ANGEWANDTE MATHEMATIK UND INFORMATIK UNIVERSITÄT ZU KÖLN

Report No. 96.229

On the Two-Connected Planar Spanning Subgraph Polytope

by

C. De Simone and M. Jünger

1996

Research supported in part by DFG-Grant JU204/7-1 "Effiziente Algorithmen für diskrete Probleme und ihre Anwendungen" and by ESPRIT Long Term Research Project Nr. 20244 (ALCOM-IT)

> Institut für Informatik UNIVERSITÄT ZU KÖLN Pohligstraße 1 D-50969 Köln

Addresses of the authors:

Caterina De Simone

Istituto di Analisi dei Sistemi ed Informatica del CNR Viale Manzoni 30 00185 Roma Italy Email: desimone@iasi.rm.cnr.it **Michael Jünger** Institut für Informatik Universität zu Köln Pohligstraße 1

50969 Köln

Germany

 $Email: \verb"mjuenger@informatik.uni-koeln.de"$

On the Two-Connected Planar Spanning Subgraph Polytope^{*}

Caterina De Simone[†] Michael Jünger[‡]

Abstract

The problem of finding in a complete edge-weighted graph a two-connected planar spanning subgraph of maximum weight is important in automatic graph drawing. We investigate the problem from a polyhedral point of view.

Keywords: Planar graphs, two-connected graphs, polyhedra, facets.

1 Introduction

We assume familiarity with basic notions of graph theory (see, for instance, [1]) and with elementary notions of polyhedral combinatorics (see, for instance, [6]). Our graphs will be undirected and simple (no loops and no multiple edges). As usual, K_n denotes the complete graph with n vertices; $K_{n,m}$ denotes the complete bipartite graph with n + m vertices and $n \times m$ edges. Let G be a graph; G is connected if for every pair of distinct vertices there exists a path in G joining them; G is twoconnected if for every vertex v of G, the graph G - v is connected; G is planar if it can be embedded in the plane. A subgraph H of a G is spanning if the vertex sets of H and G are the same. Subdivision of an edge uv of G consists of removing edge uv, and adding a new vertex w and the two edges uw and vw; w is called subdivision vertex. If G and H are two graphs, we say that G contains a subdivision of H, if Harises by subdivision of the edges of some subgraph of G. As usual, $\delta(u)$ denotes the set of all edges that are incident in the vertex u.

In automatic graph drawing the following problem arises: find in a complete graph with weights on its edges a two-connected planar spanning subgraph with weight as

^{*}Partially supported by DFG-Grant JU204/7-1 Forschungsschwerpunkt "Effiziente Algorithmen für diskrete Probleme und ihre Anwendungen" and by ESPRIT Long Term Research Project Nr. 20244 (ALCOM-IT)

[†]IASI-CNR, Viale Manzoni 30, 00185 Rome, Italy

[‡]Institut für Informatik, Universität zu Köln, Pohligstraße 1, 50969 Köln

large as possible. This problem is NP-hard and it was introduced in [5]. In this paper we shall study this problem from a polyhedral point of view.

For this purpose, let n be an integer greater than or equal to four. Let $S(K_n)$ denote the set of the incidence vectors of all spanning subgraphs of K_n that are both planar and two-connected and let $P(K_n)$ denote the convex hull of $S(K_n)$; $P(K_n)$ is known as the two-connected planar subgraph polytope. In [5], a first version of a branch and cut algorithm based on the partial knowledge of the facet-defining structure of $P(K_n)$, found in [4], [5], and [7], was designed and tested. The partial knowledge of $P(K_n)$ comes from the investigations of two other related polytopes, namely the convex hull $Q_1(K_n)$ of the incidence vectors of all subgraphs of K_n that are planar [4], and the convex hull $Q_2(K_n)$ of the incidence vectors of all spanning subgraphs of K_n that are two-connected [7]. Indeed, $P(K_n) \subseteq Q_1(K_n) \cap Q_2(K_n)$, and so every inequality valid for $Q_i(K_n)$ (i = 1, 2) is also valid for $P(K_n)$. In [5] it was shown that every facet-defining inequality of $Q_1(K_n)$ are also facet-defining for $P(K_n)$ and that some facet-defining inequalities of $Q_2(K_n)$ are also facet-defining for $P(K_n)$. It is not known whether every facet-defining inequality for $Q_2(K_n)$ is also facet-defining for $P(K_n)$. It is not known whether every facet-defining inequality for $Q_2(K_n)$ is also facet-defining for $P(K_n)$.

The purpose of this paper is to investigate the structure of $P(K_n)$ that does not arise from the structures of $Q_1(K_n)$ and $Q_2(K_n)$. Clearly, not every facet-defining inequality for $P(K_n)$ is necessarily facet-defining for $Q_1(K_n)$ or for $Q_2(K_n)$. In fact, we shall show that there exist facet-defining inequalities for $P(K_n)$ that are valid for neither $Q_1(K_n)$ nor for $Q_2(K_n)$.

2 Facets arising from subdivisions of K_5 and $K_{3,3}$

The two graphs K_5 and $K_{3,3}$ play a central role in planarity: Kuratowski [3] showed that a graph is planar if and only if it contains no subdivisions of K_5 or $K_{3,3}$. Subdivisions of K_5 and of $K_{3,3}$ will play a central role also in this paper.

Consider the complete graph K_5 with vertices 1, 2, 3, 4, 5. Subdivide each edge ij of K_5 $(1 \leq i < j \leq 5) N_{ij}$ times, with $N_{ij} \geq 1$; let $ij^1, ij^2, \dots, ij^{N_{ij}}$ denote the corresponding subdivision vertices. Denote by G = (V, E) the resulting graph. Note that for every $1 \leq i < j \leq 5$, the graph G contains the edges $(i, ij^1), (ij^1, ij^2), \dots, (ij^{N_{ij}-1}, ij^{N_{ij}}),$ and $(ij^{N_{ij}}, j)$, and it does not contain the edge (i, j). We shall refer to each of the five vertices 1, 2, 3, 4, 5 of G as a *white* vertex and to each of all others (vertex ij^k) as a *black* vertex. Let N denote the total number of black vertices of G. Note that, by assumption, $N \geq 10$. Figure 1 shows a graph G with 20 black vertices.

For every $1 \leq i < j \leq 5$, let $K_{(i,j)}$ denote the complete graph with vertex set $\{i, ij^1, \dots, ij^{N_{ij}}, j\}$, and let $G^+ = (V, E^+)$ be the graph obtained from G by adding every edge of each $K_{(i,j)}$. Write n = N + 5 and let K_n denote the complete graph with vertex set V. Let F denote the set of all edges of K_n that are not edges of G^+ .

Figure 1: A subdivision of K_5

The following theorem shows that the inequality $x(F) \ge 1$ defines a facet of $P(K_n)$. Note that such an inequality is not valid for $Q_1(K_n)$ (because for every edge e of G, the graph G - e is planar and its incidence vector y is such that y(F) = 0), and is not valid for $Q_2(K_n)$ (because the graph G is two-connected and its incidence vector y is such that y(F) = 0).

Theorem 1 For every complete graph K_n , with $n \ge 15$, the inequality $x(F) \ge 1$ defines a facet of $P(K_n)$.

Proof. To prove the validity, let y be the an arbitrary point in $S(K_n)$ and let H be the subgraph of K_n corresponding to y. We only need show that $y(F) \ge 1$. For this purpose, assume that y(F) < 1, and so y(F) = 0. But then, every edge of H must be an edge of the graph G^+ , which is impossible: G^+ is not planar and no spanning planar subgraph of G^+ is two-connected. Since y was an arbitrary point in $S(K_n)$, it follows that the inequality is valid over $P(K_n)$.

Now let $c \in \{0, 1\}^{\binom{n}{2}}$ such that $c_e = 0$ for every edge e of G^+ and $c_e = 1$ for every other edge; in other words, $c_e = 1$ if and only if $e \in F$, and so the inequality $x(F) \ge 1$ reads $c^T x \ge 1$. Let x^1, x^2, \dots, x^t be points in $S(K_n)$ such that $c^T x^i = 1$, for all $i = 1, \dots, t$; and let \overline{c} be a vector such that $\overline{c}x^i = \overline{c}x^j$ for all choices of i and j. Clearly, to show that $c^T x \ge 1$ defines a facet of $P(K_n)$ we only need show that \overline{c} is a multiple of c. For this purpose, set $T = \{x^1, x^2, \dots, x^t\}$. First, we shall show that $\overline{c}_e = 0$ for every edge e of G^+ . Let e be an arbitrary such an edge. Without loss of generality, we can assume that e is an edge of the complete graph $K_{(1,2)}$. Let u and v denote the vertices $34^{N_{34}}$ and 12^1 , respectively. Consider the subgraph H of K_n obtained from G by deleting edge (u, 4) and by adding edge (u, v) (see Figure 2); and let y denote its incidence vector. Clearly, $y \in T$.

Figure 2: The graph H

Now, if $e \notin E$ (i.e., e is an edge of $K_{(1,2)}$ and is not an edge of G), then we let H^1 denote the subgraph of K_n obtained from H by adding the edge e. Since the incidence vector y^1 of H^1 belongs also to T, by assumption, $\overline{c}y = \overline{c}y^1$, and so $\overline{c}_e = 0$, and we are done. Hence, assume that $e \in E$. If one endpoint of e is a white vertex then, without loss of generality, we can assume that e = (1, v) (in case $e = (2, 12^{N_{12}})$ it is sufficient to set $v = 12^{N_{12}}$). In this case, we let H^2 denote the subgraph of K_n obtained from H by deleting edge e. Since the incidence vector y^2 of H^2 belongs also to T, by assumption, $\overline{c}y = \overline{c}y^2$, and so $\overline{c}_e = 0$, and again we are done. Otherwise, both endpoints of the edge e in E are black, and so $e = (12^k, 12^{k+1})$, with $1 \le k \le N_{12} - 1$. Let H' denote the subgraph of K_n obtained from H by deleting edge (u, v) and adding edge $(u, 12^k)$, and let y' denote its incidence vector. (Note that, if k = 1 then y' = y, and so H and H' are in fact the same graph.) Clearly $y' \in T$. Now, let H^3 be the subgraph of K_n obtained from H' by deleting edge e and by adding edge $f = (12^{k+1}, 1)$. Since the incidence vector y^3 of H^3 belongs also to T, by assumption, $\overline{c}y' = \overline{c}y^3$, and so $\overline{c}_e = \overline{c}_f$. But $\overline{c}_f = 0$ (since f is an edge of $K_{(1,2)}$ and is not an edge of G), and so $\overline{c}_e = 0$, and again we are done. Hence we have shown that $\overline{c}_e = 0$ for every edge e of G^+ .

Now to finish the proof, we only need show that \overline{c}_e has the same value for every

 $e \in F$. For this purpose, let $u = ij^k$ be an arbitrary black vertex of K_n ; without loss of generality, we can assume that $u = 12^k$, with $1 \le k \le 12^{N_{12}}$. We propose to show that $\overline{c}_e = \overline{c}_f$ for every pair of arbitrary edges e, f in $F \cap \delta(u)$. Note that as soon as this is accomplished, we are done, since every edge in F has a black endpoint and since u was chosen arbitrary among all black vertices.

Consider the graph H^L in Figure 3 and the graph H^R in Figure 4, where all black vertices 12^i , with $i = 1, 2, \dots, 12^{N_{12}}$ are present.

Figure 3: The graph H^L

Let L denote the subset of V of all vertices that do not belong to the complete graphs $K_{(1,2)}, K_{(2,3)}, K_{(2,4)}$, and $K_{(2,5)}$; and let R denote the subset of V of all vertices that do not belong to the complete graphs $K_{(1,2)}, K_{(1,3)}, K_{(1,4)}$, and $K_{(1,5)}$. Write e = (u, v) and f = (u, w); clearly, both v and w are in $L \cup R$. If both vertices v and w are in L (or in R), consider the graphs H^4 and H^5 obtained from H^L (or H^R) by adding edge e and edge f, respectively; let y^4 and y^5 denote the corresponding incidence vectors. Since both y^4 and y^5 are in T, by assumption, $\overline{c}y^4 = \overline{c}y^5$, and so $\overline{c}_e = \overline{c}_f$. But then, since $R \cap L \neq \emptyset$, and since $\overline{c}_g = 0$ for every $g \notin F$, it follows that $\overline{c}_e = \overline{c}_f$ for every choice of e and f in $F \cap \delta(u)$. The theorem follows.

A different class of facet-defining inequalities for the polytope $P(K_n)$ can be obtained in a similar way from the complete bipartite graph $K_{3,3}$. Let 1, 2, 3, 4, 5, 6 denote the vertices of $K_{3,3}$ and let Q denote its edge-set, i.e. $Q = \{14, 15, 16, 24, 25, 26, 34, 35, 36\}$. Subdivide each edge ij of $K_{3,3}$, N_{ij} times, with $N_{ij} \geq 1$; and let ij^1, ij^2 , $\cdots, ij^{N_{ij}}$ denote the corresponding subdivision vertices. Denote by G = (V, E) the

Figure 4: The graph H_R

resulting graph. Note that G contains all the edges (i, ij^1) , (ij^1, ij^2) , \cdots , $(ij^{N_{ij}-1}, ij^{N_{ij}})$, and $(ij^{N_{ij}}, j)$, and it does not contain the edge (i, j), for every $ij \in Q$. Figure 5 shows a graph G having 16 subdivision vertices. Note that, by assumption, the total number of subdivision vertices is at least nine. Set $M = \{12, 13, 23, 45, 46, 56\}$, and let $G^+ = (V, E^+)$ be the graph obtained from G by adding all edges in M and by adding every edge of each $K_{(i,j)}$, for all $ij \in Q$, where $K_{(i,j)}$ denote the complete graph with vertex set $\{i, ij^1, \cdots, ij^{N_{ij}}, j\}$. Let K_n denote the complete graph with vertex set V, and let F' denote the set of all edges of K_n that are not edges of G^+ . The following theorem shows that the inequality $x(F') \geq 1$ defines a facet of $P(K_n)$. Note that also this inequality is not valid for $Q_1(K_n)$ (because for every edge e of G, the graph G - e is planar and its incidence vector y is such that y(F') = 0), and is not valid for $Q_2(K_n)$ (because the graph G is two-connected and its incidence vector y is such that y(F') = 0).

Theorem 2 For every complete graph K_n with $n \ge 15$, the inequality $x(F') \ge 1$ defines a facet of $P(K_n)$.

Proof. The proof is similar to the proof of Theorem 1. The only difference is that we have to show that $\overline{c}_e = 0$ also for every edge $e \in M$, and this is easy.

Acknowledgements

We would like to thank Petra Mutzel and Mechthild Stoer for helpful discussions on this topic.

References

- [1] C. Berge, Graphs and Hypergraphs, (North-Holland, Amsterdam, 1973).
- [2] M.R. Garey and D.S. Johnson, Computer and Intractability: a Guide to the Theory of NP-Completeness, (Freeman, New York, 1979).
- [3] K. Kuratowski, Sur le problème de courbes gauches en topologie, Fund. Math. 15 (1930) 271-283.
- [4] P. Mutzel, The Maximum Planar Subgraph Problem, Ph.D. Dissertation, Universität zu Köln (1994).
- [5] P. Mutzel, A Polyhedral Approach to Planar Augmentation and Related Problems, in: Algorithms – ESA'95, Lecture Notes in Comp. Scie. (P. Spirakis ed., 1995) 494–507.
- [6] A. Schrijver, Theory of Linear and Integer Programming, (Wiley, Chichester, 1986).
- [7] M. Stoer, Design of Survivable Networks, Lectures Notes in Math. (Springer-Verlags, Berlin, 1992).