
ANGEWANDTE MATHEMATIK UND INFORMATIK

UNIVERSIT

�

AT ZU K

�

OLN

Report No. 94.159

A Fast Parallel SAT{Solver |

E�cient Workload Balancing

by

Max B�ohm, Ewald Speckenmeyer

1994

to appear in:

Annals of Mathematics and Arti�cial Intelligence

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstr. 1

D{50969 K�oln



A Fast Parallel SAT{Solver | E�cient Workload

Balancing

Max B�ohm

y

, Ewald Speckenmeyer

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstr. 1, D{50969 K�oln

e{mail: boehm@informatik.uni{koeln.de, esp@informatik.uni{koeln.de

Abstract: We present a fast parallel SAT{solver on a message based MIMD machine. The

input formula is dynamically divided into disjoint subformulas. Small subformulas are solved by

a fast sequential SAT{solver running on every processor, which is based on the Davis{Putnam

procedure with a special heuristic for variable selection. The algorithm uses optimized data

structures to modify boolean formulas. Additionally e�cient workload balancing algorithms

are used, to achieve a uniform distribution of workload among the processors. We consider

the communication network topologies d{dimensional processor grid and linear processor array.

Tests with up to 256 processors have shown very good e�ciency{values (> 0:95).

1 Introduction

The satis�ability problem of boolean formulas in conjunctive normal form (SAT{problem)

was the �rst problem to be shown to be NP{complete, see [2]. Since that time the SAT{

problem has attracted the interest of many researchers. This is due to its simple structure

on the one side. On the other side the SAT{problem has several important applications

in the area of logic{programming, fault testing of switching circuits, etc. Therefore it is

important to have algorithms, which are able for solving a wide range of instances of the

SAT{problem in tolerable time. We know classes of instances of the SAT{Problem which

can be solved in linear time. The class of Horn formulas, [4], and the 2{SAT formulas,

[2], e.g., or the formulas with the implication as the only operator and with every variable

occurring twice, [7]. Classes of instances of the SAT{problem have been studied in order

to show proof systems like resolution to be exponential time provers for these classes,

as the pigeonhole formulas, [6], or Tseitin's graph formulas, [11]. The satis�ability test

of these instances is hard for certain proof systems only, but not for a human solver,

who knows in advance | due to an understanding of the idea behind the construction

principle of the formulas | whether they are satis�able or not. Thus random formulas

form a really hard class of formulas when asking whether they are satis�able or not.

We now have a lot of knowledge about the average time complexity or the probabilistic

behavior of algorithms, when solving certain parametrized classes of random instances,

see [9], [5]. Despite of many attempts in this direction, for a wide range of instances the

y

This research was supported by the Federal State of Nordrhein{Westfalen in the Forschungsverbund

Paralleles Rechnen, Az.: IV A 3 - 107 021 91 -



SAT{problem remains intractable from an experimental point of view. We have no idea

how to test these formulas e�ciently for satis�ability.

Here we are essentially interested in solving hard random instances. We �rst have

developed a Davis{Putnam based satis�ability solver. The quality of such a solver heavily

depends on the ability of predicting, which of the unset literals should be set true next in

order to hold the search space as small as possible. By experiments with k{SAT formulas

(all clauses have a �xed length k) with varying ratios of clauses and variables we have

singled out a strategy essentially computing for every unset literal a vector weighting the

occurrences of the literal and its complement in clauses of length i = 2; 3; : : : ; k. A literal

with highest vector under the lexicographic order will be chosen next, see chapter 2. Each

step of truth setting a literal, and consequently of its complementary literal, causes an

update of the current subformula. This update should be as e�cient as possible, i.e. a

good data structure for representing formulas is needed. In order to be able to represent

any boolean formula in conjunctive normal form, we have used a purely pointer based

data structure. This data structure needs linear storage space and allows for an optimal

execution of nearly all data structure operations, which have to be performed by our

algorithm, see chapter 3. The implementation of this algorithm turned out to be the

fastest program among 35 programs in a SAT competition organized by Hans Kleine

B�uning from the University of Paderborn, see [1].

In order to be able to further speed up our algorithm, we have implemented it on

a parallel computer, a Transputersystem built up from up to 256 processors (INMOS

T800/4MB). Transputersystems enable the programmer to realize every net{topology

with the restriction that every processor is connected with at most four other processors.

All experiments, which are reported here, where run on 2-dimensional grids of up to 16�16

processors and on linear processor arrays. We want to mention here in advance, that a

SPARC 10 processor works at least 10 times faster than a T800 processor. What we are

interested in and what we have achieved however, is to speed up our sequential SAT{

solver by a factor of nearly 1=N by running a copy of it on each of the N processors and

distributing the workload between the processors in a convenient way. Thus, if we were

able to substitute each T800 processor by a SPARC 10 processor, the reported runtimes

for the N processor Transputernetwork would be at least 10 times faster for a SPARC

10{network.

As mentioned above, our parallel SAT{solver runs a copy of the sequential SAT{solver

on every processor, and the N processors cooperate, when searching for a solution in the

space of partial truth assignments, by partitioning this space. That way each processor

will be provided with a certain amount of workload represented by its subspace of partial

truth assignments. The most di�cult part, which has to be solved when running the SAT{

solver on a parallel computer, consists of balancing the workload between the processors in

such a way that on the one side idle times of processors should almost always be avoided,

on the other side the workload balancing phase should consume as few computing time as

possible. This is a nontrivial task. Our parallel algorithm redistributes workload between

the processors at certain points of time. This is necessary, because no reliable estimation

of workload represented by a partial truth assignment, which has not yet been singled

out not to lead to a satisfying truth assignment, is known. We have used as workload



estimation the function �

n

for a partial truth assignment with n unset variables, for

varying values of � between 1:04 and 1:42, depending on the parameters of the class of

formulas from which the input formula is chosen.

The workload redistribution phase is activated, if the estimated workload for some

processor goes down some limit. Then, in case of a linear processor array, the following

steps are performed. In the �rst step the pre�x sums of the workload estimations for

all processors are determined for the linear array of N processors. Then in a second

step the last processor, which knows the total amount L of estimated workload and the

number N of processors, broadcasts the ratio � = L=N , i.e. the amount of workload for

each processor in case of a uniform workload distribution among the N processors, to all

processors. Finally in a third step, each processor p knows due to the knowledge of �

and its rank in the linear processor array, i.e. how many processors are to the left of p,

whether workload has to be sent from p to its left (right) neighbor, or whether p has to

receive workload from its left (right) neighbor. These three steps can be performed in

time O(N). The workload redistribution phase for rectangular grids is achieved by �rst

performing the above workload balancing phase for all linear arrays of processors linked

in the �rst dimension and then for all linear arrays of processors linked in the second

dimension. I.e., in case of square grids with N processors the workload distribution phase

can be performed in time O(

p

N).

We have run many experiments with our parallel SAT{solver with N=1,16,32,64,128,

and 256 processors, see chapter 6. We want to stress the point, that we have obtained an

e�ciency close to 1. Obtaining these results is not a trivial task, and it requires a lot of

tuning.

2 Sequential SAT{Solver

We consider boolean formulas in conjunctive normal form (CNF). The following notations

are used:

� Let V be a set of n boolean variables.

� X = fx; x j x 2 V g is called the set of literals.

� c = x

1

_ : : :_ x

k

with x

i

2 X is called a clause. A clause is a disjunction of literals.

The clause length jcj of this clause is k. A clause is not allowed to contain both, a

literal and its complement.

� F = c

1

^ : : : ^ c

m

, with clauses c

i

, is called a formula in conjunctive normal form.

We de�ne jF j :=

P

c2F

jcj to be the total number of literals in F .

� A truth assignment A � X is a set of literals with 8x 2 A : x =2 A. F

A

denotes the

formula we obtain from F by assigning the value true to all literals x 2 A and the

value false to their complements. We write F

x

as a shorthand for F

fxg

.



The satis�ability test of a CNF{formula F is performed by the following algorithm

Solve, which is a variant of the Davis{Putnam procedure, see [3], with a special heuristic

for variable selection. We already described this algorithm briey in [1]. The input

formula F

I

is satis�able i� Solve(F

I

) returns true.

function Solve(F )

1. if F is empty then return true

2. if F contains the empty clause then return false

3. if F contains a unit clause (x) then return Solve(F

x

)

4. select a literal x for branching according to the lexicographic heuristic

if Solve(F

x

) then return true

else return Solve(F

x

)

A formula F without any clauses is satis�ed by de�nition and if F contains the empty

clause it is unsatis�able thus justifying steps 1 and 2 of Solve.

For reasons of e�ciency the formula should be simpli�ed as much as possible before

branching. A powerful simpli�cation is the unit clause rule or unit resolution which is done

in step 3. A clause of length 1 (unit clause) containing the literal x forces the assignment

x = true. The simpli�ed formula is solved recursively. This strategy is implemented with

the following slight modi�cation to speed up the program: Before an assignment based on

the unit clause rule is made, the formula is checked for two complementary unit clauses

(y), (y). In this case the formula is determined to be unsatis�able.

We want to mention that we have not included the pure literal rule into our SAT{

solver, because it slowed down the run time of the algorithm in our experiments.

Step 4 is the branching step. A literal x is chosen according to a special heuristic, which

is described below. First the value true is assigned to x and the resulting subformula F

x

is

solved recursively. If no solution is found the value false is assigned to x and the resulting

formula F

x

is solved recursively. F is satis�able i� at least one of the two subformulas F

x

and F

x

is satis�able.

The idea behind the lexicographic heuristic is to assign a value to a literal occurring

as often as possible in the shortest clauses of the formula. This way the length of the

shortest clauses is often reduced by one, which will result in clauses of length 1 after a

few steps. So the formula collapses fast.

A literal x with maximal vector (H

1

(x);H

2

(x); : : : ;H

n

(x)) under the lexicographic

order is chosen, where

H

i

(x) = �max(h

i

(x); h

i

(x)) + � min(h

i

(x); h

i

(x));

and h

i

(x) is the number of clauses of length i, containing x.

If � = � = 1 the function simpli�es to H

i

(x) = h

i

(x) + h

i

(x), which is equal to the

number of positively and negatively occurrences of literal x in clauses of length i. In order



to get subproblems of about the same size, we want to prefer literals which do not di�er

too much in h

i

(x) and h

i

(x). Experiments have shown that the choice of � = 1 and � = 2

often leads to shorter run times.

Note that H

i

(x) = H

i

(x). After having determined the literal x we proceed �rst with

that subformula of F

x

and F

x

which has the fewest number of clauses.

In our implementation we calculate and compare two elements H

s

(x) and H

s+1

(x)

of the vector only, where s is the length of the shortest clauses of the formula. This

improves the e�ciency of the calculation. The size of the search trees thus generated does

not change signi�cantly due to this simpli�cation.

3 Data Structures

Beside a good branching heuristic, which keeps the search tree small, an e�cient data

structure for representing formulas is important. The run time of a SAT{algorithm will

be slowed down orders of magnitude due to a poor implementation of the underlying data

structures. This is also reected by the results of a SAT competition described in [1].

The design of suitable data structures depends on the operations, which should be

supported e�ciently. Our data structure stores a boolean formula F , which is initially

the input formula. The basic operation consists of modifying F according to a truth

assignment of a variable. This operation is executed at each edge of the search tree.

Another operation, which is executed at each node of the search tree consists of looking for

unit clauses. The data structure should be chosen in order to support e�cient execution

of these operations.

Having a look at the shape of the search tree, we see that most nodes (especially

the leaves) represent subformulas of small size compared to the size of the input formula.

Therefore any subformula should be stored and accessed as e�ciently as the input formula,

i.e. the run time for a `linear time' operation should be linear in the size of the current

subformula represented by the data structure and not in the size of the input formula.

A backtracking algorithm has to remember subproblems not yet evaluated (i.e. sub-

formulas). If this is done by copying the whole subproblem the run time of this step will

be at least linear in the size of the subproblem. Additionally, for each subproblem, which

is copied new memory space for storing the problem is needed. This typically leads to

a quadratic space requirement. In order to avoid this ine�ciency we use the following

approach: The data structure represents only one formula which is modi�ed in situ. The

operation assign(x) modi�es F to F

x

. The removed parts of the formula (i.e. satis�ed

clauses, removed literals) are linked on a stack. In case of a backtrack the formula will

be reconstructed by the reverse operation unassign(x) which modi�es F

x

to F using the

stack.

Our implementation of assign and unassign performs both operations in timeO(jF j�

jF

x

j). Direct access to all clauses containing x and all clauses containing x is therefore

supported. Unit clauses are detected in time O(1). We have implemented the following



forward and backward chained list structures:

� The formula is stored as a list of clauses (ordered by clause length). Direct access

to parts of the formula with constant clause length k is supported.

� A clause is represented by a clause head and a list of its literals.

� For each literal x a list of clauses containing x exists (literal occurrence list).

An example of the data structure is shown in �gure 1.

w w

x x

y y

z z

0 1 2 3 4

w w ww ww w

x x xx x x

y y y

z

clause length 1 clause length 2 clause length 3 clause length 4

clause list

literal occurrence lists

Figure 1: Data structure representing F = (w) ^ (w _ x) ^ (w _ x) ^ (w _ x) ^ (w _ x _

y) ^ (w _ x _ y) ^ (w _ x _ y _ z)

The operation of calculating the lexicographic heuristic is executed for branching nodes

(nodes of out{degree 2) of the search tree only. Experiments have shown that the number

of branching nodes is very small compared to the total number of nodes in the search

tree (about 3% for hard random 3{SAT formulas, i.e. for formulas with a clause{variable

ratio of 4.3). This operation needs time O(jF j) in our implementation. We accepted this

time, although some bookkeeping could speed this operation, but this would increase the

running time of the assign and unassign operations.

A literal x and its complement x are treated as inverse elements only. The knowledge

which of them is positive and which is negative is not important, because simple renaming

of literals should not inuence the behavior of the program.

For random k{SAT formulas with a �xed ratio r of clauses and variables the average

number of occurrences of a literal x is equal to kr. For these formulas the operations

assign and unassign need constant time in the average.

Table 1 summarizes the execution times of the operations performed on the data

structure.



operation running time

assign(x), unassign(x) O(jF j � jF

x

j)

�nd clause of length k O(1)

�nd clause c with x 2 c O(1)

�nd literal of clause c O(1)

calculate lexicographic heuristic O(jF j)

Table 1: Time complexity of operations performed on the data structure

We have implemented the operations assign(x) and unassign(x) as described below:

When assigning x = true, we have to remove all clauses c = (� � �x � � �) containing x.

These clauses can be found immediately by looking up the literal occurrence list for x.

Each literal knows its clause head. The clause c and all literals of its literal list with

exception of x are unlinked as shown in �gure 2. Finally we unlink literal x from the list

of unassigned literals.

x

c

x

remove

literal occurrence list

x

c

x

literal occurrence list

Figure 2: Remove clauses c = (� � �x � � �) in time O(jcj)

In the second step we shorten all clauses c = (� � � x � � �) containing literal x. Using the

literal occurrence list for x we �nd all clauses containing x. The literal x is unlinked and

its clause head is moved to the sublist of clauses of length i � 1 if the clause length of c

was i before this operation. This is shown in �gure 3. Finally we unlink literal x from

the list of unassigned literals.

c

x

x

i-1

move

remove

clause length i-1 clause length i

literal occurrence list

x

c

x

i-1

remember position of c

clause length i-1 clause length i

literal occurrence list

Figure 3: Remove literal x from clauses c = (� � �x � � �) in time O(1)



To reverse these operations, we follow the literal occurrence list of x and x and link the

removed clauses and literals into the current formula by using the old pointers of those

elements, which are kept valid to �nd their original locations in the formula. This is done

exactly in reverse order to the unlinking operation as described above and it leads to the

original formula.

4 Workload Balancing

Given a set P of N processors and a communication network. At some �xed point in

time every processor p 2 P holds a workload (WL) �(p) 2 IR

+

, which is an estimation

for the time needed to solve the problems placed on p. In the following we assume, that

WL is divisible in in�nitely small pieces, which can be exchanged between processors. A

processor p is allowed to send some of its WL to a neighbored processor q if p and q are

linked by the network.

The workload balancing problem (WLB) consists of exchanging WL between proces-

sors resulting in a uniformly distributed WL, i.e. 8p; q 2 P : �(p) = �(q). The following

algorithm solves the problem for a linear array of N processors p

1

; : : : ; p

N

in time O(N).

The main task of the algorithm is to determine the amount of WL l(p

i

), which has to

be exchanged between a processor p

i

and its right neighbor p

i+1

to achieve a uniform

distribution of WL.

WLB algorithm for linear arrays

Every processor p

i

2 P performs the following steps:

1. calculate pre�xsum

^

�(p

i

) := �(p

1

) + � � �+ �(p

i

)

2. p

N

calculates optimal WL � :=

^

�(p

N

)

N

; broadcast � to all processors

3. calculate overload l(p

i

) :=

^

�(p

i

)� i� and l(p

i�1

) := l(p

i

)� (�(p

i

)� �)

4. if l(p

i

) > 0 then send WL l(p

i

) to p

i+1

else receive WL jl(p

i

)j from p

i+1

if l(p

i�1

) > 0 then receive WL l(p

i�1

) from p

i�1

else send WL jl(p

i�1

)j to p

i�1

The algorithm starts with a precomputation phase. Every processor p

i

determines

^

�(p

i

) which is the total WL of the processors p

1

; : : : ; p

i

. This is done in N � 1 steps from

p

1

to p

N

. Processor p

N

calculates the optimal workload � :=

^

�(p

N

)

N

and broadcasts it to

all processors in N � 1 steps.

In step 3 every processor p

i

calculates the overload or underload l(p

i

) of the processors

p

1

; : : : ; p

i

, which has to be balanced over the link between p

i

and p

i+1

and the overload

or underload l(p

i�1

) of the processors p

1

; : : : ; p

i�1

, which has to be balanced over the link

between p

i�1

and p

i

.

Some send/receive steps of step 4 need a special sequence of executions, because a

processor p, which has to send a WL greater than �(p) may has to wait for receipt of



su�cientWL from other processors �rst. Nevertheless the above WLB{algorithm achieves

a uniform distribution of WL among the processors within N � 1 steps of moving WL,

which can easily be seen to be optimal. Particularly we want to stress the point that

the algorithm achieves a uniform distribution of WL by moving the smallest possible

amount of WL among the processors, which is important in case of WL consisting of huge

data{packets.

WLB algorithm for d{dimensional m{sided grids

The algorithm can be easily extended to d{dimensional m{sided grids (N = m

d

) using

the above WLB algorithm for linear arrays for each dimension. This leads to a run time

O(d �m):

for k := 1 to d do

8i

j

2 f1; : : : ;mg; 1 � j � d; j 6= k do in parallel

execute the WLB algorithm for the linear array with

processor set fp

i

1

���i

k

���i

d

j i

k

2 f1; : : : ;mgg

Note that d{dimensional hypercubes are d{dimensional 2-sided grids. Therefore the

above algorithm solves the WLB problem for d{dimensional hypercubes in time O(d).

5 Parallel Implementation

The input formula is divided into subformulas in the same way as in the sequential case.

The generated subformulas represent workload, which has to be distributed among the

processors s.t. all processors have the same amount of workload if possible. Small sub-

formulas are solved by the sequential SAT{solver, which is running as a process on all

processors.

To determine an estimation of the workload function � we have measured the run

time of our sequential SAT{solver using samples of random 3{SAT formulas with a clause

and variable ratio of 5, for varying numbers of variables n. Each sample consisted of 50

unsatis�able instances. The average run times of the experiments are indicated by the

solid line in �gure 4, which grows approximately like the function 1:04

n

. Therefore we

de�ned the workload of a subformula F

A

to be �(F

A

) := �

n�jAj

with � = 1:04 for the

input formulas F with n variables.

We did similar experiments with random k{SAT formulas, for k = 3; : : : ; 6, and a

clause{variable ratio of r

k

, where r

k

was chosen such that experimentally about 50% of

all formulas from a sample were unsatis�able. Considering the unsatis�able formulas of

the samples, only, we determined the growth �

n

k

of the average search trees corresponding

to these formulas. The results are summarized in table 2.

A subformula F

A

is represented by a string A

0

of literals, which is a subset of the

partial truth assignment A. The string A

0

only contains those literals of A, which are

chosen in the branching step of the algorithm. Variables whose truth assignments are

forced by the unit clause rule will not be represented. This is su�cient for achieving a



100

1000

10000

100000

300 310 320 330 340 350 360 370 380 390 400

tim
e 

(s
ec

)

variables

Figure 4: Sequential run times (T800 processor) for random 3{SAT formulas,

clauses/variables=5.0, each sample contains 50 instances

r

k

�

k

b

k

3{SAT 4.3 1.04 3%

4{SAT 9.9 1.11 6%

5{SAT 21.1 1.18 10%

6{SAT 43.7 1.25 14%

Table 2: Workload estimation parameter �

k

for random k{SAT formulas, b

k

is percentage

of branching nodes with respect to the size of the search tree

unique reconstruction of F

A

from A

0

. A processor is able to send A

0

to a neighbored

processor consuming little communication time, only.

In the initialization phase the input formula F is sent to all processors in the network.

Each processor p holds a list L

p

of strings A

0

representing subformulas F

A

to be solved

by p. At the beginning one list contains the empty string representing the input formula

F , all other lists are empty.

Each processor runs two processes in parallel, the worker and the balancer.

The worker process tries to split or solve subformulas of the list. It takes a string A

0

representing the subformula F

A

from the top of the list. If the list is empty the worker

process waits for either new work or a termination message of the balancer process. If

the workload �(F

A

) goes down a certain limit, the subformula is solved by the sequential

SAT{Solver. Otherwise F

A

is split into two disjoint subformulas assigning true resp. false

to a literal x which is chosen according to the lexicographic heuristic. The strings A

0

x

and A

0

x representing these subformulas are inserted at the top of the list. This processing

is repeated until it is terminated by the balancer process.

A subformula F

A

is solved by the fast sequential SAT{Solver if �(F

A

) < ��(p), where

�(p) :=

P

A

0

2L

p

�(F

A

). We have chosen � = 0:05 in order to hold a su�cient number of

subformulas in the list. This is especially useful during the ending phase of the computa-



tion when only small subformulas are residing in the lists.

The balancer process of each processor p performs the following steps periodically:

First the estimated workload �(p) of p is sampled. Based upon this information the

precomputation phase of the WLB algorithm is performed, which calculates the amount

of WL to be sent or received by each processor. Additionally the following information is

broadcasted:

� All lists are empty (termination)?

� A solution was found?

� At least one list contains less than s subformulas?

The balancing of WL between processors is actually performed only if at least one pro-

cessor holds less than s problems in its list to reduce communication overhead. We have

chosen s = 3. In case of a balancing activity the processors try to resolve their send

and receive requests of workload in parallel. If a processor has a send request, but its list

contains not enough workload it may have to wait for receipt of WL from other processors

�rst. To execute a send request of WL of some size l the balancer process takes problems

from the bottom of the list, sends them to the neighbored destination processor, and

reduces l appropriately. This is repeated until l < ��. Workload needs not to be balanced

exactly. Therefore we have chosen � = 0:5 to reduce communication activity.

6 Experimental Results

We implemented the parallel SAT{solver in \C" on a parallel MIMD machine of the

University of Paderborn, called Supercluster SC320. It consists of 320 T800 transputers

each of 4 Mbyte local memory. A T800 transputer is a 32 bit processor from Inmos of a

peak performance of 20 MIPS. It includes 4 serial links of 20 Mbits/sec for communication.

The Supercluster SC320 allows to con�gure any network topolgy of maximal degree 4

by software. The connections between processors are established physically by crossbar

switches. Each transputer runs its program code in its local memory.

The T800 this chip exists since 1987, therefore the performance of a single transputer

is slow. A SUN Sparc Station 10 is about 10 times faster. Nevertheless the measured

speedup values indicate the usefulness of a parallel approach.

6.1 Random k{SAT Formulas

The �rst class of test formulas we used were randomly generated k{SAT formulas of n

variables and m clauses. A clause is generated by randomly selecting k di�erent variables.

Each of these variables is then negated with probability 0.5. m clauses are generated

independently. This generation scheme ensures no double or complementary occurring

literals in a clause, but it allows double clauses in the formula. It is not guaranteed that

all n variables occur in the formula.



We �rst have generated a sample of 50 random 3{SAT formulas of 400 variables and

2000 clauses. All test formulas were unsatis�able. Table 3 shows the average run times and

standard deviation in seconds for the network topologies linear array and 2{dimensional

grid. Average speedup{ and e�ciency{values are shown in �gure 5. The average speedup{

value is calculated by dividing the sum of run times of the 1{processor algorithm by the

sum of run times of the N{processor algorithm. The e�ciency{value is the speedup{value

divided by the number of processors. The speedup of the network topology grid is nearly

linear. Even for the network topology linear array with large diameter an acceptable

speedup was measured. This indicates the usefulness of the grid algorithm for much more

than 256 processors.

linear array 2{dimensional grid

proc. time std. dev. speedup e�. proc. time std. dev. speedup e�.

1 36295 12479 1 36295 12479

16 2296 785 15.8 0.99 4 � 4 2307 789 15.7 0.98

32 1152 392 31.5 0.98 4 � 8 1154 394 31.5 0.98

64 583 197 62.3 0.97 8 � 8 579 197 62.7 0.98

128 301 99 120.6 0.94 8 � 16 292 99 124.3 0.97

256 167 52 217.3 0.85 16 � 16 150 50 242.0 0.95

Table 3: Sample: 50 unsatis�able random 3{SAT formulas, 400 variables, 2000 clauses

8

16

32

64

128

256

8 16 32 64 128 256

sp
ee

du
p

processors

linear array
2-dimensional grid

0

0.2

0.4

0.6

0.8

1

8 16 32 64 128 256

ef
fic

ie
nc

y

processors

linear array
2-dimensional grid

Figure 5: average speedup{ and e�ciency values

We also generated a sample of 50 hard random 3{SAT formulas of 350 variables and

1505 clauses (ratio 4.3 of clauses and variables). 19 formulas were satis�able and 31

formulas were unsatis�able. The results are shown in table 4. Each �eld contains a

value for the unsatis�able formulas atop a value for the satis�able formulas. The network

topology 2{dimensional grid was chosen. Figure 6 shows the run times in seconds and

speedup{values for each instance by a small dash. The dash is drawn left from the

vertical grid if the formula is satis�able and right from the vertical grid, if the formula

is unsatis�able. The speedup is nearly linear for unsatis�able formulas. For satis�able

formulas the speedup{values varies very much. Note that the average speedup may be

more than linear which indicates, that the sequential algorithm can be improved, see [10].



proc. sat? time std. dev. speedup e�. branching nodes

1 31 no 126139 52703 6092071

19 yes 39009 33119 1904555

16 31 no 7981 3326 15.8 0.99 6092071

19 yes 1503 1544 26.0 1.62 1152119

32 31 no 3990 1661 31.6 0.99 6092071

19 yes 846 1147 46.1 1.44 1295830

64 31 no 1997 830 63.2 0.99 6092071

19 yes 520 779 75.0 1.17 1593679

128 31 no 1002 415 125.9 0.98 6092071

19 yes 251 468 155.4 1.21 1542045

256 31 no 504 208 250.3 0.98 6092071

19 yes 113 147 345.2 1.35 1378098

Table 4: Sample of 50 random 3{SAT formulas, 350 variables, 1505 clauses

10

100

1000

10000

16 32 64 128 256

tim
e 

(s
ec

)

processors

satisfiable
unsatisfiable

8

16

32

64

128

256

512

1024

2048

4096

8192

16 32 64 128 256

sp
ee

du
p

processors

satisfiable
unsatisfiable

Figure 6: average run times and speedup{values

Next we generated samples of 50 hard random k{SAT formulas for k 2 f3; 4; 5; 6g. We

experimentally determined ratios between clauses and variables which result in about 50%

satis�able instances. The average run times for a 16�16 processor grid in contrast to the

run times of one processor are shown in table 5. Additionally the number of branching

nodes of the search tree and the standard deviation are shown.



k n m

m

n

sat? time

256

time

1

speedup e�. br. nodes std. dev.

3 350 1505 4.3 31 no 504.1 126139 250.2 0.98 6092071 2606870

19 yes 112.8 39009 346.0 1.35 1378098 1801701

4 130 1285 9.9 25 no 214.8 53287 248.1 0.97 2967599 479921

25 yes 47.3 14755 312.0 1.22 674080 583775

5 80 1690 21.1 28 no 166.4 40781 245.1 0.96 1866775 126520

22 yes 68.5 15998 233.7 0.91 798736 491517

6 60 2620 43.7 27 no 183.3 43644 238.1 0.93 1546258 64021

23 yes 56.9 16164 284.1 1.11 503170 511303

Table 5: Hard random k{SAT formulas, e�ciency of 256{processor algorithm

6.2 Graph Formulas

The second class of test formulas consists of Tseitin's graph formulas as de�ned in [11].

These unsatis�able formulas seem to be very hard to be solved by Davis{Putnam based

SAT{solvers. We briey describe how to generate these formulas. We randomly choose

an undirected graph G = (V;E) of f nodes and each node of degree d. Each node v 2 V

is randomly labeled by p(v) 2 f0; 1g so that

P

v2V

p(v) � 1 (mod 2). A unique literal is

assigned to each edge of G. For each node v 2 V we generate all 2

d�1

possible clauses c

involving literals incident with v such that the number of complemented literals in c is

opposite in parity to p(v). The obtained d{SAT formulas consists of n = df=2 variables

and m = 2

d�1

f clauses.

We have generated 4 samples of 10 unsatis�able random graph formulas each. The

parameter � of the workload approximation has to be adjusted for this class of formulas.

The test results are shown in table 6.

f d n m

m

n

time

256

time

1

speedup e�. branching nodes �

48 3 72 192 2.67 172.1 42301 245.8 0.96 38803864 1.11

24 4 48 192 4 129.2 31324 242.4 0.95 34393291 1.18

16 5 40 256 6.4 122.8 29868 243.3 0.95 33554431 1.25

12 6 36 384 10.67 137.7 33581 243.8 0.95 33973861 1.42

Table 6: unsatis�able graph formulas, e�ciency of 256{processor algorithm

Acknowledgement: We would like to thank H. Stamm{Wilbrandt for helpful dis-

cussions on the branching heuristic and F. Meisgen for implementing parts of the parallel

algorithm.



References

[1] Buro M., Kleine B�uning H.: Report on a SAT competition, EATCS Bulletin, No 49,

Feb 1993, 143{151

[2] Cook, S.A.: The Complexity of Theorem{Proving Procedures , Proceedings of the

3rd Annual ACM Symposium on Theory of Computing, 1971, 151{158

[3] Davis, M. and Putnam, H.: A Computing Procedure for Quanti�cation Theory,

J. Assoc. Comput. Mach., 7, 1960, 201{215.

[4] Dowling, W. and Gallier, J.: Linear{Time Algorithms for Testing the Satis�ability

of Propositional Horn Formulae, J. Logic Programming, 3, 1984, 267{284.

[5] Franco J.: Elimination of Infrequent Variables Improves Average Case Performance

of Satis�ability, SIAM J. Comput. 20, 1991, 1119{1127

[6] Haken A.: The Intractability of Resolution, Theor. Comput. Sci., 39, 1985, 297{308

[7] Heusch P.: Implikationen der Implikation, Dissertation, Mathematisches Institut,

Heinrich{Heine{Universit�at{D�usseldorf, 1993

[8] Monien, B. and Speckenmeyer, E.: Solving Satis�ability in less than 2

n

Steps, Dis-

crete Applied Mathematics, 10, 1985, 287{295.

[9] Purdom P.W. Jr., Haven N.G.: Backtracking and Probing, Indiana University Com-

puter Science Technical Report No. 387, 1993

[10] Speckenmeyer, E.: Is Average Superlinear Speedup Possible? , Proc. CSL'88,

Springer{Verlag (LNCS 385), 1989, 301{312.

[11] Tseitin G.S.: On the Complexity of Derivation in Propositional Calculus,

A.O. Slisenko, ed., Studies in Constructive Mathematics and Mathematical Logic,

Part II (translated from Russian) (Consultants Bureau, New York, 1970), 115{125


