
Angewandte Mathematik und Informatik

Universit

�

at zu K

�

oln

Report No. 95.212

Tight Approximations for Resource Constrained Scheduling and Bin Packing

by

Anand Srivastav, Peter Stangier

1995

Parts of this paper appeared as extended abstract in: J. van Leeuwen (ed.), Proceedings of the Second

Annual European Symposium on Algorithms (ESA'94), pages 307 { 318, Lecture Notes in Computer

Science, Vol 855, Springer Verlag, 1994.

Anand Srivastav

Institut f�ur Informatik | Lehrstuhl Algorithmen und Komplexit�at

Humboldt Universit�at zu Berlin

Unter den Linden 6

10099 Berlin

Germany

srivasta@informatik.hu-berlin.de

Peter Stangier

Institut f�ur Informatik

Universit�at zu K�oln

Pohligstr.1

50969 K�oln

Germany

stangier@informatik.uni-koeln.de

1991 Mathematics Subject Classi�cation: 60C05, 60E15, 68Q25, 90C10, 90B35

Keywords: resource constrained scheduling, multidimensional bin packing, randomized algo-

rithms, derandomization, approximation algorithms, chromatic index.

Tight Approximations for Resource Constrained Scheduling

and Bin Packing

Anand Srivastav Peter Stangier

September 1995

Abstract

We consider the following resource constrained scheduling problem. Given m identical

processors, s resources with upper bounds, n independent tasks of unit length, where each task

has a start time and requires one processor and a task-dependent amount of every resource.

The optimization problem is to schedule all tasks at discrete times in IIN, minimizing the

latest completion time C

max

subject to the processor, resource and start-time constraints.

Multidimensional bin packing is a special case of this problem. The problem is NP-hard even

under much simpler assumptions. In case of zero start times R�ock and Schmidt (1983) showed

an (m=2)-factor approximation algorithm and de la Vega and Lueker (1981), improving a

classical result of Garey, Graham, Johnson and Yao (1976), gave for every � > 0 a linear

time algorithm with an asymptotic approximation guarantee of s+ �. The contribution of this

paper is to break the O(m) resp. O(s) barrier, even in the case of zero start times, at least for

problems where the number of processors and the resource bounds are in
(log jIj), jIj being

the input size of the problem. The main results are constant factor approximation algorithms

for such problems and the proof of the optimality of the achieved approximation under the

hypothesis P 6= NP .

1 Introduction

Problem De�nition and Complexity

Resource constrained scheduling with start times is the following problem: The input is

� a set T = fT

1

; : : : ; T

n

g of independent tasks. Each task T

j

needs one time unit for its completion

and cannot be scheduled before its start time r

j

, r

j

2 IIN.

� a set P = fP

1

; : : : ; P

m

g of identical processors. Each task needs one processor.

� a set R = fR

1

; : : : ; R

s

g of limited resources. This means that at any time all resources are

available, but the available amount of each resource R

i

is bounded by b

i

2 IIN.

� For 1 � i � s, 1 � j � n let R

i

(j) 2 [0; 1] be rational resource requirements, indicating that

every task T

j

needs R

i

(j) amount of resource R

i

in order to be processed.

The combinatorial optimization problem is:

De�nition 1.1 (Resource Constrained Scheduling) Find a schedule (or assignment) � : T 7! IIN

of minimal time length subject to the start times, processor and resource constraints.

2

According to the standard notation of scheduling problems the unweighted version of our problem

(R

i

(j) = 0; 1) can be formalized as

P jres � � 1; r

j

; p

j

= 1jC

max

:

1

This notation means that the number of identical processors is part of the input (P j) that

resources are involved (res) that the number of resources and the amount of every resource are

part of the input, too (res � �), that every task needs at most 1 unit of a resource (res � � 1), that

start times are involved (r

j

) and that the processing time of all tasks is equal (p

j

= 1) and that

the optimization problem is to schedule the tasks as soon as possible (jC

max

).

The problem is NP -hard in the strong sense, even if r

j

= 0 for all j = 1; : : : ; n, s = 1 and

m = 3 [GaJo79].

An interesting special case of resource constrained scheduling is the following generalized version

of the multidimensional bin packing problem.

De�nition 1.2 (Bin Packing Problem BIN (l; d)) Let d; l; n be non negative integers. Given vec-

tors ~v

1

; : : : ; ~v

n

2 [0; 1]

d

, pack all vectors in a minimum number of bins such that in each bin B and

for each coordinate i, i = 1; : : : ; d,

P

~v

j

2B

v

ij

� l.

2

Observe that BIN (1; d) is the multidimensional bin packing problem, andBIN (1; 1) is the classical

bin packing problem. The intention behind the formulation with a parameter l � 1 is to analyse

the relationship between bin sizes and polynomial-time approximability of the problem.

Previous Work

The known approximation algorithms for the problem class P jres ���; r

j

= 0; p

j

= 1jC

max

are due to

Garey, Graham, Johnson, Yao [GGJY76] and R�ock and Schmidt [RS83]. Garey et al. constructed

with the First-Fit-Decreasing heuristic a schedule of length C

FFD

which asymptotically is a (s+

1

3

)-

factor approximation, i.e. there is an non negative integer N such that for all C

opt

� N

C

FFD

� C

opt

(s+

1

3

):

de la Vega and Lueker [VeLu81] improved this result presenting for every � > 0 a linear-time

algorithm with asymptotic approximation factor d + �. R�ock and Schmidt showed, employing

the polynomial-time solvability of the simpler problem P2jres � � �; r

j

= 0; p

j

= 1jC

max

with 2

processors, a d

m

2

e factor approximation algorithm. Thus for problems with small optimal schedules

or many resource constraints resp. processors these algorithms have a weak performance. Note that

all these results are based on the assumption that no start-times are given, i.e. r

j

= 0 for all tasks

T

j

2 T . For example, R�ock and Schmidt's algorithm cannot be used, when start-times are given,

because the problem P2jres � � 1; r

j

; p

j

= 1jC

max

is also NP -complete, so their basis solution cannot

be constructed in polynomial time.

In [SrSt94] we showed a 2-factor approximation algorithm for resource constrained scheduling

problems, when the resource bounds and the number of processors are in
(log(Cs)), where C is the

length of an optimal fractional schedule, and proved that even for this class a polynomial-time �-

approximation algorithm for � < 1:5 cannot exist, unless P = NP . Since this non-approximability

result was derived with a reduction to the NP-complete problem of deciding if a schedule of length

2 does exist or not, it was conjectured that for other instances - exept this pathological one - better

approximations might be possible.

We will show that this conjecture is true in a comprehensive sense:

The Results

Let C

opt

be the minimum schedule length and let the integer C denote the minimum length of a

schedule, if we consider the LP relaxation, where fractional assignments of the tasks to scheduling

2

times are allowed. We briey call solutions to the LP relaxation \fractional schedules" and solu-

tions to the original integer problem \integral schedules"

1

. As the one main result we will present

a polynomial-time approximation algorithm for the problem class P jres � � 1; r

j

; p

j

= 1jC

max

,

including its rational weighted version (0 � R

i

(j) � 1):

(a) For every � > 0, (1=�) 2 IIN, we can �nd in strongly polynomial time an integral schedule of

size at most d(1 + �)C

opt

e, provided that all resource bounds b

i

are at least

3(1+�)

�

2

log(4Cs) and the

number of processors is at least

3(1+�)

�

2

log(4C).

As a surprising consequence a schedule of length C

opt

+ 1 can be constructed in polynomial-

time,

2

whenever b

i

� 3C(C + 1) log(Cs)) for all resource bounds b

i

and m � 3C(C + 1) logC.

This approximation guarantee is independent of the number of processors or resources and can be

used also for small schedules, for example C

max

= 2; 3 or 4. The results can be extended to the

case of integer resource requirements (R

i

(j) 2 IIN) by scaling and exploiting the fact that we can

handle rational weights, thus we obtain polynomial-time approximation algorithm for problems of

the form P jres � � �; r

j

; p

j

= 1jC

max

:

One might wonder, if under the assumptions b

i

2
(�

�2

log(Cs)) for all i and m 2
(�

�2

logC)

the scheduling problem is interesting enough. In other words, can it be that such problems are easily

solvable in polynomial time ? The answer is that under the hypothesis P 6= NP our approximation

is best possible:

(b) For the simpler problem with zero start-times and C � 3 it is NP -complete

3

to decide the

question \Is C

opt

= C ?", even if

� a fractional schedule of size C is known,

� an integral schedule of size C + 1 is known,

� b

i

2
(C

2

log(Cs)) for all resource bounds b

i

.

� m 2
(C

2

logC).

In conclusion, both results together precisely determine the border of approximability of re-

source constrained scheduling and sheed light on its complexity.

An interesting special case of resource constrained scheduling is the multidimensional bin pack-

ing problem and the above results imply

(c) Let � > 0, (1=�) 2 IIN. If l �

3(1+�)

�

2

dlog (4nd))e, then we can �nd in O(dn

3

log(nd)) time

a bin packing with L bins such that L � d(1 + �)L

opt

e. But even if l =
(L

2

R

log(nd)), then it is

NP -complete to decide whether L

opt

= L

R

or L

opt

= L

R

+ 1.

Furthermore, extending the method of log

c

n-wise independence from the case of 0 � 1 to

multivalued random variables, we can parallelize our algorithm in special cases.

Let � �

1

logn

and suppose that m; b

i

� 2n

1

2

+�

p

log 2n(s + 1) for all i. Then there is a NC-

algorithms that runs on O(n

2

(ns)

1+

1

�

) parallel processors and �nds in O(logn log

3

(ns)) time a

schedule of size at most 2C

opt

.

Observe that there is a gap of a n

1

2

+�

factor between the lower bounds of the resource bounds

and number of processors in the sequential and in the parallel algorithm. This factor comes into pic-

ture due to the estimation of higher moments required by the method of log

c

n-wise independence.

1

This should not cause any confusion: C is always an integer, only the assignments of tasks to times in the

discrete interval f1; : : : ; Cg are fractional numbers.

2

Note that C is at most the sum of n and the maximal start time, hence the factor log(Cs) is within the size of

the problem input.

3

For C = 2 see [SrSt94]

3

We leave open the question, if there is a parallel 2-factor approximation algorithm for problems

with m; b

i

2
(log(Cs)).

The paper is organized as follows. In section 2 we study a general system of integer inequalities

related to resource constrained scheduling, show under which circumstances an integer solution

can be constructed via derandomization and apply the results to resource constrained scheduling.

In section 3 it is proved that the achieved approximation is optimal, unless P = NP . In section 4,

as an example, the multidimensional bin packing problem is discussed and in section 5 we give for

some special cases parallel counterparts of our scheduling and bin packing algorithms based on an

extension of the method of log

c

n-wise independence to multivalued random variables (appendix

section 6).

2 Integer Inequalities

Resource constrained scheduling can be modelled as a special case of a system of integral inequalities

with equality constraints:

Let l; n;N be non negative integers. For k = 1; : : : ; N let A

(k)

be rational l � n matrices with

0 � a

(k)

ij

� 1 and b

(k)

2 Q

l

+

. For a vector y

j

2 f0; 1g

N

let y

jk

be its k-th component, k = 1; : : : ; N .

Let y

(k)

be the vector of all the k-th components, i.e. y

(k)

= (y

1k

; : : : ; y

nk

). Consider the following

system of linear inequalities

Inequality System (IS)

A

(k)

y

(k)

� b

(k)

8k = 1; : : : ; N

jjy

j

jj

1

= 1 8j = 1; : : : ; n

y

j

2 f0; 1g

N

y

(k)

= (y

1k

; : : : ; y

nk

):

Resource constrained scheduling �ts in this scheme as follows: consider the processors as a resource

R

s+1

with requirement R

s+1

(j) = 1 for all j and bound m. Let R = (R

i

(j))

ij

be the resource

constraint matrix, set A

(k)

= R and b

(k)

= (b;m) for all k = 1; : : : ; N . Then, the problem of

�nding a minimum N such that a so de�ned inequality system (IS) has a solution is equivalent to

the problem of �nding a schedule of minimal length.

In general, one cannot expect to solve (IS) in polynomial time, even if a fractional solution

exists, because then we would be able to decide the solvability of resource constrained scheduling.

The key observation is that (IS) can be solved, if the same system with a tighter right hand

side, say (1 + �)

�1

b

(k)

instead of b

(k)

, is fractionally solvable.

De�ne the �-version of (IS) for 0 < � � 1 as

�-Inequality System (IS(�))

A

(k)

y

(k)

� (1 + �)

�1

b

(k)

8k = 1; : : : ; N

jjy

j

jj

1

= 1 8j = 1; : : : ; n

y

j

2 f0; 1g

N

y

(k)

= (y

1k

; : : : ; y

nk

):

We need the following parameters. Let l

1

be an integer with l

1

� l and de�ne

b

�;1

=

3(1 + �)

�

2

log(4l

1

N) and b

�;2

=

3(1 + �)

�

2

log(4(l � l

1

)N): (1)

Theorem 2.1 (Rounding Theorem) Let 0 < � � 1, l

1

and b

�;i

as in (1). Suppose that b

(k)

i

� b

�;1

for all 1 � i � l

1

and b

(k)

i

� b

�;2

for all i > l

1

. Suppose that u = (u

1

; : : : ; u

n

) with u

j

2 [0; 1]

N

is a

fractional solution for the �-scaled system IS(�). Then a vector x = (x

1

; : : : ; x

n

) with x

j

2 f0; 1g

N

satisfying the inequalities of system IS, i.e.

A

(k)

x

(k)

� b

(k)

; 8k and jjx

j

jj

1

= 1 8j

4

can be constructed in O(Nln

2

log(Nln)) time.

2

For the proof we need the following derandomization result which is an algorithmic version of the

Angluin-Valiant inequality for multi-valued random variables. Let l; n;N be non-negative integers.

We are given n mutually independent random variables X

j

with values in f1; : : : ; Ng and probabil-

ity distribution Prob(X

j

= k) = ~x

jk

for all j = 1; : : : ; n, k = 1; : : : ; N and

P

N

k=1

~x

jk

= 1. Suppose

that the ~x

jk

are rational numbers with 0 � ~x

jk

� 1. Let X

jk

denote the random variable which is

1, if X

j

= k and is 0 else. For 1 � k � N , 1 � i � l, 1 � j � n let w

(k)

ij

be rational weights with

0 � w

(k)

ij

� 1. For i = 1; : : : ; l and k = 1; : : : ; N de�ne the sums

ik

by

ik

=

n

X

j=1

w

(k)

ij

X

jk

: (2)

Let 0 < �

ik

� 1 be rational numbers.

Denote by E

ik

the event

ik

� IE(

ik

)(1 + �

ik

): (3)

Let (E

ik

) be a collection of lN such events. De�ne

f(�

ik

) = exp(�

�

2

ik

IE(

ik

)

3

):

By the Angluin-Valiant inequality ([McD89], Theorem 5.7) we have for all k

Proposition 2.2 IP[E

c

ik

] � f(�

ik

):

2

Thus the probability that there is some (i; k) so that E

c

ik

holds is at most

P

m

i=1

P

N

k=1

f(�

ik

): Let

us assume that this is bounded away from one, i.e.

m

X

i=1

N

X

k=1

f(�

ik

) � 1� �: (4)

for some 0 < � < 1. The following theorem is a special case of the algorithmic version of the

Angluin-Valiant inequality for multivalued random variables (Theorem 2.13 in [SrSt94]).

Theorem 2.3 ([SrSt94] Let 0 < � < 1 and E

ik

be as above satisfying (4). Then

IP(

m

\

i=1

N

\

k=1

E

ik

) � �

and a vector x 2

T

m

i=1

T

N

k=1

E

ik

can be constructed in O

�

Nln

2

log

Nln

�

]

�

-time.

2

We are ready to prove Theorem 2.1.

Proof of Theorem 2.1: Set [N] = f1; : : : ; Ng. Let X

1

; : : : ; X

n

be mutually independent random

variables with values in [N] de�ned by IP[X

j

= k] = u

jk

, k 2 [N]. For j; k let X

jk

be the 0 � 1

random variable which is 1 if X

j

= k and 0 else. Furthermore, for each k 2 [N] let X

(k)

be the

vector (X

1k

; : : : ; X

nk

). For i = 1; : : : ; l de�ne sums

ik

by

ik

= (A

(k)

X

(k)

)

i

=

n

X

j=1

a

(k)

ij

X

jk

:

5

Let E

ik

be the event

ik

� (1 + �)(1 + �)

�1

b

(k)

i

:

By the Angluin-Valiant inequality and the assumption b

(k)

i

� b

�;1

for 1 � i � l

1

and b

(k)

i

� b

�;2

for

l

1

+ 1 � i � l

IP[E

c

ik

] � exp

�

�

2

b

(k)

i

3(1 + �)

!

�

1

2N�

;

where � = l

1

or � = l � l

1

resp.. Hence

IP[

[

ik

E

c

ik

] �

1

2

:

With � =

1

2

we can invoke the algorithmic Angluin-Valiant inequality for multi-valued random

variables (Theorem 2.3) and can construct vectors x

1

; : : : ; x

n

with x

j

2 f0; 1g

N

and jjx

j

jj

1

= 1

such that

A

(k)

x

(k)

� b

(k)

8k

in O(Nln

2

log(Nln)) time.

2

In order to show the claimed approximation guarantee for resource constrained scheduling we

proceed as follows. In the �rst step we solve the linear programming relaxation of the integer

program associated to resource constrained scheduling. Now an integer schedule can be generated

in principle with our rounding theorem (Theorem 2.1). Since the rounding theorem can be applied

only if a fractional solution within the smaller resource bound vector (1 + �)

�1

b is available, in the

second step we must show the existence of such a solution.

Fractional Solutions

Let r

max

:= max

j=1;:::;n

r

j

and D = r

max

+ n. Thus

C � C

opt

� D:

The following integer linear program is equivalent to resource constrained scheduling with start

times.

minS

P

j

R

i

(j)x

jz

� b

i

8 R

i

2 R;

z 2 f1; : : : ; Dg

P

z

x

jz

= 1 8 T

j

2 T

x

jz

= 0 8 T

j

2 T ; z < r

j

and

8 T

j

2 T ; z > S

x

jz

2 f0; 1g:

The fractional optimal schedule C can be found in a standard way (see for example [LST90]): Start

with an overall integer deadline

e

C � D and check whether the LP

P

j

R

i

(j)x

jz

� b

i

8 R

i

2 R;

z 2 f1; : : : ; Dg

P

z

x

jz

= 1 8 T

j

2 T

x

jz

= 0 8 T

j

2 T ; z < r

j

and

8 T

j

2 T ; z >

e

C

x

jz

2 [0; 1]

has a solution. Using binary search we can �nd C along with fractional assignments (ex

jz

) solving at

most logD such LPs. W.l.o.g we can assume that D = O(n). Hence this procedure is a polynomial-

time algorithm, if we use standard polynomial-time LP algorithms.

6

Our goal is to �nd an integer solution using the rounding theorem (Theorem 2.1). But at this

moment we cannot apply it, because the rounding theorem requires a fractional solution within

the tighter resource bound

b

1+�

, while C and the assignments (~x

ij

) are feasible only within the

bound b. It should be intuitively clear that given a fractional solution within the resource bound b

and a fractional schedule of length C, a new fractional solution within

b

1+�

might be constructable

enlarging the length of the schedule to some C

�

> C.

But how can we choose an appropriate C

�

? Let � > 0 with (1=�) 2 IIN. Consider the time interval

f1; : : : ; d(1 + �)Ceg. De�ne a new fractional solution as follows. Call fC + 1; : : : ; d(1 + �)Ceg the �-

compressed image of f1; : : : ; Cg and put � =

1

1+�

.

Set

I = f1; : : : ; d(1 + �)Ceg;

I

0

= f1; : : : ; Cg;

I

�

1

= fC + 1; : : : ; C + b�Ccg

and

I

�

2

=

(

;; if �C 2 IIN

fd(1 + �)Ceg else

Then I = I

0

[I

�

1

[I

�

2

. For integers l let g; f be functions de�ned by

f(l) =

l �C

�

and g(l) =

l �C

�

+ 1�

1

�

:

The new fractional assignments bx

jl

are

bx

jl

:=

8

>

>

>

>

>

<

>

>

>

>

>

:

�ex

j;l

for l 2 I

0

f(l)

P

t=g(l)

(1� �)ex

jt

for l 2 I

�

1

C

P

t=g(l)

(1� �)ex

jt

for l 2 I

�

2

:

(5)

It is instructive to state the randomized rounding algorithm behind the rounding theorem (Theorem

2.1) for resource constrained scheduling explicitly. Here is the algorithm:

Algorithm RANDOM-SCHEDULE

Schedule the tasks at times selected by the following randomized procedure:

(a) Cast n mutually independent dice each having N = d(1 + �)Ce faces where the z-th face of

the j-th die corresponding to task j appears with probability ex

jz

. (The faces stand for the

scheduling times)

(b) Schedule task T

j

at the time selected in (a).

2

The following examples illustrate this algorithm.

For � = 1 we double the interval I

0

and get f1; : : : ; C; C + 1; : : : ; 2Cg. Then each task T

j

is

randomly scheduled at time z 2 I

0

with probability

1

2

ex

jz

and is scheduled at time z + C with

the same probability. While this is quite clear, the idea of �-compressed image becomes more

transparent looking at � =

1

2

.

7

For � =

1

2

we have the enlarged interval f1; : : : ; C; C+1; : : : ; d

3

2

Ceg: Given a task T

j

we randomly

assign it to a time z 2 f1; : : : ; Cg with probability

2

3

ex

jz

, assign it to z = C + 1 with probability

1

3

ex

j1

+

1

3

ex

j2

, to z = C+2 with probability

1

3

ex

j3

+

1

3

ex

j4

and so on up to the assignment to z = b

3

2

Cc.

Now there are two cases:

If 3C is even, we assign T

j

to b

3

2

Cc with probability

1

3

ex

j;C�1

+

1

3

ex

j;C

and since d

3

2

Ce = b

3

2

Cc,

we are done. If 3C is odd, then we assign T

j

to b

3

2

Cc with probability

1

3

ex

j;C�2

+

1

3

ex

j;C�1

and to

b

3

2

Cc+ 1 with probability

1

3

ex

jC

.

The following �gures illustrate this schedule enlargment. Given a fractional schedule as indicated

in �gure 1 we generate the schedule as shown in �gure 2.

z2

P1

P2

z1

Figure 1: A fractional schedule

z3

P1

P2

z1 z2

Figure 2: The new fractional schedule

The following lemma shows that the new fractional schedule is indeed feasible.

Lemma 2.4 The vectors bx

j

= (bx

j1

; : : : ; bx

jN

), j = 1; : : : ; n form a fractional solution for resource

constrained scheduling with (1 + �)

�1

m processors and resource bound vector (1 + �)

�1

b.

2

Proof: Let � =

1

1+�

and consider an arbitrary resource R

i

. (We can regard the processor con-

straint as an additional resource, thus the following arguments also apply to the processor con-

straint)

The resource constraints are satis�ed, because for l 2 I

0

we have

n

X

j=1

R

i

(j)bx

jl

� �b

i

;

8

for l 2 I

�

1

(using f(l) � (g(l) � 1) =

1

�

)

n

X

j=1

R

i

(j)bx

jl

=

n

X

j=1

f(l)

X

t=g(l)

(1� �)R

i

(j)ex

jt

�

1

�

(1� �)b

i

= �b

i

;

and for l 2 I

�

2

(using C � (g(l) � 1) �

1

�

)

n

X

j=1

R

i

(j)bx

jl

=

n

X

j=1

C

X

t=g(l)

(1� �)R

i

(j)ex

jt

�

1

�

(1� �)b

i

= �b

i

:

Furthermore for all tasks T

j

,

X

l2I

bx

jl

=

X

l2I

0

�ex

jl

+

X

l2I

�

1

f(l)

X

t=g(l)

(1� �)ex

jt

+

X

l2I

�

2

C

X

t=g(l)

(1� �)ex

jt

=

C

X

l=1

�ex

jl

+

C

X

l=1

(1� �)ex

jl

= 1:

2

Using the rounding theorem (Theorem 2.1) the derandomized version of the algorithm RAN-

DOM SCHEDULE simply is:

Algorithm SCHEDULE

Determine by the rounding theorem for each task its scheduling time.

2

Theorem 2.5 For every � > 0 with (1=�) 2 IIN, the algorithm SCHEDULE �nds a feasible integral

schedule of size at most d(1 + �)Ce in polynomial time, provided that m �

3(1+�)

�

2

dlog (4C))e and

b

i

�

3(1+�)

�

2

dlog (4Cs))e for all i = 1; : : : ; s.

2

Proof: As above let N = d(1 + �)Ce. Let A = (R

i

(j))

ij

be the extended (s + 1) � n resource

constraint matrix where the resource R

s+1

represents the processor requirements and thus is de�ned

by R

s+1

(j) = 1 for all j. For k = 1; : : : ; N let b

(k)

:= (b;m) be the resource bound vector. The

theorem is equivalent to the problem of �nding a solution to the following inequality system

Ay

(k)

� b

(k)

8k = 1; : : : ; N

jjy

j

jj

1

= 1 8j = 1; : : : ; n

y

j

2 f0; 1g

N

y

(k)

= (y

1k

; : : : ; y

nk

):

(6)

(The vector y

j

and the condition jjy

j

jj

1

= 1 stand for the assignment of task T

j

to exactly one

time in f1; : : : ; Ng.)

9

By Lemma 2.4 the assignment vectors bx

1

; : : : ; bx

n

with bx

j

2 [0; 1]

N

and

P

N

k=1

bx

jk

= 1 are a

fractional solution to the �-scaled system

Ay

(k)

� (1 + �)

�1

b

(k)

8k = 1; : : : ; N

jjy

j

jj

1

= 1 8j = 1; : : : ; n

y

j

2 f0; 1g

N

y

(k)

= (y

1k

; : : : ; y

nk

):

We invoke the rounding theorem (Theorem 2.1) with l

1

= s: the assumptions of the theorem

in the new notation read as

b

(k)

i

�

3(1 + �)

�

2

dlog (4Cl

1

))e 8i = 1; : : : ; l

1

and

b

(k)

l

1

+1

�

3(1 + �)

�

2

dlog (4C))e;

thus the conditions required by the rounding theorem are satis�ed. With the rounding theorem we

can �nd in deterministic polynomial time a solution to the inequality system (6).

2

With � = 1 we get our result of [SrSt94]

Corollary 2.6 If m � 6dlog(4C))e and b

i

� 6dlog(4C(s+ 1))e for all i, then a schedule of size at

most 2C can be found in deterministic polynomial time.

2

And with � =

1

C

we infer the - as it will be shown in the next section - optimal approximation.

Corollary 2.7 If m � 3C(C + 1)dlog(4C))e and b

i

� 3C(C + 1)dlog(4C(s + 1))e, for all i, then

a schedule of size at most C + 1 can be found in deterministic polynomial time.

2

Note that in case of 0{1 weights (i.e.R

i

(j) 2 f0; 1g) we have a strongly polynomial approximtion

algorithm, because then the strongly polynomial LP algorithm of Tardos [Ta86] can be used to

�nd the optimal fractional schedule. In any case the running time of the LP algorithm dominates

clearly the running time of derandomization.

Finally, suppose that the resource requirements R

i

(j) are integers with bounds b

i

, whereas in

the problems above we assumed 0 � R

i

(j) � 1. Scaling the resource bounds reduces the problem to

the 0{1 case with rational resource requirements and we may apply the results above. Scaling goes

as follows: compute for every resource R

i

the number R

max

(i) = max

T

j

2T

R

i

(j), set R

i

(j)

0

=

R

i

(j)

R

max

and b

0

i

=

b

i

R

max

. Identifying the processors with resource R

s+1

we have

Corollary 2.8 Consider the resource constrained scheduling problem with integer resource re-

quirments, i.e. R

i

(j) 2 IIN for all i = 1; : : : ; n and i = 1; : : : ; s + 1. For every � > 0, (1=�) 2 IIN

an integral schedule of size at most d(1 + �)C

opt

e can be found in polynomial time, provided that

b

0

i

�

3(1+�)

�

2

dlog (4C(s+ 1))e for i = 1; : : : ; s+ 1.

2

Proof: The proof is based on the observation that if a schedule for the scaled problem using b

0

i

and R

i

(j)

0

is feasible, then the rescaled schedule is feasible for the original problem. Now construct

an integer schedule for the scaled problem with Theorem 2.5.

2

Furthermore, the choice of � = 1 yields a 2-factor approximation for problems of the general form

P jres � � �; p

j

= 1; r

j

jC

max

, and setting � =

1

C

the optimum of an arbitrary resource constrained

scheduling problem can be approximated up to one time-unit, provided the b

i

's are as large as

required above. Note that for any constant R

max

this gives a tight approximation, since then b

i

still grows logarithmically in the input size.

10

Remark 2.9 For scheduling of unrelated parallel machines results of similar avour have been

achieved by Lenstra, Shmoys and Tardos [LST90] and Lin and Vitter [LiVi92]. Lenstra, Shmoys and

Tardos [LST90] gave a 2-factor approximation algorithm for the problem of scheduling independent

jobs with di�erent processing times on unrelated processors and also proved that there is no �-

approximation algorithm for � < 1:5 , unless P = NP . Lin and Vitter [LiVi92] considered the

generalized assignment problem and the problem of scheduling of unrelated parallel machines. For

the generalized assignment problem with resource constraint vector b they could show for every

� > 0 an 1+� approximation of the minimum assignment cost, which if feasible within the enlarged

packing constraint (2 +

1

�

)b.

3 Non-Approximability

In this section we do not distinguish between the processor and the other resource constraints, but

consider the processor requirement as an additional resource constraint.

Under the assumption b

i

=
(C

2

log(Cs)) we have constructed an integral schedule of size at

most C + 1. This is very close to the truth, because now C

opt

is either C or C + 1. We will show

for all �x C � 3 that even under the assumption b

i

=
(C

2

log(Cs)) it is NP -complete to decide

whether C

opt

= C + 1 or C

opt

= C. (For C = 2 we refer to [SrSt94])

In the remainder of this section we consider the \simpler" problem with zero start times. Then

C � n and the NP -completeness of scheduling problems with b

i

=
(log(ns)) implies the NP -

completeness of problems with b

i

=
(log(Cs)). The following results show the NP -completeness

of resource constrained scheduling under di�erent conditions. In Theorem 3.1 we consider b

i

= 1

and 0{1 resource requirements R

i

(j) 2 f0; 1g. Theorem 3.2 covers the case of b

i

=
(log(ns))

(and still R

i

(j) 2 f0; 1g). In Theorem 3.3 we include the case of some R

i

(j) being fractional, i.e

R

i

(j) 2 f0; 1;

1

2

g, and Theorem 3.4 covers the case b

i

=
(C

2

log(Cs)). In particular, this shows

that resource constrained scheduling is NP -complete, even if we ask for small schedules, i.e. \Is

C

opt

= 3 ?".

Theorem 3.1 Under the assumptions that there exist a fractional schedule of size C � 3 and an

integral schedule of size C + 1, and b

i

= 1 for all resource bounds, it is NP -complete to decide

whether or not there exists an integral schedule of size C.

2

Proof: We give a reduction to the chromatic index problem which is NP -complete [Hol81]. The

following is known about the chromatic index �

0

(G) of a graph G. Let �(G) be the maximal vertex

degree in G. Then by Vizing's theorem [Viz64] �(G) � �

0

(G) � �(G) + 1 and an edge coloring

with �(G) + 1 colors can be constructed in polynomial time. But it is NP -complete to decide

whether there exists a colouring that uses �(G) colours, even for cubic graphs, i.e. �(G) = 3

[Hol81]. Therefore the edge colouring problem is NP -complete for any �xed � � 3. This is an

important fact which will be used in the proofs of Theorem 3.3 and Theorem 3.4.

Now to the reduction. Let G = (V;E) be a graph with jV j = �, jEj = � and deg(v) � � for all

v 2 V . We construct a resource constrained scheduling problem asssociated to G as follows.

Introduce for every edge e 2 E exactly one task T

e

and consider � = jEj identical processors.

We will freely call the edges tasks and vice versa. For every node v 2 V de�ne a resource R

v

with

bound 1 and resource/task requirements

R

v

(e) =

�

1 if v 2 e

0 if v =2 e:

Claim 1: There exists a colouring that uses � colours if and only if there is a feasible integral

schedule of size �.

Suppose there is an integral schedule of size �: colour each edge with the \colour" equal to its

scheduling time. Now all edges incident to the same node have di�erent colours. If this is not true,

11

then there would be a node v 2 V covered by two edges e; e

0

2 E of the same colour, which means

that the tasks corresponding to the edges are scheduled at the same time z. So

x

e

0

z

= x

ez

= 1

and

R

v

(e

0

)x

e

0

z

+R

v

(e)x

ez

= 1 + 1 = 2;

contradicting our assumption of a feasible schedule.

Suppose there is an edge colouring �

0

: E 7! f1; : : : ;�g. Then schedule task T

e

at the time

�

0

(e). It is easily veri�ed that this is an feasible integral schedule.

Furthermore, there is a fractional schedule of size C = �: Simply set

x

ez

=

1

�

8 1 � z � �:

This schedule has size � and we have

�

X

z=1

x

ez

= 1 8 T

e

and

X

e

R

v

(e)x

ez

� 1 = b

v

8 z:

2

In Corollary 2.6 we assumed that b

i

� 6dlog(4C(s+ 1)e which we did not respect in the reduction

above. In the next two theorems we show how this assumption can be included.

Theorem 3.2 Under the assumption that there exist a fractional schedule of size C � 3 and

an integral schedule of size C + 1, b

i

=
(log(ns)) for all resource bounds, and C is �xed, it is

NP -complete to decide whether or not there exists an integral schedule of size C.

Proof: We follow the proof of Theorem 3.1. But instead of respresenting each edge of the graph

G = (V;E) by one task, we consider 2K� tasks where K = dlog�e and � = jEj. For each e 2 E

let us introduce 2K red tasks

T

r

1

(e); : : : ; T

r

2K

(e)

and 2K(�� 1) blue tasks.

T

b

1

(e); : : : ; T

b

2K(��1)

(e):

We get rid of the processor constraint considering �2K� identical processors, hence there are

enough processors to schedule every task at any time. For every node v 2 V we de�ne a resource

R

v

with bound 2K and introduce for every edge e 2 E a resource R

e

also having bound 2K. The

requirements are: every red task T

r

i

(e) needs one unit of resource R

v

, if e is incident with v. All

the other tasks including the blue tasks T

b

i

(e) do not need any unit of the resource R

v

. Every red

or blue task needs one unit of its corresponding edge resource R

e

. Hence a feasible schedule of size

� has to schedule all tasks corresponding to an edge in packings of size at most 2K. The crucial

observation is:

If we can ensure that all red tasks corresponding to the same edge are scheduled at the same

time, then we can de�ne a scheduling time for this edge and can conclude arguing as in the proof

of Theorem 3.1, where we showed that it is as hard to �nd a schedule of size � as to determine

the existence of an edge colouring with � colors.

Figure 3 shows such a feasible schedule. To ensure that all red tasks corresponding to the same

edge are scheduled at the same time we introduce a new resource type:

12

For every edge e, every red task T

r

i

(e) and every K-element subset S of blue tasks corresponding

to e, de�ne a resource R

T

r

i

(e);S

with bound K whose requirements are de�ned as follows. Each

task in S [fT

r

i

(e)g needs one unit of R

T

r

i

(e);S

and all the other tasks do not need any unit of the

resource R

T

r

i

(e);S

. Observe that the number of such resources is

2K�

�

2K(�� 1)

K

�

:

red
tasks

2K

tasks

z z+1 z+2

2K
blue
tasks

2K
blue

Figure 3: A part of a feasible schedule with tasks corresponding to one edge.

We are ready to show:

Claim 1: The edges of G can be colored with � colors, if and only if the above de�ned scheduling

problem has a schedule of length �.

Here is a proof.

Suppose that the edges of G can be colored with � colors. Let Z be the time set Z = f1; : : : ;�g.

For each e 2 E schedule all red tasks T

r

i

(e) at the time corresponding to the color of e, say z

e

2 Z

and schedule the blue tasks T

b

i

(e) in packets of 2K at the remaining times z 6= z

e

, z 2 Z. It is

easily veri�ed that this is a feasible schedule.

Suppose we are given a schedule of length �. Due to the bound K for the resources R

T

r

i

(e);S

it is not hard to show that in such a schedule all red tasks T

r

i

(e) corresponding to the same edge

e must be scheduled at the same time. This scheduling time de�nes a unique color for every edge

and the proof of Theorem 3.1 shows that this is a desired coloring.

We are done, if we can show b

i

=
(log(ns)). Let � = jV j and let us assume that � � �. In

total we introduced

s = � + �+ 2� log�

�

2(�� 1) log�

log�

�

< 2�+ 2� log�2

2� log �

< �

3

2

2�

< �

6�

resources and we have n = 2� log� tasks. It is straightforward to show the existence of a constant

� � 7 with ns � �

��

, hence

log(ns) � �� log� = ��K;

which together with the assumption that C, and consequently � is �x, imply

b

i

=
(K) =
(log(ns)):

13

It remains to show that there is a fractional schedule of size � and an integral schedule of size

� + 1. Since the chromatic index of G is � + 1, we can de�ne an integral schedule of this size as

in the proof of Claim 1. Furthermore, it is easily checked that the setting x

Tz

=

1

�

for all tasks T

and times z de�nes a fractional schedule of size �. 2

Finally, if we allow that some resource requirements are fractional numbers, we have:

Theorem 3.3 Under the assumptions that there exist a fractional schedule of size C � 3 and

an integral schedule of size C + 1, b

i

� 6dlog(4C(s + 1))e for all resource bounds, C is �xed and

R

i

(j) 2 f0;

1

2

; 1g, it is NP -complete to decide whether or not there exists an integral schedule of

size C.

2

Proof: Once again we reduce the problem the the chromatic index problem and argue as in the

proof of theorem 3.1. Let G = (V;E) be a graph. Put K = 100 log(�) and � = jEj. For every edge

e 2 E we consider 2K red and 2K(�� 1) blue tasks

T

r

1

(e); : : : ; T

r

2K

(e) and T

b

1

(e); : : : ; T

b

2(��1)K

(e):

Consider 2�K� identical processors. For every node v 2 V let R

v

be a resource with bound 2K.

Its resource requirement is

R

v

(j) =

8

<

:

1 if T

j

= T

r

j

(e)

and e contains v

0 else.

We follow the argumentation of Theorem 3.2 and de�ne one more resource type to enforce that

all red task corresponding to the same edge are scheduled at the same time. Furthermore, we have

to introduce some resource requirements of value

1

2

.

First we forbid that more than 2K tasks corresponding to the same edge e can be scheduled at

the same time: Let R

e

be a resource with bound 2K and resource requirement

R

e

(j) =

�

1 if T

j

= T

r

i

(e) or T

j

= T

b

i

(e)

0 else.

Let T denote the set of all tasks, T

r

the blue tasks, T

b

the blue task, T

r

(e) the red tasks corre-

sponding to an edge e, and T

b

(e) the red tasks corresponding to an edge e.

The resource with fractional requirements is:

For every red task T

r

i

(e), choose exactly one other red task g(T

r

i

(e)) corresponding to e as

follows.

g(T

r

i

(e)) = T

r

i+1

(e) for i < 2K

and

g(T

r

2K

(e)) = T

r

1

(e):

Let us call g(T

r

i

(e)) the buddy of T

r

i

(e). For every red task T

r

i

(e) let R

i;e

be a resource of bound

K. The requirements are

R

i;e

(j) =

8

>

>

>

>

<

>

>

>

>

:

1 if T

r

i

(e) = T

r

j

(e)

1

2

if T

j

is a red task,

corresponding to the edge e;

but is not the buddy of T

r

i

(e)

0 else

Claim: G has an edge coloring with � colors, if and only if the above de�ned scheduling problem

has a schedule of length �.

14

Suppose that the edges of G can be colored with � colors. Let Z be the time set Z = f1; : : : ;�g.

For each e 2 E schedule all red tasks T

r

i

(e) at the time corresponding to the color of e, say z

e

2 Z

and schedule the blue tasks T

b

i

(e) in packets of 2K at the remaining times z 6= z

e

, z 2 Z. (See

�gure 4)

2K blue tasks
z
2K red tasks

z+1

Figure 4: A way to schedule the red and blue tasks

The resource requirments are satis�ed: set x

jz

= 1, if the task T

j

, T

j

2 T is scheduled at time

z, and 0 else. For the resources of type R

e

we have

X

T

j

2T

R

e

(j)x

jz

= 2K:

Now �x an arbitrary e 2 E. For every resource R

i;e

corresponding to a red task T

r

j

0

(e) we have for

the scheduling time z

e

X

T

j

2T

R

i;e

(j)x

jz

e

=

X

T

j

2T

r

(e)�fg(T

r

j

0

(e))g

R

i;e

(j)x

jz

e

= 1 +

1

2

(2K � 2) = K:

and for all other z 6= z

e

, z 2 Z

X

T

j

2T

R

i;e

(j)x

jz

=

X

T

j

2T

b

(e)

R

i;e

(j)x

jz

=

1

2

(2K) = K:

This proves the �rst part of the claim.

Suppose that we have a feasible schedule of length �. We show that it is impossible to schedule

the red tasks corresponding to the same edge at di�erent times. Then we can again argue as in the

proof of Theorem 3.1 taking the scheduling time of the red tasks corresponding to an edge as its

color and are done.

Assume for a moment that there is an edge e

0

2 E and a time z

0

in a schedule of size � at

which only I < K red tasks corresponding to e

0

. Then there must be exactly 2K � I blue tasks

being scheduled at time z

0

in order not to violate the constraint of resource R

e

at any time. Since

there are strictly less than K red tasks in T

r

(e) scheduled at time z

0

, there is a task T

r

i

0

(e), whose

buddy is not scheduled at time z

0

. In fact there are at least two such tasks! Then we have for

resource R

i

0

;e

0

at time z

0

:

X

T

j

2Te

R

i

0

;e

0

(j)x

jz

0

=

X

T

j

2T

r

(e)[T

b

(e)

R

i

0

;e

0

(j)x

jz

0

15

= 1 +

1

2

((2K � I) + (I � 1))

= K +

1

2

> K;

and the schedule requires more than K units of resource R

i

0

;e

0

in contradiction to the feasibility

assumption. Hence the red tasks corresponding to the edge must be scheduled at the same time.

We must show b

i

� 6dlog(4C(s+ 1))e for all resource bounds. We introduced n = 2K�� tasks

and s = �+�+K� resources. Using K = 48 log(�) the estimate s+1 � �

6

holds and with C = �

we continue

6dlog(4C(s+ 1))e � 6 log(4��

6

)

� 6 log(�

8

)

= K = b

i

:

Finally, one may check as in the proof of Theorem 3.2 that there is a fractional schedule of size

� and an integral schedule of size � + 1.

2

With K = �

c

for a constant c satisfying �

c

> 3�(�+1)dlog(4�(s+1))e the proof of Theorem

3.3 implies

Theorem 3.4 Under the assumptions that there is a fractional schedule of size C � 3 and an

integral schedule of size C + 1, b

i

� 3C(C + 1)dlog(4C(s + 1))e for all resource bounds, C is �xed

and R

i

(j) 2 f0;

1

2

; 1g, it is NP -complete to decide whether or not there exists an integral schedule

of size C.

2

4 Multidimensional Bin Packing

Consider the general multidimensional bin packing problem BIN (l; d) as de�ned in the introduc-

tion. Since BIN (l; d) is nothing else than the resource constrained scheduling problem with d

resources, resource bounds b

i

= l for all i and zero start times, all the approximation and non-

approximability results proved for scheduling are valid for BIN (l; d), too. To get a feeling for good

approximations we briey recall the known asymptotic approximation results. Let L

opt

be the op-

timal bin number. The First-Fit heuristic gives a 2-factor approximation for BIN (1; 1), and using

this result one can construct a solution for BIN (1; d) within 2dL

opt

in polynomial time [VeLu81].

A similar argumentation shows a (1+

1

l

)d factor approximation for BIN (l; d). Thus, good approx-

imations must beat these factors. The results of Garey, Graham, Johnson and Yao [GaJo79] for

resource constrained scheduling (which we have already discussed in the introduction) applied to

bin packing show the existence of an integer N

0

such that

L

FFD

� (d+

1

3

)L

opt

for all instances with L

opt

� N

0

. By de la Vega and Luecker [VeLu81] for all 0 < � < 1 there is a

linear time algorithm A

�

and an integer N

�

� 1 such that

L

A

�

� (d+ �)L

opt

for all instances with L

opt

� N

�

. Our results imply for BIN (l; d) an approximation within a factor

independent of d and l: Let L

R

be the minimum number of bins, if fractional packing is allowed,

i.e.

L

R

= d max

1�i�d

1

l

n

X

j=1

v

ij

e:

Theorem 2.5 implies

16

Theorem 4.1 Let � > 0 with (1=�) 2 IIN. If l �

3(1+�)

�

2

dlog (4nd))e, then we can �nd in

O(dn

3

log(nd)) time a bin packing with L bins such that L � d(1 + �)L

opt

e.

2

Proof: Since we get the optimal fractional solution for free, we can apply Theorem 2.5 without

using LP-algorithms. So, only the time for derandomization counts.

2

For � = 1 Theorem 4.1 implies

Corollary 4.2 If l � 6dlog(4nd)e, then we can �nd in O(dn

3

log(nd)) time a bin packing with L

bins such that L � 2L

opt

.

2

and for � = L

�2

R

we get

Corollary 4.3 If l � 3L

R

(L

R

+ 1)dlog (4nd))e, then we can �nd in O(dn

3

lognd) time a bin

packing with L bins such that L � L

opt

+ 1.

2

Since we allow really large bin sizes, one might wonder if the class of problems is interesting enough.

The following negative result, which is follows from the proof of Theorem 3.4, gives the answer.

Theorem 4.4 Even if l =
(L

2

R

log(nd)), then it is NP -complete to decide whether L

opt

= L

R

or

L

opt

= L

R

+ 1.

2

5 Parallel Scheduling and Bin Packing

There is no obvious way to achieve the approximation guarantee of Theorem 2.5 in NC. In this

section we will show that at least in some special cases there is a NC approximation algorithm.

The algorithm is based on the method of log

c

n-wise independence. The important steps are:

1. Fractional Scheduling in Parallel. We wish to apply randomized rounding using log

c

(n)-

wise independence and therefore �rst have to generate an appropriate probability distribution in

NC. Sequentially this is easy: solve the linear programming relaxation of the integer programming

formulation of our scheduling problem and the fractional assignments of tasks to times will de�ne

the right distribution. Unfortunately, linear programming is P -complete ! But fortunately, due to

the fact that the start times are zero, we have (as for the bin packing problem) a formula for the

optimal fractional schedule.

2. Schedule Enlargement. Having found the fractional optimal schedule of length say C, we

enlarge the makespan to 2C and de�ne fractional assignments as in Lemma 2.4.

3. Rounding in NC is performed with the parallel conditional probability method for multivalued

random variables (Theorem 6.2).

First we generate a fractional, optimal schedule in NC. Let x

jz

be a 0{1 variable which is 1 if

T

j

is scheduled at time t, and is 0 else (z 2 f1; : : : ; ng).

4

Lemma 5.1 De�ne

C

0

= max

1�i�s+1

8

<

:

1

b

i

n

X

j=1

R

i

(j)

9

=

;

4

Note that it su�ce to deal with the time intervall [1; : : : ; n], since any one-to-one assignment of the n tasks to

the n times is feasible.

17

and C = dC

0

e. Then C is the length of an optimal fractional schedule and the corresponding

task-time assignments ex

jt

are

ex

jt

=

�

1

C

8 T

j

2 T ; 1 � t � C

0 else:

2

Proof: Straightforward.

2

Proposition 5.2 There is a NC-algorithm computing an optimal fractional schedule on O(n+ s)

EREW � PRAM -processors in O(log s log log s + logn) time.

2

Proof: Using O(n) EREW � PRAM -processors for each resource R

i

we can compute

1

b

i

P

n

j=1

R

i

(j) in O(logn) time. With standard sorting algorithms ([JaJa92], Remark 4.4 and Corol-

lary 4.2) we can �nd

C

0

= max

1�i�s+1

8

<

:

1

b

i

n

X

j=1

R

i

(j)

9

=

;

in O(log s log log s) time on O(s) EREW � PRAM -processors.

2

The next step is the enlargement of the fractional makespan to f1; : : : ; 2Cg as in Lemma 2.4. The

fractional assignments are de�ned as follows. For every time z

0

2 f1; : : : ; Cg introduce a second

time z

00

= C + z

0

and set:

ex

jz

=

1

2C

for 1 � j � n, 1 � z � 2C:

Clearly this new fractional schedule has size 2C and by Lemma 2.4 we have for every z 2

f1; : : : ; 2Cg and every resource R

i

2 R

n

X

j=1

R

i

(j)ex

jz

�

b

i

2

: (7)

The main result of this section is

Theorem 5.3 Let � �

1

logn

and suppose that b

i

� 2n

1

2

+�

p

log 2n(s + 1) for all i. Then there is a

NC-algorithms that runs on O(n

2

(ns)

1+

1

�

) parallel processors and �nds in O(logn log

3

(ns)) time

a schedule of size at most 2C

opt

.

2

Proof: For the moment let k be an arbitrary integer. We will �x k in the proof. In order to

apply Theorem 6.2 (the NC version of the conditional probability method for multivalued random

variables), put M := s+1, c

ij

:= R

i

(j) and d = 2C. Then N = dMn

k

. De�ne k-wise independent,

uniformly distributed random variables X

1

; : : : ; X

n

with values in f1; : : : ; dg as in Theorem 6.2

and with the notation there

5

we de�ne for a resource R

i

and a time z 2 f1; : : : ; dg the function

f

iz

by

f

iz

(X

1

; : : : ; X

n

) :=

n

X

j=1

R

i

(j)(X

jz

�

1

d

)

5

In Theorem 6.2 the X

j

's take on values in the set f0; : : : ; d� 1g But this is only a convention.

18

and

F (X

1

; : : : ; X

n

) :=

X

iz

f

iz

(X

1

; : : : ; X

n

):

By Theorem 6.2 we can construct x

1

; : : : ; x

n

, where x

j

2 f1; : : : ; dg for all j such that

F (x

1

; : : : ; x

n

) � IE(F (X

1

; : : : ; X

n

)) (8)

holds, using

O(N) = O(dMn

k

) = O(n

2

(ns)

1+

1

�

)

parallel processors in

O(k logn logN) = O(logn log

3

(ns))

time. To complete the proof we must show that the assignment of task T

j

to time x

j

for all j

indeed is a feasible schedule. By de�nition of the function F we have for all R

i

and z 2 f1; : : : ; dg

n

X

j=1

R

i

(j)(x

jz

�

1

d

) � (F (x

1

; : : : ; x

n

))

1

k

� (IE(F (X

1

; : : : ; X

n

))

1

k

: (9)

Utilizing the fact that the random variables X

jz

are binomially distributed and putting k =

d2

log 2n(s+1)

� logn

e the proof of Corollary 2.6 in [BeRo91] shows

(IE(F (X

1

; : : : ; X

n

))

1

k

� n

1

2

+�

p

log 2n(s+ 1): (10)

(9), (10) and (7) imply for all R

i

and z 2 f1; : : : ; dg

n

X

j=1

R

i

(j)x

jz

=

n

X

j=1

R

i

(j)(x

jz

�

1

d

) +

n

X

j=1

R

i

(j)

1

d

� n

1

2

+�

p

log 2n(s + 1) +

b

i

2

� b

i

;

and the theorem is proved.

2

For multidimensional bin packing we get

Corollary 5.4 Let � �

1

logn

and suppose that l � 2n

1

2

+�

p

log(2nd). Then there is a NC-

algorithms for the problem BIN (l; d) that runs on O(n

2

(nd)

1+

1

�

) parallel processors and �nds

in O(logn log

3

(nd)) time a packing with L bins such that L � 2L

opt

.

2

Remark 5.5 The reason why we have to assume b

i

=
(n

1

2

+�

p

logns) is due to the estimation of

the k-th moments. Improvements of this method with the goal to show a 2-factor (or even better)

NC-algorithm under the weaker assumption b

i

=
(logns) would be interesting. This would match

the presently best sequential approximation guarantees.

Conclusion

� We proved that there are polynomial-time algorithms approximating the optimum of a resource

constrained scheduling problem, where the makespan is to be minimized. On the other hand we

showed that it is NP -complete to guarantee better approximations. We showed that the problem

of �nding the chromatic index of a graph is a special case of a resource constrained scheduling

problem.

19

� We hope that our rounding technique can be applied to other problems of similar avour.

Acknowledgement

The �rst author thanks Professor L�aszl�o Lov�asz for helpful discussions during a research stay at

Yale University in Spring 1994, where a part of this paper has been written. We would also like to

thank Andreas Kr�amer for helpful discussions.

References

[ABI86] N.Alon, L Babai, A. Itai; A fast and simple randomized algorithm for the maximal inde-

pendent set problem. J. Algo., 7 (1987), 567 - 583.

[ASE92] N. Alon, J. Spencer, P. Erd}os; The probabilistic method. John Wiley & Sons, Inc. 1992.

[AnVa79] D. Angluin, L.G. Valiant: Fast probabilistic algorithms for Hamiltonion circuits and

matchings. J. Comp. Sys. Sci., Vol. 18, (1979), 155{193.

[BESW93] J. B lazewicz, K. Ecker, G. Schmidt, J. W�eglarz; Scheduling in computer and maufac-

turing systems. Springer-Verlag, Berlin (1993).

[BeRo91] B. Berger, J. Rompel; Simulating (log

c

n)-wise independence in NC. JACM, 38 (4),

(1991), 1026 { 1046.

[Li82] J. H. van Lint; Introduction to Coding Theory. Springer Verlag New York, Heidelberg, Berlin

(1982).

[VeLu81] W. F. de la Vega, C. S. Luecker; Bin packing can be solved in within 1� � in linear time.

Combinatorica, 1 (1981), 349 - 355.

[GaJo79] M. R. Garey, D. S. Johnson; Computers and Intractability. W. H. Freeman and Company,

New York (1979).

[GGJY76] M. R. Garey, R. L. Graham, D. S. Johnson, A.C.-C. Yao; Resource constrained schedul-

ing as generalized bin packing. JCT Ser. A, 21 (1976), 257 - 298.

[GLS88] M. Gr�otschel, L. Lov�asz, A. Schrijver; Geometric algorithms and combinatorial optimiza-

tion. Springer-Verlag (1988).

[Hol81] I. Holyer; The NP -cpmpleteness of edge coloring. SIAM J.Comp., 10 (4), (1981), 718 -

720.

[JaJa92] J. JaJa; An Introduction to Parallel Algorithms. Addison-Wesley Publishing Company,

Reading, Massachusetts, 1992.

[Kr75] K. L. Krause, V. Y. Shen, H .D. Schwetmann; Analysis of several job-scheduling algo-

rithms for a model of multiprogramming computer systems. JACM 22 (1975) 522{550. Erra-

tum: JACM 24, (1977), p. 527.

[LST90] J. K. Lenstra, D. B. Shmoys, E. Tardos; Approximating algorithms for scheduling unre-

lated parallel machines. Math. Programming, 46, (1990), 259 { 271.

[LiVi92] J.-H. Lin, J. S. Vitter; �-approximations with minimum packing constraint violation. Pro-

ceedings 24th Annual ACM Symposium on the Theory of Computation (1992), Victoria, B.C.,

Canada, 771 - 782.

[McSo77] F.J. MacWilliams, N.J.A. Sloane; The theory of error correcting codes. North Holland,

Amsterdam, (1977).

20

[McD89] C. McDiarmid; On the method of bounded di�erences. Surveys in Combinatorics, 1989.

J. Siemons, Ed.: London Math. Soc. Lectures Notes, Series 141, Cambridge University Press,

Cambridge, England 1989.

[MNN89] R. Motwani, J. Naor, M. Naor; The probabilistic method yields deterministic parallel al-

gorithms. Proceedings 30the IEEE Conference on Foandation of Computer Science (FOCS'89),

(1989), 8 { 13.

[RS83] H. R�ock, G. Schmidt; Machine aggregation heuristics in shop scheduling. Math. Oper. Res.

45(1983) 303{314.

[Sp87] J. Spencer; Ten lectures on the probabilistic method. SIAM, Philadelphia (1987).

[SrSt94] A. Srivastav, P. Stangier; Algorithmic Cherno�-Hoe�ding inequalties in integer program-

ming. to appear in Random Structures & Algorithms, January 1996.

(preliminary version in: Du, Zhang (eds.), Proccedings of the 5th Annual Inernational Sympo-

sium on Algorithms and Computation (ISAAC'94), pages 264 - 234, Lecture Notes in Com-

puter Science, Vol 834, Springer Verlag.)

[Ta86] E. Tardos; A strongly polynomial algorithm to solve combinatorial linear programs. Oper.

Res. 34 (1986), 250 - 256.

[Viz64] V. G. Vizing; On an estimate of the chromatic class of a p-graph. (Russian), Diskret.

Analiz. 3 (1964), 25 - 30.

6 Appendix: Multivalued Random Variables and log

c

n-wise

Independence

In this section we extend the well-known derandomization technique of log

c

n-wise due to Berger,

Rompel [BeRo91] and Motwani, Naor, Naor [MNN89] from the case of uniformly distributed 0� 1

to uniformly distributed multivalued random variables.

Let n = 2

n

0

� 1 for some n

0

2 IIN. A representation of GF (2

n

0

) as a n

0

-dimensional algebra over

GF (2) can be explicitly constructed using irreducible polynomials, for example the polynomials

given in [Li82], Theorem 1.1.28. Let b

1

; : : : ; b

n

be the n non-zero elements of GF (2

n

0

) in such an

irreducible representation and let A = (a

ij

) the following n� d

k�1

2

e matrix over GF (2

n

0

)

A =

2

6

6

6

6

6

4

1 b

1

b

3

1

� � � b

k�1

1

1 b

2

b

3

2

b

k�1

2

1 b

3

b

3

3

b

k�1

3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 b

n

b

3

n

b

k�1

n

3

7

7

7

7

7

5

:

A can be viewed as a n � ` matrix over GF (2) with ` = 1 + d

k�1

2

edlog(n + 1)e = O(k logn). The

matrix A is well-known in coding theory. It is the parity check matrix of binary BCH codes and

every set of k row vectors of A is linear independent over GF (2) [McSo77]. Alon, Itai and Babai

[ABI86] showed that k-wise independent 0�1 random variables can be constructed from mutually

independent 0 � 1 random variables using a BCH-matrix. The extension to multivalued random

variables goes as follows.

Let Y

1

; : : : ; Y

l

be independent and uniformly distributed random variables with values in
 =

f0; : : : ; d � 1g, d 2 IIN. Let Y be the vector Y = (Y

1

; : : : ; Y

l

). De�ne
-valued random variables

X

1

; : : : ; X

n

by X

i

= (BY)

i

mod d for all i = 1; : : : ; n. With X = (X

1

; : : : ; X

l

) we briey write

X = BY mod d.

21

Theorem 6.1 The random variables X

1

; : : : ; X

n

are k-wise independent and uniformly dis-

tributed.

2

Proof: We modify the proof of Theorem [BeRo91]. Choose J � f1; : : : ; ng with jJ j = k. Let

x 2

k

be an arbitrarily choosen but �xed vector. Set X

J

= (X

j

)

j2J

. We must show

IP[X

J

= x] = d

�k

: (11)

Let A

J

be the submatrix of A with row indices from J and set B

J

= (A

>

)

J

. B

J

is a l � k

matrix over GF (2). As in the proof of Theorem 6.1 we extend B

J

to an invertible l � l matrix C

over GF (2). De�ne

x

= fx

0

2

l

;x

0

i

= x

i

for i = 1; : : : ; kg: (12)

then j

x

j = d

l�k

, and we have

IP[X

J

= x] = IP[BY mod d = x]

= IP[CY mod d 2

x

]

=

X

x

0

2

x

IP[CY � x

0

= 0 mod d]

=

X

x

0

2

x

IP[Y = C

�1

x

0

mod d]

=

X

x

0

2

x

d

�l

(the Y

i

's are independent !)

=

j

x

j

d

l

=

d

l�k

d

l

= d

�k

:

2

For the following class of functions F , arising in the analysis of resource constrained scheduling,

a NC algorithm �nding points below or above the expectation IE(F (X

1

; : : : ; X

n

)) can be derived.

We keep the notation, i.e. let k; d be as above.

Let ~v

1

; : : : ; ~v

n

be vectors in f0; 1g

d

and let v

jz

denote the z-th component of ~v

j

. For x

j

2
 =

f0; : : : ; d � 1g let ~x

j

be the vector that has a 1 in its x

j

-th coordinate and 0 elsewhere. Let (c

ij

)

be M � n matrix with rational 0 � c

ij

� 1. For i = 1; : : : ;M and z 2
 de�ne the functions

g

iz

(x

1

; : : : ; x

n

) =

n

X

j=1

c

ij

(x

jz

�

1

d

); (13)

and

F (x

1

; : : : ; x

n

) =

X

iz

g

iz

(x

1

; : : : ; x

n

): (14)

Theorem 6.2 Let d; k;M; n 2 IIN and N = dMn

k

. Let X

1

; : : : ; X

n

be k-wise independent random

variables with values in
 = f0; : : : ; d�1g de�ned as in Theorem 6.1 and let F as in (14). Then with

O(N) parallel processors we can construct x

1

; : : : ; x

n

2
 and y

1

: : : ; y

n

2
 in O(k logn logN)-

time such that

(i) F (x

1

; : : : ; x

n

) � IE(F (X

1

; : : : ; X

n

))

(ii) F (y

1

; : : : ; y

n

) � IE(F (X

1

; : : : ; X

n

)):

2

22

Proof: It su�ces to prove (i). Let I be the set of all k tupels (�

1

; : : : ; �

k

) with �

j

2 f1; : : : ; ng.

Set

g

(iz)

j

(x

1

; : : : ; x

n

) = c

ij

(x

jz

�

1

d

)

and de�ne for a k-tupel � 2 I;

g

(iz)

�

(x

1

; : : : ; x

n

) =

k

Y

j=1

c

i�

j

(x

�

j

;z

�

1

d

):

Then

F (x

1

; : : : ; x

n

) =

X

iz

X

�2I

g

(iz)

�

(x

1

; : : : ; x

n

):

The random variables X

1

; : : : ; X

n

by de�nition have the form

X

i

= (BY)

i

mod d;

where the Y

i

's are uniformly distributed
 valued random variables, B = A

T

and A is the n � `

parity check matrix of BCH codes de�ned in Theorem 6.1. Therefore we may restrict us to the

assignments of the Y

i

's. The conditional probability method then goes as follows:

Suppose that for some 1 � t � ` we have computed the values

Y

1

= y

1

; : : : ; Y

t�1

= y

t�1

;

then choose for Y

t

the value y

t

2
 that maximizes the function

w! IE(F (X

1

; : : : ; X

n

) j y

1

; : : : ; y

t�1

; Y

t

= w): (15)

After ` steps we have Y = y for some y 2
 and the vector x = (x

1

; : : : ; x

n

) with x

j

= (By)

j

mod d

is the desired solution. Let

~

Y

t

= (Y

1

; : : : ; Y

t

) and ~y

t

= (y

1

; : : : ; y

t

). We are done, if we can compute

the conditional expectations

IE(F (X

1

; : : : ; X

n

) j

~

Y

t

= ~y

t

)

within the claimed time. By linearity of expectation, it is su�cient to compute for each tripel

(i; z; �), 1 � i � m, z 2
, � 2 I the conditional expectations

IE(g

(iz)

�

(X

1

; : : : ; X

n

) j

~

Y

t

= ~y

t

): (16)

Because the X

j

's are k-wise independent, the problem reduces to the computation of terms fo the

form

IE(g

(iz)

j

(X

1

; : : : ; X

n

) j

~

Y

t

= ~y

t

)

for j 2 f1; : : : ; ng. Now

IE(g

(iz)

j

(X

1

; : : : ; X

n

) j

~

Y

t

= ~y

t

)) = (1�

1

d

)IP[X

j

= z j

~

Y

t

= ~y

t

)]�

1

d

IP[X

j

6= z j

~

Y

t

= ~y

t

)]:

It is straightforward to verify that IP[X

j

= z j

~

Y

t

= ~y

t

)] can be computed in constant time, because

the only possible values it attains are 0, 1 or

1

d

. The same holds for IP[X

j

6= z j

~

Y

t

= ~y

t

)]. In other

words, for �xed t; i; z; � and given y

1

; : : : ; y

t�1

we can compute

IE(g

(iz)

�

(X

1

; : : : ; X

n

) j

~

Y

t

= ~y

t

)

in O(k) time. Thus, for every possible value y

t

2
 we can compute

IE(F (X

1

; : : : ; X

n

) j

~

Y

t

= ~y

t

)

23

in O(logN) time using O(N) parallel processors. That value of y

t

which maximizes (15) can be

computed �nding the maximum of the d conditional expectations with standard sorting algorithms

(see [JaJa92], Remark 4.4 and Corollary 4.5) in O(log d log logd) time. The total running time over

all ` steps then is

O(`(logN + log d log logd)) = O(k logn logN)

and the theorem is proved.

2

24

