
ANGEWANDTE MATHEMATIK UND INFORMATIK

UNIVERSIT

�

AT ZU K

�

OLN

Report No. 95.190

Block Sieving Algorithms

by

Georg Wambach and Hannes Wettig

May 1995

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstra�e 1

D-50969 K�oln

e-mail: gw @ informatik.uni-koeln.de

Block Sieving Algorithms

Georg Wambach and Hannes Wettig

University of Cologne

May 3, 1995

Abstract

Quite similiar to the Sieve of Erastosthenes, the best-known general algorithms for fac-

toring large numbers today are memory-bounded processes. We develop three variations of

the sieving phase and discuss them in detail. The fastest modi�cation is tailored to RISC

processors and therefore especially suited for modern workstations and massively parallel

supercomputers. For a 116 decimal digit composite number we achieved a speedup greater

than two on an IBM RS/6000 250 workstation.

Introduction

Today, in High Performance Computing memory access is one of the biggest problems. Both

memory latency and memory bandwidth have not achieved the same growth as processor power

during the last decade. Especially the use of fast RISC processors in low-cost workstations with

inexpensive RAM, and in massively parallel supercomputers (e.g. Parsytec GC/PowerPlus,

IBM SP-series, Cray T3D) usually lack a second-level cache and expensive static RAM with low

access time. Everybody who has implemented a matrix-vector multiplication knows about the

memory access problems and how to overcome them by blockoriented operations and probably

interchanging loops, for example. It is not uncommon to expect a factor of �ve when optimizing

memory access patterns.

The Multiple Polynomial Quadratic Sieve (QS) and the General Number Field Sieve (NFS) are

the best known algorithms for factoring large numbers today. Both are general algorithms, i.e.

their running time depends on the size of the number to be factored and not on the size of

the smallest factor (unlike trial division, e.g.). Factoring large numbers is still the only way

to estimate the security of the RSA public-key cryptosystem. Here, a public RSA-modulus N

is the product N = p � q of two large primes, where p and q are kept secret. If one is able to

�nd p or q given N , the RSA-modulus N is broken. There are no other methods known to

attack RSA-cryptosystems today. Using smaller RSA-moduli in praxis means less space needed

for key-management, and less time needed for encryption and decryption, but also less security.

Typically one chooses the length of the RSA-modulus such that the estimated time needed for

factoring it (with a reasonable environment) exceeds the RSA-modulus' lifetime, which may be

one week, six months, a year or more (this is usually the case for hardware implementations).

Hence, it is important to know how fast (and how expensive) RSA-moduli can be factored today.

1

Even a running time improvement of, say 30%, is important: It makes a great di�erence if you

will need seven months or �ve months to factor a RSA-modulus which is six months valid.

Concerning resource consumption, it may save you millions of dollars. Remember the rumor

the fall of RSA-129 in 1994 creates? Funny enough, the work estimates for this number [1] have

been smallest (1.700 MIPS-years) for a pretty outdated machine (SUN 3/50).

The hot-spot and bottleneck of both QS and NFS is the sieving phase. The sieving phase is

similiar to the archaic Sieve of Erastosthenes, where one jumps through a sieve using steps of

(di�erent) primes. The di�culty arises because memory is accessed in irregular patterns, i.e.

every p-th location, p a prime, for all primes less than a certain bound.

In this paper we present a new double block algorithm for sieving. While this algorithm does

not improve the number of operations in the sieving phase, it has great in
uence on the running

time. Of course, the running time improvement is machine dependent. However, because the

number of RISC processors (or more general with low clock cycles per instruction) will increase

in the future, and this is the kind of machine where the highest improvement is possible, we think

it is worthwhile to report our experiences. It is surprising that despite considerable bookkeeping

operations, the gain resulting from memory accesses still predominates. With this technique

we were able to speed up the sieving time for for a 116 decimal digit composite number using

QS on a PowerPC-601 machine by a factor of 2,3. 116 decimal digits may be the limit where

NFS starts beating QS, but our variations apply to NFS as well. Additionally, we expect to see

even bigger improvements on the new multi-chip modules, which have a large second level cache

included.

Section 1 contains a short description of QS neccessary for the following, and the notations

we used for hardware machinery. In section 2 we will develop the double block algorithm and

estimate its running time. Section 3 gives an example, namely, sieving one polynomial for an

116 decimal digit composite. In section 4 we discuss other improvements which we have tested,

and make more remarks concering the implementation and the application to NFS.

1 Preliminaries and Notation

First we will sketch the Multiple Polynomial Quadratic Sieve (QS) algorithm in a simpli�ed

version with emphasis on the sieving phase. For a complete description see [7, 8, 10].

Let N be the composite integer to be factored. After choosing a factorbase FB of R primes

p

r

, 0 � r < R, and the sievelength M , a lot of quadratic polynomials Q(X) = a

2

X

2

+ 2bX + c

with b

2

�N = a

2

c are generated. It follows that Q(X) � (a

2

X + b)a

�2

modN . For every such

polynomial the roots x

r;1

; x

r;2

of Q(X) mod p

r

must be computed. Then the interval [�M;M [\Z

will be sieved (see below). The goal of the sieving phase is to �nd many locations x where Q(x)

factorizes completely over FB:

Q(x) = (�1)

s

R�1

Y

r=0

p

e

r

r

� z

2

x

modN

Elementary number theory tells us that p

r

jQ(x) if and only if Q(x) � 0 mod p

r

which is equiv-

alent to x � x

r;1

or x

r;2

mod p

r

. Instead of computing Q(x) for every x 2 [�M;M [\Zand trial

2

dividing its value over the primes in FB, QS uses a kind of reversal approach. Let S be an array

of length M representing [0;M [\Z([�M; 0[\Zgoes vice versa). First we initialize S[x] with

zeroes, for 0 � x < M . Now, for every prime p

r

in the factorbase FB, and for both x

r;i

; i = 1; 2,

we add log(p

r

) to every location S[x] where x � x

r;i

mod p

r

. Starting with x = x

0;1

2 [0; p

0

[, we

continuously increment S[x] by log(p

0

) and x by p

0

, until we have traversed the sieve. After the

sieving is �nished, the value of S[x] gives a rough estimate of the amount Q(x) is divisible by

the primes in FB. The entry of S[x] is the logarithm of the product of all primes in FB dividing

Q(x), observe that we have ignored powers of primes. We scan through the sieve and compare

every entry S[x] with a certain threshold T = log(

p

2NM)� � which represents approximately

the logarithm of Q(x) reduced by a small fudge factor �. If S[x] is bigger than T , Q(x) will be

computed and divided over the primes in FB. Here we make again use of the fact that p divides

Q(x) if and only if x � x

r;1

or x

r;2

mod p

r

. After at least R + 1 relations Q(x) � z

2

x

modN

are collected, in a second step a subset among them is searched such that by multiplying these

relations we receive a perfect square on the left side, too. With X

2

� Y

2

modN , X and Y

being \enough" random, there is a good chance that gcd(X � Y;N) is a nontrivial divisor of N .

Taking into account the hypercube variation of QS and the published literature, it is safe to say

that when factoring 100 decimal digit numbers, 70% of the running time is spent on sieving,

about 10% on the evaluation of the sieve and 20% on computing the values of Q(x) and trial

dividing over the primes in FB. With growingN the proportion of the sieving time will increase,

because the number of candidates x out of the sieve decreases.

Now we will roughly describe the architecture of a modern computer as it is relevant for us.

For a complete description, see [4, 5, 9], for example. The main ingredients concerning memory

architecture important for sieving are the number of the caches, its sizes and types, and size and

type of the Translation Lookaside Bu�er (TLB). We assume a �rst level cache of respectable size

(typically 32KB or more), either uni�ed (because there are few instructions needed for sieving

only) or separated (following the harvard architecture). The Translation Lookaside Bu�er mainly

manages memory pages, whose' size and the number of entries describes the amount of memory

it can handle at the same time, which we will denote by s

T

. Let s

p

denote the size of a memory

page and s

l

the size of a cache line. In our simpli�ed model data access occurs as follows. First

the CPU checks wether the actual line (where the data belongs to) is in the �rst level cache or

not. In the latter case the TLB is checked wether it contains the physical page address of the

actual page (where the data belongs to), this is typically done in parallel. In the case of a TLB

miss, the physical page address must be computed, and in the worst case of a page fault (which

we do not consider here) the page must be read from an external device. By t

l

(:) we mean the

time in clock cycles (the access time) needed to load a given data byte or word into a register,

depending on a �rst level cache hit (1), a �rst level cache miss, but a TLB hit (2), and a TLB

miss (3). These values (t

l

(1) : t

l

(2) : t

l

(3)) may be as bad as 1{2 : 5{10 : 10{40, and even worse

[4, 5]. Note that we cannot exploit a kind of burst mode because we do not acces a stream

of data bytes here (execpt during initialization and evaluation of the sieve). The omission of

a �rst level cache, and/or the inclusion of a second level cache in our model is quite easy and

straightforward. A similiar kind of analysis should be done for write accesses, depending on

write-back or write-through caches, the existence and size of writebu�ers and much more. We

will ignore these aspects completely here.

3

1 initialize(S;M)

2 for (r = r

0

; r < R; r = r + 1) do

3 d

1

= x

r;2

; d

2

= p

r

� d

1

;M

p

= M � d

1

4 for (x = x

r;1

; x < M

p

;) do

5 S[x] = S[x] + l

r

6 x = x+ d

1

7 S[x] = S[x] + l

r

8 x = x+ d

2

9 endfor

10 if (x < M) then

11 S[x] = S[x] + l

r

12 endfor

13 evaluate(S;M)

Figure 1: Naive algorithm

2 Variations on the Sieve

In this section we restrict ourselves to the sieve interval [0;M [, the interval [�M; 0[goes vice

versa. We concentrate on the sieving part and skip both initialization and evaluation of the

sieve where the sieve is accessed from bottom to top one word after another.

Let M be the sievelength and R the size of the factorbase. Let FB = fp

r

: 0 � r < Rg

the factorbase and 0 � x

r;1

; x

r;2

< p

r

the roots of the actual polynomial Q(X) modulo p

r

, for

0 � r < R. Let r

0

be the index of the �rst prime bigger than the small prime bound, which

means we skip sieving for the primes p

r

; r < r

0

. We assume x

r;1

� x

r;2

and store the di�erence

in x

r;2

rather than x

r;2

itself (this resembles a loop-unrolling of depth two). Let l

r

; 0 � r < R

be a precomputed table of the rounded logarithms of the primes in FB. (In practice one uses

a compact representation of l

r

, because the entries grow very slowly. For the sake of simplicity

we describe the algorithms with the ordinary representation.)

The naive approach sieves the whole interval at once (see Figure 1).

The most time-consuming part of the naive algorithm is the access of the elements S[x] in lines

5 and 7 (ignoring the single access in line 11). If M is large enough we can assume a cache

miss every ds

l

=p

r

e-th access and a TLB miss every ds

p

=p

r

e-th access. Since the size s

l

of a

cacheline is typically very small (say, 128 bytes), there is a cache miss in most of the cases.

Compared with the sievelength M the pagesize s

p

is typically very small, too (4KB). Every

prime p

r

causes 2M=p

r

accesses. We estimate the complexity roughly (ignoring the accesses of

p

r

, l

r

and x

1;r

; x

2;r

, initialization and evaluation of the sieve) and a bit too pessimistic by the

formulae

5(R� r

0

) +

R

X

r

0

M=p

r

(3 + 2t

l

(3))(1)

4

where t

l

(3) is the time (in clock cycles) needed for a load with TLB miss. Additionally to an

extensive t

l

(3), it may not be possible to have enough physical RAM to hold the whole interval

[0;M [.

The quite natural approach hence sieves the interval [0;M [blockwise with blocks of size B:

[0; B[; [B; 2B[; : : : ; [(k� 1)B;M [

where k = dM=Be. After the �rst block [0; B[is sieved, we have to adjust the modular roots

x

r;1

; x

r;2

relative to the starting point B of the second block. The primes are divided into two

classes. Let p

r

; r

0

� r < r

s

be the small primes such that p

r

s

is the �rst prime bigger than the

blocksize B. Hence, the modular roots of the small primes always lie inside the block. The rest

of the primes in FB are the big primes and have at most two modular roots inside the block.

For simplicity let BjM , the whole algorithm then looks as follows (see Figure 2).

Since the time for the initialization and the evaluation of the sieve is linear in the sievelength we

don't expect an overhead in the single block algorithm for the initialization and the evaluation

of the sieve. Assuming B � s

T

, no TLB miss occurs. We roughly estimate the work for the

single block algorithm by

3(R� r

0

) +

R

X

r

0

M=p

r

(3 + 2t

l

(:)) + k (3(R� r

s

) + 7:5(r

s

� r

0

))(2)

where t

l

(:) is either the time t

l

(1) needed for a load with cache hit (if B is not greater than

the size of the �rst level cache) or the time t

l

(2) needed for a load with TLB hit (but cache

miss). The optimal blocksize B obviously depends on the machine used, and is best determined

experimentally.

Because the ratio t

l

(2)=t

l

(1) is on most machines even worse than the ratio t

l

(3)=t

l

(2), and

because the smallest primes are the most expensive ones, we search for another modi�cation

which makes e�ective use of the the �rst level data cache.

We use two blocks of size B

1

(the inner block) and of size B

2

� B

1

(the outer block). The primes

are divided into four classes. Let p

r

; r

0

� r < r

s

be the small primes such that p

r

s

is the �rst

prime bigger than B

1

. Hence, the modular roots of the small primes always lie inside the inner

block. Let p

r

; r

s

� r < r

m

be the medium primes. The optimal choice of r

m

will be explained

later. Take, for example, p

r

m

as the �rst prime bigger than B

2

=4. Finally, let p

r

; r

m

� r � r

l

be the set of large primes such that p

r

l

is the �rst prime bigger than the size of the outer block

B

2

, and p

r

; r

l

� r < R be the remaining (extra large) primes.

Now the interval [0;M [will be initialized and evaluated in outer blocks of size B

2

as in the single

block algorithm. Every outer block of size B

2

becomes sieved in inner blocks of size B

1

by the

small and medium primes. Then it will be sieved by the large and extra large primes as before.

The medium primes should be chosen such that the bookkeeping overhead from rewriting the

modular roots relative to the starting point of the inner block is still compensated by the sieve

accesses, which are �rst level cache hits here. We assume B

1

jB

2

and B

2

jM with k

2

= M=B

2

and k

1

= B

2

=B

1

. A sketch of the whole algorithm then reads as follows (see Figure 3).

Every access of S[x] during the b

1

-loop in line 4 results in a �rst level cache hit. Every access of

S[x] in line 6 results in a TLB hit as in the single block algorithm. Again, we roughly estimate

5

1 for (b = 0; b < k; b = b+ 1) do

2 initialize(S;B)

3 for (r = r

0

; r < r

s

; r = r + 1) do

4 d

1

= x

r;2

; d

2

= p

r

� d

1

;B

p

= B � d

1

5 for (x = x

r;1

; x < B

p

;) do

6 S[x] = S[x] + l

r

7 x = x+ d

1

8 S[x] = S[x] + l

r

9 x = x+ d

2

10 endfor

11 if (x < B) then

12 S[x] = S[x] + l

r

13 x = x+ d

1

14 x

r;2

= d

2

15 else

16 x

r;2

= d

1

17 endif

18 x

r;1

= x� B

19 endfor

20 for (r = r

s

; r < R; r = r + 1) do

21 if ((x = x

r;1

) < B) do

22 S[x] = S[x] + l

r

23 x = x+ x

r;2

24 if (x < B) do

25 S[x] = S[x] + l

r

26 x = x+ p

r

� x

r;2

27 else

28 x

r;2

= p

r

� x

r;2

29 endif

30 x

r;1

= x� B

31 else

32 x

r;1

= x

r;1

�B

33 endif

34 endfor

35 evaluate(S;B)

36 endfor

Figure 2: Single block algorithm

6

1 for (b

2

= 0; b

2

< k

2

; b

2

= b

2

+ 1) do

2 initialize(S;B

2

)

3 for (b

1

= 0; b

1

< k

1

; b

1

= b

1

+ 1) do

4 sieve [b

1

B

1

; (b

1

+ 1)B

1

] using the single block algorithm and

primes up to indices r

s

and r

m

(without initialization and evaluation)

5 endfor

6 sieve [b

2

B

2

; (b

2

+ 1)B

2

] using the single block algorithm and

primes with indices from r

m

to r

l

and R (without initialization and evaluation)

7 evaluate(S;B

2

)

8 endfor b

2

Figure 3: Double block algorithm

the whole work by

P

r

m

r

0

M=p

r

(3 + 2t

l

(1)) +

P

R

r

m

M=p

r

(3 + 2t

l

(2))

+k

2

(3(R� r

l

) + 7:5(r

l

� r

m

) + k

1

(3(r

m

� r

s

) + 7:5(r

s

� r

0

)))

(3)

The optimal choice of r

m

of course depends on the machine used and is best determined exper-

imentally.

Remark. Register use, the direct access of S[x] and the scheduling of load and store instructions

are crucial steps, too. Probably, the compiler's assembler output should be veri�ed.

3 An Example

Here we will verify our theoretical considerations of the last section. While the double block

algorithm works e�ciently already when the biggest prime in the factorbase exceeds the cache

size, we choose an 116 decimal digit composite as an example. The number N is a remaining

cofactor of 7

194

+1 of the Cunningham project [3]. We chose R = 200:000 and M = 32 �2

20

. The

small multiplier (see Section 4) used is �ve, which results in a factorbase consisting of all primes

p less or equal than 5797439 such that 5N is a quadratic residue modulo p. Using a small prime

bound of 70, r

0

equals 10. The actual machine is an IBM RS/6000 250 workstation equipped with

an 66Mhz PowerPC-601 processor (without second level cache) and 64MB RAM running under

AIX 3.2.5. The �rst level uni�ed instruction and data cache is 32KB big, 8-way set-associative

with LRU replacement, with lines consisting of two sectors of 32 bytes each. The TLB has 128

entries and is 2-way set-associative, the page size is 4KB. Therefore we choose a blocksize of

512KB (128�4KB) for the single block algorithm (which results in r

s

= 21796), and blocksizes

of 32KB and 512KB for the double block algorithm. (Even after extensive experimenting with

other sizes, these values still have been best.) As medium sized primes for the double block

algorithm we take all primes less than 128 � 2

10

, from which the values 1743, 6887 and 21796 of

r

s

; r

m

and r

l

follow.

7

algorithm time (in sec) sieve speedup total speedup

naive 146,3 1,0 1,0

single block 107,6 1,36 1,32

double block 55,3 2,64 2,27

Table 1: Practical results

We assume a ratio of 1 : 5 : 10 for t

l

(1) : t

l

(2) : t

l

(3). Computing only the number of sieve access

operations according to equations 1, 2 and 3 yields a speedup of 2,0 for the single block algorithm

and of 5,21 for the double block algorithm over the naive algorithm. Taking into account the

overhead of the bookkeeping operations, the predicted speedup over the naive algorithm is 1,43

for the single block and 1,97 for the double block algorithm. Table 1 contains the times needed

for sieving one polynomial on the IBM RS/6000 250 workstation (ANSI-C, xlc 1.3.0.23 optimized

with -O3). The achieved speedup over the naive algorithm is 1,36 for the single block and 2,64(!)

for the double block algorithm. Spending additional 16,3 seconds for computing the values of

Q(x) and trial dividing over the primes in the factorbase, the total speedup is 1,32 for the single

block algorithm and 2,27 for the double block algorithm.

4 More Remarks

In this section we will summarize previous methods to speed up the sieving phase of QS (for the

sake of completeness), and discuss the application of the results of section 2 to NFS.

Previous additional methods to speed up the sieving phase of QS (these were already incorpo-

rated in our implementation):

� sieve initialization with logarithms of small primes [10]

� initialization and evaluation using machine words [10]

� skip sieving for small primes and prime powers [7, 10], respecitively

� sieve true powers of small primes instead of small primes [1]

� use of a second threshold during the trial division [1]

In the sieving phase of the NFS algorithm [2] we are looking for pairs (a; b) of integers with

a 6= 0; b > 0; gcd(a; b) = 1, such that (for a given number m and a polynomial f) a� bm factors

completely over a �rst (rational) factorbase FB

1

, and N(a;�b) = b

d

f(a=b) factors completely

over a second (algebraic) factorbase FB

2

. There are several possibilities of sieving the rectangle

([�M

a

;M

a

[�[1;M

b

[)\Z

2

. First, one can �x either an a-value (or an b-value) and sieve one line

[1;M

b

[(or [�M

a

;M

a

]), �rst according to a�bm and then according to N(a;�b) (or vice versa).

Here we can apply the double block algorithm immediately. A more improved method of sieving

is due to J. M. Pollard and is called the lattice sieve [6]. Basically the idea is the following. Fix

8

a medium size prime q. Instead of sieving the whole rectangle from above, we restrict ourselves

to the numbers (a; b) such that q divides a � bm, which form a lattice L

q

. Let v

1

; v

2

be a basis

of short vectors of L

q

, and let ([�M

c

;M

c

[�[1;M

d

[) \Z

2

be the parameter rectangle for v

1

and

v

2

. So we are looking at the points cv

1

+ dv

2

with �M

c

� c < M

c

and 1 � d < M

d

. Now in

order to sieve L

q

with a prime p either in FB

1

or in FB

2

, Pollard points out that the pairs (a; b)

such that p divides a� bm form a sublattice L

pq

of L

q

. He suggests sieving L

q

by rows for the

small primes in FB

1

and FB

2

, which means �xing an c-value and sieving c � v

1

+ [1;M

d

[�v

2

(or

vice versa). Here the double block algorithm applies, too. For larger primes Pollard suggests

sieving by vectors, which means computing a basis of L

pq

. Here we do not see any possibility to

apply the double block algorithm; on the other hand, it does not seem to make sense, because

the primes are large.

References

[1] D. Atkins, M. Gra�, A. K. Lenstra, P. C. Leyland, \THE MAGIC WORDS ARE

SQUEAMISH OSSIFRAGE", Proceedings ASIACRYPT '94, to appear.

[2] J. P. Buhler, H. W. Lenstra, Jr., Carl Pomerance, \Factoring integers with the number �eld

sieve", in: A. K. Lenstra, H. W. Lenstra, Jr. (Eds.), The development of the number �eld

sieve. Lecture Notes in Mathematics 1554, 1993, 50-94.

[3] J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagsta�, Jr., Factor-

izations of b

n

� 1 for b = 2, 3, 5, 6, 7, 10, 12, up to High Powers. American Mathematical

Society, Providence, Rhode Island, 1983.

[4] Kevin Dowd, High performance computing. RISC architectures, optimization, & bench-

marks. O'Reilly, Sebastopol, CA, 1993.

[5] J. L. Hennessy, D. A. Patterson, Computer Architecture: A Quantitative Approach. Morgan

Kaufmann, San Mateo, CA, 1990.

[6] J. M. Pollard, \The Lattice Sieve", in: A. K. Lenstra, H. W. Lenstra, Jr. (Eds.), The

development of the number �eld sieve. Lecture Notes in Mathematics 1554, 1993, 43-49.

[7] C. Pomerance, \The Quadratic Sieve Factoring Algorithm", Advances in Cryptology, Eu-

rocrypt '84, Lecture Notes in Computer Science 209 (1985), pp.169-182.

[8] C. Pomerance, \Factoring", in: C. Pomerance (ed.), Cryptology and Computational Number

Theory, Proc. of Symp. in Appl. Math. Vol.42 (1989), AMS, pp.27-47.

[9] S. Weiss, J. E. Smith, IBM Power and PowerPC: principles, architecture, implementation.

Morgan Kaufmann, San Mateo, Calif., 1993.

[10] R. D. Silverman, \The Multiple Polynomial Quadratic Sieve",Mathematics of Computation,

Vol.48, No.177, pp.329-339, Jan. 1987.

9

