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Abstract

The thickness problem on graphs is NP-hard and only few results con-

cerning this graph invariant are known. Using decomposition theorems of

Wagner and Truemper, we show that the thickness of graphs without K

5

-

minors is less than or equal to two. Therefore, the thickness of this class

of graphs can be determined with a planarity testing algorithm in linear

time.
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1 Introduction

The thickness �(G) of a graph G = (V;E) is the minimum number k such that

G is the union of k planar subgraphs (here, by \union of k planar subgraphs" we

mean that the edge-set E can be partitioned into k sets so that the graph induced

by each set is planar). Therefore, the thickness is one measure of the degree of

nonplanarity of a graph.

Clearly, �(G) = 1 if and only if G is planar. The thickness problem, asking for

the thickness of a given graph G, is NP-hard ([Man83]), so there is little hope

to �nd a polynomial time algorithm for the thickness problem on general graphs.

However, for some graph classes, the thickness can be determined in polynomial

time. For example, the thickness is known for complete and complete bipartite

�
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graphs, see, e.g. [BW78]. In some cases, there are (often relatively poor) bounds

on the thickness of a graph ([DHS91] and [Hal91]).

The thickness problem has applications in VLSI-design. In electronic circuits,

components are joined by means of conducting strips. These may not cross, since

this would lead to undesirable signals. In this case, an insulated wire must be

used. For that reason, circuits with a large number of crossings are decomposed

into several layers without crossings, which are then pasted together. The goal

is to use as few layers as possible. In this application it would be desirable to

know the thickness of a hypergraph whose nodes are cells to be placed and whose

hyperedges correspond to the nets connecting the cells. If the thickness problem

could be solved for graphs, it would be a useful engineering tool in the layout of

electronic circuits.

We have restricted our attention to the class of graphs without K

5

-minors.

Our method to determine the thickness of this class of graphs is based on a

decomposition theorem of Wagner [Wag37] and Truemper [Tru92]. The paper is

organized as follows. The concept of graph decomposition is introduced in section

2. In section 3 we prove the main theorem of this paper. Finally, in section 4 we

give negative results on using our approach for the two other graph invariants

crossing number and skewness.

2 Decomposition of Graphs

In this section, we present the 2- and �-sums of graphs. Furthermore, we describe

a recursive construction process for graphs without K

5

-minors based on Wagner's

decomposition theorem, which is essential for the proof of the main theorem.

For that purpose, let G = (V;E) be a connected graph. G is called a 2-sum

of the graphs G

1

= (V

1

; E

1

) and G

2

= (V

2

; E

2

), denoted G = G

1

L

2

G

2

, if the

identi�cation of an arbitrary edge e

1

of G

1

with an arbitrary edge e

2

of G

2

and

subsequent deletion of this edge produces G. Analogously, G is called a �-sum

of G

1

and G

2

, denoted G = G

1

L

�

G

2

, if identi�cation of a triangle of G

1

with

a triangle of G

2

and subsequent deletion of this triangle produces G (see Figure

1). Conversely, if G = G

1

L

2

G

2

or G = G

1

L

�

G

2

, we say that G

1

and G

2

are a 2- resp. �-sum decomposition of G. Let

L

2 f

L

2

;

L

�

g. If, for k � 2,

G = (((G

1

L

G

2

)

L

G

3

)

L

� � �)

L

G

k

, we call the graphs G

i

(1 � i � k) building

blocks of G.

A \modern" version of a theorem by Wagner [Wag37], given by Truemper

[Tru92], allows us to restrict our attention to certain building blocks for all 2-

connected graphs without K

5

-minors.

Theorem 2.1 (Truemper, 1992)

Any 2-connected graph without K

5

-minors is planar, isomorphic to K

3;3

or V

8

or may be constructed recursively by 2-sums and �-sums. The building blocks of
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e1 =

G1

e2

G2 G

=

G1 G2 G

Figure 1: 2- and �-sum

such a construction are planar graphs and graphs isomorphic to K

3;3

or V

8

in the

case of a 2-sum and planar graphs only in the case of a �-sum.

As a preparation for the proof of the main theorem, we have to deal with

the structure of the two graphs K

3;3

and V

8

(see Figure 2). Both graphs are not

planar and have crossing number one, which can be seen from the embeddings of

Figure 3. Obviously their thickness equals two. We call the edges of V

8

between

two succeeding vertices circle-edges, and the others diagonal-edges.

1 2

3 4

5 6

1

2

3

4

5

6

7

8

Figure 2: K

3;3

and V

8

We make the convention that a graph G

1

always represents the graph already

obtained by means of 2- resp. �-sums, and a graph G

2

is chosen according to

the speci�cation of the building blocks given in Truempers theorem. Moreover,

3



we identify a graph with a drawing in the plane. According to the application in

VLSI-design the planar graphs, whose union is the original graph, are embedded

on di�erent layers.

6

52

3

1

4

1 2

85

3

6

4

7

Figure 3: Embedding of K

3;3

and V

8

with one crossing

3 Thickness Theorem

We are prepared to prove the main theorem of this paper.

Theorem 3.1 If G is a graph without K

5

-minors, then �(G) � 2.

In the proof we will make use of two lemmas.

Lemma 3.2 If G

1

is a graph and G

2

is a planar graph or isomorphic to K

3;3

or

V

8

, then the following holds for any 2-sum G = G

1

L

2

G

2

:

�(G) = max f�(G

1

); �(G

2

)g:

Proof. Let G

1

be divided into �(G

1

) planar subgraphs, each of them embed-

ded on a di�erent layer. Denote by e

1

resp. e

2

the edges of G

1

resp. G

2

, which

are identi�ed in a 2-sum. We can assume without loss of generality that e

1

is

embedded on the �rst layer. We have to deal with two cases.

If G

2

is planar, then, by means of stereographic projection, we can obtain an

embedding of G

2

in the plane, in which e

2

bounds the outer face. Thus, the whole

graph G

2

can be embedded in one of the two faces, bounded by edge e

1

on layer 1

of graph G

1

. Then the edge e

1

is identi�ed with the edge e

2

and subsequently

deleted (see Figure 4). The thickness of the resulting graph has not increased,

i.e., we have �(G) = �(G

1

).

If G

2

is isomorphic to K

3;3

or V

8

, an analogous approach is possible. The

deletion of any edge of K

3;3

results in a planar graph, and the deletion of any

circle-edge of V

8

yields a planar graph. Let e

3

be such an edge, which, by the

above, can be chosen to be nonadjacent to e

2

.

As in the �rst case we can embed the graph G

2

� e

3

on the �rst layer. Since e

2

and e

3

are nonadjacent, none of the terminal-vertices of e

3

is, after identi�cation
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e1

e2

layer 1

layer 2

layer 1

layer 2

2

G1 G2

=

Figure 4: 2-sum with a planar graph

of e

1

with e

2

, a vertex of G

1

, therefore the deleted edge e

3

can be embedded on

layer 2 without destroying planarity (see Figure 5).

If G

1

is planar and G

2

non-planar, we have �(G

1

L

2

G

2

) = �(G

2

). If G

1

is nonplanar, the thickness does not increase for any 2-sum. Consequently,

�(G

1

L

2

G

2

) = max f�(G

1

); �(G

2

)g. 2

Lemma 3.3 If G

1

is a graph and G

2

is a planar graph, then the following holds

for any �-sum G = G

1

L

�

G

2

:

(i) If G

1

is nonplanar, then �(G) = �(G

1

),

(ii) If G

1

is planar, then �(G) � 2.

Proof. If we start with a planar embedding of the graph G

2

, then, after dele-

tion of the triangle T de�ning the �-sum, G

2

can be partitioned into the planar

subgraphs G

out

, embedded in the outer side of T , and G

in

, embedded in the inner

side of T .

Consider the graph G

0

2

:= G

2

�G

in

. In G

0

2

, the triangle T bounds a face, which

can be made the outer face via stereographic projection. Now the graph G

in

can

be reinserted into G

0

2

in such a way that all vertices of G

in

lie in one face of G

0

2

,

which is bounded by an edge of the triangle T .

This representation is not necessarily free of crossings, but the triangle T now

bounds the outer face (see Figure 6). In the following, we refer to such a repre-

sentation of a planar graph as a \�-representation" of the graph.
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e1

layer 1

layer 2

layer 1

layer 2

2

G1
G2

=

e3

e3
e2

G

Figure 5: 2-sum with a K

3;3

In order to prove (i), we assume that we have a decomposition of G

1

into

t = �(G

1

) planar layers l

1

; l

2

; : : : ; l

t

. Let v

1

, v

2

, and v

3

be the vertices of G

1

,

which are identi�ed in a �-sum with G

2

, and e

1

= (v

1

; v

2

), e

2

= (v

2

; v

3

), and

e

3

= (v

3

; v

1

) be the edges of the �-clique. Suppose edge e

1

is embedded on layer

l

k

, k 2 f1; 2; : : : ; tg, then let F

1

be one of the faces adjacent to e

1

in a planar

embedding of l

k

. The insertion of the graph G

2

, given in �-representation, is done

by placing the vertices of G

in

in face F

1

. Moreover, all those G

in

-edges, that are

not adjacent to v

3

can be embedded on this layer. The remaining edges (v

3

; u),

u 2 G

in

can be embedded without crossings into any face adjacent to node v

3

in layer l

h

6= l

k

, h 2 f1; 2; : : : ; tg. The insertion of G

out

together with its edges

not adjacent to v

1

is done analogously into the face F

2

adjacent to e

2

in a planar

embedding of l

k

0

, if e

2

is embedded on layer l

k

0

. The remaining edges (v

1

; u),

u 2 G

out

can be embedded into any face adjacent to node v

1

in layer l

h

0

6= l

k

0

,

h

0

2 f1; 2; : : : ; tg. Figure 7 (a) illustrates the situation in the case that all three

edges are embedded on layer l

k

.

Therefore, the thickness does not increase in a �-sum of a nonplanar graph

G

1

with a planar graph G

2

.

In (ii), both G

1

and G

2

are planar. If the triangle de�ning the �-sum is the

boundary of a face of G

1

, and if G

2

, given in �-representation, has no crossings,

then the embedding of G

2

can be inserted into the embedding of G

1

without

violating planarity, and we have �(G

1

L

�

G

2

) = 1.

Otherwise, the graph G

2

is embedded as in part (i), which results in a thickness

of at most 2 for G. 2
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G in

v1 v3

v2

G
out

Figure 6: �-representation of a planar graph

v1 v3

v2

I
F

1
F

2

F
3

(a)

G in

v1 v3

v2

out

I

G

(b)

F
1

F
2

F 3

e
1

e
3

e
2

Figure 7: (a) Shape of layer l

k

if all three edges e

1

, e

2

, e

3

are embedded on this

layer. (b) Layer l

k

after the insertion of G

in

and G

out

Proof of Theorem 3.1 Using induction, we show that if G

k

is a graph, which

is produced by k 2- and �-sums with the building blocks described in section 2,

then �(G

k

) � 2.

The claim is trivial for k = 1, because planar graphs as well as K

3;3

and V

8

have a thickness less than or equal to two. Consider the graph G

k

:= G

k�1

L

H,

obtained from G

k�1

by a 2- resp. �-sum with a graph H chosen accord-

ing to Theorem 2.1. In the case of a 2-sum we obtain from Lemma 3.2 that
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�(G

k

) = max f�(G

k�1

); �(H)g, and thus �(G

k

) � 2. In the case of a �-sum with

a nonplanar graph G

k�1

we obtain from Lemma 3.3 (i) that �(G

k

) = �(G

k�1

). If

G

k�1

is planar, Lemma 3.3 (ii) applies directly. Truemper's decomposition theo-

rem says that every 2-connected graph without K

5

-minors can be obtained by a

sequence of 2- resp. �-sums, i.e., G = G

k

for a k 2 IN. Therefore, the theorem is

proved for 2-connected graphs. If G is not 2-connected, the theorem applies for

every 2-connected block of the graph and hence for the whole graph (note that

the blocks are disjoint up to the cut vertices). 2

As a corollary, we obtain that the thickness problem in the class of graphs

without K

5

-minors is solvable in linear time.

Corollary 3.4 The thickness of a graph G without K

5

-minors can be determined

in linear time in the number of nodes of G.

Proof. Apply a linear time planarity testing algorithm [HT74] to G. If G is

planar, then �(G) = 1, otherwise �(G) = 2. 2

4 Other Invariants

One may think that applying certain sum operations might also be applicable

to control other topological invariants of graphs, such as the crossing number

�(G) or the skewness �(G) of a graph G. The crossing-number �(G) of a given

graph G is the minimum number of pairwise intersections of edges when G is

drawn in the plane. The skewness is the minimum number of edges which have

to be deleted from the graph G to make it planar.

Unfortunately, such a transfer is not possible, since by a 2-sum there is neither

additivity of the crossing number resp. skewness of the building blocks nor a �xed

value as for the thickness. We prove this by giving counterexamples.

Theorem 4.1 For each n 2 IN there exist graphs G

1

and G

2

such that, for any

graph G = G

1

L

2

G

2

, the following holds:

�(G) > �(G

1

) + �(G

2

) + n:

Proof. For n 2 IN, denote by M

n+4

the planar graph shown in Figure 8 with

n+4 vertices and 2n+5 edges. Start with the graph K

3;3

(embedding of Figure 3)

and take sucessively 2-sums with seven edges of the K

3;3

and M

n+4

as shown in

Figure 9. The resulting graph H has crossing number one. Take a further 2-sum

of H and M

n+4

by identifying the edges e and f

1

.

In every drawing of the graph, the edge f

2

crosses a complete subgraphM

n+4

�e

and therefore at least n+ 2 edges. Therefore, we have �(H

L

2

M

n+4

) = n+ 2 >

�(H) + �(M

n+4

) + n. 2
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e
..n+2..

Figure 8: Graph M

n+4

f
1

f
2

n + 2 n + 2

n + 2

n + 2

n + 2

n + 2

n + 2

Figure 9: Graph H

An example of the nonadditivity of the skewness can be obtained by a slight

modi�cation of the proof of Theorem 4.1.

Theorem 4.2 For each n 2 IN there exist graphs G

1

and G

2

such that the fol-

lowing holds for the graph G = G

1

L

2

G

2

:

�(G) > �(G

1

) + �(G

2

) + n:

Proof. Take 2-sums of eight edges of K

3;3

with M

n+4

. The skewness of the result-

ing graph equals one. A further 2-sum of the remaining edge of K

3;3

with M

n+4

gives the graph F of Figure 10. In order to achieve planarity, a graph M

n+4

� e

must be removed, i.e., the skewness is n+ 2. 2

Since we only used building blocks according to Theorem 2.1, the above the-

orems are valid even if we restrict ourselves to graphs without K

5

-minors.
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n + 2 n + 2

n + 2

n + 2

n + 2

n + 2

n + 2

n + 2

n + 2

Figure 10: Graph F
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