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Abstract. We present algorithms for the two layer straightline cross-

ing minimization problem that are able to compute exact optima. Our

computational results lead us to the conclusion that there is no need

for heuristics if one layer is �xed, even though the problem is NP-hard,

and that for the general problem with two variable layers, true optima

can be computed for sparse instances in which the smaller layer contains

up to 15 nodes. For bigger instances, the iterated barycenter method

turns out to be the method of choice among several popular heuristics

whose performance we could assess by comparing the results to optimum

solutions.

1 Introduction

Two layer straightline crossing minimization is receiving a lot of attention in

automatic graph drawing. The problem consists of aligning the two shores V

1

and V

2

of a bipartite graph G = (V

1

; V

2

; E) on two parallel straight lines (layers)

such that the number of crossings between the edges in E is minimized when

the edges are drawn as straight lines connecting the endnodes. There appears to

be a general agreement that good solutions for this problem contribute to better

readability of diagrams representing hierarchical organizations on two or more

layers.
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denote the set of neighbors of v 2 V = V

1

[ V

2

in G. Any solution is obviously

completely speci�ed by a permutation �
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of V

1

and a permutation �
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2

.
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k

(j) and 0 otherwise. Thus �

k

(k = 1; 2)

is uniquely characterized by the vector �
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It has been proven in [GJ83] that the two layer straightline crossing minimiza-

tion problem is NP-hard, even if the permutation on one layer is �xed [EW94].

Therefore, a lot of e�ort went into the design of e�cient heuristics, for the ver-

sion in which one permutation is �xed as well as for the general case. Eades and

Kelly [EK86] observe that the computation of true optima would be desirable

in order to assess the performance of various heuristics, however, [EK86] believe

that the NP-hardness of the problem renders such an experimental evaluation

impractical.

In this paper, we would like to demonstrate that, if one permutation is �xed, it

is indeed possible to compute the exact minima in surprisingly short computation

times. In section 2, we outline our algorithm which transforms the problem to

a linear ordering problem that is subsequently solved via the branch and cut

method. In section 3, we give computational results that allow us to assess the

performance of several popular heuristics accurately.

Assume the permutation �

1

of V

1

is �xed. For each pair of nodes i; j 2 V

2

,

i 6= j, we de�ne c

ij

to be the number of crossings between edges incident with i

and edges incident with j if �

2

is such that �

2

(i) < �

2

(j). Then
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n
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; c

ji

g

is a trivial lower bound on the number of crossings. One observation in our

experiments was that this trivial lower bound is surprisingly good. In section 4,

we utilized this fact and the branch and cut algorithm of section 2 for the design

and implementation of a program that solves the general two layer straightline

crossing minimization problem to optimality.
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Fig. 1.

Figure 1 demonstrates that the number of crossings can indeed be consider-

ably less if both layers can be freely permuted. The left drawing was given in

[STT81] with �xed lower layer, [STT81] obtained the shown drawing with 48

crossings that we could show to be optimum. The right drawing is the optimum

when both layers can be freely permuted. It has only 19 crossings.

As was to be expected, two sided crossing minimization can be done only for

small instances. For large instances, we adopt the common method that consists

of �xing the �rst layer, \optimizing" the second, �xing the found permutation



of the second, \optimizing" the �rst, etc., back and forth, until the crossing

number is not reduced anymore. We follow this iterative approach both using

the heuristics of section 3 as well as the exact algorithm. The results are some-

what surprising, e.g., using the barycenter heuristic rather than exact one-sided

crossing minimization yields slightly better results.

2 Branch and Cut for One Sided Crossing Minimization

The one sided straightline crossing minimization problem consists of �xing a

permutation �
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of V
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and �nding a permutation �
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of V

2

such that the number

of straightline crossings
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If z is the optimum value of (LO), z+

P
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c
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is the minimum number

of crossings.

The constraints of (LO) guarantee that the solutions correspond indeed pre-

cisely to all permutations �

2

of V

2

. Furthermore, it can be shown that the \3-cycle

constraints" are necessary in any minimal description of the feasible solutions by

linear inequalities, if the integrality conditions are dropped. The NP-hardness

of the problem makes it unlikely that such a complete linear description can

be found and exploited algorithmically. Further classes of inequalities with a



number of members exponential in n that must be present in a complete linear

description of the feasible set, are known, and some of them can be exploited

algorithmically. For the details see [GJR85].

When the integrality conditions in (LO) are dropped, only 2

�

n

2

�

hypercube

inequalities and 2

�

n

3

�

3-cycle inequalities are left that de�ne a relaxation of (LO)

which has been proven very useful in practical applications. In [GJR84a] a branch

and cut algorithm for (LO) is proposed that solves this relaxation with a cut-

ting plane approach, since writing down all 3-cycle inequalities, even though

taking only polynomial space, and solving the corresponding linear program, is

not practical for space reasons. Rather the algorithm starts with the hypercube

constraints that are handled implicitly by the LP-solver, and iteratively adds

violated 3-cycle constraints and deletes nonbinding 3-cycle constraints after an

LP has been solved, until the relaxation is solved. If the optimum solution is

integral, the algorithm stops, otherwise it is applied recursively to two subprob-

lems in one of which a fractional x

ij

is set to 1 and in the other set to 0. In

[GJR84b] such a branch and cut approach could be used to �nd optimum linear

orderings with n up to 60 in an application involving input-output matrices that

are used in economic analysis. For the many details and the inclusion of further

useful inequalities in the cutting plane part, see [GJR84a].

A new implementation of the algorithm is used in our computational exper-

iments. It is written in C and uses the [CPLEX] software for solving the linear

programming relaxations coming up in the course of the computation.

3 One Sided Crossing Minimization

The fact that we are able to compute optimum solutions allows us to assess the

quality of various popular heuristics for one-sided two layer straightline crossing

minimization experimentally. Our computational comparison includes the fol-

lowing heuristics: the barycenter heuristic by [STT81], the median heuristic by

[EW94], the stochastic heuristic by [D94], the greedy-insert heuristic by [EK86],

the greedy-switch heuristic by [EK86], and the split heuristic by [EK86].

In order to gain con�dence in the correctness of our implementations, we re-

peated the computational tests in [EK86]. We could reproduce their results accu-

rately. There are no published computational results for the stochastic heuristic,

but a personal communication with the author [D95] con�rms the correctness of

our implementation.

All subsequent tables have the following columns:

{ n

i

: Number of nodes on layer i for i = 1; 2

{ m: Number of edges

{ Low: The trivial lower bound for the number of crossings

{ Min: The minimum number of crossings (computed by the branch and cut

algorithm)

{ Bary: The number of crossings found by the barycenter heuristic

{ Median: The number of crossings found by the median heuristic

{ Stoch: The number of crossings found by the stochastic heuristic



{ Gre-ins: The number of crossings found by the greedy-insert heuristic

{ Gre-swi: The number of crossings found by the greedy-switch heuristic

{ Split: The number of crossings found by the split heuristic

For each type of graph, three numbers are given: the average number of

crossings taken over all sampled instances of this type, the relative size of this

number in percentage of the minimum number of crossings, and the average

running time in seconds on a SUN Sparcstation 10. All samples are generated

by the program random bigraph of the Stanford GraphBase by Knuth [K93].

The generators are hardware independent and are available from the authors so

that exactly the same experiments can be run by anyone who is interested.

In Table 1, we give the results for \20+20-graphs", i.e., bipartite graphs with

20 nodes on each layer and various �xed numbers of edges chosen uniformly

and independently from the set of all possible edges. Each average is taken over

100 samples. The most surprising fact is perhaps that the exact computation

by the branch and cut algorithm is faster than many of the heuristics. Only

the barycenter and the median heuristic are between two to four times faster

than the exact algorithm. Furthermore, the table indicates, less surprisingly, that

dense instances are not very interesting. The data is visualized in Figure 2.

Table 1. Results for 100 instances on 20 + 20 nodes with increasing density

n

i

m Low Min Bary Median Stoch Gre-ins Gre-swi Split

20 40 180.35 180.75 185.34 206.27 185.44 248.37 275.99 183.39

99.78 100.00 102.54 114.12 102.60 137.41 152.69 101.46

0.02 0.01 0.01 0.05 0.02 0.04 0.08

20 80 957.62 959.23 968.80 1051.14 970.01 1175.11 1044.14 964.35

99.83 100.00 101.00 109.58 101.12 122.51 108.85 100.53

0.03 0.01 0.01 0.06 0.05 0.10 0.11

20 120 2420.14 2422.32 2433.53 2564.82 2437.39 2763.72 2460.94 2428.23

99.91 100.00 100.46 105.88 100.62 114.09 101.59 100.24

0.03 0.01 0.01 0.07 0.10 0.16 0.16

20 160 4625.79 4627.72 4638.24 4825.06 4644.35 5098.27 4644.10 4632.17

99.96 100.00 100.23 104.26 100.36 110.17 100.35 100.10

0.04 0.01 0.02 0.08 0.17 0.23 0.23

20 200 7560.42 7561.88 7571.08 7817.99 7582.47 8157.86 7572.24 7566.79

99.98 100.00 100.12 103.39 100.27 107.88 100.14 100.07

0.05 0.02 0.02 0.09 0.24 0.31 0.31

20 240 11314.37 11315.55 11323.26 11625.54 11338.06 12033.34 11321.10 11318.68

99.99 100.00 100.07 102.74 100.20 106.34 100.05 100.03

0.07 0.02 0.03 0.09 0.34 0.42 0.41

20 280 15859.70 15860.35 15865.69 16225.57 15883.69 16667.12 15863.66 15861.76

99.99 100.00 100.03 102.30 100.15 105.09 100.02 100.01

0.09 0.03 0.03 0.10 0.45 0.52 0.53

20 320 21290.56 21290.76 21294.12 21727.43 21313.78 22116.56 21292.93 21291.56

99.99 100.00 100.02 102.05 100.12 103.88 100.01 100.00

0.11 0.03 0.04 0.11 0.59 0.65 0.66

20 360 27751.63 27751.69 27752.99 28257.47 27768.41 28459.57 27752.01 27751.84

100.00 100.00 100.01 101.82 100.06 102.55 100.00 100.00

0.14 0.04 0.04 0.12 0.74 0.81 0.80

In Table 2, we concentrate on sparse instances in which, on the average,

every node has two adjacent edges. We believe that such instances are among the

most interesting in practical applications. It turns out that the barycenter, the
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Fig. 2. Results for 100 instances on 20 + 20 nodes with increasing density

Table 2. Results for 10 instances of sparse graphs with increasing size

n

i

m Low Min Bary Median Stoch Gre-ins Gre-swi Split

10 20 37.90 38.00 38.90 45.40 38.70 46.40 50.90 38.50

99.74 100.00 102.37 119.47 101.84 122.11 133.94 101.32

0.00 0.00 0.00 0.01 0.00 0.01 0.02

20 40 171.70 171.90 175.70 193.70 174.90 240.80 293.60 174.70

99.88 100.00 102.21 112.68 101.74 140.08 170.80 101.63

0.01 0.01 0.01 0.05 0.02 0.05 0.09

30 60 436.60 438.30 451.90 491.10 451.30 602.30 692.40 445.60

99.61 100.00 103.10 112.05 102.97 137.42 157.97 101.67

0.11 0.01 0.01 0.13 0.05 0.11 0.25

40 80 761.50 765.70 785.60 856.60 782.70 1105.00 1367.50 783.20

99.45 100.00 102.60 111.87 102.22 144.31 178.60 102.29

0.30 0.01 0.02 0.28 0.08 0.22 0.57

50 100 1247.30 1252.20 1279.90 1389.50 1273.20 1770.60 2200.50 1277.80

99.61 100.00 102.21 110.97 101.68 141.40 175.73 102.04

0.68 0.02 0.03 0.50 0.13 0.32 1.00

60 120 1683.10 1687.60 1738.30 1890.90 1720.20 2453.10 2994.50 1736.10

99.73 100.00 103.00 112.05 101.93 145.36 177.44 102.87

1.09 0.03 0.04 0.83 0.18 0.61 1.67

70 140 2465.00 2479.00 2541.30 2730.00 2522.50 3592.20 4498.80 2549.20

99.44 100.00 102.51 110.13 101.76 144.91 181.48 102.83

4.46 0.04 0.04 1.28 0.26 0.73 2.82

80 160 3153.90 3172.10 3254.60 3521.60 3232.90 4583.10 5885.70 3240.60

99.43 100.00 102.60 111.02 101.92 144.48 185.55 102.16

6.42 0.05 0.06 1.85 0.33 0.99 4.11

90 180 4104.00 4132.80 4233.70 4566.80 4206.80 5843.70 7331.30 4293.90

99.30 100.00 102.44 110.50 101.79 141.40 177.39 103.90

25.13 0.05 0.06 2.66 0.41 1.32 5.84

100 200 5127.40 5162.70 5287.50 5728.80 5247.60 7469.90 9407.50 5333.50

99.32 100.00 102.42 110.97 101.64 144.69 182.22 103.31

435.51 0.06 0.08 3.35 0.49 1.45 7.56
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Fig. 3. Results for 10 instances of sparse graphs with increasing size

stochastic and the split heuristic perform very well in terms of quality, however,

the split heuristic takes roughly the same time as the branch and cut computation

up to size 80+80, whereas the barycenter heuristic obtains results of similar

quality as split, but much faster (see Figure 3).

In Table 3, we repeat an experiment by Dresbach [D94] for instances de�ned

by War�eld [W77] as follows: For k = 3; 4; 5; 6; 7;8 we let n

1

= k, n

2

= 2

k

� 1,

and the adjacency matrix of the bipartite graph is a n

1

� n

2

matrix whose rows

are labelled 1; 2; : : : ; k, whose columns are labelled 1; 2; : : : ; 2

k

�1, and column j

contains j in k-digit binary notation. Layer 1 is �xed and layer 2 is \optimized".

Again, it turns out that barycenter is the fastest method with excellent quality

solutions. The results of the stochastic heuristic, the barycenter and the split

heuristic are very close to the optimum solution. Up to size 7+127, the branch

and cut algorithm needs only moderate computation time, for the instance 8+255

it is not competitive in terms of time, but we found it surprising that such a big

linear ordering instance with n = 255 could be solved at all. The branch and cut

algorithm was the only method that found the true optima for k � 6, whereas

for 3 � k � 5, the fact that the optimum value equals the value of the trivial

lower bound seems to indicate that these instances are not hard.

4 Two Sided Crossing Minimization

The trivial lower bound on the number of crossings that turned out to be excel-

lent in our previous experiments, can obviously be adapted to partial orderings

rather than complete orderings (permutations) on one of the layers. This en-

couraged us to devise a simple branch and bound algorithm for the general two

layer straightline crossing minimization problem in which both �

1

and �

2

must



Table 3. Results for Dresbach instances

n

1

n

2

m Low Min Bary Median Stoch Gre-ins Gre-swi Split

3 7 12 8 8 8 13 8 11 8 8

100.00 100.00 162.50 100.00 137.50 100.00 100.00

0.00 0.00 0.00 0.02 0.00 0.00 0.02

4 15 32 95 95 95 127 95 122 98 95

100.00 100.00 133.68 100.00 128.42 103.16 100.00

0.00 0.00 0.00 0.03 0.02 0.05 0.07

5 31 80 756 756 758 922 756 934 804 760

100.00 100.27 121.96 100.00 123.55 106.35 100.53

0.03 0.00 0.03 0.18 0.08 0.40 0.43

6 63 192 4998 5002 5015 5818 5004 6023 5523 5043

100.00 100.26 116.31 100.04 120.41 110.42 100.90

0.73 0.05 0.07 1.38 0.38 2.87 2.65

7 127 448 29745 29778 29883 33641 29841 35152 34366 30086

100.00 100.35 112.97 100.21 118.05 115.41 101.03

20.50 0.17 0.20 9.02 1.98 20.20 24.30

8 255 1024 165375 165602 166098 183342 165824 192633 202957 167546

100.00 100.30 110.71 100.13 116.32 122.56 101.17

7200.00 0.95 1.08 67.90 7.33 147.00 189.00

be determined. Namely, we enumerate all permutations �

1

(let without loss of

generality jV

1

j � jV

2

j, V

1

= f1; 2; : : : ; ng) as follows: Initially all v 2 V

1

are un-

�xed. At depth l in a depth-�rst-search, l � 1 nodes of V

1

are �xed in positions

1; 2; : : : ; l�1. Then the �rst un�xed node in the canonical ordering of V

1

is �xed

at position l, and the trivial lower bound L is computed for the resulting partial

ordering. If L is greater than the value of the best known solution, the next

un�xed node in the canonical ordering of V

1

is �xed at position l, else we move

to position l + 1, if l < n, and otherwise (l = n) we call the branch and cut

algorithm to determine an optimum ordering of V

2

and update the best known

solution, if necessary. Backtracking, i.e. moving from position l to position l� 1

occurs whenever the list of un�xed nodes at depth l in the enumeration tree is

exhausted. Before the enumeration is entered, a heuristic solution is determined

in order to initialize the best known solution. A good initial solution makes the

enumeration tree smaller.

In Table 4, we use this algorithm to determine optimum solutions for 10+10

graphs with increasing edge densities, 100 samples for each type of graph. It

turns out that with increasing density, the computation times increase rapidly

for the minimum computation, whereas the heuristics are not very sensitive to

density. All heuristics are iterated between the two layers until a local optimum

is obtained, as outlined in the introduction, starting from the canonical ordering

on V

1

. An additional column labelled \LR-Opt" gives according results for the

iterated minimum crossing computation by branch and cut, which is, remarkably,

sometimes outperformed by the best iterated heuristics. For sparse instances,

the minimum is much better than any of the heuristically found solutions. In

Figure 4, we show an example of a 10+10 graph with 20 edges. The �rst drawing

was found by the LR-Opt heuristic and has 30 crossings, the second by the

barycenter heuristic and contains 11 crossings and the third one is the optimum

solution with only 4 crossings.
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Within one hour of computation time, we can �nd optimum solutions for

11+11 instances with up to 80% density, 12+12 with up to 50% density, 13+13

with up to 30% density, 14+14, 15+15, 16+16 with up to 10% density.

In Table 5, we repeat the same experiment with 10 starts from random or-

derings of the nodes in V

1

. The results show that this way a considerable per-

formance gain for all heuristics can be achieved. LR-Opt, Barycenter and Split

obtain results of similar good quality.

Tables 6 and 7 deal with the more interesting sparse instances of bigger size

for which we can not compute the optimum anymore, Table 6 with canonical

start, Table 7 with 10 random starts. Summarizing, the barycenter method turns

out to be the clear winner, both in terms of quality as well as in terms of

computation time.



Table 4. Results for 100 instances on 10 + 10 nodes with increasing density

n

i

m Min LR-Opt Bary Median Stoch Gre-ins Gre-swi Split

10 10 0.29 1.64 1.52 1.53 2.71 4.32 9.61 2.63

100.00 565.52 524.14 527.59 934.48 1489.66 3313.79 906.90

1.10 0.01 0.01 0.01 0.03 0.02 0.02 0.04

10 20 11.62 19.99 18.78 24.08 26.96 38.85 34.81 23.25

100.00 172.03 161.62 207.23 232.01 334.34 299.57 200.09

3.89 0.02 0.01 0.01 0.06 0.04 0.03 0.07

10 30 56.60 66.98 65.30 81.78 82.98 109.96 80.29 70.11

100.00 118.34 115.37 144.49 146.61 194.28 141.86 123.87

14.06 0.02 0.02 0.02 0.07 0.06 0.07 0.11

10 40 146.89 157.91 157.70 189.55 182.77 225.26 165.65 160.20

100.00 107.50 107.36 129.04 124.43 153.35 112.77 109.06

43.02 0.03 0.02 0.02 0.08 0.10 0.11 0.15

10 50 276.78 287.32 288.15 333.25 320.21 387.87 296.38 290.79

100.00 103.81 104.11 120.40 115.69 140.14 107.08 105.06

91.58 0.04 0.03 0.02 0.09 0.13 0.15 0.21

10 60 463.17 475.04 475.52 539.59 509.38 598.98 482.76 478.46

100.00 102.56 102.67 116.50 109.98 129.32 104.23 103.30

206.61 0.06 0.03 0.03 0.10 0.17 0.22 0.28

10 70 698.35 709.91 710.88 782.33 747.20 854.61 715.73 712.73

100.00 101.66 101.79 112.03 107.00 122.38 102.49 102.06

379.12 0.07 0.04 0.03 0.11 0.22 0.29 0.35

10 80 1008.38 1021.46 1021.44 1110.39 1051.66 1165.97 1025.84 1024.78

100.00 101.30 101.30 110.12 104.29 115.63 101.73 101.63

763.53 0.08 0.04 0.03 0.12 0.27 0.34 0.40

10 90 1405.57 1420.68 1421.86 1524.18 1430.86 1516.62 1423.90 1421.72

100.00 101.08 101.16 108.44 101.80 107.90 101.30 101.15

1549.12 0.07 0.03 0.03 0.12 0.29 0.32 0.37

5 Conclusions

The outcome of our computational experiments lead to the following conclusions.

(1) When one layer is �xed, the exact minimum crossing number can be e�-

ciently computed in practice, so there is no real need for heuristics.

(2) In the general case, small sparse instances as they occur in applications

can be solved to optimality if the smaller sized shore has up to about 15

vertices. For larger instances, the iterated barycenter method, started with

a few random orderings of one layer, is clearly the method of choice among

all tested methods.
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Table 5. Results for 100 instances on 10 + 10 nodes with increasing density, 10 trials each

n

i

m Min LR-Opt Bary Median Stoch Gre-ins Gre-swi Split

10 10 0.29 0.30 0.31 0.71 0.73 2.10 3.95 0.42

100.00 103.45 106.90 244.83 251.72 724.14 1362.07 144.83

1.10 0.11 0.08 0.08 0.27 0.21 0.16 0.38

10 20 11.62 12.50 12.44 16.57 17.44 30.55 21.00 13.83

100.00 107.57 107.06 142.60 150.09 262.91 180.72 119.02

3.89 0.18 0.12 0.13 0.52 0.38 0.34 0.64

10 30 56.60 57.27 57.46 68.66 66.33 97.22 62.59 58.30

100.00 101.18 101.52 121.31 117.19 171.77 110.58 103.00

14.06 0.26 0.17 0.15 0.68 0.60 0.62 1.01

10 40 146.89 147.35 147.73 166.41 159.31 205.97 150.34 148.24

100.00 100.31 100.57 113.29 108.46 140.22 102.35 100.92

43.02 0.36 0.21 0.18 0.79 0.90 1.02 1.45

10 50 276.78 277.11 277.78 304.62 292.34 363.43 277.85 277.61

100.00 100.12 100.36 110.06 105.62 131.31 100.39 100.30

91.58 0.47 0.26 0.22 0.87 1.23 1.50 2.03

10 60 463.17 463.76 464.07 499.41 478.48 565.63 464.54 464.17

100.00 100.13 100.19 107.82 103.31 122.12 100.30 100.22

206.61 0.59 0.32 0.25 0.96 1.65 2.15 2.67

10 70 698.35 698.75 699.23 745.00 712.78 816.80 699.37 699.04

100.00 100.06 100.13 106.68 102.07 116.96 100.15 100.10

379.12 0.68 0.34 0.29 1.03 2.23 2.78 3.30

10 80 1008.38 1008.62 1008.88 1070.82 1018.66 1120.31 1008.96 1008.94

100.00 100.02 100.05 106.19 101.02 111.10 100.06 100.06

763.53 0.81 0.37 0.31 1.11 2.70 3.39 3.89

10 90 1405.57 1406.14 1406.22 1490.03 1410.31 1461.52 1406.43 1406.44

100.00 100.04 100.05 106.01 100.34 103.98 100.06 100.06

1549.12 0.70 0.33 0.34 1.17 2.86 3.13 3.53

Table 6. Results for 10 instances of sparse graphs

n

i

m LR-Opt Bary Median Stoch Gre-ins Gre-swi Split

10 20 19.70 15.70 25.70 27.20 35.80 34.20 20.90

0.02 0.02 0.01 0.05 0.04 0.04 0.06

20 40 73.70 72.50 79.60 132.50 170.70 237.70 91.20

0.10 0.03 0.04 0.36 0.17 0.17 0.41

30 60 176.00 147.90 188.50 288.20 442.30 549.80 208.30

0.48 0.10 0.09 1.18 0.49 0.48 1.33

40 80 309.80 273.30 374.20 555.70 760.60 1207.00 368.80

1.81 0.17 0.14 2.72 0.93 0.67 3.45

50 100 457.70 392.30 561.90 824.40 1284.40 1971.20 548.10

5.87 0.25 0.17 5.92 1.37 1.10 7.14

60 120 645.60 567.00 811.20 1219.90 1954.80 2667.90 811.10

13.34 0.38 0.24 8.58 2.24 1.87 10.52

70 140 861.30 764.60 1146.20 1689.30 2549.30 4122.80 1032.40

24.95 0.55 0.34 14.09 2.89 2.19 19.48

80 160 1246.10 1080.70 1481.30 2183.30 3279.40 5495.90 1467.70

62.65 0.68 0.52 21.09 4.58 3.22 25.01

90 180 1697.70 1272.40 1848.00 2859.50 4280.00 6853.70 1762.40

86.37 1.10 0.57 31.84 6.41 4.30 38.36

100 200 2027.30 1555.10 2084.10 3453.10 5405.00 8796.30 2209.40

178.93 1.46 0.82 40.23 7.41 5.25 47.78



Table 7. Results for 10 instances of sparse graphs, 10 trials each

n

i

m LR-Opt Bary Median Stoch Gre-ins Gre-swi Split

10 20 13.60 12.70 18.70 17.50 30.00 22.30 14.70

0.12 0.15 0.12 0.55 0.40 0.34 0.68

20 40 51.00 48.30 59.10 89.00 150.80 163.40 63.70

0.98 0.42 0.39 3.61 1.82 1.58 3.93

30 60 133.40 117.00 145.80 228.60 421.30 422.10 160.10

5.55 0.96 0.76 11.48 4.59 4.18 13.13

40 80 234.10 212.40 271.40 432.80 724.50 949.80 279.90

18.45 1.75 1.29 26.57 8.25 7.42 31.26

50 100 384.20 325.60 407.30 715.60 1245.60 1715.90 462.70

52.01 2.79 2.06 51.33 13.59 11.60 60.80

60 120 541.10 479.90 599.90 1106.80 1909.70 2472.10 654.00

128.12 4.38 2.93 92.08 21.97 18.27 114.07

70 140 733.20 641.30 858.00 1489.30 2514.30 3640.00 896.90

304.08 5.79 3.82 139.95 30.18 23.22 175.83

80 160 1022.90 903.70 1145.10 1993.30 3248.70 4843.50 1169.60

619.36 7.57 5.28 204.64 38.96 31.18 264.82

90 180 1282.50 1044.70 1323.70 2516.50 4209.10 6228.20 1466.40

1134.67 10.81 6.55 307.44 57.13 43.19 377.72

100 200 1599.20 1313.20 1793.20 3119.40 5323.90 8145.30 1807.60

2313.48 13.76 8.02 402.74 67.13 50.24 504.25
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