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Amplifying the Security of One-Way Functions

|

A Proof of Yao's XOR-Lemma

by

Frank Damm and Franz-Peter Heider

Abstract

In this paper we give a consistent and simple proof for the XOR-Lemmawhich was hinted

at by Yao in [3] and subsequently presented by him in lectures. It can be found in print in

[2].

By the lemma we know that the security of any one-way function f : X �! f0; 1g can

be substantially ampli�ed if the function is replaced by the XOR with itself, namely by

f � f : X �X �! f0; 1g; (x; y) �! f(x) � f(y).

Applications are in cryptography and complexity theory. However, the existence of one-

way functions still remains an open problem.

1 Introduction

One-way functions can be verbally de�ned as function families (f

n

)

n2IN

that are computable

in time polynomial in n and can not be successfully inverted by any probabilistic algorithm

of polynomial running time. Although their existence is unproven, it is common cryptographic

praxis to build the security of encryption systems, digital signatures and cryptographic hash

functions on the hope of these being instances of one-way functions.

The main part of this paper contains the proof of Yao's XOR-Lemmma which gives a technique

of amplifying the security of one-way functions. This technique was �rst mentioned by Yao in

a half sentence of [3]. Furtheron, it was formalised in lectures by Yao (cited in [2]) and printed

in the book by Kranakis [2]. This book contains a proof too, which however is hard to follow.

The technical method of the intuitive part is quite di�erent from that of the formal part in

the proof, and several times arguments far stronger than necessary are employed. Considerung

the length of the proof, some open assertions put into the exercises and the correctness of the

lemma, it is not possible to de�nitely say the proof is wrong. Anyway, we give a proof now that

is consistent and simple. The de�nition 1 makes the start of the formal part by giving us the

notion of unapproximable predicates and friendship functions. Section 2 states the assertion of

the XOR-Lemma and section 3 contains its proof.

De�nition 1 Given a family of permutations F = (f

n

)

n2IN

de�ned on X = (X

n

)

n2IN

, X

n

�

f0; 1g

n

, hence f

n

(X

n

) = X

n

. Let f

n

be a polynomial time computable function. Let B = (B

n

)

n2IN

be a family of predicates B

n

: X

n

�! f0; 1g.
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(i) B is called unapproximable if and only if for every polynomial q, for every polynomial

time computable probabilistic algorithm C = (C

n

)

n2IN

there is an n

0

2 IN, such that for all

n 2 IN with n � n

0

Prob (x 2 X

n

: B

n

(x) = C

n

(x)) <

1

2

+

1

q(n)

(ii) F is called a friendship function for B if and only if B is unapproximable on (f

n

(X

n

))

n2IN

and there are polynomial time computable algorithms for the calculation of f

n

(x) from

input (n; x) and for the calculation of B

n

(f

n

(x)) from (n; x).

X

n

-

f0; 1g

X

n

Z

Z

Z

Z

Z

Z~?

B

n

� f

n

B

n

f

n

f

n

(x)

-

B

n

(f

n

(x))

x

Z

Z

Z

Z

Z

Z~?

B

n

� f

n

B

n

f

n

(not polynomial)

(polynomial)

(polynomial)

Figure 1: Unapproximable predicate B with friendship function F

2 Ampli�cation of Security by XOR

Consider a family of predicates B := fB

m

j m 2 INg de�ned on X = (X

n

)

n2IN

with (X

n

) �

f0; 1g

n

: B

n

: X

n

�! f0; 1g. Further consider a family of friendship functions F = (f

n

)

n2IN

to B,

f

n

being a permutation on X

n

.

Let M � IN be in�nite and for each m 2M

"

m

2 IR

+

; "

m

< 1=2

�

m

2 IR

+

; �

m

< 1

such that �

1

(m) := 1=�

m

and �

2

(m) := 1="

m

are polynomial in m.

Now we are prepared for the XOR-Lemma:

Theorem 2 If there is a polynomial time computable algorithm C = fC

m

j m 2 INg such that

for each m 2M

Prob

�

(x; y) 2 X

2

m

: C

m

(x; y) = B

m

(x)�B

m

(y)

�

�

1

2

+ "

m

then we can obtain a polynomial time computable algorithm D = fD

m

j m 2 INg from C such

that for all m 2M

Prob (x 2 X

m

: D

m

(x) = B

m

(x)) �

1

2

+ (1� �

m

)

r

"

m

2

2



3 Proof of the Theorem

The proof is given in several parts. First, the algorithm D is constructed, followed by a motivation

for its construction. Subsequently, the technical proof for the high probability of calculating

B correctly is presented in three more pieces. The �rst of these pieces investigates into the

probabilities for D = B per case of D. The set X is approximated by a random sample of

polynomial size and the extent of this approximation is proved in the second piece. The �nal

piece combines the results obtained in the restriction to each case of D.

3.1 Construction of the Algorithm D

For all m 2M let t

m

:= #X

m

and

�

m

:=

�

1�

�

m

2

�
q

"

m

2

�

m

:=

�

m

2

q

"

m

2

s

m

:= 2

l

1

�

2

m

m

2

+ 1 l

m

:= s

5

m

In the following, m will be a �xed value and not explicitely written. Therefore D, C, B, f , X ,

", �; �; �; s; l; t will denote D

m

; C

m

; B

m

; f

m

; X

m

; "

m

; �

m

; �

m

; �

m

; s

m

; l

m

; t

m

.

� and � are made to ful�ll

0 < � <

1

2

; 0 < � <

1

4

; � + � =

r

"

2

For its work, algorithm D takes as an input a two dimensional sample from X � X . The size

of the sample will be l � s. Here s is polynomial in m and always odd. l is polynomial in m

too, but much larger than s. � was chosen to get a distance of � between 1=2 + � and the value

1=2 + (1� �)

p

"=2 from the assertion of the theorem:

1

2

+ (1� �)

r

"

2

=

1

2

+ � � �

Algorithm D works in two steps. In the step 1 it does a precalculation and takes as an input the

sample (x

1

; : : : ; x

l

; y

1

; : : : ; y

s

) from X

l+s

and the values of B at these points: (B(x

1

); : : : ; B(x

l

);

B(y

1

); : : : ; B(y

s

)) To obtain these values, the friendship function is employed. Let (z

1

; : : : ; z

l+s

)

be from X and calculate

x

i

:= f(z

i

) and B(x

i

) := B(f(z

i

)) for i = 1; : : : ; l

y

i

:= f(z

i+l

) and B(y

i

) := B(f(z

i+l

)) for i = 1; : : : ; s

Since f is a permutation, the random draw of (z

1

; : : : ; z

l+s

) from X is equivalent to a random

draw of (x

1

; : : : ; x

l

; y

1

; : : : ; y

s

) from X .

In the step 2 of D the main calculation is executed, based on the result of step 1. Step 2 takes

as an input the value x 2 X and produces a value from f0; 1g as an output.

3



D

Step 1

sample input (x

1

; : : : ; x

l

; y

1

; : : : ; y

s

) 2 X

l+s

;

(B(x

1

); : : : ; B(x

l

); B(y

1

); : : : ; B(y

s

)) 2 f0; 1g

l+s

calculation for every i 2 f1; : : : ; lg :

k

y

(x

i

; B(x

i

)) := #fj 2 f1; : : : ; sg : C(x

i

; y

j

) = B(x

i

)� B(y

j

)g;

case 1: 9 x

0

2 fx

1

; : : : ; x

l

g : jk

y

(x

0

; B(x

0

))�

s

2

j � s�;

if so: stop step 1

case 2: otherwise. Continue for every k 2 f0; : : : ; sg :

�(k) := #fx

i

2 fx

1

; : : : ; x

l

g : k

y

(x

i

; B(x

i

)) = kg

Step 2

input x 2 X

calculation if case 1 holds:

D(x) :=

(

C(x

0

; x)�B(x

0

)� 1 f�ur k

y

(x

0

; B(x

0

)) <

s

2

C(x

0

; x)�B(x

0

) f�ur k

y

(x

0

; B(x

0

)) >

s

2

if case 2 holds: calculate k

y

(x; 0) := #fj 2 f1; : : : ; sg : C(x; y

j

) = B(y

j

)g

subcase 1: �(k

y

(x; 0))> �(s� k

y

(x; 0)); let D(x) := 0

subcase 2: �(k

y

(x; 0))< �(s� k

y

(x; 0)); let D(x) := 1

subcase 3: �(k

y

(x; 0)) = �(s� k

y

(x; 0)); let

D(x) :=

(

0 with probability 1=2

1 with probability 1=2

output D(x)

D is a polynomial time computable algorithm, because �

1

(m) and �

2

(m) are polynomial in m

and the friendship function f as well as the algorithm C are polynomial time computable.

3.2 Motivation of Algorithm D

D uses its knowledge of the values of B at x

1

; : : : ; x

l

, y

1

; : : : ; y

s

to approximate the value B(x)

for an input x. Because of the assumption of the theorem, algorithm C(:; :) is able to calculate

the XOR of B with itself with probability of at least

1

2

+ ". The values x

1

; : : : ; x

l

are used as

the �rst argument (x-direction) of C(:; :) respectively B(:)�B(:), while the values y

1

; : : : ; y

s

are

used as the second argument (y-direction).

Given an x

i

2 fx

1

; : : : ; x

l

g, k

y

(x

i

; B(x

i

)) counts the number of y's in the sample such that

C(x

i

; :) is successful in calculating B(x

i

) � B(:). Figures 2, 3, 4 show k

y

(x

i

; B(x

i

)) versus x

i

2

fx

1

; : : : ; x

l

g. In these �gures, the values in x-direction are permuted to obtain k

y

in increasing

order. Figures 2 and 3 correspond to case 1 of D, while �gure 4 corresponds to case 2 (subcase

2).

Case 1 yields an x

0

in the sample with

�

�

�

�

k

y

(x

0

; B(x

0

))�

s

2

�

�

�

�

� s�
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In this case there are two possibilities. Considering x

0

and y

1

; : : : ; y

s

either C(x

0

; y

j

) = B(x

0

)�

B(y

j

) holds for much fewer than half of the y-values, or it holds for much more than half of

them. If it holds for fewer than half of the y's, k

y

(x

0

; B(x

0

)) < s=2, which will be denoted

as subcase 1 and is shown in �gure 2. Subcase 2 is shown in �gure 3. The minority of y-

values with C(x

0

; y

j

) = B(x

0

) � B(y

j

) in subcase 1 correspond to a majority of y-values with

C(x

0

; y

j

) = B(x

0

)�B(y

j

)� 1. Because of the clear behaviour of the y-part of the sample at x

0

,

it can be expected that for a su�cient majority of inputs x the same equations hold, i.e.

C(x

0

; x) = B(x

0

)� B(x)� 1 in subcase 1

C(x

0

; x) = B(x

0

)� B(x) in subcase 2

Therefore

D(x) := C(x

0

; x)�B(x

0

)� 1 in subcase 1

D(x) := C(x

0

; x)�B(x

0

) in subcase 2

seems worth trying.

If the second case holds, the number of hits in y-direction for C(x

i

; y

j

) = B(x

i

)�B(y

j

) are close

to s=2 (�gure 4). In this case, the input x is used as �rst argument in C(:; :) and its behaviour in y-

direction would be given by the value k

y

(x;B(x)). If that value was known, x could be compared

to all x

i

in the x-direction of the sample with equal behaviour, i.e. k

y

(x

i

; B(x

i

)) = k

y

(x;B(x)).

While B(x) is not available, there are two possibilities only:

k

y

(x;B(x)) =

(

k

y

(x; 0) if B(x) = 0

k

y

(x; 1) = s� k

y

(x; 0) if B(x) = 1

Therefore D calculates k

y

(x; 0) and counts the number of x

i

such that k

y

(x; 0) = k

y

(x

i

; B(x

i

))

and the number of x

i

such that k

y

(x; 0) = s � k

y

(x

i

; B(x

i

)). The majority of these x

i

are used

as witnesses. D outputs 0 if the majority of the x

i

give k

y

(x; 0) = k

y

(x

i

; B(x

i

)), or 1 if there is

a majority for s� k

y

(x; 0) = k

y

(x

i

; B(x

i

)). If the number of witnesses for B = 0 equals that for

B = 1, D makes a fair guess. In the example of �gure 4, there are 4 witnesses for \B = 0" and

6 witnesses for \B = 1". D would return B = 1 in this example.

3.3 Probability for D = B

Let m 2 M still be �xed. It must be shown that the probability of of D's success is lower

bounded by

Prob (x 2 X : D(x) = B(x)) �

1

2

+ � � �

This probability will be bounded for each of D's cases in the current section. In section 3.5 the

probabilities will be combined using the total probability theorem.

Case 1 of D

In the second subcase of D's case one k

y

(x

0

; B(x

0

))�

s

2

� s� holds, and therefore

1

2

+ � � Prob (x 2 fy

1

; : : : ; y

s

g : C(x

0

; x) = B(x

0

)�B(x))

5
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6

-

x

i

2 X

k

y
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i

; B(x

i
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1

s

2

+ s�

s

Figure 2: Subcase 1 of case 1

x

1

x

0

x

l

s

2

s

2

� s�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

6

-

x

i

2 X

k

y

(x

i

; B(x

i

))

1
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Figure 3: Subcase 2 of case 1
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6
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s

2

�(k

y

(x; 0))

s � k

y

(x; 0)

k

y

(x; 0)

k

y

(x

i

; B(x

i

))

x

i

2 X

s

2

+ s�

Figure 4: Case 2 (in this example the output would be D(x) = 1)

� Prob (x 2 X : C(x

0

; x) = B(x

0

)�B(x)) +

�

2

(1)

holds with probability at least 1� �

2

=2. The latter probability is calculated with respect to the

choice of the sample in y-direction and will be proved in the section 3.4. It follows that with at

least the same probability

1

2

+ � �

�

2

� Prob (x 2 X : C(x

0

; x) = B(x

0

)� B(x))

D

= Prob (x 2 X : D(x) = B(x)) (2)

holds.

In the �rst subcase of case one k

y

(x

0

; B(x

0

)) �

s

2

� s� is valid, and therefore

1

2

+ � � 1�

k

y

(x

0

; B(x

0

))

s

= Prob (x 2 fy

1

; : : : ; y

s

g : C(x

0

; x) = B(x

0

)�B(x)� 1)

� Prob (x 2 X : C(x

0

; x) = B(x

0

)�B(x)� 1) +

�

2

(3)

holds with probability at least 1 � �

2

=2 (with respect to the choice of the y-sample, prove see

below). This means at least the same probability for

1

2

+ � �

�

2

� Prob (x 2 X : C(x

0

; x) = B(x

0

)�B(x) � 1)

D

= Prob (x 2 X : D(x) = B(x)) (4)

Case 2 of D

In the second case of D the probability of D's success is calculated in three steps.

7



In the �rst step the probability for D = B is split into probabilities that can be treated

seperately later on. These probabilities will be approximated by the success probabilities for

D = B applied to the members of the sample. Here the cases B(x) = 0 and B(x) = 1 will be

distinguished. By the de�nition of D and k

y

(x; 1) = s � k

y

(x; 0) can be obtained that

Prob (x 2 X : D(x) = B(x))

= Prob (x 2 X : D(x) = B(x) ^B(x) = 0) + Prob (x 2 X : D(x) = B(x) ^ B(x) = 1)

= Prob (x 2 X : D(x) = 0 ^ B(x) = 0) + Prob (x 2 X : D(x) = 1 ^B(x) = 1)

= Prob (x 2 X : �(k

y

(x;B(x))) > �(s� k

y

(x;B(x)))^ B(x) = 0)

+ Prob (x 2 X : �(k

y

(x;B(x))) > �(s� k

y

(x;B(x)))^ B(x) = 1)

+ Prob (x 2 X : �(k

y

(x; 0)) = �(s� k

y

(x; 0))^D(x) = B(x))

= Prob (x 2 X : �(k

y

(x;B(x))) > �(s� k

y

(x;B(x))))

+ Prob (x 2 X : �(k

y

(x; 0)) = �(s� k

y

(x; 0))^D(x) = B(x))

The second of these probabilities can be further manipulated. In this case, the events D(x) = 0

and D(x) = 1 each occur with probability 1=2, independently of the precalculation and inde-

pendently of the input x. Furthermore one has k

y

(x; 1) = s� k

y

(x; 0) and therefore

Prob (x 2 X : �(k

y

(x; 0)) = �(s� k

y

(x; 0))^D(x) = B(x))

= Prob (x 2 X : �(k

y

(x; 0)) = �(s� k

y

(x; 0))^D(x) = 0 ^B(x) = 0)

+ Prob (x 2 X : �(k

y

(x; 0)) = �(s� k

y

(x; 0))^D(x) = 1 ^B(x) = 1)

=

1

2

� Prob (x 2 X : �(k

y

(x; 0)) = �(s� k

y

(x; 0))^ B(x) = 0)

+

1

2

� Prob (x 2 X : �(k

y

(x; 0)) = �(s� k

y

(x; 0))^ B(x) = 1)

=

1

2

� Prob (x 2 X : �(k

y

(x; 0)) = �(s� k

y

(x; 0)))

=

1

2

� Prob (x 2 X : �(k

y

(x;B(x))) = �(s� k

y

(x;B(x))))

=

1

2

�

s

X

k=0

�(k)=�(s�k)

Prob (x 2 X : k

y

(x;B(x)) = k)

This implies

Prob (x 2 X : D(x) = B(x)) =

s

X

k=0

�(k)>�(s�k)

Prob (x 2 X : k

y

(x;B(x)) = k)

+

1

2

�

s

X

k=0

�(k)=�(s�k)

Prob (x 2 X : k

y

(x;B(x)) = k)

These probabilities are approximated by the sample. Because of the weak law of large numbers

the probabilities in both sums ful�ll

Prob (x 2 X : k

y

(x;B(x)) = k) �

�

�(k)

l

�

1

4s

2

�

(5)

8



with probability at least 1� 2�

4

, as will be proved in section 3.4.

The second step relates the success of D on the sample to the success of C on the sample.

The success of D on the sample corresponds to the area below the graph in �gure 4, which shall

be called 


l;s

. Because s is odd and maxf�; �g = 1=2(�+ � + j�� �j) and

P

s

k=0

�(k) = l hold,

the probability is larger than � 1� 2�

4

that

Prob (x 2 X : D(x) = B(x))

�

s

X

k=0

�(k)>�(s�k)

�

�(k)

l

�

1

4s

2

�

+

1

2

�

s

X

k=0

�(k)=�(s�k)

�

�(k)

l

�

1

4s

2

�

=

X

k>s=2

�(k) 6=�(s�k)

�

maxf�(k); �(s� k)g

l

�

1

4s

2

�

+

1

2

�

s

X

k=0

�(k)=�(s�k)

�

�(k)

l

�

1

4s

2

�

=

X

k>s=2

�(k) 6=�(s�k)

 

1

2

(�(k) + �(s� k) + j�(k)� �(s� k)j)

l

�

1

4s

2

!

+

1

2

�

s

X

k=0

�(k)=�(s�k)

�

�(k)

l

�

1

4s

2

�

�

1

2

�

s

X

k=0

�(k)

l

+

1

2

�

s

X

k=0

k>s=2

�

�

�

�

�(k)� �(s� k)

l

�

�

�

�

�

s+ 1

4s

2

�

1

2

+

1

2

�

s

X

k=0

k>s=2

�

�

�

�

�(k)� �(s� k)

l

�

�

�

�

�

1

2s

(6)

holds.

The value 


l;s

can easily be calculated from �gure 4 because the area below the graph does

not change by the permutation of values in x-direction. Using the symmetry of the height of the

steps with respect to the value s=2 and the second case (jk � s=2j < s� and k < s� + s=2), one

obtains




l;s

=

sl

2

+

s

X

k=0

s=2<k<s�+s=2

�

k �

s

2

�

(�(k)� �(s� k))

<

sl

2

+

s

X

k=0

s=2<k<s�+s=2

s� j�(k)� �(s� k)j

Further dividing by ls:

1

2

+ �

s

X

k=0

s=2<k<s�+s=2

�

�

�

�

�(k)� �(s� k)

l

�

�

�

�

>




l;s

ls

=)

s

X

k=0

s=2<k<s�+s=2

�

�

�

�

�(k)� �(s� k)

l

�

�

�

�

>

1

�

�

�




l;s

ls

�

1

2

�

9



Combined with (6) this yields

Prob (x 2 X : D(x) = B(x)) >

1

2

+

1

2�

�

�




l;s

ls

�

1

2

�

�

1

2s

(7)

Step three employs the fact that 


l;s

=ls approximates the probability for C(:; :) = B(:) � B(:)

with l; s �! t. However this probability is lower bounded by the assumption of the theorem.

Because of the weak law of large numbers the probability is at least 1� �

8

=16 that




l;s

ls

� Prob

�

(x; y) 2 X

2

: C(x; y) = B(x)�B(y)

�

�

1

s

2

(8)

This approximation will be proved in section 3.4. The assumption of the theorem gives

Prob

�

(x; y) 2 X

2

: C(x; y) = B(x)� B(y)

�

�

1

s

2

�

1

2

+ "�

1

s

2

Using (8) and (7) one has

Prob (x 2 X : D(x) = B(x)) �

1

2

+

1

2�

�

�

"�

1

s

2

�

�

1

2s

�

1

2

+ � �

�

2

(9)

with probability at least

1�

33�

4

16

(10)

This is because the left inequality of (9) can only be hurt if (6) or (8) are wrong, which can

occur with probability at most (consider 0 < � < 1=4)

2�

4

+

�

8

16

=

32�

4

+ �

8

16

�

33�

4

16

The right inequality of (9) mainly is due to the de�nition of s and l. Look at � + � more

precisely:

r

"

2

= � + �

=) " = 2 (� + �)

2

= 2�

2

+ 4�� + 2�

2

� 2�

2

+ 4�

�

4

2

+

�

8

4

(11)

� 2�

2

+

2�

2s

+

1

s

2

=)

" � 1=s

2

2�

� � +

1

2s

=)

"� 1=s

2

2�

�

1

2s

� � � � �

�

2

(2, 4, 9) complete the proof in section 3.5. Before, the approximations (1, 3, 5, 8) will be

proved now.
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3.4 Extent of the Approximation by the Random Sample

The calculation of the extent of the approximation of D's success probability on the set X by its

success probability on the random sample uses Bernoulli's weak law of large numbers [2] several

times. Given a random Bernoulli variable with expectancy p and empirical mean F

n

after n

trials, the probability for a distance of more than � > 0 between empirical mean and its limes is

bounded above by

Prob (jF

n

� pj � �) �

1

4n�

2

This instance of the weak law of large numbers is proved with Chebychev's inequality, considering

the case of Bernoulli variables and hence the variance p(1� p) being no larger than 1/4.

Furthermore the following inequalities will be used that can be veri�ed by the de�nition of s:

1

s

=

1

2

l

1

�

2

m

2

+ 1

�

1

2

�

1

�

4

+ 1

�

�

�

4

2

und

1

s

2

�

�

8

4

(11)

Case 1 of D

In case one inequalities (1) and (3) made the step from the probability on the random sample

to the probability on X at the cost of

�

2

=

�

4

q

"

2

.

(1) is obtained be the weak law of large numbers with parameters n := s and � := �=2

Prob

 

�

�

�
Prob(x 2 fy

1

; : : : ; y

s

g : C(x

0

; x) = B(x

0

)�B(x))

�Prob(x 2 X : C(x

0

; x) = B(x

0

)� B(x))

�

�

�
�

�

2

!

�

1

4s�

2

=

1

s�

2

(11)

�

�

2

2

The complement of this yields the probability of 1 �

�

2

2

in (1). In the same way (3) in the

other subcase of case one is proved.

Case 2 of D

For the second case and (5) the y-sample fy

1

: : : ; y

s

g and a k 2 f0 : : : ; sg are �xed. At the l exper-

iments with x

1

: : : ; x

l

one obtained the approximation �(k)=l for Prob (x 2 X : k

y

(x;B(x)) = k).

Let now � := 1=4s

2

and n := l, and consequently

Prob

�

j�(k)=l� Prob (x 2 X : k

y

(x;B(x)) = k) j > 1=4s

2

�

�

1

4l�

2

=

16s

4

4s

5

=

4

s

(11)

� 2�

4

therefore

Prob

�

Prob (x 2 X : k

y

(x;B(x)) = k) � �(k)=l� 1=4s

2

�

� 1� 2�

4

11



In (8) the expectancy of 


l;s

=ls for l; s �! t is known:




l;s

ls

�! 
 := Prob

�

(x; y) 2 X

2

: C(x; y) = B(x)� B(y)

�

Using the weak law of large numbers with parameters � := 1=s

2

and ls points in the sample

Prob

�

j


ls

=ls� 
j > 1=s

2

�

�

1

4ls�

2

=

1

4s

2

(11)

�

�

8

16

which means that (8) holds with probability at least 1�

�

8

16

.

3.5 Final Combination of Results

The results of the two sections before combine to the assertion.

For �nite sets A and B, the event C, a � with 0 � � � 1, and

� := Prob (a 2 A : Prob (b 2 B : C(a; b))� �)

one has

�+ � (1� �) � Prob ((a; b) 2 A� B : C(a; b))� �� (12)

The success probability of D can be simpli�ed. Let x 2 X be an input to D and z :=

(x

1

; : : : ; x

l

; y

1

; : : : ; y

s

) 2 X

l+s

a sample chosen by D. Consider the events

P (x; z): D chooses sample z and D(x) = B(x),

Q

1

(z) : D chooses sample z and the �rst case happens,

Q

2

(z) : D chooses sample z and the second case happens.

Using this notation and � := 1=2 + � � �=2 (2, 3, 9, 10) translate to:

Prob (z : Prob (x : P (z; x)) � � j Q

1

(z)) � 1�

�

2

2

Prob (z : Prob (x : P (z; x)) � � j Q

2

(z)) � 1�

33�

4

16

The right inequality in (12) and the total probability theorem yield

Prob (z; x : P (z; x)) � � �Prob (z : Prob (x : P (z; x)) � �)

= � �

�

Prob (z : Prob (x : P (z; x)) � � j Q

1

(z))Prob (z : Q

1

(z))

+Prob (z : Prob (x : P (z; x)) � � j Q

2

(z))Prob (z : Q

2

(z))

�

� � �min

 

1�

�

2

2

; 1�

33�

4

16

!

�

�

Prob (z : Q

1

(z)) + Prob (z : Q

2

(z))

�

=

�

1

2

+ � �

�

2

�

�

 

1�

�

2

2

!

12



�

�

1

2

+ � �

�

2

�

�

�

2

2

�

1

2

+ � � �

Here � < 1=4 and consequently

�

2

�

�

2

2

�

33�

4

16

was employed 3

4 Conclusion

The current paper contributes to earlier work of Yao and Kranakis [3, 2]. Although no doubt of

the validity of Yao's statement was justi�ed, it is good to see the ideas working in a consistent,

full and simple proof.
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