
Factoring Integers Above 100 Digits

Using Hypercube MPQS

F. Damm, F.-P. Heider, G. Wambach

University of Cologne

March 3, 1994

Abstract

In this paper we report on further progress with the factorisation of integers using

the MPQS algorithm on hypercubes and a MIMD parallel computer with 1024 T805

processors. We were able to factorise a 101 digit number from the Cunningham list

using only about 65 hours computing time. We give new details about the hypercube

sieve initialisation procedure and describe the structure of the factor graph that saves

a signi�cant amount of computing time. At March 3rd, we �nished the factorisation

of a 104 digit composite.

1 Scope and Achievements

The integer factoring problem carries a long mathematical tradition. It is of cryptographic

signi�cance since about 16 years, when the �rst public-key cryptosystem algorithms ap-

peared. Several of these rely on the di�culty of factoring and thus we need to have reliable

data about factoring time when chosing parameter sizes for asymmetric cryptosystems and

the many protocols using them.

One year ago, a Parsytec MIMD parallel computer with 1024 T805 microprocessors

was installed at our university. At the same time, the second author gave a course on

parallelisation of number theoretic algorithms which led us to our factorisation project. We

chose the MPQS general purpose factoring algorithm and implemented a sieve initialisation

procedure using hypercubes that had been suggested before but was not yet implemented.

By the end of the last year, our work yielded the factorisation of a 97 digit cofactor of

12

327

+ 1 from the Cunningham list [BLSTW83] (C97 for short), the experiences of which

we described before.

In the meantime we continued with the project and obtained the factorisation of the

1

101 digit cofactor of 5

273

� 1 (C101), namely

5 56028 11293 76381 05007 45276 70973 97005 19820 97448 09147

14501 62657 88991 51675 71596 62654 25103 75972 77807 81281 ;

into the factors

3 76909 36915 50663 79919 58222 42521 83771

and

1 47523 02766 68658 47120 04868 63136

40646 58947 74138 14689 11613 43843 33811

of 36 and 66 digits. We could do this with about 65 hours processing time and won further

insight into the parameter selection for MPQS. Just in time, we completed the factorisation

of a composite cofactor of 104 digits (C104) of the Cunningham number 12

291

+1 into prime

factors of 40 and 65 digits.

The size of the composite number to be factored determines an upper bound for the di-

mension of the hypercubes used. Moving from a 97 digit composite to a 104 digit composite

enables us to increment the dimension by one which results in the expected reduction of

the time needed for the preparation stage. For example, only 3 out of 128 processors were

needed for the initialisation and the traversal of the hypercubes while the other processors

did the sieve. Thus the initialization time took less than 2.5 % of the whole computing

time, compared with 20{30 % in the classical MPQS.

Much of the computation time otherwise needed was saved by looking for cycles in

the \factor graph", following suggestions in [LeMa90]. Since the paper of Lenstra and

Manasse is very brief and no other work has been published, we describe the construction

and structure of this graph in greater detail here.

The main �ndings are that all our cycles lie in 1 connected component of the graph

and that most of the cyles are shorter than 10 edges. Furthermore, we found graphs

containing a large star at the node corresponding to 1, followed by a second star at the

node corresponding to the multiplier (if di�erent from 1) and the rest of the edges scattered

around very sparsely. An algorithm that repeatedly cuts o� the leaves of the graph takes

moderate computing time and produces a much smaller subgraph which is equivalent to

the original one when searching and exploiting cycles.

2

2 Details and Results

2.1 The Hypercube Variation

We assume familiarity with the `Multiple Polynomial Quadratic Sieve' (MPQS) algorithm

([Pome84],[Silv87]) and will sketch only the improved hypercube variation used by us.

Let N be the composite integer to be factored. After choosing a factorbase F of R

primes p

i

; 1 � i � R, and a sieve length M , a lot of quadratic polynomials Q

ab

(X) =

a

2

X

2

+ 2bX + c are generated, b

2

� N = a

2

c and jbj <

a

2

2

. It follows that Q

ab

(X) �

(a

2

X + b)

2

a

�2

mod N . The requirement jQ

ab

(�M)j � jQ

ab

(0)j � jQ

ab

(M)j leads to the

condition a

2

�

p

2N=M . For every such polynomial the roots modulo p

i

; 1 � i � R, must

be computed (the preparation stage), the interval [�M;M [\Z is sieved (the sieve stage),

and the candidates are collected.

Now for every prime p in the factorbase let t

p

be a square root of N mod p: t

2

p

�

N mod p. If p does not divide a, then

Q

ab

(x) � 0 mod p , x � (�b� t

p

)a

�2

mod p:

The t

p

's are independent of the Q

ab

and will be computed only once, but a

�2

mod p for

every a and for every p 2 F has to be computed.

In [Silv87] the a's are (pseudo-)primes not divisible by any p 2 F . Montgomery (quoted

in [PoST88]) and Peralta ([Pera92]) independently observed that if a = �

1

� : : : � �

l

is the

product of l primes �

i

(such that N is a quadratic residue modulo �

i

), there are 2

l

di�erent

values b mod a

2

with b

2

� N mod a

2

. Since Q

ab

(x) = Q

a(�b)

(�x), we get 2

l�1

di�erent

polynomials with each a.

Given �

j

; �

j

with

�

2

j

� N mod �

2

j

and

�

j

�

8

<

:

1 mod �

2

j

0 mod �

2

i

; i 6= j

every b can be written uniquely as b =

P

l

j=1

�

j

�

j

�

j

mod a

2

where �

j

2 f+1;�1g. We �x

j

= ��

j

�

j

mod a

2

such that

j

is less than

a

2

2

.

R. Peralta further noticed that the solution set of b

2

� N mod a

2

is structured like

an l-dimensional hypercube C

l

= IF

l

2

, vertices corresponding to solutions b. Two vertices

3

are adjacent if the corresponding solutions b; b

0

di�er at exactly one sign �

j

. He suggested

to follow a certain hamiltonian cycle of C

l

= (IF

l�1

2

� f0g) [(IF

l�1

2

� f1g) resulting in a

sequence k

i

; 1 � i � 2

l

� 1, with k

i

= j if step i changes coordinate j, such that the tour

b

i+1

= b

i

+ 2�

i

k

i

mod a

2

with �

i

= +1 or �1 depending on whether step i changes coordinate k

i

from � to + or

from + to � visits all vertices of the hypercube.

Whereas Peralta devised an algorithm requiring three additions and one multiplication

modulo every prime p in the factorbase to step from b

i

to b

i+1

, we use precomputed tables

of 2

j

a

�2

mod p and (a

2

� 2

j

)a

�2

mod p for 1 � j � l and every p in the factorbase to

obtain from the modular root x

i

= (�ba

�2

� t

p

a

�2

) mod p of Q

ab

i

(X) the root

x

i+1

= (x

i

� 2�

i

k

i

a

�2

) mod p

of Q

ab

i+1

(X) in only one addition mod p. The cost for doing this results in the additional

space consumption of 2lR integers. As a second improvement we sieve many hypercubes

at a time.

Nearly factored candidates out of the sieve stage are relations of the form

q

1

q

2

R

Y

i=0

p

c

i

i

� z

2

mod N

with q

i

= 1 or q

i

> p

R

prime. If both q

1

= q

2

= 1 this is called a full relation, otherwise a

partial relation. Exploiting the idea of using `partial partial relations' [LeMa90] more than

compensates for the negative e�ect that a-values from the polynomials used are divided

by several primes in the factorbase. We will describe this part in more detail in the next

but one section.

2.2 Sketch of the Parallelisation

The Parsytec GCel installed at our university's \Zentrum f�ur Paralleles Rechnen" is a

MIMD parallel computer and consists of 1024 Inmos T805 transputers. Every processor

has only 4 MByte RAM, 350 kByte of which are occupied by the operating system. There-

fore both parallel MPQS-implementations described in [CaSi88] and [Lens92] were not

applicable on our machine.

4

We just mention the development of two parallel approaches particularly suited for

MIMD parallel computers (a full description of both implementations including the com-

munication aspects will be given in [Wamb94]). While the �rst one is presently used, the

second one still is in an experimental phase. Both methods use a dedicated node (the `root')

whose only tasks consist in the collection of candidates and the input/output-operations.

In the �rst implementation we have two additional types of processors which we will

call `masters' and `slaves'. Each master creates its own set of hypercubes. After initializing

its �rst hypercube, the �rst master travels along the hamiltonian cycle described above. At

every vertex it computes the new set of modular roots of Q

ab

. These 2R integers and the

coe�cients of the polynomial are sent to a consecutive set of slaves which will sieve with

the same polynomial. After making busy all slaves, the �rst master leaves its hypercube

and initializes the second one. In the meantime the slaves that have �nished are at the

disposal of the second master, and so on. Each slave sieves its part of the sieve array with

the received roots. Any candidates found after the sieving process will be stored in a local

bu�er. When the bu�er overows its content is sent to the root. Critical parameters here

are the number of masters and the number of slaves in a consecutive set. These values

obviously depend on the number to be factored (determining R and M), the dimension of

the hypercubes and on the number of processors the program will run on. They are chosen

carefully to avoid any idle times.

The second parallelisation groups all processors but the root together into rings of

r processors each. Every group works on its own hypercubes. The factorbase is split

into r parts of size R=r. Moving from one vertex to another, each processor in a group

�rst computes its part of the modular roots of the new polynomial Q

ab

. After 2(r � 1)

communications with its two neighbours involving 2R=r integers every processor knows

the modular roots of Q

ab

for the whole factorbase. The sieve array is split into r parts,

too. Every processor sieves its part using blocks of prede�ned length. Any candidates

found after the sieving process will be stored in a local bu�er as in the �rst approach.

While the amount of data sent among the processors is roughly the same, communicating

processors are not as far apart as in the �rst approach, if the rings are mapped carefully

on the processors obeying the underlying physical topology. Therefore it seems worthwile

to let the root process runnning on the front-end computer and communicate to the root

via sockets.

5

2.3 Structure in the Factor Graph of Composite Numbers

Let F = fp

0

; : : : ; p

R

g be the factorbase with p

0

= �1 and R primes used to factor a number

N , let q, z, c

i

be integers (c

i

non-negative, i = 0; : : : ; R). We assume that no multiplier m

is used and treat m 6= 1 separately in the next section.

number factorised C97 C101 C104

sieve 9.437.184 12.582.912 15.728.640

factorbase 40.000 40.000 42.000

cubes 11.789 15.946 17.021

polynomials 671.913 712.524 2.110.604

computing time 39 h 65 h 177 h

full relations, initially 6.124 9.838 5.805

partial relations 1.207.688 1.328.204 3.337.419

pairs 7.055 11.155 5.780

full relations, including pairs 13.179 20.993 11.585

Table 1: Full Relations Found without Factor Graph

From the sieving stage we obtain a large number of partially factorised quadratic

residues modulo N (we call them \partial relations", like [LeMa90])

q

R

Y

i=0

p

i

c

i

� z

2

mod N (1)

We know that all divisors of q are larger than p

R

and we further have (assuming p

R

> 2

16

)

q � p

�

R

(2)

(p

2

R

< q < b

2

and q is composite) or q < 2

32

< p

2

R

(3)

� , 2

32

and the bound b are parameters of the algorithm. We used b = 10

8

with C97,

b = 2 � 10

8

with C101, b = 3 � 10

8

with C104 and � � 3. The compositeness in (3) is tested

with the Miller-Rabin algorithm.

If q < p

2

R

, we immediately know that q must be a prime. We store the relation, if

moreover q < 2

32

. This is because we do not want to exceed one machine word. In a

previous approach, we only stored partial relations with q < p

2

R

, if q < b held. The move

6

to q < 2

32

caused no signi�cant extra cost and the number of cycles in the factor graph

increased by about 10% (with b = 10

8

, C97).

The second interesting case in (3) is p

2

R

< q < b

2

and q is not prime. Then it must

consist of exactly two factors, say r and s:

q = r � s; p

R

< r; s <

b

2

p

R

(4)

In a �rst step we store all the q-values of partial relations (1) in an array, sort it and

look for double entries. Whenever a pair

q

R

Y

i=0

p

i

c

1;i

� z

2

1

mod N

q

R

Y

i=0

p

i

c

2;i

� z

2

2

mod N

appears, we can easily obtain a full relation (to store) for the �nal MPQS step:

R

Y

i=0

p

i

c

1;i

+c

2;i

�

z

1

z

2

q

!

2

mod N

With C97, we obtained 7.055 pairs of this kind from 1.207.688 partial relations, while

1.328.204 partial relations produced 11.155 pairs with C101 and 3.337.419 partial relations

made 5.780 pairs with C104. The computing time is additionally shown in table 1. The

sizes of the factorbases were restricted by the program used for the last step of the MPQS

algorithm and hence not optimal.

In the next step, we run a factorisation procedure on the q's in (4) to �nd r and s.

We use the Pollard �-algorithm with at most b

p

bc iteration steps using one polynomial.

Whenever the algorithm �nds a factor r, we calculate s = q=r and check whether r < 2

32

and s < 2

32

. If so, we store the relation for later use. Otherwise, we discard it.

With C101, we factored 886.334 q-values. 835.137 were found to factorise in two 32 bit

parts, 49.442 contained a factor � 2

32

and 3.582 could not be factored in 14.142 steps.

Now we are prepared to introduce and build the factor graph G = (V;E). The �rst

node in V is identi�ed with 1. All the primes q appearing in (1) and r; s appearing in (4,

1) make up the rest of the nodes. We put an edge e = (v;w) into the graph, i� v = 1 and

w = q, q a prime in (1) or v = r and w = s in (4). The graph of C101 contained 1.470.729

nodes and 1.264.025 edges.

7

number factorised C101

nodes edges leaves isolated nodes

full graph 1.470.729 1.264.025 1.197.630 |

1st optimisation 273.099 237.361 109.335 48.305

2nd 115.459 28.938 3.375

3rd 83.146 9.994 429

4th 72.723 3.842 61

5th 68.820 1.575 12

6th 67.233 617 4

7th 66.612 246 |

8th 66.366 100 |

9th 66.266 42 |

10th 66.224 23 |

11th 66.201 12 |

12th 66.189 6 |

13th 66.183 2 |

14th 66.181 1 |

15th 66.180 94.645 | |

Table 2: Deletion of Superuous Nodes from the Factor Graph

We basically use two graph algorithms to investigate and exploit the factor graph. The

�rst one is a breadth-�rst search algorithm and the second one cuts o� leaves and isolated

nodes repeatedly. By breadth-�rst search we look for cycles in G, whenever a cycle is

found, it is stored, the last edge traversed is deleted from G, and the search is continued.

We found that G(C101) contained 235.170 connected components. The graph contains

a large star at node 1 (about 431.000 edges) and a rest of about 832.000 edges distributed

between 1.470.728 nodes. We found 28.466 cycles in the component that contains node 1.

The deletion of all nodes that can not be part of cycles with repeated leaf-cutting is shown

in table 2. (Components containing one edge only are counted as two leaves here.)

We can deduce that G(C101) contained the reduced graph of 66.180 nodes and 94.645

edges in one single component, plus 1 tree of depth 14, 1 tree of depth 13, 4 trees of depth

8

12, ... , 63.937 trees of depth 2 and 1.197.630 leaves. Isolated nodes are left from tree

components of G with even diameter, i.e. G contained 48.305 tree components with two

edges diameter, 3.375 trees with 4 edges diameter, and so forth.

Using breadth-�rst search after fewer cuto� steps we found, that indeed most of the

components only contain 1 edge. 25 cuto� steps are not prohibitive in computer time

(about 15 minutes at an IBM RS 6000 / 53H) such that cycle search in even larger factor

graphs should be feasible with moderate memory sizes.

By the above procedure we get a collection of cycles that are a basis of the cycle space

of G. We do not �nd a basis of cycles whose lengths are shortest, which might be desirable

because of the cycle use (see below). However, our cycle lengths do not seem to make that

necessary: 9.868 were 3 edges long, 18.328 were between 4 and 9 edges and only 270 of

them were from 10 to 20 edges long.

10.000

20.000

30.000

40.000

upper curve: asolutions, bpairs, cycles

middle curve: asolutions, bpairs

lower curve: asolutions

full relations

bsolutions

progress in the factorisation of C.101:

500.000 1.500.0001.000.000

Figure 1: Development of the Overall Number of Full Relations with C101

Next, we can make a full relation out of each of the cycles found. Let us e.g. use a

9

10.000

20.000

30.000

40.000

upper curve: asolutions, bpairs, cycles

middle curve: asolutions, bpairs

lower curve: asolutions

full relations

1.000.000 2.000.000 3.000.000 bsolutions

progress in the factorisation of C.104:

Figure 2: Development of the Overall Number of Full Relations with C104

cycle of length 4 passing node 1, that is a situation like

1 � r �

Q

R

i=0

p

i

c

1;i

� z

2

1

mod N ; r � s �

Q

R

i=0

p

i

c

2;i

� z

2

2

mod N;

s � t �

Q

R

i=0

p

i

c

3;i

� z

2

3

mod N ; 1 � t �

Q

R

i=0

p

i

c

4;i

� z

2

4

mod N

which gives us

z

2

1

� z

2

2

� z

2

3

� z

2

4

� 1 � r � r � s � s � t � t � 1 �

R

Y

i=0

p

i

c

1;i

+c

2;i

+c

3;i

+c

4;i

mod N

= (r � s � t)

2

�

R

Y

i=0

p

i

c

1;i

+c

2;i

+c

3;i

+c

4;i

mod N

and thus

�

z

1

z

2

z

3

z

4

rst

�

2

�

R

Y

i=0

p

i

c

1;i

+c

2;i

+c

3;i

+c

4;i

mod N

This way we obtained 28.466 (33.004) more full relations for C101 (C104), which was suf-

�cient with 9.838 (5.805) and 11.155 (5.780) already available (table 3). The development

of the overall number of full relations as partial relations were found is sketched in �gures

1, 2.

10

number factorised C101 C104

full relations, initially 9.838 5.805

partial relations 1.328.204 3.337.419

full relations, from pairs 11.155 5.780

factorised q's 1.318.525 3.333.786

prime 432.191 299.357

composite 835.137 2.453.363

factor too large 49.442 558.304

no factorisation 3.582 22.762

full graph:

nodes 1.470.729 3.441.027

edges 1.264.025 2.750.587

components 235.170 723.444

reduced graph:

nodes 66.180 100.130

edges 94.645 133.133

components 1 1

cycles (further full relations) 28.466 33.004

cycle length:

3 9.868 5.769

4 : : : 9 18.328 24.361

10 : : : 19 270 2.865

20 : : : 49 8

overall nr. of full relations 49.459 44.589

Table 3: Factor Graph and Full Relations of C101 and C104

11

2.4 Using a Multiplier m 6= 1

It is common to use a multiplier to speed up MPQS. To obtain more small primes in the

factorbase, N is substituted by m � N for the construction of F and the sieve (with m a

small integer). We (e.g.) used m = 5 to factorise C97 and report on our �ndings in this

section.

Given that the size of the factorbase F is chosen �rst and the cycles in the factor graph

are used, we did not experience the savings in computing time estimated by Pomerance

et. al. [PoST88].

However, the factor graph gets an entirely di�erent shape with m 6= 1. We found it

containing two large stars at node 1 and node m now which are connected by a (1;m)-edge.

Hence, short cycles like (1;m)(m; q)(q; 1), with q a prime, are possible for many di�erent

q-values.

At �rst sight it seems to be a drawback that we have to treat 4 types of edges now

instead of two: From partial relations like (1) we might obtain edges

(1; q) with q a prime, q < 2

32

,

(m; q) with q a prime, q < 2

32

,

(r; s) with q = r � s, r; s primes, both < 2

32

,

(r; s)

m

with q = m � r � s, r; s primes, both < 2

32

.

We introduced an m ag for every edge in G to recognize edges of the second and fourth

type \containing" m. When factoring q from (1), we have to be careful whether possibly

m

2

divides q. However, with C97 this did not occur.

The graph is exploited similar to the case m = 1. With every cycle we distinguish two

cases. In the �rst case the cycle contains an even number of m-edges, e.g.

m � r �

Q

R

i=0

p

i

c

1;i

� z

2

1

mod N ; r � s �

Q

R

i=0

p

i

c

2;i

� z

2

2

mod N;

m � s � t �

Q

R

i=0

p

i

c

3;i

� z

2

3

mod N ; 1 � t �

Q

R

i=0

p

i

c

4;i

� z

2

4

mod N

Hence we get the full relation

�

z

1

z

2

z

3

z

4

mrst

�

2

�

R

Y

i=0

p

i

c

1;i

+c

2;i

+c

3;i

+c

4;i

mod N

The other case is a cycle containing an odd number of m-edges. We can not directly

use the above method now, however we are allowed to combine two cycles with an odd

12

number of m-edges. More precisely, we store the \�rst odd m-cycle", say

m � r �

Q

R

i=0

p

i

c

1;i

� z

2

1

mod N ; r � s �

Q

R

i=0

p

i

c

2;i

� z

2

2

mod N;

s � 1 �

Q

R

i=0

p

i

c

3;i

� z

2

3

mod N

and combine it to a full relation with every other odd m-cycle, say e.g.

m � t � u �

Q

R

i=0

p

i

c

4;i

� z

2

4

mod N ; m � u � v �

Q

R

i=0

p

i

c

5;i

� z

2

5

mod N;

m � v �

Q

R

i=0

p

i

c

6;i

� z

2

6

mod N

yielding the full relation

�

z

1

: : : z

6

m

2

rstuv

�

2

�

R

Y

i=0

p

i

c

1;i

+c

2;i

+c

3;i

+c

4;i

mod N

With C97, we found 36.489 full relations by this prodecure, which was far more than

would have been needed.

2.5 Outlook

Due to space and time limitiations, this paper shows only the most interesting and import-

ant parts of our results. We continue our work on the second parallelisation [Wamb94] and

the investigation of the structure of the factor graph [Damm94]. Of course, we are going

to factor bigger numbers in the near future too. We would be very grateful for comments.

2.6 Acknowledgement

We are very grateful to R. Schrader for generous support. We owe further thanks to

M. Behland for his help with the assembler programming, and to the \Zentrum f�ur Paral-

leles Rechnen" for o�ering computing time.

References

[BLSTW83] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagsta�,

Jr., Factorizations of b

n

�1 for b = 2, 3, 5, 6, 7, 10, 12, up to High Powers. American

Mathematical Society, Providence, Rhode Island, 1983.

[CaSi88] T. S. Caron, R. D. Silverman, \Parallel Implementation of the Quadratic Sieve",

Journal of Supercomputing, 1 (1988), pp. 273-290.

13

[Damm94] F. Damm, \Cycle Structures in the Factor Graph of a Composite Number", in

preparation.

[LeMa90] A. K. Lenstra, M. S. Manasse, \Factoring with two large primes" (Extended Ab-

stract), Advances in Cryptology, Eurocrypt '90, Lecture Notes in Computer Science

473 (1991), pp.72-82.

[Lens92] A. K. Lenstra, \Massively Parallel Computing and Factoring", Proceeding Latin

'92, Lecture Notes in Computer Science 583 (1992), pp.344 - 355.

[Pera92] R. Peralta, \A quadratic sieve on the n-dimensional cube", Advances in Crypto-

logy, Crypto '92, Lecture Notes in Computer Science 740 (1993), pp.324-332.

[Pome84] C. Pomerance, \The Quadratic Sieve Factoring Algorithm",Advances in Crypto-

logy, Eurocrypt '84, Lecture Notes in Computer Science 209 (1985), pp.169-182.

[PoST88] C. Pomerance, J. W. Smith, R. Tuler, \A pipeline architecture for factoring large

integers with the quadratic sieve algorithm", SIAM Journal of Computation, Vol.17,

No.2, pp.387-403, Apr. 1988.

[Silv87] R. D. Silverman, \The Multiple Polynomial Quadratic Sieve", Mathematics of

Computation, Vol.48, No.177, pp.329-339, Jan. 1987.

[Wamb94] G. Wambach, \A Comparison of Two Parallelisations of the MPQS Algorithm

on the Parsytec GCel", in preparation.

14

