
On the Embedding Phase of the

Hopcroft and Tarjan Planarity Testing Algorithm

Kurt Mehlhorn and Petra Mutzel

�y

Abstract

We give a detailed description of the embedding phase of the Hopcroft and Tarjan

planarity testing algorithm. The embedding phase runs in linear time. An implemen-

tation based on this paper can be found in [MMN93].

An undirected graph G = (V;E) is called planar if it can be mapped into the plane without

edge crossings, i.e., the vertices of G are mapped into distinct points in the plane and

the edges of G are mapped into disjoint Jordan curves connecting their endpoints. Such

a mapping is called a planar geometric embedding. Two geometric planar embeddings are

called equivalent if there is an homeomorphism of the plane transforming one into the other.

An equivalence class of geometric planar embeddings is called a planar topological embedding

or simply planar embedding.

A planar embedding of a planar graph induces a cyclic ordering on the edges incident to

any �xed vertex, namely the clockwise ordering of the edges around their common endpoint.

A graph G together with a cyclic ordering on the edges incident to each vertex is called a

combinatorial embedding, it is called a planar combinatorial embedding if it is induced by

some planar embedding. Di�erent planar embeddings can give rise to the same combinato-

rial embedding. However, a planar combinatorial embedding of a connected graph uniquely

determines its topological embedding on the sphere. In the plane, it determines the topo-

logical embedding up to selection of the outer face. Recall that an embedding into the plane

can be obtained from an embedding on the sphere by polar projection. The pole can be

put into any face. There are linear time algorithms [dFPP91, Sch90] to convert a planar

combinatorial embedding into a geometric embedding, e.g., the algorithm by Schnyder puts

the vertices of an n node graph onto an (n � 2) � (n � 2) grid and realizes the edges by

straight-line segments.

Hopcroft and Tarjan [HT74] gave an algorithm that tests the planarity of an undirected

graph in linear time. Alternative linear time algorithms were developed by Lempel, Even,

and Cederbaum [LEC67, ET76], Booth and Lueker [BL76], and Fraysseix and Rosenstiehl

[FR82]. Chiba, Nishizeki, Abe and Ozawa [CNAO85] have shown how to extend the al-

gorithm of Booth and Lueker so as to also construct a planar combinatorial embedding.

Hopcroft and Tarjan also stated but gave no details that their planarity testing algorithm

can be extended to also construct a planar combinatorial embedding. The textbook of the

�rst author [Meh84, vol. 2, page 112] attempts to give more details (in less than one page)

but the presentation is incorrect. We conclude that there is no published correct presentation

of the embedding phase of the Hopcroft and Tarjan algorithm.

�

Max-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany

y

Revised version, 09.03.1995

4 3

1

26

5

7

Figure 1: A DFS-tree of a planar graph. Tree edges are shown solid and back edges are

shown dashed.

In this note we give a complete description of the embedding phase. An alternative presenta-

tion can be found in [Mut92]. Our embedding algorithm has the same recursive structure as

the testing algorithm of Hopcroft and Tarjan and also runs in linear time. An implementa-

tion based on this note is described in [MMN93] and is distributed with the LEDA platform

of combinatorial and geometric computing [N�ah95, MN95] (anonymous ftp mpi-sb.mpg.de,

directory pub/LEDA).

The testing phase of the Hopcroft and Tarjan algorithm is discussed in detail in [Meh84,

vol. 2, pages 96 { 111]. We summarize that discussion. The graph G is assumed to be

biconnected. We also �x a particular DFS-tree of G and identify the vertices of G with

their DFS-numbers. We direct all tree edges from lower to higher DFS-number and all

non-tree edges from higher to lower DFS-number. Non-tree edges are called back edges.

Figure 1 shows an example. We use T and B to denote the set of tree edges and back edges

respectively.

We associate a segment S(e) and a cycle C(e) with every edge e = (x; y) of G. If e is a

back edge then C(e) and S(e) consist of the tree path from y to x and the edge e. If e is a

tree edge then let V (e) be the set of tree successors of y (including y itself) and let w

0

be

the lowest numbered endpoint of any back edge starting in V (e). The cycle C(e) consists of

a tree path from the vertex w

0

to a vertex w 2 V (e) with (w;w

0

) 2 B and the back edge

(w;w

0

) and the segment S(e) consists of C(e), the subgraph induced by V (e), and all back

edges starting in a node in V (e). Note that the segment S(e) is uniquely de�ned but that

there may be several choices for the cycle C(e). We will later �x one particular choice for

C(e). We divide the tree path underlying the cycle C(e) into two parts, its stem and its

spine. The stem consists of the part ending in x. The spine is empty if e is a back edge and

it is the part starting in y if e is a tree edge.

In our example, the cycle C((3; 4)) may consist of the tree path from 1 to 5 followed by the

back edge (5; 1). The stem is the tree path from 1 to 3 and the spine is the tree path from 4

to 5. The cycle C((1; 2)) may consist of the tree path from 1 to 3 and the back edge (3; 1).

2

4 3

1

26

4 3

1

2

7

Figure 2: Embeddings of S((4; 6)) and S((4; 7)) induced by the embedding of G. Stems are

shown in bold. The embedding of S((4; 6)) is canonical and the embedding of S((4; 7)) is

reversed canonical.

Its stem is the node 1 and its spine is the tree path from 2 to 3. The segment S((1; 2)) is

the entire graph G and the segment S((3; 4)) is the graph G minus the edge (3; 1).

A segment S(e) is called strongly planar if there is a planar embedding of S(e) and some

face in that embedding such that the entire stem of the cycle C(e) is contained in the border

of the face. An embedding with such a property is called a strongly planar embedding of

S(e). If a segment S(e) has a strongly planar embedding then it also has one where the

stem of C(e) borders the outer face. When we talk about a strongly planar embedding we

assume from now on that the stem of C(e) borders the outer face. Let w

0

; w

1

; :::; w

r

with

e = (w

r

; y) be the stem of C(e). A strongly planar embedding of S(e) is called canonical

(reversed canonical) if for all i, 0 < i < r, the edge (w

i

; w

i+1

) immediately precedes (follows)

the edge (w

i

; w

i�1

) in the clockwise ordering of edges incident to w

i

.

Figure 2 shows the embeddings of S((4; 6)) and S((4; 7)) induced by the embedding of G

shown in Figure 1.

Since G is assumed to be biconnected there is exactly one tree edge out of vertex 1, namely

the edge (1; 2). Moreover G = S((1; 2)) and G is planar i� S((1; 2)) is strongly planar.

Let e

0

be any edge and let C = C(e

0

) be the cycle associated with e

0

. An edge e = (x; y) is

said to emanate from C if x lies on the spine of C but e does not belong to C. We will also

say that the segment S(e) emanates from C. If e

1

; :::; e

m

are the edges emanating from C

then S(e

0

) = C+S(e

1

)+ :::+S(e

m

), i.e., S(e

0

) is the union of the cycle C and the segments

S(e

1

); :::; S(e

m

).

We need some more concepts. As above, let C = C(e

0

) and let e = (x; y) emanate from C.

The set A(e) of attachments of segment S(e) to cycle C is de�ned to be the set fx; yg if e is

a back edge and the set fxg[fz; (w; z) is a back edge, w 2 V (e) and z =2 V (e)g if e is a tree

edge. Two segments S(e) and S(e

0

) where e and e

0

emanate from C are said to interlace if

either there are nodes x < y < z < u on cycle C such that x; z 2 A(e) and y; u 2 A(e

0

) or

A(e) and A(e

0

) have three points in common.

The interlacing graph IG(C) with respect to cycle C = C(e

0

) is de�ned as follows. The

nodes of IG(C) are the segments S(e) where e emanates from C. Also, S(e) and S(e

0

) are

3

connected by an edge i� S(e) and S(e

0

) interlace. The segment S(e

0

) is strongly planar i�

the following conditions hold. Firstly, S(e) is strongly planar for every e emanating from

C. Secondly, there is a partition fL;Rg of the segments emanating from C such that no

two segments in L or R interlace and such that A(e) \ fw

1

; :::w

r�1

g = ; for any segment

S(e) 2 R, where w

0

; w

1

; :::w

r�1

; w

r

is the stem of cycle C.

For reasons of e�ciency, it is useful to order the adjacency list of any vertex v as follows:

edge (v; w) is before edge (v; w

0

) if min A((v; w)) < min A((v; w

0

)) or if min A((v; w)) =

min A((v; w

0

)); A((v; w)) has cardinality two, and A((v; w

0

)) has cardinality three or more.

In all other cases the order is irrelevant. We assume from now on that the cycle C(e) for

a tree edge e = (x; y) is de�ned in the following way. Starting in y we construct a path by

always taking the �rst edge out of each node until a back edge is encountered. The path

constructed this way is the spine of the cycle C(e).

The discussion above suggests a procedure stronglyplanar (e

0

), cf. [Meh84, vol. 2, page 109]

that given an edge e

0

decides the strong planarity of the segment S(e

0

). It �rst constructs

the cycle C = C(e

0

), then recursively tests the strong planarity of all segments S(e), where

e emanates from C, and �nally tests, whether there is an appropriate bipartition of the

vertex set of the interlacing graph. The recursive calls are made in the following order.

If w

r+1

; :::; w

k

is the spine of the cycle C then the segments S((w

k

;)) are tested �rst,

the segments S((w

k�1

;)) are tested next,... . For each �xed i the segments S((w

i

;)) are

tested in the order in which the edges (w

i

;) appear on the adjacency list of w

i

. The call

stronglyplanar((1; 2)) tests the strong planarity of segment S((1; 2)) and hence the planarity

of G.

As shown in [Meh84, vol. 2, page 112] procedure stronglyplanar can also be used to compute

a labelling � of the edges of G by L and R such that:

� an edge e is labelled i� stronglyplanar(e) is called

� edge (1; 2) is labelled L

� if e

0

is a labelled edge and e

1

; :::; e

m

are the edges emanating from C = C(e

0

) then

� induces the appropriate bipartition of the interlacing graph, i.e., if �(e

i

) = �(e

j

)

then S(e

i

) and S(e

j

) do not interlace and if �(e

j

) = R then A(e

j

)\fw

1

; :::; w

r�1

g = ;

where w

0

; :::; w

r

is the stem of C.

The correctness proof of procedure stronglyplanar demonstrates how a strongly planar em-

bedding of S(e

0

) can be obtained from strongly planar embeddings of the S(e

i

)'s:

To construct a canonical embedding of S(e

0

) draw the path w

0

; : : : ; w

k

(consisting of stem

w

0

; : : : ; w

r

, edge e

0

= (w

r

; w

r+1

) and spine (w

r+1

; : : : ; w

k

) as a vertical upwards directed

path, add edge (w

k

; w

0

), and then for i, 1 � i � m, and �(e

i

) = L extend the embedding

of C + S(e

1

) + : : :S(e

i�1

) by glueing a canonical embedding of S(e

i

) onto the left side

of the vertical path, and for i, 1 � i � m, and �(e

i

) = R extend the embedding of

C + S(e

1

)+ : : :+ S(e

i�1

) by glueing a reversed canonical embedding of S(e

i

) onto the right

side of the vertical path. Similarly, if the goal is to construct a reversed canonical embedding

of S(e

0

) then, if �(e

i

) = L, a reversed canonical embedding of S(e

i

) is glued onto the right

side of the vertical path, and if �(e

i

) = R, then a canonical embedding of S(e

i

) is glued

onto the left side of the vertical path. This completes the review of [Meh84].

We can now give the algorithmic details. We �rst use procedure stronglyplanar to compute

the mapping �. We then use a procedure embedding to actually compute an embedding.

The procedure embedding takes two parameters: a tree edge e

0

and a
ag t 2 fL;Rg. A

call embedding(e

0

; L) computes a canonical embedding of S(e

0

) and a call embedding(e

0

; R)

4

(0) procedure embedding(e

0

: edge, t: fL;Rg)

(� computes an embedding of S(e

0

), e

0

= (x; y), as described in the text;

it returns the lists T and A de�ned in the text �)

(1) �nd the spine of segment S(e

0

) by starting in node y and always

taking the �rst edge of every adjacency list until a back edge is

encountered. This back edge leads to node w

0

.

(� Let w

0

; : : : ; w

r

be the tree path from w

0

to x = w

r

and

let w

r+1

= y; : : : ; w

k

be the spine constructed above. �)

(2) AL AR empty list of edges;

T (w

k

; w

0

);

(3) for j from k downto r + 1

(4) do for all edges e

0

(except the �rst) emanating from w

j

(5) do if e

0

is a tree edge

(6) then (T

0

; A

0

) embedding(e

0

; t� �(e

0

))

(7) else T

0

 (e

0

), A

0

 (reversal of e

0

)

(8) �

(9) if t = �(e

0

)

(10) then T T

0

conc T ; AL AL conc A

0

(11) else T T conc T

0

; AR A

0

conc AR

(12) �

(13) od

(14) output (w

j

; w

j�1

) conc T ; (� the cyclic adjacency list of vertex w

j

�)

(15) let AL = AL

0

conc T

0

and AR = T

00

conc AR

0

where T

0

and T

00

contain all edges incident to w

j�1

;

(16) AL AL

0

; AR AR

0

; T T

0

conc (w

j�1

; w

j

) conc T

00

(17) od

(18) A AR conc (w

0

; w

k

) conc AL;

(19) return T and A

(20) end

Table 1: The procedure embedding

computes a reversed canonical embedding of S(e

0

). The call embedding((1; 2); L) embeds

the entire graph.

The embedding of S(e

0

) computed by embedding(e

0

; t) is represented in the following non-

standard way:

1. For the vertices v 2 V (e

0

) we use the standard representation, i.e., the cyclic list of the

incident edges corresponding to the clockwise ordering of the edges in the embedding.

2. For the vertices in the stem we use a non-standard representation. For each vertex

w

i

2 fw

0

; : : : ; w

r

g let the lists AL(w

i

) and AR(w

i

) be such that the catenation of

(w

i

; w

i+1

), AR(w

i

), (w

i

; w

i�1

), and AL(w

i

) corresponds to the clockwise ordering of

the edges incident to w

i

in the embedding. Here, w

�1

= w

k

. Note that AR(w

i

) = ;

for 1 � i < r if t = L, and AL(w

i

) = ; for 1 � i < r, if t = R. The lists AL(w

i

),

AR(w

i

), 0 � i � r, are returned in an implicit way: AL(w

r

) and AR(w

r

) are returned

as the list T = AL(w

r

); (w

r

; w

r+1

), AR(w

r

) and the other lists are returned as the list

A = AR(w

r�1

); : : : ; AR(w

0

); (w

0

; w

k

); AL(w

0

); : : : ; AL(w

r�1

), cf. Figure 3.

5

AR(w

r�1

)

AR(w

r�2

)

AR(w

1

)

AR(w

0

)

AL(w

r

)

AL(w

r�1

)

AL(w

r�2

)

AL(w

1

)

AL(w

0

)

A

w

0

w

1

w

r�1

w

r�1

w

r

w

k

T

w

r+1

AR(w

r

)

Figure 3: A call embedding (e

0

; t) returns lists T and A. Lists are drawn as arrows. The

arrowhead corresponds to the end of the list.

6

The procedure embedding has the same structure as the procedure stronglyplanar and is

given in Table 1. It �rst constructs the stem and the spine (line (1)) of cycle C(e

0

), then

walks down the spine (lines (3) to (17)), and �nally computes the lists T and A to be

returned (lines (18) and (19)).

We �rst discuss the walk down the spine. Suppose that the walk has reached vertex w

j

. We

�rst recursively process the edges emanating from w

j

(lines (4) to (13)), and then compute

the cyclic adjacency list of vertex w

j

and prepare for the next iteration (lines (14) to (16)).

We discuss lines (4) to (13) �rst. In general, some number of edges emanating from w

j

and all edges incident to vertices w

l

with l > j will have been processed already. Call the

processed edges e

1

; : : : ; e

i�1

. We can now state the invariant of the loop (4) to (13):

� T concatenated with (w

j

; w

j�1

) is the cyclic adjacency list of vertex w

j

in the embed-

ding of C + S(e

1

) + : : :+ S(e

i�1

).

� AL and AR are the catenation of the lists AL(w

0

); : : : ; AL(w

j�1

) and AR(w

j�1

); : : : ;

AR(w

0

) respectively where (w

l

; w

l+1

), AR(w

l

); (w

l

; w

l�1

); AL(w

l

) is the cyclic adja-

cency list of vertex w

l

, 0 � l � j � 1, in the embedding of C + S(e

0

) + : : :+ S(e

i�1

).

When i = 0, i.e., before processing any of the emanating segments the adjacency list of w

j

,

0 � j � k � 1, is (w

j

; w

j+1

); (w

j

; w

j�1

) and hence AL(w

j

) = AR(w

j

) = ;. We conclude

that T , AL and AR are initialized correctly in line (2).

Assume now that we process edge e

0

= e

i

emanating from w

j

. The
ag �(e

0

) indicates what

kind of embedding of S(e

i

) is needed to build a canonical embedding of S(e

0

); the opposite

kind of embedding of S(e

i

) is needed to build a reversed canonical embedding of S(e

0

). So

the required kind is given by t� �(e

0

), where L�L = R�R = L and L�R = R� L = R.

If e

0

is a tree edge, the call embedding(e

0

; t��(e

0

)) computes the cyclic adjacency lists of the

vertices in V (e

0

) and returns lists T

0

and A

0

as de�ned above. If e

0

is a back edge then T

0

is

simply e

0

and A

0

is simply the reversal of e

0

. If S(e

i

) has to be glued to the left side of the

vertical path w

0

; : : : ; w

k

, i.e., if t = �(e

0

) then we append T

0

to the front of T and A

0

to the

end of AL, cf. Figure 4. Analogously, if S(e

i

) has to be glued to the right side of the path

w

0

; : : : ; w

k

, i.e., if t 6= �(e

0

), then we append T

0

to the end of T and A

0

to the front of AR.

This clearly implements the glueing process described above and also clearly maintains the

invariants.

Suppose now that we have processed all edges emanating from w

j

. Then (w

j

; w

j�1

) con-

catenated with T is the cyclic adjacency list of vertex w

j

(line (14)).

We next prepare for the treatment of vertex w

j�1

. Let T

0

and T

00

be the list of edges incident

to w

j�1

from the left and from the right respectively and having their other endpoint in an

already embedded segment. List T

0

is a su�x of AL and list T

00

is a pre�x of AR. The

catenation of T

0

, (w

j�1

; w

j

), T

00

, and (w

j�1

; w

j�2

) is the current clockwise adjacency list

of vertex w

j�1

. Thus lines (15) and (16) correctly initialize AL, AR, and T for the next

iteration.

Suppose now that all edges emanating from the spine of C(e

0

) have been processed, i.e.,

control reaches line (18). At this point, list T is the ordered list of edges incident to w

r

(except (w

r

; w

r�1

)) and the two lists AL and AR are the ordered list of edges incident to

the two sides of the stem of C(e

0

). Thus T and the catenation of AR; (w

0

; w

k

), and AL are

the two components of the output of embedding(e

0

; t). We summarize in

Theorem 1 Let G = (V;E) be a planar graph. Then G can be turned into a planar combi-

natorial embedding in linear time.

7

T’
S(e’)

A’

AL

AR

T

w j

w
j-1

w
l

S(e’)
T’

T

w j

w
j-1

AR

w
l

AL

A’

Figure 4: Glueing S(e

0

) to the left or right side of the path w

0

; : : : ; w

k

respectively.

Proof. The correctness follows immediately from the correctness of procedure strongly-

planar, from the fact that stronglyplanar correctly computes the mapping �, and from the

observation that embedding realizes the glueing process described above.

For the running time analysis we only have to observe that every edge is moved at most

once from one of the lists AL and AR onto the list T (onto lists T

0

and T

00

in line (15) and

then to T in line (16)), that every edge belongs to at most one spine (line (14)) and that all

lines except lines (1) and (15) take constant time. 2

For an example let us consider the DFS-tree of G given in Figure 1. Consider the situation in

the call of embedding((3; 4); L). The call embedding((4; 6); L) computes the cyclic adjacency

lists of the vertices in V ((4; 6)) and returns lists T

0

= (4; 6) and A

0

= (1; 6)(2; 6). In line

(10), T = (4; 6)(4; 5) and AL = (1; 6)(2; 6). The call of embedding((4; 7); R) gives T

0

= (4; 7)

and A

0

= (3; 7); (1; 7). Thus in line (10) we have T = (4; 6)(4; 5)(4; 7) and AR = (3; 7)(1; 7).

The adjacency list of node w

j

= 4 is completed in line (14). It is (4; 3); (4; 6); (4; 5); (4;7).

In line (16) we get AL = (1; 6)(2; 6), AR = (1; 7) and T = (3; 4)(3; 7). At the end of

embedding((3; 4); L) we have A = (1; 7)(1; 5)(1; 6)(2; 6).

An implementation based on this note is described in [MMN93] and is distributed with the

LEDA platform of combinatorial and geometric computing [N�ah95, MN95] (anonymous ftp

(mpi-sb.mpg.de, directory pub/LEDA)). It �rst determines the connected and biconnected

components and then adds edges to make the graph biconnected. It then tests planarity

(using procedure stronglyplanar). If the graph is found to be non-planar, a subdivision of

K

5

or K

3;3

is identi�ed to prove non-planarity (a trivial method is used for that purpose:

the following test is applied to every edge. The edge is removed provisionaly and planarity

is tested again. If the graph is still non-planar then the edge is removed. If the graph is

now planar the edge is kept. In this way, a subdivision of K

5

or K

3;3

is found in quadratic

time. We should mention that there is a linear time algorithm to identify a K

5

or K

3;3

in a non-planar graph [Wil84]). If the graph is found to be planar a planar combinatorial

embedding is constructed. The resulting planar combinatorial embedding is triangulated, a

straight-line embedding is constructed (using either the algorithm in [Sch90] or [dFPP91]),

and the result is displayed.

The implementation was extensively tested on three kinds of graphs: hand-crafted examples

8

number of nodes 1000 2000 4000 8000 16000 32000

number of edges 1921 3890 7842 15777 31684 63558

initializing 0.33 0.80 1.88 5.02 10.88 33.02

planarity testing 0.13 0.27 0.58 1.28 2.73 6.07

embedding 0.15 0.30 0.77 1.80 4.22 9.57

total time 0.61 1.37 3.23 8.10 17.83 48.66

Table 2: Running times in seconds on a SUN SPARC 10 for pseudo-random planar graphs.

The �rst row shows the time to prepare the input graph, i.e., to copy it, to make it bicon-

nected and bidirected, the second row shows the time to test planarity, and the third row

gives the time for constructing the embedding.

of small size, random sparse graphs, and pseudeo-random planar graphs. The latter graphs

were generated by choosing an appropriate number of random line segments in the unit

square, computing their intersections, and putting a vertex on every endpoint and intersec-

tion. The running time of the implementation is about 50 times the running time of the

LEDA strongly connected components algorithm. Table 2 gives more details.

The measured running times grow slightly more than linear. This is due to the increased

number of cache faults for larger input graphs. Many of the actions of the algorithm follow

the following pattern: an edge, say (v; w), is explored and then a number of labels of node

w are inspected and processed. We have chosen LEDA's node arrays to realize node labels.

Thus inspecting k node label corresponds to accesses in k arrays and hence to up to k cache

faults. Since processing a node label is typically a simple operation these cache faults show

up in the measured running time. An alternative implementation where all node labels are

stored directly in the node would incur less slow-down due to cache faults.

References

[BL76] K. Booth and L. Lueker. Testing for the consecutive ones property, interval

graphs and graph planarity using PQ-tree algorithms. J. of Computer and Sys-

tem Sciences, 13:335{379, 1976.

[CNAO85] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding

planar graphs using PQ-trees. J. of Computer and System Sciences, 30(1):54{76,

1985.

[dFPP91] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.

Combinatorica, 10:41{51, 1991.

[ET76] S. Even and R.E. Tarjan. Computing an st-numbering. Theoretical Computer

Science, 2:339{344, 1976.

[FR82] H.de Fraysseix and P. Rosenstiehl. A depth{�rst{search characterization of pla-

narity. Annals of Discrete Mathematics, 13:75{80, 1982.

[HT74] J. Hopcroft and R. Tarjan. E�cient planarity testing. J. ACM, 21(4):549{568,

1974.

[LEC67] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of

graphs. Theory of Graphs, Int. Symp.(Rome 1966), pages 215{232, 1967.

9

[Meh84] K. Mehlhorn. Data Structures and E�cient Algorithms, volume I, II, III.

Springer Verlag, Berlin, 1984.

[MMN93] K. Mehlhorn, P. Mutzel, and St. N�aher. An implementation of the Hopcroft and

Tarjan planarity test and embedding algorithm. Technical Report MPI{I{93{

151, Max{Planck{Institut f�ur Informatik, Saarbr�ucken, 1993.

[MN95] K. Mehlhorn and St. N�aher. LEDA: A library of e�cient data types and algo-

rithms. CACM, 38(1):96{102, 1995.

[Mut92] P. Mutzel. A fast linear time embedding algorithm based on the Hopcroft-Tarjan

planarity test. Technical report, Universit�at zu K�oln, 1992.

[N�ah95] St. N�aher. LEDA Manual Version 3.1. Technical Report MPI-I-95-1-002, Max-

Planck-Institut f�ur Informatik, 1995.

[Sch90] W. Schnyder. Embedding planar graphs on the grid. In Proc. 1st ACM-SIAM

Symp. Discr. Alg. (SODA), San Francisco, pages 138{148, 1990.

[Wil84] S.G. Williamson. Depth-�rst search and Kuratowksi subgraphs. Journal of the

ACM, 11:681{693, 1984.

10

