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Abstract

The problem of �nding in a complete edge-weighted graph a two-connected

planar spanning subgraph of maximum weight is important in automatic graph

drawing. We investigate the problem from a polyhedral point of view.

Keywords: Planar graphs, two-connected graphs, polyhedra, facets.

1 Introduction

We assume familiarity with basic notions of graph theory (see, for instance, [1]) and

with elementary notions of polyhedral combinatorics (see, for instance, [6]). Our

graphs will be undirected and simple (no loops and no multiple edges). As usual,

K

n

denotes the complete graph with n vertices; K

n;m

denotes the complete bipartite

graph with n + m vertices and n � m edges. Let G be a graph; G is connected if

for every pair of distinct vertices there exists a path in G joining them; G is two-

connected if for every vertex v of G, the graph G � v is connected; G is planar if it

can be embedded in the plane. A subgraph H of a G is spanning if the vertex sets

of H and G are the same. Subdivision of an edge uv of G consists of removing edge

uv, and adding a new vertex w and the two edges uw and vw; w is called subdivision

vertex . If G and H are two graphs, we say that G contains a subdivision of H, if H

arises by subdivision of the edges of some subgraph of G. As usual, �(u) denotes the

set of all edges that are incident in the vertex u.

In automatic graph drawing the following problem arises: �nd in a complete graph

with weights on its edges a two-connected planar spanning subgraph with weight as

�
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large as possible. This problem is NP-hard and it was introduced in [5]. In this paper

we shall study this problem from a polyhedral point of view.

For this purpose, let n be an integer greater than or equal to four. Let S(K

n

) denote

the set of the incidence vectors of all spanning subgraphs of K

n

that are both planar

and two-connected and let P (K

n

) denote the convex hull of S(K

n

); P (K

n

) is known

as the two-connected planar subgraph polytope. In [5], a �rst version of a branch

and cut algorithm based on the partial knowledge of the facet-de�ning structure of

P (K

n

), found in [4], [5], and [7], was designed and tested. The partial knowledge

of P (K

n

) comes from the investigations of two other related polytopes, namely the

convex hull Q

1

(K

n

) of the incidence vectors of all subgraphs of K

n

that are planar [4],

and the convex hull Q

2

(K

n

) of the incidence vectors of all spanning subgraphs of

K

n

that are two-connected [7]. Indeed, P (K

n

) � Q

1

(K

n

) \ Q

2

(K

n

), and so every

inequality valid for Q

i

(K

n

) (i = 1; 2) is also valid for P (K

n

). In [5] it was shown

that every facet-de�ning inequality of Q

1

(K

n

) is also facet-de�ning for P (K

n

) and

that some facet-de�ning inequalities of Q

2

(K

n

) are also facet-de�ning for P (K

n

). It

is not known whether every facet-de�ning inequality for Q

2

(K

n

) is also facet-de�ning

for P (K

n

).

The purpose of this paper is to investigate the structure of P (K

n

) that does not

arise from the structures of Q

1

(K

n

) and Q

2

(K

n

). Clearly, not every facet-de�ning

inequality for P (K

n

) is necessarily facet-de�ning for Q

1

(K

n

) or for Q

2

(K

n

). In fact,

we shall show that there exist facet-de�ning inequalities for P (K

n

) that are valid for

neither Q

1

(K

n

) nor for Q

2

(K

n

).

2 Facets arising from subdivisions of K

5

and K

3;3

The two graphs K

5

and K

3;3

play a central role in planarity: Kuratowski [3] showed

that a graph is planar if and only if it contains no subdivisions of K

5

or K

3;3

. Subdi-

visions of K

5

and of K

3;3

will play a central role also in this paper.

Consider the complete graph K

5

with vertices 1; 2; 3; 4; 5. Subdivide each edge ij ofK

5

(1 � i < j � 5) N

ij

times, with N

ij

� 1; let ij

1

; ij

2

; � � � ; ij

N

ij

denote the corresponding

subdivision vertices. Denote by G = (V;E) the resulting graph. Note that for every

1 � i < j � 5, the graph G contains the edges (i; ij

1

); (ij

1

; ij

2

); � � � ; (ij

N

ij

�1

; ij

N

ij

),

and (ij

N

ij

; j), and it does not contain the edge (i; j). We shall refer to each of the

�ve vertices 1; 2; 3; 4; 5 of G as a white vertex and to each of all others (vertex ij

k

) as

a black vertex. Let N denote the total number of black vertices of G. Note that, by

assumption, N � 10. Figure 1 shows a graph G with 20 black vertices.

For every 1 � i < j � 5, let K

(i;j)

denote the complete graph with vertex set

fi; ij

1

; � � � ; ij

N

ij

; jg, and let G

+

= (V;E

+

) be the graph obtained from G by adding

every edge of each K

(i;j)

. Write n = N + 5 and let K

n

denote the complete graph

with vertex set V . Let F denote the set of all edges of K

n

that are not edges of G

+

.
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Figure 1: A subdivision of K

5

The following theorem shows that the inequality x(F ) � 1 de�nes a facet of P (K

n

).

Note that such an inequality is not valid for Q

1

(K

n

) (because for every edge e of G,

the graph G � e is planar and its incidence vector y is such that y(F ) = 0), and is

not valid for Q

2

(K

n

) (because the graph G is two-connected and its incidence vector

y is such that y(F ) = 0).

Theorem 1 For every complete graph K

n

, with n � 15, the inequality x(F ) � 1

de�nes a facet of P (K

n

).

Proof. To prove the validity, let y be the an arbitrary point in S(K

n

) and let H be

the subgraph of K

n

corresponding to y. We only need show that y(F ) � 1. For this

purpose, assume that y(F ) < 1, and so y(F ) = 0. But then, every edge of H must

be an edge of the graph G

+

, which is impossible: G

+

is not planar and no spanning

planar subgraph of G

+

is two-connected. Since y was an arbitrary point in S(K

n

), it

follows that the inequality is valid over P (K

n

).

Now let c 2 f0; 1g

(

n

2

)

such that c

e

= 0 for every edge e of G

+

and c

e

= 1 for every other

edge; in other words, c

e

= 1 if and only if e 2 F , and so the inequality x(F ) � 1 reads

c

T

x � 1. Let x

1

; x

2

; � � � ; x

t

be points in S(K

n

) such that c

T

x

i

= 1, for all i = 1; � � � ; t;

and let c be a vector such that cx

i

= cx

j

for all choices of i and j. Clearly, to show

that c

T

x � 1 de�nes a facet of P (K

n

) we only need show that c is a multiple of c.

For this purpose, set T = fx

1

; x

2

; � � � ; x

t

g.

3



First, we shall show that c

e

= 0 for every edge e of G

+

. Let e be an arbitrary such

an edge. Without loss of generality, we can assume that e is an edge of the complete

graph K

(1;2)

. Let u and v denote the vertices 34

N

34

and 12

1

, respectively. Consider

the subgraph H of K

n

obtained from G by deleting edge (u; 4) and by adding edge

(u; v) (see Figure 2); and let y denote its incidence vector. Clearly, y 2 T .

u

3

4

1

2

5

v

Figure 2: The graph H

Now, if e =2 E (i.e., e is an edge of K

(1;2)

and is not an edge of G), then we let H

1

denote the subgraph of K

n

obtained fromH by adding the edge e. Since the incidence

vector y

1

of H

1

belongs also to T , by assumption, cy = cy

1

, and so c

e

= 0, and we are

done. Hence, assume that e 2 E. If one endpoint of e is a white vertex then, without

loss of generality, we can assume that e = (1; v) (in case e = (2; 12

N

12

) it is su�cient to

set v = 12

N

12

). In this case, we let H

2

denote the subgraph of K

n

obtained from H by

deleting edge e. Since the incidence vector y

2

of H

2

belongs also to T , by assumption,

cy = cy

2

, and so c

e

= 0, and again we are done. Otherwise, both endpoints of the

edge e in E are black, and so e = (12

k

; 12

k+1

), with 1 � k � N

12

� 1. Let H

0

denote

the subgraph of K

n

obtained from H by deleting edge (u; v) and adding edge (u; 12

k

),

and let y

0

denote its incidence vector. (Note that, if k = 1 then y

0

= y, and so H and

H

0

are in fact the same graph.) Clearly y

0

2 T . Now, let H

3

be the subgraph of K

n

obtained from H

0

by deleting edge e and by adding edge f = (12

k+1

; 1). Since the

incidence vector y

3

of H

3

belongs also to T , by assumption, cy

0

= cy

3

, and so c

e

= c

f

.

But c

f

= 0 (since f is an edge of K

(1;2)

and is not an edge of G), and so c

e

= 0, and

again we are done. Hence we have shown that c

e

= 0 for every edge e of G

+

.

Now to �nish the proof, we only need show that c

e

has the same value for every

4



e 2 F . For this purpose, let u = ij

k

be an arbitrary black vertex of K

n

; without loss

of generality, we can assume that u = 12

k

, with 1 � k � 12

N

12

. We propose to show

that c

e

= c

f

for every pair of arbitrary edges e; f in F \ �(u). Note that as soon as

this is accomplished, we are done, since every edge in F has a black endpoint and

since u was chosen arbitrary among all black vertices.

Consider the graph H

L

in Figure 3 and the graph H

R

in Figure 4, where all black

vertices 12

i

, with i = 1; 2; � � � ; 12

N

12

are present.

1

2

 3

4

5

12
k

Figure 3: The graph H

L

Let L denote the subset of V of all vertices that do not belong to the complete graphs

K

(1;2)

;K

(2;3)

;K

(2;4)

, and K

(2;5)

; and let R denote the subset of V of all vertices that

do not belong to the complete graphs K

(1;2)

;K

(1;3)

;K

(1;4)

, and K

(1;5)

. Write e = (u; v)

and f = (u;w); clearly, both v and w are in L [R. If both vertices v and w are in L

(or in R), consider the graphs H

4

and H

5

obtained from H

L

(or H

R

) by adding edge

e and edge f , respectively; let y

4

and y

5

denote the corresponding incidence vectors.

Since both y

4

and y

5

are in T , by assumption, cy

4

= cy

5

, and so c

e

= c

f

. But then,

since R \ L 6= ;, and since c

g

= 0 for every g =2 F , it follows that c

e

= c

f

for every

choice of e and f in F \ �(u). The theorem follows.

A di�erent class of facet-de�ning inequalities for the polytope P (K

n

) can be obtained

in a similar way from the complete bipartite graph K

3;3

. Let 1; 2; 3; 4; 5; 6 denote the

vertices of K

3;3

and let Q denote its edge-set, i.e. Q = f14; 15; 16; 24; 25; 26; 34;

35; 36g. Subdivide each edge ij of K

3;3

, N

ij

times, with N

ij

� 1; and let ij

1

; ij

2

;

� � � ; ij

N

ij

denote the corresponding subdivision vertices. Denote by G = (V;E) the

5
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Figure 4: The graph H

R

resulting graph. Note that G contains all the edges (i; ij

1

); (ij

1

; ij

2

); � � � ; (ij

N

ij

�1

;

ij

N

ij

), and (ij

N

ij

; j), and it does not contain the edge (i; j), for every ij 2 Q. Figure 5

shows a graph G having 16 subdivision vertices. Note that, by assumption, the total

number of subdivision vertices is at least nine. Set M = f12; 13; 23; 45; 46; 56g, and

let G

+

= (V;E

+

) be the graph obtained from G by adding all edges in M and by

adding every edge of eachK

(i;j)

, for all ij 2 Q, whereK

(i;j)

denote the complete graph

with vertex set fi; ij

1

; � � � ; ij

N

ij

; jg. Let K

n

denote the complete graph with vertex

set V , and let F

0

denote the set of all edges of K

n

that are not edges of G

+

. The

following theorem shows that the inequality x(F

0

) � 1 de�nes a facet of P (K

n

). Note

that also this inequality is not valid for Q

1

(K

n

) (because for every edge e of G, the

graph G � e is planar and its incidence vector y is such that y(F

0

) = 0), and is not

valid for Q

2

(K

n

) (because the graph G is two-connected and its incidence vector y is

such that y(F

0

) = 0).

Theorem 2 For every complete graph K

n

with n � 15, the inequality x(F

0

) � 1

de�nes a facet of P (K

n

).

Proof. The proof is similar to the proof of Theorem 1. The only di�erence is that

we have to show that c

e

= 0 also for every edge e 2 M , and this is easy.
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