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Abstract

Given a supply graph G = (V;E), a demand graph H = (T;D), edge capacities c : E 7! IIN

and requests r : D 7! IIN, we consider the problem of �nding integer multi
ows subject to

c; r. Korach and Penn constructed approximate integer multi
ows for planar graphs, but no

results were known for the general case. Via derandomization we present a polynomial-time

approximation algorithm. There are two cases:

a) The main result is: For fractional solvable instances (G;H;c; r) and each 0 < � �

9

10

our algorithm �nds in polynomial-time an integer multi
ow subject to c, such that for

all d 2 D the d�th 
ow value satis�es f(d) � (1 � �)r(d); provided that capacities

and requests are not too small, i.e c; r = 
(

1

�

2

log(jEj + jDj)). In particular, if c; r �

36dlog 2(jEj + jDj + 1)e we have a strongly polynomial-time algorithm and the �rst

1

2

�factor approximation.

b) If the problem is not fractionally solvable we can reduce it to the case mentioned above

decreasing the requests in an optimal way. This can be done by linear programming and

the results of a) apply.

The design and analysis of the algorithm require new techniques for randomized rounding

as well as for derandomization. One key tool is an algorithmic version of the classical Angluin-

Valiant inequality (a variant of the well known Cherno�-Hoe�ding bound) estimating the

tail of weighted sums of Bernoulli trials, which was not previously known and might be of

independent interest in computational probability theory.

The signi�cance of our rounding algorithm is emphasized by the fact that there is a rich

combinatorial theory exhibiting many examples of fractionally solvable problems, but �nding

approximate integer solutions even for fractionally solvable problems is NP-hard as it is shown

in this paper.

Keywords: randomized algorithms, derandomization, integer programming, mul-

ticommodity 
ows.

Classi�cation: 60C05, 60E15, 68Q25, 90C35, 05C85, 68R10, 90C35.

Note: This paper apears in the proceedings of the First Annual European Sympo-

sium on Algorithms, Lecture Notes in Computer Science, Springer Verlag (1993)

1 Introduction

(a) The Problem:

According to [4] the feasibility multicommodity 
ow problem is stated as follows: Let G = (V;E)

be the supply graph and H = (T;D) be the demand graph with T � V . The vertices of H are the

terminals and the edges (q

1

; s

1

); : : : ; (q

k

; s

k

) of H are called commodities or demand edges. For

each demand edge d = (q

d

; s

d

) 2 D let �

d

be an orientation of G forming the directed graph (V;A

d

)

and let F (d) be an integer (q

d

; s

d

)�
ow in (V;A

d

). Then the jDj-tuple of 
ows F = (F (d))

d2D

is

called a multicommodity 
ow.

�
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Given a capacity function c : E 7! IIN and a demand (or request) function r : D 7! IIN the

multicommodity 
ow is said to be subject to c, if for each edge e 2 E the sum of the 
ows through

e (in both directions) does not exeed c(e) and is subject to r if for each demand edge d 2 D

the d�th 
ow value f(d) is at least r(d). Let henceforth denote (G;H; c; r) an instance of the

multicommodity 
ow problem.

Finding integer multicommodity 
ows subject to c and r is well-known to be NP-hard [4]. But

Korach and Penn [6] found an interesting integer approximate solution of the multicommdity 
ow

problem for planar graphs: If G and G [H are planar and if the cut condition holds, then the

multicommodity 
ow problem (G;H; c; r� 1), where each request has been reduced by one unit,

can be solved in polynomial-time. In fact they proved a stronger result but stated in this form the

Korach/Penn result motivates the following interesting approximation problem.

(1.1) Reduced Demand Multi
ow Problem

Let (G;H; c; r) be a multicommodity 
ow problem. Find a rational non-negative function K : D 7!

Q with minimum

P

d2D

K(d) such that the reduced problem (G;H; c; r � K) can be integrally

solved.

LetK

I

denote the minimal (in the sense above) suchK and let denoteK

R

the minimal function,

if we allow fractional solvability. In other words, we ask for the best possible approximate integer

multi
ow.

(b) The Results:

Since (1.1) can be formulated as an integer linear program, its linear programming relaxation can

be solved in polynomial-time and gives an e�ciently computable fractional "lower" bound K

R

on

K

I

. But we show in section 4 that the decision version of (1.1) is NP-complete, even if (G;H; c; r)

is fractionally solvable. In contrast to this we exhibit a large class of non-planar instances of the

problem, where surprisingly good approximate integer 
ows can be constructed in polynomial-

time:

Theorem Let (G;H; c; r) be a multicommodity 
ow problem. Let 0 < � <

9

10

and suppose that

c(e); r(d) � K

R

(d) �

6(2��)

�

2

dlog(2(jEj + jDj + 1))e for all e 2 E and d 2 D. Then an integer

multi
ow F can be found in polynomial-time such that f(d) � (1 � �)(r(d) � K

R

(d)) for all

demand edges d 2 D. 2

For fractionally solvable problems this gives for instances with c; r �

6(2��)

�

2

dlog(2(jEj+jDj+1))e

the estimate f(d) � (1� �)r(d) for all demands d and in particular a

1

2

-factor approximation:

Corollary Let (G;H; c; r) be a fractionally solvable multicommodity 
ow problem. Suppose that

c(e); r(d) � 36dlog(2(jEj + jDj + 1))e for all e 2 E and d 2 D. Then an integer 
ow F can be

found in strongly polynomial-time such that f(d) �

r(d)

2

for all demand edges d 2 D. 2

The dominating part of running time is the time to solve the corresponding linear programming

relaxation.

In general, this seems to be the best possible approximation factor. We can construct for each

integer K 2 IIN a non-planar instance for which the fractional problem is solvable, but the integer

problem is not solvable even if we decrease each request value by K. In particular, this example

shows K

I

(d) �

1

2

(r(d)� 1) for all demand edges d 2 D.

Note that in the RAM -model of computation the theorem above cannot not be proved by the

cosh-algorithm of Spencer [1] or the basic pessimistic estimator method of Raghavan [12].

(c) The Methods:

In the design and analysis of our algorithms we wish to use randomized rounding and afterwards

derandomization. But here neither randomized rounding nor derandomization are directly appli-

cable: Randomized rounding as proposed by Raghavan and Thompson [11] operates on instances

where fractional solutions from the unit interval are given. Here the fractional 
ows can take arbi-

trary rational values. Representing the fractional 
ows in terms of directed paths P with associated

path values �(P ), the direct approach would be to cut o� the integer part b�(P )c and round the

remaining fractional value to 0 or 1. Consequently we must now consider the decreased edge capac-

ities ~c(e) = c(e) �

P

e2P

b�(P )c. Unfortunatly, due to the Angluin-Valiant inequality randomized

rounding can be analysed only for packing problems, where enough packing space is available.

In our problem we must assume ~c(e) = 
(log(jEj + jDj). So even if c(e) = 
(log(jEj + jDj), it

2



may happen that ~c(e) is too small and the method fails. An other "solution" would be to split

of each P into 2b�c + 1 parallel paths with values from (0; 1), which also reduces the problem to

the 0-1 case, but for the prize that we would increase the number of variables in the randomized

rounding procedure by the maximal path value. In consequence the complexity of the rounding

procedure would depend on the magnitude of numbers appearing in the input and this would not

be a polynomial-time procedure anymore. We show that we have to introduce for every e 2 E and

every d 2 D at most O(�

�2

log(jEj+ jDj)) 0� 1 random variables.

Furthermore the derandomiztion method of pessimistic estimators as introduced by Raghavan

[12] for approximating packing integer programs does not give for problems with rational weights

a polynomial-time algorithm on usual models of computation, for example the RAM model. Un-

fortunately, the calculation of pessimistic estimators in our algorithm requires exponentiation of

rational numbers to the power of rational numbers. There is no obvious way to avoid such nu-

merical problems. We solve this problem extending the derandomization method of conditional

probabilities in an interesting way. We introduce the concept of so called approximate pessimistic

estimators, which are low degree polynomials in polynomial-time computable rational numbers

and prove an algorithmic version of the Angluin-Valiant inequality. This enables us to �nd events

concentrated around the mean of weighted linear sums of Bernoulli trials in polynomial-time.

(d) Related Work

Raghavan [12] investigated the problem of �nding maximal 0-1 multi
ows. If c = 
(log jEj) he con-

structed an integral 
ow with total sumM satisfyingM � 
M

opt

(1�D), where M

opt

is the integer

maximum, 
 �

1

2

a constant and D a function depending on jEj, 
 and M

opt

. If c = 
(log jEj)

Raghavan showed that D is constant, hence proved an implicit constant factor. We can prove

by the methods developed in this paper, especially the algorithmic Angluin-Valiant inequality, a

1

2

-factor approximation of M

opt

, provided that c = 
(log jEj). This removes the 
DM

opt

term

and shows an explicit constant factor. In fact, for 0 < � �

9

10

and c = 
(

1

�

2

log jEj) we have

M � (1� �)M

opt

([15]).

Furthermore the algorithmic version of the weighted Angluin-Valiant inequality opens a way

to solve weighted packing integer programs without the previous restriction to 0-1 cases ([15]).

2 Randomized Flow Generation

For each commodity d 2 D and each edge fu; vg 2 E let us introduce integer variables x

d

uv

and

x

d

vu

, where x

d

uv

represents the 
ow value of the commodity d on edge fuvg in direction from u to v

and vice versa. The reduced demand multi
ow problem (1.1) is equivalent to the following integer

linear program:

(2.1) Multicommodity Flow with Reduced Demands as an Integer Linear Program

min

P

d2D

K(d)

such that:

P

fv2V :fq

d

;vg2Eg

x

d

q

d

v

� x

d

vq

d

� r(q

d

; s

d

) �K(q

d

; s

d

) (8d 2 D)

P

d2D

x

d

uv

+ x

d

vu

� c(fu; vg) (8fu; vg 2 E)

P

fv2V�fq

d

;s

d

g:fu;vg2Eg

x

d

uv

=

P

fv2V�fq

d

;s

d

g:fu;vg2Eg

x

d

vu

(8d 2 D;u 2 V � fq

d

; s

d

g)

Let us denote by (MLP) the fractional relaxation, where the 
ows x

d

uv

are rational numbers.

The fractional solutionK

R

together with the coresponding 
ows can be constructed in polynomial-

time with standard LP-algorithms and of course

P

K

R

(d) �

P

K

I

(d) (see [4]).

In the following we use the reformulation of the multicommodity 
ow problem in terms of

directed paths. Let � = fP

1

; : : : ; P

s

g be the set of paths de�ned as follows: Each path P 2 � is

a (q

d

; s

d

)� path for a commodity d = (q

s

; s

d

) 2 D and can be extended to a circle in G [ H

adding the demand edge (q

d

; s

d

). Each path P 2 � is associated to a nonnegative integer (in case

3



of fractional 
ows to a rational number) �(P ). The value of the 
ow for a commodity d is equal

to the sum of those �(P ) for which P is a (q

d

; s

d

)-path.

Given edge capacities c and a request function r the multicommodity 
ow is subject to c, if

for each edge e 2 E the sum of the �(P ) for which P contains e is at most c(e) and it is subject

to r, if for each demand edge d = (q

d

; s

d

) the sum of those �(P ), for which P is a (q

d

; s

d

)�path

is at least r(d).

Having solved the LP-relaxation of (2.1), we represent the fractional multicommodity 
ow by

directed paths following Malhotra et al. [7]. Raghavan and Thompson [11] used the same idea for

randomly maximizing multicommodity 
ow. The idea of the algorithm is very simple: For every

commodity d we assign a direction to every edge. Then we try to �nd a directed path starting at

q

d

, ending in s

d

, such that every edge on the path has a strictly positive weight. We calculate the

minimum edge weight on this path. This minimum value is substracted from every edge weight in

this path and will be assigned to the path. Edges with zero weight will be deleted and we try to

�nd the next path. After �nding at most jEj paths for every commodity the procedure terminates.

In the following let �

d

be the set of paths representing the commodity d, and let � =

S

d2D

�

d

.

(2.2) Path Generation Algorithm (GENPATH)

INPUT: A fractional optimal multicommodity 
ow solving (2.1) and the function K

R

: D 7! Q.

OUTPUT: For each demand d 2 D a set �

d

, path values �(P ) for each path P 2 �

d

, the set

� =

S

d

�

d

.

begin

for each d in D do

f� Form a directed graph G

d

where E

d

is a set of directed edges

from E as follows: *g

Let d = (q

d

; s

d

), set �

d

:= ;, E

d

:= ;.

while there is v 2 V with x

q

d

;v

> 0 do

for each e in E do

f� assign a direction to e: *g

let e = fu; vg:

if x

d

uv

= x

d

vu

then next e 2 E.

if x

d

uv

> x

d

vu

then

direction(e) = (u; v),x

d

(e) = x

d

uv

� x

d

vu

.

if x

d

uv

< x

d

vu

then

direction(e) = (v; u), x

d

(e) = x

d

vu

� x

d

uv

.

E

d

:= E

d

[ feg.

end for

Discover a directed path P = fq

d

; : : : ; s

d

g in G

d

using depth�rst search discarding loops.

Set �(P ) = minfx

d

(e(j)); 1 � j � pg.

for 1 � j � p,

x

d

(e

j

) := x

d

(e

j

) � �(P ), �

d

:= �

d

[ fPg.

for each e in E

d

do

if x

d

(e) = 0 then E

d

:= E

d

nfeg

end while

end for

end

It is clear, that the while loop is executed at most jEj times for every demand, as there is

always at least one edge which is excluded from E

d

. Thus, the algorithm will �nd a representation

of the fractional multicommodity 
ow with at most jDjjEj paths. If we reduce every path value

� by its fractional part (� � b�c) we obtain an integer solution where every path value has been

reduced by at most 1. So if (G;H; c; r) is fractionally solvable, (G;H; c; r� jEj) trivially has an

integer solution.

4



A simple randomized procedure to turn the fractional path values into integer ones is to 
ip

for each path a biased coin independently deciding whether �(P ) should be truncated to b�(P )c

or rounded up to d�(P )e. As mentioned in the introduction such roundings cannot be analysed

by the probabilistic methods given so far. An intuitive better idea is to perform a more 
exible

rounding procedure in which by chance some rounded path values could become much bigger or

smaller than d�(P )e. One extreme way to do so is to split each path value �(P ) into 2b�(P )c

"path segments" of value 0.5 and one segment of value �(P ) � b�(P )c. Then rounding the value

of the segments to 0 or 1 randomly with probabilities equal to the segment values the expected

total path value is �(P ). But this is not a polynomial-time rounding algorithm as the number

of trials depends on r(d). Our strategy is to split o� each path value into a �xed integer part

and a su�ciently big roundable part of size 
(

1

�

2

log(jEj + jDj)). The following algorithm shows

that for each e 2 E and d 2 D we must introduce at mostO(

1

�

2

log(jEj+jDj)) 0-1 random variables.

(2.3) Path Splitting Algorithm SPLITPATH(�)

INPUT: The set of directed paths �, associated path values �(P ); P 2 �, and a rational number

0 < � � 1.

OUTPUT: New path values

�(P ); �

0

(P ); : : : ; �

N(P )

(P ) for each P 2 �.

begin

For each P 2 � set

�

0

(P ) := �(P )� b�(P )c,

�(P ) = �(P )� �

0

(P ) and N (P ) := 0.

(a) Set r

�

=

6(2��)

�

2

dlog(2(jEj+ jDj+ 1))e:

for each d in D do

while r(d)�K

R

(d)�

P

P2�

d

�(P ) < r

�

do

choose P 2 �

d

with b�(P )c � 1.

set �(P ) = �(P ) � 1,

�

N(P )+1

(P ) = �

N(P )+2

(P ) = 0:5,

N (P ) = N (P ) + 2:

end while

end for.

(b) Set c

�

=

6(2��)

�

2

dlog(2(jEj+ jDj+ 1))e:

for each e in E do

while c(e) �

P

e2P2�

�(P ) < c

�

do

choose d 2 D and P 2 �

d

with e 2 P and d�(P )e � 1.

set �(P ) = �(P ) � 1,

�

N(P )+1

(P ) = �

N(P )+2

(P ) = 0:5

N (P ) = N (P ) + 2:

end while

end for.

end

As a result of the algorithm SPLITPATH(�) we have a representation of the multicommodity


ow with at most O(jEjjDj�

�2

) path values and the original �(P ) has been decreased such that

for every e 2 E and d 2 D

c(e) �

X

e2P2�

�(P ) � c

�

and

r(d)�K

R

(d)�

X

P2�

d

�(P ) � r

�

: (1)

We are ready to perform randomized rounding.

(2.4) Randomized Integer Flow Generation R-FLOW(�)

5



Let 0 < � � 1. Let P 2 � and �(P ) and �

i

(P ) (i = 0; 1; : : :; N (P )) generated by SPLITPATH(�).

For every path P 2 � and every i = 0; 1; : : : ; N (P ) do independently

1. Set

� �

I

i

(P ) = 1 with probability (1�

�

2

)�

i

(P ):

� �

I

i

(P ) = 0 with probability 1� (1�

�

2

)�

i

(P ):

2. For each P 2 � set �

I

(P ) = �(P ) +

P

N(P )

i=0

�

I

i

(P ).

Algorithm R-FLOW(�) outputs for each path an integer path value. We proceed to the analysis

of such an integer multi
ow. In Lemma (2.2) we show that the 
ow is feasible with respect to c

and in Lemma (2.3) we prove that it conveys enough commodities. We invoke the Angluin-Valiant

inequality in order to estimate deviation of sums of weighted Bernoulli trials from their mean.

McDiarmid's proof of the Angluin-Valiant inequality ([8] , proof of corollary 5.1 and 5.2) gives

also the following \conditional probability" formulation:

Lemma 2.1 Let a

1

; : : : ; a

n

be real numbers with 0 � a

j

� 1 for each j and let  

1

; : : : ;  

n

be

independent 0� 1 valued random variables. Let ~p

j

= E( 

j

);

~q

j

= 1� ~p

j

;  =

P

n

j=1

a

j

 

j

; p =

1

n

E( ); q = 1� p and 0 < � < 1:

De�ne s

+

=

q(1+�)

q�p�

, s

�

=

q+p�

q(1��)

and for 1 � l � n let x

1

; : : : ; x

l

2 f0; 1g:

Then we have

(i)Prob( > (1 + �)npj 

1

= x

1

; : : : ;  

l

= x

l

)

� e

�(1+�)pn ln s

+

e

P

l

j=1

a

j

x

j

ln s

+

n

Y

j=l+1

[~p

j

e

a

j

ln s

+

+ 1� ~p

j

]

� e

�

�

2

np

3

:

(ii)Prob( < (1� �)npj 

1

= x

1

; : : : ;  

l

= x

l

)

� e

�(1��)pn ln s

�

e

�

P

l

j=1

a

j

x

j

ln s

�

n

Y

j=l+1

[~p

j

e

�a

j

ln s

�

+ 1� ~p

j

]

� e

�

�

2

np

2

:

2

Lemma 2.2 Let 0 < � � 1. Suppose that c(e) �

6(2��)

�

2

dlog(2(jEj+ jDj+ 1))e for all e 2 E. Then

with probability at least 1 �

jEj

2(jEj+jDj+1)

R-FLOW(�) �nds for each P 2 � an integer path value

�

I

(P ) such that for all e 2 E

X

e2P2�

�

I

(P ) � c(e):

Proof. Since we are rounding only a part of the path values, we have to consider only decreased

edge capacities ~c(e) de�ned by

~c(e) := c(e) �

X

e2P2�

�(P ): (2)

De�ne for every edge e 2 E the random variable

�(e) =

X

e2P2�

N(P )

X

i=1

�

I

i

(P );

6



Then a straight forward calculation shows

IE(�(e)) � (1�

�

2

)~c(e): (3)

Taking � :=

�

2��

we have 0 < � � 1 and with (1)

6(2� �)

�

2

ln 2(jEj+ jDj+ 1) � ~c(e): (4)

The Angluin-Valiant inequality (Lemma 2.1 (i)), (3) and (4) imply

IP(�(e) > ~c(e)) = IP(�(e) > (1 + �)(1 �

�

2

)~c(e))

�

1

2(jEj+ jDj+ 1)

: (5)

This together with (2) implies for all e 2 E with probability at least 1�

jEj

2(jEj+jDj+1)

X

e2P2�

�

I

(P ) =

X

e2P2�

�(P ) + �(e)

�

X

e2P2�

�(P ) + ~c(e) = c(e): (6)

2

In the next lemma we estimate the rounded 
ows.

Lemma 2.3 Let 0 < � � 1. Suppose that r(d) � K

R

(d) �

6(2��)

�

2

dlog(2(jEj + jDj + 1))e for all

d 2 D. Then with probability at least 1�

jDj

2(jEj+jDj+1)

R-FLOW(�) �nds for each P 2 � an integer

path value �

I

(P ) such that for all d 2 D we have

X

P2�

d

�

I

(P ) � (1� �)(r(d)�K

R

(d))

Proof. De�ne the reduced request ~r(d) by

~r(d) := r(d)�K

R

�

X

P2�

d

�(P ): (7)

De�ne for every edge e 2 D the random variable

�(d) =

X

P2�

d

N(P )

X

i=1

�

I

i

(P );

Then

IE(�(d)) = (1�

�

2

)

X

P2�

d

N(P )

X

i=1

�

i

(P ) = (1�

�

2

)~r(d): (8)

Put 
 :=

q

6 ln(jEj+jDj+1)

(2��)~r(d)

. Then by (1)

6dln(2(jEj+ jDj+ 1))e � ~r(d): (9)

which implies 0 < 
 � 1. With the Angluin-Valiant inequality (Lemma 2.1 (ii)), (8), (9) it is not

hard to prove

IP(�(d) < (1� �)~r(d))

� IP(�(d) < (1� 
)(1 �

�

2

)~r(d)) �

1

2(jEj+ jDj+ 1)

: (10)

7



(8) and (10) imply for all d 2 D with probability at least 1�

jDj

2(jEj+jDj+1)

X

P2�

d

�

I

(P ) =

X

P2�

d

�(P ) + �(d) � (1� �)(~r(d)�K

R

(d)):

2

Theorem 2.4 Let (G;H; c; r) be a multicommodity 
ow problem and let 0 < � � 1 with c(e) �

6(2��)

�

2

dlog(2(jEj+ jDj+1))e for all e 2 E and r(d)�K

R

(d) �

6(2��)

�

2

dlog(2(jEj+ jDj+1))e for all

d 2 D. Then with probability at least 1�

jEj+jDj

2(jEj+jDj+1)

R-FLOW(�) �nds an integer multicommodity


ow F subject to c such that for all d 2 D

f(d) � (1� �)(r(d)�K

I

(d)):

2

For fractionallly solvable problems we have f(d) � (1� �)r(d) and for � =

1

2

:

Corollary 2.5 Let (G;H; c; r) be a fractionally solvable multicommodity 
ow problem with c(e) �

36dlog 2(jEj+ jDj+1)e for all e 2 E and r(d) � 36dlog 2(jEj+ jDj+ 1)e for all d 2 D. Then with

probability at least 1�

jEj+jDj

2(jEj+jDj+1)

R-FLOW(�) �nds an integer multicommodity 
ow F subject to

c such that for all d 2 D

f(d) �

1

2

r(d):

2

3 Algorithmic Angluin-Valiant Inequality and Derandom-

ization

In this section we give a derandomized version of R-FLOW(�). The fundamental inequalities of

Hoe�ding [5] and Angluin-Valiant[2] gives remarkable tight bounds on the tail of the distribution

of the weighted sum of Bernoulli trials. These inequalities prove the existence of certain structures,

but does not supply an e�cient way of �nding such structures, which is the main problem in the

theory of derandomization. In his work on approximate packing integer programs Raghavan [12]

was able to derive an alogrithmic version of the Angluin-Valiant inequality for unweighted sums of

Bernoulli trials. The problem in the weighted case remained open, because there the computation

of the conditional probabilities under consideration requires the computation of the exponential

function (see [12], pg. 138).

In the following we show that this is not necessary and establish an algorithmic version also in

the weighted case. This constitutes the essential tool to derandomize R-FLOW(�). We omit the

technically di�cult proof and refer to [15]

Let X

1

; : : : ; X

n

be 0� 1 random variables de�ned through Prob(X

i

= 1) = ~x

i

and Prob(X

i

=

0) = 1 � ~x

i

for some rational 0 � ~x

i

� 1. Let w

ij

be rational non-negative weights, 1 � i � m,

1 � j � n, 0 � w

ij

� 1 and denote by  

i

the random variables

 

i

=

n

X

j=1

w

ij

X

j

Let p

i

=

IE( 

i

)

n

and q

i

= 1 � p

i

and let 0 � �

i

� 1 be a rational number for each 1 � i � m.

Denote by E

(+)

i

the event

\ 

i

� (1 + �

i

)IE( 

i

)

00

and by E

(�)

i

the event

\ 

i

� (1� �

i

)IE( 

i

)

00

8



Furthermore let

E = E

1

^ : : :^E

m

;

where E

i

is either E

(+)

i

or E

(�)

i

. For each i, (i = 1; : : : ;m) let �

i

be a rational number 0 < �

i

� 1

with the property: If E

i

is the event \ 

i

� (1 + �

i

)IE( 

i

)" then

exp

�

�

�

2

i

IE( 

i

)

3

�

� �

i

and if E

i

is the event \ 

i

� (1� �

i

)IE( 

i

)" then

exp

�

�

�

2

i

IE( 

i

)

2

�

� �

i

Hence by the Angluin-Valiant inequality (Lemma 2.1) the event E hold with probability at

least 1�

P

�

i

. The basic problem we analyse is to �nd a 0� 1 vector x 2 f0; 1g

n

in deterministic

polynomial-time, for which the event E holds. This problem can be sovled in the RAM -model of

computation by the following theorem. The essential idea of the proof is the use of low degree

Taylor-polynomials of elementary functions, like exp, log,

p

for the construction of a new class

of pessimistic estimators. We have

Theorem 3.1 Let E = E

1

^ : : : ^ E

m

be an event, where E

i

denotes either E

(+)

i

or E

(�)

i

as

de�ned above. Let 0 < � < 1 be a rational number with �+

P

n

i=1

�

i

< 1 and suppose that �

i

�

n�1

n

for all i = 1; : : : ;m. Then a vector x 2 f0; 1g

n

for which the event E holds can be constructed in

O

�

mn

2

log

mn

�

�

-time. 2

Let m = jEj+ jDj and let L(�) = max(L;

1

�

4

log

2

m log

m

�

), where L is the encoding length of the

integer programming formulation of the reduced demand multi
ow problem. The deterministic

counterpart to Theorem 2.4 then is

Theorem 3.2 Let (G;H; c; r) be a multicommodity 
ow problem and let 0 < � �

9

10

with c(e) �

6(2��)

�

2

dlog(2(jEj+ jDj+ 1))e for all e 2 E and r(d)�K

R

(d) �

6(2��)

�

2

dlog(2(jEj+ jDj + 1))e for

all d 2 D. Then we can �nd in time O

�

L(�)m

3

�

an integer multicommodity 
ow F subject to c

such that for all d 2 D

f(d) � (1� �)(r(d)�K

I

(d)):

Proof. Let n denote the number of Bernoulli trials performed in the randomized rounding pro-

cedure. After having executed GENPATH and SPLITPATH(�) n is �xed. Since we introduced for

each e 2 E, d 2 D at most O

�

log(jEj+jDj)

�

2

�

random variables, we have n = O(�

�2

jEjjDj log(jEj+

jDj)). Let E = fe

1

; : : : ; e

jEj

g and D = fd

jEj+1

; : : : ; d

jEj+jDj

g. For 1 � i � jEj let denote E

i

the

event \�(e

i

) > ~c(e

i

)". For jEj+ 1 � i � jEj+ jDj let �

i

be a rational number with

s

3dlog 2(jEj+ jDj+ 1)e

(2� �)~r(d

i

)

� �

i

�

s

6dlog 2(jEj+ jDj+ 1)e

(2� �)~r(d

i

)

: (11)

We will later see how to determine such a �

i

e�ciently. The event E

i

, jEj � i � jEj+ jDj, then is

\�(d

i

) � (1� �

i

)(1�

�

2

)~r(d

i

)

00

:

Let E := E

1

^ : : : ^ E

jEj+jDj

. By Theorem 2.4 Prob(E

c

) �

1

2

jEj+jDj

jEj+jDj+1

, so in order to apply

Theorem 3.1 we choose � =

1

2

jEj+jDj

jEj+jDj+1

, m and n as above. Assuming that m � 10 and using

� �

9

10

, (1) and (11) it is not di�cult to prove that �

i

�

n�1

n

for all i = 1; : : : ;m. According

to Theorem 3.1 we can perform the rounding in time O(mn

2

log

mn

�

) = O

�

m

3

�

4

log

2

m log

m

�

�

and

obtain for all e

i

2 E and d

i

2 D

�(e

i

) � ~c(e

i

)

9



and

�(d

i

) � (1 �

�

2

)(1� �

i

)~r(d

i

):

We add to each �xed integer part of a path value its rounded part. As in the proof of Lemma

2.2 and 2.3 the integer multi
ow F is subject to c and f(d) � (1� �)(r(d)�K

R

(d)) for all d.

The computation of �

i

:

Choose 


i

=

1

4

q

3dlog 2(jEj+jDj+1)e

(2��)~r(d

i

)

: Then iteratively halving the interval

h

0;

3dlog 2(jEj+jDj+1)e

(2��)~r(d

i

)

i

we

can �nd in O(log(


�1

i

))�time a rational �

i

such that

0 � �

i

�

s

3dlog 2(jEj+ jDj+ 1)e

(2� �)~r(d

i

)

� 


i

which implies (11). Since O(log(


�1

i

)) = O(log

m

�

) we are done. 2

Corollary 3.3 Let 0 < � �

9

10

and let (G;H; c; r) be a multicommodity 
ow problem as above but

with K

R

= 0. Then we can �nd in polynomial-time an integer multi
ow F subject to c such that

for all d 2 D

f(d) � (1� �)r(d):

2

Since the multi
ow problem can be fractionally solved in strongly polynomial time by Tardos'

algorithm we have:

Corollary 3.4 Let (G;H; c; r) be a fractionally solvable multicommodity 
ow problem with c(e); r(d) �

36dlog 2(jEj + jDj + 1)e for all e 2 E and d 2 D. Then in strongly polynomial time we can �nd

an integer multicommodity 
ow F subject to c such that for all d 2 D

f(d) �

1

2

r(d):

2

4 NP -completeness

Lemma 4.1 [10] There is no �xed integer K 2 IIN such that every fractional-solvable multicom-

modity 
ow problem posess an integer solution, when the requests are reduced by K.

Proof. Assume that there is a �xed K, for which every fractionally solvable multicommodity 
ow

problem has an integer solution, when each request is reduced by K. The idea of the proof is

visualized by Figure 1:

The �gure shows a grid-graph, where each grid-node is blown-up in the described way. Here

we have 2 commodities each requesting r(d) = 2K + 1. Obviously such many commodities can be

delivered using fractional values. But note that for integer values only a request with total sum of

2K + 1 can be conveyed. So the integer multicommodity 
ow can only be solved, if the requests

is reduced by at least K + 1. The method can be extended for arbitrary K and arbitrary many

pairs of source-sink-pairs by copying the graph in Figure 1. 2

Note that in this construction the supply-graph G is planar. This shows that the Korach/Penn

result is only valid when the union of the supply graph and the demand graph is planar.

This construction can be used to prove the NP�completness of (1.1), even if the problem is

fractionally solvable: We show by a reduction to the original integer multi-
ow-problem:

Theorem 4.2 The demand reduced multi
ow problem with fractionally solvable inputs is NP -

complete.
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= r

2K + 1 = 5 = r

2K + 1 = 5

c = 1

Figure 1: An example with K = 2

     graph
s

t

t’

s’

r=r(d)+2K

r=2K

c=2K

c=2K

a b

s’’

t’’

c=2K

c=1

c=r(d)

c=r(d)

ground-

Figure 2: NP -completeness

Proof. Let K 2 IIN be an integer and suppose we are given a fractionally solvable multicommodity-


ow problem. For each source-sink-pair (s; t) construct an auxillary graph as shown in Figure 2.

The new demand edge now is (s

0

; t

0

) requesting a value of r(s; t) + 2K. Connect s

00

and t

00

to the

\grid" with 2K edges, all having capacity 1. Introduce a new demand edge (a; b) requesting a value

of 2K. It is clear, that the resulting graph remains fractional solvable. It is easy to see that the

new graph has an integer solution, where the request is reduced by K if and only if the original

problem has a integer solution: To saturate both reduced integer 
ows form a to b and from s

00

to

t

00

we have to push one 
ow, say (a; b) through the grid and the other \around" the grid. So there

is a 
ow of

K

2

from s

00

trough a to t

00

and the other

K

2

through b to t

00

. There is no way to convey

any other 
ow than the original one through the ground graph. 2

5 Conclusion and Open Problems

1. We have presented a deterministic approximation algorithm, in particular a

1

2

-factor algo-

rithm �nding feasible integer multicommodity 
ows. The running time of our algorithm is

dominated by the time needed to solve a LP. The analysis of the algorithm shows that we

have to require c; r = 
(log(jEj+ jDj)). As the example in section 4 shows, there are frac-

tional solvable problems, where the approximation factor is less than

1

2

. The interesting open

problem is to give a

1

2

-factor approximation if c; r = O(log(jEj+ jDj) or even c; r = O(1).

2. Note that with similiar methods these results hold also for the integer maximum 0 � 1

11



multi
ow problem.

3. Better approximation results might be possible in special cases, for example for planar

graphs. Here several question arises, for example, whether better Korach/Penn type results

can be proved, for planar graphs with stronger cut-conditions.

4. The algorithmic version of the Angluin-Valiant inequality might be usefull to attack other

packing-type problems, especially those with weights.

5. The non-intractability of approximation problems from the class MAX-SNP motivates the

question, whether or not there is a polynomial-time approximation scheme for the integer

multi
ow problem.
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