds and quality 12.2% for the original
version. We have also conducted experiments concerning the stability of this
heuristic depending on the choice of the base node. It turns out that the savings
heuristic gives much better results and is more stable than nearest neighbor or
insertion heuristics.

Often, we will not apply the savings heuristic for constructing Hamiltonian
cycles from scratch. Our purpose for employing this heuristic is to connect sys-
tems of paths in the following way. If we have a collection of paths we join all
endnodes to a base node and proceed as in the usual heuristic. If we have long
paths then the heuristic is started with few subtours and the necessary CPU time
will be acceptable even without using more sophisticated speed up methods. If
the paths are close to an optimal Hamiltonian cycle, we can obtain very good
results.

This concludes our survey of construction heuristics suitable for general travel-
ing salesman problem instances. In the special case of geometric instances there
are further ideas that can be employed. Some of these are addressed in Subsec-
tion 4.3.
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Table 1

Results of construction heuristics (Quality)

Problem NN1 NN2 FI CH SA

lin105 33.31 10.10 11.22 19.76 5.83
pr107 6.30 9.20 2.13 8.95 9.22
pr124 21.02 8.16 11.87 16.49 4.20
pr136 34.33 17.90 8.59 27.83 6.73
pr144 4.96 13.68 3.12 15.55 9.97
pr152 19.53 20.44 4.24 19.75 9.44
u159 15.62 30.43 10.34 20.95 12.05

rat195 17.86 16.23 12.87 24.41 5.42
d198 25.79 17.57 3.85 15.40 6.96

pr226 22.76 20.87 1.42 20.95 8.93
gil262 25.95 19.47 5.93 19.05 8.86
pr264 20.32 17.38 9.12 17.60 10.56
pr299 27.77 19.71 9.13 19.93 11.95
lin318 26.85 18.68 10.87 18.42 8.24
rd400 23.13 23.37 9.61 21.48 9.00
pr439 27.04 15.74 12.24 17.39 13.31

pcb442 21.36 16.09 13.83 18.59 10.20
d493 28.52 17.82 11.61 17.44 8.84
u574 29.60 19.20 11.39 20.02 12.36

rat575 24.82 18.81 10.20 21.87 9.07
p654 31.02 27.99 6.89 21.73 10.66
d657 31.26 16.66 11.87 17.50 10.20
u724 23.16 20.34 11.65 21.00 10.44

rat783 27.13 18.66 12.09 21.34 9.88
pr1002 24.35 24.28 10.85 20.67 10.24

pcb1173 28.18 19.00 14.22 18.77 10.53
rl1304 28.58 21.59 17.81 15.92 9.86

nrw1379 24.43 18.89 9.71 24.14 10.54
u1432 25.50 19.07 12.59 24.05 10.41

pr2392 24.96 20.27 14.32 18.70 12.40

Table 1 contains for our sample problem set the qualities of the solutions (i.e.,
the deviations in percent from an optimal solution) found by the standard near-
est neighbor heuristic started at node �n/2� (NN1), the variant of the nearest
neighbor heuristic using candidate sets started at node �n/2� (NN2), the farthest
insertion heuristic started with the loop �n/2� (FI), the modified Christofides
heuristic (CH), and the savings heuristic with base node �n/2� (SA). All heuris-
tics (except for the standard nearest neighbor and the farthest insertion heuristic)
were executed in their fast versions using the 10 nearest neighbor candidate sub-
graph. Table 2 lists the corresponding CPU times (without times for computing
the candidate sets).
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Table 2

CPU times for construction heuristics

Problem NN1 NN2 FI CH SA

lin105 0.03 0.01 0.06 0.01 0.02
pr107 0.03 0.01 0.07 0.01 0.03
pr124 0.05 0.01 0.10 0.01 0.02
pr136 0.05 0.02 0.10 0.01 0.03
pr144 0.06 0.02 0.13 0.01 0.03
pr152 0.06 0.02 0.13 0.01 0.06
u159 0.07 0.01 0.16 0.01 0.03

rat195 0.11 0.02 0.23 0.01 0.04
d198 0.10 0.02 0.23 0.02 0.05

pr226 0.13 0.02 0.30 0.02 0.08
gil262 0.18 0.03 0.40 0.02 0.07
pr264 0.19 0.03 0.43 0.02 0.11
pr299 0.24 0.04 0.52 0.02 0.07
lin318 0.27 0.04 0.59 0.03 0.09
rd400 0.42 0.05 0.94 0.05 0.13
pr439 0.51 0.05 1.12 0.04 0.20

pcb442 0.51 0.05 1.14 0.04 0.15
d493 0.64 0.07 1.43 0.05 0.20
u574 0.95 0.07 1.93 0.07 0.28

rat575 0.93 0.08 1.94 0.06 0.24
p654 1.19 0.09 2.51 0.07 0.53
d657 1.14 0.09 2.56 0.06 0.34
u724 1.49 0.10 3.10 0.10 0.39

rat783 1.63 0.11 3.63 0.11 0.48
pr1002 2.63 0.14 6.02 0.17 0.86

pcb1173 3.65 0.16 8.39 0.17 1.12
rl1304 4.60 0.18 10.43 0.13 1.85

nrw1379 5.16 0.22 11.64 0.30 1.70
u1432 5.54 0.17 12.52 0.34 1.64

pr2392 15.27 0.33 35.42 0.72 5.07

From our computational experiments with these construction heuristics we
have drawn the following conclusions. The clear winners are the savings heuris-
tics, and because of the considerably lower running time we declare the fast im-
plementation of the savings heuristic as the best construction heuristic. This is in
conformity with other computational testings, for example Arthur and Frende-
way (1985). If one has to employ a substantially faster heuristic then one should
use the variant of the nearest neighbor heuristic where forgotten nodes are in-
serted. For geometric problems minimum spanning trees are readily available. In
such a case the fast variant of Christofides’ heuristic can be used instead of the
nearest neighbor variant.
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Figure 4. A 2-opt move.

4.2. Improvement heuristics

The Hamiltonian cycles computed by the construction heuristics in the previ-
ous subsection were only of moderate quality. Although they can be useful for
some applications, they are not satisfactory in general.

In this subsection we address the question of how to improve these cycles. In
general, the heuristics we will discuss here are defined using a certain type of
basic move to alter the current cycle. We will proceed from fairly simple moves
to more complicated ones. Further types of moves can be found in Gendreau,
Hertz and Laporte (1992).

Two-opt exchange
This improvement approach is motivated by the following observation for Eu-

clidean problems. If a Hamiltonian cycle crosses itself it can be easily shortened.
Namely, erase two edges that cross and reconnect the resulting two paths by
edges that do not cross (this is always possible). The new cycle is shorter than
the old one.

A 2-opt move consists of eliminating two edges and reconnecting the two
resulting paths in a different way to obtain a new cycle. The operation is depicted
in Figure 4, where we obtain a better solution if edges ij and kl are replaced by
edges ik and jl. Note that there is only one way to reconnect the paths, since
adding edges il and jk would result in two subtours. The 2-opt improvement
heuristic is then outlined as follows.
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procedure 2-opt

(1) Let T be the current Hamiltonian cycle.
(2) Perform the following until failure for every node i is obtained.

(2.1) Select a node i.
(2.2) Examine all 2-opt moves involving the edge between i and its successor

in the cycle. If it is possible to decrease the cycle length this way, then
choose the best such move, otherwise declare failure for node i.

(3) Return T .

Assuming integral data, the procedure runs in finite time. But, there are classes
of instances where the running time cannot be bounded by a polynomial in the
input size. Checking whether an improving 2-opt move exists takes time O(n2)
because we have to consider all pairs of cycle edges.

The implementation of 2-opt can be done in a straightforward way. But,
observe that it is necessary to have an imposed direction on the cycle to be able
to decide which two edges have to be added in order not to generate subtours.
Having performed a move, the direction has to be reversed for one part of the
cycle. CPU time can be saved if the update of the imposed direction is performed
such that the direction on the longer path is maintained and only the shorter
path is reversed. One can incorporate this shorter path update by using an
additional array giving the rank of the nodes in the current cycle (an arbitrary
node receives rank 1, its successor gets rank 2, etc.). Having initialized these
ranks we can determine in constant time which of the two paths is shorter, and
the ranks have to be updated only for the nodes in the shorter path. With such
an implementation it still took 88.0 seconds to perform the 2-opt heuristic on a
nearest neighbor solution for problem pr2392. The quality of the final solution
was 8.3%.

Speedup possibilities are manifold. First of all, we can make use of a candidate
subgraph. The number of possible 2-opt moves that are examined can then be
reduced by requiring that in every 2-opt move at least one candidate edge is used
to reconnect the paths.

Another modification addresses the order in which cycle edges are considered
for participating in a 2-opt move. A straightforward strategy could use a fixed
enumeration order, e.g., always scanning the nodes in Step (2.1) of the heuristic
in the sequence 1, 2, . . . , n and checking if a move containing the edge from node
i to its successor in the current cycle can participate in an allowed move (taking
restrictions based on the candidate set into account). But usually, one observes
that, in the neighborhood of a successful 2-opt move, more improving moves can
be found. The fixed enumeration order does not consider this. We have therefore
implemented the following dynamic order. The nodes of the problem are stored
in a list (initialized according to the sequence of the nodes in the cycle). In every
iteration step the first node is taken from the list, scanned as described below,
and reinserted at the end of the list. If i is the current node to be scanned,
we examine if we can perform an improving 2-opt move which introduces a
candidate edge having i as one endnode. If an improving move is found then
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all four nodes involved in that move are stored at the beginning of the node
list (and therefore reconsidered with priority). The reduction in running time
is considerable, because many fewer moves are examined. For example, when
starting with a random Hamiltonian cycle for problem rl5934, with the dynamic
enumeration only 85,762,731 moves were considered instead of 215,811,748 moves
with the fixed enumeration. The reduction is less significant if one starts the 2-
opt improvement with reasonable starting solutions. Since the 2-opt heuristic is
very sensitive with respect to the sequence in which moves are performed, one
can obtain quite different results for the two versions even for the same start.
However, with respect to average quality both variants perform equally well.

Another point for speeding up computations further is to reduce the number of
distance function evaluations, which accounts for a large portion of the running
time. A thorough discussion of this issue can be found in Bentley (1992). For
example, one can inhibit evaluation of a 2-opt move that cannot be improving
in the following way. When considering a candidate edge ij for taking part in a
2-opt move, we check if i and j have the same neighbors in the cycle as when ij
was considered previously. If ij could not be used before in an improving move
it can also not be used now. Furthermore, one can restrict attention to those
moves where one edge ij is replaced by a shorter edge ik, since this must be true
for one of the pairs.

Using an implementation of 2-opt based on the above ideas we can now perform
the heuristic on a nearest neighbor solution for pr2392 in 0.4 seconds achieving
a Hamiltonian cycle of length 9.5% above the optimum. The average quality for
our set of sample problems was 8.3%.

Performance of 2-opt can be improved by incorporating a simple additional
move, namely node insertion. Such a move consists of removing one node from
the current cycle and reinserting it at a different position. Since node insertion
is not difficult to implement, we suggest to combine 2-opt and node insertion.
On our set of sample problems we achieved an average quality of 6.5% using
this combination. For problem pr2392 we obtained a solution with quality 7.3%
in 2.2 seconds. With his 2-opt implementation starting with a nearest neighbor
solution Johnson (1990) achieved an excess of 6.5% over an approximation of the
subtour bound. Bentley (1992) reports an excess of 8.7% for 2-opt and of 6.7%
for a combination of 2-opt and node insertion. In both cases classes of random
problems were used.

A further general observation for speeding up heuristics is the following. Usu-
ally, decrease in the objective function value is considerable in the first steps
of the heuristic and then tails off. In particular, it takes a final complete round
through all allowed moves to verify that no further improving move is possible.
Therefore, if one stops the heuristics early (e.g., if only a very slow decrease is
observed over some period) not too much quality is lost.

The 3-opt heuristic and variants
To have more flexibility for modifying the current Hamiltonian cycle we could

break it into three parts instead of only two and combine the resulting paths
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in the best possible way. Such a modification is called 3-opt move. The number
of combinations to remove three edges of the cycle is

�
n

3

�
, and there are eight

ways to connect three paths to form a cycle (if each of them contains at least
one edge).

Note that node insertion and 2-opt exchange are special 3-opt moves. Node
insertion is obtained if one path of the 3-opt move consists of just one node, a 2-
opt move is a 3-opt move where one eliminated edge is used again for reconnecting
the paths.

To examine all 3-opt moves takes time O(n3). Update after a 3-opt move is
also more complicated than in the 2-opt case. The direction of the cycle may
change on all but the longest of the three involved paths.

Therefore we decided to not consider full 3-opt (which takes 4661.2 seconds
for problem pcb442 when started with a nearest neighbor solution), but to limit
in advance the number of 3-opt moves that are considered. The implemented
procedure is the following.

procedure 3-opt

(1) Let T be the current Hamiltonian cycle.
(2) For every node i ∈ V define some set of nodes N(i).
(3) Perform the following until failure is obtained for every node i.

(3.1) Select a node i.
(3.2) Examine all possibilities to perform a 3-opt move which eliminates

three edges each having at least one endnode in N(i). If it is possible
to decrease the cycle length this way, then choose the best such move,
otherwise declare failure for node i.

(4) Return T .

If we limit the cardinality of N(i) by some fixed constant independent of n
then checking in Step (3.2) if an improving 3-opt move exists at all takes time
O(n) (but with a rather large constant hidden by the O-notation).

We implemented the 3-opt routine using a dynamic enumeration order for
node selection and maintaining the direction of the cycle on the longest path.
Search in Step (3.2) is terminated as soon as an improving move is found. For
a given candidate subgraph GC we defined N(i) as the set of all neighbors of i
in GC . In order to limit the CPU time (which is cubic in the cardinality of N(i)
for Step (3.2)) the number of nodes in each set N(i) is bounded by 50 in our
implementation.

With this restricted 3-opt version we achieved an average quality of 3.8% when
started with a nearest neighbor solution and of 3.9% when started with a random
solution (GC was the 10 nearest neighbor subgraph augmented by the Delaunay
graph to be defined in 4.3). CPU time is significantly reduced compared to the
full version. Time for pcb442 is now 18.2 seconds with the nearest neighbor start.
For their respective versions of 3-opt, an excess of 3.6% over an approximation
of the subtour bound is reported in Johnson (1990) and an excess of 4.5% was
achieved in Bentley (1992).
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Also the restricted versions of 3-opt are rather time consuming. Thus it is
worthwhile to consider variants that reduce running time further. One particular
variant is the so-called Or-opt procedure (Or (1976)). In this variant of 3-opt it is
required that one of the paths involved in the move has exactly l edges. Results
obtained with this procedure lie between 2-opt and 3-opt (as can be expected)
and it does not contribute significantly to the quality of the final solution if
values larger than 3 are used for l.

Better performance than with the 3-opt heuristic can be obtained with gen-
eral k-opt exchange moves, where k edges are removed from the cycle and the
resulting paths are reconnected in the best possible way. A complete check of
the existence of an improving k-opt move takes time O(nk) and is therefore only
applicable for small problems. One can, of course, design restricted searches for
higher values of k in the same way as we did for k = 3. For a discussion of update
aspects see Margot (1992).

One might suspect that with increasing k the k-opt procedure should yield
provably better approximations to the optimal solution. However, Rosenkrantz,
Stearns and Lewis (1977) show that for every n � 8 and every k � n/4 there
exists a TSP instance on n nodes and a k-optimal solution such that the optimal
and k-optimal values differ by a factor of 2 − 2/n. Nevertheless, this is only
a worst case result. One observes that for practical applications it does pay to
consider larger values of k and design efficient implementations of restricted k-opt
procedures.

Lin-Kernighan type exchange
The final heuristic to be discussed in this subsection was originally described

in Lin and Kernighan (1973). The motivation for this heuristic is based on expe-
rience gained from practical computations. Namely, one observes that the more
flexible and powerful the possible cycle modifications, the better are the obtained
results. In fact, simple moves quickly run into local optima of only moderate qual-
ity. On the other hand, the natural consequence of applying k-opt for larger k
requires a substantially increasing running time. Therefore, it seems more rea-
sonable to follow an approach suggested by Lin and Kernighan.

Their idea is based on the observation that sometimes a modification slightly
increasing the cycle length can open up new possibilities for achieving consider-
able improvement afterwards. The basic principle is to build complicated modi-
fications that are composed of simpler moves where not all of these moves nec-
essarily have to decrease the cycle length. To obtain reasonable running times,
the effort to find the parts of the composed move has to be limited. Many vari-
ants of this principle are possible. We do not describe the original version of this
algorithm which contains a 3-opt component, but discuss a somewhat simpler
version where the basic components are 2-opt and node insertion moves. Gen-
eral complexity issues concerning the Lin-Kernighan heuristic are addressed in
Papadimitriou (1990).

When building a move, in each substep we have some node from which a new
edge is added to the cycle according to some criterion. We illustrate our proce-
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Figure 5. The Lin-Kernighan heuristic.

dure by the example of Figure 5. Suppose we start with the canonical Hamilto-
nian cycle 1, 2, . . . , 16 for a problem on 16 nodes and we decide to construct a
modification starting from node 16.

In the first step it is decided to eliminate edge (1, 16) and introduce the edge
from node 16 to node 9. Adding this edge creates a subtour, and therefore edge
(9, 10) has to be deleted. To complete the cycle, node 10 is connected to node 1.

If we stop at this point we have simply performed a 2-opt move. The funda-
mental new idea is not to connect node 10 to node 1, but to search for another
move starting from node 10. Suppose we now decide to add edge (10, 6). Again,
one edge, namely (6, 7), has to be eliminated to break the subtour. The sequence
of moves could be stopped here, if node 7 is joined to node 1.

As a final extension we perform a node insertion for node 13 instead, and place
this node between 1 and 7. Thus we remove edges (12, 13) and (13, 14) and add
edges (12, 14), (7, 13) and (1, 13).

Note that the direction changes on some parts of the cycle while performing
these moves and that these new directions have to be considered in order to
be able to perform the next moves correctly. When building the final move we
obtained three different solutions on the way. The best of these solutions (which is
not necessarily the final one) can now be chosen as the new current Hamiltonian
cycle.

Realization of this procedure is possible in various ways. We have chosen the
following options.

– To speed up search for submoves a candidate subgraph is used. Edges to
be added from the current node to the cycle are only taken from this set and
are selected according to a local gain criterion. Let i be the current node. We
define the local gain gij that is achieved by adding edge ij to the cycle as follows.
If jk is the edge to be deleted if a 2-opt move is to be performed, then we set
gij = cjk−cij . If jk and jl are the edges to be deleted if a node insertion move is
to be performed, then gij = cjk +cjl−clk−cij . The edge with the maximum local
gain is chosen to enter the solution and the corresponding move is performed.
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– The number of submoves in a move is limited in advance, and a dynamic
enumeration order is used to determine the starting node for the next move.

– Examination of more than one candidate edge to enter the cycle is pos-
sible. The maximum number of candidates examined from the current node and
the maximum number of submoves up to which alternative edges are taken into
account are specified in advance. This option introduces an enumeration compo-
nent for selecting the first few submoves.

The basic outline of the heuristic is then given as follows.

procedure lin-kernighan

(1) Let T be the current Hamiltonian cycle.
(2) Perform the following computation until failure is obtained for every node i.

(2.1) Select a node i to serve as a start for building a composed move.
(2.2) Try to find an improving move starting from i according to the guide-

lines and the parameters discussed above. If no such move can be found,
then declare failure for node i.

(3) Return T .

A central implementation issue concerns the management of the tentative
moves. Since most of them do not lead to an improvement of the solution, it
is reasonable to avoid an explicit cycle update for every such move, but only
update as little information as possible.

We use an idea that was reported by Applegate, Chvátal and Cook (1990).
Consider for example a 2-opt move. Its effect on the current solution is completely
characterized by storing how the two resulting paths are reconnected and if
their direction has changed. To this end it suffices to know the endnodes of
every path and the edges connecting them. For every other node its neighbors
are unchanged, and, since we have ranks associated with the nodes, we can
easily identify the path in which a node is contained. In general, the current
Hamiltonian cycle is represented by a cycle of intervals of ranks where each
interval represents a subpath of the starting Hamiltonian cycle. For an efficient
identification of the interval to which a specific node belongs the intervals are
kept in a balanced binary search tree. Therefore, the interval containing a given
node can be identified in time O(log m) if we have m intervals. Note, that also
in the interval representation we have to reorient paths of the sequence. But, as
long as we have few intervals (i.e., few tentative submoves), this can be done
fast. Of course, the number of intervals should not become too large because the
savings in execution time decreases with the number of intervals that have to be
managed. Therefore, if we have too many intervals, we clear the interval structure
and generate correct successor and predecessor pointers to represent the current
cycle. The longest path represented as an interval can remain unchanged, i.e., for
its interior nodes successors, predecessors, and ranks do not have to be altered.

Possible choices for the parameters of this heuristic are so numerous that we
cannot document all experiments here. We only discuss some basic insights.



30 M. Jünger, G. Reinelt and G. Rinaldi

The observations we gained from our experiments can be summarized as fol-
lows.

– At least 15 submoves should be allowed for every move in order to be
able to generate reasonably complicated moves.

– It is better not to start out with a random solution, but with a locally
good Hamiltonian cycle. But, this is of less importance when more elaborate
versions of the Lin-Kernighan procedure are used.

– It is advisable to consider several alternative choices for the edge to be
added from the first node.

– Exclusion of node insertion moves usually leads to inferior results.
We report about two variants of the Lin-Kernighan approach for our set of

sample problems.
In the first variant, the candidate subgraph is the 6 nearest neighbor subgraph

augmented by the Delaunay graph. Up to 15 submoves are allowed to constitute
a move. Three alternative choices for the edge to be added to the cycle in the
first submove are considered. Submoves are 2-opt and node insertion moves.

In the second variant, the candidate subgraph is the 8 nearest neighbor sub-
graph augmented by the Delaunay graph. Up to 15 submoves are allowed to
constitute a move. Two alternative entering edges are considered for each of the
first three submoves of a move (This gives a total of eight possibilities examined
for the first three submoves of a move). Submoves are 2-opt and node insertion
moves.

In contrast to simpler heuristics, the dependence on the starting solution is
not very strong. Results and CPU times differ only slightly for various types
of starting solutions. Even if one starts with a random Hamiltonian cycle not
much quality is lost. Starting with a nearest neighbor solution we obtained an
average quality of 1.9% for variant 1 and 1.5% for variant 2. Running time of
the Lin-Kernighan exchange for problem pr2392 was 61.7 and 122.3 seconds for
the respective variants. Variant 2 is more expensive since more possibilities for
moves are enumerated (larger candidate set and deeper enumeration level). In
general, higher effort usually leads to better results. Similar results are given in
Johnson (1990). Another variant of the Lin-Kernighan heuristic is discussed in
Mak and Morton (1993).

As a final experiment we ran an extension of the Lin-Kernighan heuristic
first proposed by Johnson (1990). The Lin-Kernighan heuristic, as every other
heuristic, terminates in a local optimum which depends on the start and on the
moves that are performed. To have a chance of finding good local optima one
can start the procedure several times with different starting solutions. A more
reasonable idea is not to restart with a completely new starting solution but
only to perturb the current solution. This way one escapes the local optimum by
making a move that increases the length but still has a solution that is close to
an optimal one at least in some segments. Computational experiments show that
this approach is superior. Johnson (1990) suggests that after termination of the
Lin-Kernighan heuristic a random 4-opt move is performed and the heuristic is
reapplied. Using this method several optimal solutions of some larger problems
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Table 3

Results of improvement heuristics

Problem 2-O 3-O LK1 LK2 ILK

lin105 8.42 0.00 0.77 0.00 0.00
pr107 3.79 2.05 1.53 0.81 0.00
pr124 2.58 1.15 2.54 0.39 0.00
pr136 10.71 6.14 0.55 0.72 0.38
pr144 3.79 0.39 0.56 0.06 0.00
pr152 2.93 1.85 0.00 0.19 0.00
u159 14.00 11.49 2.20 1.59 0.00

rat195 6.46 3.01 1.55 1.55 0.47
d198 3.85 6.12 0.63 1.51 0.16

pr226 13.17 1.72 0.72 0.49 0.00
gil262 10.26 3.07 1.18 2.44 0.55
pr264 4.39 6.04 0.12 0.01 0.49
pr299 10.46 4.37 1.55 1.36 0.15
lin318 9.54 2.67 1.87 1.17 0.53
rd400 5.01 3.42 2.34 1.41 0.75
pr439 6.52 3.61 2.73 2.68 0.38

pcb442 8.74 3.01 1.41 1.94 0.90
d493 9.37 3.32 2.23 1.47 0.84
u574 7.85 4.61 2.05 0.98 0.60

rat575 7.93 4.46 2.48 1.68 1.03
p654 14.89 0.62 4.14 2.95 0.03
d657 7.57 3.52 3.10 1.65 0.74
u724 8.09 4.20 2.60 1.38 0.67

rat783 9.07 4.22 1.94 1.77 0.91
pr1002 8.46 3.80 2.92 2.72 1.51

pcb1173 10.72 5.26 2.18 3.22 1.46
rl1304 13.21 7.08 5.07 1.73 1.62

nrw1379 8.25 3.65 2.48 1.76 1.13
u1432 10.48 5.39 1.51 2.45 0.99

pr2392 9.48 5.26 2.95 2.90 1.75

(e.g., pr2392) were found. In our experiment we used the second variant of the
Lin-Kernighan heuristic described above, but this time allowing 40 submoves
per move. In addition, we performed a restricted 3-opt after termination of each
Lin-Kernighan heuristic. This approach was iterated 20 times. We now obtained
an average quality of 0.6%.

Table 3 gives the quality of the solutions found by 2-opt (2-O), 3-opt (3-O), and
the two versions of the Lin-Kernighan heuristic described above (LK1 and LK2).
Column (ILK) displays the results obtained with the iterated Lin-Kernighan
heuristic. The improvement heuristics were started with a nearest neighbor so-
lution. Table 4 lists the corresponding CPU times.
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Table 4

CPU times for improvement heuristics

Problem 2-O 3-O LK1 LK2 ILK

lin105 0.02 4.10 1.15 4.09 168.40
pr107 0.01 2.73 0.71 2.25 121.34
pr124 0.02 3.82 1.03 3.08 219.52
pr136 0.03 3.76 1.05 2.98 221.96
pr144 0.02 6.37 1.20 3.85 304.52
pr152 0.02 3.44 1.03 2.85 260.19
u159 0.02 6.03 1.46 4.26 314.53

rat195 0.02 4.41 1.93 4.86 409.74
d198 0.03 7.22 5.27 6.04 520.23

pr226 0.02 12.85 2.64 7.16 488.87
gil262 0.04 7.84 2.84 8.37 575.52
pr264 0.03 9.83 3.53 8.29 455.71
pr299 0.04 10.27 3.47 10.97 750.62
lin318 0.04 12.56 5.30 11.98 825.53
rd400 0.05 13.19 4.57 13.33 1153.41
pr439 0.06 14.60 7.34 16.04 1086.08

pcb442 0.08 18.23 5.03 17.60 1079.45
d493 0.08 17.69 8.88 15.89 1465.07
u574 0.10 34.12 7.92 27.09 1677.75

rat575 0.07 17.38 7.13 29.37 1547.93
p654 0.08 41.65 9.09 17.17 1303.30
d657 0.10 22.19 12.51 26.00 1958.84
u724 0.10 30.27 9.37 26.55 1921.41

rat783 0.14 27.50 12.78 39.24 2407.84
pr1002 0.19 41.69 17.78 42.01 2976.47

pcb1173 0.17 55.41 17.07 55.10 3724.98
rl1304 0.21 112.02 22.88 54.73 4401.12

nrw1379 0.26 52.68 21.22 73.58 4503.37
u1432 0.19 61.85 16.91 66.21 3524.59

pr2392 0.40 148.63 61.72 122.33 8505.42

From our computational tests we draw the following conclusions. If we want
to achieve very good results, simple basic moves are not sufficient. If simple
moves are employed, then it is advisable to apply them to reasonable starting
solutions since they are not powerful enough for random starts. Nearest neighbor
like solutions are best suited for simple improvement schemes since they consist
of rather good pieces of a Hamiltonian cycle and contain few bad ones that
can be easily repaired. For example, the 2-opt improvement heuristic applied to
a farthest insertion solution would lead to much inferior results, although the
farthest insertion heuristic delivers much better Hamiltonian cycles than those
found by the nearest neighbor heuristic.
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If one attempts to find solutions in the range of 1% above optimality one
has to use the Lin-Kernighan heuristic since it can avoid bad local minima.
However, applying it to large problems requires that considerable effort is spent
in deriving an efficient implementation. A näıve implementation would consume
an enormous amount of CPU time. If time permits, the iterated version of the
Lin-Kernighan heuristic is the method of choice for finding good approximate
solutions. For a more general discussion of local search procedures see Johnson,
Papadimitriou and Yannakakis (1988).

It is generally observed that quality of heuristics degrades with increasing
problem size, therefore more tries are necessary for larger problems. In Johnson
(1990) and Bentley (1992) some interesting insights are reported for problems
with up to a million nodes.

4.3. Special purpose algorithms for geometric instances

TSP instances that arise in practice often are of geometric nature in that
the points defining the problem instance correspond to locations in a space.
The length of the edge connecting nodes i and j is the distance of the points
corresponding to the nodes according to some metric, i.e., a function that satisfies
the triangle inequality. Usually the points are in 2-dimensional space and the
metric is the Euclidean (L2), the Maximum (L∞), or the Manhattan (L1) metric.

In this subsection we discuss advantages that can be gained from geometric
instances. Throughout this subsection we assume that the points defining a prob-
lem instance correspond to locations in the plane and that the distance of two
points is their Euclidean distance.

Geometric heuristics
Bartholdi and Platzman (1982) introduced the so-called space filling curve

heuristic for problem instances in the Euclidean plane. It is particularly easy to
implement and has some interesting theoretical properties. The heuristic is based
on a bijective mapping ψ : [0, 1] → [0, 1] × [0, 1], a so-called space filling curve.
The name comes from the fact that when varying the arguments of ψ from 0 to 1
the function values fill the unit square completely. Surprisingly, such functions
exist and, what is interesting here, they can be computed efficiently and also for
a given y ∈ [0, 1] × [0, 1] a point x ∈ [0, 1] such that ψ(x) = y can be found in
constant time.

The function used by Bartholdi and Platzman models the recursive subdivision
of squares into four equally sized subsquares. The space filling curve is obtained
by patching the four respective subcurves together. The heuristic is given as
follows.

procedure spacefill

(1) Scale the points to the unit square.
(2) For every point i with coordinates xi and yi compute zi such that ψ(zi) =

(xi, yi).
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(3) Sort the numbers zi in increasing order.
(4) Connect the points by a cycle respecting the sorted sequence of the zi’s (to

complete the cycle connect the two points with smallest and largest z-value).

Since the values zi can be computed in constant time the overall computation
time is dominated by the time to sort these numbers in Step (3) and hence this
heuristic runs in time Θ(n log n).

It can be shown, that if the points are contained in a rectangle of area F then
the Hamiltonian cycle is not longer than 2

√
nF . Bartholdi and Platzman have

also shown that the quotient of the length of the heuristic and the length of an
optimal solution is bounded by O(log n).

At this point, we comment briefly on average case analysis for the Euclidean
TSP. Suppose that the n points are drawn independently from a uniform distri-
bution on the unit square and that copt denotes the length of an optimal solution.
Beardwood, Halton and Hammersley (1959) show that there exists a constant
C such that limn→∞ copt/

√
n = C and they give the estimate C ≈ 0.765. Such

behavior can also be proved for the space filling curves heuristic with a different
constant C. Bartholdi and Platzman (1982) give the estimate C ≈ 0.956. There-
fore, for this class of random problems the space filling curves heuristic can be
expected to yield solutions that are approximately 25% larger than an optimal
solution as n tends to infinity.

Since in space filling curves heuristic adding or deleting points does not change
the relative order of the other points in the Hamiltonian cycle, this heuristic
cannot be expected to perform too well. In fact, for our set of sample problems
we achieved an average quality of 35.7%. As expected, running times are very
low, e.g., 0.2 seconds for problem pr2392. Experiments show that space filling
curves solutions are not suited as starts for improvement heuristics. They are
useful if only extremely short computation times are allowed.

In the well-known strip heuristic the problem area is cut into
√

n parallel
vertical strips of equal width. Then Hamiltonian paths are constructed that
collect the points of every strip sorted by the vertical coordinate, and finally these
paths are combined to form a solution. The procedure runs in time O(n log n).
Such a straightforward partition into strips is very useful for randomly generated
problems, but can and will give poor results on real-world instances. The reason
is that partition into parallel strips may not be adequate for the given point
configuration.

To overcome this drawback, other approaches do not divide the problem area
into strips but into segments, for example into squares or rectangles. In Karp’s
partitioning heuristic (Karp (1977)) the problem area is divided by horizontal
and vertical cuts such that each segment contains no more than a certain num-
ber k of points. Then, a dynamic programming algorithm is used to compute
an optimal Hamiltonian cycle on the points contained in each segment. In a
final step all subtours are glued together according to some scheme to form a
Hamiltonian cycle through all points. For fixed k the optimal solutions of the re-
spective subproblems can be determined in linear time (however, depending on k,
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a large constant associated with the running time of the dynamic programming
algorithm is hidden).

We give another idea to reduce the complexity of a large scale problem in-
stance. Here the number of nodes of the problem is reduced in such a way that
the remaining nodes still give a satisfactory representation of the geometry of the
original points. Then a Hamiltonian cycle on this set of representative nodes is
computed in order to serve as an approximation for the cycle through all nodes.
In the final step the original nodes are inserted into this cycle (where the number
of insertion points that will be checked can be specified) and the representative
nodes (if not original nodes) are removed. More precisely, we use the following
bucketing procedure.

procedure node reduction

(1) Compute an enclosing rectangle for the given points.
(2) Recursively subdivide each rectangle into four equally sized parts by a hor-

izontal and a vertical line until each rectangle
– contains no more than 1 point, or
– is the result of at least m recursive subdivisions and contains no more

than k points.
(3) Represent each (nonempty) rectangle by the center of gravity of the points

contained in it.
(4) Compute a Hamiltonian cycle through the representative nodes.
(5) Insert the original points into this cycle. To this end at most l/2 insertion

points are checked before and after the corresponding representative nodes
in the current cycle. The best insertion point is then chosen.

(6) Remove all representative nodes that are not original nodes.

The parameters m, k, and l, and the heuristic needed in Step (4) can be chosen
with respect to the available CPU time.

This heuristic is only suited for very large problems and we did not apply it to
our sample set. One can expect qualities of 15% to 25% depending on the point
configuration.

The heuristic is similar to a clustering algorithm given in Litke (1984), where
clusters of points are represented by a single point. Having computed an opti-
mal Hamiltonian cycle through the representatives, clusters are expanded one
after another. A further partitioning heuristic based on geometry is discussed in
Reinelt (1994). Decomposition is also a topic of Hu (1967). Since many geomet-
ric heuristics are fairly simple, they are amenable to probabilistic analysis. Some
interesting results on average behavior can be found in Karp and Steele (1985).

Success of such simple approaches is limited, because global view is lost and
parts of the final solution are computed independently from each other. In John-
son (1990) a comparison of various geometric heuristics is given, concluding that
the average excess over the subtour bound for randomly generated problems is
64.0%, 30.2%, and 23.2% for Karp’s partitioning heuristic, strip heuristic, and
Litke’s clustering method, respectively. These results show that it is necessary
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to incorporate more sophisticated heuristics into simple partitioning schemes as
we did in our procedure. Then, one can expect qualities of about or below 20%.
In any case, these approaches are very fast and can virtually handle arbitrary
problem sizes. If the given point configuration decomposes in a natural way, then
much better results can be expected.

Convex hull starts
Let v1, v2, . . . , vk be those points of the problem defining the boundary of the

convex hull of all given points (in this order). Then in any optimal Hamilto-
nian cycle this sequence is respected, otherwise it would contain crossing edges
and hence could not be optimal. Therefore it is reasonable to use the cycle
(v1, v2, . . . , vk) as start for the insertion heuristics.

Convex hulls can be computed very quickly (in time Θ(n logn), see e.g., Gra-
ham (1972)). Therefore, only negligible additional CPU time is necessary to
compute a good starting cycle for the insertion heuristics in the Euclidean case.

It turns out that the quality of solutions delivered by insertion heuristics is
indeed improved if convex hull start is used. But, gain in quality is only moderate.
In particular, also with this type of start, our negative assessment of insertion
heuristics still applies.

Delaunay graphs
A very powerful tool for getting insight into the geometric structure of a Eu-

clidean problem is the Voronoi diagram, or its dual: the Delaunay triangula-
tion. Although known for a long time (Voronöı (1908), Delaunay (1934)), these
structures have only recently received significant attention in the literature on
computation.

Let S = {P1, P2, . . . , Pn} be a finite subset of IR2 and let d : IR2
× IR2

−→ IR
denote the Euclidean metric. We define the Voronoi region VR(Pi) of a point
Pi by VR(Pi) = {P ∈ IR2

| d(P, Pi) � d(P, Pj) for all j = {1, 2, . . . , n}}, i.e.,
VR(Pi) is the set of all points that are at least as close to Pi as to any other
point of S. The set of all n Voronoi regions is called the Voronoi diagram V (S)
of S. Figure 6 shows the Voronoi diagram for a set of 15 points in the plane.

Given the Voronoi diagram of S, the Delaunay triangulation G(S) is the undi-
rected graph G(S) = (S, D) where D = {{Pi, Pj} | VR(Pi) ∩VR(Pj) �= ∅}. It is
easy to see that G(S) is indeed a triangulated graph.

In the following we use an alternative definition which excludes those edges
(Pi, Pj) for which |VR(Pi) ∩ VR(Pj)| = 1. In this case the name is misleading,
because we do not necessarily have a triangulation anymore, and to avoid mis-
interpretation from now on we speak about the Delaunay graph. In contrast to
the Delaunay triangulation defined above, the Delaunay graph is guaranteed to
be a planar graph (implying |D| = O(n)). Moreover, as the Delaunay triangula-
tion, it contains a minimum spanning tree of the complete graph on S with edge
weights d(Pi, Pj) and contains for each node an edge to a nearest neighbor. Fig-
ure 7 shows the Delaunay triangulation corresponding to the Voronoi diagram
displayed in Figure 6.
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Figure 6. A Voronoi diagram.

Figure 7. A Delaunay graph.

The Delaunay graph can be computed very efficiently. There are algorithms
computing the Voronoi diagram (and hence the Delaunay triangulation) in time
O(n logn) (see e.g., Shamos and Hoey (1975)). For practical purposes an al-
gorithm given in Ohya, Iri and Murota (1984) seems to perform best. It has
worst case running time O(n2), but linear running time can be observed for real
problems. In the same paper some evidence is given that the linear expected
running time for randomly generated problems can be mathematically proven.
A rigorous proof, however, is still missing. We used an implementation of this
algorithm in our experiments. CPU times are low, 4.5 seconds for computing
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the Delaunay graph for a set of 20,000 points. We note that computing Voronoi
diagrams and Delaunay graphs in a numerically stable way is a nontrivial task.
In Jünger, Reinelt and Zepf (1991) and Kaibel (1993) it is shown how round-off
errors during computation can be avoided to obtain reliable computer codes.

There are heuristics which try to directly exploit information from the Voronoi
diagram (Ruján, Evertsz and Lyklema (1988), Cronin (1990), Segal, Zhang and
Tsai (1991)).

The Delaunay graph can be exploited to speed up computations, as can be
seen from what follows.

Minimum spanning trees
For Euclidean problem instances, one can compute minimum spanning trees

very fast because computation can be restricted to the edge set of the Delaunay
graph. Now we can use Kruskal’s algorithm (Kruskal (1956)) which runs (if
properly implemented using fast union-find techniques) in time O(n logm) where
m is the number of edges of the graph. In the Euclidean case we thus obtain a
running time of O(n log n). For example, it takes time 1.3 seconds to compute
a minimum spanning tree for problem pr2392 from the Delaunay graph. Using
more sophisticated data structures the theoretical worst-case running time can be
improved further (see Tarjan (1983) and Cormen, Leiserson and Rivest (1989)),
but this does not seem to be of practical importance.

Implementing the nearest neighbor heuristic efficiently
Using the Delaunay graph, we can improve the running time of the standard

nearest neighbor heuristic for Euclidean problem instances. Namely, if we want
to determine the k nearest neighbors of some node, then it is sufficient to consider
only nodes which are at most k edges away in the Delaunay graph. Using breadth-
first search starting at a node, say i, we compute for k = 1, 2, . . . the k-th nearest
neighbor of i until a neighbor is found that is not yet contained in the current
partial Hamiltonian cycle. Due to the properties of the Delaunay graph we should
find the nearest neighbor of the current node by examining only a few edges. Since
in the last steps of the algorithm we have to collect the forgotten nodes (which
are far away from the current node) it makes no sense to use the Delaunay graph
any further. We found that it is faster, if the final nodes are just added using
the standard nearest neighbor approach.

The worst case time complexity of this modified nearest neighbor search is
still O(n2) but, in general, reduction of running time is considerable. For rl5934

we reduced the running time to 0.7 seconds (adding the final 200 nodes by the
standard nearest neighbor routine) compared to 40.4 seconds for the standard
implementation. Plotting CPU times versus problem sizes exhibits that we can
expect an almost linear growth of running time.

Computing candidate sets efficiently
We have observed the importance of limiting search for improving moves (for

example by using candidate sets). In this subsection we address the question of
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which candidate sets to use and of how to compute them efficiently for geometric
problems. Three types of such sets were considered.

An obvious one is the nearest neighbor candidate set. Here, for every node the
edges to its k nearest neighbors (where k is usually between 5 and 20) are deter-
mined. The candidate set consists of the collection of the corresponding edges.
For example, optimal solutions for the problems pcb442, rat783, or pr2392 are
contained in their 8 nearest neighbor subgraphs. On the other hand, in problem
d198 the points form several clusters, so even the 20 nearest neighbor subgraph
is still disconnected. Nevertheless, the edges to neighbors provide promising can-
didates to be examined. The idea of favoring near neighbors has already been
used by Lin and Kernighan to speed up their algorithm. They chose k = 5 for
their computational experiments.

A straightforward enumeration procedure computes the k nearest neighbors in
time O(n2). As described above neighbor computations can be performed much
faster if the Delaunay graph is available. For example, computation of the 10
nearest neighbor subgraph for a set of 20,000 points takes 8.3 seconds. In our
practical experiments we observed a linear increase of the running time with the
problem size.

Another candidate set is derived from the Delaunay graph itself, since it seems
to give useful information about the geometric structure of a problem. It is
known, however, that this graph does not have to contain a Hamiltonian cycle
(Dillencourt (1987a, 1987b)). First experiments showed that it provides a candi-
date set too small for finding good Hamiltonian cycles. We therefore decided to
use the Delaunay candidate set. This set is composed of the Delaunay graph as
defined above and transitive edges of order 2, i.e., if node i is connected to node
j, and node j is connected to node k in the Delaunay graph, then the edge from
i to k is also taken into the candidate set. (This set may contain some very long
edges that can be deleted in a heuristic way.)

Also this candidate subgraph can be computed very efficiently (e.g., in 14.5 sec-
onds for 20,000 nodes). The average cardinality of the three subgraphs for our
test of sample problems nodes is 2.75n for the Delaunay graph, 5.73n for the 10
nearest neighbor graph, and 9.82n for the Delaunay set.

Another efficient way of computing nearest neighbors is based on k-d-trees (see
Bentley (1992) and Johnson (1990)). Using the Delaunay graph we can achieve
running times competitive with this approach.

Experiments have shown that the nearest neighbor candidate set fails on clus-
tered point configurations, whereas the Delaunay candidate set seems to have
advantages for such configurations but contains too many edges. The combined
candidate set attempts to combine the advantages of the two previous ones. For
every node the edges to its k nearest neighbors (where k between about 5 and 20)
are determined. The candidate set consists of the collection of these edges and
those of the Delaunay graph.

We found that, in general and if applicable, the combined candidate set is
preferable. It was therefore used in most of our practical computations. Of course,
further candidate sets can be constructed. One possibility is to partition the plane
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into regions according to some scheme and then give priority to edges connecting
points in adjacent regions.

Note that the very fast computation of these candidate sets strongly relies on
the geometric nature of the problem instances. In general, one has to find other
ways for deriving suitable candidate sets.

We have outlined some ideas which are useful for the handling of very large
geometric traveling salesman problems. Though applied here only to Euclidean
problems, the methods or variants of them are also suitable for other types of
geometric problems. Delaunay triangulations for the Manhattan or maximum
metric have the same properties as for the Euclidean metric and can be com-
puted as efficiently. For treating geometric problems on several hundred thousand
nodes it is necessary to use methods of the type discussed above. Exploitation
of geometric information is an active research field, and we anticipate further
interesting contributions in this area.

4.4. A survey of other recent approaches

The heuristics discussed so far have a chance to find optimal solutions. But,
even if we apply the best heuristic of the previous subsections, namely the Lin-
Kernighan heuristic, we will usually encounter solutions of quality only about 1%.
This is explained by the fact that, due to limited modification capabilities, every
improvement heuristic will only find a local minimum. The weaker the moves
that can be performed, the larger is the difference between a locally optimal
solution and a true optimal solution. One way to overcome this drawback is to
start improvement heuristics many times with different (randomly generated)
starts because this increases the chance of finding better local minima. Success
is limited, though.

Most of the heuristics we consider in this subsection try to escape from local
minima or avoid local minima in a more systematic way. A basic ingredient is
the use of randomness or stochastic search in contrast to the purely deterministic
heuristics we have discussed so far. The first random approach is the so-called
Monte-Carlo algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller and Teller
(1953)). In some cases the design of a particular method is influenced by the
desire of imitating nature (which undoubtedly is able to find solutions to highly
complex problems) in the framework of combinatorial optimization. We have
not implemented the heuristics of this subsection, but give references to the
literature.

Simulated Annealing
The approach of simulated annealing is based on a correspondence between

the process of searching for an optimal solution in a combinatorial optimization
problem and phenomena occurring in physics (Kirkpatrick, Gelatt and Vecchi
(1983), Cerny (1985)).
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To visualize this analogy consider the physical process of cooling a liquid to its
freezing point with the goal of obtaining an ordered crystalline structure. Rapid
cooling would not achieve this, one rather has to slowly cool (anneal) the liquid
in order to allow improper structures to readjust and to have a perfect order
(ground state) at the crystallization temperature. At each temperature step the
system relaxes to its state of minimum energy.

Simulated annealing is based on the following analogy between such a physical
process and an optimization method for a combinatorial minimization problem.
Feasible solutions correspond to states of the system (an optimal solution cor-
responding to a ground state, i.e., a state of minimum energy). The objective
function value resembles the energy in the physical system. Relaxation at a cer-
tain temperature is modeled by allowing random changes of the current feasible
solution which are controlled by the level of the temperature. Depending on the
temperature, alterations that increase the energy (objective function) are more
or less likely to occur. At low temperatures it is very improbable that the energy
of the system increases. System dynamics is imitated by local modifications of
the current feasible solution.

Modifications that increase the length of a Hamiltonian cycle are possible, but
only accepted with a certain probability. Pure improvement heuristics as we have
discussed so far can be interpreted in this context as rapid quenching procedures
that do not allow the system to relax.

The general outline of a simulated annealing procedure for the TSP is the
following.

procedure simulated annealing

(1) Compute an initial Hamiltonian cycle T and choose an initial temperature
ϑ and a repetition factor r.

(2) As long as the stopping criterion is not satisfied perform the following steps.
(2.1) Do the following r times.

(2.1.1) Perform a random modification of the current cycle to obtain
the cycle T � and let ∆ = c(T �)− c(T ) (difference of lengths).

(2.1.2) If ∆ < 0 then set T = T �. Otherwise compute a random num-
ber x, 0 � x � 1 and set T = T � if x < e−

∆
ϑ

(2.2) Update ϑ and r.
(3) Output the best solution found.

Simulated annealing follows the general principle, that improving moves are
always accepted, whereas moves increasing the length of the current cycle are
only accepted with a certain probability depending on the increase and current
value of ϑ.

The formulation has several degrees of freedom and various realizations are
possible. Usually 2-opt or 3-opt moves are employed as basic modification in
Step (2.1.1). The temperature ϑ is decremented in Step (2.2) by setting ϑ = γϑ
where γ is a real number close to 1, and the repetition factor r is usually initial-
ized with the number of cities and updated by r = αr where α is some factor
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between 1 and 2. Realization of Step (2.2) determines the so-called annealing
schedule or cooling scheme (much more complicated schedules are possible). The
scheme given above is named geometric cooling. The procedure is stopped if
the length of the current Hamiltonian cycle was not altered during several tem-
perature steps. Expositions of general issues for the development of simulated
annealing procedures can be found in Aarts and Korst (1989) and Johnson,
Aragon, McGeoch and Scheron (1991), a bibliography is given in Collins, Eglese
and Golden (1988).

Computational experiments for the TSP are for example reported in Kirk-
patrick (1984), van Laarhoven (1988), Johnson (1990). It is generally observed
that simulated annealing can find very good or even optimal solutions and beats
Lin-Kernighan concerning quality. To be certain of this, however, one has to
spend considerable CPU time because temperature has to be decreased very
slowly and many repetitions at each temperature step are necessary.

We think that the most appealing property of simulated annealing is its fairly
simple implementation. The principle can be used to approach very complicated
problems if only a basic subroutine is available that turns a feasible solution into
another feasible solution by some modification. Hajek (1985) proved convergence
of the algorithm to an optimal solution with probability 1, if the basic move
satisfies a certain property. Unfortunately, the theoretically required annealing
scheme is not suited for practical use. The proper choice of an annealing scheme
should not be underestimated. It is highly problem dependent and only numerous
experiments can find the most suitable parameters.

A variant of simulated annealing enhanced by deterministic local improvement
(3-opt) leads to so-called large-step Markov chain methods (see Martin, Otto and
Felten (1992)). When such methods are properly implemented, near optimal
solutions can be found faster than with pure simulated annealing. A related
heuristic motivated by phenomena from physics is simulated tunneling described
in Ruján (1988).

A simplification of simulated annealing, called threshold accept , is proposed in
Dueck and Scheuer (1988). This heuristic removes the probability involved for the
acceptance of a bad move in the original method. Rather, in each major iteration
(Step (2.1)) an upper bound is given by which the length of the current cycle
is allowed to be increased by the basic move. This threshold value is decreased
according to some rule. The procedure is stopped if changes of the solution are
not registered for several steps. Computational results are shown to display the
same behavior as simulated annealing. A theoretical convergence result can also
be obtained (Althöfer and Koschnick (1989)).

An even simpler variant is discussed in Dueck (1990) under the name of great-

deluge heuristic. Here for each major iteration there is an upper limit on the
length of Hamiltonian cycles that are accepted. Every random move yielding a
cycle better than this length is accepted (note the difference from the threshold
accept approach). The name of this approach comes from the interpretation that
(for a maximization problem) the limit corresponds to a rising level of water and
moves leading “into the water” are not accepted. This method is reported to
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yield good results with fairly moderate computation times for practical traveling
salesman problems arising from drilling printed-circuit boards.

Evolutionary strategies and genetic algorithms
The development of these two related approaches was motivated by the fact

that many very good (or presumably optimal) solutions to highly complex prob-
lems can be found in nature itself.

The first approach is termed evolutionary strategy since it is based on analogues
of “mutation” and “selection” to derive an optimization heuristic (Rechenberg
(1973)). Its basic principle is the following.

procedure evolution

(1) Compute an initial Hamiltonian cycle T .
(2) As long as the stopping criterion is not satisfied perform the following steps.

(2.1) Generate a modification of T to obtain the cycle T �.
(2.2) If c(T �)− c(T ) < 0 then set T = T �.

(3) Output the best solution found.

In contrast to previous methods of this subsection, moves increasing the length
of the Hamiltonian cycle are not accepted. The term “evolution” is used because
the moves generated in Step (2.1) are biased by knowledge acquired so far, i.e.,
somehow moves that lead to a decrease of cycle length should influence the gen-
eration of the next move. This principle, however, is hardly followed in practice,
moves taken into account are usually k-opt moves generated at random. Formu-
lated this way the procedure cannot leave local minima and experiments show
that it indeed gets stuck in poor local minima. Moreover, convergence is slow,
justifying the name “creeping random search” which is also used for this method.
To leave local minima one has to incorporate the possibility of perturbations that
increase the cycle length (Ablay (1987)). Then this method resembles a mixture
of pure evolutionary strategy, simulated annealing, threshold accept, and tabu
search (see below).

More powerful in nature than mutation-selection is genetic recombination.
Interpreted in terms of the TSP this means that new solutions should not be
constructed from just one parent solution but rather be a suitable combination
of two or more. Heuristics following this principle are termed genetic algorithms .

procedure genetic algorithm

(1) Compute an initial set T of Hamiltonian cycles.
(2) As long as the stopping criterion is not satisfied perform the following steps.

(2.1) Recombine two or more cycles of T to obtain a new cycle T which is
added to T .

(2.2) Reduce the set T according to some rule.
(3) Output the best solution found during the heuristic.

We see that Step (2.1) mimics reproduction in the population T and that
Step (2.2) corresponds to a “survival of the fittest” rule.
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There are numerous possible realizations. Usually, subpaths of given cycles
are connected to form new cycles and reduction is just keeping the set of k
best solutions of T . One can also apply deterministic improvement methods to
the newly generated cycle T before performing Step (2.2). Findings of optimal
solutions are reported for some problem instances (the largest one being problem
att532) with an enormous amount of CPU time. For further reading we refer to
Mühlenbein, Gorges-Schleuter and Krämer (1988), Goldberg (1989), and Ulder,
Pesch, van Laarhoven, Bandelt and Aarts (1990).

Tabu Search
Some of the above heuristics allow length-increasing moves, so local minima

can be left during computation. No precaution, however, is taken to prevent the
heuristic to revisit a local minimum several times. This absence was the starting
point for the development of tabu search where a built-in mechanism is used to
forbid (tabu) returning to the same feasible solution. In principle the heuristic
works as follows.

procedure tabu search

(1) Compute an initial Hamiltonian cycle T and start with an empty tabu list L.
(2) As long as the stopping criterion is not satisfied perform the following steps.

(2.1) Perform the best move that is not forbidden by L.
(2.2) Update the tabu list L.

(3) Output the best solution found.

Again, there are various possibilities to realize a heuristic based on the tabu
search principle. Basic difficulties are the design of a reasonable tabu list, the
efficient management of this list, and the selection of the most appropriate move
in Step (2.1). A thorough discussion of these issues can be found in Glover (1990).
Computational results for the TSP are reported in Knox and Glover (1989),
Malek, Guruswamy, Owens and Pandya (1989), and Malek, Heap, Kapur and
Mourad (1989).

Neural Networks
This approach tries to mimic the mode of operation of the human brain. Basi-

cally one models a set of neurons connected by a certain type of interconnection
network. Based on the inputs that a neuron receives, a certain output is computed
which is propagated to other neurons. A variety of models addresses activation
status of neurons, determination of outputs and propagation of signals in the
net with the basic goal of realizing some kind of learning mechanism. The result
computed by a neural network either appears explicitly as output or is given by
the state of the neurons.

In the case of the TSP there is, for example, the “elastic band” approach
(Durban and Willshaw (1987)) for Euclidean problem instances. Here a position
in the plane is associated with each neuron. In the beginning, the neurons are
ordered along a circle. During the computation, neurons are “stimulated” and
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approach a cycle through the given set of points. Applications for the TSP can
also be found in Fritzke and Wilke (1991). For further reading on neural networks
or connectionism see Hopfield and Tank (1985), Kemke (1988) and Rumelhart,
Hinton and McClelland (1986). Computational results are not yet convincing.

Summarizing, we would classify all heuristics presented in this subsection as
randomized improvement heuristics. Also the iterated Lin-Kernighan heuristic
falls into this class, since it performs a random move after each iteration. The
analogues drawn from physics or biology are entertaining, but we think that they
are a bit overstressed. The central feature is the systematic use of randomness
which may avoid local minima and therefore yield a chance of finding optimal
solutions (if CPU time is available). It is interesting from a theoretical point of
view that convergence to an optimal solution with probability 1 can be shown
for some variants, but the practical impact of these results is limited. The ap-
proaches have the great advantage, however, that they are generally applicable to
combinatorial optimization problems and other types of problems. They can be
implemented routinely with little knowledge about problem structure. If enough
CPU and real time is available they can be applied (after spending some time
for parameter tuning) to large problems with a good chance of finding solutions
close to the optimum.

For many practical applications the heuristics presented in this subsection may
be sufficient for treating the problems satisfactorily. But, if one is (or has to be)
more ambitious and searches for proven optimal solutions or solutions meeting
a quality guarantee, one has to go beyond these methods. The remainder of this
chapter is concerned with solving TSP instances to optimality or computing near
optimal solutions with quality guarantees.

5. Relaxations

A relaxation of an optimization problem P is another optimization problem R,
whose set of feasible solutions R properly contains all feasible solutions P of P .
The objective function of R is an arbitrary extension on R of the objective
function of P . Consequently, the objective function value of an optimal solution
to R is less than or equal to the objective function value of an optimal solution
to P . If P is a hard combinatorial problem and R can be solved efficiently, the
optimal value of R can be used as a lower bound in an enumeration scheme to
solve P . The closer the optimal value of R to the optimal value of P , the more
efficient is the enumeration algorithm.

Since the TSP is an NP-hard combinatorial optimization problem, the stan-
dard technique to solve it to optimality is based on an enumeration scheme, and
so the study of effective relaxations is fundamental in the process of devising
good exact algorithms. We consider here discrete and continuous relaxations,
i.e., relaxations with discrete and continuous feasible sets.
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Before we describe these relaxations we give some notation and recall some
basic concepts.

For any edge set F ⊆ En and any x ∈ IREn , x(F ) denotes the sum
�

e∈F
xe.

For a node set W ⊂ Vn, En(W ) ⊂ En denotes {uv ∈ En | u, v ∈ W} and
δn(W ) ⊂ En denotes {uv ∈ En | u ∈ W, v ∈ Vn \W}. We call δn(W ) a cut with
shores W and Vn \W .

The solution set of the TSP is the set Hn of all Hamiltonian cycles of Kn.
A Hamiltonian cycle, as defined in Section 1, is a subgraph H = (Vn, E) of Kn

satisfying the following requirements:

(a) all nodes of H have degree 2; (5.1)
(b) H is connected. (5.2)

The edge set of a subgraph of Kn whose nodes have all degree 2 is a perfect
2-matching, i.e., a collection of simple disjoint cycles of at least three nodes
and with no chords such that each node of Kn belongs to some of these cycles.
Consequently, a Hamiltonian cycle can be defined as a connected perfect 2-
matching.

It is easy to see that if a perfect 2-matching is connected, then it is also
biconnected, i.e., it is necessary to remove at least two edges to disconnect it.
Therefore, the requirements (5.1) and (5.2) can be replaced by

(a) all nodes of H have degree 2; (5.3)
(b) H is biconnected. (5.4)

With every H ∈ Hn we associate a unique incidence vector χH ∈ IREn by
setting

χH

e
=

� 1 if e ∈ H
0 otherwise.

The incidence vector of every Hamiltonian cycle satisfies the system of equa-
tions

Anx = 2, (5.5)

where An is the node-edge incidence matrix of Kn and 2 is an n-vector having all
components equal to 2. The equations Anx = 2 are called the degree equations
and translate the requirement (5.3) into algebraic terms. In addition, for any
nonempty S ⊂ Vn and for any Hamiltonian cycle H of Kn, the number of edges
of H with an endpoint in S and the other in Vn − S is at least 2 (and even).
Therefore, the intersection of the edge set of H with the cut δn(S) has cardinality
at least 2 (and even), and so χH must satisfy the following set of inequalities:

x(δn(S)) � 2 for all ∅ �= S ⊂ Vn. (5.6)
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These inequalities are called subtour elimination inequalities because they are not
satisfied by the incidence vector of nonconnected 2-matchings (i.e., the union of
two or more subtours), and so they translate the requirement (5.4) into algebraic
terms.

Given an objective function c ∈ IREn that associates a “length” ce with every
edge e of Kn, the TSP can be solved by finding a solution to the following integer
linear program:

Problem 5.1

min cx

s.t. Anx = 2, (5.7)
x(δn(S)) � 2 for all ∅ �= S ⊂ Vn, (5.8)
0 � x � 1, (5.9)
x integer. (5.10)

This is the most commonly used integer linear programming formulation of
the TSP.

5.1. Subtour relaxation

An LP relaxation of the TSP is the linear program obtained by relaxing the
integrality condition (5.10) of any integer programming formulation of the prob-
lem. Consequently, an LP relaxation has a polyhedron in IREn as a feasible set
and thus it is a continuous relaxation.

A simple LP relaxation is the one defined by the constraints (5.7)–(5.9). The
polyhedron defined by these constraints is called the subtour elimination polytope
and the corresponding relaxation is called the subtour relaxation.

The number of constraints defined in (5.7)–(5.9) is n + 2n − 2 + 2m. Some of
them are redundant, though, and it is not difficult to show that the system (5.7)–
(5.9) can be reduced to one not containing redundant constraints and having n
equations and 2n−1 − n− 1 + m inequalities, still a number of constraints given
by an exponential function of n. Such a huge linear program obviously cannot
be solved by a direct application of the simplex method or of any other efficient
algorithm for linear programming. However, as we will describe in Subsection 5.5,
an optimal solution of a linear objective function over the subtour elimination
polytope can be found in polynomial time. Moreover, the optimization over this
polytope can be carried out very efficiently in practical computation by a simple
iterative procedure. We start, for example, by solving the linear program defined
by the constraints (5.7) and (5.9) and by a small subset (possibly empty) of
the constraints (5.8). Then we check if the optimal solution satisfies all the
constraints (5.8). If so, we terminate since we have found the optimal solution
over the subtour elimination polytope. Otherwise, we add some of the violated
constraints to the linear program and we solve it again. The number of iterations
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that are necessary before obtaining the optimum over the subtour polytope is,
in practice, a small fraction of n, and the constraints of the linear programs that
are solved at each iteration form a small subset of (5.7)–(5.9).

We discuss this procedure in more detail in Subsection 5.5. However, the reader
who is not familiar with polyhedral combinatorics should keep it in mind while
reading Subsection 5.4, where other continuous relaxations, also involving con-
straints sets of exponential size, are considered.

It would be interesting to know how close the bound cL obtained by solving the
subtour relaxation is to the length of an optimal Hamiltonian cycle copt. Wolsey
(1980) and Shmoys and Williamson (1990) show that for any nonnegative cost
function c the ratio cL/copt is at least 2/3. The 2/3 bound is not shown to be tight
and actually it is conjectured in Goemans (1993) that cL/copt � 3/4. To prove
this conjecture a deeper knowledge of the structure of the subtour elimination
polytope would probably be necessary. Some results in this direction are given
by Boyd and Pulleyblank (1990) who characterize some of its vertices. But it is
still an open problem how to completely characterize all of them.

Computational experiments show that for many instances the above ratio is
very close to 1 (see the fourth column of Table 5). There are actually classes
of instances for which the optimization over the subtour elimination polytope
always yields the incidence vector of an optimal Hamiltonian cycle (thus the ratio
is 1 for these instances). Padberg and Sung (1988) show that some instances of
the TSP that are very hard for k-opt heuristic algorithms, fall into this category.

The excellent quality of the lower bound obtained from the subtour relaxation
is most probably the main reason of the successful computation of the optimal
solutions of several large TSP instances reported in the literature (see Section 7).

5.2. 1-tree relaxation

A discrete relaxation of the TSP can be obtained by defining a combinatorial
problem whose feasible solutions are subgraphs of Kn satisfying a subset of
the requirements (5.1) and (5.2) and whose optimal solutions can be found in
polynomial time.

The requirements (5.1) and (5.2) imply that any subgraph of Kn that satisfies
them has exactly n edges and spans Kn, i.e., has an edge incident with any
node of Kn. Therefore, we only consider relaxations having as feasible solutions
spanning subgraph of Kn with n edges.

As a first relaxation we can, for example, drop the requirement (5.1) and
consider as feasible solutions the connected spanning subgraphs of Kn with n
edges. These graphs consist of a spanning tree plus an extra edge. With respect
to the edge weights given by c, a minimal weight graph of this kind can be found
by taking a minimal spanning tree and adding an edge not belonging to the tree
with minimal weight. The minimal spanning tree can be found in polynomial
time (see Subsection 4.3).

A better relaxation can be obtained by dropping the requirement (5.1) for all
nodes except one, say node 1. Denote by Kn\{1} the subgraph of Kn induced by
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Vn \ {1}. The subgraph of a Hamiltonian cycle induced by the nodes in Vn \ {1}
is a Hamiltonian path of Kn \ {1}. This is a subgraph Hp of Kn \ {1} satisfying
the following requirements:

(a) Hp spans Kn \ {1};
(b) Hp has n− 2 edges;
(c) Hp is connected;
(d) all nodes of Hp but two have degree 2. (5.11)

The union of a Hamiltonian path on Kn \ {1} and of two edges incident with
node 1 is definitely a relaxation of a Hamiltonian cycle, but not a useful one, since
finding a minimum cost Hamiltonian path in Kn \ {1} is as difficult as finding a
minimum cost Hamiltonian cycle in Kn. However, instead of a Hamiltonian path
we can consider its relaxation obtained by dropping the requirement (5.11). It
can be shown that the resulting graph is a tree that spans Kn \ {1}.

Now we can produce a useful relaxation of the TSP by taking the union of a
pair of edges incident with node 1 and a tree spanning Kn \ {1}. Such a graph is
called a 1-tree. The 1-tree that minimizes the objective function c can be easily
obtained by finding the minimum spanning tree in Kn \ {1} and adding to it
the shortest two edges incident with node 1. Thus the complexity of finding a
minimum 1-tree amounts to that of finding a minimum spanning tree.

Unfortunately, this relaxation is not very strong. To strengthen the lower
bound obtained by finding a minimum cost 1-tree, we modify the objective func-
tion in the following way. If for all u ∈ Vn we add a constant λu to the objective
function coefficients of all edges of δ(u), the length of all Hamiltonian cycles of
Kn increases by the same amount

�
u∈Vn

2λu (since any Hamiltonian cycle has
exactly two edges in each edge set δ(u)). For any edge (u, v) of Kn, the corre-
sponding coefficient of the new objective function is c�(u, v) = c(u, v) + λu + λv

(since (u, v) belongs to both δ(u) and δ(v)). Consequently, the optimal value of
the problem

min
H∈Hn

��

i<j

(cij + λi + λj)χH

ij

�
− 2

�

i∈V

λi

does not depend on the vector λ ∈ IRVn .
The same does not hold for 1-trees, though, because in general not all nodes

of a 1-tree satisfy (5.1). Therefore, the length of an optimal 1-tree

L(λ) = min
χ1T

��

i<j

(cij + λi + λj)χ1T

ij

�
− 2

�

i∈V

λi,

where χ1T is the incidence vector of a 1-tree in Kn, is a (nonconstant) function
of λ ∈ IRVn . L(λ) is a lower bound for the c-length of a Hamiltonian cycle and in
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general different vectors λ1 and λ2 yield different lower bounds L(λ1) and L(λ2).
Thus the tightest bound is obtained by solving the maximization problem

max
λ

{L(λ)}, (5.12)

called the Lagrangean dual problem. The bound obtained by solving (5.12) is
proposed in Held and Karp (1970, 1971) and it is known as the Held-Karp bound.

It is interesting to note that the lower bound produced by the subtour relax-
ation is equivalent to the Held-Karp bound (see, e.g., Nemhauser and Wolsey
(1988), pp. 469–475). Although these two bounds are identical they are quite
different from the methodological viewpoint. Problem (5.12) is a piecewise lin-
ear nondifferentiable concave optimization problem and can be solved by an
iterative procedure (see Section 6) whose convergence can be very slow. In prac-
tical computation the procedure is stopped prematurely, thus providing a lower
bound that is worse than the theoretical one given in (5.12). On the contrary,
the bound obtained from optimizing over the subtour elimination polytope can
be computed by solving a (usually short) sequence of linear programs, the last of
which provides the exact theoretical bound (5.12). For these reasons the latter
method is preferable. However, the computation based on the subtour relax-
ation requires a linear program optimizer and a quite complex algorithm, while
the computation of an approximation of the Held-Karp bound can be carried
out with a very simple procedure that requires moderate amounts of computer
memory (see Section 6). Therefore, when the instance is too large to be attacked
by the available linear program optimizers or when one is willing to afford only
moderate implementation costs, the Held-Karp approach seems more suitable.

Any LP relaxation tighter than the subtour relaxation produces a lower bound
superior to the Held-Karp bound. This explains why the algorithms based on the
LP relaxations perform much better than those based on the 1-tree relaxation.
For this reason we will spend most of this section describing the LP relaxations
in more detail.

5.3. 2-matching relaxation

A 2-matching relaxation for the TSP is another discrete relaxation obtained
by relaxing the requirement (5.2), i.e., by solving Problem 5.1 without the con-
straints (5.8). The resulting relaxation is a minimum cost 2-matching that can
be found in polynomial time (see Edmonds and Johnson (1970), Cunningham
and Marsh (1978), and Padberg and Rao (1982)). However, implementing an
algorithm for the minimum cost 2-matching problem efficiently is not as sim-
ple as for the minimum cost spanning tree problem. The lower bound obtained
by finding the minimum cost 2-matching is in general poor (see, e.g., Table 5)
and, like for the 1-tree, it can be improved using techniques in the same spirit
as for the Held-Karp bound. The improved bound is better than the one ob-
tained by solving the problem (5.12) (see, e.g., Nemhauser and Wolsey (1988),
pp. 469–475).
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5.4. Strong LP relaxations

An LP relaxation of the TSP is not unique, since every linear program obtained
from Problem 5.1 by adding to (5.7)–(5.9) any number of linear constraints which
are valid , i.e., satisfied by the incidence vectors of all Hamiltonian cycles of Kn,
is also an LP relaxation.

To produce a relaxation that is stronger than the subtour relaxation it is
necessary to add inequalities to (5.7)–(5.9). They must satisfy two requirements.
In order to produce a mathematically correct relaxation they must be valid.
To produce a tight relaxation they must be “strong”, in the sense that they
must define a polytope substantially smaller than the subtour polytope. For
two valid inequalities a1x � b1 and a2x � b2 we say that the first is stronger
than the second (or that the first dominates the second) if the polytope defined
by a1x � b1 and by (5.7)–(5.9) is properly contained in the polytope defined
by a2x � b2 and (5.7)–(5.9). To produce good relaxations it is quite natural to
look for valid inequalities that are not dominated by any other. The derivation of
these inequalities is intimately related to the study of the structure of a polytope
associated with the TSP, called the symmetric traveling salesman polytope.

The symmetric traveling salesman polytope (STSP(n)) is the convex hull of
the set of the incidence vectors of all Hamiltonian cycles of Kn, i.e.,

STSP(n) = conv
�
χH

|H ∈ Hn

�
.

It is known that there exists a finite minimal set B= of linear equations and
a finite minimal set B� of linear inequalities whose set of solutions is precisely
STSP(n). The sets B= and B� are minimal in the sense that the removal of
any of their elements results in a polytope that properly contains STSP(n). The
equations of B= are precisely the degree equations (5.5). Each of the inequali-
ties in B� defines a facet of STSP(n) (for the definition of facet and for other
basic concepts of polyhedral theory we refer to Grötschel and Padberg (1985),
Nemhauser and Wolsey (1988), and Pulleyblank (1983)). The equations of B=

and the inequalities of B� are the constraints of the best LP relaxation of the
TSP. In fact there is always an optimal extreme solution to this relaxation that
is the incidence vector of an optimal Hamiltonian cycle, for any objective func-
tion c. Unfortunately, the set B� contains an enormous number of inequalities
and its size grows exponentially with n. Presently, a complete description of a
minimal system of inequalities defining STSP(n) is known only for n � 8. For
n = 6 the set B� contains 100 inequalities and is described by Norman (1955).
For n = 7 the complete description of B�, which contains 3,437 inequalities,
is given by Boyd and Cunningham (1991). The set B� for n = 8 (containing
194187 inequalities) is described by Christof, Jünger and Reinelt (1991). It is
very unlikely that a complete description of this system of inequalities can be
found for all n. Nevertheless, good LP relaxations can be obtained using only
subsets of B�. For this reason and because the description of STSP(n) with lin-
ear inequalities is a challenging mathematical task by itself, many researchers
have been interested in studying this polytope. The work in this area has been
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focused mostly on characterizing large families of valid inequalities for STSP(n)
and, in many cases, in showing that some of these families are subsets of B�.

The first systematic study of the polyhedral structure of STSP(n) was done
by Grötschel and Padberg. The results of their work are published in the doc-
toral dissertation of Grötschel (1977) and in the papers Grötschel and Padberg
(1974, 1977, 1978, 1979a, 1979b). Their main discovery was a large family of
facet-defining inequalities, the comb inequalities, that are the major contributors
to the LP relaxations used by the most successful algorithms for the solution
of the TSP to optimality (see sections 5.6 and 6). Another important piece of
the current knowledge of the TSP polytope is provided by Cornuéjols, Fonlupt
and Naddef (1985), who describe many new classes of inequalities that are facet-
defining for GTSP, the polyhedron associated with the graphical traveling sales-
man problem. In fact, many results on GTSP can be extended to STSP, due to
a strong relationship between the two polyhedra that is described and exploited
in Naddef and Rinaldi (1993).

Many other important results on STSP and on related issues appeared in
the literature. We cite only those that provide new members of the set B� of
facet-defining inequalities for this polytope. These results are reported in the next
subsection. They may appear too technical to those who are mainly interested in
the algorithmic issues. However, it may be worth to observe that the possibility
to produce faster and more robust algorithms for finding optimal or provably
good solutions of the TSP seems to depend right on the exploitation of these
results.

5.5. Known facets of STSP(n)

The incidence vectors of all Hamiltonian cycles of Kn satisfy the degree equa-
tions (5.7), and so STSP(n) is not a full dimensional polytope (its dimension
is m − n), i.e., it is contained in the intersection of the n hyperplanes defined
by the degree equations. A consequence of this fact is that, unlike in the case
of a full dimensional polyhedron, a facet-defining inequality for STSP(n) is not
uniquely defined (up to a multiplication by a scalar). If hx � h0 defines a facet
of STSP(n), then the inequality fx � f0, with f = λAn + πh, f0 = λ2 + πh0,
π > 0, and λ ∈ IRVn , defines the same facet. The two inequalities are said to be
equivalent.

As a consequence of this lack of uniqueness the facet-defining inequalities of
STSP(n) are described in the literature in different forms. We describe the two
most frequently used forms: the closed form and the tight triangular form. The
direction of the inequalities is “�” for the first form and “�” for the second.

Let S = {S1, S2, . . . , St} be a collection of subsets of Vn and let r(·) denote a
suitable function of S, which only depends on the number of its members but
not on their size. An inequality is written in closed form if it is as follows:

�

S∈S

αSx(En(S)) �
�

S∈S

αS |S|− r(S), (5.13)
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where αS is an integer associated with S ∈ S. The closed form is nice for describ-
ing an inequality, but has two major drawbacks. Not all facet-defining inequalities
of STSP(n) can be written in closed form. In addition, the closed form is not
unique: for example, it can be shown that replacing any set S in (5.13) by its
complement Vn \ S produces a different inequality which is equivalent to (5.13).

A more interesting form for the facet-defining inequalities of STSP(n) is the
tight triangular form. An inequality fx � f0 defined on IREn is said to be in
tight triangular form (or in TT form) if the following conditions are satisfied:

(a) the coefficients of f satisfy the triangle inequality, i.e., f(u, v) � f(u, w)+
f(w, v) for every triple u, v, w of distinct nodes in Vn;

(b) for all u ∈ Vn there exists a pair of distinct nodes v, w ∈ Vn \ {u} such
that f(v, w) = f(u, v) + f(u, w).

Let hx � h0 be any inequality defined on IREn . An inequality fx � f0 in TT
form that is equivalent to hx � h0, with f = λAn + πh and f0 = λ2 + πh0, can
be obtained by setting π to any positive value and

λu =
π

2
max

�
h(v, w)− h(u, v)− h(u, w)

�� v, w ∈ Vn \ {u}, v �= w
�

for all u ∈ Vn.
The properties of the TT form of the inequalities can be used to explain

the tight relationship between STSP(n) and GTSP(n). In particular, being in
TT form is a necessary and sufficient condition for a facet-defining inequality
of STSP(n) to be facet-defining for GTSP(n). For the details see Naddef and
Rinaldi (1993).

Although two equivalent inequalities define the same facet, using a form rather
than another may not be irrelevant in computation. The inequalities that we
consider are used as a constraint of some linear program and all current LP
optimizers are very sensitive to the density (percentage of nonzero coefficients)
of the constraints. The lower the density the faster is the LP optimizer. The
inequalities in TT form are in general denser than those in closed form. However,
when only a subset of the variables is explicitly represented in a linear program,
which is often the case when solving large TSP instances (see Section 6), the
inequalities in closed form tend to be denser.

We now describe the basic inequalities that define facets of STSP(n).

Trivial inequalities
The inequalities xe � 0 for e ∈ En are called the trivial inequalities (this is

the only form used for these inequalities). A proof that they are facet-defining
for STSP(n) (with n � 5) is given in Grötschel and Padberg (1979b).

Subtour elimination inequalities
The subtour elimination inequalities (5.6) define facets of STSP(n). In (5.6)

they are written in TT form. The corresponding closed form, obtained by setting
S = {S}, αS = 1 and r(S) = 1, is

x(En(S)) � |S|− 1.



54 M. Jünger, G. Reinelt and G. Rinaldi

W

T
1

T
2

T
3

Figure 8. Handle and teeth of a comb.

These inequalities are introduced by Dantzig, Fulkerson and Johnson (1954) who
do not address the issue of whether these inequalities are facet-defining for the
TSP polytope. A proof that if 2 � |S| � n − 2, they are facet-defining for
STSP(n) (with n � 4) is given in Grötschel and Padberg (1979b).

Comb inequalities
A comb inequality is defined by setting S = {W, T1, . . . , Tk}, αS = 1 for all

S ∈ S, and r(S) = (3k + 1)/2. The set W is called the handle and the sets Ti

are called the teeth of the comb. The inequality is facet-defining if the handle
and the teeth satisfy the following conditions:

(i) |Ti ∩W | � 1 for i = 1, . . . , k,
(ii) |Ti\W | � 1 for i = 1, . . . , k,
(iii) Ti ∩ Tj = ∅ for 1 � i < j � k,
(iv) k � 3 and odd.
Special cases of comb inequalities have different names in the literature. If (i)

is satisfied with equality, the inequality is called a Chvátal comb. If all teeth have
cardinality 2 the comb inequality is also called 2-matching inequality. Figure 8
shows an example of a comb inequality.

The 2-matching inequalities were discovered by Edmonds (1965), who used
them to provide a complete description of the polytope associated with the
2-matching problem. Chvátal (1973) defined a class of valid inequalities as a
generalization of the 2-matching inequalities and called them comb inequalities.
Now we refer to the inequalities in this class as Chvátal combs. Grötschel and
Padberg (1979a, 1979b) generalized Chvátal’s combs to a larger class that they
called the comb inequalities and showed that the inequalities of this class are
facet-defining for STSP(n) (with n � 6).

Clique-tree inequalities
A clique-tree inequality is defined by setting S = {W1, . . . , Wr , T1, . . . , Tk} (the

sets Wi are called the handles and the sets Ti are called the teeth of the clique-
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Figure 9. Handles and teeth of a clique-tree.

tree), αS = 1 for all S ∈ S, and r(S) = (2
�

k

i=1 h(Ti) + k + 1)/2, where h(T ) is
the number of handles that have nonempty intersection with T . A clique-tree is
a subgraph of Kn whose cliques are the handles and the teeth. The inequality
is facet-defining if the clique-tree is connected and the following conditions are
satisfied:

(i) no two teeth intersect;
(ii) no two handles intersect;
(iii) each tooth contains at least two and at most n− 2 nodes;
(iv) each tooth contains at least one node not belonging to any handle;
(v) each handle intersects an odd number (� 3) of teeth;
(vi) if a tooth T and a handle W have a nonempty intersection, then W ∩ T

is an articulation set of the clique-tree, i.e., the removal of the nodes in W ∩ T
from Kn disconnects the clique-tree.

The clique-tree inequalities are a proper generalization of the comb inequal-
ities. A clique-tree inequality is displayed in Figure 9. These inequalities are
introduced and proved to define facets of STSP(n) (with n � 11) by Grötschel
and Pulleyblank (1986).

PWB inequalities
By simple PWB inequalities we denote three classes of inequalities, namely

the path, the wheelbarrow, and the bicycle inequalities.
The simple path inequalities are defined by graphs that are called path con-

figurations. For any odd k � 3 and any k-tuple of positive integers (n1, . . . , nk),
with ni � 2 for i ∈ {1, . . . , k}, let P (n1, . . . , nk) = (VP , EP ) be the graph with
node set and edge set given by

VP = {Y, Z}∪
�
ui

j

�� j ∈ {1, . . . , ni}, i ∈ {1, . . . , k}
�

EP =
�
ui

j
ui

j+1

�� j ∈ {0, . . . , ni}, i ∈ {1, . . . , k}
�

,

respectively, where for convenience we label ui

0 = Y , and ui

ni+1
= Z.

We call P (n1, . . . , nk) a k-path configuration. A k-path configuration is the
union of k disjoint paths connecting Y to Z. The length of a path i is ni, i.e.,
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Figure 10. A k-path configuration.

the number of the internal nodes. The nodes Y and Z are called the odd nodes
of the configuration, all the other nodes are called even. The edges of a path
configuration are called path-edges , see Figure 10.

A simple path inequality associated with the k-path configuration P (n1,

. . . , nk) is the inequality on IREn , with n = 2 +
�

k

i=1 ni, defined (in TT form)
by

fx � f0 = 1 +
k�

i=1

ni + 1
ni − 1

, (5.14)

where

fe =






|j − q|

ni − 1
for e = ui

j
ui

q
,

i ∈ {1, . . . , k},
j, q ∈ {0, . . . , ni + 1},
j �= q,

1
ni − 1

+
1

nr − 1
+

����
j − 1
ni − 1

−
q − 1
nr − 1

���� for e = ui

j
ur

q
,

i �= r ∈ {1, . . . , k},
j ∈ {1, . . . , ni},
q ∈ {1, . . . , nr}.

1 for e = Y Z,

A simple wheelbarrow inequality associated with the k-path configuration
P (n1, . . . , nk) is the inequality on IREn , with n = 1 +

�
k

i=1 ni, defined (in
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Figure 11. A bicycle inequality with 7 nodes.

TT form) by (5.14), where the coefficients and the right hand side are defined
as above, but node Y and all edges incident with it are removed. If both Y and
Z and all edges incident with them are removed, the inequality of IREn , with
n =

�
k

i=1 ni, defined as above is called simple bicycle inequality. In Figure 11, a
simple bicycle inequality with 7 nodes is illustrated. The coefficient of a missing
edge is given by the f -length of a shortest path between its endnodes.

If ni = t for t � 2 and integer and for i ∈ {1, . . . , k}, then the above inequalities
are called regular (or t-regular).

The PWB inequalities are defined in Cornuéjols, Fonlupt and Naddef (1985)
and proved to be facet-defining for GTSP, the polyhedron associated with the
graphical traveling salesman problem. A proof that simple PWB inequalities
define facets of STSP(n) (with n � 6) is given in Naddef and Rinaldi (1988).

Ladder inequalities
A ladder inequality is defined by a family S of sets

S = {W1, W2, P1, P2, T1, . . . , Tt, D1, . . . , Dm},

with t � 0 and m � 0. The sets Wi, Pi, Ti, and Di are called handles , pen-
dant teeth, regular teeth, and degenerate teeth, respectively. A ladder inequality
associated with S is defined as follows:

�

S∈S

αSx(En(S)) + x(En(P1 ∩W1 : P2 ∩W2)) �
�

S∈S

αS |S|− 2t− 3m− 4,

where αS = 2 if S ∈ {D1, . . . , Dm} and αS = 1 otherwise, and where we denote
the set of edges of En with one endpoint in X and the other in Y by En(X : Y ).
Observe that the inequality is not in closed form due to the last term of its left
hand side. The ladder inequality is facet-defining for STSP(n), (n � 8) if the
following conditions are satisfied:

(i) no two teeth intersect;
(ii) the two handles do not intersect;
(iii) P1 intersects only W1 and P2 intersects only W2;
(iv) each regular or degenerate tooth intersects both handles;
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Figure 12. Handles and teeth of a ladder inequality.

(v) each regular or pendant tooth contains at least one node not belonging
to any handle;

(vi) each degenerate tooth does not contain nodes that do not belong to one
of the two handles;

(vii) t + m is even and at least 2.
A ladder inequality with 16 nodes is shown in Figure 12.
The first ladder inequality with 8 nodes is described in Boyd and Cunningham

(1991). The proof that the ladder inequalities are facet-defining for STSP(n),
with n � 8 is given in Boyd, Cunningham, Queyranne and Wang (1993).

Crown inequalities
For any integer k � 2 let C(k) = (VC , EC) be the graph with the following

node and edge sets

VC =
�
ui

�� i ∈ {1, . . . , 4k}
�

,

EC =
�
uiu[i+1]

�� i ∈ {1, . . . , 4k}
�

,

where [i] stands for the expression ((i− 1) mod 4k) + 1). We call C(k) a crown
configuration.

A simple crown inequality associated with C(k) is the inequality fx � f0 (in
TT form), where f0 = 12k(k − 1)− 2, and, for i ∈ {1, . . . 4k},

f(ui, u[i+j]) =
�

4k − 6 + |j| for 1 � |j| � 2k − 1,
2(k − 1) for j = 2k.

The edges uiu[2k+i] are called diameters of the simple crown inequality. A crown
inequality with 8 nodes is shown in Figure 13.

Simple crown inequalities were discovered and proved to define facets of
STSP(n) (with n � 8) by Naddef and Rinaldi (1992).

Extensions of facet-defining inequalities
Due to the very complex structure of STSP(n) it is very difficult to describe

all inequalities known to define facets of this polytope. A technique used to sim-
plify the description is to define some operations on the inequalities that allow
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Figure 13. A crown inequality with 8 nodes.

the derivation of new inequalities from others that have already been charac-
terized. Many inequalities can be described in such a constructive way, using
the inequalities described above as building blocks. We describe here two kinds
of operations: the zero node-lifting of a node and the edge cloning. Below we
show an application of another operation, the 2-sum composition of inequalities.
These operations are better described on a graph associated with an inequality.
The graph Gh = (Vn, En, h) associated with an inequality hx � h0 of IREn is a
weighted complete graph with n nodes, with a weight for each edge that is given
by the corresponding inequality coefficient.

Let hx � h0 be a facet-defining inequality for STSP(n) and let Gh =
(Vn, En, h) be its associated graph. Let u be a node of Gh and Gh∗ =
(Vn+k, En+k, h∗) be the weighted complete graph obtained by adding k copies
of node u and of its star to Gh. More precisely, Gh∗ contains Gh as a subgraph
and h∗

ij
= hij for all e ∈ En, h∗

ij
= huj for all i ∈ Vn+k \ Vn and all j ∈ Vn, and

h∗
ij

= 0 for all i and j in Vn+k \ Vn. The inequality h∗x∗ � h0 defined on IREn∗

and having Gh∗ as associated graph is said to be obtained by zero node-lifting
of node u.

An inequality in TT form with all the coefficients strictly positive is called
simple. A facet-defining inequality in TT form that has a zero coefficient is al-
ways derivable from a simple inequality in TT form by a repeated application
of the zero node-lifting. In Naddef and Rinaldi (1993) a simple sufficient con-
dition is given for an inequality in TT form, obtained by zero node-lifting of
a facet-defining inequality, to inherit the property of being facet-defining. This
condition is verified by all the inequalities known to date that are facet-defining
for STSP(n) and in particular, by the inequalities described above. For an in-
equality obtained by zero node-lifting of a simple inequality, we use the conven-
tion of keeping the same name of the simple inequality but dropping the word
“simple”. Consequently, the PWB inequalities and the crown inequalities are
obtained by zero node-lifting of their corresponding simple archetypes and are
all facet-defining for STSP(n).



60 M. Jünger, G. Reinelt and G. Rinaldi

vi

vn-1

vn

vn+1

vn+2

vi

vn-1

vn

a
c

b
c

e
c

e
c2

a
c

a
c

b
c

b
c

e
c

e
c

e
c

e
c2

e
c

Figure 14. Cloning of an edge.

Let uv be an edge of Gh and let Gh� = (Vn+2, En+2, h�) be the weighted
complete graph with Vn+2 = Vn ∪ {u�, v�} defined as follows. The graph Gh is a
subgraph of Gh� and h� is defined as follows:

h�(u�, j) = h(u, j) for all j ∈ Vn \ {u},

h�(v�, j) = h(v, j) for all j ∈ Vn \ {v},

h�(u, u�) = h�(v, v�) = 2h(u, v),
h�(u�, v�) = h(u, v).

The inequality h�x� � h0 + 2h(u, v) defined on IREn+2 and having Gh� as associ-
ated graph is said to be obtained from hx � h0 by cloning the edge uv.

In Figure 14, we give an example of the cloning of an edge. The inequality rep-
resented by the graph on the right hand side is obtained by cloning the edge e.
The cloning of an edge can be repeated any number of times. In Naddef and
Rinaldi (1993) sufficient conditions are given for an edge of the graph associated
with a facet-defining inequality in TT form to be clonable, i.e., to be cloned as
described before, while producing a facet-defining inequality. A path-edge of a
PWB inequality belonging to a path of length 2 is clonable. The inequalities ob-
tained by cloning any set of these edges any number of times are called extended
PWB inequalities (see Naddef and Rinaldi (1988)). A diameter edge of a crown
inequality is clonable. The inequalities obtained by cloning any set of diameters
any number of times are called extended crowns (see Naddef and Rinaldi (1992)).

A generalization of the zero node-lifting is described in Naddef and Rinaldi
(1993) and called 1-node lifting. Several sufficient conditions for an inequality,
obtained by zero node-lifting of a facet-defining inequality, to be facet-defining for
STSP(n) are given in Queyranne and Wang (1993). Some of them are very simply
to check and apply to basically all known inequalities facet-defining for STSP(n).

2-sum composition of path inequalities
The 2-sum composition of inequalities is an operation that produces new facet-

defining inequalities by merging two inequalities known to be facet-defining. In-
stead of describing the operation in general, we give an example of its application
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Figure 15. The composition of two bicycle inequalities.

that produces a large class of facet-defining inequalities for STSP(n), called the
regular parity path-tree inequalities. We define these inequalities recursively.

A simple regular PWB inequality is a regular parity path-tree inequality. Let
f1x1 � f1

0 and f2x2 � f2
0 be two regular parity path-tree inequalities and let

G1 = (Vn1 , En1 , f
1) and G2 = (Vn2 , En2 , f

2) be their corresponding associated
graphs. Let u1v1 be a path-edge of the first inequality and u2v2 a path-edge of
the second, satisfying the following conditions:

(i) the nodes u1 and u2 have the same parity (they are either both odd or
both even) and so do the nodes v1 and v2;

(ii) f1(u1, v1) = f2(u2, v2) = ε.
The condition (ii) can always be satisfied by multiplying any of the two in-

equalities by a suitable positive real number. Let G� = (V, E�, f �) be the weighted
graph with n = n1 + n2 − 2 nodes obtained from G1 and G2 by identifying the
nodes u1 and u2 and the nodes v1 and v2. We call the nodes that result from the
identification of the two pairs u and v, respectively. Each of these two nodes is
odd if it arises by the identification of two odd nodes, otherwise it is even. The
edge uv qualifies as a path-edge. The node and the edge set of G� are given by
V � = (Vn1∪Vn2\{u1, v1, u2, v2})∪{u, v} and E� = En1∪En2 \{u1v1, u2v2}∪{uv}.

Let G = (V, E, f) be the weighted graph obtained from G� by adding the edge
ij for all i ∈ Vn1 \ {u1, v1} and all j ∈ Vn2 \ {u2, v2}, with weight f(i, j) given
by the f -length of the shortest path from i to j in G�.
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The inequality fx � f0 = f1
0 + f2

0 − 2ε, having G as associated graph, is a
regular parity path-tree inequality.

The PWB inequalities that are used in the composition of a regular parity
path-tree are called components of the inequality. Figure 15 illustrates the com-
position of two bicycle inequalities by a 2-sum operation.

The s-sum composition of inequalities (of which the 2-sum is a special case)
is introduced in Naddef and Rinaldi (1991) in the context of GTSP, as a tool to
produce new facet-defining inequalities from known ones. The 2-sum composition
for STSP is described in Naddef and Rinaldi (1993). A proof that regular parity
path-tree inequalities define facets of STSP(n), with n � 10, is given in Naddef
and Rinaldi (1988). Other composition operations for facet-defining inequalities
of STSP are described in Queyranne and Wang (1990).

Relations between TT and other inequalities
The inequalities in TT form described above include most of the inequalities

presently known that define facets of STSP(n). We conclude this subsection on
the facets of STSP(n) by briefly showing how these inequalities are related to
the other known facet-defining inequalities, described in closed form.

– The 2-matching inequalities are 2-regular PWB inequalities derived from
simple PWB inequalities by allowing zero node-lifting only on the nodes Y
and Z.

– The Chvatál comb inequalities are 2-regular PWB inequalities derived
from simple PWB inequalities by allowing zero node-lifting on all nodes but ui

2

for i ∈ {1, . . . , k}.
– The comb inequalities are 2-regular PWB inequalities.
– The chain inequalities (see below) are 2-regular PWB inequalities where

only one path-edge is cloned any number of times (consequently the chain in-
equalities are a special case of the extended PWB inequalities, and so they are
facet-defining for STSP(n)).

– The clique-tree inequalities are regular parity path-tree inequalities ob-
tained from 2-regular PWB inequalities with the condition that the nodes Z of
all the component PWB inequalities are identified together in a single node.

Other facet-defining inequalities
To complete the list of all known facet-defining inequalities for STSP we men-

tion a few more. Chvátal (1973) shows that an inequality defined by the Petersen
graph is facet-defining for STSP(10). A generalization of this inequality, which
is facet-defining for n > 10, is given in Maurras (1975). Three inequalities facet-
defining for STSP(8) are described in Christof, Jünger and Reinelt (1991). The
inequalities have to be added to trivial, subtour elimination, PWB, chain, ladder
and crown inequalities to provide a complete description of STSP(8).

Other valid inequalities for STSP(n)
The fact that collections of node sets, satisfying some conditions, can be used

to describe facet-defining inequalities for STSP(n) in closed form has motivated
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many researchers to proceed along these lines and consider collections of node
sets satisfying more complex conditions.

A first generalization of comb inequalities obtained by replacing a tooth by
a more complex structure leads to the chain inequalities, described in Padberg
and Hong (1980), where only a proof of validity is given.

Another generalization of the comb inequalities is obtained by allowing not
just a single handle but a nested family of handles. The inequalities obtained
in this way are called star inequality and are described in Fleischmann (1988)
where it is proved that they are valid for GTSP. The star inequalities properly
contain the PWB inequalities but for those which are not PWB inequalities only
a proof of validity for GTSP is currently known. Actually, some of them do not
define facets of STSP(n) (see Naddef (1990)) and some others do (see Queyranne
and Wang (1990)).

A generalization of the clique-tree inequalities is produced by relaxing the
conditions (iii) and (vi) of the definition. The resulting inequalities are called
bipartition inequalities (Boyd and Cunningham (1991)). Further generalizations
lead to the hyperstar inequalities (Fleischmann (1987)) and to the binested in-
equalities (Naddef (1992)).

For all these inequalities only a proof of validity is given in the cited papers.
Therefore, these inequalities provide good candidates for members of the set B�

of all facet-defining inequalities of STSP(n), and can be used to provide stronger
LP relaxations to the TSP.

For a complete survey on these classes of inequalities see Naddef (1990).

5.6. The separation problem for STSP(n)

In order to have a relaxation that produces a good lower bound, it is necessary
that the LP relaxation contains at least the subtour elimination inequalities. The
number of these constraints is exponential in n (it is precisely 2n−1−n−1) and it
becomes much larger if other inequalities, like 2-matching or comb inequalities,
are added to the relaxation. Consequently, to find the optimal solution of an
LP relaxation we cannot apply a linear programming algorithm directly to the
matrix that explicitly represents all these constraints.

Let L be a system that contains a huge number of inequalities which are valid
for STSP(n) and suppose that we want to solve the problem

Problem 5.2

min cx

s.t. Anx = 2,

lx � l0 for all (l, l0) ∈ L,

0 � x � 1.

In principle Problem 5.2 can be solved by the following cutting-plane proce-
dure:
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procedure cutting plane

Input: n, c, a family of “known” inequalities L.

(1) Set L� = ∅

(2) Solve min{cx | Anx = 2, lx � l0 with (l, l0) ∈ L�, 0 � x � 1} and let z be
its solution.

(3) Find one or more inequalities in L violated by z.
(4) If none is found, then stop. Otherwise add the violated inequalities to L� and

go to (2).

Procedure cutting plane stops after a finite number of steps, because L is
finite. The core of the procedure is the problem solved in Step (3), which is called
the separation problem and is formally stated as follows:

Problem 5.3 Given a point z ∈ IREn and a family L of inequalities in IREn ,
identify one (or more) inequalities in L violated by z or prove that no such
inequality exists.

An exact separation procedure for a family of inequalities L is one that solves
Problem 5.3, a heuristic separation procedure is one that may find violated in-
equalities, but that in case it cannot find any, is unable to guarantee that no
violated inequalities exist in L.

The faster, the more efficient and the more “prolific” the separation procedure
used in Step (3) of the cutting plane procedure, the faster is the resolution of
Problem 5.2. This statement is substantiated by a result of Grötschel, Lovász
and Schrijver (1981,1988) and Padberg and Rao (1981) that can be stated as
follows:

Proposition 5.4 Problem 5.2 is solvable in polynomial time if and only if
Problem 5.3 is solvable in polynomial time.

Unfortunately an exact separation procedure that runs in polynomial time is
presently known only for two classes of TSP inequalities. These classes are the
subtour elimination and 2-matching inequalities. It follows that the lower bound
produced by an LP relaxation that has all subtour and all 2-matching inequalities
can be computed in polynomial time. Heuristic separation procedures have been
developed for the comb and the clique-tree inequalities.

Let z ∈ IREn be a point that we want to separate from STSP(n) with a
facet-defining inequality belonging to a given class. It is assumed, without loss
of generality, that z satisfies (5.7) and (5.9). Usually, all separation algorithms
operate on a graph associated with z, the support graph of z. The support graph
Gz = (Vn, E, z) of z is a weighted graph whose edge set E contains all edges
of En corresponding to a positive component of z. The weight associated with
e ∈ E is ze. The edges of Gz with weight 1 are called 1-edges .
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The separation for subtour elimination inequalities
The point z violates a subtour elimination inequality (5.8) if and only if the

minimum weight cut in Gz has weight less than 2. Since the minimum weight
cut in a graph with nonnegative edge weights can be found in polynomial time
with the algorithm proposed by Gomory and Hu (1961), Problem 5.3 can be
solved in polynomial time for the subtour elimination inequalities. Therefore, by
Proposition 5.4, the subtour relaxation is solvable in polynomial time.

The Gomory-Hu algorithm is based on the computation of n − 1 maximum
flow problems on some weighted graphs derived from Gz . The complexity of a
maximum flow algorithm is O(|V ||E| log(|V |2/|E|)) (see Goldberg and Tarjan
(1988)), and so the complexity of the algorithm is O(|V |2|E| log(|V |2/|E|)). For
large instances of the TSP such a complexity is expensive in terms of actual
computation time, since Problem 5.3 has to be solved several times in a branch
and cut algorithm (see Section 6). For this reason many heuristic procedures have
been proposed to find violated subtour elimination inequalities quickly (see, e.g.,
Crowder and Padberg (1980) and Grötschel and Holland (1991)). Padberg and
Rinaldi (1990a) describe an exact algorithm that finds the minimum weight cut in
a graph with a drastic reduction in the number of maximum flow computations.
Even though the algorithm has the same worst case time bound as the Gomory-
Hu algorithm, it runs much faster in practice and it allows the execution of an
exact separation algorithm at every iteration of a branch and cut algorithm. The
idea of this algorithm is to exploit some simple sufficient conditions on Gz that
guarantee that two nodes belong to the same shore of a minimum cut. If two
nodes satisfy one of these conditions then they are contracted. The contraction
of two nodes in Gz produces a new weighted graph where the two nodes are
identified into a single node; loops are removed and any two parallel edges are
replaced by a single edge with weight equal to the sum of their weights. The
resulting graph has one node less and the shores of a minimum cut in it can
be turned into the shores of a minimum cut in Gz , by replacing the node that
results from the identification with the two original nodes. The contraction of a
pair of nodes can be applied recursively until no more reductions apply. At this
point the Gomory-Hu algorithm can be applied to the resulting reduced graph.

A different algorithm also based on the contraction of pairs of nodes is proposed
by Nagamochi and Ibaraki (1992a, 1992b). After each major step of the algorithm
a pair of nodes u and v is identified that have the following property. Either
δ({u}) is a minimum cut or δ({v}) is a minimum cut or u and v belong to the
same shore of a minimum cut. After recording the better of the two cuts δ({u})
and δ({v}), u and v are contracted. After |V |−1 contractions the graph reduces
to a single node and the best of the recorded cuts is the minimum cut. The
algorithm does not require the computation of a maximum flow and runs in
O(|E||V |+ |V |2 log |V |) time.

Another algorithm for the minimum cut is proposed in Hao and Orlin (1992).
It is a modified version of a maximum flow algorithm and it is able to compute
the minimum cut in the same running time required by the computation of a
single maximum flow (O(|V ||E| log(|V |2/|E|))).
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Finally we mention a randomized algorithm for computing a minimum cut with
high probability. The algorithm runs in O(|E||V |2 log3

|V |) time (Karger (1993))
and an improved version in O(|V |2 log3

|V |) time (Karger and Stein (1993)).
All these algorithms can be conveniently utilized to solve the separation prob-

lem of the subtour elimination inequalities efficiently.

The separation for the 2-matching inequalities
Let Gz be defined as before and let us apply the following operations on it.

First every edge e of Gz is split in two edges e� and e�� that have the same weight
as e and are incident with a new node ve. The resulting graph G�

z
has n + |E|

nodes and 2|E| edges. All its nodes are labeled even. Then for each pair of edges
{e�, e��} that comes from splitting, either e� or e�� is complemented, i.e., its weight
ze is replaced by 1 − ze and the label of each endpoint becomes odd if it was
even (and even if it was odd). Call G∗

z
the new weighted and labeled graph. The

number of odd nodes of G∗
z

is even and at least |E| (each of the nodes that is
produced by splitting is odd). An odd cut of G∗

z
is a cut whose shores have an

odd number of odd nodes. Padberg and Rao (1982) propose an algorithm that
finds the minimum weight odd cut of a labeled weighted graph in polynomial
time. They also prove that the vector z satisfies all 2-matching inequalities if
and only if the minimum odd cut in G∗

z
has weight at least 1. Consequently,

Problem 5.3 can be solved in polynomial time for the 2-matching inequalities.
Suppose that G∗

z
has an odd cut with weight less than 1. Let us see how a

2-matching inequality violated by z can be generated. At most one of the two
edges e� and e�� produced by splitting an edge e of Gz belongs to the cut. If such
an edge has been complemented, then the endpoints of e are taken as a tooth of
the inequality. All nodes of the original graph Gz that belong to one of the two
shores of the cut are taken as the handle of the inequality. It may happen that
after this construction two teeth of the 2-matching intersect in a node u, thus
violating the condition (iii) of the definition of comb inequalities. In this case
the two teeth are removed from the set of teeth. In addition, if u belongs to the
handle, then it is removed from it; if it does not, then it is added to it.

The Padberg-Rao algorithm, which is based on the Gomory-Hu algorithm,
requires as many max-flow calculations on G∗

z
as the number of its odd nodes.

As observed for the separation of the subtour elimination inequalities, this algo-
rithm may be very time consuming. Therefore some reductions of the number of
nodes, odd nodes, and edges of the graph to which the Padberg-Rao algorithm
is applied have been proposed (see Padberg and Grötschel (1985), Grötschel and
Holland (1987), and Padberg and Rinaldi (1990b)). A detailed description of an
implementation of the Padberg-Rao algorithm is given in Grötschel and Holland
(1987). A simple implementation of the Gomory-Hu algorithm is described in
Gusfield (1987).

Although the reductions applied to G∗
z

may produce a sensible speed up in
the solution of Problem 5.3, an exact solution of this problem may still be too
expensive for large TSP instances. For this reason heuristic separation procedures
are often used for 2-matching inequalities.
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A first procedure, similar to the exact one sketched above, is proposed in
Padberg and Rinaldi (1990b). In this procedure all nodes of Gz are labeled even
and all edges with weight greater than or equal to 0.5 are complemented. Then
the reductions mentioned before are applied. Finally the Padberg-Rao algorithm
is applied to the resulting graph, which is smaller (in terms of nodes, odd nodes
and edges) than G∗

z
.

Another heuristic, proposed first in Padberg and Hong (1980), follows a com-
pletely different approach. All 1-edges (or all edges with weight close to 1) are
removed from Gz . The resulting graph is decomposed into its biconnected com-
ponents. Each biconnected component with at least three nodes is considered as
the handle of a possibly violated 2-matching inequality. The teeth of the inequal-
ity are the endpoints of edges of the original graph Gz with only one endpoint
in the handle and with “big” weight (usually greater than or equal to 0.5). The
procedure is fast and quite successful. Implementations and variations of this
heuristic separation algorithm are described in Padberg and Grötschel (1985),
Grötschel and Holland (1987), and Padberg and Rinaldi (1990b). In the last
paper a variation is given that also produces violated Chvatál comb inequalities.

The separation for comb inequalities
As said above there is no known exact polynomial separation procedure for

comb inequalities. The heuristic procedures proposed in the literature exploit
the following two facts:

(a) comb inequalities expressed in TT form (i.e., 2-regular PWB inequalities)
can be obtained by zero node lifting of 2-matching inequalities (i.e., simple 2-
regular PWB inequalities)

(b) a separation procedure for 2-matching inequalities is available.
Let us assume that for a family F of simple inequalities in TT form, a sepa-

ration procedure is available and that we want to exploit this procedure to find
violated inequalities that are obtained by zero node-lifting of inequalities in F .
We can proceed as follows. Let S ⊂ Vn be a set of nodes whose corresponding
subtour elimination inequality is satisfied by z with equality, i.e.,

z(δ(S)) = 2. (5.15)

Let Ĝẑ = (Vn̂, Ê, ẑ), with n̂ = n − |S| + 1, be the weighted graph obtained by
recursively contracting pairs of nodes in S until S is replaced by a single node
s. It is easy to see that ẑ ∈ IREn̂ satisfies all inequalities (5.7), (5.8), and (5.9),
and so it can be thought of as the solution of an LP relaxation of a TSP on a
complete graph of n̂ nodes. Suppose that we are able to separate ẑ from STSP(n̂)
with an inequality ĥx̂ � h0 in F . It follows that ĥẑ < h0. Let hx � h0, with
h ∈ IREn , be the inequality obtained by zero lifting of node s. It follows that
hz = ĥẑ, and so the inequality hx � h0 is violated by z.

In conclusion, a separation procedure for inequalities obtained by zero node-
lifting of inequalities in F can be devised by contracting any number of sets
satisfying (5.15) by applying the separation procedure for the inequalities in the
family F to the reduced graph, and finally by producing a violated inequality in
IREn by zero lifting all nodes that are produced by contraction.
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Figure 16. An example of a nonshrinkable set satisfying (5.15).

Unfortunately this procedure does not work in all cases. It may be the case
that z /∈ STSP(n), i.e., there exists a valid inequality for STSP(n) that is vio-
lated by z, but the vector ẑ, produced by contracting a set S satisfying (5.15),
belongs to STSP(n̂), and so all valid inequalities for STSP(n̂) are satisfied by
ẑ. Put differently, the operation associated with the contraction of a set S may
map a point outside STSP(n) to a point inside STSP(n̂), which is an undesirable
situation. Figure 16 gives an example of this bad case. The graph in Figure 16(a)
is the support graph of a point z (solid lines are edges with weight 1, while dot-
ted lines are edges with value 0.5). The set S = {5, 6, 7, 8} satisfies (5.15). If we
contract this set we get the graph of Figure 16(b). This is the support graph
of a vector ẑ which is the convex combination z1/2 + z2/2 of the incidence vec-
tors z1 and z2 of the two Hamiltonian cycles {1, 2, s, 3, 4, 1} and {1, 2, 3, 4, s, 1},
respectively. Consequently, ẑ is a point of STSP(n̂). However if in the graph of
Figure 16(a) the set S = {5, 8} is contracted, in the resulting graph shown in
Figure 16(c) there is a violated Chvátal comb with handle {1, s, 4} and teeth
{1, 2}, {4, 3}, and {s, 6, 7}. By zero-lifting node s we obtain a violated comb
with handle {1, 4, 5, 8} and teeth {1, 2}, {4, 3}, and {5, 6, 7, 8}.

In Padberg and Rinaldi (1990b) a set S satisfying (5.15) is called shrinkable
if the graph obtained by contracting S is not the support graph of a point of
STSP(n̂). Therefore, the shrinkable sets are those that can be safely contracted.
In the same paper sufficient conditions are given for a set to be shrinkable and
some cases of shrinkable sets are provided (see Figure 17). Finally a heuristic
separation procedure for comb inequalities is described, which is based on the
scheme outlined before and utilizes those special cases of shrinkable sets. The
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Figure 17. Shrinkable set.

heuristic separation procedure for comb inequalities described in Grötschel and
Holland (1991) is similar.

The separation for clique-tree inequalities
The separation problem for clique-tree inequalities has not been studied to

the same extent as for comb inequalities. Two simple procedures are published
in Padberg and Rinaldi (1990b). One finds violated clique-tree inequalities with
two handles. The other is an extension of the procedure for the 2-matching
inequalities, based on the decomposition of a subgraph of Gz into biconnected
components.

The improvement in the relaxation due to these procedures is not impressive.

The separation for PWB inequalities
A simple heuristic procedure for finding violated PWB inequalities is described

in Clochard and Naddef (1993). The procedure starts by finding a violated comb
inequality (a 2-regular PWB) and then tries to “extend” its paths (that all have
length 2) to paths of bigger length. The procedure works well when the point z
to be separated has many integer components. This is often the case when z is
the optimal solution over the subtour elimination polytope. The support graph
Gz of such a point often has long paths of consecutive 1-edges. These edges are
good candidates to become path-edges of a violated PWB inequality.

The results obtained by applying this procedure, as reported in Clochard and
Naddef (1993), are very promising.

5.7. Comparison of LP relaxations

To conclude this section, we show how different LP relaxations behave in terms
of the value of the lower bound that they produce. To do so, we have computed
the lower bound associated with each relaxation for each of the instances of
our standard set of test problems. The results of this computation are reported
in Table 5. For each test problem we have computed the fractional 2-matching
relaxation, i.e., the relaxation obtained by solving Problem 5.1 with only the
constraints (5.7) and (5.9). This relaxation is not properly an LP relaxation as
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defined in Subsection 5.1, because it may have an integer solution that is the in-
cidence vector of a nonconnected 2-matching, since the constraints (5.8) are not
imposed. The fractional 2-matching is often the first relaxation to be produced in
any cutting-plane algorithm (see Section 6) since it requires only a small number
(polynomial in n) of constraints and its polytope properly contains the polytope
of any other LP relaxation considered in this section. In addition, we have com-
puted the lower bound of the subtour relaxation, of the 2-matching relaxation
and of an LP relaxation that includes subtour elimination, 2-matching, comb
and clique-tree inequalities. The latter relaxation has been computed with the
algorithm described in Padberg and Rinaldi (1991) that is based on heuristic sep-
aration procedures for comb and clique-tree inequalities. Consequently, the lower
bound that we report is inferior to the one that would be obtained by optimizing
over the polytope defined by subtour elimination, comb, and clique-tree inequali-
ties. The lower bound has been computed from the relaxation constructed by the
Padberg-Rinaldi algorithm just before going to the branching phase. Since the
algorithm tries to minimize the overall computation time, it may resort to the
branching phase even though more inequalities can be added to the relaxation.
Therefore, this lower bound is an underestimate of the bound obtainable with
the separation procedures described in Padberg and Rinaldi (1990b) and used in
the algorithm. We denote this relaxation by “all cuts” in the header of Table 5.

In the first five columns of the table the names of the test problems are reported
along with the value r = 100× (LB/OPT ) for each lower bound, where LB is
the lower bound value and OPT is the objective function value of an optimal
solution. As mentioned in Section 2, two TSP instances are equivalent if one is
obtained by adding a constant C to each component of the objective function
of the other. However, the value r of any of the four bounds is not the same for
two equivalent instances and tends to 100 when C tends to infinity.

To overcome this problem, we have also computed a different index to compare
the bounds. This index is the same for two equivalent instances and shows, better
than the previous one, how the different relaxations contribute to covering the
gap between the fractional 2-matching bound and the optimal solution value.
The index is given by the ratio R = 100× (LB − F2M)/(OPT − F2M), where
F2M is the value of the fractional 2-matching bound. A value of R equal to
100 shows that the relaxation is sufficient to provide an optimal solution to the
problem, i.e., that no recourse to branch and cut is necessary.

In Subsection 5.5 we have seen many inequalities that define facets of STSP.
Only for a few of them a satisfactory separation procedure is available at present.
It would be interesting to know for which inequalities it would be profitable
to invest in further research to solve the corresponding separation problem. In
other words, given a class of valid inequalities C, it would be interesting to know
the improvement on the lower bound that we would get by adding them all
to the constraints of the subtour relaxation. This improvement would measure
the strength of the inequalities contained in the class C. In Goemans (1993)
this analysis is carried out for GTSP. For a class of inequalities C a theoretical
computation is provided for the improvement that would result when all the
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Table 5

Comparison of LP relaxations

Problem r f2-m. r 2-m. r subtour r all cuts R 2-m. R subtour R all cuts

lin105 98.8 99.6 99.9 100.0 67.4 94.9 100.0
pr107 55.5 55.5 100.0 100.0 0.0 100.0 100.0
pr124 85.0 87.2 98.4 99.9 14.8 89.1 99.4
pr136 92.2 92.3 99.1 99.8 1.0 88.9 97.0
pr144 56.0 57.5 99.4 99.9 3.4 98.7 99.8
pr152 60.4 60.4 99.4 99.6 0.0 98.4 99.1
u159 96.7 97.8 99.6 100.0 34.3 88.9 100.0

rat195 97.8 98.9 99.0 99.8 48.5 53.0 90.6
d198 74.8 75.3 99.7 100.0 2.0 98.7 100.0

pr226 68.7 71.1 99.7 100.0 7.7 98.9 100.0
gil262 93.5 94.5 99.0 99.9 16.4 84.9 99.0
pr264 74.7 75.7 99.8 100.0 4.2 99.1 99.9
pr299 93.3 94.7 98.3 99.9 21.0 74.9 98.9
lin318 92.7 93.5 99.7 99.9 10.7 95.4 99.1
rd400 95.2 96.0 99.2 99.8 17.3 83.0 96.7
pr439 87.4 89.0 98.8 99.7 12.4 90.4 97.9

pcb442 98.7 99.2 99.5 99.9 40.5 58.7 95.8
d493 93.3 94.6 99.5 99.9 18.7 92.6 99.2
u574 92.8 93.3 99.5 100.0 6.4 92.8 100.0

rat575 98.1 98.7 99.3 99.9 29.9 61.0 93.6
p654 82.5 82.8 99.9 100.0 1.5 99.2 100.0
d657 95.4 96.4 99.1 99.8 21.2 79.6 96.7
u724 96.7 96.8 99.4 100.0 3.6 83.0 98.7

rat783 97.3 97.5 99.6 100.0 6.5 86.1 99.2
pr1002 93.0 93.3 99.1 99.9 4.7 87.5 98.9

pcb1173 97.7 98.6 99.0 99.9 40.1 58.1 96.9
rl1304 90.9 91.1 98.5 99.9 1.8 83.2 98.9

nrw1379 98.2 98.5 99.6 100.0 21.1 76.9 98.1
u1432 99.2 99.5 99.7 100.0 38.7 66.4 99.3

pr2392 95.1 96.5 98.8 100.0 27.4 75.3 100.0

inequalities are added to the subtour relaxation of GTSP. The subtour relaxation
of GTSP has the nonnegativity constraints and the constraints (5.6). The results,
which can serve as a useful indication also for STSP, are summarized in Table 6.

6. Finding optimal and provably good solutions

The discussion of the last two sections gives us a variety of tools for computing
Hamiltonian cycles and lower bounds of the length of Hamiltonian cycles. The
lower bounds enable us to make statements of the form: “The solution found
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Table 6

Quality of GTSP facet-defining
inequalities

Class of inequalities strength

Comb 10/9
Clique tree 8/7
Path 4/3
Crown 11/10

by the heuristic algorithm is at most p% longer than the shortest Hamiltonian
cycle”. Probably most practitioners would be completely satisfied with such a
quality guaranteed solution and consider the problem solved, if the deviation p is
only small enough. In this section, we will consider algorithms which can achieve
any desired quality (expressed in terms of p), including the special case p = 0,
i.e., optimality.

6.1. Branch and bound

All published methods satisfying the above criterion are variants of the branch
and bound principle. Branch and bound algorithms are well known so that we can
omit a formal definition here. The flowchart of Figure 18 gives the basic control
structure of a branch and bound algorithm for a combinatorial optimization
problem whose objective function has to be minimized.

A branch and bound algorithm maintains a list of subproblems of the original
problem whose union of feasible solutions contains all feasible solutions of the
original problem. This list is initialized with the original problem itself.

In each major iteration the algorithm selects a current subproblem from this
list and tries to “fathom” it in either of the following ways: a lower bound for the
value of an optimal solution of the current subproblem is derived that is at least
as high as the value of the best feasible solution found so far, or it is shown that
the subproblem does not contain any feasible solution, or the current subproblem
is solved to optimality. If the current subproblem cannot be fathomed according
to one of these criteria, then it is split into new subproblems whose union of
feasible solutions contains all feasible solutions of the current problem. These
newly generated problems are added to the list of subproblems. This iteration
process is performed until the list of subproblems is empty.

Whenever a feasible solution is found in the process, its value constitutes a
global upper bound for the value of an optimal solution. Similarly, the minimum
of the local lower bounds at any point of the computation is a global lower bound
for the optimal value of the objective function. For the TSP, this means that
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Figure 18. Flowchart of a branch and bound algorithm.

during the execution of a branch and bound algorithm a sequence of feasible so-
lutions of decreasing lengths and a sequence of lower bounds of increasing values
is produced. The algorithm terminates with the optimal solution as soon as the
lower bound coincides with the length of the shortest Hamiltonian cycle found.
If we take the point of view that practical problem solving consists of producing
a solution of a prescribed quality p%, then a branch and bound algorithm can
achieve this goal if it stops as soon as it has found a solution T of length c(T ) and
lower bound l such that (c(T )− l)/l � p/100. A general survey of the branch and
bound method applied to the TSP has been given in Balas and Toth (1985). One
of the crucial parts of such an algorithm is the lower bounding technique. Lower
bounds are usually computed by solving an appropriate relaxation of the TSP.

Several relaxations have been considered for the TSP. Among them are n-
path relaxation, assignment relaxation, or also so-called additive bounding pro-
cedures. For information on these approaches see Balas and Toth (1985) and
Carpaneto, Fischetti and Toth (1989). A branch and bound algorithm that uses
the 2-matching relaxation has been implemented by Miller, Pekny and Thomp-
son (1991).

We shall discuss branch and bound algorithms based on the two relaxation
methods discussed in Section 5, the 1-tree relaxation and the LP relaxations.

6.2. 1-tree relaxation

First we discuss the method of determining lower bounds based on the approx-
imation of the optimum value of the Lagrangean dual based on the 1-tree relax-
ation (see Subsection 5.1). This technique is due to Held and Karp (1970, 1971).
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Recall that the corresponding Lagrangean problem is of the form maxλ{L(λ)}.
Determining L(λ) for a given vector of node multipliers λ amounts to computing
a 1-tree with respect to the modified edge weights cij + λi + λj and subtracting
2

�
n

i=1 λi.
The function L is piecewise linear, concave, and nondifferentiable. A method

for maximizing L is the subgradient method . This method is a generalized gra-
dient ascent method where in each iteration step the next iterate (i.e., the next
vector of node multipliers) is determined by taking a step in the direction of a
subgradient.

A minimum 1-tree readily supplies a subgradient as follows. Namely, let δi be
the degree of node i in the minimum 1-tree with respect to node multipliers λ.
Then the vector (δ1 − 2, δ2 − 2, . . . , δn − 2) is a subgradient of L at λ.

If L is bounded from above (which is the case for the TSP) and if the step
lengths αk satisfy both limk→∞ αk = 0 and

�∞

k=0 αk = ∞, then the method
converges to the maximum of L (Polyak (1978)). However, it turned out in
practice that such step lengths formulae lead to very slow convergence. There
are update formulas for the αk that do not satisfy the requirement

�∞

k=0 αk = ∞,
but lead to better convergence in practice.

Based on the references Balas and Toth (1985), Volgenant and Jonker (1982),
Christofides (1979) and on own experiments we use the following implementation.

procedure 1tree bound

(1) Let α1 be the initial step length and γ a decrement factor for the step length.
(2) Set λ1

i
= 0 for every node i, and k = 1.

(3) Perform the following steps for a specified number of iterations or until no
significant increase in the lower bound can be observed for several iterations.
(3.1) Compute a minimum spanning tree with respect to the edge weights

cij + λi + λj .
(3.2) Compute the best 1-tree obtainable from this spanning tree as follows.

For each leaf v of the spanning tree we determine its second shortest
incident edge. The length of the minimum spanning tree plus the length
of this edge gives the length of the minimum 1-tree with v as fixed
degree-2 node.

(3.3) Define the vector dk by dk

i
= δi − 2 where δi is the degree of node i in

the 1-tree computed in Step (3.2).
(3.4) For every node i set λk+1

i
= λk

i
+ αk(0.7dk

i
+ 0.3dk−1

i
) (where d0

i
= 0).

(3.5) Set αk+1 = γαk and increment k by 1.
(4) Return the best bound computed.

Differences to straightforward realizations are that the direction of the subgra-
dient step is a convex combination of the current and the preceding subgradient,
that the direction vector is not normalized, and that the special node for the
1-tree computations is not fixed. In theory the same optimal value of the La-
grange dual is attained whatever node is fixed. But practical experiments have
shown that better bounds are obtained if additional time is spent for computing
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various 1-trees. The chosen value of γ influences the running time of the method.
The closer γ is to 1, the more iterations are performed and better bounds are
obtained. Note that, since the step length is fixed a priori, there is no guarantee
that each iteration step improves the bound.

Some authors propose to update the multipliers according to the formula

λk+1
i

= λk

i
+ tk(U − L(λk))

dk

i

||dk||

where U is an estimate for the optimal solution value. For our set of sample
problems, we found this formula inferior to the one above.

The running times are not very encouraging. Since edge weights are arbitrary
we can compute the best tree in Step (3.1) only in time O(n2) and the best 1-tree
in Step (3.2) in time O(ln) where l is the number of leaves of the spanning tree. To
obtain reasonable lower bounds more quickly, we use the following approach. The
subgradient method is only performed on a sparse subgraph (e.g., for geometric
instances a 10 nearest neighbor subgraph augmented by the Delaunay graph).
This has the consequence that the computed bound may not be valid for the
original problem. To get a valid lower bound, we compute a minimum 1-tree
in the complete graph with respect to the node multipliers obtained with the
subgradient method in the sparse graph.

Bounds obtained for problems pcb442, rd783, pr1002, and pr2392 were 0.6%,
0.4%, 1.4%, and 1.3%, respectively, below the length of a shortest Hamiltonian
cycle. The final iteration changed the bounds only slightly. In practical applica-
tions we can safely omit the final step and assume that the bound determined
in the first phase is correct.

The subgradient method is not the only way for attacking nondifferentiable
optimization problems occurring in the context of Lagrangean relaxation. A more
elaborate approach is the so-called bundle method (Kiwiel (1989)). It is also based
on subgradients, but in every iteration the new direction is computed as a convex
combination of several (10–20) previous subgradients. Moreover, line searches are
performed to determine the step lengths. In this sense our approach is a rather
simple version of the bundle method keeping only a “bundle” of two subgradients
(which are combined in a fixed way) and not performing line searches.

In Schramm (1989) an extension of this principle is discussed which combines
the bundle approach with trust-region methods. From a theoretical point of view,
it is interesting that finite convergence of this method to the optimal solution
of the Lagrangean dual can be shown. Therefore, in the case of the TSP, this
approach provides a finite procedure for computing the exact subtour elimina-
tion lower bound. But the running time is considerable, due to the many costly
evaluations of L(λ) in the line search.

6.3. LP relaxations

The first successful attempt to solve a “large” instance of the traveling sales-
man problem is reported in the seminal paper by Dantzig, Fulkerson and Johnson
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(1954) who solved a 48-city instance. This paper is one of the cornerstones on
which much of the methodology of using heuristics, linear programming and sep-
aration to attack combinatorial optimization problems is founded. It took a long
time for the ideas of Dantzig, Fulkerson and Johnson to be pursued again, and
this must probably be attributed to the fact that the systematic way of using cut-
ting planes in integer programming, which had been put on a solid basis by the
work of Gomory (1958, 1960, 1963), was not successful in practice. An important
development is the systematic study of the traveling salesman polytope described
in the previous section. Grötschel used the knowledge of the polytope to solve a
120 city instance to optimality, using IBM’s linear programming package MPSX
to optimize over relaxations of the traveling salesman polytope, visually inspect-
ing the fractional solutions, adding violated facet defining inequalities, resolving
etc., until the optimal solution was the incidence vector of a Hamiltonian cycle.
He needed 13 iterations of this process (see Grötschel (1977, 1980)). Since the
early eighties, more insight into the facial structure of the traveling salesman
polytope and improved cutting plane based algorithms developed gradually.

On the computational side, the next steps were the papers Padberg and Hong
(1980) and Crowder and Padberg (1980).

In the first paper, a primal cutting plane approach is used to obtain good
bounds on the quality of solutions generated in the following way. An initial
Hamiltonian cycle is determined by the Lin-Kernighan heuristic, and the first
linear programming problem is given by (5.7) and (5.9) (i.e., by the fractional
2-matching relaxation). The initial basis corresponds to the initial Hamiltonian
cycle. Then a pivoting variable is selected by the steepest edge criterion. If the
adjacent basic solution after the pivot is the incidence vector of a Hamiltonian
cycle, the pivot is carried out, and the algorithm proceeds with the new Hamilto-
nian cycle. Otherwise, one tries to identify a violated inequality which is satisfied
with equality by the current solution but violated by the adjacent fractional solu-
tion. If such an inequality is found, it is appended to the current LP, a degenerate
pivot is made on the selected pivoting variable, and the next pivoting variable is
selected. Otherwise, the current (final) linear program is solved to optimality in
order to obtain a lower bound on the length of the shortest Hamiltonian cycle.
Out of 74 sample problems ranging from 15 to 318 cities, 54 problems could be
solved to optimality in this way. The whole algorithm was written by the authors
including an implementation of the simplex algorithm in rational arithmetic.

In the second paper, IBM’s MPSX LP-package is used instead, and IBM’s
MPSX-MIP integer programming package is used to find the incidence vector of
an optimal solution as follows. MIP is applied to the final LP to find an optimal
integral solution. If this solution is the incidence vector of a Hamiltonian cycle,
this cycle is returned as the optimal solution. Otherwise the solution is necessarily
a collection of subtours, and the corresponding subtour elimination inequalities
are appended to the integer program and the process is iterated. Thus for the first
time a fully automatic computer program involving no human interaction was
available to solve traveling salesman problems by heuristics, linear programming,
separation and enumeration in the spirit of Dantzig, Fulkerson and Johnson.



The traveling salesman problem 77

Using their computer code, the authors were able to solve all 74 sample problems
to optimality. The 318 city instance was solved in less than an hour of CPU time
on an IBM 370/168 computer under the MVS operating system.

A similar, yet more sophisticated approach using MPSX/MIP is described in
Grötschel and Holland (1991). They use a (dual) cutting plane procedure to
obtain a tight linear programming relaxation. Then they proceed as Crowder
and Padberg. An additional important enhancement is the use of sparse graphs,
a prerequisite for attacking larger problem instances. Furthermore, improved
separation routines are used, partly based on new results by Padberg and Rao
(1982) on the separation of 2-matching inequalities as described in the previous
section. The code was used to solve geometric instances with up to 666 nodes
and random instances with up to 1000 nodes. Depending on parameter settings,
the former took between 9 and 16 hours of CPU time, and the latter between
23 and 36 minutes of CPU time on an IBM 3081D under the operating system
VM/CMS. Random problems where the edge weights are drawn from a uniform
distribution appear to be much easier than geometric instances. From a soft-
ware engineering point of view, the codes by Padberg and Hong, Crowder and
Padberg, and Grötschel and Holland had the advantage that any general pur-
pose branch and bound software for integer programming could be used to find
integer solutions. However, if such an integer solution contained subtours, the
corresponding subtour elimination inequalities were added to the LP-relaxation
and the branch and bound part was started from scratch, again using a fixed
linear programming relaxation in each node of the branch and bound tree.

On the other hand, the iterated “solving from scratch”, whenever the addition
of further subtour elimination inequalities was necessary, is a definite disad-
vantage. An even bigger drawback is the fact that the possibility of generating
further globally valid cutting planes in non-root nodes of the branch and bound
tree is not utilized. Furthermore, general purpose branch and bound software
typically allows very little influence on the optimization process such as variable
fixing based on structural properties of the problem. Such disadvantages are elim-
inated by the natural idea of applying the cutting plane algorithm with globally
valid (preferably facet defining) inequalities in every node of the enumeration
tree.

Such an approach was first published for the linear ordering problem by
Grötschel, Jünger and Reinelt (1984). In Padberg and Rinaldi (1987) a similar
approach was outlined for the TSP and called “branch and cut”. By reporting
the solution to optimality of three large unsolved problems of 532, 1002, and
2392 cities, it was shown for the first time in this paper how the new approach
could be successfully used to solve instances of the traveling salesman problem
that probably could not be solved with other available techniques.

The first state-of-the-art branch and cut algorithm for the traveling salesman
problem is the algorithm published in Padberg and Rinaldi (1991). The major
new features of the Padberg-Rinaldi algorithm are the branch and cut approach
in conjunction with the use of column/row generation/deletion techniques, so-
phisticated separation procedures and an efficient use of the LP optimizer. The
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LPs are solved using the packages XMP of Marsten (1981) on the DIGITAL
computers microVAX II, VAX 8700 and VAX 780, as well as on the Control
Data computer CYBER 205, and the experimental version of the code OSL by
John Forrest of IBM Research on an IBM 3090/600 supercomputer. With the
latter version of the code, the 2392-node instance is solved to optimality in about
4.3 hours of CPU time.

The rest of this section is devoted to a more detailed outline of such a state-
of-the-art branch and cut algorithm for the TSP. Our description is based on
the original implementation of Padberg and Rinaldi (1991) and a new imple-
mentation of Jünger, Reinelt and Thienel (1992). We use the terminology and
the notation of the latter paper in which a new component is added to the
Padberg-Rinaldi algorithm: a procedure that exploits the LP solution of the
current relaxation to improve the current heuristic solution.

As in the original version of the algorithm, in the implementation described
here, subtour elimination, 2-matching, comb and clique-tree inequalities are used
as cutting planes. Since we use exact separation of subtour elimination inequali-
ties, all integral LP solutions are incidence vectors of Hamiltonian cycles, as soon
as no more subtour elimination inequalities are generated.

In our description, we proceed as follows. First we describe the enumerative
part of the algorithm, i.e., we discuss in detail how branching and selection oper-
ations are implemented. Then we explain the work done in a subproblem of the
enumeration. Finally we explain some important global data structures. There
are two major ingredients of the processing of a subproblem, the computation
of local lower and global upper bounds. The lower bounds are produced by per-
forming an ordinary cutting plane algorithm for each subproblem. The upper
bounds are obtained by exploiting fractional LP solutions in the construction of
Hamiltonian cycles which are improved by heuristics.

The branch and cut algorithm for the TSP is outlined in the flowchart of
Figure 19. Roughly speaking, the two leftmost columns describe the cutting plane
phases within a single subproblem, the third column shows the preparation and
execution of a branching operation, and in the rightmost column, the fathoming
of a subproblem is performed. We give informal explanations of all steps of the
flowchart.

Before going into detail, we have to define some terminology. Since in a branch-
ing step two new subproblems are generated, the set of all subproblems can be
represented by a binary tree, which we call the branch and cut tree. Hence we call
a subproblem also a branch and cut node. We distinguish between three different
types of branch and cut nodes. The node which is currently processed is called
the current branch and cut node. The other unfathomed leaves of the branch
and cut tree are called the active nodes . These are the nodes which still must be
processed. Finally, there are the already processed nonactive nodes .

The terms edge of a graph and variable in the integer programming formula-
tion are used interchangeably, as they are in a one to one correspondence. Each
variable (edge) has one of the following status values during the computation:
atlowerbound, basic, atupperbound, settolowerbound, settoupperbound, fixed-
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80 M. Jünger, G. Reinelt and G. Rinaldi

tolowerbound, fixedtoupperbound. When we say that a variable is fixed to zero
or one, it means that it is at this value for the rest of the computation. If it is
set to zero or one, this value remains valid only for the current branch and cut
node and all branch and cut nodes in the subtree rooted at the current one in
the branch and cut tree. The meanings of the other status values are obvious:
As soon as an LP has been solved, each variable which has not been fixed or set
receives one of the values atlowerbound, basic or atupperbound by the revised
simplex method with lower and upper bounds.

The global variable lpval always denotes the optimal value of the last LP that
has been solved, the global variable llb (local lower bound) is a lower bound for
the currently processed node, the global variable gub (global upper bound) gives
the value of the currently best known solution. The minimal lower bound of all
active branch and cut nodes and the current branch and cut node is the global
lower bound glb for the whole problem, whereas the global variable rootlb is the
lower bound found while processing the root node of the remaining branch and
cut tree. As we will see later, lpval and llb may differ, because we use sparse
graph techniques, i.e., the computation of the lower bounds is processed only on
a small subset of the edges and only those edges are added which are necessary
to guarantee the validity of the bounds on the complete graph.

By the root of the remaining branch and cut tree we denote the highest common
ancestor in the branch and cut tree of all branch and cut nodes which still
must be processed. The values of gub and glb can be used to terminate the
computation as soon as the guarantee requirement is satisfied. As in branch and
bound terminology we call a subproblem fathomed , if the local lower bound llb

of this subproblem is greater than or equal to the global upper bound gub or the
subproblem becomes infeasible (e.g., branching variables have been set in a way
that the graph does not contain a Hamiltonian cycle). Following TSPLIB (Reinelt
(1991a, 1991b)) all distances are integers. So all terms of the computation which
express a lower bound may be rounded up, e.g., one can fathom a node with
global upper bound gub and local lower bound llb, if �llb� � gub. Since this is
only correct for the distances defined in TSPLIB we neither outline this feature
in the flowchart nor in the following explanations.

The algorithm consists of three different parts: The enumerative frame, the
computation of upper bounds and the computation of lower bounds. It is easy
to identify the boxes of the flowchart of Figure 18 with the dashed boxes of
the flowchart of Figure 19. The upper bounding is done in EXPLOIT LP, the
lower bounding in all other parts of the dashed bounding box. There are three
possibilities to enter the bounding part and three to leave it. Normally we perform
the bounding part after the startup phase in INITIALIZE or the selection of
a new subproblem in SELECT. Furthermore it is advantageous, although not
necessary for the correctness of the algorithm, to reenter the bounding part if
variables are fixed or set to new values by FIXBYLOGIMP or SETBYLOGIMP,
instead of creating two new subproblems in BRANCH. Normally, the bounding
part is left if no variables are added by PRICE OUT. In this case we know that
the bounds for the just processed subproblem are valid for the complete graph.
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Sometimes an infeasible subproblem can be detected in the bounding part. This
is the second way to leave the bounding part after ADD VARIABLES. We also
stop the computations of bounds and output the currently best known solution,
if our guarantee requirement is satisfied (guarantee reached), but we ignore this,
if we want to find the optimal solution.

6.4. Enumerative frame

In this paragraph we explain the implementation of the implicit enumeration.
Nearly all parts of this enumerative frame are not TSP specific. Hence it is easy
to adapt it to other combinatorial optimization problems.

INITIALIZE
The problem data is read. We distinguish between several problem types as

defined in Reinelt (1991a, 1991b) for the specifications of TSPLIB data. In the
simplest case, all edge weights are given explicitly in the form of a triangular
matrix. In this case very large problems are prohibitive because of the storage
requirements for the problem data. But very large instances are usually generated
by some algorithmic procedure, which we utilize. The most common case is the
metric TSP instance, in which the nodes defining the problem correspond to
points in d-dimensional space and the distance between two nodes is given by
some metric distance between the respective points. Therefore, distances can be
computed as needed in the algorithm and we make use of this fact in many cases.

In practical experiments it has been observed that most of the edges of an
optimal Hamiltonian cycle connect near neighbors. Often, optimal solutions are
contained in the 10-nearest neighbor subgraph of Kn. In any case, a very large
fraction of the edges contained in an optimal Hamiltonian cycle are already con-
tained in the 5-nearest neighbor subgraph of Kn. Depending on two parameters
ks and kr we compute the ks-nearest neighbor subgraph and augment it by the
edges of a Hamiltonian cycle found by a simple heuristic so that the resulting
sparse graph G = (V, E) is Hamiltonian. Using this solution, we can also initialize
the value of the global upper bound gub. We also compute a list of edges which
have to be added to E to contain the kr-nearest neighbor subgraph. These edges
form the reserve graph, which is used in PRICE OUT and ADD VARIABLES.
We will start working on G, adding and deleting edges (variables) dynamically
during the optimization process. We refer to the edges in G as active edges and
to the other edges as nonactive edges. All global variables are initialized. The
set of active branch and cut nodes is initialized as the empty set. Afterwards
the root node of the complete branch and cut tree is processed by the bounding
part.

BOUNDING
The computation of the lower and upper bounds will be outlined in Subsec-

tion 6.5. We continue the explanation of the enumerative frame at the ordinary
exit of the bounding part (at the end of the first column of the dashed bounding
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box). In this case it is guaranteed that the lower bound on the sparse graph lpval

becomes a local lower bound llb for the subproblem on the complete graph.
Since we use exact separation of subtour elimination inequalities, all integral

LP solutions are incidence vectors of Hamiltonian cycles, as soon as no more
subtour elimination inequalities are generated.

We check if the current branch and cut node cannot contain a better solution
than the currently best known one (gub � llb). If this is the case, the current
branch and cut node can be fathomed (rightmost column of the flowchart), and
if no further branch and cut nodes have to be considered, the currently best
known solution must be optimal (list empty after SELECT). Otherwise we have
to check if the current LP-solution is already a Hamiltonian cycle. If this is the
case (feasible) we can fathom the node (possibly giving a new value to gub),
otherwise we prepare a branching operation and the selection of another branch
and cut node for further processing (third column of the flowchart).

INITIALIZE FIXING, FIXBYREDCOST
If we are preparing a branching operation, and the current branch and cut node

is the root node of the currently remaining branch and cut tree, the reduced cost
of the nonbasic active variables can be used to fix them forever at their current
values. Namely, if for an edge e the variable xe is nonbasic and the reduced cost
is re, we can fix xe to zero if xe = 0 and rootlb + re > gub and we can fix xe to
one if xe = 1 and rootlb − re > gub.

During the computational process, the value of gub decreases, so that at some
later point in the computation, one of these criteria can be satisfied, even though
it is not satisfied at the current point of the computation. Therefore, each time
when we get a new root of the remaining branch and cut tree, we make a list
of candidates for fixing of all nonbasic active variables along with their values
(0 or 1) and their reduced costs and update rootlb. Since storing these lists in
every node, which might eventually become the root node of the remaining active
nodes in the branch and cut tree, would use too much memory space, we process
the complete bounding part a second time for the node, when it becomes the
new root. If we could initialize the constraint system for the recomputation by
those constraints, which were present in the last LP of the first processing of this
node, we would need only a single call of the simplex algorithm. However, this
would require too much memory. So we initialize the constraint system with the
constraints of the last solved LP. As some facets are separated heuristically, it is
not guaranteed that we can achieve the same local lower bound as in the previous
bounding phase. Therefore we not only have to use the reduced costs and status
values of the variables of this recomputation, but also the corresponding local
lower bound as rootlb in the subsequent calls of the routine FIXBYREDCOST.

If we initialize the basis by the variables contained in the best known Hamil-
tonian cycle and call the primal simplex algorithm, we can avoid phase 1 of the
simplex method. Of course this recomputation is not necessary for the root of
the complete branch and cut tree, i.e., the first processed node. The list of can-
didates for fixing is checked by the routine FIXBYREDCOST whenever it has
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been freshly compiled or the value of the global upper bound gub has improved
since the last call of FIXBYREDCOST.

FIXBYREDCOST may find that a variable can be fixed to a value opposite to
the one it has been set to (contradiction). This means that earlier in the compu-
tation, somewhere on the path of the current branch and cut node to the root of
the branch and cut tree, we have made an unfavorable decision which led to this
setting either directly in a branching operation or indirectly via SETBYRED-
COST or SETBYLOGIMP (to be discussed below). Contradictions are handled
by CONTRAPRUNING, whenever FIXBYREDCOST has set contradiction to
true using such a condition.

Before starting a branching operation and if no contradiction has occurred,
some fractional (basic) variables may have been fixed to new values (0 or 1). In
this case we solve the new LP rather than performing the branching operation.

FIXBYLOGIMP
After variables have been fixed by FIXBYREDCOST, we call FIXBY-

LOGIMP. This routine tries to fix more variables by logical implication as follows:
If two edges incident to a node v have been fixed to 1, all other edges incident
to v can be fixed to 0 (if not fixed already). As in FIXBYREDCOST, contradic-
tions to previous variable settings may occur. Upon this condition the variable
contradiction is set to true. If variables are fixed to new values, we proceed as
explained in FIXBYREDCOST.

In principle also fixing or setting variables to zero could have logical implica-
tions. If all incident edges of a node but two are fixed or set to zero, these two
edges can be fixed or set to one. However, as we work on sparse graphs, this
occurs quite rarely so that we omit this check.

SETBYREDCOST
While fixings of variables are globally valid for the whole computation, vari-

able settings are only valid for the current branch and cut node and all branch
and cut nodes in the subtree rooted at the current branch and cut node. SET-
BYREDCOST sets variables by the same criteria as FIXBYREDCOST, but
based on the local reduced cost and the local lower bound llb of the current
subproblem rather than “globally valid reduced cost” and the lower bound of
the root node rootlb. Contradictions are possible if in the meantime the variable
has been fixed to the opposite value. In this case we go to CONTRAPRUNING.
The variable settings are associated with the current branch and cut node, so
that they can be undone when necessary. All set variables are inserted together
with the branch and cut node into the hash table of the set variables, which is
explained in Subsection 6.6.

SETBYLOGIMP
This routine is called whenever SETBYREDCOST has successfully fixed vari-

ables, as well as after a SELECT operation. It tries to set more variables by
logical implication as follows: If two edges incident to a node v have been set or
fixed to 1, all other edges incident to v can be set to 0 (if not fixed already). As in
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SETBYREDCOST, all settings are associated with the current branch and cut
node. If variables are set to new values, we proceed as explained in FIXBYRED-
COST. As in SETBYREDCOST, the set variables are stored in a hash table,
see Subsection 6.6.

After the selection of a new node in SELECT, we check if the branching
variable of the father is set to 1 for the selected node. If this is the case, SET-
BYLOGIMP may also set additional variables.

BRANCH
Some fractional variable is chosen as the branching variable and, accordingly,

two new branch and cut nodes, which are the two sons of the current branch
and cut node, are created and added to the set of active branch and cut nodes.
In the first son the branching variable is set to 1 in the second one to 0. These
settings are also registered in the hash table.

SELECT
A branch and cut node is selected and removed from the set of active branch

and cut nodes. Our strategy is to select the candidate with the minimal local
lower bound, a variant of the “best first search” strategy which compares favor-
ably with commonly used strategies such as “depth first search” or “breadth first
search”. If the list of active branch and cut nodes is empty, we can conclude op-
timality of the best known Hamiltonian cycle. Otherwise we start processing the
selected node. After a successful selection, variable settings have to be adjusted
according to the information stored in the branch and cut tree. If it turns out
that some variable must be set to 0 or 1, yet has been fixed to the opposite value
in the meantime, we have a contradiction similar as discussed above. In this case
we prune the branch and cut tree accordingly by going to CONTRAPRUNING
and fathom the node in FATHOM. If the local lower bound llb of the selected
node is greater than or equal to the global upper bound gub, we fathom the
node immediately and continue the selection process. A branch and cut node
has pointers to its father and its two sons. So it is sufficient to store a set vari-
able only once in any path from the root to a leaf in the branch and cut tree. If
we select a new problem, i.e., proceed with the computation at some leaf of the
tree, we only have to determine the highest common ancestor of the old node
and the new leaf, reset the set variables on the path from the old node to the
common ancestor and set the variables on the path from the common ancestor
to the new leaf.

CONTRAPRUNING
Not only the current branch and cut node, where we have found the contra-

diction, can be deleted from further consideration, but all active nodes with the
same “wrong” setting can be fathomed. Let the variable with the contradiction
be e. Via the hash table of the set variables we can efficiently determine all
branch and cut nodes where e has been set. If in a branch and cut node b the
variable e is set to the “wrong” bound we remove all active nodes (unfathomed
leaves) in the subtree below b from the set of active nodes.



The traveling salesman problem 85

FATHOM
If for a node the global upper bound gub does not exceed the local lower

bound llb, or a contradiction occurred, or an infeasible branch and cut node
has been generated, the current branch and cut node is deleted from further
consideration. Even though a node is fathomed, the global upper bound gub

may have changed during the last iteration, so that additional variables may
be fixed by FIXBYREDCOST and FIXBYLOGIMP. The fathoming of nodes in
FATHOM and CONTRAPRUNING may lead to a new root of the branch and
cut tree for the remaining active nodes.

OUTPUT
The currently best known Hamiltonian cycle, which is either optimal or satis-

fies the desired guarantee requirement, is written to an output file.

6.5. Computation of lower and upper bounds

The computation of lower bounds consists of all elements of the dashed bound-
ing box except EXPLOIT LP, where the upper bounds are computed.

During the whole computation, we keep a pool of active and nonactive facet
defining inequalities of the traveling salesman polytope. The active inequalities
are the ones in the current LP and are both stored in the pool and in the
constraint matrix, whereas the inactive inequalities are only present in the pool.
An inequality becomes inactive, if it is nonbinding in the last LP solution. When
required, it is easily regenerated from the pool and made active again later in
the computation. The pool is initially empty. If an inequality is generated by a
separation algorithm, it is stored both in the pool and added to the constraint
matrix.

INITIALIZE NEW NODE
Let AG be the node-edge incidence matrix corresponding to the sparse

graph G. If the node is the root node of the branch and cut tree the LP is
initialized to

min cx

s.t. AGx = 2
0 � x � 1

and the feasible basis obtained from the initial Hamiltonian cycle is used as a
starting basis. In subsequent subproblems, we initialize the constraint matrix by
the equations induced by the node-edge incidence matrix of the sparse graph and
by the inequalities which were active when the last LP of the father of the branch
and cut node was solved. These inequalities can be regenerated from the pool.
Since the final basis of the father is dual feasible for the initial LP of its sons,
we start with this basis to avoid phase 1 of the simplex method. Every column
of a nonbasic set or fixed variable is removed from the constraint matrix and if
its status value is settoupperbound or fixedtoupperbound, the right hand side of
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every constraint containing it has to be adjusted. The corresponding coefficient
of the objective function must be added to the optimal value returned by the
simplex algorithm in order to get the correct value of the variable lpval. Set or
fixed basic variables are not deleted, because this would lead to an infeasible
basis and require phase 1 of the simplex method. We perform the adjustment of
these variables by adapting their upper and lower bounds.

SOLVE LP
The LP is solved, either by the two phase primal simplex method, if the current

basis is neither primal nor dual feasible, by the primal simplex method, if the
basis is primal feasible (e.g., if variables have been added) or by the dual simplex
method if the basis is dual feasible (e.g., if constraints have been added or more
variables have been set). As LP solver we use CPLEX by R.E. Bixby (see CPLEX
(1993)).

If the LP has no feasible solution we go to ADD VARIABLES, otherwise we
proceed downward in the flowchart.

ADD VARIABLES
Variables have to be added to the sparse graph if indicated by the reduced

costs (handled by PRICE OUT) or if the current LP is infeasible. The latter
may be caused by three reasons. First, equations may not be satisfiable because
the variables associated with all but at most one edge incident to a node v in
the sparse graph may be fixed or set to 0. Such an infeasibility can either be
removed by adding an additional edge incident to v, or, if all edges are present
already, we can fathom the branch and cut node.

Second, suppose that all equations are satisfiable, yet some active inequality
has a void left hand side, since all involved variables are fixed or set, but is
violated. As is clear from our strategy for variable fixings and settings, this also
means that the branch and cut node is fathomed, since all constraint coefficients
are nonnegative in our implementation.

Finally, neither of the above conditions may apply, and the infeasibility is
detected by the LP solver. In this case we perform a pricing step in order to find
out if the dual feasible LP solution is dual feasible for the entire problem. We
check for variables that are not in the current sparse graph (i.e., are assumed to
be at their lower bound 0) and have negative reduced cost. Such variables are
added to the current sparse graph. An efficient way of the computation of the
reduced costs is outlined in PRICE OUT.

If variables have been added, we solve the new LP. Otherwise, we try to make
the LP feasible by a more sophisticated method. The LP value lpval, which
is the objective function value corresponding to the dual feasible basis where
primal infeasibility is detected, is a lower bound for the objective function value
obtainable in the current branch and cut node. So if lpval � gub, we can fathom
the branch and cut node.

Otherwise, we try to add variables that may restore feasibility. First we mark
all infeasible variables, including negative slack variables.
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Let e be a nonactive variable and re be the reduced cost of e. We take e as a
candidate only if lpval+re � gub. Let B be the basis matrix corresponding to the
dual feasible LP solution, at which the primal infeasibility was detected. For each
candidate e let ae be the column of the constraint matrix corresponding to e and
solve the system Bae = ae. Let ae(b) be the component of ae corresponding to
basic variable xb. Increasing xe reduces some infeasibility if one of the following
holds.

– xb is a structural variable (i.e., corresponding to an edge of G) and
xb < 0 and ae(b) < 0

or
xb > 1 and ae(b) > 0

– xb is a slack variable and
xb < 0 and ae(b) < 0.

In such a case we add e to the set of active variables and remove the marks
from all infeasible variables whose infeasibility can be reduced by increasing xe.
We do this in the same hierarchical fashion as in the the procedure PRICE OUT
that is described below.

If variables can be added, we regenerate the constraint structure and solve the
new LP, otherwise we fathom the branch and cut node. Note that all systems of
linear equations that have to be solved have the same matrix B, and only the
right hand side ae changes. We utilize this by computing a factorization of B
only once, in fact, the factorization can be obtained from the LP solver for free.
For further details on this algorithm, see Padberg and Rinaldi (1991).

EXPLOIT LP
We check if the current LP solution is the incidence vector of a Hamiltonian

cycle. If this is the case, the variable feasible is set to true. Otherwise, the LP
solution is exploited in the construction of a Hamiltonian cycle. To this end
we use the following heuristic. Edges are sorted according to decreasing values
in the current LP solution. This list is scanned and edges become part of the
Hamiltonian cycle if they do not produce a subtour. Then the savings heuristic
as described in Section 4 is used to combine the produced system of paths to
form a Hamiltonian cycle. Then the Lin-Kernighan heuristic is applied. If the
final solution has smaller cost than the currently best known one, it is made
the incumbent solution, upperbound is updated and improved is set to true. For
details of this step, see Jünger, Reinelt and Thienel (1992).

SEPARATE
This part implements separation for the TSP as described in the previous

section. In a first phase, the pool is checked for inactive violated inequalities. If an
inactive inequality is violated, it is added to the active set of constraints. While
checking the pool, we remove, under certain conditions, all those inequalities
from the pool which have been inactive for a long time. If violated inequalities
have been added from the pool, we terminate the separation phase. Otherwise,
we try to identify new violated constraints as outlined in the previous section,
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store them as active inequalities in the pool and add them to the LP. For details
of the separation process, we refer to the original articles mentioned in Section 5.

ELIMINATE
Before the LP is solved after a successful cutting plane generation phase, all

active inequalities which are nonbinding in the current LP solution are eliminated
from the constraint structure and marked inactive in the pool. We can safely do
this to keep the constraint structure as small as possible, because as soon as the
inequality becomes violated in a later cutting plane generation phase, it can be
generated anew from the pool (if it has not been removed in the meantime).

PRICE OUT
Pricing is necessary before a branch and cut node can be fathomed. Its purpose

is to check if the LP solution computed on the sparse graph is valid for the
complete graph, i.e., all nonactive variables “price out” correctly. If this is not
the case, nonactive variables with negative reduced cost are added to the sparse
graph and the new LP is solved using the primal simplex method starting with
the previous (now primal feasible) basis, otherwise we can update the local lower
bound llb and possibly the global lower bound glb. If the global lower bound
has changed, our guarantee requirement might be satisfied and we can stop the
computation after the output of the currently best known Hamiltonian cycle.

Although the correctness of the algorithm does not require this, we perform
additional pricing steps every k solved LPs (see Padberg and Rinaldi (1991)).
The effect is that nonactive variables which are required in a good or optimal
Hamiltonian cycle tend to be added to the sparse graph early in the computation.

In a first phase, only the variables in the reserve graph are considered. If the
“partial pricing” considering only the edges of the reserve graph has not added
variables, we have to check the reduced costs of all nonactive variables which
takes a lot of computational effort. But this second step of PRICE OUT can be
processed more efficiently. If our current branch and cut node is the root of the
remaining branch and cut tree, we can check if the reduced cost re of a nonactive
variable e satisfies the relation lpval + re > gub. In this case we can discard this
nonactive candidate edge forever. During the systematic enumeration of all edges
of the complete graph, we can make an explicit list of those edges which remain
possible candidates. In the early steps of the computation, too many such edges
remain, so that we cannot store this list completely with reasonable memory
consumption. Rather, we predetermine a reasonably sized buffer and mark the
point where the systematic enumeration has to be resumed after considering the
edges in the buffer. In later steps of the computation there is a good chance that
the complete list fits into the buffer, so that later calls of the pricing routine
become much faster than early ones.

To process PRICE OUT efficiently, for each node v a list of those constraints
containing v is made. Whenever an edge e = vw is considered, we initialize the
reduced cost by ce, then v’s and w’s constraint lists are compared, and the value
of the dual variable yf times the corresponding coefficient is subtracted from the
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reduced cost whenever the two lists agree in a constraint f . The format of the
pool, which is explained in Subsection 6.6, provides us with an efficient way to
compute the constraint lists and the coefficients.

6.6. Data structures

A suitable choice of data structures is essential for an efficient implementation
of a branch and cut algorithm. This issue is discussed in detail in Jünger, Reinelt
and Thienel (1992).

Sparse graphs
In INITIALIZE we select only a very small subset of the edges for our com-

putations: the set of active edges, which remains small during the computations.
For the representation of the resulting sparse graph we choose a data structure
which saves memory and enables us to efficiently perform the operations scanning
all incident edges of a node, scanning all adjacent nodes of a node, determining
the endnodes of an edge and adding an edge to the sparse graph.

Branch and cut nodes
Although a subproblem is completely defined by the fixed variables and the

variables that are set temporarily, it is necessary to store additional information
at each node for an efficient implementation. Every branch and cut node has
pointers to its father and sons. A branch and cut node contains the arrays set

of its set variables and setstat with the corresponding status values (settolower-

bound, settoupperbound). The first variable in this array is the branching vari-
able of the father. There may be further entries to be made in case of successful
calls of SETBYREDCOST and SETBYLOGIMP while the node is processed.
The set variables of a branch and cut node are all the variables in the arrays set

of all nodes in the path from the root to the node.
In a branch and cut node we store the local lower bound of the corresponding

subproblem. After creation of a new leaf of the tree in BRANCH this is the
bound of its father, but after processing the node we can in general improve the
bound and update this value.

Of course it would be correct to initialize the constraint system of the first LP
of a new selected node with the inequalities of the last processed node, since all
generated constraints are facets of STSP. However, this would lead to tedious
recomputations, and it is not guaranteed that we can regenerate all heuristically
separated inequalities. So it is preferable to store in each branch and cut node
pointers to those constraints in the pool, which are in the constraint matrix of
the last solved LP of the node. We initialize with these constraints the first LP
of each son of that node.

As we use an implementation of the simplex method to solve the linear pro-
grams, we store the basis of the last processed LP of each node, i.e., the status
values of the variables and the constraints. Therefore we can avoid phase 1 of
the simplex algorithm, if we carefully restore the LP of the father and solve this
first LP with the dual simplex method. Since the last LP of the father and the
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first LP of the son differ only by the set branching variable, variables set by
SETBYLOGIMP, and variables that have been fixed in the meantime, the basis
of the father is dual feasible for the first LP of the son.

Active nodes
In SELECT a node is extracted from the set of active nodes for further process-

ing. Every selection strategy defines an order on the active nodes. The minimal
node is the next selected one. The representing data structure must allow efficient
implementations of the operations insert, extractmin and delete. The operation
insert is used after creation of two new branch and cut nodes in BRANCH, ex-

tractmin is necessary to select the next node in SELECT and delete is called if
we remove an arbitrary node from the set of active nodes in CONTRAPRUN-
ING. These operations are very well supported by a height balanced binary
search tree. We have implemented a red-black tree (Bayer (1972), Guibas and
Sedgewick (1978), see also Cormen, Leiserson and Rivest (1989)) which provides
O(log m) running time for these operations, if the tree consists of m nodes. Each
node of the red-black tree contains a pointer to the corresponding leaf of the
branch and cut tree and vice versa.

Temporarily set variables
A variable is either set if it is the branching variable or it is set by SET-

BYREDCOST or SETBYLOGIMP. In CONTRAPRUNING it is essential to
determine efficiently all nodes where a certain variable is set. To avoid scanning
the complete branch and cut tree, we apply a hash function to a variable right
after setting and store in the slot of the hash table the set variable and a pointer
to the corresponding branch and cut node. So it is quick and easy to find all
nodes with the same setting by applying an appropriate hashing technique. We
have implemented a Fibonacci hash with chaining (see Knuth (1973)).

Constraint pool
The data structure for the pool is very critical concerning running time and

memory requirements. It is not appropriate to store a constraint in the pool
just as the corresponding row of the constraint matrix, because we also have
to know the coefficients of variables which are not active. This is necessary in
PRICE OUT, to avoid recomputation from scratch after addition of variables and
in INITIALIZE NEW NODE. Such a format would require too much memory.
We use a node oriented sparse format. The pool is represented by an array.
Each component (constraint) of the pool is again an array, which is allocated
dynamically with the required size. This last feature is important, because the
required size for a constraint of STSP(n) can range from four entries for a subtour
elimination constraint to about 2n entries for a comb or a clique-tree inequality.

A subtour elimination inequality is defined by the node set W = {w1, . . . , wl}.
It is sufficient to store the size of this node set and a list of the nodes.

2-matching inequalities, comb inequalities and clique-tree inequalities are de-
fined by a set of handles H = {H1, . . . , Hr} and a set of teeth T = {T1, . . . , Tk},
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with the sets Hi = {hi1 , . . . , hini
} and Tj = {tj1 , . . . , tjmj

}. In our pool format a
clique-tree inequality with h handles and t teeth is stored as:

r,n1,h11 ,...,h1n1
,...,nr,hr1 ...,hrnr

,k,m1,t11 ,...,t1m1
,...,mk,tk1 ...,tkmk

For each constraint in the pool, we also store its storage type (subtour or clique-
tree).

This storage format of a pool constraint provides us with an easy method to
compute the coefficient of every involved edge, even if it is not present in the
sparse graph at generation time. In case of a subtour elimination inequality, the
coefficient of an edge is 1 if both endnodes of the edge belong to W , otherwise it is
zero. The computation of the coefficients of other constraints is straightforward.
A coefficient of an edge of a 2-matching inequality is 1 if both endnodes of the
edge belong to the handle or to the same tooth, 0 otherwise. Some more care
is needed for comb inequalities and clique-tree inequalities. The coefficient of an
edge is 2 if both endnodes belong to the same intersection of a handle and a
tooth, 1 if both endnodes belong to the same handle or (exclusive) to the same
tooth and 0 in all other cases.

Since the pool is the data structure using up the largest amount of memory,
only those inactive constraints are kept in the pool, which have been active,
when the last LP of the father of at least one active node has been solved.
These inequalities are used to initialize the first LP of a new selected node. In
the current implementation the maximal number of constraints in the pool is
50n for TSP(n). After each selection of a new node we try to eliminate those
constraints from the pool which are neither active at the current branch and cut
node nor necessary to initialize the first LP of an active node. If, nevertheless,
more constraints are generated than free slots of the pool are available, we remove
nonactive constraints from the pool. But now we cannot restore the complete
LP of the father of an active node. In this case we proceed as in INITIALIZE
FIXING to initialize the constraint matrix and to get a feasible basis.

7. Computation

Computational experience with the algorithmic techniques presented in the
previous sections has been given along with the algorithms in Section 4 and parts
of Sections 5 and 6. In this final section, we would like to report on computational
results of linear programming based algorithms, in particular, the branch and
cut algorithm, for various kinds of problem instances. We report both on optimal
and provably good solutions.

7.1. Optimal solutions

For most instances of moderate size arising in practice, optimal solutions can
indeed be found with the branch and cut technique. On the other hand, there
are small instances that have not been solved yet.
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Some Euclidean instances from TSPLIB
Computational results for a branch and cut algorithm for solving symmetric

traveling salesman problems to optimality have been published by Padberg and
Rinaldi (1991). In order to have a common basis for comparison, the performance
of their algorithm on a SUN SPARCstation 10/20 for our standard set of test
problems defined in Section 4 is presented in Table 7. For each instance we
show the number of nodes of the tree (not including the root node), the total
number of distinct cuts generated by the separation algorithm, the maximum
cardinality of the set of active constraints (including the degree equations), the
maximum cardinality of the set of active edges, the number of times the LP
solver is executed, the percentage of time spent in computing and improving a
heuristic solution, the percentage of time spent by the LP solver, and the overall
computation time in seconds.

All the problem instances have been solved with the same setting for the
parameters that can be used to tune the algorithm. Tailoring parameters for each
instance individually often gives better results. E.g., with a different setting the
instance pr2392 is solved without branching. The fact that all instances of Table 7
are Euclidean is not exploited in the implementation. For other computational
results, in particular for non Euclidean instances, see Padberg and Rinaldi (1991).

Further computational results for branch and cut algorithms for solving TSP
to optimality have been reported in Jünger, Reinelt and Thienel (1992) and
Clochard and Naddef (1993).

It has been announced by Applegate, Bixby, Chvátal and Cook (1992) that
several problem instances from TSPLIB have been solved with their branch and
cut implementation, the largest being fnl4461, whose computation time was the
equivalent of about 1.9 years of SUN SPARCstation 10. However, at the time of
writing these results are not yet published.

We do not know of any algorithmic approach other than the polyhedral branch
and cut method which is able to solve even moderately sized instances from
TSPLIB to optimality.

From the results presented above one may get the erroneous impression that
todays algorithmic knowledge is sufficient to solve instances with up to a few
thousand cities to optimality. Unfortunately, there are small instances that can-
not be solved to optimality in a reasonable amount of time. See, for example,
some non Euclidean instances described below. This is not surprising at all since
the TSP is an NP-hard combinatorial optimization problem. Still the impres-
sion might remain that Euclidean instances of size up to, say, 1000 nodes can be
solved routinely to optimality. Also this impression is wrong.

Some difficult Euclidean instances
Already from a quick look of Table 7 it is clear that, unlike in the case of

the computation of heuristic solutions, there is a weak correlation between the
computational effort and the instance size. Two small Euclidean instances from
TSPLIB are not listed in Table 7, namely pr76 and ts225. With the same imple-
mentation as used for the results of Table 7, solving pr76 takes about 405 seconds
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Table 7

Computation of optimal solutions

Problem BC Cuts Mrow Mcol Nlp % Heu % LP Time

lin105 0 50 137 301 10 89.4 8.5 11
pr107 0 111 148 452 19 73.8 23.8 10
pr124 2 421 199 588 74 74.1 16.7 77
pr136 10 786 217 311 102 70.8 14.8 101
pr144 2 273 238 1043 52 71.3 25.3 43
pr152 20 1946 287 2402 371 37.9 44.5 303
u159 0 139 210 395 23 82.2 15.1 17

rat195 16 1730 318 483 217 49.7 26.2 463
d198 2 563 311 1355 66 79.3 13.7 129

pr226 0 296 344 3184 31 72.4 25.9 87
gil262 4 950 409 668 90 74.6 16.1 197
pr264 0 70 305 1246 17 82.5 15.8 47
pr299 18 3387 554 800 281 1.0 89.5 2394
lin318 4 1124 497 875 100 56.8 20.1 344
rd400 54 8474 633 1118 852 36.5 45.1 2511
pr439 92 10427 741 1538 1150 26.5 55.0 3278

pcb442 50 2240 608 895 486 52.4 31.0 530
d493 70 20291 845 1199 1105 13.9 27.8 7578
u574 2 2424 910 1588 140 42.0 30.9 1134

rat575 110 24185 851 1455 1652 21.2 40.1 7666
p654 2 969 870 2833 55 59.7 35.1 449
d657 220 67224 1056 2154 3789 2.1 41.4 37642
u724 40 14146 1112 1962 766 4.5 32.8 9912

rat783 6 2239 1097 1953 126 64.8 25.6 1039
pr1002 20 14713 1605 2781 572 4.0 43.5 18766

pcb1173 324 165276 1686 3362 5953 6.7 61.7 91422
rl1304 46 38772 2101 5305 1377 2.0 84.5 160098

nrw1379 614 226518 1942 3643 7739 7.4 39.0 155221
u1432 2 4996 2044 2956 96 33.6 53.5 1982

pr2392 2 11301 3553 6266 145 23.6 57.9 7056

and 92 nodes of the tree. As far as we know, no algorithm has found a certified
optimal solution to ts225 yet. We report on the computation of a quality guar-
anteed solution for this problem in Subsection 7.2. Clochard and Naddef (1993)
observe that both these problems have the same special structure that might be
the reason for the poor performance of branch and cut algorithms. They pro-
pose a possible explanation for why these problems are difficult and describe a
generator that produces random Euclidean instances with the same structural
property. Applying new separation heuristics for path inequalities combined with
an elaborate branching strategy they obtained very encouraging results for the
hard instance pr76.
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Some difficult non Euclidean instances
It is actually not very difficult to create artificially hard instances for a branch

and cut algorithm. As an example, take as the objective function of an instance
a facet defining inequality for the TSP polytope that is not included in the list
of inequalities that the separation procedure can produce. To give numerical
examples, we considered the crown inequality described in Section 5. Table 8
shows the computational results for a few instances of this type. The names of
these instances have the prefix cro.

Another kind of instances that are expected to be difficult are those that arise
from testing if a graph is Hamiltonian. To provide difficult numerical examples,
we considered some hypohamiltonian graphs that generalize the Petersen graph.
A graph is hypohamiltonian if it is not Hamiltonian but the removal of any node
makes it Hamiltonian. We applied the transformation described in Section 2 to
make the tests. The results are also listed in Table 8. The instance names have
the prefix NH. Finally, we added one edge to each graph considered before that
makes it Hamiltonian and we ran the test once more. In this case the computation
was very fast as can be seen in Table 8, where the modified instances appear with
the prefix H.

Table 8

Optimal solutions of non Euclidean instances

Problem BC Cuts Nlp % Heu % LP Time

cro12 38 57 83 9.7 41.0 2
cro16 204 277 390 6.0 40.9 16
cro20 1078 1657 1838 4.3 39.1 113
cro24 4064 10323 8739 3.5 32.8 1232
cro28 19996 182028 68010 4.8 21.1 8864
NH58 40 287 276 10.0 55.5 28
NH82 58 489 505 6.3 62.5 67

NH196 294 2800 2817 1.1 69.0 2168
H58 0 0 1 0.0 100.0 2
H82 0 0 1 0.0 100.0 4

H196 0 0 1 0.0 100.0 25

Randomly generated instances
It is common in the literature that the performance of algorithms is evaluated

on randomly generated problem instances. This is often due to the fact that real
world instances are not available to the algorithm designers. For some combina-
torial optimization problems, randomly generated instances are generally hard,
for other problems such instances are easy. The symmetric traveling salesman
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problem seems to fall into the latter category. This is the case when, for exam-
ple, the distances are drawn from a uniform distribution. To support this claim
experimentally, we generated ten 10,000-city instances whose edge weights were
taken from a uniform distribution of integers in the range [0, 50000]. We always
stopped the computation after 5 hours. Within this time window, seven of them
were solved to optimality. Table 9 contains the statistics of the successful runs.
Since the computation of reduced costs of nonactive edges took a significant
amount of time in some cases, we list the percentage of time spent for this in an
extra column called “% Pricing”. The unaccounted percentage of the time is es-
sentially spent in the initialization process. In all cases separation took negligible
time.

Table 9

Optimal solutions of 10,000 city random instances

BC Cuts Nlp % Heu % LP % Pricing Time

2 48 35 21.5 51.0 7.5 9080
22 88 64 16.0 58.8 4.2 9205
10 73 47 10.6 41.9 32.0 11817
0 43 31 8.9 62.7 5.0 7670

46 129 107 16.0 60.6 6.3 11825
52 132 115 4.2 30.4 56.2 22360
20 115 74 8.1 34.8 42.3 16318

However, in the Euclidean case, we could not observe a significant difference in
difficulty between real-world and randomly created instances, whose coordinates
are uniformly distributed on a square.

Instances arising from transformations
Recently Balas, Ceria and Cornuéjols (1993) reported on the solution of a

difficult 43-city asymmetric TSP instance, which arises from a scheduling prob-
lem of a chemical plant. They solved the problem in a few minutes of a SUN
SPARCstation 330 with a general purpose branch and cut algorithm that does
no substantial exploitation of the structural properties of the asymmetric TSP.
They also tried to solve the problem with a special purpose branch and bound
algorithm for the asymmetric TSP, based on a additive bounding procedure de-
scribed in Fischetti and Toth (1992), with an implementation of the authors.
This algorithm could not find an optimal solution within a day of computation
on the same computer. We transformed the asymmetric TSP instance to a sym-
metric one having 86 nodes, using the transformation described in Section 2 and
solved it in less than a minute using only subtour elimination inequalities.
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Figure 20. Mask for a printed circuit board.

In a paper about a polyhedral approach to the rural postman problem, Cor-
berán and Sanchis (1991) describe two problem instances which are based on the
street map of the city of Albaida (Valencia). The two instances are obtained by
declaring two different randomly chosen sets of edges as required. The underlying
graph has 171 edges and 113 nodes, which represent all streets and intersections
of the streets, respectively. The first instance has 99 required edges giving rise to
10 connected components of required edges. The second has 83 required edges in
11 connected components. We applied the transformation described in Section 2,
thus producing TSP instances of 198 and 176 nodes, respectively. The solution
time was 89 seconds for the first and 22 seconds for the second instance.

Combinatorial optimization problems arising in the context of the control of
plotting and drilling machines are described in Grötschel, Jünger and Reinelt
(1991). While the drilling problems lead directly to TSP instances, the plotting
problem is modeled as a sequence of Hamiltonian path and “rural postman path”
problems. One of the problem instances is shown in Figure 20.

We use this mask to demonstrate the optimal solution of the three rural post-
man instances contained in it. The biggest of them has 258 required edges which
correspond to the thin electrical connections between squares, the smallest of
10 required edges to the thick connections. The third instance has 87 required
edges and corresponds to drawing the letters and digits at the bottom of the
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mask. Since the movements of the light source (see Section 3) are carried out
by two independent motors in horizontal and vertical directions, we choose the
Maximum metric (L∞) for distances between points. (The mask gives also rise
to two TSP instances of 45 and 1432 nodes, the Euclidean version of the latter
is contained in the TSPLIB under the name u1432.) We solve the three rural
postman instances independently, starting and ending each time at an origin
outside the mask, so in addition to the required edges we have one required node
in each case. Table 10 gives the statistics, with a column labeled “Nre” for the
number of required edges. All nodes except the origin have exactly one incident
required edge in all three instances, so that the number of nodes in the TSP
instance produced by the transformation is always 2Nre + 1.

Table 10

Optimal solutions for mask plotting rural
postman instances

Nre BC Time

10 0 0
87 2 28

258 224 9458

7.2. Provably good solutions

A branch and cut algorithm as outlined in the previous section produces a
sequence of increasing lower bounds as well as a sequence of Hamiltonian cycles
of decreasing lengths. Therefore, at any point during the computation we have
a solution along with a quality guarantee. Looking more closely at the optimiza-
tion process we observe that quality guarantees of, say, 5% are obtained quickly
whereas it takes a very long time to close the last 1%.

A typical example of this behavior is shown in Figure 21 for the problem
pcb442. The jumps in the lower bounds are due to the fact that the validity of
the LP-value as a global lower bound for the length of a shortest Hamiltonian
cycle is only guaranteed after a pricing step in which all nonactive variables
price out correctly. The lower bound obtained after about 17 seconds is slightly
increasing over time, although this is not visible in the picture. After about
10 seconds, a solution is found which can be guaranteed to deviate at most
5.220% from the optimum. At the end of the root branch and cut node, the
quality guarantee is 0.302%. (For this and the following experiments we have
disabled the enumerative part of the algorithm. The implementation used here
is the one by Jünger, Reinelt and Thienel (1992) using the CPLEX LP-software.)
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Figure 21. Gap versus time plot for pcb442.

The phenomenon depicted in Figure 21 is indeed typical as the computational
results in Table 11 show. Here for all the problems in our list we show the
number of LPs solved (before the enumerative part would have been entered), the
computation time in seconds, the guaranteed quality in percent, and the actual
quality (in terms of the deviation of the known optimal solution) in percent.

Our approach for computing solutions of certified good quality fails miserably
on the artificial Euclidean instance ts225. Table 12 shows the number of branch
and cut nodes (BC) and the lower bounds (LB) after 200, 400, 600, 800 and
1000 minutes of computation. A Hamiltonian cycle of length 126643 (which we
believe is optimal) is found after 72 minutes. No essential progress is made as
the computation progresses.

On the other hand, large real world instances can be treated successfully in
this framework. As an example, we consider the Euclidean TSPLIB instance
d18512 whose nodes correspond to cities and villages in Germany. This instance
was presented by Bachem and Wottawa (1991) along with a Hamiltonian cycle of
length 672,721 and a lower bound on the value of an optimal solution of 597,832.
Considering only subtour elimination and simple comb inequalities, we ran our
standard implementation to the end of the root node computation, and obtained
a Hamiltonian cycle of length 648,093 and a lower bound of 644,448 in 1295
minutes which results in a quality guarantee of about 0.57%. This Hamiltonian
cycle is shown in Figure 22. Even using only subtour elimination inequalities,
we obtained a lower bound of 642,082, i.e., a quality guarantee of less than 1%.
In both cases we solved the first LP by the barrier method which was recently
added to the CPLEX software.
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Table 11

Computational results without branching

Problem Nlp Time Guarantee Quality

lin105 9 1 0.000 0.000
pr107 12 1 0.000 0.000
pr124 18 4 1.269 0.078
pr136 14 4 0.698 0.150
pr144 17 5 0.396 0.360
pr152 71 13 0.411 0.000
u159 21 7 0.202 0.000

rat195 73 60 0.430 0.130
d198 44 34 0.297 0.051

pr226 24 11 0.029 0.000
gil262 47 30 0.439 0.170
pr264 30 14 0.026 0.000
pr299 99 81 0.876 0.280
lin318 80 105 0.471 0.380
rd400 49 65 0.406 0.100
pr439 74 156 0.948 0.200

pcb442 32 39 0.302 0.185
d493 61 123 0.216 0.069
u574 86 173 0.182 0.073

rat575 60 128 0.444 0.207
p654 55 121 0.169 0.104
d657 80 248 0.779 0.033
u724 66 171 0.448 0.227

rat783 61 190 0.174 0.057
pr1002 110 485 0.249 0.024

pcb1173 92 520 0.361 0.030
rl1304 144 1239 1.025 0.421

nrw1379 92 736 0.386 0.290
u1432 132 1302 0.981 0.883

pr2392 148 3199 1.011 0.790

When the size of the instance gets even larger, memory and time consump-
tion prohibit the application of our method. For very large Euclidean instances,
Johnson (1992) reports tours found by his implementation of a variant of the
Lin-Kernighan heuristic, together with lower bounds obtained with a variant of
the 1-tree relaxation method described above, which constitute excellent qual-
ity guarantees. Among the instances he considered are the TSPLIB instances
pla33810 and pla85900. For pla33810, he reports a solution of length 66,138,592
and a lower bound of 65,667,327. We applied a simple strategy for this instance.
Trying to exploit the clusters in the problem data, we preselected a set of subtour
elimination inequalities, solved the resulting linear program containing them plus
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Table 12

Lower bounds for ts225

Time 200 min 400 min 600 min 800 min 1000 min

BC 2300 4660 6460 7220 8172
LB 123437 123576 123629 123642 123656

the degree equations on the Delaunay graph, priced out the nonactive edges and
resolved until global optimality on the relaxation was established. As LP-solver,
we used the program LOQO of Vanderbei (1992), because we found the imple-
mented interior point algorithm superior to the simplex method. Table 13 shows
the results for different sets of subtours. The implementation is rather primitive,
the running time can be improved significantly.

Table 13

Lower bounds for pla33810

# Subtours 0 4 466 1114

Lower bound 65,354,778 65,400,649 65,579,139 65,582,859
Time 51,485 36,433 47,238 104,161

7.3. Conclusions

In the recent years many new algorithmic approaches to the TSP (and other
combinatorial optimization problems) have been extensively discussed in the
literature. Many of them produce solutions of surprisingly good quality. How-
ever, the quality could only be assessed because optimal solutions or good lower
bounds were known.

When optimization problems arise in practice we want to have confidence in
the quality of the solutions. Quality guarantees become possible by reasonably
efficient calculations of lower bounds. The branch and cut approach meets the
goals of simultaneously producing good solutions as well as reasonable quality
guarantees.

We believe that practical problem solving does not consist only of producing
“probably good” but provably good solutions.
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Figure 22. A 0.0057-guaranteed solution of d18512.
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V. Chvátal (1973), Edmonds polytopes and weakly Hamiltonian graphs, Mathematical Pro-
gramming 5, 29–40 [54, 62].

G. Clarke and J.W. Wright (1964), Scheduling of vehicles from a central depot to a number of
delivery points, Operations Research 12, 568–581 [19].

J.M. Clochard and D. Naddef (1993), Using path inequalities in a branch and cut code for
the symmetric traveling salesman problem, in: G. Rinaldi and L. Wolsey, eds., Integer Pro-
gramming and Combinatorial Optimization 3, CORE, Louvain-la-Neuve, pp. 291–311 [69,
92, 93].

N.E. Collins, R.W. Eglese and B.L. Golden (1988), Simulated Annealing: An Annotated Bib-
liography, Amer. J. Math. and Mgmt. Sci. 8, 205–307 [42].



The traveling salesman problem 103

A. Corberán and J.M. Sanchis (1991), A polyhedral approach to the rural postman problem,
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M. Grötschel, M. Jünger and G. Reinelt (1991), Optimal Control of Plotting and Drilling
Machines: A Case Study, Zeitschrift für Operations Research – Methods and Models of
Operations Research 35, 61–84 [7, 10, 96].

M. Grötschel, L. Lovász and A. Schrijver (1981), The ellipsoid methods and its consequences
in combinatorial optimization, Combinatorica 1, 169–197 [64].

M. Grötschel, L. Lovász and A. Schrijver (1988), Geometric Algorithms and Combinatorial
Optimization, (Springer-Verlag, Berlin-Heidelberg) [64].

M. Grötschel and M.W. Padberg (1974), Zur Oberflächenstruktur des Traveling Salesman Poly-
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Reine und Angewandte Mathematik 3, 198–287 [36].

R.H. Warren (1993), Special cases of the traveling salesman problem, Preprint, Advanced
Concepts Center, Martin Marietta Corporation, King of Prussia, PA, to appear in Applied
Mathematics and Computation [3].

L.A. Wolsey (1980), Heuristic analysis, linear programming and branch and bound, Mathe-
matical Programming Study 13, 121–134 [48].
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