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Abstract

The problem of computing a maximal planar subgraph of a non-planar graph has

been deeply investigated over the last 20 years. Several attempts have been tried to

solve the problem with the help of PQ-trees. The latest attempt has been reported

by Jayakumar et al. (1989).

In this paper we show that the algorithm presented by Jayakumar et al. is not

correct. We show that it does not necessarily compute a maximal planar subgraph

and that the same holds for a modi�ed version of the algorithm presented by Kant

(1992). Our conclusions most likely suggest not to use PQ-trees at all for this speci�c

problem.
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1 Introduction

In Automatic Graph Drawing, a widely-used method for drawing nonplanar graphs, such

as PERT-diagrams and ER-diagrams, is to transform the graph into a planar graph, and

then use planar graph drawing methods. A widely used method for this transformation is

to delete edges in order to get a planar subgraph, and then to reinsert the removed edges

such that the number of edge crossings is small. In VLSI design the thickness problem is

approximated by successively subtracting large planar subgraphs from a given nonplanar

graph. However, the problem of �nding the minimum number of edges that have to be

removed from a given graph in order to obtain a planar subgraph, is known to be an

NP-hard problem (see Garey and Johnson, 1979).

Therefore, research has focused on computing maximal planar subgraphs. Let G = (V;E)

be a simple graph with n vertices andm edges then a planar subgraphG

0

of G is a maximal

planar subgraph, if for all edges e 2 G � G

0

the addition of e to G

0

destroys planarity.

Besides a trivial O(nm) algorithm that can be constructed using any O(n) planarity test,

three di�erent approaches are known for solving this problem.

Chiba, Nishioka, and Shirakawa (1979) presented an algorithm based on the path addi-

tion algorithm that computes a maximal planar subgraph in O(nm) time. Cai, Han, and

Tarjan (1993) presented later an O(m log n) algorithm that is based on the path addition

algorithm as well. Di Battista and Tamassia (1989) described an algorithm that checks in
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O(log n) amortized time, whether an edge can be added to G without destroying planarity,

obtaining an O(m log n) time algorithm as well.

Ozawa and Takahashi (1981) have presented an O(nm) algorithm using the vertex addi-

tion algorithm. Jayakumar, Thulasiraman, and Swamy (1986) showed that in general this

algorithm does not determine a maximal planar subgraph. Moreover, the resulting planar

subgraph may not even contain all vertices. Jayakumar, Thulasiraman, and Swamy (1989)

presented an algorithm called PLANARIZE that computes a spanning planar subgraph

G

p

of G in O(n

2

) time. Furthermore, they present an algorithm called MAX-PLANARIZE

that augments G

p

to a subgraph G

0

of G by adding additional edges in O(n

2

) time. They

claim that G

0

is a maximal planar subgraph of G if G

p

(the result of phase 1 of the two

phase algorithm) turns out to be biconnected. Kant (1992) shows that this algorithm is

incorrect, and suggests a modi�cation of the second phase of the algorithm that augments

G

p

to a maximal planar subgraph of G, even if G

p

is not biconnected, maintaining O(n

2

)

time requirement.

In this article, we will point out a substantial 
aw in both the original and the modi�ed

two phase algorithm that was not detected previously as well as new mistakes introduced

by Kant. In section 2 we give a brief introduction on PQ-trees and the planarity test

using this data structure. In section 3 the principle of the planarization algorithm using

the PQ-trees is described. In section 4 we show that the algorithm of Jayakumar et al. is

incorrect giving a detailed description of the major mistake. In section 5 we discuss the

attempt of Kant and make some concluding remarks in the last section.

2 Planarity test using PQ-trees

A graph is planar , if it can be embedded in the plane without any edge crossings. A graph

is obviously planar, if and only if its biconnected components are planar. We therefore

assume that G is biconnected. The planarity testing algorithm of Lempel, Even, and

Cederbaum (1967) �rst labels the vertices of G as 1; 2: : : : ; n using an st-numbering (see

Even and Tarjan, 1976). A numbering of the vertices of G by 1; 2: : : : ; n is an st-numbering,

if the vertices \1" and \n" are adjacent and each other vertex j is adjacent to two vertices

i and k such that i < j < k. The vertex 1 is denoted by s and the vertex n is denoted by

t. The st-numbering induces an orientation of the graph, in which every edge is directed

from the incident vertex with the higher st-number towards the incident vertex with the

lower st-number. From now on we refer to the vertices of G by their st-numbers and call

an edge (u; v), with v < u, incoming edge of v and outgoing edge of u.

For 1 � k � n, let G

k

denote the subgraph of G induced by the vertex set V

k

:=

f1; 2; : : : ; kg. The graph G

0

k

arises from G

k

as follows: For each edge e = (u; v), where

v 2 V

k

and u 2 V n V

k

, we introduce a virtual vertex u

e

with label u and a virtual edge

(u

e

; v). Let B

k

be a planar embedding of G

0

k

such that all virtual vertices are placed on

the outer face. Then, B

k

is called a bush form. It has been shown by Lempel et al. (1967)

that G is planar, if and only if for every B

k

, k = 1; 2; : : : ; n�1, there exists a bush form B

0

k

isomorphic to B

k

, such that all virtual vertices in B

0

k

labeled k + 1 appear consecutively.

The PQ-tree T

k

corresponding to the bush form B

k

is a rooted ordered tree that consists

of three types of nodes:
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1. Leaves in T

k

represent virtual edges in B

k

.

2. P -nodes in T

k

represent cutvertices in B

k

.

3. Q-nodes represent maximal biconnected components in B

k

.

The frontier of a PQ-tree is the sequence of all leaves of T

k

read from left to right. The

frontier of a node X is the sequence of its descendant leaves read from left to right.

Let E

k+1

denote the set of leaves in T

k

that correspond to the virtual vertices labeled

k+ 1. A node X is called full , if all leaves in its frontier are in E

k+1

. A node X is empty ,

if its frontier does not contain any leaf of E

k+1

. Otherwise, X is called partial . A node

is called pertinent , if it is full or partial. The pertinent subtree is the smallest connected

subtree that contains all leaves of E

k+1

in its frontier. The root of the pertinent subtree is

called pertinent root . Two PQ-trees are equivalent , if one can be obtained from the other

by one or more of the following operations:

1. Permuting the children of a P -node.

2. Reversing the order of the children of a Q-node.

These operations are called equivalence transformations and describe equivalence classes

on the set of all PQ-trees. An equivalence class of PQ-trees corresponds to a class of

permutations called the permissible permutations.

It has been shown by Booth and Lueker (1976) that B

0

k

exists if and only if T

k

can be

converted into an equivalent PQ-tree T

0

k

such that all pertinent leaves appear consecu-

tively in the frontier of T

0

k

. Booth and Lueker (1976) have de�ned a set of patterns and

replacements called templates that can be used to reduce the PQ-tree such that the leaves

corresponding to edges of the set E

k+1

appear consecutively in all permissible permuta-

tions. To construct T

k+1

from T

k

they �rst reduce T

k

by use of the templates and then

replace all leaves corresponding to virtual edges incident to virtual vertices labeled k + 1

by a P -node, whose children are the leaves corresponding to the incoming edges of the

vertex k + 1 in G.

The planarity testing algorithm now starts with T

1

and constructs a sequence of PQ-

trees T

1

; T

2

; : : :. If the graph is planar, the algorithm terminates after constructing T

n�1

.

Otherwise it terminates after detecting the impossibility of reducing some T

k

, 1 � k < n.

3 Principle of an approach for planarization

The basic idea of a planarization algorithm using PQ-trees presented by Jayakumar et al.

(1989) is to construct the sequence of PQ-trees T

1

; T

2

; : : : ; T

n�1

by deleting an appropriate

number of pertinent leaves every time the reduction fails such that the resulting PQ-tree

becomes reducible. In every step of the algorithm PLANARIZE, a maximal consecutive

sequence of pertinent leaves is computed by using a [w; h; a]-numbering (see Jayakumar

et al., 1989). All pertinent leaves that are not adjacent to the maximal pertinent sequence

are removed from the PQ-tree in order to make it reducible. Hence the edges corresponding

to the leaves are removed from G and the resulting graph G

p

is planar.
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It has been shown by Jayakumar et al. (1989) that the graph G

p

computed by PLA-

NARIZE is not necessarily maximal planar. The authors therefore suggest to apply a

second phase called MAX-PLANARIZE, also based on PQ-trees. Knowing which edges

have been removed from G to construct G

p

, edges from G�G

p

are added back to G

p

in

the second phase without destroying planarity.

During the reduction of a vertex v, there may exist nonpertinent leaves that are in all

permissible permutations of the PQ-tree T

v�1

between a pertinent leaf l

v

and its maximal

pertinent sequence. This maximal pertinent sequence has been determined with the help

of the [w; h; a]-numbering. In order to make the tree T

v�1

reducible, the leaf l

v

is removed

from the tree and the corresponding edge is removed from the graph G, guaranteeing that

the subgraph G

p

will be planar. However, it may occur that the nonpertinent leaves that

are positioned between l

v

and its maximal pertinent sequence in T

v�1

, are removed as well

from a tree T

k

, v � k < n, in order to obtain reducibility. Therefore, there is no need to

remove the edge corresponding to l

v

from the graph G.

In order to �nd leaves such as l

v

, Jayakumar et al. (1989) use the algorithm MAX-

PLANARIZE. In step i, both PLANARIZE as well as MAX-PLANARIZE reduce the

same vertex i. The di�erence between the PQ-trees in the two algorithms is, according to

the authors, that all leaves that have been deleted in PLANARIZE are ignored in MAX-

PLANARIZE from the moment they are introduced into the tree until they get pertinent.

This causes the nonpertinent leaves between the pertinent leaf l

v

and its maximal perti-

nent sequence to be ignored. Hence l

v

is adjacent to its maximal pertinent sequence and

the corresponding edge can be added back to G

p

, while the leaves between l

v

and the

maximal pertinent sequence are removed from the PQ-tree.

4 On the incorrectness of the algorithm

While some incorrect details of the approach of Jayakumar et al. have been described in a

technical report by Kant (1992), who attempted to correct the algorithm, a major problem

has not been detected.

Jayakumar et al. assume that the maximal planar subgraph G

p

is biconnected for the

correct application of the Lempel-Even-Cederbaum algorithm. Furthermore, as they have

stated correctly, this is necessary in order to have an st-numbering. Nevertheless, the

PQ-trees in MAX-PLANARIZE are constructed according to the st-numbering that was

computed for the graph G.

As a matter of fact, the st-numbering of G does not imply an st-numbering of any subgraph

G

p

even if the subgraph G

p

is biconnected. This results in two problems, of which one is

crucial and cannot be dealt with even by the ideas described by Kant (1992).

Both problems are based on the fact that during the application of PLANARIZE for some

vertices of V all incoming edges may be deleted from the graph while the resulting graph

G

p

stays biconnected.

Let v 2 V be such a node with no incoming edges. Since G

p

is biconnected, v must have at

least two outgoing edges (v; u

1

) and (v; u

2

). Let w 2 V be a vertex in G such that w < v,

hence the leaves corresponding to the outgoing edges of w are reduced before the leaves

of v. Let T

w�1

be the PQ-tree during the application of MAX-PLANARIZE, in which
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the relevant leaves corresponding to the outgoing edges of w have to be reduced. Assume

that the leaves of both nodes w and v are on the outer face of the same biconnected

component of the bush form that corresponds to the PQ-tree T

w�1

. Assume further that

one designated leaf w

k+1

of the vertex w is separated by the leaves v

1

and v

2

corresponding

to (v; u

1

) and (v; u

2

) from the leaves w

1

; w

2

; : : : ; w

k

, where the latter form the maximal

pertinent sequence (see Figure 1 for an illustration).

w
1

w
2

w
k

w
k+1

... v
1

v
2

Figure 1: Leaf w

k+1

is separated by v

1

and v

2

from its maximal pertinent

sequence w

1

; w

2

; : : : ; w

k

.

If (v; u

1

) and (v; u

2

) are the only outgoing edges of v in G

p

, then the leaves v

1

and v

2

will be changed during the reduction of the PQ-tree T

v�1

into a P -node with leaves

corresponding to edges in E n E

p

. Hence, if the vertex v had been reduced before the

vertex w, then MAX-PLANARIZE would have considered the leaf w

k+1

as being adjacent

to the maximal pertinent sequence w

1

; : : : ; w

k

. The edge corresponding to the leaf w

k+1

could have been added to the graph G

p

without destroying planarity. In case that none of

the incoming edges of v is added to G

p

in a PQ-tree T

i

, v < i < n, the resulting graph G

p

is not a maximal planar subgraph.

We now consider the second problem. The planarization algorithm of Jayakumar et al.

(1989) does not obey an important invariant implied by the following lemma, shown by

Even (1979).

Lemma 4.1 Let G = (V;E) be a planar graph with an st-numbering and let 1 � k � n.

If the edge (t; s) is drawn on the boundary of the outer face in an embedding of G, then all

vertices and edges of G�G

k

are drawn in the outer face of the plane subgraph G

k

of G.

This result allowed Lempel, Even, and Cederbaum (1967) to transform the problem of

planarity testing to the construction of a sequence of bush forms B

k

, 1 � k � n. For

a planar graph G, edges and vertices that have not been introduced into the current

subgraph G

k

are always embedded into the outer face of G

k

.

The approach of Jayakumar et al. (1989) does not obey this invariant in the second phase.

There exist edges that have to be embedded into an inner face of some G

k

, even if (t; s) is

drawn on the outer face. Due to the above lemma, the correction step MAX-PLANARIZE

only considers edges for reintroduction into the planar subgraph G

p

that are on the outer

face of the current graph G

k

. Since the numbering that is used to determine the order in

which the vertices are reduced does not correspond to an st-numbering of G

p

in general,

the algorithm of Jayakumar et al. (1989) ignores edges that have to be added into an inner

face of the embedding of a current graph G

k

. This fact is fatal, as we are about to show

now.
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k
1

k
2

k
3

k
4

k
5

Figure 2: Part of a bush form B

k�1

k
1

k
2

k
3

k
4

k
5

Figure 3: Part of a PQ-tree corresponding to bush form B

k�1

In Figure 2, a part of a bush form B

k�1

, 1 < k � n of a graph G is shown. The virtual

vertices corresponding to the vertex k are labeled k

1

; k

2

; : : : ; k

5

and all other virtual vertices

are left unlabeled. The corresponding part of the PQ-tree is shown in Figure 3. Obviously,

there do not exist any reversions or permutations such that the virtual vertices of k occupy

consecutive positions. Hence, the graph G is not planar. Applying the [w; h; a]-numbering

of Jayakumar et al. (1989) allows us to delete the virtual vertex k

5

and to reduce the other

four vertices k

1

; k

2

; k

3

; k

4

. The resulting bush form B

k

is planar and the relevant part is

shown in Figure 4. Figure 5 shows the corresponding part of the PQ-tree. Assume now

that all descendants of k have to be removed from the PQ-tree in a later step. Hence all

incoming edges incident on k are removed from the tree. Now assume further that there

exists a path v

1

; v

2

; : : : ; v

l

in G

p

such that

� for all i; j, 1 � i < j � l the inequality v

i

< v

j

holds,

� the edge (v

2

; v

1

) corresponds to one of the virtual edges that are between the leaf k

5

and the maximal pertinent sequence k

1

; k

2

; k

3

; k

4

in all PQ-trees equivalent to T

k�1

,

� v

l

= t.

This path guarantees that all outgoing edges of the vertex k cannot be embedded into the

6



k

Figure 4: Part of a bush form B

k

Figure 5: Part of a PQ-tree corresponding to bush form B

k

outer face of the embedding of B

k�1

without crossing an edge on this path. Hence the edge

e

k

5

corresponding to the leaf k

5

is not considered by the algorithm MAX-PLANARIZE

as being an edge that does not destroy planarity. Therefore, e

k

5

is not added back to the

planar subgraph G

p

.

Nevertheless adding the edge e

k

5

to G

p

may not destroy planarity of G

p

as is shown in

our example in Figure 6. Since all incoming edges of the vertex k have been deleted by

PLANARIZE and are not added back by MAX-PLANARIZE, it may be possible to swap

the vertex k into an inner face of the embedding of B

k

such that the virtual vertex k

5

can be identi�ed with k and the edge e

k

5

is embedded into the bush form B

k

without

destroying planarity.

Therefore, the strategy of using PQ-trees presented by Jayakumar et al. (1989) does not

compute a maximal planar subgraph in general. Furthermore, we point out that the same

problem holds for the modi�ed version of this algorithm, presented by Kant (1992). This

version follows a similar strategy of computing a spanning planar subgraph G

p

using

PLANARIZE and then adding edges that do not destroy planarity in a second phase. The

order of reductions that is used to insert vertices into existing bush forms is the same as

the one implied by the st-numbering on G. Hence this approach is not able to compute a

maximal planar subgraph for the same reason.

Summarizing, we state the following lemma that has been shown in the discussion above.
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k

e
k5

Figure 6: Part of a bush form B

k

with e

k

5

embedded

Lemma 4.2 Let G = (V;E) be a nonplanar graph. Let G

p

= (V;E

p

), E

p

� E, be a planar

subgraph of G, such that G

p

was obtained from G by

1. computing an st-numbering for all vertices and

2. applying the algorithm of Lempel, Even, and Cederbaum (1967) constructing a se-

quence of bush forms B

k

, 1 � k � n, by embedding a maximal number of outgoing

edges of a vertex k, 1 < k � n, in the outer face of B

k�1

without crossings, deleting

all other outgoing edges of k.

Let G

0

p

= (V;E

0

p

), be a planar subgraph of G such that

1. E

p

� E

0

p

� E,

2. the graph G

0

p

is computed by constructing a sequence of bush forms B

0

k

, 1 � k � n,

based on the st-numbering used for determining G

p

, and possibly embedding outgoing

edges e 2 E nE

p

of every vertex k, 1 < k � n, without crossings in the outer face of

B

k�1

.

Then the subgraph G

0

p

is not necessarily maximal planar.

Considering a computation of an st-numbering for the planar subgraph G

p

in order to

augment G

p

to a maximal planar subgraph of G and then construct a sequence of bush

forms B

0

k

, 1 � k � n, is aggravated by the following two facts.

1. The graph G

p

is not biconnected in general.

2. The sequence of bush forms B

0

k

, 1 � k � n is not equivalent to the bush forms B

k

,

constructed in the �rst phase PLANARIZE.
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Considering a computation of an st-numbering for the planar subgraph G

p

in order to

augment G

p

to a maximal planar subgraph of G and then construct a sequence of bush

forms B

0

k

, 1 � k � n, is aggravated by the fact that the graph G

p

is not biconnected in

general. Furthermore, the di�erence between the bush forms of the �rst phase and the

second phase may result in the deletion of the edges of G

p

as soon as edges of E nE

p

are

added to G

p

. Adding an edge e 2 E n E

p

to G

p

is able to change the corresponding bush

form in such a way, that the pertinent leaves corresponding to the outgoing edges of some

node v in E

p

cannot form a consecutive sequence in any permissible permutations.

5 Further problems

We show now that even if the st-numbering of G is as well an st-numbering of G

p

, and

even if we consider the suggested modi�cations of Kant (1992), the algorithm presented

by Jayakumar et al. (1989) still does not work correct.

Kant (1992) suggested a correction of the second phase by introducing sequence indicators

and by delaying the decision, whether a deleted leaf can be added back to G

p

, until enough

information is available. In his version of MAX-PLANARIZE, a leaf l that was deleted in

PLANARIZE will be a normal nonpertinent leaf, which is not ignored until it becomes

pertinent. Again, the maximal pertinent sequence of a vertex i is reduced. This maximal

pertinent sequence is the same as in PLANARIZE. The pertinent leaves that are not

adjacent to the maximal pertinent sequence stay in the PQ-tree and their presence will

be ignored in the template matching algorithm from then on. They are called potential

leaves. If potential leaves of a vertex i remain in the tree after the reduction of i, a sequence

indicator < i > is added to the tree in order to indicate the position of the reduced

pertinent sequence. The presence of the sequence indicator will be ignored as well. If a

node X contains only nodes in its front, whose presence are ignored, X is called an ignored

node. Applying this idea, a sequence of PQ-trees T

1

; T

2

; : : : ; T

n�1

is constructed during the

augmentation phase, which is equivalent to the sequence of PQ-trees constructed during

the �rst phase. Thus he makes sure that the corresponding bush forms of both phases are

equivalent. In order to augment G

p

to the maximal planar subgraph G

0

p

, edges are added

to G

p

, when their corresponding leaf and its sequence indicator can be reduced by deleting

only other potential leaves and sequence indicators. Doing this, it is not allowed to bind

empty nodes to new places, since this would change the equivalence class of the actual

PQ-tree. This can be formalized as follows.

De�nition 5.1 A potential leaf l is near its sequence indicator si(l), if and only if the

PQ-tree T

i

, 1 � i < n, can be reduced, such that l and si(l) are adjacent siblings, by

deleting only ignored nodes and not binding empty nodes to new places. If a potential leaf

l is near its sequence indicator si(l), then l and si(l) are called a near pair.

Not every near pair, formed by a potential leaf and its sequence indicator, can be reduced.

In general, we have to choose between di�erent near pairs, since the reduction of one near

pair might cause the deletion of the other. This is, in particular, typical for near pairs

that intersect. Two near pairs l, si(l) and l

0

, si(l

0

) are called intersecting in T

i

, if either

l

0

or si(l

0

) is between l and si(l) in all equivalent PQ-trees of T

i

. In this case only one
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edge corresponding to l or l

0

can be embedded into the outer face of the current bush form

without causing a crossing.

Kant (1992) suggests to test for near pairs just within the maximal pertinent sequence,

since by de�nition there will be no empty nodes inside the pertinent sequence. A near pair

is found while applying the pattern matching algorithm of Booth and Lueker (1976) to

the maximal pertinent sequence. Every time a pertinent node X is matched, we search for

near pairs l and si(l) in the frontier of X, where X is the �rst common ancestor of l and

si(l).

This search can be done e�ectively using two arrays PL

X

and SI

X

that are introduced

for every internal node X in the maximal pertinent sequence. In PL

X

[i] children of X

are stored that are ancestors of some potential leaves corresponding to edges (i; j), j < i,

while SI

X

[i] contains the children that are ancestors of some sequence indicator < i >.

It can be shown that by using the PL

X

and SI

X

arrays all near pairs will be found (see

Kant, 1992; Leipert, 1995). After �nding a near pair l, si(l) we make sure that before the

near pair is reduced, the �rst common ancestor X of l, si(l) will be a Q-node. This can

obviously be done without changing the equivalence class of the PQ-tree.

Kant (1992) now suggests a reduction process which is encapsulated within a procedure

REDUCE and that begins with the �rst common ancestor X of the near pair l, si(l) and

goes down the PQ-tree to l and si(l). A special type of node, used in the reduction, is

de�ned �rst.

De�nition 5.2 An ignored P -node is said to be of type U, if all children except one

child, yet unknown, must be removed with their descendants from the PQ-tree in a later

step. An ignored Q-node is said to be of type U, if it has one special marked child Y , and

all children of the Q-node between Y and one of the endmost children, yet unknown, must

be removed with their descendants from the PQ-tree in a later step.

We now give a brief description of the reduction process. After a near pair l, si(l) is found,

the following situation occurs: A Q-node X is the �rst common ancestor of l and si(l),

and the leaf l corresponds to some outgoing edge of a vertex i. There exists a sequence

Y

1

; Y

2

; : : : ; Y

k

, k � 2, of children of X, such that, say, Y

1

is an ancestor of l and Y

k

is an

ancestor of si(l) and the children Y

2

; Y

3

; : : : ; Y

k�1

between Y

1

and Y

k

are ignored.

First, all children Y

2

; Y

3

; : : : ; Y

k�1

and their descendants are removed from the tree by

REDUCE. If a deleted leaf l

0

corresponds to an outgoing edge of the vertex i, then it

forms a near pair with si(l), so REDUCE adds it to G

p

. Then REDUCE goes along the

paths from Y

1

to the potential leaves of vertex i applying a top-down reduction. Observe

that there might be more than one potential leaf forming a near pair with si(l). The same

is done with the path from Y

k

to the sequence indicator si(l). Since there may be other

near pairs in the frontier of Y

1

and Y

k

, they are reduced correspondingly. Afterwards, all

ignored nodes between the outermost leaf that corresponds to an incoming edge of i, and

si(l) are removed from the PQ-tree and the arrays PL and SI are updated. If a deleted

leaf corresponds to an outgoing edge of i, then it is added to G

p

.

However, the algorithm REDUCE is not correct for three reasons:

Problem 1: Adding every outgoing edge of a vertex i that corresponds to some deleted

potential leaf might result in a nonplanar subgraph. This is due to the fact that di�erent
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potential leaves may be descendants of the same type U node, or descendants of di�erent

pertinent nodes.

Problem 2: Reducing the near pairs top-down does not restrict the permissible permu-

tations in such a way that in all permutations l and si(l) form a consecutive sequence.

Problem 3: Let l, si(l) be the �rst detected near pair in the frontier of Y

1

; Y

2

; : : : ; Y

k

.

Let l

0

, si(l

0

) be some other near pair in the frontier of the same nodes. The near pairs

are reduced in the order they have been detected. This implies reducing l, si(l) before

reducing l

0

, si(l

0

). This is not correct since reducing l, si(l) �rst might cause the deletion

of l

0

, si(l

0

) while the reduction of l

0

, si(l

0

) might not cause the deletion of l, si(l). Hence

G

0

is not necessarily maximal planar.

So in order to correct REDUCE, we are confronted with solving the following three prob-

lems:

1. If there are several potential leaves that form a near pair with si(l), a maximal

subset of leaves has to be found, which guarantees that all leaves of the subset can

be reduced together.

2. A near pair l, si(l) has to be reduced, such that l and si(l) form a consecutive

sequence in all permissible permutations.

3. If there are several near pairs, an ordering of the near pairs has to be found in such

a way that the reduction of one near pair does not hinder the reduction of the near

pairs which still have to be reduced.

The �rst two problems have been shown to be solvable by Leipert (1995), but the last still

remains unsolved.

6 Concluding Remarks

In this paper we showed that the attempt of Jayakumar et al. (1989) to solve the maximal

planar subgraph problem with PQ-trees is not correct. The problem is due to the fact

that an important invariant for planarity testing is ignored. We have further shown that

even a corrected version of the algorithm applied in the best possible case, where the

st-numbering of a graph G is as well an st-numbering of the planar subgraph G

p

, is not

correct.

Since this best case is a very rare case and since the modi�cations for the solved problems

(see Leipert, 1995) are far beyond any reasonable implementation, we doubt that a useful

algorithm based on the strategy presented by Jayakumar et al. (1989) can be found.
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