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Abstract

Cutting plane algorithms have turned out to be practically successful computational tools

in combinatorial optimization, in particular, when they are embedded in a branch and

bound framework. Implementations of such \branch and cut" algorithms are rather com-

plicated in comparison to many purely combinatorial algorithms. The purpose of this

article is to give an introduction to cutting plane algorithms from an implementor's point

of view. Special emphasis is given to control and data structures used in practically

successful implementations of branch and cut algorithms. We also address the issue of

parallelization. Finally, we point out that in important applications branch and cut al-

gorithms are not only able to produce optimal solutions but also approximations to the

optimum with certi�ed good quality in moderate computation times. We close with an

overview of successful practical applications in the literature.



1 Introduction

Combinatorial optimization deals with a special type of mathematical optimization prob-

lems with the property that the set of feasible solutions corresponds to a �nite set. In its

most general form such a problem can be stated as follows.

Combinatorial optimization problem. Given a �nite set I (set of feasible solutions)

and a function f : I ! R, �nd an element I

?

2 I with

f(I

?

) = maxff(I) j I 2 Ig:

Such a general optimization problem is of no use unless we have a reasonable characteriza-

tion of the set of feasible solutions I and an algorithmic way for evaluating the objective

function value for each I 2 I.

A characterization of feasible solutions is usually easy, in many cases they correspond

to subgraphs of a given graph satisfying some structural property. Concerning evaluation

of objective functions, there is a simple concept that is, despite its simplicity, applicable to

many hard practical problems. Namely, the objective function is basically given by weight

coe�cients for the elements of the ground set leading to a linear objective function in the

following sense.

Linear combinatorial optimization problem. Given a �nite set E, a set I � 2

E

of subsets of E (feasible solutions) and a function c : E ! R. For each set F � E let

c(F ) :=

P

e2F

c(e). Find a set I

?

2 I with

c(I

?

) = maxfc(I) j I 2 Ig:

We call a linear combinatorial optimization problem by (E;I; c).

A linear combinatorial minimization problem can be transformed to a maximization prob-

lem by multiplying the objective function with �1.

Throughout this paper we only treat problems with a linear objective function. There-

fore we drop the term \linear", and and use combinatorial optimization problem instead

of linear combinatorial optimization problem.

Since the set of feasible solutions I is �nite, a combinatorial optimization problem

could in principle be solved by enumeration. However, the number of feasible solutions

can be very large, even exponential in the size of the set E how the following example

shows. A tour in a graph G = (V;E) is a set of edges forming a circuit which visits every

node exactly once. If the set of feasible solutions is given by all tours of a complete graph

on n nodes, then we have jEj =

n(n�1)

2

and jIj =

(n�1)!

2

. Hence the enumerative method

is in general impractical.

Combinatorial optimization problems are related to two optimization models: linear

programming and (mixed) integer linear programming. Linear programming is one of the

basic models in mathematical optimization. It is concerned with the following problem.
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Linear optimization problem (LP). Given a matrix A 2 R

(m;n)

, and vectors b 2 R

m

,

c 2 R

n

, �nd a vector x

?

2 R

n

, with

c

T

x

?

= maxfc

T

x j Ax � bg:

The function c

T

x : R

n

! R is called the objective function. The inequalities in the system

Ax � b are called constraints.

A linear optimization problem is also called a linear programming problem or a linear

program (LP). A linear minimization problem can be transformed to a linear maximiza-

tion problem by multiplying the objective function by �1. An equality constraint a

T

x = b

i

can be expressed by the two inequalities a

T

x � b

i

and �a

T

x � �b

i

. An inequality of the

form a

T

x � b is equivalent to the inequality �a

T

x � �b

i

. Upper or lower bounds on

variables can also be interpreted as inequalities. Therefore the de�nition given above can

be used without loss of generality.

Linear programmingproblems are very well studied and can by now be solved routinely

even on very large scale. Whereas several years ago only the simplex algorithm (see e.g.

Chvatal (1983)) was able to solve large problems, we have now also interior point methods

that can compete (for a state of the art survey see Lustig, Marsten and Shanno

(1992b)).

Unfortunately, only a minority of practical problems can be modelled as pure linear

programming problems. In many cases, some or all of the variables have to take integer

values. By adding integrality conditions to a subset of the variables we get a linear mixed

integer optimization problem.

Linear mixed integer optimization problem. Given a matrix A 2 R

(m;n)

, vectors

b 2 R

m

, c 2 R

n

, and a subset I � f1; : : : ; ng, �nd a vector x

?

2 R

n

with

c

T

x

?

= maxfc

T

x j Ax � b; x

i

integer for all i 2 Ig:

If all variables are required to be integer, i.e., I = f1; : : : ; ng, the linear mixed integer

optimization problem becomes an integer linear optimization problem. If the vari-

ables of the set I have to be 0 or 1, the optimization problem is called (mixed) zero-one

optimization problem.

There has been signi�cant progress in the development of codes for solving (mixed)

integer programming problems. But still, problems with several hundreds of variables and

constraints can be di�cult to solve depending on the speci�c problem structure.

Connections between combinatorial optimization and linear or zero-one linear opti-

mization can be established as follows. For the �nite ground set E let R

E

be the R-

vectorspace indexed by the elements of E.
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Incidence Vector. Given a �nite set E, and a set F � E, the incidence vector

�

F

2 R

E

is de�ned by

�

F

e

=

�

1; if e 2 F

0; if e 62 F

With a combinatorial optimization problem (E;I; c) we associate the polytope

P

I

= convf�

I

j I 2 Ig;

i.e., the convex hull of the incidence vectors of feasible sets.

Because the incidence vectors are 0-1-vectors, they are exactly the vertices of the

polytope P

I

. If we associate with the function c : E ! R of a combinatorial optimization

problem a vector c 2 R

E

, we can solve the combinatorial optimization problem by solving

the optimization problem maxfc

T

x j x 2 P

I

g. Unfortunately, we do not know any e�cient

algorithm to solve an optimization problem, when the solution space is only de�ned as the

convex hull of a set of points. However, according to classical results of Farkas, Weyl and

Minkowski (see Schrijver (1986)) there exists a �nite set of inequalities Ax � b, such

that P

I

= fx j Ax � bg (recall that an equation can be substituted by two inequalities).

Hence we could in principle transform the combinatorial optimization problem (E;I; c) to

the linear program maxfc

T

x j Ax � bg.

In fact, there are �nite algorithms to transform one representation of the polytope P

I

into the other that can be used for very small problem instances (cf. Christof, J

�

unger

and Reinelt (1991), Euler and Le Verge (1992) and Reinelt (1993) for examples).

But, for combinatorial optimization problems the number of inequalities in Ax � b is

usually simply too large to be represented explicitly. It will turn out, however, that this

di�culty can be dealt with at least to some extent.

The system of inequalities Ax � b with P

I

= fx j Ax � bg is also called the linear

description of a combinatorial optimization problem. Unfortunately, for most combina-

torial optimization problems only a very small part of the linear description is known.

Moreover, for no NP-hard combinatorial optimization problem a complete linear descrip-

tion could be given so far and Karp and Papadimitriou (1982) showed that it cannot be

found unless NP = co-NP (most computer scientists however assume that NP 6= co-NP).

Nevertheless, we will show that even a partial linear description provides us with a rather

powerful tool for the solution of hard combinatorial optimization problems.

Easier than the description of the polytope P

I

of a combinatorial optimization prob-

lem (E;I; c) by linear inequalities is the formulation of an equivalent integer optimization

problem, which is called integer programming formulation of the combinatorial opti-

mization problem. Since here the variables are required to be integral, respectively binary,

we can expect that a smaller number of constraints is su�cient for the description of the

problem. Usually a comparatively small subset of the constraint system Ax � b with
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P

I

= fx j Ax � bg gives an integer programming formulation. However, the number of

required inequalities can still be exponential in the size of jEj.

We give some examples of combinatorial optimization problems and their respective

integer programming formulations. The �rst three problems are de�ned on directed or

undirected graphs and the set of feasible solutions consists of subgraphs with a special

property. An integer optimization problem can be formulated by associating a variable x

e

with every edge (arc) of the given graph (digraph) with the interpretation that x

e

= 1 if

the edge (arc) is in the subgraph and x

e

= 0 otherwise. For a node set W of a graph we

denote by �(W ) the set of edges with exactly one endnode in W (if W = fvg we write

�(v)). Edge sets induced by a node set W in this way are called cuts. For W � V we

denote by E(W ) the set of all edges in E with both endnodes in W . For an edge (arc) set

F we denote by x(F ) the sum of the variables associated with the edges (arcs) in F .

The symmetric traveling salesman problem. Given the complete graph K

n

=

(V

n

; E

n

) with edge weights c

e

for every e 2 E

n

, the symmetric traveling salesman problem

is to �nd a tour with minimum length, i.e., with minimum sum of its edge weights.

An integer programming formulation of the symmetric traveling salesman problem is

given by

min c

T

x

s.t. x(�(v)) = 2 for all v 2 V (1)

x(�(W )) � 2 for all ; 6=W � V (2)

0 � x � 1

x integer

The equations (1) require that each node is incident to exactly two edges and are called de-

gree constraints. The inequalities (2) forbid subtours, and are therefore called subtour

elimination constraints.

The max-cut problem. Given a graph G = (V;E) with edge weights c

e

for every

e 2 E, the max-cut problem is to �nd a subset S � V , such that the sum of the weights

of the edges of the cut �(S) induced by S is maximum.

The max-cut problem with nonpositive edgeweights can be solved in polynomial time

by an an algorithms of Gomory and Hu (1961), the general problem is NP-hard.

Since every cut and every cycle intersect in an even number of edges, we get the

following integer programming formulation of the max-cut problem.

max c

T

x

s.t. x(F ) � x(C n F ) � jF j � 1 for all cycles C � E and all F � C; jF j odd (3)

0 � x � 1

x integer

The inequalities (3) are the odd cycle constraints.
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The linear ordering problem. Given the complete directed graph D

n

= (V

n

; A

n

)

with arc weights c

a

for every a 2 A

n

, �nd a subset of A

n

of maximum weight which

contains no directed cycle and for every pair of nodes exactly one arc connecting these

nodes. An arc set satisfying these conditions is called acyclic tournament and it is easy to

see that it induces a linear ordering of the nodes of V

n

.

The integer programming formulation is based on the fact that a subset of arcs with

exactly one arc connecting each pair of nodes contains no cycle if it contains no cycle

consisting of three edges. The integer optimization problem is the following.

max c

T

x

s.t. x(C) � 2 for all cycles C; jCj = 3 (4)

x

ij

+ x

ji

= 1 for all 1 � i < j � n (5)

0 � x � 1

x integer

Whereas for the symmetric traveling salesman problem it has turned out that it is con-

venient to keep all the equations in the problem formulation, the simple structure of the

integer programming formulation of the linear ordering problem is used to project out all

x

ij

with i > j via the equation x

ij

= 1� x

ji

.

Note a subtle di�erence in these three problems. In the traveling salesman problem each

feasible subgraph contains n edges, in the linear ordering problem each feasible set is given

by

n(n�1)

2

arcs, and cuts may consist of 0 up to b

n

2

c � d

n

2

e edges. This di�erence is of

importance for the use of sparse graph techniques to be discussed in section 4.5.

To avoid the impression that there are only combinatorial optimization problems

de�ned on graphs we give another important example.

The knapsack problem. Given n objects with weights a

i

2 R and and values c

i

2 R

for each object i = 1; : : : ; n. The knapsack problem is to select a subset S of the objects

that the sum of the weights of all objects in S is less than a given upper bound b 2 R and

the sum of the values of all objects in S is maximum. An integer programming formulation

of this problem is the following.

max c

T

x

s.t. a

T

x � b (6)

0 � x � 1

x integer

All four examples are NP-hard combinatorial optimization problems.
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2 Cutting planes

Suppose we have to solve a linear optimization problem whose set of constraints is too large

to be represented explicitly on a computer or too large to be handled by the LP-solver.

In such a case we can still attempt to solve the problem with the following approach. We

start with a small subset of the constraints and compute an optimum solution subject to

these constraints. We now check if any of the constraints not in the current linear program

is not satis�ed. If such constraints are present, we add one or more of them to the current

LP and resolve it. If no constraint is violated, then the current optimum solution also

solves the original problem. This is the basic principle of the so-called cutting plane

approach, whose name originates from the fact that the constraints added to the current

LP \cut o�" the current solution because it is infeasible for the original problem.

Note the important fact that the approach does not require that an explicit list of

the constraints de�ning the original problem has to be present. Required is \only" a

method for identifying inequalities that are valid for the original problem but violated by

the current solution. In subsection 4.3 we will give an example for such an algorithm.

The essential tool for the solution of combinatorial optimization problems with cutting

plane algorithms are valid inequalities.

Valid inequality of a combinatorial optimization problem. Given an integer

programming formulation maxfc

T

x j Ax � b; x integerg of a combinatorial optimization

problem, an inequality f

T

x � f

0

is called valid, if fx � f

0

for all feasible solutions

x 2 fx j Ax � b; x integerg.

If we know a class of valid inequalities, we have to be able to check if a constraint of this

class is violated by the current solution, i.e., we must solve the following problem.

The general separation problem. Given a class of valid inequalities for a combinato-

rial optimization problem, and a vector y 2 R

n

, either prove that y satis�es all inequalities

of this class, or �nd an inequality of this class which is violated by y.

An algorithm which solves the general separation problem is called exact separation al-

gorithm. Unfortunately, exact algorithms are often not known for classes of valid inequal-

ities or it can even be shown that the separation problem for a certain class of inequalities

is NP-hard. In this case we have to resort to a heuristic separation algorithm, which

may �nd violated inequalities, but if it fails, it is not guaranteed that no constraint of the

class is violated.

We state now a generic cutting plane algorithm for solving a combinatorial optimiza-

tion problem. Let maxfc

T

x j Ax � b; x integerg be an integer programming formulation.

Cutting Plane Algorithm

(1) Set A

0

=

�

I

�I

�

and b

0

=

�

1

0

�

where 1 and 0 are appropriate vectors of all 1's and 0's.
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(2) Solve the LP c

T

x = maxfc

T

x j A

0

x � b

0

; x 2 R

n

g.

(3) If x corresponds to a feasible solution of the combinatorial optimization problem then

output x and stop.

(4) Generate a cutting plane (f; f

0

); f 2 R

n

; f

0

2 R with

f

T

x > f

0

and

f

T

y � f

0

for all y 2 fx j Ax � b; x integerg.

(5) Add the inequality f

T

x � f

0

to the constraint system (A

0

; b

0

).

(6) Go to (2).

The above formulation of the algorithm takes into account that already the number

of inequalities in the integer programming formulation can be too large for explicit repre-

sentation. In such a case one can start with the trivial constraint system 0 � x � 1. The

inequalities Ax � b are valid inequalities which can serve as cutting planes. However, an

integral solution coming up in the course of the algorithm is only the incidence vector of a

feasible solution of the combinatorial optimization problem if no inequality of the system

Ax � b is violated.

This algorithm is only correct under the assumption that all LPs in step (2) can be

solved, that in step (4) always a cutting plane can be generated, and that the algorithm

terminates after a �nite number of iterations.

The requirement that a cutting plane can be generated as long as the LP-solution is

not an incidence vector of a feasible solution of the combinatorial optimization problem is

very strong. Also if a cutting plane algorithm does not �nd a cutting plane in any case,

it may be of some use. Namely, if no more cuts can be generated, yet the solution is not

a feasible incidence vector, the �nal objective function value gives an upper bound for the

optimal solution. This value can be used to assess the quality of a known feasible solution,

which e.g., results from a heuristic. In the case that no cutting plane can be generated in

step (4), we have to resort to branch and bound (see section 3) to solve the problem to

optimality.

The outlined cutting plane algorithm is rather rudimentary. We omit further re�ne-

ments here, like elimination of constraints, sparse graph techniques, �xing of variables,

etc., because they will be covered in the detailed outline of a branch and cut algorithm in

section 4.

It is not clear at this point that such an approach is useful at all. Yet, this has been

veri�ed by many practical computations that are listed in section 7.

We now address the question how further cutting planes can be found if the optimum

solution of the LP maxfc

T

x j A

0

x � b

0

g is not integral, but no inequality of the system

Ax � b is violated.

First of all we can use classes of cutting planes that can be applied to any integer

or mixed integer optimization problem. We call such cutting planes general purpose

7



cutting planes, since they are not problem speci�c and can be employed for the solution

of every integer optimization problem.

The �rst cutting plane algorithms for integer and mixed integer programs were intro-

duced by Gomory (1958, 1960, 1963), who also proved that these algorithms terminate

with an optimum solution after a �nite number of iterations. Unfortunately, it turned

out in practical experiments that the Gomory cutting planes provide very weak cuts

leading to numerical problems, and only rather small integer optimization problems can

be solved to optimality with this method.

Crowder, Johnson and Padberg (1983) use minimal cover inequalities and

(1; k)-con�gurations for the solution of zero-one linear optimization problems. These

cutting planes are derived from facets (will be explained below) of the polytope P

I

of the

knapsack problem de�ned by each constraint in the formulation of the zero-one optimiza-

tion problem. This approach is re�ned and generalized in Van Roy and Wolsey (1987)

and Hoffman and Padberg (1991).

For mixed zero-one linear optimization problems Balas, Ceria and Cornuejols

(1993a, 1993b) generate cutting planes by a lift-and-project method. The compu-

tational results are very promising and show that these cutting planes outperform the

Gomory cuts.

Fenchel cuts for integer optimization problems are introduced in Boyd (1993a,

1993b, 1993c).

For solving combinatorial optimization problems, these general cuts seem to be of lim-

ited use. Successful computational work relies on cutting planes designed for the particular

problem.

A very successful method for the derivation of problem speci�c cutting planes is

the investigation of the polytope P

I

associated with a combinatorial optimization prob-

lem (E;I; c). An inequality d

T

x � d

0

with d 6= 0 is called a valid inequality with respect

to a polytope P � R

n

if P � fx 2 R

n

j d

T

x � d

0

g. If d

T

x � d

0

is a valid inequality and

the intersection of the (n � 1)-dimensional a�ne subspace H = fx j d

T

x = d

0

g with P is

neither empty nor equals P , then F = P \ H is called a face of P de�ned by the valid

inequality d

T

x � d

0

. Let s = dim(P ) be the dimension of P . The (s�1)-dimensional faces,

i.e., the faces with maximum dimension, are called facets of P . If F = P \fx j d

T

x � d

0

g

is a facet the polytope P , the inequality d

T

x � d

0

is called facet de�ning inequality for

P .

Every facet of this polytope implies a valid inequality for the corresponding integer

programming formulation. Facet de�ning inequalities of the polytope P

I

are not domi-

nated by any other valid inequality and therefore in some sense the best cutting planes.

However, it is in general not simple to to �nd facet de�ning inequalities (see Gr

�

otschel

and Padberg (1985), Nemhauser and Wolsey (1988) and Pulleyblank (1989)).

Furthermore, it should be kept in mind that, for algorithmic purposes, facet de�ning in-

equalities are only useful if their separation problem can be solved exactly or at least be

attacked with heuristics.
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Cutting plane algorithms using problem speci�c cutting planes, e.g. facet de�ning in-

equalities, often have to stop without �nding an optimum solution. This can have two dif-

ferent reasons. First, for noNP-hard combinatorial optimization problem a complete linear

description is known. Second, even if a big class of facets is known, no e�cient algorithm

may be available for the solution of the exact separation problem of this class. Neverthe-

less, large instances of NP-hard combinatorial optimization problems can be solved with

the help of facet de�ning cutting planes in combination with a sophisticated enumeration

procedure as we will outline in section 4.

Of course, one can also design hybrid cutting plane algorithms which combine general

purpose cutting planes and problem speci�c cutting planes in the following way. When

generating cutting planes we �rst try to separate a problem speci�c, preferably facet de�n-

ing inequality. If this fails, we generate a general purpose cutting plane, e.g., a Gomory cut

or a lift-and-project cut. Such hybrid algorithms are used by Miliotis (1978), Laporte

and Norbert (1980) and Miliotis, Laporte and Norbert (1980).

3 Solving problems to optimality

The cutting plane approach outlined so far does not necessarily solve a problem instance to

optimality for various reasons discussed above. We may get stuck at a solution which is not

the incidence vector of a feasible solution of the combinatorial optimization problem. At

this point we can employ another basic algorithmic technique for solving hard combinatorial

optimization problems: branch and bound (or implicit enumeration). This technique

was designed for the solution of mixed integer optimization problems by Land and Doig

(1960) and Dakin (1965) and re�ned in the following years (see e.g. Gauthier and

Ribiere (1977)).

Branch and bound is a divide-and-conquer approach trying to solve the original prob-

lem by splitting it into smaller problems for which upper and lower bounds are computed.

The crucial part of a successful branch and bound algorithm is the computation of upper

bounds for these subproblems. Here one uses the fundamental concept of relaxation.

Relaxation. Given two combinatorial optimization problems (E;I; f), (E

0

;I

0

; f

0

) and

an injective function ' : E ! E

0

. (I

0

; f

0

) is a relaxation of (I; f), if '(I) 2 I

0

and

f(I) = f

0

('(I)) for all I 2 I.

Hence a solution of the relaxed problem gives an upper bound on the optimum objective

function value of the problem it was derived from. The tighter the relaxation, the better

this bound will be. But a relaxation is only useful, if it can be treated e�ciently by

optimization algorithms.

By dropping the integrality conditions of the variables of an integer programming

formulation of a combinatorial optimization problem we get a linear programming re-

laxation, which is basic in the context of cutting plane algorithms. This relaxation can

be tightened by adding further valid inequalities.
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COMPUTE  
GLOBAL LOWER

BOUND glb
AND 

LOCAL UPPER
BOUND lub

START

OUTPUT

STOP

glb < lub

feasible BRANCH

SELECT
n

y

FATHOM
n

y

n

INITIALIZE

y

list empty

Figure 1. Flowchart of the branch and bound algorithm.

Before we start explaining the 
owchart of the branch and bound algorithm of Figure 1,

we introduce some terminology concerning upper bounds (derived from solving relaxations)

and lower bounds (obtained by �nding feasible solutions). We call an upper bound local,

if it is only valid for a subproblem, and global, if it is a bound for the original problem.

By solving a relaxation of the current problem, we obtain a local upper bound lub

for the objective function value of the original problem. If the solution found for the

relaxation happens to be feasible for the original problem (in which case it is also the

optimum solution of the subproblem) and has higher objective function value than any

feasible solution found so far, it is memorized and the global lower bound glb for the

objective function value is increased accordingly.

A branch and bound algorithm maintains a list of subproblems of the original prob-

lem, which is initialized with the original problem itself. In each major iteration step the

algorithm selects a subproblem from this list, computes a local upper bound for this sub-

problem, and tries to improve the global lower bound. If the local upper bound does not

exceed the global lower bound, the current subproblem is fathomed, because its solution

cannot be better than the best known feasible solution. Otherwise we check if the optimal

solution of the relaxation of the subproblem is a feasible solution of the original problem.

In this case we have solved the subproblem and thus, it is fathomed.

If the local upper bound exceeds the global lower bound and no feasible solution

was found for the current problem, we perform a branching step by splitting the current
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subproblem into a collection of new subproblems whose union of feasible solutions contains

all feasible solutions of the current subproblem. The simplest branching rule consists

of de�ning two new subproblems in one of which a �xed variable is required to have the

value 1 in the solution and in the other one to have the value 0 in the solution. Di�erent

branching rules are presented in section 4.

If the list of subproblems becomes empty, then the memorized feasible solution whose

objective function value is equal to the global upper bound can be output as the optimum

solution.

Important for the e�ciency of a branch and bound algorithm is not only the quality

of the used relaxation technique, but also the quality of the generated feasible solutions,

since otherwise, the number of generated subproblems becomes rapidly very large.

Earlier approaches for the solution of hard combinatorial optimization problems com-

bined problem speci�c cutting planes with a commercial branch and bound software

(Crowder and Padberg (1980) and Gr

�

otschel and Holland (1991)). A relax-

ation of the integer programming formulation is attacked with a cutting plane algorithm,

which generates preferably facet de�ning violated constraints. If the cutting plane proce-

dure terminates with a solution which is not the incidence vector of a feasible solution, the

�nal relaxation of the problem is solved to optimality by a commercial branch and bound

algorithm, like e.g., IBM's MPSX-MIP (IBM (1979). The integer solution found by branch

and bound might not necessarily be a feasible solution of the combinatorial optimization

problem, if the �nal relaxation is not an integer programming formulation of the origi-

nal problem. In this case violated constraints of the integer programming formulation are

added to the relaxation, which is again subjected to the branch and bound algorithm. This

process is iterated until the optimum solution of the combinatorial optimization problem

is found. The disadvantage of this technique is that no problem speci�c cutting planes are

separated in the subproblems generated by the branch and bound algorithm.

4 Branch and Cut

We will now discuss in detail the algorithmic approach for solving hard combinatorial

optimization problems that has become standard in the last years: branch and cut. Its

main di�erence from the classical branch and bound method is the use of LP relaxations

and the employment of problem speci�c cutting planes at every node of the enumeration

tree. This feature incurs several technicalities that make the design and implementation

of branch and cut algorithms a nontrivial task. We will address such technical details and

give some ideas for further enhancements that proved to be useful in practice.

The �rst combination of problem speci�c valid inequalities and branch and bound

methods can be found in Miliotis (1976) for the traveling salesman problem. The use of

facet de�ning cutting planes and enhanced automatic cutting plane generation in combina-

tion with branch and bound in the form we will outline in this section was �rst published

in Gr

�

otschel, J

�

unger and Reinelt (1984b) for the linear ordering problem. The
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term \branch and cut" has been introduced in Padberg and Rinaldi (1987, 1991) for

an algorithm for the solution of the traveling salesman problem. Here many important

algorithmic details were investigated for the �rst time.

In our description, we proceed as follows. First we describe the enumerative part of

the algorithm, i.e., we discuss in detail how branching and selection operations can be

performed. Then we explain the work done in a subproblem of the enumeration. After

discussing sparse graph techniques, we give a short survey on the required data structures.

There are two major ingredients of a branch and cut algorithm, the computation of

global lower and local upper bounds. The upper bounds are produced by performing an

ordinary cutting plane algorithm for each subproblem.

Two basic techniques for the computation of lower bounds (corresponding to feasible

solutions of the original problem) are currently being used. The �rst method is to compute

a good lower bound by some heuristics before the root node of the complete branch and cut

tree is processed. Later this bound can only be improved, if the solution of a linear program

is the incidence vector of a better feasible solution. The other method is the computation

of lower bounds in the cutting plane phase by exploiting fractional LP-solutions. This

technique may require more running time spent for heuristics, yet may decrease the total

running time, since the size of the enumeration tree may be smaller.

A �rst outline of the branch and cut algorithm is given in the 
owchart of Figure 2.

Roughly speaking, the two leftmost columns describe the cutting plane phases within a

single subproblem, the third column shows the preparation and execution of a branching

operation, and in the rightmost column, the fathoming of a subproblem is performed.

4.1 Terminology

We give informal explanations of all steps of the 
owchart. But before going into detail,

we have to de�ne some terminology.

Since in a branching step like in a branch and bound algorithm two (or more) new

subproblems are generated, the set of all subproblems can be represented by a binary (k-

nary) tree, which we call branch and cut tree. Hence we call a subproblem also branch

and cut node. Figure 3 shows an example of a branch and cut tree. We distinguish

between four types of branch and cut nodes. The node which is currently processed is

called the current branch and cut node. The other unfathomed leaves of the branch

and cut tree still have to be processed and are called the active nodes. Finally, there are

the already processed nonactive nodes. A non-active node can either be fathomed or

not fathomed.

Each variable has one of the following statuses during the computation: atlower-

bound, basic, atupperbound, settolowerbound, settoupperbound, fixedtolowerbound,

fixedtoupperbound. When we say that a variable is �xed to zero or one, it means that

it is at this value for the rest of the computation. If it is set to zero (lower bound) or one

(upper bound), this value remains valid only for the current branch and cut node and all

branch and cut nodes in the subtree rooted at the current one in the branch and cut tree.
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Figure 2. Flowchart of the branch and cut algorithm.
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Figure 3. Branch and cut tree

The conditions for �xing and setting variables will be explained later. The meanings of

the other statuses are obvious: As soon as an LP has been solved, each variable which has

not been �xed or set receives one of the statuses atlowerbound, basic or atupperbound

by the revised simplex method with lower and upper bounds.

Finally, the variable lpval always denotes the optimal value of the last LP that has

been solved, which is also a local upper bound lub for the currently processed node,

the global variable glb (global lower bound) gives the value of the currently best known

feasible solution. The maximum upper bound of all active branch and cut nodes and the

current branch and cut node is the global upper bound gub for the whole problem. The

subtree rooted at the highest common ancestor of all active and the current branch and

cut nodes is called the remaining branch and cut tree. Therefore, we call this highest

common ancestor also the root of the remaining branch and cut tree and the local

upper bound of this node is called rootub. The di�erence between gub and rootub will

be discussed below.

Like in branch and bound terminology we call a subproblem fathomed, if the local

upper bound lpval of this subproblem is less than or equal to the global lower bound

glb, or if the subproblem becomes infeasible (e.g., if branching variables have been set in

a way that the subproblem does not contain any feasible solution), or if the subproblem is

solved, i.e., the solution of the LP-relaxation is a feasible solution of the original problem.

The branch and cut algorithm consists of three di�erent parts: The enumerative

frame, the computation of upper bounds and the computation of lower bounds. It is easy

to identify the boxes of the 
owchart of Figure 1 with the dashed boxes of the 
owchart

of Figure 2.

The central part is the upper bounding part which is performed after the selection of

a new current subproblem. It consists of trying to solve the current problem by optimizing
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over LP relaxations that are tightened by adding cutting planes. This bounding part is left,

{ if the local upper bound is less than or equal to the global lower bound,

{ if the LP solution is the incidence vector of a feasible solution,

{ if no more cutting planes can be generated,

{ if infeasibility of the current subproblem is detected,

{ if the upper bound does not decrease signi�cantly, although cutting planes are added

(tailing off).

It is advantageous, although not necessary for the correctness of the algorithm, to reenter

the bounding part if variables are �xed or set to new values by FIX AND SET, instead of

creating new subproblems in BRANCH.

4.2 Enumerative frame

The enumerative frame consists of all parts of the branch and cut algorithm except the

bounding part (the dashed box in the leftmost column of Figure 2).

INITIALIZE

After the input of problem, the set of active branch and cut nodes is initialized as the

empty set. To initialize the global lower bound glb, feasible solutions are computed by

some heuristic methods. We explain the details in subsection 4.4. Afterwards the root

node of the complete branch and cut tree is processed by the bounding part.

BOUNDING

The computation of the lower and upper bounds is outlined in the subsections 4.3 and 4.4.

We continue the explanation of the enumerative frame at the ordinary exit of the bounding

part (at the end of the �rst column of the dashed bounding box). If the current branch and

cut node cannot contain a feasible solution which is better than the best known one (lpval

� glb), or the �nal LP-solution is the incidence vector of a feasible solution (feasible),

the node is fathomed. Otherwise a branching operation and the selection of another branch

and cut node for further processing (third column of the 
owchart) is prepared.

FIX AND SET

The routine FIX AND SET of Figure 2 consists of the four procedures FIXBYREDCOST,

FIXBYLOGIMP, SETBYREDCOST and SETBYLOGIMP. If a branching operation is

prepared, and the current branch and cut node is the root node of the branch and cut

tree, the reduced cost of the nonbasic variables obtained from the LP-solver can be used

to �x them forever at their current values by the routine FIXBYREDCOST. Namely, if

the variable x

e

is nonbasic and the reduced cost is r

e

, x

e

can be �xed to zero if x

e

= 0 and

rootub + r

e

< glb and x

e

can be �xed to one if x

e

= 1 and rootub � r

e

< glb.

During the computational process, the value of glb increases, so that at some later

point in the computation, one of these criteria can be satis�ed, even though it is not

satis�ed at the current point of the computation. Therefore, after processing the root
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old root

new root

Figure 4. Root change of remaining branch and cut tree.

node of the branch and cut tree, a list of candidates for �xing of all nonbasic variables

is made along with their values (0 or 1) and their reduced costs, and rootub is initialized.

This list of candidates for �xing and the value of rootub can be updated each time

when we get a new root of the remaining branch and cut tree. We get a new root of the

remaining branch and cut tree, if all nodes in all subtrees except one subtree of the old root

are fathomed (see Figure 4). Since storing these lists in every node, which might eventually

become the root node of the remaining active nodes in the branch and cut tree, would use

too much memory space, the complete bounding part is processed a second time for the

node, when it becomes the new root. If the constraint system for the recomputation

could be initialized by those constraints, which were present in the last LP of the �rst

processing of this node, only a single call of the simplex algorithm would be necessary.

However, the storage of all these constraints would require again too much memory. The

constraint system can be initialized for instance with the constraints of the last solved LP.

If some constraints are separated heuristically, it is not guaranteed that the same local

upper bound can be achieved as in the previous bounding phase. Therefore not only the

reduced costs and statuses of the variables of this recomputation have to be used, but

also the corresponding local upper bound as rootub in the subsequent calls of the routine

FIXBYREDCOST. This explains why we distinguish between gub and rootub. If the basis

is initialized by the variables contained in the best known feasible solution and the primal

simplex algorithm is called, phase 1 of the simplex method can be avoided. Of course this

recomputation is not necessary if the root of the remaining branch and cut tree is currently

processed, e.g., the �rst processed node. The list of candidates for �xing should be checked

by the routine FIXBYREDCOST whenever it has been freshly compiled or if the value of

the global lower bound glb has improved since the last call of FIXBYREDCOST.

FIXBYREDCOST may �nd that a variable can be �xed to a value opposite to the

one it has been set to (contradiction). This means that earlier in the computation,

somewhere on the path of the current branch and cut node to the root of the branch and

cut tree, an unfavorable decision has been made which led to this setting either directly

in a branching operation or indirectly via SETBYREDCOST or SETBYLOGIMP (to be

discussed below). Hence the current branch and cut node can be fathomed immediately.

16



After variables have been �xed by FIXBYREDCOST, FIXBYLOGIMP should be

called. This routine tries to �x more variables by logical implications by exploiting the

structure of a special combinatorial optimization problem. For instance, in the case of the

symmetric traveling salesman problem, if two variables corresponding to edges incident to

a node v are fixedtoupperbound, all other edges (variables) incident to the node v can

be fixedtolowerbound. These �xings of variables by logical implications have no direct

in
uence on the following optimization process, yet in this case they can decrease the size

of the LP, as we will explain in INITIALIZE NEW NODE. Fixing by logical implications

becomes more important for the max-cut problem. E.g., if two edges (u;w) and (v;w) are

fixedtoupperbound, it follows that u and v must be on the same shore of the cut, i.e.,

the edge (variable) (u; v) can be fixedtolowerbound.

While �xings of variables are globally valid for the whole computation, variable set-

tings are only valid for the current branch and cut node and all branch and cut nodes in the

subtree rooted at the current branch and cut node. SETBYREDCOST sets variables by

the same criteria as FIXBYREDCOST, but based on the local reduced cost and the local

upper bound lub of the current subproblem rather than \globally valid reduced cost" and

the upper bound of the root node rootub. Contradictions are possible if later the variable

is �xed to the opposite value. In this case the current branch and cut node is fathomed.

SETBYLOGIMP is be called whenever SETBYREDCOST has successfully �xed vari-

ables, as well as after a SELECT operation, where a set branching variable might cause

logical implications.. It tries to set more variables by logical implication similar to FIXBY-

LOGIMP.

Before starting a branching operation, some variables may have been �xed or set to

new values (0 or 1), i.e., values di�erent as in the current LP-solution. In this case it is

advantageous to solve the new LP rather than performing the branching operation.

Variables can also be �xed and set during the bounding phase after the solution of

an LP. Here it is su�cient to call the according procedures when a better global lower

bound glb has been found, or when the objective function value of the LP has decreased

signi�cantly.

BRANCH

Some variable is chosen as the branching variable and two new branch and cut nodes,

which are the two sons of the current branch and cut node, are created and added to the

set of active branch and cut nodes. In the �rst son the branching variable is set to 1 in the

second one to 0. If no constraints of the integer programming formulation is violated, then

there is at least one fractional variable which is a reasonable candidate for a branching

variable. However if a constraint of the integer programming formulation is violated, it is

possible that all variables have an integral LP-value, yet the LP-solution is not a feasible

solution of the original problem. In this case a variable with an integral LP-value has to

be chosen as branching variable.

There is a variety of di�erent strategies for the selection of the branching variable, so

that we can present here only some of them. Let x be the solution of the last solved LP.
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(1) Select a variable with value close to 0:5 which has a big objective function coe�cient

in the following way. Find L and H with L = minf0:5;maxfx

e

j x

e

� 0:5; e 2 Egg

and H = maxf0:5;minfx

e

j x

e

� 0:5; e 2 Egg. Let C = fe 2 E j 0:75L � x

e

�

H + 0:25(1 �H)g be the set of variables with value \close" to 0:5. From the set C

the variable with maximum cost is selected, i.e., with maximum objective function

coe�cient. This method is similar to the one given in Padberg and Rinaldi (1991).

(2) Select the variable which has an LP-value closest to 0:5.

(3) Select the fractional variable (if available) which has maximum objective function

coe�cient.

(4) If there are fractional variables which are equal to 1 in the currently best known feasible

solution, select the one with maximum cost of them, otherwise, apply strategy (1).

(5) Select a fractional variable (if available) which is closest to one, i.e., �nd a variable e

?

with x

e

?

= maxfx

e

j x

e

� 0:999g.

(6) Select a set L of promising branching variable candidates. Let Ax � b be the constraint

system of the last solved LP. Solve for each variable i 2 L the two linear optimization

problems

v

i

0

= max c

T

x; s.t. Ax � b; x

i

= 0

v

i

1

= max c

T

x; s.t. Ax � b; x

i

= 1

and select the branching variable b with

maxfv

b

0

; v

b

1

g = min

i2L

maxfv

i

0

; v

i

1

g:

Some running time can be saved if instead of the solution of the linear optimization

problems to optimality only a restricted number of iterations of the simplex-method is

performed. Then the objective function value might already indicate the \quality" of

the branching variable, especially if a steepest edge pivot selection criterion is applied.

Computational experiments for the strategies (1), (3) { (5) can be found in J

�

unger,

Reinelt and Thienel (1992). Strategy (6) has been suggested by Applegate, Bixby,

Chvatal and Cook (1993).

A modi�cation of strategy (1) based on ideas which have their origin in statistics is

presented in Padberg and Rinaldi (1991). Other branching variable selection strategies

can be found in Balas and Toth (1985).

Instead of partitioning the set of feasible solutions by branching on a variable, it is

also possible to use a hyperplane intersecting the polytope de�ned by the current subprob-

lem. In Clochard and Naddef (1993) a problem speci�c hyperplane for the symmetric

traveling salesman problem is suggested.

Another modi�cation of the branching process is branching on k � 2 variables or

hyperplanes. In this case we get a 2

k

-nary instead of a binary branch and cut tree.
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SELECT

A branch and cut node is selected and removed from the set of active branch and cut

nodes. If the list of active branch and cut nodes is empty, the best known feasible solution

is the optimum solution. Otherwise the selected node is processed. After a successful

selection the set variables (including the branching variables) must be adjusted. If it turns

out that some variable must be set to 0 or 1, yet has been �xed to the opposite value in

the meantime, we have a contradiction. In this case the branch and cut node is fathomed.

If the local upper bound lub of the selected node does not exceed the global lower bound

glb, the node is fathomed immediately and the selection process is continued.

Up to now we have not speci�ed which node is selected from the set of active branch

and cut nodes. There are three well-known enumeration strategies in branch and bound

(branch and cut) algorithms: depth-�rst search, breadth-�rst search and best-�rst search.

We de�ne the level of a branch and cut node B as the number of edges on the path from

the root of the branch and cut tree to B. In case of depth-�rst search a branch and cut

node with maximum level in the branch and cut tree is selected from the set of active

nodes in SELECT, whereas in breadth-�rst search a subproblem with minimum level is

selected. In best-�rst search the \most promising" node becomes the current branch and

cut node. For a maximization problem the node with maximum local upper bound among

all active nodes is often considered as most promising.

Computational experiments for the symmetric traveling salesman problem (see J

�

un-

ger, Reinelt and Thienel (1992)) show that depth-�rst search is an enumeration strat-

egy with the \risc" of spending a lot of time in a branch of the tree, which is useless for

computing better upper and lower bounds. Often the local upper bound of the current

subproblem exceeds the objective function value of an optimum solution, however, this

node cannot be fathomed, because no good lower bound is known. The same phenomenon

occurs also sometimes when using breadth-�rst search, but it is very rare if the enumeration

is performed in best-�rst search order.

The idea of branch pausing, suggested by Padberg and Rinaldi (1991), can also

be helpful in this context. A value target is speci�ed as an estimation for the value of

the optimum solution. If the local upper bound lub falls below the value of target the

current branch cut node is put back into the set of active nodes (together with its new

local upper bound) without performing a branching operation.

It should be noted that it might be appropriate to perform the process of branching

and selecting a new node in a di�erent way. Instead of creating immediately two (or

more) sons of node in a branching step, Padberg and Rinaldi (1991) suggested to add

the current branch and cut node to the set of active nodes. When this node is selected

from the set of active nodes it is processed again, since further cutting planes might be

generated from the constraint pool (see SEPARATE and subsection 4.6), which have not

been available during the �rst processing. After this second cutting plane phase for a

subproblem, the sons of the corresponding branch and cut node are created, if the node

could not be fathomed in the meantime.
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FATHOM

If for a node the local upper bound lub does not exceed the global lower bound glb, or if a

contradiction occured, or if an infeasible branch and cut node has been generated, or if the

LP-solution is an incidence vector of a feasible solution, the current branch and cut node

is deleted from further consideration. Even though a node is fathomed, the global lower

bound glb may have changed during the last iteration, so that additional variables may be

�xed by FIXBYREDCOST and FIXBYLOGIMP. The fathoming of nodes in FATHOM

may lead to a new root of the branch and cut tree containing the remaining active nodes.

In J

�

unger, Reinelt and Thienel (1992) the following modi�cation of the procedure

FATHOM is suggested. If a node is fathomed because of a contradiction, not only the node,

where the contradiction has been found, can be deleted from further consideration, but all

active nodes with the same \wrong" setting can be fathomed. Let the variable with the

contradiction be e. If in another branch and cut node b the variable e is set to the \wrong"

bound all active nodes (unfathomed leaves) in the subtree below b can be removed from

the set of active nodes.

OUTPUT

The optimum solution is output and the algorithm stops.

4.3 Computation of upper bounds

The computation of upper bounds consists of all elements of the dashed bounding box

except EXPLOIT LP. In EXPLOIT LP the lower bounds are updated, if the solution of

the linear optimization problem is the incidence vector of a better feasible solution. Also

improvement heuristics, using information of the LP-solutions, can be incorporated here

as suggested in subsection 4.4.

For the computation of upper bounds LP-relaxations are solved iteratively, violated

valid inequalities are added, and nonbinding constraints are deleted from the constraint

matrix.

In this subsection we will also point out that an additional data structure for inequal-

ities, which is called pool, is very useful, although not necessary for the correctness of the

algorithm. However, if sparse graph techniques are used, which we outline in subsection 4.5,

then at least a data structure similar to this pool is required.

The active inequalities are the ones in the current LP and are both stored in the pool

and in the constraint matrix, whereas the inactive constraints are only present in the

pool. The pool is initially empty. If an inequality is generated by a separation algorithm,

it is stored both in the pool and added to the constraint matrix. Further details of the

pool are outlined in subsection 4.6.

INITIALIZE NEW NODE

If the current branch and cut node is the root node of the branch and cut tree the LP

is initialized by some small constraint system. Often the upper and lower bounds on the

variables are a su�cient choice (e.g. for the max-cut problem). For the traveling salesman
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problem the degree constraints for all nodes are normally added. Augmenting the initial

system by other promising cutting planes can sometimes reduce the overall running time

(see Gr

�

otschel, Martin, Weismantel (1992a)). A primally feasible basis derived from

a feasible solution can be used as a starting basis in order to avoid phase 1 of the simplex

algorithm.

Any set of valid (preferably facet de�ning) inequalities can be used to initialize the

�rst constraint system of subsequent subproblems. Yet, in order to guarantee monotonicity

of the values of the local upper bounds in each branch of the enumeration tree, and to save

running time, it is appropriate to initialize the constraint matrix by the constraints which

were binding when the last LP of the father in the branch and cut tree was solved. These

inequalities can be regenerated from the pool.

Since the basis of the father is dual feasible for the initial LP of its sons, phase 1 of

the simplex method can be avoided by starting with this basis. The columns of nonbasic

set and �xed variables can be removed from the constraint matrix to keep the LP small

and if their status is settoupperbound or fixedtoupperbound, the right hand side of the

constraint has to be adjusted, and the corresponding coe�cients of the objective function

must be added to the optimal value returned by the simplex algorithm in order to get

the correct value of the variable lpval. Set or �xed basic variables should not be deleted,

because this would lead to a neither primal nor dual feasible basis and require phase 1

of the simplex method. The adjustment of these variables can be performed by adapting

their upper and lower bounds.

SOLVE LP

The LP is solved by the primal simplex method, if the basis is primal feasible (e.g., if

variables have been added) or by the dual simplex method if the basis is dual feasible

(e.g., if constraints have been added). The two-phase simplex method is required if the

basis is neither primal nor dual feasible. This can happen if constraints necessary for the

initialization of the �rst LP of a subproblem are not available since they had to be removed

from the pool as we will describe in subsection 4.6.

The LP-solver is one of the bottlenecks of a branch and cut algorithm. Sometimes

more than 90% of the computation time is spent in this procedure. Today, e�cient imple-

mentations of the simplex method, like CPLEX (CPLEX (1993)) or OSL (IBM (1991)),

and of interior point methods, like OSL (IBM (1991)), OB1 (Lustig, Marsten and

Shanno (1992b)) CPLEXbarrier (CPLEX (1993)), or LOQO (Vanderbei (1992)), are

competitive on solving linear optimization problems from scratch. However, a branch and

cut algorithm requires a LP-solver with very e�cient post-optimization routines. If sparse

graph techniques (cf. subsection 4.5) are used, we also need the values of the dual variables

for the computation of the reduced costs of nonactive variables and a technique for the

regeneration of infeasible LPs (ADD VARIABLES) must be available.

The simplex method satis�es all the requirements of a branch and cut algorithm and

it is used by nearly all implementations of cutting plane algorithms. Therefore we have

outlined the algorithm in this section under the assumption that the simplex method is
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used. Since the LPs, which have to be solved in a cutting plane algorithm, are often

highly degenerate, good pivot variable selection strategies, like the steepest-edge pivot

variable selection criterion, are necessary. These degeneracies might even require some

preprocessing of the LPs (Gr

�

otschel, Martin and Weismantel (1992a)).

Interior point methods are not sensitive to degeneracies and seem to be more e�cient

for very large problems. However, the postoptimization routines are still not as sophisti-

cated as those of the simplex method. Interior points methods have been used in cutting

plane algorithms only by Mitchell and Todd (1992) and Mitchell and Borchers

(1992, 1993). They report similar running times of their implementation of a branch

and cut algorithm for the linear ordering problem as the implementation of Gr

�

otschel,

J

�

unger and Reinelt (1984b) using the simplex method (MPSX IBM (1978)). How-

ever, the better performance of new implementations of the simplex method could not

be considered in this comparison. These results and an encouraging paper about warm

starts of Lustig, Marsten, Shanno (1992a) give us the hope that interior point meth-

ods, probably in combination with the simplex method (see Bixby, Gregory, Lustig,

Marsten and Shanno (1992)), will improve the performance of the LP-solver in cutting

plane algorithms.

EXPLOIT LP

First, we have to check if the current LP solution is the incidence vector of a feasible

solution. If this is the case we leave the bounding part and fathom the current branch and

cut node. Otherwise, most implementations of branch and cut algorithms proceed with

the cutting plane generation phase. However, in J

�

unger, Reinelt and Thienel (1992)

it is suggested to exploit the fractional LP-solutions to improve the lower bound before

additional cutting planes are generated. We will discuss these ideas in subsection 4.4.

Before the separation phase is performed in SEPARATE, variables may be �xed or set as

explained in FIX AND SET.

Often it is reasonable to abort the cutting plane part if no signi�cant increase of lpval

in the most recent LP-solutions has taken place. This phenomenon is called tailing-o�

(cf. Padberg and Rinaldi (1991)). If during the last k (e.g. k = 10) iterations in the

bounding part, lpval did not increase by more than p % (e.g. p = 0:01), new subproblems

are created instead of generating further cutting planes. Good choices for the parameters

p and k are both rather problem speci�c and dependent on the quality of the available

cutting plane generation procedures.

SEPARATE

The separation phase is the central part of a branch and cut algorithm. It is tried to �nd

violated globally valid (preferably facet-de�ning) constraints, which are added to the LP.

We say an inequality is globally valid, if it is a valid inequality for every subproblem of

the branch and cut algorithm. Facet de�ning inequalities for the polytope P

I

are globally

valid. We call a constraint locally valid, if it is only a valid inequality of a subproblem S

and all subproblems of the subtree rooted at S. The use of locally valid inequalities in a
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branch and cut algorithm has not yet been investigated in detail and would require some

minor changes in the outlined algorithm.

It may not always be advantageous to call any available separation algorithm in each

iteration of the cutting plane generation. Experiments show that a hierarchy of separation

routines is often preferable. Certain separation methods should only be performed, if

others have failed. Before calling a time consuming exact separation algorithm, one should

attempt to generate cutting planes with faster heuristic methods. However, this hierarchy

is rather problem speci�c so that we cannot give a general recipe for its application. We

refer to the publications on speci�c implementations.

The constraint pool provides us with another cutting plane generation technique.

Inactive constraints which are violated by the current LP-solution can be regenerated from

the pool. Of course this methods requires an e�cient algorithm to perform this test and

to transform the storage format of the constraint used in the pool into the storage format

for the LP-solver. The pool-separation can be advantageous for classes of inequalities for

which only heuristic separation routines are available. In this case it can happen that

a constraint of this class is violated, yet cannot be identi�ed by the heuristic. However,

this cutting plane might have been generated earlier in the computational process (at a

di�erent LP-solution which has been more \convenient" to our heuristic). If this constraint

is still contained in the pool, it can be reactivated now.

It can also happen that the pool-separation for a class of constraints is faster than

a direct separation by a time consuming heuristic or an exact algorithm. So the pool

separation should be performed before calling these algorithm. However, for other classes

of constraints it can sometimes be observed that the pool separation is very slow in com-

parison to direct separation methods.

Since the pool can become very large during the computational process, it is necessary

to limit the search in the pool for violated inequalities. For instance, the pool separation

can be restricted to some classes of constraints. Therefore the pool separation should be

carefully included into the hierarchy of separation algorithms and it requires many compu-

tational tests to �nd a strategy which is e�cient for a speci�c combinatorial optimization

problem.

For some combinatorial optimization problems like the max-cut problem and for larger

instances of other problems, sometimes several hundred violated inequalities can be gen-

erated. However, it would be su�cient to add those constraints to the LP, which will be

binding after the solution of the next LP. Unfortunately we do not know this subset of

the generated inequalities. On the other hand, adding all the constraints to the matrix

of the LP-solver can slow down the overall computation time. Therefore, depending on

the performance of the LP-solver, only a limited number of constraints should be added

to the LP. A straightforward approach is just stopping the cut generation when this limit

is reached. A more sophisticated method might be generating as many constraints as pos-

sible, and afterwards selecting the \best" of them. A simple classi�cation criterion is the

degree of violence given by the value of the corresponding slack. For the symmetric trav-
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eling salesman problem Padberg and Rinaldi (1991) propose as a measure the distance

of the LP-solution from the projection of the cut into the a�ne space de�ned by the degree

equations. The larger this distance the better the cut, yet, this method is computationally

expensive.

The representation of the inequality for the LP-solver can have signi�cant in
uence

on its running time. For instance, equations of the integer programming formulation can

be added to any valid inequality without changing the halfspace which it de�nes. However,

the number of the non-zero coe�cients in the inequality may di�er. Normally, LP-solvers

are more e�cient if the number of non-zeros in the constraint matrix is small.

The solution of the separation problem is very problem speci�c. Therefore we only

want to present an example for the symmetric traveling salesman problem.

A polynomial time algorithm for the solution of the exact separation problem of

subtour elimination constraints can be directly derived from their de�nition in section 1:

If the value of the minimum cut in the support graph (the graph with the LP-solution as

edge weights) is greater or equal than 2, it is proved that the current LP-solution does not

violate any subtour elimination constraint. Each cut with a value less than 2 induces a

violated subtour elimination constraint.

A straightforward algorithm for the solution of the minimum cut problem in a graph

G = (V;E) with n nodes and m edges is the computation of the minimum s-t cut between

each pair of nodes s; t 2 V and selecting from these

�

n

2

�

cuts one with the minimum weight.

However, Gomory and Hu (1961) showed that | if some care is taken in the order of

the computation of the s-t cuts | it is su�cient to solve n� 1 minimum s-t cut problems.

The minimum s-t cut problem can be solved in polynomial time. A survey on algorithms

for the solution of this problem can be found in Ahuja, Magnanti and Orlin (1993).

The algorithm of Gomory and Hu (1961) has been re�ned by Gusfield (1989) and

Padberg and Rinaldi (1990a). Further algorithm for the solution of the minimum cut

problem have been introduced by Nagamochi and Ibaraki (1992a, 1992b), Karger

(1993) and Karger and Stein (1993).

ELIMINATE

If only inequalities are added to the constraint matrix of the LP solver, yet no inequalities

are eliminated, soon the size of the matrix might become to large to solve the linear

programs in reasonable time and even the storage of the constraints in the matrix would

require too much memory. Moreover, there are inequalities which become redundant for

the rest of the computation. Therefore a strategy is required to maintain a reasonable

sized matrix, yet not to eliminate important inequalities.

It is an obvious and simple strategy for the elimination of constraints to delete all active

inequalities which are nonbinding in the last LP solution from the constraint structure

before the LP is solved after a successful cutting plane generation phase. To avoid cycling,

i.e., a constraint is eliminated, but already violated after the next LP-solution, either

constraints should be only removed, if the value of the slack s is big enough (e.g. s > 0:001),

or if they are nonbinding during several successive LP-solutions.
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4.4 Computation of feasible solutions

For most combinatorial optimization problems a host of heuristics is available to compute

feasible solutions which provide global lower bounds for the branch and cut algorithm.

Traditionally the computation of a global lower bound is performed in the procedure INI-

TIALIZE before the cutting plane generation and enumeration phase starts. Later better

lower bounds are only found if the LP-solution is the incidence vector of a feasible solution.

However, it can be observed that this happens rather seldomly. Therefore sophisticated

heuristics must be applied in INITIALIZE to generate a good lower bound. Otherwise,

the enumeration tree may grow too large.

In J

�

unger, Reinelt and Thienel (1992) a dynamic strategy, integrated in the

cutting plane generation part, for the computation of lower bounds is presented, which we

brie
y outline. It turns out that the fractional LP solutions occuring in the upper bound

computations in a branch and cut algorithm give hints on the structure of optimum or

near optimum feasible solutions.

The basic requirement for the upper bound computations is e�ciency in order not to

inhibit the optimization process. While in the �rst stages high emphasis is laid on providing

good feasible solutions, this emphasis is less in the later stages of the computational process.

On the other hand, computing lower bounds can always be reasonable since new knowledge

about the structure of optimum feasible solutions is acquired (e.g. because of �xed and set

variables).

Exploiting the LP solution

Integer optimal solutions, i.e., incidence vectors of feasible solutions, will almost never

result from the LPs occuring in the branch and cut algorithm. But, it can be observed

that these solutions, although having many fractional components, give information on

good feasible solutions. They have a certain number of variables equal to 1 or 0 and also a

certain number of variables whose values are close to 1 or 0. This e�ect can be exploited

to form a starting feasible solution for subsequent improvement heuristics.

We show how the information of the LP-values of the variables can be used for the

construction of a feasible solution for the symmetric traveling salesman problem. We use

the terms edge and variable of the integer programming formulation interchangeably, since

they are in a one-to-one correspondence in our examples. First, we check if the current LP

solution is the incidence vector of a tour. If this is the case we terminate the procedure

EXPLOITLP. Otherwise, edges are sorted according to their values in the current LP

solution. We give decreasing priorities to edges as follows:

{ edges that are �xed or set to 1,

{ edges equal to 1 or close to 1 in the current LP,

{ edges occuring in several successive LPs.

This list is scanned and edges become part of the tour if they do not produce a subtour

with the edges selected so far. This gives a system of paths and isolated nodes which now
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have to be connected. To this end a savings heuristic (Clarke and Wright (1964)),

originally developed for vehicle routing problems, can be used, since the traveling salesman

problem can be considered as a special vehicle routing problem involving only one vehicle.

This heuristic basically consists of successively merging partial tours to obtain a Hamil-

tonian tour. We select one node as base node and form partial tours by connecting this

base node to the end nodes of each of the paths obtained in the selection step and also

adding a pair of edges to nodes not contained in any path. Then, as long as more than

one subtour is left, we compute for every pair of tours the savings that is achieved if the

tours are merged by deleting in each tour an edge to the base node and connecting the two

open ends. The two tours giving the largest savings are merged. Edges which are �xed or

set to 0 should be avoided for connecting paths.

Another example is the construction of a feasible solution for the max-cut problem on

a graph G = (V;E;w) with edge weights w. After the solution of an LP we construct a

graph G

0

= (V;E;w

0

) with w

0

e

= jx

e

� 0:5j, where x

e

is the LP-value of the variable e. We

compute a maximum spanning tree in the graph G

0

. Afterwards, we select an arbitrary

root node and color it black. All other nodes are colored black and white in the following

way. We scan the tree starting at the root node by breadth-�rst search and color a node

with the color of its father, if the LP-value of the tree edge is less than 0:5, and otherwise

with the opposite color. The colored nodes de�ne now the two shores of a cut. Edges with

a high LP-value tend to have a black and a white endnode.

For the computation of feasible solutions for the linear ordering problem on a complete

digraph D

n

= (V

n

; A

n

) with arc weights c

a

we use the following approach as described in

Gr

�

otschel, J

�

unger, Reinelt (1984b). We calculate for every node v 2 V

n

s(v) =

X

u<v

c

vu

(1� x

uv

) +

X

v<w

c

vw

x

vw

and sort the nodes such that s(v

1

) � s(v

2

) � : : : � s(v

n

). So we generate the linear

ordering v

1

; v

2

; : : : ; v

n

.

Improving the �rst solution

The previous step gives us a feasible solution which can be improved by local improvement

heuristics. At least as long as a branch and cut algorithm is implemented on a sequential

machine, we must take care of a proper distribution of CPU time between the lower

bounding and the upper bounding part. In addition, the amount of work that is spent in

the heuristics has to be controlled. Various strategies are possible.

{ Fixed percentage of CPU time

In advance a certain percentage of CPU time is speci�ed that is spent for lower bound

computations. Whenever, after having solved an LP, this percentage is not reached, a

lower bound computation is initiated. This strategy has the disadvantage that it is not


exible and can miss LP solutions that would lead to an improvement of the current

feasible solution.
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{ Fixed iteration number

In this case a lower bound computation is started whenever a certain number of LPs

has been solved. This strategy has the same disadvantage as the previous one and, in

addition, does not take care of the CPU time spent for the heuristics.

{ Dynamic strategy

Here some possible guidelines are speci�ed for increasing the chance that a lower bound

computation is promising and should be initiated. Of course the strategy must be

adapted to every special combinatorial optimization problem. After every LP, the con-

struction heuristic is performed to exploit the LP solution. The improvement heuristic

might be inhibited if the starting solution is much worse than the best solution found

so far. Depending on the progress of the improvement heuristics it can be decided how

much e�ort is spent in this part. For example, if the value of the improved solution

comes close to the value of the best known solution very fast, then still more CPU time

should be spent. But if progress is slow, then an early termination of the improvement

might be favourable.

Improving the same feasible solution several times can be avoided by using a hashing

scheme to detect identical feasible solutions. As the hash key, the objective function value

of the feasible solution and the name of the heuristic which is applied to this feasible

solution can be used. However, if there are many di�erent feasible solutions with the same

objective function value, another hash key should be chosen.

4.5 Problems with sparse solutions

Often combinatorial optimization problems involve a very large number of variables, yet a

feasible solution is comparatively sparse. For instance, the symmetric traveling salesman

problem on a complete graph of n nodes has

�

n

2

�

variables. Yet, a tour consists only of

n edges. Hence, the computational process can be accelerated, if a suitable subset of the

edges is initially selected and appropriately augmented during the solution of the problem,

if this is required for the correctness of the algorithm. However, sparse graph techniques

can not be applied to problems with a dense solution structure like the max-cut problem or

the linear ordering problem. Sparse graph techniques have been introduced byGr

�

otschel

and Holland (1985).

We present techniques exploiting the sparsity of solutions only for combinatorial opti-

mization problems de�ned on graphs. However this technique can be generalized for other

problems, if the structure of the solutions is sparse, suitable subsets of the variables can

be computed e�ciently, and a method to generate the columns of nonactive variables is

available.

In Figure 5 we present the modi�ed 
owchart for the use of sparse graph techniques.

The gray boxes have to be added or changed. A subproblem, in which an infeasible LP is

detected, cannot be fathomed at once, but it has to be checked, if the addition of nonactive

variables can regenerate the feasibility. We explain this process in ADDVARIABLES.
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Before leaving the bounding part, it has to be veri�ed in PRICE OUT, if the LP-solution

computed on the sparse graph is also optimal on the complete graph. Only in this case

the variable lpval becomes a local upper bound lub. The application of the routine FIX

AND SET has to be performed now more carefully. The procedure SETBYREDCOST

can only be applied after an additional pricing step, in which no variable has to be added.

This is also the case for FIXBYREDCOST if the root node of the remaining branch and

cut tree is currently processed.

Suitable sparse graphs

The initial sparse graph is generated in the procedure INITIALIZE. For some problems a

good choice for a sparse graph is the k-nearest neighbour graph. An other suitable subset of

the edges may be the Delaunay graph (see also Reinelt (1992), Clochard and Naddef

(1993)). Padberg and Rinaldi (1991) suggest to create heuristically a series of feasible

solutions and initialize the sparse graph with all involved edges. If it cannot be guaranteed

that the sparse graph contains a feasible solution, it should be augmented by the edges of

a solution computed by a heuristic.

In addition to the sparse graph, the edges of the \reserve graph" can be computed.

These edges are additional \promising" edges, which do not belong to the sparse graph.

For instance, if the sparse graph is the 5-nearest neighbour graph, a suitable reserve graph

is given by the edges which have to be added to get the 10-nearest neighbour graph. The

reserve graph can be used in PRICE OUT and ADD VARIABLES.

The algorithm starts working on G, adding and deleting edges (variables) dynamically

during the optimization process. We refer to the edges in G as active edges and to the

other edges as nonactive edges.

ADD VARIABLES

Variables have to be added to the sparse graph if indicated by the reduced costs (handled

by PRICE OUT) or if the current LP is infeasible. The latter may be caused by two

reasons.

First, some active inequality has a void left hand side, since all involved variables

are �xed or set and removed from the LP, but is violated. If all coe�cients of nonactive

variables in this inequality are nonnegative, it is clear from our strategy for variable �xings

and settings that the branch and cut node is fathomed (all constraints are assumed to be

of the form a

T

x � b

i

). However, if there is a nonactive variable with a negative coe�cient,

this variable may remove the violation. So it is added to the LP.

Second, the above condition does not apply, and the infeasibility is detected by the

LP solver. In this case a pricing step is performed in order to �nd out if the dual feasible

LP solution is dual feasible for the entire problem. Variables that are not in the current

sparse graph (i.e., are assumed to be at their lower bound 0) and have negative reduced

cost are added to the current sparse graph. An e�cient way of computing the reduced

costs is outlined in PRICE OUT.

If variables have been added, the new LP is solved. Otherwise, it is tried to make the
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Figure 5. Flowchart of the branch and cut algorithm with sparse graph techniques.
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LP feasible by a more sophisticated method. The LP value lpval, which is the objective

function value corresponding to the dual feasible basis where primal infeasibility is detected,

is an upper bound for the objective function value obtainable in the current branch and

cut node. So if lpval � glb, the branch and cut node can be fathomed.

Otherwise, it is tried to add variables that may restore feasibility. First all infeasible

variables are marked, including negative slack variables.

Let e be a nonactive variable and r

e

be the reduced cost of e. An edge e is taken as a

candidate only if lpval + r

e

� glb. Let B be the basis matrix corresponding to the dual

feasible LP solution, at which the primal infeasibility was detected. For each candidate

e let a

e

be the column of the constraint matrix corresponding to e and solve the system

Ba

e

= a

e

. Let a

e

(b) be the component of a

e

corresponding to basic variable x

b

. Increasing

x

e

\reduces some infeasibility" if one of the following holds.

{ x

b

is a structural variable (i.e., corresponding to an edge of G) and

x

b

< 0 and a

e

(b) < 0

or

x

b

> 1 and a

e

(b) > 0

{ x

b

is a slack variable and

x

b

< 0 and a

e

(b) < 0:

In such a case the variable e is added to the set of active variables and the marks are

removed from all infeasible variables whose infeasibility can be reduced by increasing x

e

.

This can be done in the same hierarchical fashion as described below in PRICE OUT.

If variables can be added, the new LP is solved, otherwise the branch and cut node is

fathomed. Note that all systems of linear equations that have to be solved have the same

matrix B, and only the right hand side a

e

changes. This can be utilized by computing a

factorization of B only once, in fact, the factorization can be obtained from the LP solver

for free. For further details on this algorithm, see Padberg and Rinaldi (1991).

PRICE OUT

Pricing is necessary before a branch and cut node can be fathomed. Its purpose is to check

if the LP solution computed on the sparse graph is valid for the complete graph, i.e., all

nonactive variables \price out" correctly. If this is not the case, nonactive variables with

positive reduced cost are added to the sparse graph and the new LP is solved using the

primal simplex method starting with the previous (now primal feasible) basis, otherwise

the local upper bound lub and possibly the global upper bound gub can be updated.

Although the correctness of the algorithm does not require this, additional pricing

steps can be performed every k (e.g. k = 10) solved LPs (see Padberg and Rinaldi

(1991)). The e�ect is that nonactive variables which are required in a good or optimum

feasible solution tend to be added to the sparse graph early in the computational process.

If no variables are added, it can be also tried to �x or set variables by reduced cost criteria.
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Let y be the vector of the dual variables, and A

e

the column of an inactive variable

e in the matrix A de�ned by the active constraints, and c

e

the corresponding objective

function coe�cient, then the reduced costs of the variable e are given by r

e

= c

e

� y

T

A

e

.

The computation of the reduced cost for all inactive edges takes a lot of computational

e�ort, but it can be performed signi�cantly faster by an idea of Padberg and Rinaldi

(1991). If our current branch and cut node is the root of the remaining branch and cut

tree, it can be checked if the reduced cost r

e

of a nonactive variable e satis�es the relation

lpval + r

e

< glb. In this case this nonactive edge can be discarded forever. During the

systematic enumeration of all edges of the complete graph, an explicit list of those edges

which remain possible candidates can be made. In the early steps of the computation,

too many such edges remain, so that this list cannot be completely stored with reasonable

memory consumption. Instead, a partial list is stored in a �xed size bu�er and the point

where the systematic enumeration has to be resumed after considering the edges in the

bu�er is memorized. In later steps of the computation there is a good chance that the

complete list �ts into the bu�er, so that later calls of the pricing routine become much

faster than early ones.

In J

�

unger, Reinelt and Thienel (1992) a further modi�cation of the procedure

PRICE OUT is presented. It can be observed that the reduced costs of edges not belonging

to the reserve graph are seldomly positive, if the reserve graph is appropriately chosen.

Hence, it turns out that a hierarchical approach is advantageous. Only if the \partial

pricing" considering the edges of the reserve graph has not added variables, the reduced

cost of all nonactive variables have to be checked.

To process PRICE OUT e�ciently, the columns of the matrix for inactive variables

have to be generated quickly. Suitable formats of the pool as suggested in Padberg

and Rinaldi (1991) and J

�

unger, Reinelt and Thienel (1992) can provide an e�cient

method for these computations.

Computation of lower bounds

Sparse graph techniques can be also used for the computation of feasible solutions both if

heuristics are applied only during the initialization phase or if they are integrated in the

cutting plane generation phase.

A candidate subgraph is a subgraph of the complete graph on n nodes containing

reasonable edges in the sense that they are \likely" to be contained in a good feasible

solution. These edges are taken with priority in the various heuristics, thus avoiding the

consideration of the majority of edges which are assumed to be of no importance. Various

candidate subgraphs and the question of how to compute them e�ciently are discussed in

Reinelt (1992) and J

�

unger, Reinelt & Rinaldi (1994).

The candidate subgraph can be related to the set of active variables in the linear

programming problems, if the heuristics are integrated into the cutting plane generation

part as described before. Basically, the candidate subgraph is initialized with some graph

(e.g., the empty graph) and then edges are added whose corresponding values are close to

one. In order to avoid too extensive growing of the candidate subgraph and to avoid being
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biased by LPs that were not recently solved, the candidate subgraph should be cleared in

certain intervals (e.g. every 20th cutting plane phase) and reinitialized.

It should be noted that the feasible solution found by the heuristics should not be

restricted to only using edges of the sparse graph. These edges are only considered with

priority and lead to an acceptable CPU time. Usually, heuristics will introduce edges that

are not active in the LP. These edges are added to the set of active variables. This is based

on the assumption that these edges are also important for the upper bound computations

and would be added to the LP in some pricing step anyway. This way the set of active

variables is augmented without pricing.

4.6 Data structures

A cpu time and memory sensitive implementation of data structures is crucial for an

e�cient branch and cut algorithm.

Graph

Many combinatorial optimization problems are de�ned on graphs, i.e., the feasible solutions

are subgraphs of a given graph. The representation of the (sparse) graph has a high

in
uence on the running time. The operations on the graph used in the heuristics for the

computation of feasible solutions and in the separation algorithms should be performed

e�ciently. If sparse graph techniques are applied, also edges have to be added to the graph

data structure. Suitable representations of sparse graphs in a branch and cut code can be

found in Padberg and Rinaldi (1991) and J

�

unger, Reinelt and Thienel (1992).

Branch & cut nodes

Although a subproblem is completely de�ned by the �xed variables and the variables that

were set temporarily, it is necessary to store additional information at each node for an

e�cient implementation.

Of course it would be correct to initialize the constraint system of the �rst LP of a new

selected node with the inequalities of the last processed node, as long as only globally valid

inequalities are used as cutting planes. However, this would lead to tedious recomputations,

and it is not guaranteed that we can regenerate all heuristically separated inequalities. So

it is preferable to store in each branch and cut node pointers to those constraints in the

pool, which are binding the last solved LP of the node. We initialize with these constraints

the �rst LP of each son of that node.

If the simplex method is used to solve the linear programs, we store the basis of the

last processed LP of each node, i.e., the statuses of the variables and the constraints.

Therefore we can avoid phase 1 of the simplex algorithm, if we carefully restore the LP

of the father and solve this �rst LP with the dual simplex method. Since the last LP of

the father and the �rst LP of the son di�er only by the set branching variable(s) or the

added branching hyperplane(s), by variables set by SETBYLOGIMP and by variables,

which have been �xed in the meantime, the basis of the father is dual feasible for the �rst

LP of the son.
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Active nodes

In SELECT a node is extracted from the set of active nodes for further processing. Every

selection strategy de�nes an order on the active nodes. The minimum node is the next

selected one. The representing data structure must allow e�cient implementations of the

operations insert, extractmin and delete. The operation insert is used after creation

of new branch and cut nodes in BRANCH, extractmin is necessary to select the next node

in SELECT and delete is called if we remove an arbitrary node from the set of active

nodes. These operations are very well supported by a height balanced binary search tree,

e.g., a red-black tree (Bayer (1972), Guibas and Sedgewick (1978), see also Cormen,

Leiserson and Rivest (1990)) which provides O(log t) running time for these operations,

if the tree consists of t nodes.

Temporarily set variables

A variable is either set if it is the branching variable or it is set by SETBYREDCOST

or SETBYLOGIMP. If the modi�cation of FATHOM of J

�

unger, Reinelt and Thienel

(1992) is used, it is essential to determine e�ciently all nodes where a certain variable is

set. To avoid scanning the complete branch and cut tree, we apply a hash function to a

variable right after setting and store in the slot of the hash table the set variable and a

pointer to the corresponding branch and cut node. So it is quick and easy to �nd all nodes

with the same setting by applying an appropriate hashing technique.

Constraint pool

In the description of the branch and cut algorithm we pointed out that an additional data

structure for the constraints is useful for the initialization of LPs and for the separation

phase. If sparse graph techniques are applied we use this additional data structure to

generate new columns after addition of variables or when initializing a new node.

This constraint pool can grow very large. Therefore a memory sensitive format, which

provides an e�cient generation of the rows for the matrix of the LP-solver and a fast com-

putation of the coe�cients of inactive variables should be used. A very sparse node oriented

format is often possible for many classes of facet de�ning inequalities of combinatorial op-

timization problems on graphs (see Padberg and Rinaldi (1991) and J

�

unger, Reinelt

and Thienel (1992)).

If the pool is used as we suggested, this is the data structure using up the largest

amount of memory. Therefore constraints also have to be carefully eliminated from the

pool. For instance, it would be su�cient to keep only those inactive constraints in the

pool, which have been binding, when the last LP of the father of at least one active node

has been solved. These inequalities can be used to initialize the �rst LP of a newly selected

node. After each selection of a new node we can try to eliminate those constraints from

the pool which are neither active at the current branch and cut node nor necessary to

initialize the �rst LP of an active node. If, nevertheless, the pool grows too large and the

memory limit is reached, nonactive constraints must be removed from the pool. But now

we cannot restore the complete LP of the father of an active node. In this case one can
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proceed as in FIX AND SET to initialize the constraint matrix and to get a feasible basis.

Sometimes it might also be appropriate to keep some set of important constraints

always in the pool that they can be used for the pool separation.

5 Parallelization

Although a lot of progress has been made in the parallelization of exact and heuristic

algorithms for combinatorial optimization problems during the last years (for a survey see

Grama and Kumar (1992)), parallel approaches for cutting plane algorithms have not

been used very often up to now. In Cannon (1988) and Cannon and Hoffman (1990)

a parallel branch and cut algorithm for zero-one programming problems is presented.

In this survey we only want to point out some very basic ideas where the application

of parallelization could be useful in a branch and cut algorithm.

There are four main bottlenecks in any branch and cut algorithm: the size of the

enumeration tree, the computation of feasible solutions by heuristics, the generation of

violated inequalities and the solution of the linear programs.

The processing of the subproblems of the branch and cut tree can be parallelized in

a straightforward way. This approach has already been used for branch and bound al-

gorithms on many di�erent computer architectures. Also Applegate, Bixby, Chvatal

and Cook (1993) use this method on a cluster of workstations for the solution of sym-

metric traveling salesman problems by branch and cut.

The improvement of feasible solutions by heuristics is completely independent from

the rest of the branch and cut algorithm. At the start of the algorithm it is su�cient to

have a lower bound derived from a feasible solution which is computed by a very simple

heuristic. Therefore better feasible solutions can be computed in parallel to the branch

and cut algorithm either in the traditional way or by exploiting fractional LP-solutions as

outlined in subsection 4.4.

If the heuristics are integrated into the cutting plane generation part, some processors

can perform improvement heuristics all the time. Only new starting solutions found by

EXPLOIT LP must be broadcasted to the \improvement-processors", which only have to

inform the other processors about better global lower bounds. Moreover, parallel improve-

ment algorithms can be used, which are available for several combinatorial optimization

problems.

Also di�erent separation methods can be performed in parallel, but the hierarchy of

separation routines should be redesigned. As already mentioned in section 4, the pool

separation sometimes becomes a bottleneck of the separation process, especially if there

are very dense constraints, i.e., inequalities with a very small number of non-zero elements.

However this pool separation can be performed on a massively parallel machine. A lot of

potential for parallelization is also contained in the separation routines themselves. For

instance, often some basic combinatorial optimization problem has to be solved for the

identi�cation of violated constraints (e.g., a min-cut problem for the separation of subtour
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elimination constraints). Often parallel algorithm for these combinatorial optimization

problems are already available.

Finally, parallel methods for the solution of linear programs are currently being de-

veloped.

Although the computation of reduced costs is not very expensive for problems con-

sidered so far in comparison to the mentioned bottlenecks of the algorithm, it can become

quite time consuming for larger problems with very dense inequalities. In this case paral-

lelization should be taken into consideration.

6 Provably Good Solutions

The cutting plane part together with the enumeration scheme provides an algorithm that

is capable of solving an instance of a combinatorial optimization problem in \�nite time".

But, not even a rough estimation of the necessary running time for an instance can be given.

The size of a problem instance is only an insu�cient characterization of its hardness.

An algorithm, which provides successively improving lower bounds on the objective

function value of an optimum solution and only guarantees that in the end an optimum

solution is found, is not adequate for practical problem solving. In fact, it may even turn

out to be useless. A reasonable practical requirement is that, on the �rst hand, a good

feasible solution is given quickly and that, on the second hand, better solutions become

available as more running time is spent.

Moreover, in practical problem solving optimum solutions are often not required. A

practitioner might be satis�ed with a feasible solution and a guarantee of the form that this

solution is at most p% worse than the optimum solution. The values of the global lower

bound glb and the global upper bound gub can be used to terminate the computation as

soon as the guarantee requirement is satis�ed.

A branch and cut algorithm as outlined in the previous sections produces a sequence

of decreasing global upper bounds as well as a sequence of increasing feasible solutions.

Figure 6 gives us a typical example of this e�ect in the case of the traveling salesman

problem. However, the symmetric traveling salesman problem is a minimization problem,

therefore we have to swap the terms \upper bound" and \lower bound". For an instance

on 532 cities (problem att532 from TSPLIB (Reinelt (1991a, 1991b))) we show the

development of the upper and lower bounds during the �rst 15 minutes of the computation

on a SUN SPARCstation 2. The jumps in the lower bounds are due to the fact that sparse

graph techniques are applied. The validity of the LP-value as a global lower bound for

the length of a shortest tour is only guaranteed after a pricing step in which all nonactive

variables price out correctly. It should be mentioned that after 15 minutes the gap between

the lower and upper bound is less than 0:5%, yet, another three hours are necessary to solve

the problem to optimality with the implementation of J

�

unger, Reinelt and Thienel

(1992).
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Figure 6. Gap versus time plot for att532.

7 Applications of cutting plane algorithms

Cutting plane approaches seem to have become the method of choice for attacking hard

combinatorial and integer programming problems and there is an ever increasing list of

publications reporting their successful application. We give reference to a selection of

computational studies based on cutting plane algorithms sorted according to the speci�c

optimization problem.

Equicut problem

The equicut problem consists of �nding a max-cut W � V in a graph G = (V;E) with

edge weights such that b

V

2

c � jW j � d

V

2

e. An application is the determination of ground

states of Ising spin glasses at zero magnetization.

References: Brunetta, Conforti and Rinaldi (1994), Barahona and Casari (1988)

Generalized assignment problem

Given j jobs and p � j persons and costs c

jq

2 R if person q does job j. The assignment

problem is to allocate to each person at most one job, such that all jobs are done and the

total costs are minimized. In the generalized assignment problem, a person can perform

more than one job, yet job j requires r

j

units of time and each person q can spend at most

t

q

units of time to process its jobs.

Reference: Savelsbergh (1993)
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Generalized traveling salesman problem

The generalized traveling salesman problem is the problem of �nding a minimum length

cycle C � E

n

in a graph K

n

= (V

n

; E

n

) with edge weights, where V is partitioned into

V = V

1

[ V

2

[ : : : [ V

k

, such that j

S

e2C

e \ V

i

j � 1 for all 1 � i � k. There is a variant of

the problem in which j

S

e2C

e \ V

i

j = 1 must hold.

Reference: Fischetti, Gonzalez and Toth (1994)

General (mixed) integer programming

We have de�ned the mixed integer programming problem in section 1.

References: Gomory (1958, 1960, 1963), Crowder, Johnson, Padberg (1983), Van

Roy and Wolsey (1987), Cannon (1988), Cannon and Hoffman (1990), Hoffman

and Padberg (1991), Balas, Ceria and Cornuejols (1993a, 1993b), Ceria (1993),

Boyd (1993a, 1993b, 1993c), Savelsbergh, Sigismondi and Nemhauser (1994)

Graphical traveling salesman problem

The graphical traveling salesman problem is a variant of the traveling salesman problem in

which each node must be visited at least once (it may be visited more than once) and each

edge may be traversed more than once. When the triangle inequality holds for the intercity

distances, an optimal solution is always a traveling salesman problem tour. Most problem

instances have this property, therefore most computational studies have been carried out

for the traveling salesman problem rather than the graphical traveling salesman problem

(see below).

Reference: Miliotis, Laporte and Nobert (1981)

Graph partitioning and clustering problems

These problems have many di�erent variants so that we can de�ne only a generic problem

variant. Given a graph G = (V;E) and edge weights c 2 R

E

, �nd a partition of the node

set V in subsets V

1

; V

2

; : : : ; V

k

subject to some side constraints such that

P

k

i=1

c(E(V

i

))

is maximum. Examples for side constraints are the restriction of the number of nodes

in a subset, or that each subset V

i

must induce a clique. Other variants of the graph

partitioning problem are the max-cut and the equicut problem.

References: Wakabayashi (1986), Gr

�

otschel and Wakabayashi (1989), Weisman-

tel (1992), Holm and Sorensen (1993)

Linear ordering problem

The linear ordering problem has been introduced in section 1. Applications of this problem

are, e.g., triangulation of input-output matrices, aggregation of individual preferences, and

minimization of completion time in special one-machine scheduling problems.

References: Gr

�

otschel, J

�

unger and Reinelt (1984a, 1984b), Reinelt (1985), Mit-

chell and Borchers (1992, 1993)

Matching problem

The b-matching problem for a graph G = (V;E) with edge weights and a vector b 2 N

V

is

to �nd a minimum weight edge set F � E such that jF \ �(v)j � b

v

for all nodes v 2 V .
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If the inequality is replaced by the equation jF \ �(v)j = b

v

we get the perfect b-matching

problem. Applications are plotting problems.

References: Gr

�

otschel and Holland (1985, 1987), Mitchell and Todd (1992)

Max-cut problem

We have presented the max-cut problem in section 1. Applications of this problem are the

determination of the ground state of Ising spin glasses and the via minimization problem

in VLSI design.

References: Gr

�

otschel, J

�

unger and Reinelt (1987), Barahona, Gr

�

otschel, J

�

u-

nger and Reinelt (1988), Barahona, J

�

unger and Reinelt (1989), De Simone and

Rinaldi (1992)

Maximum planar subgraph problem

Given a graph G = (V;E) with edge weights, �nd a planar subgraph G

0

= (V;E

0

) of G of

maximum total weight. Applications occur in automatic graph drawing and VLSI design.

Reference: J

�

unger and Mutzel (1993a, 1993b)

Multiple salesman problem

The multiple salesman problem is a variant of the traveling salesman problem. Instead

of a single salesman, there are m salesmen all located at the same city (the depot). The

problem is to �nd a collection of m edge disjoint cycles such that each city is visited

exactly once (except the depot) and the total sum of the length of all cycles is minimum.

Applications of this problems | often implying additional side constraints | can be found

in vehicle routing (see below).

Reference: Laporte and Nobert (1980)

Network survivability problem

Given is a graph G = (V;E) with edge weight c 2 R

E

and a vector d 2 N

V

0

, �nd a

set of edges F � E at minimum cost c(F ) such that for any two nodes v;w 2 V , there

are minfd

v

; d

w

g many node disjoint paths in F between v and w. An application is the

design of survivable networks, especially telephone networks in which the damage of some

equipment does not disconnect important links.

References: Gr

�

otschel, Monma and Stoer (1992a, 1992b, 1994), Stoer (1992)

Node packing problem

In a graph G = (V;E) with node weights c 2 R

V

we want to �nd a node set W � V such

that no two nodes v;w 2W are adjacent in G and

P

v2W

c

v

is maximum. An application

is the allocation of radio frequencies to transmitters.

Reference: Nemhauser and Sigismondi (1992)

Rural postman problem

For a graph G = (V;E) with edge weights c 2 R

E

and a set R � E of required edges,

�nd a connected Eulerian subgraph (a subgraph in which all node degrees are even) with

edge set F � E such that R � F and c(F ) is minimum. If R is connected, the problem

is a Chinese postman problem, which can be reduced to the matching problem described
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above. In general, the rural postman problem is NP-hard. Applications of this problem

are plotting problems.

References: Corberan and Sanchis (1991), J

�

unger, Reinelt and Rinaldi (1994)

Scheduling

There are many variants of the scheduling problem so that we cannot give a brief formal

de�nition. In general, the problem is to schedule n jobs on m machines subject to side

constraints like some prespeci�ed partial order on the jobs or a maximal number of jobs per

machine at the same time. The objective function can be, for instance, the minimization

of the production costs or the minimization of the completion time. There are many

applications in production planning.

References: Nemhauser and Savelsbergh (1992), Applegate and Cook (1993)

Sequential ordering problem

Given a digraph D = (V;A) with n nodes and arc weights c 2 R

A

. Find a minimum

length Hamiltonian path (v

1

; v

2

); (v

2

; v

3

); : : : ; (v

n�1

; v

n

) 2 A such that given precedence

constraints of the form \v

i

before v

j

" are satis�ed. An application is robot motion planning,

both in production and in storage systems.

Reference: Ascheuer, Escudero, Gr

�

otschel and Stoer (1993)

Set partitioning problem

The set partitioning problem is a zero-one optimization problems with side constraints of

the form Ax = 1, where all coe�cients of the matrix A are 0 or 1 and the right hand side 1

is a vector of ones. This problem has applications in airline crew scheduling.

Reference: Hoffman and Padberg (1993)

Steiner tree problem

Given a connected graph G = (V;E), T � V , c 2 R

E

, �nd F � E with c(F ) minimum

such that F induces a tree in G and T �

S

e2F

e. This is the network survivability problem

with d

v

2 f0; 1g. An application is the design of telephone networks.

Reference: Chopra, Gorres and Rao (1992)

Steiner tree packing problem

For a connected graph G = (V;E), node sets T

1

; T

2

; : : : ; T

k

� V , capacities w 2 N

E

0

, and

costs c 2 R

E

, �nd trees F

1

; F

2

; : : : ; F

k

� E with T

i

�

S

e2F

i

e for all i = 1; : : : ; k and

P

k

i=1

je \ F

i

j � w

e

for all e 2 E such that

P

k

i=1

c(F

i

) is minimum. An application is the

routing of nets in electronic circuits.

References: Martin (1992), Gr

�

otschel, Martin and Weismantel (1992a, 1992b)

Traveling salesman problem

The traveling salesman problem has been formulated in section 1. Applications are, e.g.,

the drilling of printed circuit boards, di�ractometer control in x-ray crystallography, and

vehicle routing.
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References: Dantzig, Fulkerson and Johnson (1954), Miliotis (1976, 1978), Gr

�

ot-

schel (1977, 1980), Padberg and Hong (1980), Crowder and Padberg (1980), Pad-

berg and Gr

�

otschel (1985), Fleischmann (1985), Padberg and Rinaldi (1987,

1989, 1991) Gr

�

otschel and Holland (1991) J

�

unger, Reinelt and Thienel (1992),

Clochard and Naddef (1993), J

�

unger, Reinelt and Rinaldi (1994),

Vehicle routing problem

The vehicle routing problem is a multiple salesman problem in which a demand d

v

is

associated with every city v and each salesman (vehicle) has to deliver d

v

units of some

commodity to each city v he visits. The total amount of the commodity that each salesman

can carry is limited by the vehicle capacity c. Generalizations include, for example, di�erent

capacities for di�erent vehicles, time windows on the delivery time, or upper limits for the

length of the trips of the salesmen.

Reference: Cornu

�

ejols and Harche (1993)

Windy postman problem

The windy postman problem is a directed variant of the Chinese postman problem.

References: Zaw Win (1987), Gr

�

otschel and Zaw Win (1992)
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