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Abstract

This paper describes the development and implementation of the

MPQS factoring algorithm using multiple hypercubes customised to a

MIMD parallel computer. The computationally most expensive steps

ran on a Parsytec machine consisting of 1024 Inmos T805 micropro-

cessors. General 100 decimal digit numbers can be factored in 1{2

days.

1 Introduction

The installation of a 1024 processor MIMD machine at our university in

the spring of 1993, and a course on the parallelisation of number theoretical

algorithms given by the second author incidentally in the winter term 1992/93

initiated the idea to estimate the theoretical and practical e�ort to start a

signi�cant factorisation experiment on a dedicated machine from scratch.

The goal was to factor 100 digit numbers within 1{2 days of CPU time.

Of course, a parallel version of the MPQS algorithm, based on ideas of

Dixon, Pomerance and Montgomery and described in [8, 11], seemed to be

the right point to start. However, a straightforward approach with processors

running independently as in [3] is impossible because of memory constraints.

The analysis of the technical capabilities of the Parsytec machine shows there

should not be too much communication to guarantee high performance com-

puting.

From the many variations of the MPQS algorithm discussed in the lit-

erature we felt that Peralta's MPQS on a hypercube [7] which was still not

implemented could serve as an adequate basis. A careful study showed that

this idea did not fully exploit the internal structure but that considerable im-

provement was possible and useful on our machine. It seemed advantageous

not to stay with a single hypercube but to work on several ones in parallel.

Theoretically we expected a loss in useful relations originating in Peralta's

method, due to the e�ect that a-values from the polynomials used are di-

vided by several primes in the factorbase. To compensate for this e�ect we
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devised a subtle procedure similiar to the one used in [5] to combine partially

factored numbers from the sieving stage.

The next major task was to �nd a parallel implementation of the al-

gorithm which makes optimal use of the machine at hand. Our �rst method

separates the traverse of the hypercubes from the sieving process. The MIMD

property enables us to run the hypercube part on a small number of pro-

cessors while the sieving part is performed at the majority of processors.

Since the distribution of both parts is mainly determined by the number of

processors at hand and the underlying hardware topology is neglected, we

developed a more exible parallelisation. Here the processors are grouped

into rings along which the data is distributed.

The �rst factorisation falling within the initially intended domain was

completed on December 24th after 41 hours total runnning time. As a con-

tribution to the Cunningham list we give the formerly unknown 41 and 56

digit prime factors of the remaining 97 digit cofactor (C97) of 12

327

+ 1.

Shortly afterwards, a 101 digit cofactor of 5

273

� 1 (C101) was factored into

36 and 66 digit primes.

The complete development, programming from scratch and debugging of

the software took about 6 man-months. Most of the programs are written in

C, only some modules of the multiprecision arithmetic are written in T805-

Assembler.

2 MPQS on a Hypercube

We assume familiaritywith the `Multiple Polynomial Quadratic Sieve' (MPQS)

algorithm [8, 11] and will sketch only the improved hypercube variation used

by us.

LetN be the composite integer to be factored. After choosing a factorbase

F of R primes p

i

; 1 � i � R, and a sieve length M , a lot of quadratic

polynomials Q

ab

(X) = a

2

X

2

+ 2bX + c with b

2

�N = a

2

c are generated. It

follows that Q

ab

(X) � (a

2

X+b)

2

a

�2

modN . The requirement jQ

ab

(�M)j �

jQ

ab

(0)j � jQ

ab

(M)j leads to the condition a

2

�

p

2N=M . For every such

polynomial the roots modulo p

i

; 1 � i � R, must be computed, the interval

[�M;M [\Z is sieved, and the candidates are collected.

Now for every prime p in the factorbase let t

p

be a square root of N mod p:

t

2

p

� N mod p. If p does not divide a, then

Q

ab

(x) � 0 mod p, x � (�b� t

p

)a

�2

mod p:

The t

p

's are independent of the Q

ab

and will be computed only once. But

a

�2

mod p and b mod p for every a and for every p 2 F have to be computed.

In [11] the a's are (pseudo-)primes not divisible by any p 2 F . Mont-

gomery (quoted in [9]) and Peralta [7] independently observed that if a =
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�

1

� : : : � �

l

is the product of l primes �

i

(such that N is a quadratic residue

modulo �

i

), there are 2

l

di�erent values b moda

2

with b

2

� N mod a

2

. Since

Q

ab

(x) = Q

a(�b)

(�x), we get 2

l�1

di�erent polynomials with each a.

Given �

j

; �

j

with

�

2

j

� N mod�

2

j

and

�

j

�

(

1 mod�

2

j

0 mod�

2

i

; i 6= j

every b can be written uniquely as b =

P

l

j=1

�

j

�

j

�

j

mod a

2

where �

j

2

f+1;�1g. We �x 

j

= ��

j

�

j

moda

2

such that 

j

is less than

a

2

2

.

R. Peralta further noticed that the solution set of b

2

� N mod a

2

is struc-

tured like an l-dimensional hypercube C

l

= f�1;+1g

l

, vertices correspond-

ing to solutions b. Two vertices are adjacent if the corresponding solutions

b; b

0

di�er at exactly one sign �

j

. He suggested to follow a certain hamilto-

nian cycle of C

l�1

= (C

l�2

� f�1g) [ (C

l�2

� f+1g) resulting in a sequence

k

i

; 1 � i � 2

l�1

� 1, with k

i

= j if step i changes coordinate j, such that the

tour

b

i+1

= b

i

+ 2�

i



k

i

moda

2

with �

i

= +1 or �1 depending on whether step i changes coordinate k

i

from

� to + or from + to � visits all useful vertices of the hypercube C

l

. Omitting

the reduction of b mod a

2

, still jbj < l �

a

2

2

holds which is su�cient for the

estimate of Q

ab

(x) over [�M;M [.

Whereas Peralta devised an algorithm requiring three additions and one

multiplication modulo every prime p in the factorbase and a table of 6lR

integers to step from b

i

to b

i+1

, we use precomputed tables of 2

j

a

�2

modp

for 1 � j � l � 1 and every p in the factorbase to obtain from the modular

roots x

i

= (�ba

�2

� t

p

a

�2

) mod p of Q

ab

i

(X) the roots

x

i+1

= (x

i

� 2�

i



k

i

a

�2

) mod p

of Q

ab

i+1

(X) in only two additions mod p. The cost for doing this results

in the additional space consumption of (l � 1)R integers. As a second im-

provement we sieve many hypercubes at a time which allows us to choose

hypercubes of smaller dimensions.

Nearly factored candidates out of the sieve stage are relations of the form

q

1

q

2

R

Y

i=0

p

c

i

i

� z

2

modN (1)

with q

i

= 1 or q

i

> p

R

prime. This is called a full relation if q

1

= q

2

= 1, a

partial relation if exactly one of the q

i

's is one, and a partial partial relation

otherwise. Exploiting the idea of using partial partial relations [5] more than
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compensates for the negative e�ect that a-values from the polynomials used

are divided by several primes in the factorbase.

Among the techniques used to speed up MPQS this is the most e�cient

one. The factor graph G = (V;E) is built from relations of the form (1). The

�rst node in V is identi�ed with 1. All the primes q

1

and q

2

appearing in (1)

make up the rest of the nodes. An edge e = (v;w) in the graph corresponds

to a relation (1) with v = q

1

and w = q

2

.

Two algorithms investigate and exploit the graph. The �rst one cuts o�

leaves and isolated nodes repeatedly and the second one is the breadth-�rst

search algorithm. By cutting o� leaves and isolated nodes we obtain struc-

tural information about the factor graph and reduce the memory demands

when processing the cycles. By breadth-�rst search we look for cycles in G,

whenever one is found, it is stored, the last edge traversed is deleted from G,

and the search is continued. This gives a basis of the cycle space of G.

Each of the cycles found produces a full relation. Let us e.g. use a cycle

of length 4 passing node 1, that is a situation like

1 � r �

Q

R

i=0

p

i

c

1;i

� z

2

1

mod N ; r � s �

Q

R

i=0

p

i

c

2;i

� z

2

2

mod N;

s � t �

Q

R

i=0

p

i

c

3;i

� z

2

3

mod N ; 1 � t �

Q

R

i=0

p

i

c

4;i

� z

2

4

mod N

Thus

R

Y

i=0

p

i

c

1;i

+c

2;i

+c

3;i

+c

4;i

�

�

z

1

z

2

z

3

z

4

rst

�

2

mod N

In this setting, pairs of partial relations are cycles of length 2.

In case a multiplier m is used with MPQS there are two possibilities.

Either it is included in the factorbase or the graph is extended by a node for

m. In the second possibility, at the place of q

1

�q

2

in (1) m �q

1

�q

2

can appear.

Using the corresponding edges, cycles must be treated di�erently depending

on the parity of the number of such edges.

In the meantime we have learned from two other implementations of

the hypercube MPQS algorithm. R. Alford and C. Pomerance [1] are using

polynomialsQ

ab

(X) = aX

2

�2bX+c such that aQ

ab

(X) � (aX�b)

2

modN .

Taking a instead of a

2

makes the hypercube MPQS applicable for smaller

numbers, too. On the other hand, the use of aQ

ab

(X) instead of Q

ab

(X)

increases the number of ones in the matrix used in the �nal step of the MPQS

algorithm. Moreover, special care has to be taken for avoiding redundant

relations which we don't have considered yet.

Using only one precomputed table of 2a

�2

mod p for all p 2 F , one still

has to compute 

j

mod p, one multiplication and two additions for all p 2 F

when changing polynomials.
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3 Machines Used

The Parsytec GCel installed at our university's \Zentrum f�ur Paralleles

Rechnen" consists of 1024 Inmos T805 transputers. These are clocked at

30 MHz. Every processor has 4 MByte RAM, 350 KB of which are occu-

pied by the operating system, and 4 KB Cache, 3KB of which are occupied,

too. Every 16 processors build a cluster in form of a 4x4-grid. The physical

network topology is a two-dimensional grid, virtual topologies can be pro-

grammed in software. The machine is designed for up to 16.384 processors.

The communication bandwidth is at most 1,1 MB/sec (no intermediate links)

and 0,6 MB/sec (intermediate links), respectively. The outside gate is a Sun

workstation.

To enable a comparison with other machines, one has to consider mainly

the sieving capabilities of the processor. Therefore we used `nsieve

1

1.2',

which rated one T805 with 1.8 nsieve-MIPS independently of the array size.

(A notional 1.5 MIPS Sun 3/50 is rated 2.1{3.5 nsieve-MIPS.)

Concerning hardware and operating system (an unix-derivation called

parix), the machine works reliably, while the support for software develop-

ment could be improved upon. (We e.g. missed a tool logging processor

activity for analysis after execution.) Most of the code was produced and

tested on standard workstations running under the unix operating system.

The software building the graph and exploiting the cycles runs at a stand-

alone risc workstation with 128MB memory and 1GB disk storage capacity.

Approaching 100 digits, the needs for memory and disk capacity become

substantial. However, it was still not yet necessary to use the possible im-

provements we could imagine of until now.

4 The Real Parallelisation

The parallel MPQS-implementations described in [3] and [6] were not ap-

plicable on our machine. Following Silverman's approach who implemented

MPQS in a cluster of independent workstations, every processor would have

to work on its own hypercube. But the need to keep (l + 3)R integers per

hypercube does not leave enough memory for the sieve array with growing

R, e.g. with R = 80:000; l = 10 this sums up to 4,16 MB. Additionally, every

message sent spawns threads on the way taken by itself to the destination

processor. The implementation of Lenstra described in [6] was done on a

`Single Instruction Multiple Data' parallel computer. We were glad not to

face the di�culties resulting from a single instruction machine. Moreover, a

forced synchronisation of all processors in our machine did not seem reason-

able to us.

1

available from ftp.nosc.mil in the directory pub/aburto
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We sketch two parallel approaches particularly suited for MIMD parallel

computers. The �rst one has been used for the results mentioned below,

the second one will be the method of choice for even larger numbers. Both

methods use a dedicated process (the `root') whose only tasks consist in the

collection of candidates and the input/output-operations. Imagine having

more processors than hypercubes to do, it is obvious that we want to enable

many processors to work on one hypercube.

In the �rst implementation the root process runs on a dedicated node.

We have two additional types of processors which we will call `masters' and

`slaves'. Each master creates its own set of hypercubes. After initializing

its �rst hypercube, the �rst master travels along the hamiltonian cycle de-

scribed above. At every vertex it computes the new set of modular roots of

Q

ab

. These 2R integers and the coe�cients of the polynomial are sent to a

consecutive set of slaves which will sieve with the same polynomial. After

making busy all slaves, the �rst master leaves its hypercube and initializes

the second one. In the meantime the slaves that have �nished are at the

disposal of the second master, and so on. Each slave sieves its part of the

sieve array with the received roots. Any candidates found after the sieving

process will be stored in a local bu�er. When the bu�er overows its content

is sent to the root (see Fig. 1).

Figure 1: one root processor, 12 slave processors, three master processors

Critical parameters here are the number m of masters and the number t

of slaves in a consecutive set. These values obviously depend on the number
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to be factored which determines R and M and on the number of 1 +m+ s

processors the program will run on. Suppose T

cube

; T

change

; T

comm

; T

sieve

are

the times needed by one processor for the initialisation of one hypercube, for

the move along one edge of the hypercube, for one communication and for

the sieving, respectively. To avoid any idle times, m and t are then chosen

accordingly to:

s

t

(T

change

+ T

comm

) + T

cube

� m � (T

sieve

+ T

comm

)

This method of parallelisation seems applicable to client-server structured

networks, too, because servers typically have enough main memory for the

hypercube traversal data.

The demand for easier scalability leads to the second parallelisation idea.

Here the root process is running on the front-end computer. All processors

of the parallel machine are grouped into rings of r processors each. Every

ring works on its own hypercubes. The factorbase is split into r parts of

size R=r. Moving from one vertex to another, each processor in a ring �rst

computes its part of the modular roots of the new polynomial Q

ab

. After

2(r � 1) communications with its two neighbours involving 2R=r integers

every processor knows the modular roots of Q

ab

for the whole factorbase.

The sieve array is split into r parts, too. Every processor sieves its part

using blocks of prede�ned length. Any candidates found after the sieving

process will be stored in a local bu�er as in the �rst approach (see Fig. 2).

Figure 2: 16 processors grouped into rings of four

While the amount of data sent among the processors is roughly the same,

communicating processors are not as far apart as in the �rst approach. More

precisely, it proved essential to have communication only between physically

neighboured processors.
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A full description of our implementation concerning the communication

aspects will be given in [12].

5 Results and Conclusions

During development of our implementation several numbers in the range

from 39 to 91 digits were factorised. However, the factors had been known

beforehand and we therefore do not go into detail here.

The �rst new factorisation is that of the remaining 97 digit cofactor of

12

327

+ 1, namely

20 20744 77159 52927 76009 48240 57414 58126 58099 33659

53308 85724 55927 69199 90416 18031 26379 12970 62041 23709

from the Cunningham list [2]. We found the factors

3 18472 22390 43433 91950 61801 13623 14267 55054 00394 77811 18967

and

6 34512 09239 59276 02546 14461 12941 14196 14827

of 56 respectively 41 digits.

The factorbase contained 40.000 primes, the sieve 9 � 2

20

elements. From

11.400 hypercubes with l = 7 we totally used roughly 650.000 polynomi-

als. From `partial partial relations' we split about 1.100.000 numbers into

`large primes' (less than 2

32

) that had not been completely factored over the

factorbase. Altogether, about 46.000 useful relations were found. Of course,

little more than 40.000 would have done.

The overall running time was dominated by the sieving stage taking 38,5

hours at 1024 processors.

2

The next step, the factorisation of large primes for

`partial partial relations', adds approximately 2,5 hours at 1024 processors.

3

The linear algebra could completely be done on a single workstation.

On a second view, the size of the factorbase was rather small (the largest

prime in the factorbase was 1.014.649), and the sieve length was too big.

These values were chosen mainly because the number of cycles grows non-

linearly with the number of relations produced (see Fig. 3). Hence, a big

increase in the number of partial and partial partial relations seems more ap-

propriate than a small gain in the number of full relations and pairs of partial

relations originating from a larger factorbase and a smaller sievelength.

2

Actually, it was performed at 256 processors. In this case, scaling up is linear.

3

The actually used factors were found at our workstation cluster. The software for the

parallel machine then still was under development. Scaling up is very close to linear in

this case too.

8



10.000

20.000

30.000

40.000

500.000 1.000.000250.000 750.000 relations from sieve1.250.000

lower curve: full relations from sieve

upper curve: full relations from sieve and cycles

middle curve: full relations from sieve and cycles of length 2

full relations

progress in the factorisation of C101:

Figure 3: Growth of the number of cycles in the factorisation of C101

The graph of C101 was investigated in detail. Since we e�ectively did

not use a large prime bound, it was built from 1.328.204 partial and partial

relations (9.838 full relations from the sieve) and contained 1.470.729 nodes,

1.275.180 edges and 235.170 connected components. About 431.000 edges

built a large star around node 1, while the rest of about 832.000 edges was

scattered around. 39.621 cycles were in the component containing node 1.

Most of the components only had 1 edge. The cycle lengths were 11:155 � 2

edges, 9:868 � 3, 7:554 � 4, 5:109� 5, 2:946� 6, 1:638� 7, 738� 8, 343� 9,

270 cycles containing from 10 to 20 edges.

The main �nding is that all the cycles lie in one connected component

of the graph. The algorithm does not �nd a basis of cycles whose lengths

are shortest, but this does not seem necessary because the cycles are rather

short. Repeated deletion of leaves in the graph takes moderate computing

time (25 cuto� steps in about 15 minutes at an ordinary workstation) and

produces a much smaller subgraph which is equivalent to the original one

when searching and exploiting cycles. We intend to further investigate into

the structure of the factor graph [4].

Considering the use of a multiplier, we did not experience the savings in

computing time reported in the literature, because we �xed the size of the

factorbase in advance.
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In [7], Peralta estimated to gain a factor of 25 in the initialisation time

for the polynomials. Our version reached a signi�cantly better factor (de-

pending on the choice of l), which we attribute to the faster traverse of

the hypercubes. Even the overhead for the initialization of the hypercubes

does not compensate our improvement. [9] estimates the time to initialise

the polynomials to take about 20{30 % of the overall MPQS running time

(working around 100 digits). Using our techniques, this initialisation time

becomes very small compared to the total MPQS running time (less than

3% for a typical 100 digit number), which justi�es our parallelisation e�ort.

Also, taking full advantage of the hypercube variation would have been im-

possible if the processors would be stand-alone. Because of these results, we

feel encouraged to further deploy the theoretical insights we collected and

use and improve on the implementation described here.
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