ANGEWANDTE MATHEMATIK UND INFORMATIK UNIVERSITÄT ZU KÖLN

Report No. 96.229

On the Two-Connected Planar Spanning Subgraph Polytope

by
C. De Simone and M. Jünger

1996

Research supported in part by DFG-Grant JU204/7-1
"Effiziente Algorithmen für diskrete Probleme und ihre Anwendungen" and by ESPRIT Long Term Research Project Nr. 20244 (ALCOM-IT)

Institut für Informatik
UNIVERSITÄT ZU KÖLN
Pohligstraße 1
D-50969 Köln

Addresses of the authors:

Caterina De Simone

Istituto di Analisi dei Sistemi ed Informatica del CNR
Viale Manzoni 30
00185 Roma
Italy
Email: desimone@iasi.rm.cnr.it

Michael Jünger

Institut für Informatik
Universität zu Köln
Pohligstraße 1
50969 Köln
Germany
Email: mjuenger@informatik.uni-koeln.de

On the Two-Connected Planar Spanning Subgraph Polytope*

Caterina De Simone ${ }^{\dagger} \quad$ Michael Jünger ${ }^{\ddagger}$

Abstract

The problem of finding in a complete edge-weighted graph a two-connected planar spanning subgraph of maximum weight is important in automatic graph drawing. We investigate the problem from a polyhedral point of view.

Keywords: Planar graphs, two-connected graphs, polyhedra, facets.

1 Introduction

We assume familiarity with basic notions of graph theory (see, for instance, [1]) and with elementary notions of polyhedral combinatorics (see, for instance, [6]). Our graphs will be undirected and simple (no loops and no multiple edges). As usual, K_{n} denotes the complete graph with n vertices; $K_{n, m}$ denotes the complete bipartite graph with $n+m$ vertices and $n \times m$ edges. Let G be a graph; G is connected if for every pair of distinct vertices there exists a path in G joining them; G is twoconnected if for every vertex v of G, the graph $G-v$ is connected; G is planar if it can be embedded in the plane. A subgraph H of a G is spanning if the vertex sets of H and G are the same. Subdivision of an edge $u v$ of G consists of removing edge $u v$, and adding a new vertex w and the two edges $u w$ and $v w ; w$ is called subdivision vertex. If G and H are two graphs, we say that G contains a subdivision of H, if H arises by subdivision of the edges of some subgraph of G. As usual, $\delta(u)$ denotes the set of all edges that are incident in the vertex u.

In automatic graph drawing the following problem arises: find in a complete graph with weights on its edges a two-connected planar spanning subgraph with weight as

[^0]large as possible. This problem is NP-hard and it was introduced in [5]. In this paper we shall study this problem from a polyhedral point of view.

For this purpose, let n be an integer greater than or equal to four. Let $S\left(K_{n}\right)$ denote the set of the incidence vectors of all spanning subgraphs of K_{n} that are both planar and two-connected and let $P\left(K_{n}\right)$ denote the convex hull of $S\left(K_{n}\right) ; P\left(K_{n}\right)$ is known as the two-connected planar subgraph polytope. In [5], a first version of a branch and cut algorithm based on the partial knowledge of the facet-defining structure of $P\left(K_{n}\right)$, found in [4], [5], and [7], was designed and tested. The partial knowledge of $P\left(K_{n}\right)$ comes from the investigations of two other related polytopes, namely the convex hull $Q_{1}\left(K_{n}\right)$ of the incidence vectors of all subgraphs of K_{n} that are planar [4], and the convex hull $Q_{2}\left(K_{n}\right)$ of the incidence vectors of all spanning subgraphs of K_{n} that are two-connected [7]. Indeed, $P\left(K_{n}\right) \subseteq Q_{1}\left(K_{n}\right) \cap Q_{2}\left(K_{n}\right)$, and so every inequality valid for $Q_{i}\left(K_{n}\right)(i=1,2)$ is also valid for $P\left(K_{n}\right)$. In [5] it was shown that every facet-defining inequality of $Q_{1}\left(K_{n}\right)$ is also facet-defining for $P\left(K_{n}\right)$ and that some facet-defining inequalities of $Q_{2}\left(K_{n}\right)$ are also facet-defining for $P\left(K_{n}\right)$. It is not known whether every facet-defining inequality for $Q_{2}\left(K_{n}\right)$ is also facet-defining for $P\left(K_{n}\right)$.
The purpose of this paper is to investigate the structure of $P\left(K_{n}\right)$ that does not arise from the structures of $Q_{1}\left(K_{n}\right)$ and $Q_{2}\left(K_{n}\right)$. Clearly, not every facet-defining inequality for $P\left(K_{n}\right)$ is necessarily facet-defining for $Q_{1}\left(K_{n}\right)$ or for $Q_{2}\left(K_{n}\right)$. In fact, we shall show that there exist facet-defining inequalities for $P\left(K_{n}\right)$ that are valid for neither $Q_{1}\left(K_{n}\right)$ nor for $Q_{2}\left(K_{n}\right)$.

2 Facets arising from subdivisions of K_{5} and $K_{3,3}$

The two graphs K_{5} and $K_{3,3}$ play a central role in planarity: Kuratowski [3] showed that a graph is planar if and only if it contains no subdivisions of K_{5} or $K_{3,3}$. Subdivisions of K_{5} and of $K_{3,3}$ will play a central role also in this paper.

Consider the complete graph K_{5} with vertices $1,2,3,4,5$. Subdivide each edge $i j$ of K_{5} $(1 \leq i<j \leq 5) N_{i j}$ times, with $N_{i j} \geq 1$; let $i j^{1}, i j^{2}, \cdots, i j^{N_{i j}}$ denote the corresponding subdivision vertices. Denote by $G=(V, E)$ the resulting graph. Note that for every $1 \leq i<j \leq 5$, the graph G contains the edges $\left(i, i j^{1}\right),\left(i j^{1}, i j^{2}\right), \cdots,\left(i j^{N_{i j}-1}, i j^{N_{i j}}\right)$, and ($i j^{N_{i j}}, j$), and it does not contain the edge (i, j). We shall refer to each of the five vertices $1,2,3,4,5$ of G as a white vertex and to each of all others (vertex $i j^{k}$) as a black vertex. Let N denote the total number of black vertices of G. Note that, by assumption, $N \geq 10$. Figure 1 shows a graph G with 20 black vertices.
For every $1 \leq i<j \leq 5$, let $K_{(i, j)}$ denote the complete graph with vertex set $\left\{i, i j^{1}, \cdots, i j^{N_{i j}}, j\right\}$, and let $G^{+}=\left(V, E^{+}\right)$be the graph obtained from G by adding every edge of each $K_{(i, j)}$. Write $n=N+5$ and let K_{n} denote the complete graph with vertex set V. Let F denote the set of all edges of K_{n} that are not edges of G^{+}.

Figure 1: A subdivision of K_{5}

The following theorem shows that the inequality $x(F) \geq 1$ defines a facet of $P\left(K_{n}\right)$. Note that such an inequality is not valid for $Q_{1}\left(K_{n}\right)$ (because for every edge e of G, the graph $G-e$ is planar and its incidence vector y is such that $y(F)=0$), and is not valid for $Q_{2}\left(K_{n}\right)$ (because the graph G is two-connected and its incidence vector y is such that $y(F)=0$).

Theorem 1 For every complete graph K_{n}, with $n \geq 15$, the inequality $x(F) \geq 1$ defines a facet of $P\left(K_{n}\right)$.

Proof. To prove the validity, let y be the an arbitrary point in $S\left(K_{n}\right)$ and let H be the subgraph of K_{n} corresponding to y. We only need show that $y(F) \geq 1$. For this purpose, assume that $y(F)<1$, and so $y(F)=0$. But then, every edge of H must be an edge of the graph G^{+}, which is impossible: G^{+}is not planar and no spanning planar subgraph of G^{+}is two-connected. Since y was an arbitrary point in $S\left(K_{n}\right)$, it follows that the inequality is valid over $P\left(K_{n}\right)$.

Now let $c \in\{0,1\}^{\binom{n}{2}}$ such that $c_{e}=0$ for every edge e of G^{+}and $c_{e}=1$ for every other edge; in other words, $c_{e}=1$ if and only if $e \in F$, and so the inequality $x(F) \geq 1$ reads $c^{T} x \geq 1$. Let $x^{1}, x^{2}, \cdots, x^{t}$ be points in $S\left(K_{n}\right)$ such that $c^{T} x^{i}=1$, for all $i=1, \cdots, t$; and let \bar{c} be a vector such that $\bar{c} x^{i}=\bar{c} x^{j}$ for all choices of i and j. Clearly, to show that $c^{T} x \geq 1$ defines a facet of $P\left(K_{n}\right)$ we only need show that \bar{c} is a multiple of c. For this purpose, set $T=\left\{x^{1}, x^{2}, \cdots, x^{t}\right\}$.

First, we shall show that $\bar{c}_{e}=0$ for every edge e of G^{+}. Let e be an arbitrary such an edge. Without loss of generality, we can assume that e is an edge of the complete graph $K_{(1,2)}$. Let u and v denote the vertices $34^{N_{34}}$ and 12^{1}, respectively. Consider the subgraph H of K_{n} obtained from G by deleting edge ($u, 4$) and by adding edge (u, v) (see Figure 2); and let y denote its incidence vector. Clearly, $y \in T$.

Figure 2: The graph H
Now, if $e \notin E$ (i.e., e is an edge of $K_{(1,2)}$ and is not an edge of G), then we let H^{1} denote the subgraph of K_{n} obtained from H by adding the edge e. Since the incidence vector y^{1} of H^{1} belongs also to T, by assumption, $\bar{c} y=\bar{c} y^{1}$, and so $\bar{c}_{e}=0$, and we are done. Hence, assume that $e \in E$. If one endpoint of e is a white vertex then, without loss of generality, we can assume that $e=(1, v)$ (in case $e=\left(2,12^{N_{12}}\right)$ it is sufficient to set $v=12^{N_{12}}$). In this case, we let H^{2} denote the subgraph of K_{n} obtained from H by deleting edge e. Since the incidence vector y^{2} of H^{2} belongs also to T, by assumption, $\bar{c} y=\bar{c} y^{2}$, and so $\bar{c}_{e}=0$, and again we are done. Otherwise, both endpoints of the edge e in E are black, and so $e=\left(12^{k}, 12^{k+1}\right)$, with $1 \leq k \leq N_{12}-1$. Let H^{\prime} denote the subgraph of K_{n} obtained from H by deleting edge (u, v) and adding edge ($u, 12^{k}$), and let y^{\prime} denote its incidence vector. (Note that, if $k=1$ then $y^{\prime}=y$, and so H and H^{\prime} are in fact the same graph.) Clearly $y^{\prime} \in T$. Now, let H^{3} be the subgraph of K_{n} obtained from H^{\prime} by deleting edge e and by adding edge $f=\left(12^{k+1}, 1\right)$. Since the incidence vector y^{3} of H^{3} belongs also to T, by assumption, $\bar{c} y^{\prime}=\bar{c} y^{3}$, and so $\bar{c}_{e}=\bar{c}_{f}$. But $\bar{c}_{f}=0$ (since f is an edge of $K_{(1,2)}$ and is not an edge of G), and so $\bar{c}_{e}=0$, and again we are done. Hence we have shown that $\bar{c}_{e}=0$ for every edge e of G^{+}.
Now to finish the proof, we only need show that \bar{c}_{e} has the same value for every
$e \in F$. For this purpose, let $u=i j^{k}$ be an arbitrary black vertex of K_{n}; without loss of generality, we can assume that $u=12^{k}$, with $1 \leq k \leq 12^{N_{12}}$. We propose to show that $\bar{c}_{e}=\bar{c}_{f}$ for every pair of arbitrary edges e, f in $F \cap \delta(u)$. Note that as soon as this is accomplished, we are done, since every edge in F has a black endpoint and since u was chosen arbitrary among all black vertices.
Consider the graph H^{L} in Figure 3 and the graph H^{R} in Figure 4, where all black vertices 12^{i}, with $i=1,2, \cdots, 12^{N_{12}}$ are present.

Figure 3: The graph H^{L}
Let L denote the subset of V of all vertices that do not belong to the complete graphs $K_{(1,2)}, K_{(2,3)}, K_{(2,4)}$, and $K_{(2,5)}$; and let R denote the subset of V of all vertices that do not belong to the complete graphs $K_{(1,2)}, K_{(1,3)}, K_{(1,4)}$, and $K_{(1,5)}$. Write $e=(u, v)$ and $f=(u, w)$; clearly, both v and w are in $L \cup R$. If both vertices v and w are in L (or in R), consider the graphs H^{4} and H^{5} obtained from H^{L} (or H^{R}) by adding edge e and edge f, respectively; let y^{4} and y^{5} denote the corresponding incidence vectors. Since both y^{4} and y^{5} are in T, by assumption, $\bar{c} y^{4}=\bar{c} y^{5}$, and so $\bar{c}_{e}=\bar{c}_{f}$. But then, since $R \cap L \neq \emptyset$, and since $\bar{c}_{g}=0$ for every $g \notin F$, it follows that $\bar{c}_{e}=\bar{c}_{f}$ for every choice of e and f in $F \cap \delta(u)$. The theorem follows.

A different class of facet-defining inequalities for the polytope $P\left(K_{n}\right)$ can be obtained in a similar way from the complete bipartite graph $K_{3,3}$. Let $1,2,3,4,5,6$ denote the vertices of $K_{3,3}$ and let Q denote its edge-set, i.e. $Q=\{14,15,16,24,25,26,34$, $35,36\}$. Subdivide each edge $i j$ of $K_{3,3}, N_{i j}$ times, with $N_{i j} \geq 1$; and let $i j^{1}, i j^{2}$, $\cdots, i j^{N_{i j}}$ denote the corresponding subdivision vertices. Denote by $G=(V, E)$ the

Figure 4: The graph H_{R}
resulting graph. Note that G contains all the edges $\left(i, i j^{1}\right),\left(i j^{1}, i j^{2}\right), \cdots,\left(i j^{N_{i j}-1}\right.$, $i j^{N_{i j}}$), and ($i j^{N_{i j}}, j$), and it does not contain the edge (i, j), for every $i j \in Q$. Figure 5 shows a graph G having 16 subdivision vertices. Note that, by assumption, the total number of subdivision vertices is at least nine. Set $M=\{12,13,23,45,46,56\}$, and let $G^{+}=\left(V, E^{+}\right)$be the graph obtained from G by adding all edges in M and by adding every edge of each $K_{(i, j)}$, for all $i j \in Q$, where $K_{(i, j)}$ denote the complete graph with vertex set $\left\{i, i j^{1}, \cdots, i j^{N_{i j}}, j\right\}$. Let K_{n} denote the complete graph with vertex set V, and let F^{\prime} denote the set of all edges of K_{n} that are not edges of G^{+}. The following theorem shows that the inequality $x\left(F^{\prime}\right) \geq 1$ defines a facet of $P\left(K_{n}\right)$. Note that also this inequality is not valid for $Q_{1}\left(K_{n}\right)$ (because for every edge e of G, the graph $G-e$ is planar and its incidence vector y is such that $y\left(F^{\prime}\right)=0$), and is not valid for $Q_{2}\left(K_{n}\right)$ (because the graph G is two-connected and its incidence vector y is such that $\left.y\left(F^{\prime}\right)=0\right)$.

Theorem 2 For every complete graph K_{n} with $n \geq 15$, the inequality $x\left(F^{\prime}\right) \geq 1$ defines a facet of $P\left(K_{n}\right)$.

Proof. The proof is similar to the proof of Theorem 1. The only difference is that we have to show that $\bar{c}_{e}=0$ also for every edge $e \in M$, and this is easy.

Acknowledgements

We would like to thank Petra Mutzel and Mechthild Stoer for helpful discussions on this topic.

References

[1] C. Berge, Graphs and Hypergraphs, (North-Holland, Amsterdam, 1973).
[2] M.R. Garey and D.S. Johnson, Computer and Intractability: a Guide to the Theory of NP-Completeness, (Freeman, New York, 1979).
[3] K. Kuratowski, Sur le problème de courbes gauches en topologie, Fund. Math. 15 (1930) 271-283.
[4] P. Mutzel, The Maximum Planar Subgraph Problem, Ph.D. Dissertation, Universität zu Köln (1994).
[5] P. Mutzel, A Polyhedral Approach to Planar Augmentation and Related Problems, in: Algorithms - ESA'95, Lecture Notes in Comp. Scie. (P. Spirakis ed., 1995) 494-507.
[6] A. Schrijver, Theory of Linear and Integer Programming, (Wiley, Chichester, 1986).
[7] M. Stoer, Design of Survivable Networks, Lectures Notes in Math. (SpringerVerlags, Berlin, 1992).

[^0]: *Partially supported by DFG-Grant JU204/7-1 Forschungsschwerpunkt „Effiziente Algorithmen für diskrete Probleme und ihre Anwendungen" and by ESPRIT Long Term Research Project Nr. 20244 (ALCOM-IT)
 ${ }^{\dagger}$ IASI-CNR, Viale Manzoni 30, 00185 Rome, Italy
 ${ }^{\ddagger}$ Institut für Informatik, Universität zu Köln, Pohligstraße 1, 50969 Köln

