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Abstract

Using equivalent codes it is shown that the BCH-bound for the following narrow-

sense BCH-codes already yields the true minimum distance: [255,87,53], [255,107,45],

[255,115,43], [255,123,39], [255,131,37], [255,147,29], [255,163,25], [255,179,21]. For

the remaining two narrow-sense BCH-codes of length 255 in the book of F. J. MacWil-

liams and N. J. A. Sloane, page 261, Figure 9.1, whose true minimum distances are

still unknown, upper bounds on the minimum distances are given which di�er only

by two from the corresponding BCH-bounds.

Even 16 years after the �rst printing of \The Theory of Error-Correcting Codes"

the table of primitive BCH-codes of length up to 255 ([3], 7

th

printing, p.261) contains

ten entries where the true minimum distances are unknown. We show that the BCH-

bound gives the true minimum distance for the following codes: [255,87,53], [255,107,45],

[255,115,43], [255,123,39], [255,131,37], [255,147,29], [255,163,25], [255,179,21] by expli-

citly giving a check polynomial and a codeword of minimum weight. For the remaining

two codes we give upper bounds on the minimum distances which di�er only by two from

the corresponding BCH-bounds. Instead of a brute-force attack we have used equivalent

codes in parallel. The use of equivalence has been successful in �ve out of the eight cases.

Section 1 contains a description of our algorithm for the general case. In Section 2 the

results are presented.
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1 The Approach

Let � be a primitive n-th root of unity over some �nite �eld IF

q

with n; q relatively prime.

Every (linear) cyclic code C corresponds to an ideal I = (g(X)) in IF

q

[X]= (X

n

� 1),

where g(X) is a generator polynomial for C. We assume g(X) to be the smallest-degree

divisor of X

n

� 1 with leading coe�cient 1 generating I. C is uniquely determined by

the set N of zeroes of g(X). Let N

�

= fij�

i

2 Ng be the set of powers of � which are

roots of g(X), so g(X) =

Q

i2N

�

(X � �

i

). Now two cyclic codes C;C

0

of length n over

IF

q

are equivalent if there are two primitive n-th roots of unity �; � such that for the

corresponding sets N;N

0

of zeroes N

�

= N

0

�

. In other words: C and C

0

di�er only in

the choice of the primitive n-th root of unity, or, to be more precise, in the choice of the

minimal polynomial for � over IF

q

.

This de�nition of equivalence is stronger than the usual one (where two codes are equi-

valent when they can be transformed into each other by a permutation of the coordinates

and the alphabet). Two such equivalent codes not only possess the same weight distri-

bution, even their respective coset leaders are permutations of each other. Berlekamp

([1],p.144) mentioned that in spite of these similiarities, equivalent codes may di�er con-

cerning the correction of burst errors and the number of connections in the encoding and

decoding circuitry.

Former explicit computing of cyclic codes considered only one code of each equival-

ence class ([4]) { the codesizes were small enough to �nd the minimum distance more

or less straightforward. Obviously it is su�cient to consider only equivalent codes with

di�erent generator polynomials. After computing and systemizing the generator matrix

we computed all combinations of up to v rows. It surprisingly turned out that small v

are often su�cient. The algorithm goes as follows (see Fig. 1).

The transformation of the generator matrix into systematic form also enables a weak

lower bound on the minimum distance according to Chen (following [4]):

Let C be a cyclic linear code over IF

q

of length n and dimension k. All linear combina-

tions of up to v rows of the generator matrix (in systematic form) have been generated. If

v �

j

(d

v

�1)k

n

k

; where d

v

is the minimum weight found so far, then d

v

= d is the minimum

distance of C. Otherwise if v <

j

(d

v

�1)k

n

k

; then d �

l

(v+1)n

k

m

:

As far as we know no non-trivial bound for d �k exists which would lead to an estimate

of the running time for an exact algorithm. The time-consuming part of the algorithm

given here clearly is step �ve with a complexity of O

�

P

v

i=1

�

k

i

�

(q � 1)

i�1

�

which should

be parallelized, too.
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Input: N

�

; n; q; v

Output: d or upper bound on d

begin

(1) factorize X

n

� 1 over IF

q

(2) mark primitive irreducible factors (whose roots are primitive n-th roots of unity)

(3) �x one primitive polynomial as m

1

(X), the minimal polynomial of �

1

(4) distribute the remaining irreducible polynomials for the cyclotomic cosets of

f0; 1; : : : ; n� 1g such that m

j

(X) has zeroes f�

i

ji 2 C

j

g

(using IF

q

[�]

�

=

IF

q

[X]= (m

1

(X)) )

(5) for all coset leaders j; (j; n) = 1; do in parallel

(6) compute g(X) =

Q

i2N

�

(X � (�

j

)

i

) by multiplying the minimal polynomials

corresponding to fjiji 2 N

�

g (using � = �

�j

this code is equivalent)

(7) compute the generator matrix G (whose i-th row is given by X

i

g(X))

(8) systemize G to G

s

= (I

k

jA)

(9) d

0

:= w(g(X))

(10) for i := 1 to v do

(11) d

i

:= min

�

f w(z) j z is a linear combination of exactly i rows of G

s

g

[fd

i�1

g

�

enddo

(12) if v �

j

(d

v

�1)k

n

k

then d := d

v

else d

v

is an upper bound on d

enddo

end

Figure 1: The Algorithm
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It should be pointed out that by the explicit construction of the generator polynomial

we use all zeroes of the code whereas most of the well-known bounds on the minimum

distance (for an overview see [2]) in general only use a subset of them. In most cases these

bounds are also valid for some larger codes over extension �elds of IF

q

which may explain

their occasional failure.

2 The Results

We set the �rst found primitive polynomialX

8

+X

6

+X

3

+X

2

+1 to m

1

(X), the minimal

polynomial of �. This yields the following factorization of X

255

�1, where as usual m

i

(X)

denotes the minimal polynomial of �

i

. According to [3] the factors are given in octal,

lowest degree on left.

X

255

� 1 = m

0

m

1

m

3

m

5

m

7

m

9

m

11

m

13

m

15

m

17

m

19

m

21

m

23

m

25

m

27

m

29

m

31

m

37

m

39

m

43

m

45

m

47

m

51

m

53

m

55

m

59

m

61

m

63

m

85

m

87

m

91

m

95

m

111

m

119

m

127

= 600:545:771:637:747:643:615:561:727:460:607:675:765:661:567:537:717:551:

735:453:471:435:760:651:433:703:543:477:700:573:455:763:613:620:515

Since 255 = 3 � 5 � 17, 16 of the 35 irreducible factors are primitive.

For every code we list the primitive n-th root of unity actually used, the generator

polynomial, a check polynomial h which is the reciprocal polynomial of (X

255

� 1) =g(X),

a codeword c of minimum weight and the value of v which led to success. To verify the

results it is su�cient to check wether X

i

h(X)c(X) = 0 mod (X

255

� 1) for 0 � i < n� k.

[255,87,53]:

Using �

13

instead of �, v = 5.

g = m

51

m

43

m

45

m

19

m

63

m

23

m

37

m

61

m

3

m

25

m

11

m

9

m

127

m

119

m

15

m

53

m

31

m

87

m

91

m

5

m

39

m

13

h = 44413 20551 65254 52772 43637 25714

c = 40200 20000 00000 00000 00000 04025 70014 40124 36041 00110 70200 10540

01224 40241 40322 41100 26011

[255,107,45]:

Using �

7

instead of �, v = 4.

g = m

23

m

9

m

1

m

59

m

47

m

111

m

95

m

13

m

39

m

11

m

119

m

45

m

91

m

53

m

63

m

19

m

25

m

21

m

7
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h = 66702 71654 52453 55664 12654 65436 65641 3

c = 00000 00000 00000 00010 00020 00020 10000 10202 11042 02253 00000 20013

44104 00050 14074 02151 64350

[255,115,43]:

Using �

7

instead of �, v = 5.

g = m

9

m

1

m

59

m

47

m

111

m

95

m

13

m

39

m

11

m

119

m

45

m

91

m

53

m

63

m

19

m

25

m

21

m

7

h = 71001 12672 32061 33475 63530 03441 10274 2062

c = 01400 00000 02000 00020 00000 00000 00000 04022 60002 63040 50001 20014

60320 00014 06042 02262 36041

[255,123,39]:

Using �

7

instead of �, v = 4.

g = m

1

m

59

m

47

m

111

m

95

m

13

m

39

m

11

m

119

m

45

m

91

m

53

m

63

m

19

m

25

m

21

m

7

h = 44007 55164 20324 00303 40347 10201 66726 21066 14

c = 00400 00000 00200 00000 00000 00001 00200 00000 04200 55102 40005 52220

14001 22104 50304 40010 50403

[255,131,37]:

Using �

13

instead of �, v = 4.

g = m

37

m

61

m

3

m

25

m

11

m

9

m

127

m

119

m

15

m

53

m

31

m

87

m

91

m

5

m

39

m

13

h = 43244 47667 12302 03276 12575 11741 32124 36746 4171

c = 00000 01000 02000 00400 00000 00000 00000 00040 00014 24404 00214 01002

26602 40020 05000 16443 04446

[255,147,29]:

Using � = �

1

, v = 5.

g = m

1

m

3

m

5

m

7

m

9

m

11

m

13

m

15

m

17

m

19

m

21

m

23

m

25

m

27

h = 72404 27513 56272 65153 31435 71430 52236 76131 57720 20504

c = 00200 00000 00000 00000 00000 00504 00000 00000 00000 00204 01006 20100

00402 21032 25120 30040 01005

[255,163,25]:

Using � = �

1

, v = 4.

g = m

1

m

3

m

5

m

7

m

9

m

11

m

13

m

15

m

17

m

19

m

21

m

23
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h = 50243 51715 32043 10313 40422 40612 61427 64717 70027 26153 46336

c = 00000 00001 01000 00000 20000 00000 00000 00000 00000 01000 00002 00002

67015 10104 50001 02040 20012

[255,179,21]:

Using � = �

1

, v = 3.

g = m

1

m

3

m

5

m

7

m

9

m

11

m

13

m

15

m

17

m

19

h = 56265 14557 20554 42633 11265 05530 16562 56143 60230 31555 77206 16127

c = 00000 00000 00010 00000 00001 00000 00000 00000 00000 20000 00000 00001

40002 13202 40003 04304 40030

[255,63,61

�

]:

Using � = �

1

, tested up to v = 6. Minimum weight found so far is 63 (with v=5).

g = m

1

m

3

m

5

m

7

m

9

m

11

m

13

m

15

m

17

m

19

m

21

m

23

m

25

m

27

m

29

m

31

m

37

m

39

m

43

m

45

m

47

m

51

m

53

m

55

m

59

h = 74533 63531 61317 66221 34

c = 20022 00000 00100 04000 07700 30417 40040 23634 00007 06217 01410 03402

00006 04140 71100 23140 01404

[255,71,59

�

]:

Using � = �

1

, tested up to v = 6. Minimum weight found so far is 61.

g = m

1

m

3

m

5

m

7

m

9

m

11

m

13

m

15

m

17

m

19

m

21

m

23

m

25

m

27

m

29

m

31

m

37

m

39

m

43

m

45

m

47

m

51

m

53

m

55

h = 42230 52501 52404 26536 1745

c = 00200 00005 00020 01002 00012 01601 05300 60161 40002 21035 20262 20670

10164 00100 62310 54044 50040
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