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Abstract

An algorithm, called PLB is introduced, which redistributes workload

in a processor network N in order to supply every processor of N with

(about) the same amount of workload. PLB is de�ned in its basic form for

trees, but can be extended to other topologies. The redistribution is done

locally on the basis of information of over- or underload in subnetworks

of N . We show, that PLB performs O(�) steps, only, where � denotes

the diameter of N , and in the average case at most four times as many

workload has to be migrated in complete binary trees compared to clique

networks, the best possible networks. We describe an implementation of

PLB and present experimental results when solving the Boolean satis�a-

bility problem, demonstrating that PLB performs very well in practice.

1 Introduction

In this paper we introduce a simple load balancing algorithm, which is de�ned

in its basic formulation for processor trees. It can easily be extended to proces-

sor networks built up as the cross product of trees, see [18, 400pp]. This class

contains d-dimensional grids or hypercubes, e.g. Suppose T = (V;E) to be a

processor tree with n processors as nodes. The edges u �� v of E represent the

links of the network. When solving an instance I of some problem on the distri-

buted network T , the load distribution among the processors of T at time t of

the computation is expressed by a function �

t

: V ! IR

�0

, where �

t

(v) denotes

the amount of workload associated with processor v at time t. In order to hold

up the processors busy all the time, it is convenient to redistribute the workload

among the processors, such that �

t

(u) = �

t

(v) holds, for all u; v 2 V , which is

called a uniform load distribution. Achieving a uniform load distribution may

be NP-hard, if workload is not divisible. In case however, that workload can be

divided arbitrarily, the problem of achieving a uniform load distribution always

has a solution, which can be determined e�ciently. For our analytical conside-

rations throughout this paper we meet the assumption that workload is divisible

arbitrarily. In real applications when solving hard combinatorial optimization

problems on the basis of solution technics like Backtracking, Branch and Bound

or others, e.g., this assumption is violated. But then we typically are able to di-

vide e�ciently pieces of load, i.e. single subproblems are split into several smaller

1



subproblems, such that we can \approximate su�ciently close" a uniform load

distribution in practice, e.g. see [1]. Furthermore in case of NP-hard problems

the major di�culty of determining �

t

(v) precisely has to be dealt with, because

determinig �

t

(v) may be as hard as solving the original problem. Therefore we

use heuristic estimations of �

t

(v). For this reason it is necessary to rebalance

the workload among the processors of T not only once at the beginning of the

computation, but dynamically at run time when single processors have become

idle or run the risk of becoming idle very soon.

In section 3 we introduce our load balancing algorithm, called Precomputation

based Load Balancing (PLB). PLB redistributes the workload among the proces-

sors of the tree T in two phases. In the �rst phase each processor v determines

the total amount of workload in the subtree T

v

of T with root v and the total

amount of load T

v

has to send to or to receive from the remaining network in

order to achieve a uniform load distribution for T . This information is associated

as a real number �(v; father(v)) with the link between v and the father of v in

the network. �(v; father(v)) > 0 denotes the amount of load sent from T

v

to the

remaining network in case that T

v

contains more load than necessary under a

uniform load distribution. �(v; father(v)) < 0 denotes the corresponding amount

of work T

v

has to receive from the remaining network in order to achieve a uni-

form load distribution. Phase 1 can be computed in O(�) units of time, where

� denotes the diameter of T . Note that no load is moved in this phase. In

the second phase load will be distributed locally on the basis of the information

from the �rst phase. The phase is performed in several rounds. As long as a

uniform load distribution has not yet appeared, each processor which has to send

workload to neighboured processors sends as much of his load as possible via the

connecting links, but not more than the current �-values for these links indicate.

Update the �-values.

The number of rounds performed in the second phase varies between 0 and

� in the worst case, see Theorem 1. In experiments with PLB we observed

that this number of rounds is less than � most of the time. Now the question

arises for the expected number of rounds performed in the second step. This

number is important especially in applications where large packages of workload

have to be migrated. For the special case of a linear processor array this number

can be shown to grow like

p

� instead of � in the worst case, see [1]. The

underlying model assigns wokload �

t

(v) to processor v by a random variable

X

v

with expectation � and standard deviation �. The X

v

are considered to be

independent and identically distributed for every processor v.

On the basis of this model we study in section 4 the problem of determining

the expected amount of workload sent over all links of the network summed up

for all rounds of phase 2 of PLB. In case of a linear processor array the expected

migrated load is of order �(n

p

n�), see section 4.2, while in case of a complete

binary tree the expected migrated load is of order �(n�), only. This amount

should be compared with �(n�), the expected amount of load that has to be
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migrated in a clique network, which yields a lower bound for every network,

because no routing is necessary in clique networks. More precisely, the expected

amount of workload that has to be migrated by PLB in a complete binary tree is

at most 4 times as high as in every other network, if X

v

is distributed normally

with parameters � and �, or uniformly distributed in [a; b], see section 4.3. In the

worst case the amount of load that has to be migrated in the complete binary tree,

amounts to �(n log n�

mid

), where �

mid

denotes the sum over the absolute values

of the di�erence between �

t

(v) and the workload of processor v after uniform load

distribution has been achieved for T . It can be shown that the expectation of

�

mid

under the above mentioned distributions is of order �(�). I.e., the expected

amount of workload that has to be migrated in a complete binary processor tree

is by a factor of �(

1

logn

) less than in the worst case. On the other hand it is at

most 4 times as high as in the clique network, which shows that complete binary

trees are optimal networks up to a constant factor.

We want to mention that in case where the workload estimation �

t

(v) and

the encodings of the workload at v are linearly related, then the above conside-

rations yield the total communication cost caused by PLB. Often however, this

relationship does not hold.

In section 5 we describe our implementation of PLB and in section 6 we report

experimental results with PLB when solving the boolean satis�ability problem

on a distributed network. Our experiments demonstrate, that PLB performs the

redistribution of workload very e�ciently. Mean idle times of a few seconds per

processor have been observed in experiments, only, even for networks of 1024

nodes.

2 Related Work

Dynamic load balancing has been considered in di�erent contexts, e.g. scheduling

and migration of tasks in operating systems, see [5, 19, 26, 31], distributed solving

of combinatorial optimization problems, see [2, 3, 22, 23, 27, 28, 34], distributed

solving of problems in the area of scienti�c computing, see [16, 25, 33, 35], and

others. Several classi�cation schemes were proposed, see [5, 24], e.g. local vs. glo-

bal decision and local vs. global migration, centralized vs. distibuted algorithms.

Theoretical properties of load balancing algorithms were studied, e.g. scalabi-

lity and isoe�ciency, see [10, 17]. Di�erent di�usion and dimension exchange

methods were analyzed, see [8, 12, 14, 15, 21, 36, 37].

3 The PLB Algorithm

In this paper we consider network connected asynchronous message passing MIMD

systems. The network is represented by an undirected graph G = (V;E). Each
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node v 2 V is identi�ed with a processor. Two processors u, v are connected by

a bidirectional communication link if and only if u�� v 2 E.

When solving a problem in parallel, at time t every processor v holds a set of

subproblems representing a certain amount of workload �

t

(v) � 0. �

t

(v) denotes

the running time required by processor v in order to complete the computation

of the subproblems held by v. The function �

t

: V ! IR

�0

is called a load

distribution. �

t

:=

1

jV j

P

v2V

�

t

(v) is called the mean load. If time t is �xed, we

write �(v) and � as a shorthand of �

t

(v) and �

t

respectively. When solving NP-

hard combinatorial optimization problems in parallel the load distribution often

changes in an unpredictable way. The load has to be rebalanced dynamically to

avoid idle times of processors (load balancing). We assume that each processor

is able to partition its load into arbitrary small pieces. A piece can be sent over

a link to a neighboured processor. Let

~

G = (V;

~

E) with

~

E := fu ! v; u  v j

u�� v 2 Eg be the total orientation of G. We call a function � :

~

E ! IR with

a) �(u! v) = ��(u v) for all u�� v 2 E

and b) �(v) +

X

u!v2

~

E

�(u! v) = � for all v 2 V

a load balancing scheme. Load balancing is performed by moving �(u! v) units

of load from processor u to processor v for each u�� v 2 E with �(u! v) > 0.

The Precomputation based Load Balancing (PLB) algorithm, see [1, 30], per-

forms load balancing in processor trees as follows. Let T = (V;E) be a processor

tree with n processors of height h and root r 2 V . We assume that the degree of

each node v 2 V is bounded by a constant. PLB works in two phases:

3.1 Precomputation Phase

In the Precomputation Phase the following steps are performed:

1. Each processor v 2 V calculates subtreesum(v) :=

P

u2V (T

v

)

�(u), where T

v

denotes the subtree of T rooted at v. This can be done in h parallel steps

by using the recurrence

subtreesum(v) = �(v) +

X

u2sons(v)

subtreesum(u):

2. The root r of T calculates themean load � :=

subtreesum(r)

n

which is broadcast

to all processors. The broadcast operation can be executed in h parallel

steps.

3. Each processor v 2 V n frg calculates

�(v! father(v)) := subtreesum(v) � jV (T

v

)j � � and

�(v father(v)) := ��(v! father(v)):
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Note that in the Precomputation Phase no load migration takes place. Only

two messages are sent along each link. Since T is a tree the total work of the

Precomputation Phase is work(n) = O(n) and the parallel time is time(n) =

O(�), where � denotes the diameter of T .

3.2 Balancing Phase

In the Balancing Phase the actual load migration according to � is performed in

several rounds. In each round each processor u sends as much load as possible

to each neighbour v with �(u! v) > 0 such that (1) at most �(u! v) units of

load are sent from u to v (accumulated) and (2) the total amount of load sent by

u does not increase the load which u held at the beginning of the round. Note

that this strategy is nondeterministic. However, the number of rounds is limited

by �.

Theorem 1: The number of rounds required by PLB to achieve a uniform load

distribution among the processors of a processor tree is bounded by its diameter

�.

Proof: v

1

�� v

2

�� � � � �� v

k

with �(v

i

! v

i+1

) > 0 is called a chain. (1) The

length of any chain is bounded by the diameter of the network. (2) Since v

1

of

a maximal chain does not receive any load it is able to send the total required

amount of load to all of its neighbours in this round. Therefore the length of a

maximal chain is reduced by at least one in each round. 2

The total work of the Balancing Phase is work (n) = O(�n) and the parallel time

is time(n) = O(�).

PLB is de�ned for processor trees. It can be extended to d-dimensional topo-

logies using a modi�ed dimension exchange method, see [1, 8]. The strategie is

described in section 5 for the 2-dimensional mesh.

4 Average Case Analysis of PLB

In this section we analyse the expected total amount of load sent via all links of the

processor tree during the active phases by PLB until a uniform load distribution

has been achieved.

Let V = fv

1

; : : : ; v

n

g be a set of n processors and X

1

; : : : ;X

n

be independent

and identically distributed (i.i.d.) random variables each having mean � and

standard deviation �. We consider a random load distribution de�ned by �(v

i

) =

X

i

, 1 � i � n.

Let T = (V;E) be a tree. The amount of load �(u ! v) which has to be

moved from u to v depends on the nodes of the two connected components T

u

and T

v

of the graph T nu��v only, but not on the topology of T

u

and T

v

. Without
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loss of generality we therefore can assume a linear array topology, see �gure 1.

We de�ne random variables

D

n;i

:= �(v

i

! v

i+1

) =

i

X

j=1

X

j

�

i

n

n

X

j=1

X

j

: (1)

The expectation E[jD

n;i

j] is the expected amount of load migration over an edge

u�� v 2 E with jV (T

u

)j = i and jV (T

v

)j = n� i for any tree T = (V;E).

�

v

1

X

1

� � � �

v

i

X

i

D

n;i

�!

�

v

i+1

X

i+1

� � � �

v

n

X

n

Figure 1: Random variables X

1

; : : : ;X

n

and D

n;i

in a linear array.

4.1 Expected Load Migration for an Edge

We determine the asymptotic distribution of D

n;i

for every �xed 0 < � < 1 and

i = �n for n!1. The random variable

D

n;i

= D

n;�n

(1)

= (1� �)

i

X

j=1

X

j

� �

n

X

j=i+1

X

j

=:

n

X

j=1

Y

j

is a linear combination of X

1

; : : : ;X

n

. The Central Limit Theorem, tells us that

a sum of independent random variables Y

1

; Y

2

; : : : is asymtotically normal distri-

buted, if Lindeberg's equation holds, see [11, 20]. Then

P

8

<

:

(

P

n

i=1

Y

i

)� E[

P

n

i=1

Y

i

]

q

Var(

P

n

i=1

Y

i

)

� a

9

=

;

!

1

p

2�

a

Z

�1

e

�x

2

=2

dx =: �(a)

for n !1. In our case Lindeberg's equation holds, since X

1

;X

2

; : : : are identi-

cally distributed. Easy calculation leads to

E[D

n;�n

] = 0 and Var (D

n;�n

) = (1� �)�n�

2

=: ~�

2

n;�

:

We use the central limit theorem as described above to derive the asymptotic

distribution of D

n;�n

for 0 < � < 1. We have

P

8

<

:

D

n;�n

� E[D

n;�n

]

q

Var(D

n;�n

)

� a

9

=

;

= P

(

D

n;�n

~�

n;�

� a

)

! �(a)

() F

D

n;�n

(~�

n;�

a) ! �(a) for n!1: (2)
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With the notation

f(n) � g(n) () lim

n!1

f(n)

g(n)

= 1;

see [13], the asymptotic expected load migration over an edge v

i

�� v

i+1

with

i = �n and 0 < � < 1 for n!1 is

E[jD

n;�n

j] =

1

Z

�1

jxj

d

dx

F

D

n;�n

(x) dx

(2)

�

1

Z

�1

jxj

d

dx

�

 

x

~�

n;�

!

dx

=

2

p

2�~�

n;�

1

Z

0

xe

�x

2

=2~�

2

n;�

dx

| {z }

= ~�

2

n;�

=

s

2

�

~�

n;�

=

s

2(1� �)�n

�

� = �(

p

n �): (3)

The expected load to be migrated over such an \inner" edge v

i

��v

i+1

is �(

p

n�).

Note that this result is independent of the distribution of the random variables

X

i

(it depends only on their standard deviation �).

4.2 Expected Load Migration for the Linear Array

In the linear array LA

n

with n processors the expected sum of migrated loads is

E[M(LA

n

; �)] =

n�1

X

i=1

E[jD

n;i

j]

� n

1

Z

0

E[jD

n;�n

j] d� (� =

i

n

)

(3)

� n

1

Z

0

s

2(1� �)�n

�

� d�

 

1

R

0

p

� � �

2

d� =

�

8

!

=

p

2�n

8

n� = �(n

p

n�): (4)

This means that the expected sum of migrated loads in a linear array with n

processors is �(n

p

n�).

7



2

h�i+1

� 1 nodes

h

i 2

i

edges

level

1

Figure 2: Expected load migration for an edge at level i is E[jD

n;2

h�i+1

�1

j].

4.3 Expected Load Migration for the Complete Binary

Tree

Let T

h;2

be the complete binary tree of height h with n = 2

h+1

� 1 processors.

We calculate the expected sum of migrated loads E[M(T

h;2

; �)]. For reasons of

symmetrie each of the 2

i

edges at level i, 1 � i � h, have identical expected load

migration. Each of these edges connects a subtree of height h� i with 2

h�i+1

� 1

processors with the rest of the graph, see �gure 2. The expected sum of migrated

loads is

E[M(T

h;2

; �)] =

h

X

i=1

2

i

E[jD

n;2

h�i+1

�1

j]

�

h

Z

0

2

x

E[jD

n;2

h�x+1

�1

j] dx

(3)

�

h

Z

0

2

x

s

2 (1 � 2

�x

) 2

h�x+1

�

� dx

�

2�

p

�

h

Z

0

p

2

h+x

dx

=

4

�

2

h

�

p

2

h

�

p

� ln 2

�

�

2n

p

� ln 2

� � 1:63n� = �(n�): (5)

The expected sum of migrated loads in the complete binary tree is less than that

in the linear array. Now lets consider the complete graph K

n

with n processors.

Load balancing can be performed by moving �(u! v) units of load directly from
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u to v for each edge u�� v with �(u! v) > 0. Therefore we have

E[M(K

n

; �)] =

n

2

E[jX �E[X]j] = c n �: (c 2 IR) (6)

This is a lower bound of the expected sum of migrated loads for any network

topology. The constant c depends on the distribution of the random variables,

e.g. if the X

i

are uniformly distributed in [a; b] we have E[jX �E[X]j] =

b�a

4

and

� =

b�a

p

12

. Then it is

E[M(K

n

; �)] =

p

3

4

n� )

E[M(T

h;2

; �)]

E[M(K

n

; �)]

n!1

�!

8

p

3� ln 2

� 3:76:

If the random variables are normal disributed with parameters � and �, we have

E[M(K

n

; �)] �

1

p

2�

n� )

E[M(T

h;2

; �)]

E[M(K

n

; �)]

n!1

�!

2

p

2

ln 2

� 4:08:

Note that the expected sum of migrated loads in a complete binary tree is asym-

ptotically within a constant factor of that in the complete graph.

4.4 Upper Bounds of Load Migration

Let � : V ! IR

�0

be a load distribution. As a measure of load imbalance we

de�ne

�

mid

:=

1

n

X

v2V

j�(v)� �j:

Upper bounds of the sum of migrated loads can be expressed in terms of n and

�

mid

. The sum of migrated loads in the complete graph is

M(K

n

; �) =

1

2

X

v2V

j�(v)� �j =

n

2

�

mid

= �(n�

mid

): (7)

Let T = (V;E) be a tree with jV j = n processors and diameter �. As can easily

be veri�ed, the sum of migrated loads in T is bounded by

M(T; �) � �M(K

n

; �) = �

n

2

�

mid

: (8)

) M(LA

n

; �) = O(n

2

�

mid

); (9)

M(T

h;2

; �) = O(n log n�

mid

) (n = 2

h+1

� 1) (10)

In table 1 we summarize the average case results of the previous sections and

give corresponding sharp upper bounds. Note that E[�

mid

] = �(�) for every

�xed class of random distributions (e.g. for the uniform distribution we have

E[�

mid

] =

p

3

2

�). Therefore the bounds are comparable. The bounds for the

hypercube and mesh topologies are related to the d-dimensional PLB algorithm,

briey introduced in section 5. For a derivation of these bounds see [1].
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topology G processors E[M(G;�)] M(G;�)

complete graph K

n

n �(n�) (6) �(n�

mid

) (7)

linear array LA

n

n �(n

p

n �) (4) O(n

2

�

mid

) (9)

complete binary tree T

h;2

n = 2

h+1

� 1 �(n�) (5) O(n log n�

mid

) (10)

tree T with diameter � n = jV j O(n

p

n�) (4) O(n��

mid

) (8)

hypercube HC

d

n = 2

d

�(n�) O(n log n�

mid

)

d-dimensional mesh n = m

d

�(n

2d

p

n�) O(dn

d

p

n �

mid

)

Table 1: Average and worst case bounds of load migration.

5 Implementation

We have implemented the PLB algorithm in C. For the m �m mesh with n =

m

2

processors we use a modi�ed algorithm which �rst balances all linear arrays

v

i;1

��v

i;2

�� � � ���v

i;m

in parallel and then all linear arrays v

1;j

��v

2;j

�� � � ���v

m;j

in parallel, 1 � i; j � m, see �gure 3. For exibility and portability reasons we

2 1 10

9 4 12 3

6 7 3 4

1 9 2 0

1 1 1 1

7 7 7 7

5 5 5 5

3 3 3 3 4 4 4 4

4 4 4 4

4 4 4 4

4 4 4 4

Figure 3: Load balancing in the 2-dimensional mesh.

have de�ned an abstract interface between the load balancing module and the

problem solving module. Each processor v manages a list L

v

of subproblems.

The load �(v) of processor v is the sum of loads �(p) of the subproblems p in L

v

,

i.e. �(v) =

P

p2L

v

�(p). A worker thread and a balancer thread are operating on

the list. The worker thread performs the following steps:

while not terminated do

get a subproblem p of L

v

if �(p) < � � then solve p

else split p into p

1

; : : : ; p

k

insert p

1

; : : : ; p

k

in L

v

endif

end

For e�ciency reasons a subproblem is solved sequentially if its estimated load is

less than � �. We have chosen � = 0:05, which turned out to be a good choice,

in our experiments.
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The balancer thread periodically performs the PLB algorithm. In the precom-

putation phase the load balancing scheme is calculated and termination detection

is done. The balancing phase is actually performed if a processor runs out of work,

only. When a balancing phase is activated a processor v, which has to send the

load l to a neighboured processor w, executes the following greedy strategy:

while l >  � do

get a subproblem p of L

v

send p to processor w

l := l � �(p)

end

Processor v sends problems to w until at least l �  � units of load have been

migrated. We have chosen  = 0:5. Since the loads of subproblems are estima-

ted only, an exact load balancing is not neccessary. Organizing load balancing

according to this implementation will not lead to a uniform load distribution,

in general. Experiments however have demonstrated that it results in a load

distribution preventing processors from getting idle besides two or three seconds

during the start and the end-phase of the run time.

6 Experimental Results

We have chosen the Satis�ability Problem (SAT) as demonstration problem. In-

put of the SAT problem is a Boolean formula in conjunctive normal form (CNF).

Output is true, if a truth assignment of the variables exists that satis�es the for-

mula, and false otherwise. The problem was shown to be NP-complete, see [6].

It can be solved by a backtracking search. We have implemented a version of the

Davis-Putnam algorithm improved by a special branching heuristic for variable

selection with e�ciently implemented data structures, see [3, 4]. A node in the

search tree is representing a subproblem p. p is encoded by the partial truth

assignment of variables. In the branching step the, Boolean formula F

p

which

corresponds to p is simpli�ed as much as possible by using the unit clause rule.

Then an unassigned boolean variable is chosen, for which the number of occu-

rences in the shortest clauses of the simpli�ed formula is maximal. If there are

several candidates, the number of occurences in clauses of second smallest clause

length are used to determine the varibale and so on. We called this heuristic

lexicographic heuristic. By assigning the chosen variable true and false we get the

two subproblems p

1

resp. p

2

. The lexicographic heuristic turned out to be very

e�ective when solving the SAT problem for random formulas of the �xed clause

length model, see [4]. We used the following two load estimation functions:

(a) Let k be the number of all assigned variables of subproblem p (this includes

variables assigned by the unit clause rule). The load of p is approximated

by �(p) = �

�k

(� > 1).
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(b) The load of each subproblem p is set �(p) = 1, i.e. the load of a processor

is the length of its list.

The PLB algorithm was tested on a message passing MIMD system built

of 32 � 32 T805/30Mhz transputers (GCel1024). We generated two samples of

random 3-SAT formulas each of 50 instances named 400-2000-3 (400 variables

2000 clauses) and 350-1505-3 (350 variables, 1505 clauses). All 50 instances of

the �rst sample are unsatis�able. 31 (19) instances are unsatis�able (satis�able)

of the second sample. Instances of these classes turned out to be hard to solve for

Davis-Putnam based SAT-solvers from an experimental point of view. Currently

only some fast implementations of SAT-solvers can recognize unsatis�ablility of

instances of these classes in reasonable time, see [3, 4, 7, 9]. We experimentally

determined � = 1:04 for the load estimation (a).

6.1 Scalability of PLB

The results for solving the unsatis�able instances of the sample 350-1505-3 on

a mesh of n processors are given in table 2. We measured the parallel running

time (time) and standard deviation (std), the mean idle time per processor (idle),

the number of balancing phases (bal), the mean number of sent subproblems per

processor (send) and the e�ciency. The results are averaged on the unsatis�able

instances of the samples. Satis�able instances are not taken into account, since

the sizes of the search trees of the parallel and the sequential algorithm di�ers.

Superlinear speedups are possible, see [29].

n time (std) idle bal send e�ciency

4� 8 = 32 3217s (1361s) 4.8s 252 99 99.3%

8� 8 = 64 1614s (681s) 4.0s 325 135 99.0%

8 � 16 = 128 810s (341s) 3.2s 336 203 98.6%

16 � 16 = 256 408s (171s) 2.7s 312 184 97.8%

16 � 32 = 512 207s (86s) 3.2s 210 218 96.4%

32 � 32 = 1024 108s (43s) 4.4s 110 244 92.8%

Table 2: Results for 31 unsatis�able instances of 350-1505-3.

6.2 Comparison of PLB and Local Averaging Strategies

To demonstrate the e�ciency of PLB we solved the sample 400-2000-3 on di�erent

network topologies, the 16 � 16 mesh and the linear array of 256 processors.

We give results for both load estimation functions (a) and (b). The results are

summarized in table 3. PLB performs load balancing very fast, even in networks

with large diameter. The mean number of migrated problems per processor is

extremely low for the mesh topology. It increases in case of the linear array.
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topologie load est. time idle bal send e�ciency

mesh (a) 121.2s 2.4s 277 206 95.0%

(b) 128.5s 4.3s 426 194 89.7%

linear array (a) 121.2s 1.7s 118 1134 95.0%

(b) 130.3s 3.5s 210 2294 88.4%

Table 3: Results for the PLB algorithm (sample 400-2000-3, n = 256)

For comparison with Local Averaging load balancing strategies, we have par-

allelized our SAT-solver using an alternative load balancing tool, the PPBB-lib,

see [32]. This library is developed at the University of Paderborn. It o�ers a

number of local decision/local migration load balancing strategies. The stategie

we have chosen (LADE), works as follows: Each processor stores information on

the number of subproblems of its neighbours. A processor informs its neighbours

if its number of subproblems changes by more than 10%. A processor periodically

balances the number of subproblems with its least loaded neighbour. PPBB-lib

running on PARIX supports virtual topologies used by the load balancing algo-

rithm which are mapped on the physical 2-dimensional mesh of processors. The

results are given in table 4. The mean number of sent load informations per

processor (info) and the mean number of sent subproblems per processor (send)

are reported. The e�ciency is acceptable as long as the diameter of the network

is low.

virt. topologie time idle info send e�ciency

mesh 141.7s 3.7s 3025 2446 81.3%

DeBruijn 142.4s 2.4s 3216 2557 80.9%

hypercube 168.1s 2.8s 9263 6147 68.5%

ring 340.9s 210.2s 1511 1362 33.8%

torus 141.3s 2.5s 3252 2583 81.5%

Table 4: Local Averaging algorithm of PPBB-lib (sample 400-2000-3, n = 256).
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