ANGEWANDTE MATHEMATIK UND INFORMATIK
UNIVERSITAT ZU KOLN

Report No. 93.144

The True Minimum Distance of Some
Narrow-Sense BCH-Codes of Length 255
by
Georg Wambach

Kéln, 1993

Institut fiir Informatik

Universitiat zu Koln

Pohligstrafie 1

D-50969 Kéln (Zollstock)

Germany

Telephone (0221) 470-5308

Telefax (0221) 470-5317

e—Mail GW@INFORMATIK.UNI-KOELN.DE



Address of the author:

Georg Wambach

Institut fir Informatik

Universitat zu Koln

Pohligstrafle 1

D-50969 Kéln (Zollstock)

Germany

Telephone (0221) 470-5308

e—Mail GWQINFORMATIK.UNI-KOELN.DE



The True Minimum Distance of Some Narrow-Sense
BCH-Codes of Length 255

Georg Wambach
University of Cologne

October 6, 1993

Abstract

Using equivalent codes it is shown that the BCH-bound for the following narrow-
sense BCH-codes already yields the true minimum distance: [255,87,53],[255,107,45],
[255,115,43], [255,123,39], [255,131,37], [255,147,29], [255,163,25], [255,179,21]. For
the remaining two narrow-sense BCH-codes of length 255 in the book of F. J. MacWil-
liams and N. J. A. Sloane, page 261, Figure 9.1, whose true minimum distances are
still unknown, upper bounds on the minimum distances are given which differ only

by two from the corresponding BCH-bounds.

Even 16 years after the first printing of “The Theory of Error-Correcting Codes”
the table of primitive BCH-codes of length up to 255 ([3], 7" printing, p.261) contains
ten entries where the true minimum distances are unknown. We show that the BCH-
bound gives the true minimum distance for the following codes: [255,87,53], [255,107,45],
[255,115,43], [255,123,39], [255,131,37], [255,147,29], [255,163,25], [255,179,21] by expli-
citly giving a check polynomial and a codeword of minimum weight. For the remaining
two codes we give upper bounds on the minimum distances which differ only by two from
the corresponding BCH-bounds. Instead of a brute-force attack we have used equivalent
codes in parallel. The use of equivalence has been successful in five out of the eight cases.

Section 1 contains a description of our algorithm for the general case. In Section 2 the

results are presented.



1 The Approach

Let o be a primitive n-th root of unity over some finite field I, with n, ¢ relatively prime.
Every (linear) cyclic code C corresponds to an ideal I = (¢(X)) in F,[X]/ (X" —1),
where ¢g(X) is a generator polynomial for €. We assume ¢(X) to be the smallest-degree
divisor of X" — 1 with leading coefficient 1 generating I. C is uniquely determined by
the set N of zeroes of g(X). Let N, = {ila’ € N} be the set of powers of o which are
roots of ¢(X), so g(X) = [Lien, (X — a'). Now two cyclic codes C,C" of length n over
IF, are equivalent if there are two primitive n-th roots of unity «, such that for the
corresponding sets N, N’ of zeroes N, = Nj. In other words: C and €' differ only in
the choice of the primitive n-th root of unity, or, to be more precise, in the choice of the
minimal polynomial for « over I,.

This definition of equivalence is stronger than the usual one (where two codes are equi-
valent when they can be transformed into each other by a permutation of the coordinates
and the alphabet). Two such equivalent codes not only possess the same weight distri-
bution, even their respective coset leaders are permutations of each other. Berlekamp
([1],p.144) mentioned that in spite of these similiarities, equivalent codes may differ con-
cerning the correction of burst errors and the number of connections in the encoding and
decoding circuitry.

Former explicit computing of cyclic codes considered only one code of each equival-
ence class ([4]) — the codesizes were small enough to find the minimum distance more
or less straightforward. Obviously it is sufficient to consider only equivalent codes with
different generator polynomials. After computing and systemizing the generator matrix
we computed all combinations of up to v rows. It surprisingly turned out that small v
are often sufficient. The algorithm goes as follows (see Fig. 1).

The transformation of the generator matrix into systematic form also enables a weak
lower bound on the minimum distance according to CHEN (following [4]):

Let C be a cyclic linear code over I, of length n and dimension k. All linear combina-
tions of up to v rows of the generator matriz (in systematic form) have been generated. If
v > Fd”—;lﬁJ , where d, is the minimum weight found so far, then d, = d is the minimum
distance of C'. Otherwise if v < {@J , then d > [@w

As far as we know no non-trivial bound for d- k exists which would lead to an estimate
of the running time for an exact algorithm. The time-consuming part of the algorithm
given here clearly is step five with a complexity of O (Ele (k) (¢ — 1)i_1) which should
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be parallelized, too.



Input: N,,n,q,v
Output: d or upper bound on d

begin

(1) factorize X™ — 1 over IF,

(2) mark primitive irreducible factors (whose roots are primitive n-th roots of unity)

(3) fix one primitive polynomial as m;(X), the minimal polynomial of a*

(4) distribute the remaining irreducible polynomials for the cyclotomic cosets of

{0,1,...,n — 1} such that m;(X) has zeroes {a']i € C;}

(sing F,[o] = F,[X]/ (mi(X)) )

(5) for all coset leaders j,(j,n) =1, do in parallel

(6) compute ¢(X) = [Tien, (X — (’)") by multiplying the minimal polynomials
corresponding to {ji|i € N,} (using 3 = a~ this code is equivalent)

(7) compute the generator matrix G (whose i-th row is given by X‘g(X))
(8) systemize G to G, = (Ix|A)

O dyi=w(g(X))

(10 for i :=1 to v do

d; := min({ w(z) | z is a linear combination of exactly 7 rows of G}
U{d;_1})
enddo
(12) if v > [L=UE] then d = d,
else d, is an upper bound on d
enddo

end

Figure 1: The Algorithm



It should be pointed out that by the explicit construction of the generator polynomial
we use all zeroes of the code whereas most of the well-known bounds on the minimum
distance (for an overview see [2]) in general only use a subset of them. In most cases these
bounds are also valid for some larger codes over extension fields of I, which may explain

their occasional failure.

2 The Results

We set the first found primitive polynomial X®+ X¢+ X3+ X241 to my (X)), the minimal
polynomial of . This yields the following factorization of X?°* —1, where as usual m;(X)
denotes the minimal polynomial of a'. According to [3] the factors are given in octal,

lowest degree on left.

X?% —1 = momimsmsmrmemi1mismismirimiema1masMasMarMagMay My
139143 4511471151153 55115911061 T 6311851187191 TR 95 1T 1117170119101 27
= 600.545.771.637.747.643.615.561.727.460.607.675.765.661.567.537.717.551.
735.453.471.435.760.651.433.703.543.477.700.573.455.763.613.620.515

Since 255 =3 -5 17, 16 of the 35 irreducible factors are primitive.
For every code we list the primitive n-th root of unity actually used, the generator
polynomial, a check polynomial & which is the reciprocal polynomial of (X**° — 1) /¢(X),

a codeword ¢ of minimum weight and the value of v which led to success. To verify the

results it is sufficient to check wether X*A(X)e(X) = 0 mod (X?° — 1) for 0 <i <n — k.

[255,87,53]:
Using a'? instead of a, v = 5.
g = Mi511M43M45M19TMe31M 23137161 1312511011109 1121 27112119101 51705311231 110871091 1151103911213
h = 44413 20551 65254 52772 43637 25714
¢ = 40200 20000 00000 00000 00000 04025 70014 40124 36041 00110 70200 10540
01224 40241 40322 41100 26011

[255,107,45]:
Using o instead of o, v = 4.

g = Ma3MotmM1Msgtiig71111MM 9511311391111 110 119114511091 M 531163110191 25110211107



h = 66702 71654 52453 55664 12654 65436 65641 3
¢ = 00000 00000 00000 00010 00020 00020 10000 10202 11042 02253 00000 20013
44104 00050 14074 02151 64350

[255,115,43]:

Using o instead of a, v = 5.

g = Mg MsgNlariM111Mg511131M39170111T0 1197104511091 115311063110 1911511021 1107

h = 71001 12672 32061 33475 63530 03441 10274 2062

¢ = 01400 00000 02000 00020 00000 00000 00000 04022 60002 63040 50001 20014
60320 00014 06042 02262 36041

[255,123,39]:

Using o instead of o, v = 4.

g = M1Mms9MMarii11Mgs1131M391M11170119714511091 110531 631701917 2511021 1107

h = 44007 55164 20324 00303 40347 10201 66726 21066 14

¢ = 00400 00000 00200 00000 00000 00001 00200 00000 04200 55102 40005 52220
14001 22104 50304 40010 50403

[255,131,37]:

Using o'? instead of a, v = 4.

g = Marmie1MManmizs 1o M127MM 1191151753110 31 110871191 115711397113

h = 43244 47667 12302 03276 12575 11741 32124 36746 4171

¢ = 00000 01000 02000 00400 00000 00000 00000 00040 00014 24404 00214 01002
26602 40020 05000 16443 04446

[255,147,29]:

Using a = o', v = 5.

g = MaMmsmMmsnzimgin11m13MmysMarin1gMma1Magimasimar

h = 72404 27513 56272 65153 31435 71430 52236 76131 57720 20504

¢ = 00200 00000 00000 00000 00000 00504 00000 00000 00000 00204 01006 20100
00402 21032 25120 30040 01005

[255,163,25]:
Using a = o', v = 4.

g = Mmnzimsmzmgi11M13MysTy7imn19nia s



h = 50243 51715 32043 10313 40422 40612 61427 64717 70027 26153 46336
¢ = 00000 00001 01000 00000 20000 00000 00000 00000 00000 01000 00002 00002
67015 10104 50001 02040 20012

[255,179,21]:
Using a = o', v = 3.
g = Mamamsmemiging1Mm13msiiyriiag
h = 56265 14557 20554 42633 11265 05530 16562 56143 60230 31555 77206 16127
¢ = 00000 00000 00010 00000 00001 00000 00000 00000 00000 20000 00000 00001
40002 13202 40003 04304 40030

[255,63,61%]:

Using o = o', tested up to v = 6. Minimum weight found so far is 63 (with v=>5).

g = MamamsMmrmigM 13 s i g1 M35 Mo rTiggM31 137173911 43714571047
M51Ms3Ms5M59

h = 74533 63531 61317 66221 34

¢ = 20022 00000 00100 04000 07700 30417 40040 23634 00007 06217 01410 03402
00006 04140 71100 23140 01404

[255,71,59%]:

Using a = o', tested up to v = 6. Minimum weight found so far is 61.

g = MamamsMmrmigM 13 s i g1 M35 Mo rTiggM31 137173911 43714571047
Mms1Ms3Mss

h = 42230 52501 52404 26536 1745

¢ = 00200 00005 00020 01002 00012 01601 05300 60161 40002 21035 20262 20670
10164 00100 62310 54044 50040
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