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Algorithmic Cherno�-Hoe�ding Inequalities in Integer

Programming

Anand Srivastav Peter Stangier

September 1995

Abstract

Proofs of classical Cherno�-Hoe�ding bounds has been used to obtain polynomial-time im-

plementations of Spencer's derandomization method of conditional probabilities on usual �-

nite machine models: given m events whose complements are large deviations corresponding

to weighted sums of n mutually independent Bernoulli trials, Raghavan's lattice approxi-

mation algorithm constructs for 0 � 1 weights and integer deviation terms in O(mn)-time

a point for which all events hold. For rational weighted sums of Bernoulli trials the lattice

approximation algorithm or Spencer's hyperbolic cosine algorithm are deterministic prece-

dures, but a polynomial-time implementation was not known. We resolve this problem with

an O(mn

2

log

mn

�

)-time algorithm, whenever the probability that all events hold is at least

� > 0. Since such algorithms simulate the proof of the underlying large deviation inequal-

ity in a constructive way, we call it the algorithmic version of the inequality. Applications

to general packing integer programs and resource constrained scheduling result in tight and

polynomial-time approximations algorithms.

1 Introduction

In many applications of the probabilistic method combinatorial structures can be represented

as a collection of events E

1

; : : : ; E

m

, whose complements E

c

i

describe large deviations in a �nite

probability space: for i = 1; : : : ;m and j = 1; : : : ; n let (w

ij

) be a m�n matrix with w

ij

2 [0; 1]\Q:

Let X

1

; : : : ; X

n

be mutually independent 0�1 random variables with rational expectation IE(X

j

) =

p

j

and let  

i

be the weighted sums  

i

=

P

n

j=1

w

ij

X

j

. Given rational deviation parameters �

i

> 0,

denote by E

i

exactly one of the events

\ 

i

� E( 

i

) + �

i

" or \ 

i

� E( 

i

)� �

i

";

i = 1; : : : ;m. The various types of Cherno�-Hoe�ding bounds for IP(E

c

i

) can be summarized by

the inequalites

IP(E

c

i

) � e

�t

i

�

i

IE(e

t

i

 

i

) � f(�

i

); (1)

where an optimal choice of the parameter t

i

> 0 gives the sharpest possible upper bound f(�

i

)

and f is a function exponentially decaying in �

i

. If

P

m

i=1

f(�

i

) < 1 � � for some 0 < � < 1, then

IP(

T

m

i=1

E

i

) � �, hence

T

m

i=1

E

i

is not empty and derandomization is the task of constructing a

point in

T

m

i=1

E

i

in polynomial-time. In principle this can be done by the conditional probability

method due to Spencer (see also Erd�os/ Selfridge [11]), for example with Spencer's hyperbolic

cosine algorithm [26] or Raghavan's lattice approximation algorithm [23]. But the e�ciency of

these algorithms heavily depends on the e�cient computation of the conditional probabilities or

of appropriate upper bounds on them on �nite machine models, like the usual RAM or Turing

machine model. In particular, the computation of the moment generating functions IE(e

t

i

 

i

) is

required. This indeed is possible in the following cases:

1



� For 0� 1 weighted sums of Bernoulli trials and integer �

i

Raghavan's lattice approximation

algorithm has an O(nm)-time implementation on the RAM model and can be considered

as an algorithmic form of the Raghavan/Spencer bound ([23], Theorem 1 and 2) (which is

slightly weaker than the Angluin-Valiant inequality ([18], Corollary 5.2 (b)).

� For 0�1 weighted sums of Bernoulli trials, uniform distribution, n = m and �

i

= dn

1

2

+�

p

ln 2ne

(0 < � < 1) a NC algorithms is known: one can use either the method of (log

c

n)-wise in-

dependence (Beger,Rompel [5], Motwani, Naor, Naor [20]) or the construction of small bias

probability spaces ( Naor, Naor [21]) to design a parallelO(log

3

n)-time algorithm for the con-

struction of a point in

T

m

i=1

E

i

using O(n

3+

1

�

) PRAM processors. Sequentially implemented

this gives the running time of O(n

3+

1

�

log

3

n).

Unfortunately, for rational weights w

ij

and optimal choice of t

i

the moment generating functions

IE(e

t

i

 

i

) necessarily are transcendental, therefore cannot be exactly computed on a �nite machine

model, which on the other hand is presumed for a polynomial running time of the conditional

probability method. Of course, if we neglect computational errors, for example using oating point

arithmetics, the conditional probability method runs in O(nm)-time, no matter what the param-

eters or weights are. But from the computational complexity point of view, when the underlying

computational model is a Turing machine or the RAM model, oating point arithmetics is not

satisfactory:

� The correctness of the algorithm is in doubt, when approximations are done without provable

guarantees.

� The cost of numerical approximations is a part of the total running time, consequently has

to be taken into acount.

Indeed, Feldstein and Turner [8] con�rmed in theoretical models that oating point arithmetic

can cause loss of signi�cance. In conclusion, we have to insist on exact computations. For a com-

prehensive discussion of the advantages of the exact computation paradigm versus oating point

arithmetic we refer to the recent paper of C-K. Yap [31].

For rational weighted sums of Bernoulli trials it remained an open problem, whether the condi-

tional probability method has a polynomial-time implementation on usual models of computation,

like the RAM model or the Turing machine model (remark on page 138 in [23]).

As a main result of this paper we resolve this problem for various bounds from the Cherno�-

Hoe�ding family and obtain results of the following form.

Let 0 < � < 1. Whenever IP(

S

m

i=1

E

c

i

) �

P

m

i=1

f(�

i

) < 1 � �, then a point in

T

m

i=1

E

i

can be

constructed in O(mn

2

log

mn

�

)-time.

The algorithm behind this result gives a clear and uni�ed implementation of the conditional prob-

ability method and since it heavily simulates the proof of the underlying large deviation bound,

we call it the algorithmic version of the inequality under consideration.

For a �x success probability � > 0 we have a strongly polynomial algorithm, i.e. an algo-

rithm with running time independent of the - perhaps large - encoding length of the numbers

w

ij

; �

i

; p

j

appearing in the problem. This has an important consequence in applications to in-

teger programming, where the randomized rounding/derandomization scheme is applied. In the

randomized rounding step an optimal solution to the linear programming relaxation is generated.

This solution draws a probability distribution and helps to derive with non-zero probability a

good approximation of the integral optimum. In the second step derandomization constructs such

an approximation. Since for many LP's fast, strongly polynomial-time algorithms are known, for

example the Tardos' algorithm [30], it is desirable to combine them with a strongly polynomial

derandomization procedure in order to derive strongly polynomial approximation algorithms. We

show the following two applications of algorithmic versions of Cherno�-Hoe�ding bounds:

2



Consider the packing integer program

maxfc

T

x;Ax � bg

with c 2 [0; 1]

n

, a

ij

2 [0; 1] \ Q and x 2 IIN

n

. In the case of 0 � 1 variables x

i

, 0 � 1 entries a

ij

,

c

i

= 1 and b

i

= k for some constant integer k, Raghavan`s [23] hypergraph k-matching algorithm

gives an approximation of the integer maximum within a factor of 1 � D(k;m; n). For k � lnm

the function D(k;m; n) is constant, thus a constant factor approximation is achieved. We cover

the integer problem in its full generality and show for every 0 < � �

9

10

and instances with not too

small packing constraints b

i

, i.e. b

i

= 
(

1

�

2

logm), an (1��)-approximation of the integer optimum

in deterministic polynomial-time. In particular a randomized rounding technique is introduced,

which removes Raghavan's restriction to 0� 1 integer programs.

Furthermore we consider a classical resource constrained scheduling problem, where the makespan

has to be minimized ([13], problem SS10, p. 239). We present the �rst 2-factor approximation al-

gorithm and prove that the factor 2 is nearly optimal. In particular, a reduction of the scheduling

problem to the problem of partitioning a graph into 2 perfect matchings proves for every � < 1:5

that the existence of a polynomial-time �-approximation algorithm would imply P = NP.

The algorithmic Cherno�-Hoe�ding inequalities derived in this paper constitute basic deran-

domization tools, and has been applied to some other packing integer programs: In [27] a more

sophisticated analysis of the algorithmic Angluin-Valiant bound in the special case of maximal

weighted k-matching in hypergraphs results in a faster derandomization procedure for this prob-

lem. A direct application of the approximation algorithm for integer programming presented

in this paper to the hypergraph k-matching problem would require a derandomization time of

O(mn

2

log

mn

�

), while in [27] the improved running time of O(mn + n

2

logn) is shown. For the

feasibility multicommodity ow problem good deterministic approximation algorithms along with

non-approximability proofs are given in [28] and more about approximability/non-approximability

of resource constrained scheduling can be found in [29].

In this paper we consider the RAM model with unit cost [19] for multiplication and distinguish

between polynomial and strongly polynomial algorithms, de�ned in the usual way: By the size of

an input we mean the number of data items in the descripton of the input, while the encoding

length of the input is the maximal binary encoding length of data items in the input. On the RAM

model an algorithm runs in polynomial-time (resp. strongly polynomial-time), if the number of

elementary arithmetic operations (briey called running time) is polynomially bounded in both

the size and the encoding length of the input (resp. only in the size of the input) and in addition

the maximal binary encoding length of a number appearing during the execution of the algorithm

(briey called space) is polynomially bounded in the size and encoding length of the input.

Note that all so de�ned polynomial-time algorithms are also polynomial-time algorithms on the

Turing machine model, because we require that the encoding length of numbers is polynomially

bounded in the input size. This is not the case in \pure" RAM models, where one only counts

elementary arithmetic operations, regardless of the size of numbers.

2 Algorithmic Cherno�-Hoe�ding Type Inequalities

In the following subsection we cite the basic inequalities, whose algorithmic counterpart we wish

to derive.

2.1 Cherno�-Hoe�ding Type Inequalities

Let X

1

; : : : ; X

n

be mutually independent random variables, where X

j

is equal to an integer u

j

with probability p

j

and is equal to an other integer v

j

with probability 1 � p

j

. For 1 � j � n let

3



w

j

denote rational weights with 0 � w

j

� 1 and denote by  the random variable

 =

n

X

j=1

w

j

X

j

:

A basic large deviation inequality is due to Bernstein (see [10]) and Cherno� [9] in the Binomial

case (u

j

= 1; v

j

= 0; p

j

= p; w

j

= 1 for all j = 1; : : : ; n) and has been generalized by Hoe�ding

[15]:

Theorem 2.1 (Bernstein, Cherno�, Hoe�ding ) Let u

j

= 1; v

j

= 0 for all j = 1; : : : ; n and let

� > 0. Then

(a) IP( > IE( ) + �) � exp(�

2�

2

n

)

(b) IP( < IE( ) � �) � exp(�

2�

2

n

):

In the literature Theorem 2.1 is well known as the Cherno� bound. For k-wise independent

random variables similar bounds can be found in the recent paper of Schmidt, Siegel and Srinivasan

[25].

For small expectations, i.e IE( ) �

n

6

, the following inequalities, which have been attributed to

Angluin and Valiant [3], give sharper bounds.

Theorem 2.2 (Angluin and Valiant) Let u

j

= 1; v

j

= 0 for all j = 1; : : : ; n and let 0 < � � 1.

Then

(a) IP( > IE( )(1 + �)) � exp(�

�

2

IE( )

3

)

(b) IP( < IE( )(1 � �)) � exp(�

�

2

IE( )

2

):

For random variables with zero expectation there are two inequalities which can be found in the

book of Alon and Spencer ([1] , Appendix). The �rst inequality goes back to Hoe�ding, while the

second inequality is due to Alon and Spencer [1]. The proof of Alon and Spencer requires w

j

= 1

for all j, but an examination of their arguments shows that w

j

can be 0� 1.

Theorem 2.3 (Hoe�ding) Let u

j

= 1 � p

j

; v

j

= �p

j

, w

j

2 f0; 1g for all j = 1; : : : ; n and let

� > 0. Then

(a) IP( > �) � exp(�

2�

2

n

)

(b) IP( < ��) � exp(�

2�

2

n

):

Alon and Spencer improved the Hoe�ding bound e

�

2�

2

n

replacing n by pn = p

1

+ : : :+p

n

which

is an upper bound for Var( ).

Theorem 2.4 (Alon, Spencer) Let u

j

= 1 � p

j

; v

j

= �p

j

, w

j

= 1 for all j = 1; : : : ; n and let

� > 0. Set p =

1

n

(p

1

+ : : :+ p

n

): Then

(a) IP( > �) � exp(�

�

2

2pn

+

�

3

2(pn)

2

)

(b) IP( < ��) � exp(�

�

2

2pn

):

2

In the next section we prepare the technical tools for the approximate computation of condi-

tional probabilities and moment generating functions for weighted sums of Bernoulli trials.

4



2.2 Pessimistic Estimators and Elementary Functions

Let us start with a de�nition of the derandomization problem. Let (
; IP) be a probability space,

and for simplicity assume that 
 is the set of all vectors of length n with components from a �nite

set S. Let E

1

; : : : ; E

m

be a collection of events such that IP(

T

m

i=1

E

i

) � � for some 0 < � < 1.

De�nition 2.5 (Derandomization Problem) Find a vector x 2

T

m

i=1

E

i

in deterministic time

bounded by a polynomial in n;m; jSj and log

1

�

.

The \conditional probability method" is the following algorithm:

Algorithm CONDPROB

INPUT: An event E � 
 with IP(E) > 0.

OUTPUT: A vector x 2 E.

1. Choose x

1

as the miminizer of the function ! 7! IP[E

c

j!], ! 2 S:

For l = 2; : : : ; n do:

If x

1

: : : ; x

l�1

with x

i

2 S have been selected, set x

l

where x

l

minimizes the function ! 7!

IP[E

c

jx

1

: : : ; x

l�1

; !], ! 2 S:

2

The striking observation is that a so constructed x satis�es x 2 E. But it is hard to compute

conditional probabilities directly. Spencer's hyperbolic cosine algorithm [26] shows that this is not

really necessary, if upper bounds on conditional probabilities can be computed which behave like

conditional probabilities. This fact has been conceptualized by Raghavan [23] who introduced the

notion of \pessimistic estimators".

De�nition 2.6 (Pessimistic Estimator, [23]) Let (
; IP) be a probability space as de�ned above.

Let E

1

; : : : ; E

m

be a collection of events and let E denote the event

T

E

i

. Suppose that IP(E) > �,

� > 0. A pessimistic estimator for the event E

c

is a sequence (U

min

l

(x

1

; : : : ; x

l

))

n

l=1

which iteratively

construct a vector (x

1

; : : : ; x

n

) 2 
 and possess the following properties for all 1 � l � n:

(a) IP(

S

m

i=1

E

c

i

jx

1

; : : : ; x

l

) � U

min

l

(x

1

; : : :x

l

)

(b) U

min

l+1

(x

1

; : : : ; x

l

; x

l+1

) � U

min

l

(x

1

; : : : ; x

l

)

(c) U

min

1

(x

1

) < 1

(d) Each U

min

l

(x

1

; : : : ; x

l

) can be computed in time bounded by a polynomial in n;m; jSj and

log(1=�).

Given a pessimistic estimator x = (x

1

; : : : ; x

n

) is the desired vector, because the conditions (a),

(b) and (c) imply:

IP(

m

[

i=1

E

c

i

jx

1

; : : : ; x

n

) < 1;

hence

IP(

m

[

i=1

E

c

i

jx

1

; : : : ; x

n

) = 0;

therefore x 2

T

m

i=1

E

i

.

By De�nition 2.6 upper bounds on conditional probabilities are the potential candidates for

pessimistic estimators. Since in case of sums of independent random variables such upper bounds

typically are compositions of elementary functions, we need to compute them, at least in an ap-

proximate fashion. Lemma 2.7 shows that an approximate computation of elementary functions

like exp(z); ln(z) and

p

z can be done e�ciently. It is related to Brent's [7] approximation of ele-

mentary functions de�ned over compact intervals, but the advantage of our approximation is that

5



we can deal with arbitrarily large rational numbers. Lemma 2.8 shows that a product of composi-

tions of exponential functions and logarithms is e�ciently approximable and Lemma 2.9 is a simple

observation which will be used to prove the decreasing monotonicity of the pessimistic estimator.

Lemma 2.7 (i) Let y be a rational number with encoding length L and let 

1

2 (0; 1) be a

positive real number. Let N be a positive integer with N � 8djyje + dlog

1



1

e: Then the N -th

degree Taylor polynomial

T

N

(y) =

P

N

k=0

y

k

k!

of exp(y) has encoding length O(LN+N logN ), can be computed in O(N )

time and the inequality j exp(y) � T

N

(y)j � 

1

holds.

(ii) Let x � 1 be a rational number, 

2

2 (0; 1) a real number and L

0

= blogxc. For every

N � dlog

4L

0



2

e a rational number y with encoding length O(LN ) can be computed in O(L

0

+N )

time such that j ln x� yj � 

2

:

(iii) Let x be a rational number with encoding length L, 

3

2 (0; 1) a positive real number. If

x � 1, then let N be a positive integer with N � dlog

x



3

e and if 0 < x < 1, then suppose

that N � dlog

1



3

e: A rational number y with encoding length O(L + N ) can be computed in

O(N )�time such that j

p

x� yj � 

3

:

Proof.

(i) Since N � 3jyj we have by Taylor's theorem

j exp(y) � T

N

(y)j �

jyj

N+1

(N + 1)!

�

jyj

N

N !

;

and observing that N � e

2

jyj, N ! � (

N

e

)

N

and N � ln

1



2

the inequality follows. Since

y

i+1

(i+1)!

is

calculated from

y

i

i!

in constant time, T

N

(y) is computed in O(N )�time. Furthermore the encoding

length of T

N

(y) is a polynomial in L and N : The encoding length of y

N

is O(LN ); N ! has encoding

length �(N logN ) and T

N

(y) has encoding length O(LN + N logN + N ) = O(LN + N logN ):

(ii) For the computation of lnx we use its power series expansion. With L

0

= blogxc as in the

lemma, we have 2

L

0

� x � 2

L

0

+1

, and we can �nd L

0

in O(L

0

)-time. De�ne

y

0

=

�

x2

�L

0

if 1 � x2

�L

0

� 1:5

3

4

x2

�L

0

if 1:5 < x2

�L

0

� 2

and use the decomposition x = 2

L

0

y

0

or x =

4

3

2

L

0

y

0

: It is enough to consider the second case

x =

4

3

2

L

0

y

0

; because the arguments in the other case are the same.

There exists a rational number y

1

, 0 < y

1

�

1

2

with y

0

= 1 + y

1

, and we have the decomposition

ln x = L

0

[ln (1 +

1

3

) + ln (1 +

1

2

)] + ln (1 +

1

3

) + ln (1 + y

1

):

Let S

J

(z) :=

J

X

j=1

(�1)

j�1

z

j

j

: Then with J

1

= dlog(

4L

0



2

)e � 1 and 0 < y

1

�

1

2

we get

j ln (1 + y

1

)� S

J

1

(y

1

)j �

y

J

1

+1

1

J

1

+ 1

�

1

2

J

1

+1

�



2

4L

0

:

Choosing J

2

= dlog

3

(

4



2

)e � 1; J

3

= dlog(

4



2

)e � 1; J

4

= dlog

3

(

4



2

)e � 1; we obtain j ln (1 +

1

3

) �

S

J

2

(

1

3

)j �



2

4

and so on. Let N � dlog

4L

0



2

e: Then N � max(J

1

; :::; J

4

) and de�ning

y := L

0

[S

N

(

1

3

) + S

N

(

1

2

)] + S

N

(

1

3

) + S

N

(y

1

);

6



we have j ln (x)� yj � 

2

. The total time needed for the computation of y is O(L

0

+N ):

(iii) Let x � 1 (the proof for x < 1 is almost the same). Starting with the interval [1; x] and

iterating interval halving we need at most dlog(

x



3

)e iterations to �nd a y with jy �

p

xj � 

3

:

Hence with N � dlog

x



3

e the total time needed is O(N ) and since the encoding length of x is L, y

has encoding length O(L +N ):

2

Lemma 2.8 Let a

1

; : : : ; a

n

; b;  be rational numbers with encoding length at most L, b � 1 and

0 <  � 1. Let � > 0 and let P

1

; : : : ; P

n

; Q be polynomials in n;m;

1

�

with P

i

; Q � 1, ja

i

j � P

i

and jbj � Q for all i = 1; : : : ; n. Let P =

P

n

i=1

P

i

and denote by P

i

; P;Q also the numbers

P

i

(n;m;

1

�

); P (n;m;

1

�

) and Q(n;m;

1

�

).

(i) Let T

N

be the N -th degree Taylor polynomial of the exponential function with

N = 10dP edlogQe+ n+ dlog

n + 1



e:

Then a rational number c approximating ln b and the numbers T

N

(a

i

c) can be computed in

O(max(n; P logQ) + log

1



)-time such that the inequality

j

n

Y

i=1

e

a

i

ln b

�

n

Y

i=1

T

N

(a

i

c)j � 

holds uniformly for all a

1

; : : : ; a

n

as above.

(ii) Let T

N

be the N -th degree Taylor polynomial of the exponential function with N = 10dP e+

n + dlog

n+1



e. Then each T

N

(a

i

) can be computed in O(max(n; P ) + log

1



)-time such that

the inequality

j

n

Y

i=1

e

a

i

�

n

Y

i=1

T

N

(a

i

)j � 

holds uniformly for all a

1

; : : : ; a

n

as above.

(iii) The encoding length of T

N

(a

i

c) (resp. of T

N

(a

i

)) is O(L[max(n; P logQ) + log(

1



)]

2

) (resp.

O(L[max(n; P ) + log(

1



)]

2

).

2

Proof. (i) and the �rstpart of (iii): To shorten notation set � =



n+1

2

�n

e

�2PdlogQe

,

� =



n+1

e

�3PdlogQe

, L

0

= blogQc, N

1

= dlog

4(n+1)L

0



e + 3dP edlogQe and observe that N

1

�

dlog

4L

0

�

e � dlog

4blog bc

�

e, Using Lemma 2.7 (ii) we can compute a rational number c � 0 such that

j ln b� cj � � (2)

in time

O(L

0

+N

1

) = O(max(logn; P logQ) + log(

1



)); (3)

and the encoding length of c is O(LN

1

) = O(L[max(logn; P logQ) +

1



]). By the mean value

theorem, there is a � 2 [c; lnb] (or � 2 [ln b; c], if ln b � c ) with

�

�

�

e

P

n

i=1

a

i

ln b

� e

P

n

i=1

a

i

c

�

�

�

= j ln b� cjj

n

X

i=1

a

i

je

�

P

n

i=1

a

i

7



� �Pe

P (1 + logQ)

with 2

� �Pe

2P dlogQe

� �e

3P dlogQe

�



n + 1

: (4)

Now we approximate e

P

n

i=1

a

i

c

: put N = 10dP edlogQe + n + dlog

n+1



e and let T

N

be the N -th

degree Taylor polynomial of the exponential function. Since N � 8dja

i

c

i

je+ dlog

1

�

e, we can invoke

Lemma 2.7 (i): having precomputed c as above, T

N

(a

i

c) can be computed in time

O(N ) = O(max(n; P logQ) + log

1



); (5)

its encoding length is

O(LN

1

N ) = O(L[max(n; P logQ) + log(

1



)]

2

)

and for each i = 1; : : : ; n the estimate

je

a

i

c

� T

N

(a

i

c)j � � (6)

holds. Furthermore, because j ln b� cj � � � 1

jT

N

(a

i

c)j � 1 + e

a

i

c

� 1 + e

a

i

(1 + ln b)

� 2e

2P

i

dlogQe

:

So, for any product

Q

n

i=1

F

i

where F

i

is either e

a

i

c

or T

N

(a

i

c) we have

n

Y

i=1

F

i

� 2

n

e

2

P

n

i=1

P

i

dlogQe

= 2

n

e

2P dlogQe

(7)

Employing the triangle inequality n-times and using (4), (6), (7) we get

j

n

Y

i=1

e

a

i

ln b

�

n

Y

i=1

T

N

(a

i

c)j � n2

n

e

2P dlogQe

�

=

n

n+ 1

� :

By (3) and (5) the total computation time of each T

N

(a

i

c) is

O(N ) = O(max(n; P logQ) + log

1



):

(ii) Apply the proof of (i) skipping the computation of the logarithms.

2

The next lemma will be needed to show the monotonicity of the pessimistic estimator. Its proof

is an easy exercise.

Lemma 2.9 Let f

1

; : : : ; f

n

be a �nite and monotone decreasing sequence of real numbers. Let

� > 0 and let g

1

; : : : ; g

n

be a sequence with jf

l

� g

l

j � �. The sequence h

1

; : : : ; h

n

de�ned by

h

l

= g

l

+ 2(2n� l)� for each l = 1; : : : ; n is monotone decreasing.

2

8



2.3 0� 1 Random Variables

Let m 2 IIN. We de�ne m large deviation events as follows:

We are given n mutually independent 0�1 random variablesX

1

; : : : ; X

n

de�ned through Prob(X

j

=

1) = ~x

j

and Prob(X

j

= 0) = 1�~x

j

for some rational numbers 0 � ~x

j

� 1. For 1 � i � m, 1 � j � n

let w

ij

denote rational weights with 0 � w

ij

� 1 and denote by  

i

the random variables

 

i

=

n

X

j=1

w

ij

X

j

:

For 1 � i � m let �

i

> 0 be rational numbers and de�ne the event E

(+)

i

by

\ 

i

� IE( 

i

) + �

i

"

and let E

(�)

i

denote the event

\ 

i

� IE( 

i

) � �

i

":

Furthermore set E =

T

m

i=1

E

i

where E

i

is either E

(+)

i

or E

(�)

i

. For each event E

i

let f(�

i

) be the

upper bound on IP(E

c

i

) given by the corresponding large deviation inequality in Theorem 2.1 or

2.2, so f(�

i

) = exp(�

2�

2

i

n

) or f(�

i

) = exp(�

�

2

i

IE( )

d

) with d = 2; 3. Suppose that for some 0 < � < 1

the strict inequality

m

X

i=1

f(�

i

) < 1� � (8)

is satis�ed. Then Theorem 2.1 resp. 2.2 imply IP(

T

m

i=1

E

i

) � �; hence

T

m

i=1

E

i

is not empty and

we wish to �nd a vector x 2

T

m

i=1

E

i

in deterministic time bounded by a polynomial in n;m and

log

1

�

.

Before we start with the proof, we briey sketch the main steps. We wish to construct pessimistic

estimators for the events E

c

i

. For example, let E

i

be the event \ 

i

� IE( 

i

) +�

i

". Conditioning on

(X

1

; : : : ; X

l

) = (y

1

; : : : ; y

l

) with y

j

= 0; 1 and 1 � l � n, Marko�'s inequality and the independence

of the X

j

's imply

IP[E

c

i

jy

1

; : : : ; y

l

] � e

��

i

t

i

IE(e

t

i

 

i

jy

1

; : : : ; y

l

)

= e

��

i

t

i

n

Y

j=1

IE(e

t

i

w

ij

X

j

jy

1

; : : : ; y

l

):

In the most complicated case t

i

is of the form t

i

= ln s

i

and we have to approximate the factors

IE(e

w

ij

X

j

ln s

i

jy

1

; : : : ; y

l

):

This can be done by Taylor polynomials and such polynomials will de�ne a pessimistic estimator.

The crucial point is that the accurancy of approximation or in other words the degree of such

polynomials must be chosen carefully in order to guarantee both, a fast polynomial running time

of the approximation procedure and the pessimistic estimator properties.

First let us consider the Angluin-Valiant bound. Before we continue, we put a soft technical

restriction on the deviation terms �

i

.

Deviation parameter in the Angluin-Valiant bound:

Let �

i

= �

i

IE( 

i

). If E

i

is an event of the form E

(�)

i

, then E

i

is non trivial only, if �

i

< IE( 

i

),

which | assuming IE( 

i

) > 0 | is equivalent to �

i

< 1. But in the proof of Theorem 2.2 (b) (see

[18], proof of corollary 5.2 (b)) an optimal choice of the parameter t

i

introduced in (1) requires

9



that t

i

is a real function in IE( 

i

) and �

i

and has a singularity at �

i

= 1. For this reason we assume

that

�

i

� 1�

1

n

�

1

(9)

for some �

1

> 0. Note that the restriction above is only a technical assumption and does not

a�ect the applicability of derandomization to the integer programming examples considered in this

paper.

Theorem 2.10 (Algorithmic Angluin-Valiant Inequality) Let 0 < � < 1 and E

1

; : : : ; E

m

be a

collection of events estimated by the Angluin-Valiant bound. Suppose that (8) and (9) are satis�ed.

Then IP(

T

m

i=1

E

i

) � � and a vector x 2

T

m

i=1

E

i

can be constructed in O

�

mn

2

log

mn

�

�

time.

Proof. In the following we will concentrate on the proof of the required running time. Space

consideration can be done in parallel passing through the proof and repeatedly using Lemma 2.8

(ii). Since this requires only tedious calculations, but in principle should be clear, we omit the

details.

Case 1: m = 2

Set �

i

= �

i

IE( 

i

). Let E

1

be the event:

 

1

� IE( 

1

) + �

1

and let E

2

be the event

 

2

� IE( 

2

)� �

2

:

All other combination of events can be treated in the same way. The basic functions V

1

; V

2

from

which we will derive the pessimistic estimator are de�ned as follows. For 1 � l � n let y

1

; : : : ; y

l

be chosen from f0; 1g. The upper bounds for the conditional probabilities are

IP[E

c

i

jy

1

; : : : ; y

l

] � e

�t

i

�

i

IE(e

�

i

t

i

 

i

);

where �

1

= +1, �

2

= �1 and an optimal choice of t

i

gives the Angluin-Valiant bound. According

to McDiarmids proof of the Angluin-Valiant inequality [18] t

i

= ln s

i

with

s

1

=

(IE( 

1

) + �

1

)(n � IE( 

1

))

IE( 

1

)(n � IE( 

1

) � �

1

)

; (10)

s

2

=

IE( 

2

)(n � IE( 

2

) + �

2

)

(n � IE( 

2

))(IE( 

2

) � �

2

)

; (11)

The event \  

1

� IE( 

1

) + �

1

" with �

2

= �

1

IE( 

1

):

Let s

1

be as in (10) and de�ne for l � 1

V

(1)

l

(y

1

; : : : ; y

l

) = e

�(IE( 

1

) + �

1

) ln s

1

e

P

l

j=1

w

1j

y

j

ln s

1

n

Y

j=l+1

[~x

j

e

w

1j

ln s

1

+ 1� ~x

j

]

and for l = 0

V

(1)

0

= e

�(IE( 

1

) + �

1

) ln s

1

n

Y

j=1

[~x

j

e

w

1j

ln s

1

+ 1� ~x

j

]:

The event \  

2

� IE( 

2

)� �

2

" with �

2

= �

2

IE( 

1

):

10



With s

2

as in 11 de�ne for l � 1

V

(2)

l

(y

1

; : : : ; y

1

) = e

�(�

2

� IE( 

2

)) ln s

2

e

�

P

l

j=1

w

2j

y

j

ln s

2

n

Y

j=l+1

[~x

j

e

�w

2j

ln s

2

+ 1� ~x

j

]

and for l = 0

V

(2)

0

= e

�(�

2

� IE( 

2

)) ln s

2

n

Y

j=1

[~x

j

e

w

2j

ln s

2

+ 1� ~x

j

]:

To unify the notation put w

i0

� 0 (i = 1; 2). Then the V

(i)

l

's (i = 1; 2) can be rewritten as

V

(i)

l

(y

1

; : : : ; y

l

) =

n

Y

j=0

IE(e

a

ij

ln s

i

);

with

a

ij

=

8

<

:

�((�1)

i�1

IE( 

i

) + �

i

) : j = 0

(�1)

i�1

w

ij

y

j

: j = 1; : : : ; l

(�1)

i�1

w

ij

X

j

: j = l + 1; : : : ; n

Note that X

j

is our random variable, so for j � l + 2 the a

ij

's are random variables, too. By

McDiarmid's proof of the Angluin-Valiant inequality ([18], proof of corollary 5.2 (b)) we have

IP(E

c

i

jy

1

; : : : ; y

l

) � V

(i)

l

(y

1

; : : : ; y

l

) (12)

and using the assumption (8)

IP(E

c

1

) + IP(E

c

2

) � V

(1)

0

+ V

(2)

0

� e

�

�

2

1

E( 

1

)

3

+ e

�

�

2

2

E( 

2

)

2

< 1� �: (13)

In view of condition (a) and (c) of De�nition 2.6 the functions V

l

are the right upper bounds from

which the pessimistic estimator should be derived. We will apply Lemma 2.8 First we show that

the s

i

's are polynomially bounded.

Claim: Let � = max(1; �

1

). Then s

i

� 4n

�

for i = 1; 2.

Proof of the Claim: In order to bound s

i

from above we introduce n+ 1 dummy random variables

X

n+1

; : : : ; X

2n+1

and multiply each such X

j

with weight 0. This changes neither the expectation

nor the bounds nor the proof of Theorem 2.2 except that we have to consider 2n+ 1 instead of n.

Since IE( 

1

) � n we have

s

1

=

(IE( 

1

) + �

1

)(2n+ 1� IE( 

1

))

IE( 

1

)(2n+ 1� IE( 

1

) � �

1

)

� 2(2n+ 1):

Furthermore with the assumption (9) and using IE( 

2

) � n

s

2

=

IE( 

2

)(2n+ 1� IE( 

2

) + �

2

)

(2n+ 1� IE( 

2

))(IE( 

2

) � �

2

)

�

2n+ 1� (1� �

2

)IE( 

2

)

(2n+ 1� IE( 

2

))(1 � �

2

)

�

2n+ 1

(n + 1)n

��

2

� 2n

�

1

:

We invoke Lemma 2.8 (i) : Set  =

�

2(4n�1)

and Q = 2n

3�

. Since ja

i0

j � 2n for i = 1; 2 and ja

ij

j � 1

for j = 1; : : : ; l + 1, we can set for each i = 1; 2, P

0

= 2n and P

j

= 1 for j = 1; : : : ; l + 1, hence

P =

P

l

j=0

P

j

� 3n. With N as in in Lemma 2.7 we have

N = 10dP edlogQe + n+ dlog

n+ 1



e = O(n logn+ log

1

�

): (14)

11



Let T be the N�th degree Taylor polynomial of the exponential function. Then Lemma 2.8 (i)

implies that for each i = 1; 2 the estimate

�

�

�

�

�

�

n

Y

j=0

e

a

ij

ln s

i

�

n

Y

j=0

T (a

ij

c

i

)

�

�

�

�

�

�

�  (15)

uniformly holds for all a

ij

depending on y

1

; : : : ; y

l

and for every i the rational rational numbers c

i

and T (a

ij

c

i

) can be computetd in O(n logn+ log

1

�

) time. Note that this estimation is uniform for

all a

ij

, because

l

X

j=1

ja

ij

j �

l

X

i=0

P

i

= P � 3n:

Taking expectation and using the independence of the X

j

and (15) we conclude for each i = 1; 2

jV

(i)

l

(y

1

; : : : ; y

l

) �

n

Y

j=0

IE(T (a

ij

c

i

))j � : (16)

We proceed to the de�nition of the pessimistic estimator. For i = 1; 2 de�ne

T

i

(y

1

; : : : ; y

l

) =

n

Y

j=0

IE(T (a

ij

c

i

));

and

T (y

1

; : : : ; y

l

) = (T

1

+ T

2

)(y

1

; : : : ; y

l

):

Let U

l

be a sequence of functions de�ned by

U

l

(y

1

; : : : ; y

l

) = T (y

1

; : : : ; y

l

) + 4(2n� l): (17)

Furthermore let U

min

l

(x

1

; : : : ; x

l

) be iteratively de�ned by the following procedure.

j=1: Let x

1

be the value from f0; 1g, which minimizes the function y ! U

1

(y): Set

U

min

1

(x

1

) := U

1

(x

1

):

j=l: Suppose that x

1

; : : : ; x

l�1

have been chosen from f0; 1g and U

min

l�1

(x

1

; : : : ; x

l�1

) has been

de�ned. Let x

l

be the minimizer of y ! U

l

(x

1

; : : : ; x

l�1

; y), y 2 f0; 1g; and de�ne

U

min

l

(x

1

; : : : ; x

l�1

; x

l

) := U

l

(x

1

; : : : ; x

l�1

; x

l

):

Let (U

min

l

) denote the sequence U

min

1

(x

1

); : : : ; U

min

n

(x

1

; : : : ; x

n

):

First we show that the sequence (U

min

l

) satis�es the conditions (a), (b) and (c) of De�nition 2.6.

De�ne

V

l

= V

(1)

l

+ V

(2)

l

: (18)

Then by (16) the inequality

jT (y

1

; : : : ; y

l

) � V

l

(y

1

; : : : ; y

l

)j � 2 (19)

holds uniformly for all y

1

; : : : ; y

l

2 f0; 1g:

Condition (a):

12



By (13), (19) and (17)

IP(E

c

1

[E

c

2

jx

1

; : : : ; x

l

) � (V

(1)

l

+ V

(2)

l

)(x

1

; : : : ; x

l

)

� (T

1

+ T

2

)(x

1

; : : : ; x

l

) + 2

� U

l

(x

1

; : : : ; x

l

) + 4(2n� l):

But by de�nition, U

l

(x

1

; : : : ; x

l

) + 4(2n� l) = U

min

l

(x

1

; : : : ; x

l

):

Condition (b):

In order to apply Lemma 2.9 put

f

l

= min[V

l

(y

1

; : : : ; y

l�1

; 1); V

l

(y

1

; : : : ; y

l�1

; 0)]

and

g

l

= min[T (y

1

; : : : ; y

l�1

; 1); T (y

1

; : : : ; y

l�1

; 0)]:

Using (19) we have

jf

l

� g

l

j � 2

for all l = 1; : : : ; n. Since f

1

; : : : ; f

n

is monotonely decreasing, Lemma 2.9 implies that the sequence

(U

min

l

) possesses the same property.

Condition (c):

With condition (b), using min(V

1

(1); V

1

(0)) � V

0

and (13) we get

U

min

1

(x

1

) = T

1

(x

1

) + T

2

(x

1

) + 4(2n� 1)

� min(V

1

(1); V

1

(0)) + 2 + 4(2n� 1)

� V

0

+ 2 + 4(2n� 1)

= V

(1)

0

+ V

(2)

0

+ 2 + 4(2n� 1)

< 1� �+ 2 + 4(2n� 1)

= 1:

We are done, if we can show an overall running time of O(mn

2

log

mn

�

). Let us �x 1 � l � n

and consider the Taylor approximation for V

(1)

l

. The argumentation for V

(2)

l

goes similar. First

note that

V

(1)

l

(y

1

; : : : ; y

l

) = V

(1)

l�1

(y

1

; : : : ; y

l�1

)

1

IE(e

a

1l

ln s

1

)

e

w

1l

y

1l

ln s

1

: (20)

According to Lemma2.7 (i) and withN as in (14) we can compute c

1

, IE(T (a

1l

c

1

)) and IE(T (w

1l

y

1l

c

1

))

in O(N ) = O(n logn+ log

1

�

)-time. In the �rst step the approximation of

e

�(IE( 

1

) + �

1

) ln s

1

n

Y

j=1

[~x

j

e

w

1j

ln s

1

+ 1� ~x

j

]

requires the computation of n+ 1 Taylor polynomials. This takes O(n[n logn+ log

1

�

]) time. Then

by induction and using the recursion (20) the total time for the computaion of U

l

(x

1

; : : : ; x

l

) is

O

 

n

�

n logn+ log

1

�

�

+

n

X

i=2

�

n logn+ log

1

�

�

!

= O

�

n

2

log

n

�

�

:

Case 2 m � 2 :

13



Note that for arbitrary m the same proof goes through, if we replace � by

2�

m

and de�ne

U

l

(y

1

; : : : ; y

l

) = (T

1

+ : : :+ T

m

)(y

1

; : : : ; y

l

) + 2m(2n� l):

Then we get a worst case running time of

O(mn[n logn+ log

m

�

]) = O(mn

2

log

mn

�

)

and the theorem is proved.

2

The algorithmic version of the Cherno�-Hoe�ding-Bernstein bound can be derived similarily.

Theorem 2.11 (Algorithmic Cherno�-Hoe�ding Inequality) Let 0 < � < 1 and E

1

; : : : ; E

m

be

events estimated by the Cherno�-Hoe�ding inequality. Suppose that (8) is satis�ed. Then

IP(

m

\

i=1

E

i

) � �

and a vector x 2

T

m

i=1

E

i

can be constructed in O

�

mn[n+ log

m

�

]

�

-time.

Proof. We follow the argumentation in the proof of the algorithmic Angluin-Valiant inequality.

Let the events E

i

be as there. The Cherno�-Hoe�ding bound is

f(�

i

) � exp(�

2�

2

i

n

):

According to the proof of the Cherno�-Hoe�ding inequality (Theorem 2.1) as given in [18] the

parameters t

i

are t

i

=

4�

i

n

: Therefore we do not have to compute logarithms and can spare a

log-factor. Because trivially �

i

� n, we have O(t

i

�

i

+ nt

i

) = O(n), thus the exponent of

e

�t

i

�

i

IE(e

t

i

 

i

)

is O(n). So due to Lemma 2.7 (ii) the degree of the approximating Taylor polynomial as well as

the time to evaluate such a polynomial is only O(n+ log(

nm

�

)) = O(n+ log(

m

�

)). The rest of the

proof can be carried out as in Theorem 2.10.

2

2.4 The Case 
 =

Q

n

j=1

f1� ~x

j

;�~x

j

g

In this subsection we consider the Alon-Spencer bounds. We can argue as in the section above,

with minor modi�cations of the notation. We are given n mutually independent random variables

de�ned through Prob(X

j

= 1� ~x

j

) = ~x

j

and Prob(X

j

= �~x

j

) = 1� ~x

j

for some rational numbers

0 � ~x

j

� 1. For 1 � i � m, 1 � j � n let w

ij

be rational weights from f0; 1g and denote by  

i

the

random variables

 

i

=

n

X

j=1

w

ij

X

j

:

Put p

i

= IE( 

i

)=n

i

where n

i

=

P

n

j=1

w

ij

and let �

i

> 0 be rational numbers. For 1 � i � m

let E

(+)

i

be the event \ 

i

� +�

i

" and let E

(�)

i

denote the event \ 

i

� ��

i

". Furthermore set

E =

T

m

i=1

E

i

where E

i

is either E

(+)

i

or E

(�)

i

. For each event E

i

let f(�

i

) be the upper bound

for IP(E

c

i

) as given by the corresponding large deviation inequalities in Theorem 2.3 or 2.4, so

14



f(�

i

) = exp(�

2�

2

n

) or f(�

i

) = exp(�

�

2

i

2p

i

n

i

+

�

3

i

2(p

i

n

i

)

2

) or f(�

i

) = exp(�

�

2

i

2p

i

n

i

): Suppose that for

some 0 < � < 1

m

X

i=1

f(�

i

) < 1� �: (21)

Furthermore, we need again some technical assumption to avoid singularities of parameters used

in the proof of the underlying bounds.

Deviation Parameter in the Alon-Spencer Bound:

We need to consider Theorem 2.4 (a) only If

P

n

j=1

w

ij

> 0, then we assume that

n

X

j=1

w

ij

~x

j

�

1

n

�

2

(22)

for some �

2

� 1 and

�

1

= O(n

�

3

) (23)

for some �

3

� 1. The derandomization result is:

Theorem 2.12 Let 0 < � < 1 and E

1

; : : : ; E

m

be events satisfying (22), (23) and (21). Then

IP(

T

m

i=1

E

i

) � � and a vector x 2

T

m

i=1

E

i

can be constructed in O

�

mn

2

log

mn

�

�

-time.

Proof: In view of proof of Theorem 2.10 it is su�cient to consider the case m = 2.

Let 1 � l � n and y

1

; : : : ; y

l

with y

i

2 f1� ~x

i

;�~x

i

g.

The basic functions V

1

; V

2

here are:

The event \ 

1

� �

1

":

Let t

1

> 0 and de�ne for l � 1

V

(1)

l

(y

1

; : : : ; y

l

) = e

�t

1

�

1

e

P

l

j=1

w

1j

y

j

t

1

n

Y

j=l+1

[~x

j

e

w

1j

(1 � ~x

j

)t

1

+ (1� ~x

j

)e

�w

1j

~x

j

t

1

]

The event \ � ��

2

":

Let t

2

> 0 and de�ne for l � 1

V

(2)

l

(y

1

; : : : ; y

l

) = e

�t

2

�

2

e

�

P

l

j=1

w

2j

y

j

t

2

n

Y

j=l+1

[~x

j

e

�w

2j

(1� ~x

j

)t

2

+ (1� ~x

j

)e

w

1j

~x

j

t

1

]:

With the following minor modi�cations the proof can be carried out as in the 0-1 case. The

parameters t

i

can be choosen according to the proof of Corollary A.7 (respectively the proof of

Corollary A.10/Theorem A.13 in [1]): In case of Theorem 2.3, t

i

=

4�

i

n

for i = 1; 2 and in the

proof of Theorem 2.4 (b), t

2

=

�

2

P

n

j=1

w

2j

~x

j

. Therefore the exponents above are rational numbers

and in view of Lemma 2.8 we don't have to compute logarithms. In case of Theorem 2.4 (a)

t

1

= ln(1 +

�

1

P

n

j=1

w

1j

~x

j

) and by restriction (22),

�

1

P

n

j=1

w

1j

~x

j

� �

1

n

�

2

. This will give us according

to Lemma 2.8, taking Q = 1 +�

1

n

�

2

and with  as in the proof of Theorem 2.10 a running time of

O(�

2

n

2

log

n�

1

�

). With �

1

= O(n

�

3

) as in restriction (23) and assuming that the �'s are constant,

we are done.

2
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2.5 Multivalued Random Variables

Finally, we consider multivalued random variables, especially n mutually independent dice. We

investigate a situation in which the random variables under consideration have Biomial distribution

and thus may apply the tools developed so far. Let n;N be non-negative integers. We are given n

mutually independent random variables X

j

with values in f0; : : : ; Ng and probability distribution

Prob(X

j

= k) = ~x

jk

for all j = 1; : : : ; n, k = 1; : : : ; N and

P

N

k=1

~x

jk

= 1. Suppose that the ~x

jk

are rational numbers with 0 � ~x

jk

� 1. Let X

jk

denote the random variable which is 1, if X

j

= k

and is 0 else. The probability space is


 = f(y

1

; : : : ; y

n

) 2

n

Y

j=1

f0; 1g

N

; y

j

2 f0; 1g

N

;

N

X

k=1

y

jk

= 1g:

For 1 � k � N , 1 � i � m, 1 � j � n let w

(k)

ij

be rational weights with 0 � w

(k)

ij

� 1. For

i = 1; : : : ;m and k = 1; : : : ; N de�ne the sums  

ik

by

 

ik

=

n

X

j=1

w

(k)

ij

X

jk

: (24)

Let �

ik

> 0 be rational numbers. Denote by E

(+)

ik

the event

 

ik

� IE( 

ik

) + �

ik

(25)

and by E

(�)

ik

the event

 

ik

� IE( 

ik

)� �

ik

(26)

Let (E

ik

) be a collection of mN such events. We invoke the Angluin-Valiant inequality. As in the

0� 1 case let f(�

ik

) be the upper bounds for IP(E

c

ik

) given by the inequality under consideration.

We suppose that

m

X

i=1

N

X

k=1

f(�

ik

) < 1� �: (27)

for some 0 < � < 1 and assume that the events satisfy conditions 9.

Theorem 2.13 Let 0 < � < 1 and E

ik

be as above satisfying (9) and (27). Then

IP(

m

\

i=1

N

\

k=1

E

ik

) � �

and a vector x 2

T

m

i=1

T

N

k=1

E

ik

can be constructed in O

�

Nmn

2

log

Nnm

�

]

�

-time.

Proof: For j = 1; : : : ; n let 


j

be the j-th copy of the set

f! 2 f0; 1g

N

;

N

X

k=1

y

jk

= 1g:

The only di�erence to the proof of Theorem 2.10 is that in each step of the conditional probability

method we have to choose a vector y 2 


j

instead of an integer. This can be done as in the

proof of Theorem 2.10, but would give us a running time of O

�

N

2

mn[n+ log

Nmn

�

]

�

as there

are Nm events, n random variables, and - this increases the running time - for each random

variable we have N choices. But in our context a simple observation reduces the running time to

16



O

�

Nmn[n logn+ log

Nm

�

]

�

: consider the �rst step of the computation of the pessimistic estimator.

Let y

1

2 


1

be the vector we are going to select in the �rst step, in other words, we wish to determine

the outcome of the �rst die. Let E

ik

be arbitrary, but for a moment �x. Then, because  

ik

is a

sum of independent Bernoulli trials,  

ik

is either

P

n

j=2

w

(k)

ij

X

jk

+ w

(k)

i1

or it is

P

n

j=2

w

ij

X

jk

. So,

for this  

ik

we have to approximate only two upper bounds for the conditional probabilities. Each

such bound is the product of O(n) factors of the form exp(a

i

ln b

i

) for some rational numbers a

i

; b

i

.

For each of these factors the approximation time is O

�

n logn+ log

Nm

�

�

, thus for the product we

need O

�

n[n logn+ log

Nm

�

]

�

time. (see also the proof of Theorem 2.10. We do this for all events

E

ik

and get a time of O

�

Nmn[n logn+ log

Nm

�

]

�

. In the second step, after having selected the

�rst vector from 


1

, we can use the update argument at the end of the proof of Theorem 2.10 and

get a time of O

�

Nm[n logn+ log

Nm

�

]

�

. Summing up over all the n steps, we get a overall running

time of

O

�

Nmn[n logn+ log

Nm

�

]

�

= O

�

Nmn

2

log

Nnm

�

]

�

:

2

3 Integer Programming

3.1 A General Integer Program of Packing Type

Let ZZ

+

be the set of non-negative integers and let Q

+

be the set of non-negative rational numbers.

Let us consider the following integer program:

maxfc

T

x ; Ax � b; x 2 ZZ

n

+

g;

where b 2 Q

m

+

, A is a m � n matrix with rational entries a

ij

2 [0; 1]

n

and c is a rational vector

c 2 [0; 1]

n

.

Let us denote by P the polytope fx 2 Q

n

+

;Ax � bg and by P

I

its integer skeleton P \ ZZ

n

+

.

The LP relaxation, where the entries x

j

of x can take arbitrary non-negative rational values, can

be solved in polynomial-time with standard linear programming algorithms. Let y � 0; y 2 Q

n

+

be an optimal solution vector found by linear programming. If we try to apply the known 0 � 1

randomized rounding method directly, we get problems due to the fact that we are rounding to

arbitrary integers and we must guarantee that the rounded vector is in P

I

, with positive probability.

There are two more or less obvious randomized rounding methods for rounding the entries y

j

to

an integer, but both have drawbacks:

(a) The perhaps most obvious rounding procedure is to round y

j

to dy

j

e or to by

j

c. This can be

done in a randomized way performing n independent Bernoulli trials �

j

, de�ned through Prob(�

j

=

1) = y

j

�by

j

c and Prob(�

j

= 0) = 1�y

j

+by

j

c. Let y

I

be the rounded vector with entries by

j

c+�

j

and denote by byc the vector with entries by

j

c. Invoking the Angluin-Valiant inequality we can

prove y

I

2 P

I

as follows. Let b

red

2 Q

m

be the decreased vector with entries b

red

i

:= b

i

� (Abyc)

i

.

Then with Theorem 2.2 (a)

Prob(y

I

=2 P

I

) = Prob(9 i(Ay

I

)

i

> b

i

)

= Prob(9i (A�)

i

> b

i

� (Abyc)

i

)

= Prob(9i (A�)

i

> (1 + 1)

1

2

b

red

i

)

�

m

X

i=1

e

�

b

red

i

12

and we can conclude that Prob(y

I

2 P

I

) > 0, if the last inequality is strictly less than 1. This

indeed is the case under the typical assumption of randomized rounding in integer programming,
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i.e. if b

red

i

= 
(lnm) for all i (the constant here is 12). See also [23], analysis of k-matching. But

even if b

i

= 
(lnm), it may happen that the decreased right hand side b

red

drops below the lower

bound for b

i

and the analysis fails. This is the reason why the 0� 1 randomized rounding scheme

of [23] cannot be applied directly.

(b) An intuitive better idea is to perform a more exible rounding in which by chance some y

j

can become much bigger or smaller than dy

j

e. One extreme way to do so is to split o� each y

j

into

2by

j

c 0 � 1 "segments" of value 0.5 and one segment of value y

j

� by

j

c. This complete splitting

enforces b

red

i

= b

i

and the 0 � 1 randomized rounding scheme is applicable: for each y

j

randomly

round the values of the segments to 0 or 1 with probabilities equal to the segment values. The j-th

entry of the rounded vector y

I

then is the sum over all the rounded segments corresponding to y

j

.

Hence we have reduced the problem to 0 � 1 randomized rounding, and since b

red

i

= b

i

, we have

Prob(y

I

2 P

I

) > 0, provided that b

i

= 
(lnm) for all i. Unfortunately, this is not a polynomial-

time rounding algorithm as the number of random variables depends on the magnitude of numbers

appearing in the fractional solution.

Our strategy is to compromize between these two extreme roundings. Let 0 < � < 1. The goal

is to derive an (1� �)-factor approximation of the integer optimum. It is achieved in 3 steps.

� (Randomized Rounding) First we split o� each y

j

in a �xed integer part y

fix

j

and a su�ciently

big roundable part y

var

j

with y

j

= y

fix

j

+y

var

j

(Algorithm Split(�)). The sizes of the roundable

parts y

var

j

are responsible for the number of random variables we use. In Lemma 3.1 we

show that at most O(

m logm

�

) 0 � 1 random variables are needed to ensure that for all i,

b

red

i

= 
(

logm

�

), whenever b

i

= 
(

logm

�

). Then for each j = 1; : : : ; n we set k

j

=

�

y

var

j

�

and

de�ne 2k

j

+1 independent 0�1 random variables �

1

; : : : ; �

2k

j

+1

. The rounded vector x � 0,

x 2 ZZ

n

will have entries

x

j

:= y

fix

j

+

2k

j

+1

X

l=1

�

l

;

j = 1; : : : ; n (Algorithm ROUNDING).

� (Analysis) In Theorem 3.2 we show with the Angluin-Valiant inequality (Theorem 2.2) that

x satis�es Ax � b and c

T

x � (1 � �)c

t

x

opt

with probability at least

1

4

, where x

opt

is an

optimal integer solution.

� (Derandomization) Finally, we will derandomize the algorithm via the algorithmic Angluin-

Valiant inequality.

In the whole analysis we need two important parameters, b

�

and c

�

:

b

�

:= d

6(2� �)

�

2

edlog(2m)e and c

�

:=

16

�

2

(28)

Algorithm SPLIT(�)

INPUT: The fractional optimal solution y = (y

1

; : : : ; y

n

) with y

j

� 0 and 0 < � < 1.

OUTPUT: For each y

j

an integer y

fix

j

� 0 and a rational number y

var

j

� 0 with y

j

= y

fix

j

+y

var

j

.

begin

Initialization: Set for all j = 1; : : : ; n

y

fix

j

:= by

j

c,

y

var

j

:= y

j

� by

j

c,

for each i = 1; : : : ;m do

While b

i

� (Ay

fix

)

i

< b

�

do

choose y

j

2 fy

fix

1

; : : : ; y

fix

n

g with a

ij

> 0 and y

j

� 1.
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set y

fix

j

:= y

fix

j

� 1 and y

var

j

:= y

var

j

+ 1 .

end

While c

T

y � c

T

y

fix

< c

�

do

choose y

j

2 fy

fix

1

; : : : ; y

fix

n

g with c

j

> 0 and y

j

� 1.

set y

fix

j

:= y

fix

j

� 1 and y

var

j

:= y

var

j

+ 1 .

end

end

The next lemma follows immediately.

Lemma 3.1 Let b

�

= d

6(2��)

�

2

edlog(2m)e and c

�

=

16

�

2

as in (28). If b

i

� b

�

for all i = 1; : : : ;m

and

P

n

j=1

c

j

y

j

� c

�

, then SPLIT(�) generates for each b

i

at most O(

logm

�

2

) random variables and

computes y

fix

in O(

m logm

�

2

) time such that

b

i

� (Ay

fix

)

i

� b

�

and c

T

y � c

T

y

fix

� c

�

(29)

for all i = 1; : : : ;m.

2

Now we can de�ne the randomized rounding procedure. For each j = 1; : : : ; n set k

j

=

�

y

var

j

�

and de�ne 2k

j

+ 1 independent 0� 1 random variables �

1

; : : : ; �

2k

j

+1

by

Prob (�

l

= 1) =

1

2

�

1�

�

2

�

Prob(�

l

= 0) = 1�

1

2

�

1�

�

2

�

Prob

�

�

2k

j

+1

= 1

�

= (y

j

� by

j

c)

�

1�

�

2

�

Prob

�

�

2k

j

+1

= 0

�

= 1� (y

i

� by

j

c)

�

1�

�

2

�

;

1 � l � 2k

j

.

Algorithm ROUNDING

1. For each l = 1; : : : ; 2k

j

+1 set independently �

l

to 0 or 1 with probabilities de�ned as above.

2. Output is the rounded vector x � 0, x 2 IIN

n

with components

x

j

:= y

fix

j

+

2k

j

+1

X

l=1

�

l

;

j = 1; : : : ; n:

2

Theorem 3.2 Let 0 < � �

9

10

and b

�

= d

6(2��)

�

2

edlog(2m)e. Suppose that b

i

� b

�

for all i = 1; : : : ;m

and c

1

+ : : :+ c

b

�

�

16

�

2

. Then an integer vector x 2 ZZ

n

; x � 0 with Ax � b can be constructed in

polynomial-time such that

c

T

x � (1� �)c

T

y � (1 � �)c

T

x

opt

:
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Proof. Note that the somewhat strange restriction � �

9

10

is necessary to satisfy condition (9), but

has no inuence on the quality of approximation, since we want to approximate a maximum. We

divide the proof into 3 steps. First we show that the vector x is in P

I

with probability at least

1

2

.

Then it will be proved that with probability at least

3

4

, c

T

x is an (1� �)-approximation of c

T

x

opt

.

Hence with probability at least

1

4

both is true and in the third and last step we derandomize using

the algorithmic Angluin-Valiant inequality.

Claim 1: IP(Ax � b) �

1

2

:

Proof. Let b

red

i

be the reduced right hand side with

b

red

i

:= b

i

� (Ay

fix

)

i

For each j = 1; : : : ; n let �

j

be the random variable

�

j

:=

2k

j

+1

X

l=1

�

l

and let � 2 ZZ

n

+

denote the vector with entries �

j

. For i = 1; : : : ;m de�ne 	

i

by

	

i

:= (A�)

i

:

Then

IE(	

i

) = (Ay

var

)

i

(1�

�

2

)

=

n

X

j=1

a

ij

(y

j

� y

fix

j

)(1�

�

2

)

� (b

i

�

n

X

j=1

a

ij

y

fix

j

)(1�

�

2

)

= (1�

�

2

)(b

i

� (Ay

fix

)

i

)

= (1�

�

2

)b

red

i

:

Taking �

i

=

�

2��

for all i we get by the Angluin-Valiant inequality (Theorem 2.2 (a))

IP(	

i

> b

red

i

) = IP(	

i

> (1 + �)(1 �

�

2

)b

red

i

)

� exp

 

�

�

2

i

�

1�

�

2

�

b

red

i

3

!

� exp(� log 2m)

=

1

2m

: (30)

Hence for all i = 1; : : : ;m

(Ax)

i

= [Ay

fix

+ 	]

i

= (Ay

fix

)

i

+ 	

i

� (Ay

fix

)

i

+ b

red

i

= b

i

with probability at least

1

2

.
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Claim 2: IP(c

T

x � (1� �)c

T

y) �

3

4

:

Proof. De�ne the reduced objective function value by

z

red

:= c

T

y � c

T

y

fix

:

Then the random variable z := c

T

� satis�es IE(z) = c

T

y

var

(1�

�

2

).

The vector with 1 in the �rst b

�

entries and 0 elsewhere is feasible, because on the one hand

b

i

� b

�

and on the other hand c

1

+ : : :+ c

b

�

�

16

�

2

, hence c

T

y �

16

�

2

. According to Lemma 3.1 we

have z

red

�

16

�

2

and setting �

0

=

q

8

(2��)z

red

it is easily veri�ed that

(1� �)z

red

(1�

�

2

) � (1� �)z

red

:

Hence by the Angluin-Valiant inequality

IP(z < (1� �)z

red

) � IP(z < (1� �)(1 �

�

2

)z

red

) �

1

4

(31)

and Claim 2 is proved. Combining Claim 1 and 2 we conclude that the assertion of the theorem holds

at least with probability

1

4

. In order to derandomize this result, we apply the algorithmic Angluin-

Valiant inequality (Theorem 2.10). The total number of random variables after the execution of

the algorithm SPLIT(�) is N = n + N

1

with N

1

= O(

m logm

�

2

). Recall that for i = 1; : : : ;m,

�

0

=

q

8

(2��)z

red

and �

i

=

�

2��

. Let E

i

be the event \	

i

� b

red

i

", which can be written as

\	

i

� (1 � �

i

)(1 �

�

2

)b

red

i

" and let E

0

be the event \c

T

� � (1 � �

0

)(1 �

�

2

)z

red

". (30) and (31)

imply

IP(E

c

0

) +

m

X

i=1

IP(E

c

i

) � e

�

�

2

0

(1�

�

2

)z

red

2

+

m

X

i=1

e

�

�

2

i

(1�

�

2

)b

red

3

�

3

4

;

and condition (8) is satis�ed with constant probability strictly less than 1. In order to apply

Theorem 2.10 we must also ensure that the restriction (9) is satis�ed which

�

0

� 1�

1

N

�

1

for some �

1

> 0. Using z

red

�

16

�

2

, � �

9

10

and assuming N � 2 (which always is true) we get

�

0

� 1�

1

4

� 1�

1

N

2

:

2

In case of all c

j

= 1, we trivially have c

1

+: : :+c

b

�

= b

�

. Furthermore, if A is a 0�1 matrix, then

the corresponding linear program can be solved in strongly polynomial time by the LP algorithm

of Tardos [30] and we have

Corollary 3.3 Let 0 < � �

9

10

and b

�

= d

6(2��)

�

2

edlog(2m)e. Suppose that c

j

= 1 for all j =

1; : : : ; n, A is a 0�1 matrix and b

i

� b

�

for all i = 1; : : : ;m. Then an integer vector x 2 ZZ

n

; x � 0

with Ax � b can be constructed in strongly polynomial time such that

c

T

x � (1� �)c

T

y � (1 � �)c

T

x

opt

:
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3.2 Resource Constrained Scheduling

An instance of the resource constrained scheduling problem with start times consists of ([13], p.

239):

� A set J = fJ

1

; : : : ; J

n

g of independent jobs. Each job J

j

needs a time of one time unit for its

completion and cannot be scheduled before its start time r

j

, r

j

2 f1; : : : ; ng.

� A set P = fP

1

; : : : ; P

m

g of identical processors. Each job needs one processor.

� A set R = fR

1

; : : : ; R

s

g of renewable, but limited resources. This means that at any time all

resources are available, but the available amount of each resource R

i

is bounded by b

i

2 IIN. For

1 � i � s, 1 � j � n let R

i

(j) 2 [0; 1] be rational resource requirements, indicating that every job

J

j

needs R

i

(j) amount of resource R

i

in order to be processed.

The combinatorial optimization problem is:

� Find a schedule (or assignment) � : J 7! IIN of minimal time length subject to the starting times,

processor and resource constraints.

Since the processor requirements can be decribed by introducing an additional resource R

s+1

with

upper bound b

s+1

= m and de�ning R

s+1

(j) = 1, the resource constraints are briey formalized

as

8z 2 IIN; i 2 f1; : : : ; s+ 1g :

X

fj:�(j)=zg

R

i

(j) � b

i

;

where fj : �(j) = zg is the set of jobs scheduled at time z. The problem is NP -hard in the strong

sense, even if r

j

= 0 for all j = 1; : : : ; n, s = 1 and m = 3.

According to the standard notation of scheduling problems the unweighted (i.e. R

i

(j) = 0; 1)

version of our problem can be formalized as P jres � � 1; r

j

; p

j

= 1jC

max

. This notation means that

the number of identical processors is part of the input (| P j |) that resources are envolved (|

res |) that the number of resources and the amount of every resource are part of the input, too

(| res � � |), that every job needs at most 1 unit of a resource (| res � � 1 |), that start-up

times are envolved (| r

j

|) and that the processing time of all jobs is equal (| p

j

= 1 |) and

that optimization problem is to �nish the last scheduled job as soon as possible (| jC

max

|).

Note that we consider the rational weighted version with R

i

(j) 2 Q \ [0; 1].

The best known approximation algorithm for the problem class P jres � � � ; r

j

= 0; p

j

= 1jC

max

,

where the jobs can be processed at any time (r

j

= 0) and the maximal resource-usage of a job is

part of the input, is due to R�ock and Schmidt [24]. They showed, employing the polynomial-time

solvability of the simpler problem P2jres � � � ; r

j

= 0; p

j

= 1jC

max

, where only 2 processors are

given, a d

m

2

e-factor approximation algorithm. Note that R�ock and Schmidt's approach is based

on the assumption that no starting-times are given, i.e. r

j

= 0 for all jobs J

j

2 J . In fact, their

algorithm cannot be used, when starting times are given, since the problem P2jres � �1; r

j

; p

j

=

1jC

max

is also NP -complete, so their basis solution cannot be constructed in polynomial-time.

Furthermore, for zero start times Garey et al. constructed with the First-Fit-Decreasing heuris-

tic a schedule of length C

FFD

which asymptotically is a (s +

1

3

)-factor approximation, i.e. there is

an non negative integer N such that for all C

opt

� N

C

FFD

� C

opt

(s+

1

3

):

de la Vega and Lueker [32] improved this result presenting for every � > 0 a linear time algorithm

with asymptotic approximation performance d+ �.

Given arbitrary start times in f1; : : : ; ng we will show the �rst polynomial-time 2-factor approx-

imation. Let C

opt

be the integer minimum of our scheduling problem and let the integer C denote

the size of the minimal schedule, if we consider the LP relaxation, where fractional assignments of

the tasks to scheduling times are allowed. We briey call solutions to the LP relaxation \fractional
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schedules" and solutions to the original integer problem \integral schedules". This should not cause

any confusion: C is always an integer, only the assignments corresponding to C are fractional.

Theorem 3.4 For the problem P jres � � 1; r

j

; p

j

= 1jC

max

with rational resource requirements, i.e.

R

i

(j) 2 Q \ [0; 1] a schedule of size at most 2C

opt

can be found in deterministic polynomial time,

provided that b

i

� 6dlog(4C(s+ 1))e for all i = 1; : : : ; s+ 1.

Remark

� Note that C is at most the sum of n and the maximal start-time, hence the factor log(Cs) is

within the size of the problem input.

� Our results are related to the results of Lenstra, Shmoys and Tardos [17], who gave a 2-factor

approximation algorithm for the problem of scheduling independent jobs with di�erent processing

times on unrelated processors. Their algorithm is essentially a combinatorial rounding procedure

rounding the solution of the associated LP. Moreover, they showed that there is no �-approximation

algorithm for � < 1:5 , unless P = NP . Unfortunately their rounding procedure does not apply to

the case, when arbitrary resource constraints are given. The reason is that given arbitrary resource

constraints, the LP might loose essential combinatorial structures, for example the polyhedron is

not pointed anymore (see [17]). This is a typical situation where randomization might be helpful.

The signi�cance of the 2-factor approximation is emphasized by the most probable intractability

of the problem of �nding approximations better than 1.5 in polynomial-time.

Theorem 3.5 Even if b

i

2 
(log(Cs)) for all constraint bounds b

i

, there is no polynomial-time

�-approximation algorithm for P jres � � 1; r

j

; p

j

= 1jC

max

for any � < 1:5, unless P = NP

Before going into details, we give an outline of the proof of Theorem 3.4. First we must generate

a fractional solution, then we have to de�ne randomized rounding. While the �rst problem is easily

solved by standard methods solving at most logT linear programs, where T = n+r

max

and r

max

is

the maximal starting-time, in order to �nd the minimal fractional completion time C, the second

problem is non trivial: for each job J

j

let x

jz

be the 0 � 1 variable indicating whether or not

the job J

j

is processed at time z. Then, because we wish to process the job J

j

, we must require

P

C

z=1

x

jz

= 1. Suppose that we have found the fractional completion time C corresponding to

~x

jz

, 0 � ~x

jz

� 1 (the fractional optimal assignments of the jobs to the scheduling times) with

P

C

z=1

~x

jz

= 1. A possible and suggestive randomized rounding procedure would be to cast for each

job J

j

independently a C-faced die with face probabilities ~x

jz

, where the z-th face represents the

choice of the time z for job J

j

for all z = 1; : : : ; C and j = 1; : : : ; n. Unfortunately, since we have

a packing problem it may happen that simple dice casting produces a schedule in which too many

jobs are scheduled at the same time requiring more resources than available.

To avoid such problems we enlarge the time interval f1; : : : ; Cg to f1; : : : ; 2Cg and consider

for each job j a die with 2C faces, where for each z 2 f1; : : : ; Cg the faces z and z + C occur

with probability

~x

jz

2

. In this fashion we will generate a schedule within 2C and at each time the

expected amount of resource R

i

will be only

b

i

2

..

Proof of Theorem 3.4:

Let r

max

:= max

j=1;:::;n

r

j

and T = r

max

+ n. Then obviously

C � C

opt

� T � 2n:

C can be found as follows: Start with an overall deadline

~

C 2 f1; : : : ; Tg and according to [17]

check, whether the LP
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P

j

R

i

(j)x

jz

� b

i

8R

i

2 R;

z 2 f1; : : : ; Tg

P

z

x

jz

= 1 8J

j

2 J

x

jz

= 0 8z < r

j

; j 2 f1; : : : ; ng

x

jz

= 0 8J

j

2 J ; z >

~

C

x

jz

2 [0; 1]:

has a solution. Using binary search it is clear that we will �nd C having solved at most logT

such LPs. Let X

1

; : : : ; X

n

be mutually independent random variables taking values in f1; : : : ; 2Cg,

where for each z 2 f1; : : : ; Cg

IP(X

j

= z) = IP(X

j

= z + C) =

~x

jz

2

:

For z 2 f1; : : : ; 2Cg and j = 1; : : : ; n let X

jz

be the 0 � 1 random variable, which is 1, if X

j

= z

and zero else. For i = 1; : : : ; s + 1 let E

iz

be the event that at a time z 2 f1; : : : ; 2Cg the i-th

resource constraint b

i

is not violated:

\

n

X

j=1

R

i

(j)X

jz

� b

i

"

Obviously

IE(

n

X

j=1

R

i

(j)X

jz

) =

n

X

j=1

R

i

(j)

~x

jz

2

�

b

i

2

for all i and z. By the Angluin-Valiant inequality (Theorem 2.2 (a)) and using the assumption

b

i

� 6dlog(4C(s+ 1))e for all i = 1; : : : ; s+ 1 we have

IP[E

c

iz

] = IP[

n

X

j=1

R

i

(j)X

jz

> b

i

]

= IP[

n

X

j=1

R

i

(j)X

jz

> (1 + 1)

1

2

b

i

]

� exp(�

b

i

6

)

�

1

4C(s+ 1)

:

We only have events of the form E

(+)

and according to Remark 2.13 we don't have to care about

any restriction for the deviation parameters, and Theorem 2.13 concludes the proof.

2

The negative result is:

Theorem 3.6 Even if all starting times are zero and b

i

2 
(log(ns)) for all

i = 1; : : : ; s + 1, it is NP -complete to determine, whether or not the scheduling problem P jres �

�1; r

j

= 0; p

j

= 1jC

max

has a solution with C

opt

= 2.

Remark Note that Theorem 3.6 implies Theorem 3.5, since it is a special case of problems con-

sidered in Theorem 3.4: We have zero starting-times, hence T = n and C � n. Therefore the

NP -completeness of problems with b

i

2 
(log(ns)) implies the completeness of problems with

b

i

2 
(log(Cs)). And �nally, an approximation better than a factor

3

2

would contradict Theorem

3.6: W.l.o.g. assume that C

opt

> 1. If a �-approximation algorithm with � <

3

2

outputs 2, then
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C

opt

= 2, and if its output is greater or equal 3, then C

opt

� 3 (because � <

3

2

). Hence we would

be able to decide in polynomial-time whether or not C

opt

= 2.

Proof of Theorem 3.5

We give a reduction to the problem of decomposing a graph into two perfect matchings, which

is known to be NP-complete [13]. Let G = (V;E) be a graph with jV j = n

0

. For a moment let

K � 0 be an arbitrary integer. We will de�ne a scheduling problem associated to G with n jobs,

m processors and s constraints. First we de�ne an auxilliary graph H = (V (H); E(H)):

For each node in G introduce K red copies and 2K blue copies and let V (H) be the set of these red

and blue nodes. Whenever fv; wg 2 E, put an edge between the corresponding red copies fv

i

; w

i

g

of v and w for 1 � i � K. Let us call all the red copies corresponding to the same node in G a

red set. We identify each node of H with a job, so n = 3n

0

K. Considering m = 3n

0

K identical

processors, we get rid of the processor constraints.

red nodes

v

w

red nodes

Figure 1: The Graph H

Let us de�ne three type of resource constraints A, B and C corresponding to subsets of V (G)

and V (H) as follows:

Type A:

For each set of three nodes (u; v; w) of G with at least two induced edges de�ne a resource

R

(u;v;w)

with upper bound 2K and suppose that any job associated to a red copy of one of this

three nodes (u; v; w) needs one unit of R

(u;v;w)

in order to be processed.

type A

u v

w

Figure 2: Type A resources

Type B: Whenever v is a node of G with degree two or more, de�ne a resource R

v

with upper

bound K(deg(v)� 1). Suppose that any job associated with a red copy of one of the neighbours of

v needs one unit of R

v

in order to be processed.

type B

v

Figure 3: Type B resources
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Type C: De�ne for every red node v

i

and every set S

K

with K of its corresponding blue nodes

a resource R(v

i

; S

K

) with bound K, and suppose that each job in S

K

[ fv

i

g needs one unit of

R(v

i

; S

K

).

nodes

red nodes

blue

Figure 4: Type C resources

Due to the resource constraint of type C the key observation is that in a feasible schedule of

length 2 all the red copies of the same node u 2 G must be scheduled at the same time. This can

be seen as follows. Let us assume for a moment that this is not true. Then there is a v 2 V with

at least one red copy v

0

scheduled at the time 1 and at least one red copy v

00

scheduled at time 2.

We can schedule, due to resource constraint of type C with bound K, at most K �1 blue copies of

v at time 1 and therefore must schedule the remaining blue copies of v at time 2, violating some

resource constraints of type C.

Hence the problem is whether or not the red jobs can be scheduled in two times without splitting

o� the red sets.

We show: There is a partitioning of G into 2 perfect matchings if and only if there is a feasible

schedule of size 2.

(a) If there is a feasible schedule, put the nodes of G corresponding to red nodes (or jobs) being

scheduled at time 1 in a set V

1

, and the remaining nodes of G in a set V

2

. Since a feasible schedule

does not split o� the red sets, V

1

and V

2

build a partition of the nodes of G. They induce 2 perfect

matchings: Every resource constraint of type B ensures that at least one neighbour of a node v 2 V

i

is in the same set as v itself, while the constraints of type A ensure that for every node v 2 V

i

at

most one neighbour is in the same set as v itself. Hence the induced degree of v is one and we have

constructed two perfect matchings.

(b) Let V

1

; V

2

be a partitioning of G into two perfect matchings. (If there are isolated nodes in G,

then there are no perfect matchings. Pairs of nodes with degree 1 we put into V

1

). Schedule the

red copies of nodes in V

1

at time 1 and its blue copies at time 2. Schedule the red copies of nodes

in V

2

at time 2 and its blue copies at time 1. Using the matching property it is easily veri�ed that

this is a feasible schedule.

The proof is complete, if we can show the logarithmic growth of the constraint bounds m and

b

i

for i = 1; : : : ; r. For this we must specify K. Taking K = logn

0

it is easily veri�ed that the

number of constraints s is

s = O((n

0

)

3

+ n

0

+

�

2 logn

0

logn

0

�

logn

0

) = O((n

0

)

c

)

for some constant c. Since all our constraint bounds are 
(K), we �nally can show by a straight

forward computation that K � � log(ns) for some constant � � 0.

2

Remark Theorem 3.5 says that there is no polynomial-time approximation algorithm within a

factor � < 1:5i, unless P = NP . This should not be misinterpreted. Theorem 3.6 makes clear that

the pathological instances here are instances whose optimal schedule is 2. But it might be possible

that for instances with larger optimal schedules better approximation factors can be achieved.

Indeed, meanwhile we could prove this and gave in [29] a comprehensive discussion of the complexity

of resource constrained scheduling.
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4 Conclusion

(a) The running time of the algorithmic Cherno�-Hoe�ding inequalities is O(mn

2

log

mn

�

), while

the basic conditional probability methods runs in O(mn)-time. It is an interesting problem to close

this gap as much as possible.

(b) In our applications to integer programming we had to assume that the constraint vector

b = (b

1

; : : : ; b

m

) posseses components in 
(logm). It remains an open problem, if approximation

algorithms can be given, even if b

i

= O(logm).

(c) For resource constrained scheduling we showed a polynomial-time 2-factor approximation al-

gorithm and also that there does not exist a substantially better approximation algorithms, unless

P = NP . Extension of this result has been given in [29].
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