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In this paper we investigate the problem of identifying a planar subgraph of maximum weight

of a given edge weighted graph. In the theoretical part of the paper, the polytope of all planar

subgraphs of a graph G is de�ned and studied. All subgraphs of a graph G, which are subdivisions

of K

5

or K

3;3

, turn out to de�ne facets of this polytope.

We also present computational experience with a branch and cut algorithm for the above problem.

Our approach is based on an algorithm which searches for forbidden substructures in a graph that

contains a subdivision ofK

5

or K

3;3

. These structures give us inequalities which are used as cutting

planes.
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1. Introduction

A graph G = (V;E) is said to be planar, if it can be drawn on the plane such that no two

edges intersect geometrically except at a vertex at which they are both incident. According to

Kuratowski's Theorem, planar graphs are exactly the graphs that contain no subdivisions of K

5

or K

3;3

. Given a nonplanar weighted graph with edge weights w

e

for e 2 E we want delete a set

of edges F to obtain a planar subgraph G

0

= (V;E n F ) such that the sum of all edge weights

P

e2EnF

c

e

of G

0

is maximum. In the unweighted case, where c

e

= 1 for all edges e 2 E, the

problem consists of �nding the minimum number of edges whose deletion from a nonplanar graph

gives a planar subgraph.

In either case the problem is NP-hard [GJ79]. The problem can be solved in polynomial time if

G is already planar, since planarity testing can be done in linear time [HT74]. If G = K

n

, the

complete graph on n nodes, or G = K

m;n

, the complete bipartite graph on n+m nodes, it is easy

to construct a solution which contains 3n � 6, resp. 2n� 4 edges, and so the unweighted problem

is solved in linear time.

A related problem to the unweighted maximum planar subgraph problem is the maximal planar

subgraph problem. It consists of �nding a planar subgraph G

0

= (V

0

; E

0

) such that for all edges

e 2 E n E

0

the addition of e to G

0

destroys the planarity of G

0

. Recently Cai, Han and Tarjan

[CHT91] described an O(jEj log jV j) maximal planarization algorithm based on the Hopcroft-Tarjan

planarity testing algorithm, and Kant [K92] generalized the maximal planarization algorithm of

Jayakumar et al. [JTS89] for a special class of graphs, to an O(jV j

2

) planarization algorithm based

on PQ-trees of Booth and Lueker [BL76].

For the weighted maximum planar subgraph problem Foulds et al. described some heuristics which

deal with complete graphs [FR78, EFG82]. They applied their heuristics to determine good layouts
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of manufacturing facilities, whose modelling yields very dense graphs. Branch and bound algo-

rithms have been proposed, but they only have a chance on small dense graphs [FR76]. Recently,

Goldschmidt and Takvorian presented a two-phase heuristic for solving the unweighted maximum

planar subgraph problem [GT92]. They also tried to �nd a triangulated planar subgraph, but if

the density of the graph is not high enough, the heuristic fails.

In automatic graph drawing a given graph has to be layed-out in the plane, possibly according

to a number of topological and aesthetic constraints. In [TBB88] Tamassia et al. describe their

graphtheoretic approach. In the initial phase of the process, an unweighted maximum planar

subgraph of the input graph is determined, which is then used as the basis for the layout of the

original graph. The graphs occuring in such applications are relatively sparse, so that the above

heuristic fails.

We attack the problem with a branch and cut technique. This approach gives us quite good and

in many cases provably optimal solutions for sparse graphs and very dense graphs.

In section 2, we de�ne the planar subgraph polytope PLS(G). Some basic facts about this polytope

are given. Among others all the minimal nonplanar subgraphs of a graph G, which are exactly the

subdivisions of K

5

and K

3;3

contained in G, turn out to de�ne facets of PLS(G). In addition, some

operations like lifting, edge splitting and edge contraction are examined. In section 3, we present

the algorithm. The computational results are given in section 4.

2. The Planar Subgraph Polytope

Suppose a graph G = (V;E) with edge weights w

e

for all e 2 E is given. Let P

G

be the set of all

planar subgraphs of G. For each planar subgraph P = (V

0

; F ) 2 P

G

, we de�ne its incidence vector

�

P

2 R

E

by setting �

P

e

= 1 if e 2 F and �

P

e

= 0 if e 62 F .

The polytope PLS(G) of G is de�ned as the convex hull over all incidence vectors of planar

subgraphs of G

PLS(G) := convf�

P

2 R

E

j P 2 P

G

g:

The problem of �nding a planar subgraph P of G with weight w(P ) as large as possible can be

written as the linear program

maxfw

T

x j x 2 PLS(G)g;

since the vertices of the polytope PLS(G) are exactly the incidence vectors of the planar subgraphs

ofG. In order to apply linear programming techniques to solve this LP one has to represent PLS(G)

as the solution of an inequality system. In the following we give a partial description of the facial

structure of PLS(G).

The set of all planar subgraphs P

G

of G is an independence system, since every subgraph of a

planar graph is planar.

Lemma 1 The dimension of the PLS-polytope of G = (V;E) is jEj, so it is full dimensional. For

all edges e 2 E the inequalities x

e

� 0 and x

e

� 1 de�ne facets of PLS(G).

Proof. The �rst part follows directly from the properties of independence systems. It is also

easy to see that the inequality x

e

� 1 is facet-de�ning by directly choosing the jEj � 1 edge

sets F

i

= fe [ e

i

g for all e

i

2 E n feg. Together with F = feg their incidence vectors give

linear independent incidence vectors of planar subgraphs, which satisfy the inequality x

e

� 1 with

equality.

A minimal nonplanar graph is a nonplanar graph for which the removal of an arbitrary edge

yields a planar graph. Minimal nonplanar graphs are the circuits in the independence system P

G

.
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Figure 1

Since by Kuratowski's Theorem every nonplanar graph contains a subdivision of K

5

or K

3;3

, one

can easily observe that the minimal nonplanar graphs are exactly the subdivisions of K

5

or K

3;3

.

In the following we will examine their properties.

Lemma 2 Given a minimal nonplanar subgraph G[F ] of a nonplanar graph G = (V;E), F � E,

an arbitrary edge f 2 F and an edge e 2 E n F with one endnode not in V (F ). Then the graph

G[F

0

] induced by F

0

= F n ffg [ feg is planar.

Theorem 1 Given a minimal nonplanar subgraph G[F ] of a nonplanar graph G = (V;E) and

an edge e 2 E n F . Then there exists an edge f 2 F such that the graph G[F

0

] induced by

F

0

= F n ffg [ feg is planar.

Proof. Consider �rst a minimal nonplanar subgraph which is a subdivision of K

5

. We denote the

nodes which are no subdivision nodes by u

1

; : : : ; u

5

. Let us assume that we add the edge (v

1

; v

2

)

with endnodes v

1

on the path from u

1

to u

2

and v

2

on the path from u

4

to u

5

(see Figure 1(a)).

An embedding of this graph is given in Figure 1(b). Clearly, removing one edge on the path from

u

2

to v

1

will lead to a planar graph. If the edge (v

1

; v

2

) joins two adjacent paths, for example v

1

lies now on the path from u

1

to u

5

(see Figure 1(c)), Then again the deletion of one edge on the

path from u

1

to u

2

gives a planar graph (see Figure 1(d)). The case in which not both nodes v

1

and v

2

are subdivision nodes, can be obtained from the above via a suitable contraction. All other

cases are symmetric to the above.

Now consider a graph which is a subdivision of K

3;3

. Again denote the nodes which are no subdi-

vision nodes by u

1

; : ; u

3

; w

1

; : ; w

3

. Let us assume that we add the edge (v

1

; v

2

) with endnodes v

1

on the path from u

1

to w

1

and v

1

on the path from u

2

to w

2

(see Figure 1(e)). By considering the

embedding of the graph given in Figure 1(f) it is obvious that the graph will be planar, if one edge

on the path from w

2

to u

3

is deleted. The case in which the edge (v

1

; v

2

) joins two adjacent paths

is treated in Figure 1(g)-(h).
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This theorem leads to the main theoretical result of this paper.

Theorem 2 For all minimal nonplanar subgraphs G

0

= (V

0

; F ) of G = (V;E) the inequality

x(F ) � jF j � 1 de�nes a facet of PLS(G).

Proof. Take the jF j edge sets F n ffg for all edges f 2 F . Consider an edge e 2 E n F , add it to

F and delete an edge f 2 F such that the subgraph induced by F

0

= F n ffg[feg is planar, which

is possible due to Theorem 1. Do this for all edges e 2 E n F . All of the jEj edge sets satisfy the

inequality x(F ) � jF j � 1 at equality and the graphs induced by them are planar. Consider the

corresponding matrix A whose rows are the incidence vectors of these edge sets. If in the rows of

A the edges in F appear before the remaining ones, it is obvious that A has rank jEj. Thus these

jEj planar graphs are all linearly independent and the theorem follows.

Corollary 1 Let K

5

(resp. K

3;3

) be contained in G = (V;E). Then x(K

5

) � 9 (resp. x(K

3;3

) � 8)

de�nes a facet of PLS(G).

The facet-de�ning property of K

5

and K

3;3

is not very astonishing. There is one other class of

inequalities, which plays an important role in the theory of planar graphs, that is Euler's formula

for the relationships of vertices, edges and faces in a plane connected graph.

Lemma 3 (Euler inequalities) For G = (V;E) and V

0

� V let E

0

:= E[V

0

] and G

0

= (V

0

; E

0

).

Then the inequality x(E

0

) � 3jV

0

j � 6 is valid for PLS(G). If G

0

is bipartite, the inequality

intensi�es to x(E

0

) � 2jV

0

j � 4.

Moreover, if the graph G = (V;E) is dense, the above inequality may yield a facet, like it is the

case for G = K

n

, resp. G = K

m;n

.

Theorem 3 For the complete graph on n nodes G = K

n

the inequality x(E) � 3jV j � 6 de�nes

a facet for PLS(G) for n � 5. If G is the complete bipartite graph K

m;n

, then the inequality

x(E) � 2jV j � 4 de�nes a facet for PLS(G) for m;n � 3.

Proof. We show the theorem for the complete bipartite graph K

m;n

. The proof for complete

graphs is similar, but not as complicated and much shorter. Let us assume that G = (U;W;E)

with jU j = m � n = jW j � 3. For notational convenience we denote x(E) � 2(jU j+ jW j)� 4 by

a

T

x � a

0

. Suppose now that c

T

x � c

0

is a valid inequality for PLS(G) satisfying fx 2 PLS(G) j

a

T

x = a

0

g � fx 2 PLS(G) j c

T

x = c

0

g. We show that for some � � 0 we have c

T

= �a

T

and c

0

= �a

0

. Consider the plane graph P shown in Figure 2(a), where U = fu

1

; : : : ; u

m

g and

W = fw

1

; : : : ; w

n

g. P has exactly (3n � 2) + (n � 2) + 2(m� n) = 2(m + n) � 4 edges, thus its

incidence vector �

P

satis�es a

T

�

P

= a

0

and hence also c

T

�

P

= c

0

.

Let us construct a new graph P

i

2

by deleting the edge (w

i+1

; u

i+1

) and adding the edge (w

i

; u

i+2

).

P

i

2

is still planar and satis�es a

T

�

P

i

2

= a

0

and hence c

T

�

P

i

2

= c

0

. This implies 0 = c

0

�c

0

= c

T

�

P

�

c

T

�

P

i

2

= c

w

i+1

u

i+1

� c

w

i

u

i+2

, thus (1) c

w

2

u

2

= c

w

1

u

3

. In general, we construct P

i

h

from P by adding

the edges (w

i

; u

i+2

); : : : ; (w

i

; u

i+h

) and deleting the edges (w

i+1

; u

i+1

); : : : ; (w

i+h�1

; u

i+h�1

) for i =

1; : : : ; n�2 and h = 2; : : : ; n�i. The graphs P

i

h

are obviously still planar and satisfy c

T

�

P

i

h

= c

0

with

equality (Figure 2(b) shows P

1

3

). Subtraction yields c

T

�

P

i

h�1

�c

T

�

P

i

h

= ((c

w

i

u

i+2

+� � �+c

w

i

u

i+h�1

)�

(c

w

i+1

u

i+1

+ � � �+ c

w

i+h�2

u

i+h�2

))� ((c

w

i

u

i+2

+ � � �+ c

w

i

u

i+h

)� (c

w

i+1

u

i+1

+ � � �+ c

w

i+h�1

u

i+h�1

)) =

�c

w

i

u

i+h

+c

w

i+h�1

u

i+h�1

. Together with (1) we have (2) c

w

i

u

i+h

= c

w

i+h�1

u

i+h�1

for i = 1; : : : ; n�2

and h = 2; : : : ; n � i. Symmetrically, we get the same for u

i

, that is c

u

i

w

i+h

= c

w

i+h�1

u

i+h�1

for

i = 2; : : : ; n� 2 and h = 2; : : : ; n� i.

Next let us construct F

n

k

= F

k

similar as P

i

h

from P by deleting the edges (u

n�1

; w

n�1

); : : : ;

(u

n�k+1

; w

n�k+1

) and adding the edges (w

n�2

; u

n

); : : : ; (w

n�k

; u

n

) for k = 2; : : : ; n�1. Subtraction
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of F

k�1

from F

k

yields c

w

n�k

u

n

= c

u

n�k+1

w

n�k+1

for k = 3; : : : ; n � 1. Together with (2) we

have c

w

n�1

u

n�1

= c

w

n�h

u

n

= c

u

n�h+1

w

n�h+1

= c

w

(n�1)�(h�2)

u

(n�1)�(h�2)

= c

w

n�1�j

u

n�1�j

for j =

1; : : : ; n� 3.

The planarity of the graph H

w

i

arising from P by adding the edge (w

i

; u

i+2

) and deleting edge

(u

i+1

; w

i+2

) for i = 1; : : : ; n � 2 is evident by consideration of Figure 2(a). The same holds for

H

u

i

arising from P by adding the edge (u

i

; w

i+2

) and deleting (w

i

; u

i+1

) for i = 2; : : : ; n � 2.

We also preserve planarity by adding (w

1

; u

3

) and deleting (u

1

; w

2

) (If n = 3 the nodes u

n+h

for

h = 1; : : : ; m� n have to be embedded into a di�erent face). This way we get the c-values for the

deleted edges.

So far we have shown equality of all coe�cients c

e

of edges e

h

i

= (u

i

; w

i+h

) for i = 2; : : : ; n � 1

and h = 0; : : : ; n � i, the edges f

h

i

= (w

i

; u

i+h

) for i = 1; : : : ; n � 2 and h = 0; : : : ; n � i, where

i + h > 2, and e = (u

1

; w

2

) (see Figure 2(c), the values of the solid drawn edges are known).

Equality of the c-values for the edges e

j

1

= (u

1

; w

j

) for j = 3; : : : ; n� 2 is obtained by replacing e

j

1

with (w

j�2

; u

j+1

), which keeps planarity. The values of (u

1

; w

n�1

) and (u

1

; w

n

) are obtained by

replacing them with (w

n�2

; u

m

) and (w

n�3

; u

m

), respectively.

For the case m = n we have shown equality of the coe�cients of almost all edges but (u

1

; w

1

),

(w

1

; u

2

), (w

n�1

; u

n

) and (u

n

; w

n

). By interchanging nodes u

2

with u

3

in P (see Figure 2(a)) we

obtain again a planar graph with equal weight and get c

w

1

u

2

+ c

u

3

w

4

= c

w

1

u

3

+ c

u

2

w

4

, where all of

them but c

w

1

u

2

is known to be equal. The c-values of the remaining edges can be obtained by the

following construction. Delete edge (u

1

; w

1

) from P and add (w

1

; u

3

). We can observe that this

graph is still planar (see Figure 2(d)) and satis�es a

T

x = a

0

with equality, hence c

T

x = c

0

, which

implies c

u

1

w

1

= c

w

1

u

3

. By the same construction in the rightmost rectangle we get c

u

n

w

n

= c

w

n�2

u

n

and c

w

n�1

u

n

= c

w

n�2

u

n

(in the last case we have to embed u

n

within the face determined by

fu

1

; w

n�2

; u

n�1

; w

n

g).

In case m > n we need to show the equality of the c-values for all edges (u

n+h

; w

i

) for h =

1; : : : ; m � n and i = 1; : : : ; n. We embed the node u

n+h

(for �xed h) into the �rst rectangle
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determined by fu

1

; w

2

; u

2

; w

1

g. Therefore we have to delete the edges (u

n+h

; w

n�1

) and (u

n+h

; w

n

)

from P and to add (w

1

; u

n+h

) and (w

2

; u

n+h

). Let R

i

denote the graphs yielded by doing this for

each of the rectangles fu

i

; w

i+1

; u

i+1

; w

i

g for i = 1; : : : ; n�1. By subtraction of R

i�1

fromR

i

we get

the equalities c

w

1

u

n+h

= c

w

3

u

n+h

= � � � = c

w

n

u

n+h

and c

w

2

u

n+h

= c

w

4

u

n+h

= � � �= c

w

n�1

u

n+h

in case

n is odd. Now take the embedding of graphR

1

, delete edge (u

2

; w

2

) from it and add edge (u

n+h

; w

3

).

This implies c

w

3

u

n+h

= c

u

2

w

2

. From R

2

we get by the same construction c

w

4

u

n+h

= c

u

3

w

3

and so

we have shown the equality of the c-values for all edges in G = K

m;n

. Thus setting � = c

0

=a

0

proves the theorem.

The facet-de�ning property also holds if we delete one arbitrary edge of K

n

, which is not the case

for K

m;n

. For the graph K

3;4

with one deleted edge the inequality just yields a face of dimension

jEj � 2. The proof of Corollary 2 stays essentially the same as that for K

n

.

Corollary 2 For the complete graph G = (V;E) on n >= 6 nodes where one arbitrary edge e is

removed, the inequality x(E) � 3jV j � 6 is facet-de�ning for PLS(G).

One may think that the same must also hold for complete graphs, where two edges are removed.

But in generally this is not the case. For the graph K

6

the above inequality is not facet-de�ning

for any pair of deleted edges.

The inequalities considered up to this point have all coe�cients c

e

= 1. This is not the case for the

following inequality.

Theorem 4 Let G = (V;E) be a subdivision of K

5

on the nodes u

1

; : : : ; u

5

; v

1

; v

2

extended by the

edge (v

1

; v

2

), where v

1

and v

2

denote the subdivision nodes. Further assume (u

i

; v

1

), (u

j

; v

1

) 2 E

and (u

k

; v

2

), (u

l

; v

2

) 2 E with i 6= j, k 6= l, j 6= k and j 6= l.

If i = k we de�ne U = f(u

h

; u

i

); (u

h

; u

j

); (u

h

; u

l

) for h 6= i; j; lg [ f(u

j

; v

1

); (u

l

; v

2

)g. The def-

inition of U for the case i = l is symmetric. If i, j, k and l are pairwise distinct, we de�ne

U = f(u

i

; v

1

); (u

j

; v

1

); (u

k

; v

2

); (u

l

; v

2

)g.

Let c

e

= 2 for all edges e 2 U and c

e

= 1 for the remaining edges e =2 U . Then the inequality

2x(U) + x(E nU) � c(E)� 2 is facet-de�ning for PLS(G).

(a)

u

1

u

2

u

v v

1

1 1

2

2
2

2

2

2 2

1

i

lj

1 2

(c)

u u

ju

v v

2 2

22

ik

u

u

l

h

1 1

1

1

11

11 1

1

1

21

(b)

vu i

u

ju

u l

u

2

v1

Figure 3

Proof. First consider the case (i = k) (see Figure 3(a)). Each subdivision of K

3;3

contained in G

must exactly have one node of fv

1

; v

2

g as subdivision node, say v

1

. Such a subdivision must be of

the form shown in Figure 3(b). The edge set is F

v

1

= U [f(v

1

; v

2

); (u

i

; v

2

)g. Symmetrically, if v

2

is

the subdivision node we obtain the edge set F

v

2

= U [f(v

1

; v

2

); (u

i

; v

1

)g. Whenever an edge e =2 U

6



is deleted from G, either a subdivision of K

5

is left or one of the above subdivisions of K

3;3

is still

contained in the remaining graph. Thus validity is shown. The common edge set of all the minimal

nonplanar graphs is exactly U . Thus Gnfeg for any e 2 U is planar. By deleting the edge (v

1

; v

2

)

in G we obtain exactly the subdivision of K

5

. Together with (v

1

; v

2

) we can delete any other edge

to get a planar graph, in particular we can choose any additional edge e 2 En(U [ f(v

1

; v

2

)g). It

is also obvious that the removal of the edges (u

i

; v

1

) and (u

i

; v

2

) from G results in a planar graph.

Thus we have found jEj incidence vectors of planar subgraphs, which all satisfy the inequality

2x(U) + x(E nU) � c(E)� 2 with equality. The linear independence of these vectors can easily be

veri�ed.

Let us consider the second case, that is i 6= k; l and j 6= k; l. An embedding of the graph is shown

in Figure 3(c). After the deletion of the edge (u

i

; u

k

) there is still a path u

i

; u

h

; u

k

between u

i

and

u

k

, which preserves the presence of a subdivision of K

3;3

. This is the same for the edges (u

i

; u

l

),

(u

j

; u

k

) and (u

j

; u

l

). If (v

1

; v

2

) is deleted, the resulting graph is a subdivision of K

5

. Hence we

have to delete either one edge in U or at least two of the edges not in U to get a planar graph.

Thus validity is shown. Together with the edge (v

1

; v

2

) we can delete any other edge in EnU in

order to get a planar graph. It is also obvious that the deletion of the edges (u

k

; u

j

) and (u

i

; u

l

)

also yields a planar graph. Hence we have again jEj incidence vectors of planar graph, which are

linear independent and satisfy the inequality 2x(U) + x(E n U) � c(E)� 2 with equality.

In the following we will see that some operations like \edge splitting" and \edge contraction" keep

the facet-de�ning properties.

De�nition 1 Let cx � c

0

be an inequality de�ned in R

E

and f be an edge in E. We say that the

inequality c

�

x

�

� c

�

0

de�ned in R

E

�

is obtained by splitting the edge f (h times) in the following

sense. The edge f = (u; w) is replaced by a path P = (u = v

0

; e

0

; v

1

; : : : ; e

h

; v

h+1

= w) and the

weights are given by c

�

0

= c

0

+ hc

f

, c

�

e

i

= c

f

for 0 � i � h, and c

�

e

= c

e

for each e not contained in

P . We also de�ne the inverse operation, the (edge) contraction on a path P where we replace

the path P = (v

0

; e

0

; v

1

; : : : ; e

h

; v

h+1

) by the edge f = (v

0

; v

h+1

) if deg(v

i

) = 2 for 1 � i � h and

c

e

i

= c

0

for 0 � i � h. In this case c

�

0

= c

0

� hc

0

, c

�

f

= c

0

and c

�

e

= c

e

for each e not contained in P .

Note that for every facet-de�ning inequality cx � c

0

the weights c

e

for all the edges on a path

P = (v

0

; e

0

; v

1

; : : : ; e

h

; v

h+1

) with deg(v

i

) = 2 for 1 � i � h are equal, because the removal of

one edge on the path destroys exactly the same subdivisions of K

5

or K

3;3

as the removal of an

arbitrary other edge on P does. This applies also to the edge f = (v

0

; v

h+1

). Hence we have the

following lemma.

Lemma 4 Let cx � c

0

be facet-de�ning for PLS(G). Then the inequality c

�

x

�

� c

�

0

obtained from

cx � c

0

by splitting an edge f or contracting a path P = (v

0

; e

0

; v

1

; : : : ; e

h

; v

h+1

) with deg(v

i

) = 2

for 1 � i � h is facet-de�ning for PLS(G

0

), where G

0

denotes the graph obtained by the above

substitution.

Consider an inequality which is facet-de�ning for PLS(G). By adding an edge to G, which is

incident to at most one node in G, the planarity or nonplanarity of G is not a�ected. The sequential

lifting theorem for independence systems together with the above remark gives us the following

lemma. We call the set of edges which have non-zero coe�cients in the inequality c

T

x � c

0

the

support of the inequality.

Lemma 5 (Zero Lifting) Let G = (V;E) be a graph, U � E and c

T

x � c

0

a facet-inducing

inequality for PLS(G[E n U ]). Choose any e 2 U which has at most one endnode incident to the

support of c

T

x � c

0

. Then c

T

x � c

0

de�nes a facet of PLS(G[E n U [ feg]).
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Corollary 3 (Euler inequalities) Let (V

0

; F ) be a clique or a complete bipartite subgraph

contained in G. Then the Euler inequalities x(F ) � 3jV

0

j � 6 or x(F ) � 2jV

0

j � 4, respectively, are

facet-de�ning for G.

In the following section we will describe how the above theoretical results can help us to create

good separation routines in order to get good upper bounds.

3. The algorithm

We have designed a simple experimental version of a branch and cut algorithm using valid inequali-

ties for PLS(G). The algorithm is similar to the algorithm for the linear ordering problem reported

in Gr�otschel, J�unger and Reinelt [GJR84]. The implementation was not hard, since we could use

much of the problem independent routines described in the recent paper of J�unger, Reinelt and

Thienel [JRT92] on a branch and cut algorithm for the traveling salesman problem. In contrast to

the algorithm described there, we neither used sparse graph techniques nor methods for �xing and

setting variables by logical implication.

The cutting plane generation as well as the lower bound heuristic is based on a planarity testing

algorithm. In order to implement a �rst version of the branch and cut algorithm, we added only

a few lines to an already implemented version of the linear planarity testing algorithm of Hopcroft

and Tarjan, which is very fast (see [M92]). Since it is the central part of the algorithm, we will

brie
y describe it in the following.

The planarity testing algorithm of Hopcroft and Tarjan

At the beginning we call a depth-�rst-search procedure in order to divide the edge set of the graph

G = (V;E) into back edges and tree edges. We start by identifying a cycle C. When this cycle is

removed from G, the graph falls apart into several pieces. The algorithm is called recursively to

embed each piece in the plane together with the original cycle. Then the embeddings of the pieces

are combined, if possible, to give an embedding of the entire graph.

One may think of successively adding paths consisting of tree edges and one back edge at the end

to a previously obtained partial embedding. For more details, see [M92] or [HT74]. In the following

we describe some details of the branch and cut algorithm.

Cutting plane generation

The trivial inequalities are handled implicitly by the LP-solver via lower and upper bounds. At

the beginning we also add the inequality x(E) � 3jV j � 6, if it is violated, resp. x(E) � 2jV j � 4 in

case G is bipartite, if it is violated.

Let x be an LP-solution produced in the cutting plane procedure applied in some node of the

enumeration tree. For 0 � " � 1 we de�ne E

"

= fe 2 E j x

e

� 1� "g and consider G

"

= (V;E

"

).

For the unweighted graph G

"

the linear planarity testing algorithm of Hopcroft and Tarjan is

called. The algorithm stops if it �nds an edge set F which is not planar. In case the inequality

x(F ) � jF j � 1 is violated, we add the inequality to the constraints of the current LP. We remove

the back edge of the path, which proved the nonplanarity of F after it was added and proceed with

the planarity testing algorithm.

This way we usually �nd several forbidden subgraphs of the graph G

"

in one run of the planarity

testing algorithm. Of course, these forbidden subgraphs do not necessarily de�ne facets of the PLS-

polytope. However, these subgraphs must contain subgraphs which de�ne facets (see Theorem 2).

We try to reduce them to facet-de�ning inequalities in the following way. Once an edge set F is

found, where the inequality x(F ) � jF j � 1 is violated, we successively delete one edge f 2 F from

it, and start again the planarity testing algorithm. If F n ffg is planar, we add it again to F . In

8



either case we choose a di�erent edge f 2 F . In at most jF j steps we have reduced F to a set of

edges, which induces a minimal nonplanar subgraph. So we have found an inequality x(F ) � jF j�1

which is facet-de�ning for PLS(G) and still violated by the current LP-solution.

Another possible (but not yet implemented) separation routine is a heuristic, which searches for

violated Euler-inequalities (see Corollary 3).

Lower bound heuristic

After an LP has been solved, we try to exploit the solution to produce a feasible solution. Again,

we apply the planarity testing algorithm. This way we produce lower bounds which are useful

not only for fathoming nodes in the branch and cut tree but also for �xing variables due to their

reduced costs during a cutting plane phase.

After discovering a forbidden substructure, the back edge of the last added path is removed, so that

the remaining substructure becomes planar. Since di�erent depth-�rst-search trees yield di�erent

paths and thus di�erent lower bounds, in every call of the planarity testing algorithm the depth-

�rst-search tree is changed.

We also implemented a simple random heuristic, where the edges are subsequently added to the

graph, if they don't destroy planarity. Our experimental results con�rm the results of Cimikowski,

who reported that simple random heuristics lead to better results on random graphs than the above

described method [C92].

It would be much better to use more powerful heuristics, because in a branch and cut algorithm it is

important to get good lower bounds. In a future implementation, we will try the algorithm of Cai,

Han and Tarjan [CHT91] or Kant [K92] which yield a maximal planar subgraph. We also plan to

try out the deltahedron heuristic of Foulds and Robinson [FR78], the wheel expansion heuristic of

Eades et al [EFG82] or simply a greedy heuristic. This should be one of the next steps to improve

the quality of the feasible solutions produced in the course of the algorithm.

Branching

Branching takes place if the current solution is infeasible yet no cutting planes have been found.

We choose a variable x

e

with fractional value as close as possible to

1

2

and among those one with

maximum absolute objective function coe�cient.

4. Computational experiments

For the implementation of the above algorithm we combined the above described adaptions of a

previous PASCAL implementation of the planarity testing algorithm [M92] with an adaption of a

C-implementation of the branch and cut frame used in J�unger, Reinelt and Thienel [JRT92]. Our

computational experiments were carried out on a SUN SPARCstation 10 model 20.

Table 2. Triangulated graphs incremented by 10,20,... edges

#problem #Nodes #Edges Solution Sol[C92] Guarantee BC-nodes #LPs Time

g100.10 100 304 292 264 0.68 1 20 120

g100.20 100 314 290 294 1.36 1 21 120

g100.30 100 324 282 267 4.08 1 20 120

g100.40 100 334 285 282 3.06 1 17 120

g100.50 100 344 269 294 8.53 1 12 120

g100.60 100 354 264 258 10.20 1 17 120

g100.70 100 364 243 240 17.34 1 14 120

g100.80 100 374 243 231 17.34 1 14 120

g100.90 100 384 243 261 17.34 1 14 120

g100.100 100 394 247 294 15.98 1 17 120
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Table 1. Results for the graphs in [GT92]

Problem #Nodes #Edges Solution Sol[GT92] Guarantee BC-nodes #LPs Time

g1 10 22 20 20 0.00 1 4 0

g2 45 85 82 82 0.00 1 17 7

g10.0 10 24 24 24 0.00 1 1 0

g10.1 10 25 24 24 0.00 1 1 0

g10.2 10 26 24 24 0.00 1 3 0

g10.3 10 27 24 24 0.00 1 1 0

g25.0 25 69 69 68 0.00 1 1 0

g25.1 25 70 69 69 0.00 1 2 0

g25.2 25 71 69 68 0.00 1 1 0

g25.3 25 72 69 68 0.00 1 1 0

g50.0 50 144 144 129 0.00 1 1 1

g50.1 50 145 144 138 0.00 1 1 1

g50.2 50 146 144 142 0.00 1 1 1

g50.3 50 147 144 | 0.00 1 1 0

g100.0 100 294 294 183 0.00 1 1 4

g100.1 100 295 294 215 0.00 1 1 4

g100.2 100 296 294 234 0.00 1 3 13

g100.3 100 297 294 | 0.00 1 1 4

We could �nd only a few papers where computational results are reported. Goldschmidt and

Takvorian [GT92] presented some results for triangulated planar graphs of 10, 25, 50 and 100

vertices to which they added incrementally one, two and three edges. Additionally they gave

results for two graphs which already occurred in Jayakumar et al. (labeled g1) [JTS89] and in Kant

(labeled g2) [K92]. In all these cases our algorithm found and proved the optimal solution in a

reasonable amount of time (see Table 1). The columns from left to right display the number of

nodes, the number of edges, the value of the best solution found by our algorithm, the value of

the best solution from Goldschmidt and Takvorian [GT92], the quality guarantee ((upperbound-

lowerbound)/upperbound), the number of branch and cut nodes, the number of LPs and the CPU

times in seconds (Fractions of seconds are not shown). Cimikowski [C92] considered problem

instances in which triangulated planar graphs are augmented by 10, 20, : : : edges. We tried our

code on such instances (see Table 2). Here the limits of our currently simple approach becomes

clear: In no case we could �nd optimum solutions within 120 seconds of CPU time. Elaborate (and

time consuming) heuristics must be added to our implementation in order to make it competitive

on harder problem instances.

We also solved a facility layout problem given by Foulds and Robinson [FR78]. With a heuristic

Leung [L92] got a solution value of 1101, whereas we could �nd and prove the optimal solution

value of 1105 in about 7 minutes.

In order to further explore the limits of our branch and cut algorithm, we tested it on a series of

randomly generated graphs. At �rst we increased the density on graphs with 10 and 20 nodes.

We did this for unweighted graphs (see Table 3) and for weighted graphs (see Table 4), where the

weights were normal distributed with mean 100 and standard deviation � = 20. We tried di�erent

random seeds, but the variance was not high so that the table gives the right impression. In all cases

we stopped the computation after 120 seconds of CPU-time. Experience shows that the results do

not improve much with a longer computation time. One can observe that the easiest problem

instances are those on sparse graphs and very dense graphs. For weighted graphs the behaviour of

our branch and cut algorithm is much worse than for unweighted graphs. We believe that this is

due to the fact that we have not yet implemented any heuristic for lower bounds, which makes use

of the edge weights.

Since in automatic graph drawing the graphs are relatively sparse, we ran a series of sparse graphs.

We increased the number of nodes and de�ned the number of edges to be 1.5 times the number of

nodes and 2 times jV j (see Table 5) for the unweighted case.
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Table 3. Increasing the density for unweighted graphs on 10 and 20 nodes

#Nodes #Density #Edges Solution Guarantee BC-nodes #LPs Time

10 10 4 4 0.00 1 1 0

10 20 9 9 0.00 1 1 0

10 30 13 13 0.00 1 1 0

10 40 18 17 0.00 1 2 0

10 50 22 20 0.00 1 5 0

10 60 27 24 0.00 21 137 6

10 70 31 24 0.00 3 16 1

10 80 36 24 0.00 1 2 0

10 90 40 24 0.00 1 1 0

10 100 45 24 0.00 1 1 0

20 10 19 19 0.00 1 1 0

20 20 38 36 0.00 1 5 0

20 30 57 43 16.98 48 832 120

20 40 76 47 5.55 12 508 120

20 50 95 52 0.00 25 339 103

20 60 114 49 0.00 5 113 43

20 70 133 49 0.00 1 2 0

20 80 152 53 0.00 1 5 2

20 90 171 54 0.00 1 1 0

20 100 190 54 0.00 1 1 0

Table 4. Increasing the density for weighted graphs on 10 and 20 nodes

#Nodes #Density #Edges Guarantee BC-nodes #LPs Time

10 10 4 0.00 1 1 0

10 20 9 0.00 1 1 0

10 30 13 0.00 1 1 0

10 40 18 0.00 1 2 0

10 50 22 0.00 1 11 0

10 60 27 0.00 9 55 4

10 70 31 2.74 153 1145 120

10 80 36 0.00 3 16 2

10 90 40 1.89 159 905 120

10 100 45 1.64 118 816 120

20 10 19 0.00 1 1 0

20 20 38 3.43 85 819 120

20 30 57 12.89 14 495 120

20 40 76 10.79 9 354 120

20 50 95 8.17 6 262 120

20 60 114 9.49 5 209 120

20 70 133 3.30 3 173 120

20 80 152 5.04 2 143 120

20 90 171 4.79 3 131 120

20 100 190 4.47 3 158 120

Finally, we tested our implementation for a graph given by Tamassia, Di Battista and Batini in a

paper about automatic graph drawing [TBB88] (see Figure 4(a)). In order to get the maximum

planar subgraph the algorithm removed four of the 62 edges (24 seconds). For the embedding of

the planar subgraph we used the program of Mutzel [M92]. The insertion of the previously removed

edges causes nine crossings, which is much less than the number of crossings in Figure 4(a). The

resulting embedding looks quite nice (see Figure 4(b)).

5. Final remarks

Our implementation of a branch and cut algorithm for �nding maximum planar subgraphs is very

simple in comparison with branch and cut algorithms for other combinatorial optimization problems

such as the linear ordering problem [GJR84], or the traveling salesman problem [PR91,JRT92].

Nevertheless, we could use it to solve some problems occuring in the literature to optimality for the

�rst time. This makes us con�dent that our planned re�nements on some of which (and possibly
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Table 5. Sparse graphs

#Nodes #Edges Solution Guarantee BC-nodes #LPs Time

10 15 14 0.00 1 2 0

20 30 28 0.00 1 5 0

30 45 42 0.00 1 31 3

40 60 55 3.50 116 864 120

50 75 68 5.55 49 596 120

60 90 79 8.14 23 409 120

70 105 93 7.92 13 295 120

80 120 103 10.43 5 210 120

90 135 112 13.84 6 184 120

100 150 127 12.41 2 124 120

10 20 19 0.00 1 2 0

20 40 37 0.00 1 5 0

30 60 52 7.14 49 759 120

40 80 66 13.15 17 465 120

50 100 79 16.84 7 285 120

60 120 90 21.05 4 182 120

70 140 106 21.48 3 151 120

80 160 117 23.53 2 137 120

90 180 132 23.69 2 98 120

100 200 139 27.60 1 84 120
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others) we hope to be able to report in a further paper, will lead to a useful algorithm.
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